code
stringlengths 4
4.48k
| docstring
stringlengths 1
6.45k
| _id
stringlengths 24
24
|
---|---|---|
def mf_update(self, state_below, state_above, layer_above=None, double_weights=False, iter_name=None): <NEW_LINE> <INDENT> self.input_space.validate(state_below) <NEW_LINE> if self.requires_reformat: <NEW_LINE> <INDENT> if not isinstance(state_below, tuple): <NEW_LINE> <INDENT> for sb in get_debug_values(state_below): <NEW_LINE> <INDENT> if sb.shape[0] != self.dbm.batch_size: <NEW_LINE> <INDENT> raise ValueError("self.dbm.batch_size is %d but got " + "shape of %d" % (self.dbm.batch_size, sb.shape[0])) <NEW_LINE> <DEDENT> assert reduce(operator.mul, sb.shape[1:]) == self.input_dim <NEW_LINE> <DEDENT> <DEDENT> state_below = self.input_space.format_as(state_below, self.desired_space) <NEW_LINE> <DEDENT> if iter_name is None: <NEW_LINE> <INDENT> iter_name = 'anon' <NEW_LINE> <DEDENT> if state_above is not None: <NEW_LINE> <INDENT> assert layer_above is not None <NEW_LINE> msg = layer_above.downward_message(state_above) <NEW_LINE> msg.name = 'msg_from_' + layer_above.layer_name + '_to_' + self.layer_name + '[' + iter_name+']' <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> msg = None <NEW_LINE> <DEDENT> if double_weights: <NEW_LINE> <INDENT> state_below = 2. * state_below <NEW_LINE> state_below.name = self.layer_name + '_'+iter_name + '_2state' <NEW_LINE> <DEDENT> z = T.dot(state_below, self.ising_weights()) + self.ising_b() <NEW_LINE> if self.layer_name is not None and iter_name is not None: <NEW_LINE> <INDENT> z.name = self.layer_name + '_' + iter_name + '_z' <NEW_LINE> <DEDENT> if msg is not None: <NEW_LINE> <INDENT> z = z + msg <NEW_LINE> <DEDENT> h = T.tanh(self.beta * z) <NEW_LINE> return h | .. todo::
WRITEME | 625941b36fece00bbac2d4f2 |
def get_largest_kth(arr: list, k: int) -> list: <NEW_LINE> <INDENT> if not arr: <NEW_LINE> <INDENT> return [] <NEW_LINE> <DEDENT> if len(arr) <= k: <NEW_LINE> <INDENT> return arr <NEW_LINE> <DEDENT> answer = arr[0: k] <NEW_LINE> answer.sort(reverse=True) <NEW_LINE> tmp = arr[k:] <NEW_LINE> for item in tmp: <NEW_LINE> <INDENT> if item > answer[-1]: <NEW_LINE> <INDENT> answer[-1] = item <NEW_LINE> answer.sort(reverse=True) <NEW_LINE> <DEDENT> <DEDENT> return answer | Given array and find largest K elements
:return: | 625941b38e05c05ec3eea128 |
def test_assign_gt(self): <NEW_LINE> <INDENT> self.assertTrue(os.path.isfile(ALIGNMENTS[2])) <NEW_LINE> alignall = ALIGNMENTS[2] <NEW_LINE> test_refgts = genotype.getrefseqs(ALIGNMENTS[0], ALIGNMENTS[2]) <NEW_LINE> threshold_norm = 150 <NEW_LINE> threshold_lax = 50 <NEW_LINE> threshold_strict = 200 <NEW_LINE> assigngt_norm = genotype.assign_gt(alignall, test_refgts, threshold_norm) <NEW_LINE> self.assertTrue(len(assigngt_norm[2]) == assigngt_norm[1]) <NEW_LINE> assigngt_lax = genotype.assign_gt(alignall, test_refgts, threshold_lax) <NEW_LINE> self.assertTrue(len(assigngt_lax[2]) == assigngt_lax[1]) <NEW_LINE> assigngt_strict = genotype.assign_gt(alignall, test_refgts, threshold_strict) <NEW_LINE> self.assertTrue(len(assigngt_strict[2]) == assigngt_strict[1]) <NEW_LINE> self.assertTrue(assigngt_strict[1] < assigngt_norm[1] < assigngt_lax[1]) <NEW_LINE> self.assertTrue(len(assigngt_strict[0]) < len(assigngt_norm[0]) < len(assigngt_lax[0])) | Test assigning gneotypes with actual data.
I have not created toy `.fasta` files for testing, so test on real
data.
There is a rough check for mistyping in the main code, so just make
sure output is as expected. Overall, we only check if our genotypes
are logical and make no claim that they are fully accurate.
Check that if threshold is changed, number of new genotypes and
mistyped genotypes changes as expected.
This test is slow and takes ~25 seconds to run. | 625941b3796e427e537b0379 |
def ReadStataDct(dct_file, **options): <NEW_LINE> <INDENT> type_map = dict(byte=int, int=int, long=int, float=float, double=float, numeric=int) <NEW_LINE> var_info = [] <NEW_LINE> for line in open(dct_file, **options): <NEW_LINE> <INDENT> match = re.search( r'_column\(([^)]*)\)', line) <NEW_LINE> if match: <NEW_LINE> <INDENT> start = int(match.group(1)) <NEW_LINE> t = line.split() <NEW_LINE> vtype, name, fstring = t[1:4] <NEW_LINE> name = name.lower() <NEW_LINE> if vtype.startswith('str'): <NEW_LINE> <INDENT> vtype = str <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> vtype = type_map[vtype] <NEW_LINE> <DEDENT> long_desc = ' '.join(t[4:]).strip('"') <NEW_LINE> var_info.append((start, vtype, name, fstring, long_desc)) <NEW_LINE> <DEDENT> <DEDENT> columns = ['start', 'type', 'name', 'fstring', 'desc'] <NEW_LINE> variables = pandas.DataFrame(var_info, columns=columns) <NEW_LINE> variables['end'] = variables.start.shift(-1) <NEW_LINE> variables.loc[len(variables)-1, 'end'] = 0 <NEW_LINE> dct = FixedWidthVariables(variables, index_base=1) <NEW_LINE> return dct | Reads a Stata dictionary file.
dct_file: string filename
options: dict of options passed to open()
returns: FixedWidthVariables object | 625941b35f7d997b87174853 |
def __init__(self, id, name, msisdn, status, market, tariff, customer, payer): <NEW_LINE> <INDENT> self.id = id <NEW_LINE> self.name = name <NEW_LINE> self.msisdn = msisdn <NEW_LINE> self.status = status <NEW_LINE> self.market = market <NEW_LINE> self.tariff = tariff <NEW_LINE> self.customer = customer <NEW_LINE> self.payer = payer | Class constructor
Subscriber entity
Args:
id (int): subscriber id
name (str): name
msisdn (str): MSISDN
status (str): status, active|deactive|suspend
market (int): market id, 1|2|3 GSM|DSL|FIX
tariff (int): tariff id, 433|459|434|460
customer (int): assigned customer id
payer (int): assigned payer id | 625941b3a17c0f6771cbde10 |
def register_ioloop(self, callback: ReplierCallback): <NEW_LINE> <INDENT> def call_callback_replier(*args): <NEW_LINE> <INDENT> try: <NEW_LINE> <INDENT> msg = self.recv() <NEW_LINE> <DEDENT> except Exception as exc: <NEW_LINE> <INDENT> rv = callback(None, exc) <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> rv = callback(msg, None) <NEW_LINE> <DEDENT> if asyncio.iscoroutine(rv): <NEW_LINE> <INDENT> asyncio.ensure_future(rv) <NEW_LINE> <DEDENT> <DEDENT> IOLoop.current().add_handler(self, call_callback_replier, IOLoop.READ) | TornadoのIOLoopにメッセージ受信時のコールバックを登録.
:param Callable callback: | 625941b326068e7796caea90 |
def generate_phrase_scores(self, vid_embeds, vid_masks, phrase_embeds, phrase_masks): <NEW_LINE> <INDENT> batch_vids, num_frames, _ = vid_embeds.size() <NEW_LINE> vid_pad_masks = (vid_masks == 0).unsqueeze(1).unsqueeze(3) <NEW_LINE> batch_phrases, num_phrases, dim_embed = phrase_embeds.size() <NEW_LINE> vid_2d_embeds = vid_embeds.view(-1, dim_embed) <NEW_LINE> phrase_2d_embeds = phrase_embeds.view(-1, dim_embed) <NEW_LINE> ground_sims = cosine_sim(vid_2d_embeds, phrase_2d_embeds).view( batch_vids, num_frames, batch_phrases, num_phrases).transpose(1, 2) <NEW_LINE> vid_attn_per_word = ground_sims.masked_fill(vid_pad_masks, 0) <NEW_LINE> vid_attn_per_word[vid_attn_per_word < 0] = 0 <NEW_LINE> vid_attn_per_word = framework.ops.l2norm(vid_attn_per_word, dim=2) <NEW_LINE> vid_attn_per_word = vid_attn_per_word.masked_fill(vid_pad_masks, -1e18) <NEW_LINE> vid_attn_per_word = torch.softmax(self.config.simattn_sigma * vid_attn_per_word, dim=2) <NEW_LINE> if self.config.attn_fusion == 'embed': <NEW_LINE> <INDENT> vid_attned_embeds = torch.einsum('abcd,ace->abde', vid_attn_per_word, vid_embeds) <NEW_LINE> word_attn_sims = torch.einsum('abde,bde->abd', framework.ops.l2norm(vid_attned_embeds), framework.ops.l2norm(phrase_embeds)) <NEW_LINE> <DEDENT> elif self.config.attn_fusion == 'sim': <NEW_LINE> <INDENT> word_attn_sims = torch.sum(ground_sims * vid_attn_per_word, dim=2) <NEW_LINE> <DEDENT> phrase_scores = torch.sum(word_attn_sims * phrase_masks.float().unsqueeze(0), 2) / torch.sum(phrase_masks, 1).float().unsqueeze(0).clamp(min=1) <NEW_LINE> return phrase_scores | Args:
- vid_embeds: (batch, num_frames, embed_size)
- vid_masks: (batch, num_frames)
- phrase_embeds: (batch, num_phrases, embed_size)
- phrase_masks: (batch, num_phrases) | 625941b3091ae35668666d1e |
def report_evaluation(self, sect, stats, previous_stats): <NEW_LINE> <INDENT> if stats['statement'] == 0: <NEW_LINE> <INDENT> raise EmptyReport() <NEW_LINE> <DEDENT> evaluation = self.config.evaluation <NEW_LINE> try: <NEW_LINE> <INDENT> note = eval(evaluation, {}, self.stats) <NEW_LINE> <DEDENT> except Exception as ex: <NEW_LINE> <INDENT> msg = 'An exception occurred while rating: %s' % ex <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> stats['global_note'] = note <NEW_LINE> msg = 'Your code has been rated at %.2f/10' % note <NEW_LINE> if 'global_note' in previous_stats: <NEW_LINE> <INDENT> msg += ' (previous run: %.2f/10)' % previous_stats['global_note'] <NEW_LINE> <DEDENT> if self.config.comment: <NEW_LINE> <INDENT> msg = '%s\n%s' % (msg, config.get_note_message(note)) <NEW_LINE> <DEDENT> <DEDENT> sect.append(Text(msg)) | make the global evaluation report | 625941b38da39b475bd64d2e |
def smooth_and_interp_trajs(trajs, filter_width=3, num=100): <NEW_LINE> <INDENT> normalized_trajs = normalize_trajs_helper(trajs) <NEW_LINE> processed_trajs = [smooth_and_interp_trajs_helper(stroke, filter_width=filter_width, num=num) for stroke in normalized_trajs] <NEW_LINE> return processed_trajs | a helper to smooth and interp with specified number of samples given a letter instance
which is possibly consisted of multiple stroke trajectories | 625941b3be8e80087fb20a07 |
def __str__ ( self ): <NEW_LINE> <INDENT> mix = dmsUnits.singleToMix ( self.hours ) <NEW_LINE> values = dmsUnits.format ( mix, decimals=3, lz=True ) <NEW_LINE> return "[%sh %sm %ss]" % tuple(values) | Convert to a string such as "[04h 40m 5.170s]".
| 625941b3de87d2750b85fb45 |
def update_row(self, row, cols, value): <NEW_LINE> <INDENT> self._del_row(row) <NEW_LINE> v = np.array(value) <NEW_LINE> for j, col in enumerate(cols): <NEW_LINE> <INDENT> if np.isscalar(v): <NEW_LINE> <INDENT> self.set_value(row, col, v) <NEW_LINE> <DEDENT> elif v.ndim == 1: <NEW_LINE> <INDENT> self.set_value(row, col, v[j]) <NEW_LINE> <DEDENT> elif v.ndim == 2: <NEW_LINE> <INDENT> self.set_value(row, col, v[:, j]) <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> raise ValueError("Inconsistent data array provided.") | Update a row in the matrix. If the row does not exist it will be added.
Existing entries for the row will be removed first. | 625941b37d847024c06be078 |
def forward(self, xpad, ilens): <NEW_LINE> <INDENT> for layer in six.moves.range(self.elayers): <NEW_LINE> <INDENT> xpack = pack_padded_sequence(xpad, ilens, batch_first=True) <NEW_LINE> bilstm = getattr(self, 'bilstm' + str(layer)) <NEW_LINE> bilstm.flatten_parameters() <NEW_LINE> ys, (hy, cy) = bilstm(xpack) <NEW_LINE> ypad, ilens = pad_packed_sequence(ys, batch_first=True) <NEW_LINE> sub = self.subsample[layer + 1] <NEW_LINE> if sub > 1: <NEW_LINE> <INDENT> ypad = ypad[:, ::sub] <NEW_LINE> ilens = [int(i + 1) // sub for i in ilens] <NEW_LINE> <DEDENT> projected = getattr(self, 'bt' + str(layer) )(ypad.contiguous().view(-1, ypad.size(2))) <NEW_LINE> xpad = torch.tanh(projected.view(ypad.size(0), ypad.size(1), -1)) <NEW_LINE> del hy, cy <NEW_LINE> <DEDENT> return xpad, ilens | BLSTMP forward
:param xs:
:param ilens:
:return: | 625941b3b545ff76a8913bd9 |
def __init__(self, call, *args_to_append): <NEW_LINE> <INDENT> Tweak.__init__(self, call) <NEW_LINE> self.after(*args_to_append) | Constructor. | 625941b3e64d504609d745f8 |
def get_volume_type(self, volume_id): <NEW_LINE> <INDENT> url = "types/%s" % str(volume_id) <NEW_LINE> resp, body = self.get(url) <NEW_LINE> body = json.loads(body) <NEW_LINE> self.expected_success(200, resp.status) <NEW_LINE> return resp, body['volume_type'] | Returns the details of a single volume_type. | 625941b30fa83653e4656d7d |
@commandWrap <NEW_LINE> def PlaybackToggle(*args, **kwargs): <NEW_LINE> <INDENT> return cmds.PlaybackToggle(*args, **kwargs) | :rtype: list|str|DagNode|AttrObject|ArrayAttrObject|Components1Base | 625941b363b5f9789fde6e9d |
def __init__(self, test_helpers, max_len, num_workers): <NEW_LINE> <INDENT> self.test_helpers = test_helpers <NEW_LINE> self.max_len = max_len <NEW_LINE> self.num_workers = num_workers <NEW_LINE> print ('Meta Review Helper Initialized with ', len(test_helpers), ' Data Helpers') <NEW_LINE> self.processes = [] <NEW_LINE> self.inQueue = multiprocessing.Queue() <NEW_LINE> self.outQueue = multiprocessing.Queue() <NEW_LINE> for _ in range(self.num_workers): <NEW_LINE> <INDENT> p = multiprocessing.Process(target=self.rev_from_dmgr, args=(self.inQueue, self.outQueue)) <NEW_LINE> p.start() <NEW_LINE> self.processes.append(p) <NEW_LINE> <DEDENT> print ('multi processor ready with ', len(self.processes), ' worker threads') <NEW_LINE> print ("don't forget to call close") | test helpers: a list of DataMgr objs
max_len: approx max len (words/ids) of the merged review
num_workers: set to max num cpus | 625941b31f5feb6acb0c4915 |
def cast(*args): <NEW_LINE> <INDENT> return _itkCompose3DCovariantVectorImageFilterPython.itkCompose3DCovariantVectorImageFilterIF3ICVF33_Superclass_cast(*args) | cast(itkLightObject obj) -> itkCompose3DCovariantVectorImageFilterIF3ICVF33_Superclass | 625941b3ec188e330fd5a560 |
def __init__( self, id: str, name: str, imctools_version: str, created: datetime, metadata: Optional[Dict[str, Any]] = None, ): <NEW_LINE> <INDENT> self.id = id <NEW_LINE> self.name = name <NEW_LINE> self.imctools_version = imctools_version <NEW_LINE> self.created = created <NEW_LINE> self.metadata = metadata <NEW_LINE> self.slides: Dict[int, Slide] = dict() <NEW_LINE> self.acquisitions: Dict[int, Acquisition] = dict() <NEW_LINE> self.panoramas: Dict[int, Panorama] = dict() <NEW_LINE> self.channels: Dict[int, Channel] = dict() | Parameters
----------
id
Unique ID of the session (UUID).
name
Session name.
imctools_version
Version of imctools library used for conversion.
created
Datetime of session creation.
metadata
Whole set of original (raw) metadata as a dictionary. | 625941b3d18da76e23532288 |
def setListePions(c,listePions): <NEW_LINE> <INDENT> c["pions"]=listePions <NEW_LINE> pass | place la liste des pions passées en paramètre sur la carte
paramètres: c: est une carte
listePions: la liste des pions à poser
Cette fonction ne retourne rien mais modifie la carte | 625941b3004d5f362079a0f0 |
def setugid(user): <NEW_LINE> <INDENT> try: <NEW_LINE> <INDENT> from pwd import getpwuid <NEW_LINE> passwd = getpwuid(int(user)) <NEW_LINE> <DEDENT> except ValueError: <NEW_LINE> <INDENT> from pwd import getpwnam <NEW_LINE> passwd = getpwnam(user) <NEW_LINE> <DEDENT> if hasattr(os, 'initgroups'): <NEW_LINE> <INDENT> os.initgroups(passwd.pw_name, passwd.pw_gid) <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> import ctypes <NEW_LINE> if ctypes.CDLL(None).initgroups(passwd.pw_name, passwd.pw_gid) < 0: <NEW_LINE> <INDENT> err = ctypes.c_int.in_dll(ctypes.pythonapi,"errno").value <NEW_LINE> raise OSError(err, os.strerror(err), 'initgroups') <NEW_LINE> <DEDENT> <DEDENT> os.setgid(passwd.pw_gid) <NEW_LINE> os.setuid(passwd.pw_uid) <NEW_LINE> os.environ['HOME'] = passwd.pw_dir | Change process user and group ID
Argument is a numeric user id or a user name | 625941b39b70327d1c4e0b8c |
def pass_time(self, faller: Faller) -> None: <NEW_LINE> <INDENT> while self.found_matches() == True: <NEW_LINE> <INDENT> self.clear_matches() <NEW_LINE> self.drop_air_cells() <NEW_LINE> if self.find_matches() == True: <NEW_LINE> <INDENT> self._found_matches = True <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> self._found_matches = False <NEW_LINE> faller.end_life() <NEW_LINE> <DEDENT> <DEDENT> if faller.state() == "LANDED": <NEW_LINE> <INDENT> faller.freeze() <NEW_LINE> if self.find_matches() == True: <NEW_LINE> <INDENT> self._found_matches = True <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> faller.end_life() <NEW_LINE> <DEDENT> <DEDENT> elif can_drop(faller.bottom_jewel(), self) == True: <NEW_LINE> <INDENT> self.clear_faller(faller) <NEW_LINE> faller.drop() <NEW_LINE> self.position_faller(faller) <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> if faller.state() != "DEAD": <NEW_LINE> <INDENT> faller.land() | Depending on the state of the faller and its cells,
This function represents the passing of time and determines
whether a Faller will simply drop or the Field will attempt to
Find matches. | 625941b330dc7b7665901723 |
def main(): <NEW_LINE> <INDENT> os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'django_moodle.settings') <NEW_LINE> try: <NEW_LINE> <INDENT> from django.core.management import execute_from_command_line <NEW_LINE> <DEDENT> except ImportError as exc: <NEW_LINE> <INDENT> raise ImportError( "Couldn't import Django. Are you sure it's installed and " "available on your PYTHONPATH environment variable? Did you " "forget to activate a virtual environment?" ) from exc <NEW_LINE> <DEDENT> execute_from_command_line(sys.argv) | Run administrative tasks. | 625941b37047854f462a11c6 |
def __init__(self, dg=None, dg_tag=None, tag_entry=None, entry_view=None, local_vars_configuration=None): <NEW_LINE> <INDENT> if local_vars_configuration is None: <NEW_LINE> <INDENT> local_vars_configuration = Configuration() <NEW_LINE> <DEDENT> self.local_vars_configuration = local_vars_configuration <NEW_LINE> self._dg = None <NEW_LINE> self._dg_tag = None <NEW_LINE> self._tag_entry = None <NEW_LINE> self._entry_view = None <NEW_LINE> self.discriminator = None <NEW_LINE> self.dg = dg <NEW_LINE> if dg_tag is not None: <NEW_LINE> <INDENT> self.dg_tag = dg_tag <NEW_LINE> <DEDENT> if tag_entry is not None: <NEW_LINE> <INDENT> self.tag_entry = tag_entry <NEW_LINE> <DEDENT> if entry_view is not None: <NEW_LINE> <INDENT> self.entry_view = entry_view | RfidOrigin - a model defined in OpenAPI | 625941b38a349b6b435e7f34 |
def __init__(self, host, port, commander): <NEW_LINE> <INDENT> assert hasattr(commander, 'command') <NEW_LINE> asyncore.dispatcher.__init__(self) <NEW_LINE> self.commander = commander <NEW_LINE> self.create_socket(socket.AF_INET, socket.SOCK_STREAM) <NEW_LINE> self.set_reuse_addr() <NEW_LINE> self.bind((host, port)) <NEW_LINE> self.listen(5) | commander:
an intsnace of class that has "command(self, command)" interface | 625941b321bff66bcd68470e |
def __init__(self, workspace=None, name=None, description=None, owner=None, uri=None, version=None, query=None, labels=None, **kwargs): <NEW_LINE> <INDENT> self.workspace = workspace <NEW_LINE> self.name = name <NEW_LINE> self.description = description <NEW_LINE> self.owner = owner <NEW_LINE> self.uri = uri <NEW_LINE> self.version = version <NEW_LINE> self.query = query <NEW_LINE> self.labels = labels <NEW_LINE> self._id = "" <NEW_LINE> self._create_time = "" | Args:
workspace {str} -- Optional name of the workspace.
name {str} -- Required name of the data set.
description {str} -- Optional description of the data set.
owner {str} -- Optional owner of the data set.
uri {str} -- Required uri of the data set.
version {str} -- Optional version tagged by the user.
query {str} -- Optioan query string for how to fetch this data set from
a data source.
labels {object} -- Optional string key value pairs for labels.
Addtional keyword arguments are saved as addtional properties of this
dataset. | 625941b3d18da76e23532289 |
def test_entity_batch_number_get(self): <NEW_LINE> <INDENT> pass | Test case for entity_batch_number_get
EntityBatchNumber_GET # noqa: E501 | 625941b3046cf37aa974cb03 |
def is_connected(self, v, w): <NEW_LINE> <INDENT> return self.id[v] == self.id[w] | Are nodes v and w connected? | 625941b3cc40096d6159570d |
def display(self, pixels): <NEW_LINE> <INDENT> send_command(DATA_START_TRANSMISSION_1) <NEW_LINE> send_data_list(self._old_buffer) <NEW_LINE> buffer = list(self._buffer_from_pixels(pixels)) <NEW_LINE> send_command(DATA_START_TRANSMISSION_2) <NEW_LINE> send_data_list(buffer) <NEW_LINE> send_command(DISPLAY_REFRESH) <NEW_LINE> self._old_buffer = buffer <NEW_LINE> self.wait_until_idle() | display an image
:pixels iterable:
list of pixel intensities, must have a length of 400 x 300 items | 625941b399cbb53fe67929a0 |
def generateID(): <NEW_LINE> <INDENT> duckobotID = secrets.token_urlsafe(32) <NEW_LINE> return duckobotID | ## Generates an unique ID for an user when is creating a profile. | 625941b376e4537e8c35142f |
def make_symbolic_state(self, num_examples, theano_rng): <NEW_LINE> <INDENT> if not hasattr(self, 'copies'): <NEW_LINE> <INDENT> self.copies = 1 <NEW_LINE> <DEDENT> if self.copies != 1: <NEW_LINE> <INDENT> raise NotImplementedError() <NEW_LINE> <DEDENT> default_z = T.alloc(self.b, num_examples, self.detector_layer_dim) <NEW_LINE> p_exp, h_exp, p_sample, h_sample = max_pool_channels(z=default_z, pool_size=self.pool_size, theano_rng=theano_rng) <NEW_LINE> assert h_sample.dtype == default_z.dtype <NEW_LINE> return p_sample, h_sample | .. todo::
WRITEME | 625941b3046cf37aa974cb04 |
@_expire(hour=8, tz=_UTC) <NEW_LINE> def otcSymbols(token="", version="stable", filter="", format="json"): <NEW_LINE> <INDENT> return _get( "ref-data/otc/symbols", token=token, version=version, filter=filter, format=format, ) | This call returns an array of OTC symbols that IEX Cloud supports for API calls.
https://iexcloud.io/docs/api/#otc-symbols
8am, 9am, 12pm, 1pm UTC daily
Args:
token (str): Access token
version (str): API version
filter (str): filters: https://iexcloud.io/docs/api/#filter-results
format (str): return format, defaults to json
Returns:
dict or DataFrame or list: result | 625941b3c432627299f049fd |
def findID(cine,cinemaArray): <NEW_LINE> <INDENT> for x in range(0,12): <NEW_LINE> <INDENT> cine[x] = cine[x]+"'" <NEW_LINE> <DEDENT> for x in range (0,12): <NEW_LINE> <INDENT> currentCinema = cine[x] <NEW_LINE> idString = currentCinema.find('id') <NEW_LINE> endOfID = 0 <NEW_LINE> while endOfID < idString: <NEW_LINE> <INDENT> endOfID = currentCinema.find("''") <NEW_LINE> currentCinema = currentCinema.replace("''",'XX',1) <NEW_LINE> <DEDENT> idValue = currentCinema[idString+6:endOfID] <NEW_LINE> cinemaArray[x-1][0] = idValue <NEW_LINE> <DEDENT> return cinemaArray | In this function it takes the raw cinema list as an input and takes out the relative cinema IDs from the list, putting them into an array. | 625941b31b99ca400220a869 |
def test_error_function_source_is_correct(self): <NEW_LINE> <INDENT> @njit <NEW_LINE> def foo(): <NEW_LINE> <INDENT> np.linalg.svd("chars") <NEW_LINE> <DEDENT> with self.assertRaises(errors.TypingError) as raises: <NEW_LINE> <INDENT> foo() <NEW_LINE> <DEDENT> excstr = str(raises.exception) <NEW_LINE> self.assertIn(error_reasons['specific_error'].splitlines()[0], excstr) <NEW_LINE> expected_file = os.path.join("numba", "np", "linalg.py") <NEW_LINE> expected = f"Overload in function 'svd_impl': File: {expected_file}:" <NEW_LINE> self.assertIn(expected.format(expected_file), excstr) | Checks that the reported source location for an overload is the
overload implementation source, not the actual function source from the
target library. | 625941b31f037a2d8b945fb7 |
def clear(self): <NEW_LINE> <INDENT> self.items = {} <NEW_LINE> self.weight = 0 | Remove all items in the inventory. | 625941b3f9cc0f698b1403bf |
def srun_run(self): <NEW_LINE> <INDENT> for run_conf in self.__task_conf['srun_run']: <NEW_LINE> <INDENT> cmd = ["sh", str(run_conf['script'])] <NEW_LINE> flags = None <NEW_LINE> try: <NEW_LINE> <INDENT> flags = [] <NEW_LINE> for key, value in run_conf['flags'].items(): <NEW_LINE> <INDENT> flags.append(str(key)) <NEW_LINE> if value is not None: <NEW_LINE> <INDENT> flags.append(str(value)) <NEW_LINE> <DEDENT> <DEDENT> <DEDENT> except KeyError: <NEW_LINE> <INDENT> pass <NEW_LINE> <DEDENT> self.run_popen_safe(command=self.compose_srun(cmd, self.__hosts_mpi, self.__hosts_total, flags), nodes=self.__hosts_mpi) | SRUN script run on each node via srun --nodelist derived from
beefile's node list | 625941b3fff4ab517eb2f1f1 |
def take_gun(self, gun): <NEW_LINE> <INDENT> self.gun = gun | 拿枪 | 625941b32ae34c7f2600ceeb |
def _count_valid_files_in_directory(directory, white_list_formats, follow_links): <NEW_LINE> <INDENT> def _recursive_list(subpath): <NEW_LINE> <INDENT> return sorted(os.walk(subpath, followlinks=follow_links), key=lambda x: x[0]) <NEW_LINE> <DEDENT> samples = 0 <NEW_LINE> for _, _, files in _recursive_list(directory): <NEW_LINE> <INDENT> for fname in files: <NEW_LINE> <INDENT> is_valid = False <NEW_LINE> for extension in white_list_formats: <NEW_LINE> <INDENT> if fname.lower().endswith('.tiff'): <NEW_LINE> <INDENT> warnings.warn('Using \'.tiff\' files with multiple bands will cause distortion. ' 'Please verify your output.') <NEW_LINE> <DEDENT> if fname.lower().endswith('.' + extension): <NEW_LINE> <INDENT> is_valid = True <NEW_LINE> break <NEW_LINE> <DEDENT> <DEDENT> if is_valid: <NEW_LINE> <INDENT> samples += 1 <NEW_LINE> <DEDENT> <DEDENT> <DEDENT> return samples | Count files with extension in `white_list_formats` contained in directory.
# Arguments
directory: absolute path to the directory
containing files to be counted
white_list_formats: set of strings containing allowed extensions for
the files to be counted.
follow_links: boolean.
# Returns
the count of files with extension in `white_list_formats` contained in
the directory. | 625941b321a7993f00bc7aa1 |
def pc_work_time_var(self): <NEW_LINE> <INDENT> return _analog_swig.quadrature_demod_cf_sptr_pc_work_time_var(self) | pc_work_time_var(quadrature_demod_cf_sptr self) -> float | 625941b3d58c6744b4257a1a |
def writeCyml(node): <NEW_LINE> <INDENT> p = CymlGenerator(node) <NEW_LINE> p.visit(node) <NEW_LINE> code= ''.join(p.result) <NEW_LINE> return code | Generate CyML code from an ASG
Args:
node (Node): Common Abstract Syntax Graph
Returns:
[str]: CyML code | 625941b3ab23a570cc24ff40 |
def get_square(self, x, y): <NEW_LINE> <INDENT> return self.squares[y * WIDTH + x] | Return 0 for an empty square, 1 or 2 for a player's counter | 625941b394891a1f4081b861 |
def __unhandled_exception(self, exctype, excval, exctb): <NEW_LINE> <INDENT> self.mainThread.user_exception((exctype, excval, exctb), True) | Private method called to report an uncaught exception.
@param exctype the type of the exception
@param excval data about the exception
@param exctb traceback for the exception | 625941b37047854f462a11c7 |
def draw_figure(canvas, figure, loc=(0, 0)): <NEW_LINE> <INDENT> figure_canvas_agg = FigureCanvasAgg(figure) <NEW_LINE> figure_canvas_agg.draw() <NEW_LINE> figure_x, figure_y, figure_w, figure_h = figure.bbox.bounds <NEW_LINE> figure_w, figure_h = int(figure_w), int(figure_h) <NEW_LINE> photo = Tk.PhotoImage(master=canvas, width=figure_w, height=figure_h) <NEW_LINE> canvas.create_image(loc[0] + figure_w/2, loc[1] + figure_h/2, image=photo) <NEW_LINE> tkagg.blit(photo, figure_canvas_agg.get_renderer()._renderer, colormode=2) <NEW_LINE> return photo | Draw a matplotlib figure onto a Tk canvas
loc: location of top-left corner of figure on canvas in pixels.
Inspired by matplotlib source: lib/matplotlib/backends/backend_tkagg.py | 625941b3fff4ab517eb2f1f2 |
def adjust_for_complexity(self, n): <NEW_LINE> <INDENT> return np.vstack([np.ones(len(n)), np.log(n)]).T | See Documentation here https://numpy.org/doc/stable/reference/generated/numpy.linalg.lstsq.html | 625941b3925a0f43d2549c2c |
def Get(self, request, global_params=None): <NEW_LINE> <INDENT> config = self.GetMethodConfig('Get') <NEW_LINE> return self._RunMethod( config, request, global_params=global_params) | Get an existing environment.
Args:
request: (ComposerProjectsLocationsEnvironmentsGetRequest) input message
global_params: (StandardQueryParameters, default: None) global arguments
Returns:
(Environment) The response message. | 625941b35166f23b2e1a4f11 |
def capture_cloud_and_transform(pc_topic, source_frame, target_frame): <NEW_LINE> <INDENT> pcl_pc = capture_cloud(pc_topic) <NEW_LINE> tf_msg = capture_tf_msg(source_frame, target_frame) <NEW_LINE> cf2obj_tf_msg = tf_conversions.posemath.fromTf(tf_msg) <NEW_LINE> cf2obj_tf_mat = tf_conversions.posemath.toMatrix(cf2obj_tf_msg) <NEW_LINE> np_pc = pcl_pc.to_array() <NEW_LINE> np_pc = transform_cloud(np_pc, cf2obj_tf_mat) <NEW_LINE> np_pc = np_pc.astype(np.float32) <NEW_LINE> pc = pypcd.Pointcloud.from_array(np_pc) <NEW_LINE> return pc | :param pc_topic:
:type pc_topic: str
:param source_frame:
:type source_frame: str
:param target_frame:
:type target_frame: str
:return:
:rtype: pypcd.PointCloud | 625941b3fbf16365ca6f5f7c |
@contextlib.contextmanager <NEW_LINE> def MockArbitraryBuffer( filetype ): <NEW_LINE> <INDENT> current_buffer = VimBuffer( os.path.realpath( 'TEST_BUFFER' ), filetype = filetype ) <NEW_LINE> with MockVimBuffers( [ current_buffer ], [ current_buffer ] ): <NEW_LINE> <INDENT> yield | Used via the with statement, set up a single buffer with an arbitrary name
and no contents. Its filetype is set to the supplied filetype. | 625941b35166f23b2e1a4f12 |
def Title(self): <NEW_LINE> <INDENT> return self.title | Returns the title. The function is used by Plone to render <title> correctly. | 625941b38a43f66fc4b53e24 |
def generate_job_definition(jjb_data): <NEW_LINE> <INDENT> template = get_template(jjb_data['tester']) <NEW_LINE> j2_env = Environment(loader=FunctionLoader(get_template), trim_blocks=True) <NEW_LINE> template = j2_env.get_template(jjb_data['tester']) <NEW_LINE> return template.render(jjb=jjb_data) | Returns a multi-line string which is the jenkins job definition
based on the given arguments. | 625941b3cdde0d52a9e52dee |
def cmd_garoi(self, nick, args, admin): <NEW_LINE> <INDENT> rules = [ ('ddzs', 'CCS'), ('dzs', 'CS'), ('ccs', 'DDZS'), ('ddz', 'TSSZ'), ('ggy', 'TTY'), ('lly', 'JJ'), ('ssz', 'ZZ'), ('tty', 'GGY'), ('zzs', 'SS'), ('dj', 'gy'), ('sz', 'Z'), ('ch', 'cs'), ('ts', 'cs'), ('cs', 'DZS'), ('dz', 'TSZ'), ('gy', 'TY'), ('ly', 'J'), ('cc', 'TSSZ'), ('ty', 'GY'), ('zs', 'S'), ('jj', 'LLY'), ('zz', 'SSZ'), ('b', 'P'), ('c', 'TSZ'), ('d', 'T'), ('f', 'V'), ('g', 'K'), ('j', 'LY'), ('k', 'G'), ('p', 'B'), ('s', 'ZS'), ('s', 'ZZS'), ('t', 'D'), ('v', 'F'), ('z', 'SZ'), ('x', 'GZ')] <NEW_LINE> if not args: <NEW_LINE> <INDENT> return 'Mid agarz?' <NEW_LINE> <DEDENT> text = args.lower() <NEW_LINE> for _f, _t in rules: <NEW_LINE> <INDENT> text = text.replace(_f, _t) <NEW_LINE> <DEDENT> return text.lower() | garoi fordító. Használat: !garoi [kifejezés] | 625941b3b57a9660fec33638 |
@click.group() <NEW_LINE> @click.option('--config', 'config_file', type=click.Path(exists=True)) <NEW_LINE> @click.option('--version', is_flag=True, callback=print_version, expose_value=False, is_eager=True) <NEW_LINE> @pass_config <NEW_LINE> def cli(config, config_file): <NEW_LINE> <INDENT> if config_file: <NEW_LINE> <INDENT> config.file = config_file <NEW_LINE> <DEDENT> config.load() | Loads config file.
This function is entry point. | 625941b3d8ef3951e32432f7 |
def _decode_header(fp): <NEW_LINE> <INDENT> magic = _decode_magic(fp) <NEW_LINE> if magic not in MAGIC_NUMBERS: <NEW_LINE> <INDENT> raise unknownMagic('Magic number is not valid.') <NEW_LINE> <DEDENT> ts = _decode_timestamp_bytes(fp, magic) <NEW_LINE> size = None <NEW_LINE> if MAGIC_NUMBERS[magic][0] >= 3.0: <NEW_LINE> <INDENT> size = _decode_size_bytes(fp) <NEW_LINE> <DEDENT> return magic, ts, size | Returns the decoded header part of pyc file.
pyc file structure varied from 2.x to 3.x or even between 3.x versions. At
this point pydis only supporting 3.x versions. We see there is a change
happened at 3393 ==> 3.7b1 version. | 625941b3adb09d7d5db6c54d |
def compareSwitches(self): <NEW_LINE> <INDENT> if self.first_science_tuple[0] is None: <NEW_LINE> <INDENT> switches_timetag = None <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> switches_timetag = self.obs[self.first_science_tuple[0]].switches <NEW_LINE> <DEDENT> if self.first_science_tuple[1] is None: <NEW_LINE> <INDENT> switches_accum = None <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> switches_accum = self.obs[self.first_science_tuple[1]].switches <NEW_LINE> <DEDENT> message_printed = False <NEW_LINE> for obs in self.obs: <NEW_LINE> <INDENT> obs.openTrailer() <NEW_LINE> if obs.info["obsmode"] == "TIME-TAG": <NEW_LINE> <INDENT> switches = switches_timetag <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> switches = switches_accum <NEW_LINE> <DEDENT> keys = sorted(switches) <NEW_LINE> for key in keys: <NEW_LINE> <INDENT> compare = switches[key].strip() <NEW_LINE> sw = obs.switches[key].strip() <NEW_LINE> if sw != compare: <NEW_LINE> <INDENT> if obs.exp_type == EXP_WAVECAL: <NEW_LINE> <INDENT> if key in ["wavecorr", "doppcorr", "helcorr", "fluxcorr", "tdscorr"]: <NEW_LINE> <INDENT> continue <NEW_LINE> <DEDENT> <DEDENT> if not message_printed: <NEW_LINE> <INDENT> cosutil.printWarning( "Inconsistent calibration switches:") <NEW_LINE> message_printed = True <NEW_LINE> <DEDENT> if len(compare) == 0: <NEW_LINE> <INDENT> compare = "(blank)" <NEW_LINE> <DEDENT> if len(sw) == 0: <NEW_LINE> <INDENT> sw = "(blank)" <NEW_LINE> <DEDENT> cosutil.printMsg(obs.input + ": " + key + " = " + sw + " vs. " + compare) <NEW_LINE> <DEDENT> <DEDENT> obs.closeTrailer() | Compare switches.
This function compares the values of the calibration switch keywords
in the observation list. If there is any mismatch, a warning will
be printed giving the values in the first science observation (can
be different for time-tag vs accum) and in the current observation. | 625941b36aa9bd52df036b5b |
def map(self, f=None, f_vect=None): <NEW_LINE> <INDENT> assert (f is not None) ^ (f_vect is not None) <NEW_LINE> parent = self <NEW_LINE> class Transformed(Generator): <NEW_LINE> <INDENT> def generate(self, size): <NEW_LINE> <INDENT> samples = parent.generate(size=size) <NEW_LINE> if f_vect is not None: <NEW_LINE> <INDENT> return [i for i in f_vect(samples)] <NEW_LINE> <DEDENT> elif f is not None: <NEW_LINE> <INDENT> return [f(sample) for sample in samples] <NEW_LINE> <DEDENT> <DEDENT> <DEDENT> return Transformed() | Creates a new generator that transforms the generated values with the
provided function.
# TODO: do we really need "non vectorialized" f and vectorialized
f_vect? Have a look at numpy ufunc... | 625941b34e696a04525c920e |
def determine_log_level(): <NEW_LINE> <INDENT> from_env_vars = os.getenv('ACME_LOGLEVEL') <NEW_LINE> from_config = conf.get('logging', 'level') <NEW_LINE> from_default = DEFAULT_LEVEL_NAME <NEW_LINE> flag = any_of( from_config, from_env_vars, from_default, ) <NEW_LINE> found = re.search(r'(?P<name>debug|info|warning|error|critical|notset)', flag, re.IGNORECASE) <NEW_LINE> if not found: <NEW_LINE> <INDENT> return logging.DEBUG <NEW_LINE> <DEDENT> level_name = found.group('name').upper() <NEW_LINE> return getattr(logging, level_name, DEFAULT_LEVEL_NAME) | attempts to retrieve the log level from the environment variable ``ACME_LOGLEVEL``
| 625941b33539df3088e2e105 |
def lower(self): <NEW_LINE> <INDENT> return str(self).lower() | This exists solely for django-debug-toolbar compatibility.
At some point I hope to investigate making SelectCommand a GQL string
so that we don't need to do this hackery | 625941b3e5267d203edcda5b |
def rescale_positions(nodes): <NEW_LINE> <INDENT> max_height = max(n.height for n in nodes) <NEW_LINE> max_xpos = max(n.xpos for n in nodes) <NEW_LINE> min_xpos = min(n.xpos for n in nodes) <NEW_LINE> for node in nodes: <NEW_LINE> <INDENT> node.xpos = (node.xpos - min_xpos) / (max_xpos-min_xpos) <NEW_LINE> node.height = node.height / max_height | Rescales xpos and heights to 0,1 range | 625941b3377c676e91271f6b |
def _rescaleLinearly(targetVector,newLength): <NEW_LINE> <INDENT> assert(np.isscalar(newLength)) <NEW_LINE> x_old = np.linspace(0,1,len(targetVector)) <NEW_LINE> x_new = np.linspace(0,1,newLength) <NEW_LINE> interp = scipy.interpolate.interp1d(x_old,targetVector,fill_value="extrapolate") <NEW_LINE> return interp(x_new) | Take a vector with an undersirable number of data points (e.g. twist/beta matrix) and rescales it to
the desired dimension, assumes equally spaced data points.
targetVector: Vector of points that need to be rescaled to the appropriate number
newLength: Desired number of points | 625941b34d74a7450ccd3f7d |
def click_documents_grid_save_changes_button(self): <NEW_LINE> <INDENT> is_clicked = None <NEW_LINE> try: <NEW_LINE> <INDENT> self.logger.info('Start: click documents grid save changes button') <NEW_LINE> self._bill_and_audit_page.click_documents_grid_save_changes_button() <NEW_LINE> is_clicked = True <NEW_LINE> <DEDENT> except WebDriverException as exp: <NEW_LINE> <INDENT> is_clicked = False <NEW_LINE> self.logger.error(exp.msg) <NEW_LINE> raise <NEW_LINE> <DEDENT> finally: <NEW_LINE> <INDENT> self.logger.info('End: click documents grid save changes button') <NEW_LINE> return is_clicked | Returning click documents grid save changes button
Implementing logging for click documents grid save changes button functionality
:return: True/False | 625941b376d4e153a657e8e9 |
def listdir(self, path: str) -> list: <NEW_LINE> <INDENT> file_objects = self.filesystem.listdir(Path(path)) <NEW_LINE> return [file_object.name for file_object in file_objects] | Return a list containing the names of the entries in the directory
given by path. The list is in arbitrary order, and does not include the
special entries '.' and '..' even if they are present in the
directory. | 625941b331939e2706e4cc2b |
def testMissingEndOfScopeCommentWithOtherComment(self): <NEW_LINE> <INDENT> original = [ 'goog.scope(function() {', "}); // I don't belong here!", ] <NEW_LINE> expected = [ 'goog.scope(function() {', '}); // goog.scope', ] <NEW_LINE> self._AssertFixes(original, expected) | Tests handling an irrelevant comment at end of goog.scope. | 625941b330bbd722463cbb7d |
def __init__(self, linenum, indent): <NEW_LINE> <INDENT> self.linenum = linenum <NEW_LINE> self.indent = indent | :param linenum: The line number of the frame.
:type linenum: int
:param indent: The indentation level of the frame.
:type indent: int | 625941b360cbc95b062c6303 |
def data(f_train, D, dayfilter = None, dayfeature = True, counters = False): <NEW_LINE> <INDENT> device_ip_counter = {} <NEW_LINE> device_id_counter = {} <NEW_LINE> for t, row in enumerate(DictReader(f_train)): <NEW_LINE> <INDENT> ID = row['id'] <NEW_LINE> del row['id'] <NEW_LINE> y = 0. <NEW_LINE> if 'click' in row: <NEW_LINE> <INDENT> if row['click'] == '1': <NEW_LINE> <INDENT> y = 1. <NEW_LINE> <DEDENT> del row['click'] <NEW_LINE> <DEDENT> date = row['hour'][0:6] <NEW_LINE> row['hour'] = row['hour'][6:] <NEW_LINE> if dayfilter != None and not date in dayfilter: <NEW_LINE> <INDENT> continue <NEW_LINE> <DEDENT> if dayfeature: <NEW_LINE> <INDENT> row['wd'] = str(int(date) % 7) <NEW_LINE> row['wd_hour'] = "%s_%s" % (row['wd'], row['hour']) <NEW_LINE> <DEDENT> if counters: <NEW_LINE> <INDENT> d_ip = row['device_ip'] <NEW_LINE> d_id = row ["device_id"] <NEW_LINE> try: <NEW_LINE> <INDENT> device_ip_counter [d_ip] += 1 <NEW_LINE> device_id_counter [d_id] += 1 <NEW_LINE> <DEDENT> except KeyError: <NEW_LINE> <INDENT> device_ip_counter [d_ip] = 1 <NEW_LINE> device_id_counter [d_id] = 1 <NEW_LINE> <DEDENT> row["ipc"] = str(min(device_ip_counter[d_ip], 8)) <NEW_LINE> row["idc"] = str(min(device_id_counter[d_id], 8)) <NEW_LINE> <DEDENT> x = [0] <NEW_LINE> for key in row: <NEW_LINE> <INDENT> value = row[key] <NEW_LINE> index = abs(hash(key + '_' + value)) % D <NEW_LINE> x.append(index) <NEW_LINE> <DEDENT> yield t, ID, x, y | GENERATOR: Apply hash-trick to the original csv row
and for simplicity, we one-hot-encode everything
INPUT:
path: path to training or testing file
D: the max index that we can hash to
YIELDS:
ID: id of the instance, mainly useless
x: a list of hashed and one-hot-encoded 'indices'
we only need the index since all values are either 0 or 1
y: y = 1 if we have a click, else we have y = 0 | 625941b3167d2b6e31218958 |
def get(self, id): <NEW_LINE> <INDENT> student = Student.query.filter(Student.id == id).one() <NEW_LINE> data = StudentSchema().dump(student) <NEW_LINE> return data | Returns a student. | 625941b3596a897236089885 |
def _calc_final_dist(self, vocab_dists, attn_dists, p_gens=None, use_reinforce=False): <NEW_LINE> <INDENT> with tf.variable_scope('final_distribution'): <NEW_LINE> <INDENT> if(use_reinforce): <NEW_LINE> <INDENT> tf.get_variable_scope().reuse_variables() <NEW_LINE> vocab_dists = [p_gen * dist for (p_gen,dist) in zip(p_gens, vocab_dists)] <NEW_LINE> attn_dists = [(1-p_gen) * dist for (p_gen,dist) in zip(p_gens, attn_dists)] <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> vocab_dists = [p_gen * dist for (p_gen,dist) in zip(self.p_gens, vocab_dists)] <NEW_LINE> attn_dists = [(1-p_gen) * dist for (p_gen,dist) in zip(self.p_gens, attn_dists)] <NEW_LINE> <DEDENT> extended_vsize = self._vocab.size() + self._max_art_oovs <NEW_LINE> extra_zeros = tf.zeros((self._hps.batch_size, self._max_art_oovs)) <NEW_LINE> vocab_dists_extended = [tf.concat(axis=1, values=[dist, extra_zeros]) for dist in vocab_dists] <NEW_LINE> batch_nums = tf.range(0, limit=self._hps.batch_size) <NEW_LINE> batch_nums = tf.expand_dims(batch_nums, 1) <NEW_LINE> attn_len = tf.shape(self._enc_batch_extend_vocab)[1] <NEW_LINE> batch_nums = tf.tile(batch_nums, [1, attn_len]) <NEW_LINE> indices = tf.stack( (batch_nums, self._enc_batch_extend_vocab), axis=2) <NEW_LINE> shape = [self._hps.batch_size, extended_vsize] <NEW_LINE> attn_dists_projected = [tf.scatter_nd(indices, copy_dist, shape) for copy_dist in attn_dists] <NEW_LINE> final_dists = [vocab_dist + copy_dist for (vocab_dist,copy_dist) in zip(vocab_dists_extended, attn_dists_projected)] <NEW_LINE> return final_dists | Calculate the final distribution, for the pointer-generator model
Args:
vocab_dists: The vocabulary distributions. List length max_dec_steps of (batch_size, vsize) arrays. The words are in the order they appear in the vocabulary file.
attn_dists: The attention distributions. List length max_dec_steps of (batch_size, attn_len) arrays
Returns:
final_dists: The final distributions. List length max_dec_steps of (batch_size, extended_vsize) arrays. | 625941b394891a1f4081b862 |
def exit_handler (event): <NEW_LINE> <INDENT> code = 1 <NEW_LINE> if hasattr(event, "exit_code"): <NEW_LINE> <INDENT> code = event.exit_code <NEW_LINE> <DEDENT> with open("exit.out.txt", 'w') as f: <NEW_LINE> <INDENT> f.write("{}".format(code)) | write exit code of the program running in gdb to a file called exit.out.txt | 625941b385dfad0860c3ac12 |
def forward( self, prev_output_tokens, encoder_out: Optional[Dict[str, List[Tensor]]] = None, incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]] = None, features_only: bool = False, full_context_alignment: bool = False, alignment_layer: Optional[int] = None, alignment_heads: Optional[int] = None, src_lengths: Optional[Any] = None, return_all_hiddens: bool = False, ): <NEW_LINE> <INDENT> x, extra = self.extract_features( prev_output_tokens, encoder_out=encoder_out, incremental_state=incremental_state, full_context_alignment=full_context_alignment, alignment_layer=alignment_layer, alignment_heads=alignment_heads, ) <NEW_LINE> if not features_only: <NEW_LINE> <INDENT> x = self.output_layer(x) <NEW_LINE> <DEDENT> return x, extra | Args:
prev_output_tokens (LongTensor): previous decoder outputs of shape
`(batch, tgt_len)`, for teacher forcing
encoder_out (optional): output from the encoder, used for
encoder-side attention, should be of size T x B x C
incremental_state (dict): dictionary used for storing state during
:ref:`Incremental decoding`
features_only (bool, optional): only return features without
applying output layer (default: False).
full_context_alignment (bool, optional): don't apply
auto-regressive mask to self-attention (default: False).
Returns:
tuple:
- the decoder's output of shape `(batch, tgt_len, vocab)`
- a dictionary with any model-specific outputs | 625941b3baa26c4b54cb0ede |
def _add_import(self): <NEW_LINE> <INDENT> fromItem = self._lineFrom.text() <NEW_LINE> importItem = self._lineImport.text() <NEW_LINE> if fromItem in self._froms: <NEW_LINE> <INDENT> lineno = 0 <NEW_LINE> for imp in self._imports['fromImports']: <NEW_LINE> <INDENT> lineno = self._imports['fromImports'][imp]['lineno'] - 1 <NEW_LINE> if self._imports['fromImports'][imp]['module'] == fromItem: <NEW_LINE> <INDENT> break <NEW_LINE> <DEDENT> <DEDENT> block = self._editorWidget.document().findBlockByLineNumber(lineno) <NEW_LINE> cursor = self._editorWidget.textCursor() <NEW_LINE> cursor.setPosition(block.position()) <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> cursor = self._editorWidget.textCursor() <NEW_LINE> cursor.movePosition(QTextCursor.Start) <NEW_LINE> <DEDENT> cursor.movePosition(QTextCursor.EndOfLine) <NEW_LINE> if fromItem: <NEW_LINE> <INDENT> importLine = '\nfrom {0} import {1}'.format(fromItem, importItem) <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> importLine = '\nimport {0}'.format(importItem) <NEW_LINE> <DEDENT> if self._editorWidget.document().find(importLine[1:]).position() == -1: <NEW_LINE> <INDENT> cursor.insertText(importLine) <NEW_LINE> <DEDENT> self.close() | Get From item and Import item and add the import on the code | 625941b30fa83653e4656d7f |
def __init__(self): <NEW_LINE> <INDENT> self.__mssg = [] | @brief Constructor. | 625941b3e64d504609d745fa |
def kinship(K, nclusters=1, img_kws=None, ax=None): <NEW_LINE> <INDENT> from numpy import asarray, clip, percentile <NEW_LINE> plt = get_pyplot() <NEW_LINE> ax = plt.gca() if ax is None else ax <NEW_LINE> if img_kws is None: <NEW_LINE> <INDENT> img_kws = dict() <NEW_LINE> <DEDENT> if "cmap" not in img_kws: <NEW_LINE> <INDENT> img_kws["cmap"] = "RdBu_r" <NEW_LINE> <DEDENT> K = asarray(K, float) <NEW_LINE> if nclusters == "auto": <NEW_LINE> <INDENT> K = _infer_clustering(K) <NEW_LINE> <DEDENT> elif nclusters > 1: <NEW_LINE> <INDENT> K = _clustering(K, nclusters) <NEW_LINE> <DEDENT> cmin = percentile(K, 2) <NEW_LINE> cmax = percentile(K, 98) <NEW_LINE> K = clip(K, cmin, cmax) <NEW_LINE> K = (K - K.min()) / (K.max() - K.min()) <NEW_LINE> mesh = ax.pcolormesh(K, **img_kws) <NEW_LINE> ax.set_aspect("equal") <NEW_LINE> ax.set(xlim=(0, K.shape[1]), ylim=(0, K.shape[0])) <NEW_LINE> ax.xaxis.set_ticks([]) <NEW_LINE> ax.yaxis.set_ticks([]) <NEW_LINE> ax.figure.colorbar(mesh, None, ax) | Plot heatmap of a kinship matrix.
Parameters
----------
K : 2d-array
Kinship matrix.
nclusters : int, str, optional
Number of blocks to be seen from the heatmap. It defaults to ``1``,
which means that no ordering is performed. Pass ``"auto"`` to
automatically determine the number of clusters. Pass an integer to
select the number of clusters.
img_kws : dict, optional
Keyword arguments forwarded to the matplotlib pcolormesh function.
ax : matplotlib Axes, optional
The target handle for this figure. If ``None``, the current axes is
set.
Example
-------
.. plot::
>>> import limix_plot as lp
>>>
>>> K = lp.load_dataset("kinship")
>>> lp.kinship(K) | 625941b37c178a314d6ef212 |
def __call__(self, obj, tag=None, *args, **kwargs): <NEW_LINE> <INDENT> self.save(obj, tag=tag, *args, **kwargs) | Same as :meth:`save` | 625941b345492302aab5e07a |
def get_object_filter(self, queryset): <NEW_LINE> <INDENT> filter_class = self.get_filter_class() <NEW_LINE> return filter_class(self.request.GET, queryset) | Return the instance of the filter class for the 'queryset'from ..mixins import FilterMixin | 625941b355399d3f0558846d |
def get_all(self) -> dict: <NEW_LINE> <INDENT> return self._utility() | This method returns the value of any metadata parameter query if found and raises error if not found
args:
path: for command_line use
returns:
A dictionary of all parameters in the metadata file
:exception:
AssertionError | 625941b39b70327d1c4e0b8e |
def test_get_best_n_queues_pack_complex(self): <NEW_LINE> <INDENT> simulation.set_param("queue_selection", "pack") <NEW_LINE> placement = self.front_end.get_best_n_queues(self.queues, 15) <NEW_LINE> expected_placement = [("i", 0), ("i", 1), ("i", 2), ("i", 3), ("i", 4), ("i", 5), ("c", 1), ("c", 2), ("c", 3), ("c", 4), ("c", 5), ("d", 3), ("d", 4), ("d", 5), ("h", 4)] <NEW_LINE> self.assert_lists_equal(expected_placement, placement) | Tests "pack" placement in a more complex scenario.
For this test, not all queues have the same length at the end. | 625941b3b7558d58953c4cd7 |
def rule_keys(self): <NEW_LINE> <INDENT> return self._rules.keys() | return list of keys which have associated rules | 625941b330dc7b7665901725 |
def __eq__(self, other): <NEW_LINE> <INDENT> if not isinstance(other, Duration): <NEW_LINE> <INDENT> return NotImplemented <NEW_LINE> <DEDENT> return self._value == other._value | Returns True if other is equal to this object. | 625941b35e10d32532c5ecea |
def get_domain_metadata(domain, domain_type, first_seen=True, last_ckeck=True, status=True, ports=True, tags=False, tags_safe=False, languages=False, screenshot=False): <NEW_LINE> <INDENT> dict_metadata = {} <NEW_LINE> dict_metadata['id'] = domain <NEW_LINE> dict_metadata['type'] = domain_type <NEW_LINE> if first_seen: <NEW_LINE> <INDENT> res = get_domain_first_seen(domain, domain_type=domain_type) <NEW_LINE> if res is not None: <NEW_LINE> <INDENT> dict_metadata['first_seen'] = res <NEW_LINE> <DEDENT> <DEDENT> if last_ckeck: <NEW_LINE> <INDENT> res = get_domain_last_check(domain, domain_type=domain_type) <NEW_LINE> if res is not None: <NEW_LINE> <INDENT> dict_metadata['last_check'] = res <NEW_LINE> <DEDENT> <DEDENT> if status: <NEW_LINE> <INDENT> dict_metadata['status'] = is_domain_up(domain, domain_type) <NEW_LINE> <DEDENT> if ports: <NEW_LINE> <INDENT> dict_metadata['ports'] = get_domain_all_ports(domain, domain_type) <NEW_LINE> <DEDENT> if tags: <NEW_LINE> <INDENT> dict_metadata['tags'] = get_domain_tags(domain) <NEW_LINE> <DEDENT> if tags_safe: <NEW_LINE> <INDENT> if tags: <NEW_LINE> <INDENT> dict_metadata['is_tags_safe'] = Tag.is_tags_safe(dict_metadata['tags']) <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> dict_metadata['is_tags_safe'] = Tag.is_tags_safe(get_domain_tags(domain)) <NEW_LINE> <DEDENT> <DEDENT> if languages: <NEW_LINE> <INDENT> dict_metadata['languages'] = Language.get_languages_from_iso(get_domain_languages(domain, r_list=True), sort=True) <NEW_LINE> <DEDENT> if screenshot: <NEW_LINE> <INDENT> dict_metadata['screenshot'] = get_domain_random_screenshot(domain) <NEW_LINE> <DEDENT> return dict_metadata | Get Domain basic metadata
:param first_seen: get domain first_seen
:type first_seen: boolean
:param last_ckeck: get domain last_check
:type last_ckeck: boolean
:param ports: get all domain ports
:type ports: boolean
:param tags: get all domain tags
:type tags: boolean
:return: a dict of all metadata for a given domain
:rtype: dict | 625941b3adb09d7d5db6c54e |
@lab.route('/procedures/add', methods=['GET', 'POST']) <NEW_LINE> @login_required <NEW_LINE> @privilege_required(Privilege.MODERATE) <NEW_LINE> def add_procedure(): <NEW_LINE> <INDENT> form = ProcedureForm() <NEW_LINE> if form.validate_on_submit(): <NEW_LINE> <INDENT> procedure = LabProcedure(title=form.title.data, content=form.procedure_content.data, author=current_user._get_current_object()) <NEW_LINE> database.create(procedure) <NEW_LINE> flash('Added procedure', 'success') <NEW_LINE> return redirect(url_for('lab.all_procedures')) <NEW_LINE> <DEDENT> return render_template('lab/procedures/add_procedure.html', form=form) | Route to display form to add a
Standard Operating Procedure for Lab | 625941b363d6d428bbe442b1 |
def spawn_jobs(self, func, items, cfg): <NEW_LINE> <INDENT> njobs = self.njobs <NEW_LINE> assert njobs <= len(items) <NEW_LINE> self.input = self.Queue() <NEW_LINE> self.output = self.Queue() <NEW_LINE> self.processes = [ self.Process( target=worker, name=str(n), args=(func, self.input, self.output, cfg, n) ) for n in range(njobs) ] <NEW_LINE> for p in self.processes: <NEW_LINE> <INDENT> p.start() <NEW_LINE> <DEDENT> for item in items[:njobs]: <NEW_LINE> <INDENT> self.input.put(item) <NEW_LINE> <DEDENT> if clog().isEnabledFor(CHAT): <NEW_LINE> <INDENT> for p in self.processes: <NEW_LINE> <INDENT> clog().chat("Worker %s.", p.name) <NEW_LINE> <DEDENT> <DEDENT> return items[njobs:] | Spawn <njobs> jobs to process <items> in parallel/concurrently.
The processes are started and feeded with the first <njobs> items
in <items>, the rest of them need to be pushed manually
calling send_next_item_from; the result of each file processed can
be fetched from the <output>.
Return the <rest> of the <items> not sent,
and the <output> queue. | 625941b31b99ca400220a86a |
@slim.add_arg_scope <NEW_LINE> def split_separable_conv2d(input_tensor, num_outputs, scope=None, normalizer_fn=None, stride=1, rate=1, endpoints=None, use_explicit_padding=False): <NEW_LINE> <INDENT> with contextlib2.ExitStack() as stack: <NEW_LINE> <INDENT> if scope is None: <NEW_LINE> <INDENT> s = stack.enter_context(tf.variable_scope(None, default_name='separable')) <NEW_LINE> stack.enter_context(tf.name_scope(s.original_name_scope)) <NEW_LINE> scope = '' <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> scope += '_' <NEW_LINE> <DEDENT> dw_scope = scope + 'depthwise' <NEW_LINE> endpoints = endpoints if endpoints is not None else {} <NEW_LINE> kernel_size = [3, 3] <NEW_LINE> padding = 'SAME' <NEW_LINE> if use_explicit_padding: <NEW_LINE> <INDENT> padding = 'VALID' <NEW_LINE> input_tensor = _fixed_padding(input_tensor, kernel_size, rate) <NEW_LINE> <DEDENT> net = slim.separable_conv2d( input_tensor, None, kernel_size, depth_multiplier=1, stride=stride, rate=rate, normalizer_fn=normalizer_fn, padding=padding, scope=dw_scope) <NEW_LINE> endpoints[dw_scope] = net <NEW_LINE> pw_scope = scope + 'pointwise' <NEW_LINE> net = slim.conv2d( net, num_outputs, [1, 1], stride=1, normalizer_fn=normalizer_fn, scope=pw_scope) <NEW_LINE> endpoints[pw_scope] = net <NEW_LINE> <DEDENT> return net | Separable mobilenet V1 style convolution.
Depthwise convolution, with default non-linearity,
followed by 1x1 depthwise convolution. This is similar to
slim.separable_conv2d, but differs in tha it applies batch
normalization and non-linearity to depthwise. This matches
the basic building of Mobilenet Paper
(https://arxiv.org/abs/1704.04861)
Args:
input_tensor: input
num_outputs: number of outputs
scope: optional name of the scope. Note if provided it will use
scope_depthwise for deptwhise, and scope_pointwise for pointwise.
normalizer_fn: which normalizer function to use for depthwise/pointwise
stride: stride
rate: output rate (also known as dilation rate)
endpoints: optional, if provided, will export additional tensors to it.
use_explicit_padding: Use 'VALID' padding for convolutions, but prepad
inputs so that the output dimensions are the same as if 'SAME' padding
were used.
Returns:
output tesnor | 625941b36e29344779a623d1 |
def __getitem__(self, idx): <NEW_LINE> <INDENT> pass | To be overwritten. | 625941b3ec188e330fd5a563 |
def sample_with_small_evaluation(variable, degree, max_abs_input, entropy): <NEW_LINE> <INDENT> assert max_abs_input >= 1 <NEW_LINE> entropies = entropy * np.random.dirichlet(np.ones(degree + 1)) <NEW_LINE> coeffs = [] <NEW_LINE> for power in range(degree + 1): <NEW_LINE> <INDENT> delta = 0.5 * (degree - 2 * power) * math.log10(max_abs_input) <NEW_LINE> power_entropy = entropies[power] + delta <NEW_LINE> min_abs = 1 if power == degree else 0 <NEW_LINE> coeff = number.integer(power_entropy, signed=True, min_abs=min_abs) <NEW_LINE> coeffs.append(coeff) <NEW_LINE> <DEDENT> terms = [monomial(coeff, variable, power) for power, coeff in enumerate(coeffs)] <NEW_LINE> return ops.Add(*terms) | Generates a (canonically ordered) polynomial, with bounded evaluation.
The coefficients are chosen to make use of the entropy, with the scaling
adjusted so that all give roughly the same contribution to the output of the
polynomial when the input is bounded in magnitude by `max_abs_input`.
Args:
variable: Variable to use in polynomial.
degree: Degree of polynomial.
max_abs_input: Number >= 1; max absolute value of input.
entropy: Float; randomness for generating polynomial.
Returns:
Instance of `ops.Add`. | 625941b321bff66bcd684710 |
def update(self, entity, params): <NEW_LINE> <INDENT> pk_name = self.get_primary_field(entity) <NEW_LINE> obj = entity.get_from_id(params[pk_name]) <NEW_LINE> params.pop('_id') <NEW_LINE> params.pop('sprox_id') <NEW_LINE> params.pop('_method') <NEW_LINE> for key, value in params.items(): <NEW_LINE> <INDENT> if key not in entity.structure: <NEW_LINE> <INDENT> continue; <NEW_LINE> <DEDENT> value = self._cast_value(entity, key, value) <NEW_LINE> if value is not None: <NEW_LINE> <INDENT> setattr(obj,key,value) <NEW_LINE> <DEDENT> <DEDENT> obj.save() <NEW_LINE> return obj | Update an entry of type entity which matches the params. | 625941b373bcbd0ca4b2be37 |
def revert_all(self): <NEW_LINE> <INDENT> write_registers = self.get_registers_by_type("byte", False) <NEW_LINE> for register in write_registers: <NEW_LINE> <INDENT> self.revert_point(register.point_name) | Sets all points on the device to their default values | 625941b3ff9c53063f47bfb9 |
def _get_license(self, picking): <NEW_LINE> <INDENT> license = picking.carrier_id.postlogistics_license_id <NEW_LINE> if not license: <NEW_LINE> <INDENT> company_licenses = picking.company_id.postlogistics_license_ids <NEW_LINE> group = picking.carrier_id.postlogistics_service_group_id <NEW_LINE> if not company_licenses or not group: <NEW_LINE> <INDENT> return None <NEW_LINE> <DEDENT> group_license_ids = [l.id for l in group.postlogistics_license_ids] <NEW_LINE> if not group_license_ids: <NEW_LINE> <INDENT> return None <NEW_LINE> <DEDENT> license = [l for l in company_licenses if l.id in group_license_ids][0] <NEW_LINE> <DEDENT> return license.number | Get the license
Take it from carrier and if not defined get the first license
depending on service group. This needs to have associated
licenses to groups.
:return: license number | 625941b332920d7e50b27f8b |
def group_name(self, predmetnik): <NEW_LINE> <INDENT> assert len(predmetnik) == 5, "Predmetnik not complete " + str(predmetnik) <NEW_LINE> short_name = "{0}_{1}-{2}".format( predmetnik[5]['short_title'], predmetnik[1]['short_title'], predmetnik[2]['short_title'], ) <NEW_LINE> name = "{0}, {1}, {2}".format( predmetnik[5]['title']['sl'], predmetnik[2]['title']['sl'], predmetnik[1]['title']['sl'], ) <NEW_LINE> return short_name, name | Generate tuple (name, short_name) from Studis predmetnik entry. | 625941b34f6381625f114801 |
@contract(H="array[3x3],skew_symmetric", returns="array[3]") <NEW_LINE> def map_hat(H: se2value): <NEW_LINE> <INDENT> v = np.zeros(3) <NEW_LINE> v[2] = -H[0, 1] <NEW_LINE> v[1] = H[0, 2] <NEW_LINE> v[0] = -H[1, 2] <NEW_LINE> return v | The inverse of :py:func:`hat_map`. | 625941b3462c4b4f79d1d48a |
def lastIndexOf(self, QXmlStreamAttribute, int_from=-1): <NEW_LINE> <INDENT> return 0 | QXmlStreamAttributes.lastIndexOf(QXmlStreamAttribute, int from=-1) -> int | 625941b3099cdd3c635f0a17 |
def save_mfcc(dataset_path, json_path, num_mfcc=15, n_fft=4096, hop_length=2048, num_segments=1): <NEW_LINE> <INDENT> data = { "mapping": [], "labels": [], "mfcc": [] } <NEW_LINE> samples_per_segment = int(SAMPLES_PER_TRACK / num_segments) <NEW_LINE> num_mfcc_vectors_per_segment = math.ceil(samples_per_segment / hop_length) <NEW_LINE> for i, (dirpath, dirnames, filenames) in enumerate(os.walk(dataset_path)): <NEW_LINE> <INDENT> if dirpath is not dataset_path: <NEW_LINE> <INDENT> semantic_label = dirpath.split("/")[-1] <NEW_LINE> data["mapping"].append(semantic_label) <NEW_LINE> print("\nProcessing: {}".format(semantic_label)) <NEW_LINE> for f in filenames: <NEW_LINE> <INDENT> file_path = os.path.join(dirpath, f) <NEW_LINE> signal, sample_rate = librosa.load(file_path, sr=SAMPLE_RATE) <NEW_LINE> for d in range(num_segments): <NEW_LINE> <INDENT> start = samples_per_segment * d <NEW_LINE> finish = start + samples_per_segment <NEW_LINE> mfcc = librosa.feature.mfcc(signal[start:finish], sample_rate, n_mfcc=num_mfcc, n_fft=n_fft, hop_length=hop_length) <NEW_LINE> mfcc = mfcc.T <NEW_LINE> if len(mfcc) == num_mfcc_vectors_per_segment: <NEW_LINE> <INDENT> data["mfcc"].append(mfcc.tolist()) <NEW_LINE> data["labels"].append(i - 1) <NEW_LINE> print("{}, segment:{}".format(file_path, d + 1)) <NEW_LINE> <DEDENT> <DEDENT> <DEDENT> <DEDENT> <DEDENT> with open(json_path, "w") as fp: <NEW_LINE> <INDENT> json.dump(data, fp, indent=4) | Extracts MFCCs from music dataset and saves them into a json file along witgh genre labels.
:param dataset_path (str): Path to dataset
:param json_path (str): Path to json file used to save MFCCs
:param num_mfcc (int): Number of coefficients to extract
:param n_fft (int): Interval we consider to apply FFT. Measured in # of samples
:param hop_length (int): Sliding window for FFT. Measured in # of samples
:param: num_segments (int): Number of segments we want to divide sample tracks into
:return: | 625941b331939e2706e4cc2c |
def getFrameRate(self): <NEW_LINE> <INDENT> if not self.proxy: <NEW_LINE> <INDENT> self.proxy = self.session.service("ALVisionRecognition") <NEW_LINE> <DEDENT> return self.proxy.getFrameRate() | Gets extractor framerate
:returns int: Current value of the framerate of the extractor | 625941b3de87d2750b85fb48 |
def cleanTest(vect, test_docs, output_file): <NEW_LINE> <INDENT> dtm = vect.transform(test_docs) <NEW_LINE> logger.info("\t\tTest DTM shape: %s\n" % (dtm.shape,)) <NEW_LINE> sp.save_npz(output_file, dtm) | Transform test texts into DTM with the training CountVectorizer. Save the
test DTM.
Inputs:
- vect (sklearn.feature_extraction.text.CountVectorizer):
CountVectorizer fitted on the training set
- test_docs ([str]): test documents
- output_file (str): path to save the test DTM as a .npz | 625941b392d797404e303f4c |
def start(self, ip, port): <NEW_LINE> <INDENT> self.read_servers() <NEW_LINE> self.create_master_node() <NEW_LINE> print("zk_minoter 注册中心启动成功") | 开始服务调用接口 | 625941b3287bf620b61d382c |
def getElementsList(self, tag, filter=None, elementList=None): <NEW_LINE> <INDENT> self._wait() <NEW_LINE> if elementList: <NEW_LINE> <INDENT> allElements = elementList <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> if self.frameName: <NEW_LINE> <INDENT> myFrame = self.getFrame(self.frameName) <NEW_LINE> if self.formName: <NEW_LINE> <INDENT> elements = myFrame.Document.Body.orms[self.formName].getElementsByTagName(tag) <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> elements = myFrame.Document.Body.getElementsByTagName(tag) <NEW_LINE> <DEDENT> <DEDENT> else: <NEW_LINE> <INDENT> if self.formName: <NEW_LINE> <INDENT> elements = self._ie.Document.Body.forms[self.formName].getElementsByTagName(tag) <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> elements = self._ie.Document.Body.getElementsByTagName(tag) <NEW_LINE> <DEDENT> <DEDENT> count = 0 <NEW_LINE> allElements = [] <NEW_LINE> while count < elements.length: <NEW_LINE> <INDENT> allElements.append(elements[count]) <NEW_LINE> count +=1 <NEW_LINE> <DEDENT> <DEDENT> try: <NEW_LINE> <INDENT> if filter: <NEW_LINE> <INDENT> myElements = [] <NEW_LINE> filters = filter.split(";") <NEW_LINE> for el in allElements: <NEW_LINE> <INDENT> match = False <NEW_LINE> for f in filters[:]: <NEW_LINE> <INDENT> atts = f.split("=") <NEW_LINE> valText = el.getAttribute(atts[0]) <NEW_LINE> if valText != None: <NEW_LINE> <INDENT> valText = str(valText) <NEW_LINE> valText = valText.strip() <NEW_LINE> valText = valText.lower() <NEW_LINE> wantText = atts[1].lower() <NEW_LINE> if valText == wantText: <NEW_LINE> <INDENT> match = True <NEW_LINE> <DEDENT> <DEDENT> <DEDENT> if match: <NEW_LINE> <INDENT> myElements.append(el) <NEW_LINE> <DEDENT> <DEDENT> <DEDENT> else: <NEW_LINE> <INDENT> myElements = allElements <NEW_LINE> <DEDENT> return myElements <NEW_LINE> <DEDENT> except: <NEW_LINE> <INDENT> (ErrorType,ErrorValue,ErrorTB)=sys.exc_info() <NEW_LINE> print (sys.exc_info()) <NEW_LINE> traceback.print_exc(ErrorTB) <NEW_LINE> return None <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> return None | Sets the specified attribute of any element
parameters:
tag - The HTML tag name
[filter] - Only return elements that match this filter in format
(att1=val1;att2=val2), ie. "type=checkbox;checked=True"
returns:
A filtered list of the found elements | 625941b3627d3e7fe0d68c09 |
def command(self, command): <NEW_LINE> <INDENT> _command = '{0}\r\n'.format(command) <NEW_LINE> while len(_command) > 0: <NEW_LINE> <INDENT> character_to_send = _command[0] <NEW_LINE> read_back_character = '' <NEW_LINE> _command = _command[1:] <NEW_LINE> while character_to_send != read_back_character: <NEW_LINE> <INDENT> self._write(character_to_send) <NEW_LINE> time.sleep(self._read_delay) <NEW_LINE> read_back_character = self._read() <NEW_LINE> <DEDENT> <DEDENT> answer = '' <NEW_LINE> while len(answer) < 2 or answer[-2:] != '\r\n': <NEW_LINE> <INDENT> time.sleep(self._read_delay) <NEW_LINE> answer = ''.join((answer, self._read())) <NEW_LINE> <DEDENT> return answer[:-2] | Send a command word character by character to the device. Check reply to be in sync and process response.
Keyword arguments:
command -- the command word to send to the device | 625941b35fc7496912cc3740 |
def close_logger(self): <NEW_LINE> <INDENT> handlers = self.log.handlers[:] <NEW_LINE> for handler in handlers: <NEW_LINE> <INDENT> handler.close() <NEW_LINE> self.log.removeHandler(handler) | Correctly closes the FileHandler objects on the logger so that there are
no issues with file manipulation.
:return: None. | 625941b33317a56b86939a26 |
def test_search(): <NEW_LINE> <INDENT> criteria = collections.defaultdict(int) <NEW_LINE> for _ in range(2): <NEW_LINE> <INDENT> issue = factory.create_issue_dict() <NEW_LINE> r = requests.post( _URL_CREATE, data=json.dumps(issue), headers={'Content-Type': 'application/json'}, auth=tu.get_credentials() ) <NEW_LINE> assert r.status_code == 200 <NEW_LINE> criteria[(issue['project'], issue['severity'], issue['status'])] += 1 <NEW_LINE> <DEDENT> return <NEW_LINE> for project, severity, status in criteria: <NEW_LINE> <INDENT> params = { 'criteria': ','.join([ 'project:{}'.format(project), 'severity:{}'.format(severity), 'status:{}'.format(status) ]) } <NEW_LINE> r = requests.get(_URL_SEARCH, params=params) <NEW_LINE> data = tu.assert_ws_response(_URL_SEARCH, r) <NEW_LINE> assert data['total'] >= criteria[project, severity, status] | ERRATA :: WS :: SEARCH :: execution.
| 625941b356b00c62f0f14417 |
def test_balance_1_node(): <NEW_LINE> <INDENT> from bst import BST <NEW_LINE> new_bst = BST() <NEW_LINE> new_bst.insert(10) <NEW_LINE> assert new_bst.balance() == 0 | Test balance of tree of only head. | 625941b3462c4b4f79d1d48b |
def satisfy_custom_matcher(self, args, kwargs): <NEW_LINE> <INDENT> is_match = super(Expectation, self).satisfy_custom_matcher(args, kwargs) <NEW_LINE> if is_match: <NEW_LINE> <INDENT> self._satisfy() <NEW_LINE> <DEDENT> return is_match | Returns a boolean indicating whether or not the mock will accept the provided arguments.
:param tuple args: A tuple of possition args
:param dict kwargs: A dictionary of keyword args
:return: Whether or not the mock accepts the provided arguments.
:rtype: bool | 625941b35166f23b2e1a4f13 |
def test_summary(self): <NEW_LINE> <INDENT> cache = DummyCache() <NEW_LINE> cache.upload("pkg1-0.3.tar.gz", None) <NEW_LINE> cache.upload("pkg1-1.1.tar.gz", None) <NEW_LINE> p1 = cache.upload("pkg1a2.tar.gz", None, "pkg1", "1.1.1a2", "summary") <NEW_LINE> p2 = cache.upload("pkg2.tar.gz", None, "pkg2", "0.1dev2", "summary") <NEW_LINE> summaries = cache.summary() <NEW_LINE> self.assertItemsEqual( summaries, [ { "name": "pkg1", "summary": "summary", "last_modified": p1.last_modified, }, { "name": "pkg2", "summary": "summary", "last_modified": p2.last_modified, }, ], ) | summary constructs per-package metadata summary | 625941b39f2886367277a655 |
def get_user_by_address(self, address: str, user_name: str = None) -> Optional[User]: <NEW_LINE> <INDENT> for user in self.user_list: <NEW_LINE> <INDENT> if user.address == address: <NEW_LINE> <INDENT> return user <NEW_LINE> <DEDENT> <DEDENT> if user_name is None: <NEW_LINE> <INDENT> user_name = self.get_name_by_address(address) <NEW_LINE> <DEDENT> new_user = User(self, address, user_name) <NEW_LINE> self.add_user(new_user) <NEW_LINE> return new_user | Returns a User object with the specified user name.
:param address: address of the user which is being searched for or added
:param user_name: Name of user which is being searched for | 625941b3b57a9660fec3363a |
def GetReference(self,coordinates): <NEW_LINE> <INDENT> pass | GetReference(self: RepeatingReferenceSource,coordinates: RepeaterCoordinates) -> Reference
Returns an individual repeating reference given by coordinates in the array,or
ll if there is no reference at the coordinates (for example if there is a hole
in a divided surface.)
coordinates: The coordinates in the array of repeating references.
Returns: The repeating reference. | 625941b3adb09d7d5db6c54f |
Subsets and Splits