repo_name
stringlengths
6
112
path
stringlengths
4
204
copies
stringlengths
1
3
size
stringlengths
4
6
content
stringlengths
714
810k
license
stringclasses
15 values
sofiane87/lasagne-GAN
dcgan/dcgan_celeba.py
1
8790
from __future__ import print_function from keras.datasets import mnist from keras.layers import Input, Dense, Reshape, Flatten, Dropout from keras.layers import BatchNormalization, Activation, ZeroPadding2D, concatenate from keras.layers.advanced_activations import LeakyReLU from keras.layers.convolutional import UpSampling2D, Conv2D from keras.models import Sequential, Model from keras.optimizers import Adam, SGD import matplotlib.pyplot as plt import sys import os import numpy as np class DCGAN(): def __init__(self): self.img_rows = 64 self.img_cols = 64 self.channels = 3 self.save_img_folder = 'dcgan/images/' optimizer = Adam(0.0002, 0.5) optimizer_dis = Adam(0.0002, 0.5) self.latent_dim = 200 # Build and compile the discriminator self.discriminator = self.build_discriminator() self.discriminator.compile(loss='binary_crossentropy', optimizer=optimizer_dis, metrics=['accuracy']) # Build and compile the generator self.generator = self.build_generator() self.generator.compile(loss='binary_crossentropy', optimizer=optimizer) # The generator takes noise as input and generated imgs z = Input(shape=(200,)) img = self.generator(z) # For the combined model we will only train the generator self.discriminator.trainable = False # The valid takes generated images as input and determines validity valid = self.discriminator(img) # The combined model (stacked generator and discriminator) takes # noise as input => generates images => determines validity self.combined = Model(z, valid) self.combined.compile(loss='binary_crossentropy', optimizer=optimizer) def build_generator(self): noise_shape = (200,) model = Sequential() model.add(Dense(512 * 4 * 4, activation="relu", input_shape=noise_shape)) model.add(Reshape((4, 4, 512))) model.add(BatchNormalization(momentum=0.8)) model.add(UpSampling2D()) model.add(Conv2D(256, kernel_size=3, padding="same")) model.add(Activation("relu")) model.add(BatchNormalization(momentum=0.8)) model.add(UpSampling2D()) model.add(Conv2D(128, kernel_size=3, padding="same")) model.add(Activation("relu")) model.add(BatchNormalization(momentum=0.8)) model.add(UpSampling2D()) model.add(Conv2D(64, kernel_size=3, padding="same")) model.add(Activation("relu")) model.add(BatchNormalization(momentum=0.8)) model.add(UpSampling2D()) model.add(Conv2D(32, kernel_size=3, padding="same")) model.add(Activation("relu")) model.add(BatchNormalization(momentum=0.8)) model.add(Conv2D(3, kernel_size=3, padding="same")) model.add(Activation("tanh")) model.summary() noise = Input(shape=noise_shape) img = model(noise) return Model(noise, img) def build_discriminator(self): img_shape = (self.img_rows, self.img_cols, self.channels) model = Sequential() model.add(Conv2D(32, kernel_size=3, strides=2, input_shape=img_shape, padding="same")) model.add(LeakyReLU(alpha=0.2)) model.add(Dropout(0.25)) model.add(Conv2D(64, kernel_size=3, strides=2, padding="same")) model.add(ZeroPadding2D(padding=((0,1),(0,1)))) model.add(LeakyReLU(alpha=0.2)) model.add(Dropout(0.25)) model.add(BatchNormalization(momentum=0.8)) model.add(Conv2D(128, kernel_size=3, strides=2, padding="same")) model.add(LeakyReLU(alpha=0.2)) model.add(Dropout(0.25)) model.add(BatchNormalization(momentum=0.8)) model.add(Conv2D(256, kernel_size=3, strides=1, padding="same")) model.add(LeakyReLU(alpha=0.2)) model.add(Dropout(0.25)) model.add(Flatten()) model.add(Dense(1, activation='sigmoid')) model.summary() img = Input(shape=img_shape) validity = model(img) return Model(img, validity) def train(self, epochs, batch_size=128, save_interval=50): # Load the dataset X_train = self.load_data() half_batch = int(batch_size / 2) for epoch in range(epochs): # --------------------- # Train Discriminator # --------------------- # Select a random half batch of images idx = np.random.randint(0, X_train.shape[0], half_batch) imgs = X_train[idx] # Sample noise and generate a half batch of new images noise = np.random.normal(0, 1, (half_batch, 200)) gen_imgs = self.generator.predict(noise) # Train the discriminator (real classified as ones and generated as zeros) d_loss_real = self.discriminator.train_on_batch(imgs, np.ones((half_batch, 1))) d_loss_fake = self.discriminator.train_on_batch(gen_imgs, np.zeros((half_batch, 1))) d_loss = 0.5 * np.add(d_loss_real, d_loss_fake) # --------------------- # Train Generator # --------------------- noise = np.random.normal(0, 1, (batch_size, 200)) # Train the generator (wants discriminator to mistake images as real) g_loss = self.combined.train_on_batch(noise, np.ones((batch_size, 1))) # Plot the progress print ("%d [D loss: %f, acc.: %.2f%%] [G loss: %f]" % (epoch, d_loss[0], 100*d_loss[1], g_loss)) # If at save interval => save generated image samples if epoch % save_interval == 0: idx = np.random.randint(0, X_train.shape[0], batch_size) imgs = X_train[idx] self.save_imgs(epoch,imgs) def save_imgs(self, epoch,imgs): if not(os.path.exists(self.save_img_folder)): os.makedirs(self.save_img_folder) r, c = 5, 5 z = np.random.normal(size=(25, self.latent_dim)) gen_imgs = self.generator.predict(z) gen_imgs = 0.5 * gen_imgs + 0.5 # z_imgs = self.encoder.predict(imgs) # gen_enc_imgs = self.generator.predict(z_imgs) # gen_enc_imgs = 0.5 * gen_enc_imgs + 0.5 fig, axs = plt.subplots(r, c) cnt = 0 for i in range(r): for j in range(c): self.plot(axs[i,j],gen_imgs[cnt, :,:,:].squeeze()) cnt += 1 print('----- Saving generated -----') if isinstance(epoch, str): fig.savefig(self.save_img_folder + "celeba_{}.png".format(epoch)) else: fig.savefig(self.save_img_folder + "celeba_%d.png" % epoch) plt.close() # fig, axs = plt.subplots(r, c) # cnt = 0 # for i in range(r): # for j in range(c): # self.plot(axs[i,j],gen_enc_imgs[cnt, :,:,:].squeeze()) # cnt += 1 # print('----- Saving encoded -----') # if isinstance(epoch, str): # fig.savefig(self.save_img_folder + "celeba_{}_enc.png".format(epoch)) # else : # fig.savefig(self.save_img_folder + "celeba_%d_enc.png" % epoch) # plt.close() fig, axs = plt.subplots(r, c) cnt = 0 imgs = imgs * 0.5 + 0.5 for i in range(r): for j in range(c): self.plot(axs[i,j],imgs[cnt, :,:,:].squeeze()) cnt += 1 print('----- Saving real -----') if isinstance(epoch, str): fig.savefig(self.save_img_folder + "celeba_{}_real.png".format(epoch)) else : fig.savefig(self.save_img_folder + "celeba_%d_real.png" % epoch) plt.close() def load_data(self): self.dataPath = 'D:\Code\data\sceleba.npy' print('----- Loading CelebA -------') X_train = np.load(self.dataPath) X_train = X_train.transpose([0,2,3,1]) X_train = (X_train.astype(np.float32) - 0.5) / 0.5 print('CelebA shape:', X_train.shape, X_train.min(), X_train.max()) print('------- CelebA loaded -------') return X_train def plot(self, fig, img): if self.channels == 1: fig.imshow(img,cmap=self.cmap) fig.axis('off') else: fig.imshow(img) fig.axis('off') if __name__ == '__main__': dcgan = DCGAN() dcgan.train(epochs=50001, batch_size=64, save_interval=100)
mit
johankaito/fufuka
graph-tool/doc/sphinxext/docscrape_sphinx.py
4
7799
import re, inspect, textwrap, pydoc import sphinx from .docscrape import NumpyDocString, FunctionDoc, ClassDoc import collections class SphinxDocString(NumpyDocString): def __init__(self, docstring, config={}): self.use_plots = config.get('use_plots', False) NumpyDocString.__init__(self, docstring, config=config) # string conversion routines def _str_header(self, name, symbol='`'): return ['.. rubric:: ' + name, ''] def _str_field_list(self, name): return [':' + name + ':'] def _str_indent(self, doc, indent=4): out = [] for line in doc: out += [' '*indent + line] return out def _str_signature(self): return [''] if self['Signature']: return ['``%s``' % self['Signature']] + [''] else: return [''] def _str_summary(self): return self['Summary'] + [''] def _str_extended_summary(self): return self['Extended Summary'] + [''] def _str_param_list(self, name): out = [] if self[name]: out += self._str_field_list(name) out += [''] for param,param_type,desc in self[name]: out += self._str_indent(['**%s** : %s' % (param.strip(), param_type)]) out += [''] out += self._str_indent(desc,8) out += [''] return out @property def _obj(self): if hasattr(self, '_cls'): return self._cls elif hasattr(self, '_f'): return self._f return None def _str_member_list(self, name): """ Generate a member listing, autosummary:: table where possible, and a table where not. """ out = [] if self[name]: out += ['.. rubric:: %s' % name, ''] prefix = getattr(self, '_name', '') if prefix: prefix = '~%s.' % prefix autosum = [] others = [] for param, param_type, desc in self[name]: param = param.strip() if not self._obj or hasattr(self._obj, param): autosum += [" %s%s" % (prefix, param)] else: others.append((param, param_type, desc)) if autosum: out += ['.. autosummary::', ' :toctree:', ''] out += autosum if others: maxlen_0 = max([len(x[0]) for x in others]) maxlen_1 = max([len(x[1]) for x in others]) hdr = "="*maxlen_0 + " " + "="*maxlen_1 + " " + "="*10 fmt = '%%%ds %%%ds ' % (maxlen_0, maxlen_1) n_indent = maxlen_0 + maxlen_1 + 4 out += [hdr] for param, param_type, desc in others: out += [fmt % (param.strip(), param_type)] out += self._str_indent(desc, n_indent) out += [hdr] out += [''] return out def _str_section(self, name): out = [] if self[name]: out += self._str_header(name) out += [''] content = textwrap.dedent("\n".join(self[name])).split("\n") out += content out += [''] return out def _str_see_also(self, func_role): out = [] if self['See Also']: see_also = super(SphinxDocString, self)._str_see_also(func_role) out = ['.. seealso::', ''] out += self._str_indent(see_also[2:]) return out def _str_warnings(self): out = [] if self['Warnings']: out = ['.. warning::', ''] out += self._str_indent(self['Warnings']) return out def _str_index(self): idx = self['index'] out = [] if len(idx) == 0: return out out += ['.. index:: %s' % idx.get('default','')] for section, references in idx.items(): if section == 'default': continue elif section == 'refguide': out += [' single: %s' % (', '.join(references))] else: out += [' %s: %s' % (section, ','.join(references))] return out def _str_references(self): out = [] if self['References']: out += self._str_header('References') if isinstance(self['References'], str): self['References'] = [self['References']] out.extend(self['References']) out += [''] # Latex collects all references to a separate bibliography, # so we need to insert links to it if sphinx.__version__ >= "0.6": out += ['.. only:: latex',''] else: out += ['.. latexonly::',''] items = [] for line in self['References']: m = re.match(r'.. \[([a-z0-9._-]+)\]', line, re.I) if m: items.append(m.group(1)) out += [' ' + ", ".join(["[%s]_" % item for item in items]), ''] return out def _str_examples(self): examples_str = "\n".join(self['Examples']) if (self.use_plots and 'import matplotlib' in examples_str and 'plot::' not in examples_str): out = [] out += self._str_header('Examples') out += ['.. plot::', ''] out += self._str_indent(self['Examples']) out += [''] return out else: return self._str_section('Examples') def __str__(self, indent=0, func_role="obj"): out = [] out += self._str_signature() out += self._str_index() + [''] out += self._str_summary() out += self._str_extended_summary() for param_list in ('Parameters', 'Returns', 'Other Parameters', 'Raises', 'Warns'): out += self._str_param_list(param_list) out += self._str_warnings() out += self._str_see_also(func_role) out += self._str_section('Notes') out += self._str_references() out += self._str_examples() for param_list in ('Attributes', 'Methods'): out += self._str_member_list(param_list) out = self._str_indent(out,indent) return '\n'.join(out) class SphinxFunctionDoc(SphinxDocString, FunctionDoc): def __init__(self, obj, doc=None, config={}): self.use_plots = config.get('use_plots', False) FunctionDoc.__init__(self, obj, doc=doc, config=config) class SphinxClassDoc(SphinxDocString, ClassDoc): def __init__(self, obj, doc=None, func_doc=None, config={}): self.use_plots = config.get('use_plots', False) ClassDoc.__init__(self, obj, doc=doc, func_doc=None, config=config) class SphinxObjDoc(SphinxDocString): def __init__(self, obj, doc=None, config={}): self._f = obj SphinxDocString.__init__(self, doc, config=config) def get_doc_object(obj, what=None, doc=None, config={}): if what is None: if inspect.isclass(obj): what = 'class' elif inspect.ismodule(obj): what = 'module' elif isinstance(obj, collections.Callable): what = 'function' else: what = 'object' if what == 'class': return SphinxClassDoc(obj, func_doc=SphinxFunctionDoc, doc=doc, config=config) elif what in ('function', 'method'): return SphinxFunctionDoc(obj, doc=doc, config=config) else: if doc is None: doc = pydoc.getdoc(obj) return SphinxObjDoc(obj, doc, config=config)
apache-2.0
stevenzhang18/Indeed-Flask
lib/pandas/io/tests/test_gbq.py
9
23045
from datetime import datetime import nose import pytz import platform from time import sleep import numpy as np from distutils.version import StrictVersion from pandas import compat from pandas import NaT from pandas.compat import u, range from pandas.core.frame import DataFrame import pandas.io.gbq as gbq import pandas.util.testing as tm PROJECT_ID = None DATASET_ID = 'pydata_pandas_bq_testing' TABLE_ID = 'new_test' DESTINATION_TABLE = "{0}.{1}".format(DATASET_ID + "1", TABLE_ID) VERSION = platform.python_version() _IMPORTS = False _GOOGLE_API_CLIENT_INSTALLED = False _GOOGLE_API_CLIENT_VALID_VERSION = False _HTTPLIB2_INSTALLED = False _SETUPTOOLS_INSTALLED = False def _test_imports(): global _GOOGLE_API_CLIENT_INSTALLED, _GOOGLE_API_CLIENT_VALID_VERSION, \ _HTTPLIB2_INSTALLED, _SETUPTOOLS_INSTALLED try: import pkg_resources _SETUPTOOLS_INSTALLED = True except ImportError: _SETUPTOOLS_INSTALLED = False if compat.PY3: google_api_minimum_version = '1.4.1' else: google_api_minimum_version = '1.2.0' if _SETUPTOOLS_INSTALLED: try: from apiclient.discovery import build from apiclient.errors import HttpError from oauth2client.client import OAuth2WebServerFlow from oauth2client.client import AccessTokenRefreshError from oauth2client.file import Storage from oauth2client.tools import run_flow _GOOGLE_API_CLIENT_INSTALLED=True _GOOGLE_API_CLIENT_VERSION = pkg_resources.get_distribution('google-api-python-client').version if StrictVersion(_GOOGLE_API_CLIENT_VERSION) >= StrictVersion(google_api_minimum_version): _GOOGLE_API_CLIENT_VALID_VERSION = True except ImportError: _GOOGLE_API_CLIENT_INSTALLED = False try: import httplib2 _HTTPLIB2_INSTALLED = True except ImportError: _HTTPLIB2_INSTALLED = False if not _SETUPTOOLS_INSTALLED: raise ImportError('Could not import pkg_resources (setuptools).') if not _GOOGLE_API_CLIENT_INSTALLED: raise ImportError('Could not import Google API Client.') if not _GOOGLE_API_CLIENT_VALID_VERSION: raise ImportError("pandas requires google-api-python-client >= {0} for Google BigQuery support, " "current version {1}".format(google_api_minimum_version, _GOOGLE_API_CLIENT_VERSION)) if not _HTTPLIB2_INSTALLED: raise ImportError("pandas requires httplib2 for Google BigQuery support") def test_requirements(): try: _test_imports() except (ImportError, NotImplementedError) as import_exception: raise nose.SkipTest(import_exception) def clean_gbq_environment(): dataset = gbq._Dataset(PROJECT_ID) for i in range(1, 10): if DATASET_ID + str(i) in dataset.datasets(): dataset_id = DATASET_ID + str(i) table = gbq._Table(PROJECT_ID, dataset_id) for j in range(1, 20): if TABLE_ID + str(j) in dataset.tables(dataset_id): table.delete(TABLE_ID + str(j)) dataset.delete(dataset_id) def make_mixed_dataframe_v2(test_size): # create df to test for all BQ datatypes except RECORD bools = np.random.randint(2, size=(1, test_size)).astype(bool) flts = np.random.randn(1, test_size) ints = np.random.randint(1, 10, size=(1, test_size)) strs = np.random.randint(1, 10, size=(1, test_size)).astype(str) times = [datetime.now(pytz.timezone('US/Arizona')) for t in range(test_size)] return DataFrame({'bools': bools[0], 'flts': flts[0], 'ints': ints[0], 'strs': strs[0], 'times': times[0]}, index=range(test_size)) def test_generate_bq_schema_deprecated(): # 11121 Deprecation of generate_bq_schema with tm.assert_produces_warning(FutureWarning): df = make_mixed_dataframe_v2(10) gbq.generate_bq_schema(df) class TestGBQConnectorIntegration(tm.TestCase): def setUp(self): test_requirements() if not PROJECT_ID: raise nose.SkipTest("Cannot run integration tests without a project id") self.sut = gbq.GbqConnector(PROJECT_ID) def test_should_be_able_to_make_a_connector(self): self.assertTrue(self.sut is not None, 'Could not create a GbqConnector') def test_should_be_able_to_get_valid_credentials(self): credentials = self.sut.get_credentials() self.assertFalse(credentials.invalid, 'Returned credentials invalid') def test_should_be_able_to_get_a_bigquery_service(self): credentials = self.sut.get_credentials() bigquery_service = self.sut.get_service(credentials) self.assertTrue(bigquery_service is not None, 'No service returned') def test_should_be_able_to_get_schema_from_query(self): schema, pages = self.sut.run_query('SELECT 1') self.assertTrue(schema is not None) def test_should_be_able_to_get_results_from_query(self): schema, pages = self.sut.run_query('SELECT 1') self.assertTrue(pages is not None) class TestReadGBQUnitTests(tm.TestCase): def setUp(self): test_requirements() def test_should_return_bigquery_integers_as_python_floats(self): result = gbq._parse_entry(1, 'INTEGER') tm.assert_equal(result, float(1)) def test_should_return_bigquery_floats_as_python_floats(self): result = gbq._parse_entry(1, 'FLOAT') tm.assert_equal(result, float(1)) def test_should_return_bigquery_timestamps_as_numpy_datetime(self): result = gbq._parse_entry('0e9', 'TIMESTAMP') tm.assert_equal(result, np.datetime64('1970-01-01T00:00:00Z')) def test_should_return_bigquery_booleans_as_python_booleans(self): result = gbq._parse_entry('false', 'BOOLEAN') tm.assert_equal(result, False) def test_should_return_bigquery_strings_as_python_strings(self): result = gbq._parse_entry('STRING', 'STRING') tm.assert_equal(result, 'STRING') def test_to_gbq_should_fail_if_invalid_table_name_passed(self): with tm.assertRaises(gbq.NotFoundException): gbq.to_gbq(DataFrame(), 'invalid_table_name', project_id="1234") def test_to_gbq_with_no_project_id_given_should_fail(self): with tm.assertRaises(TypeError): gbq.to_gbq(DataFrame(), 'dataset.tablename') def test_read_gbq_with_no_project_id_given_should_fail(self): with tm.assertRaises(TypeError): gbq.read_gbq('SELECT "1" as NUMBER_1') def test_that_parse_data_works_properly(self): test_schema = {'fields': [{'mode': 'NULLABLE', 'name': 'VALID_STRING', 'type': 'STRING'}]} test_page = [{'f': [{'v': 'PI'}]}] test_output = gbq._parse_data(test_schema, test_page) correct_output = DataFrame({'VALID_STRING': ['PI']}) tm.assert_frame_equal(test_output, correct_output) class TestReadGBQIntegration(tm.TestCase): @classmethod def setUpClass(cls): # - GLOBAL CLASS FIXTURES - # put here any instruction you want to execute only *ONCE* *BEFORE* executing *ALL* tests # described below. if not PROJECT_ID: raise nose.SkipTest("Cannot run integration tests without a project id") test_requirements() def setUp(self): # - PER-TEST FIXTURES - # put here any instruction you want to be run *BEFORE* *EVERY* test is executed. pass @classmethod def tearDownClass(cls): # - GLOBAL CLASS FIXTURES - # put here any instruction you want to execute only *ONCE* *AFTER* executing all tests. pass def tearDown(self): # - PER-TEST FIXTURES - # put here any instructions you want to be run *AFTER* *EVERY* test is executed. pass def test_should_properly_handle_valid_strings(self): query = 'SELECT "PI" as VALID_STRING' df = gbq.read_gbq(query, project_id=PROJECT_ID) tm.assert_frame_equal(df, DataFrame({'VALID_STRING': ['PI']})) def test_should_properly_handle_empty_strings(self): query = 'SELECT "" as EMPTY_STRING' df = gbq.read_gbq(query, project_id=PROJECT_ID) tm.assert_frame_equal(df, DataFrame({'EMPTY_STRING': [""]})) def test_should_properly_handle_null_strings(self): query = 'SELECT STRING(NULL) as NULL_STRING' df = gbq.read_gbq(query, project_id=PROJECT_ID) tm.assert_frame_equal(df, DataFrame({'NULL_STRING': [None]})) def test_should_properly_handle_valid_integers(self): query = 'SELECT INTEGER(3) as VALID_INTEGER' df = gbq.read_gbq(query, project_id=PROJECT_ID) tm.assert_frame_equal(df, DataFrame({'VALID_INTEGER': [3]})) def test_should_properly_handle_null_integers(self): query = 'SELECT INTEGER(NULL) as NULL_INTEGER' df = gbq.read_gbq(query, project_id=PROJECT_ID) tm.assert_frame_equal(df, DataFrame({'NULL_INTEGER': [np.nan]})) def test_should_properly_handle_valid_floats(self): query = 'SELECT PI() as VALID_FLOAT' df = gbq.read_gbq(query, project_id=PROJECT_ID) tm.assert_frame_equal(df, DataFrame({'VALID_FLOAT': [3.141592653589793]})) def test_should_properly_handle_null_floats(self): query = 'SELECT FLOAT(NULL) as NULL_FLOAT' df = gbq.read_gbq(query, project_id=PROJECT_ID) tm.assert_frame_equal(df, DataFrame({'NULL_FLOAT': [np.nan]})) def test_should_properly_handle_timestamp_unix_epoch(self): query = 'SELECT TIMESTAMP("1970-01-01 00:00:00") as UNIX_EPOCH' df = gbq.read_gbq(query, project_id=PROJECT_ID) tm.assert_frame_equal(df, DataFrame({'UNIX_EPOCH': [np.datetime64('1970-01-01T00:00:00.000000Z')]})) def test_should_properly_handle_arbitrary_timestamp(self): query = 'SELECT TIMESTAMP("2004-09-15 05:00:00") as VALID_TIMESTAMP' df = gbq.read_gbq(query, project_id=PROJECT_ID) tm.assert_frame_equal(df, DataFrame({'VALID_TIMESTAMP': [np.datetime64('2004-09-15T05:00:00.000000Z')]})) def test_should_properly_handle_null_timestamp(self): query = 'SELECT TIMESTAMP(NULL) as NULL_TIMESTAMP' df = gbq.read_gbq(query, project_id=PROJECT_ID) tm.assert_frame_equal(df, DataFrame({'NULL_TIMESTAMP': [NaT]})) def test_should_properly_handle_true_boolean(self): query = 'SELECT BOOLEAN(TRUE) as TRUE_BOOLEAN' df = gbq.read_gbq(query, project_id=PROJECT_ID) tm.assert_frame_equal(df, DataFrame({'TRUE_BOOLEAN': [True]})) def test_should_properly_handle_false_boolean(self): query = 'SELECT BOOLEAN(FALSE) as FALSE_BOOLEAN' df = gbq.read_gbq(query, project_id=PROJECT_ID) tm.assert_frame_equal(df, DataFrame({'FALSE_BOOLEAN': [False]})) def test_should_properly_handle_null_boolean(self): query = 'SELECT BOOLEAN(NULL) as NULL_BOOLEAN' df = gbq.read_gbq(query, project_id=PROJECT_ID) tm.assert_frame_equal(df, DataFrame({'NULL_BOOLEAN': [None]})) def test_unicode_string_conversion_and_normalization(self): correct_test_datatype = DataFrame( {'UNICODE_STRING': [u("\xe9\xfc")]} ) unicode_string = "\xc3\xa9\xc3\xbc" if compat.PY3: unicode_string = unicode_string.encode('latin-1').decode('utf8') query = 'SELECT "{0}" as UNICODE_STRING'.format(unicode_string) df = gbq.read_gbq(query, project_id=PROJECT_ID) tm.assert_frame_equal(df, correct_test_datatype) def test_index_column(self): query = "SELECT 'a' as STRING_1, 'b' as STRING_2" result_frame = gbq.read_gbq(query, project_id=PROJECT_ID, index_col="STRING_1") correct_frame = DataFrame({'STRING_1': ['a'], 'STRING_2': ['b']}).set_index("STRING_1") tm.assert_equal(result_frame.index.name, correct_frame.index.name) def test_column_order(self): query = "SELECT 'a' as STRING_1, 'b' as STRING_2, 'c' as STRING_3" col_order = ['STRING_3', 'STRING_1', 'STRING_2'] result_frame = gbq.read_gbq(query, project_id=PROJECT_ID, col_order=col_order) correct_frame = DataFrame({'STRING_1': ['a'], 'STRING_2': ['b'], 'STRING_3': ['c']})[col_order] tm.assert_frame_equal(result_frame, correct_frame) def test_column_order_plus_index(self): query = "SELECT 'a' as STRING_1, 'b' as STRING_2, 'c' as STRING_3" col_order = ['STRING_3', 'STRING_2'] result_frame = gbq.read_gbq(query, project_id=PROJECT_ID, index_col='STRING_1', col_order=col_order) correct_frame = DataFrame({'STRING_1': ['a'], 'STRING_2': ['b'], 'STRING_3': ['c']}) correct_frame.set_index('STRING_1', inplace=True) correct_frame = correct_frame[col_order] tm.assert_frame_equal(result_frame, correct_frame) def test_malformed_query(self): with tm.assertRaises(gbq.GenericGBQException): gbq.read_gbq("SELCET * FORM [publicdata:samples.shakespeare]", project_id=PROJECT_ID) def test_bad_project_id(self): with tm.assertRaises(gbq.GenericGBQException): gbq.read_gbq("SELECT 1", project_id='001') def test_bad_table_name(self): with tm.assertRaises(gbq.GenericGBQException): gbq.read_gbq("SELECT * FROM [publicdata:samples.nope]", project_id=PROJECT_ID) def test_download_dataset_larger_than_200k_rows(self): test_size = 200005 # Test for known BigQuery bug in datasets larger than 100k rows # http://stackoverflow.com/questions/19145587/bq-py-not-paging-results df = gbq.read_gbq("SELECT id FROM [publicdata:samples.wikipedia] GROUP EACH BY id ORDER BY id ASC LIMIT {0}".format(test_size), project_id=PROJECT_ID) self.assertEqual(len(df.drop_duplicates()), test_size) def test_zero_rows(self): # Bug fix for https://github.com/pydata/pandas/issues/10273 df = gbq.read_gbq("SELECT title, language FROM [publicdata:samples.wikipedia] where timestamp=-9999999", project_id=PROJECT_ID) expected_result = DataFrame(columns=['title', 'language']) self.assert_frame_equal(df, expected_result) class TestToGBQIntegration(tm.TestCase): # Changes to BigQuery table schema may take up to 2 minutes as of May 2015 # As a workaround to this issue, each test should use a unique table name. # Make sure to modify the for loop range in the tearDownClass when a new test is added # See `Issue 191 <https://code.google.com/p/google-bigquery/issues/detail?id=191>`__ @classmethod def setUpClass(cls): # - GLOBAL CLASS FIXTURES - # put here any instruction you want to execute only *ONCE* *BEFORE* executing *ALL* tests # described below. if not PROJECT_ID: raise nose.SkipTest("Cannot run integration tests without a project id") test_requirements() clean_gbq_environment() gbq._Dataset(PROJECT_ID).create(DATASET_ID + "1") def setUp(self): # - PER-TEST FIXTURES - # put here any instruction you want to be run *BEFORE* *EVERY* test is executed. self.dataset = gbq._Dataset(PROJECT_ID) self.table = gbq._Table(PROJECT_ID, DATASET_ID + "1") @classmethod def tearDownClass(cls): # - GLOBAL CLASS FIXTURES - # put here any instruction you want to execute only *ONCE* *AFTER* executing all tests. clean_gbq_environment() def tearDown(self): # - PER-TEST FIXTURES - # put here any instructions you want to be run *AFTER* *EVERY* test is executed. pass def test_upload_data(self): destination_table = DESTINATION_TABLE + "1" test_size = 1000001 df = make_mixed_dataframe_v2(test_size) gbq.to_gbq(df, destination_table, PROJECT_ID, chunksize=10000) sleep(60) # <- Curses Google!!! result = gbq.read_gbq("SELECT COUNT(*) as NUM_ROWS FROM {0}".format(destination_table), project_id=PROJECT_ID) self.assertEqual(result['NUM_ROWS'][0], test_size) def test_upload_data_if_table_exists_fail(self): destination_table = DESTINATION_TABLE + "2" test_size = 10 df = make_mixed_dataframe_v2(test_size) self.table.create(TABLE_ID + "2", gbq._generate_bq_schema(df)) # Test the default value of if_exists is 'fail' with tm.assertRaises(gbq.TableCreationError): gbq.to_gbq(df, destination_table, PROJECT_ID) # Test the if_exists parameter with value 'fail' with tm.assertRaises(gbq.TableCreationError): gbq.to_gbq(df, destination_table, PROJECT_ID, if_exists='fail') def test_upload_data_if_table_exists_append(self): destination_table = DESTINATION_TABLE + "3" test_size = 10 df = make_mixed_dataframe_v2(test_size) df_different_schema = tm.makeMixedDataFrame() # Initialize table with sample data gbq.to_gbq(df, destination_table, PROJECT_ID, chunksize=10000) # Test the if_exists parameter with value 'append' gbq.to_gbq(df, destination_table, PROJECT_ID, if_exists='append') sleep(60) # <- Curses Google!!! result = gbq.read_gbq("SELECT COUNT(*) as NUM_ROWS FROM {0}".format(destination_table), project_id=PROJECT_ID) self.assertEqual(result['NUM_ROWS'][0], test_size * 2) # Try inserting with a different schema, confirm failure with tm.assertRaises(gbq.InvalidSchema): gbq.to_gbq(df_different_schema, destination_table, PROJECT_ID, if_exists='append') def test_upload_data_if_table_exists_replace(self): destination_table = DESTINATION_TABLE + "4" test_size = 10 df = make_mixed_dataframe_v2(test_size) df_different_schema = tm.makeMixedDataFrame() # Initialize table with sample data gbq.to_gbq(df, destination_table, PROJECT_ID, chunksize=10000) # Test the if_exists parameter with the value 'replace'. gbq.to_gbq(df_different_schema, destination_table, PROJECT_ID, if_exists='replace') sleep(60) # <- Curses Google!!! result = gbq.read_gbq("SELECT COUNT(*) as NUM_ROWS FROM {0}".format(destination_table), project_id=PROJECT_ID) self.assertEqual(result['NUM_ROWS'][0], 5) def test_google_upload_errors_should_raise_exception(self): destination_table = DESTINATION_TABLE + "5" test_timestamp = datetime.now(pytz.timezone('US/Arizona')) bad_df = DataFrame({'bools': [False, False], 'flts': [0.0, 1.0], 'ints': [0, '1'], 'strs': ['a', 1], 'times': [test_timestamp, test_timestamp]}, index=range(2)) with tm.assertRaises(gbq.StreamingInsertError): gbq.to_gbq(bad_df, destination_table, PROJECT_ID, verbose=True) def test_generate_schema(self): df = tm.makeMixedDataFrame() schema = gbq._generate_bq_schema(df) test_schema = {'fields': [{'name': 'A', 'type': 'FLOAT'}, {'name': 'B', 'type': 'FLOAT'}, {'name': 'C', 'type': 'STRING'}, {'name': 'D', 'type': 'TIMESTAMP'}]} self.assertEqual(schema, test_schema) def test_create_table(self): destination_table = TABLE_ID + "6" test_schema = {'fields': [{'name': 'A', 'type': 'FLOAT'}, {'name': 'B', 'type': 'FLOAT'}, {'name': 'C', 'type': 'STRING'}, {'name': 'D', 'type': 'TIMESTAMP'}]} self.table.create(destination_table, test_schema) self.assertTrue(self.table.exists(destination_table), 'Expected table to exist') def test_table_does_not_exist(self): self.assertTrue(not self.table.exists(TABLE_ID + "7"), 'Expected table not to exist') def test_delete_table(self): destination_table = TABLE_ID + "8" test_schema = {'fields': [{'name': 'A', 'type': 'FLOAT'}, {'name': 'B', 'type': 'FLOAT'}, {'name': 'C', 'type': 'STRING'}, {'name': 'D', 'type': 'TIMESTAMP'}]} self.table.create(destination_table, test_schema) self.table.delete(destination_table) self.assertTrue(not self.table.exists(destination_table), 'Expected table not to exist') def test_list_table(self): destination_table = TABLE_ID + "9" test_schema = {'fields': [{'name': 'A', 'type': 'FLOAT'}, {'name': 'B', 'type': 'FLOAT'}, {'name': 'C', 'type': 'STRING'}, {'name': 'D', 'type': 'TIMESTAMP'}]} self.table.create(destination_table, test_schema) self.assertTrue(destination_table in self.dataset.tables(DATASET_ID + "1"), 'Expected table list to contain table {0}'.format(destination_table)) def test_list_dataset(self): dataset_id = DATASET_ID + "1" self.assertTrue(dataset_id in self.dataset.datasets(), 'Expected dataset list to contain dataset {0}'.format(dataset_id)) def test_list_table_zero_results(self): dataset_id = DATASET_ID + "2" self.dataset.create(dataset_id) table_list = gbq._Dataset(PROJECT_ID).tables(dataset_id) self.assertEqual(len(table_list), 0, 'Expected gbq.list_table() to return 0') def test_create_dataset(self): dataset_id = DATASET_ID + "3" self.dataset.create(dataset_id) self.assertTrue(dataset_id in self.dataset.datasets(), 'Expected dataset to exist') def test_delete_dataset(self): dataset_id = DATASET_ID + "4" self.dataset.create(dataset_id) self.dataset.delete(dataset_id) self.assertTrue(dataset_id not in self.dataset.datasets(), 'Expected dataset not to exist') def test_dataset_exists(self): dataset_id = DATASET_ID + "5" self.dataset.create(dataset_id) self.assertTrue(self.dataset.exists(dataset_id), 'Expected dataset to exist') def create_table_data_dataset_does_not_exist(self): dataset_id = DATASET_ID + "6" table_id = TABLE_ID + "1" table_with_new_dataset = gbq._Table(PROJECT_ID, dataset_id) df = make_mixed_dataframe_v2(10) table_with_new_dataset.create(table_id, gbq._generate_bq_schema(df)) self.assertTrue(self.dataset.exists(dataset_id), 'Expected dataset to exist') self.assertTrue(table_with_new_dataset.exists(table_id), 'Expected dataset to exist') def test_dataset_does_not_exist(self): self.assertTrue(not self.dataset.exists(DATASET_ID + "_not_found"), 'Expected dataset not to exist') if __name__ == '__main__': nose.runmodule(argv=[__file__, '-vvs', '-x', '--pdb', '--pdb-failure'], exit=False)
apache-2.0
sjuvekar/Kaggle-Expedia-Raking
PythonBenchmark/feature_extractor.py
1
2190
import argparse import pandas import data_io import multiprocessing from features import * G_PROCESS_POOL = multiprocessing.Pool() class FeatureExtractor: def __init__(self, X): self.X = X print "Data Size = ", self.X.shape def transformer(self, fet): return fet.features() def feature_extractor(self): feature_list = [ site_id_features.SiteIdFeatures(self.X), visitor_location_id_features.VisitorLocationIdFeatures(self.X), visitor_starrating_features.VisitorStarratingFeatures(self.X), visitor_adr_usd_features.VisitorAdrUsdFeatures(self.X), prop_country_id_features.PropCountryIdFeatures(self.X), prop_id_features.PropIdFeatures(self.X), prop_starrating_features.PropStarratingFeatures(self.X), prop_review_features.PropReviewFeatures(self.X), prop_location_score1_features.PropLocationScore1Features(self.X), prop_location_score2_features.PropLocationScore2Features(self.X), prop_log_historical_price_features.PropLogHistoricalPriceFeatures(self.X), price_usd_features.PriceUsdFeatures(self.X), srch_destination_id_features.SrchDestinationIdFeatures(self.X), srch_length_of_stay_features.SrchLengthOfStayFeatures(self.X), srch_booking_window_features.SrchBookingWindowFeatures(self.X), ] return map(self.transformer, feature_list) if __name__ == "__main__": parser = argparse.ArgumentParser(description="Generate features using train/test data") parser.add_argument("--test", action="store_true", default=False, help="Weather to use test data", required=False) result = parser.parse_args() if result.test: print("Reading test data") data = data_io.read_test() else: print("Reading training data") data = data_io.read_train() fm = FeatureExtractor(data) derived_features = fm.feature_extractor() data.fillna(0, inplace=True) data = pandas.concat([data] + derived_features, axis=1) if result.test: data_io.save_test_features(data) else: data_io.save_train_features(data)
bsd-3-clause
agnusfeec/tattCBIR
lib_sistema.py
1
25313
# -*- coding: utf-8 -*- """ Created on Thu Jul 14 13:36:05 2016 @author: agnus """ #%% def monta_lista_imagens(path = '.', ext='.png'): import os imagens = {} for dirname, dirnames, filenames in os.walk(path): # print path to all filenames with extension py. for filename in filenames: fname_path = os.path.join(dirname, filename) fext = os.path.splitext(fname_path)[1] if fext == ext: #file_dat = [filename, dirname] #imagens.append(file_dat) imagens[filename]=dirname else: continue return imagens #%% def grava_db_imagens(arquivo, imagens): #arquivo = './tatt_c.db' with open(arquivo, 'wb') as db_image_file: for nome_img, caminho in imagens.items(): db_image_file.write(nome_img+ '\t' + caminho + '\n') db_image_file.close() #%% def grava_config(arquivo = './example_mem.cfg'): import ConfigParser config = ConfigParser.RawConfigParser() # When adding sections or items, add them in the reverse order of # how you want them to be displayed in the actual file. # In addition, please note that using RawConfigParser's and the raw # mode of ConfigParser's respective set functions, you can assign # non-string values to keys internally, but will receive an error # when attempting to write to a file or when you get it in non-raw # mode. SafeConfigParser does not allow such assignments to take place. config.add_section('Geral') config.set('Geral', 'Image Database', 'Tatt-C') config.set('Geral', 'Database Image Folder', '/media/sf_Projeto/dataset/tatt_dca/') config.set('Geral', 'Indexa image database', 'True') config.set('Geral', 'Database filename', './tatt_c.db') config.set('Geral', 'Image filename extension','.jpg') config.set('Geral', 'Training File', 'train1') config.set('Geral', 'Testing File', 'test1') config.add_section('Folds') config.set('Folds', 'Folds Folder', '/media/sf_Projeto/dataset/tatt_dca/folds/') config.set('Folds', 'Quantidade subsets', '3') config.set('Folds', 'Subset_1', 'gallery{1}.txt') config.set('Folds', 'Subset_2', 'probes{1}.txt') config.set('Folds', 'Subset_3', 'bg{1}.txt') config.set('Folds', 'Ground_truth', 'ground_truth.txt') config.add_section('SIFT') config.set('SIFT','SIFT Folder', '/media/sf_Projeto/dataset/tatt_dca/SIFT/') # Writing our configuration file to 'example.cfg' with open(arquivo, 'wb') as configfile: config.write(configfile) #%% def folds_construct(subsets, folds_folder): n_folds =len(subsets[0]) n_subsets = len(subsets) folds = [] for i in range(n_folds): sub = [] for j in range(n_subsets): arquivo = subsets[j][i] aux = [] with open(folds_folder+arquivo, 'r') as imagefiles: for nomef in imagefiles: if nomef[-1] == '\n' : nomef = nomef[:-1] aux.append(nomef) imagefiles.close() sub.append(aux) folds.append(sub) return folds #%% def le_config(): import ConfigParser config = ConfigParser.RawConfigParser() config.read('./example_mem.cfg') # getfloat() raises an exception if the value is not a float # getint() and getboolean() also do this for their respective types base = config.get('Geral', 'image database') indexa = config.getboolean('Geral', 'indexa image database') print base if indexa: print "indexa base" arquivo = config.get('Geral','database filename') caminho = config.get('Geral', 'database image folder') extensao = config.get('Geral', 'image filename extension') print arquivo, caminho, extensao imagens = monta_lista_imagens(caminho, extensao) grava_db_imagens(arquivo, imagens) folds_folder = config.get('Folds','folds folder') n_subsets = config.getint('Folds', 'quantidade subsets') subsets=[] for i in range(n_subsets): sub = config.get('Folds', 'subset_'+str(i+1)) ps = sub.find("{") pe = sub.find("}") ped = sub[ps+1:pe] indices = ped.split(',') aux = [] for ind in indices: aux.append(sub[:ps]+ind+'.txt') # incluir extensão variável subsets.append(aux) #print subsets #n_folds = config.getint('Folds', 'quantidade folds') n_folds =len(subsets[0]) folds = [] for i in range(n_folds): sub = [] for j in range(n_subsets): arquivo = subsets[j][i] aux = [] with open(folds_folder+arquivo, 'r') as imagefiles: for nomef in imagefiles: if nomef[-1] == '\n' : nomef = nomef[:-1] aux.append(nomef) imagefiles.close() sub.append(aux) folds.append(sub) #print folds[0] gt_filename = config.get('Folds', 'ground_truth') sift_folder = config.get('SIFT', 'sift folder') print sift_folder, folds_folder, caminho return (folds, imagens, gt_filename, sift_folder, folds_folder, caminho, subsets) #%% def sift(nomes_imagens, imagens, sift_folder): import cv2 import os from math import sqrt #ds = [] #kp = [] t = len(nomes_imagens) i=1 for filename in nomes_imagens: fname = os.path.join(sift_folder, filename[:-3]+'sift_ds') if os.path.isfile(fname) == False : print filename #file_img = os.path.join(diretorio, filename) diretorio = imagens[filename] img = cv2.imread(os.path.join(diretorio, filename)) #file_img) # Redimensiona imagem para aplicação do Fisher Vectors #img = cv2.resize(img, (256,256)) aux = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) gray = cv2.equalizeHist(aux) k = sqrt((240.0*480.0*0.5)/(gray.shape[0]*gray.shape[1])) res = cv2.resize(gray,None,fx=k, fy=k, interpolation = cv2.INTER_CUBIC) cv2.imwrite("/media/sf_Projeto/dataset/tatt_dca//img_Reduzido/"+filename,res) sift = cv2.xfeatures2d.SIFT_create() (kps, descs) = sift.detectAndCompute(res, None) #ds.append(descs) #kp.append(kps) arquivo = os.path.join(sift_folder, filename[:-3]+'sift_ds') with open(arquivo, 'wb') as sift_file: for desc in descs: sift_file.write(','.join(str(x) for x in desc)+'\n') sift_file.close() arquivo = os.path.join(sift_folder, filename[:-3]+'sift_kp') with open(arquivo, 'wb') as sift_file: for point in kps: temp = [point.pt[0], point.pt[1], point.size, point.angle, point.response, point.octave, point.class_id] sift_file.write(','.join(str(x) for x in temp)+'\n') sift_file.close() print (i*100)/t, i=i+1 #return ds #%% def sift_match(ds1, kp1, ds2, kp2): import cv2 MIN_MATCH_COUNT = 10 bf = cv2.BFMatcher() matches = bf.knnMatch(ds1,ds2, k=2) # Apply ratio test good = [] for m,n in matches: if m.distance < 0.7*n.distance: good.append(m) qm = len(good) (nr1,c) = ds1.shape (nr2,c) = ds2.shape # if qm>MIN_MATCH_COUNT: # src_pts = np.float32([ kp1[m.queryIdx].pt for m in good ]).reshape(-1,1,2) # dst_pts = np.float32([ kp2[m.trainIdx].pt for m in good ]).reshape(-1,1,2) # # M, mask = cv2.findHomography(src_pts, dst_pts, cv2.RANSAC,5.0) # if mask != None: # matchesMask = mask.ravel().tolist() # rt = np.sum(np.asarray(matchesMask)) # else: # rt = 0 # else: # #print "Not enough matches are found - %d/%d" % (len(good),MIN_MATCH_COUNT) # #matchesMask = None # rt = 0 nr = nr1 if nr2>nr: nr = nr2 rt = (100.0*qm/nr) # if qm > 0: # rt = 1.0/qm # else: # rt = 10^8 return rt #%% def gera_sift_base(folds, imagens, sift_folder): # Inicialmente gera se necessario o SIFT para as imagens de treinamento e teste # pode ser otimizado, gerando para toda a base, caso se utilize toda a base # o que pode ter um custo alto pois na base existem imagens para outros casos # de uso. n_folds = len(folds) #Poder ser implementado diferente pois as linhas abaixo apenas agregram os nomes #das imagens para que sejam gerados os sifts para cada um dos folds for i in range(n_folds): test = folds[i][1] train = folds[i][0] bg = folds[i][2] for j in range(n_folds): if j!=i : train = train + folds[j][0]+folds[j][1]+folds[j][2] print 'Gerando sift do conjunto de treinamento' #train_kp, train_ds = sift(train, imagens, sift_folder) sift(train, imagens, sift_folder) print 'Gerando sift do conjunto de teste' #test_kp, test_ds = sift(test, imagens) sift(test, imagens, sift_folder) print 'Gerando sift do conjunto de bg' #bg_kp, bg_ds = sift(bg, imagens) sift(bg, imagens, sift_folder) #%% def processa_sift(folds, imagens, sift_folder): import numpy as np import os import cv2 n_folds = len(folds) #Alterei para que inclua nas imagens da galeria i no conj. train, de forma a que as # imagens correspondentes ao probe existam na galeria (train) for i in range(n_folds): test = folds[i][1] bg = folds[i][2] train = folds[i][0]#+bg for j in range(n_folds): if j!=i : train = train + folds[j][0]+folds[j][1]+folds[j][2] n_test = len(test) n_train = len(train) dist = np.zeros((n_train), dtype=np.float) nn = n_test * n_train print 'Gerando o match entre o treinamento e o conjunto de teste' mem = True if mem==True : ds=[] ks=[] arquivo = './clist_mem_'+str(i+1)+'.txt' with open(arquivo, 'w') as clist_file: l = 0 for file_test in test: fname = os.path.join(sift_folder, file_test[:-3]+'sift_ds') ds1 = (np.loadtxt(open(fname,"r"),delimiter=",")).astype(np.uint8) #,skiprows=1) fname = os.path.join(sift_folder, file_test[:-3]+'sift_kp') kps = (np.loadtxt(open(fname,"r"),delimiter=",")).astype(np.float) #,skiprows=1) kp1=[] kp2=[] for kp in kps: kpoint = cv2.KeyPoint(float(kp[0]), float(kp[1]), float(kp[2]), float(kp[3]), float(kp[4]), int(kp[5]), int(kp[6])) kp1.append(kpoint) diretorio = imagens[file_test] img1 = cv2.imread(os.path.join(diretorio, file_test),0) #print os.path.join(diretorio, file_test) j = 0 for file_train in train: diretorio = imagens[file_train] img2 = cv2.imread(os.path.join(diretorio, file_train),0) #print os.path.join(diretorio, file_train) if (mem == True and len(ds)<len(train)): fname = os.path.join(sift_folder, file_train[:-3]+'sift_ds') ds.append ( np.asarray((np.loadtxt(open(fname,"r"),delimiter=",")).astype(np.uint8)) ) #,skiprows=1) ds2 = ds[j] fname = os.path.join(sift_folder, file_train[:-3]+'sift_kp') kps = (np.loadtxt(open(fname,"r"),delimiter=",")).astype(np.float) #,skiprows=1) aux =[] for kp in kps: kpoint = cv2.KeyPoint(float(kp[0]), float(kp[1]), float(kp[2]), float(kp[3]), float(kp[4]), int(kp[5]), int(kp[6])) aux.append(kpoint) ks.append(aux) kp2 = ks[j] elif (mem == True and len(ds)==len(train)): ds2 = ds[j] kp2 = ks[j] elif mem == False: fname = os.path.join(sift_folder, file_train[:-3]+'sift_ds') ds2 = ( (np.loadtxt(open(fname,"r"),delimiter=",")).astype(np.uint8) ) fname = os.path.join(sift_folder, file_train[:-3]+'sift_kp') kps = (np.loadtxt(open(fname,"r"),delimiter=",")).astype(np.float) #,skiprows=1) kp2 = [] for kp in kps: kpoint = cv2.KeyPoint(float(kp[0]), float(kp[1]), float(kp[2]), float(kp[3]), float(kp[4]), int(kp[5]), int(kp[6])) kp2.append(kpoint) #print ds1 #print ds2 rt = sift_match(ds1, np.asarray(kp1), ds2, np.asarray(kp2)) dist[j] = rt j = j + 1 print i,(((l*n_train)+j)*100)/nn, indice = np.argsort(dist)[::-1] k = 1 for id in indice: clist_file.write(file_test+'|'+ str(k) + '|' + train[id] + '|' + str(dist[id]) +'\n') k = k + 1 l = l + 1 clist_file.close() break #%% def ground_truth(folds_folder, gt_filename): """Reads a ground truth table from text file. Keyword arguments: folds_folder -- the path for the ground truth file gt_filename -- the file name of the ground truth file with extension Returns: gt_images -- ground truth table stored in a dictionary """ #folds_folder = '/media/sf_Projeto/dataset/tatt-c_update_v1.4/5-fold/tattoo_identification/' #gt_filename = 'ground_truth.txt' gt_imagens = {} with open(folds_folder+gt_filename, 'r') as gt_arq: for nomef in gt_arq: imgs = nomef.split('|') if imgs[1][-1] == '\n' : imgs[1] = imgs[1][:-1] #print imgs[0], imgs[1] gt_imagens[imgs[0]] = imgs[1] gt_arq.close() return gt_imagens #%% def compute_cmc(arquivo, gt_imagens): """Reads a classification list from text file and sumarize rank results for every image reference based in the ground truth dictionary. Keyword arguments: arquivo -- the filename of classification list file gt_images -- ground truth table stored in a dictionary Returns: cmc -- acummulated accuracy for each rank stored in a numpy array """ import numpy as np i = 0 acc = np.zeros(400) #arquivo = './clist_mem_'+str(i+1)+'.txt' with open(arquivo, 'r') as clist_file: for nomef in clist_file: imgs = nomef.split('|') if imgs[3][-1] == '\n' : imgs[3] = imgs[3][:-1] if gt_imagens[imgs[0]] == imgs[2] : r = int(imgs[1]) acc[r] = acc[r]+1 clist_file.close() #print cmc ft = sum(acc) #print cmc/ft cmc = np.zeros(400) for i in range(1,400): cmc[i] = cmc[i-1]+acc[i]/ft #print cmc1 return cmc #%% def plot_cmc(cmc, ni=200): import matplotlib.pyplot as plt import pylab as P import numpy as np fig = P.figure() fig.suptitle('Acumulative Match Characteristic', fontsize=18, fontweight='bold') P.ylabel('%', fontsize=16) P.xlabel('Rank', fontsize=16) P.xlim(0, ni) P.ylim(0,101) P.xticks(np.arange(0, ni, 10.0)) P.yticks(np.arange(0, 101, 5.0)) xticklabels = P.getp(P.gca(), 'xticklabels') yticklabels = P.getp(P.gca(), 'yticklabels') P.setp(yticklabels, 'color', 'k', fontsize='x-large') P.setp(xticklabels, 'color', 'k', fontsize='x-large') P.grid(True) fig.set_size_inches(19,7) #P.plot(cmc*100) P.plot(cmc*100) fig.savefig('cmc_bf_knn.png') P.show() #%%% #Author: Jacob Gildenblat, 2014 #http://jacobcv.blogspot.com.br/2014/12/fisher-vector-in-python.html #License: you may use this for whatever you like #Adaptation: Agnus A. Horta def fv_dictionary(descriptors, N): import numpy as np import cv2 em = cv2.ml.EM_create() em.setClustersNumber(N) #em = cv2.EM(N) em.trainEM(descriptors) return np.float32(em.getMeans()), \ np.float32(em.getCovs()), np.float32(em.getWeights())[0] def fv_generate_gmm(descriptors, N, dt): import numpy as np words = np.concatenate(descriptors) #np.concatenate([folder_descriptors(folder) for folder in glob.glob(input_folder + '*')]) #print("Training GMM of size", N) means, covs, weights = fv_dictionary(words, N) #Throw away gaussians with weights that are too small: th = 1.0 / N means = np.float32([m for k,m in zip(range(0, len(weights)), means) if weights[k] > th]) covs = np.float32([m for k,m in zip(range(0, len(weights)), covs) if weights[k] > th]) weights = np.float32([m for k,m in zip(range(0, len(weights)), weights) if weights[k] > th]) #print 'Means: ',means #print 'Covs: ',covs #print 'Weights: ',weights np.save("./dat/means" + dt + ".gmm", means) np.save("./dat/covs" + dt + ".gmm", covs) np.save("./dat/weights" + dt + ".gmm", weights) return means, covs, weights def fv_load_gmm(dt, folder = "./dat"): import numpy as np files = ["means" + dt + ".gmm" +".npy", "covs" + dt + ".gmm.npy", "weights" + dt + ".gmm.npy"] try: return map(lambda file: np.load(file), map(lambda s : folder + "/" + s , files)) except IOError: return (None, None, None) def fv_likelihood_moment(x, ytk, moment): import numpy as np x_moment = np.power(np.float32(x), moment) if moment > 0 else np.float32([1]) return x_moment * ytk def fv_likelihood_statistics(samples, means, covs, weights): from scipy.stats import multivariate_normal import numpy as np gaussians, s0, s1,s2 = {}, {}, {}, {} samples = zip(range(0, len(samples)), samples) #print samples g = [multivariate_normal(mean=means[k], cov=covs[k]) for k in range(0, len(weights)) ] for index, x in samples: gaussians[index] = np.array([g_k.pdf(x) for g_k in g]) for k in range(0, len(weights)): s0[k], s1[k], s2[k] = 0, 0, 0 for index, x in samples: probabilities = np.multiply(gaussians[index], weights) probabilities = probabilities / np.sum(probabilities) s0[k] = s0[k] + fv_likelihood_moment(x, probabilities[k], 0) s1[k] = s1[k] + fv_likelihood_moment(x, probabilities[k], 1) s2[k] = s2[k] + fv_likelihood_moment(x, probabilities[k], 2) return s0, s1, s2 def fv_fisher_vector_weights(s0, s1, s2, means, covs, w, T): import numpy as np return np.float32([((s0[k] - T * w[k]) / np.sqrt(w[k]) ) for k in range(0, len(w))]) def fv_fisher_vector_means(s0, s1, s2, means, sigma, w, T): import numpy as np return np.float32([(s1[k] - means[k] * s0[k]) / (np.sqrt(w[k] * sigma[k])) for k in range(0, len(w))]) def fv_fisher_vector_sigma(s0, s1, s2, means, sigma, w, T): import numpy as np return np.float32([(s2[k] - 2 * means[k]*s1[k] + (means[k]*means[k] - sigma[k]) * s0[k]) / (np.sqrt(2*w[k])*sigma[k]) for k in range(0, len(w))]) def fv_normalize(fisher_vector): import numpy as np v = np.sqrt(abs(fisher_vector)) * np.sign(fisher_vector) return v / np.sqrt(np.dot(v, v)) def fv_fisher_vector(samples, means, covs, w): import numpy as np #print 'fisher_vector(samples, means, covs, w)' s0, s1, s2 = fv_likelihood_statistics(samples, means, covs, w) T = samples.shape[0] covs = np.float32([np.diagonal(covs[k]) for k in range(0, covs.shape[0])]) a = fv_fisher_vector_weights(s0, s1, s2, means, covs, w, T) b = fv_fisher_vector_means(s0, s1, s2, means, covs, w, T) c = fv_fisher_vector_sigma(s0, s1, s2, means, covs, w, T) fv = np.concatenate([np.concatenate(a), np.concatenate(b), np.concatenate(c)]) fv = fv_normalize(fv) #print 'fv = ', fv return fv def le_descritores(sift_folder, subset, tipo=1): import os import numpy as np #n_folds = len(folds) #Alterei para que inclua nas imagens da galeria i no conj. train, de forma a que as # imagens correspondentes ao probe existam na galeria (train) # for i in range(n_folds): # train = folds[i][0] # for j in range(n_folds): # if j!=i : # train = train + folds[j][0]+folds[j][1]+folds[j][2] # # n_train = len(train) ch = 0 ds = [] id_ds = [] for image in subset: fname = os.path.join(sift_folder, image[:-3]+'sift_ds') ds1 = (np.loadtxt(open(fname,"r"),delimiter=",")).astype(np.uint8) #,skiprows=1) if tipo == 1: if ch == 0: ch = 1 ds = [] ds.append(ds1) id_ds.append(ds1.shape[0]) else: ds.append(ds1) id_ds.append(ds1.shape[0]) else: if ch == 0: ch = 1 ds = np.empty_like(ds1) ds[:] = ds1 id_ds.append(ds1.shape[0]) else: print ds.shape, ds1.shape ds = np.concatenate((ds, ds1), axis=0) id_ds.append(ds1.shape[0]) return ds, id_ds #%% def bov_histogramas_grava(arquivo, hists, dt): resultFile = open(arquivo, 'w') i = len(hists) for h in hists: line = (''.join(str(e) + ", " for e in h.tolist()))[:-2] resultFile.write(line) if i > 0: resultFile.write("\n") i = i - 1 resultFile.close() #%% def bov_codebook_gera(l_sift, nc, tipo): if tipo == 1: # http://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html#sklearn.cluster.KMeans.fit from sklearn.cluster import KMeans est = KMeans(n_clusters=nc, init='k-means++', n_init=10, max_iter=100, tol=0.0001, precompute_distances='auto', verbose=0, random_state=None, copy_x=True, n_jobs=4) est.fit(l_sift) labels = est.labels_ centers = est.cluster_centers_ elif tipo == 2: from sklearn.cluster import MiniBatchKMeans est = MiniBatchKMeans(n_clusters=nc, init='k-means++', max_iter=100, batch_size=3*nc, verbose=0, compute_labels=True, random_state=None, tol=0.0, max_no_improvement=10, init_size=None, n_init=3, reassignment_ratio=0.01) est.fit(l_sift) labels = est.labels_ centers = est.cluster_centers_ else: import random from scipy.cluster.vq import vq import numpy as np list_of_random_items = random.sample(np.arange(l_sift.shape[0]), nc) l_centroids = [] for i in list_of_random_items: l_centroids.append(l_sift[i]) centers = np.asarray(l_centroids) labels, _ = vq(l_sift, centers) return (centers, labels) #%% def bov_histogramas_gera(labels, id_ds, k, nomes_imagens, vis=False): from matplotlib import pyplot as plt import numpy as np #fv = np.vectorize(f) hists = [] i = 0 for j in range(len(nomes_imagens)): #ld = X[indices[j]].tolist() n = id_ds[j] sl = labels[i:i+n] hist, bins = np.histogram(sl, bins=k, range=(0, k), normed=False, weights=None, density=True) if vis == True: width = 0.7 * (bins[1] - bins[0]) center = (bins[:-1] + bins[1:]) / 2 plt.title("Histogram "+nomes_imagens[j]) plt.xlabel("Visual Word") plt.ylabel("Frequency") plt.bar(center, hist, align='center', width=width) plt.show() #print j hists.append(hist) #print hist i = i + n #j = j +1 return hists def bov_descritores_codifica(X, centers): from scipy.cluster.vq import vq labels,_ = vq(X,centers) return labels
gpl-3.0
SaschaMester/delicium
chrome/test/data/nacl/gdb_rsp.py
42
2542
# Copyright (c) 2012 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. # This file is based on gdb_rsp.py file from NaCl repository. import re import socket import time def RspChecksum(data): checksum = 0 for char in data: checksum = (checksum + ord(char)) % 0x100 return checksum class EofOnReplyException(Exception): pass class GdbRspConnection(object): def __init__(self, addr): self._socket = self._Connect(addr) def _Connect(self, addr): # We have to poll because we do not know when sel_ldr has # successfully done bind() on the TCP port. This is inherently # unreliable. # TODO(mseaborn): Add a more reliable connection mechanism to # sel_ldr's debug stub. timeout_in_seconds = 10 poll_time_in_seconds = 0.1 for i in xrange(int(timeout_in_seconds / poll_time_in_seconds)): # On Mac OS X, we have to create a new socket FD for each retry. sock = socket.socket() try: sock.connect(addr) except socket.error: # Retry after a delay. time.sleep(poll_time_in_seconds) else: return sock raise Exception('Could not connect to sel_ldr\'s debug stub in %i seconds' % timeout_in_seconds) def _GetReply(self): reply = '' while True: data = self._socket.recv(1024) if len(data) == 0: if reply == '+': raise EofOnReplyException() raise AssertionError('EOF on socket reached with ' 'incomplete reply message: %r' % reply) reply += data if '#' in data: break match = re.match('\+\$([^#]*)#([0-9a-fA-F]{2})$', reply) if match is None: raise AssertionError('Unexpected reply message: %r' % reply) reply_body = match.group(1) checksum = match.group(2) expected_checksum = '%02x' % RspChecksum(reply_body) if checksum != expected_checksum: raise AssertionError('Bad RSP checksum: %r != %r' % (checksum, expected_checksum)) # Send acknowledgement. self._socket.send('+') return reply_body # Send an rsp message, but don't wait for or expect a reply. def RspSendOnly(self, data): msg = '$%s#%02x' % (data, RspChecksum(data)) return self._socket.send(msg) def RspRequest(self, data): self.RspSendOnly(data) return self._GetReply() def RspInterrupt(self): self._socket.send('\x03') return self._GetReply()
bsd-3-clause
kernc/scikit-learn
examples/decomposition/plot_image_denoising.py
70
6249
""" ========================================= Image denoising using dictionary learning ========================================= An example comparing the effect of reconstructing noisy fragments of a raccoon face image using firstly online :ref:`DictionaryLearning` and various transform methods. The dictionary is fitted on the distorted left half of the image, and subsequently used to reconstruct the right half. Note that even better performance could be achieved by fitting to an undistorted (i.e. noiseless) image, but here we start from the assumption that it is not available. A common practice for evaluating the results of image denoising is by looking at the difference between the reconstruction and the original image. If the reconstruction is perfect this will look like Gaussian noise. It can be seen from the plots that the results of :ref:`omp` with two non-zero coefficients is a bit less biased than when keeping only one (the edges look less prominent). It is in addition closer from the ground truth in Frobenius norm. The result of :ref:`least_angle_regression` is much more strongly biased: the difference is reminiscent of the local intensity value of the original image. Thresholding is clearly not useful for denoising, but it is here to show that it can produce a suggestive output with very high speed, and thus be useful for other tasks such as object classification, where performance is not necessarily related to visualisation. """ print(__doc__) from time import time import matplotlib.pyplot as plt import numpy as np import scipy as sp from sklearn.decomposition import MiniBatchDictionaryLearning from sklearn.feature_extraction.image import extract_patches_2d from sklearn.feature_extraction.image import reconstruct_from_patches_2d from sklearn.utils.testing import SkipTest from sklearn.utils.fixes import sp_version if sp_version < (0, 12): raise SkipTest("Skipping because SciPy version earlier than 0.12.0 and " "thus does not include the scipy.misc.face() image.") ############################################################################### try: from scipy import misc face = misc.face(gray=True) except AttributeError: # Old versions of scipy have face in the top level package face = sp.face(gray=True) # Convert from uint8 representation with values between 0 and 255 to # a floating point representation with values between 0 and 1. face = face / 255 # downsample for higher speed face = face[::2, ::2] + face[1::2, ::2] + face[::2, 1::2] + face[1::2, 1::2] face /= 4.0 height, width = face.shape # Distort the right half of the image print('Distorting image...') distorted = face.copy() distorted[:, width // 2:] += 0.075 * np.random.randn(height, width // 2) # Extract all reference patches from the left half of the image print('Extracting reference patches...') t0 = time() patch_size = (7, 7) data = extract_patches_2d(distorted[:, :width // 2], patch_size) data = data.reshape(data.shape[0], -1) data -= np.mean(data, axis=0) data /= np.std(data, axis=0) print('done in %.2fs.' % (time() - t0)) ############################################################################### # Learn the dictionary from reference patches print('Learning the dictionary...') t0 = time() dico = MiniBatchDictionaryLearning(n_components=100, alpha=1, n_iter=500) V = dico.fit(data).components_ dt = time() - t0 print('done in %.2fs.' % dt) plt.figure(figsize=(4.2, 4)) for i, comp in enumerate(V[:100]): plt.subplot(10, 10, i + 1) plt.imshow(comp.reshape(patch_size), cmap=plt.cm.gray_r, interpolation='nearest') plt.xticks(()) plt.yticks(()) plt.suptitle('Dictionary learned from face patches\n' + 'Train time %.1fs on %d patches' % (dt, len(data)), fontsize=16) plt.subplots_adjust(0.08, 0.02, 0.92, 0.85, 0.08, 0.23) ############################################################################### # Display the distorted image def show_with_diff(image, reference, title): """Helper function to display denoising""" plt.figure(figsize=(5, 3.3)) plt.subplot(1, 2, 1) plt.title('Image') plt.imshow(image, vmin=0, vmax=1, cmap=plt.cm.gray, interpolation='nearest') plt.xticks(()) plt.yticks(()) plt.subplot(1, 2, 2) difference = image - reference plt.title('Difference (norm: %.2f)' % np.sqrt(np.sum(difference ** 2))) plt.imshow(difference, vmin=-0.5, vmax=0.5, cmap=plt.cm.PuOr, interpolation='nearest') plt.xticks(()) plt.yticks(()) plt.suptitle(title, size=16) plt.subplots_adjust(0.02, 0.02, 0.98, 0.79, 0.02, 0.2) show_with_diff(distorted, face, 'Distorted image') ############################################################################### # Extract noisy patches and reconstruct them using the dictionary print('Extracting noisy patches... ') t0 = time() data = extract_patches_2d(distorted[:, width // 2:], patch_size) data = data.reshape(data.shape[0], -1) intercept = np.mean(data, axis=0) data -= intercept print('done in %.2fs.' % (time() - t0)) transform_algorithms = [ ('Orthogonal Matching Pursuit\n1 atom', 'omp', {'transform_n_nonzero_coefs': 1}), ('Orthogonal Matching Pursuit\n2 atoms', 'omp', {'transform_n_nonzero_coefs': 2}), ('Least-angle regression\n5 atoms', 'lars', {'transform_n_nonzero_coefs': 5}), ('Thresholding\n alpha=0.1', 'threshold', {'transform_alpha': .1})] reconstructions = {} for title, transform_algorithm, kwargs in transform_algorithms: print(title + '...') reconstructions[title] = face.copy() t0 = time() dico.set_params(transform_algorithm=transform_algorithm, **kwargs) code = dico.transform(data) patches = np.dot(code, V) patches += intercept patches = patches.reshape(len(data), *patch_size) if transform_algorithm == 'threshold': patches -= patches.min() patches /= patches.max() reconstructions[title][:, width // 2:] = reconstruct_from_patches_2d( patches, (height, width // 2)) dt = time() - t0 print('done in %.2fs.' % dt) show_with_diff(reconstructions[title], face, title + ' (time: %.1fs)' % dt) plt.show()
bsd-3-clause
mitschabaude/nanopores
scripts/wei/test_geo.py
1
1625
# (c) 2017 Gregor Mitscha-Baude import numpy as np from nanopores.tools.polygons import Ball, Polygon, MultiPolygon, MultiPolygonPore from nanopores.geometries.cylpore import MultiPore from nanopores import user_params params = user_params( R = 100., R0 = 60., H0 = 70., H = 150., x0 = [0, 0, 46], rMolecule = 2.1, dim = 3, no_membrane = True, r0 = 13, # pore radius angle = 40, # aperture angle in degrees lcCenter = 0.3, lcMolecule = 0.1, h = 10., subs = "solid", reconstruct = False, poreregion = True, ) # SiN membrane thickness (in vertical direction) lsin = 50. # Au membrane thickness (in vertical direction) lau = 40. # Au thickness in radial direction rlau = 10. # SAM layer thickness (in vertical direction) lsam = 3 l0 = lau + lsin + lsam angle2 = params.angle/2. * np.pi/180. tan = np.tan(angle2) sin = np.sin(angle2) cos = np.cos(angle2) l = l0/2. r0 = params.r0 r1 = r0 + l0*tan rsam = r0 + lsam/cos rsin = r0 + lsam/cos + rlau R = params.R sam = [[r0, -l], [r1, l], [R, l], [R, l - lsam], [rsam - tan*(lsam - l0), l - lsam], [rsam, -l]] au = [sam[5], sam[4], sam[3], [R, -l + lsin], [rsin + tan*lsin, -l + lsin], [rsin, -l]] sin = [au[5], au[4], au[3], [R, -l]] p = MultiPore(**params) p.add_polygons(sam=sam, au=au, sin=sin) receptor = Ball([30.,0.,30.], 7., lc=0.1) p.add_balls(receptor=receptor) geo = p.build(params.h, params.subs, params.reconstruct) P = p.protein P.plot(".k") from matplotlib import pyplot as plt plt.xlim(0, R + 5) print geo print geo.params geo.plot_subdomains() geo.plot_boundaries(interactive=True)
mit
boomsbloom/dtm-fmri
DTM/for_gensim/lib/python2.7/site-packages/pandas/tseries/offsets.py
7
95013
from datetime import date, datetime, timedelta from pandas.compat import range from pandas import compat import numpy as np from pandas.types.generic import ABCSeries, ABCDatetimeIndex, ABCPeriod from pandas.tseries.tools import to_datetime, normalize_date from pandas.core.common import AbstractMethodError # import after tools, dateutil check from dateutil.relativedelta import relativedelta, weekday from dateutil.easter import easter import pandas.tslib as tslib from pandas.tslib import Timestamp, OutOfBoundsDatetime, Timedelta import functools import operator __all__ = ['Day', 'BusinessDay', 'BDay', 'CustomBusinessDay', 'CDay', 'CBMonthEnd', 'CBMonthBegin', 'MonthBegin', 'BMonthBegin', 'MonthEnd', 'BMonthEnd', 'SemiMonthEnd', 'SemiMonthBegin', 'BusinessHour', 'CustomBusinessHour', 'YearBegin', 'BYearBegin', 'YearEnd', 'BYearEnd', 'QuarterBegin', 'BQuarterBegin', 'QuarterEnd', 'BQuarterEnd', 'LastWeekOfMonth', 'FY5253Quarter', 'FY5253', 'Week', 'WeekOfMonth', 'Easter', 'Hour', 'Minute', 'Second', 'Milli', 'Micro', 'Nano', 'DateOffset'] # convert to/from datetime/timestamp to allow invalid Timestamp ranges to # pass thru def as_timestamp(obj): if isinstance(obj, Timestamp): return obj try: return Timestamp(obj) except (OutOfBoundsDatetime): pass return obj def as_datetime(obj): f = getattr(obj, 'to_pydatetime', None) if f is not None: obj = f() return obj def apply_wraps(func): @functools.wraps(func) def wrapper(self, other): if other is tslib.NaT: return tslib.NaT elif isinstance(other, (timedelta, Tick, DateOffset)): # timedelta path return func(self, other) elif isinstance(other, (np.datetime64, datetime, date)): other = as_timestamp(other) tz = getattr(other, 'tzinfo', None) nano = getattr(other, 'nanosecond', 0) try: if self._adjust_dst and isinstance(other, Timestamp): other = other.tz_localize(None) result = func(self, other) if self._adjust_dst: result = tslib._localize_pydatetime(result, tz) result = Timestamp(result) if self.normalize: result = result.normalize() # nanosecond may be deleted depending on offset process if not self.normalize and nano != 0: if not isinstance(self, Nano) and result.nanosecond != nano: if result.tz is not None: # convert to UTC value = tslib.tz_convert_single( result.value, 'UTC', result.tz) else: value = result.value result = Timestamp(value + nano) if tz is not None and result.tzinfo is None: result = tslib._localize_pydatetime(result, tz) except OutOfBoundsDatetime: result = func(self, as_datetime(other)) if self.normalize: # normalize_date returns normal datetime result = normalize_date(result) if tz is not None and result.tzinfo is None: result = tslib._localize_pydatetime(result, tz) return result return wrapper def apply_index_wraps(func): @functools.wraps(func) def wrapper(self, other): result = func(self, other) if self.normalize: result = result.to_period('D').to_timestamp() return result return wrapper def _is_normalized(dt): if (dt.hour != 0 or dt.minute != 0 or dt.second != 0 or dt.microsecond != 0 or getattr(dt, 'nanosecond', 0) != 0): return False return True # --------------------------------------------------------------------- # DateOffset class ApplyTypeError(TypeError): # sentinel class for catching the apply error to return NotImplemented pass class CacheableOffset(object): _cacheable = True class DateOffset(object): """ Standard kind of date increment used for a date range. Works exactly like relativedelta in terms of the keyword args you pass in, use of the keyword n is discouraged-- you would be better off specifying n in the keywords you use, but regardless it is there for you. n is needed for DateOffset subclasses. DateOffets work as follows. Each offset specify a set of dates that conform to the DateOffset. For example, Bday defines this set to be the set of dates that are weekdays (M-F). To test if a date is in the set of a DateOffset dateOffset we can use the onOffset method: dateOffset.onOffset(date). If a date is not on a valid date, the rollback and rollforward methods can be used to roll the date to the nearest valid date before/after the date. DateOffsets can be created to move dates forward a given number of valid dates. For example, Bday(2) can be added to a date to move it two business days forward. If the date does not start on a valid date, first it is moved to a valid date. Thus psedo code is: def __add__(date): date = rollback(date) # does nothing if date is valid return date + <n number of periods> When a date offset is created for a negitive number of periods, the date is first rolled forward. The pseudo code is: def __add__(date): date = rollforward(date) # does nothing is date is valid return date + <n number of periods> Zero presents a problem. Should it roll forward or back? We arbitrarily have it rollforward: date + BDay(0) == BDay.rollforward(date) Since 0 is a bit weird, we suggest avoiding its use. """ _cacheable = False _normalize_cache = True _kwds_use_relativedelta = ( 'years', 'months', 'weeks', 'days', 'year', 'month', 'week', 'day', 'weekday', 'hour', 'minute', 'second', 'microsecond' ) _use_relativedelta = False _adjust_dst = False # default for prior pickles normalize = False def __init__(self, n=1, normalize=False, **kwds): self.n = int(n) self.normalize = normalize self.kwds = kwds self._offset, self._use_relativedelta = self._determine_offset() def _determine_offset(self): # timedelta is used for sub-daily plural offsets and all singular # offsets relativedelta is used for plural offsets of daily length or # more nanosecond(s) are handled by apply_wraps kwds_no_nanos = dict( (k, v) for k, v in self.kwds.items() if k not in ('nanosecond', 'nanoseconds') ) use_relativedelta = False if len(kwds_no_nanos) > 0: if any(k in self._kwds_use_relativedelta for k in kwds_no_nanos): use_relativedelta = True offset = relativedelta(**kwds_no_nanos) else: # sub-daily offset - use timedelta (tz-aware) offset = timedelta(**kwds_no_nanos) else: offset = timedelta(1) return offset, use_relativedelta @apply_wraps def apply(self, other): if self._use_relativedelta: other = as_datetime(other) if len(self.kwds) > 0: tzinfo = getattr(other, 'tzinfo', None) if tzinfo is not None and self._use_relativedelta: # perform calculation in UTC other = other.replace(tzinfo=None) if self.n > 0: for i in range(self.n): other = other + self._offset else: for i in range(-self.n): other = other - self._offset if tzinfo is not None and self._use_relativedelta: # bring tz back from UTC calculation other = tslib._localize_pydatetime(other, tzinfo) return as_timestamp(other) else: return other + timedelta(self.n) @apply_index_wraps def apply_index(self, i): """ Vectorized apply of DateOffset to DatetimeIndex, raises NotImplentedError for offsets without a vectorized implementation .. versionadded:: 0.17.0 Parameters ---------- i : DatetimeIndex Returns ------- y : DatetimeIndex """ if not type(self) is DateOffset: raise NotImplementedError("DateOffset subclass %s " "does not have a vectorized " "implementation" % (self.__class__.__name__,)) relativedelta_fast = set(['years', 'months', 'weeks', 'days', 'hours', 'minutes', 'seconds', 'microseconds']) # relativedelta/_offset path only valid for base DateOffset if (self._use_relativedelta and set(self.kwds).issubset(relativedelta_fast)): months = ((self.kwds.get('years', 0) * 12 + self.kwds.get('months', 0)) * self.n) if months: shifted = tslib.shift_months(i.asi8, months) i = i._shallow_copy(shifted) weeks = (self.kwds.get('weeks', 0)) * self.n if weeks: i = (i.to_period('W') + weeks).to_timestamp() + \ i.to_perioddelta('W') timedelta_kwds = dict((k, v) for k, v in self.kwds.items() if k in ['days', 'hours', 'minutes', 'seconds', 'microseconds']) if timedelta_kwds: delta = Timedelta(**timedelta_kwds) i = i + (self.n * delta) return i elif not self._use_relativedelta and hasattr(self, '_offset'): # timedelta return i + (self._offset * self.n) else: # relativedelta with other keywords raise NotImplementedError("DateOffset with relativedelta " "keyword(s) %s not able to be " "applied vectorized" % (set(self.kwds) - relativedelta_fast),) def isAnchored(self): return (self.n == 1) def copy(self): return self.__class__(self.n, normalize=self.normalize, **self.kwds) def _should_cache(self): return self.isAnchored() and self._cacheable def _params(self): all_paras = dict(list(vars(self).items()) + list(self.kwds.items())) if 'holidays' in all_paras and not all_paras['holidays']: all_paras.pop('holidays') exclude = ['kwds', 'name', 'normalize', 'calendar'] attrs = [(k, v) for k, v in all_paras.items() if (k not in exclude) and (k[0] != '_')] attrs = sorted(set(attrs)) params = tuple([str(self.__class__)] + attrs) return params def __repr__(self): className = getattr(self, '_outputName', type(self).__name__) exclude = set(['n', 'inc', 'normalize']) attrs = [] for attr in sorted(self.__dict__): if ((attr == 'kwds' and len(self.kwds) == 0) or attr.startswith('_')): continue elif attr == 'kwds': kwds_new = {} for key in self.kwds: if not hasattr(self, key): kwds_new[key] = self.kwds[key] if len(kwds_new) > 0: attrs.append('='.join((attr, repr(kwds_new)))) else: if attr not in exclude: attrs.append('='.join((attr, repr(getattr(self, attr))))) if abs(self.n) != 1: plural = 's' else: plural = '' n_str = "" if self.n != 1: n_str = "%s * " % self.n out = '<%s' % n_str + className + plural if attrs: out += ': ' + ', '.join(attrs) out += '>' return out @property def name(self): return self.rule_code def __eq__(self, other): if other is None: return False if isinstance(other, compat.string_types): from pandas.tseries.frequencies import to_offset other = to_offset(other) if not isinstance(other, DateOffset): return False return self._params() == other._params() def __ne__(self, other): return not self == other def __hash__(self): return hash(self._params()) def __call__(self, other): return self.apply(other) def __add__(self, other): if isinstance(other, (ABCDatetimeIndex, ABCSeries)): return other + self elif isinstance(other, ABCPeriod): return other + self try: return self.apply(other) except ApplyTypeError: return NotImplemented def __radd__(self, other): return self.__add__(other) def __sub__(self, other): if isinstance(other, datetime): raise TypeError('Cannot subtract datetime from offset.') elif type(other) == type(self): return self.__class__(self.n - other.n, normalize=self.normalize, **self.kwds) else: # pragma: no cover return NotImplemented def __rsub__(self, other): if isinstance(other, (ABCDatetimeIndex, ABCSeries)): return other - self return self.__class__(-self.n, normalize=self.normalize, **self.kwds) + other def __mul__(self, someInt): return self.__class__(n=someInt * self.n, normalize=self.normalize, **self.kwds) def __rmul__(self, someInt): return self.__mul__(someInt) def __neg__(self): return self.__class__(-self.n, normalize=self.normalize, **self.kwds) def rollback(self, dt): """Roll provided date backward to next offset only if not on offset""" dt = as_timestamp(dt) if not self.onOffset(dt): dt = dt - self.__class__(1, normalize=self.normalize, **self.kwds) return dt def rollforward(self, dt): """Roll provided date forward to next offset only if not on offset""" dt = as_timestamp(dt) if not self.onOffset(dt): dt = dt + self.__class__(1, normalize=self.normalize, **self.kwds) return dt def onOffset(self, dt): if self.normalize and not _is_normalized(dt): return False # XXX, see #1395 if type(self) == DateOffset or isinstance(self, Tick): return True # Default (slow) method for determining if some date is a member of the # date range generated by this offset. Subclasses may have this # re-implemented in a nicer way. a = dt b = ((dt + self) - self) return a == b # helpers for vectorized offsets def _beg_apply_index(self, i, freq): """Offsets index to beginning of Period frequency""" off = i.to_perioddelta('D') from pandas.tseries.frequencies import get_freq_code base, mult = get_freq_code(freq) base_period = i.to_period(base) if self.n <= 0: # when subtracting, dates on start roll to prior roll = np.where(base_period.to_timestamp() == i - off, self.n, self.n + 1) else: roll = self.n base = (base_period + roll).to_timestamp() return base + off def _end_apply_index(self, i, freq): """Offsets index to end of Period frequency""" off = i.to_perioddelta('D') from pandas.tseries.frequencies import get_freq_code base, mult = get_freq_code(freq) base_period = i.to_period(base) if self.n > 0: # when adding, dates on end roll to next roll = np.where(base_period.to_timestamp(how='end') == i - off, self.n, self.n - 1) else: roll = self.n base = (base_period + roll).to_timestamp(how='end') return base + off # way to get around weirdness with rule_code @property def _prefix(self): raise NotImplementedError('Prefix not defined') @property def rule_code(self): return self._prefix @property def freqstr(self): try: code = self.rule_code except NotImplementedError: return repr(self) if self.n != 1: fstr = '%d%s' % (self.n, code) else: fstr = code return fstr @property def nanos(self): raise ValueError("{0} is a non-fixed frequency".format(self)) class SingleConstructorOffset(DateOffset): @classmethod def _from_name(cls, suffix=None): # default _from_name calls cls with no args if suffix: raise ValueError("Bad freq suffix %s" % suffix) return cls() class BusinessMixin(object): """ mixin to business types to provide related functions """ # TODO: Combine this with DateOffset by defining a whitelisted set of # attributes on each object rather than the existing behavior of iterating # over internal ``__dict__`` def __repr__(self): className = getattr(self, '_outputName', self.__class__.__name__) if abs(self.n) != 1: plural = 's' else: plural = '' n_str = "" if self.n != 1: n_str = "%s * " % self.n out = '<%s' % n_str + className + plural + self._repr_attrs() + '>' return out def _repr_attrs(self): if self.offset: attrs = ['offset=%s' % repr(self.offset)] else: attrs = None out = '' if attrs: out += ': ' + ', '.join(attrs) return out def __getstate__(self): """Return a pickleable state""" state = self.__dict__.copy() # we don't want to actually pickle the calendar object # as its a np.busyday; we recreate on deserilization if 'calendar' in state: del state['calendar'] try: state['kwds'].pop('calendar') except KeyError: pass return state def __setstate__(self, state): """Reconstruct an instance from a pickled state""" self.__dict__ = state if 'weekmask' in state and 'holidays' in state: calendar, holidays = self.get_calendar(weekmask=self.weekmask, holidays=self.holidays, calendar=None) self.kwds['calendar'] = self.calendar = calendar self.kwds['holidays'] = self.holidays = holidays self.kwds['weekmask'] = state['weekmask'] class BusinessDay(BusinessMixin, SingleConstructorOffset): """ DateOffset subclass representing possibly n business days """ _prefix = 'B' _adjust_dst = True def __init__(self, n=1, normalize=False, **kwds): self.n = int(n) self.normalize = normalize self.kwds = kwds self.offset = kwds.get('offset', timedelta(0)) @property def freqstr(self): try: code = self.rule_code except NotImplementedError: return repr(self) if self.n != 1: fstr = '%d%s' % (self.n, code) else: fstr = code if self.offset: fstr += self._offset_str() return fstr def _offset_str(self): def get_str(td): off_str = '' if td.days > 0: off_str += str(td.days) + 'D' if td.seconds > 0: s = td.seconds hrs = int(s / 3600) if hrs != 0: off_str += str(hrs) + 'H' s -= hrs * 3600 mts = int(s / 60) if mts != 0: off_str += str(mts) + 'Min' s -= mts * 60 if s != 0: off_str += str(s) + 's' if td.microseconds > 0: off_str += str(td.microseconds) + 'us' return off_str if isinstance(self.offset, timedelta): zero = timedelta(0, 0, 0) if self.offset >= zero: off_str = '+' + get_str(self.offset) else: off_str = '-' + get_str(-self.offset) return off_str else: return '+' + repr(self.offset) def isAnchored(self): return (self.n == 1) @apply_wraps def apply(self, other): if isinstance(other, datetime): n = self.n if n == 0 and other.weekday() > 4: n = 1 result = other # avoid slowness below if abs(n) > 5: k = n // 5 result = result + timedelta(7 * k) if n < 0 and result.weekday() > 4: n += 1 n -= 5 * k if n == 0 and result.weekday() > 4: n -= 1 while n != 0: k = n // abs(n) result = result + timedelta(k) if result.weekday() < 5: n -= k if self.offset: result = result + self.offset return result elif isinstance(other, (timedelta, Tick)): return BDay(self.n, offset=self.offset + other, normalize=self.normalize) else: raise ApplyTypeError('Only know how to combine business day with ' 'datetime or timedelta.') @apply_index_wraps def apply_index(self, i): time = i.to_perioddelta('D') # to_period rolls forward to next BDay; track and # reduce n where it does when rolling forward shifted = (i.to_perioddelta('B') - time).asi8 != 0 if self.n > 0: roll = np.where(shifted, self.n - 1, self.n) else: roll = self.n return (i.to_period('B') + roll).to_timestamp() + time def onOffset(self, dt): if self.normalize and not _is_normalized(dt): return False return dt.weekday() < 5 class BusinessHourMixin(BusinessMixin): def __init__(self, **kwds): # must be validated here to equality check kwds['start'] = self._validate_time(kwds.get('start', '09:00')) kwds['end'] = self._validate_time(kwds.get('end', '17:00')) self.kwds = kwds self.offset = kwds.get('offset', timedelta(0)) self.start = kwds.get('start', '09:00') self.end = kwds.get('end', '17:00') def _validate_time(self, t_input): from datetime import time as dt_time import time if isinstance(t_input, compat.string_types): try: t = time.strptime(t_input, '%H:%M') return dt_time(hour=t.tm_hour, minute=t.tm_min) except ValueError: raise ValueError("time data must match '%H:%M' format") elif isinstance(t_input, dt_time): if t_input.second != 0 or t_input.microsecond != 0: raise ValueError( "time data must be specified only with hour and minute") return t_input else: raise ValueError("time data must be string or datetime.time") def _get_daytime_flag(self): if self.start == self.end: raise ValueError('start and end must not be the same') elif self.start < self.end: return True else: return False def _next_opening_time(self, other): """ If n is positive, return tomorrow's business day opening time. Otherwise yesterday's business day's opening time. Opening time always locates on BusinessDay. Otherwise, closing time may not if business hour extends over midnight. """ if not self.next_bday.onOffset(other): other = other + self.next_bday else: if self.n >= 0 and self.start < other.time(): other = other + self.next_bday elif self.n < 0 and other.time() < self.start: other = other + self.next_bday return datetime(other.year, other.month, other.day, self.start.hour, self.start.minute) def _prev_opening_time(self, other): """ If n is positive, return yesterday's business day opening time. Otherwise yesterday business day's opening time. """ if not self.next_bday.onOffset(other): other = other - self.next_bday else: if self.n >= 0 and other.time() < self.start: other = other - self.next_bday elif self.n < 0 and other.time() > self.start: other = other - self.next_bday return datetime(other.year, other.month, other.day, self.start.hour, self.start.minute) def _get_business_hours_by_sec(self): """ Return business hours in a day by seconds. """ if self._get_daytime_flag(): # create dummy datetime to calcurate businesshours in a day dtstart = datetime(2014, 4, 1, self.start.hour, self.start.minute) until = datetime(2014, 4, 1, self.end.hour, self.end.minute) return tslib.tot_seconds(until - dtstart) else: self.daytime = False dtstart = datetime(2014, 4, 1, self.start.hour, self.start.minute) until = datetime(2014, 4, 2, self.end.hour, self.end.minute) return tslib.tot_seconds(until - dtstart) @apply_wraps def rollback(self, dt): """Roll provided date backward to next offset only if not on offset""" if not self.onOffset(dt): businesshours = self._get_business_hours_by_sec() if self.n >= 0: dt = self._prev_opening_time( dt) + timedelta(seconds=businesshours) else: dt = self._next_opening_time( dt) + timedelta(seconds=businesshours) return dt @apply_wraps def rollforward(self, dt): """Roll provided date forward to next offset only if not on offset""" if not self.onOffset(dt): if self.n >= 0: return self._next_opening_time(dt) else: return self._prev_opening_time(dt) return dt @apply_wraps def apply(self, other): # calcurate here because offset is not immutable daytime = self._get_daytime_flag() businesshours = self._get_business_hours_by_sec() bhdelta = timedelta(seconds=businesshours) if isinstance(other, datetime): # used for detecting edge condition nanosecond = getattr(other, 'nanosecond', 0) # reset timezone and nanosecond # other may be a Timestamp, thus not use replace other = datetime(other.year, other.month, other.day, other.hour, other.minute, other.second, other.microsecond) n = self.n if n >= 0: if (other.time() == self.end or not self._onOffset(other, businesshours)): other = self._next_opening_time(other) else: if other.time() == self.start: # adjustment to move to previous business day other = other - timedelta(seconds=1) if not self._onOffset(other, businesshours): other = self._next_opening_time(other) other = other + bhdelta bd, r = divmod(abs(n * 60), businesshours // 60) if n < 0: bd, r = -bd, -r if bd != 0: skip_bd = BusinessDay(n=bd) # midnight business hour may not on BusinessDay if not self.next_bday.onOffset(other): remain = other - self._prev_opening_time(other) other = self._next_opening_time(other + skip_bd) + remain else: other = other + skip_bd hours, minutes = divmod(r, 60) result = other + timedelta(hours=hours, minutes=minutes) # because of previous adjustment, time will be larger than start if ((daytime and (result.time() < self.start or self.end < result.time())) or not daytime and (self.end < result.time() < self.start)): if n >= 0: bday_edge = self._prev_opening_time(other) bday_edge = bday_edge + bhdelta # calcurate remainder bday_remain = result - bday_edge result = self._next_opening_time(other) result += bday_remain else: bday_edge = self._next_opening_time(other) bday_remain = result - bday_edge result = self._next_opening_time(result) + bhdelta result += bday_remain # edge handling if n >= 0: if result.time() == self.end: result = self._next_opening_time(result) else: if result.time() == self.start and nanosecond == 0: # adjustment to move to previous business day result = self._next_opening_time( result - timedelta(seconds=1)) + bhdelta return result else: raise ApplyTypeError( 'Only know how to combine business hour with ') def onOffset(self, dt): if self.normalize and not _is_normalized(dt): return False if dt.tzinfo is not None: dt = datetime(dt.year, dt.month, dt.day, dt.hour, dt.minute, dt.second, dt.microsecond) # Valid BH can be on the different BusinessDay during midnight # Distinguish by the time spent from previous opening time businesshours = self._get_business_hours_by_sec() return self._onOffset(dt, businesshours) def _onOffset(self, dt, businesshours): """ Slight speedups using calcurated values """ # if self.normalize and not _is_normalized(dt): # return False # Valid BH can be on the different BusinessDay during midnight # Distinguish by the time spent from previous opening time if self.n >= 0: op = self._prev_opening_time(dt) else: op = self._next_opening_time(dt) span = tslib.tot_seconds(dt - op) if span <= businesshours: return True else: return False def _repr_attrs(self): out = super(BusinessHourMixin, self)._repr_attrs() start = self.start.strftime('%H:%M') end = self.end.strftime('%H:%M') attrs = ['{prefix}={start}-{end}'.format(prefix=self._prefix, start=start, end=end)] out += ': ' + ', '.join(attrs) return out class BusinessHour(BusinessHourMixin, SingleConstructorOffset): """ DateOffset subclass representing possibly n business days .. versionadded: 0.16.1 """ _prefix = 'BH' _anchor = 0 def __init__(self, n=1, normalize=False, **kwds): self.n = int(n) self.normalize = normalize super(BusinessHour, self).__init__(**kwds) # used for moving to next businessday if self.n >= 0: nb_offset = 1 else: nb_offset = -1 self.next_bday = BusinessDay(n=nb_offset) class CustomBusinessDay(BusinessDay): """ **EXPERIMENTAL** DateOffset subclass representing possibly n business days excluding holidays .. warning:: EXPERIMENTAL This class is not officially supported and the API is likely to change in future versions. Use this at your own risk. Parameters ---------- n : int, default 1 offset : timedelta, default timedelta(0) normalize : bool, default False Normalize start/end dates to midnight before generating date range weekmask : str, Default 'Mon Tue Wed Thu Fri' weekmask of valid business days, passed to ``numpy.busdaycalendar`` holidays : list list/array of dates to exclude from the set of valid business days, passed to ``numpy.busdaycalendar`` calendar : pd.HolidayCalendar or np.busdaycalendar """ _cacheable = False _prefix = 'C' def __init__(self, n=1, normalize=False, weekmask='Mon Tue Wed Thu Fri', holidays=None, calendar=None, **kwds): self.n = int(n) self.normalize = normalize self.kwds = kwds self.offset = kwds.get('offset', timedelta(0)) calendar, holidays = self.get_calendar(weekmask=weekmask, holidays=holidays, calendar=calendar) # CustomBusinessDay instances are identified by the # following two attributes. See DateOffset._params() # holidays, weekmask self.kwds['weekmask'] = self.weekmask = weekmask self.kwds['holidays'] = self.holidays = holidays self.kwds['calendar'] = self.calendar = calendar def get_calendar(self, weekmask, holidays, calendar): """Generate busdaycalendar""" if isinstance(calendar, np.busdaycalendar): if not holidays: holidays = tuple(calendar.holidays) elif not isinstance(holidays, tuple): holidays = tuple(holidays) else: # trust that calendar.holidays and holidays are # consistent pass return calendar, holidays if holidays is None: holidays = [] try: holidays = holidays + calendar.holidays().tolist() except AttributeError: pass holidays = [self._to_dt64(dt, dtype='datetime64[D]') for dt in holidays] holidays = tuple(sorted(holidays)) kwargs = {'weekmask': weekmask} if holidays: kwargs['holidays'] = holidays busdaycalendar = np.busdaycalendar(**kwargs) return busdaycalendar, holidays @apply_wraps def apply(self, other): if self.n <= 0: roll = 'forward' else: roll = 'backward' if isinstance(other, datetime): date_in = other np_dt = np.datetime64(date_in.date()) np_incr_dt = np.busday_offset(np_dt, self.n, roll=roll, busdaycal=self.calendar) dt_date = np_incr_dt.astype(datetime) result = datetime.combine(dt_date, date_in.time()) if self.offset: result = result + self.offset return result elif isinstance(other, (timedelta, Tick)): return BDay(self.n, offset=self.offset + other, normalize=self.normalize) else: raise ApplyTypeError('Only know how to combine trading day with ' 'datetime, datetime64 or timedelta.') def apply_index(self, i): raise NotImplementedError @staticmethod def _to_dt64(dt, dtype='datetime64'): # Currently # > np.datetime64(dt.datetime(2013,5,1),dtype='datetime64[D]') # numpy.datetime64('2013-05-01T02:00:00.000000+0200') # Thus astype is needed to cast datetime to datetime64[D] if getattr(dt, 'tzinfo', None) is not None: i8 = tslib.pydt_to_i8(dt) dt = tslib.tz_convert_single(i8, 'UTC', dt.tzinfo) dt = Timestamp(dt) dt = np.datetime64(dt) if dt.dtype.name != dtype: dt = dt.astype(dtype) return dt def onOffset(self, dt): if self.normalize and not _is_normalized(dt): return False day64 = self._to_dt64(dt, 'datetime64[D]') return np.is_busday(day64, busdaycal=self.calendar) class CustomBusinessHour(BusinessHourMixin, SingleConstructorOffset): """ DateOffset subclass representing possibly n custom business days .. versionadded: 0.18.1 """ _prefix = 'CBH' _anchor = 0 def __init__(self, n=1, normalize=False, weekmask='Mon Tue Wed Thu Fri', holidays=None, calendar=None, **kwds): self.n = int(n) self.normalize = normalize super(CustomBusinessHour, self).__init__(**kwds) # used for moving to next businessday if self.n >= 0: nb_offset = 1 else: nb_offset = -1 self.next_bday = CustomBusinessDay(n=nb_offset, weekmask=weekmask, holidays=holidays, calendar=calendar) self.kwds['weekmask'] = self.next_bday.weekmask self.kwds['holidays'] = self.next_bday.holidays self.kwds['calendar'] = self.next_bday.calendar class MonthOffset(SingleConstructorOffset): _adjust_dst = True @property def name(self): if self.isAnchored: return self.rule_code else: return "%s-%s" % (self.rule_code, _int_to_month[self.n]) class MonthEnd(MonthOffset): """DateOffset of one month end""" @apply_wraps def apply(self, other): n = self.n _, days_in_month = tslib.monthrange(other.year, other.month) if other.day != days_in_month: other = other + relativedelta(months=-1, day=31) if n <= 0: n = n + 1 other = other + relativedelta(months=n, day=31) return other @apply_index_wraps def apply_index(self, i): shifted = tslib.shift_months(i.asi8, self.n, 'end') return i._shallow_copy(shifted) def onOffset(self, dt): if self.normalize and not _is_normalized(dt): return False days_in_month = tslib.monthrange(dt.year, dt.month)[1] return dt.day == days_in_month _prefix = 'M' class MonthBegin(MonthOffset): """DateOffset of one month at beginning""" @apply_wraps def apply(self, other): n = self.n if other.day > 1 and n <= 0: # then roll forward if n<=0 n += 1 return other + relativedelta(months=n, day=1) @apply_index_wraps def apply_index(self, i): shifted = tslib.shift_months(i.asi8, self.n, 'start') return i._shallow_copy(shifted) def onOffset(self, dt): if self.normalize and not _is_normalized(dt): return False return dt.day == 1 _prefix = 'MS' class SemiMonthOffset(DateOffset): _adjust_dst = True _default_day_of_month = 15 _min_day_of_month = 2 def __init__(self, n=1, day_of_month=None, normalize=False, **kwds): if day_of_month is None: self.day_of_month = self._default_day_of_month else: self.day_of_month = int(day_of_month) if not self._min_day_of_month <= self.day_of_month <= 27: raise ValueError('day_of_month must be ' '{}<=day_of_month<=27, got {}'.format( self._min_day_of_month, self.day_of_month)) self.n = int(n) self.normalize = normalize self.kwds = kwds self.kwds['day_of_month'] = self.day_of_month @classmethod def _from_name(cls, suffix=None): return cls(day_of_month=suffix) @property def rule_code(self): suffix = '-{}'.format(self.day_of_month) return self._prefix + suffix @apply_wraps def apply(self, other): n = self.n if not self.onOffset(other): _, days_in_month = tslib.monthrange(other.year, other.month) if 1 < other.day < self.day_of_month: other += relativedelta(day=self.day_of_month) if n > 0: # rollforward so subtract 1 n -= 1 elif self.day_of_month < other.day < days_in_month: other += relativedelta(day=self.day_of_month) if n < 0: # rollforward in the negative direction so add 1 n += 1 elif n == 0: n = 1 return self._apply(n, other) def _apply(self, n, other): """Handle specific apply logic for child classes""" raise AbstractMethodError(self) @apply_index_wraps def apply_index(self, i): # determine how many days away from the 1st of the month we are days_from_start = i.to_perioddelta('M').asi8 delta = Timedelta(days=self.day_of_month - 1).value # get boolean array for each element before the day_of_month before_day_of_month = days_from_start < delta # get boolean array for each element after the day_of_month after_day_of_month = days_from_start > delta # determine the correct n for each date in i roll = self._get_roll(i, before_day_of_month, after_day_of_month) # isolate the time since it will be striped away one the next line time = i.to_perioddelta('D') # apply the correct number of months i = (i.to_period('M') + (roll // 2)).to_timestamp() # apply the correct day i = self._apply_index_days(i, roll) return i + time def _get_roll(self, i, before_day_of_month, after_day_of_month): """Return an array with the correct n for each date in i. The roll array is based on the fact that i gets rolled back to the first day of the month. """ raise AbstractMethodError(self) def _apply_index_days(self, i, roll): """Apply the correct day for each date in i""" raise AbstractMethodError(self) class SemiMonthEnd(SemiMonthOffset): """ Two DateOffset's per month repeating on the last day of the month and day_of_month. .. versionadded:: 0.19.0 Parameters ---------- n: int normalize : bool, default False day_of_month: int, {1, 3,...,27}, default 15 """ _prefix = 'SM' _min_day_of_month = 1 def onOffset(self, dt): if self.normalize and not _is_normalized(dt): return False _, days_in_month = tslib.monthrange(dt.year, dt.month) return dt.day in (self.day_of_month, days_in_month) def _apply(self, n, other): # if other.day is not day_of_month move to day_of_month and update n if other.day < self.day_of_month: other += relativedelta(day=self.day_of_month) if n > 0: n -= 1 elif other.day > self.day_of_month: other += relativedelta(day=self.day_of_month) if n == 0: n = 1 else: n += 1 months = n // 2 day = 31 if n % 2 else self.day_of_month return other + relativedelta(months=months, day=day) def _get_roll(self, i, before_day_of_month, after_day_of_month): n = self.n is_month_end = i.is_month_end if n > 0: roll_end = np.where(is_month_end, 1, 0) roll_before = np.where(before_day_of_month, n, n + 1) roll = roll_end + roll_before elif n == 0: roll_after = np.where(after_day_of_month, 2, 0) roll_before = np.where(~after_day_of_month, 1, 0) roll = roll_before + roll_after else: roll = np.where(after_day_of_month, n + 2, n + 1) return roll def _apply_index_days(self, i, roll): i += (roll % 2) * Timedelta(days=self.day_of_month).value return i + Timedelta(days=-1) class SemiMonthBegin(SemiMonthOffset): """ Two DateOffset's per month repeating on the first day of the month and day_of_month. .. versionadded:: 0.19.0 Parameters ---------- n: int normalize : bool, default False day_of_month: int, {2, 3,...,27}, default 15 """ _prefix = 'SMS' def onOffset(self, dt): if self.normalize and not _is_normalized(dt): return False return dt.day in (1, self.day_of_month) def _apply(self, n, other): # if other.day is not day_of_month move to day_of_month and update n if other.day < self.day_of_month: other += relativedelta(day=self.day_of_month) if n == 0: n = -1 else: n -= 1 elif other.day > self.day_of_month: other += relativedelta(day=self.day_of_month) if n == 0: n = 1 elif n < 0: n += 1 months = n // 2 + n % 2 day = 1 if n % 2 else self.day_of_month return other + relativedelta(months=months, day=day) def _get_roll(self, i, before_day_of_month, after_day_of_month): n = self.n is_month_start = i.is_month_start if n > 0: roll = np.where(before_day_of_month, n, n + 1) elif n == 0: roll_start = np.where(is_month_start, 0, 1) roll_after = np.where(after_day_of_month, 1, 0) roll = roll_start + roll_after else: roll_after = np.where(after_day_of_month, n + 2, n + 1) roll_start = np.where(is_month_start, -1, 0) roll = roll_after + roll_start return roll def _apply_index_days(self, i, roll): return i + (roll % 2) * Timedelta(days=self.day_of_month - 1).value class BusinessMonthEnd(MonthOffset): """DateOffset increments between business EOM dates""" def isAnchored(self): return (self.n == 1) @apply_wraps def apply(self, other): n = self.n wkday, days_in_month = tslib.monthrange(other.year, other.month) lastBDay = days_in_month - max(((wkday + days_in_month - 1) % 7) - 4, 0) if n > 0 and not other.day >= lastBDay: n = n - 1 elif n <= 0 and other.day > lastBDay: n = n + 1 other = other + relativedelta(months=n, day=31) if other.weekday() > 4: other = other - BDay() return other _prefix = 'BM' class BusinessMonthBegin(MonthOffset): """DateOffset of one business month at beginning""" @apply_wraps def apply(self, other): n = self.n wkday, _ = tslib.monthrange(other.year, other.month) first = _get_firstbday(wkday) if other.day > first and n <= 0: # as if rolled forward already n += 1 elif other.day < first and n > 0: other = other + timedelta(days=first - other.day) n -= 1 other = other + relativedelta(months=n) wkday, _ = tslib.monthrange(other.year, other.month) first = _get_firstbday(wkday) result = datetime(other.year, other.month, first, other.hour, other.minute, other.second, other.microsecond) return result def onOffset(self, dt): if self.normalize and not _is_normalized(dt): return False first_weekday, _ = tslib.monthrange(dt.year, dt.month) if first_weekday == 5: return dt.day == 3 elif first_weekday == 6: return dt.day == 2 else: return dt.day == 1 _prefix = 'BMS' class CustomBusinessMonthEnd(BusinessMixin, MonthOffset): """ **EXPERIMENTAL** DateOffset of one custom business month .. warning:: EXPERIMENTAL This class is not officially supported and the API is likely to change in future versions. Use this at your own risk. Parameters ---------- n : int, default 1 offset : timedelta, default timedelta(0) normalize : bool, default False Normalize start/end dates to midnight before generating date range weekmask : str, Default 'Mon Tue Wed Thu Fri' weekmask of valid business days, passed to ``numpy.busdaycalendar`` holidays : list list/array of dates to exclude from the set of valid business days, passed to ``numpy.busdaycalendar`` calendar : pd.HolidayCalendar or np.busdaycalendar """ _cacheable = False _prefix = 'CBM' def __init__(self, n=1, normalize=False, weekmask='Mon Tue Wed Thu Fri', holidays=None, calendar=None, **kwds): self.n = int(n) self.normalize = normalize self.kwds = kwds self.offset = kwds.get('offset', timedelta(0)) self.cbday = CustomBusinessDay(n=self.n, normalize=normalize, weekmask=weekmask, holidays=holidays, calendar=calendar, **kwds) self.m_offset = MonthEnd(n=1, normalize=normalize, **kwds) self.kwds['calendar'] = self.cbday.calendar # cache numpy calendar @apply_wraps def apply(self, other): n = self.n # First move to month offset cur_mend = self.m_offset.rollforward(other) # Find this custom month offset cur_cmend = self.cbday.rollback(cur_mend) # handle zero case. arbitrarily rollforward if n == 0 and other != cur_cmend: n += 1 if other < cur_cmend and n >= 1: n -= 1 elif other > cur_cmend and n <= -1: n += 1 new = cur_mend + n * self.m_offset result = self.cbday.rollback(new) return result class CustomBusinessMonthBegin(BusinessMixin, MonthOffset): """ **EXPERIMENTAL** DateOffset of one custom business month .. warning:: EXPERIMENTAL This class is not officially supported and the API is likely to change in future versions. Use this at your own risk. Parameters ---------- n : int, default 1 offset : timedelta, default timedelta(0) normalize : bool, default False Normalize start/end dates to midnight before generating date range weekmask : str, Default 'Mon Tue Wed Thu Fri' weekmask of valid business days, passed to ``numpy.busdaycalendar`` holidays : list list/array of dates to exclude from the set of valid business days, passed to ``numpy.busdaycalendar`` calendar : pd.HolidayCalendar or np.busdaycalendar """ _cacheable = False _prefix = 'CBMS' def __init__(self, n=1, normalize=False, weekmask='Mon Tue Wed Thu Fri', holidays=None, calendar=None, **kwds): self.n = int(n) self.normalize = normalize self.kwds = kwds self.offset = kwds.get('offset', timedelta(0)) self.cbday = CustomBusinessDay(n=self.n, normalize=normalize, weekmask=weekmask, holidays=holidays, calendar=calendar, **kwds) self.m_offset = MonthBegin(n=1, normalize=normalize, **kwds) self.kwds['calendar'] = self.cbday.calendar # cache numpy calendar @apply_wraps def apply(self, other): n = self.n dt_in = other # First move to month offset cur_mbegin = self.m_offset.rollback(dt_in) # Find this custom month offset cur_cmbegin = self.cbday.rollforward(cur_mbegin) # handle zero case. arbitrarily rollforward if n == 0 and dt_in != cur_cmbegin: n += 1 if dt_in > cur_cmbegin and n <= -1: n += 1 elif dt_in < cur_cmbegin and n >= 1: n -= 1 new = cur_mbegin + n * self.m_offset result = self.cbday.rollforward(new) return result class Week(DateOffset): """ Weekly offset Parameters ---------- weekday : int, default None Always generate specific day of week. 0 for Monday """ _adjust_dst = True def __init__(self, n=1, normalize=False, **kwds): self.n = n self.normalize = normalize self.weekday = kwds.get('weekday', None) if self.weekday is not None: if self.weekday < 0 or self.weekday > 6: raise ValueError('Day must be 0<=day<=6, got %d' % self.weekday) self._inc = timedelta(weeks=1) self.kwds = kwds def isAnchored(self): return (self.n == 1 and self.weekday is not None) @apply_wraps def apply(self, other): base = other if self.weekday is None: return other + self.n * self._inc if self.n > 0: k = self.n otherDay = other.weekday() if otherDay != self.weekday: other = other + timedelta((self.weekday - otherDay) % 7) k = k - 1 other = other for i in range(k): other = other + self._inc else: k = self.n otherDay = other.weekday() if otherDay != self.weekday: other = other + timedelta((self.weekday - otherDay) % 7) for i in range(-k): other = other - self._inc other = datetime(other.year, other.month, other.day, base.hour, base.minute, base.second, base.microsecond) return other @apply_index_wraps def apply_index(self, i): if self.weekday is None: return ((i.to_period('W') + self.n).to_timestamp() + i.to_perioddelta('W')) else: return self._end_apply_index(i, self.freqstr) def onOffset(self, dt): if self.normalize and not _is_normalized(dt): return False return dt.weekday() == self.weekday _prefix = 'W' @property def rule_code(self): suffix = '' if self.weekday is not None: suffix = '-%s' % (_int_to_weekday[self.weekday]) return self._prefix + suffix @classmethod def _from_name(cls, suffix=None): if not suffix: weekday = None else: weekday = _weekday_to_int[suffix] return cls(weekday=weekday) class WeekDay(object): MON = 0 TUE = 1 WED = 2 THU = 3 FRI = 4 SAT = 5 SUN = 6 _int_to_weekday = { WeekDay.MON: 'MON', WeekDay.TUE: 'TUE', WeekDay.WED: 'WED', WeekDay.THU: 'THU', WeekDay.FRI: 'FRI', WeekDay.SAT: 'SAT', WeekDay.SUN: 'SUN' } _weekday_to_int = dict((v, k) for k, v in _int_to_weekday.items()) class WeekOfMonth(DateOffset): """ Describes monthly dates like "the Tuesday of the 2nd week of each month" Parameters ---------- n : int week : {0, 1, 2, 3, ...} 0 is 1st week of month, 1 2nd week, etc. weekday : {0, 1, ..., 6} 0: Mondays 1: Tuesdays 2: Wednesdays 3: Thursdays 4: Fridays 5: Saturdays 6: Sundays """ _adjust_dst = True def __init__(self, n=1, normalize=False, **kwds): self.n = n self.normalize = normalize self.weekday = kwds['weekday'] self.week = kwds['week'] if self.n == 0: raise ValueError('N cannot be 0') if self.weekday < 0 or self.weekday > 6: raise ValueError('Day must be 0<=day<=6, got %d' % self.weekday) if self.week < 0 or self.week > 3: raise ValueError('Week must be 0<=day<=3, got %d' % self.week) self.kwds = kwds @apply_wraps def apply(self, other): base = other offsetOfMonth = self.getOffsetOfMonth(other) if offsetOfMonth > other: if self.n > 0: months = self.n - 1 else: months = self.n elif offsetOfMonth == other: months = self.n else: if self.n > 0: months = self.n else: months = self.n + 1 other = self.getOffsetOfMonth( other + relativedelta(months=months, day=1)) other = datetime(other.year, other.month, other.day, base.hour, base.minute, base.second, base.microsecond) return other def getOffsetOfMonth(self, dt): w = Week(weekday=self.weekday) d = datetime(dt.year, dt.month, 1, tzinfo=dt.tzinfo) d = w.rollforward(d) for i in range(self.week): d = w.apply(d) return d def onOffset(self, dt): if self.normalize and not _is_normalized(dt): return False d = datetime(dt.year, dt.month, dt.day, tzinfo=dt.tzinfo) return d == self.getOffsetOfMonth(dt) @property def rule_code(self): return '%s-%d%s' % (self._prefix, self.week + 1, _int_to_weekday.get(self.weekday, '')) _prefix = 'WOM' @classmethod def _from_name(cls, suffix=None): if not suffix: raise ValueError("Prefix %r requires a suffix." % (cls._prefix)) # TODO: handle n here... # only one digit weeks (1 --> week 0, 2 --> week 1, etc.) week = int(suffix[0]) - 1 weekday = _weekday_to_int[suffix[1:]] return cls(week=week, weekday=weekday) class LastWeekOfMonth(DateOffset): """ Describes monthly dates in last week of month like "the last Tuesday of each month" Parameters ---------- n : int weekday : {0, 1, ..., 6} 0: Mondays 1: Tuesdays 2: Wednesdays 3: Thursdays 4: Fridays 5: Saturdays 6: Sundays """ def __init__(self, n=1, normalize=False, **kwds): self.n = n self.normalize = normalize self.weekday = kwds['weekday'] if self.n == 0: raise ValueError('N cannot be 0') if self.weekday < 0 or self.weekday > 6: raise ValueError('Day must be 0<=day<=6, got %d' % self.weekday) self.kwds = kwds @apply_wraps def apply(self, other): offsetOfMonth = self.getOffsetOfMonth(other) if offsetOfMonth > other: if self.n > 0: months = self.n - 1 else: months = self.n elif offsetOfMonth == other: months = self.n else: if self.n > 0: months = self.n else: months = self.n + 1 return self.getOffsetOfMonth( other + relativedelta(months=months, day=1)) def getOffsetOfMonth(self, dt): m = MonthEnd() d = datetime(dt.year, dt.month, 1, dt.hour, dt.minute, dt.second, dt.microsecond, tzinfo=dt.tzinfo) eom = m.rollforward(d) w = Week(weekday=self.weekday) return w.rollback(eom) def onOffset(self, dt): if self.normalize and not _is_normalized(dt): return False return dt == self.getOffsetOfMonth(dt) @property def rule_code(self): return '%s-%s' % (self._prefix, _int_to_weekday.get(self.weekday, '')) _prefix = 'LWOM' @classmethod def _from_name(cls, suffix=None): if not suffix: raise ValueError("Prefix %r requires a suffix." % (cls._prefix)) # TODO: handle n here... weekday = _weekday_to_int[suffix] return cls(weekday=weekday) class QuarterOffset(DateOffset): """Quarter representation - doesn't call super""" #: default month for __init__ _default_startingMonth = None #: default month in _from_name _from_name_startingMonth = None _adjust_dst = True # TODO: Consider combining QuarterOffset and YearOffset __init__ at some # point def __init__(self, n=1, normalize=False, **kwds): self.n = n self.normalize = normalize self.startingMonth = kwds.get('startingMonth', self._default_startingMonth) self.kwds = kwds def isAnchored(self): return (self.n == 1 and self.startingMonth is not None) @classmethod def _from_name(cls, suffix=None): kwargs = {} if suffix: kwargs['startingMonth'] = _month_to_int[suffix] else: if cls._from_name_startingMonth is not None: kwargs['startingMonth'] = cls._from_name_startingMonth return cls(**kwargs) @property def rule_code(self): return '%s-%s' % (self._prefix, _int_to_month[self.startingMonth]) class BQuarterEnd(QuarterOffset): """DateOffset increments between business Quarter dates startingMonth = 1 corresponds to dates like 1/31/2007, 4/30/2007, ... startingMonth = 2 corresponds to dates like 2/28/2007, 5/31/2007, ... startingMonth = 3 corresponds to dates like 3/30/2007, 6/29/2007, ... """ _outputName = 'BusinessQuarterEnd' _default_startingMonth = 3 # 'BQ' _from_name_startingMonth = 12 _prefix = 'BQ' @apply_wraps def apply(self, other): n = self.n base = other other = datetime(other.year, other.month, other.day, other.hour, other.minute, other.second, other.microsecond) wkday, days_in_month = tslib.monthrange(other.year, other.month) lastBDay = days_in_month - max(((wkday + days_in_month - 1) % 7) - 4, 0) monthsToGo = 3 - ((other.month - self.startingMonth) % 3) if monthsToGo == 3: monthsToGo = 0 if n > 0 and not (other.day >= lastBDay and monthsToGo == 0): n = n - 1 elif n <= 0 and other.day > lastBDay and monthsToGo == 0: n = n + 1 other = other + relativedelta(months=monthsToGo + 3 * n, day=31) other = tslib._localize_pydatetime(other, base.tzinfo) if other.weekday() > 4: other = other - BDay() return other def onOffset(self, dt): if self.normalize and not _is_normalized(dt): return False modMonth = (dt.month - self.startingMonth) % 3 return BMonthEnd().onOffset(dt) and modMonth == 0 _int_to_month = tslib._MONTH_ALIASES _month_to_int = dict((v, k) for k, v in _int_to_month.items()) # TODO: This is basically the same as BQuarterEnd class BQuarterBegin(QuarterOffset): _outputName = "BusinessQuarterBegin" # I suspect this is wrong for *all* of them. _default_startingMonth = 3 _from_name_startingMonth = 1 _prefix = 'BQS' @apply_wraps def apply(self, other): n = self.n wkday, _ = tslib.monthrange(other.year, other.month) first = _get_firstbday(wkday) monthsSince = (other.month - self.startingMonth) % 3 if n <= 0 and monthsSince != 0: # make sure to roll forward so negate monthsSince = monthsSince - 3 # roll forward if on same month later than first bday if n <= 0 and (monthsSince == 0 and other.day > first): n = n + 1 # pretend to roll back if on same month but before firstbday elif n > 0 and (monthsSince == 0 and other.day < first): n = n - 1 # get the first bday for result other = other + relativedelta(months=3 * n - monthsSince) wkday, _ = tslib.monthrange(other.year, other.month) first = _get_firstbday(wkday) result = datetime(other.year, other.month, first, other.hour, other.minute, other.second, other.microsecond) return result class QuarterEnd(QuarterOffset): """DateOffset increments between business Quarter dates startingMonth = 1 corresponds to dates like 1/31/2007, 4/30/2007, ... startingMonth = 2 corresponds to dates like 2/28/2007, 5/31/2007, ... startingMonth = 3 corresponds to dates like 3/31/2007, 6/30/2007, ... """ _outputName = 'QuarterEnd' _default_startingMonth = 3 _prefix = 'Q' def __init__(self, n=1, normalize=False, **kwds): self.n = n self.normalize = normalize self.startingMonth = kwds.get('startingMonth', 3) self.kwds = kwds def isAnchored(self): return (self.n == 1 and self.startingMonth is not None) @apply_wraps def apply(self, other): n = self.n other = datetime(other.year, other.month, other.day, other.hour, other.minute, other.second, other.microsecond) wkday, days_in_month = tslib.monthrange(other.year, other.month) monthsToGo = 3 - ((other.month - self.startingMonth) % 3) if monthsToGo == 3: monthsToGo = 0 if n > 0 and not (other.day >= days_in_month and monthsToGo == 0): n = n - 1 other = other + relativedelta(months=monthsToGo + 3 * n, day=31) return other @apply_index_wraps def apply_index(self, i): return self._end_apply_index(i, self.freqstr) def onOffset(self, dt): if self.normalize and not _is_normalized(dt): return False modMonth = (dt.month - self.startingMonth) % 3 return MonthEnd().onOffset(dt) and modMonth == 0 class QuarterBegin(QuarterOffset): _outputName = 'QuarterBegin' _default_startingMonth = 3 _from_name_startingMonth = 1 _prefix = 'QS' def isAnchored(self): return (self.n == 1 and self.startingMonth is not None) @apply_wraps def apply(self, other): n = self.n wkday, days_in_month = tslib.monthrange(other.year, other.month) monthsSince = (other.month - self.startingMonth) % 3 if n <= 0 and monthsSince != 0: # make sure you roll forward, so negate monthsSince = monthsSince - 3 if n <= 0 and (monthsSince == 0 and other.day > 1): # after start, so come back an extra period as if rolled forward n = n + 1 other = other + relativedelta(months=3 * n - monthsSince, day=1) return other @apply_index_wraps def apply_index(self, i): freq_month = 12 if self.startingMonth == 1 else self.startingMonth - 1 # freq_month = self.startingMonth freqstr = 'Q-%s' % (_int_to_month[freq_month],) return self._beg_apply_index(i, freqstr) class YearOffset(DateOffset): """DateOffset that just needs a month""" _adjust_dst = True def __init__(self, n=1, normalize=False, **kwds): self.month = kwds.get('month', self._default_month) if self.month < 1 or self.month > 12: raise ValueError('Month must go from 1 to 12') DateOffset.__init__(self, n=n, normalize=normalize, **kwds) @classmethod def _from_name(cls, suffix=None): kwargs = {} if suffix: kwargs['month'] = _month_to_int[suffix] return cls(**kwargs) @property def rule_code(self): return '%s-%s' % (self._prefix, _int_to_month[self.month]) class BYearEnd(YearOffset): """DateOffset increments between business EOM dates""" _outputName = 'BusinessYearEnd' _default_month = 12 _prefix = 'BA' @apply_wraps def apply(self, other): n = self.n wkday, days_in_month = tslib.monthrange(other.year, self.month) lastBDay = (days_in_month - max(((wkday + days_in_month - 1) % 7) - 4, 0)) years = n if n > 0: if (other.month < self.month or (other.month == self.month and other.day < lastBDay)): years -= 1 elif n <= 0: if (other.month > self.month or (other.month == self.month and other.day > lastBDay)): years += 1 other = other + relativedelta(years=years) _, days_in_month = tslib.monthrange(other.year, self.month) result = datetime(other.year, self.month, days_in_month, other.hour, other.minute, other.second, other.microsecond) if result.weekday() > 4: result = result - BDay() return result class BYearBegin(YearOffset): """DateOffset increments between business year begin dates""" _outputName = 'BusinessYearBegin' _default_month = 1 _prefix = 'BAS' @apply_wraps def apply(self, other): n = self.n wkday, days_in_month = tslib.monthrange(other.year, self.month) first = _get_firstbday(wkday) years = n if n > 0: # roll back first for positive n if (other.month < self.month or (other.month == self.month and other.day < first)): years -= 1 elif n <= 0: # roll forward if (other.month > self.month or (other.month == self.month and other.day > first)): years += 1 # set first bday for result other = other + relativedelta(years=years) wkday, days_in_month = tslib.monthrange(other.year, self.month) first = _get_firstbday(wkday) return datetime(other.year, self.month, first, other.hour, other.minute, other.second, other.microsecond) class YearEnd(YearOffset): """DateOffset increments between calendar year ends""" _default_month = 12 _prefix = 'A' @apply_wraps def apply(self, other): def _increment(date): if date.month == self.month: _, days_in_month = tslib.monthrange(date.year, self.month) if date.day != days_in_month: year = date.year else: year = date.year + 1 elif date.month < self.month: year = date.year else: year = date.year + 1 _, days_in_month = tslib.monthrange(year, self.month) return datetime(year, self.month, days_in_month, date.hour, date.minute, date.second, date.microsecond) def _decrement(date): year = date.year if date.month > self.month else date.year - 1 _, days_in_month = tslib.monthrange(year, self.month) return datetime(year, self.month, days_in_month, date.hour, date.minute, date.second, date.microsecond) def _rollf(date): if date.month != self.month or\ date.day < tslib.monthrange(date.year, date.month)[1]: date = _increment(date) return date n = self.n result = other if n > 0: while n > 0: result = _increment(result) n -= 1 elif n < 0: while n < 0: result = _decrement(result) n += 1 else: # n == 0, roll forward result = _rollf(result) return result @apply_index_wraps def apply_index(self, i): # convert month anchor to annual period tuple return self._end_apply_index(i, self.freqstr) def onOffset(self, dt): if self.normalize and not _is_normalized(dt): return False wkday, days_in_month = tslib.monthrange(dt.year, self.month) return self.month == dt.month and dt.day == days_in_month class YearBegin(YearOffset): """DateOffset increments between calendar year begin dates""" _default_month = 1 _prefix = 'AS' @apply_wraps def apply(self, other): def _increment(date, n): year = date.year + n - 1 if date.month >= self.month: year += 1 return datetime(year, self.month, 1, date.hour, date.minute, date.second, date.microsecond) def _decrement(date, n): year = date.year + n + 1 if date.month < self.month or (date.month == self.month and date.day == 1): year -= 1 return datetime(year, self.month, 1, date.hour, date.minute, date.second, date.microsecond) def _rollf(date): if (date.month != self.month) or date.day > 1: date = _increment(date, 1) return date n = self.n result = other if n > 0: result = _increment(result, n) elif n < 0: result = _decrement(result, n) else: # n == 0, roll forward result = _rollf(result) return result @apply_index_wraps def apply_index(self, i): freq_month = 12 if self.month == 1 else self.month - 1 freqstr = 'A-%s' % (_int_to_month[freq_month],) return self._beg_apply_index(i, freqstr) def onOffset(self, dt): if self.normalize and not _is_normalized(dt): return False return dt.month == self.month and dt.day == 1 class FY5253(DateOffset): """ Describes 52-53 week fiscal year. This is also known as a 4-4-5 calendar. It is used by companies that desire that their fiscal year always end on the same day of the week. It is a method of managing accounting periods. It is a common calendar structure for some industries, such as retail, manufacturing and parking industry. For more information see: http://en.wikipedia.org/wiki/4%E2%80%934%E2%80%935_calendar The year may either: - end on the last X day of the Y month. - end on the last X day closest to the last day of the Y month. X is a specific day of the week. Y is a certain month of the year Parameters ---------- n : int weekday : {0, 1, ..., 6} 0: Mondays 1: Tuesdays 2: Wednesdays 3: Thursdays 4: Fridays 5: Saturdays 6: Sundays startingMonth : The month in which fiscal years end. {1, 2, ... 12} variation : str {"nearest", "last"} for "LastOfMonth" or "NearestEndMonth" """ _prefix = 'RE' _suffix_prefix_last = 'L' _suffix_prefix_nearest = 'N' _adjust_dst = True def __init__(self, n=1, normalize=False, **kwds): self.n = n self.normalize = normalize self.startingMonth = kwds['startingMonth'] self.weekday = kwds["weekday"] self.variation = kwds["variation"] self.kwds = kwds if self.n == 0: raise ValueError('N cannot be 0') if self.variation not in ["nearest", "last"]: raise ValueError('%s is not a valid variation' % self.variation) if self.variation == "nearest": weekday_offset = weekday(self.weekday) self._rd_forward = relativedelta(weekday=weekday_offset) self._rd_backward = relativedelta(weekday=weekday_offset(-1)) else: self._offset_lwom = LastWeekOfMonth(n=1, weekday=self.weekday) def isAnchored(self): return self.n == 1 \ and self.startingMonth is not None \ and self.weekday is not None def onOffset(self, dt): if self.normalize and not _is_normalized(dt): return False dt = datetime(dt.year, dt.month, dt.day) year_end = self.get_year_end(dt) if self.variation == "nearest": # We have to check the year end of "this" cal year AND the previous return year_end == dt or \ self.get_year_end(dt - relativedelta(months=1)) == dt else: return year_end == dt @apply_wraps def apply(self, other): n = self.n prev_year = self.get_year_end( datetime(other.year - 1, self.startingMonth, 1)) cur_year = self.get_year_end( datetime(other.year, self.startingMonth, 1)) next_year = self.get_year_end( datetime(other.year + 1, self.startingMonth, 1)) prev_year = tslib._localize_pydatetime(prev_year, other.tzinfo) cur_year = tslib._localize_pydatetime(cur_year, other.tzinfo) next_year = tslib._localize_pydatetime(next_year, other.tzinfo) if n > 0: if other == prev_year: year = other.year - 1 elif other == cur_year: year = other.year elif other == next_year: year = other.year + 1 elif other < prev_year: year = other.year - 1 n -= 1 elif other < cur_year: year = other.year n -= 1 elif other < next_year: year = other.year + 1 n -= 1 else: assert False result = self.get_year_end( datetime(year + n, self.startingMonth, 1)) result = datetime(result.year, result.month, result.day, other.hour, other.minute, other.second, other.microsecond) return result else: n = -n if other == prev_year: year = other.year - 1 elif other == cur_year: year = other.year elif other == next_year: year = other.year + 1 elif other > next_year: year = other.year + 1 n -= 1 elif other > cur_year: year = other.year n -= 1 elif other > prev_year: year = other.year - 1 n -= 1 else: assert False result = self.get_year_end( datetime(year - n, self.startingMonth, 1)) result = datetime(result.year, result.month, result.day, other.hour, other.minute, other.second, other.microsecond) return result def get_year_end(self, dt): if self.variation == "nearest": return self._get_year_end_nearest(dt) else: return self._get_year_end_last(dt) def get_target_month_end(self, dt): target_month = datetime( dt.year, self.startingMonth, 1, tzinfo=dt.tzinfo) next_month_first_of = target_month + relativedelta(months=+1) return next_month_first_of + relativedelta(days=-1) def _get_year_end_nearest(self, dt): target_date = self.get_target_month_end(dt) if target_date.weekday() == self.weekday: return target_date else: forward = target_date + self._rd_forward backward = target_date + self._rd_backward if forward - target_date < target_date - backward: return forward else: return backward def _get_year_end_last(self, dt): current_year = datetime( dt.year, self.startingMonth, 1, tzinfo=dt.tzinfo) return current_year + self._offset_lwom @property def rule_code(self): suffix = self.get_rule_code_suffix() return "%s-%s" % (self._get_prefix(), suffix) def _get_prefix(self): return self._prefix def _get_suffix_prefix(self): if self.variation == "nearest": return self._suffix_prefix_nearest else: return self._suffix_prefix_last def get_rule_code_suffix(self): return '%s-%s-%s' % (self._get_suffix_prefix(), _int_to_month[self.startingMonth], _int_to_weekday[self.weekday]) @classmethod def _parse_suffix(cls, varion_code, startingMonth_code, weekday_code): if varion_code == "N": variation = "nearest" elif varion_code == "L": variation = "last" else: raise ValueError( "Unable to parse varion_code: %s" % (varion_code,)) startingMonth = _month_to_int[startingMonth_code] weekday = _weekday_to_int[weekday_code] return { "weekday": weekday, "startingMonth": startingMonth, "variation": variation, } @classmethod def _from_name(cls, *args): return cls(**cls._parse_suffix(*args)) class FY5253Quarter(DateOffset): """ DateOffset increments between business quarter dates for 52-53 week fiscal year (also known as a 4-4-5 calendar). It is used by companies that desire that their fiscal year always end on the same day of the week. It is a method of managing accounting periods. It is a common calendar structure for some industries, such as retail, manufacturing and parking industry. For more information see: http://en.wikipedia.org/wiki/4%E2%80%934%E2%80%935_calendar The year may either: - end on the last X day of the Y month. - end on the last X day closest to the last day of the Y month. X is a specific day of the week. Y is a certain month of the year startingMonth = 1 corresponds to dates like 1/31/2007, 4/30/2007, ... startingMonth = 2 corresponds to dates like 2/28/2007, 5/31/2007, ... startingMonth = 3 corresponds to dates like 3/30/2007, 6/29/2007, ... Parameters ---------- n : int weekday : {0, 1, ..., 6} 0: Mondays 1: Tuesdays 2: Wednesdays 3: Thursdays 4: Fridays 5: Saturdays 6: Sundays startingMonth : The month in which fiscal years end. {1, 2, ... 12} qtr_with_extra_week : The quarter number that has the leap or 14 week when needed. {1,2,3,4} variation : str {"nearest", "last"} for "LastOfMonth" or "NearestEndMonth" """ _prefix = 'REQ' _adjust_dst = True def __init__(self, n=1, normalize=False, **kwds): self.n = n self.normalize = normalize self.qtr_with_extra_week = kwds["qtr_with_extra_week"] self.kwds = kwds if self.n == 0: raise ValueError('N cannot be 0') self._offset = FY5253( startingMonth=kwds['startingMonth'], weekday=kwds["weekday"], variation=kwds["variation"]) def isAnchored(self): return self.n == 1 and self._offset.isAnchored() @apply_wraps def apply(self, other): base = other n = self.n if n > 0: while n > 0: if not self._offset.onOffset(other): qtr_lens = self.get_weeks(other) start = other - self._offset else: start = other qtr_lens = self.get_weeks(other + self._offset) for weeks in qtr_lens: start += relativedelta(weeks=weeks) if start > other: other = start n -= 1 break else: n = -n while n > 0: if not self._offset.onOffset(other): qtr_lens = self.get_weeks(other) end = other + self._offset else: end = other qtr_lens = self.get_weeks(other) for weeks in reversed(qtr_lens): end -= relativedelta(weeks=weeks) if end < other: other = end n -= 1 break other = datetime(other.year, other.month, other.day, base.hour, base.minute, base.second, base.microsecond) return other def get_weeks(self, dt): ret = [13] * 4 year_has_extra_week = self.year_has_extra_week(dt) if year_has_extra_week: ret[self.qtr_with_extra_week - 1] = 14 return ret def year_has_extra_week(self, dt): if self._offset.onOffset(dt): prev_year_end = dt - self._offset next_year_end = dt else: next_year_end = dt + self._offset prev_year_end = dt - self._offset week_in_year = (next_year_end - prev_year_end).days / 7 return week_in_year == 53 def onOffset(self, dt): if self.normalize and not _is_normalized(dt): return False if self._offset.onOffset(dt): return True next_year_end = dt - self._offset qtr_lens = self.get_weeks(dt) current = next_year_end for qtr_len in qtr_lens[0:4]: current += relativedelta(weeks=qtr_len) if dt == current: return True return False @property def rule_code(self): suffix = self._offset.get_rule_code_suffix() return "%s-%s" % (self._prefix, "%s-%d" % (suffix, self.qtr_with_extra_week)) @classmethod def _from_name(cls, *args): return cls(**dict(FY5253._parse_suffix(*args[:-1]), qtr_with_extra_week=int(args[-1]))) class Easter(DateOffset): """ DateOffset for the Easter holiday using logic defined in dateutil. Right now uses the revised method which is valid in years 1583-4099. """ _adjust_dst = True def __init__(self, n=1, **kwds): super(Easter, self).__init__(n, **kwds) @apply_wraps def apply(self, other): currentEaster = easter(other.year) currentEaster = datetime( currentEaster.year, currentEaster.month, currentEaster.day) currentEaster = tslib._localize_pydatetime(currentEaster, other.tzinfo) # NOTE: easter returns a datetime.date so we have to convert to type of # other if self.n >= 0: if other >= currentEaster: new = easter(other.year + self.n) else: new = easter(other.year + self.n - 1) else: if other > currentEaster: new = easter(other.year + self.n + 1) else: new = easter(other.year + self.n) new = datetime(new.year, new.month, new.day, other.hour, other.minute, other.second, other.microsecond) return new def onOffset(self, dt): if self.normalize and not _is_normalized(dt): return False return date(dt.year, dt.month, dt.day) == easter(dt.year) # --------------------------------------------------------------------- # Ticks def _tick_comp(op): def f(self, other): return op(self.delta, other.delta) return f class Tick(SingleConstructorOffset): _inc = Timedelta(microseconds=1000) __gt__ = _tick_comp(operator.gt) __ge__ = _tick_comp(operator.ge) __lt__ = _tick_comp(operator.lt) __le__ = _tick_comp(operator.le) __eq__ = _tick_comp(operator.eq) __ne__ = _tick_comp(operator.ne) def __add__(self, other): if isinstance(other, Tick): if type(self) == type(other): return type(self)(self.n + other.n) else: return _delta_to_tick(self.delta + other.delta) elif isinstance(other, ABCPeriod): return other + self try: return self.apply(other) except ApplyTypeError: return NotImplemented def __eq__(self, other): if isinstance(other, compat.string_types): from pandas.tseries.frequencies import to_offset other = to_offset(other) if isinstance(other, Tick): return self.delta == other.delta else: return DateOffset.__eq__(self, other) # This is identical to DateOffset.__hash__, but has to be redefined here # for Python 3, because we've redefined __eq__. def __hash__(self): return hash(self._params()) def __ne__(self, other): if isinstance(other, compat.string_types): from pandas.tseries.frequencies import to_offset other = to_offset(other) if isinstance(other, Tick): return self.delta != other.delta else: return DateOffset.__ne__(self, other) @property def delta(self): return self.n * self._inc @property def nanos(self): return _delta_to_nanoseconds(self.delta) def apply(self, other): # Timestamp can handle tz and nano sec, thus no need to use apply_wraps if isinstance(other, (datetime, np.datetime64, date)): return as_timestamp(other) + self if isinstance(other, timedelta): return other + self.delta elif isinstance(other, type(self)): return type(self)(self.n + other.n) else: raise ApplyTypeError('Unhandled type: %s' % type(other).__name__) _prefix = 'undefined' def isAnchored(self): return False def _delta_to_tick(delta): if delta.microseconds == 0: if delta.seconds == 0: return Day(delta.days) else: seconds = delta.days * 86400 + delta.seconds if seconds % 3600 == 0: return Hour(seconds / 3600) elif seconds % 60 == 0: return Minute(seconds / 60) else: return Second(seconds) else: nanos = _delta_to_nanoseconds(delta) if nanos % 1000000 == 0: return Milli(nanos // 1000000) elif nanos % 1000 == 0: return Micro(nanos // 1000) else: # pragma: no cover return Nano(nanos) _delta_to_nanoseconds = tslib._delta_to_nanoseconds class Day(Tick): _inc = Timedelta(days=1) _prefix = 'D' class Hour(Tick): _inc = Timedelta(hours=1) _prefix = 'H' class Minute(Tick): _inc = Timedelta(minutes=1) _prefix = 'T' class Second(Tick): _inc = Timedelta(seconds=1) _prefix = 'S' class Milli(Tick): _inc = Timedelta(milliseconds=1) _prefix = 'L' class Micro(Tick): _inc = Timedelta(microseconds=1) _prefix = 'U' class Nano(Tick): _inc = Timedelta(nanoseconds=1) _prefix = 'N' BDay = BusinessDay BMonthEnd = BusinessMonthEnd BMonthBegin = BusinessMonthBegin CBMonthEnd = CustomBusinessMonthEnd CBMonthBegin = CustomBusinessMonthBegin CDay = CustomBusinessDay def _get_firstbday(wkday): """ wkday is the result of monthrange(year, month) If it's a saturday or sunday, increment first business day to reflect this """ first = 1 if wkday == 5: # on Saturday first = 3 elif wkday == 6: # on Sunday first = 2 return first def generate_range(start=None, end=None, periods=None, offset=BDay(), time_rule=None): """ Generates a sequence of dates corresponding to the specified time offset. Similar to dateutil.rrule except uses pandas DateOffset objects to represent time increments Parameters ---------- start : datetime (default None) end : datetime (default None) periods : int, optional time_rule : (legacy) name of DateOffset object to be used, optional Corresponds with names expected by tseries.frequencies.get_offset Notes ----- * This method is faster for generating weekdays than dateutil.rrule * At least two of (start, end, periods) must be specified. * If both start and end are specified, the returned dates will satisfy start <= date <= end. * If both time_rule and offset are specified, time_rule supersedes offset. Returns ------- dates : generator object """ if time_rule is not None: from pandas.tseries.frequencies import get_offset offset = get_offset(time_rule) start = to_datetime(start) end = to_datetime(end) if start and not offset.onOffset(start): start = offset.rollforward(start) elif end and not offset.onOffset(end): end = offset.rollback(end) if periods is None and end < start: end = None periods = 0 if end is None: end = start + (periods - 1) * offset if start is None: start = end - (periods - 1) * offset cur = start if offset.n >= 0: while cur <= end: yield cur # faster than cur + offset next_date = offset.apply(cur) if next_date <= cur: raise ValueError('Offset %s did not increment date' % offset) cur = next_date else: while cur >= end: yield cur # faster than cur + offset next_date = offset.apply(cur) if next_date >= cur: raise ValueError('Offset %s did not decrement date' % offset) cur = next_date prefix_mapping = dict((offset._prefix, offset) for offset in [ YearBegin, # 'AS' YearEnd, # 'A' BYearBegin, # 'BAS' BYearEnd, # 'BA' BusinessDay, # 'B' BusinessMonthBegin, # 'BMS' BusinessMonthEnd, # 'BM' BQuarterEnd, # 'BQ' BQuarterBegin, # 'BQS' BusinessHour, # 'BH' CustomBusinessDay, # 'C' CustomBusinessMonthEnd, # 'CBM' CustomBusinessMonthBegin, # 'CBMS' CustomBusinessHour, # 'CBH' MonthEnd, # 'M' MonthBegin, # 'MS' SemiMonthEnd, # 'SM' SemiMonthBegin, # 'SMS' Week, # 'W' Second, # 'S' Minute, # 'T' Micro, # 'U' QuarterEnd, # 'Q' QuarterBegin, # 'QS' Milli, # 'L' Hour, # 'H' Day, # 'D' WeekOfMonth, # 'WOM' FY5253, FY5253Quarter, ]) prefix_mapping['N'] = Nano
mit
Sw3m/Probabilistic-Programming-and-Bayesian-Methods-for-Hackers
Chapter2_MorePyMC/separation_plot.py
86
1494
# separation plot # Author: Cameron Davidson-Pilon,2013 # see http://mdwardlab.com/sites/default/files/GreenhillWardSacks.pdf import matplotlib.pyplot as plt import numpy as np def separation_plot( p, y, **kwargs ): """ This function creates a separation plot for logistic and probit classification. See http://mdwardlab.com/sites/default/files/GreenhillWardSacks.pdf p: The proportions/probabilities, can be a nxM matrix which represents M models. y: the 0-1 response variables. """ assert p.shape[0] == y.shape[0], "p.shape[0] != y.shape[0]" n = p.shape[0] try: M = p.shape[1] except: p = p.reshape( n, 1 ) M = p.shape[1] #colors = np.array( ["#fdf2db", "#e44a32"] ) colors_bmh = np.array( ["#eeeeee", "#348ABD"] ) fig = plt.figure( )#figsize = (8, 1.3*M) ) for i in range(M): ax = fig.add_subplot(M, 1, i+1) ix = np.argsort( p[:,i] ) #plot the different bars bars = ax.bar( np.arange(n), np.ones(n), width=1., color = colors_bmh[ y[ix].astype(int) ], edgecolor = 'none') ax.plot( np.arange(n+1), np.append(p[ix,i], p[ix,i][-1]), "k", linewidth = 1.,drawstyle="steps-post" ) #create expected value bar. ax.vlines( [(1-p[ix,i]).sum()], [0], [1] ) #ax.grid(False) #ax.axis('off') plt.xlim( 0, n) plt.tight_layout() return
mit
XueqingLin/tensorflow
tensorflow/contrib/factorization/python/ops/kmeans_test.py
23
14710
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for KMeans.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import math import time import numpy as np from sklearn.cluster import KMeans as SklearnKMeans import tensorflow as tf from tensorflow.python.platform import benchmark FLAGS = tf.app.flags.FLAGS def normalize(x): return x / np.sqrt(np.sum(x * x, axis=-1, keepdims=True)) def cosine_similarity(x, y): return np.dot(normalize(x), np.transpose(normalize(y))) def make_random_centers(num_centers, num_dims, center_norm=500): return np.round(np.random.rand(num_centers, num_dims).astype(np.float32) * center_norm) def make_random_points(centers, num_points, max_offset=20): num_centers, num_dims = centers.shape assignments = np.random.choice(num_centers, num_points) offsets = np.round(np.random.randn(num_points, num_dims).astype(np.float32) * max_offset) return (centers[assignments] + offsets, assignments, np.add.reduce(offsets * offsets, 1)) class KMeansTest(tf.test.TestCase): def setUp(self): np.random.seed(3) self.num_centers = 5 self.num_dims = 2 self.num_points = 10000 self.true_centers = make_random_centers(self.num_centers, self.num_dims) self.points, _, self.scores = make_random_points(self.true_centers, self.num_points) self.true_score = np.add.reduce(self.scores) self.kmeans = tf.contrib.factorization.KMeansClustering( self.num_centers, initial_clusters=tf.contrib.factorization.RANDOM_INIT, use_mini_batch=self.use_mini_batch, config=self.config(14), random_seed=12) @staticmethod def config(tf_random_seed): return tf.contrib.learn.RunConfig(tf_random_seed=tf_random_seed) @property def batch_size(self): return self.num_points @property def use_mini_batch(self): return False def test_clusters(self): kmeans = self.kmeans kmeans.fit(x=self.points, steps=1, batch_size=8) clusters = kmeans.clusters() self.assertAllEqual(list(clusters.shape), [self.num_centers, self.num_dims]) def test_fit(self): if self.batch_size != self.num_points: # TODO(agarwal): Doesn't work with mini-batch. return kmeans = self.kmeans kmeans.fit(x=self.points, steps=1, batch_size=self.batch_size) score1 = kmeans.score(x=self.points) kmeans.fit(x=self.points, steps=15 * self.num_points // self.batch_size, batch_size=self.batch_size) score2 = kmeans.score(x=self.points) self.assertTrue(score1 > score2) self.assertNear(self.true_score, score2, self.true_score * 0.05) def test_monitor(self): if self.batch_size != self.num_points: # TODO(agarwal): Doesn't work with mini-batch. return kmeans = tf.contrib.factorization.KMeansClustering( self.num_centers, initial_clusters=tf.contrib.factorization.RANDOM_INIT, use_mini_batch=self.use_mini_batch, config=tf.contrib.learn.RunConfig(tf_random_seed=14), random_seed=12) kmeans.fit(x=self.points, # Force it to train forever until the monitor stops it. steps=None, batch_size=self.batch_size, relative_tolerance=1e-4) score = kmeans.score(x=self.points) self.assertNear(self.true_score, score, self.true_score * 0.005) def test_infer(self): kmeans = self.kmeans kmeans.fit(x=self.points, steps=10, batch_size=128) clusters = kmeans.clusters() # Make a small test set points, true_assignments, true_offsets = make_random_points(clusters, 10) # Test predict assignments = kmeans.predict(points, batch_size=self.batch_size) self.assertAllEqual(assignments, true_assignments) # Test score score = kmeans.score(points, batch_size=128) self.assertNear(score, np.sum(true_offsets), 0.01 * score) # Test transform transform = kmeans.transform(points, batch_size=128) true_transform = np.maximum( 0, np.sum(np.square(points), axis=1, keepdims=True) - 2 * np.dot(points, np.transpose(clusters)) + np.transpose(np.sum(np.square(clusters), axis=1, keepdims=True))) self.assertAllClose(transform, true_transform, rtol=0.05, atol=10) def test_fit_with_cosine_distance(self): # Create points on y=x and y=1.5x lines to check the cosine similarity. # Note that euclidean distance will give different results in this case. points = np.array( [[9, 9], [0.5, 0.5], [10, 15], [0.4, 0.6]], dtype=np.float32) # true centers are the unit vectors on lines y=x and y=1.5x true_centers = np.array( [[0.70710678, 0.70710678], [0.5547002, 0.83205029]], dtype=np.float32) kmeans = tf.contrib.factorization.KMeansClustering( 2, initial_clusters=tf.contrib.factorization.RANDOM_INIT, distance_metric=tf.contrib.factorization.COSINE_DISTANCE, use_mini_batch=self.use_mini_batch, config=self.config(2), random_seed=12) kmeans.fit(x=points, steps=10, batch_size=4) centers = normalize(kmeans.clusters()) self.assertAllClose(np.sort(centers, axis=0), np.sort(true_centers, axis=0)) def test_transform_with_cosine_distance(self): points = np.array( [[2.5, 0.1], [2, 0.2], [3, 0.1], [4, 0.2], [0.1, 2.5], [0.2, 2], [0.1, 3], [0.2, 4]], dtype=np.float32) true_centers = [normalize(np.mean(normalize(points)[4:, :], axis=0, keepdims=True))[0], normalize(np.mean(normalize(points)[0:4, :], axis=0, keepdims=True))[0]] kmeans = tf.contrib.factorization.KMeansClustering( 2, initial_clusters=tf.contrib.factorization.RANDOM_INIT, distance_metric=tf.contrib.factorization.COSINE_DISTANCE, use_mini_batch=self.use_mini_batch, config=self.config(5)) kmeans.fit(x=points, steps=50, batch_size=8) centers = normalize(kmeans.clusters()) self.assertAllClose(np.sort(centers, axis=0), np.sort(true_centers, axis=0), atol=1e-2) true_transform = 1 - cosine_similarity(points, centers) transform = kmeans.transform(points, batch_size=8) self.assertAllClose(transform, true_transform, atol=1e-3) def test_predict_with_cosine_distance(self): points = np.array( [[2.5, 0.1], [2, 0.2], [3, 0.1], [4, 0.2], [0.1, 2.5], [0.2, 2], [0.1, 3], [0.2, 4]], dtype=np.float32) true_centers = np.array( [normalize(np.mean(normalize(points)[0:4, :], axis=0, keepdims=True))[0], normalize(np.mean(normalize(points)[4:, :], axis=0, keepdims=True))[0]], dtype=np.float32) true_assignments = [0] * 4 + [1] * 4 true_score = len(points) - np.tensordot(normalize(points), true_centers[true_assignments]) kmeans = tf.contrib.factorization.KMeansClustering( 2, initial_clusters=tf.contrib.factorization.RANDOM_INIT, distance_metric=tf.contrib.factorization.COSINE_DISTANCE, use_mini_batch=self.use_mini_batch, config=self.config(3)) kmeans.fit(x=points, steps=30, batch_size=8) centers = normalize(kmeans.clusters()) self.assertAllClose(np.sort(centers, axis=0), np.sort(true_centers, axis=0), atol=1e-2) assignments = kmeans.predict(points, batch_size=8) self.assertAllClose(centers[assignments], true_centers[true_assignments], atol=1e-2) score = kmeans.score(points, batch_size=8) self.assertAllClose(score, true_score, atol=1e-2) def test_predict_with_cosine_distance_and_kmeans_plus_plus(self): # Most points are concetrated near one center. KMeans++ is likely to find # the less populated centers. points = np.array([[2.5, 3.5], [2.5, 3.5], [-2, 3], [-2, 3], [-3, -3], [-3.1, -3.2], [-2.8, -3.], [-2.9, -3.1], [-3., -3.1], [-3., -3.1], [-3.2, -3.], [-3., -3.]], dtype=np.float32) true_centers = np.array( [normalize(np.mean(normalize(points)[0:2, :], axis=0, keepdims=True))[0], normalize(np.mean(normalize(points)[2:4, :], axis=0, keepdims=True))[0], normalize(np.mean(normalize(points)[4:, :], axis=0, keepdims=True))[0]], dtype=np.float32) true_assignments = [0] * 2 + [1] * 2 + [2] * 8 true_score = len(points) - np.tensordot(normalize(points), true_centers[true_assignments]) kmeans = tf.contrib.factorization.KMeansClustering( 3, initial_clusters=tf.contrib.factorization.KMEANS_PLUS_PLUS_INIT, distance_metric=tf.contrib.factorization.COSINE_DISTANCE, use_mini_batch=self.use_mini_batch, config=self.config(3)) kmeans.fit(x=points, steps=30, batch_size=12) centers = normalize(kmeans.clusters()) self.assertAllClose(sorted(centers.tolist()), sorted(true_centers.tolist()), atol=1e-2) assignments = kmeans.predict(points, batch_size=12) self.assertAllClose(centers[assignments], true_centers[true_assignments], atol=1e-2) score = kmeans.score(points, batch_size=12) self.assertAllClose(score, true_score, atol=1e-2) def test_fit_raise_if_num_clusters_larger_than_num_points_random_init(self): points = np.array([[2.0, 3.0], [1.6, 8.2]], dtype=np.float32) with self.assertRaisesOpError('less'): kmeans = tf.contrib.factorization.KMeansClustering( num_clusters=3, initial_clusters=tf.contrib.factorization.RANDOM_INIT) kmeans.fit(x=points, steps=10, batch_size=8) def test_fit_raise_if_num_clusters_larger_than_num_points_kmeans_plus_plus( self): points = np.array([[2.0, 3.0], [1.6, 8.2]], dtype=np.float32) with self.assertRaisesOpError(AssertionError): kmeans = tf.contrib.factorization.KMeansClustering( num_clusters=3, initial_clusters=tf.contrib.factorization.KMEANS_PLUS_PLUS_INIT) kmeans.fit(x=points, steps=10, batch_size=8) class MiniBatchKMeansTest(KMeansTest): @property def batch_size(self): return 50 @property def use_mini_batch(self): return True class KMeansBenchmark(benchmark.Benchmark): """Base class for benchmarks.""" def SetUp(self, dimension=50, num_clusters=50, points_per_cluster=10000, center_norm=500, cluster_width=20): np.random.seed(123456) self.num_clusters = num_clusters self.num_points = num_clusters * points_per_cluster self.centers = make_random_centers(self.num_clusters, dimension, center_norm=center_norm) self.points, _, scores = make_random_points(self.centers, self.num_points, max_offset=cluster_width) self.score = float(np.sum(scores)) def _report(self, num_iters, start, end, scores): print(scores) self.report_benchmark(iters=num_iters, wall_time=(end - start) / num_iters, extras={'true_sum_squared_distances': self.score, 'fit_scores': scores}) def _fit(self, num_iters=10): pass def benchmark_01_2dim_5center_500point(self): self.SetUp(dimension=2, num_clusters=5, points_per_cluster=100) self._fit() def benchmark_02_20dim_20center_10kpoint(self): self.SetUp(dimension=20, num_clusters=20, points_per_cluster=500) self._fit() def benchmark_03_100dim_50center_50kpoint(self): self.SetUp(dimension=100, num_clusters=50, points_per_cluster=1000) self._fit() def benchmark_03_100dim_50center_50kpoint_unseparated(self): self.SetUp(dimension=100, num_clusters=50, points_per_cluster=1000, cluster_width=250) self._fit() def benchmark_04_100dim_500center_500kpoint(self): self.SetUp(dimension=100, num_clusters=500, points_per_cluster=1000) self._fit(num_iters=4) def benchmark_05_100dim_500center_500kpoint_unseparated(self): self.SetUp(dimension=100, num_clusters=500, points_per_cluster=1000, cluster_width=250) self._fit(num_iters=4) class TensorflowKMeansBenchmark(KMeansBenchmark): def _fit(self, num_iters=10): scores = [] start = time.time() for i in range(num_iters): print('Starting tensorflow KMeans: %d' % i) tf_kmeans = tf.contrib.factorization.KMeansClustering( self.num_clusters, initial_clusters=tf.contrib.factorization.KMEANS_PLUS_PLUS_INIT, kmeans_plus_plus_num_retries=int(math.log(self.num_clusters) + 2), random_seed=i * 42, config=tf.contrib.learn.RunConfig(tf_random_seed=3)) tf_kmeans.fit(x=self.points, batch_size=self.num_points, steps=50, relative_tolerance=1e-6) _ = tf_kmeans.clusters() scores.append(tf_kmeans.score(self.points)) self._report(num_iters, start, time.time(), scores) class SklearnKMeansBenchmark(KMeansBenchmark): def _fit(self, num_iters=10): scores = [] start = time.time() for i in range(num_iters): print('Starting sklearn KMeans: %d' % i) sklearn_kmeans = SklearnKMeans(n_clusters=self.num_clusters, init='k-means++', max_iter=50, n_init=1, tol=1e-4, random_state=i * 42) sklearn_kmeans.fit(self.points) scores.append(sklearn_kmeans.inertia_) self._report(num_iters, start, time.time(), scores) if __name__ == '__main__': tf.test.main()
apache-2.0
has2k1/plotnine
plotnine/geoms/geom_vline.py
1
2652
from warnings import warn import pandas as pd import matplotlib.lines as mlines from ..utils import make_iterable, SIZE_FACTOR, order_as_mapping_data from ..exceptions import PlotnineWarning from ..doctools import document from ..mapping import aes from .geom import geom from .geom_segment import geom_segment @document class geom_vline(geom): """ Vertical line {usage} Parameters ---------- {common_parameters} """ DEFAULT_AES = {'color': 'black', 'linetype': 'solid', 'size': 0.5, 'alpha': 1} REQUIRED_AES = {'xintercept'} DEFAULT_PARAMS = {'stat': 'identity', 'position': 'identity', 'na_rm': False, 'inherit_aes': False} def __init__(self, mapping=None, data=None, **kwargs): mapping, data = order_as_mapping_data(mapping, data) xintercept = kwargs.pop('xintercept', None) if xintercept is not None: if mapping: warn("The 'xintercept' parameter has overridden " "the aes() mapping.", PlotnineWarning) data = pd.DataFrame({'xintercept': make_iterable(xintercept)}) mapping = aes(xintercept='xintercept') kwargs['show_legend'] = False geom.__init__(self, mapping, data, **kwargs) def draw_panel(self, data, panel_params, coord, ax, **params): """ Plot all groups """ ranges = coord.backtransform_range(panel_params) data['x'] = data['xintercept'] data['xend'] = data['xintercept'] data['y'] = ranges.y[0] data['yend'] = ranges.y[1] data = data.drop_duplicates() for _, gdata in data.groupby('group'): gdata.reset_index(inplace=True) geom_segment.draw_group(gdata, panel_params, coord, ax, **params) @staticmethod def draw_legend(data, da, lyr): """ Draw a vertical line in the box Parameters ---------- data : dataframe da : DrawingArea lyr : layer Returns ------- out : DrawingArea """ x = [0.5 * da.width] * 2 y = [0, da.height] data['size'] *= SIZE_FACTOR key = mlines.Line2D(x, y, alpha=data['alpha'], linestyle=data['linetype'], linewidth=data['size'], color=data['color'], solid_capstyle='butt', antialiased=False) da.add_artist(key) return da
gpl-2.0
bavaria95/sentiment
sentiment.py
1
2120
import pandas as pd import sys, os import math, nltk, re, pickle file_to_read = r"train.tsv" train_data = pd.read_table(file_to_read) size = train_data.count()[0] #? lower case phrases train_data['Unigrams'] = train_data['Phrase'].str.split() bigrams = [] for i in range(size): t = list(nltk.bigrams(train_data['Phrase'][i].split())) t = list(map(lambda x: x[0] + ' ' + x[1], t)) bigrams.append(t) train_data['Bigrams'] = bigrams A = [] combs = [(0, 2), (0, 3), (0, 4), (1, 2), (1, 3), (2, 3), (2, 4)] for i in range(5): A.append(train_data[train_data['Sentiment'] == i].count()[0]) matrix = [] for index, number, phraseid, phrase, sentiment, unigrams, bigrams in train_data[0:1].itertuples(): #forAll V = 0 V_uni = 0 V_bi = 0 features = [0] * len(combs) for uni in unigrams: uni = re.escape(uni) C_uni = len(re.findall('\W?' + uni + '\W?', phrase)) features_tmp = [] for pair in combs: N_t = train_data[(train_data['Sentiment'] == pair[0]) & (train_data['Phrase'].str.contains('\W' + uni + '\W'))].count()[0] P_t = train_data[(train_data['Sentiment'] == pair[1]) & (train_data['Phrase'].str.contains('\W' + uni + '\W'))].count()[0] if N_t != 0 and P_t != 0: V_uni = C_uni * math.log((A[pair[0]] * P_t) / float((A[pair[1]] * N_t)), 2) elif N_t != 0: V_uni = C_uni * math.log(A[pair[0]] / float((A[pair[1]] * N_t)), 2) elif P_t != 0: V_uni = C_uni * math.log((A[pair[0]] * P_t) / float(A[pair[1]]), 2) else: V_uni = 0 print ('unigram = ' + uni + ', pair = ' + str(pair), ', C = ' + str(C_uni) + ', N = ' + str(A[pair[0]]) + ', P = ' + str(A[pair[1]]) + ', Pt = ' + str(P_t) + ', Nt = ' + str(N_t) + ', V = ' + str(V_uni)) features_tmp.append(V_uni) print ('features_tmp = ' + str(features_tmp)) print ('features = ' + str(features)) print ('\n') features_tmp = map(lambda x: 1.0 * x / len(unigrams), features_tmp) features = [(x + y) for (x, y) in zip(features, features_tmp)] matrix.append(features) # print number ###for bigrams with open('unigrams.dat', 'wb') as f: pickle.dump(matrix, f)
mit
dudulianangang/vps
Fie2d.py
1
2019
import sdf import matplotlib.pyplot as plt import numpy as np import matplotlib as mpl n0 = 1.8e20 me = 9.1e-31 qe = 1.6e-19 ep = 8.9e-12 c = 3e8 wp = np.sqrt(n0*qe*qe/me/ep) ld = c/wp e0 = me*c*wp/qe b0 = e0/c nx = 3500 ny = 3500 lx = 3500 ly = 3500 fs = 16 grid_min_x = 0+100 grid_max_x = nx-100 grid_min_y = 0+100 grid_max_y = ny-100 Gx = np.linspace(0,lx,nx) Gy = np.linspace(0,ly,ny) gx = Gx[grid_min_x:grid_max_x] gy = Gy[grid_min_y:grid_max_y] jetcmap = plt.cm.get_cmap("rainbow", 9) #generate a jet map with 10 values jet_vals = jetcmap(np.arange(9)) #extract those values as an array jet_vals[0] = [1.0, 1, 1.0, 1] #change the first value newcmap = mpl.colors.LinearSegmentedColormap.from_list("newjet", jet_vals) for i in range(7): file = '/Volumes/yaowp2016/njbx0.02/' ii = (i)*5 fname = file+str(ii).zfill(4)+'.sdf' datafile = sdf.read(fname) # Ex = datafile.Electric_Field_Ex.data/e0 # Ey = datafile.Electric_Field_Ey.data/e0 # Ez = datafile.Electric_Field_Ez.data/e0 # Bx = datafile.Magnetic_Field_Bx.data/b0 # By = datafile.Magnetic_Field_By.data/b0 Bz = datafile.Magnetic_Field_Bz.data/b0 # ex = Ex[grid_min_x:grid_max_x,grid_min_y:grid_max_y] # ey = Ey[grid_min_x:grid_max_x,grid_min_y:grid_max_y] # ez = Ez[grid_min_x:grid_max_x,grid_min_y:grid_max_y] # bx = Bx[grid_min_x:grid_max_x,grid_min_y:grid_max_y] # by = By[grid_min_x:grid_max_x,grid_min_y:grid_max_y] bz = Bz[grid_min_x:grid_max_x,grid_min_y:grid_max_y] plt.figure(figsize=(11,5)) fig = plt.imshow(bz.transpose(), extent=[min(gx),max(gx),min(gy),max(gy)],aspect='1', # cmap=newcmap, origin="lower", interpolation='nearest', vmin = -2, vmax = 2, ) fig.set_cmap('bwr') plt.margins(0,0) plt.title('Bz, normed by {:.3e} T'.format(b0)) # plt.title('Ez, normed by {:.3e} V/m'.format(e0)) plt.xlabel('x/$\lambda_e$',fontsize=fs) plt.ylabel('y/$\lambda_e$',fontsize=fs) plt.colorbar() plt.savefig(file+'/plots/bzn_'+str(ii)+'.png',bbox_inches='tight') # n means normalized plt.close()
apache-2.0
tyc85/nwsdr-3.6.3-dsc
gr-filter/examples/channelize.py
13
6790
#!/usr/bin/env python # # Copyright 2009,2012 Free Software Foundation, Inc. # # This file is part of GNU Radio # # GNU Radio is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 3, or (at your option) # any later version. # # GNU Radio is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with GNU Radio; see the file COPYING. If not, write to # the Free Software Foundation, Inc., 51 Franklin Street, # Boston, MA 02110-1301, USA. # from gnuradio import gr, blks2 from gnuradio import filter import sys, time try: import scipy from scipy import fftpack except ImportError: print "Error: Program requires scipy (see: www.scipy.org)." sys.exit(1) try: import pylab from pylab import mlab except ImportError: print "Error: Program requires matplotlib (see: matplotlib.sourceforge.net)." sys.exit(1) class pfb_top_block(gr.top_block): def __init__(self): gr.top_block.__init__(self) self._N = 2000000 # number of samples to use self._fs = 1000 # initial sampling rate self._M = M = 9 # Number of channels to channelize self._ifs = M*self._fs # initial sampling rate # Create a set of taps for the PFB channelizer self._taps = filter.firdes.low_pass_2(1, self._ifs, 475.50, 50, attenuation_dB=100, window=filter.firdes.WIN_BLACKMAN_hARRIS) # Calculate the number of taps per channel for our own information tpc = scipy.ceil(float(len(self._taps)) / float(self._M)) print "Number of taps: ", len(self._taps) print "Number of channels: ", self._M print "Taps per channel: ", tpc # Create a set of signals at different frequencies # freqs lists the frequencies of the signals that get stored # in the list "signals", which then get summed together self.signals = list() self.add = gr.add_cc() freqs = [-70, -50, -30, -10, 10, 20, 40, 60, 80] for i in xrange(len(freqs)): f = freqs[i] + (M/2-M+i+1)*self._fs self.signals.append(gr.sig_source_c(self._ifs, gr.GR_SIN_WAVE, f, 1)) self.connect(self.signals[i], (self.add,i)) self.head = gr.head(gr.sizeof_gr_complex, self._N) # Construct the channelizer filter self.pfb = filter.pfb.channelizer_ccf(self._M, self._taps, 1) # Construct a vector sink for the input signal to the channelizer self.snk_i = gr.vector_sink_c() # Connect the blocks self.connect(self.add, self.head, self.pfb) self.connect(self.add, self.snk_i) # Use this to play with the channel mapping #self.pfb.set_channel_map([5,6,7,8,0,1,2,3,4]) # Create a vector sink for each of M output channels of the filter and connect it self.snks = list() for i in xrange(self._M): self.snks.append(gr.vector_sink_c()) self.connect((self.pfb, i), self.snks[i]) def main(): tstart = time.time() tb = pfb_top_block() tb.run() tend = time.time() print "Run time: %f" % (tend - tstart) if 1: fig_in = pylab.figure(1, figsize=(16,9), facecolor="w") fig1 = pylab.figure(2, figsize=(16,9), facecolor="w") fig2 = pylab.figure(3, figsize=(16,9), facecolor="w") Ns = 1000 Ne = 10000 fftlen = 8192 winfunc = scipy.blackman fs = tb._ifs # Plot the input signal on its own figure d = tb.snk_i.data()[Ns:Ne] spin_f = fig_in.add_subplot(2, 1, 1) X,freq = mlab.psd(d, NFFT=fftlen, noverlap=fftlen/4, Fs=fs, window = lambda d: d*winfunc(fftlen), scale_by_freq=True) X_in = 10.0*scipy.log10(abs(X)) f_in = scipy.arange(-fs/2.0, fs/2.0, fs/float(X_in.size)) pin_f = spin_f.plot(f_in, X_in, "b") spin_f.set_xlim([min(f_in), max(f_in)+1]) spin_f.set_ylim([-200.0, 50.0]) spin_f.set_title("Input Signal", weight="bold") spin_f.set_xlabel("Frequency (Hz)") spin_f.set_ylabel("Power (dBW)") Ts = 1.0/fs Tmax = len(d)*Ts t_in = scipy.arange(0, Tmax, Ts) x_in = scipy.array(d) spin_t = fig_in.add_subplot(2, 1, 2) pin_t = spin_t.plot(t_in, x_in.real, "b") pin_t = spin_t.plot(t_in, x_in.imag, "r") spin_t.set_xlabel("Time (s)") spin_t.set_ylabel("Amplitude") Ncols = int(scipy.floor(scipy.sqrt(tb._M))) Nrows = int(scipy.floor(tb._M / Ncols)) if(tb._M % Ncols != 0): Nrows += 1 # Plot each of the channels outputs. Frequencies on Figure 2 and # time signals on Figure 3 fs_o = tb._fs Ts_o = 1.0/fs_o Tmax_o = len(d)*Ts_o for i in xrange(len(tb.snks)): # remove issues with the transients at the beginning # also remove some corruption at the end of the stream # this is a bug, probably due to the corner cases d = tb.snks[i].data()[Ns:Ne] sp1_f = fig1.add_subplot(Nrows, Ncols, 1+i) X,freq = mlab.psd(d, NFFT=fftlen, noverlap=fftlen/4, Fs=fs_o, window = lambda d: d*winfunc(fftlen), scale_by_freq=True) X_o = 10.0*scipy.log10(abs(X)) f_o = scipy.arange(-fs_o/2.0, fs_o/2.0, fs_o/float(X_o.size)) p2_f = sp1_f.plot(f_o, X_o, "b") sp1_f.set_xlim([min(f_o), max(f_o)+1]) sp1_f.set_ylim([-200.0, 50.0]) sp1_f.set_title(("Channel %d" % i), weight="bold") sp1_f.set_xlabel("Frequency (Hz)") sp1_f.set_ylabel("Power (dBW)") x_o = scipy.array(d) t_o = scipy.arange(0, Tmax_o, Ts_o) sp2_o = fig2.add_subplot(Nrows, Ncols, 1+i) p2_o = sp2_o.plot(t_o, x_o.real, "b") p2_o = sp2_o.plot(t_o, x_o.imag, "r") sp2_o.set_xlim([min(t_o), max(t_o)+1]) sp2_o.set_ylim([-2, 2]) sp2_o.set_title(("Channel %d" % i), weight="bold") sp2_o.set_xlabel("Time (s)") sp2_o.set_ylabel("Amplitude") pylab.show() if __name__ == "__main__": try: main() except KeyboardInterrupt: pass
gpl-3.0
lukiz/pacman
pacman.py
2
7656
# -*- coding: utf-8 -*- import os import pika from pika import exceptions from influxdb import InfluxDBClient import time import toml import json from datetime import datetime import pymssql import pandas.io.sql as psql from ZabbixReader import ZabbixReader CONF_FILE = '/conf/conf.toml' ## MS_SQL QUERY CONFIG NODEBs_CONF = '' NODEB_CONF_READ_INTERVAL_h = 24 NODEB_CONF_READ_TIMESTAMP = 0 def read_conf(CONF_FILE): with open(CONF_FILE) as conffile: conf = toml.loads(conffile.read()) return conf def transform_func(body): # before forwarding data, perform operations on fetched data, before forwarding them further global CONF global NODEBs_CONF global NODEB_CONF_READ_TIMESTAMP if 'transform' in CONF.viewkeys(): if 'mssql' in CONF['transform'].viewkeys(): body = json.loads(body) ## query MSSQL if config is empty or only once per given NODEB_CONF_READ_INTERVAL_h if(NODEBs_CONF=='' or ((time.time() - NODEB_CONF_READ_TIMESTAMP) > (60*60*NODEB_CONF_READ_INTERVAL_h))): NODEB_CONF_READ_TIMESTAMP = time.time() MSSQL_CFG = CONF['transform']['mssql'] mssql_conn = pymssql.connect(host=MSSQL_CFG['url'], user=MSSQL_CFG['username'], password=MSSQL_CFG['password'], database=MSSQL_CFG['database'], as_dict=True, charset='utf8') sql = """SELECT IP_ADDRESS,ADDRESS, SITE4G_NAME, ZONE, GEOHASH AS geohash FROM objects""" config_data = psql.read_sql(sql, mssql_conn, index_col='IP_ADDRESS') NODEBs_CONF = config_data.T.to_dict() mssql_conn.close() for object_x in body: try: # print 'try to add tags..' object_x['tags'].update(NODEBs_CONF[object_x['tags']['host']]) except: # print '....except' object_x['tags'].update({'ADDRESS': 'Null','SITE4G_NAME': 'Null', 'ZONE': 0,'geohash': 'Null'}) body = json.dumps(body) return body def send_to_rabbit(body): global CONF print ('Rabbit output conn params', CONF['output']['rabbitmq']) if 'ssl_options' in CONF['output']['rabbitmq'].viewkeys(): sslOptions = CONF['output']['rabbitmq']['ssl_options'] else: sslOptions = '' connectionParams = [] rmqaccess = CONF['output']['rabbitmq'] credentials = pika.PlainCredentials(rmqaccess['username'], rmqaccess['password']) for rabbit in CONF['output']['rabbitmq']['host']: connection_x = pika.ConnectionParameters(rabbit['url'] ,rabbit['port'] ,rmqaccess['vhost'] ,credentials ,ssl = rmqaccess['ssl'] ,ssl_options = sslOptions) connectionParams.append(connection_x) connection = connect_to_rabbit_node(connectionParams) channel = connection.channel() channel.basic_publish(exchange='',routing_key=rmqaccess['queue_name'],body=body,properties=pika.BasicProperties(delivery_mode = 2)) print (" [x] Sent to Rabbit %r" % body) connection.close() def send_to_influx(body): global CONF print ('Infludb output conn params', CONF['output']['influxdb']) INFLUX_CFG = CONF['output']['influxdb'] client = InfluxDBClient(INFLUX_CFG['url'], INFLUX_CFG['port'], INFLUX_CFG['username'], INFLUX_CFG['password'], INFLUX_CFG['database']) #client.create_database(INFLUX_CFG['database']) body = json.loads(body) if not isinstance(body,list): tmp_list = [] tmp_list.append(body) body = tmp_list #print("Write points to InfluxDB: {0}".format(body)) res = client.write_points(body, time_precision=INFLUX_CFG['precision']) # metoda nasluchuje na odbir danych po otrzymaniu wysyla do bazy MongoDB def callback(ch, method, properties, body): #print(" [x] Received %r" % body) body = transform_func(body) global CONF if 'influxdb' in CONF['output'].viewkeys(): send_to_influx(body) if 'rabbitmq' in CONF['output'].viewkeys(): send_to_rabbit(body) ch.basic_ack(delivery_tag = method.delivery_tag) def connect_to_rabbit_node(connectionParams): # polacz sie z pierwszym dostepnym nodem rabbitowym z listy i=-1 while True: try: # id of rabbit node on the list i=(i+1)%len(connectionParams) # Step #1: Connect to RabbitMQ using the default parameters connection = pika.BlockingConnection(connectionParams[i]) return connection except exceptions.AMQPConnectionError as e: print "Rabbitmq Connection error " + e.message pass except: print "Unexpected error:" raise # metoda podlaczenia do RabbitMQ def mRabbitMQConnector(): global CONF print ('Rabbit Input conn params', CONF['input']['rabbitmq']) if 'ssl_options' in CONF['input']['rabbitmq'].viewkeys(): sslOptions = CONF['input']['rabbitmq']['ssl_options'] else: sslOptions = '' connectionParams = [] rmqaccess = CONF['input']['rabbitmq'] credentials = pika.PlainCredentials(rmqaccess['username'], rmqaccess['password']) for rabbit in CONF['input']['rabbitmq']['host']: connection_x = pika.ConnectionParameters(rabbit['url'] ,rabbit['port'] ,rmqaccess['vhost'] ,credentials ,ssl = rmqaccess['ssl'] ,ssl_options = sslOptions) connectionParams.append(connection_x) connection = connect_to_rabbit_node(connectionParams) channel = connection.channel() # opcjonalna deklaracja kolejki # channel.queue_declare(queue=CONF['input']['rabbitmq'][0]['queue_name'], durable=True) print(' [*] Waiting for messages. To exit press CTRL+C') channel.basic_qos(prefetch_count=1) channel.basic_consume(callback, queue=rmqaccess['queue_name']) channel.start_consuming() print(' [*] BYE') def getZabbixData(): """ Get data from Zabbix based on configuration, send to RMq """ # zabbix connection global CONF ZAB_CONF = CONF['input']['zabbix'] zab_url = ZAB_CONF['url'] zab_user = ZAB_CONF['user'] zab_password = ZAB_CONF['password'] zr = ZabbixReader(zab_url, zab_user, zab_password) # iterate through groups defined in conf and send data to RMq try: for group in CONF['input']['zabbix']['group']: stats = zr.get_stats_from_gname_json(group['gname']) send_to_rabbit(stats) except Exception as e: print e pass # iterate through hosts defined in conf and send data to RMq try: for host in CONF['input']['zabbix']['host']: stats = zr.get_stats_from_hname_json(host['hname']) send_to_rabbit(stats) except Exception as e: print e pass def mZabbixConnector(): global CONF CONF = read_conf(CONF_FILE) sleep_time = CONF['input']['zabbix']['repeat_time'] while True: getZabbixData() print "Sleep for %d seconds ..zzz..zzz..zzz..." % sleep_time time.sleep(sleep_time) if __name__ == '__main__': global CONF CONF = read_conf(CONF_FILE) # check for zabbix input configuration try: CONF['input']['zabbix'] except KeyError as e: print "No valid input for zabbix in file: [%s] " % CONF_FILE else: print "pacman in Zabbix mode" mZabbixConnector() # check for rabbit input configuration try: CONF['input']['rabbitmq'] except KeyError as e: print "No valid input for rabbit in file: [%s] " % CONF_FILE else: print "pacman in Rabbit mode" mRabbitMQConnector()
mit
bert9bert/statsmodels
statsmodels/tsa/statespace/tests/test_models.py
2
6374
""" Tests for miscellaneous models Author: Chad Fulton License: Simplified-BSD """ from __future__ import division, absolute_import, print_function import numpy as np import pandas as pd import os import re import warnings from statsmodels.tsa.statespace import mlemodel from statsmodels import datasets from numpy.testing import assert_almost_equal, assert_equal, assert_allclose, assert_raises from nose.exc import SkipTest from .results import results_sarimax current_path = os.path.dirname(os.path.abspath(__file__)) class Intercepts(mlemodel.MLEModel): """ Test class for observation and state intercepts (which usually don't get tested in other models). """ def __init__(self, endog, **kwargs): k_states = 3 k_posdef = 3 super(Intercepts, self).__init__( endog, k_states=k_states, k_posdef=k_posdef, **kwargs) self['design'] = np.eye(3) self['obs_cov'] = np.eye(3) self['transition'] = np.eye(3) self['selection'] = np.eye(3) self['state_cov'] = np.eye(3) self.initialize_approximate_diffuse() @property def param_names(self): return ['d.1', 'd.2', 'd.3', 'c.1', 'c.2', 'c.3'] @property def start_params(self): return np.arange(6) def update(self, params, **kwargs): params = super(Intercepts, self).update(params, **kwargs) self['obs_intercept'] = params[:3] self['state_intercept'] = params[3:] class TestIntercepts(object): @classmethod def setup_class(cls, which='mixed', **kwargs): # Results path = current_path + os.sep + 'results/results_intercepts_R.csv' cls.desired = pd.read_csv(path) # Data dta = datasets.macrodata.load_pandas().data dta.index = pd.date_range(start='1959-01-01', end='2009-7-01', freq='QS') obs = dta[['realgdp', 'realcons', 'realinv']].copy() obs = obs / obs.std() if which == 'all': obs.ix[:50, :] = np.nan obs.ix[119:130, :] = np.nan elif which == 'partial': obs.ix[0:50, 0] = np.nan obs.ix[119:130, 0] = np.nan elif which == 'mixed': obs.ix[0:50, 0] = np.nan obs.ix[19:70, 1] = np.nan obs.ix[39:90, 2] = np.nan obs.ix[119:130, 0] = np.nan obs.ix[119:130, 2] = np.nan mod = Intercepts(obs, **kwargs) cls.params = np.arange(6) + 1 cls.model = mod cls.results = mod.smooth(cls.params, return_ssm=True) # Calculate the determinant of the covariance matrices (for easy # comparison to other languages without having to store 2-dim arrays) cls.results.det_scaled_smoothed_estimator_cov = ( np.zeros((1, cls.model.nobs))) cls.results.det_predicted_state_cov = np.zeros((1, cls.model.nobs)) cls.results.det_smoothed_state_cov = np.zeros((1, cls.model.nobs)) cls.results.det_smoothed_state_disturbance_cov = ( np.zeros((1, cls.model.nobs))) for i in range(cls.model.nobs): cls.results.det_scaled_smoothed_estimator_cov[0, i] = ( np.linalg.det( cls.results.scaled_smoothed_estimator_cov[:, :, i])) cls.results.det_predicted_state_cov[0, i] = np.linalg.det( cls.results.predicted_state_cov[:, :, i+1]) cls.results.det_smoothed_state_cov[0, i] = np.linalg.det( cls.results.smoothed_state_cov[:, :, i]) cls.results.det_smoothed_state_disturbance_cov[0, i] = ( np.linalg.det( cls.results.smoothed_state_disturbance_cov[:, :, i])) def test_loglike(self): assert_allclose(np.sum(self.results.llf_obs), -7924.03893566) def test_scaled_smoothed_estimator(self): assert_allclose( self.results.scaled_smoothed_estimator.T, self.desired[['r1', 'r2', 'r3']] ) def test_scaled_smoothed_estimator_cov(self): assert_allclose( self.results.det_scaled_smoothed_estimator_cov.T, self.desired[['detN']] ) def test_forecasts(self): assert_allclose( self.results.forecasts.T, self.desired[['m1', 'm2', 'm3']] ) def test_forecasts_error(self): assert_allclose( self.results.forecasts_error.T, self.desired[['v1', 'v2', 'v3']] ) def test_forecasts_error_cov(self): assert_allclose( self.results.forecasts_error_cov.diagonal(), self.desired[['F1', 'F2', 'F3']] ) def test_predicted_states(self): assert_allclose( self.results.predicted_state[:, 1:].T, self.desired[['a1', 'a2', 'a3']] ) def test_predicted_states_cov(self): assert_allclose( self.results.det_predicted_state_cov.T, self.desired[['detP']] ) def test_smoothed_states(self): assert_allclose( self.results.smoothed_state.T, self.desired[['alphahat1', 'alphahat2', 'alphahat3']] ) def test_smoothed_states_cov(self): assert_allclose( self.results.det_smoothed_state_cov.T, self.desired[['detV']] ) def test_smoothed_forecasts(self): assert_allclose( self.results.smoothed_forecasts.T, self.desired[['muhat1', 'muhat2', 'muhat3']] ) def test_smoothed_state_disturbance(self): assert_allclose( self.results.smoothed_state_disturbance.T, self.desired[['etahat1', 'etahat2', 'etahat3']] ) def test_smoothed_state_disturbance_cov(self): assert_allclose( self.results.det_smoothed_state_disturbance_cov.T, self.desired[['detVeta']] ) def test_smoothed_measurement_disturbance(self): assert_allclose( self.results.smoothed_measurement_disturbance.T, self.desired[['epshat1', 'epshat2', 'epshat3']], atol=1e-9 ) def test_smoothed_measurement_disturbance_cov(self): assert_allclose( self.results.smoothed_measurement_disturbance_cov.diagonal(), self.desired[['Veps1', 'Veps2', 'Veps3']] )
bsd-3-clause
DGrady/pandas
scripts/touchup_gh_issues.py
6
1060
#!/usr/bin/env python # -*- coding: utf-8 -*- from __future__ import print_function from collections import OrderedDict import sys import re """ Reads in stdin, replace all occurences of '#num' or 'GH #num' with links to github issue. dumps the issue anchors before the next section header """ pat = "((?:\s*GH\s*)?)#(\d{3,4})([^_]|$)?" rep_pat = r"\1GH\2_\3" anchor_pat = ".. _GH{id}: https://github.com/pandas-dev/pandas/issues/{id}" section_pat = "^pandas\s[\d\.]+\s*$" def main(): issues = OrderedDict() while True: line = sys.stdin.readline() if not line: break if re.search(section_pat, line): for id in issues: print(anchor_pat.format(id=id).rstrip()) if issues: print("\n") issues = OrderedDict() for m in re.finditer(pat, line): id = m.group(2) if id not in issues: issues[id] = True print(re.sub(pat, rep_pat, line).rstrip()) pass if __name__ == "__main__": main()
bsd-3-clause
Sunhick/ThinkStats2
code/brfss.py
69
4708
"""This file contains code for use with "Think Stats", by Allen B. Downey, available from greenteapress.com Copyright 2010 Allen B. Downey License: GNU GPLv3 http://www.gnu.org/licenses/gpl.html """ from __future__ import print_function import math import sys import pandas import numpy as np import thinkstats2 import thinkplot def Summarize(df, column, title): """Print summary statistics male, female and all.""" items = [ ('all', df[column]), ('male', df[df.sex == 1][column]), ('female', df[df.sex == 2][column]), ] print(title) print('key\tn\tmean\tvar\tstd\tcv') for key, series in items: mean, var = series.mean(), series.var() std = math.sqrt(var) cv = std / mean t = key, len(series), mean, var, std, cv print('%s\t%d\t%4.2f\t%4.2f\t%4.2f\t%4.4f' % t) def CleanBrfssFrame(df): """Recodes BRFSS variables. df: DataFrame """ # clean age df.age.replace([7, 9], float('NaN'), inplace=True) # clean height df.htm3.replace([999], float('NaN'), inplace=True) # clean weight df.wtkg2.replace([99999], float('NaN'), inplace=True) df.wtkg2 /= 100.0 # clean weight a year ago df.wtyrago.replace([7777, 9999], float('NaN'), inplace=True) df['wtyrago'] = df.wtyrago.apply(lambda x: x/2.2 if x < 9000 else x-9000) def ReadBrfss(filename='CDBRFS08.ASC.gz', compression='gzip', nrows=None): """Reads the BRFSS data. filename: string compression: string nrows: int number of rows to read, or None for all returns: DataFrame """ var_info = [ ('age', 101, 102, int), ('sex', 143, 143, int), ('wtyrago', 127, 130, int), ('finalwt', 799, 808, int), ('wtkg2', 1254, 1258, int), ('htm3', 1251, 1253, int), ] columns = ['name', 'start', 'end', 'type'] variables = pandas.DataFrame(var_info, columns=columns) variables.end += 1 dct = thinkstats2.FixedWidthVariables(variables, index_base=1) df = dct.ReadFixedWidth(filename, compression=compression, nrows=nrows) CleanBrfssFrame(df) return df def MakeNormalModel(weights): """Plots a CDF with a Normal model. weights: sequence """ cdf = thinkstats2.Cdf(weights, label='weights') mean, var = thinkstats2.TrimmedMeanVar(weights) std = math.sqrt(var) print('n, mean, std', len(weights), mean, std) xmin = mean - 4 * std xmax = mean + 4 * std xs, ps = thinkstats2.RenderNormalCdf(mean, std, xmin, xmax) thinkplot.Plot(xs, ps, label='model', linewidth=4, color='0.8') thinkplot.Cdf(cdf) def MakeNormalPlot(weights): """Generates a normal probability plot of birth weights. weights: sequence """ mean, var = thinkstats2.TrimmedMeanVar(weights, p=0.01) std = math.sqrt(var) xs = [-5, 5] xs, ys = thinkstats2.FitLine(xs, mean, std) thinkplot.Plot(xs, ys, color='0.8', label='model') xs, ys = thinkstats2.NormalProbability(weights) thinkplot.Plot(xs, ys, label='weights') def MakeFigures(df): """Generates CDFs and normal prob plots for weights and log weights.""" weights = df.wtkg2.dropna() log_weights = np.log10(weights) # plot weights on linear and log scales thinkplot.PrePlot(cols=2) MakeNormalModel(weights) thinkplot.Config(xlabel='adult weight (kg)', ylabel='CDF') thinkplot.SubPlot(2) MakeNormalModel(log_weights) thinkplot.Config(xlabel='adult weight (log10 kg)') thinkplot.Save(root='brfss_weight') # make normal probability plots on linear and log scales thinkplot.PrePlot(cols=2) MakeNormalPlot(weights) thinkplot.Config(xlabel='z', ylabel='weights (kg)') thinkplot.SubPlot(2) MakeNormalPlot(log_weights) thinkplot.Config(xlabel='z', ylabel='weights (log10 kg)') thinkplot.Save(root='brfss_weight_normal') def main(script, nrows=1000): """Tests the functions in this module. script: string script name """ thinkstats2.RandomSeed(17) nrows = int(nrows) df = ReadBrfss(nrows=nrows) MakeFigures(df) Summarize(df, 'htm3', 'Height (cm):') Summarize(df, 'wtkg2', 'Weight (kg):') Summarize(df, 'wtyrago', 'Weight year ago (kg):') if nrows == 1000: assert(df.age.value_counts()[40] == 28) assert(df.sex.value_counts()[2] == 668) assert(df.wtkg2.value_counts()[90.91] == 49) assert(df.wtyrago.value_counts()[160/2.2] == 49) assert(df.htm3.value_counts()[163] == 103) assert(df.finalwt.value_counts()[185.870345] == 13) print('%s: All tests passed.' % script) if __name__ == '__main__': main(*sys.argv)
gpl-3.0
bsipocz/statsmodels
statsmodels/sandbox/tsa/fftarma.py
30
16438
# -*- coding: utf-8 -*- """ Created on Mon Dec 14 19:53:25 2009 Author: josef-pktd generate arma sample using fft with all the lfilter it looks slow to get the ma representation first apply arma filter (in ar representation) to time series to get white noise but seems slow to be useful for fast estimation for nobs=10000 change/check: instead of using marep, use fft-transform of ar and ma separately, use ratio check theory is correct and example works DONE : feels much faster than lfilter -> use for estimation of ARMA -> use pade (scipy.misc) approximation to get starting polynomial from autocorrelation (is autocorrelation of AR(p) related to marep?) check if pade is fast, not for larger arrays ? maybe pade doesn't do the right thing for this, not tried yet scipy.pade([ 1. , 0.6, 0.25, 0.125, 0.0625, 0.1],2) raises LinAlgError: singular matrix also doesn't have roots inside unit circle ?? -> even without initialization, it might be fast for estimation -> how do I enforce stationarity and invertibility, need helper function get function drop imag if close to zero from numpy/scipy source, where? """ from __future__ import print_function import numpy as np import numpy.fft as fft #import scipy.fftpack as fft from scipy import signal #from try_var_convolve import maxabs from statsmodels.sandbox.archive.linalg_decomp_1 import OneTimeProperty from statsmodels.tsa.arima_process import ArmaProcess #trying to convert old experiments to a class class ArmaFft(ArmaProcess): '''fft tools for arma processes This class contains several methods that are providing the same or similar returns to try out and test different implementations. Notes ----- TODO: check whether we don't want to fix maxlags, and create new instance if maxlag changes. usage for different lengths of timeseries ? or fix frequency and length for fft check default frequencies w, terminology norw n_or_w some ffts are currently done without padding with zeros returns for spectral density methods needs checking, is it always the power spectrum hw*hw.conj() normalization of the power spectrum, spectral density: not checked yet, for example no variance of underlying process is used ''' def __init__(self, ar, ma, n): #duplicates now that are subclassing ArmaProcess super(ArmaFft, self).__init__(ar, ma) self.ar = np.asarray(ar) self.ma = np.asarray(ma) self.nobs = n #could make the polynomials into cached attributes self.arpoly = np.polynomial.Polynomial(ar) self.mapoly = np.polynomial.Polynomial(ma) self.nar = len(ar) #1d only currently self.nma = len(ma) def padarr(self, arr, maxlag, atend=True): '''pad 1d array with zeros at end to have length maxlag function that is a method, no self used Parameters ---------- arr : array_like, 1d array that will be padded with zeros maxlag : int length of array after padding atend : boolean If True (default), then the zeros are added to the end, otherwise to the front of the array Returns ------- arrp : ndarray zero-padded array Notes ----- This is mainly written to extend coefficient arrays for the lag-polynomials. It returns a copy. ''' if atend: return np.r_[arr, np.zeros(maxlag-len(arr))] else: return np.r_[np.zeros(maxlag-len(arr)), arr] def pad(self, maxlag): '''construct AR and MA polynomials that are zero-padded to a common length Parameters ---------- maxlag : int new length of lag-polynomials Returns ------- ar : ndarray extended AR polynomial coefficients ma : ndarray extended AR polynomial coefficients ''' arpad = np.r_[self.ar, np.zeros(maxlag-self.nar)] mapad = np.r_[self.ma, np.zeros(maxlag-self.nma)] return arpad, mapad def fftar(self, n=None): '''Fourier transform of AR polynomial, zero-padded at end to n Parameters ---------- n : int length of array after zero-padding Returns ------- fftar : ndarray fft of zero-padded ar polynomial ''' if n is None: n = len(self.ar) return fft.fft(self.padarr(self.ar, n)) def fftma(self, n): '''Fourier transform of MA polynomial, zero-padded at end to n Parameters ---------- n : int length of array after zero-padding Returns ------- fftar : ndarray fft of zero-padded ar polynomial ''' if n is None: n = len(self.ar) return fft.fft(self.padarr(self.ma, n)) #@OneTimeProperty # not while still debugging things def fftarma(self, n=None): '''Fourier transform of ARMA polynomial, zero-padded at end to n The Fourier transform of the ARMA process is calculated as the ratio of the fft of the MA polynomial divided by the fft of the AR polynomial. Parameters ---------- n : int length of array after zero-padding Returns ------- fftarma : ndarray fft of zero-padded arma polynomial ''' if n is None: n = self.nobs return (self.fftma(n) / self.fftar(n)) def spd(self, npos): '''raw spectral density, returns Fourier transform n is number of points in positive spectrum, the actual number of points is twice as large. different from other spd methods with fft ''' n = npos w = fft.fftfreq(2*n) * 2 * np.pi hw = self.fftarma(2*n) #not sure, need to check normalization #return (hw*hw.conj()).real[n//2-1:] * 0.5 / np.pi #doesn't show in plot return (hw*hw.conj()).real * 0.5 / np.pi, w def spdshift(self, n): '''power spectral density using fftshift currently returns two-sided according to fft frequencies, use first half ''' #size = s1+s2-1 mapadded = self.padarr(self.ma, n) arpadded = self.padarr(self.ar, n) hw = fft.fft(fft.fftshift(mapadded)) / fft.fft(fft.fftshift(arpadded)) #return np.abs(spd)[n//2-1:] w = fft.fftfreq(n) * 2 * np.pi wslice = slice(n//2-1, None, None) #return (hw*hw.conj()).real[wslice], w[wslice] return (hw*hw.conj()).real, w def spddirect(self, n): '''power spectral density using padding to length n done by fft currently returns two-sided according to fft frequencies, use first half ''' #size = s1+s2-1 #abs looks wrong hw = fft.fft(self.ma, n) / fft.fft(self.ar, n) w = fft.fftfreq(n) * 2 * np.pi wslice = slice(None, n//2, None) #return (np.abs(hw)**2)[wslice], w[wslice] return (np.abs(hw)**2) * 0.5/np.pi, w def _spddirect2(self, n): '''this looks bad, maybe with an fftshift ''' #size = s1+s2-1 hw = (fft.fft(np.r_[self.ma[::-1],self.ma], n) / fft.fft(np.r_[self.ar[::-1],self.ar], n)) return (hw*hw.conj()) #.real[n//2-1:] def spdroots(self, w): '''spectral density for frequency using polynomial roots builds two arrays (number of roots, number of frequencies) ''' return self.spdroots_(self.arroots, self.maroots, w) def spdroots_(self, arroots, maroots, w): '''spectral density for frequency using polynomial roots builds two arrays (number of roots, number of frequencies) Parameters ---------- arroots : ndarray roots of ar (denominator) lag-polynomial maroots : ndarray roots of ma (numerator) lag-polynomial w : array_like frequencies for which spd is calculated Notes ----- this should go into a function ''' w = np.atleast_2d(w).T cosw = np.cos(w) #Greene 5th edt. p626, section 20.2.7.a. maroots = 1./maroots arroots = 1./arroots num = 1 + maroots**2 - 2* maroots * cosw den = 1 + arroots**2 - 2* arroots * cosw #print 'num.shape, den.shape', num.shape, den.shape hw = 0.5 / np.pi * num.prod(-1) / den.prod(-1) #or use expsumlog return np.squeeze(hw), w.squeeze() def spdpoly(self, w, nma=50): '''spectral density from MA polynomial representation for ARMA process References ---------- Cochrane, section 8.3.3 ''' mpoly = np.polynomial.Polynomial(self.arma2ma(nma)) hw = mpoly(np.exp(1j * w)) spd = np.real_if_close(hw * hw.conj() * 0.5/np.pi) return spd, w def filter(self, x): ''' filter a timeseries with the ARMA filter padding with zero is missing, in example I needed the padding to get initial conditions identical to direct filter Initial filtered observations differ from filter2 and signal.lfilter, but at end they are the same. See Also -------- tsa.filters.fftconvolve ''' n = x.shape[0] if n == self.fftarma: fftarma = self.fftarma else: fftarma = self.fftma(n) / self.fftar(n) tmpfft = fftarma * fft.fft(x) return fft.ifft(tmpfft) def filter2(self, x, pad=0): '''filter a time series using fftconvolve3 with ARMA filter padding of x currently works only if x is 1d in example it produces same observations at beginning as lfilter even without padding. TODO: this returns 1 additional observation at the end ''' from statsmodels.tsa.filters import fftconvolve3 if not pad: pass elif pad == 'auto': #just guessing how much padding x = self.padarr(x, x.shape[0] + 2*(self.nma+self.nar), atend=False) else: x = self.padarr(x, x.shape[0] + int(pad), atend=False) return fftconvolve3(x, self.ma, self.ar) def acf2spdfreq(self, acovf, nfreq=100, w=None): ''' not really a method just for comparison, not efficient for large n or long acf this is also similarly use in tsa.stattools.periodogram with window ''' if w is None: w = np.linspace(0, np.pi, nfreq)[:, None] nac = len(acovf) hw = 0.5 / np.pi * (acovf[0] + 2 * (acovf[1:] * np.cos(w*np.arange(1,nac))).sum(1)) return hw def invpowerspd(self, n): '''autocovariance from spectral density scaling is correct, but n needs to be large for numerical accuracy maybe padding with zero in fft would be faster without slicing it returns 2-sided autocovariance with fftshift >>> ArmaFft([1, -0.5], [1., 0.4], 40).invpowerspd(2**8)[:10] array([ 2.08 , 1.44 , 0.72 , 0.36 , 0.18 , 0.09 , 0.045 , 0.0225 , 0.01125 , 0.005625]) >>> ArmaFft([1, -0.5], [1., 0.4], 40).acovf(10) array([ 2.08 , 1.44 , 0.72 , 0.36 , 0.18 , 0.09 , 0.045 , 0.0225 , 0.01125 , 0.005625]) ''' hw = self.fftarma(n) return np.real_if_close(fft.ifft(hw*hw.conj()), tol=200)[:n] def spdmapoly(self, w, twosided=False): '''ma only, need division for ar, use LagPolynomial ''' if w is None: w = np.linspace(0, np.pi, nfreq) return 0.5 / np.pi * self.mapoly(np.exp(w*1j)) def plot4(self, fig=None, nobs=100, nacf=20, nfreq=100): rvs = self.generate_sample(nsample=100, burnin=500) acf = self.acf(nacf)[:nacf] #TODO: check return length pacf = self.pacf(nacf) w = np.linspace(0, np.pi, nfreq) spdr, wr = self.spdroots(w) if fig is None: import matplotlib.pyplot as plt fig = plt.figure() ax = fig.add_subplot(2,2,1) ax.plot(rvs) ax.set_title('Random Sample \nar=%s, ma=%s' % (self.ar, self.ma)) ax = fig.add_subplot(2,2,2) ax.plot(acf) ax.set_title('Autocorrelation \nar=%s, ma=%rs' % (self.ar, self.ma)) ax = fig.add_subplot(2,2,3) ax.plot(wr, spdr) ax.set_title('Power Spectrum \nar=%s, ma=%s' % (self.ar, self.ma)) ax = fig.add_subplot(2,2,4) ax.plot(pacf) ax.set_title('Partial Autocorrelation \nar=%s, ma=%s' % (self.ar, self.ma)) return fig def spdar1(ar, w): if np.ndim(ar) == 0: rho = ar else: rho = -ar[1] return 0.5 / np.pi /(1 + rho*rho - 2 * rho * np.cos(w)) if __name__ == '__main__': def maxabs(x,y): return np.max(np.abs(x-y)) nobs = 200 #10000 ar = [1, 0.0] ma = [1, 0.0] ar2 = np.zeros(nobs) ar2[:2] = [1, -0.9] uni = np.zeros(nobs) uni[0]=1. #arrep = signal.lfilter(ma, ar, ar2) #marep = signal.lfilter([1],arrep, uni) # same faster: arcomb = np.convolve(ar, ar2, mode='same') marep = signal.lfilter(ma,arcomb, uni) #[len(ma):] print(marep[:10]) mafr = fft.fft(marep) rvs = np.random.normal(size=nobs) datafr = fft.fft(rvs) y = fft.ifft(mafr*datafr) print(np.corrcoef(np.c_[y[2:], y[1:-1], y[:-2]],rowvar=0)) arrep = signal.lfilter([1],marep, uni) print(arrep[:20]) # roundtrip to ar arfr = fft.fft(arrep) yfr = fft.fft(y) x = fft.ifft(arfr*yfr).real #imag part is e-15 # the next two are equal, roundtrip works print(x[:5]) print(rvs[:5]) print(np.corrcoef(np.c_[x[2:], x[1:-1], x[:-2]],rowvar=0)) # ARMA filter using fft with ratio of fft of ma/ar lag polynomial # seems much faster than using lfilter #padding, note arcomb is already full length arcombp = np.zeros(nobs) arcombp[:len(arcomb)] = arcomb map_ = np.zeros(nobs) #rename: map was shadowing builtin map_[:len(ma)] = ma ar0fr = fft.fft(arcombp) ma0fr = fft.fft(map_) y2 = fft.ifft(ma0fr/ar0fr*datafr) #the next two are (almost) equal in real part, almost zero but different in imag print(y2[:10]) print(y[:10]) print(maxabs(y, y2)) # from chfdiscrete #1.1282071239631782e-014 ar = [1, -0.4] ma = [1, 0.2] arma1 = ArmaFft([1, -0.5,0,0,0,00, -0.7, 0.3], [1, 0.8], nobs) nfreq = nobs w = np.linspace(0, np.pi, nfreq) w2 = np.linspace(0, 2*np.pi, nfreq) import matplotlib.pyplot as plt plt.close('all') plt.figure() spd1, w1 = arma1.spd(2**10) print(spd1.shape) _ = plt.plot(spd1) plt.title('spd fft complex') plt.figure() spd2, w2 = arma1.spdshift(2**10) print(spd2.shape) _ = plt.plot(w2, spd2) plt.title('spd fft shift') plt.figure() spd3, w3 = arma1.spddirect(2**10) print(spd3.shape) _ = plt.plot(w3, spd3) plt.title('spd fft direct') plt.figure() spd3b = arma1._spddirect2(2**10) print(spd3b.shape) _ = plt.plot(spd3b) plt.title('spd fft direct mirrored') plt.figure() spdr, wr = arma1.spdroots(w) print(spdr.shape) plt.plot(w, spdr) plt.title('spd from roots') plt.figure() spdar1_ = spdar1(arma1.ar, w) print(spdar1_.shape) _ = plt.plot(w, spdar1_) plt.title('spd ar1') plt.figure() wper, spdper = arma1.periodogram(nfreq) print(spdper.shape) _ = plt.plot(w, spdper) plt.title('periodogram') startup = 1000 rvs = arma1.generate_sample(startup+10000)[startup:] import matplotlib.mlab as mlb plt.figure() sdm, wm = mlb.psd(x) print('sdm.shape', sdm.shape) sdm = sdm.ravel() plt.plot(wm, sdm) plt.title('matplotlib') from nitime.algorithms import LD_AR_est #yule_AR_est(s, order, Nfreqs) wnt, spdnt = LD_AR_est(rvs, 10, 512) plt.figure() print('spdnt.shape', spdnt.shape) _ = plt.plot(spdnt.ravel()) print(spdnt[:10]) plt.title('nitime') fig = plt.figure() arma1.plot4(fig) #plt.show()
bsd-3-clause
robbymeals/scikit-learn
sklearn/cluster/birch.py
207
22706
# Authors: Manoj Kumar <[email protected]> # Alexandre Gramfort <[email protected]> # Joel Nothman <[email protected]> # License: BSD 3 clause from __future__ import division import warnings import numpy as np from scipy import sparse from math import sqrt from ..metrics.pairwise import euclidean_distances from ..base import TransformerMixin, ClusterMixin, BaseEstimator from ..externals.six.moves import xrange from ..utils import check_array from ..utils.extmath import row_norms, safe_sparse_dot from ..utils.validation import NotFittedError, check_is_fitted from .hierarchical import AgglomerativeClustering def _iterate_sparse_X(X): """This little hack returns a densified row when iterating over a sparse matrix, insted of constructing a sparse matrix for every row that is expensive. """ n_samples = X.shape[0] X_indices = X.indices X_data = X.data X_indptr = X.indptr for i in xrange(n_samples): row = np.zeros(X.shape[1]) startptr, endptr = X_indptr[i], X_indptr[i + 1] nonzero_indices = X_indices[startptr:endptr] row[nonzero_indices] = X_data[startptr:endptr] yield row def _split_node(node, threshold, branching_factor): """The node has to be split if there is no place for a new subcluster in the node. 1. Two empty nodes and two empty subclusters are initialized. 2. The pair of distant subclusters are found. 3. The properties of the empty subclusters and nodes are updated according to the nearest distance between the subclusters to the pair of distant subclusters. 4. The two nodes are set as children to the two subclusters. """ new_subcluster1 = _CFSubcluster() new_subcluster2 = _CFSubcluster() new_node1 = _CFNode( threshold, branching_factor, is_leaf=node.is_leaf, n_features=node.n_features) new_node2 = _CFNode( threshold, branching_factor, is_leaf=node.is_leaf, n_features=node.n_features) new_subcluster1.child_ = new_node1 new_subcluster2.child_ = new_node2 if node.is_leaf: if node.prev_leaf_ is not None: node.prev_leaf_.next_leaf_ = new_node1 new_node1.prev_leaf_ = node.prev_leaf_ new_node1.next_leaf_ = new_node2 new_node2.prev_leaf_ = new_node1 new_node2.next_leaf_ = node.next_leaf_ if node.next_leaf_ is not None: node.next_leaf_.prev_leaf_ = new_node2 dist = euclidean_distances( node.centroids_, Y_norm_squared=node.squared_norm_, squared=True) n_clusters = dist.shape[0] farthest_idx = np.unravel_index( dist.argmax(), (n_clusters, n_clusters)) node1_dist, node2_dist = dist[[farthest_idx]] node1_closer = node1_dist < node2_dist for idx, subcluster in enumerate(node.subclusters_): if node1_closer[idx]: new_node1.append_subcluster(subcluster) new_subcluster1.update(subcluster) else: new_node2.append_subcluster(subcluster) new_subcluster2.update(subcluster) return new_subcluster1, new_subcluster2 class _CFNode(object): """Each node in a CFTree is called a CFNode. The CFNode can have a maximum of branching_factor number of CFSubclusters. Parameters ---------- threshold : float Threshold needed for a new subcluster to enter a CFSubcluster. branching_factor : int Maximum number of CF subclusters in each node. is_leaf : bool We need to know if the CFNode is a leaf or not, in order to retrieve the final subclusters. n_features : int The number of features. Attributes ---------- subclusters_ : array-like list of subclusters for a particular CFNode. prev_leaf_ : _CFNode prev_leaf. Useful only if is_leaf is True. next_leaf_ : _CFNode next_leaf. Useful only if is_leaf is True. the final subclusters. init_centroids_ : ndarray, shape (branching_factor + 1, n_features) manipulate ``init_centroids_`` throughout rather than centroids_ since the centroids are just a view of the ``init_centroids_`` . init_sq_norm_ : ndarray, shape (branching_factor + 1,) manipulate init_sq_norm_ throughout. similar to ``init_centroids_``. centroids_ : ndarray view of ``init_centroids_``. squared_norm_ : ndarray view of ``init_sq_norm_``. """ def __init__(self, threshold, branching_factor, is_leaf, n_features): self.threshold = threshold self.branching_factor = branching_factor self.is_leaf = is_leaf self.n_features = n_features # The list of subclusters, centroids and squared norms # to manipulate throughout. self.subclusters_ = [] self.init_centroids_ = np.zeros((branching_factor + 1, n_features)) self.init_sq_norm_ = np.zeros((branching_factor + 1)) self.squared_norm_ = [] self.prev_leaf_ = None self.next_leaf_ = None def append_subcluster(self, subcluster): n_samples = len(self.subclusters_) self.subclusters_.append(subcluster) self.init_centroids_[n_samples] = subcluster.centroid_ self.init_sq_norm_[n_samples] = subcluster.sq_norm_ # Keep centroids and squared norm as views. In this way # if we change init_centroids and init_sq_norm_, it is # sufficient, self.centroids_ = self.init_centroids_[:n_samples + 1, :] self.squared_norm_ = self.init_sq_norm_[:n_samples + 1] def update_split_subclusters(self, subcluster, new_subcluster1, new_subcluster2): """Remove a subcluster from a node and update it with the split subclusters. """ ind = self.subclusters_.index(subcluster) self.subclusters_[ind] = new_subcluster1 self.init_centroids_[ind] = new_subcluster1.centroid_ self.init_sq_norm_[ind] = new_subcluster1.sq_norm_ self.append_subcluster(new_subcluster2) def insert_cf_subcluster(self, subcluster): """Insert a new subcluster into the node.""" if not self.subclusters_: self.append_subcluster(subcluster) return False threshold = self.threshold branching_factor = self.branching_factor # We need to find the closest subcluster among all the # subclusters so that we can insert our new subcluster. dist_matrix = np.dot(self.centroids_, subcluster.centroid_) dist_matrix *= -2. dist_matrix += self.squared_norm_ closest_index = np.argmin(dist_matrix) closest_subcluster = self.subclusters_[closest_index] # If the subcluster has a child, we need a recursive strategy. if closest_subcluster.child_ is not None: split_child = closest_subcluster.child_.insert_cf_subcluster( subcluster) if not split_child: # If it is determined that the child need not be split, we # can just update the closest_subcluster closest_subcluster.update(subcluster) self.init_centroids_[closest_index] = \ self.subclusters_[closest_index].centroid_ self.init_sq_norm_[closest_index] = \ self.subclusters_[closest_index].sq_norm_ return False # things not too good. we need to redistribute the subclusters in # our child node, and add a new subcluster in the parent # subcluster to accomodate the new child. else: new_subcluster1, new_subcluster2 = _split_node( closest_subcluster.child_, threshold, branching_factor) self.update_split_subclusters( closest_subcluster, new_subcluster1, new_subcluster2) if len(self.subclusters_) > self.branching_factor: return True return False # good to go! else: merged = closest_subcluster.merge_subcluster( subcluster, self.threshold) if merged: self.init_centroids_[closest_index] = \ closest_subcluster.centroid_ self.init_sq_norm_[closest_index] = \ closest_subcluster.sq_norm_ return False # not close to any other subclusters, and we still # have space, so add. elif len(self.subclusters_) < self.branching_factor: self.append_subcluster(subcluster) return False # We do not have enough space nor is it closer to an # other subcluster. We need to split. else: self.append_subcluster(subcluster) return True class _CFSubcluster(object): """Each subcluster in a CFNode is called a CFSubcluster. A CFSubcluster can have a CFNode has its child. Parameters ---------- linear_sum : ndarray, shape (n_features,), optional Sample. This is kept optional to allow initialization of empty subclusters. Attributes ---------- n_samples_ : int Number of samples that belong to each subcluster. linear_sum_ : ndarray Linear sum of all the samples in a subcluster. Prevents holding all sample data in memory. squared_sum_ : float Sum of the squared l2 norms of all samples belonging to a subcluster. centroid_ : ndarray Centroid of the subcluster. Prevent recomputing of centroids when ``CFNode.centroids_`` is called. child_ : _CFNode Child Node of the subcluster. Once a given _CFNode is set as the child of the _CFNode, it is set to ``self.child_``. sq_norm_ : ndarray Squared norm of the subcluster. Used to prevent recomputing when pairwise minimum distances are computed. """ def __init__(self, linear_sum=None): if linear_sum is None: self.n_samples_ = 0 self.squared_sum_ = 0.0 self.linear_sum_ = 0 else: self.n_samples_ = 1 self.centroid_ = self.linear_sum_ = linear_sum self.squared_sum_ = self.sq_norm_ = np.dot( self.linear_sum_, self.linear_sum_) self.child_ = None def update(self, subcluster): self.n_samples_ += subcluster.n_samples_ self.linear_sum_ += subcluster.linear_sum_ self.squared_sum_ += subcluster.squared_sum_ self.centroid_ = self.linear_sum_ / self.n_samples_ self.sq_norm_ = np.dot(self.centroid_, self.centroid_) def merge_subcluster(self, nominee_cluster, threshold): """Check if a cluster is worthy enough to be merged. If yes then merge. """ new_ss = self.squared_sum_ + nominee_cluster.squared_sum_ new_ls = self.linear_sum_ + nominee_cluster.linear_sum_ new_n = self.n_samples_ + nominee_cluster.n_samples_ new_centroid = (1 / new_n) * new_ls new_norm = np.dot(new_centroid, new_centroid) dot_product = (-2 * new_n) * new_norm sq_radius = (new_ss + dot_product) / new_n + new_norm if sq_radius <= threshold ** 2: (self.n_samples_, self.linear_sum_, self.squared_sum_, self.centroid_, self.sq_norm_) = \ new_n, new_ls, new_ss, new_centroid, new_norm return True return False @property def radius(self): """Return radius of the subcluster""" dot_product = -2 * np.dot(self.linear_sum_, self.centroid_) return sqrt( ((self.squared_sum_ + dot_product) / self.n_samples_) + self.sq_norm_) class Birch(BaseEstimator, TransformerMixin, ClusterMixin): """Implements the Birch clustering algorithm. Every new sample is inserted into the root of the Clustering Feature Tree. It is then clubbed together with the subcluster that has the centroid closest to the new sample. This is done recursively till it ends up at the subcluster of the leaf of the tree has the closest centroid. Read more in the :ref:`User Guide <birch>`. Parameters ---------- threshold : float, default 0.5 The radius of the subcluster obtained by merging a new sample and the closest subcluster should be lesser than the threshold. Otherwise a new subcluster is started. branching_factor : int, default 50 Maximum number of CF subclusters in each node. If a new samples enters such that the number of subclusters exceed the branching_factor then the node has to be split. The corresponding parent also has to be split and if the number of subclusters in the parent is greater than the branching factor, then it has to be split recursively. n_clusters : int, instance of sklearn.cluster model, default None Number of clusters after the final clustering step, which treats the subclusters from the leaves as new samples. By default, this final clustering step is not performed and the subclusters are returned as they are. If a model is provided, the model is fit treating the subclusters as new samples and the initial data is mapped to the label of the closest subcluster. If an int is provided, the model fit is AgglomerativeClustering with n_clusters set to the int. compute_labels : bool, default True Whether or not to compute labels for each fit. copy : bool, default True Whether or not to make a copy of the given data. If set to False, the initial data will be overwritten. Attributes ---------- root_ : _CFNode Root of the CFTree. dummy_leaf_ : _CFNode Start pointer to all the leaves. subcluster_centers_ : ndarray, Centroids of all subclusters read directly from the leaves. subcluster_labels_ : ndarray, Labels assigned to the centroids of the subclusters after they are clustered globally. labels_ : ndarray, shape (n_samples,) Array of labels assigned to the input data. if partial_fit is used instead of fit, they are assigned to the last batch of data. Examples -------- >>> from sklearn.cluster import Birch >>> X = [[0, 1], [0.3, 1], [-0.3, 1], [0, -1], [0.3, -1], [-0.3, -1]] >>> brc = Birch(branching_factor=50, n_clusters=None, threshold=0.5, ... compute_labels=True) >>> brc.fit(X) Birch(branching_factor=50, compute_labels=True, copy=True, n_clusters=None, threshold=0.5) >>> brc.predict(X) array([0, 0, 0, 1, 1, 1]) References ---------- * Tian Zhang, Raghu Ramakrishnan, Maron Livny BIRCH: An efficient data clustering method for large databases. http://www.cs.sfu.ca/CourseCentral/459/han/papers/zhang96.pdf * Roberto Perdisci JBirch - Java implementation of BIRCH clustering algorithm https://code.google.com/p/jbirch/ """ def __init__(self, threshold=0.5, branching_factor=50, n_clusters=3, compute_labels=True, copy=True): self.threshold = threshold self.branching_factor = branching_factor self.n_clusters = n_clusters self.compute_labels = compute_labels self.copy = copy def fit(self, X, y=None): """ Build a CF Tree for the input data. Parameters ---------- X : {array-like, sparse matrix}, shape (n_samples, n_features) Input data. """ self.fit_, self.partial_fit_ = True, False return self._fit(X) def _fit(self, X): X = check_array(X, accept_sparse='csr', copy=self.copy) threshold = self.threshold branching_factor = self.branching_factor if branching_factor <= 1: raise ValueError("Branching_factor should be greater than one.") n_samples, n_features = X.shape # If partial_fit is called for the first time or fit is called, we # start a new tree. partial_fit = getattr(self, 'partial_fit_') has_root = getattr(self, 'root_', None) if getattr(self, 'fit_') or (partial_fit and not has_root): # The first root is the leaf. Manipulate this object throughout. self.root_ = _CFNode(threshold, branching_factor, is_leaf=True, n_features=n_features) # To enable getting back subclusters. self.dummy_leaf_ = _CFNode(threshold, branching_factor, is_leaf=True, n_features=n_features) self.dummy_leaf_.next_leaf_ = self.root_ self.root_.prev_leaf_ = self.dummy_leaf_ # Cannot vectorize. Enough to convince to use cython. if not sparse.issparse(X): iter_func = iter else: iter_func = _iterate_sparse_X for sample in iter_func(X): subcluster = _CFSubcluster(linear_sum=sample) split = self.root_.insert_cf_subcluster(subcluster) if split: new_subcluster1, new_subcluster2 = _split_node( self.root_, threshold, branching_factor) del self.root_ self.root_ = _CFNode(threshold, branching_factor, is_leaf=False, n_features=n_features) self.root_.append_subcluster(new_subcluster1) self.root_.append_subcluster(new_subcluster2) centroids = np.concatenate([ leaf.centroids_ for leaf in self._get_leaves()]) self.subcluster_centers_ = centroids self._global_clustering(X) return self def _get_leaves(self): """ Retrieve the leaves of the CF Node. Returns ------- leaves: array-like List of the leaf nodes. """ leaf_ptr = self.dummy_leaf_.next_leaf_ leaves = [] while leaf_ptr is not None: leaves.append(leaf_ptr) leaf_ptr = leaf_ptr.next_leaf_ return leaves def partial_fit(self, X=None, y=None): """ Online learning. Prevents rebuilding of CFTree from scratch. Parameters ---------- X : {array-like, sparse matrix}, shape (n_samples, n_features), None Input data. If X is not provided, only the global clustering step is done. """ self.partial_fit_, self.fit_ = True, False if X is None: # Perform just the final global clustering step. self._global_clustering() return self else: self._check_fit(X) return self._fit(X) def _check_fit(self, X): is_fitted = hasattr(self, 'subcluster_centers_') # Called by partial_fit, before fitting. has_partial_fit = hasattr(self, 'partial_fit_') # Should raise an error if one does not fit before predicting. if not (is_fitted or has_partial_fit): raise NotFittedError("Fit training data before predicting") if is_fitted and X.shape[1] != self.subcluster_centers_.shape[1]: raise ValueError( "Training data and predicted data do " "not have same number of features.") def predict(self, X): """ Predict data using the ``centroids_`` of subclusters. Avoid computation of the row norms of X. Parameters ---------- X : {array-like, sparse matrix}, shape (n_samples, n_features) Input data. Returns ------- labels: ndarray, shape(n_samples) Labelled data. """ X = check_array(X, accept_sparse='csr') self._check_fit(X) reduced_distance = safe_sparse_dot(X, self.subcluster_centers_.T) reduced_distance *= -2 reduced_distance += self._subcluster_norms return self.subcluster_labels_[np.argmin(reduced_distance, axis=1)] def transform(self, X, y=None): """ Transform X into subcluster centroids dimension. Each dimension represents the distance from the sample point to each cluster centroid. Parameters ---------- X : {array-like, sparse matrix}, shape (n_samples, n_features) Input data. Returns ------- X_trans : {array-like, sparse matrix}, shape (n_samples, n_clusters) Transformed data. """ check_is_fitted(self, 'subcluster_centers_') return euclidean_distances(X, self.subcluster_centers_) def _global_clustering(self, X=None): """ Global clustering for the subclusters obtained after fitting """ clusterer = self.n_clusters centroids = self.subcluster_centers_ compute_labels = (X is not None) and self.compute_labels # Preprocessing for the global clustering. not_enough_centroids = False if isinstance(clusterer, int): clusterer = AgglomerativeClustering( n_clusters=self.n_clusters) # There is no need to perform the global clustering step. if len(centroids) < self.n_clusters: not_enough_centroids = True elif (clusterer is not None and not hasattr(clusterer, 'fit_predict')): raise ValueError("n_clusters should be an instance of " "ClusterMixin or an int") # To use in predict to avoid recalculation. self._subcluster_norms = row_norms( self.subcluster_centers_, squared=True) if clusterer is None or not_enough_centroids: self.subcluster_labels_ = np.arange(len(centroids)) if not_enough_centroids: warnings.warn( "Number of subclusters found (%d) by Birch is less " "than (%d). Decrease the threshold." % (len(centroids), self.n_clusters)) else: # The global clustering step that clusters the subclusters of # the leaves. It assumes the centroids of the subclusters as # samples and finds the final centroids. self.subcluster_labels_ = clusterer.fit_predict( self.subcluster_centers_) if compute_labels: self.labels_ = self.predict(X)
bsd-3-clause
chuckchen/spark
python/pyspark/sql/context.py
3
23888
# # Licensed to the Apache Software Foundation (ASF) under one or more # contributor license agreements. See the NOTICE file distributed with # this work for additional information regarding copyright ownership. # The ASF licenses this file to You under the Apache License, Version 2.0 # (the "License"); you may not use this file except in compliance with # the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import sys import warnings from pyspark import since, _NoValue from pyspark.sql.session import _monkey_patch_RDD, SparkSession from pyspark.sql.dataframe import DataFrame from pyspark.sql.readwriter import DataFrameReader from pyspark.sql.streaming import DataStreamReader from pyspark.sql.udf import UDFRegistration # noqa: F401 from pyspark.sql.utils import install_exception_handler __all__ = ["SQLContext", "HiveContext"] class SQLContext(object): """The entry point for working with structured data (rows and columns) in Spark, in Spark 1.x. As of Spark 2.0, this is replaced by :class:`SparkSession`. However, we are keeping the class here for backward compatibility. A SQLContext can be used create :class:`DataFrame`, register :class:`DataFrame` as tables, execute SQL over tables, cache tables, and read parquet files. .. deprecated:: 3.0.0 Use :func:`SparkSession.builder.getOrCreate()` instead. Parameters ---------- sparkContext : :class:`SparkContext` The :class:`SparkContext` backing this SQLContext. sparkSession : :class:`SparkSession` The :class:`SparkSession` around which this SQLContext wraps. jsqlContext : optional An optional JVM Scala SQLContext. If set, we do not instantiate a new SQLContext in the JVM, instead we make all calls to this object. This is only for internal. Examples -------- >>> from datetime import datetime >>> from pyspark.sql import Row >>> sqlContext = SQLContext(sc) >>> allTypes = sc.parallelize([Row(i=1, s="string", d=1.0, l=1, ... b=True, list=[1, 2, 3], dict={"s": 0}, row=Row(a=1), ... time=datetime(2014, 8, 1, 14, 1, 5))]) >>> df = allTypes.toDF() >>> df.createOrReplaceTempView("allTypes") >>> sqlContext.sql('select i+1, d+1, not b, list[1], dict["s"], time, row.a ' ... 'from allTypes where b and i > 0').collect() [Row((i + CAST(1 AS BIGINT))=2, (d + CAST(1 AS DOUBLE))=2.0, (NOT b)=False, list[1]=2, \ dict[s]=0, time=datetime.datetime(2014, 8, 1, 14, 1, 5), a=1)] >>> df.rdd.map(lambda x: (x.i, x.s, x.d, x.l, x.b, x.time, x.row.a, x.list)).collect() [(1, 'string', 1.0, 1, True, datetime.datetime(2014, 8, 1, 14, 1, 5), 1, [1, 2, 3])] """ _instantiatedContext = None def __init__(self, sparkContext, sparkSession=None, jsqlContext=None): if sparkSession is None: warnings.warn( "Deprecated in 3.0.0. Use SparkSession.builder.getOrCreate() instead.", DeprecationWarning) self._sc = sparkContext self._jsc = self._sc._jsc self._jvm = self._sc._jvm if sparkSession is None: sparkSession = SparkSession.builder.getOrCreate() if jsqlContext is None: jsqlContext = sparkSession._jwrapped self.sparkSession = sparkSession self._jsqlContext = jsqlContext _monkey_patch_RDD(self.sparkSession) install_exception_handler() if (SQLContext._instantiatedContext is None or SQLContext._instantiatedContext._sc._jsc is None): SQLContext._instantiatedContext = self @property def _ssql_ctx(self): """Accessor for the JVM Spark SQL context. Subclasses can override this property to provide their own JVM Contexts. """ return self._jsqlContext @property def _conf(self): """Accessor for the JVM SQL-specific configurations""" return self.sparkSession._jsparkSession.sessionState().conf() @classmethod def getOrCreate(cls, sc): """ Get the existing SQLContext or create a new one with given SparkContext. .. versionadded:: 1.6.0 .. deprecated:: 3.0.0 Use :func:`SparkSession.builder.getOrCreate()` instead. Parameters ---------- sc : :class:`SparkContext` """ warnings.warn( "Deprecated in 3.0.0. Use SparkSession.builder.getOrCreate() instead.", DeprecationWarning) if (cls._instantiatedContext is None or SQLContext._instantiatedContext._sc._jsc is None): jsqlContext = sc._jvm.SparkSession.builder().sparkContext( sc._jsc.sc()).getOrCreate().sqlContext() sparkSession = SparkSession(sc, jsqlContext.sparkSession()) cls(sc, sparkSession, jsqlContext) return cls._instantiatedContext def newSession(self): """ Returns a new SQLContext as new session, that has separate SQLConf, registered temporary views and UDFs, but shared SparkContext and table cache. .. versionadded:: 1.6.0 """ return self.__class__(self._sc, self.sparkSession.newSession()) def setConf(self, key, value): """Sets the given Spark SQL configuration property. .. versionadded:: 1.3.0 """ self.sparkSession.conf.set(key, value) def getConf(self, key, defaultValue=_NoValue): """Returns the value of Spark SQL configuration property for the given key. If the key is not set and defaultValue is set, return defaultValue. If the key is not set and defaultValue is not set, return the system default value. .. versionadded:: 1.3.0 Examples -------- >>> sqlContext.getConf("spark.sql.shuffle.partitions") '200' >>> sqlContext.getConf("spark.sql.shuffle.partitions", "10") '10' >>> sqlContext.setConf("spark.sql.shuffle.partitions", "50") >>> sqlContext.getConf("spark.sql.shuffle.partitions", "10") '50' """ return self.sparkSession.conf.get(key, defaultValue) @property def udf(self): """Returns a :class:`UDFRegistration` for UDF registration. .. versionadded:: 1.3.1 Returns ------- :class:`UDFRegistration` """ return self.sparkSession.udf def range(self, start, end=None, step=1, numPartitions=None): """ Create a :class:`DataFrame` with single :class:`pyspark.sql.types.LongType` column named ``id``, containing elements in a range from ``start`` to ``end`` (exclusive) with step value ``step``. .. versionadded:: 1.4.0 Parameters ---------- start : int the start value end : int, optional the end value (exclusive) step : int, optional the incremental step (default: 1) numPartitions : int, optional the number of partitions of the DataFrame Returns ------- :class:`DataFrame` Examples -------- >>> sqlContext.range(1, 7, 2).collect() [Row(id=1), Row(id=3), Row(id=5)] If only one argument is specified, it will be used as the end value. >>> sqlContext.range(3).collect() [Row(id=0), Row(id=1), Row(id=2)] """ return self.sparkSession.range(start, end, step, numPartitions) def registerFunction(self, name, f, returnType=None): """An alias for :func:`spark.udf.register`. See :meth:`pyspark.sql.UDFRegistration.register`. .. versionadded:: 1.2.0 .. deprecated:: 2.3.0 Use :func:`spark.udf.register` instead. """ warnings.warn( "Deprecated in 2.3.0. Use spark.udf.register instead.", DeprecationWarning) return self.sparkSession.udf.register(name, f, returnType) def registerJavaFunction(self, name, javaClassName, returnType=None): """An alias for :func:`spark.udf.registerJavaFunction`. See :meth:`pyspark.sql.UDFRegistration.registerJavaFunction`. .. versionadded:: 2.1.0 .. deprecated:: 2.3.0 Use :func:`spark.udf.registerJavaFunction` instead. """ warnings.warn( "Deprecated in 2.3.0. Use spark.udf.registerJavaFunction instead.", DeprecationWarning) return self.sparkSession.udf.registerJavaFunction(name, javaClassName, returnType) # TODO(andrew): delete this once we refactor things to take in SparkSession def _inferSchema(self, rdd, samplingRatio=None): """ Infer schema from an RDD of Row or tuple. Parameters ---------- rdd : :class:`RDD` an RDD of Row or tuple samplingRatio : float, optional sampling ratio, or no sampling (default) Returns ------- :class:`pyspark.sql.types.StructType` """ return self.sparkSession._inferSchema(rdd, samplingRatio) def createDataFrame(self, data, schema=None, samplingRatio=None, verifySchema=True): """ Creates a :class:`DataFrame` from an :class:`RDD`, a list or a :class:`pandas.DataFrame`. When ``schema`` is a list of column names, the type of each column will be inferred from ``data``. When ``schema`` is ``None``, it will try to infer the schema (column names and types) from ``data``, which should be an RDD of :class:`Row`, or :class:`namedtuple`, or :class:`dict`. When ``schema`` is :class:`pyspark.sql.types.DataType` or a datatype string it must match the real data, or an exception will be thrown at runtime. If the given schema is not :class:`pyspark.sql.types.StructType`, it will be wrapped into a :class:`pyspark.sql.types.StructType` as its only field, and the field name will be "value", each record will also be wrapped into a tuple, which can be converted to row later. If schema inference is needed, ``samplingRatio`` is used to determined the ratio of rows used for schema inference. The first row will be used if ``samplingRatio`` is ``None``. .. versionadded:: 1.3.0 .. versionchanged:: 2.0.0 The ``schema`` parameter can be a :class:`pyspark.sql.types.DataType` or a datatype string after 2.0. If it's not a :class:`pyspark.sql.types.StructType`, it will be wrapped into a :class:`pyspark.sql.types.StructType` and each record will also be wrapped into a tuple. .. versionchanged:: 2.1.0 Added verifySchema. Parameters ---------- data : :class:`RDD` or iterable an RDD of any kind of SQL data representation(e.g. :class:`Row`, :class:`tuple`, ``int``, ``boolean``, etc.), or :class:`list`, or :class:`pandas.DataFrame`. schema : :class:`pyspark.sql.types.DataType`, str or list, optional a :class:`pyspark.sql.types.DataType` or a datatype string or a list of column names, default is None. The data type string format equals to :class:`pyspark.sql.types.DataType.simpleString`, except that top level struct type can omit the ``struct<>`` and atomic types use ``typeName()`` as their format, e.g. use ``byte`` instead of ``tinyint`` for :class:`pyspark.sql.types.ByteType`. We can also use ``int`` as a short name for :class:`pyspark.sql.types.IntegerType`. samplingRatio : float, optional the sample ratio of rows used for inferring verifySchema : bool, optional verify data types of every row against schema. Enabled by default. Returns ------- :class:`DataFrame` Examples -------- >>> l = [('Alice', 1)] >>> sqlContext.createDataFrame(l).collect() [Row(_1='Alice', _2=1)] >>> sqlContext.createDataFrame(l, ['name', 'age']).collect() [Row(name='Alice', age=1)] >>> d = [{'name': 'Alice', 'age': 1}] >>> sqlContext.createDataFrame(d).collect() [Row(age=1, name='Alice')] >>> rdd = sc.parallelize(l) >>> sqlContext.createDataFrame(rdd).collect() [Row(_1='Alice', _2=1)] >>> df = sqlContext.createDataFrame(rdd, ['name', 'age']) >>> df.collect() [Row(name='Alice', age=1)] >>> from pyspark.sql import Row >>> Person = Row('name', 'age') >>> person = rdd.map(lambda r: Person(*r)) >>> df2 = sqlContext.createDataFrame(person) >>> df2.collect() [Row(name='Alice', age=1)] >>> from pyspark.sql.types import * >>> schema = StructType([ ... StructField("name", StringType(), True), ... StructField("age", IntegerType(), True)]) >>> df3 = sqlContext.createDataFrame(rdd, schema) >>> df3.collect() [Row(name='Alice', age=1)] >>> sqlContext.createDataFrame(df.toPandas()).collect() # doctest: +SKIP [Row(name='Alice', age=1)] >>> sqlContext.createDataFrame(pandas.DataFrame([[1, 2]])).collect() # doctest: +SKIP [Row(0=1, 1=2)] >>> sqlContext.createDataFrame(rdd, "a: string, b: int").collect() [Row(a='Alice', b=1)] >>> rdd = rdd.map(lambda row: row[1]) >>> sqlContext.createDataFrame(rdd, "int").collect() [Row(value=1)] >>> sqlContext.createDataFrame(rdd, "boolean").collect() # doctest: +IGNORE_EXCEPTION_DETAIL Traceback (most recent call last): ... Py4JJavaError: ... """ return self.sparkSession.createDataFrame(data, schema, samplingRatio, verifySchema) def registerDataFrameAsTable(self, df, tableName): """Registers the given :class:`DataFrame` as a temporary table in the catalog. Temporary tables exist only during the lifetime of this instance of :class:`SQLContext`. .. versionadded:: 1.3.0 Examples -------- >>> sqlContext.registerDataFrameAsTable(df, "table1") """ df.createOrReplaceTempView(tableName) def dropTempTable(self, tableName): """ Remove the temporary table from catalog. .. versionadded:: 1.6.0 Examples -------- >>> sqlContext.registerDataFrameAsTable(df, "table1") >>> sqlContext.dropTempTable("table1") """ self.sparkSession.catalog.dropTempView(tableName) def createExternalTable(self, tableName, path=None, source=None, schema=None, **options): """Creates an external table based on the dataset in a data source. It returns the DataFrame associated with the external table. The data source is specified by the ``source`` and a set of ``options``. If ``source`` is not specified, the default data source configured by ``spark.sql.sources.default`` will be used. Optionally, a schema can be provided as the schema of the returned :class:`DataFrame` and created external table. .. versionadded:: 1.3.0 Returns ------- :class:`DataFrame` """ return self.sparkSession.catalog.createExternalTable( tableName, path, source, schema, **options) def sql(self, sqlQuery): """Returns a :class:`DataFrame` representing the result of the given query. .. versionadded:: 1.0.0 Returns ------- :class:`DataFrame` Examples -------- >>> sqlContext.registerDataFrameAsTable(df, "table1") >>> df2 = sqlContext.sql("SELECT field1 AS f1, field2 as f2 from table1") >>> df2.collect() [Row(f1=1, f2='row1'), Row(f1=2, f2='row2'), Row(f1=3, f2='row3')] """ return self.sparkSession.sql(sqlQuery) def table(self, tableName): """Returns the specified table or view as a :class:`DataFrame`. .. versionadded:: 1.0.0 Returns ------- :class:`DataFrame` Examples -------- >>> sqlContext.registerDataFrameAsTable(df, "table1") >>> df2 = sqlContext.table("table1") >>> sorted(df.collect()) == sorted(df2.collect()) True """ return self.sparkSession.table(tableName) def tables(self, dbName=None): """Returns a :class:`DataFrame` containing names of tables in the given database. If ``dbName`` is not specified, the current database will be used. The returned DataFrame has two columns: ``tableName`` and ``isTemporary`` (a column with :class:`BooleanType` indicating if a table is a temporary one or not). .. versionadded:: 1.3.0 Parameters ---------- dbName: str, optional name of the database to use. Returns ------- :class:`DataFrame` Examples -------- >>> sqlContext.registerDataFrameAsTable(df, "table1") >>> df2 = sqlContext.tables() >>> df2.filter("tableName = 'table1'").first() Row(database='', tableName='table1', isTemporary=True) """ if dbName is None: return DataFrame(self._ssql_ctx.tables(), self) else: return DataFrame(self._ssql_ctx.tables(dbName), self) def tableNames(self, dbName=None): """Returns a list of names of tables in the database ``dbName``. .. versionadded:: 1.3.0 Parameters ---------- dbName: str name of the database to use. Default to the current database. Returns ------- list list of table names, in string >>> sqlContext.registerDataFrameAsTable(df, "table1") >>> "table1" in sqlContext.tableNames() True >>> "table1" in sqlContext.tableNames("default") True """ if dbName is None: return [name for name in self._ssql_ctx.tableNames()] else: return [name for name in self._ssql_ctx.tableNames(dbName)] @since(1.0) def cacheTable(self, tableName): """Caches the specified table in-memory.""" self._ssql_ctx.cacheTable(tableName) @since(1.0) def uncacheTable(self, tableName): """Removes the specified table from the in-memory cache.""" self._ssql_ctx.uncacheTable(tableName) @since(1.3) def clearCache(self): """Removes all cached tables from the in-memory cache. """ self._ssql_ctx.clearCache() @property def read(self): """ Returns a :class:`DataFrameReader` that can be used to read data in as a :class:`DataFrame`. .. versionadded:: 1.4.0 Returns ------- :class:`DataFrameReader` """ return DataFrameReader(self) @property def readStream(self): """ Returns a :class:`DataStreamReader` that can be used to read data streams as a streaming :class:`DataFrame`. .. versionadded:: 2.0.0 Notes ----- This API is evolving. Returns ------- :class:`DataStreamReader` >>> text_sdf = sqlContext.readStream.text(tempfile.mkdtemp()) >>> text_sdf.isStreaming True """ return DataStreamReader(self) @property def streams(self): """Returns a :class:`StreamingQueryManager` that allows managing all the :class:`StreamingQuery` StreamingQueries active on `this` context. .. versionadded:: 2.0.0 Notes ----- This API is evolving. """ from pyspark.sql.streaming import StreamingQueryManager return StreamingQueryManager(self._ssql_ctx.streams()) class HiveContext(SQLContext): """A variant of Spark SQL that integrates with data stored in Hive. Configuration for Hive is read from ``hive-site.xml`` on the classpath. It supports running both SQL and HiveQL commands. .. deprecated:: 2.0.0 Use SparkSession.builder.enableHiveSupport().getOrCreate(). Parameters ---------- sparkContext : :class:`SparkContext` The SparkContext to wrap. jhiveContext : optional An optional JVM Scala HiveContext. If set, we do not instantiate a new :class:`HiveContext` in the JVM, instead we make all calls to this object. This is only for internal use. """ def __init__(self, sparkContext, jhiveContext=None): warnings.warn( "HiveContext is deprecated in Spark 2.0.0. Please use " + "SparkSession.builder.enableHiveSupport().getOrCreate() instead.", DeprecationWarning) if jhiveContext is None: sparkContext._conf.set("spark.sql.catalogImplementation", "hive") sparkSession = SparkSession.builder._sparkContext(sparkContext).getOrCreate() else: sparkSession = SparkSession(sparkContext, jhiveContext.sparkSession()) SQLContext.__init__(self, sparkContext, sparkSession, jhiveContext) @classmethod def _createForTesting(cls, sparkContext): """(Internal use only) Create a new HiveContext for testing. All test code that touches HiveContext *must* go through this method. Otherwise, you may end up launching multiple derby instances and encounter with incredibly confusing error messages. """ jsc = sparkContext._jsc.sc() jtestHive = sparkContext._jvm.org.apache.spark.sql.hive.test.TestHiveContext(jsc, False) return cls(sparkContext, jtestHive) def refreshTable(self, tableName): """Invalidate and refresh all the cached the metadata of the given table. For performance reasons, Spark SQL or the external data source library it uses might cache certain metadata about a table, such as the location of blocks. When those change outside of Spark SQL, users should call this function to invalidate the cache. """ self._ssql_ctx.refreshTable(tableName) def _test(): import os import doctest import tempfile from pyspark.context import SparkContext from pyspark.sql import Row, SQLContext import pyspark.sql.context os.chdir(os.environ["SPARK_HOME"]) globs = pyspark.sql.context.__dict__.copy() sc = SparkContext('local[4]', 'PythonTest') globs['tempfile'] = tempfile globs['os'] = os globs['sc'] = sc globs['sqlContext'] = SQLContext(sc) globs['rdd'] = rdd = sc.parallelize( [Row(field1=1, field2="row1"), Row(field1=2, field2="row2"), Row(field1=3, field2="row3")] ) globs['df'] = rdd.toDF() jsonStrings = [ '{"field1": 1, "field2": "row1", "field3":{"field4":11}}', '{"field1" : 2, "field3":{"field4":22, "field5": [10, 11]},"field6":[{"field7": "row2"}]}', '{"field1" : null, "field2": "row3", "field3":{"field4":33, "field5": []}}' ] globs['jsonStrings'] = jsonStrings globs['json'] = sc.parallelize(jsonStrings) (failure_count, test_count) = doctest.testmod( pyspark.sql.context, globs=globs, optionflags=doctest.ELLIPSIS | doctest.NORMALIZE_WHITESPACE) globs['sc'].stop() if failure_count: sys.exit(-1) if __name__ == "__main__": _test()
apache-2.0
roxyboy/scikit-learn
sklearn/covariance/tests/test_robust_covariance.py
213
3359
# Author: Alexandre Gramfort <[email protected]> # Gael Varoquaux <[email protected]> # Virgile Fritsch <[email protected]> # # License: BSD 3 clause import numpy as np from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_raises from sklearn.utils.validation import NotFittedError from sklearn import datasets from sklearn.covariance import empirical_covariance, MinCovDet, \ EllipticEnvelope X = datasets.load_iris().data X_1d = X[:, 0] n_samples, n_features = X.shape def test_mcd(): # Tests the FastMCD algorithm implementation # Small data set # test without outliers (random independent normal data) launch_mcd_on_dataset(100, 5, 0, 0.01, 0.1, 80) # test with a contaminated data set (medium contamination) launch_mcd_on_dataset(100, 5, 20, 0.01, 0.01, 70) # test with a contaminated data set (strong contamination) launch_mcd_on_dataset(100, 5, 40, 0.1, 0.1, 50) # Medium data set launch_mcd_on_dataset(1000, 5, 450, 0.1, 0.1, 540) # Large data set launch_mcd_on_dataset(1700, 5, 800, 0.1, 0.1, 870) # 1D data set launch_mcd_on_dataset(500, 1, 100, 0.001, 0.001, 350) def launch_mcd_on_dataset(n_samples, n_features, n_outliers, tol_loc, tol_cov, tol_support): rand_gen = np.random.RandomState(0) data = rand_gen.randn(n_samples, n_features) # add some outliers outliers_index = rand_gen.permutation(n_samples)[:n_outliers] outliers_offset = 10. * \ (rand_gen.randint(2, size=(n_outliers, n_features)) - 0.5) data[outliers_index] += outliers_offset inliers_mask = np.ones(n_samples).astype(bool) inliers_mask[outliers_index] = False pure_data = data[inliers_mask] # compute MCD by fitting an object mcd_fit = MinCovDet(random_state=rand_gen).fit(data) T = mcd_fit.location_ S = mcd_fit.covariance_ H = mcd_fit.support_ # compare with the estimates learnt from the inliers error_location = np.mean((pure_data.mean(0) - T) ** 2) assert(error_location < tol_loc) error_cov = np.mean((empirical_covariance(pure_data) - S) ** 2) assert(error_cov < tol_cov) assert(np.sum(H) >= tol_support) assert_array_almost_equal(mcd_fit.mahalanobis(data), mcd_fit.dist_) def test_mcd_issue1127(): # Check that the code does not break with X.shape = (3, 1) # (i.e. n_support = n_samples) rnd = np.random.RandomState(0) X = rnd.normal(size=(3, 1)) mcd = MinCovDet() mcd.fit(X) def test_outlier_detection(): rnd = np.random.RandomState(0) X = rnd.randn(100, 10) clf = EllipticEnvelope(contamination=0.1) assert_raises(NotFittedError, clf.predict, X) assert_raises(NotFittedError, clf.decision_function, X) clf.fit(X) y_pred = clf.predict(X) decision = clf.decision_function(X, raw_values=True) decision_transformed = clf.decision_function(X, raw_values=False) assert_array_almost_equal( decision, clf.mahalanobis(X)) assert_array_almost_equal(clf.mahalanobis(X), clf.dist_) assert_almost_equal(clf.score(X, np.ones(100)), (100 - y_pred[y_pred == -1].size) / 100.) assert(sum(y_pred == -1) == sum(decision_transformed < 0))
bsd-3-clause
Gezerj/Data-Analysis
Task-Problems/TASK 1.py
1
1909
# -*- coding: utf-8 -*- """ Created on Wed Oct 04 10:57:34 2017 @author: Gerwyn """ from __future__ import division import numpy as np import matplotlib.pyplot as plt """ 1) A new gun is expected to be able to fire its bullet to around 200m. However the manufacturers have identified 14 independent physical phenomena, each of which could affect the distance of the bullet by as much as +/- 8 meters. Using a uniform random number to mimic each of the physical phenomenon, show how one might expect the distribution of bullet distances to look after 1000 fires of the gun. (You need to make a plot!) Calculate the mean and standard deviation of the distribution. What happens if the number of random phenomena affecting the gun is actually only 4. Discuss the shapes of the distribution with your classmates, and discuss why they look they way they do Report what fraction of the distances are above 190m in each case. """ ################################################ plt.close('all') dist = 200 ierr = 8 ipp = 14 num = 1000 distribution = np.zeros(num) for j in xrange(num): X = np.random.uniform (-ierr , ierr, ipp) L = np.sum(X) distribution[j] = dist + L plt.figure() plt.hist(distribution, bins = 20) ################################################ m = np.mean(distribution) s = np.std(distribution) ################################################ new_distribution = np.zeros(num) new_ipp = 4 for j in xrange(num): X = np.random.uniform (-ierr , ierr, new_ipp) L = np.sum(X) new_distribution[j] = dist + L plt.figure() plt.hist(new_distribution, bins = 20) above = distribution[distribution > 190] new_above = new_distribution[new_distribution > 190] print len(above) print len(new_above) #################################################
gpl-3.0
uglyboxer/linear_neuron
net-p3/lib/python3.5/site-packages/sklearn/neighbors/approximate.py
8
22053
"""Approximate nearest neighbor search""" # Author: Maheshakya Wijewardena <[email protected]> # Joel Nothman <[email protected]> import numpy as np import warnings from scipy import sparse from .base import KNeighborsMixin, RadiusNeighborsMixin from ..base import BaseEstimator from ..utils.validation import check_array from ..utils import check_random_state from ..metrics.pairwise import pairwise_distances from ..random_projection import GaussianRandomProjection __all__ = ["LSHForest"] HASH_DTYPE = '>u4' MAX_HASH_SIZE = np.dtype(HASH_DTYPE).itemsize * 8 def _find_matching_indices(tree, bin_X, left_mask, right_mask): """Finds indices in sorted array of integers. Most significant h bits in the binary representations of the integers are matched with the items' most significant h bits. """ left_index = np.searchsorted(tree, bin_X & left_mask) right_index = np.searchsorted(tree, bin_X | right_mask, side='right') return left_index, right_index def _find_longest_prefix_match(tree, bin_X, hash_size, left_masks, right_masks): """Find the longest prefix match in tree for each query in bin_X Most significant bits are considered as the prefix. """ hi = np.empty_like(bin_X, dtype=np.intp) hi.fill(hash_size) lo = np.zeros_like(bin_X, dtype=np.intp) res = np.empty_like(bin_X, dtype=np.intp) left_idx, right_idx = _find_matching_indices(tree, bin_X, left_masks[hi], right_masks[hi]) found = right_idx > left_idx res[found] = lo[found] = hash_size r = np.arange(bin_X.shape[0]) kept = r[lo < hi] # indices remaining in bin_X mask while kept.shape[0]: mid = (lo.take(kept) + hi.take(kept)) // 2 left_idx, right_idx = _find_matching_indices(tree, bin_X.take(kept), left_masks[mid], right_masks[mid]) found = right_idx > left_idx mid_found = mid[found] lo[kept[found]] = mid_found + 1 res[kept[found]] = mid_found hi[kept[~found]] = mid[~found] kept = r[lo < hi] return res class ProjectionToHashMixin(object): """Turn a transformed real-valued array into a hash""" @staticmethod def _to_hash(projected): if projected.shape[1] % 8 != 0: raise ValueError('Require reduced dimensionality to be a multiple ' 'of 8 for hashing') # XXX: perhaps non-copying operation better out = np.packbits((projected > 0).astype(int)).view(dtype=HASH_DTYPE) return out.reshape(projected.shape[0], -1) def fit_transform(self, X, y=None): self.fit(X) return self.transform(X) def transform(self, X, y=None): return self._to_hash(super(ProjectionToHashMixin, self).transform(X)) class GaussianRandomProjectionHash(ProjectionToHashMixin, GaussianRandomProjection): """Use GaussianRandomProjection to produce a cosine LSH fingerprint""" def __init__(self, n_components=8, random_state=None): super(GaussianRandomProjectionHash, self).__init__( n_components=n_components, random_state=random_state) def _array_of_arrays(list_of_arrays): """Creates an array of array from list of arrays.""" out = np.empty(len(list_of_arrays), dtype=object) out[:] = list_of_arrays return out class LSHForest(BaseEstimator, KNeighborsMixin, RadiusNeighborsMixin): """Performs approximate nearest neighbor search using LSH forest. LSH Forest: Locality Sensitive Hashing forest [1] is an alternative method for vanilla approximate nearest neighbor search methods. LSH forest data structure has been implemented using sorted arrays and binary search and 32 bit fixed-length hashes. Random projection is used as the hash family which approximates cosine distance. The cosine distance is defined as ``1 - cosine_similarity``: the lowest value is 0 (identical point) but it is bounded above by 2 for the farthest points. Its value does not depend on the norm of the vector points but only on their relative angles. Parameters ---------- n_estimators : int (default = 10) Number of trees in the LSH Forest. min_hash_match : int (default = 4) lowest hash length to be searched when candidate selection is performed for nearest neighbors. n_candidates : int (default = 10) Minimum number of candidates evaluated per estimator, assuming enough items meet the `min_hash_match` constraint. n_neighbors : int (default = 5) Number of neighbors to be returned from query function when it is not provided to the :meth:`kneighbors` method. radius : float, optinal (default = 1.0) Radius from the data point to its neighbors. This is the parameter space to use by default for the :meth`radius_neighbors` queries. radius_cutoff_ratio : float, optional (default = 0.9) A value ranges from 0 to 1. Radius neighbors will be searched until the ratio between total neighbors within the radius and the total candidates becomes less than this value unless it is terminated by hash length reaching `min_hash_match`. random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. Attributes ---------- hash_functions_ : list of GaussianRandomProjectionHash objects Hash function g(p,x) for a tree is an array of 32 randomly generated float arrays with the same dimenstion as the data set. This array is stored in GaussianRandomProjectionHash object and can be obtained from ``components_`` attribute. trees_ : array, shape (n_estimators, n_samples) Each tree (corresponding to a hash function) contains an array of sorted hashed values. The array representation may change in future versions. original_indices_ : array, shape (n_estimators, n_samples) Original indices of sorted hashed values in the fitted index. References ---------- .. [1] M. Bawa, T. Condie and P. Ganesan, "LSH Forest: Self-Tuning Indexes for Similarity Search", WWW '05 Proceedings of the 14th international conference on World Wide Web, 651-660, 2005. Examples -------- >>> from sklearn.neighbors import LSHForest >>> X_train = [[5, 5, 2], [21, 5, 5], [1, 1, 1], [8, 9, 1], [6, 10, 2]] >>> X_test = [[9, 1, 6], [3, 1, 10], [7, 10, 3]] >>> lshf = LSHForest() >>> lshf.fit(X_train) # doctest: +NORMALIZE_WHITESPACE LSHForest(min_hash_match=4, n_candidates=50, n_estimators=10, n_neighbors=5, radius=1.0, radius_cutoff_ratio=0.9, random_state=None) >>> distances, indices = lshf.kneighbors(X_test, n_neighbors=2) >>> distances # doctest: +ELLIPSIS array([[ 0.069..., 0.149...], [ 0.229..., 0.481...], [ 0.004..., 0.014...]]) >>> indices array([[1, 2], [2, 0], [4, 0]]) """ def __init__(self, n_estimators=10, radius=1.0, n_candidates=50, n_neighbors=5, min_hash_match=4, radius_cutoff_ratio=.9, random_state=None): self.n_estimators = n_estimators self.radius = radius self.random_state = random_state self.n_candidates = n_candidates self.n_neighbors = n_neighbors self.min_hash_match = min_hash_match self.radius_cutoff_ratio = radius_cutoff_ratio def _compute_distances(self, query, candidates): """Computes the cosine distance. Distance is from the query to points in the candidates array. Returns argsort of distances in the candidates array and sorted distances. """ if candidates.shape == (0,): # needed since _fit_X[np.array([])] doesn't work if _fit_X sparse return np.empty(0, dtype=np.int), np.empty(0, dtype=float) distances = pairwise_distances(query, self._fit_X[candidates], metric='cosine')[0] distance_positions = np.argsort(distances) return distance_positions, distances[distance_positions] def _generate_masks(self): """Creates left and right masks for all hash lengths.""" tri_size = MAX_HASH_SIZE + 1 # Called once on fitting, output is independent of hashes left_mask = np.tril(np.ones((tri_size, tri_size), dtype=int))[:, 1:] right_mask = left_mask[::-1, ::-1] self._left_mask = np.packbits(left_mask).view(dtype=HASH_DTYPE) self._right_mask = np.packbits(right_mask).view(dtype=HASH_DTYPE) def _get_candidates(self, query, max_depth, bin_queries, n_neighbors): """Performs the Synchronous ascending phase. Returns an array of candidates, their distance ranks and distances. """ index_size = self._fit_X.shape[0] # Number of candidates considered including duplicates # XXX: not sure whether this is being calculated correctly wrt # duplicates from different iterations through a single tree n_candidates = 0 candidate_set = set() min_candidates = self.n_candidates * self.n_estimators while (max_depth > self.min_hash_match and (n_candidates < min_candidates or len(candidate_set) < n_neighbors)): left_mask = self._left_mask[max_depth] right_mask = self._right_mask[max_depth] for i in range(self.n_estimators): start, stop = _find_matching_indices(self.trees_[i], bin_queries[i], left_mask, right_mask) n_candidates += stop - start candidate_set.update( self.original_indices_[i][start:stop].tolist()) max_depth -= 1 candidates = np.fromiter(candidate_set, count=len(candidate_set), dtype=np.intp) # For insufficient candidates, candidates are filled. # Candidates are filled from unselected indices uniformly. if candidates.shape[0] < n_neighbors: warnings.warn( "Number of candidates is not sufficient to retrieve" " %i neighbors with" " min_hash_match = %i. Candidates are filled up" " uniformly from unselected" " indices." % (n_neighbors, self.min_hash_match)) remaining = np.setdiff1d(np.arange(0, index_size), candidates) to_fill = n_neighbors - candidates.shape[0] candidates = np.concatenate((candidates, remaining[:to_fill])) ranks, distances = self._compute_distances(query, candidates.astype(int)) return (candidates[ranks[:n_neighbors]], distances[:n_neighbors]) def _get_radius_neighbors(self, query, max_depth, bin_queries, radius): """Finds radius neighbors from the candidates obtained. Their distances from query are smaller than radius. Returns radius neighbors and distances. """ ratio_within_radius = 1 threshold = 1 - self.radius_cutoff_ratio total_candidates = np.array([], dtype=int) total_neighbors = np.array([], dtype=int) total_distances = np.array([], dtype=float) while (max_depth > self.min_hash_match and ratio_within_radius > threshold): left_mask = self._left_mask[max_depth] right_mask = self._right_mask[max_depth] candidates = [] for i in range(self.n_estimators): start, stop = _find_matching_indices(self.trees_[i], bin_queries[i], left_mask, right_mask) candidates.extend( self.original_indices_[i][start:stop].tolist()) candidates = np.setdiff1d(candidates, total_candidates) total_candidates = np.append(total_candidates, candidates) ranks, distances = self._compute_distances(query, candidates) m = np.searchsorted(distances, radius, side='right') positions = np.searchsorted(total_distances, distances[:m]) total_neighbors = np.insert(total_neighbors, positions, candidates[ranks[:m]]) total_distances = np.insert(total_distances, positions, distances[:m]) ratio_within_radius = (total_neighbors.shape[0] / float(total_candidates.shape[0])) max_depth = max_depth - 1 return total_neighbors, total_distances def fit(self, X, y=None): """Fit the LSH forest on the data. This creates binary hashes of input data points by getting the dot product of input points and hash_function then transforming the projection into a binary string array based on the sign (positive/negative) of the projection. A sorted array of binary hashes is created. Parameters ---------- X : array_like or sparse (CSR) matrix, shape (n_samples, n_features) List of n_features-dimensional data points. Each row corresponds to a single data point. Returns ------- self : object Returns self. """ self._fit_X = check_array(X, accept_sparse='csr') # Creates a g(p,x) for each tree self.hash_functions_ = [] self.trees_ = [] self.original_indices_ = [] rng = check_random_state(self.random_state) int_max = np.iinfo(np.int32).max for i in range(self.n_estimators): # This is g(p,x) for a particular tree. # Builds a single tree. Hashing is done on an array of data points. # `GaussianRandomProjection` is used for hashing. # `n_components=hash size and n_features=n_dim. hasher = GaussianRandomProjectionHash(MAX_HASH_SIZE, rng.randint(0, int_max)) hashes = hasher.fit_transform(self._fit_X)[:, 0] original_index = np.argsort(hashes) bin_hashes = hashes[original_index] self.original_indices_.append(original_index) self.trees_.append(bin_hashes) self.hash_functions_.append(hasher) self._generate_masks() return self def _query(self, X): """Performs descending phase to find maximum depth.""" # Calculate hashes of shape (n_samples, n_estimators, [hash_size]) bin_queries = np.asarray([hasher.transform(X)[:, 0] for hasher in self.hash_functions_]) bin_queries = np.rollaxis(bin_queries, 1) # descend phase depths = [_find_longest_prefix_match(tree, tree_queries, MAX_HASH_SIZE, self._left_mask, self._right_mask) for tree, tree_queries in zip(self.trees_, np.rollaxis(bin_queries, 1))] return bin_queries, np.max(depths, axis=0) def kneighbors(self, X, n_neighbors=None, return_distance=True): """Returns n_neighbors of approximate nearest neighbors. Parameters ---------- X : array_like or sparse (CSR) matrix, shape (n_samples, n_features) List of n_features-dimensional data points. Each row corresponds to a single query. n_neighbors : int, opitonal (default = None) Number of neighbors required. If not provided, this will return the number specified at the initialization. return_distance : boolean, optional (default = False) Returns the distances of neighbors if set to True. Returns ------- dist : array, shape (n_samples, n_neighbors) Array representing the cosine distances to each point, only present if return_distance=True. ind : array, shape (n_samples, n_neighbors) Indices of the approximate nearest points in the population matrix. """ if not hasattr(self, 'hash_functions_'): raise ValueError("estimator should be fitted.") if n_neighbors is None: n_neighbors = self.n_neighbors X = check_array(X, accept_sparse='csr') neighbors, distances = [], [] bin_queries, max_depth = self._query(X) for i in range(X.shape[0]): neighs, dists = self._get_candidates(X[i], max_depth[i], bin_queries[i], n_neighbors) neighbors.append(neighs) distances.append(dists) if return_distance: return np.array(distances), np.array(neighbors) else: return np.array(neighbors) def radius_neighbors(self, X, radius=None, return_distance=True): """Finds the neighbors within a given radius of a point or points. Return the indices and distances of some points from the dataset lying in a ball with size ``radius`` around the points of the query array. Points lying on the boundary are included in the results. The result points are *not* necessarily sorted by distance to their query point. LSH Forest being an approximate method, some true neighbors from the indexed dataset might be missing from the results. Parameters ---------- X : array_like or sparse (CSR) matrix, shape (n_samples, n_features) List of n_features-dimensional data points. Each row corresponds to a single query. radius : float Limiting distance of neighbors to return. (default is the value passed to the constructor). return_distance : boolean, optional (default = False) Returns the distances of neighbors if set to True. Returns ------- dist : array, shape (n_samples,) of arrays Each element is an array representing the cosine distances to some points found within ``radius`` of the respective query. Only present if ``return_distance=True``. ind : array, shape (n_samples,) of arrays Each element is an array of indices for neighbors within ``radius`` of the respective query. """ if not hasattr(self, 'hash_functions_'): raise ValueError("estimator should be fitted.") if radius is None: radius = self.radius X = check_array(X, accept_sparse='csr') neighbors, distances = [], [] bin_queries, max_depth = self._query(X) for i in range(X.shape[0]): neighs, dists = self._get_radius_neighbors(X[i], max_depth[i], bin_queries[i], radius) neighbors.append(neighs) distances.append(dists) if return_distance: return _array_of_arrays(distances), _array_of_arrays(neighbors) else: return _array_of_arrays(neighbors) def partial_fit(self, X, y=None): """ Inserts new data into the already fitted LSH Forest. Cost is proportional to new total size, so additions should be batched. Parameters ---------- X : array_like or sparse (CSR) matrix, shape (n_samples, n_features) New data point to be inserted into the LSH Forest. """ X = check_array(X, accept_sparse='csr') if not hasattr(self, 'hash_functions_'): return self.fit(X) if X.shape[1] != self._fit_X.shape[1]: raise ValueError("Number of features in X and" " fitted array does not match.") n_samples = X.shape[0] n_indexed = self._fit_X.shape[0] for i in range(self.n_estimators): bin_X = self.hash_functions_[i].transform(X)[:, 0] # gets the position to be added in the tree. positions = self.trees_[i].searchsorted(bin_X) # adds the hashed value into the tree. self.trees_[i] = np.insert(self.trees_[i], positions, bin_X) # add the entry into the original_indices_. self.original_indices_[i] = np.insert(self.original_indices_[i], positions, np.arange(n_indexed, n_indexed + n_samples)) # adds the entry into the input_array. if sparse.issparse(X) or sparse.issparse(self._fit_X): self._fit_X = sparse.vstack((self._fit_X, X)) else: self._fit_X = np.row_stack((self._fit_X, X)) return self
mit
mpharrigan/msmbuilder
MSMBuilder/plot_graph.py
2
4369
# This file is part of MSMBuilder. # # Copyright 2011 Stanford University # # MSMBuilder is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program; if not, write to the Free Software # Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA """Code for visualizing networks (e.g. transition, count, or flux matrices). """ from __future__ import print_function, division, absolute_import import scipy.sparse import numpy as np import networkx import sys import re import logging logger = logging.getLogger(__name__) def CreateNetwork(Matrix, EqPops, Directed=True, EdgeScale=2, PopCutoff=0.01, EdgeCutoff=0.1, ImageList=None, Labels=None): """Creates a NetworkX graph (or DiGraph) object. Inputs: Matrix -- a sparse matrix. EqPops -- state equilibrium populations. Keyword Arguments: Directed -- Is the graph directed? Default: True EdgeScale -- a scale factor for edges. Default: 2 PopCutoff -- hide states with populations lower than this. Default: 0.01 EdgeCutoff -- hide edges with weights lower than this. Default: 0.1 ImageList -- A list of filenames for visualization on each states. Default: None Labels -- A List of labels for display on each state. Default: None Notes: The NetworkX graph can be used for simple visualization (e.g. matplotlib) or export to a GraphViz dotfile. You can optionally add image paths to the graph, which will be recorded in the dotfile for eventual visualization. """ Matrix=Matrix.tocsr() print("Loaded an MSM with %d states..." % Matrix.shape[0]) #These are the desired states. Ind=np.where(EqPops>PopCutoff)[0] if len(Ind) == 0: raise ValueError("Error! No nodes will be rendered. Try lowering the population cutoff (epsilon).") # if user specified labels use those, otherwise use Ind if Labels == None: Labels = Ind #Select the desired subset of Matrix Matrix=Matrix[Ind][:,Ind] EqEnergy=-np.log(EqPops[Ind]) # invert thigns so less populated states are smaller than more populated ones maxEqEnergy = EqEnergy.max() EqEnergy = 1 + maxEqEnergy - EqEnergy # add 1 to ensure nothing gets 0 weight # Renormalize stuff to make it more reasonable frm, to, weight = scipy.sparse.find( Matrix ) weight /= weight.max() weight *= EdgeScale n=Matrix.shape[0] if Directed: G=networkx.from_scipy_sparse_matrix(Matrix,create_using=networkx.DiGraph()) else: G=networkx.from_scipy_sparse_matrix(Matrix) logger.info("Rendering %d nodes...", n) # Write attributes to G for i in range(n): G.node[i]["width"]=EqEnergy[i]/3 G.node[i]["height"]=EqEnergy[i]/3 G.node[i]["fixedsize"] = True G.node[i]["label"]=Labels[i] for i in range(len(weight)): G[frm[i]][to[i]]["penwidth"]=weight[i]*2 G[frm[i]][to[i]]["arrowsize"]=weight[i]*2 #Save image paths if desired. if ImageList!=None: logger.info("Found %d images - attempting to include them in the .dot file", len(ImageList)) ImageList=np.array(ImageList) for Image in ImageList: match = re.findall( '(\d+)', Image ) if len(match) > 0: state = int( match[0] ) if state in Ind: Gind = int(np.where( Ind == state)[0]) G.node[Gind]["image"]=Image logger.info("Found an image for state: %d", state) return(G) def PlotNetwork(G,OutputFile="Graph.dot"): """Plot a graph to screen and also save output.""" try: networkx.draw_graphviz(G) except: logger.error("could not plot graph to screen. Check X / Matplotlib settings.") networkx.write_dot(G, OutputFile) logger.info("Wrote: %s", OutputFile)
gpl-2.0
LangmuirSim/langmuir
LangmuirPython/langmuir/ivcurve.py
2
18624
# -*- coding: utf-8 -*- """ .. note:: Functions for analyzing current voltage data. .. moduleauthor:: Adam Gagorik <[email protected]> """ from langmuir import units, Quantity import langmuir as lm import pandas as pd import numpy as np import collections import StringIO class IVCurve(object): """ A class to analyze IV curves. ======== ========================== Attr Description ======== ========================== **i** current **v** voltage **p** power **a** area **j** current density **r** irradiance ======== ========================== .. seealso:: :py:class:`IVCurveSolar` """ class units: def __init__(self): pass i = units.nA v = units.V p = units.nW a = units.nm**2 j = units.mA/units.cm**2 r = units.mW/units.cm**2 class latex: def __init__(self): pass i = r'\ensuremath{nA}' v = r'\ensuremath{V}' p = r'\ensuremath{nW}' a = r'\ensuremath{nm^{2}}' j = r'\ensuremath{mA\,cm^{-2}}' r = r'\ensuremath{mW\,cm^{-2}}' class string: def __init__(self): pass i = r'nA' v = r'V' p = r'nW' a = r'nm**2' j = r'mA/cm**2' r = r'mW/cm**2' class columns: def __init__(self): pass i = r'drain:current' v = r'voltage.right' x = r'grid.x' y = r'grid.y' def __init__(self, i, v, a, ierr=None): """ Construct IV curve. :param i: current :param v: voltage :param a: area :param ierr: std of current :type i: :py:class:`numpy.ndarray` :type v: :py:class:`numpy.ndarray` :type a: :py:class:`numpy.ndarray` or :py:class:`float` >>> v = np.linspace(0, 100, 10) >>> i = np.tanh(v) >>> a = 1024 * 256 >>> ivcurve = lm.ivcurve.IVCurve(i, v, a) .. seealso:: :py:meth:`IVCurve.from_dataframe` :py:meth:`IVCurve.from_panel` :py:meth:`IVCurve.load_pkl` :py:meth:`IVCurve.load_pkls` """ i = np.asanyarray(i) v = np.asanyarray(v) if np.isscalar(a): a = np.ones_like(i) * a else: a = np.asanyarray(a) assert i.shape == v.shape == a.shape ### <<< units on self.i = Quantity(i, self.units.i) # current self.v = Quantity(v, self.units.v) # voltage self.a = Quantity(a, self.units.a) # area self.p = (self.i * self.v).to(self.units.p) # power self.j = (self.i / self.a).to(self.units.j) # density self.r = (self.p / self.a).to(self.units.r) # irradiance if ierr is None: ierr = np.zeros_like(i) else: ierr = np.asanyarray(ierr) self.ierr = Quantity(ierr, self.units.i) self.perr = (self.ierr * self.v).to(self.units.p) # power self.jerr = (self.ierr / self.a).to(self.units.j) # density self.rerr = (self.perr / self.a).to(self.units.r) # irradiance ### <<< units off self.i = np.asanyarray(self.i.magnitude) self.v = np.asanyarray(self.v.magnitude) self.p = np.asanyarray(self.p.magnitude) self.a = np.asanyarray(self.a.magnitude) self.j = np.asanyarray(self.j.magnitude) self.r = np.asanyarray(self.r.magnitude) self.ierr = np.asanyarray(self.ierr.magnitude) self.perr = np.asanyarray(self.perr.magnitude) self.jerr = np.asanyarray(self.jerr.magnitude) self.rerr = np.asanyarray(self.rerr.magnitude) class stats: def __init__(self): pass i = lm.analyze.Stats(self.i, 'i') v = lm.analyze.Stats(self.v, 'v') p = lm.analyze.Stats(self.p, 'p') a = lm.analyze.Stats(self.a, 'a') j = lm.analyze.Stats(self.j, 'j') r = lm.analyze.Stats(self.r, 'r') ierr = lm.analyze.Stats(self.ierr, 'ierr') jerr = lm.analyze.Stats(self.jerr, 'jerr') perr = lm.analyze.Stats(self.perr, 'perr') rerr = lm.analyze.Stats(self.rerr, 'rerr') self.stats = stats @classmethod def from_dataframe(cls, frame): """ Construct IV curve from pandas DataFrame. :param frame: dataframe object :type frame: :py:class:`pandas.DataFrame` >>> frame = lm.common.load_pkl('calculated.pkl.gz') >>> ivcurve = lm.ivcurve.IVCurve(frame) .. seealso:: :py:meth:`IVCurve.load_pkl` """ i = np.asanyarray(frame[cls.columns.i]) v = np.asanyarray(frame[cls.columns.v]) x = np.asanyarray(frame[cls.columns.x]) y = np.asanyarray(frame[cls.columns.y]) a = x * y IVCurve = cls(i, v, a) return IVCurve @classmethod def from_panel(cls, panel): """ Construct IV curve from pandas Panel. :param panel: panel object :type panel: :py:class:`pandas.Panel` >>> pkls = lm.find.pkls('.', stub='gathered*', r=True) >>> panel = lm.analyze.create_panel(lm.common.load_pkls(pkls)) >>> ivcurve = lm.ivcurve.IVCurve.from_panel(panel) .. seealso:: :py:meth:`IVCurve.load_pkls` """ i = np.asanyarray( panel.minor_xs(cls.columns.i).mean(axis=1).fillna(0)) v = np.asanyarray( panel.minor_xs(cls.columns.v).mean(axis=1).fillna(0)) grid_x = np.asanyarray(panel.minor_xs(cls.columns.x).mean(axis=1)) grid_y = np.asanyarray(panel.minor_xs(cls.columns.y).mean(axis=1)) a = grid_x * grid_y ierr = np.asanyarray( panel.minor_xs(cls.columns.i).std(axis=1).fillna(0)) IVCurve = cls(i, v, a, ierr) return IVCurve @classmethod def load_pkl(cls, pkl): """ Construct IV curve from pkl file. :param pkl: name of file :type pkl: str >>> ivcurve = lm.ivcurve.IVCurve.load_pkl('gathered.pkl.gz') """ pkl = lm.common.load_pkl(pkl) return cls.from_dataframe(pkl) @classmethod def load_pkls(cls, pkls): """ Construct IV curve from a list of pkl files. :param pkls: list of filenames. :type pkls: list >>> pkls = lm.find.pkls('.', stub='gathered*', r=True) >>> ivcurve = lm.ivcurve.IVCurve.load_pkls(pkls) """ panel = lm.analyze.create_panel(lm.common.load_pkls(pkls)) return cls.from_panel(panel) def to_dict(self): """ Get data as dict. """ d = collections.OrderedDict() d['v' ] = self.v d['i' ] = self.i d['ierr'] = self.ierr d['p' ] = self.p d['perr'] = self.perr d['a' ] = self.a d['j' ] = self.j d['jerr'] = self.jerr d['r' ] = self.r d['rerr'] = self.rerr return d def to_dataframe(self): """ Convert data into a :py:class:`pandas.DataFrame` """ d = self.to_dict() return pd.DataFrame(dict(d), columns=d.keys()) def save_csv(self, handle, **kwargs): """ Save data to a CSV file. :param handle: filename :type handle: str """ handle = lm.common.zhandle(handle, 'wb') frame = self.to_dataframe() _kwargs = dict(index=True) _kwargs.update(**kwargs) frame.to_csv(handle, **_kwargs) handle.write('#\n') series = self.to_series() series.to_csv(handle, **_kwargs) def summary(self): """ Get summary of all calculated results as a dictionary. """ d = collections.OrderedDict() d.update(self.stats.i.to_dict()) d.update(self.stats.v.to_dict()) d.update(self.stats.p.to_dict()) d.update(self.stats.a.to_dict()) d.update(self.stats.j.to_dict()) d.update(self.stats.r.to_dict()) d.update(self.stats.ierr.to_dict()) d.update(self.stats.jerr.to_dict()) d.update(self.stats.perr.to_dict()) d.update(self.stats.rerr.to_dict()) return d def to_series(self): """ Convert data into a :py:class:`pandas.Series` """ d = self.summary() return pd.Series(d, index=d.keys()) def save_pkl(self, handle): """ Save results and data to a PKL file. :param handle: filename :type handle: str """ results = self.to_dict() results.update(self.summary()) lm.common.save_pkl(results, handle) class IVCurveSolar(IVCurve): """ A class to analyze IV curves for solar cells. Calculates the fill factor. ======== ========================== Attr Description ======== ========================== **v_oc** open circuit voltage **v_mp** voltage at max power **i_sc** short circuit current **i_mp** current at max power **p_th** theoretical power **p_mp** max power **fill** fill factor ======== ========================== """ class latex(IVCurve.latex): def __init__(self): pass f = r'\%' v_oc = r'\ensuremath{v_{oc}}' i_sc = r'\ensuremath{i_{sc}}' p_th = r'\ensuremath{p_{th}}' j_sc = r'\ensuremath{j_{sc}}' r_th = r'\ensuremath{r_{th}}' i_mp = r'\ensuremath{i_{mp}}' v_mp = r'\ensuremath{v_{mp}}' p_mp = r'\ensuremath{p_{mp}}' j_mp = r'\ensuremath{j_{mp}}' r_mp = r'\ensuremath{r_{mp}}' fill = r'\ensuremath{FF}' class string(IVCurve.string): def __init__(self): pass f = r'%' v_oc = r'v_oc' i_sc = r'i_sc' p_th = r'p_th' j_sc = r'j_sc' r_th = r'r_th' i_mp = r'i_mp' v_mp = r'v_mp' p_mp = r'p_mp' j_mp = r'j_mp' r_mp = r'r_mp' fill = r'fill' def __init__(self, i, v, a, ierr=None, v_shift=1.5, **kwargs): """ Construct IV curve. See arguments for :py:class:`IVCurve`. :param v_shift: amount to shift voltage axis by :type v_shift: float >>> v = np.linspace(0, 100, 10) >>> i = np.tanh(v) >>> a = 1024 * 256 >>> ivcurve = lm.ivcurve.IVCurveSolar(i, v, a) """ self.v_shift = v_shift v = np.asanyarray(v) + v_shift super(IVCurveSolar, self).__init__(i, v, a, ierr) self.v_oc = 0.0 self.i_sc = 0.0 self.p_th = 0.0 self.v_mp = 0.0 self.i_mp = 0.0 self.p_mp = 0.0 self.j_sc = 0.0 self.r_th = 0.0 self.j_mp = 0.0 self.r_mp = 0.0 self.fill = 0.0 self.ifit = None self.pfit = None self.jfit = None self.rfit = None if kwargs: self.calculate(**kwargs) def summary(self): """ Get summary of all calculated results as a dictionary. """ results = IVCurve.summary(self) results.update(v_oc=self.v_oc) results.update(i_sc=self.i_sc) results.update(p_th=self.p_th) results.update(v_mp=self.v_mp) results.update(i_mp=self.i_mp) results.update(p_mp=self.p_mp) results.update(j_sc=self.j_sc) results.update(r_th=self.r_th) results.update(j_mp=self.j_mp) results.update(r_mp=self.r_mp) results.update(fill=self.fill) return results def calculate(self, mode='interp1d', recycle=False, guess=None, **kwargs): """ Calculate fill factor. kwargs are passed to fitting functions. :param mode: fitting mode (tanh, power, interp1d, spline, erf) :param recycle: recycle fit parameters when guessing :param guess: guess for v_oc (default=shift) :type mode: str :type recycle: bool :type guess: float ============ ============ Mode Option ============ ============ **power** order=8 **tanh** **erf** **interp1d** kind='cubic' **spline** k=5 ============ ============ >>> ivcurve = lm.ivcurve.IVCurve.load_pkl('gathered.pkl.gz') >>> ivcurve.calculate(mode='interp1d', kind='linear') >>> print ivcurve.fill """ if mode == 'power': self._fit_power(recycle=recycle, **kwargs) elif mode == 'tanh': self._fit_tanh(recycle=recycle, **kwargs) elif mode == 'erf': self._fit_erf(recycle=recycle, **kwargs) elif mode == 'interp1d': self._fit_interp1d(recycle=recycle, **kwargs) elif mode == 'spline': self._fit_spline(recycle=recycle, **kwargs) else: raise NotImplementedError('unknown fit mode: %s' % mode) if guess is None: guess = self.v_shift ### >>> units on self.v_oc = self.ifit.solve(x0=guess) * self.units.v self.i_sc = self.ifit(0) * self.units.i self.p_th =(self.v_oc * self.i_sc).to(self.units.p) self.v_mp = self.pfit.minimize(0.66 * self.v_oc.magnitude, return_y=False) * self.units.v self.i_mp = self.ifit(self.v_mp.magnitude) * self.units.i self.p_mp =(self.i_mp * self.v_mp).to(self.units.p) area = np.mean(self.a) * self.units.a self.j_sc = (self.i_sc / area).to(self.units.j) self.j_mp = (self.i_mp / area).to(self.units.j) self.r_th = (self.p_th / area).to(self.units.r) self.r_mp = (self.p_mp / area).to(self.units.r) self.fill = (self.p_mp / self.p_th * 100) self.fill = float(self.fill.magnitude) self.v_oc = float(self.v_oc.magnitude) self.i_sc = float(self.i_sc.magnitude) self.p_th = float(self.p_th.magnitude) self.v_mp = float(self.v_mp.magnitude) self.i_mp = float(self.i_mp.magnitude) self.p_mp = float(self.p_mp.magnitude) self.j_sc = float(self.j_sc.magnitude) self.r_th = float(self.r_th.magnitude) self.j_mp = float(self.j_mp.magnitude) self.r_mp = float(self.r_mp.magnitude) ### <<< units off def _fit_power(self, recycle=False, order=8, **kwargs): """ Fit using power series. """ self.ifit = lm.fit.FitPower(self.v, self.i, popt=None, yerr=self.ierr, order=order) self.jfit = lm.fit.FitPower(self.v, self.j, popt=None, yerr=self.jerr, order=order) if recycle: p_popt = self.ifit.popt r_popt = self.jfit.popt else: p_popt = None r_popt = None order += 1 self.pfit = lm.fit.FitPower(self.v, self.p, popt=p_popt, yerr=self.perr, order=order) self.rfit = lm.fit.FitPower(self.v, self.r, popt=r_popt, yerr=self.rerr, order=order) def _fit_tanh(self, recycle=False, **kwargs): """ Fit using hyperbolic tangent. """ i_popt = [self.stats.i.min, 1, -self.v_shift, 0] j_popt = [self.stats.j.min, 1, -self.v_shift, 0] self.ifit = lm.fit.FitTanh(self.v, self.i, popt=i_popt, yerr=self.ierr) self.jfit = lm.fit.FitTanh(self.v, self.j, popt=j_popt, yerr=self.jerr) if recycle: p_popt = self.ifit.popt r_popt = self.jfit.popt else: p_popt = i_popt r_popt = j_popt self.pfit = lm.fit.FitXTanh(self.v, self.p, popt=p_popt, yerr=self.perr) self.rfit = lm.fit.FitXTanh(self.v, self.r, popt=r_popt, yerr=self.rerr) def _fit_erf(self, recycle=False, **kwargs): """ Fit using error function. """ i_popt = [self.stats.i.min, 1, -self.v_shift, 0] j_popt = [self.stats.j.min, 1, -self.v_shift, 0] self.ifit = lm.fit.FitErf(self.v, self.i, popt=i_popt, yerr=self.ierr) self.jfit = lm.fit.FitErf(self.v, self.j, popt=j_popt, yerr=self.jerr) if recycle: p_popt = self.ifit.popt r_popt = self.jfit.popt else: p_popt = i_popt r_popt = j_popt self.pfit = lm.fit.FitXErf(self.v, self.p, popt=p_popt, yerr=self.perr) self.rfit = lm.fit.FitXErf(self.v, self.r, popt=r_popt, yerr=self.rerr) def _fit_interp1d(self, recycle=False, kind='cubic', **kwargs): """ Fit using an interpolating polynomial. """ self.ifit = lm.fit.FitInterp1D(self.v, self.i, popt=None, yerr=self.ierr, kind=kind) self.jfit = lm.fit.FitInterp1D(self.v, self.j, popt=None, yerr=self.jerr, kind=kind) self.pfit = lm.fit.FitInterp1D(self.v, self.p, popt=None, yerr=self.perr, kind=kind) self.rfit = lm.fit.FitInterp1D(self.v, self.r, popt=None, yerr=self.rerr, kind=kind) def _fit_spline(self, recycle=False, k=3, **kwargs): """ Fit using spline. """ self.ifit = lm.fit.FitUnivariateSpline(self.v, self.i, popt=None, yerr=self.ierr, k=k) self.jfit = lm.fit.FitUnivariateSpline(self.v, self.j, popt=None, yerr=self.jerr, k=k) self.pfit = lm.fit.FitUnivariateSpline(self.v, self.p, popt=None, yerr=self.perr, k=k) self.rfit = lm.fit.FitUnivariateSpline(self.v, self.r, popt=None, yerr=self.rerr, k=k) def __str__(self): s = StringIO.StringIO() print >> s, '[IVCurveSolar]' print >> s, ' {self.string.v_oc} = {self.v_oc:{fmt}} {self.string.v}' print >> s, ' {self.string.v_mp} = {self.v_mp:{fmt}} {self.string.v}' print >> s, ' {self.string.i_sc} = {self.i_sc:{fmt}} {self.string.i} {self.j_sc:{fmt}} {self.string.j}' print >> s, ' {self.string.i_mp} = {self.i_mp:{fmt}} {self.string.i} {self.j_mp:{fmt}} {self.string.j}' print >> s, ' {self.string.p_th} = {self.p_th:{fmt}} {self.string.p} {self.r_th:{fmt}} {self.string.r}' print >> s, ' {self.string.p_mp} = {self.p_mp:{fmt}} {self.string.p} {self.r_mp:{fmt}} {self.string.r}' print >> s, ' {self.string.fill} = {self.fill:{fmt}} {self.string.f}' return s.getvalue().format(self=self, fmt='12.8f')
gpl-2.0
Chiroptera/QCThesis
MyML/cluster/K_Means_wrapper.py
3
1057
import numpy as np from datetime import datetime from sklearn.cluster import KMeans # Receives: # - mixture : n x d array with n points and d dimensions # - numClusters : number of clusters to use # - numInits : number of k-means runs # Returns: # - k_centroids : list of final centroids of each iteration # - qk_assignment : list of assignments of each point to one of the # centroids on each iteration # - k_timings_cg : list of timing for each iteration def k_means(mixture,numClusters,numInits): k_timings_cg=list() start=datetime.now() k_assignment=list() k_centroids=list() k_inertia=list() for i in range(numInits): estimator = KMeans(n_clusters=numClusters,init='k-means++',n_init=1) assignment = estimator.fit_predict(mixture) centroids = estimator.cluster_centers_ k_centroids.append(centroids) k_assignment.append(assignment) k_inertia.append(estimator.inertia_) k_timings_cg.append((datetime.now() - start).total_seconds()) start=datetime.now() return k_centroids,k_assignment,k_timings_cg,k_inertia
mit
Sklearn-HMM/scikit-learn-HMM
sklean-hmm/svm/classes.py
4
28639
from .base import BaseLibLinear, BaseSVC, BaseLibSVM from ..base import RegressorMixin from ..linear_model.base import LinearClassifierMixin, SparseCoefMixin from ..feature_selection.from_model import _LearntSelectorMixin class LinearSVC(BaseLibLinear, LinearClassifierMixin, _LearntSelectorMixin, SparseCoefMixin): """Linear Support Vector Classification. Similar to SVC with parameter kernel='linear', but implemented in terms of liblinear rather than libsvm, so it has more flexibility in the choice of penalties and loss functions and should scale better (to large numbers of samples). This class supports both dense and sparse input and the multiclass support is handled according to a one-vs-the-rest scheme. Parameters ---------- C : float, optional (default=1.0) Penalty parameter C of the error term. loss : string, 'l1' or 'l2' (default='l2') Specifies the loss function. 'l1' is the hinge loss (standard SVM) while 'l2' is the squared hinge loss. penalty : string, 'l1' or 'l2' (default='l2') Specifies the norm used in the penalization. The 'l2' penalty is the standard used in SVC. The 'l1' leads to `coef_` vectors that are sparse. dual : bool, (default=True) Select the algorithm to either solve the dual or primal optimization problem. Prefer dual=False when n_samples > n_features. tol : float, optional (default=1e-4) Tolerance for stopping criteria multi_class: string, 'ovr' or 'crammer_singer' (default='ovr') Determines the multi-class strategy if `y` contains more than two classes. `ovr` trains n_classes one-vs-rest classifiers, while `crammer_singer` optimizes a joint objective over all classes. While `crammer_singer` is interesting from an theoretical perspective as it is consistent it is seldom used in practice and rarely leads to better accuracy and is more expensive to compute. If `crammer_singer` is chosen, the options loss, penalty and dual will be ignored. fit_intercept : boolean, optional (default=True) Whether to calculate the intercept for this model. If set to false, no intercept will be used in calculations (e.g. data is expected to be already centered). intercept_scaling : float, optional (default=1) when self.fit_intercept is True, instance vector x becomes [x, self.intercept_scaling], i.e. a "synthetic" feature with constant value equals to intercept_scaling is appended to the instance vector. The intercept becomes intercept_scaling * synthetic feature weight Note! the synthetic feature weight is subject to l1/l2 regularization as all other features. To lessen the effect of regularization on synthetic feature weight (and therefore on the intercept) intercept_scaling has to be increased class_weight : {dict, 'auto'}, optional Set the parameter C of class i to class_weight[i]*C for SVC. If not given, all classes are supposed to have weight one. The 'auto' mode uses the values of y to automatically adjust weights inversely proportional to class frequencies. verbose : int, default: 0 Enable verbose output. Note that this setting takes advantage of a per-process runtime setting in liblinear that, if enabled, may not work properly in a multithreaded context. random_state : int seed, RandomState instance, or None (default) The seed of the pseudo random number generator to use when shuffling the data. Attributes ---------- `coef_` : array, shape = [n_features] if n_classes == 2 \ else [n_classes, n_features] Weights asigned to the features (coefficients in the primal problem). This is only available in the case of linear kernel. `coef_` is readonly property derived from `raw_coef_` that \ follows the internal memory layout of liblinear. `intercept_` : array, shape = [1] if n_classes == 2 else [n_classes] Constants in decision function. Notes ----- The underlying C implementation uses a random number generator to select features when fitting the model. It is thus not uncommon, to have slightly different results for the same input data. If that happens, try with a smaller tol parameter. The underlying implementation (liblinear) uses a sparse internal representation for the data that will incur a memory copy. **References:** `LIBLINEAR: A Library for Large Linear Classification <http://www.csie.ntu.edu.tw/~cjlin/liblinear/>`__ See also -------- SVC Implementation of Support Vector Machine classifier using libsvm: the kernel can be non-linear but its SMO algorithm does not scale to large number of samples as LinearSVC does. Furthermore SVC multi-class mode is implemented using one vs one scheme while LinearSVC uses one vs the rest. It is possible to implement one vs the rest with SVC by using the :class:`sklearn.multiclass.OneVsRestClassifier` wrapper. Finally SVC can fit dense data without memory copy if the input is C-contiguous. Sparse data will still incur memory copy though. sklearn.linear_model.SGDClassifier SGDClassifier can optimize the same cost function as LinearSVC by adjusting the penalty and loss parameters. Furthermore SGDClassifier is scalable to large number of samples as it uses a Stochastic Gradient Descent optimizer. Finally SGDClassifier can fit both dense and sparse data without memory copy if the input is C-contiguous or CSR. """ def __init__(self, penalty='l2', loss='l2', dual=True, tol=1e-4, C=1.0, multi_class='ovr', fit_intercept=True, intercept_scaling=1, class_weight=None, verbose=0, random_state=None): super(LinearSVC, self).__init__( penalty=penalty, loss=loss, dual=dual, tol=tol, C=C, multi_class=multi_class, fit_intercept=fit_intercept, intercept_scaling=intercept_scaling, class_weight=class_weight, verbose=verbose, random_state=random_state) class SVC(BaseSVC): """C-Support Vector Classification. The implementations is a based on libsvm. The fit time complexity is more than quadratic with the number of samples which makes it hard to scale to dataset with more than a couple of 10000 samples. The multiclass support is handled according to a one-vs-one scheme. For details on the precise mathematical formulation of the provided kernel functions and how `gamma`, `coef0` and `degree` affect each, see the corresponding section in the narrative documentation: :ref:`svm_kernels`. .. The narrative documentation is available at http://scikit-learn.org/ Parameters ---------- C : float, optional (default=1.0) Penalty parameter C of the error term. kernel : string, optional (default='rbf') Specifies the kernel type to be used in the algorithm. It must be one of 'linear', 'poly', 'rbf', 'sigmoid', 'precomputed' or a callable. If none is given, 'rbf' will be used. If a callable is given it is used to precompute the kernel matrix. degree : int, optional (default=3) Degree of the polynomial kernel function ('poly'). Ignored by all other kernels. gamma : float, optional (default=0.0) Kernel coefficient for 'rbf', 'poly' and 'sigmoid'. If gamma is 0.0 then 1/n_features will be used instead. coef0 : float, optional (default=0.0) Independent term in kernel function. It is only significant in 'poly' and 'sigmoid'. probability: boolean, optional (default=False) Whether to enable probability estimates. This must be enabled prior to calling `fit`, and will slow down that method. shrinking: boolean, optional (default=True) Whether to use the shrinking heuristic. tol : float, optional (default=1e-3) Tolerance for stopping criterion. cache_size : float, optional Specify the size of the kernel cache (in MB) class_weight : {dict, 'auto'}, optional Set the parameter C of class i to class_weight[i]*C for SVC. If not given, all classes are supposed to have weight one. The 'auto' mode uses the values of y to automatically adjust weights inversely proportional to class frequencies. verbose : bool, default: False Enable verbose output. Note that this setting takes advantage of a per-process runtime setting in libsvm that, if enabled, may not work properly in a multithreaded context. max_iter : int, optional (default=-1) Hard limit on iterations within solver, or -1 for no limit. random_state : int seed, RandomState instance, or None (default) The seed of the pseudo random number generator to use when shuffling the data for probability estimation. Attributes ---------- `support_` : array-like, shape = [n_SV] Index of support vectors. `support_vectors_` : array-like, shape = [n_SV, n_features] Support vectors. `n_support_` : array-like, dtype=int32, shape = [n_class] number of support vector for each class. `dual_coef_` : array, shape = [n_class-1, n_SV] Coefficients of the support vector in the decision function. \ For multiclass, coefficient for all 1-vs-1 classifiers. \ The layout of the coefficients in the multiclass case is somewhat \ non-trivial. See the section about multi-class classification in the \ SVM section of the User Guide for details. `coef_` : array, shape = [n_class-1, n_features] Weights asigned to the features (coefficients in the primal problem). This is only available in the case of linear kernel. `coef_` is readonly property derived from `dual_coef_` and `support_vectors_` `intercept_` : array, shape = [n_class * (n_class-1) / 2] Constants in decision function. Examples -------- >>> import numpy as np >>> X = np.array([[-1, -1], [-2, -1], [1, 1], [2, 1]]) >>> y = np.array([1, 1, 2, 2]) >>> from sklearn.svm import SVC >>> clf = SVC() >>> clf.fit(X, y) #doctest: +NORMALIZE_WHITESPACE SVC(C=1.0, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=0.0, kernel='rbf', max_iter=-1, probability=False, random_state=None, shrinking=True, tol=0.001, verbose=False) >>> print(clf.predict([[-0.8, -1]])) [1] See also -------- SVR Support Vector Machine for Regression implemented using libsvm. LinearSVC Scalable Linear Support Vector Machine for classification implemented using liblinear. Check the See also section of LinearSVC for more comparison element. """ def __init__(self, C=1.0, kernel='rbf', degree=3, gamma=0.0, coef0=0.0, shrinking=True, probability=False, tol=1e-3, cache_size=200, class_weight=None, verbose=False, max_iter=-1, random_state=None): super(SVC, self).__init__( 'c_svc', kernel, degree, gamma, coef0, tol, C, 0., 0., shrinking, probability, cache_size, class_weight, verbose, max_iter, random_state) class NuSVC(BaseSVC): """Nu-Support Vector Classification. Similar to SVC but uses a parameter to control the number of support vectors. The implementation is based on libsvm. Parameters ---------- nu : float, optional (default=0.5) An upper bound on the fraction of training errors and a lower bound of the fraction of support vectors. Should be in the interval (0, 1]. kernel : string, optional (default='rbf') Specifies the kernel type to be used in the algorithm. It must be one of 'linear', 'poly', 'rbf', 'sigmoid', 'precomputed' or a callable. If none is given, 'rbf' will be used. If a callable is given it is used to precompute the kernel matrix. degree : int, optional (default=3) degree of kernel function is significant only in poly, rbf, sigmoid gamma : float, optional (default=0.0) kernel coefficient for rbf and poly, if gamma is 0.0 then 1/n_features will be taken. coef0 : float, optional (default=0.0) independent term in kernel function. It is only significant in poly/sigmoid. probability: boolean, optional (default=False) Whether to enable probability estimates. This must be enabled prior to calling `fit`, and will slow down that method. shrinking: boolean, optional (default=True) Whether to use the shrinking heuristic. tol : float, optional (default=1e-3) Tolerance for stopping criterion. cache_size : float, optional Specify the size of the kernel cache (in MB) verbose : bool, default: False Enable verbose output. Note that this setting takes advantage of a per-process runtime setting in libsvm that, if enabled, may not work properly in a multithreaded context. max_iter : int, optional (default=-1) Hard limit on iterations within solver, or -1 for no limit. random_state : int seed, RandomState instance, or None (default) The seed of the pseudo random number generator to use when shuffling the data for probability estimation. Attributes ---------- `support_` : array-like, shape = [n_SV] Index of support vectors. `support_vectors_` : array-like, shape = [n_SV, n_features] Support vectors. `n_support_` : array-like, dtype=int32, shape = [n_class] number of support vector for each class. `dual_coef_` : array, shape = [n_class-1, n_SV] Coefficients of the support vector in the decision function. \ For multiclass, coefficient for all 1-vs-1 classifiers. \ The layout of the coefficients in the multiclass case is somewhat \ non-trivial. See the section about multi-class classification in \ the SVM section of the User Guide for details. `coef_` : array, shape = [n_class-1, n_features] Weights asigned to the features (coefficients in the primal problem). This is only available in the case of linear kernel. `coef_` is readonly property derived from `dual_coef_` and `support_vectors_` `intercept_` : array, shape = [n_class * (n_class-1) / 2] Constants in decision function. Examples -------- >>> import numpy as np >>> X = np.array([[-1, -1], [-2, -1], [1, 1], [2, 1]]) >>> y = np.array([1, 1, 2, 2]) >>> from sklearn.svm import NuSVC >>> clf = NuSVC() >>> clf.fit(X, y) #doctest: +NORMALIZE_WHITESPACE NuSVC(cache_size=200, coef0=0.0, degree=3, gamma=0.0, kernel='rbf', max_iter=-1, nu=0.5, probability=False, random_state=None, shrinking=True, tol=0.001, verbose=False) >>> print(clf.predict([[-0.8, -1]])) [1] See also -------- SVC Support Vector Machine for classification using libsvm. LinearSVC Scalable linear Support Vector Machine for classification using liblinear. """ def __init__(self, nu=0.5, kernel='rbf', degree=3, gamma=0.0, coef0=0.0, shrinking=True, probability=False, tol=1e-3, cache_size=200, verbose=False, max_iter=-1, random_state=None): super(NuSVC, self).__init__( 'nu_svc', kernel, degree, gamma, coef0, tol, 0., nu, 0., shrinking, probability, cache_size, None, verbose, max_iter, random_state) class SVR(BaseLibSVM, RegressorMixin): """epsilon-Support Vector Regression. The free parameters in the model are C and epsilon. The implementations is a based on libsvm. Parameters ---------- C : float, optional (default=1.0) penalty parameter C of the error term. epsilon : float, optional (default=0.1) epsilon in the epsilon-SVR model. It specifies the epsilon-tube within which no penalty is associated in the training loss function with points predicted within a distance epsilon from the actual value. kernel : string, optional (default='rbf') Specifies the kernel type to be used in the algorithm. It must be one of 'linear', 'poly', 'rbf', 'sigmoid', 'precomputed' or a callable. If none is given, 'rbf' will be used. If a callable is given it is used to precompute the kernel matrix. degree : int, optional (default=3) degree of kernel function is significant only in poly, rbf, sigmoid gamma : float, optional (default=0.0) kernel coefficient for rbf and poly, if gamma is 0.0 then 1/n_features will be taken. coef0 : float, optional (default=0.0) independent term in kernel function. It is only significant in poly/sigmoid. probability: boolean, optional (default=False) Whether to enable probability estimates. This must be enabled prior to calling `fit`, and will slow down that method. shrinking: boolean, optional (default=True) Whether to use the shrinking heuristic. tol : float, optional (default=1e-3) Tolerance for stopping criterion. cache_size : float, optional Specify the size of the kernel cache (in MB) verbose : bool, default: False Enable verbose output. Note that this setting takes advantage of a per-process runtime setting in libsvm that, if enabled, may not work properly in a multithreaded context. max_iter : int, optional (default=-1) Hard limit on iterations within solver, or -1 for no limit. random_state : int seed, RandomState instance, or None (default) The seed of the pseudo random number generator to use when shuffling the data for probability estimaton. Attributes ---------- `support_` : array-like, shape = [n_SV] Index of support vectors. `support_vectors_` : array-like, shape = [nSV, n_features] Support vectors. `dual_coef_` : array, shape = [n_classes-1, n_SV] Coefficients of the support vector in the decision function. `coef_` : array, shape = [n_classes-1, n_features] Weights asigned to the features (coefficients in the primal problem). This is only available in the case of linear kernel. `coef_` is readonly property derived from `dual_coef_` and `support_vectors_` `intercept_` : array, shape = [n_class * (n_class-1) / 2] Constants in decision function. Examples -------- >>> from sklearn.svm import SVR >>> import numpy as np >>> n_samples, n_features = 10, 5 >>> np.random.seed(0) >>> y = np.random.randn(n_samples) >>> X = np.random.randn(n_samples, n_features) >>> clf = SVR(C=1.0, epsilon=0.2) >>> clf.fit(X, y) #doctest: +NORMALIZE_WHITESPACE SVR(C=1.0, cache_size=200, coef0=0.0, degree=3, epsilon=0.2, gamma=0.0, kernel='rbf', max_iter=-1, probability=False, random_state=None, shrinking=True, tol=0.001, verbose=False) See also -------- NuSVR Support Vector Machine for regression implemented using libsvm using a parameter to control the number of support vectors. """ def __init__(self, kernel='rbf', degree=3, gamma=0.0, coef0=0.0, tol=1e-3, C=1.0, epsilon=0.1, shrinking=True, probability=False, cache_size=200, verbose=False, max_iter=-1, random_state=None): super(SVR, self).__init__( 'epsilon_svr', kernel, degree, gamma, coef0, tol, C, 0., epsilon, shrinking, probability, cache_size, None, verbose, max_iter, random_state) class NuSVR(BaseLibSVM, RegressorMixin): """Nu Support Vector Regression. Similar to NuSVC, for regression, uses a parameter nu to control the number of support vectors. However, unlike NuSVC, where nu replaces C, here nu replaces with the parameter epsilon of SVR. The implementations is a based on libsvm. Parameters ---------- C : float, optional (default=1.0) penalty parameter C of the error term. nu : float, optional An upper bound on the fraction of training errors and a lower bound of the fraction of support vectors. Should be in the interval (0, 1]. By default 0.5 will be taken. Only available if impl='nu_svc'. kernel : string, optional (default='rbf') Specifies the kernel type to be used in the algorithm. It must be one of 'linear', 'poly', 'rbf', 'sigmoid', 'precomputed' or a callable. If none is given, 'rbf' will be used. If a callable is given it is used to precompute the kernel matrix. degree : int, optional (default=3) degree of kernel function is significant only in poly, rbf, sigmoid gamma : float, optional (default=0.0) kernel coefficient for rbf and poly, if gamma is 0.0 then 1/n_features will be taken. coef0 : float, optional (default=0.0) independent term in kernel function. It is only significant in poly/sigmoid. probability: boolean, optional (default=False) Whether to enable probability estimates. This must be enabled prior to calling `fit`, and will slow down that method. shrinking: boolean, optional (default=True) Whether to use the shrinking heuristic. tol : float, optional (default=1e-3) Tolerance for stopping criterion. cache_size : float, optional Specify the size of the kernel cache (in MB) verbose : bool, default: False Enable verbose output. Note that this setting takes advantage of a per-process runtime setting in libsvm that, if enabled, may not work properly in a multithreaded context. max_iter : int, optional (default=-1) Hard limit on iterations within solver, or -1 for no limit. random_state : int seed, RandomState instance, or None (default) The seed of the pseudo random number generator to use when shuffling the data for probability estimation. Attributes ---------- `support_` : array-like, shape = [n_SV] Index of support vectors. `support_vectors_` : array-like, shape = [nSV, n_features] Support vectors. `dual_coef_` : array, shape = [n_classes-1, n_SV] Coefficients of the support vector in the decision function. `coef_` : array, shape = [n_classes-1, n_features] Weights asigned to the features (coefficients in the primal problem). This is only available in the case of linear kernel. `coef_` is readonly property derived from `dual_coef_` and `support_vectors_` `intercept_` : array, shape = [n_class * (n_class-1) / 2] Constants in decision function. Examples -------- >>> from sklearn.svm import NuSVR >>> import numpy as np >>> n_samples, n_features = 10, 5 >>> np.random.seed(0) >>> y = np.random.randn(n_samples) >>> X = np.random.randn(n_samples, n_features) >>> clf = NuSVR(C=1.0, nu=0.1) >>> clf.fit(X, y) #doctest: +NORMALIZE_WHITESPACE NuSVR(C=1.0, cache_size=200, coef0=0.0, degree=3, gamma=0.0, kernel='rbf', max_iter=-1, nu=0.1, probability=False, random_state=None, shrinking=True, tol=0.001, verbose=False) See also -------- NuSVC Support Vector Machine for classification implemented with libsvm with a parameter to control the number of support vectors. SVR epsilon Support Vector Machine for regression implemented with libsvm. """ def __init__(self, nu=0.5, C=1.0, kernel='rbf', degree=3, gamma=0.0, coef0=0.0, shrinking=True, probability=False, tol=1e-3, cache_size=200, verbose=False, max_iter=-1, random_state=None): super(NuSVR, self).__init__( 'nu_svr', kernel, degree, gamma, coef0, tol, C, nu, 0., shrinking, probability, cache_size, None, verbose, max_iter, random_state) class OneClassSVM(BaseLibSVM): """Unsupervised Outliers Detection. Estimate the support of a high-dimensional distribution. The implementation is based on libsvm. Parameters ---------- kernel : string, optional (default='rbf') Specifies the kernel type to be used in the algorithm. It must be one of 'linear', 'poly', 'rbf', 'sigmoid', 'precomputed' or a callable. If none is given, 'rbf' will be used. If a callable is given it is used to precompute the kernel matrix. nu : float, optional An upper bound on the fraction of training errors and a lower bound of the fraction of support vectors. Should be in the interval (0, 1]. By default 0.5 will be taken. degree : int, optional (default=3) Degree of the polynomial kernel function ('poly'). Ignored by all other kernels. gamma : float, optional (default=0.0) Kernel coefficient for 'rbf', 'poly' and 'sigmoid'. If gamma is 0.0 then 1/n_features will be used instead. coef0 : float, optional (default=0.0) Independent term in kernel function. It is only significant in 'poly' and 'sigmoid'. tol : float, optional Tolerance for stopping criterion. shrinking: boolean, optional Whether to use the shrinking heuristic. cache_size : float, optional Specify the size of the kernel cache (in MB) verbose : bool, default: False Enable verbose output. Note that this setting takes advantage of a per-process runtime setting in libsvm that, if enabled, may not work properly in a multithreaded context. max_iter : int, optional (default=-1) Hard limit on iterations within solver, or -1 for no limit. random_state : int seed, RandomState instance, or None (default) The seed of the pseudo random number generator to use when shuffling the data for probability estimation. Attributes ---------- `support_` : array-like, shape = [n_SV] Index of support vectors. `support_vectors_` : array-like, shape = [nSV, n_features] Support vectors. `dual_coef_` : array, shape = [n_classes-1, n_SV] Coefficient of the support vector in the decision function. `coef_` : array, shape = [n_classes-1, n_features] Weights asigned to the features (coefficients in the primal problem). This is only available in the case of linear kernel. `coef_` is readonly property derived from `dual_coef_` and `support_vectors_` `intercept_` : array, shape = [n_classes-1] Constants in decision function. """ def __init__(self, kernel='rbf', degree=3, gamma=0.0, coef0=0.0, tol=1e-3, nu=0.5, shrinking=True, cache_size=200, verbose=False, max_iter=-1, random_state=None): super(OneClassSVM, self).__init__( 'one_class', kernel, degree, gamma, coef0, tol, 0., nu, 0., shrinking, False, cache_size, None, verbose, max_iter, random_state) def fit(self, X, sample_weight=None, **params): """ Detects the soft boundary of the set of samples X. Parameters ---------- X : {array-like, sparse matrix}, shape (n_samples, n_features) Set of samples, where n_samples is the number of samples and n_features is the number of features. sample_weight : array-like, shape (n_samples,) Per-sample weights. Rescale C per sample. Higher weights force the classifier to put more emphasis on these points. Returns ------- self : object Returns self. Notes ----- If X is not a C-ordered contiguous array it is copied. """ super(OneClassSVM, self).fit(X, [], sample_weight=sample_weight, **params) return self
bsd-3-clause
CA-Lab/moral-exchange
simulations/hebbian.py
1
3131
import matplotlib matplotlib.use('TkAgg') import matplotlib.pyplot as plt import pylab as pl import random as rd import scipy as sp import networkx as nx import numpy as np import math as mt import pprint as ppt time_list = [] energy_state = [] perturbation_period = 460 pert_accu = 0 def init_full(): global time, g, positions, U E = 0 time = 0 g = nx.complete_graph(50) for i in g.nodes(): g.node[i]['s'] = rd.choice([1,-1]) for i,j in g.edges(): g.edge[i][j]['w'] = rd.choice([-1,1]) def init_watts(): global time, g, positions, U E = 0 time = 0 g = nx.watts_strogatz_graph(25, 2, 0.3) for i in g.nodes(): g.node[i]['s'] = rd.choice([1,-1]) for i,j in g.edges(): g.edge[i][j]['w'] = rd.choice([-1,1]) def init_erdos(): global time, g, positions, U E = 0 time = 0 g = nx.erdos_renyi_graph(56, .08) for i in g.nodes(): g.node[i]['s'] = rd.choice([1,-1]) for i,j in g.edges(): g.edge[i][j]['w'] = rd.choice([-1,1]) def draw(): pl.cla() nx.draw(g, pos = positions, node_color = [g.node[i]['s'] for i in g.nodes_iter()], with_labels = True, edge_color = 'c', width = [g.edge[i][j]['w'] for (i,j) in g.edges_iter()], cmap = pl.cm.autumn, vmin = 0, vmax = 1) pl.axis('image') pl.title('t = ' + str(time)) plt.show() def local_u(i): m = [] i = rd.choice(g.nodes()) for j in g.neighbors(i): m.append( g.edge[i][j]['w'] * g.node[j]['s'] ) return sum(m) def global_u(): U = [] for i in g.nodes(): U.append( local_u( i ) ) #print sum( U ) return sum(U) def randomize_states(): for i in g.nodes(): g.node[i]['s'] = rd.choice([1,-1]) def hebbian(): global time, g, positions, U i = rd.choice(g.nodes()) if local_u( i ) >= 0: g.node[i]['s'] = 1 else: g.node[i]['s'] = -1 for j in g.neighbors( i ): if g.node[i]['s'] == g.node[j]['s']: g.edge[i][j]['w'] += 1 else: g.edge[i][j]['w'] -= 1 def hopfield(): i = rd.choice(g.nodes()) if local_u(i) >= 0: g.node[i]['s'] = 1 else: g.node[i]['s'] = -1 def step(): global time, g, positions, U, pert_accu, perturbation_period time += 1 if pert_accu == perturbation_period: pert_accu = 0 randomize_states() else: pert_accu += 1 # if time <= 25: # hopfield() # else: hebbian() time_list.append(time) energy_state.append( global_u() ) def no_draw(): global time print time import pycxsimulator #init() #init_full() #init_watts() init_erdos() #init_barabasi() positions = nx.spring_layout(g) pycxsimulator.GUI().start(func = [init_erdos, no_draw, step]) #pycxsimulator.GUI().start(func = [init_erdos, draw, step]) plt.cla() plt.plot(time_list, energy_state, 'b-') plt.xlabel('Time') plt.ylabel('Global Utility') plt.savefig('hebb_plot.png') #plt.show()
gpl-3.0
doanduyhai/incubator-zeppelin
interpreter/lib/python/mpl_config.py
41
3653
# Licensed to the Apache Software Foundation (ASF) under one or more # contributor license agreements. See the NOTICE file distributed with # this work for additional information regarding copyright ownership. # The ASF licenses this file to You under the Apache License, Version 2.0 # (the "License"); you may not use this file except in compliance with # the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # This module provides utitlites for users to configure the inline plotting # backend through a PyZeppelinContext instance (eg, through z.configure_mpl()) import matplotlib def configure(**kwargs): """ Generic configure function. Usage: configure(prop1='foo', prop2='bar', ...) Currently supported zeppelin-specific properties are: interactive - If true show all figures without explicit call to show() via a post-execute hook. angular - If true, bind figures to angular display system. close - If true, close all figures once shown. width, height - Default width / height of the figure in pixels. fontsize - Font size. dpi - dpi of the figure. fmt - Figure format supported_formats - Supported Figure formats () context - ZeppelinContext instance (requires PY4J) """ _config.update(**kwargs) # Broadcast relevant changes to matplotlib RC _on_config_change() def get(key): """ Get the configuration info given a key """ return _config[key] def _on_config_change(): # dpi dpi = _config['dpi'] # For older versions of matplotlib, savefig.dpi is not synced with # figure.dpi by default matplotlib.rcParams['figure.dpi'] = dpi if matplotlib.__version__ < '2.0.0': matplotlib.rcParams['savefig.dpi'] = dpi # Width and height width = float(_config['width']) / dpi height = float(_config['height']) / dpi matplotlib.rcParams['figure.figsize'] = (width, height) # Font size fontsize = _config['fontsize'] matplotlib.rcParams['font.size'] = fontsize # Default Figure Format fmt = _config['format'] supported_formats = _config['supported_formats'] if fmt not in supported_formats: raise ValueError("Unsupported format %s" %fmt) if matplotlib.__version__ < '1.2.0': matplotlib.rcParams.update({'savefig.format': fmt}) else: matplotlib.rcParams['savefig.format'] = fmt # Interactive mode interactive = _config['interactive'] matplotlib.interactive(interactive) def _init_config(): dpi = matplotlib.rcParams['figure.dpi'] if matplotlib.__version__ < '1.2.0': matplotlib.rcParams.update({'savefig.format': 'png'}) fmt = matplotlib.rcParams['savefig.format'] width, height = matplotlib.rcParams['figure.figsize'] fontsize = matplotlib.rcParams['font.size'] _config['dpi'] = dpi _config['format'] = fmt _config['width'] = width*dpi _config['height'] = height*dpi _config['fontsize'] = fontsize _config['close'] = True _config['interactive'] = matplotlib.is_interactive() _config['angular'] = False _config['supported_formats'] = ['png', 'jpg', 'svg'] _config['context'] = None _config = {} _init_config()
apache-2.0
mayblue9/scikit-learn
sklearn/cross_decomposition/pls_.py
187
28507
""" The :mod:`sklearn.pls` module implements Partial Least Squares (PLS). """ # Author: Edouard Duchesnay <[email protected]> # License: BSD 3 clause from ..base import BaseEstimator, RegressorMixin, TransformerMixin from ..utils import check_array, check_consistent_length from ..externals import six import warnings from abc import ABCMeta, abstractmethod import numpy as np from scipy import linalg from ..utils import arpack from ..utils.validation import check_is_fitted __all__ = ['PLSCanonical', 'PLSRegression', 'PLSSVD'] def _nipals_twoblocks_inner_loop(X, Y, mode="A", max_iter=500, tol=1e-06, norm_y_weights=False): """Inner loop of the iterative NIPALS algorithm. Provides an alternative to the svd(X'Y); returns the first left and right singular vectors of X'Y. See PLS for the meaning of the parameters. It is similar to the Power method for determining the eigenvectors and eigenvalues of a X'Y. """ y_score = Y[:, [0]] x_weights_old = 0 ite = 1 X_pinv = Y_pinv = None eps = np.finfo(X.dtype).eps # Inner loop of the Wold algo. while True: # 1.1 Update u: the X weights if mode == "B": if X_pinv is None: X_pinv = linalg.pinv(X) # compute once pinv(X) x_weights = np.dot(X_pinv, y_score) else: # mode A # Mode A regress each X column on y_score x_weights = np.dot(X.T, y_score) / np.dot(y_score.T, y_score) # 1.2 Normalize u x_weights /= np.sqrt(np.dot(x_weights.T, x_weights)) + eps # 1.3 Update x_score: the X latent scores x_score = np.dot(X, x_weights) # 2.1 Update y_weights if mode == "B": if Y_pinv is None: Y_pinv = linalg.pinv(Y) # compute once pinv(Y) y_weights = np.dot(Y_pinv, x_score) else: # Mode A regress each Y column on x_score y_weights = np.dot(Y.T, x_score) / np.dot(x_score.T, x_score) # 2.2 Normalize y_weights if norm_y_weights: y_weights /= np.sqrt(np.dot(y_weights.T, y_weights)) + eps # 2.3 Update y_score: the Y latent scores y_score = np.dot(Y, y_weights) / (np.dot(y_weights.T, y_weights) + eps) # y_score = np.dot(Y, y_weights) / np.dot(y_score.T, y_score) ## BUG x_weights_diff = x_weights - x_weights_old if np.dot(x_weights_diff.T, x_weights_diff) < tol or Y.shape[1] == 1: break if ite == max_iter: warnings.warn('Maximum number of iterations reached') break x_weights_old = x_weights ite += 1 return x_weights, y_weights, ite def _svd_cross_product(X, Y): C = np.dot(X.T, Y) U, s, Vh = linalg.svd(C, full_matrices=False) u = U[:, [0]] v = Vh.T[:, [0]] return u, v def _center_scale_xy(X, Y, scale=True): """ Center X, Y and scale if the scale parameter==True Returns ------- X, Y, x_mean, y_mean, x_std, y_std """ # center x_mean = X.mean(axis=0) X -= x_mean y_mean = Y.mean(axis=0) Y -= y_mean # scale if scale: x_std = X.std(axis=0, ddof=1) x_std[x_std == 0.0] = 1.0 X /= x_std y_std = Y.std(axis=0, ddof=1) y_std[y_std == 0.0] = 1.0 Y /= y_std else: x_std = np.ones(X.shape[1]) y_std = np.ones(Y.shape[1]) return X, Y, x_mean, y_mean, x_std, y_std class _PLS(six.with_metaclass(ABCMeta), BaseEstimator, TransformerMixin, RegressorMixin): """Partial Least Squares (PLS) This class implements the generic PLS algorithm, constructors' parameters allow to obtain a specific implementation such as: - PLS2 regression, i.e., PLS 2 blocks, mode A, with asymmetric deflation and unnormalized y weights such as defined by [Tenenhaus 1998] p. 132. With univariate response it implements PLS1. - PLS canonical, i.e., PLS 2 blocks, mode A, with symmetric deflation and normalized y weights such as defined by [Tenenhaus 1998] (p. 132) and [Wegelin et al. 2000]. This parametrization implements the original Wold algorithm. We use the terminology defined by [Wegelin et al. 2000]. This implementation uses the PLS Wold 2 blocks algorithm based on two nested loops: (i) The outer loop iterate over components. (ii) The inner loop estimates the weights vectors. This can be done with two algo. (a) the inner loop of the original NIPALS algo. or (b) a SVD on residuals cross-covariance matrices. n_components : int, number of components to keep. (default 2). scale : boolean, scale data? (default True) deflation_mode : str, "canonical" or "regression". See notes. mode : "A" classical PLS and "B" CCA. See notes. norm_y_weights: boolean, normalize Y weights to one? (default False) algorithm : string, "nipals" or "svd" The algorithm used to estimate the weights. It will be called n_components times, i.e. once for each iteration of the outer loop. max_iter : an integer, the maximum number of iterations (default 500) of the NIPALS inner loop (used only if algorithm="nipals") tol : non-negative real, default 1e-06 The tolerance used in the iterative algorithm. copy : boolean, default True Whether the deflation should be done on a copy. Let the default value to True unless you don't care about side effects. Attributes ---------- x_weights_ : array, [p, n_components] X block weights vectors. y_weights_ : array, [q, n_components] Y block weights vectors. x_loadings_ : array, [p, n_components] X block loadings vectors. y_loadings_ : array, [q, n_components] Y block loadings vectors. x_scores_ : array, [n_samples, n_components] X scores. y_scores_ : array, [n_samples, n_components] Y scores. x_rotations_ : array, [p, n_components] X block to latents rotations. y_rotations_ : array, [q, n_components] Y block to latents rotations. coef_: array, [p, q] The coefficients of the linear model: ``Y = X coef_ + Err`` n_iter_ : array-like Number of iterations of the NIPALS inner loop for each component. Not useful if the algorithm given is "svd". References ---------- Jacob A. Wegelin. A survey of Partial Least Squares (PLS) methods, with emphasis on the two-block case. Technical Report 371, Department of Statistics, University of Washington, Seattle, 2000. In French but still a reference: Tenenhaus, M. (1998). La regression PLS: theorie et pratique. Paris: Editions Technic. See also -------- PLSCanonical PLSRegression CCA PLS_SVD """ @abstractmethod def __init__(self, n_components=2, scale=True, deflation_mode="regression", mode="A", algorithm="nipals", norm_y_weights=False, max_iter=500, tol=1e-06, copy=True): self.n_components = n_components self.deflation_mode = deflation_mode self.mode = mode self.norm_y_weights = norm_y_weights self.scale = scale self.algorithm = algorithm self.max_iter = max_iter self.tol = tol self.copy = copy def fit(self, X, Y): """Fit model to data. Parameters ---------- X : array-like, shape = [n_samples, n_features] Training vectors, where n_samples in the number of samples and n_features is the number of predictors. Y : array-like of response, shape = [n_samples, n_targets] Target vectors, where n_samples in the number of samples and n_targets is the number of response variables. """ # copy since this will contains the residuals (deflated) matrices check_consistent_length(X, Y) X = check_array(X, dtype=np.float64, copy=self.copy) Y = check_array(Y, dtype=np.float64, copy=self.copy, ensure_2d=False) if Y.ndim == 1: Y = Y.reshape(-1, 1) n = X.shape[0] p = X.shape[1] q = Y.shape[1] if self.n_components < 1 or self.n_components > p: raise ValueError('Invalid number of components: %d' % self.n_components) if self.algorithm not in ("svd", "nipals"): raise ValueError("Got algorithm %s when only 'svd' " "and 'nipals' are known" % self.algorithm) if self.algorithm == "svd" and self.mode == "B": raise ValueError('Incompatible configuration: mode B is not ' 'implemented with svd algorithm') if self.deflation_mode not in ["canonical", "regression"]: raise ValueError('The deflation mode is unknown') # Scale (in place) X, Y, self.x_mean_, self.y_mean_, self.x_std_, self.y_std_\ = _center_scale_xy(X, Y, self.scale) # Residuals (deflated) matrices Xk = X Yk = Y # Results matrices self.x_scores_ = np.zeros((n, self.n_components)) self.y_scores_ = np.zeros((n, self.n_components)) self.x_weights_ = np.zeros((p, self.n_components)) self.y_weights_ = np.zeros((q, self.n_components)) self.x_loadings_ = np.zeros((p, self.n_components)) self.y_loadings_ = np.zeros((q, self.n_components)) self.n_iter_ = [] # NIPALS algo: outer loop, over components for k in range(self.n_components): if np.all(np.dot(Yk.T, Yk) < np.finfo(np.double).eps): # Yk constant warnings.warn('Y residual constant at iteration %s' % k) break # 1) weights estimation (inner loop) # ----------------------------------- if self.algorithm == "nipals": x_weights, y_weights, n_iter_ = \ _nipals_twoblocks_inner_loop( X=Xk, Y=Yk, mode=self.mode, max_iter=self.max_iter, tol=self.tol, norm_y_weights=self.norm_y_weights) self.n_iter_.append(n_iter_) elif self.algorithm == "svd": x_weights, y_weights = _svd_cross_product(X=Xk, Y=Yk) # compute scores x_scores = np.dot(Xk, x_weights) if self.norm_y_weights: y_ss = 1 else: y_ss = np.dot(y_weights.T, y_weights) y_scores = np.dot(Yk, y_weights) / y_ss # test for null variance if np.dot(x_scores.T, x_scores) < np.finfo(np.double).eps: warnings.warn('X scores are null at iteration %s' % k) break # 2) Deflation (in place) # ---------------------- # Possible memory footprint reduction may done here: in order to # avoid the allocation of a data chunk for the rank-one # approximations matrix which is then subtracted to Xk, we suggest # to perform a column-wise deflation. # # - regress Xk's on x_score x_loadings = np.dot(Xk.T, x_scores) / np.dot(x_scores.T, x_scores) # - subtract rank-one approximations to obtain remainder matrix Xk -= np.dot(x_scores, x_loadings.T) if self.deflation_mode == "canonical": # - regress Yk's on y_score, then subtract rank-one approx. y_loadings = (np.dot(Yk.T, y_scores) / np.dot(y_scores.T, y_scores)) Yk -= np.dot(y_scores, y_loadings.T) if self.deflation_mode == "regression": # - regress Yk's on x_score, then subtract rank-one approx. y_loadings = (np.dot(Yk.T, x_scores) / np.dot(x_scores.T, x_scores)) Yk -= np.dot(x_scores, y_loadings.T) # 3) Store weights, scores and loadings # Notation: self.x_scores_[:, k] = x_scores.ravel() # T self.y_scores_[:, k] = y_scores.ravel() # U self.x_weights_[:, k] = x_weights.ravel() # W self.y_weights_[:, k] = y_weights.ravel() # C self.x_loadings_[:, k] = x_loadings.ravel() # P self.y_loadings_[:, k] = y_loadings.ravel() # Q # Such that: X = TP' + Err and Y = UQ' + Err # 4) rotations from input space to transformed space (scores) # T = X W(P'W)^-1 = XW* (W* : p x k matrix) # U = Y C(Q'C)^-1 = YC* (W* : q x k matrix) self.x_rotations_ = np.dot( self.x_weights_, linalg.pinv(np.dot(self.x_loadings_.T, self.x_weights_))) if Y.shape[1] > 1: self.y_rotations_ = np.dot( self.y_weights_, linalg.pinv(np.dot(self.y_loadings_.T, self.y_weights_))) else: self.y_rotations_ = np.ones(1) if True or self.deflation_mode == "regression": # FIXME what's with the if? # Estimate regression coefficient # Regress Y on T # Y = TQ' + Err, # Then express in function of X # Y = X W(P'W)^-1Q' + Err = XB + Err # => B = W*Q' (p x q) self.coef_ = np.dot(self.x_rotations_, self.y_loadings_.T) self.coef_ = (1. / self.x_std_.reshape((p, 1)) * self.coef_ * self.y_std_) return self def transform(self, X, Y=None, copy=True): """Apply the dimension reduction learned on the train data. Parameters ---------- X : array-like of predictors, shape = [n_samples, p] Training vectors, where n_samples in the number of samples and p is the number of predictors. Y : array-like of response, shape = [n_samples, q], optional Training vectors, where n_samples in the number of samples and q is the number of response variables. copy : boolean, default True Whether to copy X and Y, or perform in-place normalization. Returns ------- x_scores if Y is not given, (x_scores, y_scores) otherwise. """ check_is_fitted(self, 'x_mean_') X = check_array(X, copy=copy) # Normalize X -= self.x_mean_ X /= self.x_std_ # Apply rotation x_scores = np.dot(X, self.x_rotations_) if Y is not None: Y = check_array(Y, ensure_2d=False, copy=copy) if Y.ndim == 1: Y = Y.reshape(-1, 1) Y -= self.y_mean_ Y /= self.y_std_ y_scores = np.dot(Y, self.y_rotations_) return x_scores, y_scores return x_scores def predict(self, X, copy=True): """Apply the dimension reduction learned on the train data. Parameters ---------- X : array-like of predictors, shape = [n_samples, p] Training vectors, where n_samples in the number of samples and p is the number of predictors. copy : boolean, default True Whether to copy X and Y, or perform in-place normalization. Notes ----- This call requires the estimation of a p x q matrix, which may be an issue in high dimensional space. """ check_is_fitted(self, 'x_mean_') X = check_array(X, copy=copy) # Normalize X -= self.x_mean_ X /= self.x_std_ Ypred = np.dot(X, self.coef_) return Ypred + self.y_mean_ def fit_transform(self, X, y=None, **fit_params): """Learn and apply the dimension reduction on the train data. Parameters ---------- X : array-like of predictors, shape = [n_samples, p] Training vectors, where n_samples in the number of samples and p is the number of predictors. Y : array-like of response, shape = [n_samples, q], optional Training vectors, where n_samples in the number of samples and q is the number of response variables. copy : boolean, default True Whether to copy X and Y, or perform in-place normalization. Returns ------- x_scores if Y is not given, (x_scores, y_scores) otherwise. """ check_is_fitted(self, 'x_mean_') return self.fit(X, y, **fit_params).transform(X, y) class PLSRegression(_PLS): """PLS regression PLSRegression implements the PLS 2 blocks regression known as PLS2 or PLS1 in case of one dimensional response. This class inherits from _PLS with mode="A", deflation_mode="regression", norm_y_weights=False and algorithm="nipals". Read more in the :ref:`User Guide <cross_decomposition>`. Parameters ---------- n_components : int, (default 2) Number of components to keep. scale : boolean, (default True) whether to scale the data max_iter : an integer, (default 500) the maximum number of iterations of the NIPALS inner loop (used only if algorithm="nipals") tol : non-negative real Tolerance used in the iterative algorithm default 1e-06. copy : boolean, default True Whether the deflation should be done on a copy. Let the default value to True unless you don't care about side effect Attributes ---------- x_weights_ : array, [p, n_components] X block weights vectors. y_weights_ : array, [q, n_components] Y block weights vectors. x_loadings_ : array, [p, n_components] X block loadings vectors. y_loadings_ : array, [q, n_components] Y block loadings vectors. x_scores_ : array, [n_samples, n_components] X scores. y_scores_ : array, [n_samples, n_components] Y scores. x_rotations_ : array, [p, n_components] X block to latents rotations. y_rotations_ : array, [q, n_components] Y block to latents rotations. coef_: array, [p, q] The coefficients of the linear model: ``Y = X coef_ + Err`` n_iter_ : array-like Number of iterations of the NIPALS inner loop for each component. Notes ----- For each component k, find weights u, v that optimizes: ``max corr(Xk u, Yk v) * var(Xk u) var(Yk u)``, such that ``|u| = 1`` Note that it maximizes both the correlations between the scores and the intra-block variances. The residual matrix of X (Xk+1) block is obtained by the deflation on the current X score: x_score. The residual matrix of Y (Yk+1) block is obtained by deflation on the current X score. This performs the PLS regression known as PLS2. This mode is prediction oriented. This implementation provides the same results that 3 PLS packages provided in the R language (R-project): - "mixOmics" with function pls(X, Y, mode = "regression") - "plspm " with function plsreg2(X, Y) - "pls" with function oscorespls.fit(X, Y) Examples -------- >>> from sklearn.cross_decomposition import PLSRegression >>> X = [[0., 0., 1.], [1.,0.,0.], [2.,2.,2.], [2.,5.,4.]] >>> Y = [[0.1, -0.2], [0.9, 1.1], [6.2, 5.9], [11.9, 12.3]] >>> pls2 = PLSRegression(n_components=2) >>> pls2.fit(X, Y) ... # doctest: +NORMALIZE_WHITESPACE PLSRegression(copy=True, max_iter=500, n_components=2, scale=True, tol=1e-06) >>> Y_pred = pls2.predict(X) References ---------- Jacob A. Wegelin. A survey of Partial Least Squares (PLS) methods, with emphasis on the two-block case. Technical Report 371, Department of Statistics, University of Washington, Seattle, 2000. In french but still a reference: Tenenhaus, M. (1998). La regression PLS: theorie et pratique. Paris: Editions Technic. """ def __init__(self, n_components=2, scale=True, max_iter=500, tol=1e-06, copy=True): _PLS.__init__(self, n_components=n_components, scale=scale, deflation_mode="regression", mode="A", norm_y_weights=False, max_iter=max_iter, tol=tol, copy=copy) class PLSCanonical(_PLS): """ PLSCanonical implements the 2 blocks canonical PLS of the original Wold algorithm [Tenenhaus 1998] p.204, referred as PLS-C2A in [Wegelin 2000]. This class inherits from PLS with mode="A" and deflation_mode="canonical", norm_y_weights=True and algorithm="nipals", but svd should provide similar results up to numerical errors. Read more in the :ref:`User Guide <cross_decomposition>`. Parameters ---------- scale : boolean, scale data? (default True) algorithm : string, "nipals" or "svd" The algorithm used to estimate the weights. It will be called n_components times, i.e. once for each iteration of the outer loop. max_iter : an integer, (default 500) the maximum number of iterations of the NIPALS inner loop (used only if algorithm="nipals") tol : non-negative real, default 1e-06 the tolerance used in the iterative algorithm copy : boolean, default True Whether the deflation should be done on a copy. Let the default value to True unless you don't care about side effect n_components : int, number of components to keep. (default 2). Attributes ---------- x_weights_ : array, shape = [p, n_components] X block weights vectors. y_weights_ : array, shape = [q, n_components] Y block weights vectors. x_loadings_ : array, shape = [p, n_components] X block loadings vectors. y_loadings_ : array, shape = [q, n_components] Y block loadings vectors. x_scores_ : array, shape = [n_samples, n_components] X scores. y_scores_ : array, shape = [n_samples, n_components] Y scores. x_rotations_ : array, shape = [p, n_components] X block to latents rotations. y_rotations_ : array, shape = [q, n_components] Y block to latents rotations. n_iter_ : array-like Number of iterations of the NIPALS inner loop for each component. Not useful if the algorithm provided is "svd". Notes ----- For each component k, find weights u, v that optimize:: max corr(Xk u, Yk v) * var(Xk u) var(Yk u), such that ``|u| = |v| = 1`` Note that it maximizes both the correlations between the scores and the intra-block variances. The residual matrix of X (Xk+1) block is obtained by the deflation on the current X score: x_score. The residual matrix of Y (Yk+1) block is obtained by deflation on the current Y score. This performs a canonical symmetric version of the PLS regression. But slightly different than the CCA. This is mostly used for modeling. This implementation provides the same results that the "plspm" package provided in the R language (R-project), using the function plsca(X, Y). Results are equal or collinear with the function ``pls(..., mode = "canonical")`` of the "mixOmics" package. The difference relies in the fact that mixOmics implementation does not exactly implement the Wold algorithm since it does not normalize y_weights to one. Examples -------- >>> from sklearn.cross_decomposition import PLSCanonical >>> X = [[0., 0., 1.], [1.,0.,0.], [2.,2.,2.], [2.,5.,4.]] >>> Y = [[0.1, -0.2], [0.9, 1.1], [6.2, 5.9], [11.9, 12.3]] >>> plsca = PLSCanonical(n_components=2) >>> plsca.fit(X, Y) ... # doctest: +NORMALIZE_WHITESPACE PLSCanonical(algorithm='nipals', copy=True, max_iter=500, n_components=2, scale=True, tol=1e-06) >>> X_c, Y_c = plsca.transform(X, Y) References ---------- Jacob A. Wegelin. A survey of Partial Least Squares (PLS) methods, with emphasis on the two-block case. Technical Report 371, Department of Statistics, University of Washington, Seattle, 2000. Tenenhaus, M. (1998). La regression PLS: theorie et pratique. Paris: Editions Technic. See also -------- CCA PLSSVD """ def __init__(self, n_components=2, scale=True, algorithm="nipals", max_iter=500, tol=1e-06, copy=True): _PLS.__init__(self, n_components=n_components, scale=scale, deflation_mode="canonical", mode="A", norm_y_weights=True, algorithm=algorithm, max_iter=max_iter, tol=tol, copy=copy) class PLSSVD(BaseEstimator, TransformerMixin): """Partial Least Square SVD Simply perform a svd on the crosscovariance matrix: X'Y There are no iterative deflation here. Read more in the :ref:`User Guide <cross_decomposition>`. Parameters ---------- n_components : int, default 2 Number of components to keep. scale : boolean, default True Whether to scale X and Y. copy : boolean, default True Whether to copy X and Y, or perform in-place computations. Attributes ---------- x_weights_ : array, [p, n_components] X block weights vectors. y_weights_ : array, [q, n_components] Y block weights vectors. x_scores_ : array, [n_samples, n_components] X scores. y_scores_ : array, [n_samples, n_components] Y scores. See also -------- PLSCanonical CCA """ def __init__(self, n_components=2, scale=True, copy=True): self.n_components = n_components self.scale = scale self.copy = copy def fit(self, X, Y): # copy since this will contains the centered data check_consistent_length(X, Y) X = check_array(X, dtype=np.float64, copy=self.copy) Y = check_array(Y, dtype=np.float64, copy=self.copy, ensure_2d=False) if Y.ndim == 1: Y = Y.reshape(-1, 1) if self.n_components > max(Y.shape[1], X.shape[1]): raise ValueError("Invalid number of components n_components=%d" " with X of shape %s and Y of shape %s." % (self.n_components, str(X.shape), str(Y.shape))) # Scale (in place) X, Y, self.x_mean_, self.y_mean_, self.x_std_, self.y_std_ =\ _center_scale_xy(X, Y, self.scale) # svd(X'Y) C = np.dot(X.T, Y) # The arpack svds solver only works if the number of extracted # components is smaller than rank(X) - 1. Hence, if we want to extract # all the components (C.shape[1]), we have to use another one. Else, # let's use arpacks to compute only the interesting components. if self.n_components >= np.min(C.shape): U, s, V = linalg.svd(C, full_matrices=False) else: U, s, V = arpack.svds(C, k=self.n_components) V = V.T self.x_scores_ = np.dot(X, U) self.y_scores_ = np.dot(Y, V) self.x_weights_ = U self.y_weights_ = V return self def transform(self, X, Y=None): """Apply the dimension reduction learned on the train data.""" check_is_fitted(self, 'x_mean_') X = check_array(X, dtype=np.float64) Xr = (X - self.x_mean_) / self.x_std_ x_scores = np.dot(Xr, self.x_weights_) if Y is not None: if Y.ndim == 1: Y = Y.reshape(-1, 1) Yr = (Y - self.y_mean_) / self.y_std_ y_scores = np.dot(Yr, self.y_weights_) return x_scores, y_scores return x_scores def fit_transform(self, X, y=None, **fit_params): """Learn and apply the dimension reduction on the train data. Parameters ---------- X : array-like of predictors, shape = [n_samples, p] Training vectors, where n_samples in the number of samples and p is the number of predictors. Y : array-like of response, shape = [n_samples, q], optional Training vectors, where n_samples in the number of samples and q is the number of response variables. Returns ------- x_scores if Y is not given, (x_scores, y_scores) otherwise. """ return self.fit(X, y, **fit_params).transform(X, y)
bsd-3-clause
SonneSun/MYSELF
facebook-kaggle/06_05.py
1
6299
#Facebook Kaggle Competition import time import pandas as pd import numpy as np from sklearn.ensemble import RandomForestClassifier from sklearn.preprocessing import LabelEncoder XLIMIT = 10 YLIMIT = 10 #FEATURE_LIST = ['x','y','accuracy','day','dow','hour'] FEATURE_LIST = ['x','y','accuracy','dow','month','hour'] def read_files(train_name, test_name): types = {'row_id': np.dtype(int), \ 'x': np.dtype(float),\ 'y' : np.dtype(float), \ 'accuracy': np.dtype(int), \ 'time': np.dtype(int), \ 'place_id': np.dtype(int)} train = pd.read_csv(train_name, dtype=types) test = pd.read_csv(test_name, dtype=types) return train, test def accuracy_features(train): print " accuracy features ..." place_id_mode_loc = train.groupby(['place_id'])['x','y'].agg(lambda x:x.value_counts().index[0]).reset_index() place_id_mode_loc.columns = ['place_id','x_mode','y_mode'] new_train = pd.merge(train, place_id_mode_loc, on = ['place_id'], how = 'inner') new_train['x_diff'] = abs(new_train['x_mode'] - new_train['x']) new_train['y_diff'] = abs(new_train['y_mode'] - new_train['y']) new_train['acc'] = new_train['accuracy'] new_train.loc[(new_train['accuracy'] > 200), 'acc'] = 200 new_train['acc'] = (new_train['acc']/10).astype(int) acc_df = new_train.groupby(['acc'])['x_diff','y_diff'].mean().reset_index() print " finished." return acc_df def generate_features(train, test): #acc = accuracy_features(train) #as verified, time is in minutes train['day'] = (train['time'] / (60.0 * 24.0)).astype(int) train['dow'] = train['day'] % 7 train['month'] = train['day'] % 30 train['hour'] = (train['time'] / 60.0).astype(int) % 24 # train['acc'] = train['accuracy'] # train.loc[(train['accuracy'] > 200), 'acc'] = 200 # train['acc'] = (train['acc']/10).astype(int) # train = pd.merge(train, acc, on = ['acc'], how = 'inner') # train.loc[((train['hour'] >= 0) & (train['hour'] < 8) ), 'tod'] = 1 # train.loc[((train['hour'] >= 8) & (train['hour'] < 16) ), 'tod'] = 2 # train.loc[((train['hour'] >= 16) & (train['hour'] < 24) ), 'tod'] = 3 test['day'] = (test['time'] / (60.0 * 24.0)).astype(int) test['dow'] = test['day'] % 7 test['month'] = test['day'] % 30 test['hour'] = (test['time'] / 60.0).astype(int) % 24 # test['acc'] = test['accuracy'] # test.loc[(test['accuracy'] > 200), 'acc'] = 200 # test['acc'] = (test['acc']/10).astype(int) # test = pd.merge(test, acc, on = ['acc'], how = 'inner') # test.loc[((test['hour'] >= 0) & (test['hour'] < 8) ), 'tod'] = 1 # test.loc[((test['hour'] >= 8) & (test['hour'] < 16) ), 'tod'] = 2 # test.loc[((test['hour'] >= 16) & (test['hour'] < 24) ), 'tod'] = 3 #split the map into several buckets xcell_size = 0.2 ycell_size = 0.5 cell_total = int((XLIMIT/xcell_size) * (YLIMIT/ycell_size)) train['x_adj'] = train['x'] train.loc[(train['x_adj'] == XLIMIT),'x_adj'] = train['x_adj'] - 0.0001 train['y_adj'] = train['y'] train.loc[(train['y_adj'] == YLIMIT),'y_adj'] = train['y_adj'] - 0.0001 train['xbucket'] = (train['x_adj']/ xcell_size).astype(int) train['ybucket'] = (train['y_adj'] / ycell_size).astype(int) train['cellID'] = train['ybucket'] * (XLIMIT/ xcell_size) + train['xbucket'] test['x_adj'] = test['x'] test.loc[(test['x_adj'] == XLIMIT),'x_adj'] = test['x_adj'] - 0.0001 test['y_adj'] = test['y'] test.loc[(test['y_adj'] == YLIMIT),'y_adj'] = test['y_adj'] - 0.0001 test['xbucket'] = (test['x_adj'] / xcell_size).astype(int) test['ybucket'] = (test['y_adj'] / ycell_size).astype(int) test['cellID'] = test['ybucket'] * (XLIMIT/ xcell_size) + test['xbucket'] #normalize features # for f in FEATURE_LIST: # f_mean = train[f].mean() # f_std = train[f].std() # train[f] = (train[f] - f_mean) / f_std # test[f] = (test[f] - f_mean) / f_std return train, test, cell_total def train_model_on_cell(train, test, numCells, th): for i in range(numCells): print " cell %d ..." % i start = time.time() train_curr = train.loc[train.cellID == i].reset_index(drop = True) if len(train_curr) == 0: continue place_counts = train_curr.place_id.value_counts() mask = place_counts[train_curr.place_id.values] >= th train_curr = train_curr.loc[mask.values].reset_index(drop = True) train_X = train_curr[FEATURE_LIST].as_matrix() #weight = train_curr['accuracy'].values train_Y = train_curr['place_id'].values # le = LabelEncoder() # train_Y = le.fit_transform(train_Y) test_index = test.loc[test.cellID == i].index test_label = test.loc[(test.cellID == i),'place_id'].values test_curr = test.loc[test.cellID == i].reset_index(drop = True) test_X = test_curr[FEATURE_LIST].as_matrix() # print len(train_curr) # print len(test_curr) #increase estimators won't influence too much rf = RandomForestClassifier(max_depth = 20, n_estimators = 30) #add weight won't influence too much #rf.fit(train_X, train_Y, sample_weight = weight) rf.fit(train_X, train_Y) #test_predict = rf.predict_proba(test_X) test_predict = rf.predict(test_X) # test_predict = np.argsort(test_predict, axis=1)[:,::-1][:,:3] # test_predict = le.inverse_transform(test_predict) result_df = pd.DataFrame({'index': test_index, 'place_id': test_label, 'predict': test_predict}) print len(result_df.loc[result_df.place_id == result_df.predict]) / float(len(result_df)) # test.loc[test_index,'place_id_1'] = test_predict[:,0] # test.loc[test_index,'place_id_2'] = test_predict[:,1] # test.loc[test_index,'place_id_3'] = test_predict[:,2] end = time.time() print " finished. Uses %f s in time. " % (end - start) break return test if __name__ == '__main__': print "Reading files ..." train_df, test_df = read_files('small_train.csv', 'small_test.csv') print " Finished." print "Generating features ..." train_df, test_df, cell_total = generate_features(train_df, test_df) print " Finished." print "Training cell by cell. Total number is %d ..." % cell_total test_df = train_model_on_cell(train_df, test_df, cell_total, 10) #print len(test_df.loc[test_df.place_id == test_df.predict]) / float(len(test_df)) # result_df = test_df[['row_id','place_id_1','place_id_2','place_id_3']] # result_df.to_csv('result.csv', index = False)
apache-2.0
dkoslicki/CMash
ideas/StreamingQueryDNADatabase_save_results.py
1
20654
#! /usr/bin/env python import khmer import marisa_trie as mt import numpy as np import os import sys # The following is for ease of development (so I don't need to keep re-installing the tool) try: from CMash import MinHash as MH except ImportError: try: import MinHash as MH except ImportError: sys.path.insert(0, os.path.dirname(os.path.dirname(os.path.abspath(__file__)))) from CMash import MinHash as MH import multiprocessing import pandas as pd import argparse from argparse import ArgumentTypeError import re import matplotlib.pyplot as plt from hydra import WritingBloomFilter, ReadingBloomFilter from scipy.sparse import csr_matrix, csc_matrix from scipy.sparse import save_npz from scipy.io import savemat import timeit from itertools import islice # TODO: export hit matrices def parseNumList(input): """Thank you stack overflow""" m = re.match(r'(\d+)(?:-(\d+))?(?:-(\d+))?$', input) # ^ (or use .split('-'). anyway you like.) if not m: raise ArgumentTypeError("'" + input + "' is not a range of number. Expected forms like '1-5' or '2' or '10-15-2'.") start = int(m.group(1)) end = int(m.group(2)) if m.group(3): increment = int(m.group(3)) else: increment = 1 return list(range(start, end+1, increment)) if __name__ == '__main__': parser = argparse.ArgumentParser(description="This script calculates containment indicies for each of the training/reference sketches" " by streaming through the query file.", formatter_class=argparse.ArgumentDefaultsHelpFormatter) parser.add_argument('-t', '--threads', type=int, help="Number of threads to use", default=multiprocessing.cpu_count()) parser.add_argument('-c', '--containment_threshold', type=float, help="Only return results with containment index above this " "threshold at the maximum k-mer size.", default=0.1) parser.add_argument('-p', '--plot_file', action="store_true", help="Optional flag to specify that a plot of the " "k-mer curves should also be saved (same basename" "as the out_file).") parser.add_argument('-r', '--reads_per_core', type=int, help="Number of reads per core in each chunk of parallelization." " Set as high as memory will allow (eg. 1M on 256GB, 48 core machine)", default=100000) parser.add_argument('-f', '--filter_file', help="Location of pre-filter bloom filter. Use only if you absolutely know what you're doing " "(hard to error check bloom filters).") parser.add_argument('-l', '--location_of_thresh', type=int, help="Location in range to apply the threshold passed by the -c flag. -l 2 -c 5-50-10 means the" " threshold will be applied at k-size 25. Default is largest size.", default=-1) parser.add_argument('--sensitive', action="store_true", help="Operate in sensitive mode. Marginally more true positives with significantly more false positives. Use with caution.", default=False) parser.add_argument('-v', '--verbose', action="store_true", help="Print out progress report/timing information") parser.add_argument('in_file', help="Input file: FASTA/Q file to be processes") parser.add_argument('reference_file', help='Training database/reference file (in HDF5 format). Created with MakeStreamingDNADatabase.py') parser.add_argument('out_file', help='Output csv file with the containment indices.') parser.add_argument('range', type=parseNumList, help="Range of k-mer sizes in the formate <start>-<end>-<increment>." " So 5-10-2 means [5, 7, 9]. If <end> is larger than the k-mer size" "of the training data, this will automatically be reduced.") # read in the arguments args = parser.parse_args() k_range = args.range if k_range is None: raise Exception("The --range argument is required, no matter what the help menu says.") training_data = args.reference_file query_file = args.in_file results_file = args.out_file npz_file = os.path.splitext(results_file)[0] + "_hit_matrix.npz" num_threads = args.threads location_of_thresh = args.location_of_thresh coverage_threshold = args.containment_threshold streaming_database_file = os.path.splitext(training_data)[0] + ".tst" # name of the tst training file streaming_database_file = os.path.abspath(streaming_database_file) hydra_file = args.filter_file verbose = args.verbose num_reads_per_core = args.reads_per_core sensitive = args.sensitive if not os.path.exists(streaming_database_file): streaming_database_file = None if args.plot_file: plot_file = os.path.abspath(os.path.splitext(results_file)[0] + ".png") # Import data and error checking # Query file if not os.path.exists(query_file): raise Exception("Query file %s does not exist." % query_file) if not os.path.exists(training_data): raise Exception("Training/reference file %s does not exist." % training_data) # Training data if verbose: print("Reading in sketches") t0 = timeit.default_timer() sketches = MH.import_multiple_from_single_hdf5(training_data) if sketches[0]._kmers is None: raise Exception( "For some reason, the k-mers were not saved when the database was created. Try running MakeStreamingDNADatabase.py again.") num_hashes = len(sketches[0]._kmers) # note: this is relying on the fact that the sketches were properly constructed max_ksize = sketches[0].ksize # adjust the k-range if necessary k_range = [val for val in k_range if val <= max_ksize] # adjust location of thresh if necessary if location_of_thresh: if location_of_thresh >= len(k_range): print("Warning, k_range is of length %d, reducing location of threshold from %d to %d" % (len(k_range), location_of_thresh, len(k_range))) location_of_thresh = len(k_range) - 1 # Get names of training files for use as rows in returned tabular data training_file_names = [] for i in range(len(sketches)): training_file_names.append(sketches[i].input_file_name) if verbose: print("Finished reading in sketches") t1 = timeit.default_timer() print("Time: %f" % (t1 - t0)) if verbose: print("Reading in/creating ternary search tree") t0 = timeit.default_timer() # Make the Marissa tree if streaming_database_file is None: streaming_database_file = os.path.splitext(training_data)[0] + ".tst" streaming_database_file = os.path.abspath(streaming_database_file) print("It appears a tst training file has not been created (did you remember to use MakeStreamingDNADatabase.py?).") print("I'm creating one anyway at: %s" % streaming_database_file) print("This may take a while...") to_insert = set() for i in range(len(sketches)): for kmer_index in range(len(sketches[i]._kmers)): kmer = sketches[i]._kmers[kmer_index] to_insert.add(kmer + 'x' + str(i) + 'x' + str(kmer_index)) # format here is kmer+x+hash_index+kmer_index tree = mt.Trie(to_insert) tree.save(streaming_database_file) else: tree = mt.Trie() tree.load(streaming_database_file) # all the k-mers of interest in a set (as a pre-filter) if not hydra_file: # create one try: all_kmers_bf = WritingBloomFilter(len(sketches)*len(k_range)*num_hashes*2, 0.01) for sketch in sketches: for kmer in sketch._kmers: for ksize in k_range: all_kmers_bf.add(kmer[0:ksize]) # put all the k-mers and the appropriate suffixes in all_kmers_bf.add(khmer.reverse_complement(kmer[0:ksize])) # also add the reverse complement except IOError: print("No such file or directory/error opening file: %s" % hydra_file) sys.exit(1) else: # otherwise read it in try: all_kmers_bf = ReadingBloomFilter(hydra_file) except IOError: print("No such file or directory/error opening file: %s" % hydra_file) sys.exit(1) if verbose: print("Finished reading in/creating ternary search tree") t1 = timeit.default_timer() print("Time: %f" % (t1 - t0)) # Seen k-mers (set of k-mers that already hit the trie, so don't need to check again) seen_kmers = set() # shared object that will update the intersection counts class Counters(object): # This class is basically an array of counters (on the same basis as the sketches) # it's used to keep track (in a parallel friendly way) of which streamed k-mers went into the training file sketches def __init__(self): pass def return_matches(self, input_kmer, k_size_loc): """ Get all the matches in the trie with the kmer prefix""" match_info = set() to_return = [] for kmer in [input_kmer, khmer.reverse_complement(input_kmer)]: prefix_matches = tree.keys(kmer) # get all the k-mers whose prefix matches #match_info = set() # get the location of the found kmers in the counters for item in prefix_matches: split_string = item.split('x') # first is the hash location, second is which k-mer hash_loc = int(split_string[1]) kmer_loc = int(split_string[2]) match_info.add((hash_loc, k_size_loc, kmer_loc)) #to_return = [] saw_match = False if match_info: saw_match = True for tup in match_info: to_return.append(tup) return to_return, saw_match def process_seq(self, seq): # start with small kmer size, if see match, then continue looking for longer k-mer sizes, otherwise move on small_k_size = k_range[0] # start with the small k-size to_return = [] for i in range(len(seq) - small_k_size + 1): # look at all k-mers kmer = seq[i:i + small_k_size] possible_match = False if kmer not in seen_kmers: # if we should process it if kmer in all_kmers_bf: # if we should process it match_list, saw_match = self.return_matches(kmer, 0) if saw_match: # TODO: note, I *could* add all the trie matches and their sub-kmers to the seen_kmers seen_kmers.add(kmer) to_return.extend(match_list) possible_match = True # TODO: note: I could (since it'd only be for a single kmer size, keep a set of *all* small_kmers I've tried and use this as another pre-filter else: possible_match = True # start looking at the other k_sizes, don't overhang len(seq) if possible_match: for other_k_size in [x for x in k_range[1:] if i+x <= len(seq)]: kmer = seq[i:i + other_k_size] if kmer in all_kmers_bf: k_size_loc = k_range.index(other_k_size) match_list, saw_match = self.return_matches(kmer, k_size_loc) if saw_match: to_return.extend(match_list) else: break return to_return # Initialize the counters # TODO: note, I could be doing a partial dedup here, just to reduce the memory usage... counter = Counters() def map_func(sequence): return counter.process_seq(sequence) pool = multiprocessing.Pool(processes=num_threads) if verbose: print("Start streaming") t0 = timeit.default_timer() # populate the queue fid = khmer.ReadParser(query_file) # This is faster than screed match_tuples = [] #num_reads_per_core = 100000 num_reads_per_chunk = num_reads_per_core * num_threads to_proc = [record.sequence for record in islice(fid, num_reads_per_chunk)] i = 0 while to_proc: i += len(to_proc) if verbose: print("Read in %d sequences" % i) res = pool.map(map_func, to_proc, chunksize=max(1, min(num_reads_per_core, len(to_proc)/num_threads))) flattened_res = [item for sublist in res if sublist for item in sublist] flattened_res = list(set(flattened_res)) # dedup it match_tuples.extend(flattened_res) to_proc = [record.sequence for record in islice(fid, num_reads_per_chunk)] fid.close() #print(match_tuples) if verbose: print("Finished streaming") t1 = timeit.default_timer() print("Time: %f" % (t1 - t0)) if verbose: print("Forming hit matrix") t0 = timeit.default_timer() #print("Len matches: %d" % len(match_tuples)) # create k_range spare matrices. Rows index by genomes (sketch/hash index), columns index by k_mer_loc row_ind_dict = dict() col_ind_dict = dict() value_dict = dict() unique_kmers = dict() # this will keep track of the unique k-mers seen in each genome (sketch/hash loc) for k_size in k_range: row_ind_dict[k_size] = [] col_ind_dict[k_size] = [] value_dict[k_size] = [] match_tuples = set(match_tuples) # uniquify, so we don't make the row/col ind dicts too large ############################################################### with open(os.path.splitext(results_file)[0] + "_match_tuples.txt", "w") as fid: for hash_loc, k_size_loc, kmer_loc in match_tuples: fid.write("%d\t%d\t%d\n" % (hash_loc, k_size_loc, kmer_loc)) ################################################################ for hash_loc, k_size_loc, kmer_loc in match_tuples: if hash_loc not in unique_kmers: unique_kmers[hash_loc] = set() k_size = k_range[k_size_loc] kmer = sketches[hash_loc]._kmers[kmer_loc][:k_size] if kmer not in unique_kmers[hash_loc]: # if you've seen this k-mer before, don't add it. NOTE: this makes sure we don't over count row_ind_dict[k_size].append(hash_loc) col_ind_dict[k_size].append(kmer_loc) value_dict[k_size].append(1) unique_kmers[hash_loc].add(kmer) hit_matrices = [] for k_size in k_range: mat = csc_matrix((value_dict[k_size], (row_ind_dict[k_size], col_ind_dict[k_size])), shape=(len(sketches), num_hashes)) hit_matrices.append(mat) ############################################################ save_npz(os.path.splitext(results_file)[0] + "_first_hit_matrix_%d.npz" % k_size, mat) ############################################################ if verbose: print("Finished forming hit matrix") t1 = timeit.default_timer() print("Time: %f" % (t1 - t0)) if verbose: print("Computing containment indicies") t0 = timeit.default_timer() containment_indices = np.zeros((len(sketches), len(k_range))) # TODO: could make this thing sparse, or do the filtering for above threshold here for k_size_loc in range(len(k_range)): containment_indices[:, k_size_loc] = (hit_matrices[k_size_loc].sum(axis=1).ravel()) #/float(num_hashes)) for k_size_loc in range(len(k_range)): k_size = k_range[k_size_loc] for hash_loc in np.where(containment_indices[:, k_size_loc])[0]: # find the genomes with non-zero containment unique_kmers = set() for kmer in sketches[hash_loc]._kmers: unique_kmers.add(kmer[:k_size]) # find the unique k-mers containment_indices[hash_loc, k_size_loc] /= float(len(unique_kmers)) # divide by the unique num of k-mers if verbose: print("Finished computing containment indicies") t1 = timeit.default_timer() print("Time: %f" % (t1 - t0)) ############################################################ savemat(os.path.splitext(results_file)[0] + "_first_containment_indices.mat", {'containment_indices':containment_indices}) ############################################################ results = dict() for k_size_loc in range(len(k_range)): ksize = k_range[k_size_loc] key = 'k=%d' % ksize results[key] = containment_indices[:, k_size_loc] df = pd.DataFrame(results, map(os.path.basename, training_file_names)) df = df.reindex(labels=['k=' + str(k_size) for k_size in k_range], axis=1) # sort columns in ascending order sort_key = 'k=%d' % k_range[location_of_thresh] max_key = 'k=%d' % k_range[-1] filtered_results = df[df[sort_key] > coverage_threshold].sort_values(max_key, ascending=False) # only select those where the highest k-mer size's count is above the threshold if True: if verbose: print("Exporting results") t0 = timeit.default_timer() filtered_results.to_csv(results_file+"non_filtered.csv", index=True, encoding='utf-8') # TODO: may not have to do this if I do the pos-processing directly in here # export the reduced hit matrices # first, get the basis of the reduced data frame to_select_names = list(filtered_results.index) all_names = map(os.path.basename, training_file_names) rows_to_select = [] for name in to_select_names: rows_to_select.append(all_names.index(name)) hit_matrices_dict = dict() # the reduce the hit matrix to this basis for i in range(len(k_range)): k_size = k_range[i] hit_matrices_dict['k=%d' % k_size] = hit_matrices[i][rows_to_select, :] # then export # TODO: not necessary if I do the post-processing right here savemat(npz_file+"reduced_hit_matrix.npz", hit_matrices_dict, appendmat=False, do_compression=True) # If requested, plot the results if args.plot_file: df = pd.read_csv(results_file) # annoyingly, I have to read it back in to get the format into something I can work with dft = df.transpose() fig = plt.figure() for key in dft.keys(): plt.plot(k_range, dft[key].values[1:]) # [1:] since the first entry is the name of the file plt.legend(dft.values[0]) plt.xlabel('K-mer size') plt.ylabel('Containment Index') fig.savefig(plot_file) ############################################################################### if verbose and not sensitive: print("Starting the post-processing") t0 = timeit.default_timer() if not sensitive: # Do the post-processing # Make the hit matrices dense hit_matrices_dense_dict = dict() for k_size in k_range: hit_matrices_dense_dict['k=%d' % k_size] = hit_matrices_dict['k=%d' % k_size].todense() hit_matrices_dict = hit_matrices_dense_dict # get the count estimators of just the organisms of interest CEs = MH.import_multiple_from_single_hdf5(training_data, import_list=to_select_names) # TODO: could make it a tad more memory efficient by sub-selecting the 'sketches' all_kmers_with_counts = dict() is_unique_kmer = set() is_unique_kmer_per_ksize = dict() for k_size in k_range: is_unique_kmer_per_ksize[k_size] = set() for i in range(len(CEs)): for big_kmer in CEs[i]._kmers: kmer = big_kmer[:k_size] if kmer in all_kmers_with_counts: all_kmers_with_counts[kmer] += 1 else: all_kmers_with_counts[kmer] = 1 for kmer in all_kmers_with_counts.keys(): if all_kmers_with_counts[kmer] == 1: k_size = len(kmer) is_unique_kmer_per_ksize[k_size].add(kmer) is_unique_kmer.add(kmer) num_unique = dict() for i in range(len(CEs)): for k_size in k_range: current_kmers = [k[:k_size] for k in CEs[i]._kmers] current_kmers_set = set(current_kmers) non_unique = set() for kmer in current_kmers: if kmer not in is_unique_kmer_per_ksize[k_size]: non_unique.add(kmer) to_zero_indicies = [ind for ind, kmer in enumerate(current_kmers) if kmer in non_unique] hit_matrices_dict['k=%d' % k_size][i, to_zero_indicies] = 0 # set these to zero since they show up in other sketches (so not informative) num_unique[i, k_range.index(k_size)] = len(current_kmers_set) - len(non_unique) # keep track of the size of the unique k-mers # sum the modified hit matrices to get the size of the intersection containment_indices = np.zeros((len(to_select_names), len(k_range))) # TODO: could make this thing sparse, or do the filtering for above threshold here for k_size_loc in range(len(k_range)): k_size = k_range[k_size_loc] containment_indices[:, k_size_loc] = ( hit_matrices_dict['k=%d' % k_size].sum(axis=1).ravel()) # /float(num_hashes)) # then normalize by the number of unique k-mers (to get the containment index) for k_size_loc in range(len(k_range)): k_size = k_range[k_size_loc] for hash_loc in np.where(containment_indices[:, k_size_loc])[0]: # find the genomes with non-zero containment unique_kmers = set() for kmer in CEs[hash_loc]._kmers: unique_kmers.add(kmer[:k_size]) # find the unique k-mers containment_indices[hash_loc, k_size_loc] /= float( len(unique_kmers)) # TODO: this doesn't seem like the right way to normalize, but apparently it is! # containment_indices[hash_loc, k_size_loc] /= float(num_unique[hash_loc, k_size_loc]) # divide by the unique num of k-mers results = dict() for k_size_loc in range(len(k_range)): ksize = k_range[k_size_loc] key = 'k=%d' % ksize results[key] = containment_indices[:, k_size_loc] df = pd.DataFrame(results, map(os.path.basename, to_select_names)) df = df.reindex(labels=['k=' + str(k_size) for k_size in k_range], axis=1) # sort columns in ascending order sort_key = 'k=%d' % k_range[location_of_thresh] max_key = 'k=%d' % k_range[-1] filtered_results = df[df[sort_key] > coverage_threshold].sort_values(max_key, ascending=False) # only select those where the highest k-mer size's count is above the threshold filtered_results.to_csv(results_file, index=True, encoding='utf-8') if verbose: t1 = timeit.default_timer() print("Finished thresholding. Time: %f" % (t1 - t0)) #if verbose: # print("Finished exporting results") # t1 = timeit.default_timer() # print("Time: %f" % (t1 - t0))
bsd-3-clause
marcsans/cnn-physics-perception
phy/lib/python2.7/site-packages/sklearn/utils/tests/test_estimator_checks.py
7
4395
import scipy.sparse as sp import numpy as np import sys from sklearn.externals.six.moves import cStringIO as StringIO from sklearn.base import BaseEstimator, ClassifierMixin from sklearn.utils.testing import assert_raises_regex, assert_true from sklearn.utils.estimator_checks import check_estimator from sklearn.utils.estimator_checks import check_estimators_unfitted from sklearn.ensemble import AdaBoostClassifier from sklearn.linear_model import MultiTaskElasticNet from sklearn.utils.validation import check_X_y, check_array class CorrectNotFittedError(ValueError): """Exception class to raise if estimator is used before fitting. Like NotFittedError, it inherits from ValueError, but not from AttributeError. Used for testing only. """ class BaseBadClassifier(BaseEstimator, ClassifierMixin): def fit(self, X, y): return self def predict(self, X): return np.ones(X.shape[0]) class ChangesDict(BaseEstimator): def __init__(self): self.key = 0 def fit(self, X, y=None): X, y = check_X_y(X, y) return self def predict(self, X): X = check_array(X) self.key = 1000 return np.ones(X.shape[0]) class NoCheckinPredict(BaseBadClassifier): def fit(self, X, y): X, y = check_X_y(X, y) return self class NoSparseClassifier(BaseBadClassifier): def fit(self, X, y): X, y = check_X_y(X, y, accept_sparse=['csr', 'csc']) if sp.issparse(X): raise ValueError("Nonsensical Error") return self def predict(self, X): X = check_array(X) return np.ones(X.shape[0]) class CorrectNotFittedErrorClassifier(BaseBadClassifier): def fit(self, X, y): X, y = check_X_y(X, y) self.coef_ = np.ones(X.shape[1]) return self def predict(self, X): if not hasattr(self, 'coef_'): raise CorrectNotFittedError("estimator is not fitted yet") X = check_array(X) return np.ones(X.shape[0]) def test_check_estimator(): # tests that the estimator actually fails on "bad" estimators. # not a complete test of all checks, which are very extensive. # check that we have a set_params and can clone msg = "it does not implement a 'get_params' methods" assert_raises_regex(TypeError, msg, check_estimator, object) # check that we have a fit method msg = "object has no attribute 'fit'" assert_raises_regex(AttributeError, msg, check_estimator, BaseEstimator) # check that fit does input validation msg = "TypeError not raised by fit" assert_raises_regex(AssertionError, msg, check_estimator, BaseBadClassifier) # check that predict does input validation (doesn't accept dicts in input) msg = "Estimator doesn't check for NaN and inf in predict" assert_raises_regex(AssertionError, msg, check_estimator, NoCheckinPredict) # check that estimator state does not change # at transform/predict/predict_proba time msg = 'Estimator changes __dict__ during predict' assert_raises_regex(AssertionError, msg, check_estimator, ChangesDict) # check for sparse matrix input handling name = NoSparseClassifier.__name__ msg = "Estimator " + name + " doesn't seem to fail gracefully on sparse data" # the check for sparse input handling prints to the stdout, # instead of raising an error, so as not to remove the original traceback. # that means we need to jump through some hoops to catch it. old_stdout = sys.stdout string_buffer = StringIO() sys.stdout = string_buffer try: check_estimator(NoSparseClassifier) except: pass finally: sys.stdout = old_stdout assert_true(msg in string_buffer.getvalue()) # doesn't error on actual estimator check_estimator(AdaBoostClassifier) check_estimator(MultiTaskElasticNet) def test_check_estimators_unfitted(): # check that a ValueError/AttributeError is raised when calling predict # on an unfitted estimator msg = "AttributeError or ValueError not raised by predict" assert_raises_regex(AssertionError, msg, check_estimators_unfitted, "estimator", NoSparseClassifier) # check that CorrectNotFittedError inherit from either ValueError # or AttributeError check_estimators_unfitted("estimator", CorrectNotFittedErrorClassifier)
mit
rajat1994/scikit-learn
sklearn/datasets/tests/test_rcv1.py
322
2414
"""Test the rcv1 loader. Skipped if rcv1 is not already downloaded to data_home. """ import errno import scipy.sparse as sp import numpy as np from sklearn.datasets import fetch_rcv1 from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_true from sklearn.utils.testing import SkipTest def test_fetch_rcv1(): try: data1 = fetch_rcv1(shuffle=False, download_if_missing=False) except IOError as e: if e.errno == errno.ENOENT: raise SkipTest("Download RCV1 dataset to run this test.") X1, Y1 = data1.data, data1.target cat_list, s1 = data1.target_names.tolist(), data1.sample_id # test sparsity assert_true(sp.issparse(X1)) assert_true(sp.issparse(Y1)) assert_equal(60915113, X1.data.size) assert_equal(2606875, Y1.data.size) # test shapes assert_equal((804414, 47236), X1.shape) assert_equal((804414, 103), Y1.shape) assert_equal((804414,), s1.shape) assert_equal(103, len(cat_list)) # test ordering of categories first_categories = [u'C11', u'C12', u'C13', u'C14', u'C15', u'C151'] assert_array_equal(first_categories, cat_list[:6]) # test number of sample for some categories some_categories = ('GMIL', 'E143', 'CCAT') number_non_zero_in_cat = (5, 1206, 381327) for num, cat in zip(number_non_zero_in_cat, some_categories): j = cat_list.index(cat) assert_equal(num, Y1[:, j].data.size) # test shuffling and subset data2 = fetch_rcv1(shuffle=True, subset='train', random_state=77, download_if_missing=False) X2, Y2 = data2.data, data2.target s2 = data2.sample_id # The first 23149 samples are the training samples assert_array_equal(np.sort(s1[:23149]), np.sort(s2)) # test some precise values some_sample_ids = (2286, 3274, 14042) for sample_id in some_sample_ids: idx1 = s1.tolist().index(sample_id) idx2 = s2.tolist().index(sample_id) feature_values_1 = X1[idx1, :].toarray() feature_values_2 = X2[idx2, :].toarray() assert_almost_equal(feature_values_1, feature_values_2) target_values_1 = Y1[idx1, :].toarray() target_values_2 = Y2[idx2, :].toarray() assert_almost_equal(target_values_1, target_values_2)
bsd-3-clause
ningchi/scikit-learn
sklearn/linear_model/tests/test_theil_sen.py
234
9928
""" Testing for Theil-Sen module (sklearn.linear_model.theil_sen) """ # Author: Florian Wilhelm <[email protected]> # License: BSD 3 clause from __future__ import division, print_function, absolute_import import os import sys from contextlib import contextmanager import numpy as np from numpy.testing import assert_array_equal, assert_array_less from numpy.testing import assert_array_almost_equal, assert_warns from scipy.linalg import norm from scipy.optimize import fmin_bfgs from nose.tools import raises, assert_almost_equal from sklearn.utils import ConvergenceWarning from sklearn.linear_model import LinearRegression, TheilSenRegressor from sklearn.linear_model.theil_sen import _spatial_median, _breakdown_point from sklearn.linear_model.theil_sen import _modified_weiszfeld_step from sklearn.utils.testing import assert_greater, assert_less @contextmanager def no_stdout_stderr(): old_stdout = sys.stdout old_stderr = sys.stderr sys.stdout = open(os.devnull, 'w') sys.stderr = open(os.devnull, 'w') yield sys.stdout.flush() sys.stderr.flush() sys.stdout = old_stdout sys.stderr = old_stderr def gen_toy_problem_1d(intercept=True): random_state = np.random.RandomState(0) # Linear model y = 3*x + N(2, 0.1**2) w = 3. if intercept: c = 2. n_samples = 50 else: c = 0.1 n_samples = 100 x = random_state.normal(size=n_samples) noise = 0.1 * random_state.normal(size=n_samples) y = w * x + c + noise # Add some outliers if intercept: x[42], y[42] = (-2, 4) x[43], y[43] = (-2.5, 8) x[33], y[33] = (2.5, 1) x[49], y[49] = (2.1, 2) else: x[42], y[42] = (-2, 4) x[43], y[43] = (-2.5, 8) x[53], y[53] = (2.5, 1) x[60], y[60] = (2.1, 2) x[72], y[72] = (1.8, -7) return x[:, np.newaxis], y, w, c def gen_toy_problem_2d(): random_state = np.random.RandomState(0) n_samples = 100 # Linear model y = 5*x_1 + 10*x_2 + N(1, 0.1**2) X = random_state.normal(size=(n_samples, 2)) w = np.array([5., 10.]) c = 1. noise = 0.1 * random_state.normal(size=n_samples) y = np.dot(X, w) + c + noise # Add some outliers n_outliers = n_samples // 10 ix = random_state.randint(0, n_samples, size=n_outliers) y[ix] = 50 * random_state.normal(size=n_outliers) return X, y, w, c def gen_toy_problem_4d(): random_state = np.random.RandomState(0) n_samples = 10000 # Linear model y = 5*x_1 + 10*x_2 + 42*x_3 + 7*x_4 + N(1, 0.1**2) X = random_state.normal(size=(n_samples, 4)) w = np.array([5., 10., 42., 7.]) c = 1. noise = 0.1 * random_state.normal(size=n_samples) y = np.dot(X, w) + c + noise # Add some outliers n_outliers = n_samples // 10 ix = random_state.randint(0, n_samples, size=n_outliers) y[ix] = 50 * random_state.normal(size=n_outliers) return X, y, w, c def test_modweiszfeld_step_1d(): X = np.array([1., 2., 3.]).reshape(3, 1) # Check startvalue is element of X and solution median = 2. new_y = _modified_weiszfeld_step(X, median) assert_array_almost_equal(new_y, median) # Check startvalue is not the solution y = 2.5 new_y = _modified_weiszfeld_step(X, y) assert_array_less(median, new_y) assert_array_less(new_y, y) # Check startvalue is not the solution but element of X y = 3. new_y = _modified_weiszfeld_step(X, y) assert_array_less(median, new_y) assert_array_less(new_y, y) # Check that a single vector is identity X = np.array([1., 2., 3.]).reshape(1, 3) y = X[0, ] new_y = _modified_weiszfeld_step(X, y) assert_array_equal(y, new_y) def test_modweiszfeld_step_2d(): X = np.array([0., 0., 1., 1., 0., 1.]).reshape(3, 2) y = np.array([0.5, 0.5]) # Check first two iterations new_y = _modified_weiszfeld_step(X, y) assert_array_almost_equal(new_y, np.array([1 / 3, 2 / 3])) new_y = _modified_weiszfeld_step(X, new_y) assert_array_almost_equal(new_y, np.array([0.2792408, 0.7207592])) # Check fix point y = np.array([0.21132505, 0.78867497]) new_y = _modified_weiszfeld_step(X, y) assert_array_almost_equal(new_y, y) def test_spatial_median_1d(): X = np.array([1., 2., 3.]).reshape(3, 1) true_median = 2. _, median = _spatial_median(X) assert_array_almost_equal(median, true_median) # Test larger problem and for exact solution in 1d case random_state = np.random.RandomState(0) X = random_state.randint(100, size=(1000, 1)) true_median = np.median(X.ravel()) _, median = _spatial_median(X) assert_array_equal(median, true_median) def test_spatial_median_2d(): X = np.array([0., 0., 1., 1., 0., 1.]).reshape(3, 2) _, median = _spatial_median(X, max_iter=100, tol=1.e-6) def cost_func(y): dists = np.array([norm(x - y) for x in X]) return np.sum(dists) # Check if median is solution of the Fermat-Weber location problem fermat_weber = fmin_bfgs(cost_func, median, disp=False) assert_array_almost_equal(median, fermat_weber) # Check when maximum iteration is exceeded a warning is emitted assert_warns(ConvergenceWarning, _spatial_median, X, max_iter=30, tol=0.) def test_theil_sen_1d(): X, y, w, c = gen_toy_problem_1d() # Check that Least Squares fails lstq = LinearRegression().fit(X, y) assert_greater(np.abs(lstq.coef_ - w), 0.9) # Check that Theil-Sen works theil_sen = TheilSenRegressor(random_state=0).fit(X, y) assert_array_almost_equal(theil_sen.coef_, w, 1) assert_array_almost_equal(theil_sen.intercept_, c, 1) def test_theil_sen_1d_no_intercept(): X, y, w, c = gen_toy_problem_1d(intercept=False) # Check that Least Squares fails lstq = LinearRegression(fit_intercept=False).fit(X, y) assert_greater(np.abs(lstq.coef_ - w - c), 0.5) # Check that Theil-Sen works theil_sen = TheilSenRegressor(fit_intercept=False, random_state=0).fit(X, y) assert_array_almost_equal(theil_sen.coef_, w + c, 1) assert_almost_equal(theil_sen.intercept_, 0.) def test_theil_sen_2d(): X, y, w, c = gen_toy_problem_2d() # Check that Least Squares fails lstq = LinearRegression().fit(X, y) assert_greater(norm(lstq.coef_ - w), 1.0) # Check that Theil-Sen works theil_sen = TheilSenRegressor(max_subpopulation=1e3, random_state=0).fit(X, y) assert_array_almost_equal(theil_sen.coef_, w, 1) assert_array_almost_equal(theil_sen.intercept_, c, 1) def test_calc_breakdown_point(): bp = _breakdown_point(1e10, 2) assert_less(np.abs(bp - 1 + 1/(np.sqrt(2))), 1.e-6) @raises(ValueError) def test_checksubparams_negative_subpopulation(): X, y, w, c = gen_toy_problem_1d() TheilSenRegressor(max_subpopulation=-1, random_state=0).fit(X, y) @raises(ValueError) def test_checksubparams_too_few_subsamples(): X, y, w, c = gen_toy_problem_1d() TheilSenRegressor(n_subsamples=1, random_state=0).fit(X, y) @raises(ValueError) def test_checksubparams_too_many_subsamples(): X, y, w, c = gen_toy_problem_1d() TheilSenRegressor(n_subsamples=101, random_state=0).fit(X, y) @raises(ValueError) def test_checksubparams_n_subsamples_if_less_samples_than_features(): random_state = np.random.RandomState(0) n_samples, n_features = 10, 20 X = random_state.normal(size=(n_samples, n_features)) y = random_state.normal(size=n_samples) TheilSenRegressor(n_subsamples=9, random_state=0).fit(X, y) def test_subpopulation(): X, y, w, c = gen_toy_problem_4d() theil_sen = TheilSenRegressor(max_subpopulation=250, random_state=0).fit(X, y) assert_array_almost_equal(theil_sen.coef_, w, 1) assert_array_almost_equal(theil_sen.intercept_, c, 1) def test_subsamples(): X, y, w, c = gen_toy_problem_4d() theil_sen = TheilSenRegressor(n_subsamples=X.shape[0], random_state=0).fit(X, y) lstq = LinearRegression().fit(X, y) # Check for exact the same results as Least Squares assert_array_almost_equal(theil_sen.coef_, lstq.coef_, 9) def test_verbosity(): X, y, w, c = gen_toy_problem_1d() # Check that Theil-Sen can be verbose with no_stdout_stderr(): TheilSenRegressor(verbose=True, random_state=0).fit(X, y) TheilSenRegressor(verbose=True, max_subpopulation=10, random_state=0).fit(X, y) def test_theil_sen_parallel(): X, y, w, c = gen_toy_problem_2d() # Check that Least Squares fails lstq = LinearRegression().fit(X, y) assert_greater(norm(lstq.coef_ - w), 1.0) # Check that Theil-Sen works theil_sen = TheilSenRegressor(n_jobs=-1, random_state=0, max_subpopulation=2e3).fit(X, y) assert_array_almost_equal(theil_sen.coef_, w, 1) assert_array_almost_equal(theil_sen.intercept_, c, 1) def test_less_samples_than_features(): random_state = np.random.RandomState(0) n_samples, n_features = 10, 20 X = random_state.normal(size=(n_samples, n_features)) y = random_state.normal(size=n_samples) # Check that Theil-Sen falls back to Least Squares if fit_intercept=False theil_sen = TheilSenRegressor(fit_intercept=False, random_state=0).fit(X, y) lstq = LinearRegression(fit_intercept=False).fit(X, y) assert_array_almost_equal(theil_sen.coef_, lstq.coef_, 12) # Check fit_intercept=True case. This will not be equal to the Least # Squares solution since the intercept is calculated differently. theil_sen = TheilSenRegressor(fit_intercept=True, random_state=0).fit(X, y) y_pred = theil_sen.predict(X) assert_array_almost_equal(y_pred, y, 12)
bsd-3-clause
Warvito/pydeeplearn
code/old-version/MNISTdigits.py
3
9937
""" This module is manily created to test the deep belief and rbm implementations on MNIST""" __author__ = "Mihaela Rosca" __contact__ = "[email protected]" import argparse import matplotlib.pyplot as plt import numpy as np import cPickle as pickle import readmnist import restrictedBoltzmannMachine as rbm import deepbelief as db import utils import PCA import glob import DimensionalityReduction from common import * parser = argparse.ArgumentParser(description='RBM for digit recognition') parser.add_argument('--save',dest='save',action='store_true', default=False, help="if true, the network is serialized and saved") parser.add_argument('--train',dest='train',action='store_true', default=False, help=("if true, the network is trained from scratch from the" "traning data")) parser.add_argument('--pca', dest='pca',action='store_true', default=False, help=("if true, the code for running PCA on the data is run")) parser.add_argument('--rbm', dest='rbm',action='store_true', default=False, help=("if true, the code for traning an rbm on the data is run")) parser.add_argument('--rbmPCD', dest='rbmPCD',action='store_true', default=False, help=("if true, the code for traning an rbm on the data is run")) parser.add_argument('--db', dest='db',action='store_true', default=False, help=("if true, the code for traning a deepbelief net on the" "data is run")) parser.add_argument('--trainSize', type=int, default=10000, help='the number of tranining cases to be considered') parser.add_argument('--testSize', type=int, default=1000, help='the number of testing cases to be considered') parser.add_argument('netFile', help="file where the serialized network should be saved") parser.add_argument('--path',dest='path', default="MNIST", help="the path to the MNIST files") # Get the arguments of the program args = parser.parse_args() def visualizeWeights(weights, imgShape, tileShape): return utils.tile_raster_images(weights, imgShape, tileShape, tile_spacing=(1, 1)) def rbmMain(reconstructRandom=True): trainVectors, trainLabels =\ readmnist.read(0, args.trainSize, digits=None, bTrain=True, path=args.path) testingVectors, testLabels =\ readmnist.read(0, args.testSize, digits=None, bTrain=False, path=args.path) trainingScaledVectors = trainVectors / 255.0 testingScaledVectors = testingVectors / 255.0 # Train the network if args.train: # The number of hidden units is taken from a deep learning tutorial # The data are the values of the images have to be normalized before being # presented to the network nrVisible = len(trainingScaledVectors[0]) nrHidden = 500 # use 1 dropout to test the rbm for now net = rbm.RBM(nrVisible, nrHidden, rbm.contrastiveDivergence, 1, 1) net.train(trainingScaledVectors) t = visualizeWeights(net.weights.T, (28,28), (10,10)) else: # Take the saved network and use that for reconstructions f = open(args.netFile, "rb") t = pickle.load(f) net = pickle.load(f) f.close() # Reconstruct an image and see that it actually looks like a digit test = testingScaledVectors[0,:] # get a random image and see it looks like if reconstructRandom: test = np.random.random_sample(test.shape) # Show the initial image first plt.imshow(vectorToImage(test, (28,28)), cmap=plt.cm.gray) plt.show() # Show the reconstruction recon = net.reconstruct(test.reshape(1, test.shape[0])) plt.imshow(vectorToImage(recon, (28,28)), cmap=plt.cm.gray) plt.axis('off') plt.savefig('1.png', transparent=True) # plt.show() # Show the weights and their form in a tile fashion # Plot the weights plt.imshow(t, cmap=plt.cm.gray) plt.axis('off') plt.savefig('weights.png', transparent=True) print "done" if args.save: f = open(args.netFile, "wb") pickle.dump(t, f) pickle.dump(net, f) def rbmMainPCD(): trainVectors, trainLabels =\ readmnist.read(0, args.trainSize, digits=None, bTrain=True, path=args.path) testingVectors, testLabels =\ readmnist.read(0, args.testSize, digits=None,bTrain=False, path=args.path) trainingScaledVectors = trainVectors / 255.0 testingScaledVectors = testingVectors / 255.0 # Train the network if args.train: # The number of hidden units is taken from a deep learning tutorial # The data are the values of the images have to be normalized before being # presented to the network nrVisible = len(trainingScaledVectors[0]) nrHidden = 500 # use 1 dropout to test the rbm for now # net = rbm.RBM(nrVisible, nrHidden, rbm.contrastiveDivergence, 1, 1) net = rbm.RBM(nrVisible, nrHidden, rbm.PCD, 1, 1) net.train(trainingScaledVectors) t = visualizeWeights(net.weights.T, (28,28), (10,10)) else: # Take the saved network and use that for reconstructions f = open(args.netFile, "rb") t = pickle.load(f) net = pickle.load(f) f.close() # Reconstruct a training image and see that it actually looks like a digit test = testingScaledVectors[0,:] plt.imshow(vectorToImage(test, (28,28)), cmap=plt.cm.gray) plt.show() recon = net.reconstruct(test.reshape(1, test.shape[0])) plt.imshow(vectorToImage(recon, (28,28)), cmap=plt.cm.gray) plt.show() # Show the weights and their form in a tile fashion plt.imshow(t, cmap=plt.cm.gray) plt.axis('off') plt.savefig('weightsPCDall.png', transparent=True) print "done" if args.save: f = open(args.netFile, "wb") pickle.dump(t, f) pickle.dump(net, f) def shuffle(data, labels): indexShuffle = np.random.permutation(len(data)) shuffledData = np.array([data[i] for i in indexShuffle]) shuffledLabels = np.array([labels[i] for i in indexShuffle]) return shuffledData, shuffledLabels def pcaOnMnist(training, dimension=700): principalComponents = PCA.pca(training, dimension) low, same = PCA.reduce(principalComponents, training) image2DInitial = vectorToImage(training[0], (28,28)) print same[0].shape image2D = vectorToImage(same[0], (28,28)) plt.imshow(image2DInitial, cmap=plt.cm.gray) plt.show() plt.imshow(image2D, cmap=plt.cm.gray) plt.show() print "done" def deepbeliefMNIST(): training = args.trainSize testing = args.testSize trainVectors, trainLabels =\ readmnist.read(0, training, bTrain=True, path=args.path) testVectors, testLabels =\ readmnist.read(0, testing, bTrain=False, path=args.path) print trainVectors[0].shape trainVectors, trainLabels = shuffle(trainVectors, trainLabels) trainingScaledVectors = trainVectors / 255.0 testingScaledVectors = testVectors / 255.0 vectorLabels = labelsToVectors(trainLabels, 10) if args.train: # net = db.DBN(3, [784, 500, 10], [Sigmoid(), Softmax()]) # net = db.DBN(4, [784, 500, 500, 10], [Sigmoid, Sigmoid, Softmax]) net = db.DBN(5, [784, 1000, 1000, 1000, 10], [Sigmoid, Sigmoid, Sigmoid, Softmax], dropout=0.5, rbmDropout=0.5, visibleDropout=0.8, rbmVisibleDropout=1) # TODO: think about what the network should do for 2 layers net.train(trainingScaledVectors, vectorLabels) else: # Take the saved network and use that for reconstructions f = open(args.netFile, "rb") net = pickle.load(f) f.close() probs, predicted = net.classify(testingScaledVectors) correct = 0 for i in xrange(testing): print "predicted" print "probs" print probs[i] print predicted[i] print "actual" actual = testLabels[i] print actual correct += (predicted[i] == actual) print "correct" print correct # for w in net.weights: # print w # for b in net.biases: # print b # t = visualizeWeights(net.weights[0].T, trainImages[0].(28, 28), (10,10)) # plt.imshow(t, cmap=plt.cm.gray) # plt.show() # print "done" if args.save: f = open(args.netFile, "wb") pickle.dump(net, f) f.close() """ Arguments: big: should the big or small images be used? folds: which folds should be used (1,..5) (a list). If None is passed all folds are used """ def deepBeliefKanade(big=False, folds=None): if big: files = glob.glob('kanade_150*.pickle') else: files = glob.glob('kanade_f*.pickle') if not folds: folds = range(1, 6) # Read the data from them. Sort out the files that do not have # the folds that we want # TODO: do this better (with regex in the file name) # DO not reply on the order returned files = files[folds] data = [] labels = [] for filename in files: with open(filename, "rb") as f: # Sort out the labels from the data dataAndLabels = pickle.load(f) foldData = dataAndLabels[0:-1 ,:] foldLabels = dataAndLabels[-1,:] data.append(foldData) labels.append(foldLabels) # Do LDA # Create the network # Test # You can also group the emotions into positive and negative to see # if you can get better results (probably yes) pass # TODO: fix this (look at the ML coursework for it) # Even better, use LDA # think of normalizing them to 0.1 for pca as well def pcaMain(): training = args.trainSize testing = args.testSize train, trainLabels =\ readmnist.read(0, training, bTrain=True, path=args.path) testVectors, testLabels =\ readmnist.read(0, testing, bTrain=False, path=args.path) print train[0].shape pcaOnMnist(train, dimension=100) def main(): if args.db + args.pca + args.rbm + args.rbmPCD != 1: raise Exception("You decide on one main method to run") if args.db: deepbeliefMNIST() if args.pca: pcaMain() if args.rbmPCD: rbmMainPCD() if args.rbm: rbmMain() if __name__ == '__main__': main()
bsd-3-clause
madjelan/scikit-learn
sklearn/datasets/tests/test_lfw.py
230
7880
"""This test for the LFW require medium-size data dowloading and processing If the data has not been already downloaded by running the examples, the tests won't run (skipped). If the test are run, the first execution will be long (typically a bit more than a couple of minutes) but as the dataset loader is leveraging joblib, successive runs will be fast (less than 200ms). """ import random import os import shutil import tempfile import numpy as np from sklearn.externals import six try: try: from scipy.misc import imsave except ImportError: from scipy.misc.pilutil import imsave except ImportError: imsave = None from sklearn.datasets import load_lfw_pairs from sklearn.datasets import load_lfw_people from sklearn.datasets import fetch_lfw_pairs from sklearn.datasets import fetch_lfw_people from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_warns_message from sklearn.utils.testing import SkipTest from sklearn.utils.testing import raises SCIKIT_LEARN_DATA = tempfile.mkdtemp(prefix="scikit_learn_lfw_test_") SCIKIT_LEARN_EMPTY_DATA = tempfile.mkdtemp(prefix="scikit_learn_empty_test_") LFW_HOME = os.path.join(SCIKIT_LEARN_DATA, 'lfw_home') FAKE_NAMES = [ 'Abdelatif_Smith', 'Abhati_Kepler', 'Camara_Alvaro', 'Chen_Dupont', 'John_Lee', 'Lin_Bauman', 'Onur_Lopez', ] def setup_module(): """Test fixture run once and common to all tests of this module""" if imsave is None: raise SkipTest("PIL not installed.") if not os.path.exists(LFW_HOME): os.makedirs(LFW_HOME) random_state = random.Random(42) np_rng = np.random.RandomState(42) # generate some random jpeg files for each person counts = {} for name in FAKE_NAMES: folder_name = os.path.join(LFW_HOME, 'lfw_funneled', name) if not os.path.exists(folder_name): os.makedirs(folder_name) n_faces = np_rng.randint(1, 5) counts[name] = n_faces for i in range(n_faces): file_path = os.path.join(folder_name, name + '_%04d.jpg' % i) uniface = np_rng.randint(0, 255, size=(250, 250, 3)) try: imsave(file_path, uniface) except ImportError: raise SkipTest("PIL not installed") # add some random file pollution to test robustness with open(os.path.join(LFW_HOME, 'lfw_funneled', '.test.swp'), 'wb') as f: f.write(six.b('Text file to be ignored by the dataset loader.')) # generate some pairing metadata files using the same format as LFW with open(os.path.join(LFW_HOME, 'pairsDevTrain.txt'), 'wb') as f: f.write(six.b("10\n")) more_than_two = [name for name, count in six.iteritems(counts) if count >= 2] for i in range(5): name = random_state.choice(more_than_two) first, second = random_state.sample(range(counts[name]), 2) f.write(six.b('%s\t%d\t%d\n' % (name, first, second))) for i in range(5): first_name, second_name = random_state.sample(FAKE_NAMES, 2) first_index = random_state.choice(np.arange(counts[first_name])) second_index = random_state.choice(np.arange(counts[second_name])) f.write(six.b('%s\t%d\t%s\t%d\n' % (first_name, first_index, second_name, second_index))) with open(os.path.join(LFW_HOME, 'pairsDevTest.txt'), 'wb') as f: f.write(six.b("Fake place holder that won't be tested")) with open(os.path.join(LFW_HOME, 'pairs.txt'), 'wb') as f: f.write(six.b("Fake place holder that won't be tested")) def teardown_module(): """Test fixture (clean up) run once after all tests of this module""" if os.path.isdir(SCIKIT_LEARN_DATA): shutil.rmtree(SCIKIT_LEARN_DATA) if os.path.isdir(SCIKIT_LEARN_EMPTY_DATA): shutil.rmtree(SCIKIT_LEARN_EMPTY_DATA) @raises(IOError) def test_load_empty_lfw_people(): fetch_lfw_people(data_home=SCIKIT_LEARN_EMPTY_DATA, download_if_missing=False) def test_load_lfw_people_deprecation(): msg = ("Function 'load_lfw_people' has been deprecated in 0.17 and will be " "removed in 0.19." "Use fetch_lfw_people(download_if_missing=False) instead.") assert_warns_message(DeprecationWarning, msg, load_lfw_people, data_home=SCIKIT_LEARN_DATA) def test_load_fake_lfw_people(): lfw_people = fetch_lfw_people(data_home=SCIKIT_LEARN_DATA, min_faces_per_person=3, download_if_missing=False) # The data is croped around the center as a rectangular bounding box # arounthe the face. Colors are converted to gray levels: assert_equal(lfw_people.images.shape, (10, 62, 47)) assert_equal(lfw_people.data.shape, (10, 2914)) # the target is array of person integer ids assert_array_equal(lfw_people.target, [2, 0, 1, 0, 2, 0, 2, 1, 1, 2]) # names of the persons can be found using the target_names array expected_classes = ['Abdelatif Smith', 'Abhati Kepler', 'Onur Lopez'] assert_array_equal(lfw_people.target_names, expected_classes) # It is possible to ask for the original data without any croping or color # conversion and not limit on the number of picture per person lfw_people = fetch_lfw_people(data_home=SCIKIT_LEARN_DATA, resize=None, slice_=None, color=True, download_if_missing=False) assert_equal(lfw_people.images.shape, (17, 250, 250, 3)) # the ids and class names are the same as previously assert_array_equal(lfw_people.target, [0, 0, 1, 6, 5, 6, 3, 6, 0, 3, 6, 1, 2, 4, 5, 1, 2]) assert_array_equal(lfw_people.target_names, ['Abdelatif Smith', 'Abhati Kepler', 'Camara Alvaro', 'Chen Dupont', 'John Lee', 'Lin Bauman', 'Onur Lopez']) @raises(ValueError) def test_load_fake_lfw_people_too_restrictive(): fetch_lfw_people(data_home=SCIKIT_LEARN_DATA, min_faces_per_person=100, download_if_missing=False) @raises(IOError) def test_load_empty_lfw_pairs(): fetch_lfw_pairs(data_home=SCIKIT_LEARN_EMPTY_DATA, download_if_missing=False) def test_load_lfw_pairs_deprecation(): msg = ("Function 'load_lfw_pairs' has been deprecated in 0.17 and will be " "removed in 0.19." "Use fetch_lfw_pairs(download_if_missing=False) instead.") assert_warns_message(DeprecationWarning, msg, load_lfw_pairs, data_home=SCIKIT_LEARN_DATA) def test_load_fake_lfw_pairs(): lfw_pairs_train = fetch_lfw_pairs(data_home=SCIKIT_LEARN_DATA, download_if_missing=False) # The data is croped around the center as a rectangular bounding box # arounthe the face. Colors are converted to gray levels: assert_equal(lfw_pairs_train.pairs.shape, (10, 2, 62, 47)) # the target is whether the person is the same or not assert_array_equal(lfw_pairs_train.target, [1, 1, 1, 1, 1, 0, 0, 0, 0, 0]) # names of the persons can be found using the target_names array expected_classes = ['Different persons', 'Same person'] assert_array_equal(lfw_pairs_train.target_names, expected_classes) # It is possible to ask for the original data without any croping or color # conversion lfw_pairs_train = fetch_lfw_pairs(data_home=SCIKIT_LEARN_DATA, resize=None, slice_=None, color=True, download_if_missing=False) assert_equal(lfw_pairs_train.pairs.shape, (10, 2, 250, 250, 3)) # the ids and class names are the same as previously assert_array_equal(lfw_pairs_train.target, [1, 1, 1, 1, 1, 0, 0, 0, 0, 0]) assert_array_equal(lfw_pairs_train.target_names, expected_classes)
bsd-3-clause
chrisb13/imgtrkr
main.py
1
4427
#!/usr/bin/env python # Author: Christopher Bull. # Affiliation: Climate Change Research Centre and ARC Centre of Excellence for Climate System Science. # Level 4, Mathews Building # University of New South Wales # Sydney, NSW, Australia, 2052 # Contact: [email protected] # www: christopherbull.com.au # Date created: Tue, 02 Feb 2016 16:02:13 # Machine created on: ccrc165 # #see: https://github.com/docopt/docopt #round brackets mean required square are optional #download docopt from... #https://raw.githubusercontent.com/docopt/docopt/master/docopt.py """ Tiny python package to help save metadata to a file such that you know what script created the file! Usage: main.py -h main.py PNGPATH... Options: -h,--help : show this help message PNGPATH : path to pngfile(s) you want the metadata for Examples: 1] python main.py examples/test.png 2] See examples/pyeg.py """ from PIL import Image from PIL import PngImagePlugin import os class AddTrkr(object): """ Class to add some image metadata too Parameters ---------- pngpath: metadata (optional): whatever metadata you want to record to the file, if left blank, cpath is required. If blank will record name of file, machine run on and time, will also save the figure for you! cpath (required if metadata={}, otherwise leave empty): specify path of file that called this function Returns ------- Notes ------- Example -------- >>> #using custom metadata >>> import imgtrkr as it >>> it.AddTrkr('/home/nfs/z3457920/hdrive/repos/test.png',{'moogy':'sdfasdf'}) >>> >>> #using automated metadata (will save the png too!) >>> import imgtrkr as it >>> it.AddTrkr('/home/nfs/z3457920/hdrive/repos/test.png',{},cpath=os.path.realpath(__file__)) """ def __init__(self, pngpath,metadata={},cpath=''): #super(AddTrkr, self).__init__() self.pngpath = pngpath self.metadata = metadata self.cpath = cpath self.addmet() def addmet(self): """function that actually adds the metadata :returns: @todo """ #f = "test.png" #METADATA = {"version":"1.0", "OP":"ihuston"} ## Create a sample image #import pylab as plt #import numpy as np #X = np.random.random((50,50)) #plt.imshow(X) #plt.savefig(f) # Use PIL to save some image metadata #adding custom metadata if self.metadata!={}: im = Image.open(self.pngpath) meta = PngImagePlugin.PngInfo() for x in self.metadata: meta.add_text(x, self.metadata[x]) im.save(self.pngpath, "png", pnginfo=meta) else: import matplotlib.pyplot as plt import datetime import socket self.metadata={'Created with':self.cpath,'time':datetime.datetime.now().strftime("%Y-%m-%d %H:%M"),'machine':socket.gethostname()} plt.savefig(self.pngpath,dpi=300) im = Image.open(self.pngpath) meta = PngImagePlugin.PngInfo() for x in self.metadata: meta.add_text(x, self.metadata[x]) im.save(self.pngpath, "png", pnginfo=meta) return class RdTrkr(object): """ Class to add some image metadata too Parameters ---------- pngpath: metadata: Returns ------- Notes ------- Example -------- >>> import imgtrkr as it >>> it.RdTrkr('/home/nfs/z3457920/hdrive/repos/test.png') """ def __init__(self, pngpath): self.pngpath = pngpath im2 = Image.open(self.pngpath) #_lg.info(im2.info) # import pdb; pdb.set_trace() _lg.info("File: "+os.path.basename(self.pngpath)+" has metadata: "+str(im2.info)) # print im2.info if __name__ == "__main__": from docopt import docopt arguments = docopt(__doc__) from _cblogger import _LogStart _lg=_LogStart().setup() #if using argpasser if len(arguments['PNGPATH'])==1: RdTrkr(arguments['PNGPATH'][0]) elif len(arguments['PNGPATH'])>1: for pngp in arguments['PNGPATH']: RdTrkr(pngp) else: from ._cblogger import _LogStart _lg=_LogStart().setup()
gpl-3.0
justacec/bokeh
bokeh/charts/conftest.py
12
1484
"""Defines chart-wide shared test fixtures.""" import numpy as np import pandas as pd import pytest from bokeh.sampledata.autompg import autompg class TestData(object): """Contains properties with easy access to data used across tests.""" def __init__(self): self.cat_list = ['a', 'c', 'a', 'b'] self.list_data = [[1, 2, 3, 4], [2, 3, 4, 5]] self.array_data = [np.array(item) for item in self.list_data] self.dict_data = {'col1': self.list_data[0], 'col2': self.list_data[1]} self.pd_data = pd.DataFrame(self.dict_data) self.records_data = self.pd_data.to_dict(orient='records') self.auto_data = autompg self._setup_auto_mpg() def _setup_auto_mpg(self): # add a boolean column self.auto_data['large_displ'] = self.auto_data['displ'] > 350 # add categorical column cat = pd.Categorical.from_array(self.auto_data['cyl']) new_order = list(reversed(sorted(cat.categories.values.tolist()))) self.auto_data['reversed_cyl'] = cat.reorder_categories(new_order) @pytest.fixture(scope='module') def test_data(): return TestData() @pytest.fixture(scope='module') def wide_data_with_cat(test_data): data = test_data.dict_data.copy() data['col3'] = test_data.cat_list return data @pytest.fixture(scope='module') def df_with_cat_index(test_data): return pd.DataFrame(test_data.dict_data, index=test_data.cat_list)
bsd-3-clause
cbmoore/statsmodels
statsmodels/sandbox/rls.py
33
5179
"""Restricted least squares from pandas License: Simplified BSD """ from __future__ import print_function import numpy as np from statsmodels.regression.linear_model import WLS, GLS, RegressionResults class RLS(GLS): """ Restricted general least squares model that handles linear constraints Parameters ---------- endog: array-like n length array containing the dependent variable exog: array-like n-by-p array of independent variables constr: array-like k-by-p array of linear constraints param (0.): array-like or scalar p-by-1 array (or scalar) of constraint parameters sigma (None): scalar or array-like The weighting matrix of the covariance. No scaling by default (OLS). If sigma is a scalar, then it is converted into an n-by-n diagonal matrix with sigma as each diagonal element. If sigma is an n-length array, then it is assumed to be a diagonal matrix with the given sigma on the diagonal (WLS). Notes ----- endog = exog * beta + epsilon weights' * constr * beta = param See Greene and Seaks, "The Restricted Least Squares Estimator: A Pedagogical Note", The Review of Economics and Statistics, 1991. """ def __init__(self, endog, exog, constr, param=0., sigma=None): N, Q = exog.shape constr = np.asarray(constr) if constr.ndim == 1: K, P = 1, constr.shape[0] else: K, P = constr.shape if Q != P: raise Exception('Constraints and design do not align') self.ncoeffs = Q self.nconstraint = K self.constraint = constr if np.isscalar(param) and K > 1: param = np.ones((K,)) * param self.param = param if sigma is None: sigma = 1. if np.isscalar(sigma): sigma = np.ones(N) * sigma sigma = np.squeeze(sigma) if sigma.ndim == 1: self.sigma = np.diag(sigma) self.cholsigmainv = np.diag(np.sqrt(sigma)) else: self.sigma = sigma self.cholsigmainv = np.linalg.cholesky(np.linalg.pinv(self.sigma)).T super(GLS, self).__init__(endog, exog) _rwexog = None @property def rwexog(self): """Whitened exogenous variables augmented with restrictions""" if self._rwexog is None: P = self.ncoeffs K = self.nconstraint design = np.zeros((P + K, P + K)) design[:P, :P] = np.dot(self.wexog.T, self.wexog) #top left constr = np.reshape(self.constraint, (K, P)) design[:P, P:] = constr.T #top right partition design[P:, :P] = constr #bottom left partition design[P:, P:] = np.zeros((K, K)) #bottom right partition self._rwexog = design return self._rwexog _inv_rwexog = None @property def inv_rwexog(self): """Inverse of self.rwexog""" if self._inv_rwexog is None: self._inv_rwexog = np.linalg.inv(self.rwexog) return self._inv_rwexog _rwendog = None @property def rwendog(self): """Whitened endogenous variable augmented with restriction parameters""" if self._rwendog is None: P = self.ncoeffs K = self.nconstraint response = np.zeros((P + K,)) response[:P] = np.dot(self.wexog.T, self.wendog) response[P:] = self.param self._rwendog = response return self._rwendog _ncp = None @property def rnorm_cov_params(self): """Parameter covariance under restrictions""" if self._ncp is None: P = self.ncoeffs self._ncp = self.inv_rwexog[:P, :P] return self._ncp _wncp = None @property def wrnorm_cov_params(self): """ Heteroskedasticity-consistent parameter covariance Used to calculate White standard errors. """ if self._wncp is None: df = self.df_resid pred = np.dot(self.wexog, self.coeffs) eps = np.diag((self.wendog - pred) ** 2) sigmaSq = np.sum(eps) pinvX = np.dot(self.rnorm_cov_params, self.wexog.T) self._wncp = np.dot(np.dot(pinvX, eps), pinvX.T) * df / sigmaSq return self._wncp _coeffs = None @property def coeffs(self): """Estimated parameters""" if self._coeffs is None: betaLambda = np.dot(self.inv_rwexog, self.rwendog) self._coeffs = betaLambda[:self.ncoeffs] return self._coeffs def fit(self): rncp = self.wrnorm_cov_params lfit = RegressionResults(self, self.coeffs, normalized_cov_params=rncp) return lfit if __name__=="__main__": import statsmodels.api as sm dta = np.genfromtxt('./rlsdata.txt', names=True) design = np.column_stack((dta['Y'],dta['Y']**2,dta[['NE','NC','W','S']].view(float).reshape(dta.shape[0],-1))) design = sm.add_constant(design, prepend=True) rls_mod = RLS(dta['G'],design, constr=[0,0,0,1,1,1,1]) rls_fit = rls_mod.fit() print(rls_fit.params)
bsd-3-clause
DGrady/pandas
pandas/compat/__init__.py
4
10892
""" compat ====== Cross-compatible functions for Python 2 and 3. Key items to import for 2/3 compatible code: * iterators: range(), map(), zip(), filter(), reduce() * lists: lrange(), lmap(), lzip(), lfilter() * unicode: u() [no unicode builtin in Python 3] * longs: long (int in Python 3) * callable * iterable method compatibility: iteritems, iterkeys, itervalues * Uses the original method if available, otherwise uses items, keys, values. * types: * text_type: unicode in Python 2, str in Python 3 * binary_type: str in Python 2, bytes in Python 3 * string_types: basestring in Python 2, str in Python 3 * bind_method: binds functions to classes * add_metaclass(metaclass) - class decorator that recreates class with with the given metaclass instead (and avoids intermediary class creation) Other items: * platform checker """ # pylint disable=W0611 # flake8: noqa import functools import itertools from distutils.version import LooseVersion from itertools import product import sys import platform import types from unicodedata import east_asian_width import struct import inspect from collections import namedtuple PY2 = sys.version_info[0] == 2 PY3 = (sys.version_info[0] >= 3) PY35 = (sys.version_info >= (3, 5)) PY36 = (sys.version_info >= (3, 6)) PYPY = (platform.python_implementation() == 'PyPy') try: import __builtin__ as builtins # not writeable when instantiated with string, doesn't handle unicode well from cStringIO import StringIO as cStringIO # always writeable from StringIO import StringIO BytesIO = StringIO import cPickle import httplib except ImportError: import builtins from io import StringIO, BytesIO cStringIO = StringIO import pickle as cPickle import http.client as httplib from pandas.compat.chainmap import DeepChainMap if PY3: def isidentifier(s): return s.isidentifier() def str_to_bytes(s, encoding=None): return s.encode(encoding or 'ascii') def bytes_to_str(b, encoding=None): return b.decode(encoding or 'utf-8') # The signature version below is directly copied from Django, # https://github.com/django/django/pull/4846 def signature(f): sig = inspect.signature(f) args = [ p.name for p in sig.parameters.values() if p.kind == inspect.Parameter.POSITIONAL_OR_KEYWORD ] varargs = [ p.name for p in sig.parameters.values() if p.kind == inspect.Parameter.VAR_POSITIONAL ] varargs = varargs[0] if varargs else None keywords = [ p.name for p in sig.parameters.values() if p.kind == inspect.Parameter.VAR_KEYWORD ] keywords = keywords[0] if keywords else None defaults = [ p.default for p in sig.parameters.values() if p.kind == inspect.Parameter.POSITIONAL_OR_KEYWORD and p.default is not p.empty ] or None argspec = namedtuple('Signature', ['args', 'defaults', 'varargs', 'keywords']) return argspec(args, defaults, varargs, keywords) # have to explicitly put builtins into the namespace range = range map = map zip = zip filter = filter intern = sys.intern reduce = functools.reduce long = int unichr = chr # This was introduced in Python 3.3, but we don't support # Python 3.x < 3.5, so checking PY3 is safe. FileNotFoundError = FileNotFoundError # list-producing versions of the major Python iterating functions def lrange(*args, **kwargs): return list(range(*args, **kwargs)) def lzip(*args, **kwargs): return list(zip(*args, **kwargs)) def lmap(*args, **kwargs): return list(map(*args, **kwargs)) def lfilter(*args, **kwargs): return list(filter(*args, **kwargs)) else: # Python 2 import re _name_re = re.compile(r"[a-zA-Z_][a-zA-Z0-9_]*$") FileNotFoundError = IOError def isidentifier(s, dotted=False): return bool(_name_re.match(s)) def str_to_bytes(s, encoding='ascii'): return s def bytes_to_str(b, encoding='ascii'): return b def signature(f): return inspect.getargspec(f) # import iterator versions of these functions range = xrange intern = intern zip = itertools.izip filter = itertools.ifilter map = itertools.imap reduce = reduce long = long unichr = unichr # Python 2-builtin ranges produce lists lrange = builtins.range lzip = builtins.zip lmap = builtins.map lfilter = builtins.filter if PY2: def iteritems(obj, **kw): return obj.iteritems(**kw) def iterkeys(obj, **kw): return obj.iterkeys(**kw) def itervalues(obj, **kw): return obj.itervalues(**kw) next = lambda it: it.next() else: def iteritems(obj, **kw): return iter(obj.items(**kw)) def iterkeys(obj, **kw): return iter(obj.keys(**kw)) def itervalues(obj, **kw): return iter(obj.values(**kw)) next = next def bind_method(cls, name, func): """Bind a method to class, python 2 and python 3 compatible. Parameters ---------- cls : type class to receive bound method name : basestring name of method on class instance func : function function to be bound as method Returns ------- None """ # only python 2 has bound/unbound method issue if not PY3: setattr(cls, name, types.MethodType(func, None, cls)) else: setattr(cls, name, func) # ---------------------------------------------------------------------------- # functions largely based / taken from the six module # Much of the code in this module comes from Benjamin Peterson's six library. # The license for this library can be found in LICENSES/SIX and the code can be # found at https://bitbucket.org/gutworth/six # Definition of East Asian Width # http://unicode.org/reports/tr11/ # Ambiguous width can be changed by option _EAW_MAP = {'Na': 1, 'N': 1, 'W': 2, 'F': 2, 'H': 1} if PY3: string_types = str, integer_types = int, class_types = type, text_type = str binary_type = bytes def u(s): return s def u_safe(s): return s def strlen(data, encoding=None): # encoding is for compat with PY2 return len(data) def east_asian_len(data, encoding=None, ambiguous_width=1): """ Calculate display width considering unicode East Asian Width """ if isinstance(data, text_type): return sum([_EAW_MAP.get(east_asian_width(c), ambiguous_width) for c in data]) else: return len(data) def import_lzma(): """ import lzma from the std library """ import lzma return lzma def set_function_name(f, name, cls): """ Bind the name/qualname attributes of the function """ f.__name__ = name f.__qualname__ = '{klass}.{name}'.format( klass=cls.__name__, name=name) f.__module__ = cls.__module__ return f ResourceWarning = ResourceWarning else: string_types = basestring, integer_types = (int, long) class_types = (type, types.ClassType) text_type = unicode binary_type = str def u(s): return unicode(s, "unicode_escape") def u_safe(s): try: return unicode(s, "unicode_escape") except: return s def strlen(data, encoding=None): try: data = data.decode(encoding) except UnicodeError: pass return len(data) def east_asian_len(data, encoding=None, ambiguous_width=1): """ Calculate display width considering unicode East Asian Width """ if isinstance(data, text_type): try: data = data.decode(encoding) except UnicodeError: pass return sum([_EAW_MAP.get(east_asian_width(c), ambiguous_width) for c in data]) else: return len(data) def import_lzma(): """ import the backported lzma library or raise ImportError if not available """ from backports import lzma return lzma def set_function_name(f, name, cls): """ Bind the name attributes of the function """ f.__name__ = name return f class ResourceWarning(Warning): pass string_and_binary_types = string_types + (binary_type,) try: # callable reintroduced in later versions of Python callable = callable except NameError: def callable(obj): return any("__call__" in klass.__dict__ for klass in type(obj).__mro__) def add_metaclass(metaclass): """Class decorator for creating a class with a metaclass.""" def wrapper(cls): orig_vars = cls.__dict__.copy() orig_vars.pop('__dict__', None) orig_vars.pop('__weakref__', None) for slots_var in orig_vars.get('__slots__', ()): orig_vars.pop(slots_var) return metaclass(cls.__name__, cls.__bases__, orig_vars) return wrapper from collections import OrderedDict, Counter if PY3: def raise_with_traceback(exc, traceback=Ellipsis): if traceback == Ellipsis: _, _, traceback = sys.exc_info() raise exc.with_traceback(traceback) else: # this version of raise is a syntax error in Python 3 exec(""" def raise_with_traceback(exc, traceback=Ellipsis): if traceback == Ellipsis: _, _, traceback = sys.exc_info() raise exc, None, traceback """) raise_with_traceback.__doc__ = """Raise exception with existing traceback. If traceback is not passed, uses sys.exc_info() to get traceback.""" # http://stackoverflow.com/questions/4126348 # Thanks to @martineau at SO from dateutil import parser as _date_parser import dateutil if LooseVersion(dateutil.__version__) < '2.0': @functools.wraps(_date_parser.parse) def parse_date(timestr, *args, **kwargs): timestr = bytes(timestr) return _date_parser.parse(timestr, *args, **kwargs) elif PY2 and LooseVersion(dateutil.__version__) == '2.0': # dateutil brokenness raise Exception('dateutil 2.0 incompatible with Python 2.x, you must ' 'install version 1.5 or 2.1+!') else: parse_date = _date_parser.parse # https://github.com/pandas-dev/pandas/pull/9123 def is_platform_little_endian(): """ am I little endian """ return sys.byteorder == 'little' def is_platform_windows(): return sys.platform == 'win32' or sys.platform == 'cygwin' def is_platform_linux(): return sys.platform == 'linux2' def is_platform_mac(): return sys.platform == 'darwin' def is_platform_32bit(): return struct.calcsize("P") * 8 < 64
bsd-3-clause
nicolargo/intellij-community
python/helpers/pydev/pydev_ipython/qt_for_kernel.py
67
2337
""" Import Qt in a manner suitable for an IPython kernel. This is the import used for the `gui=qt` or `matplotlib=qt` initialization. Import Priority: if Qt4 has been imported anywhere else: use that if matplotlib has been imported and doesn't support v2 (<= 1.0.1): use PyQt4 @v1 Next, ask ETS' QT_API env variable if QT_API not set: ask matplotlib via rcParams['backend.qt4'] if it said PyQt: use PyQt4 @v1 elif it said PySide: use PySide else: (matplotlib said nothing) # this is the default path - nobody told us anything try: PyQt @v1 except: fallback on PySide else: use PyQt @v2 or PySide, depending on QT_API because ETS doesn't work with PyQt @v1. """ import os import sys from pydev_ipython.version import check_version from pydev_ipython.qt_loaders import (load_qt, QT_API_PYSIDE, QT_API_PYQT, QT_API_PYQT_DEFAULT, loaded_api) #Constraints placed on an imported matplotlib def matplotlib_options(mpl): if mpl is None: return mpqt = mpl.rcParams.get('backend.qt4', None) if mpqt is None: return None if mpqt.lower() == 'pyside': return [QT_API_PYSIDE] elif mpqt.lower() == 'pyqt4': return [QT_API_PYQT_DEFAULT] raise ImportError("unhandled value for backend.qt4 from matplotlib: %r" % mpqt) def get_options(): """Return a list of acceptable QT APIs, in decreasing order of preference """ #already imported Qt somewhere. Use that loaded = loaded_api() if loaded is not None: return [loaded] mpl = sys.modules.get('matplotlib', None) if mpl is not None and not check_version(mpl.__version__, '1.0.2'): #1.0.1 only supports PyQt4 v1 return [QT_API_PYQT_DEFAULT] if os.environ.get('QT_API', None) is None: #no ETS variable. Ask mpl, then use either return matplotlib_options(mpl) or [QT_API_PYQT_DEFAULT, QT_API_PYSIDE] #ETS variable present. Will fallback to external.qt return None api_opts = get_options() if api_opts is not None: QtCore, QtGui, QtSvg, QT_API = load_qt(api_opts) else: # use ETS variable from pydev_ipython.qt import QtCore, QtGui, QtSvg, QT_API
apache-2.0
mdhaber/scipy
scipy/stats/kde.py
5
21517
#------------------------------------------------------------------------------- # # Define classes for (uni/multi)-variate kernel density estimation. # # Currently, only Gaussian kernels are implemented. # # Written by: Robert Kern # # Date: 2004-08-09 # # Modified: 2005-02-10 by Robert Kern. # Contributed to SciPy # 2005-10-07 by Robert Kern. # Some fixes to match the new scipy_core # # Copyright 2004-2005 by Enthought, Inc. # #------------------------------------------------------------------------------- # Standard library imports. import warnings # SciPy imports. from scipy import linalg, special from scipy.special import logsumexp from scipy._lib._util import check_random_state from numpy import (asarray, atleast_2d, reshape, zeros, newaxis, dot, exp, pi, sqrt, ravel, power, atleast_1d, squeeze, sum, transpose, ones, cov) import numpy as np # Local imports. from . import mvn from ._stats import gaussian_kernel_estimate __all__ = ['gaussian_kde'] class gaussian_kde: """Representation of a kernel-density estimate using Gaussian kernels. Kernel density estimation is a way to estimate the probability density function (PDF) of a random variable in a non-parametric way. `gaussian_kde` works for both uni-variate and multi-variate data. It includes automatic bandwidth determination. The estimation works best for a unimodal distribution; bimodal or multi-modal distributions tend to be oversmoothed. Parameters ---------- dataset : array_like Datapoints to estimate from. In case of univariate data this is a 1-D array, otherwise a 2-D array with shape (# of dims, # of data). bw_method : str, scalar or callable, optional The method used to calculate the estimator bandwidth. This can be 'scott', 'silverman', a scalar constant or a callable. If a scalar, this will be used directly as `kde.factor`. If a callable, it should take a `gaussian_kde` instance as only parameter and return a scalar. If None (default), 'scott' is used. See Notes for more details. weights : array_like, optional weights of datapoints. This must be the same shape as dataset. If None (default), the samples are assumed to be equally weighted Attributes ---------- dataset : ndarray The dataset with which `gaussian_kde` was initialized. d : int Number of dimensions. n : int Number of datapoints. neff : int Effective number of datapoints. .. versionadded:: 1.2.0 factor : float The bandwidth factor, obtained from `kde.covariance_factor`. The square of `kde.factor` multiplies the covariance matrix of the data in the kde estimation. covariance : ndarray The covariance matrix of `dataset`, scaled by the calculated bandwidth (`kde.factor`). inv_cov : ndarray The inverse of `covariance`. Methods ------- evaluate __call__ integrate_gaussian integrate_box_1d integrate_box integrate_kde pdf logpdf resample set_bandwidth covariance_factor Notes ----- Bandwidth selection strongly influences the estimate obtained from the KDE (much more so than the actual shape of the kernel). Bandwidth selection can be done by a "rule of thumb", by cross-validation, by "plug-in methods" or by other means; see [3]_, [4]_ for reviews. `gaussian_kde` uses a rule of thumb, the default is Scott's Rule. Scott's Rule [1]_, implemented as `scotts_factor`, is:: n**(-1./(d+4)), with ``n`` the number of data points and ``d`` the number of dimensions. In the case of unequally weighted points, `scotts_factor` becomes:: neff**(-1./(d+4)), with ``neff`` the effective number of datapoints. Silverman's Rule [2]_, implemented as `silverman_factor`, is:: (n * (d + 2) / 4.)**(-1. / (d + 4)). or in the case of unequally weighted points:: (neff * (d + 2) / 4.)**(-1. / (d + 4)). Good general descriptions of kernel density estimation can be found in [1]_ and [2]_, the mathematics for this multi-dimensional implementation can be found in [1]_. With a set of weighted samples, the effective number of datapoints ``neff`` is defined by:: neff = sum(weights)^2 / sum(weights^2) as detailed in [5]_. References ---------- .. [1] D.W. Scott, "Multivariate Density Estimation: Theory, Practice, and Visualization", John Wiley & Sons, New York, Chicester, 1992. .. [2] B.W. Silverman, "Density Estimation for Statistics and Data Analysis", Vol. 26, Monographs on Statistics and Applied Probability, Chapman and Hall, London, 1986. .. [3] B.A. Turlach, "Bandwidth Selection in Kernel Density Estimation: A Review", CORE and Institut de Statistique, Vol. 19, pp. 1-33, 1993. .. [4] D.M. Bashtannyk and R.J. Hyndman, "Bandwidth selection for kernel conditional density estimation", Computational Statistics & Data Analysis, Vol. 36, pp. 279-298, 2001. .. [5] Gray P. G., 1969, Journal of the Royal Statistical Society. Series A (General), 132, 272 Examples -------- Generate some random two-dimensional data: >>> from scipy import stats >>> def measure(n): ... "Measurement model, return two coupled measurements." ... m1 = np.random.normal(size=n) ... m2 = np.random.normal(scale=0.5, size=n) ... return m1+m2, m1-m2 >>> m1, m2 = measure(2000) >>> xmin = m1.min() >>> xmax = m1.max() >>> ymin = m2.min() >>> ymax = m2.max() Perform a kernel density estimate on the data: >>> X, Y = np.mgrid[xmin:xmax:100j, ymin:ymax:100j] >>> positions = np.vstack([X.ravel(), Y.ravel()]) >>> values = np.vstack([m1, m2]) >>> kernel = stats.gaussian_kde(values) >>> Z = np.reshape(kernel(positions).T, X.shape) Plot the results: >>> import matplotlib.pyplot as plt >>> fig, ax = plt.subplots() >>> ax.imshow(np.rot90(Z), cmap=plt.cm.gist_earth_r, ... extent=[xmin, xmax, ymin, ymax]) >>> ax.plot(m1, m2, 'k.', markersize=2) >>> ax.set_xlim([xmin, xmax]) >>> ax.set_ylim([ymin, ymax]) >>> plt.show() """ def __init__(self, dataset, bw_method=None, weights=None): self.dataset = atleast_2d(asarray(dataset)) if not self.dataset.size > 1: raise ValueError("`dataset` input should have multiple elements.") self.d, self.n = self.dataset.shape if weights is not None: self._weights = atleast_1d(weights).astype(float) self._weights /= sum(self._weights) if self.weights.ndim != 1: raise ValueError("`weights` input should be one-dimensional.") if len(self._weights) != self.n: raise ValueError("`weights` input should be of length n") self._neff = 1/sum(self._weights**2) self.set_bandwidth(bw_method=bw_method) def evaluate(self, points): """Evaluate the estimated pdf on a set of points. Parameters ---------- points : (# of dimensions, # of points)-array Alternatively, a (# of dimensions,) vector can be passed in and treated as a single point. Returns ------- values : (# of points,)-array The values at each point. Raises ------ ValueError : if the dimensionality of the input points is different than the dimensionality of the KDE. """ points = atleast_2d(asarray(points)) d, m = points.shape if d != self.d: if d == 1 and m == self.d: # points was passed in as a row vector points = reshape(points, (self.d, 1)) m = 1 else: msg = "points have dimension %s, dataset has dimension %s" % (d, self.d) raise ValueError(msg) output_dtype = np.common_type(self.covariance, points) itemsize = np.dtype(output_dtype).itemsize if itemsize == 4: spec = 'float' elif itemsize == 8: spec = 'double' elif itemsize in (12, 16): spec = 'long double' else: raise TypeError('%s has unexpected item size %d' % (output_dtype, itemsize)) result = gaussian_kernel_estimate[spec](self.dataset.T, self.weights[:, None], points.T, self.inv_cov, output_dtype) return result[:, 0] __call__ = evaluate def integrate_gaussian(self, mean, cov): """ Multiply estimated density by a multivariate Gaussian and integrate over the whole space. Parameters ---------- mean : aray_like A 1-D array, specifying the mean of the Gaussian. cov : array_like A 2-D array, specifying the covariance matrix of the Gaussian. Returns ------- result : scalar The value of the integral. Raises ------ ValueError If the mean or covariance of the input Gaussian differs from the KDE's dimensionality. """ mean = atleast_1d(squeeze(mean)) cov = atleast_2d(cov) if mean.shape != (self.d,): raise ValueError("mean does not have dimension %s" % self.d) if cov.shape != (self.d, self.d): raise ValueError("covariance does not have dimension %s" % self.d) # make mean a column vector mean = mean[:, newaxis] sum_cov = self.covariance + cov # This will raise LinAlgError if the new cov matrix is not s.p.d # cho_factor returns (ndarray, bool) where bool is a flag for whether # or not ndarray is upper or lower triangular sum_cov_chol = linalg.cho_factor(sum_cov) diff = self.dataset - mean tdiff = linalg.cho_solve(sum_cov_chol, diff) sqrt_det = np.prod(np.diagonal(sum_cov_chol[0])) norm_const = power(2 * pi, sum_cov.shape[0] / 2.0) * sqrt_det energies = sum(diff * tdiff, axis=0) / 2.0 result = sum(exp(-energies)*self.weights, axis=0) / norm_const return result def integrate_box_1d(self, low, high): """ Computes the integral of a 1D pdf between two bounds. Parameters ---------- low : scalar Lower bound of integration. high : scalar Upper bound of integration. Returns ------- value : scalar The result of the integral. Raises ------ ValueError If the KDE is over more than one dimension. """ if self.d != 1: raise ValueError("integrate_box_1d() only handles 1D pdfs") stdev = ravel(sqrt(self.covariance))[0] normalized_low = ravel((low - self.dataset) / stdev) normalized_high = ravel((high - self.dataset) / stdev) value = np.sum(self.weights*( special.ndtr(normalized_high) - special.ndtr(normalized_low))) return value def integrate_box(self, low_bounds, high_bounds, maxpts=None): """Computes the integral of a pdf over a rectangular interval. Parameters ---------- low_bounds : array_like A 1-D array containing the lower bounds of integration. high_bounds : array_like A 1-D array containing the upper bounds of integration. maxpts : int, optional The maximum number of points to use for integration. Returns ------- value : scalar The result of the integral. """ if maxpts is not None: extra_kwds = {'maxpts': maxpts} else: extra_kwds = {} value, inform = mvn.mvnun_weighted(low_bounds, high_bounds, self.dataset, self.weights, self.covariance, **extra_kwds) if inform: msg = ('An integral in mvn.mvnun requires more points than %s' % (self.d * 1000)) warnings.warn(msg) return value def integrate_kde(self, other): """ Computes the integral of the product of this kernel density estimate with another. Parameters ---------- other : gaussian_kde instance The other kde. Returns ------- value : scalar The result of the integral. Raises ------ ValueError If the KDEs have different dimensionality. """ if other.d != self.d: raise ValueError("KDEs are not the same dimensionality") # we want to iterate over the smallest number of points if other.n < self.n: small = other large = self else: small = self large = other sum_cov = small.covariance + large.covariance sum_cov_chol = linalg.cho_factor(sum_cov) result = 0.0 for i in range(small.n): mean = small.dataset[:, i, newaxis] diff = large.dataset - mean tdiff = linalg.cho_solve(sum_cov_chol, diff) energies = sum(diff * tdiff, axis=0) / 2.0 result += sum(exp(-energies)*large.weights, axis=0)*small.weights[i] sqrt_det = np.prod(np.diagonal(sum_cov_chol[0])) norm_const = power(2 * pi, sum_cov.shape[0] / 2.0) * sqrt_det result /= norm_const return result def resample(self, size=None, seed=None): """Randomly sample a dataset from the estimated pdf. Parameters ---------- size : int, optional The number of samples to draw. If not provided, then the size is the same as the effective number of samples in the underlying dataset. seed : {None, int, `numpy.random.Generator`, `numpy.random.RandomState`}, optional If `seed` is None (or `np.random`), the `numpy.random.RandomState` singleton is used. If `seed` is an int, a new ``RandomState`` instance is used, seeded with `seed`. If `seed` is already a ``Generator`` or ``RandomState`` instance then that instance is used. Returns ------- resample : (self.d, `size`) ndarray The sampled dataset. """ if size is None: size = int(self.neff) random_state = check_random_state(seed) norm = transpose(random_state.multivariate_normal( zeros((self.d,), float), self.covariance, size=size )) indices = random_state.choice(self.n, size=size, p=self.weights) means = self.dataset[:, indices] return means + norm def scotts_factor(self): """Compute Scott's factor. Returns ------- s : float Scott's factor. """ return power(self.neff, -1./(self.d+4)) def silverman_factor(self): """Compute the Silverman factor. Returns ------- s : float The silverman factor. """ return power(self.neff*(self.d+2.0)/4.0, -1./(self.d+4)) # Default method to calculate bandwidth, can be overwritten by subclass covariance_factor = scotts_factor covariance_factor.__doc__ = """Computes the coefficient (`kde.factor`) that multiplies the data covariance matrix to obtain the kernel covariance matrix. The default is `scotts_factor`. A subclass can overwrite this method to provide a different method, or set it through a call to `kde.set_bandwidth`.""" def set_bandwidth(self, bw_method=None): """Compute the estimator bandwidth with given method. The new bandwidth calculated after a call to `set_bandwidth` is used for subsequent evaluations of the estimated density. Parameters ---------- bw_method : str, scalar or callable, optional The method used to calculate the estimator bandwidth. This can be 'scott', 'silverman', a scalar constant or a callable. If a scalar, this will be used directly as `kde.factor`. If a callable, it should take a `gaussian_kde` instance as only parameter and return a scalar. If None (default), nothing happens; the current `kde.covariance_factor` method is kept. Notes ----- .. versionadded:: 0.11 Examples -------- >>> import scipy.stats as stats >>> x1 = np.array([-7, -5, 1, 4, 5.]) >>> kde = stats.gaussian_kde(x1) >>> xs = np.linspace(-10, 10, num=50) >>> y1 = kde(xs) >>> kde.set_bandwidth(bw_method='silverman') >>> y2 = kde(xs) >>> kde.set_bandwidth(bw_method=kde.factor / 3.) >>> y3 = kde(xs) >>> import matplotlib.pyplot as plt >>> fig, ax = plt.subplots() >>> ax.plot(x1, np.full(x1.shape, 1 / (4. * x1.size)), 'bo', ... label='Data points (rescaled)') >>> ax.plot(xs, y1, label='Scott (default)') >>> ax.plot(xs, y2, label='Silverman') >>> ax.plot(xs, y3, label='Const (1/3 * Silverman)') >>> ax.legend() >>> plt.show() """ if bw_method is None: pass elif bw_method == 'scott': self.covariance_factor = self.scotts_factor elif bw_method == 'silverman': self.covariance_factor = self.silverman_factor elif np.isscalar(bw_method) and not isinstance(bw_method, str): self._bw_method = 'use constant' self.covariance_factor = lambda: bw_method elif callable(bw_method): self._bw_method = bw_method self.covariance_factor = lambda: self._bw_method(self) else: msg = "`bw_method` should be 'scott', 'silverman', a scalar " \ "or a callable." raise ValueError(msg) self._compute_covariance() def _compute_covariance(self): """Computes the covariance matrix for each Gaussian kernel using covariance_factor(). """ self.factor = self.covariance_factor() # Cache covariance and inverse covariance of the data if not hasattr(self, '_data_inv_cov'): self._data_covariance = atleast_2d(cov(self.dataset, rowvar=1, bias=False, aweights=self.weights)) self._data_inv_cov = linalg.inv(self._data_covariance) self.covariance = self._data_covariance * self.factor**2 self.inv_cov = self._data_inv_cov / self.factor**2 L = linalg.cholesky(self.covariance*2*pi) self.log_det = 2*np.log(np.diag(L)).sum() def pdf(self, x): """ Evaluate the estimated pdf on a provided set of points. Notes ----- This is an alias for `gaussian_kde.evaluate`. See the ``evaluate`` docstring for more details. """ return self.evaluate(x) def logpdf(self, x): """ Evaluate the log of the estimated pdf on a provided set of points. """ points = atleast_2d(x) d, m = points.shape if d != self.d: if d == 1 and m == self.d: # points was passed in as a row vector points = reshape(points, (self.d, 1)) m = 1 else: msg = "points have dimension %s, dataset has dimension %s" % (d, self.d) raise ValueError(msg) if m >= self.n: # there are more points than data, so loop over data energy = np.empty((self.n, m), dtype=float) for i in range(self.n): diff = self.dataset[:, i, newaxis] - points tdiff = dot(self.inv_cov, diff) energy[i] = sum(diff*tdiff, axis=0) log_to_sum = 2.0 * np.log(self.weights) - self.log_det - energy.T result = logsumexp(0.5 * log_to_sum, axis=1) else: # loop over points result = np.empty((m,), dtype=float) for i in range(m): diff = self.dataset - points[:, i, newaxis] tdiff = dot(self.inv_cov, diff) energy = sum(diff * tdiff, axis=0) log_to_sum = 2.0 * np.log(self.weights) - self.log_det - energy result[i] = logsumexp(0.5 * log_to_sum) return result @property def weights(self): try: return self._weights except AttributeError: self._weights = ones(self.n)/self.n return self._weights @property def neff(self): try: return self._neff except AttributeError: self._neff = 1/sum(self.weights**2) return self._neff
bsd-3-clause
hugobowne/scikit-learn
sklearn/feature_extraction/tests/test_dict_vectorizer.py
110
3768
# Authors: Lars Buitinck # Dan Blanchard <[email protected]> # License: BSD 3 clause from random import Random import numpy as np import scipy.sparse as sp from numpy.testing import assert_array_equal from sklearn.utils.testing import (assert_equal, assert_in, assert_false, assert_true) from sklearn.feature_extraction import DictVectorizer from sklearn.feature_selection import SelectKBest, chi2 def test_dictvectorizer(): D = [{"foo": 1, "bar": 3}, {"bar": 4, "baz": 2}, {"bar": 1, "quux": 1, "quuux": 2}] for sparse in (True, False): for dtype in (int, np.float32, np.int16): for sort in (True, False): for iterable in (True, False): v = DictVectorizer(sparse=sparse, dtype=dtype, sort=sort) X = v.fit_transform(iter(D) if iterable else D) assert_equal(sp.issparse(X), sparse) assert_equal(X.shape, (3, 5)) assert_equal(X.sum(), 14) assert_equal(v.inverse_transform(X), D) if sparse: # CSR matrices can't be compared for equality assert_array_equal(X.A, v.transform(iter(D) if iterable else D).A) else: assert_array_equal(X, v.transform(iter(D) if iterable else D)) if sort: assert_equal(v.feature_names_, sorted(v.feature_names_)) def test_feature_selection(): # make two feature dicts with two useful features and a bunch of useless # ones, in terms of chi2 d1 = dict([("useless%d" % i, 10) for i in range(20)], useful1=1, useful2=20) d2 = dict([("useless%d" % i, 10) for i in range(20)], useful1=20, useful2=1) for indices in (True, False): v = DictVectorizer().fit([d1, d2]) X = v.transform([d1, d2]) sel = SelectKBest(chi2, k=2).fit(X, [0, 1]) v.restrict(sel.get_support(indices=indices), indices=indices) assert_equal(v.get_feature_names(), ["useful1", "useful2"]) def test_one_of_k(): D_in = [{"version": "1", "ham": 2}, {"version": "2", "spam": .3}, {"version=3": True, "spam": -1}] v = DictVectorizer() X = v.fit_transform(D_in) assert_equal(X.shape, (3, 5)) D_out = v.inverse_transform(X) assert_equal(D_out[0], {"version=1": 1, "ham": 2}) names = v.get_feature_names() assert_true("version=2" in names) assert_false("version" in names) def test_unseen_or_no_features(): D = [{"camelot": 0, "spamalot": 1}] for sparse in [True, False]: v = DictVectorizer(sparse=sparse).fit(D) X = v.transform({"push the pram a lot": 2}) if sparse: X = X.toarray() assert_array_equal(X, np.zeros((1, 2))) X = v.transform({}) if sparse: X = X.toarray() assert_array_equal(X, np.zeros((1, 2))) try: v.transform([]) except ValueError as e: assert_in("empty", str(e)) def test_deterministic_vocabulary(): # Generate equal dictionaries with different memory layouts items = [("%03d" % i, i) for i in range(1000)] rng = Random(42) d_sorted = dict(items) rng.shuffle(items) d_shuffled = dict(items) # check that the memory layout does not impact the resulting vocabulary v_1 = DictVectorizer().fit([d_sorted]) v_2 = DictVectorizer().fit([d_shuffled]) assert_equal(v_1.vocabulary_, v_2.vocabulary_)
bsd-3-clause
francisco-dlp/hyperspy
hyperspy/tests/signal/test_2D_tools.py
3
6247
# Copyright 2007-2016 The HyperSpy developers # # This file is part of HyperSpy. # # HyperSpy is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # HyperSpy is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with HyperSpy. If not, see <http://www.gnu.org/licenses/>. from unittest import mock import numpy.testing as npt import numpy as np from scipy.misc import face, ascent from scipy.ndimage import fourier_shift import pytest import hyperspy.api as hs from hyperspy.decorators import lazifyTestClass def _generate_parameters(): parameters = [] for normalize_corr in [False, True]: for reference in ['current', 'cascade', 'stat']: parameters.append([normalize_corr, reference]) return parameters @lazifyTestClass class TestSubPixelAlign: def setup_method(self, method): ref_image = ascent() center = np.array((256, 256)) shifts = np.array([(0.0, 0.0), (4.3, 2.13), (1.65, 3.58), (-2.3, 2.9), (5.2, -2.1), (2.7, 2.9), (5.0, 6.8), (-9.1, -9.5), (-9.0, -9.9), (-6.3, -9.2)]) s = hs.signals.Signal2D(np.zeros((10, 100, 100))) for i in range(10): # Apply each sup-pixel shift using FFT and InverseFFT offset_image = fourier_shift(np.fft.fftn(ref_image), shifts[i]) offset_image = np.fft.ifftn(offset_image).real # Crop central regions of shifted images to avoid wrap around s.data[i, ...] = offset_image[center[0]:center[0] + 100, center[1]:center[1] + 100] self.signal = s self.shifts = shifts def test_align_subpix(self): # Align signal s = self.signal shifts = self.shifts s.align2D(shifts=shifts) # Compare by broadcasting np.testing.assert_allclose(s.data[4], s.data[0], rtol=0.5) @pytest.mark.parametrize(("normalize_corr", "reference"), _generate_parameters()) def test_estimate_subpix(self, normalize_corr, reference): s = self.signal shifts = s.estimate_shift2D(sub_pixel_factor=200, normalize_corr=normalize_corr) np.testing.assert_allclose(shifts, self.shifts, rtol=0.2, atol=0.2, verbose=True) @pytest.mark.parametrize(("plot"), [True, 'reuse']) def test_estimate_subpix_plot(self, plot): # To avoid this function plotting many figures and holding the test, we # make sure the backend is set to `agg` in case it is set to something # else in the testing environment import matplotlib.pyplot as plt plt.switch_backend('agg') s = self.signal s.estimate_shift2D(sub_pixel_factor=200, plot=plot) @lazifyTestClass class TestAlignTools: def setup_method(self, method): im = face(gray=True) self.ascent_offset = np.array((256, 256)) s = hs.signals.Signal2D(np.zeros((10, 100, 100))) self.scales = np.array((0.1, 0.3)) self.offsets = np.array((-2, -3)) izlp = [] for ax, offset, scale in zip( s.axes_manager.signal_axes, self.offsets, self.scales): ax.scale = scale ax.offset = offset izlp.append(ax.value2index(0)) self.izlp = izlp self.ishifts = np.array([(0, 0), (4, 2), (1, 3), (-2, 2), (5, -2), (2, 2), (5, 6), (-9, -9), (-9, -9), (-6, -9)]) self.new_offsets = self.offsets - self.ishifts.min(0) * self.scales zlp_pos = self.ishifts + self.izlp for i in range(10): slices = self.ascent_offset - zlp_pos[i, ...] s.data[i, ...] = im[slices[0]:slices[0] + 100, slices[1]:slices[1] + 100] self.signal = s # How image should be after successfull alignment smin = self.ishifts.min(0) smax = self.ishifts.max(0) offsets = self.ascent_offset + self.offsets / self.scales - smin size = np.array((100, 100)) - (smax - smin) self.aligned = im[int(offsets[0]):int(offsets[0] + size[0]), int(offsets[1]):int(offsets[1] + size[1])] def test_estimate_shift(self): s = self.signal shifts = s.estimate_shift2D() print(shifts) print(self.ishifts) assert np.allclose(shifts, self.ishifts) def test_align(self): # Align signal m = mock.Mock() s = self.signal s.events.data_changed.connect(m.data_changed) s.align2D() # Compare by broadcasting assert np.all(s.data == self.aligned) assert m.data_changed.called def test_align_expand(self): s = self.signal s.align2D(expand=True) # Check the numbers of NaNs to make sure expansion happened properly ds = self.ishifts.max(0) - self.ishifts.min(0) Nnan = np.sum(ds) * 100 + np.prod(ds) Nnan_data = np.sum(1 * np.isnan(s.data), axis=(1, 2)) # Due to interpolation, the number of NaNs in the data might # be 2 higher (left and right side) than expected assert np.all(Nnan_data - Nnan <= 2) # Check alignment is correct d_al = s.data[:, ds[0]:-ds[0], ds[1]:-ds[1]] assert np.all(d_al == self.aligned) def test_add_ramp(): s = hs.signals.Signal2D(np.indices((3, 3)).sum(axis=0) + 4) s.add_ramp(-1, -1, -4) npt.assert_allclose(s.data, 0) def test_add_ramp_lazy(): s = hs.signals.Signal2D(np.indices((3, 3)).sum(axis=0) + 4).as_lazy() s.add_ramp(-1, -1, -4) npt.assert_almost_equal(s.data.compute(), 0) if __name__ == '__main__': import pytest pytest.main(__name__)
gpl-3.0
egorburlakov/CrisisModelingPython
Modeling.py
1
9423
import numpy as np import networkx as nx import pandas as pd import bisect #for insort_left import time from datetime import datetime import matplotlib.pyplot as plt from CrisisModel import Crisis from OrgModel import Org cols = ["NInf", "NSigs", "NSigCaught", "NMissed", "NDecMade", "ImpCaught", "ImpMissed", "ImpDecMade", "NEmps", "MinSpan", "MaxSpan", "MaxLev", "CrT", "EmpT", "TpT"] rec = {"NInf" : [], "NSigs" : [], "NSigCaught" : [], "NMissed" : [], "NDecMade" : [], "ImpCaught" : [], "ImpMissed" : [], "ImpDecMade" : [], "NEmps" : [], "MinSpan" : [], "MaxSpan" : [], "MaxLev" : [], "CrT" : [], "EmpT" : [], "TpT" : []} #record on one experiment class Event(object): def __init__(self, t_e, sig_id_e, emp_id_e, s_st = 0): #stat - status of the signal to be processed self.t = t_e #time when the event happens self.sig_id, self.emp_id, self.s_stat = sig_id_e, emp_id_e, s_st def __eq__(self, other): return self.t == other.t def __lt__(self, other): return self.t < other.t def __repr__(self): return [self.t, self.sig_id, self.emp_id, self.s_stat].__repr__() def nextStat(o, emp, e, stat_n): #sets employees pars ready for the next stat emp["t0"] = e.t + emp["t_proc"] + 1 emp["stat"] = stat_n emp["t_proc"] = np.random.gamma(o.t_proc[stat_n], 1) #mean = var = o.t_proc[stat_n] emp["sig_proc"] = e.sig_id if stat_n > 0 else -1 emp["t_proc_tot"] += emp["t_proc"] return emp def catchSig(e, cr, o, emp): if emp["stat"] != 0: #If the employee is busy we wait until he is free return Event(emp["t0"] + emp["t_proc"] + 1, e.sig_id, e.emp_id) s0 = cr.Sigs[e.sig_id] if e.t > s0["app"] + s0["dapp"]: #if signal disappears imp_caught = s0["imp"] if imp_caught >= cr.noise_th: rec["NMissed"][-1] += 1 #statistics rec["ImpMissed"][-1] += imp_caught return [] if np.random.choice(2, 1, p = [1 - cr.av, cr.av]): #otherwise he tries to catch the signal e1 = Event(e.t + emp["t_proc"] + 1, e.sig_id, e.emp_id, emp["stat"] + 1) #and moves to the next status if succeeds emp = nextStat(o, emp, e, emp["stat"] + 1) imp_caught = s0["imp"] if imp_caught >= cr.noise_th: rec["NSigCaught"][-1] += 1 #statistics rec["ImpCaught"][-1] += imp_caught return e1 else: return Event(e.t + np.random.gamma(o.t_proc[0]), e.sig_id, e.emp_id) #if he doesn't succeed to catch, he tries to catch the signal the next time step if the signal is still available def evalSig(e, cr, o, emp): if (emp["sig_proc"] >= 0) & (emp["sig_proc"] != e.sig_id): #If the employee is busy we wait until he is free return Event(emp["t0"] + emp["t_proc"] + 1, e.sig_id, e.emp_id, 1) s0 = cr.Sigs[e.sig_id] if s0["imp_eval"]: #if someone has already assessed the signal imp = min(max(np.random.normal(s0["imp_eval"][-1], o.var_imp_eval), 0), 1) else: imp = min(max(np.random.normal(s0["imp"], o.var_imp_eval), 0), 1) s0["imp_eval"].append(imp) #update the list of evaluations from employees if imp > o.s2: #transfer signal if s0["ag"] == e.emp_id: #if it's the decision maker to preparation, otherwise - to transferring e1 = Event(e.t + emp["t_proc"] + 1, e.sig_id, e.emp_id, 4) emp = nextStat(o, emp, e, 4) else: e1 = Event(e.t + emp["t_proc"] + 1, e.sig_id, e.emp_id, emp["stat"] + 1) emp = nextStat(o, emp, e, emp["stat"] + 1) return e1 elif imp >= o.s1: #active monitoring e1 = Event(e.t + emp["t_proc"] + 1, e.sig_id, e.emp_id, 3) emp = nextStat(o, emp, e, 3) return e1 else: #don't process anymore emp = nextStat(o, emp, e, 0) return [] def transSig(e, cr, o, emp): emp_n = nx.shortest_path(o.g, e.emp_id, cr.Sigs[e.sig_id]["ag"])[1] #next angent in the path, might be similar to previous if he is a decision maker e1 = Event(e.t + emp["t_proc"] + 1, e.sig_id, emp_n, 1) #catch or evaluate? emp = nextStat(o, emp, e, 0) #the employee returns to monitoring status return e1 def actmonSig(e, cr, o, emp): s0 = cr.Sigs[e.sig_id] imp = s0["imp"] # the employees knows the true importance s0["imp_eval"].append(imp) #update the list of evaluations from employees if imp >= (o.s2 + o.s1) / 2: #transfer signal if s0["ag"] == e.emp_id: #if it's the target agent - preparation, otherwise - transferring e1 = Event(e.t + emp["t_proc"] + 1, e.sig_id, e.emp_id, 4) emp = nextStat(o, emp, e, 4) else: e1 = Event(e.t + emp["t_proc"] + 1, e.sig_id, e.emp_id, 2) emp = nextStat(o, emp, e, 2) return e1 else: #don't process anymore emp = nextStat(o, emp, e, 0) return [] def prepSig(e, cr, o, emp): emp = nextStat(o, emp, e, 0) imp_caught = cr.Sigs[e.sig_id]["imp"] if imp_caught >= cr.noise_th: rec["NDecMade"][-1] += 1 #statistics rec["ImpDecMade"][-1] += imp_caught return [] handleEvent = {0 : catchSig, 1 : evalSig, 2 : transSig, 3 : actmonSig, 4 : prepSig, } def runModeling(cr, o): e = [Event(s[1]["app"], s[0], s[1]["inf"]) for s in cr.Sigs.items()] #initializing events e.sort() e.append(Event(e[-1].t + cr.Sigs[e[-1].sig_id]["dapp"] + 1, -1, -1)) #adding terminal event while e: e1 = e.pop(0) if(e1.sig_id >= 0): # print "{} {} {}".format(e1.s_stat, "Start", time.time() - start) e1 = handleEvent[e1.s_stat](e1, cr, o, o.g.node[e1.emp_id]) if e1: # print "{} {} {}".format(e1.s_stat, "Event handled", time.time() - start) bisect.insort_right(e, e1) if gen_pars["VizOrg"] & (e1.s_stat > 0): o.visualizeGraph() else: e = [] return e1.t def runExperiments(): for i in xrange(gen_pars["NExp"]): #generate org nemps = np.random.randint(org_pars[gen_pars["Scen"]]["NEmps_min"], org_pars[gen_pars["Scen"]]["NEmps_max"] + 1) rec["NEmps"].append(nemps) min_span = org_pars[gen_pars["Scen"]]["SpanMin"] max_span = org_pars[gen_pars["Scen"]]["SpanMax"] rec["MinSpan"].append(min_span) rec["MaxSpan"].append(max_span) o = Org(nemps, min_span, max_span) if gen_pars["VizOrg"]: o.visualizeGraph() rec["MaxLev"].append(o.max_lev) #generate crisis nsigs = np.random.randint(cr_pars["NSig_min"], cr_pars["NSig_max"] + 1) imp = np.random.choice(cr_pars["Imp_modes"], p = p_v, size = 1) rec["NSigs"].append(nsigs) for key in ["NSigCaught", "NMissed", "NDecMade", "ImpCaught", "ImpMissed", "ImpDecMade"]: #initialize stats rec[key].append(0) cr = Crisis(nsigs, cr_pars["AppT"], cr_pars["DappT"], imp, o) #nsigs, app, dapp, imp rec["NInf"].append(len(cr.Sigs)) rec["CrT"].append(runModeling(cr, o)) # <-------- run modeling if i % 100 == 0: print "{} {} {} {} {} {}".format("Modeling #", i, "lasted for", rec["CrT"][-1], "and took", time.time() - start) for key in ["ImpCaught", "ImpMissed", "ImpDecMade"]: #normalize stats rec[key][-1] /= cr.imp_tot rec["EmpT"].append(np.sum([o.g.node.items()[i][1]["t_proc_tot"] for i in xrange(o.g.number_of_nodes())])) #summing up all t_proc_tot for all employees rec["TpT"].append(o.g.node[0]["t_proc_tot"]) def vizVector(p, sb_plot, col, x_lab = "", y_lab = "ImpCaught", hist = False): ax = fig.add_subplot(sb_plot) if hist: plt.hist(p, color = col) else: plt.plot(p.index, p, linestyle = "--", marker = "o", color = col) ax.set_ylabel(y_lab) ax.set_xlabel(x_lab, fontsize = 12) plt.grid() #########################` #Run Experiment ######################### #experiment details gen_pars = {"Seed" : 2, "Scen" : "SmallOrg", "NExp" : 100000, "ToCSV" : False, "VizOrg" : False} org_pars = {"Nasa" : {"NEmps_min" : 22000, "NEmps_max" : 22500, "SpanMin" : 2, "SpanMax" : 8}, "SmallOrg" : {"NEmps_min" : 5, "NEmps_max" : 19, "SpanMin" : 2, "SpanMax" : 3}, "MiddleOrg" : {"NEmps_min" : 100, "NEmps_max" : 250, "SpanMin" : 2, "SpanMax" : 4}, "BigOrg" : {"NEmps_min" : 250, "NEmps_max" : 1000, "SpanMin" : 2, "SpanMax" : 5}} cr_pars = {"NSig_min" : 5, "NSig_max" : 11, "AppT" : 16, "DappT" : 24, "Imp_modes" : [0.35, 0.5]} p_v = np.ones(len(cr_pars["Imp_modes"])) / len(cr_pars["Imp_modes"]) #Run experiments np.random.seed(gen_pars["Seed"]) start = time.time() runExperiments() st = pd.DataFrame(rec, columns = cols) #print st print "{} {}".format("Execution time is", (time.time() - start)) if gen_pars["ToCSV"]: st.to_csv("{}_{}_{}.{}".format("ModelingResults", gen_pars["Scne"], datetime.now().strftime("%Y-%m-%d %H_%M_%S"), "csv"), sep=';') #########################` #Vizualize results #########################` fig = plt.figure(facecolor = "white") #print st["ImpCaught"].groupby([st["NSigs"], rec["NEmps"]]).mean().unstack() p1 = st["ImpCaught"].groupby([rec["NEmps"]]).mean() vizVector(p1, 221, "g", "NEmps") p2 = st["EmpT"].groupby([rec["NEmps"]]).mean() vizVector(p2, 222, "r", "NEmps", "EmpT") p3 = st["ImpCaught"].groupby([rec["MaxLev"]]).mean() vizVector(p3, 223, "r", "MaxLev") vizVector(st["ImpCaught"], 224, "r", "", "", True) plt.show()
gpl-2.0
tillschumann/nest-simulator
topology/examples/test_3d.py
13
2824
# -*- coding: utf-8 -*- # # test_3d.py # # This file is part of NEST. # # Copyright (C) 2004 The NEST Initiative # # NEST is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 2 of the License, or # (at your option) any later version. # # NEST is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with NEST. If not, see <http://www.gnu.org/licenses/>. ''' NEST Topology Module EXPERIMENTAL example of 3d layer. 3d layers are currently not supported, use at your own risk! Hans Ekkehard Plesser, UMB This example uses the function GetChildren, which is deprecated. A deprecation warning is therefore issued. For details about deprecated functions, see documentation. ''' import nest import pylab import random import nest.topology as topo import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D pylab.ion() nest.ResetKernel() # generate list of 1000 (x,y,z) triplets pos = [[random.uniform(-0.5, 0.5), random.uniform(-0.5, 0.5), random.uniform(-0.5, 0.5)] for j in range(1000)] l1 = topo.CreateLayer( {'extent': [1.5, 1.5, 1.5], # must specify 3d extent AND center 'center': [0., 0., 0.], 'positions': pos, 'elements': 'iaf_psc_alpha'}) # visualize # xext, yext = nest.GetStatus(l1, 'topology')[0]['extent'] # xctr, yctr = nest.GetStatus(l1, 'topology')[0]['center'] # l1_children is a work-around until NEST 3.0 is released l1_children = nest.GetChildren(l1)[0] # extract position information, transpose to list of x, y and z positions xpos, ypos, zpos = zip(*topo.GetPosition(l1_children)) fig = plt.figure() ax = fig.add_subplot(111, projection='3d') ax.scatter(xpos, ypos, zpos, s=15, facecolor='b', edgecolor='none') # full connections in volume [-0.2,0.2]**3 topo.ConnectLayers(l1, l1, {'connection_type': 'divergent', 'allow_autapses': False, 'mask': {'volume': {'lower_left': [-0.2, -0.2, -0.2], 'upper_right': [0.2, 0.2, 0.2]}}}) # show connections from center element # sender shown in red, targets in green ctr = topo.FindCenterElement(l1) xtgt, ytgt, ztgt = zip(*topo.GetTargetPositions(ctr, l1)[0]) xctr, yctr, zctr = topo.GetPosition(ctr)[0] ax.scatter([xctr], [yctr], [zctr], s=40, facecolor='r', edgecolor='none') ax.scatter(xtgt, ytgt, ztgt, s=40, facecolor='g', edgecolor='g') tgts = topo.GetTargetNodes(ctr, l1)[0] d = topo.Distance(ctr, tgts) plt.figure() plt.hist(d, 25) # plt.show()
gpl-2.0
dsullivan7/scikit-learn
sklearn/utils/tests/test_shortest_path.py
42
2894
from collections import defaultdict import numpy as np from numpy.testing import assert_array_almost_equal from sklearn.utils.graph import (graph_shortest_path, single_source_shortest_path_length) def floyd_warshall_slow(graph, directed=False): N = graph.shape[0] #set nonzero entries to infinity graph[np.where(graph == 0)] = np.inf #set diagonal to zero graph.flat[::N + 1] = 0 if not directed: graph = np.minimum(graph, graph.T) for k in range(N): for i in range(N): for j in range(N): graph[i, j] = min(graph[i, j], graph[i, k] + graph[k, j]) graph[np.where(np.isinf(graph))] = 0 return graph def generate_graph(N=20): #sparse grid of distances rng = np.random.RandomState(0) dist_matrix = rng.random_sample((N, N)) #make symmetric: distances are not direction-dependent dist_matrix += dist_matrix.T #make graph sparse i = (rng.randint(N, size=N * N // 2), rng.randint(N, size=N * N // 2)) dist_matrix[i] = 0 #set diagonal to zero dist_matrix.flat[::N + 1] = 0 return dist_matrix def test_floyd_warshall(): dist_matrix = generate_graph(20) for directed in (True, False): graph_FW = graph_shortest_path(dist_matrix, directed, 'FW') graph_py = floyd_warshall_slow(dist_matrix.copy(), directed) assert_array_almost_equal(graph_FW, graph_py) def test_dijkstra(): dist_matrix = generate_graph(20) for directed in (True, False): graph_D = graph_shortest_path(dist_matrix, directed, 'D') graph_py = floyd_warshall_slow(dist_matrix.copy(), directed) assert_array_almost_equal(graph_D, graph_py) def test_shortest_path(): dist_matrix = generate_graph(20) # We compare path length and not costs (-> set distances to 0 or 1) dist_matrix[dist_matrix != 0] = 1 for directed in (True, False): if not directed: dist_matrix = np.minimum(dist_matrix, dist_matrix.T) graph_py = floyd_warshall_slow(dist_matrix.copy(), directed) for i in range(dist_matrix.shape[0]): # Non-reachable nodes have distance 0 in graph_py dist_dict = defaultdict(int) dist_dict.update(single_source_shortest_path_length(dist_matrix, i)) for j in range(graph_py[i].shape[0]): assert_array_almost_equal(dist_dict[j], graph_py[i, j]) def test_dijkstra_bug_fix(): X = np.array([[0., 0., 4.], [1., 0., 2.], [0., 5., 0.]]) dist_FW = graph_shortest_path(X, directed=False, method='FW') dist_D = graph_shortest_path(X, directed=False, method='D') assert_array_almost_equal(dist_D, dist_FW) if __name__ == '__main__': import nose nose.runmodule()
bsd-3-clause
dagar/Firmware
Tools/models/sdp3x_pitot_model.py
8
3344
""" Copyright (c) 2017, Sensirion AG All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. * Neither the name of Sensirion AG nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. """ # formula for metal pitot tube with round tip as here: https://drotek.com/shop/2986-large_default/sdp3x-airspeed-sensor-kit-sdp31.jpg # and tubing as provided by px4/drotek (1.5 mm diameter) import numpy as np import matplotlib.pyplot as plt P_cal=96600. #Pa P_amb=96600. #dummy-value, use absolute pressure sensor!! ## differential pressure, sensor values in Pascal dp_SDP33_raw=np.linspace(0,80,100) dp_SDP33=dp_SDP33_raw*P_cal/P_amb ## total length tube in mm = length dynamic port+ length static port; compensation only valid for inner diameter of 1.5mm l_tube=450 ## densitiy air in kg/m3 rho_air=1.29 ## flow through sensor flow_SDP33=(300.805 - 300.878/(0.00344205*dp_SDP33**0.68698 + 1))*1.29/rho_air ## additional dp through pitot tube dp_Pitot=(0.0032*flow_SDP33**2 + 0.0123*flow_SDP33+1.)*1.29/rho_air ## pressure drop through tube dp_Tube=(flow_SDP33*0.674)/450*l_tube*rho_air/1.29 ## speed at pitot-tube tip due to flow through sensor dv=0.125*flow_SDP33 ## sum of all pressure drops dp_tot=dp_SDP33+dp_Tube+dp_Pitot ## computed airspeed without correction for inflow-speed at tip of pitot-tube airspeed_uncorrected=np.sqrt(2*dp_tot/rho_air) ## corrected airspeed airspeed_corrected=airspeed_uncorrected+dv ## just to compare to value without compensation airspeed_raw=np.sqrt(2*dp_SDP33/rho_air) plt.figure() plt.plot(dp_SDP33,airspeed_corrected) plt.xlabel('differential pressure raw value [Pa]') plt.ylabel('airspeed_corrected [m/s]') plt.show() ##plt.figure() ##plt.plot(dp_SDP33,airspeed_corrected/airspeed_raw) ##plt.xlabel('differential pressure raw value [Pa]') ##plt.ylabel('correction factor [-]') ##plt.show() ## ## ## ##plt.figure() ##plt.plot(airspeed_corrected,(airspeed_corrected-airspeed_raw)/airspeed_corrected) ##plt.xlabel('airspeed [m/s]') ##plt.ylabel('relative error [-]') ##plt.show()
bsd-3-clause
devs1991/test_edx_docmode
venv/lib/python2.7/site-packages/ease/feature_extractor.py
2
13908
""" Extracts features from training set and test set essays """ import numpy import re import nltk import sys from sklearn.feature_extraction.text import CountVectorizer import pickle import os from itertools import chain import copy import operator import logging base_path = os.path.dirname(__file__) sys.path.append(base_path) from essay_set import EssaySet import util_functions if not base_path.endswith("/"): base_path=base_path+"/" log = logging.getLogger(__name__) #Paths to needed data files NGRAM_PATH = base_path + "data/good_pos_ngrams.p" ESSAY_CORPUS_PATH = util_functions.ESSAY_CORPUS_PATH class FeatureExtractor(object): def __init__(self): self._good_pos_ngrams = self.get_good_pos_ngrams() self.dict_initialized = False self._spell_errors_per_character=0 self._grammar_errors_per_character=0 def initialize_dictionaries(self, e_set, max_feats2 = 200): """ Initializes dictionaries from an essay set object Dictionaries must be initialized prior to using this to extract features e_set is an input essay set returns a confirmation of initialization """ if(hasattr(e_set, '_type')): if(e_set._type == "train"): #normal text (unstemmed) useful words/bigrams nvocab = util_functions.get_vocab(e_set._text, e_set._score, max_feats2 = max_feats2) #stemmed and spell corrected vocab useful words/ngrams svocab = util_functions.get_vocab(e_set._clean_stem_text, e_set._score, max_feats2 = max_feats2) #dictionary trained on proper vocab self._normal_dict = CountVectorizer(ngram_range=(1,2), vocabulary=nvocab) #dictionary trained on proper vocab self._stem_dict = CountVectorizer(ngram_range=(1,2), vocabulary=svocab) self.dict_initialized = True #Average spelling errors in set. needed later for spelling detection self._mean_spelling_errors=sum(e_set._spelling_errors)/float(len(e_set._spelling_errors)) self._spell_errors_per_character=sum(e_set._spelling_errors)/float(sum([len(t) for t in e_set._text])) #Gets the number and positions of grammar errors good_pos_tags,bad_pos_positions=self._get_grammar_errors(e_set._pos,e_set._text,e_set._tokens) self._grammar_errors_per_character=(sum(good_pos_tags)/float(sum([len(t) for t in e_set._text]))) #Generate bag of words features bag_feats=self.gen_bag_feats(e_set) #Sum of a row of bag of words features (topical words in an essay) f_row_sum=numpy.sum(bag_feats[:,:]) #Average index of how "topical" essays are self._mean_f_prop=f_row_sum/float(sum([len(t) for t in e_set._text])) ret = "ok" else: raise util_functions.InputError(e_set, "needs to be an essay set of the train type.") else: raise util_functions.InputError(e_set, "wrong input. need an essay set object") return ret def get_good_pos_ngrams(self): """ Gets a set of gramatically correct part of speech sequences from an input file called essaycorpus.txt Returns the set and caches the file """ if(os.path.isfile(NGRAM_PATH)): good_pos_ngrams = pickle.load(open(NGRAM_PATH, 'rb')) elif os.path.isfile(ESSAY_CORPUS_PATH): essay_corpus = open(ESSAY_CORPUS_PATH).read() essay_corpus = util_functions.sub_chars(essay_corpus) good_pos_ngrams = util_functions.regenerate_good_tokens(essay_corpus) pickle.dump(good_pos_ngrams, open(NGRAM_PATH, 'wb')) else: #Hard coded list in case the needed files cannot be found good_pos_ngrams=['NN PRP', 'NN PRP .', 'NN PRP . DT', 'PRP .', 'PRP . DT', 'PRP . DT NNP', '. DT', '. DT NNP', '. DT NNP NNP', 'DT NNP', 'DT NNP NNP', 'DT NNP NNP NNP', 'NNP NNP', 'NNP NNP NNP', 'NNP NNP NNP NNP', 'NNP NNP NNP .', 'NNP NNP .', 'NNP NNP . TO', 'NNP .', 'NNP . TO', 'NNP . TO NNP', '. TO', '. TO NNP', '. TO NNP NNP', 'TO NNP', 'TO NNP NNP'] return set(good_pos_ngrams) def _get_grammar_errors(self,pos,text,tokens): """ Internal function to get the number of grammar errors in given text pos - part of speech tagged text (list) text - normal text (list) tokens - list of lists of tokenized text """ word_counts = [max(len(t),1) for t in tokens] good_pos_tags = [] min_pos_seq=2 max_pos_seq=4 bad_pos_positions=[] for i in xrange(0, len(text)): pos_seq = [tag[1] for tag in pos[i]] pos_ngrams = util_functions.ngrams(pos_seq, min_pos_seq, max_pos_seq) long_pos_ngrams=[z for z in pos_ngrams if z.count(' ')==(max_pos_seq-1)] bad_pos_tuples=[[z,z+max_pos_seq] for z in xrange(0,len(long_pos_ngrams)) if long_pos_ngrams[z] not in self._good_pos_ngrams] bad_pos_tuples.sort(key=operator.itemgetter(1)) to_delete=[] for m in reversed(xrange(len(bad_pos_tuples)-1)): start, end = bad_pos_tuples[m] for j in xrange(m+1, len(bad_pos_tuples)): lstart, lend = bad_pos_tuples[j] if lstart >= start and lstart <= end: bad_pos_tuples[m][1]=bad_pos_tuples[j][1] to_delete.append(j) fixed_bad_pos_tuples=[bad_pos_tuples[z] for z in xrange(0,len(bad_pos_tuples)) if z not in to_delete] bad_pos_positions.append(fixed_bad_pos_tuples) overlap_ngrams = [z for z in pos_ngrams if z in self._good_pos_ngrams] if (len(pos_ngrams)-len(overlap_ngrams))>0: divisor=len(pos_ngrams)/len(pos_seq) else: divisor=1 if divisor == 0: divisor=1 good_grammar_ratio = (len(pos_ngrams)-len(overlap_ngrams))/divisor good_pos_tags.append(good_grammar_ratio) return good_pos_tags,bad_pos_positions def gen_length_feats(self, e_set): """ Generates length based features from an essay set Generally an internal function called by gen_feats Returns an array of length features e_set - EssaySet object """ text = e_set._text lengths = [len(e) for e in text] word_counts = [max(len(t),1) for t in e_set._tokens] comma_count = [e.count(",") for e in text] ap_count = [e.count("'") for e in text] punc_count = [e.count(".") + e.count("?") + e.count("!") for e in text] chars_per_word = [lengths[m] / float(word_counts[m]) for m in xrange(0, len(text))] good_pos_tags,bad_pos_positions= self._get_grammar_errors(e_set._pos,e_set._text,e_set._tokens) good_pos_tag_prop = [good_pos_tags[m] / float(word_counts[m]) for m in xrange(0, len(text))] length_arr = numpy.array(( lengths, word_counts, comma_count, ap_count, punc_count, chars_per_word, good_pos_tags, good_pos_tag_prop)).transpose() return length_arr.copy() def gen_bag_feats(self, e_set): """ Generates bag of words features from an input essay set and trained FeatureExtractor Generally called by gen_feats Returns an array of features e_set - EssaySet object """ if(hasattr(self, '_stem_dict')): sfeats = self._stem_dict.transform(e_set._clean_stem_text) nfeats = self._normal_dict.transform(e_set._text) bag_feats = numpy.concatenate((sfeats.toarray(), nfeats.toarray()), axis=1) else: raise util_functions.InputError(self, "Dictionaries must be initialized prior to generating bag features.") return bag_feats.copy() def gen_feats(self, e_set): """ Generates bag of words, length, and prompt features from an essay set object returns an array of features e_set - EssaySet object """ bag_feats = self.gen_bag_feats(e_set) length_feats = self.gen_length_feats(e_set) prompt_feats = self.gen_prompt_feats(e_set) overall_feats = numpy.concatenate((length_feats, prompt_feats, bag_feats), axis=1) overall_feats = overall_feats.copy() return overall_feats def gen_prompt_feats(self, e_set): """ Generates prompt based features from an essay set object and internal prompt variable. Generally called internally by gen_feats Returns an array of prompt features e_set - EssaySet object """ prompt_toks = nltk.word_tokenize(e_set._prompt) expand_syns = [] for word in prompt_toks: synonyms = util_functions.get_wordnet_syns(word) expand_syns.append(synonyms) expand_syns = list(chain.from_iterable(expand_syns)) prompt_overlap = [] prompt_overlap_prop = [] for j in e_set._tokens: tok_length=len(j) if(tok_length==0): tok_length=1 prompt_overlap.append(len([i for i in j if i in prompt_toks])) prompt_overlap_prop.append(prompt_overlap[len(prompt_overlap) - 1] / float(tok_length)) expand_overlap = [] expand_overlap_prop = [] for j in e_set._tokens: tok_length=len(j) if(tok_length==0): tok_length=1 expand_overlap.append(len([i for i in j if i in expand_syns])) expand_overlap_prop.append(expand_overlap[len(expand_overlap) - 1] / float(tok_length)) prompt_arr = numpy.array((prompt_overlap, prompt_overlap_prop, expand_overlap, expand_overlap_prop)).transpose() return prompt_arr.copy() def gen_feedback(self, e_set, features=None): """ Generate feedback for a given set of essays e_set - EssaySet object features - optionally, pass in a matrix of features extracted from e_set using FeatureExtractor in order to get off topic feedback. Returns a list of lists (one list per essay in e_set) e_set - EssaySet object """ #Set ratio to modify thresholds for grammar/spelling errors modifier_ratio=1.05 #Calc number of grammar and spelling errors per character set_grammar,bad_pos_positions=self._get_grammar_errors(e_set._pos,e_set._text,e_set._tokens) set_grammar_per_character=[set_grammar[m]/float(len(e_set._text[m])+.1) for m in xrange(0,len(e_set._text))] set_spell_errors_per_character=[e_set._spelling_errors[m]/float(len(e_set._text[m])+.1) for m in xrange(0,len(e_set._text))] #Iterate through essays and create a feedback dict for each all_feedback=[] for m in xrange(0,len(e_set._text)): #Be very careful about changing these messages! individual_feedback={'grammar' : "Grammar: Ok.", 'spelling' : "Spelling: Ok.", 'markup_text' : "", 'grammar_per_char' : set_grammar_per_character[m], 'spelling_per_char' : set_spell_errors_per_character[m], 'too_similar_to_prompt' : False, } markup_tokens=e_set._markup_text[m].split(" ") #This loop ensures that sequences of bad grammar get put together into one sequence instead of staying #disjointed bad_pos_starts=[z[0] for z in bad_pos_positions[m]] bad_pos_ends=[z[1]-1 for z in bad_pos_positions[m]] for z in xrange(0,len(markup_tokens)): if z in bad_pos_starts: markup_tokens[z]='<bg>' + markup_tokens[z] elif z in bad_pos_ends: markup_tokens[z]=markup_tokens[z] + "</bg>" if(len(bad_pos_ends)>0 and len(bad_pos_starts)>0 and len(markup_tokens)>1): if max(bad_pos_ends)>(len(markup_tokens)-1) and max(bad_pos_starts)<(len(markup_tokens)-1): markup_tokens[len(markup_tokens)-1]+="</bg>" #Display messages if grammar/spelling errors greater than average in training set if set_grammar_per_character[m]>(self._grammar_errors_per_character*modifier_ratio): individual_feedback['grammar']="Grammar: More grammar errors than average." if set_spell_errors_per_character[m]>(self._spell_errors_per_character*modifier_ratio): individual_feedback['spelling']="Spelling: More spelling errors than average." #Test topicality by calculating # of on topic words per character and comparing to the training set #mean. Requires features to be passed in if features is not None: f_row_sum=numpy.sum(features[m,12:]) f_row_prop=f_row_sum/len(e_set._text[m]) if f_row_prop<(self._mean_f_prop/1.5) or len(e_set._text[m])<20: individual_feedback['topicality']="Topicality: Essay may be off topic." if(features[m,9]>.6): individual_feedback['prompt_overlap']="Prompt Overlap: Too much overlap with prompt." individual_feedback['too_similar_to_prompt']=True log.debug(features[m,9]) #Create string representation of markup text markup_string=" ".join(markup_tokens) individual_feedback['markup_text']=markup_string all_feedback.append(individual_feedback) return all_feedback
agpl-3.0
raghavrv/scikit-learn
examples/cluster/plot_kmeans_assumptions.py
76
2055
""" ==================================== Demonstration of k-means assumptions ==================================== This example is meant to illustrate situations where k-means will produce unintuitive and possibly unexpected clusters. In the first three plots, the input data does not conform to some implicit assumption that k-means makes and undesirable clusters are produced as a result. In the last plot, k-means returns intuitive clusters despite unevenly sized blobs. """ print(__doc__) # Author: Phil Roth <[email protected]> # License: BSD 3 clause import numpy as np import matplotlib.pyplot as plt from sklearn.cluster import KMeans from sklearn.datasets import make_blobs plt.figure(figsize=(12, 12)) n_samples = 1500 random_state = 170 X, y = make_blobs(n_samples=n_samples, random_state=random_state) # Incorrect number of clusters y_pred = KMeans(n_clusters=2, random_state=random_state).fit_predict(X) plt.subplot(221) plt.scatter(X[:, 0], X[:, 1], c=y_pred) plt.title("Incorrect Number of Blobs") # Anisotropicly distributed data transformation = [[0.60834549, -0.63667341], [-0.40887718, 0.85253229]] X_aniso = np.dot(X, transformation) y_pred = KMeans(n_clusters=3, random_state=random_state).fit_predict(X_aniso) plt.subplot(222) plt.scatter(X_aniso[:, 0], X_aniso[:, 1], c=y_pred) plt.title("Anisotropicly Distributed Blobs") # Different variance X_varied, y_varied = make_blobs(n_samples=n_samples, cluster_std=[1.0, 2.5, 0.5], random_state=random_state) y_pred = KMeans(n_clusters=3, random_state=random_state).fit_predict(X_varied) plt.subplot(223) plt.scatter(X_varied[:, 0], X_varied[:, 1], c=y_pred) plt.title("Unequal Variance") # Unevenly sized blobs X_filtered = np.vstack((X[y == 0][:500], X[y == 1][:100], X[y == 2][:10])) y_pred = KMeans(n_clusters=3, random_state=random_state).fit_predict(X_filtered) plt.subplot(224) plt.scatter(X_filtered[:, 0], X_filtered[:, 1], c=y_pred) plt.title("Unevenly Sized Blobs") plt.show()
bsd-3-clause
JelteF/statistics
5/minerr_1.py
1
1102
import numpy as np from scipy import stats import matplotlib.pyplot as pl import seaborn as sns # noqa from itertools import count from pylatex import Plt P = [0.3, 0.7] mu = [4, 7] sigma = [1, 1.5] # The second sigma is 1.5 so it corresponds with the graph in the section # 2.4.2, it didn't work with the sigma=2 mentioned there. def p_xc(x, C): """Get pxc(x, C=C)""" mu_C = mu[C-1] sigma_C = sigma[C-1] p_x_c = stats.norm(loc=mu_C, scale=sigma_C) # px|c(x|C=C) return p_x_c.pdf(x) * P[C-1] def main(): n = 100 X = np.linspace(-4, 15, n) p_xc1 = p_xc(X, 1) p_xc2 = p_xc(X, 2) P_cx = np.zeros((n, )) for i, y1, y2 in zip(count(), p_xc1, p_xc2): px = y1 + y2 # px(x) P_cx[i] = y1 / px # P(C=1|x) pl.plot(X, p_xc1, 'b') pl.plot(X, p_xc2, 'r') pl.plot(X, P_cx, 'b--') pl.plot(X, 1 - P_cx, 'r--') with open('minerr_1.tex', 'w') as f: plt = Plt(position='H') plt.add_plot(pl) plt.add_caption('Minimum Error Classification I') plt.dump(f) if __name__ == '__main__': main()
mit
ndchorley/scipy
tools/refguide_check.py
8
13897
#!/usr/bin/env python """ refguide_check.py [OPTIONS] [-- ARGS] Check for a Scipy submodule whether the objects in its __all__ dict correspond to the objects included in the reference guide. Example of usage:: $ python refguide_check.py optimize Note that this is a helper script to be able to check if things are missing; the output of this script does need to be checked manually. In some cases objects are left out of the refguide for a good reason (it's an alias of another function, or deprecated, or ...) Another use of this helper script is to check validity of code samples in docstrings. This is different from doctesting [we do not aim to have scipy docstrings doctestable!], this is just to make sure that code in docstrings is valid python:: $ python refguide_check.py --check_docs optimize """ from __future__ import print_function import sys import os import re import copy import inspect import warnings import doctest import tempfile import shutil from doctest import NORMALIZE_WHITESPACE, ELLIPSIS, IGNORE_EXCEPTION_DETAIL from argparse import ArgumentParser, REMAINDER import numpy as np BASE_MODULE = "scipy" PUBLIC_SUBMODULES = [ 'linalg', 'cluster', 'cluster.vq', 'cluster.hierarchy', 'fftpack', 'interpolate', 'integrate', 'io', 'misc', 'ndimage', 'odr', 'optimize', 'signal', 'spatial', 'sparse', 'sparse.csgraph', 'sparse.linalg', 'stats', 'stats.mstats', ] # these names are known to fail doctesting and we like to keep it that way # e.g. sometimes pseudocode is acceptable etc DOCTEST_SKIPLIST = set([ 'scipy.integrate.quad', 'scipy.interpolate.UnivariateSpline', 'scipy.stats.levy_stable' ]) def short_path(path, cwd=None): """ Return relative or absolute path name, whichever is shortest. """ if not isinstance(path, str): return path if cwd is None: cwd = os.getcwd() abspath = os.path.abspath(path) relpath = os.path.relpath(path, cwd) if len(abspath) <= len(relpath): return abspath return relpath def find_funcnames(module): funcnames = set() # 3 spaces followed by function name, and maybe some spaces, some # dashes, and an explanation; only function names listed in # refguide are formatted like this (mostly, there may be some false # positives) pattern = re.compile("^\s\s\s([a-z_0-9A-Z]+)(\s+-+.*)?$") for line in module.__doc__.splitlines(): res = re.search(pattern, line) if res is not None: funcname = res.groups()[0] funcnames.add(funcname) return funcnames def get_all_dict(module): """Return a copy of the __all__ dict with irrelevant items removed.""" if hasattr(module, "__all__"): all_dict = copy.deepcopy(module.__all__) else: all_dict = copy.deepcopy(dir(module)) all_dict = [name for name in all_dict if not name.startswith("__")] for name in ['absolute_import', 'division', 'print_function']: try: all_dict.remove(name) except ValueError: pass # Modules are almost always private; real submodules need a separate # run of refguide_check. all_dict = [name for name in all_dict if not inspect.ismodule(getattr(module, name, None))] deprecated = [] not_deprecated = [] for name in all_dict: f = getattr(module, name, None) if callable(f) and is_deprecated(f): deprecated.append(name) else: not_deprecated.append(name) return not_deprecated, deprecated def compare(all_dict, funcnames): """Return sets of objects only in one of __all__, refguide.""" only_all = set() for name in all_dict: if name not in funcnames: only_all.add(name) only_ref = set() for name in funcnames: if name not in all_dict: only_ref.add(name) return only_all, only_ref def is_deprecated(f): with warnings.catch_warnings(record=True) as w: warnings.simplefilter("error") try: f(**{"not a kwarg":None}) except DeprecationWarning: return True except: pass return False def report(all_dict, funcnames, deprecated, module_name): """Print out a report for the module""" print("\n\n" + "=" * len(module_name)) print(module_name) print("=" * len(module_name) + "\n") num_all = len(all_dict) num_ref = len(funcnames) print("Non-deprecated objects in __all__: %i" % num_all) print("Objects in refguide: %i" % num_ref) only_all, only_ref = compare(all_dict, funcnames) dep_in_ref = set(only_ref).intersection(deprecated) only_ref = set(only_ref).difference(deprecated) if len(only_all) == len(only_ref) == 0: print("\nNo missing or extraneous items!") else: if len(only_all) > 0: print("") print("Objects in %s.__all__ but not in refguide::\n" % module_name) for name in only_all: print(" " + name) if len(only_ref) > 0: print("") print("Objects in refguide but not in %s.__all__::\n" % module_name) for name in only_ref: print(" " + name) if len(dep_in_ref) > 0: print("") print("Deprecated objects in refguide::\n") for name in deprecated: print(" " + name) def check_docstrings(module, verbose): """Check code in docstrings of the module's public symbols. """ # the namespace to run examples in ns = {'np': np, 'assert_allclose': np.testing.assert_allclose, 'assert_equal': np.testing.assert_equal, # recognize numpy repr's 'array': np.array, 'int64': np.int64, 'uint64': np.uint64, 'int8': np.int8, 'int32': np.int32, 'float64': np.float64, 'dtype': np.dtype, 'nan': np.nan, 'NaN': np.nan, 'inf': np.inf, 'Inf': np.inf,} # if MPL is available, use display-less backend try: import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt have_matplotlib = True except ImportError: have_matplotlib = False def format_item_header(name): return "\n\n" + name + "\n" + "-" * len(name) class DTRunner(doctest.DocTestRunner): stopwords = {'plt.', '.hist', '.show', '.ylim', '.subplot(', 'set_title', 'imshow', 'plt.show', 'ax.axis', 'plt.plot(', '.title', '.ylabel', '.xlabel', 'set_ylim', 'set_xlim'} rndm_markers = {'# random', '# Random', '#random', '#Random'} DIVIDER = "\n" def __init__(self, item_name, checker=None, verbose=None, optionflags=0): self._item_name = item_name doctest.DocTestRunner.__init__(self, checker=checker, verbose=verbose, optionflags=optionflags) def _report_item_name(self, out, new_line=False): if self._item_name is not None: out(format_item_header(self._item_name)) if new_line: out("\n") self._item_name = None def report_success(self, out, test, example, got): if self._verbose: self._report_item_name(out, new_line=True) return doctest.DocTestRunner.report_success(self, out, test, example, got) def report_unexpected_exception(self, out, test, example, exc_info): self._report_item_name(out) return doctest.DocTestRunner.report_unexpected_exception( self, out, test, example, exc_info) def report_failure(self, out, test, example, got): if (any(word in example.source for word in self.stopwords) or any(word in example.want for word in self.rndm_markers)): # do not complain if output does not match pass else: self._report_item_name(out) return doctest.DocTestRunner.report_failure(self, out, test, example, got) class Checker(doctest.OutputChecker): obj_pattern = re.compile('at 0x[0-9a-fA-F]+>') vanilla = doctest.OutputChecker() def __init__(self, parse_namedtuples=True, atol=1e-8, rtol=1e-2): self.parse_namedtuples = parse_namedtuples self.atol, self.rtol = atol, rtol def check_output(self, want, got, optionflags): # cut it short if they are equal if want == got: return True # skip function/object addresses if self.obj_pattern.search(got): return True # ignore comments (e.g. signal.freqresp) if want.lstrip().startswith("#"): return True # try the standard doctest try: if self.vanilla.check_output(want, got, optionflags): return True except Exception: pass # OK then, convert strings to objects try: a_want = eval(want, dict(ns)) a_got = eval(got, dict(ns)) except: if not self.parse_namedtuples: return False # suppose that "want" is a tuple, and "got" is smth like # MoodResult(statistic=10, pvalue=0.1). # Then convert the latter to the tuple (10, 0.1), # and then compare the tuples. try: num = len(a_want) regex = ('[\w\d_]+\(' + ', '.join(['[\w\d_]+=(.+)']*num) + '\)') grp = re.findall(regex, got.replace('\n', ' ')) if len(grp) > 1: # no more than one for now return False # fold it back to a tuple got_again = '(' + ', '.join(grp[0]) + ')' return self.check_output(want, got_again, optionflags) except Exception: return False # ... and defer to numpy try: return self._do_check(a_want, a_got) except Exception: # heterog tuple, eg (1, np.array([1., 2.])) try: return all(self._do_check(w, g) for w, g in zip(a_want, a_got)) except TypeError: return False def _do_check(self, want, got): # This should be done exactly as written to correctly handle all of # numpy-comparable objects, strings, and heterogenous tuples try: if want == got: return True except Exception: pass return np.allclose(want, got, atol=self.atol, rtol=self.rtol) # Loop over non-deprecated items all_success = True for name in get_all_dict(module)[0]: full_name = module.__name__ + '.' + name if full_name in DOCTEST_SKIPLIST: continue try: obj = getattr(module, name) except AttributeError: import traceback print(format_item_header(full_name)) print("Missing item!") print(traceback.format_exc()) continue finder = doctest.DocTestFinder() try: tests = finder.find(obj, name, globs=dict(ns)) except: import traceback print(format_item_header(full_name)) print("Failed to get doctests:") print(traceback.format_exc()) continue flags = NORMALIZE_WHITESPACE | ELLIPSIS | IGNORE_EXCEPTION_DETAIL runner = DTRunner(full_name, checker=Checker(), optionflags=flags, verbose=verbose) # Run tests, trying to restore global state afterward old_printoptions = np.get_printoptions() old_errstate = np.seterr() cwd = os.getcwd() tmpdir = tempfile.mkdtemp() try: os.chdir(tmpdir) for t in tests: t.filename = short_path(t.filename, cwd) fails, successes = runner.run(t) if fails > 0: all_success = False if have_matplotlib: plt.close('all') finally: os.chdir(cwd) shutil.rmtree(tmpdir) np.set_printoptions(**old_printoptions) np.seterr(**old_errstate) if not verbose and all_success: # Print at least a success message if no other output was produced print("\nAll doctests pass!") def main(argv): parser = ArgumentParser(usage=__doc__.lstrip()) parser.add_argument("module_names", metavar="SUBMODULES", default=list(PUBLIC_SUBMODULES), nargs='*', help="Submodules to check (default: all public)") parser.add_argument("--doctests", action="store_true", help="Run also doctests") parser.add_argument("--verbose", action="store_true") args = parser.parse_args(argv) for submodule_name in args.module_names: module_name = BASE_MODULE + '.' + submodule_name __import__(module_name) module = sys.modules[module_name] funcnames = find_funcnames(module) all_dict, deprecated = get_all_dict(module) report(all_dict, funcnames, deprecated, module_name) if args.doctests: check_docstrings(module, args.verbose) if __name__ == '__main__': main(argv=sys.argv[1:])
bsd-3-clause
hrichstein/Stellar_mass_env_Density
Codes/Scripts/plot_all_mocks.py
1
80737
from __future__ import division, absolute_import import astropy.stats import glob import math import matplotlib.pyplot as plt from matplotlib import ticker from matplotlib.ticker import FormatStrFormatter import numpy as np import os import pandas as pd from scipy import integrate,optimize,spatial ############################################################################### ############################################################################### ############################################################################### __author__ =['Victor Calderon'] __copyright__ =["Copyright 2016 Victor Calderon, Index function"] __email__ =['[email protected]'] __maintainer__ =['Victor Calderon'] def Index(directory, datatype): """ Indexes the files in a directory `directory' with a specific data type. Parameters ---------- directory: str Absolute path to the folder that is indexed. datatype: str Data type of the files to be indexed in the folder. Returns ------- file_array: array_like np.array of indexed files in the folder 'directory' with specific datatype. Examples -------- >>> Index('~/data', '.txt') >>> array(['A.txt', 'Z'.txt', ...]) """ assert(os.path.exists(directory)) files = np.array(glob.glob('{0}/*{1}'.format(directory, datatype))) return files ############################################################################### def myceil(x, base=10): """ Returns the upper-bound integer of 'x' in base 'base'. Parameters ---------- x: float number to be approximated to closest number to 'base' base: float base used to calculate the closest 'largest' number Returns ------- n_high: float Closest float number to 'x', i.e. upper-bound float. Example ------- >>>> myceil(12,10) 20 >>>> >>>> myceil(12.05, 0.1) 12.10000 """ n_high = float(base*math.ceil(float(x)/base)) return n_high ############################################################################### def myfloor(x, base=10): """ Returns the lower-bound integer of 'x' in base 'base' Parameters ---------- x: float number to be approximated to closest number of 'base' base: float base used to calculate the closest 'smallest' number Returns ------- n_low: float Closest float number to 'x', i.e. lower-bound float. Example ------- >>>> myfloor(12, 5) >>>> 10 """ n_low = float(base*math.floor(float(x)/base)) return n_low ############################################################################### def Bins_array_create(arr, base=10): """ Generates array between [arr.min(), arr.max()] in steps of `base`. Parameters ---------- arr: array_like, Shape (N,...), One-dimensional Array of numerical elements base: float, optional (default=10) Interval between bins Returns ------- bins_arr: array_like Array of bin edges for given arr """ base = float(base) arr = np.array(arr) assert(arr.ndim==1) arr_min = myfloor(arr.min(), base=base) arr_max = myceil( arr.max(), base=base) bins_arr = np.arange(arr_min, arr_max+0.5*base, base) return bins_arr ############################################################################### ############################################################################### ############################################################################### def sph_to_cart(ra,dec,cz): """ Converts spherical coordinates to Cartesian coordinates. Parameters ---------- ra: array-like right-ascension of galaxies in degrees dec: array-like declination of galaxies in degrees cz: array-like velocity of galaxies in km/s Returns ------- coords: array-like, shape = N by 3 x, y, and z coordinates """ cz_dist = cz/70. #converts velocity into distance x_arr = cz_dist*np.cos(np.radians(ra))*np.cos(np.radians(dec)) y_arr = cz_dist*np.sin(np.radians(ra))*np.cos(np.radians(dec)) z_arr = cz_dist*np.sin(np.radians(dec)) coords = np.column_stack((x_arr,y_arr,z_arr)) return coords ############################################################################ def calc_dens(n_val,r_val): """ Returns densities of spheres with radius being the distance to the nth nearest neighbor. Parameters ---------- n_val = integer The 'N' from Nth nearest neighbor r_val = array-like An array with the distances to the Nth nearest neighbor for each galaxy Returns ------- dens: array-like An array with the densities of the spheres created with radii to the Nth nearest neighbor. """ dens = np.array([(3.*(n_val+1)/(4.*np.pi*r_val[hh]**3)) \ for hh in range(len(r_val))]) return dens ############################################################################### def plot_calcs(mass,bins,dlogM): """ Returns values for plotting the stellar mass function and mass ratios Parameters ---------- mass: array-like A 1D array with mass values, assumed to be in order bins: array=like A 1D array with the values which will be used as the bin edges by the histogram function dlogM: float-like The log difference between bin edges Returns ------- bin_centers: array-like An array with the medians mass values of the mass bins mass-freq: array-like Contains the number density values of each mass bin ratio_dict: dictionary-like A dictionary with three keys, corresponding to the divisors 2,4, and 10 (as the percentile cuts are based on these divisions). Each key has the density-cut, mass ratios for that specific cut (50/50 for 2; 25/75 for 4; 10/90 for 10). """ mass_counts, edges = np.histogram(mass,bins) bin_centers = 0.5*(edges[:-1]+edges[1:]) mass_freq = mass_counts/float(len(mass))/dlogM # non_zero = (mass_freq!=0) ratio_dict = {} frac_val = [2,4,10] yerr = [] bin_centers_fin = [] for ii in frac_val: ratio_dict[ii] = {} frac_data = int(len(mass)/ii) # Calculations for the lower density cut frac_mass = mass[0:frac_data] counts, edges = np.histogram(frac_mass,bins) # Calculations for the higher density cut frac_mass_2 = mass[-frac_data:] counts_2, edges_2 = np.histogram(frac_mass_2,bins) # Ratio determination ratio_counts = (1.*counts_2)/(1.*counts) non_zero = np.isfinite(ratio_counts) ratio_counts_1 = ratio_counts[non_zero] # print 'len ratio_counts: {0}'.format(len(ratio_counts_1)) ratio_dict[ii] = ratio_counts_1 temp_yerr = (counts_2*1.)/(counts*1.)*\ np.sqrt(1./counts + 1./counts_2) temp_yerr_1 = temp_yerr[non_zero] # print 'len yerr: {0}'.format(len(temp_yerr_1)) yerr.append(temp_yerr_1) bin_centers_1 = bin_centers[non_zero] # print 'len bin_cens: {0}'.format(len(bin_centers_1)) bin_centers_fin.append(bin_centers_1) mass_freq_list = [[] for xx in xrange(2)] mass_freq_list[0] = mass_freq mass_freq_list[1] = np.sqrt(mass_counts)/float(len(mass))/dlogM mass_freq = np.array(mass_freq_list) ratio_dict_list = [[] for xx in range(2)] ratio_dict_list[0] = ratio_dict ratio_dict_list[1] = yerr ratio_dict = ratio_dict_list return bin_centers_fin, mass_freq, ratio_dict ############################################################################### def bin_func(mass_dist,bins,kk,bootstrap=False): """ Returns median distance to Nth nearest neighbor Parameters ---------- mass_dist: array-like An array with mass values in at index 0 (when transformed) and distance to the Nth nearest neighbor in the others Example: 6239 by 7 Has mass values and distances to 6 Nth nearest neighbors bins: array=like A 1D array with the values which will be used as the bin edges kk: integer-like The index of mass_dist (transformed) where the appropriate distance array may be found Optional -------- bootstrap == True Calculates the bootstrap errors associated with each median distance value. Creates an array housing arrays containing the actual distance values associated with every galaxy in a specific bin. Bootstrap error is then performed using astropy, and upper and lower one sigma values are found for each median value. These are added to a list with the median distances, and then converted to an array and returned in place of just 'medians.' Returns ------- medians: array-like An array with the median distance to the Nth nearest neighbor from all the galaxies in each of the bins """ frac_vals = np.array([2,4,10]) edges = bins # print 'length bins:' # print len(bins) digitized = np.digitize(mass_dist.T[0],edges) digitized -= int(1) bin_nums = np.unique(digitized) # bin_nums_list = list(bin_nums) # # if (len(bins)) in bin_nums_list: # # bin_nums_list.remove(len(bins)) # # print 'removed' # # print bin_nums_list # bin_nums = np.array(bin_nums_list) for ii in bin_nums: if len(mass_dist.T[kk][digitized==ii]) == 0: temp_list = list(mass_dist.T[kk]\ [digitized==ii]) temp_list.append(np.zeros(len(bin_nums))) mass_dist.T[kk][digitized==ii] = np.array(temp_list) # print bin_nums # print len(bin_nums) medians = np.array([np.median(mass_dist.T[kk][digitized==ii]) \ for ii in bin_nums]) # print len(medians) if bootstrap == True: dist_in_bin = np.array([(mass_dist.T[kk][digitized==ii]) \ for ii in bin_nums]) for vv in range(len(dist_in_bin)): if len(dist_in_bin[vv]) == 0: dist_in_bin_list = list(dist_in_bin[vv]) dist_in_bin[vv] = np.zeros(len(dist_in_bin[0])) low_err_test = np.array([np.percentile(astropy.stats.bootstrap\ (dist_in_bin[vv],bootnum=1000,bootfunc=np.median),16) \ for vv in range(len(dist_in_bin))]) high_err_test = np.array([np.percentile(astropy.stats.bootstrap\ (dist_in_bin[vv],bootnum=1000,bootfunc=np.median),84) \ for vv in range(len(dist_in_bin))]) med_list = [[] for yy in range(len(frac_vals))] med_list[0] = medians med_list[1] = low_err_test med_list[2] = high_err_test medians = np.array(med_list) return medians ############################################################################### def hist_calcs(mass,bins,dlogM): """ Returns dictionaries with the counts for the upper and lower density portions; calculates the three different percentile cuts for each mass array given Parameters ---------- mass: array-like A 1D array with log stellar mass values, assumed to be an order which corresponds to the ascending densities; (necessary, as the index cuts are based on this) bins: array-like A 1D array with the values which will be used as the bin edges dlogM: float-like The log difference between bin edges Returns ------- hist_dict_low: dictionary-like A dictionary with three keys (the frac vals), with arrays as values. The values for the lower density cut hist_dict_high: dictionary like A dictionary with three keys (the frac vals), with arrays as values. The values for the higher density cut """ hist_dict_low = {} hist_dict_high = {} frac_val = np.array([2,4,10]) frac_dict = {2:0,4:1,10:2} low_err = [[] for xx in xrange(len(frac_val))] high_err = [[] for xx in xrange(len(frac_val))] for ii in frac_val: # hist_dict_low[ii] = {} # hist_dict_high[ii] = {} frac_data = int(len(mass)/ii) frac_mass = mass[0:frac_data] counts, edges = np.histogram(frac_mass,bins) low_counts = (counts/float(len(frac_mass))/dlogM) non_zero = (low_counts!=0) low_counts_1 = low_counts[non_zero] hist_dict_low[ii] = low_counts_1 low_err = np.sqrt(counts)/len(frac_mass)/dlogM low_err_1 = low_err[non_zero] err_key = 'err_{0}'.format(ii) hist_dict_low[err_key] = low_err_1 frac_mass_2 = mass[-frac_data:] counts_2, edges_2 = np.histogram(frac_mass_2,bins) high_counts = (counts_2/float(len(frac_mass_2))/dlogM) non_zero = (high_counts!=0) high_counts_1 = high_counts[non_zero] hist_dict_high[ii] = high_counts_1 high_err = np.sqrt(counts_2)/len(frac_mass_2)/dlogM high_err_1 = high_err[non_zero] hist_dict_high[err_key] = high_err_1 return hist_dict_low, hist_dict_high ############################################################################### def mean_bin_mass(mass_dist,bins): """ Returns median distance to Nth nearest neighbor Parameters ---------- mass_dist: array-like An array with mass values in at index 0 (when transformed) bins: array=like A 1D array with the values which will be used as the bin edges Returns ------- """ edges = bins digitized = np.digitize(mass_dist.T[0],edges) digitized -= int(1) bin_nums = np.unique(digitized) mean_mass = np.array([np.mean(mass_dist.T[0][digitized==ii]) \ for ii in bin_nums]) return mean_mass ############################################################################### def plot_all_rats(bin_centers,y_vals,neigh_val,ax,col_num,plot_idx): """ Returns a plot showing the density-cut, mass ratio. Optimally used with a well-initiated for-loop Parameters ---------- bin_centers: array-like An array with the medians mass values of the mass bins y_vals: array-like An array containing the ratio values for each mass bin neigh_val: integer-like Value which will be inserted into the text label of each plot ax: axis-like A value which specifies which axis each subplot is to be plotted to col_num: integer-like Integer which specifies which column is currently being plotted. Used for labelling subplots plot_idx: integer-like Specifies which subplot the figure is plotted to. Used for labeling the x-axis Returns ------- Figure with three subplots showing appropriate ratios """ if plot_idx ==16: ax.set_xlabel('$\log\ (M_{*}/M_{\odot})$',fontsize=18) if col_num ==0: title_label = 'Mass Ratio 50/50, {0} NN'.format(neigh_val) frac_val = 10 ax.text(0.05, 0.95, title_label,horizontalalignment='left',\ verticalalignment='top',transform=ax.transAxes,fontsize=12) elif col_num ==1: title_label = 'Mass Ratio 25/75, {0} NN'.format(neigh_val) frac_val = 4 ax.text(0.05, 0.95, title_label,horizontalalignment='left',\ verticalalignment='top',transform=ax.transAxes,fontsize=12) elif col_num ==2: title_label = 'Mass Ratio 10/90, {0} NN'.format(neigh_val) frac_val = 2 ax.text(0.05, 0.95, title_label,horizontalalignment='left',\ verticalalignment='top',transform=ax.transAxes,fontsize=12) ax.set_xlim(9.1,11.9) ax.set_ylim([0,5]) ax.set_xticks(np.arange(9.5, 12., 0.5)) ax.set_yticks([1.,3.]) ax.tick_params(axis='both', labelsize=12) ax.axhline(y=1,c="darkorchid",linewidth=0.5,zorder=0) ax.plot(bin_centers,y_vals,color='silver') ############################################################################### def plot_eco_rats(bin_centers,y_vals,neigh_val,ax,col_num,plot_idx,only=False): """ Returns subplots of ECO density-cut,mass ratios Parameters ---------- bin_centers: array-like An array with the medians mass values of the mass bins y_vals: array-like An array containing the ratio values for each mass bin neigh_val: integer-like Value which will be inserted into the text label of each plot ax: axis-like A value which specifies which axis each subplot is to be plotted to col_num: integer-like Integer which specifies which column is currently being plotted. Used for labelling subplots plot_idx: integer-like Specifies which subplot the figure is plotted to. Used for labeling the x-axis Optional -------- only == True To be used when only plotting the ECO ratios, no mocks. Will add in the additional plotting specifications that would have been taken care of previously in a for-loop which plotted the mocks as well Returns ------- ECO ratios plotted to any previously initialized figure """ if only == True: if plot_idx ==16: ax.set_xlabel('$\log\ (M_{*}/M_{\odot})$',fontsize=18) if col_num ==0: title_label = 'Mass Ratio 50/50, {0} NN'.format(neigh_val) frac_val = 10 ax.text(0.05, 0.95, title_label,horizontalalignment='left',\ verticalalignment='top',transform=ax.transAxes,fontsize=12) elif col_num ==1: title_label = 'Mass Ratio 25/75, {0} NN'.format(neigh_val) frac_val = 4 ax.text(0.05, 0.95, title_label,horizontalalignment='left',\ verticalalignment='top',transform=ax.transAxes,fontsize=12) elif col_num ==2: title_label = 'Mass Ratio 10/90, {0} NN'.format(neigh_val) frac_val = 2 ax.text(0.05, 0.95, title_label,horizontalalignment='left',\ verticalalignment='top',transform=ax.transAxes,fontsize=12) ax.set_xlim(9.1,11.9) ax.set_ylim([0,5]) ax.set_xticks(np.arange(9.5, 12., 0.5)) ax.set_yticks([1.,3.]) ax.tick_params(axis='both', labelsize=12) ax.axhline(y=1,c="darkorchid",linewidth=0.5,zorder=0) frac_vals = np.array([2,4,10]) y_vals_2 = y_vals[0][frac_vals[hh]] ax.errorbar(bin_centers,y_vals_2,yerr=y_vals[1][hh],\ color='dodgerblue',linewidth=2) ############################################################################### def plot_hists(mass,neigh_val,bins,dlogM,ax,col_num,plot_idx): """ Returns a plot showing the density-cut, mass counts. Parameters ---------- mass: array-like A 1D array with log stellar mass values neigh_val: integer-like Value which will be inserted into the text label of each plot bins: array-like A 1D array with the values which will be used as the bin edges dlogM: float-like The log difference between bin edges ax: axis-like A value which specifies which axis each subplot is to be plotted to col_num: integer-like Integer which specifies which column is currently being plotted. Used for labelling subplots plot_idx: integer-like Specifies which subplot the figure is plotted to. Used for labeling the x-axis Returns ------- Figure with two curves, optionally (if uncommented) plotted in step """ ax.set_yscale('log') if col_num==0: title_label = 'Mass 50/50, {0} NN'.format(neigh_val) frac_val = 2 ax.text(0.05, 0.95, title_label,horizontalalignment='left',\ verticalalignment='top',transform=ax.transAxes,fontsize=12) elif col_num==1: title_label = 'Mass 25/75, {0} NN'.format(neigh_val) frac_val = 4 ax.text(0.05, 0.95, title_label,horizontalalignment='left',\ verticalalignment='top',transform=ax.transAxes,fontsize=12) elif col_num==2: title_label = 'Mass 10/90, {0} NN'.format(neigh_val) frac_val = 10 ax.text(0.05, 0.95, title_label,horizontalalignment='left',\ verticalalignment='top',transform=ax.transAxes,fontsize=12) if plot_idx == 16: ax.set_xlabel('$\log\ (M_{*}/M_{\odot})$',fontsize=18) ax.set_xlim(9.1,11.9) ax.set_ylim([10**-3,10**1]) ax.set_xticks(np.arange(9.5, 12., 0.5)) ax.set_yticks([10**-2,10**0]) frac_data = (len(mass)/frac_val) frac_mass = mass[0:frac_data] counts, edges = np.histogram(frac_mass,bins) low_counts = (counts/float(len(frac_mass))/dlogM) bins_cens = .5*(edges[:-1]+edges[1:]) # ax.step(bins_cens, low_counts, color='lightslategrey',where='mid',\ # alpha=0.1) ax.plot(bins_cens, low_counts, color='lightslategrey',alpha=0.1) frac_mass_2 = mass[-frac_data:] counts_2, edges_2 = np.histogram(frac_mass_2,bins) high_counts = (counts_2/float(len(frac_mass_2))/dlogM) # ax.step(bins_cens, high_counts, color='lightslategray',where='mid',\ # alpha=0.1) ax.plot(bins_cens, high_counts, color='lightslategray',alpha=0.1) # res = np.array([low_counts,high_counts]) # return res ############################################################################### def plot_eco_hists(mass,bins,dlogM,ax,col,plot_idx): if col==0: frac_val = 2 elif col==1: frac_val = 4 elif col==2: frac_val = 10 frac_data = (len(mass)/frac_val) frac_mass = mass[0:frac_data] counts, edges = np.histogram(frac_mass,bins) bins_cens = .5*(edges[:-1]+edges[1:]) ax.step(bins_cens, (counts/float(len(frac_mass))/dlogM), color='lime',\ where='mid',label='Lower') frac_mass_2 = mass[-frac_data:] counts_2, edges_2 = np.histogram(frac_mass_2,bins) ax.step(bins_cens, (counts_2/float(len(frac_mass_2))/dlogM), \ color='dodgerblue',where='mid',label='Higher') if plot_idx == 0: ax.legend(loc='best') ############################################################################### def plot_all_meds(bin_centers,y_vals,ax,plot_idx): """ Returns six subplots showing the median distance to the Nth nearest neighbor for each mass bin. Assumes a previously defined figure. Best used in a for-loop Parameters ---------- bin_centers: array-like An array with the medians mass values of the mass bins y_vals: array-like An array containing the median distance values for each mass bin ax: axis-like A value which specifies which axis each subplot is to be plotted to plot_idx: integer-like Specifies which subplot the figure is plotted to. Used for the text label in each subplot Returns ------- Subplots displaying the median distance to Nth nearest neighbor trends for each mass bin """ titles = [1,2,3,5,10,20] ax.set_ylim(0,10**1.5) ax.set_xlim(9.1,11.9) ax.set_yscale('symlog') ax.set_xticks(np.arange(9.5,12.,0.5)) ax.set_yticks(np.arange(0,12,1)) ax.set_yticklabels(np.arange(1,11,2)) ax.tick_params(axis='x', which='major', labelsize=16) title_here = 'n = {0}'.format(titles[plot_idx]) ax.text(0.05, 0.95, title_here,horizontalalignment='left',\ verticalalignment='top',transform=ax.transAxes,fontsize=18) if plot_idx == 4: ax.set_xlabel('$\log\ (M_{*}/M_{\odot})$',fontsize=20) ax.plot(bin_centers,y_vals,color='silver') ############################################################################# def plot_eco_meds(bin_centers,y_vals,low_lim,up_lim,ax,plot_idx,only=False): """ Returns six subplots showing the median Nth nearest neighbor distance for ECO galaxies in each mass bin Parameters ---------- bin_centers: array-like An array with the medians mass values of the mass bins y_vals: array-like An array containing the median distance values for each mass bin low_lim: array-like An array with the lower cut-off of the bootstrap errors for each median up_lim: array-like An array with the upper cut-off of the bootstrap errors for each median ax: axis-like A value which specifies which axis each subplot is to be plotted to plot_idx: integer-like Specifies which subplot the figure is plotted to. Used for the text label in each subplot Optional -------- only == False To be used when only plotting the ECO median trends, no mocks. Will add in the additional plotting specifications that would have been taken care of previously in a for-loop which plotted the mocks as well Returns ------- Subplots displaying the median distance to Nth nearest neighbor trends for each mass bin, with the bootstrap errors """ if only == True: titles = [1,2,3,5,10,20] ax.set_ylim(0,10**1.5) ax.set_xlim(9.1,11.9) ax.set_yscale('symlog') ax.set_xticks(np.arange(9.5,12.,0.5)) ax.tick_params(axis='both', which='major', labelsize=16) title_here = 'n = {0}'.format(titles[plot_idx]) ax.text(0.05, 0.95, title_here,horizontalalignment='left',\ verticalalignment='top',transform=ax.transAxes,fontsize=18) if plot_idx == 4: ax.set_xlabel('$\log\ (M_{*}/M_{\odot})$',fontsize=18) ytop = np.array(up_lim-y_vals) ybot = np.array(y_vals-low_lim) ax.errorbar(bin_centers,y_vals,yerr=(ybot,ytop),color='darkmagenta',label='ECO') # if plot_idx == 5: # ax.legend(loc='best') ############################################################################### def plot_bands(bin_centers,upper,lower,ax): """ Returns an overlayed, fill-between plot, creating a band between the different mock catalog values plotted Parameters ---------- bin_centers: array-like An array with the medians mass values of the mass bins upper: array-like Array with the max y-values among all the mocks for each mass bin lower: array-like Array with the min y-values among all the mocks for each mass bin ax: axis-like A value which specifies which axis each subplot is to be plotted to Returns ------- A semi-transparent band overlaying the area of the plot bordedodgerblue by the mocks """ ax.fill_between(bin_centers,upper,lower,color='silver',alpha=0.1) ############################################################################### def plot_med_range(bin_centers,low_lim,up_lim,ax,alpha,color='gray'): """ Returns a plot with a transparent band highlighting a range of values. Parameters ---------- bin_centers: array-like An array with the medians mass values of the mass bins low_lim: array-like Array with the min y-values among all the mocks for each mass bin up_lim: array-like Array with the max y-values among all the mocks for each mass bin ax: axis-like A value which specifies which axis each subplot is to be plotted to alpha: float-like A value which will determine the tranparency of the band color: str Any color which Python recognizes; sets the color of the band Returns ------- A band spanning from the max y-values to the minimum. """ ax.fill_between(bin_centers,low_lim,up_lim,color=color,alpha=alpha) ############################################################################## ############################################################################## ############################################################################## dirpath = r"C:\Users\Hannah\Desktop\Vanderbilt_REU\Stellar_mass_env_density" dirpath += r"\Catalogs\Beta_M1_Behroozi" dirpath += r"\ab_matching" dirpath += r"\Resolve_plk_5001_so_mvir_hod1_scatter0p2_mock1_ECO_Mocks" usecols = (0,1,2,4,13) dlogM = 0.2 ############################################################################## ############################################################################## ############################################################################## ECO_cats = (Index(dirpath,'.dat')) names = ['ra','dec','cz','Halo_ID','logMstar'] PD = [(pd.read_csv(ECO_cats[ii],sep="\s+", usecols= usecols,header=None,\ skiprows=2,names=names)) for ii in range(len(ECO_cats))] PD_comp = [(PD[ii][PD[ii].logMstar >= 9.1]) for ii in range(len(ECO_cats))] PD = [[] for ii in range(len(ECO_cats))] for ii in range(len(ECO_cats)): temp_PD = (pd.read_csv(ECO_cats[ii],sep="\s+", usecols= usecols,\ header=None,skiprows=2,names=names)) PD[ii] = temp_PD PD_comp_1 = [(PD[ii][PD[ii].logMstar >= 9.1]) for ii in range(len(ECO_cats))] PD_comp = [(PD_comp_1[ii][PD_comp_1[ii].logMstar <=11.77]) \ for ii in range(len(ECO_cats))] [(PD_comp[ii].reset_index(drop=True,inplace=True)) \ for ii in range(len(ECO_cats))] min_max_mass_arr = [] for ii in range(len(PD_comp)): min_max_mass_arr.append(max(PD_comp[ii].logMstar)) min_max_mass_arr.append(min(PD_comp[ii].logMstar)) min_max_mass_arr = np.array(min_max_mass_arr) bins = Bins_array_create(min_max_mass_arr,dlogM) bins+= 0.1 bins_list = list(bins) for ii in bins: if ii > 11.77: bins_list.remove(ii) bins = np.array(bins_list) num_of_bins = int(len(bins) - 1) ra_arr = np.array([(PD_comp[ii].ra) \ for ii in range(len(PD_comp))]) dec_arr = np.array([(PD_comp[ii].dec) \ for ii in range(len(PD_comp))]) cz_arr = np.array([(PD_comp[ii].cz) \ for ii in range(len(PD_comp))]) mass_arr = np.array([(PD_comp[ii].logMstar) \ for ii in range(len(PD_comp))]) halo_id_arr = np.array([(PD_comp[ii].Halo_ID) \ for ii in range(len(PD_comp))]) coords_test = np.array([sph_to_cart(ra_arr[vv],dec_arr[vv],cz_arr[vv]) \ for vv in range(len(ECO_cats))]) neigh_vals = np.array([1,2,3,5,10,20]) nn_arr_temp = [[] for uu in xrange(len(coords_test))] nn_arr = [[] for xx in xrange(len(coords_test))] nn_arr_nn = [[] for yy in xrange(len(neigh_vals))] nn_idx = [[] for zz in xrange(len(coords_test))] for vv in range(len(coords_test)): nn_arr_temp[vv] = spatial.cKDTree(coords_test[vv]) nn_arr[vv] = np.array(nn_arr_temp[vv].query(coords_test[vv],21)[0]) nn_idx[vv] = np.array(nn_arr_temp[vv].query(coords_test[vv],21)[1]) nn_specs = [(np.array(nn_arr).T[ii].T[neigh_vals].T) for ii in \ range(len(coords_test))] nn_mass_dist = np.array([(np.column_stack((mass_arr[qq],nn_specs[qq]))) \ for qq in range(len(coords_test))]) nn_neigh_idx = np.array([(np.array(nn_idx).T[ii].T[neigh_vals].T) for ii in \ range(len(coords_test))]) ############################################################################### sat_cols = (13,25) sat_names = ['logMstar','cent_sat_flag'] SF_PD = [(pd.read_csv(ECO_cats[ii],sep="\s+", usecols= sat_cols,\ header=None, skiprows=2,names=sat_names)) for ii in range(8)] SF_PD_comp = [(SF_PD[ii][SF_PD[ii].logMstar >= 9.1]) for ii in \ range(len(ECO_cats))] sats_num = np.array([(len(SF_PD_comp[ii][SF_PD_comp[ii].cent_sat_flag==0])) \ for ii in range(len(SF_PD_comp))]) cents_num = np.array([(len(SF_PD_comp[ii][SF_PD_comp[ii].cent_sat_flag==1])) \ for ii in range(len(SF_PD_comp))]) gal_tot = np.array([(len(SF_PD_comp[ii])) for ii in range(len(SF_PD_comp))]) print 'SAT_FRAC = {0}'.format(sats_num/gal_tot) ############################################################################### nn_dist = {} nn_dens = {} mass_dat = {} ratio_info = {} mass_freq = [[] for xx in xrange(len(coords_test))] bin_non_zero = [[] for xx in xrange(len(coords_test))] for ii in range(len(coords_test)): nn_dist[ii] = {} nn_dens[ii] = {} mass_dat[ii] = {} ratio_info[ii] = {} nn_dist[ii]['mass'] = nn_mass_dist[ii].T[0] for jj in range(len(neigh_vals)): nn_dist[ii][(neigh_vals[jj])] = np.array(nn_mass_dist[ii].T\ [range(1,len(neigh_vals)+1)[jj]]) nn_dens[ii][(neigh_vals[jj])] = np.column_stack((nn_mass_dist[ii].T\ [0],calc_dens(neigh_vals[jj],\ nn_mass_dist[ii].T[range(1,len\ (neigh_vals)+1)[jj]]))) idx = np.array([nn_dens[ii][neigh_vals[jj]].T[1].argsort()]) mass_dat[ii][(neigh_vals[jj])] = (nn_dens[ii][neigh_vals[jj]]\ [idx].T[0]) bin_non_zero[ii], mass_freq[ii], ratio_info[ii][neigh_vals[jj]] = \ plot_calcs(mass_dat[ii][neigh_vals[jj]],bins,dlogM) # for ii in range(len(bin_non_zero)): # print len(bin_non_zero[ii]) # for jj in range(len(mass_freq[ii])): # print len(mass_freq[ii][jj]) all_mock_meds = [[] for xx in range(len(nn_mass_dist))] all_mock_mass_means = [[] for xx in range(len(nn_mass_dist))] for vv in range(len(nn_mass_dist)): all_mock_meds[vv] = [(bin_func(nn_mass_dist[vv],bins,(jj+1))) \ for jj in range(len(nn_mass_dist[vv].T)-1)] all_mock_mass_means[vv] = (mean_bin_mass(nn_mass_dist[vv],bins)) # for ii in range(len(all_mock_meds)): # for jj in range(len(all_mock_meds[ii])): # print len(all_mock_meds[ii][jj][0]) med_plot_arr = [([[] for yy in xrange(len(nn_mass_dist))]) \ for xx in xrange(len(neigh_vals))] for ii in range(len(neigh_vals)): for jj in range(len(nn_mass_dist)): med_plot_arr[ii][jj] = all_mock_meds[jj][ii] # for ii in range(len(neigh_vals)): # for jj in range(len(nn_mass_dist)): # print len(all_mock_meds[jj][ii]) mass_freq_plot = (np.array(mass_freq[0])) max_lim = [[] for xx in range(len(mass_freq_plot.T))] min_lim = [[] for xx in range(len(mass_freq_plot.T))] for jj in range(len(mass_freq_plot.T)): max_lim[jj] = max(mass_freq_plot.T[jj]) min_lim[jj] = min(mass_freq_plot.T[jj]) ############################################################################### # ordered_mass = nn_mass_dist[0].T[0][(nn_mass_dist[0].T[0].argsort())] # dist_cont = [[[[] for zz in xrange(len(bins)-1)] for yy in \ # xrange(len(nn_mass_dist))] for xx in \ # xrange(1,len(nn_mass_dist[0].T))] # for ii in xrange(len(nn_mass_dist)): # sorting_test = np.digitize(nn_mass_dist[ii].T[0],bins) # bin_nums = np.unique(sorting_test) # bin_nums_list = list(bin_nums) # # if 13 not in bin_nums: # # bin_nums_list.append(13) # # if 14 not in bin_nums: # # bin_nums_list.append(14) # # bin_nums = np.array(bin_nums_list) # # if 14 in bin_nums_list: # # bin_nums_list.remove(14) # # bin_nums = np.array(bin_nums_list) # for dd in range(1,num_of_bins+1): # if dd not in bin_nums: # bin_nums_list.append(dd) # if len(bins) in bin_nums_list: # bin_nums_list.remove(len(bins)) # bin_nums = np.array(bin_nums_list) # for jj in xrange(1,len(nn_mass_dist[ii].T)): # for hh in bin_nums: # dist_cont[jj-1][ii][hh-1] = (nn_mass_dist[ii].T[jj]\ # [sorting_test==hh]) # if len(dist_cont[jj-1][ii][hh-1]) == 0: # (dist_cont[jj-1][ii][hh-1]) = list(dist_cont[jj-1][ii][hh-1]) # (dist_cont[jj-1][ii][hh-1]).append(np.zeros\ # (len(dist_cont[1][0][0]))) # (dist_cont[jj-1][ii][hh-1]) = np.array((dist_cont[jj-1][ii]\ # [hh-1])) # for ii in xrange(len(nn_mass_dist)): # for jj in xrange(1,len(nn_mass_dist[ii].T)): # for hh in bin_nums: # print len(dist_cont[jj-1][ii][hh-1]) ############################################################################### # top_68 = [[[[]for ll in xrange(len(bin_nums))]for yy in \ # xrange(len(nn_mass_dist))] for xx in xrange(len(neigh_vals))] # low_68 = [[[[]for ll in xrange(len(bin_nums))]for yy in \ # xrange(len(nn_mass_dist))] for xx in xrange(len(neigh_vals))] # top_95 = [[[[]for ll in xrange(len(bin_nums))]for yy in \ # xrange(len(nn_mass_dist))] for xx in xrange(len(neigh_vals))] # low_95 = [[[[]for ll in xrange(len(bin_nums))]for yy in \ # xrange(len(nn_mass_dist))] for xx in xrange(len(neigh_vals))] # med_50 = [[[[]for ll in xrange(len(bin_nums))]for yy in \ # xrange(len(nn_mass_dist))] for xx in xrange(len(neigh_vals))] # for aa in xrange(len(neigh_vals)): # for bb in xrange(len(nn_mass_dist)): # for cc in xrange(len(dist_cont[aa][bb])): # top_68[aa][bb][cc] = np.percentile(dist_cont[aa][bb][cc],84) # low_68[aa][bb][cc] = np.percentile(dist_cont[aa][bb][cc],16) # top_95[aa][bb][cc] = np.percentile(dist_cont[aa][bb][cc],97.5) # low_95[aa][bb][cc] = np.percentile(dist_cont[aa][bb][cc],2.5) # med_50[aa][bb][cc] = np.median((dist_cont[aa][bb][cc])) # top_68 = np.array(top_68) # low_68 = np.array(low_68) # top_95 = np.array(top_95) # low_95 = np.array(low_95) # med_50 = np.array(med_50) ##not working with 1 dec scatter... ############################################################################### frac_vals = [2,4,10] nn_plot_arr = [[[] for yy in xrange(len(nn_mass_dist))] for xx in \ xrange(len(neigh_vals))] for ii in range(len(neigh_vals)): for jj in range(len(nn_mass_dist)): nn_plot_arr[ii][jj] = (ratio_info[jj][neigh_vals[ii]]) plot_frac_arr = [[[[] for yy in xrange(len(nn_mass_dist))] \ for zz in xrange(len(frac_vals))] for xx in \ xrange(len(nn_plot_arr))] for jj in range(len(nn_mass_dist)): for hh in range(len(frac_vals)): for ii in range(len(neigh_vals)): plot_frac_arr[ii][hh][jj] = nn_plot_arr[ii][jj][frac_vals[hh]] ############################################################################### ############################################################################### ############################################################################### eco_path = r"C:\Users\Hannah\Desktop\Vanderbilt_REU\Stellar_mass_env_density" eco_path += r"\Catalogs\ECO_true" eco_cols = np.array([0,1,2,4]) ############################################################################### ############################################################################### ############################################################################### ECO_true = (Index(eco_path,'.txt')) names = ['ra','dec','cz','logMstar'] PD_eco = pd.read_csv(ECO_true[0],sep="\s+", usecols=(eco_cols),header=None,\ skiprows=1,names=names) eco_comp = PD_eco[PD_eco.logMstar >= 9.1] ra_eco = (np.array(eco_comp)).T[0] dec_eco = (np.array(eco_comp)).T[1] cz_eco = (np.array(eco_comp)).T[2] mass_eco = (np.array(eco_comp)).T[3] coords_eco = sph_to_cart(ra_eco,dec_eco,cz_eco) eco_neighbor_tree = spatial.cKDTree(coords_eco) eco_tree_dist = np.array(eco_neighbor_tree.query(coords_eco,\ (neigh_vals[-1]+1))[0]) eco_mass_dist = np.column_stack((mass_eco,eco_tree_dist.T[neigh_vals].T)) ##range 1,7 because of the six nearest neighbors (and fact that 0 is mass) ##the jj is there to specify which index in the [1,6] array eco_dens = ([calc_dens(neigh_vals[jj],\ (eco_mass_dist.T[range(1,7)[jj]])) for jj in range\ (len(neigh_vals))]) eco_mass_dens = [(np.column_stack((mass_eco,eco_dens[ii]))) for ii in \ range(len(neigh_vals))] eco_idx = [(eco_mass_dens[jj].T[1].argsort()) for jj in \ range(len(neigh_vals))] eco_mass_dat = [(eco_mass_dens[jj][eco_idx[jj]].T[0]) for jj in \ range(len(neigh_vals))] eco_ratio_info = [[] for xx in xrange(len(eco_mass_dat))] for qq in range(len(eco_mass_dat)): centers_non_zero, eco_freq, eco_ratio_info[qq] = plot_calcs(eco_mass_dat[qq],\ bins,dlogM) eco_medians = [[] for xx in xrange(len(eco_mass_dat))] for jj in (range(len(eco_mass_dat))): eco_medians[jj] = np.array(bin_func(eco_mass_dist,bins,(jj+1),\ bootstrap=True)) ############################################################################### ############################################################################### fig,ax = plt.subplots(figsize=(8,8)) ax.set_title('Mass Distribution',fontsize=18) ax.set_xlabel('$\log\ (M_{*}/M_{\odot})$',fontsize=18) ax.set_ylabel(r'$\log\ (\frac{N_{gal}}{N_{total}*dlogM_{*}})$',fontsize=20) ax.set_yscale('log') ax.set_xlim(9.1,11.9) ax.tick_params(axis='both', labelsize=14) for ii in range(len(mass_freq)): ax.plot(bin_centers,mass_freq[ii],color='silver') ax.fill_between(bin_centers,max_lim,min_lim,color='silver',alpha=0.1) ax.errorbar(bin_centers,eco_freq[0],yerr=eco_freq[1],color='dodgerblue',\ linewidth=2,label='ECO') ax.legend(loc='best') plt.subplots_adjust(left=0.15, bottom=0.1, right=0.85, top=0.94,\ hspace=0.2,wspace=0.2) plt.show() ############################################################################### A = {} nn_dict = {1:0,2:1,3:2,5:3,10:4,20:5} coln_dict = {2:0,4:1,10:2} nn_keys = np.sort(nn_dict.keys()) col_keys = np.sort(coln_dict.keys()) zz_num = len(plot_frac_arr[nn_dict[1]][coln_dict[2]]) for nn in nn_keys: for coln in col_keys: bin_str = '{0}_{1}'.format(nn,coln) for cc in range(zz_num): zz_arr = np.array(plot_frac_arr[nn_dict[nn]][coln_dict[coln]][cc]) n_elem = len(zz_arr) if cc == 0: zz_tot = np.zeros((n_elem,1)) zz_tot = np.insert(zz_tot,len(zz_tot.T),zz_arr,1) zz_tot = np.array(np.delete(zz_tot,0,axis=1)) for kk in xrange(len(zz_tot)): zz_tot[kk][zz_tot[kk] == np.inf] = np.nan zz_tot_max = [np.nanmax(zz_tot[kk]) for kk in xrange(len(zz_tot))] zz_tot_min = [np.nanmin(zz_tot[kk]) for kk in xrange(len(zz_tot))] A[bin_str] = [zz_tot_max,zz_tot_min] ############################################################################### np.seterr(divide='ignore',invalid='ignore') nrow_num = int(6) ncol_num = int(3) zz = int(0) fig, axes = plt.subplots(nrows=nrow_num, ncols=ncol_num, \ figsize=(100,200), sharex= True,sharey=True) axes_flat = axes.flatten() fig.text(0.01, 0.5, 'High Density Counts/Lower Density Counts', ha='center', \ va='center',rotation='vertical',fontsize=20) # fig.suptitle("Percentile Trends", fontsize=18) while zz <= 16: for ii in range(len(eco_ratio_info)): for hh in range(len(eco_ratio_info[0][1])): for jj in range(len(nn_mass_dist)): # upper = A['{0}_{1}'.format(neigh_vals[ii],frac_vals[hh])][0] # lower = A['{0}_{1}'.format(neigh_vals[ii],frac_vals[hh])][1] # plot_bands(bin_centers,upper,lower,axes_flat[zz] ) plot_all_rats(bin_centers,(plot_frac_arr[ii][hh][jj]),\ neigh_vals[ii],axes_flat[zz],hh,zz) plot_eco_rats(bin_centers,(eco_ratio_info[ii]),neigh_vals[ii],\ axes_flat[zz],hh,zz) zz += 1 plt.subplots_adjust(left=0.04, bottom=0.09, right=0.98, top=0.98,\ hspace=0,wspace=0) plt.show() ############################################################################### B = {} yy_num = len(med_plot_arr[0]) for nn in range(len(med_plot_arr)): for ii in range(yy_num): med_str = '{0}'.format(nn) yy_arr = med_plot_arr[nn][ii] n_y_elem = len(yy_arr) if ii == 0: yy_tot = np.zeros((n_y_elem,1)) yy_tot = np.insert(yy_tot,len(yy_tot.T),yy_arr,1) yy_tot = np.array(np.delete(yy_tot,0,axis=1)) yy_tot_max = [np.nanmax(yy_tot[kk]) for kk in xrange(len(yy_tot))] yy_tot_min = [np.nanmin(yy_tot[kk]) for kk in xrange(len(yy_tot))] B[med_str] = [yy_tot_max,yy_tot_min] ############################################################################### nrow_num_mass = int(2) ncol_num_mass = int(3) fig, axes = plt.subplots(nrows=nrow_num_mass, ncols=ncol_num_mass, \ figsize=(100,200), sharex= True, sharey = True) axes_flat = axes.flatten() fig.text(0.01, 0.5, 'Distance to Nth Neighbor (Mpc)', ha='center', \ va='center',rotation='vertical',fontsize=20) zz = int(0) while zz <=4: for ii in range(len(med_plot_arr)): for vv in range(len(nn_mass_dist)): # lower_m = B['{0}'.format(ii)][0] # upper_m = B['{0}'.format(ii)][1] # plot_med_range(bin_centers,top_95[ii][vv],low_95[ii][vv],\ # axes_flat[zz],0.05,color='lightsteelblue') # plot_med_range(bin_centers,top_68[ii][vv],low_68[ii][vv],\ # axes_flat[zz],0.15,color='gainsboro') # plot_bands(bin_centers,upper_m,lower_m,axes_flat[zz]) plot_all_meds(bin_centers,med_plot_arr[ii][vv],axes_flat[zz],\ zz) plot_eco_meds(bin_centers,eco_medians[ii][0],\ eco_medians[ii][1],eco_medians[ii][2],\ axes_flat[zz],zz) zz += 1 plt.subplots_adjust(left=0.05, bottom=0.09, right=0.98, top=0.98,\ hspace=0,wspace=0) plt.show() ############################################################################### hist_low_info = {} hist_high_info = {} for ii in xrange(len(coords_test)): hist_low_info[ii] = {} hist_high_info[ii] = {} for jj in range(len(neigh_vals)): hist_low_info[ii][neigh_vals[jj]],hist_high_info[ii][neigh_vals[jj]] \ = hist_calcs(mass_dat[ii][neigh_vals[jj]],bins,dlogM) frac_vals = [2,4,10] hist_low_arr = [[[] for yy in xrange(len(nn_mass_dist))] for xx in \ xrange(len(neigh_vals))] hist_high_arr = [[[] for yy in xrange(len(nn_mass_dist))] for xx in \ xrange(len(neigh_vals))] for ii in range(len(neigh_vals)): for jj in range(len(nn_mass_dist)): hist_low_arr[ii][jj] = (hist_low_info[jj][neigh_vals[ii]]) hist_high_arr[ii][jj] = (hist_high_info[jj][neigh_vals[ii]]) plot_low_hist = [[[[] for yy in xrange(len(nn_mass_dist))] \ for zz in xrange(len(frac_vals))] for xx in \ xrange(len(hist_low_arr))] plot_high_hist = [[[[] for yy in xrange(len(nn_mass_dist))] \ for zz in xrange(len(frac_vals))] for xx in \ xrange(len(hist_high_arr))] for jj in range(len(nn_mass_dist)): for hh in range(len(frac_vals)): for ii in range(len(neigh_vals)): plot_low_hist[ii][hh][jj] = hist_low_arr[ii][jj][frac_vals[hh]] plot_high_hist[ii][hh][jj] = hist_high_arr[ii][jj][frac_vals[hh]] ############################################################################### C = {} D = {} nn_dict = {1:0,2:1,3:2,5:3,10:4,20:5} coln_dict = {2:0,4:1,10:2} nn_keys = np.sort(nn_dict.keys()) col_keys = np.sort(coln_dict.keys()) vv_num = len(plot_low_hist[nn_dict[1]][coln_dict[2]]) for nn in nn_keys: for coln in col_keys: bin_str = '{0}_{1}'.format(nn,coln) for cc in range(vv_num): vv_arr = np.array(plot_low_hist[nn_dict[nn]][coln_dict[coln]][cc]) n_elem = len(vv_arr) if cc == 0: vv_tot = np.zeros((n_elem,1)) vv_tot = np.insert(vv_tot,len(vv_tot.T),vv_arr,1) vv_tot = np.array(np.delete(vv_tot,0,axis=1)) for kk in xrange(len(vv_tot)): vv_tot[kk][vv_tot[kk] == np.inf] = np.nan vv_tot_max = [np.nanmax(vv_tot[kk]) for kk in xrange(len(vv_tot))] vv_tot_min = [np.nanmin(vv_tot[kk]) for kk in xrange(len(vv_tot))] C[bin_str] = [vv_tot_max,vv_tot_min] hh_num = len(plot_high_hist[nn_dict[1]][coln_dict[2]]) for nn in nn_keys: for coln in col_keys: bin_str = '{0}_{1}'.format(nn,coln) for cc in range(hh_num): hh_arr = np.array(plot_high_hist[nn_dict[nn]][coln_dict[coln]][cc]) n_elem = len(hh_arr) if cc == 0: hh_tot = np.zeros((n_elem,1)) hh_tot = np.insert(hh_tot,len(hh_tot.T),hh_arr,1) hh_tot = np.array(np.delete(hh_tot,0,axis=1)) for kk in xrange(len(hh_tot)): hh_tot[kk][hh_tot[kk] == np.inf] = np.nan hh_tot_max = [np.nanmax(hh_tot[kk]) for kk in xrange(len(hh_tot))] hh_tot_min = [np.nanmin(hh_tot[kk]) for kk in xrange(len(hh_tot))] D[bin_str] = [hh_tot_max,hh_tot_min] ############################################################################### nrow_num = int(6) ncol_num = int(3) fig, axes = plt.subplots(nrows=nrow_num, ncols=ncol_num, \ figsize=(150,200), sharex= True,sharey=True) axes_flat = axes.flatten() fig.text(0.02, 0.5,r'$\log\ (\frac{N_{gal}}{N_{total}*dlogM_{*}})$', ha='center', va='center',rotation='vertical',fontsize=20) for ii in range(len(mass_dat)): zz = 0 for jj in range(len(neigh_vals)): for hh in range(3): # upper = C['{0}_{1}'.format(neigh_vals[jj],frac_vals[hh])][0] # lower = C['{0}_{1}'.format(neigh_vals[jj],frac_vals[hh])][1] # upper_2 = D['{0}_{1}'.format(neigh_vals[jj],frac_vals[hh])][0] # lower_2 = D['{0}_{1}'.format(neigh_vals[jj],frac_vals[hh])][1] # plot_bands(bin_centers,upper,lower,axes_flat[zz]) # plot_bands(bin_centers,upper_2,lower_2,axes_flat[zz]) plot_hists(mass_dat[ii][neigh_vals[jj]],neigh_vals[jj],bins,dlogM,\ axes_flat[zz], hh, zz) if ii == 0: plot_eco_hists(eco_mass_dat[jj],bins,dlogM,\ axes_flat[zz],hh,zz) zz += int(1) plt.subplots_adjust(left=0.07, bottom=0.09, right=0.98, top=0.98,\ hspace=0, wspace=0) plt.show() ############################################################################### def schechter_log_func(stellar_mass,phi_star,alpha,m_star): """ Returns a plottable Schechter function for the stellar mass functions of galaxies Parameters ---------- stellar_mass: array-like An array of unlogged stellar mass values which will eventually be the x-axis values the function is plotted against phi_star: float-like A constant which normalizes (?) the function; Moves the graph up and down alpha: negative integer-like The faint-end, or in this case, low-mass slope; Describes the power-law portion of the curve m_star: float-like Unlogged value of the characteristic (?) stellar mass; the "knee" of the function, where the power-law gives way to the exponential portion Returns ------- res: array-like Array of values prepadodgerblue to be plotted on a log scale to display the Schechter function """ constant = np.log(10) * phi_star log_M_Mstar = np.log10(stellar_mass/m_star) res = constant * 10**(log_M_Mstar * (alpha+1)) * \ np.exp(-10**log_M_Mstar) return res ############################################################################### xdata = 10**bin_centers p0 = (1,-1.05,10**10.64) param_arr = [[] for ii in range(len(mass_freq)+1)] fig,axes = plt.subplots(nrows=3,ncols=3,sharex=True,sharey=True,\ figsize=(150,200)) axes_flat = axes.flatten() ##rather than having mass_freq go out of index, just used if statement and ##directed it to the eco info for ii in range(len(mass_freq)+1): if ii == range(len(mass_freq)+1)[-1]: ydata = eco_freq[0] opt_v, est_cov = optimize.curve_fit(schechter_log_func,xdata,ydata,\ p0=p0,sigma=eco_freq[1]) else: ydata = (mass_freq[ii]) opt_v, est_cov = optimize.curve_fit(schechter_log_func,xdata,ydata,\ p0=p0) schech_vals = schechter_log_func(10**bin_centers,opt_v[0],opt_v[1],\ opt_v[2]) param_arr[ii] = opt_v param_arr = np.array(param_arr) ax = axes_flat[ii] ax.set_yscale('log') ax.set_ylim([10**-3,10**0]) ax.set_xlim([9.1,11.9]) ax.set_yticks([10**-2,10**-1,10**0]) ax.plot(bin_centers,schech_vals,label='Schechter',color='silver') if ii == 8: ax.errorbar(bin_centers,ydata,yerr=eco_freq[1],color='dodgerblue',\ label='ECO') else: ax.plot(bin_centers,ydata,label='Mock',color='darkorchid') if ii == 0 or ii == 8: ax.legend(loc='best') if ii == 7: ax.set_xlabel('$\log\ (M_{*}/M_{\odot})$',fontsize=18) plt.subplots_adjust(left=0.03, bottom=0.08, right=0.99, top=0.99,\ hspace=0,wspace=0) plt.show() ############################################################################### eco_low = {} eco_high = {} for jj in range(len(neigh_vals)): eco_low[neigh_vals[jj]] = {} eco_high[neigh_vals[jj]] = {} eco_low[neigh_vals[jj]], eco_high[neigh_vals[jj]] = hist_calcs\ (eco_mass_dat[jj],bins,dlogM) ############################################################################### # fig,ax = plt.subplots() # ax.set_yscale('log') # ax.plot(bin_centers,eco_low[1][2]) # plt.show() ############################################################################### def param_finder(hist_counts,bin_centers): """ Parameters ---------- hist-counts: array-like An array with stellar mass function values which will be used in the Schechter function parameterization bin_centers: array-like An array with the same number of values as hist_counts; used as independent variable in Schechter function Returns ------- opt_v: array-like Array with three values: phi_star, alpha, and M_star res_arr: array-like Array with two values: alpha and log_M_star """ xdata = 10**bin_centers p0 = (1,-1.05,10**10.64) opt_v,est_cov = optimize.curve_fit(schechter_log_func,xdata,\ hist_counts,p0=p0) alpha = opt_v[1] log_m_star = np.log10(opt_v[2]) res_arr = np.array([alpha,log_m_star]) return opt_v, res_arr ############################################################################### ###Test that param_finder is working # opt_v,test_arr = param_finder(eco_low[1][2],bin_centers) # schech_vals = schechter_log_func(10**bin_centers,opt_v[0],opt_v[1],\ # opt_v[2]) # ####THE error isn't working. Stops after 800 iterations. # # opt_v,est_v = optimize.curve_fit(schechter_log_func,10**bin_centers, # # eco_low[1][2],p0 = (1,-1.05,10**10.64),sigma=eco_low[1]['low_err'][0],\ # # absolute_sigma=True) # fig,ax = plt.subplots() # ax.set_yscale('log') # ax.plot(bin_centers,eco_low[1][2]) # ax.plot(bin_centers,schech_vals) # plt.show() ############################################################################### def perc_calcs(mass,bins,dlogM): mass_counts, edges = np.histogram(mass,bins) mass_freq = mass_counts/float(len(mass))/dlogM return mass_freq ############################################################################### def deciles(mass): dec_val = int(len(mass)/10) res_list = [[] for bb in range(10)] for aa in range(0,10): if aa == 9: res_list[aa] = mass[aa*dec_val:] else: res_list[aa] = mass[aa*dec_val:(aa+1)*dec_val] return res_list ############################################################################### eco_dec = {} for cc in range(len(eco_mass_dat)): eco_dec[neigh_vals[cc]] = deciles(eco_mass_dat[cc]) # for ii in range(len(eco_dec[1])): # print len(eco_dec[1][ii]) eco_dec_smf = {} for ss in neigh_vals: eco_dec_smf[ss] = {} for tt in range(len(eco_dec[ss])): eco_dec_smf[ss][tt] = perc_calcs(eco_dec[ss][tt],bins,dlogM) eco_dec_alpha = {} eco_dec_logMstar = {} for oo in neigh_vals: eco_dec_alpha[oo] = [] eco_dec_logMstar[oo] = [] for pp in range(len(eco_dec[oo])): opt_v, temp_res_arr = param_finder(eco_dec_smf[oo][pp],bin_centers) eco_dec_alpha[oo].append(temp_res_arr[0]) eco_dec_logMstar[oo].append(temp_res_arr[1]) ten_x = range(1,11) # fig,ax = plt.subplots() # for ii in neigh_vals: # ax.plot(ten_x,eco_dec_alpha[ii]) # ax.set_xlim(0,11) # plt.show() ############################################################################### def plot_deciles(dec_num,y_vals,ax,plot_idx,eco=False,logMstar=False,\ color='gray'): if eco == True: titles = [1,2,3,5,10,20] ax.set_xlim(0,11) if logMstar == True: ax.set_ylim(10,12) ax.set_yticks(np.arange(10,12,0.5)) else: ax.set_ylim(-1.25,-1.) ax.set_yticks(np.arange(-1.25,-1.,0.05)) ax.set_xticks(range(1,11)) title_here = 'n = {0}'.format(titles[plot_idx]) ax.text(0.05, 0.95, title_here,horizontalalignment='left',\ verticalalignment='top',transform=ax.transAxes,fontsize=18) if plot_idx == 4: ax.set_xlabel('Decile',fontsize=18) if eco == True: ax.plot(dec_num,y_vals,marker='o',color=color,linewidth=2.5,\ markeredgecolor=color) else: ax.plot(dec_num,y_vals,color=color,alpha=0.5) ############################################################################### # nrow_num_mass = int(2) # ncol_num_mass = int(3) # fig, axes = plt.subplots(nrows=nrow_num_mass, ncols=ncol_num_mass, \ # figsize=(100,200), sharex= True, sharey = True) # axes_flat = axes.flatten() # zz = int(0) # while zz <=5: # ii = neigh_vals[zz] # plot_deciles(ten_x,eco_dec_logMstar[ii],axes_flat[zz],zz,eco=True,\ # logMstar=True) # zz += 1 # plt.subplots_adjust(left=0.05, bottom=0.09, right=1.00, top=1.00,\ # hspace=0,wspace=0) # plt.show() ############################################################################### def quartiles(mass): dec_val = int(len(mass)/4) res_list = [[] for bb in range(4)] for aa in range(0,4): if aa == 3: res_list[aa] = mass[aa*dec_val:] else: res_list[aa] = mass[aa*dec_val:(aa+1)*dec_val] return res_list ############################################################################### eco_quarts = {} for cc in range(len(eco_mass_dat)): eco_quarts[neigh_vals[cc]] = quartiles(eco_mass_dat[cc]) eco_quarts_smf = {} for ss in neigh_vals: eco_quarts_smf[ss] = {} for tt in range(len(eco_quarts[ss])): eco_quarts_smf[ss][tt] = perc_calcs(eco_quarts[ss][tt],bins,dlogM) eco_quarts_alpha = {} eco_quarts_logMstar = {} for oo in neigh_vals: eco_quarts_alpha[oo] = [] eco_quarts_logMstar[oo] = [] for pp in range(len(eco_quarts[oo])): opt_v, temp_res_arr = param_finder(eco_quarts_smf[oo][pp],bin_centers) eco_quarts_alpha[oo].append(temp_res_arr[0]) eco_quarts_logMstar[oo].append(temp_res_arr[1]) quart_x = range(1,5) # fig,ax = plt.subplots() # for ii in neigh_vals: # ax.plot(quart_x,eco_quarts_alpha[ii]) # ax.set_xlim(0,5) # plt.show() ############################################################################### def plot_quartiles(quart_num,y_vals,ax,plot_idx,eco=False,logMstar=False,\ color='gray'): if eco == True: titles = [1,2,3,5,10,20] ax.set_xlim(0,5) if logMstar == True: ax.set_ylim(10,12) ax.set_yticks(np.arange(10,12,0.5)) else: ax.set_ylim(-1.2,-1.) ax.set_yticks(np.arange(-1.2,-1.,0.04)) ax.set_xticks(range(1,5)) title_here = 'n = {0}'.format(titles[plot_idx]) ax.text(0.05, 0.95, title_here,horizontalalignment='left',\ verticalalignment='top',transform=ax.transAxes,fontsize=18) if plot_idx == 4: ax.set_xlabel('Quartiles',fontsize=18) if eco == True: ax.plot(quart_num,y_vals,marker='o',color=color,linewidth=2,\ markeredgecolor=color) else: ax.plot(quart_num,y_vals,color=color) ############################################################################### # nrow_num_mass = int(2) # ncol_num_mass = int(3) # fig, axes = plt.subplots(nrows=nrow_num_mass, ncols=ncol_num_mass, \ # figsize=(100,200), sharex= True, sharey = True) # axes_flat = axes.flatten() # zz = int(0) # while zz <=5: # ii = neigh_vals[zz] # plot_quartiles(quart_x,eco_quarts_logMstar[ii],axes_flat[zz],zz,eco=True,\ # logMstar=True) # zz += 1 # plt.subplots_adjust(left=0.05, bottom=0.09, right=1.00, top=1.00,\ # hspace=0,wspace=0) # plt.show() ############################################################################### def quart_finder(mass,bins,dlogM,neigh_vals): quarts = {} for ii in neigh_vals: quarts[ii] = quartiles(mass[ii]) quarts_smf = {} for ss in neigh_vals: quarts_smf[ss] = {} for tt in range(len(quarts[ss])): quarts_smf[ss][tt] = perc_calcs(quarts[ss][tt],bins,dlogM) quarts_alpha = {} quarts_logMstar = {} for oo in neigh_vals: quarts_alpha[oo] = [] quarts_logMstar[oo] = [] for pp in range(len(quarts[oo])): opt_v, temp_res_arr = param_finder(quarts_smf[oo][pp],bin_centers) quarts_alpha[oo].append(temp_res_arr[0]) quarts_logMstar[oo].append(temp_res_arr[1]) return quarts_alpha, quarts_logMstar ############################################################################### mock_quarts_alpha_dict = {} mock_quarts_logMstar_dict = {} for jj in range(len(mass_dat)): mock_quarts_alpha_dict[jj], mock_quarts_logMstar_dict[jj] = quart_finder\ (mass_dat[jj],bins,dlogM,neigh_vals) ############################################################################### def dec_finder(mass,bins,dlogM,neigh_vals): decs = {} for ii in neigh_vals: decs[ii] = deciles(mass[ii]) decs_smf = {} for ss in neigh_vals: decs_smf[ss] = {} for tt in range(len(decs[ss])): decs_smf[ss][tt] = perc_calcs(decs[ss][tt],bins,dlogM) decs_alpha = {} decs_logMstar = {} for oo in neigh_vals: decs_alpha[oo] = [] decs_logMstar[oo] = [] for pp in range(len(decs[oo])): opt_v, temp_res_arr = param_finder(decs_smf[oo][pp],bin_centers) decs_alpha[oo].append(temp_res_arr[0]) decs_logMstar[oo].append(temp_res_arr[1]) return decs_alpha, decs_logMstar ############################################################################### mock_dec_alpha_dict = {} mock_dec_logMstar_dict = {} for jj in range(len(mass_dat)): mock_dec_alpha_dict[jj], mock_dec_logMstar_dict[jj] = dec_finder\ (mass_dat[jj],bins,dlogM,neigh_vals) ############################################################################### ###quartiles logMstar nrow_num_mass = int(2) ncol_num_mass = int(3) fig, axes = plt.subplots(nrows=nrow_num_mass, ncols=ncol_num_mass, \ figsize=(100,200), sharex= True, sharey = True) axes_flat = axes.flatten() fig.text(0.01, 0.5, '$\log\ (M_{*}/M_{\odot})$', ha='center', \ va='center',rotation='vertical',fontsize=20) zz = int(0) while zz <=5: ii = neigh_vals[zz] for ff in range(len(mass_dat)): plot_quartiles(quart_x,mock_quarts_logMstar_dict[ff][ii],axes_flat[zz],\ zz,logMstar=True) plot_quartiles(quart_x,eco_quarts_logMstar[ii],axes_flat[zz],zz,\ logMstar=True,color='crimson',eco=True) zz += 1 plt.subplots_adjust(left=0.05, bottom=0.09, right=1.00, top=1.00,\ hspace=0,wspace=0) plt.show() ############################################################################### nrow_num_mass = int(2) ncol_num_mass = int(3) fig, axes = plt.subplots(nrows=nrow_num_mass, ncols=ncol_num_mass, \ figsize=(100,200), sharex= True, sharey = True) axes_flat = axes.flatten() fig.text(0.01, 0.5, '$\log\ (M_{*}/M_{\odot})$', ha='center', \ va='center',rotation='vertical',fontsize=20) zz = int(0) while zz <=5: ii = neigh_vals[zz] for ff in range(len(mass_dat)): plot_deciles(ten_x,mock_dec_logMstar_dict[ff][ii],axes_flat[zz],\ zz,logMstar=True) plot_deciles(ten_x,eco_dec_logMstar[ii],axes_flat[zz],zz,\ logMstar=True,color='crimson',eco=True) zz += 1 plt.subplots_adjust(left=0.05, bottom=0.09, right=1.00, top=1.00,\ hspace=0,wspace=0) plt.show() ############################################################################### nrow_num_mass = int(2) ncol_num_mass = int(3) fig, axes = plt.subplots(nrows=nrow_num_mass, ncols=ncol_num_mass, \ figsize=(100,200), sharex= True, sharey = True) axes_flat = axes.flatten() fig.text(0.01, 0.5, r'$\alpha$', ha='center', \ va='center',rotation='vertical',fontsize=25) zz = int(0) while zz <=5: ii = neigh_vals[zz] for ff in range(len(mass_dat)): plot_deciles(ten_x,mock_dec_alpha_dict[ff][ii],axes_flat[zz],zz,\ logMstar=False) plot_deciles(ten_x,eco_dec_alpha[ii],axes_flat[zz],zz,\ logMstar=False,color='crimson',eco=True) zz += 1 plt.subplots_adjust(left=0.05, bottom=0.09, right=1.00, top=1.00,\ hspace=0,wspace=0) plt.show() ############################################################################### nrow_num_mass = int(2) ncol_num_mass = int(3) fig, axes = plt.subplots(nrows=nrow_num_mass, ncols=ncol_num_mass, \ figsize=(100,200), sharex= True, sharey = True) axes_flat = axes.flatten() fig.text(0.01, 0.5, r'$\alpha$', ha='center', \ va='center',rotation='vertical',fontsize=25) zz = int(0) while zz <=5: ii = neigh_vals[zz] for ff in range(len(mass_dat)): plot_quartiles(quart_x,mock_quarts_alpha_dict[ff][ii],axes_flat[zz],zz,\ logMstar=False) plot_quartiles(quart_x,eco_quarts_alpha[ii],axes_flat[zz],zz,\ logMstar=False,color='crimson',eco=True) zz += 1 plt.subplots_adjust(left=0.05, bottom=0.09, right=1.00, top=1.00,\ hspace=0,wspace=0) plt.show() ############################################################################### def schechter_real_func(mean_of_mass_bin,bins,phi_star,alpha,Mstar): M_over_mstar = mean_of_mass_bin/Mstar temp_val = phi_star/Mstar * M_over_mstar**(alpha+1) * \ np.exp(- M_over_mstar) int_val = [[] for ii in range(len(temp_val))] for ii in range(len(temp_val)): int_val[ii] = integrate.quad(temp_val[ii],bins[ii],bins[ii+1]) return int_val ############################################################################### ############################################################################### ############################################################################### def find_params(bin_int,mean_mass,count_err): """ Parameters ---------- Returns ------- opt_v: array-like Array with three values: phi_star, alpha, and M_star res_arr: array-like Array with two values: alpha and log_M_star """ xdata = 10**mean_mass p0 = (1,-1.05,10**10.64) opt_v,est_cov = optimize.curve_fit(schechter_real_func,xdata,\ bin_int,p0=p0,sigma=count_err) alpha = opt_v[1] log_m_star = np.log10(opt_v[2]) res_arr = np.array([alpha,log_m_star]) return opt_v, res_arr ############################################################################### ############################################################################### truth_vals = {} for ii in range(len(halo_id_arr)): truth_vals[ii] = {} for jj in neigh_vals: halo_id_neigh = halo_id_arr[ii][nn_neigh_idx[ii].T[neigh_dict[jj]]].values truth_vals[ii][jj] = halo_id_neigh==halo_id_arr[ii].values ############################################################################### halo_frac = {} for ii in range(len(mass_arr)): halo_frac[ii] = {} mass_binning = np.digitize(mass_arr[ii],bins) bins_to_use = list(np.unique(mass_binning)) if (len(bins)-1) not in bins_to_use: bins_to_use.append(len(bins)-1) if len(bins) in bins_to_use: bins_to_use.remove(len(bins)) for jj in neigh_vals: one_zero = truth_vals[ii][jj].astype(int) frac = [] for xx in bins_to_use: truth_binning = one_zero[mass_binning==xx] num_in_bin = len(truth_binning) if num_in_bin == 0: num_in_bin = np.nan num_same_halo = np.count_nonzero(truth_binning==1) frac.append(num_same_halo/(1.*num_in_bin)) halo_frac[ii][jj] = frac ############################################################################### nn_dict = {1:0,2:1,3:2,5:3,10:4,20:5} mean_mock_halo_frac = {} for ii in neigh_vals: for jj in range(len(halo_frac)): bin_str = '{0}'.format(ii) oo_arr = halo_frac[jj][ii] n_o_elem = len(oo_arr) if jj == 0: oo_tot = np.zeros((n_o_elem,1)) oo_tot = np.insert(oo_tot,len(oo_tot.T),oo_arr,1) oo_tot = np.array(np.delete(oo_tot,0,axis=1)) oo_tot_mean = [np.mean(oo_tot[uu]) for uu in xrange(len(oo_tot))] oo_tot_std = [np.std(oo_tot[uu])/np.sqrt(len(halo_frac)) for uu in \ xrange(len(oo_tot))] mean_mock_halo_frac[bin_str] = [oo_tot_mean,oo_tot_std] ############################################################################### def plot_halo_frac(bin_centers,y_vals,ax,plot_idx): titles = [1,2,3,5,10,20] ax.set_xlim(9.1,11.9) ax.set_xticks(np.arange(9.5,12.,0.5)) ax.tick_params(axis='x', which='major', labelsize=16) title_here = 'n = {0}'.format(titles[plot_idx]) ax.text(0.05, 0.95, title_here,horizontalalignment='left',\ verticalalignment='top',transform=ax.transAxes,fontsize=18) if plot_idx == 4: ax.set_xlabel('$\log\ (M_{*}/M_{\odot})$',fontsize=20) ax.plot(bin_centers,y_vals,color='silver') def plot_mean_halo_frac(bin_centers,mean_vals,ax,std): ax.errorbar(bin_centers,mean_vals,yerr=std,color='deeppink') ############################################################################### nrow = int(2) ncol = int(3) fig,axes = plt.subplots(nrows=nrow,ncols=ncol,\ figsize=(100,200),sharex=True) axes_flat = axes.flatten() zz = int(0) while zz <=4: for jj in neigh_vals: for kk in range(len(halo_frac)): plot_halo_frac(bin_centers,halo_frac[kk][jj],axes_flat[zz],zz) nn_str = '{0}'.format(jj) plot_mean_halo_frac(bin_centers,mean_mock_halo_frac[nn_str][0],axes_flat[zz],mean_mock_halo_frac[nn_str][1]) zz += 1 plt.subplots_adjust(top=0.97,bottom=0.1,left=0.03,right=0.99,hspace=0.10,wspace=0.12) plt.show() ############################################################################### ############################################################################### ############################################################################### ############################################################################### ############################################################################### ############################################################################### ############################################################################### ############################################################################### ############################################################################### ############################################################################### ############################################################################### ############################################################################### ############################################################################### ############################################################################### ############################################################################### ############################################################################### ############################################################################### ############################################################################### ############################################################################### ############################################################################### ############################################################################### ############################################################################### ############################################################################### ############################################################################### ############################################################################### ############################################################################### ############################################################################### ##Creating dictionaries through for loops to house the parameters for each of #ECO's 18 different options (6 nn and 3 density cuts) #One dictionary for the lower portion of the cuts and one for the higher param_dict_low = {} param_dict_high = {} for dd in neigh_vals: param_dict_low[dd] = {} param_dict_high[dd] = {} for ee in frac_vals: param_dict_low[dd][ee] = {} param_dict_high[dd][ee] = {} opt_v, param_dict_low[dd][ee] = param_finder(eco_low[dd][ee],\ bin_centers) opt_v, param_dict_high[dd][ee] = param_finder(eco_high[dd][ee],\ bin_centers) # #### Putting the percentile cuts in order, as seen below # #10,25,low_50,high_50,75,90 # over_alpha_dict = {} # over_log_m_star = {} # for dd in neigh_vals: # temp_list_alpha = [] # temp_list_logMstar = [] # over_alpha_dict[dd] = {} # over_log_m_star[dd] = {} # low_idx = np.array(list(reversed(np.sort(param_dict_low[dd].keys())))) # high_idx = np.sort(param_dict_high[dd].keys()) # for ff in range(len(low_idx)): # temp_list_alpha.append(param_dict_low[dd][low_idx[ff]][0]) # temp_list_logMstar.append(param_dict_low[dd][low_idx[ff]][1]) # for ff in range(len(high_idx)): # temp_list_alpha.append(param_dict_high[dd][high_idx[ff]][0]) # temp_list_logMstar.append(param_dict_high[dd][high_idx[ff]][1]) # over_alpha_dict[dd] = temp_list_alpha # over_log_m_star[dd] = temp_list_logMstar # perc_arr = (10,25,49,51,75,90) # fig,ax = plt.subplots() # for jj in neigh_vals: # ax.plot(perc_arr,over_log_m_star[jj],marker='o',label='{0}'.format(jj), \ # linestyle='--') # ax.set_xlim([0,100]) # ax.legend(loc='best', numpoints=1) # ax.set_xlabel('Percentile') # ax.set_ylabel(r'$\log\ M_{*}$') # plt.show() # fig,ax = plt.subplots() # for jj in neigh_vals: # ax.plot(perc_arr,over_alpha_dict[jj],marker='o',label='{0}'.format(jj), \ # linestyle='--') # ax.set_xlim([0,100]) # ax.legend(loc='best', numpoints=1) # ax.set_xlabel('Percentile') # ax.set_ylabel(r'$\alpha$') # plt.show() ### moving around the parameters so that I can find the differences, rather #than just plotting them straigh-up # diff_dict_m_star = {} # diff_dict_alpha = {} # for dd in neigh_vals: # diff_dict_m_star[dd] = {} # diff_dict_alpha[dd] = {} # for jj in frac_vals: # temp_list_diff_m_star = [] # temp_list_diff_alpha = [] # diff_dict_alpha[dd][jj] = {} # diff_dict_m_star[dd][jj] = {} # temp_list_diff_m_star.append((param_dict_high[dd][jj][1] - \ # param_dict_low[dd][jj][1])) # temp_list_diff_alpha.append(((param_dict_high[dd][jj][0]-\ # param_dict_low[dd][jj][0])/param_dict_high[dd][jj][0] * 100)) # diff_dict_alpha[dd][jj] = np.array(temp_list_diff_alpha) # diff_dict_m_star[dd][jj] = np.array(temp_list_diff_m_star) # dict_revamp_mstar = {} # for dd in neigh_vals: # dict_revamp_mstar[dd] = [] # for jj in frac_vals: # dict_revamp_mstar[dd].append(diff_dict_m_star[dd][jj]) # dict_revamp_alpha = {} # for dd in neigh_vals: # dict_revamp_alpha[dd] = [] # for jj in frac_vals: # dict_revamp_alpha[dd].append(diff_dict_alpha[dd][jj]) # discrete_x = np.array([1,2,3]) # fig,ax = plt.subplots() # for ii in neigh_vals: # ax.plot(discrete_x,dict_revamp_mstar[ii],marker='o',\ # linestyle= '--',label='{0}'.format(ii)) # ax.set_xlim(0,4) # ax.set_xlabel('Fractional Cut',fontsize=18) # ax.set_xticks([1,2,3]) # ax.set_ylabel('Difference in $\log\ M_{*}$, h-l',fontsize=18) # ax.legend(loc='best',numpoints=1) # ax.text(1,0.5,'50/50 Cut',horizontalalignment='center') # ax.text(2,0.6,'25/75 Cut',horizontalalignment='center') # ax.text(3,0.75,'10/90 Cut',horizontalalignment='center') # plt.show() # ###### # fig,ax = plt.subplots() # for ii in neigh_vals: # ax.plot(discrete_x,dict_revamp_alpha[ii],marker='o',\ # linestyle= '--',label='{0}'.format(ii)) # ax.set_xlim(0,4) # ax.set_xlabel('Fractional Cut',fontsize=18) # ax.set_xticks([1,2,3]) # ax.set_ylabel(r'Difference in $\alpha$, (h-l)/h',fontsize=18) # ax.legend(loc='best',numpoints=1) # ax.text(1,-7,'50/50 Cut',horizontalalignment='center') # ax.text(2,-7,'25/75 Cut',horizontalalignment='center') # ax.text(3,-7,'10/90 Cut',horizontalalignment='center') # plt.show() #50/50,25/75,10/908 # mocks_high_alpha = {} # mocks_high_logMstar = {} # mocks_low_alpha = {} # mocks_low_logMstar = {} # for rr in xrange(len(hist_high_info)): # mocks_high_alpha[rr] = {} # mocks_high_logMstar[rr] = {} # mocks_low_alpha[rr] = {} # mocks_low_logMstar[rr] = {} # for ss in neigh_vals: # mocks_high_alpha[rr][ss] = {} # mocks_high_logMstar[rr][ss] = {} # mocks_low_alpha[rr][ss] = {} # mocks_low_logMstar[rr][ss] = {} # for tt in frac_vals: # opt_v, temp_res_high = param_finder(hist_high_info[rr][ss][tt],\ # bin_centers) # opt_v, temp_res_low = param_finder(hist_low_info[rr][ss][tt],\ # bin_centers) # mocks_high_alpha[rr][ss][tt] = temp_res_high[0] # mocks_high_logMstar[rr][ss][tt] = temp_res_high[1] # mocks_low_alpha[rr][ss][tt] = temp_res_low[0] # mocks_low_logMstar[rr][ss][tt] = temp_res_low[1]
mit
xujun10110/folium
tests/folium_tests.py
1
21100
# -*- coding: utf-8 -*- """ Folium Tests ------- """ import json import mock import pandas as pd import nose.tools as nt import jinja2 from jinja2 import Environment, PackageLoader import vincent import folium from folium.six import PY3 def setup_data(): """Import economic data for testing.""" with open('us-counties.json', 'r') as f: get_id = json.load(f) county_codes = [x['id'] for x in get_id['features']] county_df = pd.DataFrame({'FIPS_Code': county_codes}, dtype=str) # Read into Dataframe, cast to string for consistency. df = pd.read_csv('us_county_data.csv', na_values=[' ']) df['FIPS_Code'] = df['FIPS_Code'].astype(str) # Perform an inner join, pad NA's with data from nearest county. merged = pd.merge(df, county_df, on='FIPS_Code', how='inner') return merged.fillna(method='pad') def test_get_templates(): """Test template getting.""" env = folium.utilities.get_templates() nt.assert_is_instance(env, jinja2.environment.Environment) class testFolium(object): """Test class for the Folium library.""" def setup(self): """Setup Folium Map.""" with mock.patch('folium.folium.uuid4') as uuid4: uuid4().hex = '0' * 32 self.map = folium.Map(location=[45.5236, -122.6750], width=900, height=400, max_zoom=20, zoom_start=4) self.env = Environment(loader=PackageLoader('folium', 'templates')) def test_init(self): """Test map initialization.""" assert self.map.map_type == 'base' assert self.map.mark_cnt == {} assert self.map.location == [45.5236, -122.6750] assert self.map.map_size == {'width': 900, 'height': 400} tmpl = {'Tiles': 'https://{s}.tile.openstreetmap.org/{z}/{x}/{y}.png', 'attr': ('Map data (c) <a href="http://openstreetmap.org">' 'OpenStreetMap</a> contributors'), 'map_id': 'folium_' + '0' * 32, 'lat': 45.5236, 'lon': -122.675, 'max_zoom': 20, 'size': 'style="width: 900px; height: 400px"', 'zoom_level': 4, 'tile_layers': [], 'wms_layers': [], 'image_layers': [], 'min_zoom': 1, 'min_lat': -90, 'max_lat': 90, 'min_lon': -180, 'max_lon': 180} assert self.map.template_vars == tmpl def test_cloudmade(self): """Test cloudmade tiles and the API key.""" nt.assert_raises(ValueError, callableObj=folium.Map, location=[45.5236, -122.6750], tiles='cloudmade') map = folium.Map(location=[45.5236, -122.6750], tiles='cloudmade', API_key='###') assert map.template_vars['Tiles'] == ('http://{s}.tile.cloudmade.com' '/###/997/256/{z}/{x}/{y}.png') def test_builtin_tile(self): """Test custom maptiles.""" default_tiles = ['OpenStreetMap', 'Stamen Terrain', 'Stamen Toner'] for tiles in default_tiles: map = folium.Map(location=[45.5236, -122.6750], tiles=tiles) tiles = ''.join(tiles.lower().strip().split()) url = map.tile_types[tiles]['templ'].render() attr = map.tile_types[tiles]['attr'].render() assert map.template_vars['Tiles'] == url assert map.template_vars['attr'] == attr def test_custom_tile(self): """Test custom tile URLs.""" url = 'http://{s}.custom_tiles.org/{z}/{x}/{y}.png' attr = 'Attribution for custom tiles' nt.assert_raises(ValueError, callableObj=folium.Map, location=[45.5236, -122.6750], tiles=url) map = folium.Map(location=[45.52, -122.67], tiles=url, attr=attr) assert map.template_vars['Tiles'] == url assert map.template_vars['attr'] == attr def test_wms_layer(self): """Test WMS layer URLs.""" map = folium.Map(location=[44, -73], zoom_start=3) wms_url = 'http://gis.srh.noaa.gov/arcgis/services/NDFDTemps/' wms_url += 'MapServer/WMSServer' wms_name = "Temperature" wms_layers = 16 wms_format = "image/png" map.add_wms_layer(wms_name=wms_name, wms_url=wms_url, wms_format=wms_format, wms_layers=wms_layers, wms_transparent=True) wms_temp = self.env.get_template('wms_layer.js') wms = wms_temp.render({'wms_name': wms_name, 'wms_url': wms_url, 'wms_format': wms_format, 'wms_layer_names': wms_layers, 'wms_transparent': 'true'}) assert map.template_vars['wms_layers'][0] == wms def test_simple_marker(self): """Test simple marker addition.""" mark_templ = self.env.get_template('simple_marker.js') popup_templ = self.env.get_template('simple_popup.js') # Single Simple marker. self.map.simple_marker(location=[45.50, -122.7]) mark_1 = mark_templ.render({'marker': 'marker_1', 'lat': 45.50, 'lon': -122.7, 'icon': "{'icon':marker_1_icon}"}) assert self.map.template_vars['custom_markers'][0][1] == mark_1 assert self.map.template_vars['custom_markers'][0][2] == "" # Test Simple marker addition. self.map.simple_marker(location=[45.60, -122.8], popup='Hi') mark_2 = mark_templ.render({'marker': 'marker_2', 'lat': 45.60, 'lon': -122.8, 'icon': "{'icon':marker_2_icon}"}) popup_2 = popup_templ.render({'pop_name': 'marker_2', 'pop_txt': json.dumps('Hi'), 'width': 300}) assert self.map.mark_cnt['simple'] == 2 assert self.map.template_vars['custom_markers'][1][1] == mark_2 assert self.map.template_vars['custom_markers'][1][2] == popup_2 # Test no popup. self.map.simple_marker(location=[45.60, -122.8]) nopopup = '' assert self.map.template_vars['custom_markers'][2][2] == nopopup def test_circle_marker(self): """Test circle marker additions.""" circ_templ = self.env.get_template('circle_marker.js') # Single Circle marker. self.map.circle_marker(location=[45.60, -122.8], popup='Hi') circle_1 = circ_templ.render({'circle': 'circle_1', 'lat': 45.60, 'lon': -122.8, 'radius': 500, 'line_color': 'black', 'fill_color': 'black', 'fill_opacity': 0.6}) assert self.map.template_vars['markers'][0][0] == circle_1 # Second circle marker. self.map.circle_marker(location=[45.70, -122.9], popup='Hi') circle_2 = circ_templ.render({'circle': 'circle_2', 'lat': 45.70, 'lon': -122.9, 'radius': 500, 'line_color': 'black', 'fill_color': 'black', 'fill_opacity': 0.6}) assert self.map.template_vars['markers'][1][0] == circle_2 def test_poly_marker(self): """Test polygon marker.""" poly_temp = self.env.get_template('poly_marker.js') polygon = poly_temp.render({'marker': 'polygon_1', 'lat': 45.5, 'lon': -122.5, 'line_color': 'black', 'line_opacity': 1, 'line_weight': 2, 'fill_color': 'blue', 'fill_opacity': 1, 'num_sides': 4, 'rotation': 0, 'radius': 15}) self.map.polygon_marker(location=[45.5, -122.5]) assert self.map.template_vars['markers'][0][0] == polygon def test_latlng_pop(self): """Test lat/lon popovers.""" self.map.lat_lng_popover() pop_templ = self.env.get_template('lat_lng_popover.js').render() assert self.map.template_vars['lat_lng_pop'] == pop_templ def test_click_for_marker(self): """Test click for marker functionality.""" # Lat/lon popover. self.map.click_for_marker() click_templ = self.env.get_template('click_for_marker.js') click = click_templ.render({'popup': ('"Latitude: " + lat + "<br>' 'Longitude: " + lng ')}) assert self.map.template_vars['click_pop'] == click # Custom popover. self.map.click_for_marker(popup='Test') click_templ = self.env.get_template('click_for_marker.js') click = click_templ.render({'popup': '"Test"'}) assert self.map.template_vars['click_pop'] == click def test_vega_popup(self): """Test vega popups.""" vis = vincent.Bar(width=675 - 75, height=350 - 50, no_data=True) self.map.simple_marker(location=[45.60, -122.8], popup=(vis, 'vis.json')) popup_temp = self.env.get_template('vega_marker.js') vega = popup_temp.render({'mark': 'marker_1', 'div_id': 'vis', 'width': 675, 'height': 350, 'max_width': 900, 'json_out': 'vis.json', 'vega_id': '#vis'}) assert self.map.template_vars['custom_markers'][0][2] == vega def test_geo_json(self): """Test geojson method.""" path = 'us-counties.json' geo_path = ".defer(d3.json, '{0}')".format(path) # No data binding. self.map.geo_json(geo_path=path) geo_path = ".defer(d3.json, '{0}')".format(path) map_var = 'gjson_1' layer_var = 'gjson_1' style_temp = self.env.get_template('geojson_style.js') style = style_temp.render({'style': 'style_1', 'line_color': 'black', 'line_weight': 1, 'line_opacity': 1, 'fill_color': 'blue', 'fill_opacity': 0.6}) layer = ('gJson_layer_{0} = L.geoJson({1}, {{style: {2},' 'onEachFeature: onEachFeature}}).addTo(map)' .format(1, layer_var, 'style_1')) templ = self.map.template_vars assert self.map.map_type == 'geojson' assert templ['func_vars'][0] == map_var assert templ['geo_styles'][0] == style assert templ['gjson_layers'][0] == layer assert templ['json_paths'][0] == geo_path # Data binding incorrect color value error. data = setup_data() nt.assert_raises(ValueError, self.map.geo_json, path, data=data, columns=['FIPS_Code', 'Unemployed_2011'], key_on='feature.id', fill_color='blue') # Data binding threshold_scale too long. data = setup_data() nt.assert_raises(ValueError, self.map.geo_json, path, data=data, columns=['FIPS_Code', 'Unemployed_2011'], key_on='feature.id', threshold_scale=[1, 2, 3, 4, 5, 6, 7], fill_color='YlGnBu') # With DataFrame data binding, default threshold scale. self.map.geo_json(geo_path=path, data=data, columns=['FIPS_Code', 'Unemployed_2011'], key_on='feature.id', fill_color='YlGnBu', reset=True) geo_path = ".defer(d3.json, '{0}')".format(path) data_path = ".defer(d3.json, '{0}')".format('data.json') map_var = 'gjson_1' layer_var = 'gjson_1' data_var = 'data_1' domain = [4.0, 1000.0, 3000.0, 5000.0, 9000.0] palette = folium.utilities.color_brewer('YlGnBu') d3range = palette[0: len(domain) + 1] color_temp = self.env.get_template('d3_threshold.js') scale = color_temp.render({'domain': domain, 'range': d3range}) style_temp = self.env.get_template('geojson_style.js') color = 'color(matchKey(feature.id, data_1))' style = style_temp.render({'style': 'style_1', 'line_color': 'black', 'line_weight': 1, 'line_opacity': 1, 'quantize_fill': color, 'fill_opacity': 0.6}) layer = ('gJson_layer_{0} = L.geoJson({1}, {{style: {2},' 'onEachFeature: onEachFeature}}).addTo(map)' .format(1, layer_var, 'style_1')) templ = self.map.template_vars assert templ['func_vars'] == [data_var, map_var] assert templ['geo_styles'][0] == style assert templ['gjson_layers'][0] == layer assert templ['json_paths'] == [data_path, geo_path] assert templ['color_scales'][0] == scale # Adding TopoJSON as additional layer. path_2 = 'or_counties_topo.json' self.map.geo_json(geo_path=path_2, topojson='objects.or_counties_geo') geo_path_2 = ".defer(d3.json, '{0}')".format(path_2) map_var_2 = 'tjson_2' layer_var_2 = 'topo_2' topo_func = ('topo_2 = topojson.feature(tjson_2,' ' tjson_2.objects.or_counties_geo);') fmt = ('gJson_layer_{0} = L.geoJson({1}, {{style: {2},' 'onEachFeature: onEachFeature}}).addTo(map)') layer_2 = fmt.format(2, layer_var_2, 'style_2') templ = self.map.template_vars assert templ['func_vars'] == [data_var, map_var, map_var_2] assert templ['gjson_layers'][1] == layer_2 assert templ['json_paths'] == [data_path, geo_path, geo_path_2] assert templ['topo_convert'][0] == topo_func def test_map_build(self): """Test map build.""" # Standard map. self.map._build_map() html_templ = self.env.get_template('fol_template.html') tmpl = {'Tiles': 'https://{s}.tile.openstreetmap.org/{z}/{x}/{y}.png', 'attr': ('Map data (c) <a href="http://openstreetmap.org">' 'OpenStreetMap</a> contributors'), 'map_id': 'folium_' + '0' * 32, 'lat': 45.5236, 'lon': -122.675, 'max_zoom': 20, 'size': 'style="width: 900px; height: 400px"', 'zoom_level': 4, 'min_zoom': 1, 'min_lat': -90, 'max_lat': 90, 'min_lon': -180, 'max_lon': 180} HTML = html_templ.render(tmpl) assert self.map.HTML == HTML def test_tile_attr_unicode(self): """Test tile attribution unicode Test not cover b'юникод' because for python 3 bytes can only contain ASCII literal characters. """ if not PY3: map = folium.Map(location=[45.5236, -122.6750], tiles='test', attr=b'unicode') map._build_map() else: map = folium.Map(location=[45.5236, -122.6750], tiles='test', attr=u'юникод') map._build_map() map = folium.Map(location=[45.5236, -122.6750], tiles='test', attr='юникод') map._build_map() def test_create_map(self): """Test create map.""" map = folium.Map(location=[45.5236, -122.6750], tiles='test', attr='юникод') # Add json data. path = 'us-counties.json' data = setup_data() map.geo_json(geo_path=path, data=data, columns=['FIPS_Code', 'Unemployed_2011'], key_on='feature.id', fill_color='YlGnBu', reset=True) # Add plugins. map.polygon_marker(location=[45.5, -122.5]) # Test write. map.create_map() def test_line(self): """Test line.""" line_temp = self.env.get_template('polyline.js') line_opts = { 'color': 'blue', 'weight': 2, 'opacity': 1 } locations = [ [[45.5236, -122.6750], [45.5236, -122.6751]], [[45.5237, -122.6750], [45.5237, -122.6751]], [[45.5238, -122.6750], [45.5238, -122.6751]] ] line_rendered = line_temp.render({'line': 'line_1', 'locations': locations, 'options': line_opts}) self.map.line(locations=locations, line_color=line_opts['color'], line_weight=line_opts['weight'], line_opacity=line_opts['opacity']) assert self.map.template_vars['lines'][0][0] == line_rendered def test_multi_polyline(self): """Test multi_polyline.""" multiline_temp = self.env.get_template('multi_polyline.js') multiline_opts = {'color': 'blue', 'weight': 2, 'opacity': 1} locations = [[[45.5236, -122.6750], [45.5236, -122.6751]], [[45.5237, -122.6750], [45.5237, -122.6751]], [[45.5238, -122.6750], [45.5238, -122.6751]]] multiline_rendered = multiline_temp.render({'multiline': 'multiline_1', 'locations': locations, 'options': multiline_opts}) self.map.multiline(locations=locations, line_color=multiline_opts['color'], line_weight=multiline_opts['weight'], line_opacity=multiline_opts['opacity']) assert self.map.template_vars['multilines'][0][0] == multiline_rendered def test_fit_bounds(self): """Test fit_bounds.""" bounds = ((52.193636, -2.221575), (52.636878, -1.139759)) fit_bounds_tpl = self.env.get_template('fit_bounds.js') fit_bounds_rendered = fit_bounds_tpl.render({ 'bounds': json.dumps(bounds), 'fit_bounds_options': {}, }) self.map.fit_bounds(bounds) assert self.map.template_vars['fit_bounds'] == fit_bounds_rendered fit_bounds_tpl = self.env.get_template('fit_bounds.js') fit_bounds_rendered = fit_bounds_tpl.render({ 'bounds': json.dumps(bounds), 'fit_bounds_options': json.dumps({'maxZoom': 15, 'padding': (3, 3), }, sort_keys=True), }) self.map.fit_bounds(bounds, max_zoom=15, padding=(3, 3)) assert self.map.template_vars['fit_bounds'] == fit_bounds_rendered def test_image_overlay(self): """Test image overlay""" from numpy.random import random from folium.utilities import write_png import base64 data = random((100,100)) png_str = write_png(data) with open('data.png', 'wb') as f: f.write(png_str) inline_image_url = "data:image/png;base64,"+base64.b64encode(png_str).decode('utf-8') image_tpl = self.env.get_template('image_layer.js') image_name = 'Image_Overlay' image_opacity = 0.25 image_url = 'data.png' min_lon, max_lon, min_lat, max_lat = -90.0, 90.0, -180.0, 180.0 image_bounds = [[min_lon, min_lat], [max_lon, max_lat]] image_rendered = image_tpl.render({'image_name': image_name, 'image_url': image_url, 'image_bounds': image_bounds, 'image_opacity': image_opacity }) self.map.image_overlay(data, filename=image_url) assert image_rendered in self.map.template_vars['image_layers'] image_rendered = image_tpl.render({'image_name': image_name, 'image_url': inline_image_url, 'image_bounds': image_bounds, 'image_opacity': image_opacity }) self.map.image_overlay(data) assert image_rendered in self.map.template_vars['image_layers']
mit
shnizzedy/SM_openSMILE
openSMILE_runSM/mhealthx/mhealthx/utilities.py
1
9467
#!/usr/bin/env python """ Utility functions. Authors: - Arno Klein, 2015-2016 ([email protected]) http://binarybottle.com Copyright 2015-2016, Sage Bionetworks (sagebase.org), with later modifications: Copyright 2016, Child Mind Institute (childmind.org), Apache v2.0 License """ def run_command(command, flag1='', arg1='', flags='', args=[], flagn='', argn='', closing=''): """ Run a generic command. Parameters ---------- command : string name of command: "SMILExtract" flag1 : string optional first command line flag arg1 : string optional first argument, handy for iterating over in the pipeline flags : string or list of strings command line flags precede their respective args: ["-C", "-I", "-O"] args : string or list of strings command line arguments: ["config.conf", "input.wav", "output.csv"] flagn : string optional last command line flag argn : string optional last argument, handy for iterating over in the pipeline closing : string closing string in command Returns ------- command_line : string full command line args : list of strings command line arguments arg1 : string optional first argument, handy for iterating over in the pipeline argn : string optional last argument, handy for iterating over in the pipeline Examples -------- >>> from mhealthx.utilities import run_command >>> command = 'ls' >>> flag1 = '' >>> arg1 = '' >>> flags = ['-l', ''] >>> args = ['/software', '/desk'] >>> flagn = '' >>> argn = '' >>> closing = '' #'> test.txt' >>> command_line, args, arg1, argn = run_command(command, flag1, arg1, flags, args, flagn, argn, closing) """ from nipype.interfaces.base import CommandLine # Join flags with args: if type(flags) == list and type(args) == list: flag_arg_tuples = list(zip(flags, args)) flags_args = '' for flag_arg_tuple in flag_arg_tuples: flags_args = ' '.join([flags_args, ' '.join(flag_arg_tuple)]) elif type(flags) == str and type(args) == str: flags_args = ' '.join([flags, args]) else: raise IOError("-flags and -args should both be strings or lists") options = ' '.join([' '.join([flag1, arg1]), flags_args, ' '.join([flagn, argn]), closing]) command_line = ' '.join([command, options]) # Nipype command line wrapper: try: cli = CommandLine(command=command) cli.inputs.args = options cli.cmdline cli.run() except: import traceback; traceback.print_exc() print(("'{0}' unsuccessful".format(command_line))) return command_line, args, arg1, argn def plotxyz(x, y, z, t, title='', limits=[]): """ Plot each accelerometer axis separately against relative time. Parameters ---------- x : list or numpy array of floats y : list or numpy array of floats z : list or numpy array of floats t : list or numpy array of floats time points title : string limits : list of floats Examples -------- >>> from mhealthx.xio import read_accel_json >>> #input_file = '/Users/arno/DriveWork/mhealthx/mpower_sample_data/accel_walking_outbound.json.items-6dc4a144-55c3-4e6d-982c-19c7a701ca243282023468470322798.tmp' >>> input_file = '/Users/arno/DriveWork/mhealthx/mpower_sample_data/deviceMotion_walking_outbound.json.items-5981e0a8-6481-41c8-b589-fa207bfd2ab38771455825726024828.tmp' >>> #input_file = '/Users/arno/DriveWork/mhealthx/mpower_sample_data/deviceMotion_walking_outbound.json.items-a2ab9333-6d63-4676-977a-08591a5d837f5221783798792869048.tmp' >>> start = 150 >>> device_motion = True >>> t, axyz, gxyz, uxyz, rxyz, sample_rate, duration = read_accel_json(input_file, start, device_motion) >>> ax, ay, az = axyz >>> from mhealthx.utilities import plotxyz >>> plotxyz(ax, ay, az, t, title='', limits=[]) """ import numpy as np import matplotlib.pyplot as plt t -= np.min(t) plt.figure() plt.subplot(3, 1, 1) plt.plot(t, x) if limits: plt.ylim((limits[0], limits[1])) plt.title('x-axis ' + title) plt.ylabel(title) plt.subplot(3, 1, 2) plt.plot(t, y) if limits: plt.ylim((limits[0], limits[1])) plt.title('y-axis ' + title) plt.ylabel(title) plt.subplot(3, 1, 3) plt.plot(t, z) if limits: plt.ylim((limits[0], limits[1])) plt.title('z-axis ' + title) plt.xlabel('Time (s)') plt.ylabel(title) plt.show() def plotxyz3d(x, y, z, title=''): """ Plot accelerometer readings in 3-D. (If trouble with "projection='3d'", try: ipython --pylab) Parameters ---------- x : list or numpy array of floats y : list or numpy array of floats z : list or numpy array of floats title : string title Examples -------- >>> from mhealthx.xio import read_accel_json >>> #input_file = '/Users/arno/DriveWork/mhealthx/mpower_sample_data/accel_walking_outbound.json.items-6dc4a144-55c3-4e6d-982c-19c7a701ca243282023468470322798.tmp' >>> input_file = '/Users/arno/DriveWork/mhealthx/mpower_sample_data/deviceMotion_walking_outbound.json.items-5981e0a8-6481-41c8-b589-fa207bfd2ab38771455825726024828.tmp' >>> #input_file = '/Users/arno/DriveWork/mhealthx/mpower_sample_data/deviceMotion_walking_outbound.json.items-a2ab9333-6d63-4676-977a-08591a5d837f5221783798792869048.tmp' >>> start = 150 >>> device_motion = True >>> t, axyz, gxyz, uxyz, rxyz, sample_rate, duration = read_accel_json(input_file, start, device_motion) >>> x, y, z = axyz >>> title = 'Test vectors' >>> from mhealthx.utilities import plotxyz3d >>> plotxyz3d(x, y, z, title) """ import matplotlib.pyplot as plt fig = plt.figure() ax = fig.gca(projection='3d') #ax.plot(x, y, z) #, marker='o' ax.plot(x[1::], y[1::], z[1::], label='x, y, z') #, marker='o' ax.legend() ax.set_xlabel('x') ax.set_ylabel('y') ax.set_zlabel('z') #ax.set_xlim3d(0, 1) #ax.set_ylim3d(0, 1) #ax.set_zlim3d(0, 1) plt.xlabel('x') plt.ylabel('y') plt.zlabel('z') plt.title(title) plt.show() def plot_vectors(x, y, z, hx=[], hy=[], hz=[], title=''): """ Plot vectors in 3-D from the origin [0,0,0]. (If trouble with "projection='3d'", try: ipython --pylab) From: http://stackoverflow.com/questions/22867620/ putting-arrowheads-on-vectors-in-matplotlibs-3d-plot Parameters ---------- x : list or numpy array of floats x-axis data for vectors y : list or numpy array of floats y-axis data for vectors z : list or numpy array of floats z-axis data for vectors hx : list or numpy array of floats x-axis data for vectors to highlight hy : list or numpy array of floats y-axis data for vectors to highlight hz : list or numpy array of floats z-axis data for vectors to highlight title : string title Examples -------- >>> from mhealthx.xio import read_accel_json >>> #input_file = '/Users/arno/DriveWork/mhealthx/mpower_sample_data/accel_walking_outbound.json.items-6dc4a144-55c3-4e6d-982c-19c7a701ca243282023468470322798.tmp' >>> input_file = '/Users/arno/DriveWork/mhealthx/mpower_sample_data/deviceMotion_walking_outbound.json.items-5981e0a8-6481-41c8-b589-fa207bfd2ab38771455825726024828.tmp' >>> #input_file = '/Users/arno/DriveWork/mhealthx/mpower_sample_data/deviceMotion_walking_outbound.json.items-a2ab9333-6d63-4676-977a-08591a5d837f5221783798792869048.tmp' >>> start = 150 >>> device_motion = True >>> t, axyz, gxyz, uxyz, rxyz, sample_rate, duration = read_accel_json(input_file, start, device_motion) >>> x, y, z = axyz >>> hx, hy, hz = [[0,1],[0,1],[0,1]] >>> title = 'Test vectors' >>> from mhealthx.utilities import plot_vectors >>> plot_vectors(x, y, z, hx, hy, hz, title) """ import matplotlib.pyplot as plt from matplotlib.patches import FancyArrowPatch from mpl_toolkits.mplot3d import proj3d class Arrow3D(FancyArrowPatch): def __init__(self, xs, ys, zs, *args, **kwargs): FancyArrowPatch.__init__(self, (0,0), (0,0), *args, **kwargs) self._verts3d = xs, ys, zs def draw(self, renderer): xs3d, ys3d, zs3d = self._verts3d xs, ys, zs = proj3d.proj_transform(xs3d, ys3d, zs3d, renderer.M) self.set_positions((xs[0],ys[0]),(xs[1],ys[1])) FancyArrowPatch.draw(self, renderer) fig = plt.figure() ax = fig.gca(projection='3d') for i, x in enumerate(x): a = Arrow3D([0, x], [0, y[i]], [0, z[i]], mutation_scale=20, lw=1, arrowstyle="-|>", color="k") ax.add_artist(a) if hx: for i, hx in enumerate(hx): a = Arrow3D([0, hx], [0, hy[i]], [0, hz[i]], mutation_scale=20, lw=1, arrowstyle="-|>", color="r") ax.add_artist(a) ax.set_xlabel('x') ax.set_ylabel('y') ax.set_zlabel('z') plt.title(title) plt.draw() plt.show() def create_directory(path): import os if not os.path.exists(path): os.makedirs(path) print("Created directory: ", path)
apache-2.0
achilleas-k/brian-scripts
my_hh.py
1
2906
#import matplotlib #matplotlib.use('Agg') from brian import * from brian.library.ionic_currents import * defaultclock.dt = dt = 0.1*ms duration = 0.5*second # Neuron parameters Cm = 1*uF # /cm**2 gL = 0.1*msiemens EL = -65*mV ENa = 55*mV EK = -90*mV gNa = 35*msiemens gK = 9*msiemens threshold = EmpiricalThreshold(threshold=15*mV, refractory=2*ms) # Input parameters taue = 15*ms taui = 5*ms EExc = 0*mV EInh = -80*mV WExc = 80*nS WInh = 50*nS eqs=''' dv/dt=(-gNa*m**3*h*(v-ENa)-gK*n**4*(v-EK)-gL*(v-EL)-\ gExc*(v-EExc)-gInh*(v-EInh)+Iapp)/Cm : volt m=alpham/(alpham+betam) : 1 alpham=-0.1/mV*(v+35*mV)/(exp(-0.1/mV*(v+35*mV))-1)/ms : Hz betam=4*exp(-(v+60*mV)/(18*mV))/ms : Hz dh/dt=5*(alphah*(1-h)-betah*h) : 1 alphah=0.07*exp(-(v+58*mV)/(20*mV))/ms : Hz betah=1./(exp(-0.1/mV*(v+28*mV))+1)/ms : Hz dn/dt=5*(alphan*(1-n)-betan*n) : 1 alphan=-0.01/mV*(v+34*mV)/(exp(-0.1/mV*(v+34*mV))-1)/ms : Hz betan=0.125*exp(-(v+44*mV)/(80*mV))/ms : Hz dgExc/dt = -gExc*(1./taue) : siemens dgInh/dt = -gInh*(1./taui) : siemens Iapp : amp ''' neuron = NeuronGroup(2, eqs, threshold=threshold, method='RK') # Inputs and connections PExc_spikes = PoissonGroup(N=500, rates=8*Hz) conn = Connection(PExc_spikes, neuron[0], 'gExc', weight=WExc) PInh = PoissonInput(target=neuron[0], N=1000, rate=5*Hz, weight=WInh, state='gInh') #nsync = 200 #times = cumsum(rand(50)) #times = times/max(times)*(duration*0.95) #input_times = [(i, t) for i in range(nsync) for t in times] #inputs = SpikeGeneratorGroup(nsync, input_times) #inpConn = Connection(inputs, neuron[1], state='gExc', weight=WExc) pinput = PoissonInput(neuron[1], N=1, rate=10*Hz, weight=WExc, state='gExc', copies=200, jitter=0.001) # Init conditions neuron.v = -65*mV neuron.h = 1 # Monitors inpmon = SpikeMonitor(PExc_spikes) memmon = StateMonitor(neuron, 'v', record=True) spikemon = SpikeMonitor(neuron) excCondMon = StateMonitor(neuron, 'gExc', record=True) inhCondMon = StateMonitor(neuron, 'gInh', record=True) iappmon = StateMonitor(neuron, 'Iapp', record=True) # Run run(duration, report='text') # Plotting subplot(2,1,1) raster_plot(inpmon) title('Input spikes') subplot(2,1,2) plot(memmon.times/ms, memmon[0]/mV, color='black', label='V(t)') title('Membrane') xlabel("Time (ms)") ylabel("Membrane potential (mV)") #ax1.scatter(spikemon[0], ones(len(spikemon[0]))*25*mV, s=40, marker='*') #ax1.legend(loc='upper left') #ax2 = twinx() #ax2.plot(excCondMon.times, excCondMon[0], # linestyle='--', color='green', label='gExc') #ax2.plot(inhCondMon.times, -1*inhCondMon[0], # linestyle='--', color='red', label='gInh') #ax2.legend(loc='upper right') #print(spikemon[0]) #print('Firing rate: %f Hz' % (spikemon.nspikes/duration)) show() #plot(memmon.times, memmon[0]) #plot(memmon.times, memmon[1]) #savefig('figure.png')
apache-2.0
dingliumath/quant-econ
quantecon/tests/test_quad.py
7
16564
""" Filename: test_quad.py Authors: Spencer Lyon Date: 2014-07-02 Tests for quantecon.quad module Notes ----- Many of tests were derived from the file demqua## in the CompEcon toolbox. For all other tests, the MATLAB code is provided here in a section of comments. """ from __future__ import division import os import unittest from scipy.io import loadmat import numpy as np from numpy.testing import assert_allclose import pandas as pd from quantecon.quad import * from quantecon.tests.util import get_data_dir ### MATLAB code needed to generate data (in addition to a modified demqua03) # % set random number seed so we get the same random nums as in python # rng(42) # % 1-d parameters -- just some random numbers # a = -2.0 # b = 3.0 # n = 11 # % 3-d parameters -- just some random numbers # a_3 = [-1.0 -2.0 1.0] # b_3 = [1.0 12.0 1.5] # n_3 = [7 5 9] # mu_3d = [1.0 2.0 2.5] # sigma2_3d = [1.0 0.1 0.0; 0.1 1.0 0.0; 0.0 0.0 1.2] # % 1-d nodes and weights # [x_cheb_1 w_cheb_1] = qnwcheb(n, a, b) # [x_equiN_1 w_equiN_1] = qnwequi(n, a, b, 'N') # [x_equiW_1 w_equiW_1] = qnwequi(n, a, b, 'W') # [x_equiH_1 w_equiH_1] = qnwequi(n, a, b, 'H') # rng(41); [x_equiR_1 w_equiR_1] = qnwequi(n, a, b, 'R') # [x_lege_1 w_lege_1] = qnwlege(n, a, b) # [x_norm_1 w_norm_1] = qnwnorm(n, a, b) # [x_logn_1 w_logn_1] = qnwlogn(n, a, b) # [x_simp_1 w_simp_1] = qnwsimp(n, a, b) # [x_trap_1 w_trap_1] = qnwtrap(n, a, b) # [x_unif_1 w_unif_1] = qnwunif(n, a, b) # [x_beta_1 w_beta_1] = qnwbeta(n, b, b+1) # [x_gamm_1 w_gamm_1] = qnwgamma(n, b) # % 3-d nodes and weights # [x_cheb_3 w_cheb_3] = qnwcheb(n_3, a_3, b_3) # rng(42); [x_equiN_3 w_equiN_3] = qnwequi(n_3, a_3, b_3, 'N') # [x_equiW_3 w_equiW_3] = qnwequi(n_3, a_3, b_3, 'W') # [x_equiH_3 w_equiH_3] = qnwequi(n_3, a_3, b_3, 'H') # [x_equiR_3 w_equiR_3] = qnwequi(n_3, a_3, b_3, 'R') # [x_lege_3 w_lege_3] = qnwlege(n_3, a_3, b_3) # [x_norm_3 w_norm_3] = qnwnorm(n_3, mu_3d, sigma2_3d) # [x_logn_3 w_logn_3] = qnwlogn(n_3, mu_3d, sigma2_3d) # [x_simp_3 w_simp_3] = qnwsimp(n_3, a_3, b_3) # [x_trap_3 w_trap_3] = qnwtrap(n_3, a_3, b_3) # [x_unif_3 w_unif_3] = qnwunif(n_3, a_3, b_3) # [x_beta_3 w_beta_3] = qnwbeta(n_3, b_3, b_3+1.0) # [x_gamm_3 w_gamm_3] = qnwgamma(n_3, b_3) ### End MATLAB commands data_dir = get_data_dir() data = loadmat(os.path.join(data_dir, "matlab_quad.mat"), squeeze_me=True) # Unpack parameters from MATLAB a = data['a'] b = data['b'] n = data['n'] a_3 = data['a_3'] b_3 = data['b_3'] n_3 = data['n_3'] mu_3d = data['mu_3d'] sigma2_3d = data['sigma2_3d'] class TestQuadrect(unittest.TestCase): @classmethod def setUpClass(cls): ## Create Python Data for quadrect # Create the python data -- similar to notebook code kinds = ["trap", "simp", "lege", "N", "W", "H", "R"] # Define some functions f1 = lambda x: np.exp(-x) f2 = lambda x: 1.0 / (1.0 + 25.0 * x**2.0) f3 = lambda x: np.abs(x) ** 0.5 func_names = ["f1", "f2", "f3"] # Integration parameters n = np.array([5, 11, 21, 51, 101, 401]) # number of nodes np.random.seed(42) # same seed as ML code. a, b = -1, 1 # endpoints # Set up pandas DataFrame to hold results ind = pd.MultiIndex.from_product([func_names, n]) ind.names = ["Function", "Number of Nodes"] cols = pd.Index(kinds, name="Kind") quad_rect_res1d = pd.DataFrame(index=ind, columns=cols, dtype=float) for i, func in enumerate([f1, f2, f3]): func_name = func_names[i] for kind in kinds: for num in n: num_in = num ** 2 if len(kind) == 1 else num quad_rect_res1d.ix[func_name, num][kind] = quadrect(func, num_in, a, b, kind) cls.data1d = quad_rect_res1d # Now 2d data kinds2 = ["lege", "trap", "simp", "N", "W", "H", "R"] f1_2 = lambda x: np.exp(x[:, 0] + x[:, 1]) f2_2 = lambda x: np.exp(-x[:, 0] * np.cos(x[:, 1]**2)) # Set up pandas DataFrame to hold results a = ([0, 0], [-1, -1]) b = ([1, 2], [1, 1]) ind_2 = pd.Index(n**2, name="Num Points") cols2 = pd.Index(kinds2, name="Kind") data2 = pd.DataFrame(index=ind_2, columns=cols2, dtype=float) for num in n: for kind in kinds2[:4]: data2.ix[num**2][kind] = quadrect(f1_2, [num, num], a[0], b[0], kind) for kind in kinds2[4:]: data2.ix[num**2][kind] = quadrect(f1_2, num**2, a[0], b[0], kind) cls.data2d1 = data2 n3 = 10 ** (2 + np.array([1, 2, 3])) ind_3 = pd.Index(n3, name="Num Points") cols3 = pd.Index(kinds2[3:]) data3 = pd.DataFrame(index=ind_3, columns=cols3, dtype=float) for num in n3: for kind in kinds2[3:]: data3.ix[num][kind] = quadrect(f2_2, num, a[1], b[1], kind) cls.data2d2 = data3 ## Organize MATLAB Data ml_data = pd.DataFrame(index=ind, columns=cols, dtype=float) ml_data.iloc[:6, :] = data['int_1d'][:, :, 0] ml_data.iloc[6:12, :] = data['int_1d'][:, :, 1] ml_data.iloc[12:18, :] = data['int_1d'][:, :, 2] ml_data2 = pd.DataFrame(index=ind_2, columns=cols2, dtype=float) ml_data2.iloc[:, :] = data['int_2d1'] ml_data3 = pd.DataFrame(index=ind_3, columns=cols3, dtype=float) ml_data3.iloc[:, :] = data['int_2d2'] cls.ml_data1d = ml_data cls.ml_data2d1 = ml_data2 cls.ml_data2d2 = ml_data3 def test_quadrect_1d_lege(self): assert_allclose(self.data1d['lege'], self.ml_data1d['lege']) def test_quadrect_1d_trap(self): assert_allclose(self.data1d['trap'], self.ml_data1d['trap']) def test_quadrect_1d_simp(self): assert_allclose(self.data1d['simp'], self.ml_data1d['simp']) def test_quadrect_1d_R(self): assert_allclose(self.data1d['R'], self.ml_data1d['R']) def test_quadrect_1d_W(self): assert_allclose(self.data1d['W'], self.ml_data1d['W']) def test_quadrect_1d_N(self): assert_allclose(self.data1d['N'], self.ml_data1d['N']) def test_quadrect_1d_H(self): assert_allclose(self.data1d['H'], self.ml_data1d['H']) def test_quadrect_2d_lege(self): assert_allclose(self.data2d1['lege'], self.ml_data2d1['lege']) def test_quadrect_2d_trap(self): assert_allclose(self.data2d1['trap'], self.ml_data2d1['trap']) def test_quadrect_2d_simp(self): assert_allclose(self.data2d1['simp'], self.ml_data2d1['simp']) # NOTE: The R tests will fail in more than 1 dimension. This is a # function of MATLAB and numpy storing arrays in different # "order". See comment in TestQnwequiR.setUpClass # def test_quadrect_2d_R(self): # assert_allclose(self.data2d1['R'], self.ml_data2d1['R']) def test_quadrect_2d_W(self): assert_allclose(self.data2d1['W'], self.ml_data2d1['W']) def test_quadrect_2d_N(self): assert_allclose(self.data2d1['N'], self.ml_data2d1['N']) def test_quadrect_2d_H(self): assert_allclose(self.data2d1['H'], self.ml_data2d1['H']) def test_quadrect_2d_W2(self): assert_allclose(self.data2d2['W'], self.ml_data2d2['W']) def test_quadrect_2d_N2(self): assert_allclose(self.data2d2['N'], self.ml_data2d2['N']) def test_quadrect_2d_H2(self): assert_allclose(self.data2d2['H'], self.ml_data2d2['H']) class TestQnwcheb(unittest.TestCase): @classmethod def setUpClass(cls): cls.x_cheb_1, cls.w_cheb_1 = qnwcheb(n, a, b) cls.x_cheb_3, cls.w_cheb_3 = qnwcheb(n_3, a_3, b_3) def test_qnwcheb_nodes_1d(self): assert_allclose(self.x_cheb_1, data['x_cheb_1']) def test_qnwcheb_nodes_3d(self): assert_allclose(self.x_cheb_3, data['x_cheb_3']) def test_qnwcheb_weights_1d(self): assert_allclose(self.w_cheb_1, data['w_cheb_1']) def test_qnwcheb_weights_3d(self): assert_allclose(self.w_cheb_3, data['w_cheb_3']) class TestQnwequiN(unittest.TestCase): @classmethod def setUpClass(cls): cls.x_equiN_1, cls.w_equiN_1 = qnwequi(n, a, b, "N") cls.x_equiN_3, cls.w_equiN_3 = qnwequi(n_3, a_3, b_3, "N") def test_qnwequiN_nodes_1d(self): assert_allclose(self.x_equiN_1, data['x_equiN_1']) def test_qnwequiN_nodes_3d(self): assert_allclose(self.x_equiN_3, data['x_equiN_3']) def test_qnwequiN_weights_1d(self): assert_allclose(self.w_equiN_1, data['w_equiN_1']) def test_qnwequiN_weights_3d(self): assert_allclose(self.w_equiN_3, data['w_equiN_3']) class TestQnwequiW(unittest.TestCase): @classmethod def setUpClass(cls): cls.x_equiW_1, cls.w_equiW_1 = qnwequi(n, a, b, "W") cls.x_equiW_3, cls.w_equiW_3 = qnwequi(n_3, a_3, b_3, "W") def test_qnwequiW_nodes_1d(self): assert_allclose(self.x_equiW_1, data['x_equiW_1']) def test_qnwequiW_nodes_3d(self): assert_allclose(self.x_equiW_3, data['x_equiW_3']) def test_qnwequiW_weights_1d(self): assert_allclose(self.w_equiW_1, data['w_equiW_1']) def test_qnwequiW_weights_3d(self): assert_allclose(self.w_equiW_3, data['w_equiW_3']) class TestQnwequiH(unittest.TestCase): @classmethod def setUpClass(cls): cls.x_equiH_1, cls.w_equiH_1 = qnwequi(n, a, b, "H") cls.x_equiH_3, cls.w_equiH_3 = qnwequi(n_3, a_3, b_3, "H") def test_qnwequiH_nodes_1d(self): assert_allclose(self.x_equiH_1, data['x_equiH_1']) def test_qnwequiH_nodes_3d(self): assert_allclose(self.x_equiH_3, data['x_equiH_3']) def test_qnwequiH_weights_1d(self): assert_allclose(self.w_equiH_1, data['w_equiH_1']) def test_qnwequiH_weights_3d(self): assert_allclose(self.w_equiH_3, data['w_equiH_3']) class TestQnwequiR(unittest.TestCase): @classmethod def setUpClass(cls): np.random.seed(41) # make sure to set seed here. cls.x_equiR_1, cls.w_equiR_1 = qnwequi(n, a, b, "R") np.random.seed(42) # make sure to set seed here. temp, cls.w_equiR_3 = qnwequi(n_3, a_3, b_3, "R") # NOTE: I need to do a little magic here. MATLAB and numpy # are generating the same random numbers, but MATLAB is # column major and numpy is row major, so they are stored # in different places for multi-dimensional arrays. # The ravel, reshape code here moves the numpy nodes into # the same relative position as the MATLAB ones. Also, in # order for this to work I have to undo the shifting of # the nodes, re-organize data, then re-shift. If this # seems like voodoo to you, it kinda is. But, the fact # that the test can pass after this kind of manipulation # is a strong indicator that we are doing it correctly unshifted = (temp - a_3) / (b_3 - a_3) reshaped = np.ravel(unshifted).reshape(315, 3, order='F') reshifted = a_3 + reshaped * (b_3 - a_3) cls.x_equiR_3 = reshifted def test_qnwequiR_nodes_1d(self): assert_allclose(self.x_equiR_1, data['x_equiR_1']) def test_qnwequiR_nodes_3d(self): assert_allclose(self.x_equiR_3, data['x_equiR_3']) def test_qnwequiR_weights_1d(self): assert_allclose(self.w_equiR_1, data['w_equiR_1']) def test_qnwequiR_weights_3d(self): assert_allclose(self.w_equiR_3, data['w_equiR_3']) class TestQnwlege(unittest.TestCase): @classmethod def setUpClass(cls): cls.x_lege_1, cls.w_lege_1 = qnwlege(n, a, b) cls.x_lege_3, cls.w_lege_3 = qnwlege(n_3, a_3, b_3) def test_qnwlege_nodes_1d(self): assert_allclose(self.x_lege_1, data['x_lege_1']) def test_qnwlege_nodes_3d(self): assert_allclose(self.x_lege_3, data['x_lege_3']) def test_qnwlege_weights_1d(self): assert_allclose(self.w_lege_1, data['w_lege_1']) def test_qnwlege_weights_3d(self): assert_allclose(self.w_lege_3, data['w_lege_3']) class TestQnwnorm(unittest.TestCase): @classmethod def setUpClass(cls): cls.x_norm_1, cls.w_norm_1 = qnwnorm(n, a, b) cls.x_norm_3, cls.w_norm_3 = qnwnorm(n_3, mu_3d, sigma2_3d) def test_qnwnorm_nodes_1d(self): assert_allclose(self.x_norm_1, data['x_norm_1']) def test_qnwnorm_nodes_3d(self): assert_allclose(self.x_norm_3, data['x_norm_3']) def test_qnwnorm_weights_1d(self): assert_allclose(self.w_norm_1, data['w_norm_1']) def test_qnwnorm_weights_3d(self): assert_allclose(self.w_norm_3, data['w_norm_3']) class TestQnwlogn(unittest.TestCase): @classmethod def setUpClass(cls): cls.x_logn_1, cls.w_logn_1 = qnwlogn(n, a, b) cls.x_logn_3, cls.w_logn_3 = qnwlogn(n_3, mu_3d, sigma2_3d) def test_qnwlogn_nodes_1d(self): assert_allclose(self.x_logn_1, data['x_logn_1']) def test_qnwlogn_nodes_3d(self): assert_allclose(self.x_logn_3, data['x_logn_3']) def test_qnwlogn_weights_1d(self): assert_allclose(self.w_logn_1, data['w_logn_1']) def test_qnwlogn_weights_3d(self): assert_allclose(self.w_logn_3, data['w_logn_3']) class TestQnwsimp(unittest.TestCase): @classmethod def setUpClass(cls): cls.x_simp_1, cls.w_simp_1 = qnwsimp(n, a, b) cls.x_simp_3, cls.w_simp_3 = qnwsimp(n_3, a_3, b_3) def test_qnwsimp_nodes_1d(self): assert_allclose(self.x_simp_1, data['x_simp_1']) def test_qnwsimp_nodes_3d(self): assert_allclose(self.x_simp_3, data['x_simp_3']) def test_qnwsimp_weights_1d(self): assert_allclose(self.w_simp_1, data['w_simp_1']) def test_qnwsimp_weights_3d(self): assert_allclose(self.w_simp_3, data['w_simp_3']) class TestQnwtrap(unittest.TestCase): @classmethod def setUpClass(cls): cls.x_trap_1, cls.w_trap_1 = qnwtrap(n, a, b) cls.x_trap_3, cls.w_trap_3 = qnwtrap(n_3, a_3, b_3) def test_qnwtrap_nodes_1d(self): assert_allclose(self.x_trap_1, data['x_trap_1']) def test_qnwtrap_nodes_3d(self): assert_allclose(self.x_trap_3, data['x_trap_3']) def test_qnwtrap_weights_1d(self): assert_allclose(self.w_trap_1, data['w_trap_1']) def test_qnwtrap_weights_3d(self): assert_allclose(self.w_trap_3, data['w_trap_3']) class TestQnwunif(unittest.TestCase): @classmethod def setUpClass(cls): cls.x_unif_1, cls.w_unif_1 = qnwunif(n, a, b) cls.x_unif_3, cls.w_unif_3 = qnwunif(n_3, a_3, b_3) def test_qnwunif_nodes_1d(self): assert_allclose(self.x_unif_1, data['x_unif_1']) def test_qnwunif_nodes_3d(self): assert_allclose(self.x_unif_3, data['x_unif_3']) def test_qnwunif_weights_1d(self): assert_allclose(self.w_unif_1, data['w_unif_1']) def test_qnwunif_weights_3d(self): assert_allclose(self.w_unif_3, data['w_unif_3']) class TestQnwbeta(unittest.TestCase): @classmethod def setUpClass(cls): cls.x_beta_1, cls.w_beta_1 = qnwbeta(n, b, b + 1.0) cls.x_beta_3, cls.w_beta_3 = qnwbeta(n_3, b_3, b_3 + 1.0) def test_qnwbeta_nodes_1d(self): assert_allclose(self.x_beta_1, data['x_beta_1']) def test_qnwbeta_nodes_3d(self): assert_allclose(self.x_beta_3, data['x_beta_3']) def test_qnwbeta_weights_1d(self): assert_allclose(self.w_beta_1, data['w_beta_1']) def test_qnwbeta_weights_3d(self): assert_allclose(self.w_beta_3, data['w_beta_3']) class TestQnwgamm(unittest.TestCase): @classmethod def setUpClass(cls): cls.x_gamm_1, cls.w_gamm_1 = qnwgamma(n, b) cls.x_gamm_3, cls.w_gamm_3 = qnwgamma(n_3, b_3) def test_qnwgamm_nodes_1d(self): assert_allclose(self.x_gamm_1, data['x_gamm_1']) def test_qnwgamm_nodes_3d(self): assert_allclose(self.x_gamm_3, data['x_gamm_3']) def test_qnwgamm_weights_1d(self): assert_allclose(self.w_gamm_1, data['w_gamm_1']) def test_qnwgamm_weights_3d(self): assert_allclose(self.w_gamm_3, data['w_gamm_3'])
bsd-3-clause
liuzz1983/open_vision
tools/validate_on_lfw.py
1
5761
"""Validate a face recognizer on the "Labeled Faces in the Wild" dataset (http://vis-www.cs.umass.edu/lfw/). Embeddings are calculated using the pairs from http://vis-www.cs.umass.edu/lfw/pairs.txt and the ROC curve is calculated and plotted. Both the model metagraph and the model parameters need to exist in the same directory, and the metagraph should have the extension '.meta'. """ # MIT License # # Copyright (c) 2016 David Sandberg # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import sys import math import argparse import tensorflow as tf import numpy as np from sklearn import metrics from scipy.optimize import brentq from scipy import interpolate from openvision.datasets import lfw from openvision.utils import tf_util from openvision.facenet import evaluate from openvision.facenet import facenet def main(args): with tf.Graph().as_default(): with tf.Session() as sess: # Read the file containing the pairs used for testing #pairs = lfw.read_pairs(os.path.expanduser(args.lfw_pairs)) pairs = lfw.gen_pairs(args.lfw_dir, pair_num=args.lfw_pair_num) print(pairs) # Get the paths for the corresponding images paths, actual_issame = lfw.get_paths(os.path.expanduser(args.lfw_dir), pairs, args.lfw_file_ext) # Load the model print('Model directory: %s' % args.model_dir) tf_util.load_model(sess, args.model_dir) # Get input and output tensors images_placeholder = tf.get_default_graph().get_tensor_by_name("input:0") embeddings = tf.get_default_graph().get_tensor_by_name("embeddings:0") phase_train_placeholder = tf.get_default_graph().get_tensor_by_name("phase_train:0") image_size = images_placeholder.get_shape()[1] embedding_size = embeddings.get_shape()[1] # Run forward pass to calculate embeddings print('Runnning forward pass on LFW images') batch_size = args.lfw_batch_size nrof_images = len(paths) nrof_batches = int(math.ceil(1.0*nrof_images / batch_size)) emb_array = np.zeros((nrof_images, embedding_size)) for i in range(nrof_batches): start_index = i*batch_size end_index = min((i+1)*batch_size, nrof_images) paths_batch = paths[start_index:end_index] images = facenet.load_data(paths_batch, False, False, image_size) feed_dict = { images_placeholder:images, phase_train_placeholder:False } emb_array[start_index:end_index,:] = sess.run(embeddings, feed_dict=feed_dict) print("begin to evaluate:", len(emb_array), " is_same:", len(actual_issame)) tpr, fpr, accuracy, val, val_std, far = evaluate.evaluate(emb_array, actual_issame, nrof_folds=args.lfw_nrof_folds) print('Accuracy: %1.3f+-%1.3f' % (np.mean(accuracy), np.std(accuracy))) print('Validation rate: %2.5f+-%2.5f @ FAR=%2.5f' % (val, val_std, far)) auc = metrics.auc(fpr, tpr) print('Area Under Curve (AUC): %1.3f' % auc) eer = brentq(lambda x: 1. - x - interpolate.interp1d(fpr, tpr)(x), 0., 1.) print('Equal Error Rate (EER): %1.3f' % eer) def parse_arguments(argv): parser = argparse.ArgumentParser() parser.add_argument('lfw_dir', type=str, help='Path to the data directory containing aligned LFW face patches.') parser.add_argument('--lfw_batch_size', type=int, help='Number of images to process in a batch in the LFW test set.', default=100) parser.add_argument('model_dir', type=str, help='Directory containing the metagraph (.meta) file and the checkpoint (ckpt) file containing model parameters') parser.add_argument('--lfw_pair', type=str, help='The file containing the pairs to use for validation.', default='data/pairs.txt') parser.add_argument('--lfw_pair_num', type=int, help='The file containing the pairs to use for validation.', default=200) parser.add_argument('--lfw_file_ext', type=str, help='The file extension for the LFW dataset.', default='jpg', choices=['jpg', 'png']) parser.add_argument('--lfw_nrof_folds', type=int, help='Number of folds to use for cross validation. Mainly used for testing.', default=10) return parser.parse_args(argv) if __name__ == '__main__': args = parse_arguments(sys.argv[1:]) main(args)
mit
MechCoder/scikit-learn
examples/covariance/plot_outlier_detection.py
36
5023
""" ========================================== Outlier detection with several methods. ========================================== When the amount of contamination is known, this example illustrates three different ways of performing :ref:`outlier_detection`: - based on a robust estimator of covariance, which is assuming that the data are Gaussian distributed and performs better than the One-Class SVM in that case. - using the One-Class SVM and its ability to capture the shape of the data set, hence performing better when the data is strongly non-Gaussian, i.e. with two well-separated clusters; - using the Isolation Forest algorithm, which is based on random forests and hence more adapted to large-dimensional settings, even if it performs quite well in the examples below. - using the Local Outlier Factor to measure the local deviation of a given data point with respect to its neighbors by comparing their local density. The ground truth about inliers and outliers is given by the points colors while the orange-filled area indicates which points are reported as inliers by each method. Here, we assume that we know the fraction of outliers in the datasets. Thus rather than using the 'predict' method of the objects, we set the threshold on the decision_function to separate out the corresponding fraction. """ import numpy as np from scipy import stats import matplotlib.pyplot as plt import matplotlib.font_manager from sklearn import svm from sklearn.covariance import EllipticEnvelope from sklearn.ensemble import IsolationForest from sklearn.neighbors import LocalOutlierFactor print(__doc__) rng = np.random.RandomState(42) # Example settings n_samples = 200 outliers_fraction = 0.25 clusters_separation = [0, 1, 2] # define two outlier detection tools to be compared classifiers = { "One-Class SVM": svm.OneClassSVM(nu=0.95 * outliers_fraction + 0.05, kernel="rbf", gamma=0.1), "Robust covariance": EllipticEnvelope(contamination=outliers_fraction), "Isolation Forest": IsolationForest(max_samples=n_samples, contamination=outliers_fraction, random_state=rng), "Local Outlier Factor": LocalOutlierFactor( n_neighbors=35, contamination=outliers_fraction)} # Compare given classifiers under given settings xx, yy = np.meshgrid(np.linspace(-7, 7, 100), np.linspace(-7, 7, 100)) n_inliers = int((1. - outliers_fraction) * n_samples) n_outliers = int(outliers_fraction * n_samples) ground_truth = np.ones(n_samples, dtype=int) ground_truth[-n_outliers:] = -1 # Fit the problem with varying cluster separation for i, offset in enumerate(clusters_separation): np.random.seed(42) # Data generation X1 = 0.3 * np.random.randn(n_inliers // 2, 2) - offset X2 = 0.3 * np.random.randn(n_inliers // 2, 2) + offset X = np.r_[X1, X2] # Add outliers X = np.r_[X, np.random.uniform(low=-6, high=6, size=(n_outliers, 2))] # Fit the model plt.figure(figsize=(9, 7)) for i, (clf_name, clf) in enumerate(classifiers.items()): # fit the data and tag outliers if clf_name == "Local Outlier Factor": y_pred = clf.fit_predict(X) scores_pred = clf.negative_outlier_factor_ else: clf.fit(X) scores_pred = clf.decision_function(X) y_pred = clf.predict(X) threshold = stats.scoreatpercentile(scores_pred, 100 * outliers_fraction) n_errors = (y_pred != ground_truth).sum() # plot the levels lines and the points if clf_name == "Local Outlier Factor": # decision_function is private for LOF Z = clf._decision_function(np.c_[xx.ravel(), yy.ravel()]) else: Z = clf.decision_function(np.c_[xx.ravel(), yy.ravel()]) Z = Z.reshape(xx.shape) subplot = plt.subplot(2, 2, i + 1) subplot.contourf(xx, yy, Z, levels=np.linspace(Z.min(), threshold, 7), cmap=plt.cm.Blues_r) a = subplot.contour(xx, yy, Z, levels=[threshold], linewidths=2, colors='red') subplot.contourf(xx, yy, Z, levels=[threshold, Z.max()], colors='orange') b = subplot.scatter(X[:-n_outliers, 0], X[:-n_outliers, 1], c='white') c = subplot.scatter(X[-n_outliers:, 0], X[-n_outliers:, 1], c='black') subplot.axis('tight') subplot.legend( [a.collections[0], b, c], ['learned decision function', 'true inliers', 'true outliers'], prop=matplotlib.font_manager.FontProperties(size=10), loc='lower right') subplot.set_xlabel("%d. %s (errors: %d)" % (i + 1, clf_name, n_errors)) subplot.set_xlim((-7, 7)) subplot.set_ylim((-7, 7)) plt.subplots_adjust(0.04, 0.1, 0.96, 0.94, 0.1, 0.26) plt.suptitle("Outlier detection") plt.show()
bsd-3-clause
ehudmagal/robotqcapp
Utils/RobotQAUtils/graphics/multipleYsTest.py
2
4245
import matplotlib.pyplot as plt import sys import os lib_path = os.path.abspath(r'E:\Tamuz\Utils\RobotQAUtils') sys.path.append(lib_path) from Utils.RobotQAUtils.plateReader import * from Utils.RobotQAUtils.classes import * width = 0.35 def make_patch_spines_invisible(ax): ax.set_frame_on(True) ax.patch.set_visible(False) for sp in ax.spines.itervalues(): sp.set_visible(False) def printMultipleYs(ds = None): fig = plt.figure() fig.subplots_adjust(right=0.75) host = fig.add_subplot(111) par1 = host.twinx() par2 = host.twinx() par3 = host.twinx() par4 = host.twinx() par5 = host.twinx() par6 = host.twinx() par7 = host.twinx() # Offset the right spine of par2. The ticks and label have already been # placed on the right by twinx above. par1.spines["right"].set_position(("axes", float(1.0/7.0))) par2.spines["right"].set_position(("axes",float(2.0/7.0))) par3.spines["right"].set_position(("axes", float(3.0/7.0))) par4.spines["right"].set_position(("axes", float(4.0/7.0))) par5.spines["right"].set_position(("axes", float(5.0/7.0))) par6.spines["right"].set_position(("axes", float(6.0/7.0))) par7.spines["right"].set_position(("axes", float(7.0/7.0))) # Having been created by twinx, par2 has its frame off, so the line of its # detached spine is invisible. First, activate the frame but make the patch # and spines invisible. make_patch_spines_invisible(par1) make_patch_spines_invisible(par2) make_patch_spines_invisible(par3) make_patch_spines_invisible(par4) make_patch_spines_invisible(par5) make_patch_spines_invisible(par6) make_patch_spines_invisible(par7) # Second, show the right spine. par1.spines["right"].set_visible(True) par2.spines["right"].set_visible(True) par3.spines["right"].set_visible(True) par4.spines["right"].set_visible(True) par5.spines["right"].set_visible(True) par6.spines["right"].set_visible(True) par7.spines["right"].set_visible(True) for idx,d in enumerate(ds): manualDeviationPercent,robotdeviationPercents= d.getManualAndRobotDeviationPercent() manualDeviationPercent*=10#enlarging the scale of the robot manualMean = d.getManualMean()*100 robotMean = d.getRobotMean()*100 manualUniqueWellsPercent = d.getUniqueWellsCompareToOutsideMeanPercent(outsideMean = d.getManualMean(),rob=False) robotUniqueWellsPercent = d.getUniqueWellsCompareToOutsideMeanPercent(outsideMean = d.getRobotMean(),rob=True) if not idx%7: color = 'r-' elif not idx%6: color = 'b-' elif not idx%5: color ='g-' elif not idx%4: color = 'y-' elif not idx%3: color = 'y-' elif not idx%2: color = 'b-' else: color = 'g-' host.plot([0, 1, 2,3,4,5,6,7], [idx,d.getManualColorVolume(), manualDeviationPercent, robotdeviationPercents,manualMean,robotMean,manualUniqueWellsPercent,robotUniqueWellsPercent],color) host.set_xlim(0, 7) host.set_ylim(0, 100) par1.set_ylim(0, 100) par2.set_ylim([0, 10]) par3.set_ylim(0, 100) par4.set_ylim([0, 1]) par5.set_ylim([0,1]) par6.set_ylim([0, 1]) par7.set_ylim(0, 100) host.set_xlabel("a 4 axis graph") host.set_ylabel("expiriment index") par1.set_ylabel("volume") par2.set_ylabel("manual deviation percent") par3.set_ylabel("robot deviation percent") par4.set_ylabel("manual mean") par5.set_ylabel("robot mean") par6.set_ylabel("manual unique wells percent") par7.set_ylabel("robot unique wells percent") # host.yaxis.label.set_color(p1.get_color()) #par1.yaxis.label.set_color(p2.get_color()) #par2.yaxis.label.set_color(p3.get_color()) tkw = dict(size=5, width=1.5) host.tick_params(axis='y', **tkw) par1.tick_params(axis='y', **tkw) par2.tick_params(axis='y', **tkw) par3.tick_params(axis='y', **tkw) host.tick_params(axis='x', **tkw) #lines = [p1, p2, p3] #host.legend(lines, [l.get_label() for l in lines]) plt.show()
bsd-3-clause
carrillo/scikit-learn
examples/calibration/plot_calibration_curve.py
225
5903
""" ============================== Probability Calibration curves ============================== When performing classification one often wants to predict not only the class label, but also the associated probability. This probability gives some kind of confidence on the prediction. This example demonstrates how to display how well calibrated the predicted probabilities are and how to calibrate an uncalibrated classifier. The experiment is performed on an artificial dataset for binary classification with 100.000 samples (1.000 of them are used for model fitting) with 20 features. Of the 20 features, only 2 are informative and 10 are redundant. The first figure shows the estimated probabilities obtained with logistic regression, Gaussian naive Bayes, and Gaussian naive Bayes with both isotonic calibration and sigmoid calibration. The calibration performance is evaluated with Brier score, reported in the legend (the smaller the better). One can observe here that logistic regression is well calibrated while raw Gaussian naive Bayes performs very badly. This is because of the redundant features which violate the assumption of feature-independence and result in an overly confident classifier, which is indicated by the typical transposed-sigmoid curve. Calibration of the probabilities of Gaussian naive Bayes with isotonic regression can fix this issue as can be seen from the nearly diagonal calibration curve. Sigmoid calibration also improves the brier score slightly, albeit not as strongly as the non-parametric isotonic regression. This can be attributed to the fact that we have plenty of calibration data such that the greater flexibility of the non-parametric model can be exploited. The second figure shows the calibration curve of a linear support-vector classifier (LinearSVC). LinearSVC shows the opposite behavior as Gaussian naive Bayes: the calibration curve has a sigmoid curve, which is typical for an under-confident classifier. In the case of LinearSVC, this is caused by the margin property of the hinge loss, which lets the model focus on hard samples that are close to the decision boundary (the support vectors). Both kinds of calibration can fix this issue and yield nearly identical results. This shows that sigmoid calibration can deal with situations where the calibration curve of the base classifier is sigmoid (e.g., for LinearSVC) but not where it is transposed-sigmoid (e.g., Gaussian naive Bayes). """ print(__doc__) # Author: Alexandre Gramfort <[email protected]> # Jan Hendrik Metzen <[email protected]> # License: BSD Style. import matplotlib.pyplot as plt from sklearn import datasets from sklearn.naive_bayes import GaussianNB from sklearn.svm import LinearSVC from sklearn.linear_model import LogisticRegression from sklearn.metrics import (brier_score_loss, precision_score, recall_score, f1_score) from sklearn.calibration import CalibratedClassifierCV, calibration_curve from sklearn.cross_validation import train_test_split # Create dataset of classification task with many redundant and few # informative features X, y = datasets.make_classification(n_samples=100000, n_features=20, n_informative=2, n_redundant=10, random_state=42) X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.99, random_state=42) def plot_calibration_curve(est, name, fig_index): """Plot calibration curve for est w/o and with calibration. """ # Calibrated with isotonic calibration isotonic = CalibratedClassifierCV(est, cv=2, method='isotonic') # Calibrated with sigmoid calibration sigmoid = CalibratedClassifierCV(est, cv=2, method='sigmoid') # Logistic regression with no calibration as baseline lr = LogisticRegression(C=1., solver='lbfgs') fig = plt.figure(fig_index, figsize=(10, 10)) ax1 = plt.subplot2grid((3, 1), (0, 0), rowspan=2) ax2 = plt.subplot2grid((3, 1), (2, 0)) ax1.plot([0, 1], [0, 1], "k:", label="Perfectly calibrated") for clf, name in [(lr, 'Logistic'), (est, name), (isotonic, name + ' + Isotonic'), (sigmoid, name + ' + Sigmoid')]: clf.fit(X_train, y_train) y_pred = clf.predict(X_test) if hasattr(clf, "predict_proba"): prob_pos = clf.predict_proba(X_test)[:, 1] else: # use decision function prob_pos = clf.decision_function(X_test) prob_pos = \ (prob_pos - prob_pos.min()) / (prob_pos.max() - prob_pos.min()) clf_score = brier_score_loss(y_test, prob_pos, pos_label=y.max()) print("%s:" % name) print("\tBrier: %1.3f" % (clf_score)) print("\tPrecision: %1.3f" % precision_score(y_test, y_pred)) print("\tRecall: %1.3f" % recall_score(y_test, y_pred)) print("\tF1: %1.3f\n" % f1_score(y_test, y_pred)) fraction_of_positives, mean_predicted_value = \ calibration_curve(y_test, prob_pos, n_bins=10) ax1.plot(mean_predicted_value, fraction_of_positives, "s-", label="%s (%1.3f)" % (name, clf_score)) ax2.hist(prob_pos, range=(0, 1), bins=10, label=name, histtype="step", lw=2) ax1.set_ylabel("Fraction of positives") ax1.set_ylim([-0.05, 1.05]) ax1.legend(loc="lower right") ax1.set_title('Calibration plots (reliability curve)') ax2.set_xlabel("Mean predicted value") ax2.set_ylabel("Count") ax2.legend(loc="upper center", ncol=2) plt.tight_layout() # Plot calibration cuve for Gaussian Naive Bayes plot_calibration_curve(GaussianNB(), "Naive Bayes", 1) # Plot calibration cuve for Linear SVC plot_calibration_curve(LinearSVC(), "SVC", 2) plt.show()
bsd-3-clause
tmhm/scikit-learn
sklearn/datasets/mldata.py
309
7838
"""Automatically download MLdata datasets.""" # Copyright (c) 2011 Pietro Berkes # License: BSD 3 clause import os from os.path import join, exists import re import numbers try: # Python 2 from urllib2 import HTTPError from urllib2 import quote from urllib2 import urlopen except ImportError: # Python 3+ from urllib.error import HTTPError from urllib.parse import quote from urllib.request import urlopen import numpy as np import scipy as sp from scipy import io from shutil import copyfileobj from .base import get_data_home, Bunch MLDATA_BASE_URL = "http://mldata.org/repository/data/download/matlab/%s" def mldata_filename(dataname): """Convert a raw name for a data set in a mldata.org filename.""" dataname = dataname.lower().replace(' ', '-') return re.sub(r'[().]', '', dataname) def fetch_mldata(dataname, target_name='label', data_name='data', transpose_data=True, data_home=None): """Fetch an mldata.org data set If the file does not exist yet, it is downloaded from mldata.org . mldata.org does not have an enforced convention for storing data or naming the columns in a data set. The default behavior of this function works well with the most common cases: 1) data values are stored in the column 'data', and target values in the column 'label' 2) alternatively, the first column stores target values, and the second data values 3) the data array is stored as `n_features x n_samples` , and thus needs to be transposed to match the `sklearn` standard Keyword arguments allow to adapt these defaults to specific data sets (see parameters `target_name`, `data_name`, `transpose_data`, and the examples below). mldata.org data sets may have multiple columns, which are stored in the Bunch object with their original name. Parameters ---------- dataname: Name of the data set on mldata.org, e.g.: "leukemia", "Whistler Daily Snowfall", etc. The raw name is automatically converted to a mldata.org URL . target_name: optional, default: 'label' Name or index of the column containing the target values. data_name: optional, default: 'data' Name or index of the column containing the data. transpose_data: optional, default: True If True, transpose the downloaded data array. data_home: optional, default: None Specify another download and cache folder for the data sets. By default all scikit learn data is stored in '~/scikit_learn_data' subfolders. Returns ------- data : Bunch Dictionary-like object, the interesting attributes are: 'data', the data to learn, 'target', the classification labels, 'DESCR', the full description of the dataset, and 'COL_NAMES', the original names of the dataset columns. Examples -------- Load the 'iris' dataset from mldata.org: >>> from sklearn.datasets.mldata import fetch_mldata >>> import tempfile >>> test_data_home = tempfile.mkdtemp() >>> iris = fetch_mldata('iris', data_home=test_data_home) >>> iris.target.shape (150,) >>> iris.data.shape (150, 4) Load the 'leukemia' dataset from mldata.org, which needs to be transposed to respects the sklearn axes convention: >>> leuk = fetch_mldata('leukemia', transpose_data=True, ... data_home=test_data_home) >>> leuk.data.shape (72, 7129) Load an alternative 'iris' dataset, which has different names for the columns: >>> iris2 = fetch_mldata('datasets-UCI iris', target_name=1, ... data_name=0, data_home=test_data_home) >>> iris3 = fetch_mldata('datasets-UCI iris', ... target_name='class', data_name='double0', ... data_home=test_data_home) >>> import shutil >>> shutil.rmtree(test_data_home) """ # normalize dataset name dataname = mldata_filename(dataname) # check if this data set has been already downloaded data_home = get_data_home(data_home=data_home) data_home = join(data_home, 'mldata') if not exists(data_home): os.makedirs(data_home) matlab_name = dataname + '.mat' filename = join(data_home, matlab_name) # if the file does not exist, download it if not exists(filename): urlname = MLDATA_BASE_URL % quote(dataname) try: mldata_url = urlopen(urlname) except HTTPError as e: if e.code == 404: e.msg = "Dataset '%s' not found on mldata.org." % dataname raise # store Matlab file try: with open(filename, 'w+b') as matlab_file: copyfileobj(mldata_url, matlab_file) except: os.remove(filename) raise mldata_url.close() # load dataset matlab file with open(filename, 'rb') as matlab_file: matlab_dict = io.loadmat(matlab_file, struct_as_record=True) # -- extract data from matlab_dict # flatten column names col_names = [str(descr[0]) for descr in matlab_dict['mldata_descr_ordering'][0]] # if target or data names are indices, transform then into names if isinstance(target_name, numbers.Integral): target_name = col_names[target_name] if isinstance(data_name, numbers.Integral): data_name = col_names[data_name] # rules for making sense of the mldata.org data format # (earlier ones have priority): # 1) there is only one array => it is "data" # 2) there are multiple arrays # a) copy all columns in the bunch, using their column name # b) if there is a column called `target_name`, set "target" to it, # otherwise set "target" to first column # c) if there is a column called `data_name`, set "data" to it, # otherwise set "data" to second column dataset = {'DESCR': 'mldata.org dataset: %s' % dataname, 'COL_NAMES': col_names} # 1) there is only one array => it is considered data if len(col_names) == 1: data_name = col_names[0] dataset['data'] = matlab_dict[data_name] # 2) there are multiple arrays else: for name in col_names: dataset[name] = matlab_dict[name] if target_name in col_names: del dataset[target_name] dataset['target'] = matlab_dict[target_name] else: del dataset[col_names[0]] dataset['target'] = matlab_dict[col_names[0]] if data_name in col_names: del dataset[data_name] dataset['data'] = matlab_dict[data_name] else: del dataset[col_names[1]] dataset['data'] = matlab_dict[col_names[1]] # set axes to sklearn conventions if transpose_data: dataset['data'] = dataset['data'].T if 'target' in dataset: if not sp.sparse.issparse(dataset['target']): dataset['target'] = dataset['target'].squeeze() return Bunch(**dataset) # The following is used by nosetests to setup the docstring tests fixture def setup_module(module): # setup mock urllib2 module to avoid downloading from mldata.org from sklearn.utils.testing import install_mldata_mock install_mldata_mock({ 'iris': { 'data': np.empty((150, 4)), 'label': np.empty(150), }, 'datasets-uci-iris': { 'double0': np.empty((150, 4)), 'class': np.empty((150,)), }, 'leukemia': { 'data': np.empty((72, 7129)), }, }) def teardown_module(module): from sklearn.utils.testing import uninstall_mldata_mock uninstall_mldata_mock()
bsd-3-clause
OceansAus/cosima-cookbook
cosima_cookbook/plots/overturning.py
1
2545
import cosima_cookbook as cc import matplotlib.pyplot as plt import numpy as np from tqdm import tqdm_notebook import IPython.display def psi_avg(expts, n=10, clev=np.arange(-20,20,2)): if not isinstance(expts, list): expts = [expts] # computing results = [] for expt in tqdm_notebook(expts, leave=False, desc='experiments'): psi_avg = cc.diagnostics.psi_avg(expt, n) result = {'psi_avg': psi_avg, 'expt': expt} results.append(result) IPython.display.clear_output() # plotting for result in results: psi_avg = result['psi_avg'] expt = result['expt'] plt.figure(figsize=(10, 5)) plt.contourf(psi_avg.grid_yu_ocean, psi_avg.potrho, psi_avg, cmap=plt.cm.PiYG,levels=clev,extend='both') cb=plt.colorbar(orientation='vertical', shrink = 0.7) cb.ax.set_xlabel('Sv') plt.contour(psi_avg.grid_yu_ocean, psi_avg.potrho, psi_avg, levels=clev, colors='k', linewidths=0.25) plt.contour(psi_avg.grid_yu_ocean, psi_avg.potrho, psi_avg, levels=[0.0,], colors='k', linewidths=0.5) plt.gca().invert_yaxis() plt.ylim((1037.5,1034)) plt.ylabel('Potential Density (kg m$^{-3}$)') plt.xlabel('Latitude ($^\circ$N)') plt.xlim([-75,85]) plt.title('Overturning in %s' % expt) def zonal_mean(expts,variable,n=10,resolution=1): if not isinstance(expts, list): expts = [expts] # computing results = [] for expt in tqdm_notebook(expts, leave=False, desc='experiments'): zonal_mean, zonal_diff = cc.diagnostics.zonal_mean(expt,variable,n,resolution) result = {'zonal_mean': zonal_mean, 'zonal_diff': zonal_diff, 'expt': expt} results.append(result) IPython.display.clear_output() # plotting for result in results: zonal_mean = result['zonal_mean'] zonal_diff = result['zonal_diff'] expt = result['expt'] plt.figure(figsize=(12,5)) plt.subplot(121) zonal_mean.plot() plt.title(expt) plt.gca().invert_yaxis() plt.title('{}: Zonal Mean {}'.format(expt, variable)) plt.subplot(122) zonal_diff.plot() plt.title(expt) plt.gca().invert_yaxis() plt.title('{}: Zonal Mean {} Change'.format(expt, variable))
apache-2.0
phdowling/scikit-learn
examples/svm/plot_custom_kernel.py
171
1546
""" ====================== SVM with custom kernel ====================== Simple usage of Support Vector Machines to classify a sample. It will plot the decision surface and the support vectors. """ print(__doc__) import numpy as np import matplotlib.pyplot as plt from sklearn import svm, datasets # import some data to play with iris = datasets.load_iris() X = iris.data[:, :2] # we only take the first two features. We could # avoid this ugly slicing by using a two-dim dataset Y = iris.target def my_kernel(X, Y): """ We create a custom kernel: (2 0) k(X, Y) = X ( ) Y.T (0 1) """ M = np.array([[2, 0], [0, 1.0]]) return np.dot(np.dot(X, M), Y.T) h = .02 # step size in the mesh # we create an instance of SVM and fit out data. clf = svm.SVC(kernel=my_kernel) clf.fit(X, Y) # Plot the decision boundary. For that, we will assign a color to each # point in the mesh [x_min, m_max]x[y_min, y_max]. x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1 y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1 xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h)) Z = clf.predict(np.c_[xx.ravel(), yy.ravel()]) # Put the result into a color plot Z = Z.reshape(xx.shape) plt.pcolormesh(xx, yy, Z, cmap=plt.cm.Paired) # Plot also the training points plt.scatter(X[:, 0], X[:, 1], c=Y, cmap=plt.cm.Paired) plt.title('3-Class classification using Support Vector Machine with custom' ' kernel') plt.axis('tight') plt.show()
bsd-3-clause
MartinSavc/scikit-learn
examples/linear_model/plot_sgd_penalties.py
249
1563
""" ============== SGD: Penalties ============== Plot the contours of the three penalties. All of the above are supported by :class:`sklearn.linear_model.stochastic_gradient`. """ from __future__ import division print(__doc__) import numpy as np import matplotlib.pyplot as plt def l1(xs): return np.array([np.sqrt((1 - np.sqrt(x ** 2.0)) ** 2.0) for x in xs]) def l2(xs): return np.array([np.sqrt(1.0 - x ** 2.0) for x in xs]) def el(xs, z): return np.array([(2 - 2 * x - 2 * z + 4 * x * z - (4 * z ** 2 - 8 * x * z ** 2 + 8 * x ** 2 * z ** 2 - 16 * x ** 2 * z ** 3 + 8 * x * z ** 3 + 4 * x ** 2 * z ** 4) ** (1. / 2) - 2 * x * z ** 2) / (2 - 4 * z) for x in xs]) def cross(ext): plt.plot([-ext, ext], [0, 0], "k-") plt.plot([0, 0], [-ext, ext], "k-") xs = np.linspace(0, 1, 100) alpha = 0.501 # 0.5 division throuh zero cross(1.2) plt.plot(xs, l1(xs), "r-", label="L1") plt.plot(xs, -1.0 * l1(xs), "r-") plt.plot(-1 * xs, l1(xs), "r-") plt.plot(-1 * xs, -1.0 * l1(xs), "r-") plt.plot(xs, l2(xs), "b-", label="L2") plt.plot(xs, -1.0 * l2(xs), "b-") plt.plot(-1 * xs, l2(xs), "b-") plt.plot(-1 * xs, -1.0 * l2(xs), "b-") plt.plot(xs, el(xs, alpha), "y-", label="Elastic Net") plt.plot(xs, -1.0 * el(xs, alpha), "y-") plt.plot(-1 * xs, el(xs, alpha), "y-") plt.plot(-1 * xs, -1.0 * el(xs, alpha), "y-") plt.xlabel(r"$w_0$") plt.ylabel(r"$w_1$") plt.legend() plt.axis("equal") plt.show()
bsd-3-clause
jenfly/atmos-tools
testing/testing-data-gradient.py
1
2370
import sys sys.path.append('/home/jwalker/dynamics/python/atmos-tools') sys.path.append('/home/jwalker/dynamics/python/atmos-read') import xray import numpy as np from datetime import datetime import matplotlib.pyplot as plt import pandas as pd import atmos as atm import precipdat import merra # ---------------------------------------------------------------------- datadir = atm.homedir() + 'datastore/merra/daily/' year = 2014 subset = '_40E-120E_90S-90N' def get_var(datadir, varnm, subset, year): filenm = '%smerra_%s%s_%d.nc' % (datadir, varnm, subset, year) with xray.open_dataset(filenm) as ds: var = ds[varnm].load() return var uq_int = get_var(datadir, 'UFLXQV', subset, year) vq_int = get_var(datadir, 'VFLXQV', subset, year) mfc = atm.moisture_flux_conv(uq_int, vq_int, already_int=True) mfcbar = mfc.mean(dim='YDim').mean(dim='XDim') # Test atm.gradient a = atm.constants.radius_earth.values latdim, londim = 1, 2 lat = atm.get_coord(uq_int, 'lat') latrad = np.radians(lat) latrad[abs(lat) > 89] = np.nan coslat = xray.DataArray(np.cos(latrad), coords={'YDim' : lat}) lon = atm.get_coord(uq_int, 'lon') lonrad = np.radians(lon) mfc_x = atm.gradient(uq_int, lonrad, londim) / (a*coslat) mfc_y = atm.gradient(vq_int * coslat, latrad, latdim) / (a*coslat) mfc_test = mfc_x + mfc_y mfc_test = - atm.precip_convert(mfc_test, 'kg/m2/s', 'mm/day') mfc_test_bar = mfc_test.mean(dim='YDim').mean(dim='XDim') diff = mfc_test - mfc print(diff.max()) print(diff.min()) plt.plot(mfcbar) plt.plot(mfc_test_bar) print(mfc_test_bar - mfcbar) # ---------------------------------------------------------------------- # Vertical gradient du/dp lon1, lon2 = 40, 120 pmin, pmax = 100, 300 subset_dict = {'XDim' : (lon1, lon2), 'Height' : (pmin, pmax)} urls = merra.merra_urls([year]) month, day = 7, 15 url = urls['%d%02d%02d' % (year, month, day)] with xray.open_dataset(url) as ds: u = atm.subset(ds['U'], subset_dict, copy=False) u = u.mean(dim='TIME') pres = u['Height'] pres = atm.pres_convert(pres, pres.attrs['units'], 'Pa') dp = np.gradient(pres) # Calc 1 dims = u.shape dudp = np.nan * u for i in range(dims[1]): for j in range(dims[2]): dudp.values[:, i, j] = np.gradient(u[:, i, j], dp) # Test atm.gradient dudp_test = atm.gradient(u, pres, axis=0) diff = dudp_test - dudp print(diff.max()) print(diff.min())
mit
widdowquinn/pyani
tests/test_dependencies.py
1
2627
#!/usr/bin/env python # -*- coding: utf-8 -*- # (c) The James Hutton Institute 2016-2019 # (c) University of Strathclyde 2019-2020 # Author: Leighton Pritchard # # Contact: # [email protected] # # Leighton Pritchard, # Strathclyde Institute for Pharmacy and Biomedical Sciences, # 161 Cathedral Street, # Glasgow, # G4 0RE # Scotland, # UK # # The MIT License # # Copyright (c) 2016-2019 The James Hutton Institute # Copyright (c) 2019-2020 University of Strathclyde # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. """Test for availability of pyani dependencies. We only test for dependencies from non-standard libraries. These tests are intended to be run from the repository root using: pytest -v """ import subprocess import sys import unittest import pytest from pyani import pyani_config def test_import_biopython(): """Test Biopython import.""" import Bio def test_import_matplotlib(): """Test matplotlib import.""" import matplotlib def test_import_numpy(): """Test numpy import.""" import numpy def test_import_pandas(): """Test pandas import.""" import pandas def test_import_scipy(): """Test scipy import.""" import scipy def test_blastn_available(blastn_available): """Test that BLAST+ is available.""" assert blastn_available @pytest.mark.xfail(reason="Optional third-party executable (blastall)") def test_run_blastall(blastall_available): """Test that blastall is available.""" assert blastall_available def test_run_nucmer(nucmer_available): """Test that nucmer is available.""" assert nucmer_available
mit
poojavade/Genomics_Docker
Dockerfiles/gedlab-khmer-filter-abund/pymodules/python2.7/lib/python/scipy/spatial/_plotutils.py
11
4843
from __future__ import division, print_function, absolute_import import numpy as np from scipy._lib.decorator import decorator as _decorator __all__ = ['delaunay_plot_2d', 'convex_hull_plot_2d', 'voronoi_plot_2d'] @_decorator def _held_figure(func, obj, ax=None, **kw): import matplotlib.pyplot as plt if ax is None: fig = plt.figure() ax = fig.gca() was_held = ax.ishold() try: ax.hold(True) return func(obj, ax=ax, **kw) finally: ax.hold(was_held) def _adjust_bounds(ax, points): ptp_bound = points.ptp(axis=0) ax.set_xlim(points[:,0].min() - 0.1*ptp_bound[0], points[:,0].max() + 0.1*ptp_bound[0]) ax.set_ylim(points[:,1].min() - 0.1*ptp_bound[1], points[:,1].max() + 0.1*ptp_bound[1]) @_held_figure def delaunay_plot_2d(tri, ax=None): """ Plot the given Delaunay triangulation in 2-D Parameters ---------- tri : scipy.spatial.Delaunay instance Triangulation to plot ax : matplotlib.axes.Axes instance, optional Axes to plot on Returns ------- fig : matplotlib.figure.Figure instance Figure for the plot See Also -------- Delaunay matplotlib.pyplot.triplot Notes ----- Requires Matplotlib. """ if tri.points.shape[1] != 2: raise ValueError("Delaunay triangulation is not 2-D") ax.plot(tri.points[:,0], tri.points[:,1], 'o') ax.triplot(tri.points[:,0], tri.points[:,1], tri.simplices.copy()) _adjust_bounds(ax, tri.points) return ax.figure @_held_figure def convex_hull_plot_2d(hull, ax=None): """ Plot the given convex hull diagram in 2-D Parameters ---------- hull : scipy.spatial.ConvexHull instance Convex hull to plot ax : matplotlib.axes.Axes instance, optional Axes to plot on Returns ------- fig : matplotlib.figure.Figure instance Figure for the plot See Also -------- ConvexHull Notes ----- Requires Matplotlib. """ from matplotlib.collections import LineCollection if hull.points.shape[1] != 2: raise ValueError("Convex hull is not 2-D") ax.plot(hull.points[:,0], hull.points[:,1], 'o') line_segments = [] for simplex in hull.simplices: line_segments.append([(x, y) for x, y in hull.points[simplex]]) ax.add_collection(LineCollection(line_segments, colors='k', linestyle='solid')) _adjust_bounds(ax, hull.points) return ax.figure @_held_figure def voronoi_plot_2d(vor, ax=None, **kw): """ Plot the given Voronoi diagram in 2-D Parameters ---------- vor : scipy.spatial.Voronoi instance Diagram to plot ax : matplotlib.axes.Axes instance, optional Axes to plot on show_vertices : bool, optional Add the Voronoi vertices to the plot. Returns ------- fig : matplotlib.figure.Figure instance Figure for the plot See Also -------- Voronoi Notes ----- Requires Matplotlib. """ from matplotlib.collections import LineCollection if vor.points.shape[1] != 2: raise ValueError("Voronoi diagram is not 2-D") ax.plot(vor.points[:,0], vor.points[:,1], '.') if kw.get('show_vertices', True): ax.plot(vor.vertices[:,0], vor.vertices[:,1], 'o') line_segments = [] for simplex in vor.ridge_vertices: simplex = np.asarray(simplex) if np.all(simplex >= 0): line_segments.append([(x, y) for x, y in vor.vertices[simplex]]) ax.add_collection(LineCollection(line_segments, colors='k', linestyle='solid')) ptp_bound = vor.points.ptp(axis=0) line_segments = [] center = vor.points.mean(axis=0) for pointidx, simplex in zip(vor.ridge_points, vor.ridge_vertices): simplex = np.asarray(simplex) if np.any(simplex < 0): i = simplex[simplex >= 0][0] # finite end Voronoi vertex t = vor.points[pointidx[1]] - vor.points[pointidx[0]] # tangent t /= np.linalg.norm(t) n = np.array([-t[1], t[0]]) # normal midpoint = vor.points[pointidx].mean(axis=0) direction = np.sign(np.dot(midpoint - center, n)) * n far_point = vor.vertices[i] + direction * ptp_bound.max() line_segments.append([(vor.vertices[i, 0], vor.vertices[i, 1]), (far_point[0], far_point[1])]) ax.add_collection(LineCollection(line_segments, colors='k', linestyle='dashed')) _adjust_bounds(ax, vor.points) return ax.figure
apache-2.0
yugangzhang/chx_backups
time_correlation_code.py
1
11814
import numpy as np import sys import time import skxray.core.roi as roi from matplotlib import gridspec import itertools import matplotlib.pyplot as plt from matplotlib.colors import LogNorm mcolors = itertools.cycle(['b', 'g', 'r', 'c', 'm', 'y', 'k','darkgoldenrod','oldlace', 'brown','dodgerblue' ]) markers = itertools.cycle(list(plt.Line2D.filled_markers)) lstyles = itertools.cycle(['-', '--', '-.','.',':']) #Dec 1, NSLS-II, yugangzhang, [email protected] def autocor_one_time( num_buf, ring_mask, imgs, num_lev=None, start_img=None, end_img=None, bad_images = None, threshold=None): start_time = time.time() #print (dly) if start_img is None: start_img=0 if end_img is None: try: end_img= len(imgs) except: end_img= imgs.length #print (start_img, end_img) noframes = end_img - start_img #+ 1 #print (noframes) if num_lev is None:num_lev = int(np.log( noframes/(num_buf-1))/np.log(2) +1) +1 nolev = num_lev nobuf =num_buf print ( 'The lev number is %s'%num_lev) dly, dict_dly = delays( num_lev, num_buf, time=1 ) #print (dly.max()) lev_leng = np.array( [ len( dict_dly[i] ) for i in list(dict_dly.keys()) ]) qind, pixelist = roi.extract_label_indices( ring_mask ) noqs = np.max(qind) nopr = np.bincount(qind, minlength=(noqs+1))[1:] nopixels = nopr.sum() start_time = time.time() buf = np.ma.zeros([num_lev,num_buf,nopixels]) buf.mask = True cts=np.zeros(num_lev) cur=np.ones(num_lev) * num_buf countl = np.array( np.zeros( num_lev ),dtype='int') g2 = np.zeros( [ noframes, noframes, noqs] ) G=np.zeros( [(nolev+1)*int(nobuf/2),noqs]) IAP=np.zeros( [(nolev+1)*int(nobuf/2),noqs]) IAF=np.zeros( [(nolev+1)*int(nobuf/2),noqs]) num= np.array( np.zeros( num_lev ),dtype='int') Num= { key: [0]* len( dict_dly[key] ) for key in list(dict_dly.keys()) } print ('Doing g2 caculation of %s frames---'%(noframes )) ttx=0 #if bad_images is None:bad_images=[] for n in range( start_img, end_img ): ##do the work here img = imgs[n] img_ = (np.ravel(img))[pixelist] #print ( img_.max() ) if threshold is not None: if img_.max() >= threshold: print ('bad image: %s here!'%n) img_ = np.ma.zeros( len(img_) ) img_.mask = True if bad_images is not None: if n in bad_images: print ('bad image: %s here!'%n) img_ = np.ma.zeros( len(img_) ) img_.mask = True cur[0]=1+cur[0]%num_buf # increment buffer buf[0, cur[0]-1 ]= img_ img=[] #//save space img_=[] countl[0] = 1+ countl[0] process_one_time(lev=0, bufno=cur[0]-1, G=G,IAP=IAP,IAF=IAF, buf=buf, num=num, num_buf=num_buf, noqs=noqs, qind=qind, nopr=nopr, dly=dly, Num=Num, lev_leng=lev_leng ) #time_ind[0].append( current_img_time ) processing=1 lev=1 while processing: if cts[lev]: prev= 1+ (cur[lev-1]-1-1+num_buf)%num_buf cur[lev]= 1+ cur[lev]%num_buf countl[lev] = 1+ countl[lev] bufa = buf[lev-1,prev-1] bufb= buf[lev-1,cur[lev-1]-1] if (bufa.data==0).all(): buf[lev,cur[lev]-1] = bufa elif (bufb.data==0).all(): buf[lev,cur[lev]-1] = bufb else: buf[lev,cur[lev]-1] = ( bufa + bufb ) /2. cts[lev]=0 t1_idx= (countl[lev]-1) *2 process_one_time(lev=lev, bufno=cur[lev]-1, G=G,IAP=IAP,IAF=IAF, buf=buf, num=num, num_buf=num_buf, noqs=noqs, qind=qind, nopr=nopr, dly=dly,Num =Num, lev_leng=lev_leng ) lev+=1 #//Since this level finished, test if there is a next level for processing if lev<num_lev:processing = 1 else:processing = 0 else: cts[lev]=1 #// set flag to process next time processing=0 #// can stop until more images are accumulated if n %(noframes/10) ==0: sys.stdout.write("#") sys.stdout.flush() #print G.shape if (len(np.where(IAP==0)[0])!=0) and ( 0 not in nopr): gmax = np.where(IAP==0)[0][0] else: gmax=IAP.shape[0] #g2=G/(IAP*IAF) #print G g2=(G[:gmax]/(IAP[:gmax]*IAF[:gmax])) elapsed_time = time.time() - start_time #print (Num) print ('Total time: %.2f min' %(elapsed_time/60.)) return g2,dly[:gmax] #, elapsed_time/60. def process_one_time(lev, bufno, G,IAP,IAF, buf, num, num_buf,noqs,qind,nopr, dly,Num,lev_leng ): num[lev]+=1 if lev==0:imin=0 else:imin= int(num_buf/2 ) for i in range(imin, min(num[lev],num_buf) ): ptr=lev*int(num_buf/2)+i delayno=int( (bufno-i)%num_buf) #//cyclic buffers IP = buf[lev,delayno] IF = buf[lev,bufno] ind = ptr - lev_leng[:lev].sum() IP_ = IP.copy() IF_ = IF.copy() if (IP.data ==0).all(): IF_=np.zeros( IP.shape ) IP_= np.zeros( IP.shape ) Num[lev+1][ind] += 1 if (IF.data ==0).all(): #print ('here IF =0') IF_ = np.zeros( IF.shape ) IP_= np.zeros( IF.shape ) if (IP.data ==0).all(): pass else: Num[lev+1][ind] += 1 norm_num = num[lev]-i - Num[lev+1][ind] #print ( lev, ptr, num[lev]-i, Num[lev+1][ind] ) #print (ind, lev_leng) if not (IP_ ==0).all(): G[ptr]+= ( np.bincount(qind, weights= IF_*IP_ )[1:]/nopr- G[ptr] )/ norm_num IAP[ptr]+= ( np.bincount(qind, weights= IP_)[1:]/nopr-IAP[ptr] )/ norm_num IAF[ptr]+= ( np.bincount(qind, weights= IF_)[1:]/nopr-IAF[ptr] )/ norm_num def autocor_two_time( num_buf, ring_mask, imgs, num_lev=None, start_img=None, end_img=None ): #print (dly) if start_img is None:start_img=0 if end_img is None: try: end_img= len(imgs) except: end_img= imgs.length #print (start_img, end_img) noframes = end_img - start_img #+ 1 #print (noframes) if num_lev is None:num_lev = int(np.log( noframes/(num_buf-1))/np.log(2) +1) +1 print ( 'The lev number is %s'%num_lev) dly, dict_dly = delays( num_lev, num_buf, time=1 ) #print (dly.max()) qind, pixelist = roi.extract_label_indices( ring_mask ) noqs = np.max(qind) nopr = np.bincount(qind, minlength=(noqs+1))[1:] nopixels = nopr.sum() start_time = time.time() buf=np.zeros([num_lev,num_buf,nopixels]) #// matrix of buffers, for store img cts=np.zeros(num_lev) cur=np.ones(num_lev) * num_buf countl = np.array( np.zeros( num_lev ),dtype='int') g12 = np.zeros( [ noframes, noframes, noqs] ) num= np.array( np.zeros( num_lev ),dtype='int') time_ind ={key: [] for key in range(num_lev)} ttx=0 for n in range( start_img, end_img ): ##do the work here cur[0]=1+cur[0]%num_buf # increment buffer img = imgs[n] #print ( 'The insert image is %s' %(n) ) buf[0, cur[0]-1 ]= (np.ravel(img))[pixelist] img=[] #//save space countl[0] = 1+ countl[0] current_img_time = n - start_img +1 process_two_time(lev=0, bufno=cur[0]-1,n=current_img_time, g12=g12, buf=buf, num=num, num_buf=num_buf, noqs=noqs, qind=qind, nopr=nopr, dly=dly) time_ind[0].append( current_img_time ) processing=1 lev=1 while processing: if cts[lev]: prev= 1+ (cur[lev-1]-1-1+num_buf)%num_buf cur[lev]= 1+ cur[lev]%num_buf countl[lev] = 1+ countl[lev] buf[lev,cur[lev]-1] = ( buf[lev-1,prev-1] + buf[lev-1,cur[lev-1]-1] ) /2. cts[lev]=0 t1_idx= (countl[lev]-1) *2 current_img_time = ((time_ind[lev-1])[t1_idx ] + (time_ind[lev-1])[t1_idx +1 ] )/2. time_ind[lev].append( current_img_time ) process_two_time(lev=lev, bufno=cur[lev]-1,n=current_img_time, g12=g12, buf=buf, num=num, num_buf=num_buf, noqs=noqs, qind=qind, nopr=nopr, dly=dly) lev+=1 #//Since this level finished, test if there is a next level for processing if lev<num_lev:processing = 1 else:processing = 0 else: cts[lev]=1 #// set flag to process next time processing=0 #// can stop until more images are accumulated if n %(noframes/10) ==0: sys.stdout.write("#") sys.stdout.flush() for q in range(noqs): x0 = g12[:,:,q] g12[:,:,q] = np.tril(x0) + np.tril(x0).T - np.diag( np.diag(x0) ) elapsed_time = time.time() - start_time print ('Total time: %.2f min' %(elapsed_time/60.)) return g12, elapsed_time/60. def process_two_time(lev, bufno,n , g12, buf, num, num_buf,noqs,qind,nopr, dly ): num[lev]+=1 if lev==0:imin=0 else:imin= int(num_buf/2 ) for i in range(imin, min(num[lev],num_buf) ): ptr=lev*int(num_buf/2)+i delayno=(bufno-i)%num_buf #//cyclic buffers IP=buf[lev,delayno] IF=buf[lev,bufno] I_t12 = (np.histogram(qind, bins=noqs, weights= IF*IP))[0] I_t1 = (np.histogram(qind, bins=noqs, weights= IP))[0] I_t2 = (np.histogram(qind, bins=noqs, weights= IF))[0] tind1 = (n-1) tind2=(n -dly[ptr] -1) if not isinstance( n, int ): nshift = 2**(lev-1) for i in range( -nshift+1, nshift +1 ): #print tind1+i g12[ int(tind1 + i), int(tind2 + i) ] =I_t12/( I_t1 * I_t2) * nopr else: #print tind1 g12[ tind1, tind2 ] = I_t12/( I_t1 * I_t2) * nopr def delays( num_lev=3, num_buf=4, time=1 ): ''' DOCUMENT delays(time=) return array of delays. KEYWORD: time: scale delays by time ( should be time between frames) ''' if num_buf%2!=0:print ("nobuf must be even!!!" ) dly=np.zeros( (num_lev+1)*int(num_buf/2) +1 ) dict_dly ={} for i in range( 1,num_lev+1): if i==1:imin= 1 else:imin= int(num_buf/2)+1 ptr=(i-1)*int(num_buf/2)+ np.arange(imin,num_buf+1) dly[ptr]= np.arange( imin, num_buf+1) *2**(i-1) dict_dly[i] = dly[ptr-1] dly*=time #print (i, ptr, imin) return dly, dict_dly
bsd-3-clause
ChanChiChoi/scikit-learn
examples/gaussian_process/plot_gp_probabilistic_classification_after_regression.py
252
3490
#!/usr/bin/python # -*- coding: utf-8 -*- """ ============================================================================== Gaussian Processes classification example: exploiting the probabilistic output ============================================================================== A two-dimensional regression exercise with a post-processing allowing for probabilistic classification thanks to the Gaussian property of the prediction. The figure illustrates the probability that the prediction is negative with respect to the remaining uncertainty in the prediction. The red and blue lines corresponds to the 95% confidence interval on the prediction of the zero level set. """ print(__doc__) # Author: Vincent Dubourg <[email protected]> # Licence: BSD 3 clause import numpy as np from scipy import stats from sklearn.gaussian_process import GaussianProcess from matplotlib import pyplot as pl from matplotlib import cm # Standard normal distribution functions phi = stats.distributions.norm().pdf PHI = stats.distributions.norm().cdf PHIinv = stats.distributions.norm().ppf # A few constants lim = 8 def g(x): """The function to predict (classification will then consist in predicting whether g(x) <= 0 or not)""" return 5. - x[:, 1] - .5 * x[:, 0] ** 2. # Design of experiments X = np.array([[-4.61611719, -6.00099547], [4.10469096, 5.32782448], [0.00000000, -0.50000000], [-6.17289014, -4.6984743], [1.3109306, -6.93271427], [-5.03823144, 3.10584743], [-2.87600388, 6.74310541], [5.21301203, 4.26386883]]) # Observations y = g(X) # Instanciate and fit Gaussian Process Model gp = GaussianProcess(theta0=5e-1) # Don't perform MLE or you'll get a perfect prediction for this simple example! gp.fit(X, y) # Evaluate real function, the prediction and its MSE on a grid res = 50 x1, x2 = np.meshgrid(np.linspace(- lim, lim, res), np.linspace(- lim, lim, res)) xx = np.vstack([x1.reshape(x1.size), x2.reshape(x2.size)]).T y_true = g(xx) y_pred, MSE = gp.predict(xx, eval_MSE=True) sigma = np.sqrt(MSE) y_true = y_true.reshape((res, res)) y_pred = y_pred.reshape((res, res)) sigma = sigma.reshape((res, res)) k = PHIinv(.975) # Plot the probabilistic classification iso-values using the Gaussian property # of the prediction fig = pl.figure(1) ax = fig.add_subplot(111) ax.axes.set_aspect('equal') pl.xticks([]) pl.yticks([]) ax.set_xticklabels([]) ax.set_yticklabels([]) pl.xlabel('$x_1$') pl.ylabel('$x_2$') cax = pl.imshow(np.flipud(PHI(- y_pred / sigma)), cmap=cm.gray_r, alpha=0.8, extent=(- lim, lim, - lim, lim)) norm = pl.matplotlib.colors.Normalize(vmin=0., vmax=0.9) cb = pl.colorbar(cax, ticks=[0., 0.2, 0.4, 0.6, 0.8, 1.], norm=norm) cb.set_label('${\\rm \mathbb{P}}\left[\widehat{G}(\mathbf{x}) \leq 0\\right]$') pl.plot(X[y <= 0, 0], X[y <= 0, 1], 'r.', markersize=12) pl.plot(X[y > 0, 0], X[y > 0, 1], 'b.', markersize=12) cs = pl.contour(x1, x2, y_true, [0.], colors='k', linestyles='dashdot') cs = pl.contour(x1, x2, PHI(- y_pred / sigma), [0.025], colors='b', linestyles='solid') pl.clabel(cs, fontsize=11) cs = pl.contour(x1, x2, PHI(- y_pred / sigma), [0.5], colors='k', linestyles='dashed') pl.clabel(cs, fontsize=11) cs = pl.contour(x1, x2, PHI(- y_pred / sigma), [0.975], colors='r', linestyles='solid') pl.clabel(cs, fontsize=11) pl.show()
bsd-3-clause
mfjb/scikit-learn
sklearn/utils/multiclass.py
83
12343
# Author: Arnaud Joly, Joel Nothman, Hamzeh Alsalhi # # License: BSD 3 clause """ Multi-class / multi-label utility function ========================================== """ from __future__ import division from collections import Sequence from itertools import chain from scipy.sparse import issparse from scipy.sparse.base import spmatrix from scipy.sparse import dok_matrix from scipy.sparse import lil_matrix import numpy as np from ..externals.six import string_types from .validation import check_array from ..utils.fixes import bincount def _unique_multiclass(y): if hasattr(y, '__array__'): return np.unique(np.asarray(y)) else: return set(y) def _unique_indicator(y): return np.arange(check_array(y, ['csr', 'csc', 'coo']).shape[1]) _FN_UNIQUE_LABELS = { 'binary': _unique_multiclass, 'multiclass': _unique_multiclass, 'multilabel-indicator': _unique_indicator, } def unique_labels(*ys): """Extract an ordered array of unique labels We don't allow: - mix of multilabel and multiclass (single label) targets - mix of label indicator matrix and anything else, because there are no explicit labels) - mix of label indicator matrices of different sizes - mix of string and integer labels At the moment, we also don't allow "multiclass-multioutput" input type. Parameters ---------- *ys : array-likes, Returns ------- out : numpy array of shape [n_unique_labels] An ordered array of unique labels. Examples -------- >>> from sklearn.utils.multiclass import unique_labels >>> unique_labels([3, 5, 5, 5, 7, 7]) array([3, 5, 7]) >>> unique_labels([1, 2, 3, 4], [2, 2, 3, 4]) array([1, 2, 3, 4]) >>> unique_labels([1, 2, 10], [5, 11]) array([ 1, 2, 5, 10, 11]) """ if not ys: raise ValueError('No argument has been passed.') # Check that we don't mix label format ys_types = set(type_of_target(x) for x in ys) if ys_types == set(["binary", "multiclass"]): ys_types = set(["multiclass"]) if len(ys_types) > 1: raise ValueError("Mix type of y not allowed, got types %s" % ys_types) label_type = ys_types.pop() # Check consistency for the indicator format if (label_type == "multilabel-indicator" and len(set(check_array(y, ['csr', 'csc', 'coo']).shape[1] for y in ys)) > 1): raise ValueError("Multi-label binary indicator input with " "different numbers of labels") # Get the unique set of labels _unique_labels = _FN_UNIQUE_LABELS.get(label_type, None) if not _unique_labels: raise ValueError("Unknown label type: %s" % repr(ys)) ys_labels = set(chain.from_iterable(_unique_labels(y) for y in ys)) # Check that we don't mix string type with number type if (len(set(isinstance(label, string_types) for label in ys_labels)) > 1): raise ValueError("Mix of label input types (string and number)") return np.array(sorted(ys_labels)) def _is_integral_float(y): return y.dtype.kind == 'f' and np.all(y.astype(int) == y) def is_multilabel(y): """ Check if ``y`` is in a multilabel format. Parameters ---------- y : numpy array of shape [n_samples] Target values. Returns ------- out : bool, Return ``True``, if ``y`` is in a multilabel format, else ```False``. Examples -------- >>> import numpy as np >>> from sklearn.utils.multiclass import is_multilabel >>> is_multilabel([0, 1, 0, 1]) False >>> is_multilabel([[1], [0, 2], []]) False >>> is_multilabel(np.array([[1, 0], [0, 0]])) True >>> is_multilabel(np.array([[1], [0], [0]])) False >>> is_multilabel(np.array([[1, 0, 0]])) True """ if hasattr(y, '__array__'): y = np.asarray(y) if not (hasattr(y, "shape") and y.ndim == 2 and y.shape[1] > 1): return False if issparse(y): if isinstance(y, (dok_matrix, lil_matrix)): y = y.tocsr() return (len(y.data) == 0 or np.ptp(y.data) == 0 and (y.dtype.kind in 'biu' or # bool, int, uint _is_integral_float(np.unique(y.data)))) else: labels = np.unique(y) return len(labels) < 3 and (y.dtype.kind in 'biu' or # bool, int, uint _is_integral_float(labels)) def type_of_target(y): """Determine the type of data indicated by target `y` Parameters ---------- y : array-like Returns ------- target_type : string One of: * 'continuous': `y` is an array-like of floats that are not all integers, and is 1d or a column vector. * 'continuous-multioutput': `y` is a 2d array of floats that are not all integers, and both dimensions are of size > 1. * 'binary': `y` contains <= 2 discrete values and is 1d or a column vector. * 'multiclass': `y` contains more than two discrete values, is not a sequence of sequences, and is 1d or a column vector. * 'multiclass-multioutput': `y` is a 2d array that contains more than two discrete values, is not a sequence of sequences, and both dimensions are of size > 1. * 'multilabel-indicator': `y` is a label indicator matrix, an array of two dimensions with at least two columns, and at most 2 unique values. * 'unknown': `y` is array-like but none of the above, such as a 3d array, sequence of sequences, or an array of non-sequence objects. Examples -------- >>> import numpy as np >>> type_of_target([0.1, 0.6]) 'continuous' >>> type_of_target([1, -1, -1, 1]) 'binary' >>> type_of_target(['a', 'b', 'a']) 'binary' >>> type_of_target([1.0, 2.0]) 'binary' >>> type_of_target([1, 0, 2]) 'multiclass' >>> type_of_target([1.0, 0.0, 3.0]) 'multiclass' >>> type_of_target(['a', 'b', 'c']) 'multiclass' >>> type_of_target(np.array([[1, 2], [3, 1]])) 'multiclass-multioutput' >>> type_of_target([[1, 2]]) 'multiclass-multioutput' >>> type_of_target(np.array([[1.5, 2.0], [3.0, 1.6]])) 'continuous-multioutput' >>> type_of_target(np.array([[0, 1], [1, 1]])) 'multilabel-indicator' """ valid = ((isinstance(y, (Sequence, spmatrix)) or hasattr(y, '__array__')) and not isinstance(y, string_types)) if not valid: raise ValueError('Expected array-like (array or non-string sequence), ' 'got %r' % y) if is_multilabel(y): return 'multilabel-indicator' try: y = np.asarray(y) except ValueError: # Known to fail in numpy 1.3 for array of arrays return 'unknown' # The old sequence of sequences format try: if (not hasattr(y[0], '__array__') and isinstance(y[0], Sequence) and not isinstance(y[0], string_types)): raise ValueError('You appear to be using a legacy multi-label data' ' representation. Sequence of sequences are no' ' longer supported; use a binary array or sparse' ' matrix instead.') except IndexError: pass # Invalid inputs if y.ndim > 2 or (y.dtype == object and len(y) and not isinstance(y.flat[0], string_types)): return 'unknown' # [[[1, 2]]] or [obj_1] and not ["label_1"] if y.ndim == 2 and y.shape[1] == 0: return 'unknown' # [[]] if y.ndim == 2 and y.shape[1] > 1: suffix = "-multioutput" # [[1, 2], [1, 2]] else: suffix = "" # [1, 2, 3] or [[1], [2], [3]] # check float and contains non-integer float values if y.dtype.kind == 'f' and np.any(y != y.astype(int)): # [.1, .2, 3] or [[.1, .2, 3]] or [[1., .2]] and not [1., 2., 3.] return 'continuous' + suffix if (len(np.unique(y)) > 2) or (y.ndim >= 2 and len(y[0]) > 1): return 'multiclass' + suffix # [1, 2, 3] or [[1., 2., 3]] or [[1, 2]] else: return 'binary' # [1, 2] or [["a"], ["b"]] def _check_partial_fit_first_call(clf, classes=None): """Private helper function for factorizing common classes param logic Estimators that implement the ``partial_fit`` API need to be provided with the list of possible classes at the first call to partial_fit. Subsequent calls to partial_fit should check that ``classes`` is still consistent with a previous value of ``clf.classes_`` when provided. This function returns True if it detects that this was the first call to ``partial_fit`` on ``clf``. In that case the ``classes_`` attribute is also set on ``clf``. """ if getattr(clf, 'classes_', None) is None and classes is None: raise ValueError("classes must be passed on the first call " "to partial_fit.") elif classes is not None: if getattr(clf, 'classes_', None) is not None: if not np.all(clf.classes_ == unique_labels(classes)): raise ValueError( "`classes=%r` is not the same as on last call " "to partial_fit, was: %r" % (classes, clf.classes_)) else: # This is the first call to partial_fit clf.classes_ = unique_labels(classes) return True # classes is None and clf.classes_ has already previously been set: # nothing to do return False def class_distribution(y, sample_weight=None): """Compute class priors from multioutput-multiclass target data Parameters ---------- y : array like or sparse matrix of size (n_samples, n_outputs) The labels for each example. sample_weight : array-like of shape = (n_samples,), optional Sample weights. Returns ------- classes : list of size n_outputs of arrays of size (n_classes,) List of classes for each column. n_classes : list of integrs of size n_outputs Number of classes in each column class_prior : list of size n_outputs of arrays of size (n_classes,) Class distribution of each column. """ classes = [] n_classes = [] class_prior = [] n_samples, n_outputs = y.shape if issparse(y): y = y.tocsc() y_nnz = np.diff(y.indptr) for k in range(n_outputs): col_nonzero = y.indices[y.indptr[k]:y.indptr[k + 1]] # separate sample weights for zero and non-zero elements if sample_weight is not None: nz_samp_weight = np.asarray(sample_weight)[col_nonzero] zeros_samp_weight_sum = (np.sum(sample_weight) - np.sum(nz_samp_weight)) else: nz_samp_weight = None zeros_samp_weight_sum = y.shape[0] - y_nnz[k] classes_k, y_k = np.unique(y.data[y.indptr[k]:y.indptr[k + 1]], return_inverse=True) class_prior_k = bincount(y_k, weights=nz_samp_weight) # An explicit zero was found, combine its wieght with the wieght # of the implicit zeros if 0 in classes_k: class_prior_k[classes_k == 0] += zeros_samp_weight_sum # If an there is an implict zero and it is not in classes and # class_prior, make an entry for it if 0 not in classes_k and y_nnz[k] < y.shape[0]: classes_k = np.insert(classes_k, 0, 0) class_prior_k = np.insert(class_prior_k, 0, zeros_samp_weight_sum) classes.append(classes_k) n_classes.append(classes_k.shape[0]) class_prior.append(class_prior_k / class_prior_k.sum()) else: for k in range(n_outputs): classes_k, y_k = np.unique(y[:, k], return_inverse=True) classes.append(classes_k) n_classes.append(classes_k.shape[0]) class_prior_k = bincount(y_k, weights=sample_weight) class_prior.append(class_prior_k / class_prior_k.sum()) return (classes, n_classes, class_prior)
bsd-3-clause
nhejazi/scikit-learn
sklearn/gaussian_process/tests/test_gpc.py
31
5994
"""Testing for Gaussian process classification """ # Author: Jan Hendrik Metzen <[email protected]> # License: BSD 3 clause import numpy as np from scipy.optimize import approx_fprime from sklearn.gaussian_process import GaussianProcessClassifier from sklearn.gaussian_process.kernels import RBF, ConstantKernel as C from sklearn.utils.testing import (assert_true, assert_greater, assert_almost_equal, assert_array_equal) def f(x): return np.sin(x) X = np.atleast_2d(np.linspace(0, 10, 30)).T X2 = np.atleast_2d([2., 4., 5.5, 6.5, 7.5]).T y = np.array(f(X).ravel() > 0, dtype=int) fX = f(X).ravel() y_mc = np.empty(y.shape, dtype=int) # multi-class y_mc[fX < -0.35] = 0 y_mc[(fX >= -0.35) & (fX < 0.35)] = 1 y_mc[fX > 0.35] = 2 fixed_kernel = RBF(length_scale=1.0, length_scale_bounds="fixed") kernels = [RBF(length_scale=0.1), fixed_kernel, RBF(length_scale=1.0, length_scale_bounds=(1e-3, 1e3)), C(1.0, (1e-2, 1e2)) * RBF(length_scale=1.0, length_scale_bounds=(1e-3, 1e3))] def test_predict_consistent(): # Check binary predict decision has also predicted probability above 0.5. for kernel in kernels: gpc = GaussianProcessClassifier(kernel=kernel).fit(X, y) assert_array_equal(gpc.predict(X), gpc.predict_proba(X)[:, 1] >= 0.5) def test_lml_improving(): # Test that hyperparameter-tuning improves log-marginal likelihood. for kernel in kernels: if kernel == fixed_kernel: continue gpc = GaussianProcessClassifier(kernel=kernel).fit(X, y) assert_greater(gpc.log_marginal_likelihood(gpc.kernel_.theta), gpc.log_marginal_likelihood(kernel.theta)) def test_lml_precomputed(): # Test that lml of optimized kernel is stored correctly. for kernel in kernels: gpc = GaussianProcessClassifier(kernel=kernel).fit(X, y) assert_almost_equal(gpc.log_marginal_likelihood(gpc.kernel_.theta), gpc.log_marginal_likelihood(), 7) def test_converged_to_local_maximum(): # Test that we are in local maximum after hyperparameter-optimization. for kernel in kernels: if kernel == fixed_kernel: continue gpc = GaussianProcessClassifier(kernel=kernel).fit(X, y) lml, lml_gradient = \ gpc.log_marginal_likelihood(gpc.kernel_.theta, True) assert_true(np.all((np.abs(lml_gradient) < 1e-4) | (gpc.kernel_.theta == gpc.kernel_.bounds[:, 0]) | (gpc.kernel_.theta == gpc.kernel_.bounds[:, 1]))) def test_lml_gradient(): # Compare analytic and numeric gradient of log marginal likelihood. for kernel in kernels: gpc = GaussianProcessClassifier(kernel=kernel).fit(X, y) lml, lml_gradient = gpc.log_marginal_likelihood(kernel.theta, True) lml_gradient_approx = \ approx_fprime(kernel.theta, lambda theta: gpc.log_marginal_likelihood(theta, False), 1e-10) assert_almost_equal(lml_gradient, lml_gradient_approx, 3) def test_random_starts(): # Test that an increasing number of random-starts of GP fitting only # increases the log marginal likelihood of the chosen theta. n_samples, n_features = 25, 2 rng = np.random.RandomState(0) X = rng.randn(n_samples, n_features) * 2 - 1 y = (np.sin(X).sum(axis=1) + np.sin(3 * X).sum(axis=1)) > 0 kernel = C(1.0, (1e-2, 1e2)) \ * RBF(length_scale=[1e-3] * n_features, length_scale_bounds=[(1e-4, 1e+2)] * n_features) last_lml = -np.inf for n_restarts_optimizer in range(5): gp = GaussianProcessClassifier( kernel=kernel, n_restarts_optimizer=n_restarts_optimizer, random_state=0).fit(X, y) lml = gp.log_marginal_likelihood(gp.kernel_.theta) assert_greater(lml, last_lml - np.finfo(np.float32).eps) last_lml = lml def test_custom_optimizer(): # Test that GPC can use externally defined optimizers. # Define a dummy optimizer that simply tests 50 random hyperparameters def optimizer(obj_func, initial_theta, bounds): rng = np.random.RandomState(0) theta_opt, func_min = \ initial_theta, obj_func(initial_theta, eval_gradient=False) for _ in range(50): theta = np.atleast_1d(rng.uniform(np.maximum(-2, bounds[:, 0]), np.minimum(1, bounds[:, 1]))) f = obj_func(theta, eval_gradient=False) if f < func_min: theta_opt, func_min = theta, f return theta_opt, func_min for kernel in kernels: if kernel == fixed_kernel: continue gpc = GaussianProcessClassifier(kernel=kernel, optimizer=optimizer) gpc.fit(X, y_mc) # Checks that optimizer improved marginal likelihood assert_greater(gpc.log_marginal_likelihood(gpc.kernel_.theta), gpc.log_marginal_likelihood(kernel.theta)) def test_multi_class(): # Test GPC for multi-class classification problems. for kernel in kernels: gpc = GaussianProcessClassifier(kernel=kernel) gpc.fit(X, y_mc) y_prob = gpc.predict_proba(X2) assert_almost_equal(y_prob.sum(1), 1) y_pred = gpc.predict(X2) assert_array_equal(np.argmax(y_prob, 1), y_pred) def test_multi_class_n_jobs(): # Test that multi-class GPC produces identical results with n_jobs>1. for kernel in kernels: gpc = GaussianProcessClassifier(kernel=kernel) gpc.fit(X, y_mc) gpc_2 = GaussianProcessClassifier(kernel=kernel, n_jobs=2) gpc_2.fit(X, y_mc) y_prob = gpc.predict_proba(X2) y_prob_2 = gpc_2.predict_proba(X2) assert_almost_equal(y_prob, y_prob_2)
bsd-3-clause
geo-fluid-dynamics/phaseflow-fenics
docs/conf.py
1
5674
# -*- coding: utf-8 -*- # # Configuration file for the Sphinx documentation builder. # # This file does only contain a selection of the most common options. For a # full list see the documentation: # http://www.sphinx-doc.org/en/stable/config # -- Path setup -------------------------------------------------------------- # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. # import os import sys sys.path.insert(0, os.path.abspath('..')) sys.path.insert(0, os.path.abspath('.')) # -- Mock out libraries with C dependencies ---------------------------------- import sys from unittest.mock import MagicMock class Mock(MagicMock): @classmethod def __getattr__(cls, name): return MagicMock() MOCK_MODULES = ["fenics", "numpy", "matplotlib"] sys.modules.update((mod_name, Mock()) for mod_name in MOCK_MODULES) # -- Project information ----------------------------------------------------- project = 'Phaseflow' copyright = '2018, Alexander G. Zimmerman' author = 'Alexander G. Zimmerman' # The short X.Y version version = '' # The full version, including alpha/beta/rc tags release = 'Alpha' # -- General configuration --------------------------------------------------- # If your documentation needs a minimal Sphinx version, state it here. # # needs_sphinx = '1.0' # Add any Sphinx extension module names here, as strings. They can be # extensions coming with Sphinx (named 'sphinx.ext.*') or your custom # ones. extensions = [ 'sphinx.ext.autodoc', 'sphinx.ext.doctest', 'sphinx.ext.intersphinx', 'sphinx.ext.coverage', 'sphinx.ext.mathjax', 'sphinx.ext.viewcode', 'sphinx.ext.autosummary', 'numpydoc', ] # Add any paths that contain templates here, relative to this directory. templates_path = ['_templates'] # The suffix(es) of source filenames. # You can specify multiple suffix as a list of string: # # source_suffix = ['.rst', '.md'] source_suffix = '.rst' # The master toctree document. master_doc = 'index' # The language for content autogenerated by Sphinx. Refer to documentation # for a list of supported languages. # # This is also used if you do content translation via gettext catalogs. # Usually you set "language" from the command line for these cases. language = None # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. # This pattern also affects html_static_path and html_extra_path . exclude_patterns = ['_build', 'Thumbs.db', '.DS_Store'] # The name of the Pygments (syntax highlighting) style to use. pygments_style = 'sphinx' # -- Options for HTML output ------------------------------------------------- # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. # html_theme = 'alabaster' # Theme options are theme-specific and customize the look and feel of a theme # further. For a list of options available for each theme, see the # documentation. # # html_theme_options = {} # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ['_static'] # Custom sidebar templates, must be a dictionary that maps document names # to template names. # # The default sidebars (for documents that don't match any pattern) are # defined by theme itself. Builtin themes are using these templates by # default: ``['localtoc.html', 'relations.html', 'sourcelink.html', # 'searchbox.html']``. # # html_sidebars = {} # -- Options for HTMLHelp output --------------------------------------------- # Output file base name for HTML help builder. htmlhelp_basename = 'Phaseflowdoc' # -- Options for LaTeX output ------------------------------------------------ latex_elements = { # The paper size ('letterpaper' or 'a4paper'). # # 'papersize': 'letterpaper', # The font size ('10pt', '11pt' or '12pt'). # # 'pointsize': '10pt', # Additional stuff for the LaTeX preamble. # # 'preamble': '', # Latex figure (float) alignment # # 'figure_align': 'htbp', } # Grouping the document tree into LaTeX files. List of tuples # (source start file, target name, title, # author, documentclass [howto, manual, or own class]). latex_documents = [ (master_doc, 'Phaseflow.tex', 'Phaseflow Documentation', 'Alexander G. Zimmerman', 'manual'), ] # -- Options for manual page output ------------------------------------------ # One entry per manual page. List of tuples # (source start file, name, description, authors, manual section). man_pages = [ (master_doc, 'phaseflow', 'Phaseflow Documentation', [author], 1) ] # -- Options for Texinfo output ---------------------------------------------- # Grouping the document tree into Texinfo files. List of tuples # (source start file, target name, title, author, # dir menu entry, description, category) texinfo_documents = [ (master_doc, 'Phaseflow', 'Phaseflow Documentation', author, 'Phaseflow', 'One line description of project.', 'Miscellaneous'), ] # -- Extension configuration ------------------------------------------------- # -- Options for intersphinx extension --------------------------------------- # Example configuration for intersphinx: refer to the Python standard library. intersphinx_mapping = {'https://docs.python.org/': None}
mit
petosegan/scikit-learn
benchmarks/bench_glmnet.py
297
3848
""" To run this, you'll need to have installed. * glmnet-python * scikit-learn (of course) Does two benchmarks First, we fix a training set and increase the number of samples. Then we plot the computation time as function of the number of samples. In the second benchmark, we increase the number of dimensions of the training set. Then we plot the computation time as function of the number of dimensions. In both cases, only 10% of the features are informative. """ import numpy as np import gc from time import time from sklearn.datasets.samples_generator import make_regression alpha = 0.1 # alpha = 0.01 def rmse(a, b): return np.sqrt(np.mean((a - b) ** 2)) def bench(factory, X, Y, X_test, Y_test, ref_coef): gc.collect() # start time tstart = time() clf = factory(alpha=alpha).fit(X, Y) delta = (time() - tstart) # stop time print("duration: %0.3fs" % delta) print("rmse: %f" % rmse(Y_test, clf.predict(X_test))) print("mean coef abs diff: %f" % abs(ref_coef - clf.coef_.ravel()).mean()) return delta if __name__ == '__main__': from glmnet.elastic_net import Lasso as GlmnetLasso from sklearn.linear_model import Lasso as ScikitLasso # Delayed import of pylab import pylab as pl scikit_results = [] glmnet_results = [] n = 20 step = 500 n_features = 1000 n_informative = n_features / 10 n_test_samples = 1000 for i in range(1, n + 1): print('==================') print('Iteration %s of %s' % (i, n)) print('==================') X, Y, coef_ = make_regression( n_samples=(i * step) + n_test_samples, n_features=n_features, noise=0.1, n_informative=n_informative, coef=True) X_test = X[-n_test_samples:] Y_test = Y[-n_test_samples:] X = X[:(i * step)] Y = Y[:(i * step)] print("benchmarking scikit-learn: ") scikit_results.append(bench(ScikitLasso, X, Y, X_test, Y_test, coef_)) print("benchmarking glmnet: ") glmnet_results.append(bench(GlmnetLasso, X, Y, X_test, Y_test, coef_)) pl.clf() xx = range(0, n * step, step) pl.title('Lasso regression on sample dataset (%d features)' % n_features) pl.plot(xx, scikit_results, 'b-', label='scikit-learn') pl.plot(xx, glmnet_results, 'r-', label='glmnet') pl.legend() pl.xlabel('number of samples to classify') pl.ylabel('Time (s)') pl.show() # now do a benchmark where the number of points is fixed # and the variable is the number of features scikit_results = [] glmnet_results = [] n = 20 step = 100 n_samples = 500 for i in range(1, n + 1): print('==================') print('Iteration %02d of %02d' % (i, n)) print('==================') n_features = i * step n_informative = n_features / 10 X, Y, coef_ = make_regression( n_samples=(i * step) + n_test_samples, n_features=n_features, noise=0.1, n_informative=n_informative, coef=True) X_test = X[-n_test_samples:] Y_test = Y[-n_test_samples:] X = X[:n_samples] Y = Y[:n_samples] print("benchmarking scikit-learn: ") scikit_results.append(bench(ScikitLasso, X, Y, X_test, Y_test, coef_)) print("benchmarking glmnet: ") glmnet_results.append(bench(GlmnetLasso, X, Y, X_test, Y_test, coef_)) xx = np.arange(100, 100 + n * step, step) pl.figure('scikit-learn vs. glmnet benchmark results') pl.title('Regression in high dimensional spaces (%d samples)' % n_samples) pl.plot(xx, scikit_results, 'b-', label='scikit-learn') pl.plot(xx, glmnet_results, 'r-', label='glmnet') pl.legend() pl.xlabel('number of features') pl.ylabel('Time (s)') pl.axis('tight') pl.show()
bsd-3-clause
treycausey/scikit-learn
examples/grid_search_digits.py
8
2665
""" ===================================================================== Parameter estimation using grid search with a nested cross-validation ===================================================================== This examples shows how a classifier is optimized by "nested" cross-validation, which is done using the :class:`sklearn.grid_search.GridSearchCV` object on a development set that comprises only half of the available labeled data. The performance of the selected hyper-parameters and trained model is then measured on a dedicated evaluation set that was not used during the model selection step. More details on tools available for model selection can be found in the sections on :ref:`cross_validation` and :ref:`grid_search`. """ from __future__ import print_function from sklearn import datasets from sklearn.cross_validation import train_test_split from sklearn.grid_search import GridSearchCV from sklearn.metrics import classification_report from sklearn.svm import SVC print(__doc__) # Loading the Digits dataset digits = datasets.load_digits() # To apply an classifier on this data, we need to flatten the image, to # turn the data in a (samples, feature) matrix: n_samples = len(digits.images) X = digits.images.reshape((n_samples, -1)) y = digits.target # Split the dataset in two equal parts X_train, X_test, y_train, y_test = train_test_split( X, y, test_size=0.5, random_state=0) # Set the parameters by cross-validation tuned_parameters = [{'kernel': ['rbf'], 'gamma': [1e-3, 1e-4], 'C': [1, 10, 100, 1000]}, {'kernel': ['linear'], 'C': [1, 10, 100, 1000]}] scores = ['precision', 'recall'] for score in scores: print("# Tuning hyper-parameters for %s" % score) print() clf = GridSearchCV(SVC(C=1), tuned_parameters, cv=5, scoring=score) clf.fit(X_train, y_train) print("Best parameters set found on development set:") print() print(clf.best_estimator_) print() print("Grid scores on development set:") print() for params, mean_score, scores in clf.grid_scores_: print("%0.3f (+/-%0.03f) for %r" % (mean_score, scores.std() / 2, params)) print() print("Detailed classification report:") print() print("The model is trained on the full development set.") print("The scores are computed on the full evaluation set.") print() y_true, y_pred = y_test, clf.predict(X_test) print(classification_report(y_true, y_pred)) print() # Note the problem is too easy: the hyperparameter plateau is too flat and the # output model is the same for precision and recall with ties in quality.
bsd-3-clause
samuelstjean/dipy
doc/examples/snr_in_cc.py
1
6475
""" ============================================= SNR estimation for Diffusion-Weighted Images ============================================= Computing the Signal-to-Noise-Ratio (SNR) of DW images is still an open question, as SNR depends on the white matter structure of interest as well as the gradient direction corresponding to each DWI. In classical MRI, SNR can be defined as the ratio of the mean of the signal divided by the standard deviation of the underlying Gaussian noise, that is SNR = mean(signal) / std(noise). The noise standard deviation can be computed from the background in any of the DW images. How do we compute the mean of the signal, and what signal? The strategy here is to compute a 'worst-case' SNR for DWI. Several white matter structures such as the corpus callosum (CC), corticospinal tract (CST), or the superior longitudinal fasciculus (SLF) can be easily identified from the colored-FA (cfa) map. In this example, we will use voxels from the CC, which have the characteristic of being highly RED in the cfa map since they are mainly oriented in the left-right direction. We know that the DW image closest to the x-direction will be the one with the most attenuated diffusion signal. This is the strategy adopted in several recent papers (see [1]_ and [2]_). It gives a good indication of the quality of the DWI data. First, we compute the tensor model in a brain mask (see the DTI example for more explanation). """ from __future__ import division, print_function import nibabel as nib import numpy as np from dipy.data import fetch_stanford_hardi, read_stanford_hardi from dipy.segment.mask import median_otsu from dipy.reconst.dti import TensorModel fetch_stanford_hardi() img, gtab = read_stanford_hardi() data = img.get_data() affine = img.get_affine() print('Computing brain mask...') b0_mask, mask = median_otsu(data) print('Computing tensors...') tenmodel = TensorModel(gtab) tensorfit = tenmodel.fit(data, mask=mask) """Next, we set our red-blue-green thresholds to (0.6, 1) in the x axis and (0, 0.1) in the y and z axes respectively. These values work well in practice to isolate the very RED voxels of the cfa map. Then, as assurance, we want just RED voxels in the CC (there could be noisy red voxels around the brain mask and we don't want those). Unless the brain acquisition was badly aligned, the CC is always close to the mid-sagittal slice. The following lines perform these two operations and then saves the computed mask. """ print('Computing worst-case/best-case SNR using the corpus callosum...') from dipy.segment.mask import segment_from_cfa from dipy.segment.mask import bounding_box threshold = (0.6, 1, 0, 0.1, 0, 0.1) CC_box = np.zeros_like(data[..., 0]) mins, maxs = bounding_box(mask) mins = np.array(mins) maxs = np.array(maxs) diff = (maxs - mins) // 4 bounds_min = mins + diff bounds_max = maxs - diff CC_box[bounds_min[0]:bounds_max[0], bounds_min[1]:bounds_max[1], bounds_min[2]:bounds_max[2]] = 1 mask_cc_part, cfa = segment_from_cfa(tensorfit, CC_box, threshold, return_cfa=True) cfa_img = nib.Nifti1Image((cfa*255).astype(np.uint8), affine) mask_cc_part_img = nib.Nifti1Image(mask_cc_part.astype(np.uint8), affine) nib.save(mask_cc_part_img, 'mask_CC_part.nii.gz') import matplotlib.pyplot as plt region = 40 fig = plt.figure('Corpus callosum segmentation') plt.subplot(1, 2, 1) plt.title("Corpus callosum (CC)") plt.axis('off') red = cfa[..., 0] plt.imshow(np.rot90(red[region, ...])) plt.subplot(1, 2, 2) plt.title("CC mask used for SNR computation") plt.axis('off') plt.imshow(np.rot90(mask_cc_part[region, ...])) fig.savefig("CC_segmentation.png", bbox_inches='tight') """ .. figure:: CC_segmentation.png :align: center """ """Now that we are happy with our crude CC mask that selected voxels in the x-direction, we can use all the voxels to estimate the mean signal in this region. """ mean_signal = np.mean(data[mask_cc_part], axis=0) """Now, we need a good background estimation. We will re-use the brain mask computed before and invert it to catch the outside of the brain. This could also be determined manually with a ROI in the background. [Warning: Certain MR manufacturers mask out the outside of the brain with 0's. One thus has to be careful how the noise ROI is defined]. """ from scipy.ndimage.morphology import binary_dilation mask_noise = binary_dilation(mask, iterations=10) mask_noise[..., :mask_noise.shape[-1]//2] = 1 mask_noise = ~mask_noise mask_noise_img = nib.Nifti1Image(mask_noise.astype(np.uint8), affine) nib.save(mask_noise_img, 'mask_noise.nii.gz') noise_std = np.std(data[mask_noise, :]) """We can now compute the SNR for each DWI. For example, report SNR for DW images with gradient direction that lies the closest to the X, Y and Z axes. """ # Exclude null bvecs from the search idx = np.sum(gtab.bvecs, axis=-1) == 0 gtab.bvecs[idx] = np.inf axis_X = np.argmin(np.sum((gtab.bvecs-np.array([1, 0, 0]))**2, axis=-1)) axis_Y = np.argmin(np.sum((gtab.bvecs-np.array([0, 1, 0]))**2, axis=-1)) axis_Z = np.argmin(np.sum((gtab.bvecs-np.array([0, 0, 1]))**2, axis=-1)) for direction in [0, axis_X, axis_Y, axis_Z]: SNR = mean_signal[direction]/noise_std if direction == 0 : print("SNR for the b=0 image is :", SNR) else : print("SNR for direction", direction, " ", gtab.bvecs[direction], "is :", SNR) """SNR for the b=0 image is : ''42.0695455758''""" """SNR for direction 58 [ 0.98875 0.1177 -0.09229] is : ''5.46995373635''""" """SNR for direction 57 [-0.05039 0.99871 0.0054406] is : ''23.9329492871''""" """SNR for direction 126 [-0.11825 -0.039925 0.99218 ] is : ''23.9965694823''""" """ Since the CC is aligned with the X axis, the lowest SNR is for that gradient direction. In comparison, the DW images in the perpendical Y and Z axes have a high SNR. The b0 still exhibits the highest SNR, since there is no signal attenuation. Hence, we can say the Stanford diffusion data has a 'worst-case' SNR of approximately 5, a 'best-case' SNR of approximately 24, and a SNR of 42 on the b0 image. """ """ References: .. [1] Descoteaux, M., Deriche, R., Le Bihan, D., Mangin, J.-F., and Poupon, C. Multiple q-shell diffusion propagator imaging. Medical image analysis, 15(4), 603, 2011. .. [2] Jones, D. K., Knosche, T. R., & Turner, R. White Matter Integrity, Fiber Count, and Other Fallacies: The Dos and Don'ts of Diffusion MRI. NeuroImage, 73, 239, 2013. """
bsd-3-clause
iABC2XYZ/abc
DM_RFGAP/Test1.py
1
1355
#!/usr/bin/env python2 # -*- coding: utf-8 -*- """ Created on Wed Jul 26 08:29:25 2017 @author: A """ import numpy as np import tensorflow as tf import matplotlib.pyplot as plt from BetaGammaC import * from GenPartilces import * from EmitNG import * from Statistics import * from BasicInput import * WeightsAlphaT=tf.Variable(tf.random_uniform(shape=[3],minval=-1.,maxval=1.)) WeightsBetaT=tf.Variable(tf.random_uniform(shape=[3],minval=0.1,maxval=4.)) WeightsPotential=tf.Variable(tf.random_uniform(shape=[numCav],minval=30.,maxval=200.)) WeightsPhis=tf.Variable(tf.random_uniform(shape=[numCav],minval=-np.pi/2.,maxval=np.pi/2.)) ################################################################# constEmitG=EmitN2G(constEnergyInMeV,constEmitN) x,xp,y,yp,z,zp=Gen6DPart5Twiss(constEmitG,WeightsAlphaT,WeightsBetaT,numPart) emitT,alphaT,betaT,gammaT=GetTwiss6D(x,xp,y,yp,z,zp) init=tf.global_variables_initializer() with tf.Session() as sess: sess.run(init) print sess.run(constEmitG) print sess.run(emitT) print "_________________" print(sess.run(WeightsAlphaT)) print(sess.run(alphaT)) print "_________________" print(sess.run(WeightsBetaT)) print(sess.run(betaT)) print "_________________" print sess.run(constEmitN) print sess.run(EmitG2N(constEnergyInMeV,emitT)) print('OK')
gpl-3.0
meteorcloudy/tensorflow
tensorflow/examples/learn/hdf5_classification.py
75
2899
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Example of DNNClassifier for Iris plant dataset, hdf5 format.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np from sklearn import datasets from sklearn import metrics from sklearn import model_selection import tensorflow as tf import h5py # pylint: disable=g-bad-import-order X_FEATURE = 'x' # Name of the input feature. def main(unused_argv): # Load dataset. iris = datasets.load_iris() x_train, x_test, y_train, y_test = model_selection.train_test_split( iris.data, iris.target, test_size=0.2, random_state=42) # Note that we are saving and load iris data as h5 format as a simple # demonstration here. h5f = h5py.File('/tmp/test_hdf5.h5', 'w') h5f.create_dataset('X_train', data=x_train) h5f.create_dataset('X_test', data=x_test) h5f.create_dataset('y_train', data=y_train) h5f.create_dataset('y_test', data=y_test) h5f.close() h5f = h5py.File('/tmp/test_hdf5.h5', 'r') x_train = np.array(h5f['X_train']) x_test = np.array(h5f['X_test']) y_train = np.array(h5f['y_train']) y_test = np.array(h5f['y_test']) # Build 3 layer DNN with 10, 20, 10 units respectively. feature_columns = [ tf.feature_column.numeric_column( X_FEATURE, shape=np.array(x_train).shape[1:])] classifier = tf.estimator.DNNClassifier( feature_columns=feature_columns, hidden_units=[10, 20, 10], n_classes=3) # Train. train_input_fn = tf.estimator.inputs.numpy_input_fn( x={X_FEATURE: x_train}, y=y_train, num_epochs=None, shuffle=True) classifier.train(input_fn=train_input_fn, steps=200) # Predict. test_input_fn = tf.estimator.inputs.numpy_input_fn( x={X_FEATURE: x_test}, y=y_test, num_epochs=1, shuffle=False) predictions = classifier.predict(input_fn=test_input_fn) y_predicted = np.array(list(p['class_ids'] for p in predictions)) y_predicted = y_predicted.reshape(np.array(y_test).shape) # Score with sklearn. score = metrics.accuracy_score(y_test, y_predicted) print('Accuracy (sklearn): {0:f}'.format(score)) # Score with tensorflow. scores = classifier.evaluate(input_fn=test_input_fn) print('Accuracy (tensorflow): {0:f}'.format(scores['accuracy'])) if __name__ == '__main__': tf.app.run()
apache-2.0
low-sky/cohrscld
cloudplots.py
1
1779
import matplotlib as mpl import matplotlib.pyplot as plt import numpy as np from astropy.table import Table mpl.rcParams['font.family'] = 'serif' mpl.rcParams['font.serif'] = ['Times New Roman'] mpl.rcParams['font.size'] = 14 mpl.rc('xtick', labelsize=14) mpl.rc('ytick', labelsize=14) t = Table.read('cohrs_sfecat2.fits') mlum = t['mlum_msun'] R0 = 8.5e3 rgal = (R0**2+t['distance']**2-2*R0*t['distance']*np.cos(t['x_coor']*np.pi/180))**0.5 bins = 5 edges = np.linspace(0, 100, bins+1) plt.clf() fig = plt.figure(figsize=(5, 4)) ax = fig.add_subplot(111, aspect='equal') for pmin, pmax in zip(edges[0:-1], edges[1:]): rmin = np.percentile(rgal, pmin) rmax = np.percentile(rgal, pmax) idx = (rgal >= rmin) * (rgal < rmax) m = np.sort(mlum[idx]) n = np.sum(idx) plt.loglog(m, np.linspace(n, 1, n), label='{0:2.1f} kpc - {1:2.1f} kpc'.format(rmin / 1e3, rmax / 1e3), drawstyle='steps') plt.xlim([1e1, 2e6]) plt.xlabel(r'Mass ($M_\odot$)') plt.ylabel(r'$N(>M)$') plt.legend(loc='lower left', fontsize=12) plt.grid() plt.tight_layout() plt.savefig('mass_spec.png',dpi=300) edges = np.array([15,25,35,45,55]) plt.clf() fig = plt.figure(figsize=(5,5)) ax = fig.add_subplot(111,aspect='equal') for lmin,lmax in zip(edges[0:-1],edges[1:]): idx = (t['x_coor']>=lmin)*(t['x_coor']<lmax) m = np.sort(mlum[idx]) n = np.sum(idx) plt.loglog(m,np.linspace(n,1,n), label=r'{0:2.0f}$^\circ$ < $\ell$ < {1:2.0f}$^\circ$'.format(lmin,lmax), drawstyle='steps') plt.xlim([1e1,1e7]) plt.xlabel(r'Mass ($M_\odot$)',size=16) plt.ylabel(r'$N(>M)$',size=16) plt.legend() plt.tight_layout() plt.savefig('mass_angle_spec.png', dpi=300)
gpl-3.0
Erechtheus/geolocation
TrainIndividualModelsCNN.py
1
20093
#Some code to train CNN's instead of LSTMs #Performance slightly lower than LSTM #Load stuff: from sklearn.utils import shuffle import os from keras.callbacks import EarlyStopping, ReduceLROnPlateau os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID" # see issue #152 os.environ["CUDA_VISIBLE_DEVICES"] = "" import pickle import numpy as np import time from keras.layers import Dropout, Dense, BatchNormalization, SpatialDropout1D, Conv1D, GlobalMaxPooling1D from keras.layers.embeddings import Embedding import math import datetime from keras import Input from keras import Model import json #Load configuration from file if os.path.isfile('config.json'): print("Loading configutation from configuration file {config.json}") with open('config.json') as json_file: config = json.load(json_file) binaryPath = config['binaryPath'] modelPath = config['modelPath'] else: print("Configuration file {config.json} not found") binaryPath = 'data/binaries/' # Place where the serialized training data is modelPath = 'data/models/' # Place to store the models #Load preprocessed data... file = open(binaryPath +"processors.obj",'rb') descriptionTokenizer, domainEncoder, tldEncoder, locationTokenizer, sourceEncoder, textTokenizer, nameTokenizer, timeZoneTokenizer, utcEncoder, langEncoder, placeMedian, colnames, classEncoder = pickle.load(file) file = open(binaryPath +"data.obj",'rb') trainDescription, trainLocation, trainDomain, trainTld, trainSource, trainTexts, trainUserName, trainTZ, trainUtc, trainUserLang, trainCreatedAt, classes= pickle.load(file) #Shuffle train-data trainDescription, trainLocation, trainDomain, trainTld, trainSource, trainTexts, trainUserName, trainTZ, trainUtc, trainUserLang, trainCreatedAt, classes = shuffle(trainDescription, trainLocation, trainDomain, trainTld, trainSource, trainTexts, trainUserName, trainTZ, trainUtc, trainUserLang, trainCreatedAt, classes, random_state=1202) ##################Train # create the model batch_size = 256 nb_epoch = 5 verbosity=2 filters = 450 kernel_size = 3 descriptionEmbeddings = 100 locEmbeddings = 50 textEmbeddings = 100 nameEmbeddings = 100 tzEmbeddings = 50 validation_split = 0.01 #91279 samples for validation callbacks = [ # EarlyStopping(monitor='val_loss', min_delta=1e-4, patience=2, verbose=1, restore_best_weights=True), # ReduceLROnPlateau(monitor='val_loss', factor=0.1, min_delta=1e-4, patience=2, cooldown=1, verbose=1), ## ModelCheckpoint(filepath='twitter.h5', monitor='loss', verbose=0, save_best_only=True), ] #################### #1.) Description Model descriptionBranchI = Input(shape=(None,), name="inputDescription") descriptionBranch = Embedding(descriptionTokenizer.num_words, descriptionEmbeddings, #input_length=MAX_DESC_SEQUENCE_LENGTH, #mask_zero=True )(descriptionBranchI) descriptionBranch = SpatialDropout1D(rate=0.2)(descriptionBranch) #Masks the same embedding element for all tokens descriptionBranch = BatchNormalization()(descriptionBranch) descriptionBranch = Dropout(0.2)(descriptionBranch) descriptionBranch = Conv1D(filters,kernel_size, padding='valid',activation='relu', strides=1)(descriptionBranch) descriptionBranch = GlobalMaxPooling1D()(descriptionBranch) descriptionBranch = BatchNormalization()(descriptionBranch) descriptionBranch = Dropout(0.2, name="description")(descriptionBranch) descriptionBranchO = Dense(len(set(classes)), activation='softmax')(descriptionBranch) descriptionModel = Model(inputs=descriptionBranchI, outputs=descriptionBranchO) descriptionModel.compile(loss='sparse_categorical_crossentropy', optimizer='adam', metrics=['accuracy']) start = time.time() descriptionHistory = descriptionModel.fit(trainDescription, classes, epochs=nb_epoch, batch_size=batch_size, verbose=verbosity, validation_split=validation_split,callbacks=callbacks ) print("descriptionBranch finished after " +str(datetime.timedelta(seconds=round(time.time() - start)))) descriptionModel.save(modelPath +'descriptionBranchNorm.h5') ##################### #2a.) Link Model for Domain categorial = np.zeros((len(trainDomain), len(domainEncoder.classes_)), dtype="bool") for i in range(len(trainDomain)): categorial[i, trainDomain[i]] = True trainDomain = categorial domainBranchI = Input(shape=(trainDomain.shape[1],), name="inputDomain") domainBranch = Dense(int(math.log2(trainDomain.shape[1])), input_shape=(trainDomain.shape[1],), activation='relu')(domainBranchI) domainBranch = BatchNormalization()(domainBranch) domainBranch = Dropout(0.2, name="domainName")(domainBranch) domainBranchO = Dense(len(set(classes)), activation='softmax')(domainBranch) domainModel = Model(inputs=domainBranchI, outputs=domainBranchO) domainModel.compile(loss='sparse_categorical_crossentropy', optimizer='adam', metrics=['accuracy']) start = time.time() sourceHistory = domainModel.fit(trainDomain, classes, epochs=nb_epoch, batch_size=batch_size, verbose=verbosity, validation_split=validation_split,callbacks=callbacks ) print("tldBranch finished after " +str(datetime.timedelta(seconds=round(time.time() - start)))) domainModel.save(modelPath + 'domainBranch.h5') #2b.) Link Model for TLD categorial = np.zeros((len(trainTld), len(tldEncoder.classes_)), dtype="bool") for i in range(len(trainTld)): categorial[i, trainTld[i]] = True trainTld = categorial tldBranchI = Input(shape=(trainTld.shape[1],), name="inputTld") tldBranch = Dense(int(math.log2(trainTld.shape[1])), input_shape=(trainTld.shape[1],), activation='relu')(tldBranchI) tldBranch = BatchNormalization()(tldBranch) tldBranch = Dropout(0.2, name="tld")(tldBranch) tldBranchO = Dense(len(set(classes)), activation='softmax')(tldBranch) tldBranchModel = Model(inputs=tldBranchI, outputs=tldBranchO) tldBranchModel.compile(loss='sparse_categorical_crossentropy', optimizer='adam', metrics=['accuracy']) start = time.time() sourceHistory = tldBranchModel.fit(trainTld, classes, epochs=nb_epoch, batch_size=batch_size, verbose=verbosity, validation_split=validation_split,callbacks=callbacks ) print("tldBranch finished after " +str(datetime.timedelta(seconds=round(time.time() - start)))) tldBranchModel.save(modelPath + 'tldBranch.h5') #2c.)Merged Model linkBranchI= Input(shape=((trainDomain.shape[1] + trainTld.shape[1]),), name="inputLink") linkBranch = Dense(int(math.log2(trainDomain.shape[1] + trainTld.shape[1])), input_shape=((trainDomain.shape[1] + trainTld.shape[1]),), activation='relu')(linkBranchI) linkBranch = BatchNormalization()(linkBranch) linkBranch = Dropout(0.2, name="linkModel")(linkBranch) linkBranchO = Dense(len(set(classes)), activation='softmax')(linkBranch) linkModel = Model(inputs=linkBranchI, outputs=linkBranchO) linkModel.compile(loss='sparse_categorical_crossentropy', optimizer='adam', metrics=['accuracy']) start = time.time() sourceHistory = linkModel.fit(np.concatenate((trainDomain, trainTld), axis=1), classes, epochs=nb_epoch, batch_size=batch_size, verbose=verbosity, validation_split=validation_split,callbacks=callbacks ) print("linkModel finished after " +str(datetime.timedelta(seconds=round(time.time() - start)))) linkModel.save(modelPath + 'linkModel.h5') ##################### #3.) location Model locationBranchI = Input(shape=(None,), name="inputLocation") locationBranch = Embedding(locationTokenizer.num_words, locEmbeddings, #input_length=MAX_LOC_SEQUENCE_LENGTH, #mask_zero=True )(locationBranchI) locationBranch = SpatialDropout1D(rate=0.2)(locationBranch)#Masks the same embedding element for all tokens locationBranch = BatchNormalization()(locationBranch) locationBranch = Dropout(0.2)(locationBranch) locationBranch = Conv1D(filters,kernel_size, padding='valid',activation='relu', strides=1)(locationBranch) locationBranch = GlobalMaxPooling1D()(locationBranch) locationBranch = BatchNormalization()(locationBranch) locationBranch = Dropout(0.2, name="location")(locationBranch) locationBranchO = Dense(len(set(classes)), activation='softmax')(locationBranch) locationModel = Model(inputs=locationBranchI, outputs=locationBranchO) locationModel.compile(loss='sparse_categorical_crossentropy', optimizer='adam', metrics=['accuracy']) start = time.time() locationHistory = locationModel.fit(trainLocation, classes, epochs=nb_epoch, batch_size=batch_size, verbose=verbosity, validation_split=validation_split,callbacks=callbacks ) print("locationHistory finished after " +str(datetime.timedelta(seconds=round(time.time() - start)))) locationModel.save(modelPath +'locationBranchNorm.h5') ##################### #4.) Source Mode categorial = np.zeros((len(trainSource), len(sourceEncoder.classes_)), dtype="bool") for i in range(len(trainSource)): categorial[i, trainSource[i]] = True trainSource = categorial sourceBranchI = Input(shape=(trainSource.shape[1],), name="inputSource") sourceBranch = Dense(int(math.log2(trainSource.shape[1])), input_shape=(trainSource.shape[1],), activation='relu')(sourceBranchI) sourceBranch = BatchNormalization()(sourceBranch) sourceBranch = Dropout(0.2, name="source")(sourceBranch) sourceBranchO = Dense(len(set(classes)), activation='softmax')(sourceBranch) sourceModel = Model(inputs=sourceBranchI, outputs=sourceBranchO) sourceModel.compile(loss='sparse_categorical_crossentropy', optimizer='adam', metrics=['accuracy']) start = time.time() sourceHistory = sourceModel.fit(trainSource, classes, epochs=nb_epoch, batch_size=batch_size, verbose=verbosity, validation_split=validation_split,callbacks=callbacks ) print("sourceBranch finished after " +str(datetime.timedelta(seconds=round(time.time() - start)))) sourceModel.save(modelPath +'sourceBranch.h5') ##################### #5.) Text Model textBranchI = Input(shape=(None,), name="inputText") textBranch = Embedding(textTokenizer.num_words, textEmbeddings, #input_length=MAX_TEXT_SEQUENCE_LENGTH, #mask_zero=True )(textBranchI) textBranch = SpatialDropout1D(rate=0.2)(textBranch) #Masks the same embedding element for all tokens textBranch = BatchNormalization()(textBranch) textBranch = Dropout(0.2)(textBranch) textBranch = Conv1D(filters,kernel_size, padding='valid',activation='relu', strides=1)(textBranch) textBranch = GlobalMaxPooling1D()(textBranch) textBranch = BatchNormalization()(textBranch) textBranch = Dropout(0.2, name="text")(textBranch) textBranchO = Dense(len(set(classes)), activation='softmax')(textBranch) textModel = Model(inputs=textBranchI, outputs=textBranchO) textModel.compile(loss='sparse_categorical_crossentropy', optimizer='adam', metrics=['accuracy']) start = time.time() textHistory = textModel.fit(trainTexts, classes, epochs=nb_epoch, batch_size=batch_size, verbose=verbosity, validation_split=validation_split,callbacks=callbacks ) print("textBranch finished after " +str(datetime.timedelta(seconds=round(time.time() - start)))) textModel.save(modelPath +'textBranchNorm.h5') ##################### # 6.) Name Model nameBranchI = Input(shape=(None,), name="inputName") nameBranch = Embedding(nameTokenizer.num_words, nameEmbeddings, #input_length=MAX_NAME_SEQUENCE_LENGTH, #mask_zero=True )(nameBranchI) nameBranch = SpatialDropout1D(rate=0.2)(nameBranch) #Masks the same embedding element for all tokens nameBranch = BatchNormalization()(nameBranch) nameBranch = Dropout(0.2)(nameBranch) nameBranch = Conv1D(filters,kernel_size, padding='valid',activation='relu', strides=1)(nameBranch) nameBranch = GlobalMaxPooling1D()(nameBranch) nameBranch = BatchNormalization()(nameBranch) nameBranch = Dropout(0.2, name="username")(nameBranch) nameBranchO = Dense(len(set(classes)), activation='softmax')(nameBranch) nameModel = Model(inputs=nameBranchI, outputs=nameBranchO) nameModel.compile(loss='sparse_categorical_crossentropy', optimizer='adam', metrics=['accuracy']) start = time.time() nameHistory = nameModel.fit(trainUserName, classes, epochs=nb_epoch, batch_size=batch_size, verbose=verbosity, validation_split=validation_split,callbacks=callbacks ) print("nameBranch finished after " +str(datetime.timedelta(seconds=round(time.time() - start)))) nameModel.save(modelPath +'nameBranchNorm.h5') ##################### # 7.) TimeZone Model tzBranchI = Input(shape=(None,), name="inputTimeZone") tzBranch = Embedding(timeZoneTokenizer.num_words, tzEmbeddings, #input_length=MAX_TZ_SEQUENCE_LENGTH, #mask_zero=True )(tzBranchI) tzBranch = SpatialDropout1D(rate=0.2)(tzBranch) #Masks the same embedding element for all tokens tzBranch = BatchNormalization()(tzBranch) tzBranch = Dropout(0.2)(tzBranch) tzBranch = Conv1D(filters,kernel_size, padding='valid',activation='relu', strides=1)(tzBranch) tzBranch = GlobalMaxPooling1D()(tzBranch) tzBranch = BatchNormalization()(tzBranch) tzBranch = Dropout(0.2, name="timezone")(tzBranch) tzBranchO = Dense(len(set(classes)), activation='softmax')(tzBranch) tzBranchModel = Model(inputs=tzBranchI, outputs=tzBranchO) tzBranchModel.compile(loss='sparse_categorical_crossentropy', optimizer='adam', metrics=['accuracy']) start = time.time() tzHistory = tzBranchModel.fit(trainTZ, classes, epochs=nb_epoch, batch_size=batch_size, verbose=verbosity, validation_split=validation_split,callbacks=callbacks ) print("tzBranch finished after " +str(datetime.timedelta(seconds=round(time.time() - start)))) tzBranchModel.save(modelPath +'tzBranchNorm.h5') ##################### # 8.) UTC Model categorial = np.zeros((len(trainUtc), len(utcEncoder.classes_)), dtype="bool") for i in range(len(trainUtc)): categorial[i, trainUtc[i]] = True trainUtc = categorial utcBranchI = Input(shape=(trainUtc.shape[1],), name="inputUTC") utcBranch = Dense(int(math.log2(trainUtc.shape[1])), activation='relu')(utcBranchI) utcBranch = BatchNormalization()(utcBranch) utcBranch = Dropout(0.2, name="utc")(utcBranch) utcBranchO = Dense(len(set(classes)), activation='softmax')(utcBranch) utcBranchModel = Model(inputs=utcBranchI, outputs=utcBranchO) utcBranchModel.compile(loss='sparse_categorical_crossentropy', optimizer='adam', metrics=['accuracy']) start = time.time() utcHistory = utcBranchModel.fit(trainUtc, classes, epochs=nb_epoch, batch_size=batch_size, verbose=verbosity, validation_split=validation_split,callbacks=callbacks ) print("utcBranch finished after " +str(datetime.timedelta(seconds=round(time.time() - start)))) utcBranchModel.save(modelPath +'utcBranch.h5') #9) "User Language categorial = np.zeros((len(trainUserLang), len(langEncoder.classes_)), dtype="bool") for i in range(len(trainUserLang)): categorial[i, trainUserLang[i]] = True trainUserLang = categorial userLangBranchI = Input(shape=(trainUserLang.shape[1],), name="inputUserLang") userLangBranch = Dense(int(math.log2(trainUserLang.shape[1])),input_shape=(trainUserLang.shape[1],), activation='relu')(userLangBranchI) userLangBranch = BatchNormalization()(userLangBranch) userLangBranch = Dropout(0.2, name="userLang")(userLangBranch) userLangBranchO = Dense(len(set(classes)), activation='softmax')(userLangBranch) userLangModel = Model(inputs=userLangBranchI, outputs=userLangBranchO) userLangModel.compile(loss='sparse_categorical_crossentropy', optimizer='adam', metrics=['accuracy']) start = time.time() userLangHistory = userLangModel.fit(trainUserLang, classes, epochs=nb_epoch, batch_size=batch_size, verbose=verbosity, validation_split=validation_split,callbacks=callbacks ) print("userLangBranch finished after " +str(datetime.timedelta(seconds=round(time.time() - start)))) userLangModel.save(modelPath +'userLangBranch.h5') #10a Tweet-time (as number) tweetTimeBranchI = Input(shape=(trainCreatedAt.shape[1],), name="inputTweetTime") tweetTimeBranch = Dense(2, name="tweetTime")(tweetTimeBranchI)# simple-no-operation layer, which is used in the merged model especially tweetTimeBranchO = Dense(len(set(classes)), activation='softmax')(tweetTimeBranch) tweetTimeModel = Model(inputs=tweetTimeBranchI, outputs=tweetTimeBranchO) tweetTimeModel.compile(loss='sparse_categorical_crossentropy', optimizer='adam', metrics=['accuracy']) start = time.time() timeHistory = tweetTimeModel.fit(trainCreatedAt, classes, epochs=nb_epoch, batch_size=batch_size, verbose=verbosity, validation_split=validation_split,callbacks=callbacks ) print("tweetTimeModel finished after " +str(datetime.timedelta(seconds=round(time.time() - start)))) tweetTimeModel.save(modelPath + 'tweetTimeBranch.h5') #10) #Tweet-Time (120-categorial; instead of number) """ categorial = np.zeros((len(trainCreatedAt), len(timeEncoder.classes_)), dtype="bool") for i in range(len(trainCreatedAt)): categorial[i, trainCreatedAt[i]] = True trainCreatedAt = categorial tweetTimeBranchI = Input(shape=(trainCreatedAt.shape[1],), name="inputTweetTime") tweetTimeBranch = Dense(int(math.log2(trainCreatedAt.shape[1])), input_shape=(trainCreatedAt.shape[1],), activation='relu')(tweetTimeBranchI) tweetTimeBranch = BatchNormalization()(tweetTimeBranch) tweetTimeBranch = Dropout(0.2, name="tweetTime")(tweetTimeBranch) tweetTimeBranchO = Dense(len(set(classes)), activation='softmax')(tweetTimeBranch) tweetTimeModel = Model(inputs=tweetTimeBranchI, outputs=tweetTimeBranchO) tweetTimeModel.compile(loss='sparse_categorical_crossentropy', optimizer='adam', metrics=['accuracy']) start = time.time() timeHistory = tweetTimeModel.fit(trainCreatedAt, classes, epochs=nb_epoch, batch_size=batch_size, verbose=verbosity, validation_split=validation_split,callbacks=callbacks ) print("tweetTimeModel finished after " +str(datetime.timedelta(seconds=round(time.time() - start)))) tweetTimeModel.save(modelPath + 'tweetTimeBranch.h5') """ #11) Merged sequential model trainData = np.concatenate((trainDomain, trainTld, trainSource, trainUserLang), axis=1) categorialBranchI = Input(shape=(trainData.shape[1],), name="inputCategorial") categorialBranch = Dense(int(math.log2(trainData.shape[1])), input_shape=(trainData.shape[1],), activation='relu')(categorialBranchI) categorialBranch = BatchNormalization()(categorialBranch) categorialBranch = Dropout(0.2, name="categorialModel")(categorialBranch) categorialBranchO = Dense(len(set(classes)), activation='softmax')(categorialBranch) categorialModel = Model(inputs=categorialBranchI, outputs=categorialBranchO) categorialModel.compile(loss='sparse_categorical_crossentropy', optimizer='adam', metrics=['accuracy']) start = time.time() categorialModelHistory = categorialModel.fit(trainData, classes, epochs=nb_epoch, batch_size=batch_size, verbose=verbosity, validation_split=validation_split,callbacks=callbacks ) print("categorialModel finished after " +str(datetime.timedelta(seconds=time.time() - start))) categorialModel.save(modelPath + 'categorialModel.h5')
gpl-3.0
nhuntwalker/astroML
book_figures/appendix/fig_sdss_filters.py
3
2175
r""" SDSS Filters ------------ Figure C.1 The five SDSS filters, showing the total transmission taking into account atmospheric transmission and instrumental effects such as CCD efficiency. Shown for reference is the spectrum (:math:`F_\lambda`) of a star similar to Vega (alpha-Lyr), which for many years was used as a reference flux for magnitude calibration. """ # Author: Jake VanderPlas # License: BSD # The figure produced by this code is published in the textbook # "Statistics, Data Mining, and Machine Learning in Astronomy" (2013) # For more information, see http://astroML.github.com # To report a bug or issue, use the following forum: # https://groups.google.com/forum/#!forum/astroml-general from matplotlib import pyplot as plt from astroML.datasets import fetch_sdss_filter, fetch_vega_spectrum #---------------------------------------------------------------------- # This function adjusts matplotlib settings for a uniform feel in the textbook. # Note that with usetex=True, fonts are rendered with LaTeX. This may # result in an error if LaTeX is not installed on your system. In that case, # you can set usetex to False. from astroML.plotting import setup_text_plots setup_text_plots(fontsize=8, usetex=True) #------------------------------------------------------------ # Set up figure and axes fig = plt.figure(figsize=(5, 3.75)) ax = fig.add_subplot(111) #---------------------------------------------------------------------- # Fetch and plot the Vega spectrum spec = fetch_vega_spectrum() lam = spec[0] spectrum = spec[1] / 2.1 / spec[1].max() ax.plot(lam, spectrum, '-k') #------------------------------------------------------------ # Fetch and plot the five filters text_kwargs = dict(ha='center', va='center', alpha=0.5, fontsize=14) for f, c, loc in zip('ugriz', 'bgrmk', [3500, 4600, 6100, 7500, 8800]): data = fetch_sdss_filter(f) ax.fill(data[0], data[1], ec=c, fc=c, alpha=0.4) ax.text(loc, 0.02, f, color=c, **text_kwargs) ax.set_xlim(3000, 11000) ax.set_title('SDSS Filters and Reference Spectrum') ax.set_xlabel('Wavelength (Angstroms)') ax.set_ylabel('normalized flux / filter transmission') plt.show()
bsd-2-clause
winklerand/pandas
pandas/core/series.py
1
107124
""" Data structure for 1-dimensional cross-sectional and time series data """ from __future__ import division # pylint: disable=E1101,E1103 # pylint: disable=W0703,W0622,W0613,W0201 import types import warnings from textwrap import dedent import numpy as np import numpy.ma as ma from pandas.core.dtypes.common import ( is_categorical_dtype, is_bool, is_integer, is_integer_dtype, is_float_dtype, is_extension_type, is_datetime64tz_dtype, is_timedelta64_dtype, is_list_like, is_hashable, is_iterator, is_dict_like, is_scalar, _is_unorderable_exception, _ensure_platform_int, pandas_dtype) from pandas.core.dtypes.generic import ( ABCSparseArray, ABCDataFrame, ABCIndexClass) from pandas.core.dtypes.cast import ( maybe_upcast, infer_dtype_from_scalar, maybe_convert_platform, maybe_cast_to_datetime, maybe_castable, construct_1d_arraylike_from_scalar) from pandas.core.dtypes.missing import isna, notna, remove_na_arraylike from pandas.core.common import (is_bool_indexer, _default_index, _asarray_tuplesafe, _values_from_object, _maybe_match_name, SettingWithCopyError, _maybe_box_datetimelike, standardize_mapping, _any_none) from pandas.core.index import (Index, MultiIndex, InvalidIndexError, Float64Index, _ensure_index) from pandas.core.indexing import check_bool_indexer, maybe_convert_indices from pandas.core import generic, base from pandas.core.internals import SingleBlockManager from pandas.core.categorical import Categorical, CategoricalAccessor import pandas.core.strings as strings from pandas.core.indexes.accessors import CombinedDatetimelikeProperties from pandas.core.indexes.datetimes import DatetimeIndex from pandas.core.indexes.timedeltas import TimedeltaIndex from pandas.core.indexes.period import PeriodIndex from pandas import compat from pandas.io.formats.terminal import get_terminal_size from pandas.compat import ( zip, u, OrderedDict, StringIO, range, get_range_parameters) from pandas.compat.numpy import function as nv from pandas.core import accessor import pandas.core.ops as ops import pandas.core.algorithms as algorithms import pandas.core.common as com import pandas.core.nanops as nanops import pandas.io.formats.format as fmt from pandas.util._decorators import ( Appender, deprecate, deprecate_kwarg, Substitution) from pandas.util._validators import validate_bool_kwarg from pandas._libs import index as libindex, tslib as libts, lib, iNaT from pandas.core.config import get_option import pandas.plotting._core as gfx __all__ = ['Series'] _shared_doc_kwargs = dict( axes='index', klass='Series', axes_single_arg="{0, 'index'}", inplace="""inplace : boolean, default False If True, performs operation inplace and returns None.""", unique='np.ndarray', duplicated='Series', optional_by='', optional_mapper='', optional_labels='', optional_axis='', versionadded_to_excel='\n .. versionadded:: 0.20.0\n') # see gh-16971 def remove_na(arr): """ DEPRECATED : this function will be removed in a future version. """ warnings.warn("remove_na is deprecated and is a private " "function. Do not use.", FutureWarning, stacklevel=2) return remove_na_arraylike(arr) def _coerce_method(converter): """ install the scalar coercion methods """ def wrapper(self): if len(self) == 1: return converter(self.iloc[0]) raise TypeError("cannot convert the series to " "{0}".format(str(converter))) return wrapper # ---------------------------------------------------------------------- # Series class class Series(base.IndexOpsMixin, generic.NDFrame): """ One-dimensional ndarray with axis labels (including time series). Labels need not be unique but must be a hashable type. The object supports both integer- and label-based indexing and provides a host of methods for performing operations involving the index. Statistical methods from ndarray have been overridden to automatically exclude missing data (currently represented as NaN). Operations between Series (+, -, /, *, **) align values based on their associated index values-- they need not be the same length. The result index will be the sorted union of the two indexes. Parameters ---------- data : array-like, dict, or scalar value Contains data stored in Series index : array-like or Index (1d) Values must be hashable and have the same length as `data`. Non-unique index values are allowed. Will default to RangeIndex(len(data)) if not provided. If both a dict and index sequence are used, the index will override the keys found in the dict. dtype : numpy.dtype or None If None, dtype will be inferred copy : boolean, default False Copy input data """ _metadata = ['name'] _accessors = frozenset(['dt', 'cat', 'str']) _deprecations = generic.NDFrame._deprecations | frozenset( ['sortlevel', 'reshape', 'get_value', 'set_value', 'from_csv']) _allow_index_ops = True def __init__(self, data=None, index=None, dtype=None, name=None, copy=False, fastpath=False): # we are called internally, so short-circuit if fastpath: # data is an ndarray, index is defined if not isinstance(data, SingleBlockManager): data = SingleBlockManager(data, index, fastpath=True) if copy: data = data.copy() if index is None: index = data.index else: if index is not None: index = _ensure_index(index) if data is None: data = {} if dtype is not None: dtype = self._validate_dtype(dtype) if isinstance(data, MultiIndex): raise NotImplementedError("initializing a Series from a " "MultiIndex is not supported") elif isinstance(data, Index): # need to copy to avoid aliasing issues if name is None: name = data.name data = data._to_embed(keep_tz=True, dtype=dtype) copy = False elif isinstance(data, np.ndarray): pass elif isinstance(data, Series): if name is None: name = data.name if index is None: index = data.index else: data = data.reindex(index, copy=copy) data = data._data elif isinstance(data, dict): data, index = self._init_dict(data, index, dtype) dtype = None copy = False elif isinstance(data, SingleBlockManager): if index is None: index = data.index else: data = data.reindex(index, copy=copy) elif isinstance(data, Categorical): # GH12574: Allow dtype=category only, otherwise error if ((dtype is not None) and not is_categorical_dtype(dtype)): raise ValueError("cannot specify a dtype with a " "Categorical unless " "dtype='category'") elif (isinstance(data, types.GeneratorType) or (compat.PY3 and isinstance(data, map))): data = list(data) elif isinstance(data, (set, frozenset)): raise TypeError("{0!r} type is unordered" "".format(data.__class__.__name__)) else: # handle sparse passed here (and force conversion) if isinstance(data, ABCSparseArray): data = data.to_dense() if index is None: if not is_list_like(data): data = [data] index = _default_index(len(data)) # create/copy the manager if isinstance(data, SingleBlockManager): if dtype is not None: data = data.astype(dtype=dtype, errors='ignore', copy=copy) elif copy: data = data.copy() else: data = _sanitize_array(data, index, dtype, copy, raise_cast_failure=True) data = SingleBlockManager(data, index, fastpath=True) generic.NDFrame.__init__(self, data, fastpath=True) self.name = name self._set_axis(0, index, fastpath=True) def _init_dict(self, data, index=None, dtype=None): """ Derive the "_data" and "index" attributes of a new Series from a dictionary input. Parameters ---------- data : dict or dict-like Data used to populate the new Series index : Index or index-like, default None index for the new Series: if None, use dict keys dtype : dtype, default None dtype for the new Series: if None, infer from data Returns ------- _data : BlockManager for the new Series index : index for the new Series """ # Looking for NaN in dict doesn't work ({np.nan : 1}[float('nan')] # raises KeyError), so we iterate the entire dict, and align if data: keys, values = zip(*compat.iteritems(data)) else: keys, values = [], [] # Input is now list-like, so rely on "standard" construction: s = Series(values, index=keys, dtype=dtype) # Now we just make sure the order is respected, if any if index is not None: s = s.reindex(index, copy=False) elif not isinstance(data, OrderedDict): try: s = s.sort_index() except TypeError: pass return s._data, s.index @classmethod def from_array(cls, arr, index=None, name=None, dtype=None, copy=False, fastpath=False): """ DEPRECATED: use the pd.Series(..) constructor instead. """ warnings.warn("'from_array' is deprecated and will be removed in a " "future version. Please use the pd.Series(..) " "constructor instead.", FutureWarning, stacklevel=2) return cls._from_array(arr, index=index, name=name, dtype=dtype, copy=copy, fastpath=fastpath) @classmethod def _from_array(cls, arr, index=None, name=None, dtype=None, copy=False, fastpath=False): """ Internal method used in DataFrame.__setitem__/__getitem__. Difference with Series(..) is that this method checks if a sparse array is passed. """ # return a sparse series here if isinstance(arr, ABCSparseArray): from pandas.core.sparse.series import SparseSeries cls = SparseSeries return cls(arr, index=index, name=name, dtype=dtype, copy=copy, fastpath=fastpath) @property def _constructor(self): return Series @property def _constructor_expanddim(self): from pandas.core.frame import DataFrame return DataFrame # types @property def _can_hold_na(self): return self._data._can_hold_na _index = None def _set_axis(self, axis, labels, fastpath=False): """ override generic, we want to set the _typ here """ if not fastpath: labels = _ensure_index(labels) is_all_dates = labels.is_all_dates if is_all_dates: if not isinstance(labels, (DatetimeIndex, PeriodIndex, TimedeltaIndex)): try: labels = DatetimeIndex(labels) # need to set here becuase we changed the index if fastpath: self._data.set_axis(axis, labels) except (libts.OutOfBoundsDatetime, ValueError): # labels may exceeds datetime bounds, # or not be a DatetimeIndex pass self._set_subtyp(is_all_dates) object.__setattr__(self, '_index', labels) if not fastpath: self._data.set_axis(axis, labels) def _set_subtyp(self, is_all_dates): if is_all_dates: object.__setattr__(self, '_subtyp', 'time_series') else: object.__setattr__(self, '_subtyp', 'series') def _update_inplace(self, result, **kwargs): # we want to call the generic version and not the IndexOpsMixin return generic.NDFrame._update_inplace(self, result, **kwargs) @property def name(self): return self._name @name.setter def name(self, value): if value is not None and not is_hashable(value): raise TypeError('Series.name must be a hashable type') object.__setattr__(self, '_name', value) # ndarray compatibility @property def dtype(self): """ return the dtype object of the underlying data """ return self._data.dtype @property def dtypes(self): """ return the dtype object of the underlying data """ return self._data.dtype @property def ftype(self): """ return if the data is sparse|dense """ return self._data.ftype @property def ftypes(self): """ return if the data is sparse|dense """ return self._data.ftype @property def values(self): """ Return Series as ndarray or ndarray-like depending on the dtype Returns ------- arr : numpy.ndarray or ndarray-like Examples -------- >>> pd.Series([1, 2, 3]).values array([1, 2, 3]) >>> pd.Series(list('aabc')).values array(['a', 'a', 'b', 'c'], dtype=object) >>> pd.Series(list('aabc')).astype('category').values [a, a, b, c] Categories (3, object): [a, b, c] Timezone aware datetime data is converted to UTC: >>> pd.Series(pd.date_range('20130101', periods=3, ... tz='US/Eastern')).values array(['2013-01-01T05:00:00.000000000', '2013-01-02T05:00:00.000000000', '2013-01-03T05:00:00.000000000'], dtype='datetime64[ns]') """ return self._data.external_values() @property def _values(self): """ return the internal repr of this data """ return self._data.internal_values() def _formatting_values(self): """Return the values that can be formatted (used by SeriesFormatter and DataFrameFormatter) """ return self._data.formatting_values() def get_values(self): """ same as values (but handles sparseness conversions); is a view """ return self._data.get_values() @property def asobject(self): """ return object Series which contains boxed values *this is an internal non-public method* """ return self._data.asobject # ops def ravel(self, order='C'): """ Return the flattened underlying data as an ndarray See also -------- numpy.ndarray.ravel """ return self._values.ravel(order=order) def compress(self, condition, *args, **kwargs): """ Return selected slices of an array along given axis as a Series See also -------- numpy.ndarray.compress """ nv.validate_compress(args, kwargs) return self[condition] def nonzero(self): """ Return the indices of the elements that are non-zero This method is equivalent to calling `numpy.nonzero` on the series data. For compatability with NumPy, the return value is the same (a tuple with an array of indices for each dimension), but it will always be a one-item tuple because series only have one dimension. Examples -------- >>> s = pd.Series([0, 3, 0, 4]) >>> s.nonzero() (array([1, 3]),) >>> s.iloc[s.nonzero()[0]] 1 3 3 4 dtype: int64 See Also -------- numpy.nonzero """ return self._values.nonzero() def put(self, *args, **kwargs): """ Applies the `put` method to its `values` attribute if it has one. See also -------- numpy.ndarray.put """ self._values.put(*args, **kwargs) def __len__(self): """ return the length of the Series """ return len(self._data) def view(self, dtype=None): return self._constructor(self._values.view(dtype), index=self.index).__finalize__(self) def __array__(self, result=None): """ the array interface, return my values """ return self.get_values() def __array_wrap__(self, result, context=None): """ Gets called after a ufunc """ return self._constructor(result, index=self.index, copy=False).__finalize__(self) def __array_prepare__(self, result, context=None): """ Gets called prior to a ufunc """ # nice error message for non-ufunc types if context is not None and not isinstance(self._values, np.ndarray): obj = context[1][0] raise TypeError("{obj} with dtype {dtype} cannot perform " "the numpy op {op}".format( obj=type(obj).__name__, dtype=getattr(obj, 'dtype', None), op=context[0].__name__)) return result # complex @property def real(self): return self.values.real @real.setter def real(self, v): self.values.real = v @property def imag(self): return self.values.imag @imag.setter def imag(self, v): self.values.imag = v # coercion __float__ = _coerce_method(float) __long__ = _coerce_method(int) __int__ = _coerce_method(int) def _unpickle_series_compat(self, state): if isinstance(state, dict): self._data = state['_data'] self.name = state['name'] self.index = self._data.index elif isinstance(state, tuple): # < 0.12 series pickle nd_state, own_state = state # recreate the ndarray data = np.empty(nd_state[1], dtype=nd_state[2]) np.ndarray.__setstate__(data, nd_state) # backwards compat index, name = own_state[0], None if len(own_state) > 1: name = own_state[1] # recreate self._data = SingleBlockManager(data, index, fastpath=True) self._index = index self.name = name else: raise Exception("cannot unpickle legacy formats -> [%s]" % state) # indexers @property def axes(self): """Return a list of the row axis labels""" return [self.index] def _ixs(self, i, axis=0): """ Return the i-th value or values in the Series by location Parameters ---------- i : int, slice, or sequence of integers Returns ------- value : scalar (int) or Series (slice, sequence) """ try: # dispatch to the values if we need values = self._values if isinstance(values, np.ndarray): return libindex.get_value_at(values, i) else: return values[i] except IndexError: raise except Exception: if isinstance(i, slice): indexer = self.index._convert_slice_indexer(i, kind='iloc') return self._get_values(indexer) else: label = self.index[i] if isinstance(label, Index): return self.take(i, axis=axis, convert=True) else: return libindex.get_value_at(self, i) @property def _is_mixed_type(self): return False def _slice(self, slobj, axis=0, kind=None): slobj = self.index._convert_slice_indexer(slobj, kind=kind or 'getitem') return self._get_values(slobj) def __getitem__(self, key): key = com._apply_if_callable(key, self) try: result = self.index.get_value(self, key) if not is_scalar(result): if is_list_like(result) and not isinstance(result, Series): # we need to box if we have a non-unique index here # otherwise have inline ndarray/lists if not self.index.is_unique: result = self._constructor( result, index=[key] * len(result), dtype=self.dtype).__finalize__(self) return result except InvalidIndexError: pass except (KeyError, ValueError): if isinstance(key, tuple) and isinstance(self.index, MultiIndex): # kludge pass elif key is Ellipsis: return self elif is_bool_indexer(key): pass else: # we can try to coerce the indexer (or this will raise) new_key = self.index._convert_scalar_indexer(key, kind='getitem') if type(new_key) != type(key): return self.__getitem__(new_key) raise except Exception: raise if is_iterator(key): key = list(key) if com.is_bool_indexer(key): key = check_bool_indexer(self.index, key) return self._get_with(key) def _get_with(self, key): # other: fancy integer or otherwise if isinstance(key, slice): indexer = self.index._convert_slice_indexer(key, kind='getitem') return self._get_values(indexer) elif isinstance(key, ABCDataFrame): raise TypeError('Indexing a Series with DataFrame is not ' 'supported, use the appropriate DataFrame column') else: if isinstance(key, tuple): try: return self._get_values_tuple(key) except Exception: if len(key) == 1: key = key[0] if isinstance(key, slice): return self._get_values(key) raise # pragma: no cover if not isinstance(key, (list, np.ndarray, Series, Index)): key = list(key) if isinstance(key, Index): key_type = key.inferred_type else: key_type = lib.infer_dtype(key) if key_type == 'integer': if self.index.is_integer() or self.index.is_floating(): return self.loc[key] else: return self._get_values(key) elif key_type == 'boolean': return self._get_values(key) else: try: # handle the dup indexing case (GH 4246) if isinstance(key, (list, tuple)): return self.loc[key] return self.reindex(key) except Exception: # [slice(0, 5, None)] will break if you convert to ndarray, # e.g. as requested by np.median # hack if isinstance(key[0], slice): return self._get_values(key) raise def _get_values_tuple(self, key): # mpl hackaround if _any_none(*key): return self._get_values(key) if not isinstance(self.index, MultiIndex): raise ValueError('Can only tuple-index with a MultiIndex') # If key is contained, would have returned by now indexer, new_index = self.index.get_loc_level(key) return self._constructor(self._values[indexer], index=new_index).__finalize__(self) def _get_values(self, indexer): try: return self._constructor(self._data.get_slice(indexer), fastpath=True).__finalize__(self) except Exception: return self._values[indexer] def __setitem__(self, key, value): key = com._apply_if_callable(key, self) def setitem(key, value): try: self._set_with_engine(key, value) return except (SettingWithCopyError): raise except (KeyError, ValueError): values = self._values if (is_integer(key) and not self.index.inferred_type == 'integer'): values[key] = value return elif key is Ellipsis: self[:] = value return elif com.is_bool_indexer(key): pass elif is_timedelta64_dtype(self.dtype): # reassign a null value to iNaT if isna(value): value = iNaT try: self.index._engine.set_value(self._values, key, value) return except TypeError: pass self.loc[key] = value return except TypeError as e: if (isinstance(key, tuple) and not isinstance(self.index, MultiIndex)): raise ValueError("Can only tuple-index with a MultiIndex") # python 3 type errors should be raised if _is_unorderable_exception(e): raise IndexError(key) if com.is_bool_indexer(key): key = check_bool_indexer(self.index, key) try: self._where(~key, value, inplace=True) return except InvalidIndexError: pass self._set_with(key, value) # do the setitem cacher_needs_updating = self._check_is_chained_assignment_possible() setitem(key, value) if cacher_needs_updating: self._maybe_update_cacher() def _set_with_engine(self, key, value): values = self._values try: self.index._engine.set_value(values, key, value) return except KeyError: values[self.index.get_loc(key)] = value return def _set_with(self, key, value): # other: fancy integer or otherwise if isinstance(key, slice): indexer = self.index._convert_slice_indexer(key, kind='getitem') return self._set_values(indexer, value) else: if isinstance(key, tuple): try: self._set_values(key, value) except Exception: pass if not isinstance(key, (list, Series, np.ndarray, Series)): try: key = list(key) except Exception: key = [key] if isinstance(key, Index): key_type = key.inferred_type else: key_type = lib.infer_dtype(key) if key_type == 'integer': if self.index.inferred_type == 'integer': self._set_labels(key, value) else: return self._set_values(key, value) elif key_type == 'boolean': self._set_values(key.astype(np.bool_), value) else: self._set_labels(key, value) def _set_labels(self, key, value): if isinstance(key, Index): key = key.values else: key = _asarray_tuplesafe(key) indexer = self.index.get_indexer(key) mask = indexer == -1 if mask.any(): raise ValueError('%s not contained in the index' % str(key[mask])) self._set_values(indexer, value) def _set_values(self, key, value): if isinstance(key, Series): key = key._values self._data = self._data.setitem(indexer=key, value=value) self._maybe_update_cacher() @deprecate_kwarg(old_arg_name='reps', new_arg_name='repeats') def repeat(self, repeats, *args, **kwargs): """ Repeat elements of an Series. Refer to `numpy.ndarray.repeat` for more information about the `repeats` argument. See also -------- numpy.ndarray.repeat """ nv.validate_repeat(args, kwargs) new_index = self.index.repeat(repeats) new_values = self._values.repeat(repeats) return self._constructor(new_values, index=new_index).__finalize__(self) def reshape(self, *args, **kwargs): """ .. deprecated:: 0.19.0 Calling this method will raise an error. Please call ``.values.reshape(...)`` instead. return an ndarray with the values shape if the specified shape matches exactly the current shape, then return self (for compat) See also -------- numpy.ndarray.reshape """ warnings.warn("reshape is deprecated and will raise " "in a subsequent release. Please use " ".values.reshape(...) instead", FutureWarning, stacklevel=2) if len(args) == 1 and hasattr(args[0], '__iter__'): shape = args[0] else: shape = args if tuple(shape) == self.shape: # XXX ignoring the "order" keyword. nv.validate_reshape(tuple(), kwargs) return self return self._values.reshape(shape, **kwargs) def get_value(self, label, takeable=False): """ Quickly retrieve single value at passed index label .. deprecated:: 0.21.0 Please use .at[] or .iat[] accessors. Parameters ---------- index : label takeable : interpret the index as indexers, default False Returns ------- value : scalar value """ warnings.warn("get_value is deprecated and will be removed " "in a future release. Please use " ".at[] or .iat[] accessors instead", FutureWarning, stacklevel=2) return self._get_value(label, takeable=takeable) def _get_value(self, label, takeable=False): if takeable is True: return _maybe_box_datetimelike(self._values[label]) return self.index.get_value(self._values, label) _get_value.__doc__ = get_value.__doc__ def set_value(self, label, value, takeable=False): """ Quickly set single value at passed label. If label is not contained, a new object is created with the label placed at the end of the result index .. deprecated:: 0.21.0 Please use .at[] or .iat[] accessors. Parameters ---------- label : object Partial indexing with MultiIndex not allowed value : object Scalar value takeable : interpret the index as indexers, default False Returns ------- series : Series If label is contained, will be reference to calling Series, otherwise a new object """ warnings.warn("set_value is deprecated and will be removed " "in a future release. Please use " ".at[] or .iat[] accessors instead", FutureWarning, stacklevel=2) return self._set_value(label, value, takeable=takeable) def _set_value(self, label, value, takeable=False): try: if takeable: self._values[label] = value else: self.index._engine.set_value(self._values, label, value) except KeyError: # set using a non-recursive method self.loc[label] = value return self _set_value.__doc__ = set_value.__doc__ def reset_index(self, level=None, drop=False, name=None, inplace=False): """ Analogous to the :meth:`pandas.DataFrame.reset_index` function, see docstring there. Parameters ---------- level : int, str, tuple, or list, default None Only remove the given levels from the index. Removes all levels by default drop : boolean, default False Do not try to insert index into dataframe columns name : object, default None The name of the column corresponding to the Series values inplace : boolean, default False Modify the Series in place (do not create a new object) Returns ---------- resetted : DataFrame, or Series if drop == True Examples -------- >>> s = pd.Series([1, 2, 3, 4], index=pd.Index(['a', 'b', 'c', 'd'], ... name = 'idx')) >>> s.reset_index() index 0 0 0 1 1 1 2 2 2 3 3 3 4 >>> arrays = [np.array(['bar', 'bar', 'baz', 'baz', 'foo', ... 'foo', 'qux', 'qux']), ... np.array(['one', 'two', 'one', 'two', 'one', 'two', ... 'one', 'two'])] >>> s2 = pd.Series( ... np.random.randn(8), ... index=pd.MultiIndex.from_arrays(arrays, ... names=['a', 'b'])) >>> s2.reset_index(level='a') a 0 b one bar -0.286320 two bar -0.587934 one baz 0.710491 two baz -1.429006 one foo 0.790700 two foo 0.824863 one qux -0.718963 two qux -0.055028 """ inplace = validate_bool_kwarg(inplace, 'inplace') if drop: new_index = _default_index(len(self)) if level is not None and isinstance(self.index, MultiIndex): if not isinstance(level, (tuple, list)): level = [level] level = [self.index._get_level_number(lev) for lev in level] if len(level) < len(self.index.levels): new_index = self.index.droplevel(level) if inplace: self.index = new_index # set name if it was passed, otherwise, keep the previous name self.name = name or self.name else: return self._constructor(self._values.copy(), index=new_index).__finalize__(self) elif inplace: raise TypeError('Cannot reset_index inplace on a Series ' 'to create a DataFrame') else: df = self.to_frame(name) return df.reset_index(level=level, drop=drop) def __unicode__(self): """ Return a string representation for a particular DataFrame Invoked by unicode(df) in py2 only. Yields a Unicode String in both py2/py3. """ buf = StringIO(u("")) width, height = get_terminal_size() max_rows = (height if get_option("display.max_rows") == 0 else get_option("display.max_rows")) show_dimensions = get_option("display.show_dimensions") self.to_string(buf=buf, name=self.name, dtype=self.dtype, max_rows=max_rows, length=show_dimensions) result = buf.getvalue() return result def to_string(self, buf=None, na_rep='NaN', float_format=None, header=True, index=True, length=False, dtype=False, name=False, max_rows=None): """ Render a string representation of the Series Parameters ---------- buf : StringIO-like, optional buffer to write to na_rep : string, optional string representation of NAN to use, default 'NaN' float_format : one-parameter function, optional formatter function to apply to columns' elements if they are floats default None header: boolean, default True Add the Series header (index name) index : bool, optional Add index (row) labels, default True length : boolean, default False Add the Series length dtype : boolean, default False Add the Series dtype name : boolean, default False Add the Series name if not None max_rows : int, optional Maximum number of rows to show before truncating. If None, show all. Returns ------- formatted : string (if not buffer passed) """ formatter = fmt.SeriesFormatter(self, name=name, length=length, header=header, index=index, dtype=dtype, na_rep=na_rep, float_format=float_format, max_rows=max_rows) result = formatter.to_string() # catch contract violations if not isinstance(result, compat.text_type): raise AssertionError("result must be of type unicode, type" " of result is {0!r}" "".format(result.__class__.__name__)) if buf is None: return result else: try: buf.write(result) except AttributeError: with open(buf, 'w') as f: f.write(result) def iteritems(self): """ Lazily iterate over (index, value) tuples """ return zip(iter(self.index), iter(self)) items = iteritems # ---------------------------------------------------------------------- # Misc public methods def keys(self): """Alias for index""" return self.index def to_dict(self, into=dict): """ Convert Series to {label -> value} dict or dict-like object. Parameters ---------- into : class, default dict The collections.Mapping subclass to use as the return object. Can be the actual class or an empty instance of the mapping type you want. If you want a collections.defaultdict, you must pass it initialized. .. versionadded:: 0.21.0 Returns ------- value_dict : collections.Mapping Examples -------- >>> s = pd.Series([1, 2, 3, 4]) >>> s.to_dict() {0: 1, 1: 2, 2: 3, 3: 4} >>> from collections import OrderedDict, defaultdict >>> s.to_dict(OrderedDict) OrderedDict([(0, 1), (1, 2), (2, 3), (3, 4)]) >>> dd = defaultdict(list) >>> s.to_dict(dd) defaultdict(<type 'list'>, {0: 1, 1: 2, 2: 3, 3: 4}) """ # GH16122 into_c = standardize_mapping(into) return into_c(compat.iteritems(self)) def to_frame(self, name=None): """ Convert Series to DataFrame Parameters ---------- name : object, default None The passed name should substitute for the series name (if it has one). Returns ------- data_frame : DataFrame """ if name is None: df = self._constructor_expanddim(self) else: df = self._constructor_expanddim({name: self}) return df def to_sparse(self, kind='block', fill_value=None): """ Convert Series to SparseSeries Parameters ---------- kind : {'block', 'integer'} fill_value : float, defaults to NaN (missing) Returns ------- sp : SparseSeries """ from pandas.core.sparse.series import SparseSeries return SparseSeries(self, kind=kind, fill_value=fill_value).__finalize__(self) def _set_name(self, name, inplace=False): """ Set the Series name. Parameters ---------- name : str inplace : bool whether to modify `self` directly or return a copy """ inplace = validate_bool_kwarg(inplace, 'inplace') ser = self if inplace else self.copy() ser.name = name return ser # ---------------------------------------------------------------------- # Statistics, overridden ndarray methods # TODO: integrate bottleneck def count(self, level=None): """ Return number of non-NA/null observations in the Series Parameters ---------- level : int or level name, default None If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a smaller Series Returns ------- nobs : int or Series (if level specified) """ from pandas.core.index import _get_na_value if level is None: return notna(_values_from_object(self)).sum() if isinstance(level, compat.string_types): level = self.index._get_level_number(level) lev = self.index.levels[level] lab = np.array(self.index.labels[level], subok=False, copy=True) mask = lab == -1 if mask.any(): lab[mask] = cnt = len(lev) lev = lev.insert(cnt, _get_na_value(lev.dtype.type)) obs = lab[notna(self.values)] out = np.bincount(obs, minlength=len(lev) or None) return self._constructor(out, index=lev, dtype='int64').__finalize__(self) def mode(self): """Return the mode(s) of the dataset. Always returns Series even if only one value is returned. Returns ------- modes : Series (sorted) """ # TODO: Add option for bins like value_counts() return algorithms.mode(self) @Appender(base._shared_docs['unique'] % _shared_doc_kwargs) def unique(self): result = super(Series, self).unique() if is_datetime64tz_dtype(self.dtype): # we are special casing datetime64tz_dtype # to return an object array of tz-aware Timestamps # TODO: it must return DatetimeArray with tz in pandas 2.0 result = result.asobject.values return result @Appender(base._shared_docs['drop_duplicates'] % _shared_doc_kwargs) def drop_duplicates(self, keep='first', inplace=False): return super(Series, self).drop_duplicates(keep=keep, inplace=inplace) @Appender(base._shared_docs['duplicated'] % _shared_doc_kwargs) def duplicated(self, keep='first'): return super(Series, self).duplicated(keep=keep) def idxmin(self, axis=None, skipna=True, *args, **kwargs): """ Index *label* of the first occurrence of minimum of values. Parameters ---------- skipna : boolean, default True Exclude NA/null values. If the entire Series is NA, the result will be NA. Raises ------ ValueError * If the Series is empty Returns ------- idxmin : Index of minimum of values Notes ----- This method is the Series version of ``ndarray.argmin``. This method returns the label of the minimum, while ``ndarray.argmin`` returns the position. To get the position, use ``series.values.argmin()``. See Also -------- DataFrame.idxmin numpy.ndarray.argmin """ skipna = nv.validate_argmin_with_skipna(skipna, args, kwargs) i = nanops.nanargmin(_values_from_object(self), skipna=skipna) if i == -1: return np.nan return self.index[i] def idxmax(self, axis=None, skipna=True, *args, **kwargs): """ Index *label* of the first occurrence of maximum of values. Parameters ---------- skipna : boolean, default True Exclude NA/null values. If the entire Series is NA, the result will be NA. Raises ------ ValueError * If the Series is empty Returns ------- idxmax : Index of maximum of values Notes ----- This method is the Series version of ``ndarray.argmax``. This method returns the label of the maximum, while ``ndarray.argmax`` returns the position. To get the position, use ``series.values.argmax()``. See Also -------- DataFrame.idxmax numpy.ndarray.argmax """ skipna = nv.validate_argmax_with_skipna(skipna, args, kwargs) i = nanops.nanargmax(_values_from_object(self), skipna=skipna) if i == -1: return np.nan return self.index[i] # ndarray compat argmin = deprecate('argmin', idxmin, msg="'argmin' is deprecated, use 'idxmin' instead. " "The behavior of 'argmin' will be corrected to " "return the positional minimum in the future. " "Use 'series.values.argmin' to get the position of " "the minimum now.") argmax = deprecate('argmax', idxmax, msg="'argmax' is deprecated, use 'idxmax' instead. " "The behavior of 'argmax' will be corrected to " "return the positional maximum in the future. " "Use 'series.values.argmax' to get the position of " "the maximum now.") def round(self, decimals=0, *args, **kwargs): """ Round each value in a Series to the given number of decimals. Parameters ---------- decimals : int Number of decimal places to round to (default: 0). If decimals is negative, it specifies the number of positions to the left of the decimal point. Returns ------- Series object See Also -------- numpy.around DataFrame.round """ nv.validate_round(args, kwargs) result = _values_from_object(self).round(decimals) result = self._constructor(result, index=self.index).__finalize__(self) return result def quantile(self, q=0.5, interpolation='linear'): """ Return value at the given quantile, a la numpy.percentile. Parameters ---------- q : float or array-like, default 0.5 (50% quantile) 0 <= q <= 1, the quantile(s) to compute interpolation : {'linear', 'lower', 'higher', 'midpoint', 'nearest'} .. versionadded:: 0.18.0 This optional parameter specifies the interpolation method to use, when the desired quantile lies between two data points `i` and `j`: * linear: `i + (j - i) * fraction`, where `fraction` is the fractional part of the index surrounded by `i` and `j`. * lower: `i`. * higher: `j`. * nearest: `i` or `j` whichever is nearest. * midpoint: (`i` + `j`) / 2. Returns ------- quantile : float or Series if ``q`` is an array, a Series will be returned where the index is ``q`` and the values are the quantiles. Examples -------- >>> s = Series([1, 2, 3, 4]) >>> s.quantile(.5) 2.5 >>> s.quantile([.25, .5, .75]) 0.25 1.75 0.50 2.50 0.75 3.25 dtype: float64 """ self._check_percentile(q) result = self._data.quantile(qs=q, interpolation=interpolation) if is_list_like(q): return self._constructor(result, index=Float64Index(q), name=self.name) else: # scalar return result def corr(self, other, method='pearson', min_periods=None): """ Compute correlation with `other` Series, excluding missing values Parameters ---------- other : Series method : {'pearson', 'kendall', 'spearman'} * pearson : standard correlation coefficient * kendall : Kendall Tau correlation coefficient * spearman : Spearman rank correlation min_periods : int, optional Minimum number of observations needed to have a valid result Returns ------- correlation : float """ this, other = self.align(other, join='inner', copy=False) if len(this) == 0: return np.nan return nanops.nancorr(this.values, other.values, method=method, min_periods=min_periods) def cov(self, other, min_periods=None): """ Compute covariance with Series, excluding missing values Parameters ---------- other : Series min_periods : int, optional Minimum number of observations needed to have a valid result Returns ------- covariance : float Normalized by N-1 (unbiased estimator). """ this, other = self.align(other, join='inner', copy=False) if len(this) == 0: return np.nan return nanops.nancov(this.values, other.values, min_periods=min_periods) def diff(self, periods=1): """ 1st discrete difference of object Parameters ---------- periods : int, default 1 Periods to shift for forming difference Returns ------- diffed : Series """ result = algorithms.diff(_values_from_object(self), periods) return self._constructor(result, index=self.index).__finalize__(self) def autocorr(self, lag=1): """ Lag-N autocorrelation Parameters ---------- lag : int, default 1 Number of lags to apply before performing autocorrelation. Returns ------- autocorr : float """ return self.corr(self.shift(lag)) def dot(self, other): """ Matrix multiplication with DataFrame or inner-product with Series objects Parameters ---------- other : Series or DataFrame Returns ------- dot_product : scalar or Series """ from pandas.core.frame import DataFrame if isinstance(other, (Series, DataFrame)): common = self.index.union(other.index) if (len(common) > len(self.index) or len(common) > len(other.index)): raise ValueError('matrices are not aligned') left = self.reindex(index=common, copy=False) right = other.reindex(index=common, copy=False) lvals = left.values rvals = right.values else: left = self lvals = self.values rvals = np.asarray(other) if lvals.shape[0] != rvals.shape[0]: raise Exception('Dot product shape mismatch, %s vs %s' % (lvals.shape, rvals.shape)) if isinstance(other, DataFrame): return self._constructor(np.dot(lvals, rvals), index=other.columns).__finalize__(self) elif isinstance(other, Series): return np.dot(lvals, rvals) elif isinstance(rvals, np.ndarray): return np.dot(lvals, rvals) else: # pragma: no cover raise TypeError('unsupported type: %s' % type(other)) @Substitution(klass='Series') @Appender(base._shared_docs['searchsorted']) @deprecate_kwarg(old_arg_name='v', new_arg_name='value') def searchsorted(self, value, side='left', sorter=None): if sorter is not None: sorter = _ensure_platform_int(sorter) return self._values.searchsorted(Series(value)._values, side=side, sorter=sorter) # ------------------------------------------------------------------- # Combination def append(self, to_append, ignore_index=False, verify_integrity=False): """ Concatenate two or more Series. Parameters ---------- to_append : Series or list/tuple of Series ignore_index : boolean, default False If True, do not use the index labels. .. versionadded:: 0.19.0 verify_integrity : boolean, default False If True, raise Exception on creating index with duplicates Notes ----- Iteratively appending to a Series can be more computationally intensive than a single concatenate. A better solution is to append values to a list and then concatenate the list with the original Series all at once. See also -------- pandas.concat : General function to concatenate DataFrame, Series or Panel objects Returns ------- appended : Series Examples -------- >>> s1 = pd.Series([1, 2, 3]) >>> s2 = pd.Series([4, 5, 6]) >>> s3 = pd.Series([4, 5, 6], index=[3,4,5]) >>> s1.append(s2) 0 1 1 2 2 3 0 4 1 5 2 6 dtype: int64 >>> s1.append(s3) 0 1 1 2 2 3 3 4 4 5 5 6 dtype: int64 With `ignore_index` set to True: >>> s1.append(s2, ignore_index=True) 0 1 1 2 2 3 3 4 4 5 5 6 dtype: int64 With `verify_integrity` set to True: >>> s1.append(s2, verify_integrity=True) Traceback (most recent call last): ... ValueError: Indexes have overlapping values: [0, 1, 2] """ from pandas.core.reshape.concat import concat if isinstance(to_append, (list, tuple)): to_concat = [self] + to_append else: to_concat = [self, to_append] return concat(to_concat, ignore_index=ignore_index, verify_integrity=verify_integrity) def _binop(self, other, func, level=None, fill_value=None): """ Perform generic binary operation with optional fill value Parameters ---------- other : Series func : binary operator fill_value : float or object Value to substitute for NA/null values. If both Series are NA in a location, the result will be NA regardless of the passed fill value level : int or level name, default None Broadcast across a level, matching Index values on the passed MultiIndex level Returns ------- combined : Series """ if not isinstance(other, Series): raise AssertionError('Other operand must be Series') new_index = self.index this = self if not self.index.equals(other.index): this, other = self.align(other, level=level, join='outer', copy=False) new_index = this.index this_vals = this.values other_vals = other.values if fill_value is not None: this_mask = isna(this_vals) other_mask = isna(other_vals) this_vals = this_vals.copy() other_vals = other_vals.copy() # one but not both mask = this_mask ^ other_mask this_vals[this_mask & mask] = fill_value other_vals[other_mask & mask] = fill_value with np.errstate(all='ignore'): result = func(this_vals, other_vals) name = _maybe_match_name(self, other) result = self._constructor(result, index=new_index, name=name) result = result.__finalize__(self) if name is None: # When name is None, __finalize__ overwrites current name result.name = None return result def combine(self, other, func, fill_value=np.nan): """ Perform elementwise binary operation on two Series using given function with optional fill value when an index is missing from one Series or the other Parameters ---------- other : Series or scalar value func : function Function that takes two scalars as inputs and return a scalar fill_value : scalar value Returns ------- result : Series Examples -------- >>> s1 = Series([1, 2]) >>> s2 = Series([0, 3]) >>> s1.combine(s2, lambda x1, x2: x1 if x1 < x2 else x2) 0 0 1 2 dtype: int64 See Also -------- Series.combine_first : Combine Series values, choosing the calling Series's values first """ if isinstance(other, Series): new_index = self.index.union(other.index) new_name = _maybe_match_name(self, other) new_values = np.empty(len(new_index), dtype=self.dtype) for i, idx in enumerate(new_index): lv = self.get(idx, fill_value) rv = other.get(idx, fill_value) with np.errstate(all='ignore'): new_values[i] = func(lv, rv) else: new_index = self.index with np.errstate(all='ignore'): new_values = func(self._values, other) new_name = self.name return self._constructor(new_values, index=new_index, name=new_name) def combine_first(self, other): """ Combine Series values, choosing the calling Series's values first. Result index will be the union of the two indexes Parameters ---------- other : Series Returns ------- combined : Series Examples -------- >>> s1 = pd.Series([1, np.nan]) >>> s2 = pd.Series([3, 4]) >>> s1.combine_first(s2) 0 1.0 1 4.0 dtype: float64 See Also -------- Series.combine : Perform elementwise operation on two Series using a given function """ new_index = self.index.union(other.index) this = self.reindex(new_index, copy=False) other = other.reindex(new_index, copy=False) # TODO: do we need name? name = _maybe_match_name(self, other) # noqa rs_vals = com._where_compat(isna(this), other._values, this._values) return self._constructor(rs_vals, index=new_index).__finalize__(self) def update(self, other): """ Modify Series in place using non-NA values from passed Series. Aligns on index Parameters ---------- other : Series Examples -------- >>> s = pd.Series([1, 2, 3]) >>> s.update(pd.Series([4, 5, 6])) >>> s 0 4 1 5 2 6 dtype: int64 >>> s = pd.Series(['a', 'b', 'c']) >>> s.update(pd.Series(['d', 'e'], index=[0, 2])) >>> s 0 d 1 b 2 e dtype: object >>> s = pd.Series([1, 2, 3]) >>> s.update(pd.Series([4, 5, 6, 7, 8])) >>> s 0 4 1 5 2 6 dtype: int64 If ``other`` contains NaNs the corresponding values are not updated in the original Series. >>> s = pd.Series([1, 2, 3]) >>> s.update(pd.Series([4, np.nan, 6])) >>> s 0 4 1 2 2 6 dtype: int64 """ other = other.reindex_like(self) mask = notna(other) self._data = self._data.putmask(mask=mask, new=other, inplace=True) self._maybe_update_cacher() # ---------------------------------------------------------------------- # Reindexing, sorting @Appender(generic._shared_docs['sort_values'] % _shared_doc_kwargs) def sort_values(self, axis=0, ascending=True, inplace=False, kind='quicksort', na_position='last'): inplace = validate_bool_kwarg(inplace, 'inplace') axis = self._get_axis_number(axis) # GH 5856/5853 if inplace and self._is_cached: raise ValueError("This Series is a view of some other array, to " "sort in-place you must create a copy") def _try_kind_sort(arr): # easier to ask forgiveness than permission try: # if kind==mergesort, it can fail for object dtype return arr.argsort(kind=kind) except TypeError: # stable sort not available for object dtype # uses the argsort default quicksort return arr.argsort(kind='quicksort') arr = self._values sortedIdx = np.empty(len(self), dtype=np.int32) bad = isna(arr) good = ~bad idx = _default_index(len(self)) argsorted = _try_kind_sort(arr[good]) if is_list_like(ascending): if len(ascending) != 1: raise ValueError('Length of ascending (%d) must be 1 ' 'for Series' % (len(ascending))) ascending = ascending[0] if not is_bool(ascending): raise ValueError('ascending must be boolean') if not ascending: argsorted = argsorted[::-1] if na_position == 'last': n = good.sum() sortedIdx[:n] = idx[good][argsorted] sortedIdx[n:] = idx[bad] elif na_position == 'first': n = bad.sum() sortedIdx[n:] = idx[good][argsorted] sortedIdx[:n] = idx[bad] else: raise ValueError('invalid na_position: {!r}'.format(na_position)) result = self._constructor(arr[sortedIdx], index=self.index[sortedIdx]) if inplace: self._update_inplace(result) else: return result.__finalize__(self) @Appender(generic._shared_docs['sort_index'] % _shared_doc_kwargs) def sort_index(self, axis=0, level=None, ascending=True, inplace=False, kind='quicksort', na_position='last', sort_remaining=True): # TODO: this can be combined with DataFrame.sort_index impl as # almost identical inplace = validate_bool_kwarg(inplace, 'inplace') axis = self._get_axis_number(axis) index = self.index if level: new_index, indexer = index.sortlevel(level, ascending=ascending, sort_remaining=sort_remaining) elif isinstance(index, MultiIndex): from pandas.core.sorting import lexsort_indexer labels = index._sort_levels_monotonic() indexer = lexsort_indexer(labels._get_labels_for_sorting(), orders=ascending, na_position=na_position) else: from pandas.core.sorting import nargsort # Check monotonic-ness before sort an index # GH11080 if ((ascending and index.is_monotonic_increasing) or (not ascending and index.is_monotonic_decreasing)): if inplace: return else: return self.copy() indexer = nargsort(index, kind=kind, ascending=ascending, na_position=na_position) indexer = _ensure_platform_int(indexer) new_index = index.take(indexer) new_index = new_index._sort_levels_monotonic() new_values = self._values.take(indexer) result = self._constructor(new_values, index=new_index) if inplace: self._update_inplace(result) else: return result.__finalize__(self) def argsort(self, axis=0, kind='quicksort', order=None): """ Overrides ndarray.argsort. Argsorts the value, omitting NA/null values, and places the result in the same locations as the non-NA values Parameters ---------- axis : int (can only be zero) kind : {'mergesort', 'quicksort', 'heapsort'}, default 'quicksort' Choice of sorting algorithm. See np.sort for more information. 'mergesort' is the only stable algorithm order : ignored Returns ------- argsorted : Series, with -1 indicated where nan values are present See also -------- numpy.ndarray.argsort """ values = self._values mask = isna(values) if mask.any(): result = Series(-1, index=self.index, name=self.name, dtype='int64') notmask = ~mask result[notmask] = np.argsort(values[notmask], kind=kind) return self._constructor(result, index=self.index).__finalize__(self) else: return self._constructor( np.argsort(values, kind=kind), index=self.index, dtype='int64').__finalize__(self) def nlargest(self, n=5, keep='first'): """ Return the largest `n` elements. Parameters ---------- n : int Return this many descending sorted values keep : {'first', 'last', False}, default 'first' Where there are duplicate values: - ``first`` : take the first occurrence. - ``last`` : take the last occurrence. Returns ------- top_n : Series The n largest values in the Series, in sorted order Notes ----- Faster than ``.sort_values(ascending=False).head(n)`` for small `n` relative to the size of the ``Series`` object. See Also -------- Series.nsmallest Examples -------- >>> import pandas as pd >>> import numpy as np >>> s = pd.Series(np.random.randn(10**6)) >>> s.nlargest(10) # only sorts up to the N requested 219921 4.644710 82124 4.608745 421689 4.564644 425277 4.447014 718691 4.414137 43154 4.403520 283187 4.313922 595519 4.273635 503969 4.250236 121637 4.240952 dtype: float64 """ return algorithms.SelectNSeries(self, n=n, keep=keep).nlargest() def nsmallest(self, n=5, keep='first'): """ Return the smallest `n` elements. Parameters ---------- n : int Return this many ascending sorted values keep : {'first', 'last', False}, default 'first' Where there are duplicate values: - ``first`` : take the first occurrence. - ``last`` : take the last occurrence. Returns ------- bottom_n : Series The n smallest values in the Series, in sorted order Notes ----- Faster than ``.sort_values().head(n)`` for small `n` relative to the size of the ``Series`` object. See Also -------- Series.nlargest Examples -------- >>> import pandas as pd >>> import numpy as np >>> s = pd.Series(np.random.randn(10**6)) >>> s.nsmallest(10) # only sorts up to the N requested 288532 -4.954580 732345 -4.835960 64803 -4.812550 446457 -4.609998 501225 -4.483945 669476 -4.472935 973615 -4.401699 621279 -4.355126 773916 -4.347355 359919 -4.331927 dtype: float64 """ return algorithms.SelectNSeries(self, n=n, keep=keep).nsmallest() def sortlevel(self, level=0, ascending=True, sort_remaining=True): """ DEPRECATED: use :meth:`Series.sort_index` Sort Series with MultiIndex by chosen level. Data will be lexicographically sorted by the chosen level followed by the other levels (in order) Parameters ---------- level : int or level name, default None ascending : bool, default True Returns ------- sorted : Series See Also -------- Series.sort_index(level=...) """ warnings.warn("sortlevel is deprecated, use sort_index(level=...)", FutureWarning, stacklevel=2) return self.sort_index(level=level, ascending=ascending, sort_remaining=sort_remaining) def swaplevel(self, i=-2, j=-1, copy=True): """ Swap levels i and j in a MultiIndex Parameters ---------- i, j : int, string (can be mixed) Level of index to be swapped. Can pass level name as string. Returns ------- swapped : Series .. versionchanged:: 0.18.1 The indexes ``i`` and ``j`` are now optional, and default to the two innermost levels of the index. """ new_index = self.index.swaplevel(i, j) return self._constructor(self._values, index=new_index, copy=copy).__finalize__(self) def reorder_levels(self, order): """ Rearrange index levels using input order. May not drop or duplicate levels Parameters ---------- order : list of int representing new level order. (reference level by number or key) axis : where to reorder levels Returns ------- type of caller (new object) """ if not isinstance(self.index, MultiIndex): # pragma: no cover raise Exception('Can only reorder levels on a hierarchical axis.') result = self.copy() result.index = result.index.reorder_levels(order) return result def unstack(self, level=-1, fill_value=None): """ Unstack, a.k.a. pivot, Series with MultiIndex to produce DataFrame. The level involved will automatically get sorted. Parameters ---------- level : int, string, or list of these, default last level Level(s) to unstack, can pass level name fill_value : replace NaN with this value if the unstack produces missing values .. versionadded:: 0.18.0 Examples -------- >>> s = pd.Series([1, 2, 3, 4], ... index=pd.MultiIndex.from_product([['one', 'two'], ['a', 'b']])) >>> s one a 1 b 2 two a 3 b 4 dtype: int64 >>> s.unstack(level=-1) a b one 1 2 two 3 4 >>> s.unstack(level=0) one two a 1 3 b 2 4 Returns ------- unstacked : DataFrame """ from pandas.core.reshape.reshape import unstack return unstack(self, level, fill_value) # ---------------------------------------------------------------------- # function application def map(self, arg, na_action=None): """ Map values of Series using input correspondence (which can be a dict, Series, or function) Parameters ---------- arg : function, dict, or Series na_action : {None, 'ignore'} If 'ignore', propagate NA values, without passing them to the mapping function Returns ------- y : Series same index as caller Examples -------- Map inputs to outputs (both of type `Series`) >>> x = pd.Series([1,2,3], index=['one', 'two', 'three']) >>> x one 1 two 2 three 3 dtype: int64 >>> y = pd.Series(['foo', 'bar', 'baz'], index=[1,2,3]) >>> y 1 foo 2 bar 3 baz >>> x.map(y) one foo two bar three baz If `arg` is a dictionary, return a new Series with values converted according to the dictionary's mapping: >>> z = {1: 'A', 2: 'B', 3: 'C'} >>> x.map(z) one A two B three C Use na_action to control whether NA values are affected by the mapping function. >>> s = pd.Series([1, 2, 3, np.nan]) >>> s2 = s.map('this is a string {}'.format, na_action=None) 0 this is a string 1.0 1 this is a string 2.0 2 this is a string 3.0 3 this is a string nan dtype: object >>> s3 = s.map('this is a string {}'.format, na_action='ignore') 0 this is a string 1.0 1 this is a string 2.0 2 this is a string 3.0 3 NaN dtype: object See Also -------- Series.apply: For applying more complex functions on a Series DataFrame.apply: Apply a function row-/column-wise DataFrame.applymap: Apply a function elementwise on a whole DataFrame Notes ----- When `arg` is a dictionary, values in Series that are not in the dictionary (as keys) are converted to ``NaN``. However, if the dictionary is a ``dict`` subclass that defines ``__missing__`` (i.e. provides a method for default values), then this default is used rather than ``NaN``: >>> from collections import Counter >>> counter = Counter() >>> counter['bar'] += 1 >>> y.map(counter) 1 0 2 1 3 0 dtype: int64 """ new_values = super(Series, self)._map_values( arg, na_action=na_action) return self._constructor(new_values, index=self.index).__finalize__(self) def _gotitem(self, key, ndim, subset=None): """ sub-classes to define return a sliced object Parameters ---------- key : string / list of selections ndim : 1,2 requested ndim of result subset : object, default None subset to act on """ return self _agg_doc = dedent(""" Examples -------- >>> s = Series(np.random.randn(10)) >>> s.agg('min') -1.3018049988556679 >>> s.agg(['min', 'max']) min -1.301805 max 1.127688 dtype: float64 See also -------- pandas.Series.apply pandas.Series.transform """) @Appender(_agg_doc) @Appender(generic._shared_docs['aggregate'] % dict( versionadded='.. versionadded:: 0.20.0', **_shared_doc_kwargs)) def aggregate(self, func, axis=0, *args, **kwargs): axis = self._get_axis_number(axis) result, how = self._aggregate(func, *args, **kwargs) if result is None: # we can be called from an inner function which # passes this meta-data kwargs.pop('_axis', None) kwargs.pop('_level', None) # try a regular apply, this evaluates lambdas # row-by-row; however if the lambda is expected a Series # expression, e.g.: lambda x: x-x.quantile(0.25) # this will fail, so we can try a vectorized evaluation # we cannot FIRST try the vectorized evaluation, becuase # then .agg and .apply would have different semantics if the # operation is actually defined on the Series, e.g. str try: result = self.apply(func, *args, **kwargs) except (ValueError, AttributeError, TypeError): result = func(self, *args, **kwargs) return result agg = aggregate def apply(self, func, convert_dtype=True, args=(), **kwds): """ Invoke function on values of Series. Can be ufunc (a NumPy function that applies to the entire Series) or a Python function that only works on single values Parameters ---------- func : function convert_dtype : boolean, default True Try to find better dtype for elementwise function results. If False, leave as dtype=object args : tuple Positional arguments to pass to function in addition to the value Additional keyword arguments will be passed as keywords to the function Returns ------- y : Series or DataFrame if func returns a Series See also -------- Series.map: For element-wise operations Series.agg: only perform aggregating type operations Series.transform: only perform transformating type operations Examples -------- Create a series with typical summer temperatures for each city. >>> import pandas as pd >>> import numpy as np >>> series = pd.Series([20, 21, 12], index=['London', ... 'New York','Helsinki']) >>> series London 20 New York 21 Helsinki 12 dtype: int64 Square the values by defining a function and passing it as an argument to ``apply()``. >>> def square(x): ... return x**2 >>> series.apply(square) London 400 New York 441 Helsinki 144 dtype: int64 Square the values by passing an anonymous function as an argument to ``apply()``. >>> series.apply(lambda x: x**2) London 400 New York 441 Helsinki 144 dtype: int64 Define a custom function that needs additional positional arguments and pass these additional arguments using the ``args`` keyword. >>> def subtract_custom_value(x, custom_value): ... return x-custom_value >>> series.apply(subtract_custom_value, args=(5,)) London 15 New York 16 Helsinki 7 dtype: int64 Define a custom function that takes keyword arguments and pass these arguments to ``apply``. >>> def add_custom_values(x, **kwargs): ... for month in kwargs: ... x+=kwargs[month] ... return x >>> series.apply(add_custom_values, june=30, july=20, august=25) London 95 New York 96 Helsinki 87 dtype: int64 Use a function from the Numpy library. >>> series.apply(np.log) London 2.995732 New York 3.044522 Helsinki 2.484907 dtype: float64 """ if len(self) == 0: return self._constructor(dtype=self.dtype, index=self.index).__finalize__(self) # dispatch to agg if isinstance(func, (list, dict)): return self.aggregate(func, *args, **kwds) # if we are a string, try to dispatch if isinstance(func, compat.string_types): return self._try_aggregate_string_function(func, *args, **kwds) # handle ufuncs and lambdas if kwds or args and not isinstance(func, np.ufunc): f = lambda x: func(x, *args, **kwds) else: f = func with np.errstate(all='ignore'): if isinstance(f, np.ufunc): return f(self) # row-wise access if is_extension_type(self.dtype): mapped = self._values.map(f) else: values = self.asobject mapped = lib.map_infer(values, f, convert=convert_dtype) if len(mapped) and isinstance(mapped[0], Series): from pandas.core.frame import DataFrame return DataFrame(mapped.tolist(), index=self.index) else: return self._constructor(mapped, index=self.index).__finalize__(self) def _reduce(self, op, name, axis=0, skipna=True, numeric_only=None, filter_type=None, **kwds): """ perform a reduction operation if we have an ndarray as a value, then simply perform the operation, otherwise delegate to the object """ delegate = self._values if isinstance(delegate, np.ndarray): # Validate that 'axis' is consistent with Series's single axis. self._get_axis_number(axis) if numeric_only: raise NotImplementedError('Series.{0} does not implement ' 'numeric_only.'.format(name)) with np.errstate(all='ignore'): return op(delegate, skipna=skipna, **kwds) return delegate._reduce(op=op, name=name, axis=axis, skipna=skipna, numeric_only=numeric_only, filter_type=filter_type, **kwds) def _reindex_indexer(self, new_index, indexer, copy): if indexer is None: if copy: return self.copy() return self # be subclass-friendly new_values = algorithms.take_1d(self.get_values(), indexer) return self._constructor(new_values, index=new_index) def _needs_reindex_multi(self, axes, method, level): """ check if we do need a multi reindex; this is for compat with higher dims """ return False @Appender(generic._shared_docs['align'] % _shared_doc_kwargs) def align(self, other, join='outer', axis=None, level=None, copy=True, fill_value=None, method=None, limit=None, fill_axis=0, broadcast_axis=None): return super(Series, self).align(other, join=join, axis=axis, level=level, copy=copy, fill_value=fill_value, method=method, limit=limit, fill_axis=fill_axis, broadcast_axis=broadcast_axis) def rename(self, index=None, **kwargs): """Alter Series index labels or name Function / dict values must be unique (1-to-1). Labels not contained in a dict / Series will be left as-is. Extra labels listed don't throw an error. Alternatively, change ``Series.name`` with a scalar value. See the :ref:`user guide <basics.rename>` for more. Parameters ---------- index : scalar, hashable sequence, dict-like or function, optional dict-like or functions are transformations to apply to the index. Scalar or hashable sequence-like will alter the ``Series.name`` attribute. copy : boolean, default True Also copy underlying data inplace : boolean, default False Whether to return a new %(klass)s. If True then value of copy is ignored. level : int or level name, default None In case of a MultiIndex, only rename labels in the specified level. Returns ------- renamed : Series (new object) See Also -------- pandas.Series.rename_axis Examples -------- >>> s = pd.Series([1, 2, 3]) >>> s 0 1 1 2 2 3 dtype: int64 >>> s.rename("my_name") # scalar, changes Series.name 0 1 1 2 2 3 Name: my_name, dtype: int64 >>> s.rename(lambda x: x ** 2) # function, changes labels 0 1 1 2 4 3 dtype: int64 >>> s.rename({1: 3, 2: 5}) # mapping, changes labels 0 1 3 2 5 3 dtype: int64 """ kwargs['inplace'] = validate_bool_kwarg(kwargs.get('inplace', False), 'inplace') non_mapping = is_scalar(index) or (is_list_like(index) and not is_dict_like(index)) if non_mapping: return self._set_name(index, inplace=kwargs.get('inplace')) return super(Series, self).rename(index=index, **kwargs) @Appender(generic._shared_docs['reindex'] % _shared_doc_kwargs) def reindex(self, index=None, **kwargs): return super(Series, self).reindex(index=index, **kwargs) @Appender(generic._shared_docs['fillna'] % _shared_doc_kwargs) def fillna(self, value=None, method=None, axis=None, inplace=False, limit=None, downcast=None, **kwargs): return super(Series, self).fillna(value=value, method=method, axis=axis, inplace=inplace, limit=limit, downcast=downcast, **kwargs) @Appender(generic._shared_docs['shift'] % _shared_doc_kwargs) def shift(self, periods=1, freq=None, axis=0): return super(Series, self).shift(periods=periods, freq=freq, axis=axis) def reindex_axis(self, labels, axis=0, **kwargs): """ for compatibility with higher dims """ if axis != 0: raise ValueError("cannot reindex series on non-zero axis!") msg = ("'.reindex_axis' is deprecated and will be removed in a future " "version. Use '.reindex' instead.") warnings.warn(msg, FutureWarning, stacklevel=2) return self.reindex(index=labels, **kwargs) def memory_usage(self, index=True, deep=False): """Memory usage of the Series Parameters ---------- index : bool Specifies whether to include memory usage of Series index deep : bool Introspect the data deeply, interrogate `object` dtypes for system-level memory consumption Returns ------- scalar bytes of memory consumed Notes ----- Memory usage does not include memory consumed by elements that are not components of the array if deep=False See Also -------- numpy.ndarray.nbytes """ v = super(Series, self).memory_usage(deep=deep) if index: v += self.index.memory_usage(deep=deep) return v @Appender(generic._shared_docs['_take']) def _take(self, indices, axis=0, convert=True, is_copy=False): if convert: indices = maybe_convert_indices(indices, len(self._get_axis(axis))) indices = _ensure_platform_int(indices) new_index = self.index.take(indices) new_values = self._values.take(indices) result = (self._constructor(new_values, index=new_index, fastpath=True).__finalize__(self)) # Maybe set copy if we didn't actually change the index. if is_copy: if not result._get_axis(axis).equals(self._get_axis(axis)): result._set_is_copy(self) return result def isin(self, values): """ Return a boolean :class:`~pandas.Series` showing whether each element in the :class:`~pandas.Series` is exactly contained in the passed sequence of ``values``. Parameters ---------- values : set or list-like The sequence of values to test. Passing in a single string will raise a ``TypeError``. Instead, turn a single string into a ``list`` of one element. .. versionadded:: 0.18.1 Support for values as a set Returns ------- isin : Series (bool dtype) Raises ------ TypeError * If ``values`` is a string See Also -------- pandas.DataFrame.isin Examples -------- >>> s = pd.Series(list('abc')) >>> s.isin(['a', 'c', 'e']) 0 True 1 False 2 True dtype: bool Passing a single string as ``s.isin('a')`` will raise an error. Use a list of one element instead: >>> s.isin(['a']) 0 True 1 False 2 False dtype: bool """ result = algorithms.isin(_values_from_object(self), values) return self._constructor(result, index=self.index).__finalize__(self) def between(self, left, right, inclusive=True): """ Return boolean Series equivalent to left <= series <= right. NA values will be treated as False Parameters ---------- left : scalar Left boundary right : scalar Right boundary Returns ------- is_between : Series """ if inclusive: lmask = self >= left rmask = self <= right else: lmask = self > left rmask = self < right return lmask & rmask @classmethod def from_csv(cls, path, sep=',', parse_dates=True, header=None, index_col=0, encoding=None, infer_datetime_format=False): """ Read CSV file (DEPRECATED, please use :func:`pandas.read_csv` instead). It is preferable to use the more powerful :func:`pandas.read_csv` for most general purposes, but ``from_csv`` makes for an easy roundtrip to and from a file (the exact counterpart of ``to_csv``), especially with a time Series. This method only differs from :func:`pandas.read_csv` in some defaults: - `index_col` is ``0`` instead of ``None`` (take first column as index by default) - `header` is ``None`` instead of ``0`` (the first row is not used as the column names) - `parse_dates` is ``True`` instead of ``False`` (try parsing the index as datetime by default) With :func:`pandas.read_csv`, the option ``squeeze=True`` can be used to return a Series like ``from_csv``. Parameters ---------- path : string file path or file handle / StringIO sep : string, default ',' Field delimiter parse_dates : boolean, default True Parse dates. Different default from read_table header : int, default None Row to use as header (skip prior rows) index_col : int or sequence, default 0 Column to use for index. If a sequence is given, a MultiIndex is used. Different default from read_table encoding : string, optional a string representing the encoding to use if the contents are non-ascii, for python versions prior to 3 infer_datetime_format: boolean, default False If True and `parse_dates` is True for a column, try to infer the datetime format based on the first datetime string. If the format can be inferred, there often will be a large parsing speed-up. See also -------- pandas.read_csv Returns ------- y : Series """ # We're calling `DataFrame.from_csv` in the implementation, # which will propagate a warning regarding `from_csv` deprecation. from pandas.core.frame import DataFrame df = DataFrame.from_csv(path, header=header, index_col=index_col, sep=sep, parse_dates=parse_dates, encoding=encoding, infer_datetime_format=infer_datetime_format) result = df.iloc[:, 0] if header is None: result.index.name = result.name = None return result def to_csv(self, path=None, index=True, sep=",", na_rep='', float_format=None, header=False, index_label=None, mode='w', encoding=None, date_format=None, decimal='.'): """ Write Series to a comma-separated values (csv) file Parameters ---------- path : string or file handle, default None File path or object, if None is provided the result is returned as a string. na_rep : string, default '' Missing data representation float_format : string, default None Format string for floating point numbers header : boolean, default False Write out series name index : boolean, default True Write row names (index) index_label : string or sequence, default None Column label for index column(s) if desired. If None is given, and `header` and `index` are True, then the index names are used. A sequence should be given if the DataFrame uses MultiIndex. mode : Python write mode, default 'w' sep : character, default "," Field delimiter for the output file. encoding : string, optional a string representing the encoding to use if the contents are non-ascii, for python versions prior to 3 date_format: string, default None Format string for datetime objects. decimal: string, default '.' Character recognized as decimal separator. E.g. use ',' for European data """ from pandas.core.frame import DataFrame df = DataFrame(self) # result is only a string if no path provided, otherwise None result = df.to_csv(path, index=index, sep=sep, na_rep=na_rep, float_format=float_format, header=header, index_label=index_label, mode=mode, encoding=encoding, date_format=date_format, decimal=decimal) if path is None: return result @Appender(generic._shared_docs['to_excel'] % _shared_doc_kwargs) def to_excel(self, excel_writer, sheet_name='Sheet1', na_rep='', float_format=None, columns=None, header=True, index=True, index_label=None, startrow=0, startcol=0, engine=None, merge_cells=True, encoding=None, inf_rep='inf', verbose=True): df = self.to_frame() df.to_excel(excel_writer=excel_writer, sheet_name=sheet_name, na_rep=na_rep, float_format=float_format, columns=columns, header=header, index=index, index_label=index_label, startrow=startrow, startcol=startcol, engine=engine, merge_cells=merge_cells, encoding=encoding, inf_rep=inf_rep, verbose=verbose) @Appender(generic._shared_docs['isna'] % _shared_doc_kwargs) def isna(self): return super(Series, self).isna() @Appender(generic._shared_docs['isna'] % _shared_doc_kwargs) def isnull(self): return super(Series, self).isnull() @Appender(generic._shared_docs['notna'] % _shared_doc_kwargs) def notna(self): return super(Series, self).notna() @Appender(generic._shared_docs['notna'] % _shared_doc_kwargs) def notnull(self): return super(Series, self).notnull() def dropna(self, axis=0, inplace=False, **kwargs): """ Return Series without null values Returns ------- valid : Series inplace : boolean, default False Do operation in place. """ inplace = validate_bool_kwarg(inplace, 'inplace') kwargs.pop('how', None) if kwargs: raise TypeError('dropna() got an unexpected keyword ' 'argument "{0}"'.format(list(kwargs.keys())[0])) axis = self._get_axis_number(axis or 0) if self._can_hold_na: result = remove_na_arraylike(self) if inplace: self._update_inplace(result) else: return result else: if inplace: # do nothing pass else: return self.copy() valid = lambda self, inplace=False, **kwargs: self.dropna(inplace=inplace, **kwargs) @Appender(generic._shared_docs['valid_index'] % { 'position': 'first', 'klass': 'Series'}) def first_valid_index(self): if len(self) == 0: return None mask = isna(self._values) i = mask.argmin() if mask[i]: return None else: return self.index[i] @Appender(generic._shared_docs['valid_index'] % { 'position': 'last', 'klass': 'Series'}) def last_valid_index(self): if len(self) == 0: return None mask = isna(self._values[::-1]) i = mask.argmin() if mask[i]: return None else: return self.index[len(self) - i - 1] # ---------------------------------------------------------------------- # Time series-oriented methods def to_timestamp(self, freq=None, how='start', copy=True): """ Cast to datetimeindex of timestamps, at *beginning* of period Parameters ---------- freq : string, default frequency of PeriodIndex Desired frequency how : {'s', 'e', 'start', 'end'} Convention for converting period to timestamp; start of period vs. end Returns ------- ts : Series with DatetimeIndex """ new_values = self._values if copy: new_values = new_values.copy() new_index = self.index.to_timestamp(freq=freq, how=how) return self._constructor(new_values, index=new_index).__finalize__(self) def to_period(self, freq=None, copy=True): """ Convert Series from DatetimeIndex to PeriodIndex with desired frequency (inferred from index if not passed) Parameters ---------- freq : string, default Returns ------- ts : Series with PeriodIndex """ new_values = self._values if copy: new_values = new_values.copy() new_index = self.index.to_period(freq=freq) return self._constructor(new_values, index=new_index).__finalize__(self) # ------------------------------------------------------------------------- # Datetimelike delegation methods dt = accessor.AccessorProperty(CombinedDatetimelikeProperties) # ------------------------------------------------------------------------- # Categorical methods cat = accessor.AccessorProperty(CategoricalAccessor) # String Methods str = accessor.AccessorProperty(strings.StringMethods) # ---------------------------------------------------------------------- # Add plotting methods to Series plot = accessor.AccessorProperty(gfx.SeriesPlotMethods, gfx.SeriesPlotMethods) hist = gfx.hist_series Series._setup_axes(['index'], info_axis=0, stat_axis=0, aliases={'rows': 0}) Series._add_numeric_operations() Series._add_series_only_operations() Series._add_series_or_dataframe_operations() # Add arithmetic! ops.add_flex_arithmetic_methods(Series, **ops.series_flex_funcs) ops.add_special_arithmetic_methods(Series, **ops.series_special_funcs) # ----------------------------------------------------------------------------- # Supplementary functions def _sanitize_index(data, index, copy=False): """ sanitize an index type to return an ndarray of the underlying, pass thru a non-Index """ if index is None: return data if len(data) != len(index): raise ValueError('Length of values does not match length of ' 'index') if isinstance(data, ABCIndexClass) and not copy: pass elif isinstance(data, PeriodIndex): data = data.asobject elif isinstance(data, DatetimeIndex): data = data._to_embed(keep_tz=True) elif isinstance(data, np.ndarray): # coerce datetimelike types if data.dtype.kind in ['M', 'm']: data = _sanitize_array(data, index, copy=copy) return data def _sanitize_array(data, index, dtype=None, copy=False, raise_cast_failure=False): """ sanitize input data to an ndarray, copy if specified, coerce to the dtype if specified """ if dtype is not None: dtype = pandas_dtype(dtype) if isinstance(data, ma.MaskedArray): mask = ma.getmaskarray(data) if mask.any(): data, fill_value = maybe_upcast(data, copy=True) data[mask] = fill_value else: data = data.copy() def _try_cast(arr, take_fast_path): # perf shortcut as this is the most common case if take_fast_path: if maybe_castable(arr) and not copy and dtype is None: return arr try: subarr = maybe_cast_to_datetime(arr, dtype) if not is_extension_type(subarr): subarr = np.array(subarr, dtype=dtype, copy=copy) except (ValueError, TypeError): if is_categorical_dtype(dtype): subarr = Categorical(arr, dtype.categories, ordered=dtype.ordered) elif dtype is not None and raise_cast_failure: raise else: subarr = np.array(arr, dtype=object, copy=copy) return subarr # GH #846 if isinstance(data, (np.ndarray, Index, Series)): if dtype is not None: subarr = np.array(data, copy=False) # possibility of nan -> garbage if is_float_dtype(data.dtype) and is_integer_dtype(dtype): if not isna(data).any(): subarr = _try_cast(data, True) elif copy: subarr = data.copy() else: subarr = _try_cast(data, True) elif isinstance(data, Index): # don't coerce Index types # e.g. indexes can have different conversions (so don't fast path # them) # GH 6140 subarr = _sanitize_index(data, index, copy=copy) else: # we will try to copy be-definition here subarr = _try_cast(data, True) elif isinstance(data, Categorical): subarr = data if copy: subarr = data.copy() return subarr elif isinstance(data, (list, tuple)) and len(data) > 0: if dtype is not None: try: subarr = _try_cast(data, False) except Exception: if raise_cast_failure: # pragma: no cover raise subarr = np.array(data, dtype=object, copy=copy) subarr = lib.maybe_convert_objects(subarr) else: subarr = maybe_convert_platform(data) subarr = maybe_cast_to_datetime(subarr, dtype) elif isinstance(data, range): # GH 16804 start, stop, step = get_range_parameters(data) arr = np.arange(start, stop, step, dtype='int64') subarr = _try_cast(arr, False) else: subarr = _try_cast(data, False) # scalar like, GH if getattr(subarr, 'ndim', 0) == 0: if isinstance(data, list): # pragma: no cover subarr = np.array(data, dtype=object) elif index is not None: value = data # figure out the dtype from the value (upcast if necessary) if dtype is None: dtype, value = infer_dtype_from_scalar(value) else: # need to possibly convert the value here value = maybe_cast_to_datetime(value, dtype) subarr = construct_1d_arraylike_from_scalar( value, len(index), dtype) else: return subarr.item() # the result that we want elif subarr.ndim == 1: if index is not None: # a 1-element ndarray if len(subarr) != len(index) and len(subarr) == 1: subarr = construct_1d_arraylike_from_scalar( subarr[0], len(index), subarr.dtype) elif subarr.ndim > 1: if isinstance(data, np.ndarray): raise Exception('Data must be 1-dimensional') else: subarr = _asarray_tuplesafe(data, dtype=dtype) # This is to prevent mixed-type Series getting all casted to # NumPy string type, e.g. NaN --> '-1#IND'. if issubclass(subarr.dtype.type, compat.string_types): subarr = np.array(data, dtype=object, copy=copy) return subarr
bsd-3-clause
weinbe58/QuSpin
docs/downloads/e69db8689f657bf92d0e9e158dad5bbf/example3.py
3
5466
from __future__ import print_function, division import sys,os # line 4 and line 5 below are for development purposes and can be removed qspin_path = os.path.join(os.getcwd(),"../../") sys.path.insert(0,qspin_path) ######################################################################################## # example 3 # # In this example we show how to use the photon_basis class to study spin chains # # coupled to a single photon mode. To demonstrate this we simulate a single spin # # and show how the semi-classical limit emerges in the limit that the number of # # photons goes to infinity. # ######################################################################################## from quspin.basis import spin_basis_1d,photon_basis # Hilbert space bases from quspin.operators import hamiltonian # Hamiltonian and observables from quspin.tools.measurements import obs_vs_time # t_dep measurements from quspin.tools.Floquet import Floquet,Floquet_t_vec # Floquet Hamiltonian from quspin.basis.photon import coherent_state # HO coherent state import numpy as np # generic math functions # ##### define model parameters ##### Nph_tot=60 # maximum photon occupation Nph=Nph_tot/2 # mean number of photons in initial coherent state Omega=3.5 # drive frequency A=0.8 # spin-photon coupling strength (drive amplitude) Delta=1.0 # difference between atom energy levels # ##### set up photon-atom Hamiltonian ##### # define operator site-coupling lists ph_energy=[[Omega]] # photon energy at_energy=[[Delta,0]] # atom energy absorb=[[A/(2.0*np.sqrt(Nph)),0]] # absorption term emit=[[A/(2.0*np.sqrt(Nph)),0]] # emission term # define static and dynamics lists static=[["|n",ph_energy],["x|-",absorb],["x|+",emit],["z|",at_energy]] dynamic=[] # compute atom-photon basis basis=photon_basis(spin_basis_1d,L=1,Nph=Nph_tot) # compute atom-photon Hamiltonian H H=hamiltonian(static,dynamic,dtype=np.float64,basis=basis) # ##### set up semi-classical Hamiltonian ##### # define operators dipole_op=[[A,0]] # define periodic drive and its parameters def drive(t,Omega): return np.cos(Omega*t) drive_args=[Omega] # define semi-classical static and dynamic lists static_sc=[["z",at_energy]] dynamic_sc=[["x",dipole_op,drive,drive_args]] # compute semi-classical basis basis_sc=spin_basis_1d(L=1) # compute semi-classical Hamiltonian H_{sc}(t) H_sc=hamiltonian(static_sc,dynamic_sc,dtype=np.float64,basis=basis_sc) # ##### define initial state ##### # define atom ground state #psi_at_i=np.array([1.0,0.0]) # spin-down eigenstate of \sigma^z in QuSpin 0.2.3 or older psi_at_i=np.array([0.0,1.0]) # spin-down eigenstate of \sigma^z in QuSpin 0.2.6 or newer # define photon coherent state with mean photon number Nph psi_ph_i=coherent_state(np.sqrt(Nph),Nph_tot+1) # compute atom-photon initial state as a tensor product psi_i=np.kron(psi_at_i,psi_ph_i) # ##### calculate time evolution ##### # define time vector over 30 driving cycles with 100 points per period t=Floquet_t_vec(Omega,30) # t.i = initial time, t.T = driving period # evolve atom-photon state with Hamiltonian H psi_t=H.evolve(psi_i,t.i,t.vals,iterate=True,rtol=1E-9,atol=1E-9) # evolve atom GS with semi-classical Hamiltonian H_sc psi_sc_t=H_sc.evolve(psi_at_i,t.i,t.vals,iterate=True,rtol=1E-9,atol=1E-9) # ##### define observables ##### # define observables parameters obs_args={"basis":basis,"check_herm":False,"check_symm":False} obs_args_sc={"basis":basis_sc,"check_herm":False,"check_symm":False} # in atom-photon Hilbert space n=hamiltonian([["|n", [[1.0 ]] ]],[],dtype=np.float64,**obs_args) sz=hamiltonian([["z|",[[1.0,0]] ]],[],dtype=np.float64,**obs_args) sy=hamiltonian([["y|", [[1.0,0]] ]],[],dtype=np.complex128,**obs_args) # in the semi-classical Hilbert space sz_sc=hamiltonian([["z",[[1.0,0]] ]],[],dtype=np.float64,**obs_args_sc) sy_sc=hamiltonian([["y",[[1.0,0]] ]],[],dtype=np.complex128,**obs_args_sc) # ##### calculate expectation values ##### # in atom-photon Hilbert space Obs_t = obs_vs_time(psi_t,t.vals,{"n":n,"sz":sz,"sy":sy}) O_n, O_sz, O_sy = Obs_t["n"], Obs_t["sz"], Obs_t["sy"] # in the semi-classical Hilbert space Obs_sc_t = obs_vs_time(psi_sc_t,t.vals,{"sz_sc":sz_sc,"sy_sc":sy_sc}) O_sz_sc, O_sy_sc = Obs_sc_t["sz_sc"], Obs_sc_t["sy_sc"] ##### plot results ##### import matplotlib.pyplot as plt import pylab # define legend labels str_n = "$\\langle n\\rangle,$" str_z = "$\\langle\\sigma^z\\rangle,$" str_x = "$\\langle\\sigma^x\\rangle,$" str_z_sc = "$\\langle\\sigma^z\\rangle_\\mathrm{sc},$" str_x_sc = "$\\langle\\sigma^x\\rangle_\\mathrm{sc}$" # plot spin-photon data fig = plt.figure() plt.plot(t.vals/t.T,O_n/Nph,"k",linewidth=1,label=str_n) plt.plot(t.vals/t.T,O_sz,"c",linewidth=1,label=str_z) plt.plot(t.vals/t.T,O_sy,"tan",linewidth=1,label=str_x) # plot semi-classical data plt.plot(t.vals/t.T,O_sz_sc,"b.",marker=".",markersize=1.8,label=str_z_sc) plt.plot(t.vals/t.T,O_sy_sc,"r.",marker=".",markersize=2.0,label=str_x_sc) # label axes plt.xlabel("$t/T$",fontsize=18) # set y axis limits plt.ylim([-1.1,1.4]) # display legend horizontally plt.legend(loc="upper right",ncol=5,columnspacing=0.6,numpoints=4) # update axis font size plt.tick_params(labelsize=16) # turn on grid plt.grid(True) # save figure plt.tight_layout() plt.savefig('example3.pdf', bbox_inches='tight') # show plot #plt.show() plt.close()
bsd-3-clause
MatthieuBizien/scikit-learn
sklearn/cluster/__init__.py
364
1228
""" The :mod:`sklearn.cluster` module gathers popular unsupervised clustering algorithms. """ from .spectral import spectral_clustering, SpectralClustering from .mean_shift_ import (mean_shift, MeanShift, estimate_bandwidth, get_bin_seeds) from .affinity_propagation_ import affinity_propagation, AffinityPropagation from .hierarchical import (ward_tree, AgglomerativeClustering, linkage_tree, FeatureAgglomeration) from .k_means_ import k_means, KMeans, MiniBatchKMeans from .dbscan_ import dbscan, DBSCAN from .bicluster import SpectralBiclustering, SpectralCoclustering from .birch import Birch __all__ = ['AffinityPropagation', 'AgglomerativeClustering', 'Birch', 'DBSCAN', 'KMeans', 'FeatureAgglomeration', 'MeanShift', 'MiniBatchKMeans', 'SpectralClustering', 'affinity_propagation', 'dbscan', 'estimate_bandwidth', 'get_bin_seeds', 'k_means', 'linkage_tree', 'mean_shift', 'spectral_clustering', 'ward_tree', 'SpectralBiclustering', 'SpectralCoclustering']
bsd-3-clause
mjirik/pysegbase
imcut/pycut.py
1
62734
#!/usr/bin/env python # -*- coding: utf-8 -*- """ Organ segmentation Example: $ pycat -f head.mat -o brain.mat """ from __future__ import absolute_import, division, print_function import logging logger = logging.getLogger(__name__) # import unittest # from optparse import OptionParser import argparse import sys # import os.path as op from scipy.io import loadmat import numpy as np import time import scipy.stats import copy import pygco # from pygco import cut_from_graph # from . import models from .image_manipulation import ( seed_zoom, zoom_to_shape, resize_to_shape, resize_to_shape_with_zoom, select_objects_by_seeds, crop, uncrop, ) from .models import Model, Model3D, defaultmodelparams, methods, accepted_methods from .graph import Graph # from imcut.graph import Graph class ImageGraphCut: """ Interactive Graph Cut. ImageGraphCut(data, zoom, modelparams) scale Example: igc = ImageGraphCut(data) igc.interactivity() igc.make_gc() igc.show_segmentation() """ def __init__( self, img, modelparams=None, segparams=None, voxelsize=None, debug_images=False, volume_unit="mm3", interactivity_loop_finish_fcn=None, keep_graph_properties=False, ): """ Args: :param img: input data :param modelparams: parameters of model :param segparams: segmentation parameters use_apriori_if_available - set self.apriori to ndimage with same shape as img apriori_gamma: influence of apriory information. 0 means no influence, 1.0 is 100% use of apriori information boundary_penalties_sigma pairwise_alpha_per_square_unit: the pairwise_alpha is rewriten if this parameter is used. pairwise_alpha = pairwise_alpha_per_square_unit / mean(voxelsize) return_only_object_with_seeds: Ignore unconnected parts of segmentation, default False :param voxelsize: size of voxel :param debug_images: use to show debug images with matplotlib :param volume_unit: define string of volume unit. Default is "mm3" :param keep_graph_properties: Do not delete some usefull varibales like msinds, unariesalt, nlinks, temp_msgc_resized_segmentation, temp_msgc_resized_img and temp_msgc_resized_seeds Returns: """ logger.debug( "modelparams: %s, segparams: %s, voxelsize: %s, debug_images: %s", modelparams, segparams, voxelsize, debug_images, ) if modelparams is None: modelparams = {} if segparams is None: segparams = {} if voxelsize is None: voxelsize = [1, 1, 1] self.voxelsize = np.asarray(voxelsize) if voxelsize is not None: self.voxel_volume = np.prod(voxelsize) else: self.voxel_volume = None self._update_segparams(segparams, modelparams) self.img = img self.tdata = {} self.segmentation = None # self.segparams = segparams self.seeds = np.zeros(self.img.shape, dtype=np.int8) self.debug_images = debug_images self.volume_unit = volume_unit self.interactivity_counter = 0 self.stats = {"tlinks shape": [], "nlinks shape": []} self.apriori = None self.interactivity_loop_finish_funcion = interactivity_loop_finish_fcn self.keep_temp_properties = keep_graph_properties self.msinds = None self.unariesalt2 = None self.nlinks = None def _update_segparams(self, segparams={}, modelparams={}): # default values use_boundary_penalties # self.segparams = {'pairwiseAlpha':10, 'use_boundary_penalties':False} self.segparams = { "method": "graphcut", "pairwise_alpha": 20, "use_boundary_penalties": False, "boundary_penalties_sigma": 200, "boundary_penalties_weight": 30, "return_only_object_with_seeds": False, "use_old_similarity": True, # New similarity not implemented @TODO "use_extra_features_for_training": False, "use_apriori_if_available": True, "apriori_gamma": 0.1, } if "modelparams" in segparams.keys(): modelparams = segparams["modelparams"] self.segparams.update(segparams) if "pairwise_alpha_per_square_unit" in segparams: self.segparams["pairwise_alpha"] = self.segparams[ "pairwise_alpha_per_square_unit" ] / np.mean(self.voxel_volume) self.modelparams = defaultmodelparams.copy() self.modelparams.update(modelparams) self.mdl = Model(modelparams=self.modelparams) def load(self, filename, fv_extern=None): """ Read model stored in the file. :param filename: Path to file with model :param fv_extern: external feature vector function is passed here :return: """ self.modelparams["mdl_stored_file"] = filename if fv_extern is not None: self.modelparams["fv_extern"] = fv_extern # segparams['modelparams'] = { # 'mdl_stored_file': mdl_stored_file, # # 'fv_extern': fv_function # } self.mdl = Model(modelparams=self.modelparams) def interactivity_loop(self, pyed): # @TODO stálo by za to, přehodit tlačítka na myši. Levé má teď # jedničku, pravé dvojku. Pravým však zpravidla označujeme pozadí a tak # nám vyjde popředí jako nula a pozadí jako jednička. # Tím také dopadne jinak interaktivní a neinteraktivní varianta. # import sys # print "logger ", logging.getLogger().getEffectiveLevel() # from guppy import hpy # h = hpy() # print h.heap() # import pdb # logger.debug("obj gc " + str(sys.getsizeof(self))) self.set_seeds(pyed.getSeeds()) self.run() pyed.setContours(1 - self.segmentation.astype(np.int8)) # if self.interactivity_loop_finish_funcion is None: # # TODO remove this statement after lisa package update (12.5.2018) # from lisa import audiosupport # self.interactivity_loop_finish_funcion = audiosupport.beep if self.interactivity_loop_finish_funcion is not None: self.interactivity_loop_finish_funcion() self.interactivity_counter += 1 logger.debug("interactivity counter: %s", str(self.interactivity_counter)) def __uniform_npenalty_fcn(self, orig_shape): return np.ones(orig_shape, dtype=np.int8) def __ms_npenalty_fcn(self, axis, mask, orig_shape): """ :param axis: direction of edge :param mask: 3d ndarray with ones where is fine resolution Neighboorhood penalty between small pixels should be smaller then in bigger tiles. This is the way how to set it. """ maskz = zoom_to_shape(mask, orig_shape) maskz_new = np.zeros(orig_shape, dtype=np.int16) maskz_new[maskz == 0] = self._msgc_npenalty_table[0, axis] maskz_new[maskz == 1] = self._msgc_npenalty_table[1, axis] # import sed3 # ed = sed3.sed3(maskz_new) # import ipdb; ipdb.set_trace() # noqa BREAKPOINT return maskz_new def __msgc_step0_init(self): # table with size 2 * self.img.ndims # first axis describe whether is the edge between lowres(0) or highres(1) voxels # second axis describe edge direction (edge axis) self._msgc_npenalty_table = np.array( [ [self.segparams["block_size"] * self.segparams["tile_zoom_constant"]] * self.img.ndim, [1] * self.img.ndim, ] ) # self.__msgc_npenalty_lowres = # self.__msgc_npenalty_higres = 1 def __msgc_step12_low_resolution_segmentation(self): """ Get the segmentation and the :return: """ import scipy start = self._start_time # ===== low resolution data processing # default parameters # TODO segparams_lo and segparams_hi je tam asi zbytecně sparams_lo = { "boundary_dilatation_distance": 2, "block_size": 6, "use_boundary_penalties": True, "boundary_penalties_weight": 1, "tile_zoom_constant": 1, } sparams_lo.update(self.segparams) sparams_hi = copy.copy(sparams_lo) # sparams_lo['boundary_penalties_weight'] = ( # sparams_lo['boundary_penalties_weight'] * # sparams_lo['block_size']) self.segparams = sparams_lo self.stats["t1"] = time.time() - start # step 1: low res GC hiseeds = self.seeds # ms_zoom = 4 # 0.125 #self.segparams['scale'] # ms_zoom = self.segparams['block_size'] # loseeds = pyed.getSeeds() # logger.debug("msc " + str(np.unique(hiseeds))) loseeds = seed_zoom(hiseeds, self.segparams["block_size"]) hard_constraints = True self.seeds = loseeds modelparams_hi = self.modelparams.copy() # feature vector will be computed from selected voxels self.modelparams["use_extra_features_for_training"] = True # TODO what with voxels? It is used from here # hiseeds and hiimage is used to create intensity model self.voxels1 = self.img[hiseeds == 1].reshape(-1, 1) self.voxels2 = self.img[hiseeds == 2].reshape(-1, 1) # this is how to compute with loseeds resolution but in wrong way # self.voxels1 = self.img[self.seeds == 1] # self.voxels2 = self.img[self.seeds == 2] # self.voxels1 = pyed.getSeedsVal(1) # self.voxels2 = pyed.getSeedsVal(2) img_orig = self.img # TODO this should be done with resize_to_shape_whith_zoom zoom = np.asarray(loseeds.shape).astype(np.float) / img_orig.shape self.img = scipy.ndimage.interpolation.zoom(img_orig, zoom, order=0) voxelsize_orig = self.voxelsize logger.debug("zoom %s", zoom) logger.debug("vs %s", self.voxelsize) self.voxelsize = self.voxelsize * zoom # self.img = resize_to_shape_with_zoom(img_orig, loseeds.shape, 1.0 / ms_zoom, order=0) # this step set the self.segmentation self.__single_scale_gc_run() # logger.debug( # 'segmentation - max: %d min: %d' % ( # np.max(self.segmentation), # np.min(self.segmentation) # ) # ) logger.debug( "segmentation: %s", scipy.stats.describe(self.segmentation, axis=None) ) self.modelparams = modelparams_hi self.voxelsize = voxelsize_orig self.img = img_orig self.seeds = hiseeds self.stats["t2"] = time.time() - start return hard_constraints def __msgc_step3_discontinuity_localization(self): """ Estimate discontinuity in basis of low resolution image segmentation. :return: discontinuity in low resolution """ import scipy start = self._start_time seg = 1 - self.segmentation.astype(np.int8) self.stats["low level object voxels"] = np.sum(seg) self.stats["low level image voxels"] = np.prod(seg.shape) # in seg is now stored low resolution segmentation # back to normal parameters # step 2: discontinuity localization # self.segparams = sparams_hi seg_border = scipy.ndimage.filters.laplace(seg, mode="constant") logger.debug("seg_border: %s", scipy.stats.describe(seg_border, axis=None)) # logger.debug(str(np.max(seg_border))) # logger.debug(str(np.min(seg_border))) seg_border[seg_border != 0] = 1 logger.debug("seg_border: %s", scipy.stats.describe(seg_border, axis=None)) # scipy.ndimage.morphology.distance_transform_edt boundary_dilatation_distance = self.segparams["boundary_dilatation_distance"] seg = scipy.ndimage.morphology.binary_dilation( seg_border, # seg, np.ones( [ (boundary_dilatation_distance * 2) + 1, (boundary_dilatation_distance * 2) + 1, (boundary_dilatation_distance * 2) + 1, ] ), ) if self.keep_temp_properties: self.temp_msgc_lowres_discontinuity = seg else: self.temp_msgc_lowres_discontinuity = None if self.debug_images: import sed3 pd = sed3.sed3(seg_border) # ), contour=seg) pd.show() pd = sed3.sed3(seg) # ), contour=seg) pd.show() # segzoom = scipy.ndimage.interpolation.zoom(seg.astype('float'), zoom, # order=0).astype('int8') self.stats["t3"] = time.time() - start return seg def __msgc_step45678_hi2lo_construct_graph(self, hard_constraints, seg): # step 4: indexes of new dual graph hiseeds = self.seeds msinds, mask_orig = self.__hi2lo_multiscale_indexes( seg, self.img.shape ) # , ms_zoom) logger.debug("multiscale inds " + str(msinds.shape)) # if deb: # import sed3 # pd = sed3.sed3(msinds, contour=seg) # pd.show() # intensity values for indexes # @TODO compute average values for low resolution ms_img = self.img # @TODO __ms_create_nlinks , use __ordered_values_by_indexes # import pdb; pdb.set_trace() # BREAKPOINT # pyed.setContours(seg) # there is need to set correct weights between neighbooring pixels # this is not nice hack. # @TODO reorganise segparams and create_nlinks function # orig_shape = img_orig.shape self.stats["t4"] = time.time() - self._start_time def local_ms_npenalty(x): return self.__ms_npenalty_fcn(x, seg, self.img.shape) # here are not unique couples of nodes nlinks_not_unique = self.__create_nlinks( ms_img, msinds, # boundary_penalties_fcn=ms_npenalty_fcn boundary_penalties_fcn=local_ms_npenalty, ) # nlinks created self.stats["t5"] = time.time() - self._start_time # get unique set # remove repetitive link from one pixel to another nlinks = ms_remove_repetitive_link(nlinks_not_unique) # now remove cycle link self.stats["t6"] = time.time() - self._start_time nlinks = np.array([line for line in nlinks if line[0] != line[1]]) self.stats["t7"] = time.time() - self._start_time # import ipdb; ipdb.set_trace() # noqa BREAKPOINT # tlinks - indexes, data_merge ms_values_lin = self.__ordered_values_by_indexes(self.img, msinds) seeds = hiseeds # seeds = pyed.getSeeds() # if deb: # import sed3 # se = sed3.sed3(seeds) # se.show() ms_seeds_lin = self.__ordered_values_by_indexes(seeds, msinds) # logger.debug("unique seeds " + str(np.unique(seeds))) # logger.debug("unique seeds " + str(np.unique(ms_seeds_lin))) mul_mask, mul_val = self.__msgc_tlinks_area_weight_from_low_segmentation( mask_orig ) mul_mask_lin = self.__ordered_values_by_indexes(mul_mask, msinds) area_weight = 1 # TODO vyresit voxelsize unariesalt = self.__create_tlinks( ms_values_lin, voxelsize=self.voxelsize, # self.voxels1, self.voxels2, seeds=ms_seeds_lin, area_weight=area_weight, hard_constraints=hard_constraints, mul_mask=mul_mask_lin, mul_val=mul_val, ) unariesalt2 = unariesalt.reshape(-1, 2) self.stats["t8"] = time.time() - self._start_time return nlinks, unariesalt2, msinds def __msgc_tlinks_area_weight_from_low_segmentation(self, loseg): mul_val = (self.segparams["block_size"]) ** 3 # TODO find correct value # mul_val = 1 logger.debug( "w: %s, loseg: %s, loseg.shape: %s", mul_val, scipy.stats.describe(loseg, axis=None), loseg.shape, ) if loseg.shape == self.img.shape: loseg_resized = loseg else: # resize loseg_resized = zoom_to_shape(loseg, self.img.shape, dtype=np.int8) pass # area_weight = loseg_resized.astype(np.int8) * w mul_mask = ~loseg_resized.astype(np.bool) return mul_mask, mul_val def __msgc_step9_finish_perform_gc_and_reshape(self, nlinks, unariesalt2, msinds): start = self._start_time # create potts pairwise # pairwiseAlpha = -10 pairwise = -(np.eye(2) - 1) pairwise = (self.segparams["pairwise_alpha"] * pairwise).astype(np.int32) # print 'data shape ', img_orig.shape # print 'nlinks sh ', nlinks.shape # print 'tlinks sh ', unariesalt.shape # print "cut_from_graph" # print "unaries sh ", unariesalt.reshape(-1,2).shape # print "nlinks sh", nlinks.shape self.stats["t9"] = time.time() - start self.stats["tlinks shape"].append(unariesalt2.shape) self.stats["nlinks shape"].append(nlinks.shape) start_gc = time.time() # Same functionality is in self.seg_data() result_graph = pygco.cut_from_graph( nlinks.astype(np.int32), unariesalt2.astype(np.int32), pairwise.astype(np.int32), ) elapsed = time.time() - start_gc self.stats["gc time"] = elapsed self.stats["t10"] = time.time() - start # probably not necessary # del nlinks # del unariesalt # print "unaries %.3g , %.3g" % (np.max(unariesalt),np.min(unariesalt)) # @TODO get back original data # result_labeling = result_graph.reshape(data.shape) result_labeling = result_graph[msinds] # import py3DSeedEditor # ped = py3DSeedEditor.py3DSeedEditor(result_labeling) # ped.show() result_labeling = self.__just_objects_with_seeds_if_required(result_labeling) self.segmentation = result_labeling if self.keep_temp_properties: self.msinds = msinds self.unariesalt2 = unariesalt2 self.nlinks = nlinks else: self.msinds = None self.unariesalt2 = None self.nlinks = None def __multiscale_gc_lo2hi_run(self): # , pyed): """ Run Graph-Cut segmentation with refinement of low resolution multiscale graph. In first step is performed normal GC on low resolution data Second step construct finer grid on edges of segmentation from first step. There is no option for use without `use_boundary_penalties` """ # from PyQt4.QtCore import pyqtRemoveInputHook # pyqtRemoveInputHook() self._msgc_lo2hi_resize_init() self.__msgc_step0_init() hard_constraints = self.__msgc_step12_low_resolution_segmentation() # ===== high resolution data processing seg = self.__msgc_step3_discontinuity_localization() self.stats["t3.1"] = time.time() - self._start_time graph = Graph( seg, voxelsize=self.voxelsize, nsplit=self.segparams["block_size"], edge_weight_table=self._msgc_npenalty_table, compute_low_nodes_index=True, ) # graph.run() = graph.generate_base_grid() + graph.split_voxels() # graph.run() graph.generate_base_grid() self.stats["t3.2"] = time.time() - self._start_time graph.split_voxels() self.stats["t3.3"] = time.time() - self._start_time self.stats.update(graph.stats) self.stats["t4"] = time.time() - self._start_time # TODO use mul_mask and mul_val mul_mask, mul_val = self.__msgc_tlinks_area_weight_from_low_segmentation(seg) area_weight = 1 unariesalt = self.__create_tlinks( self.img, self.voxelsize, self.seeds, area_weight=area_weight, hard_constraints=hard_constraints, mul_mask=None, mul_val=None, ) # N-links prepared self.stats["t5"] = time.time() - self._start_time un, ind = np.unique(graph.msinds, return_index=True) self.stats["t6"] = time.time() - self._start_time self.stats["t7"] = time.time() - self._start_time unariesalt2_lo2hi = np.hstack( [unariesalt[ind, 0, 0].reshape(-1, 1), unariesalt[ind, 0, 1].reshape(-1, 1)] ) nlinks_lo2hi = np.hstack([graph.edges, graph.edges_weights.reshape(-1, 1)]) if self.debug_images: import sed3 ed = sed3.sed3(unariesalt[:, :, 0].reshape(self.img.shape)) ed.show() import sed3 ed = sed3.sed3(unariesalt[:, :, 1].reshape(self.img.shape)) ed.show() # ed = sed3.sed3(seg) # ed.show() # import sed3 # ed = sed3.sed3(graph.data) # ed.show() # import sed3 # ed = sed3.sed3(graph.msinds) # ed.show() # nlinks, unariesalt2, msinds = self.__msgc_step45678_construct_graph(area_weight, hard_constraints, seg) # self.__msgc_step9_finish_perform_gc_and_reshape(nlinks, unariesalt2, msinds) self.__msgc_step9_finish_perform_gc_and_reshape( nlinks_lo2hi, unariesalt2_lo2hi, graph.msinds ) self._msgc_lo2hi_resize_clean_finish() def __multiscale_gc_hi2lo_run(self): # , pyed): """ Run Graph-Cut segmentation with simplifiyng of high resolution multiscale graph. In first step is performed normal GC on low resolution data Second step construct finer grid on edges of segmentation from first step. There is no option for use without `use_boundary_penalties` """ # from PyQt4.QtCore import pyqtRemoveInputHook # pyqtRemoveInputHook() self.__msgc_step0_init() hard_constraints = self.__msgc_step12_low_resolution_segmentation() # ===== high resolution data processing seg = self.__msgc_step3_discontinuity_localization() nlinks, unariesalt2, msinds = self.__msgc_step45678_hi2lo_construct_graph( hard_constraints, seg ) self.__msgc_step9_finish_perform_gc_and_reshape(nlinks, unariesalt2, msinds) def __ordered_values_by_indexes(self, data, inds): """ Return values (intensities) by indexes. Used for multiscale graph cut. data = [[0 1 1], [0 2 2], [0 2 2]] inds = [[0 1 2], [3 4 4], [5 4 4]] return: [0, 1, 1, 0, 2, 0] If the data are not consistent, it will take the maximal value """ # get unique labels and their first indexes # lab, linds = np.unique(inds, return_index=True) # compute values by indexes # values = data.reshape(-1)[linds] # alternative slow implementation # if there are different data on same index, it will take # maximal value # lab = np.unique(inds) # values = [0]*len(lab) # for label in lab: # values[label] = np.max(data[inds == label]) # # values = np.asarray(values) # yet another implementation values = [None] * (np.max(inds) + 1) linear_inds = inds.ravel() linear_data = data.ravel() for i in range(0, len(linear_inds)): # going over all data pixels if values[linear_inds[i]] is None: # this index is found for first values[linear_inds[i]] = linear_data[i] elif values[linear_inds[i]] < linear_data[i]: # here can be changed maximal or minimal value values[linear_inds[i]] = linear_data[i] values = np.asarray(values) return values def __hi2lo_multiscale_indexes(self, mask, orig_shape): # , zoom): """ Function computes multiscale indexes of ndarray. mask: Says where is original resolution (0) and where is small resolution (1). Mask is in small resolution. orig_shape: Original shape of input data. zoom: Usually number greater then 1 result = [[0 1 2], [3 4 4], [5 4 4]] """ mask_orig = zoom_to_shape(mask, orig_shape, dtype=np.int8) inds_small = np.arange(mask.size).reshape(mask.shape) inds_small_in_orig = zoom_to_shape(inds_small, orig_shape, dtype=np.int8) inds_orig = np.arange(np.prod(orig_shape)).reshape(orig_shape) # inds_orig = inds_orig * mask_orig inds_orig += np.max(inds_small_in_orig) + 1 # print 'indexes' # import py3DSeedEditor as ped # import pdb; pdb.set_trace() # BREAKPOINT # '==' is not the same as 'is' for numpy.array inds_small_in_orig[mask_orig == True] = inds_orig[mask_orig == True] # noqa inds = inds_small_in_orig # print np.max(inds) # print np.min(inds) inds = relabel_squeeze(inds) logger.debug( "Index after relabeling: %s", scipy.stats.describe(inds, axis=None) ) # logger.debug("Minimal index after relabeling: " + str(np.min(inds))) # inds_orig[mask_orig==True] = 0 # inds_small_in_orig[mask_orig==False] = 0 # inds = (inds_orig + np.max(inds_small_in_orig) + 1) + inds_small_in_orig return inds, mask_orig def interactivity(self, min_val=None, max_val=None, qt_app=None): """ Interactive seed setting with 3d seed editor """ from .seed_editor_qt import QTSeedEditor from PyQt5.QtWidgets import QApplication if min_val is None: min_val = np.min(self.img) if max_val is None: max_val = np.max(self.img) window_c = (max_val + min_val) / 2 # .astype(np.int16) window_w = max_val - min_val # .astype(np.int16) if qt_app is None: qt_app = QApplication(sys.argv) pyed = QTSeedEditor( self.img, modeFun=self.interactivity_loop, voxelSize=self.voxelsize, seeds=self.seeds, volume_unit=self.volume_unit, ) pyed.changeC(window_c) pyed.changeW(window_w) qt_app.exec_() def set_seeds(self, seeds): """ Function for manual seed setting. Sets variable seeds and prepares voxels for density model. :param seeds: ndarray (0 - nothing, 1 - object, 2 - background, 3 - object just hard constraints, no model training, 4 - background just hard constraints, no model training) """ if self.img.shape != seeds.shape: raise Exception("Seeds must be same size as input image") self.seeds = seeds.astype("int8") self.voxels1 = self.img[self.seeds == 1] self.voxels2 = self.img[self.seeds == 2] def run(self, run_fit_model=True): """ Run the Graph Cut segmentation according to preset parameters. :param run_fit_model: Allow to skip model fit when the model is prepared before :return: """ if run_fit_model: self.fit_model(self.img, self.voxelsize, self.seeds) self._start_time = time.time() if self.segparams["method"].lower() in ("graphcut", "gc"): self.__single_scale_gc_run() elif self.segparams["method"].lower() in ( "multiscale_graphcut", "multiscale_gc", "msgc", "msgc_lo2hi", "lo2hi", "multiscale_graphcut_lo2hi", ): logger.debug("performing multiscale Graph-Cut lo2hi") self.__multiscale_gc_lo2hi_run() elif self.segparams["method"].lower() in ( "msgc_hi2lo", "hi2lo", "multiscale_graphcut_hi2lo", ): logger.debug("performing multiscale Graph-Cut hi2lo") self.__multiscale_gc_hi2lo_run() else: logger.error("Unknown segmentation method: " + self.segparams["method"]) def __single_scale_gc_run(self): res_segm = self._ssgc_prepare_data_and_run_computation( # self.img, # self # self.voxels1, self.voxels2, # seeds=self.seeds ) res_segm = self.__just_objects_with_seeds_if_required(res_segm) self.segmentation = res_segm.astype(np.int8) def __just_objects_with_seeds_if_required(self, res_segm): print("return_only_object_with_seeds") if self.segparams["return_only_object_with_seeds"]: logger.debug("return_only_object_with_seeds") try: # because of negative problem is as 1 segmented background and # as 0 is segmented foreground # import thresholding_functions # newData = thresholding_functions.getPriorityObjects( # newData = get_priority_objects( # (1 - res_segm), # nObj=-1, # seeds=(self.seeds == 1).nonzero(), # debug=False # ) newData = select_objects_by_seeds(1 - res_segm, seeds=self.seeds) res_segm = 1 - newData except: import traceback logger.warning("Cannot import thresholding_funcions") traceback.print_exc() return res_segm def __set_hard_hard_constraints(self, tdata1, tdata2, seeds): """ it works with seed labels: 0: nothing 1: object 1 - full seeds 2: object 2 - full seeds 3: object 1 - not a training seeds 4: object 2 - not a training seeds """ seeds_mask = (seeds == 1) | (seeds == 3) tdata2[seeds_mask] = np.max(tdata2) + 1 tdata1[seeds_mask] = 0 seeds_mask = (seeds == 2) | (seeds == 4) tdata1[seeds_mask] = np.max(tdata1) + 1 tdata2[seeds_mask] = 0 return tdata1, tdata2 def _boundary_penalties_array(self, axis, sigma=None): import scipy.ndimage.filters as scf # for axis in range(0,dim): filtered = scf.prewitt(self.img, axis=axis) if sigma is None: sigma2 = np.var(self.img) else: sigma2 = sigma ** 2 filtered = np.exp(-np.power(filtered, 2) / (256 * sigma2)) # srovnán hodnot tak, aby to vycházelo mezi 0 a 100 # cc = 10 # filtered = ((filtered - 1)*cc) + 10 # logger.debug( # 'ax %.1g max %.3g min %.3g avg %.3g' % ( # axis, np.max(filtered), np.min(filtered), np.mean(filtered)) # ) logger.debug( "boundary penalties, axis: %s, filtered: %s", axis, scipy.stats.describe(filtered, axis=None), ) # # @TODO Check why forumla with exp is not stable # Oproti Boykov2001b tady nedělím dvojkou. Ta je tam jen proto, # aby to slušně vycházelo, takže jsem si jí upravil # Originální vzorec je # Bpq = exp( - (Ip - Iq)^2 / (2 * \sigma^2) ) * 1 / dist(p,q) # filtered = (-np.power(filtered,2)/(16*sigma)) # Přičítám tu 256 což je empiricky zjištěná hodnota - aby to dobře vyšlo # nedávám to do exponenciely, protože je to numericky nestabilní # filtered = filtered + 255 # - np.min(filtered2) + 1e-30 # Ještě by tady měl a následovat exponenciela, ale s ní je to numericky # nestabilní. Netuším proč. # if dim >= 1: # odecitame od sebe tentyz obrazek # df0 = self.img[:-1,:] - self.img[] # diffs.insert(0, return filtered def _reshape_unariesalt_to_similarity(self, unariesalt, shape): # if unariesalt is None: # unariesalt = self.unariesalt2 # if shape is None: # shape = self.img.shape # if hasattr(self, "temp_msgc_resized_img"): # shape = self.temp_msgc_resized_img.shape tdata1 = unariesalt[..., 0].reshape(shape) tdata2 = unariesalt[..., 1].reshape(shape) return tdata1, tdata2 def _debug_show_unariesalt( self, unariesalt, suptitle=None, slice_number=None, show=True, bins=20 ): shape = self.img.shape # print("unariesalt dtype ", unariesalt.dtype) tdata1, tdata2 = self._reshape_unariesalt_to_similarity(unariesalt, shape) self._debug_show_tdata_images( tdata1, tdata2, suptitle=suptitle, slice_number=slice_number, show=show, bins=bins, ) def _debug_show_tdata_images( self, tdata1, tdata2, suptitle=None, slice_number=None, show=True, bins=20 ): # Show model parameters logger.debug("tdata1 shape %s", str(tdata1.shape)) if slice_number is None: slice_number = int(tdata1.shape[0] / 2) try: import matplotlib.pyplot as plt fig = plt.figure() if suptitle is not None: fig.suptitle(suptitle) ax = fig.add_subplot(121) ax.imshow(tdata1[slice_number, :, :]) # plt.colorbar(ax=ax) # fig = plt.figure() ax = fig.add_subplot(122) ax.imshow(tdata2[slice_number, :, :]) # plt.colorbar(ax=ax) # print('tdata1 max ', np.max(tdata1), ' min ', np.min(tdata1), " dtype ", tdata1.dtype) # print('tdata2 max ', np.max(tdata2), ' min ', np.min(tdata2), " dtype ", tdata2.dtype) # logger.debug('tdata1 max ' + str(np.max(tdata1)) + ' min ' + str(np.min(tdata1)) + " dtype " +str( tdata1.dtype)) logger.debug("tdata1: %s", scipy.stats.describe(tdata1, axis=None)) logger.debug("tdata2: %s", scipy.stats.describe(tdata2, axis=None)) # print('tdata2 max ', np.max(tdata2), ' min ', np.min(tdata2), " dtype ", tdata2.dtype) # # histogram # fig = plt.figure() # vx1 = data[seeds==1] # vx2 = data[seeds==2] # plt.hist([vx1, vx2], 30) # plt.hist(voxels2) except: import traceback print(traceback.format_exc()) logger.debug("problem with showing debug images") try: fig = plt.figure() if suptitle is not None: fig.suptitle(suptitle) ax = fig.add_subplot(121) plt.hist(tdata1.flatten(), bins=bins) ax = fig.add_subplot(122) plt.hist(tdata2.flatten(), bins=bins) except: import traceback print(traceback.format_exc()) if show: plt.show() return fig def debug_show_model( self, start=-1000, stop=1000, nsteps=400, suptitle=None, show=True ): import matplotlib.pyplot as plt fig = plt.figure() if suptitle is not None: fig.suptitle(suptitle) ax = fig.add_subplot(111) hstx = np.linspace(start, stop, nsteps) ax.plot(hstx, np.exp(self.mdl.likelihood_from_image(hstx, self.voxelsize, 1))) ax.plot(hstx, np.exp(self.mdl.likelihood_from_image(hstx, self.voxelsize, 2))) if show: plt.show() return fig def fit_model(self, data=None, voxelsize=None, seeds=None): if data is None: data = self.img if voxelsize is None: voxelsize = self.voxelsize if seeds is None: seeds = self.seeds # TODO rewrite just for one class and call separatelly for obj and background. # TODO rename voxels1 and voxels2 # voxe1s1 and voxels2 are used only in this function for multiscale graphcut # threre can be some # Dobře to fungovalo area_weight = 0.05 a cc = 6 a diference se # počítaly z :-1 # self.mdl.trainFromSomething(data, seeds, 1, self.voxels1) # self.mdl.trainFromSomething(data, seeds, 2, self.voxels2) if self.segparams["use_extra_features_for_training"]: self.mdl.fit(self.voxels1, 1) self.mdl.fit(self.voxels2, 2) else: self.mdl.fit_from_image(data, voxelsize, seeds, [1, 2]), # as we convert to int, we need to multipy to get sensible values def __similarity_for_tlinks_obj_bgr( self, data, voxelsize, # voxels1, voxels2, # seeds, otherfeatures=None ): """ Compute edge values for graph cut tlinks based on image intensity and texture. """ # self.fit_model(data, voxelsize, seeds) # There is a need to have small vaues for good fit # R(obj) = -ln( Pr (Ip | O) ) # R(bck) = -ln( Pr (Ip | B) ) # Boykov2001b # ln is computed in likelihood tdata1 = (-(self.mdl.likelihood_from_image(data, voxelsize, 1))) * 10 tdata2 = (-(self.mdl.likelihood_from_image(data, voxelsize, 2))) * 10 # to spare some memory dtype = np.int16 if np.any(tdata1 > 32760): dtype = np.float32 if np.any(tdata2 > 32760): dtype = np.float32 if self.segparams["use_apriori_if_available"] and self.apriori is not None: logger.debug("using apriori information") gamma = self.segparams["apriori_gamma"] a1 = (-np.log(self.apriori * 0.998 + 0.001)) * 10 a2 = (-np.log(0.999 - (self.apriori * 0.998))) * 10 # logger.debug('max ' + str(np.max(tdata1)) + ' min ' + str(np.min(tdata1))) # logger.debug('max ' + str(np.max(tdata2)) + ' min ' + str(np.min(tdata2))) # logger.debug('max ' + str(np.max(a1)) + ' min ' + str(np.min(a1))) # logger.debug('max ' + str(np.max(a2)) + ' min ' + str(np.min(a2))) tdata1u = (((1 - gamma) * tdata1) + (gamma * a1)).astype(dtype) tdata2u = (((1 - gamma) * tdata2) + (gamma * a2)).astype(dtype) tdata1 = tdata1u tdata2 = tdata2u # logger.debug(' max ' + str(np.max(tdata1)) + ' min ' + str(np.min(tdata1))) # logger.debug(' max ' + str(np.max(tdata2)) + ' min ' + str(np.min(tdata2))) # logger.debug('gamma ' + str(gamma)) # import sed3 # ed = sed3.show_slices(tdata1) # ed = sed3.show_slices(tdata2) del tdata1u del tdata2u del a1 del a2 # if np.any(tdata1 < 0) or np.any(tdata2 <0): # logger.error("Problem with tlinks. Likelihood is < 0") # if self.debug_images: # self.__show_debug_tdata_images(tdata1, tdata2, suptitle="likelihood") return tdata1, tdata2 def __limit(self, tdata1, min_limit=0, max_error=10, max_limit=20000): # logger.debug('before limit max ' + np.max(tdata1), 'min ' + np.min(tdata1) + " dtype " + tdata1.dtype) tdata1[tdata1 > max_limit] = max_limit tdata1[tdata1 < min_limit] = min_limit # tdata1 = models.softplus(tdata1, max_error=max_error, keep_dtype=True) # replace inf with large finite number # tdata1 = np.nan_to_num(tdata1) return tdata1 def __limit_tlinks(self, tdata1, tdata2): tdata1 = self.__limit(tdata1) tdata2 = self.__limit(tdata2) return tdata1, tdata2 def __create_tlinks( self, data, voxelsize, # voxels1, voxels2, seeds, area_weight, hard_constraints, mul_mask=None, mul_val=None, ): tdata1, tdata2 = self.__similarity_for_tlinks_obj_bgr( data, voxelsize, # voxels1, voxels2, # seeds ) # logger.debug('tdata1 min %f , max %f' % (tdata1.min(), tdata1.max())) # logger.debug('tdata2 min %f , max %f' % (tdata2.min(), tdata2.max())) if hard_constraints: if type(seeds) == "bool": raise Exception( "Seeds variable not set", "There is need set seed if you want use hard constraints", ) tdata1, tdata2 = self.__set_hard_hard_constraints(tdata1, tdata2, seeds) limit = 20000 # carefull multiplication with limit to if mul_mask is not None: divided_limit = limit / mul_val mm = tdata1 > divided_limit tdata1[mul_mask & mm] = limit tdata1[mul_mask & ~mm] *= mul_val mm = tdata2 > divided_limit tdata2[mul_mask & mm] = limit tdata2[mul_mask & ~mm] *= mul_val # if not np.isscalar(area_weight): # area_weight = area_weight.reshape(tdata1.shape) tdata1 = self.__limit(tdata1) tdata2 = self.__limit(tdata2) unariesalt = ( 0 + ( np.dstack( area_weight * [tdata1.reshape(-1, 1), tdata2.reshape(-1, 1)] ).copy("C") ) ).astype(np.int32) unariesalt = self.__limit(unariesalt) # if self.debug_images: # self.__show_debug_(unariesalt, suptitle="after weighing and limitation") return unariesalt def __create_nlinks(self, data, inds=None, boundary_penalties_fcn=None): """ Compute nlinks grid from data shape information. For boundary penalties are data (intensities) values are used. ins: Default is None. Used for multiscale GC. This are indexes of multiscale pixels. Next example shows one superpixel witn index 2. inds = [ [1 2 2], [3 2 2], [4 5 6]] boundary_penalties_fcn: is function with one argument - axis. It can it can be used for setting penalty weights between neighbooring pixels. """ # use the gerneral graph algorithm # first, we construct the grid graph start = time.time() if inds is None: inds = np.arange(data.size).reshape(data.shape) # if not self.segparams['use_boundary_penalties'] and \ # boundary_penalties_fcn is None : if boundary_penalties_fcn is None: edgs_arr = self._prepare_edgs_arr_with_no_fcn(inds) else: logger.info("use_boundary_penalties") edgs_arr = self._prepare_edgs_arr_from_boundary_fcn(inds, boundary_penalties_fcn) # import pdb; pdb.set_trace() edges = np.vstack(edgs_arr).astype(np.int32) # edges - seznam indexu hran, kteres spolu sousedi\ elapsed = time.time() - start self.stats["_create_nlinks time"] = elapsed logger.info("__create nlinks time " + str(elapsed)) return edges def _prepare_edgs_arr_with_no_fcn(self, inds): if self.img.ndim == 3: # This is faster for some specific format edgx = np.c_[inds[:, :, :-1].ravel(), inds[:, :, 1:].ravel()] edgy = np.c_[inds[:, :-1, :].ravel(), inds[:, 1:, :].ravel()] edgz = np.c_[inds[:-1, :, :].ravel(), inds[1:, :, :].ravel()] edgs_arr = [edgx, edgy, edgz] elif self.img.ndim == 2: edgx = np.c_[inds[:, :-1].ravel(), inds[:, 1:].ravel()] edgy = np.c_[inds[:-1, :].ravel(), inds[1:, :].ravel()] edgs_arr = [edgx, edgy] else: logger.error(f"Input data dimension {self.img.ndim} is no supported") edgs_arr = None return edgs_arr def _prepare_edgs_arr_from_boundary_fcn(self, inds, boundary_penalties_fcn): """ prepare list of edgs for each axis :param boundary_penalties_fcn: function working with intensities :param inds: :return: """ bpw = self.segparams["boundary_penalties_weight"] if self.img.ndim == 3: bpa = boundary_penalties_fcn(2) # id1=inds[:, :, :-1].ravel() edgx = np.c_[ inds[:, :, :-1].ravel(), inds[:, :, 1:].ravel(), # cc * np.ones(id1.shape) bpw * bpa[:, :, 1:].ravel(), ] bpa = boundary_penalties_fcn(1) # id1 =inds[:, 1:, :].ravel() edgy = np.c_[ inds[:, :-1, :].ravel(), inds[:, 1:, :].ravel(), # cc * np.ones(id1.shape)] bpw * bpa[:, 1:, :].ravel(), ] bpa = boundary_penalties_fcn(0) # id1 = inds[1:, :, :].ravel() edgz = np.c_[ inds[:-1, :, :].ravel(), inds[1:, :, :].ravel(), # cc * np.ones(id1.shape)] bpw * bpa[1:, :, :].ravel(), ] edgs_arr = [edgx, edgy, edgz] elif self.img.ndim == 2: bpa = boundary_penalties_fcn(1) # id1=inds[:, :, :-1].ravel() edgx = np.c_[ inds[:, :-1].ravel(), inds[:, 1:].ravel(), # cc * np.ones(id1.shape) bpw * bpa[:, 1:].ravel(), ] bpa = boundary_penalties_fcn(0) # id1 =inds[:, 1:, :].ravel() edgy = np.c_[ inds[:-1, :].ravel(), inds[1:, :].ravel(), # cc * np.ones(id1.shape)] bpw * bpa[1:, :].ravel(), ] edgs_arr = [edgx, edgy] else: logger.error(f"Input data dimension {self.img.ndim} is no supported") edgs_arr = None return edgs_arr def debug_get_reconstructed_similarity( self, data3d=None, voxelsize=None, seeds=None, area_weight=1, hard_constraints=True, return_unariesalt=False, ): """ Use actual model to calculate similarity. If no input is given the last image is used. :param data3d: :param voxelsize: :param seeds: :param area_weight: :param hard_constraints: :param return_unariesalt: :return: """ if data3d is None: data3d = self.img if voxelsize is None: voxelsize = self.voxelsize if seeds is None: seeds = self.seeds unariesalt = self.__create_tlinks( data3d, voxelsize, # voxels1, voxels2, seeds, area_weight, hard_constraints, ) if return_unariesalt: return unariesalt else: return self._reshape_unariesalt_to_similarity(unariesalt, data3d.shape) def debug_show_reconstructed_similarity( self, data3d=None, voxelsize=None, seeds=None, area_weight=1, hard_constraints=True, show=True, bins=20, slice_number=None, ): """ Show tlinks. :param data3d: ndarray with input data :param voxelsize: :param seeds: :param area_weight: :param hard_constraints: :param show: :param bins: histogram bins number :param slice_number: :return: """ unariesalt = self.debug_get_reconstructed_similarity( data3d, voxelsize=voxelsize, seeds=seeds, area_weight=area_weight, hard_constraints=hard_constraints, return_unariesalt=True, ) self._debug_show_unariesalt( unariesalt, show=show, bins=bins, slice_number=slice_number ) def debug_inspect_node(self, node_msindex): """ Get info about the node. See pycut.inspect_node() for details. Processing is done in temporary shape. :param node_seed: :return: node_unariesalt, node_neighboor_edges_and_weights, node_neighboor_seeds """ return inspect_node(self.nlinks, self.unariesalt2, self.msinds, node_msindex) def debug_get_node_msindex(self, node_seeds): """ Get multiscale index of voxel selected by seeds. :param node_seeds: ndarray :return int with multiscale index """ node_msindex = get_node_msindex(self.msinds, node_seeds) return node_msindex def debug_interactive_inspect_node(self): """ Call after segmentation to see selected node neighborhood. User have to select one node by click. :return: """ if ( np.sum( np.abs( np.asarray(self.msinds.shape) - np.asarray(self.segmentation.shape) ) ) == 0 ): segmentation = self.segmentation else: segmentation = self.temp_msgc_resized_segmentation logger.info("Click to select one voxel of interest") import sed3 ed = sed3.sed3(self.msinds, contour=segmentation == 0) ed.show() edseeds = ed.seeds node_msindex = get_node_msindex(self.msinds, edseeds) node_unariesalt, node_neighboor_edges_and_weights, node_neighboor_seeds = self.debug_inspect_node( node_msindex ) import sed3 ed = sed3.sed3( self.msinds, contour=segmentation == 0, seeds=node_neighboor_seeds ) ed.show() return ( node_unariesalt, node_neighboor_edges_and_weights, node_neighboor_seeds, node_msindex, ) def debug_reconstruct_nlinks_max(self): """ It will shoe the maximum weight between neighboor pixels. It should be different in hires area and lowres area. In lowres area it whould be k* higher than highres where k is tile size. :return: """ return reconstruct_nlinks_max(self.nlinks, self.msinds) def _ssgc_prepare_data_and_run_computation( self, # voxels1, voxels2, hard_constraints=True, area_weight=1, ): """ Setting of data. You need set seeds if you want use hard_constraints. """ # from PyQt4.QtCore import pyqtRemoveInputHook # pyqtRemoveInputHook() # import pdb; pdb.set_trace() # BREAKPOINT unariesalt = self.__create_tlinks( self.img, self.voxelsize, # voxels1, voxels2, self.seeds, area_weight, hard_constraints, ) # některém testu organ semgmentation dosahují unaries -15. což je podiné # stačí vyhodit print před if a je to vidět logger.debug("unaries %.3g , %.3g" % (np.max(unariesalt), np.min(unariesalt))) # create potts pairwise # pairwiseAlpha = -10 pairwise = -(np.eye(2) - 1) pairwise = (self.segparams["pairwise_alpha"] * pairwise).astype(np.int32) # pairwise = np.array([[0,30],[30,0]]).astype(np.int32) # print pairwise self.iparams = {} if self.segparams["use_boundary_penalties"]: sigma = self.segparams["boundary_penalties_sigma"] # set boundary penalties function # Default are penalties based on intensity differences boundary_penalties_fcn = lambda ax: self._boundary_penalties_array( axis=ax, sigma=sigma ) else: boundary_penalties_fcn = None nlinks = self.__create_nlinks( self.img, boundary_penalties_fcn=boundary_penalties_fcn ) self.stats["tlinks shape"].append(unariesalt.reshape(-1, 2).shape) self.stats["nlinks shape"].append(nlinks.shape) # we flatten the unaries # result_graph = cut_from_graph(nlinks, unaries.reshape(-1, 2), # pairwise) start = time.time() if self.debug_images: self._debug_show_unariesalt(unariesalt) result_graph = pygco.cut_from_graph(nlinks, unariesalt.reshape(-1, 2), pairwise) elapsed = time.time() - start self.stats["gc time"] = elapsed result_labeling = result_graph.reshape(self.img.shape) return result_labeling def _msgc_lo2hi_resize_init(self): self._lo2hi_resize_original_shape = self.img.shape new_shape = ( np.ceil(np.asarray(self.img.shape) / float(self.segparams["block_size"])) * self.segparams["block_size"] ).astype(np.int) crinfo = list(zip([0] * self.img.ndim, self.img.shape)) self.img = uncrop(self.img, crinfo, new_shape, outside_mode="nearest") self.seeds = uncrop(self.seeds, crinfo, new_shape) def _msgc_lo2hi_resize_clean_finish(self): orig_shape = self._lo2hi_resize_original_shape self.temp_msgc_resized_img = self.img self.temp_msgc_resized_segmentation = self.segmentation self.temp_msgc_resized_seeds = self.seeds self.img = self.temp_msgc_resized_img[ : orig_shape[0], : orig_shape[1], : orig_shape[2] ] self.segmentation = self.temp_msgc_resized_segmentation[ : orig_shape[0], : orig_shape[1], : orig_shape[2] ] self.seeds = self.temp_msgc_resized_seeds[ : orig_shape[0], : orig_shape[1], : orig_shape[2] ] if not self.keep_temp_properties: del self.temp_msgc_resized_segmentation del self.temp_msgc_resized_img del self.temp_msgc_resized_seeds del self._lo2hi_resize_original_shape # self.stats["t11"] = time.time() - self._start_time def save(self, filename): """ Save model to file :param filename: Path to file :return: """ self.mdl.save(filename) def ms_remove_repetitive_link(nlinks_not_unique): # nlinks = np.array( # [list(x) for x in set(tuple(x) for x in nlinks_not_unique)] # ) a = nlinks_not_unique nlinks = ( np.unique(a.view(np.dtype((np.void, a.dtype.itemsize * a.shape[1])))) .view(a.dtype) .reshape(-1, a.shape[1]) ) return nlinks def get_neighborhood_edes(nlinks, node_msindex): node_neighbor_edges = np.vstack( [ nlinks[np.where(nlinks[:, 0] == node_msindex)], nlinks[np.where(nlinks[:, 1] == node_msindex)], ] ) return node_neighbor_edges def inspect_node_neighborhood(nlinks, msinds, node_msindex): """ Get information about one node in graph :param nlinks: neighboorhood edges :param msinds: indexes in 3d image :param node_msindex: int, multiscale index of selected voxel :return: node_neighboor_edges_and_weights, node_neighboor_seeds """ # seed_indexes = np.nonzero(node_seed) # selected_inds = msinds[seed_indexes] # node_msindex = selected_inds[0] node_neighbor_edges = get_neighborhood_edes(nlinks, node_msindex) node_neighbor_seeds = np.zeros_like(msinds, dtype=np.int8) for neighboor_ind in np.unique(node_neighbor_edges[:, :2].ravel()): node_neighbor_ind = np.where(msinds == neighboor_ind) node_neighbor_seeds[node_neighbor_ind] = 2 node_neighbor_seeds[np.where(msinds == node_msindex)] = 1 # node_coordinates = np.unravel_index(selected_voxel_ind, msinds.shape) # node_neighbor_coordinates = np.unravel_index(np.unique(node_neighbor_edges[:, :2].ravel()), msinds.shape) return node_neighbor_edges, node_neighbor_seeds def inspect_node(nlinks, unariesalt, msinds, node_msindex): """ Get information about one node in graph :param nlinks: neighboorhood edges :param unariesalt: weights :param msinds: indexes in 3d image :param node_msindex: msindex of selected node. See get_node_msindex() :return: node_unariesalt, node_neighboor_edges_and_weights, node_neighboor_seeds """ node_unariesalt = unariesalt[node_msindex] neigh_edges, neigh_seeds = inspect_node_neighborhood(nlinks, msinds, node_msindex) return node_unariesalt, neigh_edges, neigh_seeds def get_node_msindex(msinds, node_seed): """ Convert seeds-like selection of voxel to multiscale index. :param msinds: ndarray with indexes :param node_seed: ndarray with 1 where selected pixel is, or list of indexes in this array :return: multiscale index of first found seed """ if type(node_seed) == np.ndarray: seed_indexes = np.nonzero(node_seed) elif type(node_seed) == list: seed_indexes = node_seed else: seed_indexes = [node_seed] selected_nodes_msinds = msinds[seed_indexes] node_msindex = selected_nodes_msinds[0] return node_msindex def reconstruct_nlinks_max(nlinks, msinds): nlinks_max = np.zeros_like(msinds, dtype=nlinks.dtype) for node_msindex in np.unique(msinds): edges = get_neighborhood_edes(nlinks, node_msindex) nlinks_max[msinds == node_msindex] = np.max(edges[:, 2]) return nlinks_max # class Tests(unittest.TestCase): # def setUp(self): # pass # def test_segmentation(self): # data_shp = [16,16,16] # data = generate_data(data_shp) # seeds = np.zeros(data_shp) # setting background seeds # seeds[:,0,0] = 1 # seeds[6,8:-5,2] = 2 # x[4:-4, 6:-2, 1:-6] = -1 # igc = ImageGraphCut(data) # igc.interactivity() # instead of interacitivity just set seeeds # igc.noninteractivity(seeds) # instead of showing just test results # igc.show_segmentation() # segmentation = igc.segmentation # Testin some pixels for result # self.assertTrue(segmentation[0, 0, -1] == 0) # self.assertTrue(segmentation[7, 9, 3] == 1) # self.assertTrue(np.sum(segmentation) > 10) # pdb.set_trace() # self.assertTrue(True) # logger.debug(igc.segmentation.shape) usage = "%prog [options]\n" + __doc__.rstrip() help = { "in_file": 'input *.mat file with "data" field', "out_file": "store the output matrix to the file", "debug": "debug mode", "debug_interactivity": "turn on interactive debug mode", "test": "run unit test", } def relabel_squeeze(data): """ Makes relabeling of data if there are unused values. """ palette, index = np.unique(data, return_inverse=True) data = index.reshape(data.shape) # realy slow solution # unq = np.unique(data) # actual_label = 0 # for lab in unq: # data[data == lab] = actual_label # actual_label += 1 # one another solution probably slower # arr = data # data = (np.digitize(arr.reshape(-1,),np.unique(arr))-1).reshape(arr.shape) return data # @profile def main(): # logger = logging.getLogger(__file__) logger = logging.getLogger() logger.setLevel(logging.WARNING) logging.basicConfig(format="%(message)s") ch = logging.StreamHandler() formatter = logging.Formatter( "%(levelname)-5s [%(module)s:%(funcName)s:%(lineno)d] %(message)s" ) ch.setFormatter(formatter) logger.addHandler(ch) # parser = OptionParser(description='Organ segmentation') parser = argparse.ArgumentParser(description=__doc__) parser.add_argument("-d", "--debug", action="store_true", help=help["debug"]) parser.add_argument( "-di", "--debug-interactivity", action="store_true", help=help["debug_interactivity"], ) parser.add_argument( "-i", "--input-file", action="store", default=None, help=help["in_file"] ) parser.add_argument("-t", "--tests", action="store_true", help=help["test"]) parser.add_argument( "-o", "--outputfile", action="store", dest="out_filename", default="output.mat", help=help["out_file"], ) # (options, args) = parser.parse_args() options = parser.parse_args() debug_images = False if options.debug: logger.setLevel(logging.DEBUG) # print DEBUG # DEBUG = True if options.debug_interactivity: debug_images = True # if options.tests: # sys.argv[1:]=[] # unittest.main() if options.input_file is None: raise IOError("No input data!") else: dataraw = loadmat(options.input_file, variable_names=["data", "voxelsize_mm"]) # import pdb; pdb.set_trace() # BREAKPOINT logger.debug("\nvoxelsize_mm " + dataraw["voxelsize_mm"].__str__()) if sys.platform == "win32": # hack, on windows is voxelsize read as 2D array like [[1, 0.5, 0.5]] dataraw["voxelsize_mm"] = dataraw["voxelsize_mm"][0] igc = ImageGraphCut( dataraw["data"], voxelsize=dataraw["voxelsize_mm"], debug_images=debug_images # noqa # , modelparams={'type': 'gaussian_kde', 'params': []} # , modelparams={'type':'kernel', 'params':[]} #noqa not in old scipy # , modelparams={'type':'gmmsame', 'params':{'cvtype':'full', 'n_components':3}} # noqa 3 components # , segparams={'type': 'multiscale_gc'} # multisc gc , segparams={"method": "multiscale_graphcut"} # multisc gc # , modelparams={'fv_type': 'fv001'} # , modelparams={'type': 'dpgmm', 'params': {'cvtype': 'full', 'n_components': 5, 'alpha': 10}} # noqa 3 components ) igc.interactivity() logger.debug("igc interactivity countr: %s", igc.interactivity_counter) logger.debug(igc.segmentation.shape) if __name__ == "__main__": main()
bsd-3-clause
PatrickOReilly/scikit-learn
sklearn/feature_extraction/hashing.py
74
6153
# Author: Lars Buitinck # License: BSD 3 clause import numbers import numpy as np import scipy.sparse as sp from . import _hashing from ..base import BaseEstimator, TransformerMixin def _iteritems(d): """Like d.iteritems, but accepts any collections.Mapping.""" return d.iteritems() if hasattr(d, "iteritems") else d.items() class FeatureHasher(BaseEstimator, TransformerMixin): """Implements feature hashing, aka the hashing trick. This class turns sequences of symbolic feature names (strings) into scipy.sparse matrices, using a hash function to compute the matrix column corresponding to a name. The hash function employed is the signed 32-bit version of Murmurhash3. Feature names of type byte string are used as-is. Unicode strings are converted to UTF-8 first, but no Unicode normalization is done. Feature values must be (finite) numbers. This class is a low-memory alternative to DictVectorizer and CountVectorizer, intended for large-scale (online) learning and situations where memory is tight, e.g. when running prediction code on embedded devices. Read more in the :ref:`User Guide <feature_hashing>`. Parameters ---------- n_features : integer, optional The number of features (columns) in the output matrices. Small numbers of features are likely to cause hash collisions, but large numbers will cause larger coefficient dimensions in linear learners. dtype : numpy type, optional, default np.float64 The type of feature values. Passed to scipy.sparse matrix constructors as the dtype argument. Do not set this to bool, np.boolean or any unsigned integer type. input_type : string, optional, default "dict" Either "dict" (the default) to accept dictionaries over (feature_name, value); "pair" to accept pairs of (feature_name, value); or "string" to accept single strings. feature_name should be a string, while value should be a number. In the case of "string", a value of 1 is implied. The feature_name is hashed to find the appropriate column for the feature. The value's sign might be flipped in the output (but see non_negative, below). non_negative : boolean, optional, default False Whether output matrices should contain non-negative values only; effectively calls abs on the matrix prior to returning it. When True, output values can be interpreted as frequencies. When False, output values will have expected value zero. Examples -------- >>> from sklearn.feature_extraction import FeatureHasher >>> h = FeatureHasher(n_features=10) >>> D = [{'dog': 1, 'cat':2, 'elephant':4},{'dog': 2, 'run': 5}] >>> f = h.transform(D) >>> f.toarray() array([[ 0., 0., -4., -1., 0., 0., 0., 0., 0., 2.], [ 0., 0., 0., -2., -5., 0., 0., 0., 0., 0.]]) See also -------- DictVectorizer : vectorizes string-valued features using a hash table. sklearn.preprocessing.OneHotEncoder : handles nominal/categorical features encoded as columns of integers. """ def __init__(self, n_features=(2 ** 20), input_type="dict", dtype=np.float64, non_negative=False): self._validate_params(n_features, input_type) self.dtype = dtype self.input_type = input_type self.n_features = n_features self.non_negative = non_negative @staticmethod def _validate_params(n_features, input_type): # strangely, np.int16 instances are not instances of Integral, # while np.int64 instances are... if not isinstance(n_features, (numbers.Integral, np.integer)): raise TypeError("n_features must be integral, got %r (%s)." % (n_features, type(n_features))) elif n_features < 1 or n_features >= 2 ** 31: raise ValueError("Invalid number of features (%d)." % n_features) if input_type not in ("dict", "pair", "string"): raise ValueError("input_type must be 'dict', 'pair' or 'string'," " got %r." % input_type) def fit(self, X=None, y=None): """No-op. This method doesn't do anything. It exists purely for compatibility with the scikit-learn transformer API. Returns ------- self : FeatureHasher """ # repeat input validation for grid search (which calls set_params) self._validate_params(self.n_features, self.input_type) return self def transform(self, raw_X, y=None): """Transform a sequence of instances to a scipy.sparse matrix. Parameters ---------- raw_X : iterable over iterable over raw features, length = n_samples Samples. Each sample must be iterable an (e.g., a list or tuple) containing/generating feature names (and optionally values, see the input_type constructor argument) which will be hashed. raw_X need not support the len function, so it can be the result of a generator; n_samples is determined on the fly. y : (ignored) Returns ------- X : scipy.sparse matrix, shape = (n_samples, self.n_features) Feature matrix, for use with estimators or further transformers. """ raw_X = iter(raw_X) if self.input_type == "dict": raw_X = (_iteritems(d) for d in raw_X) elif self.input_type == "string": raw_X = (((f, 1) for f in x) for x in raw_X) indices, indptr, values = \ _hashing.transform(raw_X, self.n_features, self.dtype) n_samples = indptr.shape[0] - 1 if n_samples == 0: raise ValueError("Cannot vectorize empty sequence.") X = sp.csr_matrix((values, indices, indptr), dtype=self.dtype, shape=(n_samples, self.n_features)) X.sum_duplicates() # also sorts the indices if self.non_negative: np.abs(X.data, X.data) return X
bsd-3-clause
dlenski/top500
top500_plot.py
1
8180
#!/usr/bin/env python3 # -*- coding: utf-8 -*- import sys, json from itertools import cycle, product import pandas as pd import numpy as np from matplotlib import pyplot as plt, dates as mpld, use plt.rcParams['font.size']=20 plt.rcParams['svg.fonttype'] = 'none' # don't embed or render font (https://stackoverflow.com/a/35734729) #pl.rcParams['legend.fontsize']*=1.1 #pl.rcParams['xtick.labelsize']*=1.25 #pl.rcParams['ytick.labelsize']*=1.25 plt.rcParams['legend.fontsize']='x-small' ########################## # get the data df = pd.read_csv('TOP500_history.csv', low_memory=False, parse_dates={'Date': ['Year','Month','Day']}) assert (df.groupby(('Date',)).size()==500).all() # Make mostly-coherent processor family and vendor columns def remap(procfam): if procfam in ('Intel EM64T','Intel Nehalem','Intel Westmere','Intel SandyBridge','Intel IvyBridge','Intel Haswell','Intel Core','Intel Broadwell','Intel Skylake','Intel Cascade Lake','Intel Cascade lake','AMD x86_64','AMD Zen (Naples)','AMD Zen-2 (Rome)'): i,v='x86-64', procfam.split()[0] elif procfam in ('Intel MIC','Intel Xeon Phi'): i,v='Xeon Phi','Intel' elif procfam in ('POWER','Power','PowerPC'): i=v='POWER' elif procfam == 'Intel IA-64': i,v='Itanium', 'Intel' elif procfam in ('Intel IA-32','AMD'): i,v='x86-32', procfam.split()[0] else: i,v=procfam, procfam return pd.Series((i,v)) procfam = df['Processor Family'].where(df['Processor Family'].notna(), df['Processor Technology']) df[['ISA','Vendor']] = procfam.apply(remap) # get country codes for f, t in (('Saudia Arabia', 'Saudi Arabia'), # typo in TOP500 sources ('Korea, South', 'South Korea'), # Match country-en.csv ('Czech Republic', 'Czechia'), # Match country-en.csv ('Slovak Republic', 'Slovakia'), # Match country-en.csv ('Hong Kong', 'Hong Kong SAR China')): # Match country-en.csv df['Country'].replace(f, t, inplace=True) dfc_en = pd.read_csv('country-en.csv') dfc_en.columns = ('CountryISO', 'Country') df = df.merge(dfc_en, on='Country', how='left') assert (df['CountryISO'].isnull()==False).all() # get localized labels and countries loclabels = json.load(open('labels-i18n.json')) countries = None for lang in loclabels: clang = pd.read_csv('country-%s.csv'%lang, encoding='utf-8') clang.columns = ('CountryISO', lang) if countries is None: countries = clang else: countries = countries.merge(clang, on='CountryISO') countries.set_index('CountryISO', inplace=True) assert (df.groupby(('Date',)).size()==500).all() ########################## # Find what set of countries (sorted by weight) account for most of the total counts country_by_date = df.groupby(('Date','CountryISO')).size() country_wt = country_by_date.sum(level='CountryISO').sort_values(ascending=False).to_frame('sum') #country_wt['sum'] = country_by_date.sum(level='Country') cutoff = country_wt['sum'].cumsum() > 0.90*country_wt['sum'].sum() #country_by_date = country_by_date.reset_index() #country_by_date = country_by_date.groupby(('Date','Country')).sum() country_by_date = country_by_date.unstack() # pivot Country from row to column index country_by_date = country_by_date.fillna(0) # fill in missing values (e.g. x86_64 in 1993 ;-)) major_minor_countries = [ country_by_date.reindex(columns=country_wt.index[cutoff==polarity]) for polarity in (False,True) ] # plot it for lang, langlabels in loclabels.items(): colors = cycle( list('bcgmry') ) hatches = cycle(('/', '*', '\\', 'o', 'x', 'O', '.')) print("Plotting TOP500 systems by country (%s)..." % lang) fig = plt.figure(figsize=(14,10)) sharex = None patches, labels = [], [] dates = country_by_date.index for pos, cbd in enumerate(major_minor_countries): plt.subplot(2, 1, 2-pos, sharex=sharex) sharex = ax = fig.gca() edge = 0 bottom = None for pp, ser in cbd.items(): hatch = next(hatches) facecolor = next(colors) label = countries.loc[pp,lang] ax.fill_between(dates, edge, edge+ser, edgecolor='k', facecolor=facecolor, hatch=hatch, label=label) ax.xaxis.set_major_formatter(mpld.DateFormatter("%Y")) #"’%y")) ax.xaxis.set_major_locator(mpld.YearLocator()) ax.xaxis.set_minor_locator(mpld.YearLocator(month=7)) plt.xticks(rotation='60') patches.append( plt.Rectangle((0,0), 2, 2, edgecolor='k', facecolor=facecolor, hatch=hatch) ) labels.append(label) edge += ser # show legend and labels plt.ylabel(langlabels['nsys']) plt.ylim(bottom, min(500, edge.max() + 0.1*edge.ptp())) if pos==0: plt.xlabel(langlabels['date']) elif pos==1: plt.setp(ax.get_xticklabels(), visible=False) plt.setp(ax.get_xlabel(), visible=False) plt.title(langlabels['by_country']) plt.legend(patches, labels, loc='upper left', bbox_to_anchor=(1.02, 1), handleheight=1.2, handlelength=3, ncol=2) plt.subplots_adjust(left=.08, top=.92, bottom=0.12, right=0.6, hspace=0.02) plt.xlim(dates.min(), dates.max()) plt.savefig("Countries_with_TOP500_supercomputers_%s.png"%lang, bbox_inches='tight') plt.savefig("Countries_with_TOP500_supercomputers_%s.svg"%lang, bbox_inches='tight') ########################## # Processor families by date, sorted by weight of ISA then by Vendor proc_counts = df.groupby(('ISA','Vendor','Date')).size() proc_by_date = proc_counts.unstack(level=(0,1)).fillna(0) # pivot ISA,Vendor from row to column index proc_wt = proc_by_date.sum().to_frame() # weight (ISA,Vendor) across all dates ISA_wt = proc_wt.sum(level='ISA') # weight by (ISA) across all dates ISA_wt.columns = [1] proc_wt = proc_wt.join( ISA_wt.reindex(proc_wt.index, level='ISA') ) proc_wt.sort_values([1,0], ascending=(False,False), inplace=True) proc_by_date = proc_by_date.reindex(columns=proc_wt.index) # plot it for lang, langlabels in loclabels.items(): colors = cycle( list('bcgmry') ) hatches = cycle(('/', '*', '\\', 'o', 'x', 'O', '.')) print("Plotting TOP500 systems by process family (%s)..." % lang) fig = plt.figure(figsize=(14,10)) patches, labels = [], [] dates = proc_by_date.index edge = 0 pplast = facecolor = bottom = None for pp, ser in proc_by_date.items(): #print ser.shape, edge.shape, dates.shape if isinstance(pp, str): pp=pp, if pplast is None or pp[0]!=pplast[0]: hatch = next(hatches) if pplast is None or len(pp)<2 or pp[1]!=pplast[1]: facecolor = next(colors) label = ("%s (%s)"%pp if pp[0]!=pp[1] else pp[0]) ax = fig.gca() ax.fill_between(dates, edge, edge+ser, edgecolor='k', facecolor=facecolor, hatch=hatch, label=label) ax.xaxis.set_major_formatter(mpld.DateFormatter("%Y")) #"’%y")) ax.xaxis.set_major_locator(mpld.YearLocator(month=6)) ax.xaxis.set_minor_locator(mpld.YearLocator(month=11)) plt.xticks(rotation=60) patches.append( plt.Rectangle((0,0), 2, 2, edgecolor='k', facecolor=facecolor, hatch=hatch) ) labels.append(label) edge += ser pplast = pp if bottom is None: bottom = max(0, edge.min() - 0.1*edge.ptp()) # show legend and labels plt.legend(patches, labels, loc='upper left', bbox_to_anchor=(1.02, 1), handleheight=1, handlelength=4) plt.subplots_adjust(left=.08, top=.92, bottom=0.12, right=0.75) plt.xlabel(langlabels['date']) plt.ylabel(langlabels['nsys']) plt.title(langlabels['by_procfam']) plt.xlim(dates.min(), dates.max())#+pd.datetools.relativedelta(months=6)) plt.ylim(bottom, min(500, edge.max() + 0.1*edge.ptp())) plt.savefig("Processor_families_in_TOP500_supercomputers_%s.png"%lang, bbox_inches='tight') plt.savefig("Processor_families_in_TOP500_supercomputers_%s.svg"%lang, bbox_inches='tight') #plt.show()
gpl-3.0
PatrickChrist/scikit-learn
sklearn/externals/joblib/__init__.py
86
4795
""" Joblib is a set of tools to provide **lightweight pipelining in Python**. In particular, joblib offers: 1. transparent disk-caching of the output values and lazy re-evaluation (memoize pattern) 2. easy simple parallel computing 3. logging and tracing of the execution Joblib is optimized to be **fast** and **robust** in particular on large data and has specific optimizations for `numpy` arrays. It is **BSD-licensed**. ============================== ============================================ **User documentation**: http://pythonhosted.org/joblib **Download packages**: http://pypi.python.org/pypi/joblib#downloads **Source code**: http://github.com/joblib/joblib **Report issues**: http://github.com/joblib/joblib/issues ============================== ============================================ Vision -------- The vision is to provide tools to easily achieve better performance and reproducibility when working with long running jobs. * **Avoid computing twice the same thing**: code is rerun over an over, for instance when prototyping computational-heavy jobs (as in scientific development), but hand-crafted solution to alleviate this issue is error-prone and often leads to unreproducible results * **Persist to disk transparently**: persisting in an efficient way arbitrary objects containing large data is hard. Using joblib's caching mechanism avoids hand-written persistence and implicitly links the file on disk to the execution context of the original Python object. As a result, joblib's persistence is good for resuming an application status or computational job, eg after a crash. Joblib strives to address these problems while **leaving your code and your flow control as unmodified as possible** (no framework, no new paradigms). Main features ------------------ 1) **Transparent and fast disk-caching of output value:** a memoize or make-like functionality for Python functions that works well for arbitrary Python objects, including very large numpy arrays. Separate persistence and flow-execution logic from domain logic or algorithmic code by writing the operations as a set of steps with well-defined inputs and outputs: Python functions. Joblib can save their computation to disk and rerun it only if necessary:: >>> import numpy as np >>> from sklearn.externals.joblib import Memory >>> mem = Memory(cachedir='/tmp/joblib') >>> import numpy as np >>> a = np.vander(np.arange(3)).astype(np.float) >>> square = mem.cache(np.square) >>> b = square(a) # doctest: +ELLIPSIS ________________________________________________________________________________ [Memory] Calling square... square(array([[ 0., 0., 1.], [ 1., 1., 1.], [ 4., 2., 1.]])) ___________________________________________________________square - 0...s, 0.0min >>> c = square(a) >>> # The above call did not trigger an evaluation 2) **Embarrassingly parallel helper:** to make is easy to write readable parallel code and debug it quickly:: >>> from sklearn.externals.joblib import Parallel, delayed >>> from math import sqrt >>> Parallel(n_jobs=1)(delayed(sqrt)(i**2) for i in range(10)) [0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0] 3) **Logging/tracing:** The different functionalities will progressively acquire better logging mechanism to help track what has been ran, and capture I/O easily. In addition, Joblib will provide a few I/O primitives, to easily define define logging and display streams, and provide a way of compiling a report. We want to be able to quickly inspect what has been run. 4) **Fast compressed Persistence**: a replacement for pickle to work efficiently on Python objects containing large data ( *joblib.dump* & *joblib.load* ). .. >>> import shutil ; shutil.rmtree('/tmp/joblib/') """ # PEP0440 compatible formatted version, see: # https://www.python.org/dev/peps/pep-0440/ # # Generic release markers: # X.Y # X.Y.Z # For bugfix releases # # Admissible pre-release markers: # X.YaN # Alpha release # X.YbN # Beta release # X.YrcN # Release Candidate # X.Y # Final release # # Dev branch marker is: 'X.Y.dev' or 'X.Y.devN' where N is an integer. # 'X.Y.dev0' is the canonical version of 'X.Y.dev' # __version__ = '0.9.0b3' from .memory import Memory, MemorizedResult from .logger import PrintTime from .logger import Logger from .hashing import hash from .numpy_pickle import dump from .numpy_pickle import load from .parallel import Parallel from .parallel import delayed from .parallel import cpu_count
bsd-3-clause
ZENGXH/scikit-learn
examples/neighbors/plot_nearest_centroid.py
264
1804
""" =============================== Nearest Centroid Classification =============================== Sample usage of Nearest Centroid classification. It will plot the decision boundaries for each class. """ print(__doc__) import numpy as np import matplotlib.pyplot as plt from matplotlib.colors import ListedColormap from sklearn import datasets from sklearn.neighbors import NearestCentroid n_neighbors = 15 # import some data to play with iris = datasets.load_iris() X = iris.data[:, :2] # we only take the first two features. We could # avoid this ugly slicing by using a two-dim dataset y = iris.target h = .02 # step size in the mesh # Create color maps cmap_light = ListedColormap(['#FFAAAA', '#AAFFAA', '#AAAAFF']) cmap_bold = ListedColormap(['#FF0000', '#00FF00', '#0000FF']) for shrinkage in [None, 0.1]: # we create an instance of Neighbours Classifier and fit the data. clf = NearestCentroid(shrink_threshold=shrinkage) clf.fit(X, y) y_pred = clf.predict(X) print(shrinkage, np.mean(y == y_pred)) # Plot the decision boundary. For that, we will assign a color to each # point in the mesh [x_min, m_max]x[y_min, y_max]. x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1 y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1 xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h)) Z = clf.predict(np.c_[xx.ravel(), yy.ravel()]) # Put the result into a color plot Z = Z.reshape(xx.shape) plt.figure() plt.pcolormesh(xx, yy, Z, cmap=cmap_light) # Plot also the training points plt.scatter(X[:, 0], X[:, 1], c=y, cmap=cmap_bold) plt.title("3-Class classification (shrink_threshold=%r)" % shrinkage) plt.axis('tight') plt.show()
bsd-3-clause
iut-ibk/DynaMind-UrbanSim
3rdparty/opus/src/opus_core/indicator_framework/core/indicator_data_manager.py
2
12819
# Opus/UrbanSim urban simulation software. # Copyright (C) 2010-2011 University of California, Berkeley, 2005-2009 University of Washington # See opus_core/LICENSE import re from opus_core.configurations.dataset_pool_configuration import DatasetPoolConfiguration from opus_core.indicator_framework.core.source_data import SourceData from opus_core.logger import logger class IndicatorDataManager: def export_indicator(self, indicator, source_data, year = None): self._export_indicator_to_file(indicator, source_data, year) def _export_indicator_to_file(self, indicator, source_data, year): VERSION = 1.0 '''Writes to a file information about this indicator''' if not indicator.write_to_file: return lines = [] class_name = indicator.__class__.__name__ lines.append('<version>%.1f</version>'%VERSION) lines.append('<%s>'%class_name) basic_attributes = ['dataset_name', 'years', 'date_computed', 'name', 'operation', 'storage_location'] attrs = '[\'' + '\';\''.join(indicator.attributes) + '\']' lines.append('\t<attributes>%s</attributes>'%( attrs)) for basic_attr in basic_attributes: attr_value = indicator.__getattribute__(basic_attr) lines.append('\t<%s>%s</%s>'%(basic_attr, str(attr_value), basic_attr)) #get additional attributes for child classes... for attr,value in indicator.get_additional_metadata(): lines.append('\t<%s>%s</%s>'%(attr,str(value),attr)) lines += source_data.get_metadata(indentation = 1) lines.append('</%s>'%class_name) #write to metadata file file = indicator.get_file_name(year = year, extension = 'meta') path = os.path.join(indicator.get_storage_location(), file) f = open(path, 'w') output = '\n'.join(lines) f.write(output) f.close() return lines def import_indicators(self, indicator_directory): return self._import_indicators_from_file(indicator_directory) def _import_indicators_from_file(self, indicator_directory): '''scans the indicator directory for indicator meta files and recreates the indicators''' import fnmatch files = [os.path.join(indicator_directory, f) for f in os.listdir(indicator_directory) if fnmatch.fnmatch(f,'*.meta')] indicators = [] for f in files: try: indicator = self._import_indicator_from_file(f) indicators.append(indicator) except Exception, e: logger.log_warning('Could not load indicator from %s: %s'%(f,e)) return indicators '''not in use yet''' # def import_indicator(self): # meta_path = os.path.join(indicator_directory, filename) # indicator = self._import_indicator_from_file(meta_path) # indicators.append(indicator) def _import_indicator_from_file(self, file_path): '''creates and returns an indicator from the file pointed to in file_path ''' #TODO: If the additional child parameters are not strings, the current implementation will fail. f = open(file_path) version = f.readline() indicator_class = f.readline().strip() indicator_class = indicator_class[1:-1] in_source_data = False source_data_params = {} non_constructor_attr = { 'date_computed': None } params = {} for line in f.readlines(): line = line.strip() if line == '<source_data>': in_source_data = True elif line == '</source_data>': in_source_data = False elif line != '</%s>'%indicator_class: (name, value) = self._extract_name_and_value(line) #TODO: figure out way for each object to know which values to #reinterpret from string if name == 'years' or name == 'scale': if value == 'None' or value == '[]': value = [] elif name=='scale': value = [float(y) for y in value[1:-1].split(',')] elif name=='years': value = [int(y) for y in value[1:-1].split(',')] elif name == 'attributes': if value == 'None' or value == '[]': value = [] else: value = [attr.strip().replace("'",'') for attr in value[1:-1].split(';')] if in_source_data: if name == 'package_order': order = [eval(p.strip()) for p in value[1:-1].split(',')] pool = DatasetPoolConfiguration( package_order = order, ) source_data_params['dataset_pool_configuration'] = pool else: source_data_params[name] = value else: if name == 'dataset_name': params['dataset_name'] = value elif name in non_constructor_attr: non_constructor_attr[name] = value else: params[name] = value f.close() cache_directory = os.path.split(os.path.dirname(file_path).split()[0])[0] source_data_params['cache_directory'] = cache_directory indicator = self._create_indicator(indicator_class, params, non_constructor_attr, source_data_params) return indicator def _create_indicator(self, indicator_class, params, non_constructor_attributes, source_data_params): source_data = SourceData(**source_data_params) for k,v in params.items(): if v=='None': params[k] = None params['source_data'] = source_data module = self._get_module_from_indicator_class(indicator_class) if indicator_class != 'DatasetTable': params['attribute'] = params['attributes'][0] del params['attributes'] exec('from opus_core.indicator_framework.image_types.%s import %s'%(module, indicator_class)) indicator = locals()[indicator_class](**params) for attr, value in non_constructor_attributes.items(): if value == 'None': value = None indicator.__setattr__(attr,value) return indicator def _extract_name_and_value(self, line): '''takes a line of xml and returns attr name/value tuple''' name_re = re.compile('<\w+>') value_re = re.compile('>.*<') line = line.strip() name = name_re.match(line).group()[1:-1] value = value_re.search(line).group()[1:-1] return (name, value) def _get_module_from_indicator_class(self, indicator_class): modules = { 'DatasetTable': 'dataset_table', 'GeotiffMap': 'geotiff_map', 'Map': 'mapnik_map', 'Chart': 'matplotlib_chart', 'LorenzCurve': 'matplotlib_lorenzcurve', 'Table': 'table' } return modules[indicator_class] from opus_core.tests import opus_unittest from opus_core.indicator_framework.test_classes.abstract_indicator_test import AbstractIndicatorTest import os class Tests(AbstractIndicatorTest): def setUp(self): self.data_manager = IndicatorDataManager() AbstractIndicatorTest.setUp(self) def test__write_metadata(self): try: from opus_core.indicator_framework.image_types.table import Table except: pass else: table = Table( source_data = self.cross_scenario_source_data, attribute = 'opus_core.test.attribute', dataset_name = 'test', output_type = 'tab', years = [1980,1981] # Indicators are not actually being computed, so the years don't matter here. ) table.create(False) table.date_computed = None output = self.data_manager._export_indicator_to_file( indicator = table, source_data = self.cross_scenario_source_data, year = None) expected = [ '<version>1.0</version>', '<Table>', '\t<attributes>[\'opus_core.test.attribute\']</attributes>', '\t<dataset_name>test</dataset_name>', '\t<years>[1980, 1981]</years>', '\t<date_computed>None</date_computed>', '\t<name>attribute</name>', '\t<operation>None</operation>', '\t<storage_location>%s</storage_location>'%os.path.join(self.temp_cache_path, 'indicators'), '\t<output_type>tab</output_type>', '\t<source_data>', '\t\t<cache_directory>%s</cache_directory>'%self.temp_cache_path, '\t\t<comparison_cache_directory>%s</comparison_cache_directory>'%self.temp_cache_path2, '\t\t<run_description>%s</run_description>'%self.cross_scenario_source_data.get_run_description(), '\t\t<years>[1980]</years>', '\t\t<package_order>[\'opus_core\']</package_order>', '\t</source_data>', '</Table>' ] for i in range(len(output)): if expected[i] != output[i]: print expected[i] print output[i] self.assertEqual(output,expected) def test__read_write_metadata(self): try: from opus_core.indicator_framework.image_types.table import Table except: raise else: table = Table( source_data = self.source_data, attribute = 'opus_core.test.attribute', dataset_name = 'test', output_type = 'tab', years = [1980,1981] # Indicators are not actually being computed, so the years don't matter here. ) table.create(False) self.data_manager._export_indicator_to_file(indicator = table, source_data = self.source_data, year = None) metadata_file = table.get_file_name(extension = 'meta') metadata_path = os.path.join(table.get_storage_location(), metadata_file) self.assertEqual(os.path.exists(metadata_path), True) expected_path = 'test__tab__attribute.meta' self.assertEqual(metadata_file,expected_path) new_table = self.data_manager._import_indicator_from_file(metadata_path) for attr in ['attributes','dataset_name', 'output_type','date_computed', 'years']: old_val = table.__getattribute__(attr) new_val = new_table.__getattribute__(attr) self.assertEqual(old_val,new_val) self.assertEqual(table.source_data.cache_directory, new_table.source_data.cache_directory) self.assertEqual(table.source_data.dataset_pool_configuration.package_order, new_table.source_data.dataset_pool_configuration.package_order) if __name__ == '__main__': opus_unittest.main()
gpl-2.0
bhilburn/gnuradio
gr-digital/examples/snr_estimators.py
46
6348
#!/usr/bin/env python # # Copyright 2011-2013 Free Software Foundation, Inc. # # This file is part of GNU Radio # # GNU Radio is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 3, or (at your option) # any later version. # # GNU Radio is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with GNU Radio; see the file COPYING. If not, write to # the Free Software Foundation, Inc., 51 Franklin Street, # Boston, MA 02110-1301, USA. # import sys try: import scipy from scipy import stats except ImportError: print "Error: Program requires scipy (www.scipy.org)." sys.exit(1) try: import pylab except ImportError: print "Error: Program requires Matplotlib (matplotlib.sourceforge.net)." sys.exit(1) from gnuradio import gr, digital, filter from gnuradio import blocks from gnuradio import channels from optparse import OptionParser from gnuradio.eng_option import eng_option ''' This example program uses Python and GNU Radio to calculate SNR of a noise BPSK signal to compare them. For an explination of the online algorithms, see: http://en.wikipedia.org/wiki/Algorithms_for_calculating_variance#Higher-order_statistics ''' def online_skewness(data): n = 0 mean = 0 M2 = 0 M3 = 0 for n in xrange(len(data)): delta = data[n] - mean delta_n = delta / (n+1) term1 = delta * delta_n * n mean = mean + delta_n M3 = M3 + term1 * delta_n * (n - 1) - 3 * delta_n * M2 M2 = M2 + term1 return scipy.sqrt(len(data))*M3 / scipy.power(M2, 3.0/2.0); def snr_est_simple(signal): s = scipy.mean(abs(signal)**2) n = 2*scipy.var(abs(signal)) snr_rat = s/n return 10.0*scipy.log10(snr_rat), snr_rat def snr_est_skew(signal): y1 = scipy.mean(abs(signal)) y2 = scipy.mean(scipy.real(signal**2)) y3 = (y1*y1 - y2) y4 = online_skewness(signal.real) #y4 = stats.skew(abs(signal.real)) skw = y4*y4 / (y2*y2*y2); s = y1*y1 n = 2*(y3 + skw*s) snr_rat = s / n return 10.0*scipy.log10(snr_rat), snr_rat def snr_est_m2m4(signal): M2 = scipy.mean(abs(signal)**2) M4 = scipy.mean(abs(signal)**4) snr_rat = scipy.sqrt(2*M2*M2 - M4) / (M2 - scipy.sqrt(2*M2*M2 - M4)) return 10.0*scipy.log10(snr_rat), snr_rat def snr_est_svr(signal): N = len(signal) ssum = 0 msum = 0 for i in xrange(1, N): ssum += (abs(signal[i])**2)*(abs(signal[i-1])**2) msum += (abs(signal[i])**4) savg = (1.0/(float(N)-1.0))*ssum mavg = (1.0/(float(N)-1.0))*msum beta = savg / (mavg - savg) snr_rat = ((beta - 1) + scipy.sqrt(beta*(beta-1))) return 10.0*scipy.log10(snr_rat), snr_rat def main(): gr_estimators = {"simple": digital.SNR_EST_SIMPLE, "skew": digital.SNR_EST_SKEW, "m2m4": digital.SNR_EST_M2M4, "svr": digital.SNR_EST_SVR} py_estimators = {"simple": snr_est_simple, "skew": snr_est_skew, "m2m4": snr_est_m2m4, "svr": snr_est_svr} parser = OptionParser(option_class=eng_option, conflict_handler="resolve") parser.add_option("-N", "--nsamples", type="int", default=10000, help="Set the number of samples to process [default=%default]") parser.add_option("", "--snr-min", type="float", default=-5, help="Minimum SNR [default=%default]") parser.add_option("", "--snr-max", type="float", default=20, help="Maximum SNR [default=%default]") parser.add_option("", "--snr-step", type="float", default=0.5, help="SNR step amount [default=%default]") parser.add_option("-t", "--type", type="choice", choices=gr_estimators.keys(), default="simple", help="Estimator type {0} [default=%default]".format( gr_estimators.keys())) (options, args) = parser.parse_args () N = options.nsamples xx = scipy.random.randn(N) xy = scipy.random.randn(N) bits =2*scipy.complex64(scipy.random.randint(0, 2, N)) - 1 #bits =(2*scipy.complex64(scipy.random.randint(0, 2, N)) - 1) + \ # 1j*(2*scipy.complex64(scipy.random.randint(0, 2, N)) - 1) snr_known = list() snr_python = list() snr_gr = list() # when to issue an SNR tag; can be ignored in this example. ntag = 10000 n_cpx = xx + 1j*xy py_est = py_estimators[options.type] gr_est = gr_estimators[options.type] SNR_min = options.snr_min SNR_max = options.snr_max SNR_step = options.snr_step SNR_dB = scipy.arange(SNR_min, SNR_max+SNR_step, SNR_step) for snr in SNR_dB: SNR = 10.0**(snr/10.0) scale = scipy.sqrt(2*SNR) yy = bits + n_cpx/scale print "SNR: ", snr Sknown = scipy.mean(yy**2) Nknown = scipy.var(n_cpx/scale) snr0 = Sknown/Nknown snr0dB = 10.0*scipy.log10(snr0) snr_known.append(float(snr0dB)) snrdB, snr = py_est(yy) snr_python.append(snrdB) gr_src = blocks.vector_source_c(bits.tolist(), False) gr_snr = digital.mpsk_snr_est_cc(gr_est, ntag, 0.001) gr_chn = channels.channel_model(1.0/scale) gr_snk = blocks.null_sink(gr.sizeof_gr_complex) tb = gr.top_block() tb.connect(gr_src, gr_chn, gr_snr, gr_snk) tb.run() snr_gr.append(gr_snr.snr()) f1 = pylab.figure(1) s1 = f1.add_subplot(1,1,1) s1.plot(SNR_dB, snr_known, "k-o", linewidth=2, label="Known") s1.plot(SNR_dB, snr_python, "b-o", linewidth=2, label="Python") s1.plot(SNR_dB, snr_gr, "g-o", linewidth=2, label="GNU Radio") s1.grid(True) s1.set_title('SNR Estimators') s1.set_xlabel('SNR (dB)') s1.set_ylabel('Estimated SNR') s1.legend() f2 = pylab.figure(2) s2 = f2.add_subplot(1,1,1) s2.plot(yy.real, yy.imag, 'o') pylab.show() if __name__ == "__main__": main()
gpl-3.0
e-koch/VLA_Lband
14B-088/HI/analysis/co_comparison/co_radial_profile.py
1
8353
from astropy.io import fits import matplotlib.pyplot as p from astropy.coordinates import Angle from astropy import units as u import numpy as np from spectral_cube.lower_dimensional_structures import Projection from astropy.table import Table import os from os.path import exists from os.path import join as osjoin from cube_analysis.profiles import surfdens_radial_profile from paths import (iram_co21_14B088_data_path, fourteenB_HI_data_wGBT_path, allfigs_path, c_hi_analysispath, fourteenB_wGBT_HI_file_dict) from constants import (co21_mass_conversion, hi_mass_conversion, beam_eff_30m_druard) from galaxy_params import gal_feath as gal from plotting_styles import onecolumn_figure, default_figure ''' Create the surface density profile in CO(2-1), assuming a factor to convert to the H2 mass. ''' fig_path = osjoin(allfigs_path(""), "co_vs_hi") if not exists(fig_path): os.mkdir(fig_path) fig_co_path = osjoin(allfigs_path(""), "CO21_properties") if not exists(fig_co_path): os.mkdir(fig_co_path) # IRAM beam efficiency beam_eff = beam_eff_30m_druard # Set the radial disk widths to bin over dr = 100 * u.pc # Load the moment 0 co_mom0 = Projection.from_hdu(fits.open(iram_co21_14B088_data_path("m33.co21_iram.14B-088_HI.mom0.fits"))[0]) co_mom0 = co_mom0.to(u.K * u.km / u.s) / beam_eff hi_mom0 = \ Projection.from_hdu(fits.open(fourteenB_wGBT_HI_file_dict["Moment0"])[0]) rs, sd, sd_sigma = surfdens_radial_profile(gal, mom0=co_mom0, max_rad=7 * u.kpc, dr=dr, mass_conversion=co21_mass_conversion) rs_n, sd_n, sd_sigma_n = \ surfdens_radial_profile(gal, mom0=co_mom0, pa_bounds=Angle([0.5 * np.pi * u.rad, -0.5 * np.pi * u.rad]), max_rad=7 * u.kpc, dr=dr, mass_conversion=co21_mass_conversion) rs_s, sd_s, sd_sigma_s = \ surfdens_radial_profile(gal, mom0=co_mom0, pa_bounds=Angle([-0.5 * np.pi * u.rad, 0.5 * np.pi * u.rad]), max_rad=7 * u.kpc, dr=dr, mass_conversion=co21_mass_conversion) onecolumn_figure() p.errorbar(rs.value, np.log10(sd.value), yerr=0.434 * sd_sigma.value / sd.value, fmt="-", label=r"H$_2$", drawstyle='steps-mid') p.ylabel(r" log $\Sigma$ (M$_{\odot}$ pc$^{-2}$)") p.xlabel(r"Radius (kpc)") p.grid("on") p.tight_layout() p.savefig(osjoin(fig_co_path, "M33_Sigma_profile_co21_dr_{}pc.pdf".format(int(dr.value)))) p.savefig(osjoin(fig_co_path, "M33_Sigma_profile_co21_dr_{}pc.png".format(int(dr.value)))) p.close() # Show the north vs south profiles p.plot(rs.value, np.log10(sd.value), "-.", drawstyle='steps-mid', label="Total") p.errorbar(rs_n.value, np.log10(sd_n.value), yerr=0.434 * sd_sigma_n.value / sd_n.value, fmt="-", label="North", drawstyle='steps-mid') p.errorbar(rs_s.value, np.log10(sd_s.value), yerr=0.434 * sd_sigma_s.value / sd_s.value, fmt="--", label="South", drawstyle='steps-mid') # p.plot(rs_n.value, sd_n.value, "bD-", label="North") # p.plot(rs_s.value, sd_s.value, "go-", label="South") p.ylabel(r"log $\Sigma$ (M$_{\odot}$ pc$^{-2}$)") p.xlabel(r"Radius (kpc)") p.legend(loc='best', frameon=True) p.grid("on") p.savefig(osjoin(fig_co_path, "M33_Sigma_profile_co21_N_S_dr_{}pc.pdf".format(int(dr.value)))) p.savefig(osjoin(fig_co_path, "M33_Sigma_profile_co21_N_S_dr_{}pc.png".format(int(dr.value)))) p.close() # p.show() # Now get the HI profile on the same scales rs_hi, sd_hi, sd_sigma_hi = \ surfdens_radial_profile(gal, mom0=hi_mom0, max_rad=7 * u.kpc, dr=dr, mass_conversion=hi_mass_conversion) # Overplot these two. p.errorbar(rs.value, np.log10(sd.value), yerr=0.434 * sd_sigma.value / sd.value, fmt="-", label=r"H$_2$", drawstyle='steps-mid') p.errorbar(rs_hi.value, np.log10(sd_hi.value), yerr=0.434 * sd_sigma_hi.value / sd_hi.value, fmt="--", label=r"HI", drawstyle='steps-mid') p.ylabel(r" log $\Sigma$ (M$_{\odot}$ pc$^{-2}$)") p.xlabel(r"Radius (kpc)") p.legend(loc='best', frameon=True) p.grid("on") p.tight_layout() p.savefig(osjoin(fig_path, "M33_Sigma_profile_hi_co21_dr_{}pc.pdf".format(int(dr.value)))) p.savefig(osjoin(fig_path, "M33_Sigma_profile_hi_co21_dr_{}pc.png".format(int(dr.value)))) p.close() # Save the radial profiles in a FITS table table = Table([rs, sd, sd_sigma, sd_hi, sd_sigma_hi], names=('Radius', "CO_Sigma", "CO_Sigma_std", "HI_Sigma", "HI_Sigma_std")) table.write(fourteenB_HI_data_wGBT_path("tables/co21_hi_radialprofiles_{}pc.fits".format(int(dr.value)), no_check=True), overwrite=True) # Also plot the total gas surface density against the stellar surface density # from Corbelli corbelli = Table.read(c_hi_analysispath("rotation_curves/corbelli_rotation_curve.csv")) p.semilogy(rs.value, (sd_hi + sd).value, linestyle="-", label="Gas", drawstyle='steps-mid') p.semilogy(corbelli["R"][corbelli["R"] <= 6.5], corbelli["SigmaStellar"][corbelli["R"] <= 6.5], "g--", drawstyle='steps-mid', label="Stars") p.ylabel(r"log $\Sigma$ / (M$_{\odot}$ pc$^{-2}$)") p.xlabel(r"Radius (kpc)") p.legend(loc='best', frameon=True) p.grid() p.tight_layout() p.savefig(osjoin(fig_path, "M33_Sigma_profile_gas_stars_corbelli_{}pc.pdf".format(int(dr.value)))) p.savefig(osjoin(fig_path, "M33_Sigma_profile_gas_stars_corbelli_{}pc.png".format(int(dr.value)))) p.close() # Finally, let's calculate some clumping factors as in Leroy+13 # rs_m, sd_m, sd_sigma_m = surfdens_radial_profile(gal, mom0=co_mom0, # max_rad=7 * u.kpc, dr=dr, # weight_type='mass', # mass_conversion=co21_mass_conversion) # rs_hi_m, sd_hi_m, sd_sigma_hi_m = \ # surfdens_radial_profile(gal, # mom0=hi_mom0, # max_rad=7 * u.kpc, dr=dr, # weight_type='mass') # p.errorbar(np.log10(sd.value), np.log10(sd_m.value), # xerr=0.434 * sd_sigma.value / sd.value, # yerr=0.434 * sd_sigma_m.value / sd_m.value, # fmt="o", label="H$_2$") # p.errorbar(np.log10(sd_hi.value), np.log10(sd_hi_m.value), # xerr=0.434 * sd_sigma_hi.value / sd_hi.value, # yerr=0.434 * sd_sigma_hi_m.value / sd_hi_m.value, # fmt="D", label="HI") # equality = np.arange(-2.5, 2, 0.1) # p.plot(equality, equality, 'k--') # p.ylabel(r"log Mass-Weighted $\Sigma$ / (M$_{\odot}$ pc$^{-2}$)") # p.xlabel(r"log Area-Weighted $\Sigma$ / (M$_{\odot}$ pc$^{-2}$)") # p.ylim([0.25, 1.9]) # p.xlim([-2.1, 1.4]) # p.legend(loc='upper left', frameon=True) # p.savefig(allfigs_path(osjoin(fig_path, "hi_co_area_weighted_vs_mass_weighted_dr_{}pc.pdf".format(int(dr.value))))) # p.savefig(allfigs_path(osjoin(fig_path, "hi_co_area_weighted_vs_mass_weighted_dr_{}pc.png".format(int(dr.value))))) # p.tight_layout() # p.close() # The H2 (ie CO) is all over the place, and HI is clustered together and hard # to see. Make an HI only # p.errorbar(np.log10(sd_hi.value), np.log10(sd_hi_m.value), # xerr=0.434 * sd_sigma_hi.value / sd_hi.value, # yerr=0.434 * sd_sigma_hi_m.value / sd_hi_m.value, # fmt="D", label="HI") # equality = np.arange(-2.5, 2, 0.1) # p.plot(equality, equality, 'k--') # p.ylabel(r"log Mass-Weighted $\Sigma$ / (M$_{\odot}$ pc$^{-2}$)") # p.xlabel(r"log Area-Weighted $\Sigma$ / (M$_{\odot}$ pc$^{-2}$)") # p.ylim([0.65, 1.0]) # p.xlim([0.65, 0.9]) # p.tight_layout() # p.savefig(allfigs_path(osjoin(fig_path, "area_weighted_vs_mass_weighted_dr_{}pc.pdf".format(int(dr.value))))) # p.savefig(allfigs_path(osjoin(fig_path, "area_weighted_vs_mass_weighted_dr_{}pc.png".format(int(dr.value))))) # p.close() # clump_co = sd_m / sd # clump_hi = sd_hi_m / sd_hi default_figure()
mit
Supermem/ibis
ibis/tests/test_tasks.py
9
10953
# Copyright 2014 Cloudera Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import pytest import pandas as pd import ibis.compat as compat from .test_comms import double_ex from ibis.tasks import IbisTaskMessage, IbisTaskExecutor from ibis.util import guid from ibis.wire import BytesIO import ibis.wire as wire from ibis.compat import unittest from ibis.tests.test_server import WorkerTestFixture try: from ibis.comms import SharedMmap, IPCLock, IbisTableWriter SKIP_TESTS = False except ImportError: SKIP_TESTS = True pytestmark = pytest.mark.skipif(SKIP_TESTS or compat.PY3, reason='Comms extension disabled') class TestTasks(unittest.TestCase): def test_message_encode_decode(self): task = IbisTaskMessage(12345, 'foo', 12, 1000) encoded = task.encode() decoded = IbisTaskMessage.decode(encoded) encoded2 = decoded.encode() self.assertEqual(encoded, encoded2) attrs = ['semaphore_id', 'shmem_name', 'shmem_offset', 'shmem_size'] for attr in attrs: self.assertEqual(getattr(task, attr), getattr(decoded, attr)) class TestPingPongTask(unittest.TestCase): def setUp(self): self.paths_to_delete = [] # make size small so tracebacks get truncated path, size, offset = 'task_%s' % guid(), 36, 0 self.paths_to_delete.append(path) self.lock = IPCLock(is_slave=0) self.task = IbisTaskMessage(self.lock.semaphore_id, path, offset, size) self.mm = SharedMmap(path, size, create=True) wire.PackedMessageWriter(self.mm).string('ping') def tearDown(self): for path in self.paths_to_delete: try: os.remove(path) except os.error: pass def test_execute_task(self): _execute_task(self.task, self.lock) self.mm.seek(0) reader = wire.PackedMessageReader(self.mm) assert reader.uint8() assert reader.string() == 'pong' def _execute_task(task, master_lock): executor = IbisTaskExecutor(task) try: executor.execute() except: # Don't deadlock if execute has an exception executor.lock.release() raise # IPCLock has been released master_lock.acquire() class TestTaskE2E(TestPingPongTask, WorkerTestFixture): def setUp(self): TestPingPongTask.setUp(self) WorkerTestFixture.setUp(self) def tearDown(self): TestPingPongTask.tearDown(self) WorkerTestFixture.tearDown(self) def test_task_end_to_end(self): msg = self._run_task(self.task) assert msg == 'ok' self.mm.seek(0) reader = wire.PackedMessageReader(self.mm) assert reader.uint8() assert reader.string() == 'pong' def test_task_return_exception(self): self.mm.seek(0) wire.PackedMessageWriter(self.mm).string('__unknown_task__') msg = self._run_task(self.task) assert msg == 'ok' self.mm.seek(0) reader = wire.PackedMessageReader(self.mm) assert reader.uint8() == 0 error_msg = reader.string() assert 'Traceback' in error_msg def _run_task(self, task): encoded_task = task.encode() worker_port, worker_pid = self._spawn_worker() sock = self._connect(worker_port) sock.send(encoded_task) msg = sock.recv(1024) # IPCLock has been released self.lock.acquire() return msg def delete_all_guid_files(): import glob import os [os.remove(x) for x in glob.glob('*') if len(x) == 32] class NRows(object): def __init__(self): self.total = 0 def update(self, values): self.total += len(values) def merge(self, other): self.total += other.total return self def finalize(self): return self.total class Summ(object): def __init__(self): self.total = 0 def update(self, values): import pandas as pd self.total += pd.Series(values).sum() def merge(self, other): self.total += other.total return self def finalize(self): return self.total class TestAggregateTasks(unittest.TestCase): def _get_mean_uda(self): # Dynamically generate the class instance. Use pandas so nulls are # excluded class Mean(object): def __init__(self): self.total = 0 self.count = 0 def update(self, values): values = pd.Series(values) self.total += values.sum() self.count += values.count() def merge(self, other): self.total += other.total self.count += other.count return self def finalize(self): return self.total / float(self.count) return Mean def setUp(self): self.paths_to_delete = [] self.col_fragments = [double_ex(1000) for _ in range(10)] self.lock = IPCLock(is_slave=0) def test_update(self): klass = self._get_mean_uda() col = self.col_fragments[0] task, mm = self._make_update_task(klass, [col]) _execute_task(task, self.lock) mm.seek(0) reader = wire.PackedMessageReader(mm) # success if not reader.uint8(): raise Exception(reader.string()) result = compat.pickle_load(reader.string()) ex_total = pd.Series(col.to_numpy_for_pandas()).sum() assert result.total == ex_total # Test with prior state col = self.col_fragments[1] task, mm = self._make_update_task(klass, [col], prior_state=result) # Executor's turn again self.lock.release() _execute_task(task, self.lock) mm.seek(0) reader = wire.PackedMessageReader(mm) # success if not reader.uint8(): raise Exception(reader.string()) result = compat.pickle_load(reader.string()) ex_total += pd.Series(col.to_numpy_for_pandas()).sum() # pandas will yield 0 on None input strangely assert ex_total != 0 assert result.total == ex_total def test_merge(self): klass = self._get_mean_uda() lcol = self.col_fragments[0] rcol = self.col_fragments[1] left = self._update(klass, [lcol]) right = self._update(klass, [rcol]) task, mm = self._make_merge_task(left, right) _execute_task(task, self.lock) mm.seek(0) reader = wire.PackedMessageReader(mm) # success if not reader.uint8(): raise Exception(reader.string()) result = compat.pickle_load(reader.string()) larr = lcol.to_numpy_for_pandas() rarr = rcol.to_numpy_for_pandas() assert larr is not None ex_total = (pd.Series(larr).sum() + pd.Series(rarr).sum()) assert result.total == ex_total def test_finalize(self): klass = self._get_mean_uda() col = self.col_fragments[0] result = self._update(klass, [col]) task, mm = self._make_finalize_task(result) _execute_task(task, self.lock) mm.seek(0) reader = wire.PackedMessageReader(mm) # success if not reader.uint8(): raise Exception(reader.string()) result = compat.pickle_load(reader.string()) arr = col.to_numpy_for_pandas() ex_result = pd.Series(arr).mean() assert result == ex_result def _update(self, klass, args): task, mm = self._make_update_task(klass, args) _execute_task(task, self.lock) self.lock.release() mm.seek(0) reader = wire.PackedMessageReader(mm) # success if not reader.uint8(): raise Exception(reader.string()) return reader.string() def _make_update_task(self, uda_class, cols, prior_state=None): # Overall layout here: # - task name # - serialized agg class # - prior state flag 1/0 # - (optional) serialized prior state # - serialized table fragment payload = BytesIO() msg_writer = wire.PackedMessageWriter(payload) msg_writer.string('agg-update') msg_writer.string(compat.pickle_dump(uda_class)) if prior_state is not None: msg_writer.uint8(1) msg_writer.string(compat.pickle_dump(prior_state)) else: msg_writer.uint8(0) writer = IbisTableWriter(cols) # Create memory map of the appropriate size path = 'task_%s' % guid() size = writer.total_size() + payload.tell() offset = 0 mm = SharedMmap(path, size, create=True) self.paths_to_delete.append(path) mm.write(payload.getvalue()) writer.write(mm) task = IbisTaskMessage(self.lock.semaphore_id, path, offset, size) return task, mm def _make_merge_task(self, left_pickled, right_pickled): payload = BytesIO() msg_writer = wire.PackedMessageWriter(payload) msg_writer.string('agg-merge') msg_writer.string(left_pickled) msg_writer.string(right_pickled) # Create memory map of the appropriate size path = 'task_%s' % guid() size = payload.tell() offset = 0 mm = SharedMmap(path, size, create=True) self.paths_to_delete.append(path) mm.write(payload.getvalue()) task = IbisTaskMessage(self.lock.semaphore_id, path, offset, size) return task, mm def _make_finalize_task(self, pickled): payload = BytesIO() msg_writer = wire.PackedMessageWriter(payload) msg_writer.string('agg-finalize') msg_writer.string(pickled) # Create memory map of the appropriate size path = 'task_%s' % guid() size = payload.tell() offset = 0 mm = SharedMmap(path, size, create=True) self.paths_to_delete.append(path) mm.write(payload.getvalue()) task = IbisTaskMessage(self.lock.semaphore_id, path, offset, size) return task, mm def tearDown(self): for path in self.paths_to_delete: try: os.remove(path) except os.error: pass
apache-2.0
mikegraham/dask
dask/bag/tests/test_bag.py
1
27975
# coding=utf-8 from __future__ import absolute_import, division, print_function import pytest from toolz import (merge, join, pipe, filter, identity, merge_with, take, partial, valmap) import math from dask.bag.core import (Bag, lazify, lazify_task, fuse, map, collect, reduceby, reify, partition, inline_singleton_lists, optimize, system_encoding, from_delayed) from dask.compatibility import BZ2File, GzipFile, reduce from dask.utils import filetexts, tmpfile, raises, open from dask.async import get_sync import dask import dask.bag as db import bz2 import io import shutil import os import partd from collections import Iterator from dask.utils import tmpdir dsk = {('x', 0): (range, 5), ('x', 1): (range, 5), ('x', 2): (range, 5)} L = list(range(5)) * 3 b = Bag(dsk, 'x', 3) def inc(x): return x + 1 def iseven(x): return x % 2 == 0 def isodd(x): return x % 2 == 1 def add(x, y): return x + y def test_Bag(): assert b.name == 'x' assert b.npartitions == 3 def test_keys(): assert sorted(b._keys()) == sorted(dsk.keys()) def test_map(): c = b.map(inc) expected = merge(dsk, dict(((c.name, i), (reify, (map, inc, (b.name, i)))) for i in range(b.npartitions))) assert c.dask == expected assert c.name == b.map(inc).name def test_map_function_with_multiple_arguments(): b = db.from_sequence([(1, 10), (2, 20), (3, 30)], npartitions=3) assert list(b.map(lambda x, y: x + y).compute(get=dask.get)) == [11, 22, 33] assert list(b.map(list).compute()) == [[1, 10], [2, 20], [3, 30]] class A(object): def __init__(self, a, b, c): pass class B(object): def __init__(self, a): pass def test_map_with_constructors(): assert db.from_sequence([[1, 2, 3]]).map(A).compute() assert db.from_sequence([1, 2, 3]).map(B).compute() assert db.from_sequence([[1, 2, 3]]).map(B).compute() failed = False try: db.from_sequence([[1,]]).map(A).compute() except TypeError: failed = True assert failed def test_map_with_builtins(): b = db.from_sequence(range(3)) assert ' '.join(b.map(str)) == '0 1 2' assert b.map(str).map(tuple).compute() == [('0',), ('1',), ('2',)] assert b.map(str).map(tuple).map(any).compute() == [True, True, True] b2 = b.map(lambda n: [(n, n+1), (2*(n-1), -n)]) assert b2.map(dict).compute() == [{0: 1, -2: 0}, {1: 2, 0: -1}, {2: -2}] assert b.map(lambda n: (n, n+1)).map(pow).compute() == [0, 1, 8] assert b.map(bool).compute() == [False, True, True] assert db.from_sequence([(1, 'real'), ('1', 'real')]).map(hasattr).compute() == \ [True, False] def test_map_with_kwargs(): b = db.from_sequence(range(100), npartitions=10) assert b.map(lambda x, factor=0: x * factor, factor=2).sum().compute() == 9900.0 assert b.map(lambda x, total=0: x / total, total=b.sum()).sum().compute() == 1.0 assert b.map(lambda x, factor=0, total=0: x * factor / total, total=b.sum(), factor=2).sum().compute() == 2.0 def test_filter(): c = b.filter(iseven) expected = merge(dsk, dict(((c.name, i), (reify, (filter, iseven, (b.name, i)))) for i in range(b.npartitions))) assert c.dask == expected assert c.name == b.filter(iseven).name def test_remove(): f = lambda x: x % 2 == 0 c = b.remove(f) assert list(c) == [1, 3] * 3 assert c.name == b.remove(f).name def test_iter(): assert sorted(list(b)) == sorted(L) assert sorted(list(b.map(inc))) == sorted(list(range(1, 6)) * 3) @pytest.mark.parametrize('func', [str, repr]) def test_repr(func): assert str(b.npartitions) in func(b) assert b.name[:5] in func(b) def test_pluck(): d = {('x', 0): [(1, 10), (2, 20)], ('x', 1): [(3, 30), (4, 40)]} b = Bag(d, 'x', 2) assert set(b.pluck(0)) == set([1, 2, 3, 4]) assert set(b.pluck(1)) == set([10, 20, 30, 40]) assert set(b.pluck([1, 0])) == set([(10, 1), (20, 2), (30, 3), (40, 4)]) assert b.pluck([1, 0]).name == b.pluck([1, 0]).name def test_pluck_with_default(): b = db.from_sequence(['Hello', '', 'World']) assert raises(IndexError, lambda: list(b.pluck(0))) assert list(b.pluck(0, None)) == ['H', None, 'W'] assert b.pluck(0, None).name == b.pluck(0, None).name assert b.pluck(0).name != b.pluck(0, None).name def test_unzip(): b = db.from_sequence(range(100)).map(lambda x: (x, x + 1, x + 2)) one, two, three = b.unzip(3) assert list(one) == list(range(100)) assert list(three) == [i + 2 for i in range(100)] assert one.name == b.unzip(3)[0].name assert one.name != two.name def test_fold(): c = b.fold(add) assert c.compute() == sum(L) assert c.key == b.fold(add).key c2 = b.fold(add, initial=10) assert c2.key != c.key assert c2.compute() == sum(L) + 10 * b.npartitions assert c2.key == b.fold(add, initial=10).key c = db.from_sequence(range(5), npartitions=3) def binop(acc, x): acc = acc.copy() acc.add(x) return acc d = c.fold(binop, set.union, initial=set()) assert d.compute() == set(c) assert d.key == c.fold(binop, set.union, initial=set()).key d = db.from_sequence('hello') assert set(d.fold(lambda a, b: ''.join([a, b]), initial='').compute()) == set('hello') e = db.from_sequence([[1], [2], [3]], npartitions=2) with dask.set_options(get=get_sync): assert set(e.fold(add, initial=[]).compute()) == set([1, 2, 3]) def test_distinct(): assert sorted(b.distinct()) == [0, 1, 2, 3, 4] assert b.distinct().name == b.distinct().name assert 'distinct' in b.distinct().name assert b.distinct().count().compute() == 5 def test_frequencies(): c = b.frequencies() assert dict(c) == {0: 3, 1: 3, 2: 3, 3: 3, 4: 3} c2 = b.frequencies(split_every=2) assert dict(c2) == {0: 3, 1: 3, 2: 3, 3: 3, 4: 3} assert c.name == b.frequencies().name assert c.name != c2.name assert c2.name == b.frequencies(split_every=2).name def test_topk(): assert list(b.topk(4)) == [4, 4, 4, 3] c = b.topk(4, key=lambda x: -x) assert list(c) == [0, 0, 0, 1] c2 = b.topk(4, key=lambda x: -x, split_every=2) assert list(c2) == [0, 0, 0, 1] assert c.name != c2.name assert b.topk(4).name == b.topk(4).name def test_topk_with_non_callable_key(): b = db.from_sequence([(1, 10), (2, 9), (3, 8)], npartitions=2) assert list(b.topk(2, key=1)) == [(1, 10), (2, 9)] assert list(b.topk(2, key=0)) == [(3, 8), (2, 9)] assert b.topk(2, key=1).name == b.topk(2, key=1).name def test_topk_with_multiarg_lambda(): b = db.from_sequence([(1, 10), (2, 9), (3, 8)], npartitions=2) assert list(b.topk(2, key=lambda a, b: b)) == [(1, 10), (2, 9)] def test_lambdas(): assert list(b.map(lambda x: x + 1)) == list(b.map(inc)) def test_reductions(): assert int(b.count()) == 15 assert int(b.sum()) == 30 assert int(b.max()) == 4 assert int(b.min()) == 0 assert int(b.any()) == True assert int(b.all()) == False # some zeros exist assert b.all().key == b.all().key assert b.all().key != b.any().key def test_reduction_names(): assert b.sum().name.startswith('sum') assert b.reduction(sum, sum).name.startswith('sum') assert any(isinstance(k, str) and k.startswith('max') for k in b.reduction(sum, max).dask) assert b.reduction(sum, sum, name='foo').name.startswith('foo') def test_tree_reductions(): b = db.from_sequence(range(12)) c = b.reduction(sum, sum, split_every=2) d = b.reduction(sum, sum, split_every=6) e = b.reduction(sum, sum, split_every=5) assert c.compute() == d.compute() == e.compute() assert len(c.dask) > len(d.dask) c = b.sum(split_every=2) d = b.sum(split_every=5) assert c.compute() == d.compute() assert len(c.dask) > len(d.dask) assert c.key != d.key assert c.key == b.sum(split_every=2).key assert c.key != b.sum().key def test_mean(): assert b.mean().compute(get=dask.get) == 2.0 assert float(b.mean()) == 2.0 def test_non_splittable_reductions(): np = pytest.importorskip('numpy') data = list(range(100)) c = db.from_sequence(data, npartitions=10) assert c.mean().compute() == np.mean(data) assert c.std().compute(get=dask.get) == np.std(data) def test_std(): assert b.std().compute(get=dask.get) == math.sqrt(2.0) assert float(b.std()) == math.sqrt(2.0) def test_var(): assert b.var().compute(get=dask.get) == 2.0 assert float(b.var()) == 2.0 def test_join(): c = b.join([1, 2, 3], on_self=isodd, on_other=iseven) assert list(c) == list(join(iseven, [1, 2, 3], isodd, list(b))) assert list(b.join([1, 2, 3], isodd)) == \ list(join(isodd, [1, 2, 3], isodd, list(b))) assert c.name == b.join([1, 2, 3], on_self=isodd, on_other=iseven).name def test_foldby(): c = b.foldby(iseven, add, 0, add, 0) assert (reduceby, iseven, add, (b.name, 0), 0) in list(c.dask.values()) assert set(c) == set(reduceby(iseven, lambda acc, x: acc + x, L, 0).items()) assert c.name == b.foldby(iseven, add, 0, add, 0).name c = b.foldby(iseven, lambda acc, x: acc + x) assert set(c) == set(reduceby(iseven, lambda acc, x: acc + x, L, 0).items()) def test_map_partitions(): assert list(b.map_partitions(len)) == [5, 5, 5] assert b.map_partitions(len).name == b.map_partitions(len).name assert b.map_partitions(lambda a: len(a) + 1).name != b.map_partitions(len).name def test_map_partitions_with_kwargs(): b = db.from_sequence(range(100), npartitions=10) assert b.map_partitions( lambda X, factor=0: [x * factor for x in X], factor=2).sum().compute() == 9900.0 assert b.map_partitions( lambda X, total=0: [x / total for x in X], total=b.sum()).sum().compute() == 1.0 assert b.map_partitions( lambda X, factor=0, total=0: [x * factor / total for x in X], total=b.sum(), factor=2).sum().compute() == 2.0 def test_lazify_task(): task = (sum, (reify, (map, inc, [1, 2, 3]))) assert lazify_task(task) == (sum, (map, inc, [1, 2, 3])) task = (reify, (map, inc, [1, 2, 3])) assert lazify_task(task) == task a = (reify, (map, inc, (reify, (filter, iseven, 'y')))) b = (reify, (map, inc, (filter, iseven, 'y'))) assert lazify_task(a) == b f = lambda x: x def test_lazify(): a = {'x': (reify, (map, inc, (reify, (filter, iseven, 'y')))), 'a': (f, 'x'), 'b': (f, 'x')} b = {'x': (reify, (map, inc, (filter, iseven, 'y'))), 'a': (f, 'x'), 'b': (f, 'x')} assert lazify(a) == b def test_inline_singleton_lists(): inp = {'b': (list, 'a'), 'c': (f, 'b', 1)} out = {'c': (f, (list, 'a'), 1)} assert inline_singleton_lists(inp) == out out = {'c': (f, 'a' , 1)} assert optimize(inp, ['c']) == out inp = {'b': (list, 'a'), 'c': (f, 'b', 1), 'd': (f, 'b', 2)} assert inline_singleton_lists(inp) == inp inp = {'b': (4, 5)} # doesn't inline constants assert inline_singleton_lists(inp) == inp def test_take(): assert list(b.take(2)) == [0, 1] assert b.take(2) == (0, 1) assert isinstance(b.take(2, compute=False), Bag) def test_map_is_lazy(): from dask.bag.core import map assert isinstance(map(lambda x: x, [1, 2, 3]), Iterator) def test_can_use_dict_to_make_concrete(): assert isinstance(dict(b.frequencies()), dict) @pytest.mark.xfail(reason="bloscpack BLOSC_MAX_BUFFERSIZE") def test_from_castra(): castra = pytest.importorskip('castra') pd = pytest.importorskip('pandas') dd = pytest.importorskip('dask.dataframe') df = pd.DataFrame({'x': list(range(100)), 'y': [str(i) for i in range(100)]}) a = dd.from_pandas(df, 10) with tmpfile('.castra') as fn: c = a.to_castra(fn) default = db.from_castra(c) with_columns = db.from_castra(c, 'x') with_index = db.from_castra(c, 'x', index=True) assert (list(default) == [{'x': i, 'y': str(i)} for i in range(100)] or list(default) == [(i, str(i)) for i in range(100)]) assert list(with_columns) == list(range(100)) assert list(with_index) == list(zip(range(100), range(100))) assert default.name != with_columns.name != with_index.name assert with_index.name == db.from_castra(c, 'x', index=True).name @pytest.mark.slow def test_from_url(): a = db.from_url(['http://google.com', 'http://github.com']) assert a.npartitions == 2 b = db.from_url('http://raw.githubusercontent.com/dask/dask/master/README.rst') assert b.npartitions == 1 assert b'Dask\n' in b.take(10) def test_read_text(): with filetexts({'a1.log': 'A\nB', 'a2.log': 'C\nD'}) as fns: assert set(line.strip() for line in db.read_text(fns)) == \ set('ABCD') assert set(line.strip() for line in db.read_text('a*.log')) == \ set('ABCD') assert raises(ValueError, lambda: db.read_text('non-existent-*-path')) def test_read_text_large(): with tmpfile() as fn: with open(fn, 'wb') as f: f.write(('Hello, world!' + os.linesep).encode() * 100) b = db.read_text(fn, blocksize=100) c = db.read_text(fn) assert len(b.dask) > 5 assert list(map(str, b)) == list(map(str, c)) d = db.read_text([fn], blocksize=100) assert list(b) == list(d) def test_read_text_encoding(): with tmpfile() as fn: with open(fn, 'wb') as f: f.write((u'你好!' + os.linesep).encode('gb18030') * 100) b = db.read_text(fn, blocksize=100, encoding='gb18030') c = db.read_text(fn, encoding='gb18030') assert len(b.dask) > 5 assert list(map(lambda x: x.encode('utf-8'), b)) == list(map(lambda x: x.encode('utf-8'), c)) d = db.read_text([fn], blocksize=100, encoding='gb18030') assert list(b) == list(d) def test_read_text_large_gzip(): with tmpfile('gz') as fn: f = GzipFile(fn, 'wb') f.write(b'Hello, world!\n' * 100) f.close() with pytest.raises(ValueError): b = db.read_text(fn, blocksize=100, lineterminator='\n') c = db.read_text(fn) assert c.npartitions == 1 @pytest.mark.slow def test_from_s3(): # note we don't test connection modes with aws_access_key and # aws_secret_key because these are not on travis-ci boto = pytest.importorskip('s3fs') five_tips = (u'total_bill,tip,sex,smoker,day,time,size\n', u'16.99,1.01,Female,No,Sun,Dinner,2\n', u'10.34,1.66,Male,No,Sun,Dinner,3\n', u'21.01,3.5,Male,No,Sun,Dinner,3\n', u'23.68,3.31,Male,No,Sun,Dinner,2\n') # test compressed data e = db.read_text('s3://tip-data/t*.gz') assert e.take(5) == five_tips # test all keys in bucket c = db.read_text('s3://tip-data/*') assert c.npartitions == 4 def test_from_sequence(): b = db.from_sequence([1, 2, 3, 4, 5], npartitions=3) assert len(b.dask) == 3 assert set(b) == set([1, 2, 3, 4, 5]) def test_from_long_sequence(): L = list(range(1001)) b = db.from_sequence(L) assert set(b) == set(L) def test_product(): b2 = b.product(b) assert b2.npartitions == b.npartitions**2 assert set(b2) == set([(i, j) for i in L for j in L]) x = db.from_sequence([1, 2, 3, 4]) y = db.from_sequence([10, 20, 30]) z = x.product(y) assert set(z) == set([(i, j) for i in [1, 2, 3, 4] for j in [10, 20, 30]]) assert z.name != b2.name assert z.name == x.product(y).name def test_partition_collect(): with partd.Pickle() as p: partition(identity, range(6), 3, p) assert set(p.get(0)) == set([0, 3]) assert set(p.get(1)) == set([1, 4]) assert set(p.get(2)) == set([2, 5]) assert sorted(collect(identity, 0, p, '')) == \ [(0, [0]), (3, [3])] def test_groupby(): c = b.groupby(identity) result = dict(c) assert result == {0: [0, 0 ,0], 1: [1, 1, 1], 2: [2, 2, 2], 3: [3, 3, 3], 4: [4, 4, 4]} assert c.npartitions == b.npartitions assert c.name == b.groupby(identity).name assert c.name != b.groupby(lambda x: x + 1).name def test_groupby_with_indexer(): b = db.from_sequence([[1, 2, 3], [1, 4, 9], [2, 3, 4]]) result = dict(b.groupby(0)) assert valmap(sorted, result) == {1: [[1, 2, 3], [1, 4, 9]], 2: [[2, 3, 4]]} def test_groupby_with_npartitions_changed(): result = b.groupby(lambda x: x, npartitions=1) result2 = dict(result) assert result2 == {0: [0, 0 ,0], 1: [1, 1, 1], 2: [2, 2, 2], 3: [3, 3, 3], 4: [4, 4, 4]} assert result.npartitions == 1 def test_concat(): a = db.from_sequence([1, 2, 3]) b = db.from_sequence([4, 5, 6]) c = db.concat([a, b]) assert list(c) == [1, 2, 3, 4, 5, 6] assert c.name == db.concat([a, b]).name assert b.concat().name != a.concat().name assert b.concat().name == b.concat().name b = db.from_sequence([1, 2, 3]).map(lambda x: x * [1, 2, 3]) assert list(b.concat()) == [1, 2, 3] * sum([1, 2, 3]) def test_concat_after_map(): a = db.from_sequence([1, 2]) b = db.from_sequence([4, 5]) result = db.concat([a.map(inc), b]) assert list(result) == [2, 3, 4, 5] def test_args(): c = b.map(lambda x: x + 1) d = Bag(*c._args) assert list(c) == list(d) assert c.npartitions == d.npartitions def test_to_dataframe(): try: import dask.dataframe import pandas as pd except ImportError: return b = db.from_sequence([(1, 2), (10, 20), (100, 200)], npartitions=2) df = b.to_dataframe() assert list(df.columns) == list(pd.DataFrame(list(b)).columns) df = b.to_dataframe(columns=['a', 'b']) assert df.npartitions == b.npartitions assert list(df.columns) == ['a', 'b'] assert df.a.compute().values.tolist() == list(b.pluck(0)) assert df.b.compute().values.tolist() == list(b.pluck(1)) b = db.from_sequence([{'a': 1, 'b': 2}, {'a': 10, 'b': 20}, {'a': 100, 'b': 200}], npartitions=2) df2 = b.to_dataframe() assert (df2.compute().values == df.compute().values).all() assert df2._name == b.to_dataframe()._name assert df2._name != df._name def test_to_textfiles(): b = db.from_sequence(['abc', '123', 'xyz'], npartitions=2) for ext, myopen in [('gz', GzipFile), ('bz2', BZ2File), ('', open)]: with tmpdir() as dir: c = b.to_textfiles(os.path.join(dir, '*.' + ext), compute=False) assert c.npartitions == b.npartitions c.compute(get=dask.get) assert os.path.exists(os.path.join(dir, '1.' + ext)) f = myopen(os.path.join(dir, '1.' + ext), 'rb') text = f.read() if hasattr(text, 'decode'): text = text.decode() assert 'xyz' in text f.close() def test_to_textfiles_encoding(): b = db.from_sequence([u'汽车', u'苹果', u'天气'], npartitions=2) for ext, myopen in [('gz', GzipFile), ('bz2', BZ2File), ('', open)]: with tmpdir() as dir: c = b.to_textfiles(os.path.join(dir, '*.' + ext), encoding='gb18030', compute=False) assert c.npartitions == b.npartitions c.compute(get=dask.get) assert os.path.exists(os.path.join(dir, '1.' + ext)) f = myopen(os.path.join(dir, '1.' + ext), 'rb') text = f.read() if hasattr(text, 'decode'): text = text.decode('gb18030') assert u'天气' in text f.close() def test_to_textfiles_inputs(): B = db.from_sequence(['abc', '123', 'xyz'], npartitions=2) with tmpfile() as a: with tmpfile() as b: B.to_textfiles([a, b]) assert os.path.exists(a) assert os.path.exists(b) with tmpfile() as dirname: B.to_textfiles(dirname) assert os.path.exists(dirname) assert os.path.exists(os.path.join(dirname, '0.part')) assert raises(ValueError, lambda: B.to_textfiles(5)) def test_to_textfiles_endlines(): b = db.from_sequence(['a', 'b', 'c'], npartitions=1) with tmpfile() as fn: b.to_textfiles([fn]) with open(fn, 'r') as f: result = f.readlines() assert result == ['a\n', 'b\n', 'c'] def test_string_namespace(): b = db.from_sequence(['Alice Smith', 'Bob Jones', 'Charlie Smith'], npartitions=2) assert 'split' in dir(b.str) assert 'match' in dir(b.str) assert list(b.str.lower()) == ['alice smith', 'bob jones', 'charlie smith'] assert list(b.str.split(' ')) == [['Alice', 'Smith'], ['Bob', 'Jones'], ['Charlie', 'Smith']] assert list(b.str.match('*Smith')) == ['Alice Smith', 'Charlie Smith'] assert raises(AttributeError, lambda: b.str.sfohsofhf) assert b.str.match('*Smith').name == b.str.match('*Smith').name assert b.str.match('*Smith').name != b.str.match('*John').name def test_string_namespace_with_unicode(): b = db.from_sequence([u'Alice Smith', u'Bob Jones', 'Charlie Smith'], npartitions=2) assert list(b.str.lower()) == ['alice smith', 'bob jones', 'charlie smith'] def test_str_empty_split(): b = db.from_sequence([u'Alice Smith', u'Bob Jones', 'Charlie Smith'], npartitions=2) assert list(b.str.split()) == [['Alice', 'Smith'], ['Bob', 'Jones'], ['Charlie', 'Smith']] def test_map_with_iterator_function(): b = db.from_sequence([[1, 2, 3], [4, 5, 6]], npartitions=2) def f(L): for x in L: yield x + 1 c = b.map(f) assert list(c) == [[2, 3, 4], [5, 6, 7]] def test_ensure_compute_output_is_concrete(): b = db.from_sequence([1, 2, 3]) result = b.map(lambda x: x + 1).compute() assert not isinstance(result, Iterator) class BagOfDicts(db.Bag): def get(self, key, default=None): return self.map(lambda d: d.get(key, default)) def set(self, key, value): def setter(d): d[key] = value return d return self.map(setter) def test_bag_class_extend(): dictbag = BagOfDicts(*db.from_sequence([{'a': {'b': 'c'}}])._args) assert dictbag.get('a').get('b').compute()[0] == 'c' assert dictbag.get('a').set('d', 'EXTENSIBILITY!!!').compute()[0] == \ {'b': 'c', 'd': 'EXTENSIBILITY!!!'} assert isinstance(dictbag.get('a').get('b'), BagOfDicts) def test_gh715(): bin_data = u'\u20ac'.encode('utf-8') with tmpfile() as fn: with open(fn, 'wb') as f: f.write(bin_data) a = db.read_text(fn) assert a.compute()[0] == bin_data.decode('utf-8') def test_bag_compute_forward_kwargs(): x = db.from_sequence([1, 2, 3]).map(lambda a: a + 1) x.compute(bogus_keyword=10) def test_to_delayed(): from dask.delayed import Value b = db.from_sequence([1, 2, 3, 4, 5, 6], npartitions=3) a, b, c = b.map(inc).to_delayed() assert all(isinstance(x, Value) for x in [a, b, c]) assert b.compute() == [4, 5] b = db.from_sequence([1, 2, 3, 4, 5, 6], npartitions=3) t = b.sum().to_delayed() assert isinstance(t, Value) assert t.compute() == 21 def test_from_delayed(): from dask.delayed import value, do a, b, c = value([1, 2, 3]), value([4, 5, 6]), value([7, 8, 9]) bb = from_delayed([a, b, c]) assert bb.name == from_delayed([a, b, c]).name assert isinstance(bb, Bag) assert list(bb) == [1, 2, 3, 4, 5, 6, 7, 8, 9] asum_value = do(lambda X: sum(X))(a) asum_item = db.Item.from_delayed(asum_value) assert asum_value.compute() == asum_item.compute() == 6 def test_range(): for npartitions in [1, 7, 10, 28]: b = db.range(100, npartitions=npartitions) assert len(b.dask) == npartitions assert b.npartitions == npartitions assert list(b) == list(range(100)) @pytest.mark.parametrize("npartitions", [1, 7, 10, 28]) def test_zip(npartitions, hi=1000): evens = db.from_sequence(range(0, hi, 2), npartitions=npartitions) odds = db.from_sequence(range(1, hi, 2), npartitions=npartitions) pairs = db.zip(evens, odds) assert pairs.npartitions == npartitions assert list(pairs) == list(zip(range(0, hi, 2), range(1, hi, 2))) def test_repartition(): for x, y in [(10, 5), (7, 3), (5, 1), (5, 4)]: b = db.from_sequence(range(20), npartitions=x) c = b.repartition(y) assert b.npartitions == x assert c.npartitions == y assert list(b) == c.compute(get=dask.get) try: b.repartition(100) except NotImplementedError as e: assert '100' in str(e) @pytest.mark.skipif('not db.core._implement_accumulate') def test_accumulate(): parts = [[1, 2, 3], [4, 5], [], [6, 7]] dsk = dict((('test', i), p) for (i, p) in enumerate(parts)) b = db.Bag(dsk, 'test', len(parts)) r = b.accumulate(add) assert r.name == b.accumulate(add).name assert r.name != b.accumulate(add, -1).name assert r.compute() == [1, 3, 6, 10, 15, 21, 28] assert b.accumulate(add, -1).compute() == [-1, 0, 2, 5, 9, 14, 20, 27] assert b.accumulate(add).map(inc).compute() == [2, 4, 7, 11, 16, 22, 29] b = db.from_sequence([1, 2, 3], npartitions=1) assert b.accumulate(add).compute() == [1, 3, 6] def test_groupby_tasks(): b = db.from_sequence(range(160), npartitions=4) out = b.groupby(lambda x: x % 10, max_branch=4, method='tasks') partitions = dask.get(out.dask, out._keys()) for a in partitions: for b in partitions: if a is not b: assert not set(a) & set(b) b = db.from_sequence(range(1000), npartitions=100) out = b.groupby(lambda x: x % 123, method='tasks') assert len(out.dask) < 100**2 partitions = dask.get(out.dask, out._keys()) for a in partitions: for b in partitions: if a is not b: assert not set(a) & set(b) b = db.from_sequence(range(10000), npartitions=345) out = b.groupby(lambda x: x % 2834, max_branch=24, method='tasks') partitions = dask.get(out.dask, out._keys()) for a in partitions: for b in partitions: if a is not b: assert not set(a) & set(b) def test_groupby_tasks_names(): b = db.from_sequence(range(160), npartitions=4) func = lambda x: x % 10 func2 = lambda x: x % 20 assert (set(b.groupby(func, max_branch=4, method='tasks').dask) == set(b.groupby(func, max_branch=4, method='tasks').dask)) assert (set(b.groupby(func, max_branch=4, method='tasks').dask) != set(b.groupby(func, max_branch=2, method='tasks').dask)) assert (set(b.groupby(func, max_branch=4, method='tasks').dask) != set(b.groupby(func2, max_branch=4, method='tasks').dask)) def test_to_textfiles_empty_partitions(): with tmpdir() as d: b = db.range(5, npartitions=5).filter(lambda x: x == 1).map(str) b.to_textfiles(os.path.join(d, '*.txt')) assert len(os.listdir(d)) == 5
bsd-3-clause
vishnumani2009/OpenSource-Open-Ended-Statistical-toolkit
FRONTEND/lassofront.py
2
4919
from PyQt4 import QtCore, QtGui try: _fromUtf8 = QtCore.QString.fromUtf8 except AttributeError: def _fromUtf8(s): return s try: _encoding = QtGui.QApplication.UnicodeUTF8 def _translate(context, text, disambig): return QtGui.QApplication.translate(context, text, disambig, _encoding) except AttributeError: def _translate(context, text, disambig): return QtGui.QApplication.translate(context, text, disambig) class Ui_Form(object): def setupUi(self, Form): Form.setObjectName(_fromUtf8("Form")) Form.resize(235, 342) self.groupBox = QtGui.QGroupBox(Form) self.groupBox.setGeometry(QtCore.QRect(10, 10, 211, 61)) self.groupBox.setObjectName(_fromUtf8("groupBox")) self.lineEdit = QtGui.QLineEdit(self.groupBox) self.lineEdit.setGeometry(QtCore.QRect(40, 20, 141, 20)) self.lineEdit.setObjectName(_fromUtf8("lineEdit")) self.groupBox_2 = QtGui.QGroupBox(Form) self.groupBox_2.setGeometry(QtCore.QRect(10, 70, 211, 171)) self.groupBox_2.setObjectName(_fromUtf8("groupBox_2")) self.label = QtGui.QLabel(self.groupBox_2) self.label.setGeometry(QtCore.QRect(50, 20, 111, 16)) self.label.setObjectName(_fromUtf8("label")) self.doubleSpinBox = QtGui.QDoubleSpinBox(self.groupBox_2) self.doubleSpinBox.setGeometry(QtCore.QRect(110, 20, 62, 22)) self.doubleSpinBox.setObjectName(_fromUtf8("doubleSpinBox")) self.label_2 = QtGui.QLabel(self.groupBox_2) self.label_2.setGeometry(QtCore.QRect(30, 60, 111, 16)) self.label_2.setObjectName(_fromUtf8("label_2")) self.spinBox = QtGui.QSpinBox(self.groupBox_2) self.spinBox.setGeometry(QtCore.QRect(110, 60, 61, 22)) self.spinBox.setMaximum(10000000) self.spinBox.setObjectName(_fromUtf8("spinBox")) self.spinBox.valueChanged.connect(self.setalpha) self.checkBox = QtGui.QCheckBox(self.groupBox_2) self.checkBox.setGeometry(QtCore.QRect(30, 90, 81, 17)) self.checkBox.setObjectName(_fromUtf8("checkBox")) self.checkBox_2 = QtGui.QCheckBox(self.groupBox_2) self.checkBox_2.setGeometry(QtCore.QRect(120, 90, 121, 17)) self.checkBox_2.setObjectName(_fromUtf8("checkBox_2")) self.checkBox_3 = QtGui.QCheckBox(self.groupBox_2) self.checkBox_3.setGeometry(QtCore.QRect(30, 120, 81, 17)) self.checkBox_3.setObjectName(_fromUtf8("checkBox_3")) self.pushButton_3 = QtGui.QPushButton(Form) self.pushButton_3.setGeometry(QtCore.QRect(40, 280, 161, 23)) self.pushButton_3.setObjectName(_fromUtf8("pushButton_3")) self.pushButton = QtGui.QPushButton(Form) self.pushButton.setGeometry(QtCore.QRect(40, 250, 161, 23)) self.pushButton.setObjectName(_fromUtf8("pushButton")) self.pushButton.clicked.connect(self.takeinput) #self.pushButton_2.clicked.connect(self.takeoutput) self.pushButton_3.clicked.connect(self.startlasso) self.retranslateUi(Form) QtCore.QMetaObject.connectSlotsByName(Form) def setalpha(self): self.alpha=self.spinBox.value() def retranslateUi(self, Form): Form.setWindowTitle(_translate("Form", "Form", None)) self.groupBox.setTitle(_translate("Form", "Regressor Name", None)) self.lineEdit.setText(_translate("Form", "LASSO(L1)", None)) self.groupBox_2.setTitle(_translate("Form", "Options", None)) self.label.setText(_translate("Form", "Alpha", None)) self.label_2.setText(_translate("Form", "Max iterations", None)) self.checkBox.setText(_translate("Form", " Normalise", None)) self.checkBox_2.setText(_translate("Form", "Positive", None)) self.checkBox_3.setText(_translate("Form", "Fit intercept", None)) self.pushButton_3.setText(_translate("Form", "Start", None)) self.pushButton.setText(_translate("Form", "Input File", None)) def takeinput(self): self.fname1 = QtGui.QFileDialog.getOpenFileName(None, 'Open file', 'C:') self.xdata=[] self.ydata=[] for line in open(str(self.fname1)): row=line.split("\n")[0].split(",") self.ydata.append(row.pop()) self.xdata.append(row) print self.xdata print self.ydata def startlasso(self): import numpy as np X=np.array(self.xdata) Y=np.array(self.ydata) X=[[float(y) for y in x] for x in X] Y=[float(y) for y in Y] from sklearn import linear_model clf = linear_model.Lasso(alpha=0.2) clf.fit (X,Y) print clf.coef_ if __name__ == "__main__": import sys app = QtGui.QApplication(sys.argv) Dialog = QtGui.QDialog() ui = Ui_Form() ui.setupUi(Dialog) Dialog.show() sys.exit(app.exec_())
gpl-3.0
jakobworldpeace/scikit-learn
benchmarks/bench_covertype.py
57
7378
""" =========================== Covertype dataset benchmark =========================== Benchmark stochastic gradient descent (SGD), Liblinear, and Naive Bayes, CART (decision tree), RandomForest and Extra-Trees on the forest covertype dataset of Blackard, Jock, and Dean [1]. The dataset comprises 581,012 samples. It is low dimensional with 54 features and a sparsity of approx. 23%. Here, we consider the task of predicting class 1 (spruce/fir). The classification performance of SGD is competitive with Liblinear while being two orders of magnitude faster to train:: [..] Classification performance: =========================== Classifier train-time test-time error-rate -------------------------------------------- liblinear 15.9744s 0.0705s 0.2305 GaussianNB 3.0666s 0.3884s 0.4841 SGD 1.0558s 0.1152s 0.2300 CART 79.4296s 0.0523s 0.0469 RandomForest 1190.1620s 0.5881s 0.0243 ExtraTrees 640.3194s 0.6495s 0.0198 The same task has been used in a number of papers including: * `"SVM Optimization: Inverse Dependence on Training Set Size" <http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.139.2112>`_ S. Shalev-Shwartz, N. Srebro - In Proceedings of ICML '08. * `"Pegasos: Primal estimated sub-gradient solver for svm" <http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.74.8513>`_ S. Shalev-Shwartz, Y. Singer, N. Srebro - In Proceedings of ICML '07. * `"Training Linear SVMs in Linear Time" <www.cs.cornell.edu/People/tj/publications/joachims_06a.pdf>`_ T. Joachims - In SIGKDD '06 [1] http://archive.ics.uci.edu/ml/datasets/Covertype """ from __future__ import division, print_function # Author: Peter Prettenhofer <[email protected]> # Arnaud Joly <[email protected]> # License: BSD 3 clause import os from time import time import argparse import numpy as np from sklearn.datasets import fetch_covtype, get_data_home from sklearn.svm import LinearSVC from sklearn.linear_model import SGDClassifier, LogisticRegression from sklearn.naive_bayes import GaussianNB from sklearn.tree import DecisionTreeClassifier from sklearn.ensemble import RandomForestClassifier, ExtraTreesClassifier from sklearn.ensemble import GradientBoostingClassifier from sklearn.metrics import zero_one_loss from sklearn.externals.joblib import Memory from sklearn.utils import check_array # Memoize the data extraction and memory map the resulting # train / test splits in readonly mode memory = Memory(os.path.join(get_data_home(), 'covertype_benchmark_data'), mmap_mode='r') @memory.cache def load_data(dtype=np.float32, order='C', random_state=13): """Load the data, then cache and memmap the train/test split""" ###################################################################### # Load dataset print("Loading dataset...") data = fetch_covtype(download_if_missing=True, shuffle=True, random_state=random_state) X = check_array(data['data'], dtype=dtype, order=order) y = (data['target'] != 1).astype(np.int) # Create train-test split (as [Joachims, 2006]) print("Creating train-test split...") n_train = 522911 X_train = X[:n_train] y_train = y[:n_train] X_test = X[n_train:] y_test = y[n_train:] # Standardize first 10 features (the numerical ones) mean = X_train.mean(axis=0) std = X_train.std(axis=0) mean[10:] = 0.0 std[10:] = 1.0 X_train = (X_train - mean) / std X_test = (X_test - mean) / std return X_train, X_test, y_train, y_test ESTIMATORS = { 'GBRT': GradientBoostingClassifier(n_estimators=250), 'ExtraTrees': ExtraTreesClassifier(n_estimators=20), 'RandomForest': RandomForestClassifier(n_estimators=20), 'CART': DecisionTreeClassifier(min_samples_split=5), 'SGD': SGDClassifier(alpha=0.001, n_iter=2), 'GaussianNB': GaussianNB(), 'liblinear': LinearSVC(loss="l2", penalty="l2", C=1000, dual=False, tol=1e-3), 'SAG': LogisticRegression(solver='sag', max_iter=2, C=1000) } if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument('--classifiers', nargs="+", choices=ESTIMATORS, type=str, default=['liblinear', 'GaussianNB', 'SGD', 'CART'], help="list of classifiers to benchmark.") parser.add_argument('--n-jobs', nargs="?", default=1, type=int, help="Number of concurrently running workers for " "models that support parallelism.") parser.add_argument('--order', nargs="?", default="C", type=str, choices=["F", "C"], help="Allow to choose between fortran and C ordered " "data") parser.add_argument('--random-seed', nargs="?", default=13, type=int, help="Common seed used by random number generator.") args = vars(parser.parse_args()) print(__doc__) X_train, X_test, y_train, y_test = load_data( order=args["order"], random_state=args["random_seed"]) print("") print("Dataset statistics:") print("===================") print("%s %d" % ("number of features:".ljust(25), X_train.shape[1])) print("%s %d" % ("number of classes:".ljust(25), np.unique(y_train).size)) print("%s %s" % ("data type:".ljust(25), X_train.dtype)) print("%s %d (pos=%d, neg=%d, size=%dMB)" % ("number of train samples:".ljust(25), X_train.shape[0], np.sum(y_train == 1), np.sum(y_train == 0), int(X_train.nbytes / 1e6))) print("%s %d (pos=%d, neg=%d, size=%dMB)" % ("number of test samples:".ljust(25), X_test.shape[0], np.sum(y_test == 1), np.sum(y_test == 0), int(X_test.nbytes / 1e6))) print() print("Training Classifiers") print("====================") error, train_time, test_time = {}, {}, {} for name in sorted(args["classifiers"]): print("Training %s ... " % name, end="") estimator = ESTIMATORS[name] estimator_params = estimator.get_params() estimator.set_params(**{p: args["random_seed"] for p in estimator_params if p.endswith("random_state")}) if "n_jobs" in estimator_params: estimator.set_params(n_jobs=args["n_jobs"]) time_start = time() estimator.fit(X_train, y_train) train_time[name] = time() - time_start time_start = time() y_pred = estimator.predict(X_test) test_time[name] = time() - time_start error[name] = zero_one_loss(y_test, y_pred) print("done") print() print("Classification performance:") print("===========================") print("%s %s %s %s" % ("Classifier ", "train-time", "test-time", "error-rate")) print("-" * 44) for name in sorted(args["classifiers"], key=error.get): print("%s %s %s %s" % (name.ljust(12), ("%.4fs" % train_time[name]).center(10), ("%.4fs" % test_time[name]).center(10), ("%.4f" % error[name]).center(10))) print()
bsd-3-clause
easytaxibr/airflow
airflow/hooks/dbapi_hook.py
15
9272
# -*- coding: utf-8 -*- # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from builtins import str from past.builtins import basestring from datetime import datetime import numpy import logging import sys from sqlalchemy import create_engine from airflow.hooks.base_hook import BaseHook from airflow.exceptions import AirflowException class DbApiHook(BaseHook): """ Abstract base class for sql hooks. """ # Override to provide the connection name. conn_name_attr = None # Override to have a default connection id for a particular dbHook default_conn_name = 'default_conn_id' # Override if this db supports autocommit. supports_autocommit = False # Override with the object that exposes the connect method connector = None def __init__(self, *args, **kwargs): if not self.conn_name_attr: raise AirflowException("conn_name_attr is not defined") elif len(args) == 1: setattr(self, self.conn_name_attr, args[0]) elif self.conn_name_attr not in kwargs: setattr(self, self.conn_name_attr, self.default_conn_name) else: setattr(self, self.conn_name_attr, kwargs[self.conn_name_attr]) def get_conn(self): """Returns a connection object """ db = self.get_connection(getattr(self, self.conn_name_attr)) return self.connector.connect( host=db.host, port=db.port, username=db.login, schema=db.schema) def get_uri(self): conn = self.get_connection(getattr(self, self.conn_name_attr)) login = '' if conn.login: login = '{conn.login}:{conn.password}@'.format(conn=conn) host = conn.host if conn.port is not None: host += ':{port}'.format(port=conn.port) return '{conn.conn_type}://{login}{host}/{conn.schema}'.format( conn=conn, login=login, host=host) def get_sqlalchemy_engine(self, engine_kwargs=None): if engine_kwargs is None: engine_kwargs = {} return create_engine(self.get_uri(), **engine_kwargs) def get_pandas_df(self, sql, parameters=None): """ Executes the sql and returns a pandas dataframe :param sql: the sql statement to be executed (str) or a list of sql statements to execute :type sql: str or list :param parameters: The parameters to render the SQL query with. :type parameters: mapping or iterable """ if sys.version_info[0] < 3: sql = sql.encode('utf-8') import pandas.io.sql as psql conn = self.get_conn() df = psql.read_sql(sql, con=conn, params=parameters) conn.close() return df def get_records(self, sql, parameters=None): """ Executes the sql and returns a set of records. :param sql: the sql statement to be executed (str) or a list of sql statements to execute :type sql: str or list :param parameters: The parameters to render the SQL query with. :type parameters: mapping or iterable """ if sys.version_info[0] < 3: sql = sql.encode('utf-8') conn = self.get_conn() cur = self.get_cursor() if parameters is not None: cur.execute(sql, parameters) else: cur.execute(sql) rows = cur.fetchall() cur.close() conn.close() return rows def get_first(self, sql, parameters=None): """ Executes the sql and returns the first resulting row. :param sql: the sql statement to be executed (str) or a list of sql statements to execute :type sql: str or list :param parameters: The parameters to render the SQL query with. :type parameters: mapping or iterable """ if sys.version_info[0] < 3: sql = sql.encode('utf-8') conn = self.get_conn() cur = conn.cursor() if parameters is not None: cur.execute(sql, parameters) else: cur.execute(sql) rows = cur.fetchone() cur.close() conn.close() return rows def run(self, sql, autocommit=False, parameters=None): """ Runs a command or a list of commands. Pass a list of sql statements to the sql parameter to get them to execute sequentially :param sql: the sql statement to be executed (str) or a list of sql statements to execute :type sql: str or list :param autocommit: What to set the connection's autocommit setting to before executing the query. :type autocommit: bool :param parameters: The parameters to render the SQL query with. :type parameters: mapping or iterable """ conn = self.get_conn() if isinstance(sql, basestring): sql = [sql] if self.supports_autocommit: self.set_autocommit(conn, autocommit) cur = conn.cursor() for s in sql: if sys.version_info[0] < 3: s = s.encode('utf-8') logging.info(s) if parameters is not None: cur.execute(s, parameters) else: cur.execute(s) cur.close() conn.commit() conn.close() def set_autocommit(self, conn, autocommit): conn.autocommit = autocommit def get_cursor(self): """ Returns a cursor """ return self.get_conn().cursor() def insert_rows(self, table, rows, target_fields=None, commit_every=1000): """ A generic way to insert a set of tuples into a table, the whole set of inserts is treated as one transaction :param table: Name of the target table :type table: str :param rows: The rows to insert into the table :type rows: iterable of tuples :param target_fields: The names of the columns to fill in the table :type target_fields: iterable of strings :param commit_every: The maximum number of rows to insert in one transaction. Set to 0 to insert all rows in one transaction. :type commit_every: int """ if target_fields: target_fields = ", ".join(target_fields) target_fields = "({})".format(target_fields) else: target_fields = '' conn = self.get_conn() if self.supports_autocommit: self.set_autocommit(conn, False) conn.commit() cur = conn.cursor() i = 0 for row in rows: i += 1 l = [] for cell in row: l.append(self._serialize_cell(cell, conn)) values = tuple(l) sql = "INSERT INTO {0} {1} VALUES ({2});".format( table, target_fields, ",".join(values)) cur.execute(sql) if commit_every and i % commit_every == 0: conn.commit() logging.info( "Loaded {i} into {table} rows so far".format(**locals())) conn.commit() cur.close() conn.close() logging.info( "Done loading. Loaded a total of {i} rows".format(**locals())) @staticmethod def _serialize_cell(cell, conn=None): """ Returns the SQL literal of the cell as a string. :param cell: The cell to insert into the table :type cell: object :param conn: The database connection :type conn: connection object :return: The serialized cell :rtype: str """ if isinstance(cell, basestring): return "'" + str(cell).replace("'", "''") + "'" elif cell is None: return 'NULL' elif isinstance(cell, numpy.datetime64): return "'" + str(cell) + "'" elif isinstance(cell, datetime): return "'" + cell.isoformat() + "'" else: return str(cell) def bulk_dump(self, table, tmp_file): """ Dumps a database table into a tab-delimited file :param table: The name of the source table :type table: str :param tmp_file: The path of the target file :type tmp_file: str """ raise NotImplementedError() def bulk_load(self, table, tmp_file): """ Loads a tab-delimited file into a database table :param table: The name of the target table :type table: str :param tmp_file: The path of the file to load into the table :type tmp_file: str """ raise NotImplementedError()
apache-2.0