code
stringlengths 4
4.48k
| docstring
stringlengths 1
6.45k
| _id
stringlengths 24
24
|
---|---|---|
def compute_loss(y, tx, w): <NEW_LINE> <INDENT> error = y - np.dot(tx, w) <NEW_LINE> return 0.5 * np.mean(error ** 2) | Calculate the loss.
You can calculate the loss using mse or mae. | 625941b3627d3e7fe0d68c0d |
def int_to_list(n: int, base: int=10) -> List[int]: <NEW_LINE> <INDENT> digit_list = [] <NEW_LINE> while n: <NEW_LINE> <INDENT> digit_list += [n % base] <NEW_LINE> n //= base <NEW_LINE> <DEDENT> return list(reversed(digit_list)) | Returns a list of the digits of N. | 625941b38a43f66fc4b53e29 |
def open_temp_file(prefix): <NEW_LINE> <INDENT> (fd, filename) = mkstemp( dir=CFG_TMPSHAREDDIR, prefix='prefix_' + time.strftime("%Y%m%d_%H%M%S_", time.localtime()) ) <NEW_LINE> file_out = os.fdopen(fd, "w") <NEW_LINE> logger.debug("Created temporary file %s" % filename) <NEW_LINE> return (file_out, filename) | Create a temporary file to write MARC XML in | 625941b3baa26c4b54cb0ee3 |
def teardown_method(self, method): <NEW_LINE> <INDENT> self.client.close() | Teardoen method. | 625941b34e4d5625662d419d |
def should_inv_be_displayed(self): <NEW_LINE> <INDENT> if self.collected: <NEW_LINE> <INDENT> self.display_inventory() | Check if an inventory tile should be displayed | 625941b34428ac0f6e5ba5b8 |
def add_attributes(item, item_source): <NEW_LINE> <INDENT> for name, value in item_source.attrs.iteritems(): <NEW_LINE> <INDENT> item.attrs.modify(name, value) | Add all the attrs from item_source as attributes in item, where
item_source can be a group or a dataset. | 625941b3925a0f43d2549c32 |
def __repr__(self): <NEW_LINE> <INDENT> return self.__urepr__().encode("utf-8") | __repr__ *must* return a str, not a unicode. | 625941b3fff4ab517eb2f1f8 |
def add(self, est): <NEW_LINE> <INDENT> if isinstance(est, EstimatorConfig): <NEW_LINE> <INDENT> self.est_configs.append(est.get_est_args()) <NEW_LINE> <DEDENT> elif isinstance(est, dict): <NEW_LINE> <INDENT> self.est_configs.append(est) <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> raise ValueError("Unknown estimator information {}".format(est)) | Add an estimator to the auto growing cascade layer.
:param est:
:return: | 625941b3cdde0d52a9e52df3 |
def subtract(numbers): <NEW_LINE> <INDENT> return numbers[0] - numbers[1] | Subtracts the 1..Nth numbers from the 0th one | 625941b34e4d5625662d419e |
def __init__(self, links: List['ProfileLink']) -> None: <NEW_LINE> <INDENT> self.links = links | Initialize a ProfileLinkList object.
:param List[ProfileLink] links: List of links to a trusted profile. | 625941b324f1403a92600931 |
def __bootstrap__(): <NEW_LINE> <INDENT> import sys <NEW_LINE> import core <NEW_LINE> import os <NEW_LINE> in_test = 'unittest' in sys.modules <NEW_LINE> try: <NEW_LINE> <INDENT> num_threads = int(os.getenv('OMP_NUM_THREADS', '1')) <NEW_LINE> <DEDENT> except ValueError: <NEW_LINE> <INDENT> num_threads = 1 <NEW_LINE> <DEDENT> if num_threads > 1: <NEW_LINE> <INDENT> print( 'WARNING: OMP_NUM_THREADS set to {0}, not 1. The computation ' 'speed will not be optimized if you use data parallel. It will ' 'fail if this PaddlePaddle binary is compiled with OpenBlas since' ' OpenBlas does not support multi-threads.'.format(num_threads), file=sys.stderr) <NEW_LINE> print('PLEASE USE OMP_NUM_THREADS WISELY.', file=sys.stderr) <NEW_LINE> <DEDENT> os.environ['OMP_NUM_THREADS'] = str(num_threads) <NEW_LINE> read_env_flags = [ 'use_pinned_memory', 'check_nan_inf', 'benchmark', 'warpctc_dir', 'eager_delete_scope', 'use_mkldnn', 'initial_cpu_memory_in_mb', 'init_allocated_mem' ] <NEW_LINE> if core.is_compiled_with_cuda(): <NEW_LINE> <INDENT> read_env_flags += [ 'fraction_of_gpu_memory_to_use', 'cudnn_deterministic' ] <NEW_LINE> <DEDENT> core.init_gflags([sys.argv[0]] + ["--tryfromenv=" + ",".join(read_env_flags)]) <NEW_LINE> core.init_glog(sys.argv[0]) <NEW_LINE> core.init_devices(not in_test) | Enable reading gflags from environment variables.
Returns:
None | 625941b3099cdd3c635f0a1c |
def main(): <NEW_LINE> <INDENT> def convert_file(in_file_name): <NEW_LINE> <INDENT> def get_out_file_name(in_file_name): <NEW_LINE> <INDENT> return Config.out_file_infix.join(os.path.splitext(in_file_name)) <NEW_LINE> <DEDENT> def convert_data_line(line): <NEW_LINE> <INDENT> line[0] = convert_utc_to_local_time_zone(line[0]) <NEW_LINE> return line <NEW_LINE> <DEDENT> csv_filter( in_file_name , get_out_file_name(in_file_name) , lambda line : line , convert_data_line ) <NEW_LINE> <DEDENT> iterate_argv(convert_file) | top level entry function | 625941b315fb5d323cde08c7 |
def CHI(self) -> str: <NEW_LINE> <INDENT> return f'{self.firstName} {self.lastName}, "{self.title}," {self.publication}, last modified {self.date}, {self.url}.' | Returns a Chicago Citation | 625941b371ff763f4b54944d |
def __init__(self, tmx_tileset): <NEW_LINE> <INDENT> self.name = tmx_tileset.name <NEW_LINE> self.tile_width, self.tile_height = tmx_tileset.tile_size <NEW_LINE> image_file = tmx_tileset.image.source <NEW_LINE> self.tile_gfx = assets.getImageList(image_file, tmx_tileset.column_count, tmx_tileset.row_count, False) <NEW_LINE> self.tiles = [] <NEW_LINE> for t in tmx_tileset: <NEW_LINE> <INDENT> self.tiles.append(Tile(t.number, t.properties, self.tile_gfx[t.number])) | A collection of tiles. | 625941b315baa723493c3d31 |
def __init__(self, id=None, name=None, organization=None, date_created=None, created_by=None, workflow_step_net_schemes=None, rates=None): <NEW_LINE> <INDENT> self._id = None <NEW_LINE> self._name = None <NEW_LINE> self._organization = None <NEW_LINE> self._date_created = None <NEW_LINE> self._created_by = None <NEW_LINE> self._workflow_step_net_schemes = None <NEW_LINE> self._rates = None <NEW_LINE> self.discriminator = None <NEW_LINE> if id is not None: <NEW_LINE> <INDENT> self.id = id <NEW_LINE> <DEDENT> if name is not None: <NEW_LINE> <INDENT> self.name = name <NEW_LINE> <DEDENT> if organization is not None: <NEW_LINE> <INDENT> self.organization = organization <NEW_LINE> <DEDENT> if date_created is not None: <NEW_LINE> <INDENT> self.date_created = date_created <NEW_LINE> <DEDENT> if created_by is not None: <NEW_LINE> <INDENT> self.created_by = created_by <NEW_LINE> <DEDENT> if workflow_step_net_schemes is not None: <NEW_LINE> <INDENT> self.workflow_step_net_schemes = workflow_step_net_schemes <NEW_LINE> <DEDENT> if rates is not None: <NEW_LINE> <INDENT> self.rates = rates | NetRateScheme - a model defined in Swagger | 625941b3e8904600ed9f1ce9 |
def wait_for_button(pin): <NEW_LINE> <INDENT> global received_signal <NEW_LINE> global roof_opened <NEW_LINE> global roof_closed <NEW_LINE> global roof_opening <NEW_LINE> global roof_closing <NEW_LINE> global next_possible_green_button_action <NEW_LINE> time.sleep(1) <NEW_LINE> while True: <NEW_LINE> <INDENT> while wiringpi.digitalRead(pin) == True and received_signal == 0: <NEW_LINE> <INDENT> time.sleep(0.01) <NEW_LINE> <DEDENT> if received_signal != 0: <NEW_LINE> <INDENT> print("Signal {}, opened {}, closed {}, opening {}, closing {}".format( received_signal, roof_opened, roof_closed, roof_opening, roof_closing)) <NEW_LINE> received_signal = 0 <NEW_LINE> return True <NEW_LINE> <DEDENT> pressed_time = 0 <NEW_LINE> while wiringpi.digitalRead(pin) == False: <NEW_LINE> <INDENT> time.sleep(0.01) <NEW_LINE> pressed_time += 10 <NEW_LINE> <DEDENT> if pressed_time >= 100: <NEW_LINE> <INDENT> print("Pressed for", pressed_time, "ms") <NEW_LINE> if next_possible_green_button_action == GREEN_BUTTON_CLOSING: <NEW_LINE> <INDENT> roof_closing = True <NEW_LINE> <DEDENT> elif next_possible_green_button_action == GREEN_BUTTON_OPENING: <NEW_LINE> <INDENT> roof_opening = True <NEW_LINE> <DEDENT> elif next_possible_green_button_action == GREEN_BUTTON_STOP: <NEW_LINE> <INDENT> roof_closing = False <NEW_LINE> roof_opening = False <NEW_LINE> <DEDENT> return True <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> print("Too brief press:", pressed_time, "ms") | wait green button or signal | 625941b34e696a04525c9214 |
def topKFrequent(self, nums, k): <NEW_LINE> <INDENT> dic = dict() <NEW_LINE> for num in nums: <NEW_LINE> <INDENT> if num in dic: <NEW_LINE> <INDENT> dic[num] += 1 <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> dic[num] = 1 <NEW_LINE> <DEDENT> <DEDENT> dic_sorted = sorted(dic.items(), key=lambda item: item[1], reverse=True) <NEW_LINE> result = [item[0] for item in dic_sorted[:k]] <NEW_LINE> return result | :type nums: List[int]
:type k: int
:rtype: List[int] | 625941b3b5575c28eb68ddbc |
def var(): <NEW_LINE> <INDENT> return Parse.next_token().if_type(['VAR']).expect('var') | parser for a single variable.
Accepts a single token that is a variable. | 625941b3507cdc57c6306a91 |
def auth_delete(method): <NEW_LINE> <INDENT> def wrapper(self, *args, **kwargs): <NEW_LINE> <INDENT> if self.current_user: <NEW_LINE> <INDENT> if is_prived(self.userinfo.role, ROLE_CFG['delete']): <NEW_LINE> <INDENT> return method(self, *args, **kwargs) <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> kwd = { 'info': 'No role', } <NEW_LINE> self.render('misc/html/404.html', kwd=kwd, userinfo=self.userinfo) <NEW_LINE> <DEDENT> <DEDENT> else: <NEW_LINE> <INDENT> kwd = { 'info': 'No role', } <NEW_LINE> self.render('misc/html/404.html', kwd=kwd, userinfo=self.userinfo) <NEW_LINE> <DEDENT> <DEDENT> return wrapper | role for delete. | 625941b34d74a7450ccd3f83 |
def test_not_authenticated(self): <NEW_LINE> <INDENT> response = self.app.get(self.url) <NEW_LINE> self.assertRedirects(response, "/?next=/contributor/evaluation/%s/edit" % TESTING_EVALUATION_ID) | Asserts that an unauthorized user gets redirected to the login page. | 625941b323849d37ff7b2e52 |
def read_cpy(f, scale=1.): <NEW_LINE> <INDENT> surfs = OrderedDict() <NEW_LINE> for line in f: <NEW_LINE> <INDENT> line = [field.strip() for field in line.split(",")] <NEW_LINE> if not line: <NEW_LINE> <INDENT> continue <NEW_LINE> <DEDENT> cmd = line.pop(0) <NEW_LINE> if cmd == "#": <NEW_LINE> <INDENT> pass <NEW_LINE> <DEDENT> elif cmd == "WP": <NEW_LINE> <INDENT> point_name = line.pop(0) <NEW_LINE> if point_name.startswith("TrapCenter"): <NEW_LINE> <INDENT> origin = map(float, line) <NEW_LINE> <DEDENT> elif point_name.startswith("Center Point"): <NEW_LINE> <INDENT> origin = map(float, line) <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> print("ignoring line", cmd, point_name, line) <NEW_LINE> <DEDENT> <DEDENT> elif cmd == "S": <NEW_LINE> <INDENT> points, panels = [], [] <NEW_LINE> name = line.pop(0) <NEW_LINE> if name.startswith("TRAPELECTRODE_"): <NEW_LINE> <INDENT> name = name[len("TRAPELECTRODE_"):] <NEW_LINE> <DEDENT> <DEDENT> elif cmd == "V": <NEW_LINE> <INDENT> points.append(map(float, line)) <NEW_LINE> <DEDENT> elif cmd == "T": <NEW_LINE> <INDENT> panels.append(map(int, line)) <NEW_LINE> <DEDENT> elif cmd == "SEND": <NEW_LINE> <INDENT> points = np.array(points, dtype=np.double) <NEW_LINE> panels = np.array(panels, dtype=np.intc) <NEW_LINE> points /= scale <NEW_LINE> panels -= 1 <NEW_LINE> surfs.setdefault(name, []).append((points, panels)) <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> print("ignoring line", cmd, line) <NEW_LINE> <DEDENT> <DEDENT> return surfs | reads cpy text file and returns a dict
{name: [(points, triangles), ...]}
for each name, a list of surfaces consisting of a points array and a
(n,3) triangles array with indices into points
* only triangles are supported
* origin (TrapCenter or Center Point) is ignored
* the TRAPELECTRODE_ in name is stripped | 625941b31d351010ab8558e5 |
def test_set_fields(self): <NEW_LINE> <INDENT> base = self.base.copy() <NEW_LINE> mbase = base.view(mrecarray) <NEW_LINE> mbase = mbase.copy() <NEW_LINE> mbase.fill_value = (999999,1e20,'N/A') <NEW_LINE> mbase.a._data[:] = 5 <NEW_LINE> assert_equal(mbase['a']._data, [5,5,5,5,5]) <NEW_LINE> assert_equal(mbase['a']._mask, [0,1,0,0,1]) <NEW_LINE> mbase.a = 1 <NEW_LINE> assert_equal(mbase['a']._data, [1]*5) <NEW_LINE> assert_equal(ma.getmaskarray(mbase['a']), [0]*5) <NEW_LINE> assert_equal(mbase._mask, [False]*5) <NEW_LINE> assert_equal(mbase._fieldmask.tolist(), np.array([(0,0,0),(0,1,1),(0,0,0),(0,0,0),(0,1,1)], dtype=bool)) <NEW_LINE> mbase.c = masked <NEW_LINE> assert_equal(mbase.c.mask, [1]*5) <NEW_LINE> assert_equal(ma.getmaskarray(mbase['c']), [1]*5) <NEW_LINE> assert_equal(ma.getdata(mbase['c']), ['N/A']*5) <NEW_LINE> assert_equal(mbase._fieldmask.tolist(), np.array([(0,0,1),(0,1,1),(0,0,1),(0,0,1),(0,1,1)], dtype=bool)) <NEW_LINE> mbase = base.view(mrecarray).copy() <NEW_LINE> mbase.a[3:] = 5 <NEW_LINE> assert_equal(mbase.a, [1,2,3,5,5]) <NEW_LINE> assert_equal(mbase.a._mask, [0,1,0,0,0]) <NEW_LINE> mbase.b[3:] = masked <NEW_LINE> assert_equal(mbase.b, base['b']) <NEW_LINE> assert_equal(mbase.b._mask, [0,1,0,1,1]) <NEW_LINE> ndtype = [('alpha','|S1'),('num',int)] <NEW_LINE> data = ma.array([('a',1),('b',2),('c',3)], dtype=ndtype) <NEW_LINE> rdata = data.view(MaskedRecords) <NEW_LINE> val = ma.array([10,20,30], mask=[1,0,0]) <NEW_LINE> import warnings <NEW_LINE> warnings.simplefilter("ignore") <NEW_LINE> rdata['num'] = val <NEW_LINE> assert_equal(rdata.num, val) <NEW_LINE> assert_equal(rdata.num.mask, [1,0,0]) | Tests setting fields. | 625941b360cbc95b062c6309 |
def start(self): <NEW_LINE> <INDENT> with self.userLock: <NEW_LINE> <INDENT> self.say(self.sentences["startup"]) <NEW_LINE> <DEDENT> self.detector = decoder.HotwordDetector(root + "/" + self.model, sensitivity=0.4) <NEW_LINE> self.detector.start(detected_callback=self.hotword_has_been_detected, interrupt_check=self.interrupt_callback, sleep_time=0.03) | Wrapper around snowboy's detector()
:return: | 625941b32eb69b55b151c669 |
def switch_off(self): <NEW_LINE> <INDENT> if self._visible: <NEW_LINE> <INDENT> self._visible = False <NEW_LINE> turtle.up() <NEW_LINE> turtle.setpos(self._x, self._y - self._r) <NEW_LINE> turtle.down() <NEW_LINE> c = turtle.pencolor() <NEW_LINE> turtle.pencolor(turtle.bgcolor()) <NEW_LINE> turtle.circle(self._r) <NEW_LINE> turtle.pencolor(c) | Робить коло невидимим на екрані
| 625941b3167d2b6e3121895e |
def start(self, xmlSubPanel, boardConfiguration): <NEW_LINE> <INDENT> self.xmlSubPanel = xmlSubPanel <NEW_LINE> self.boardConfiguration = boardConfiguration <NEW_LINE> if self.comm.isConnected() == True: <NEW_LINE> <INDENT> telemetry = self.xml.find(xmlSubPanel + "/Telemetry").text <NEW_LINE> if telemetry != None: <NEW_LINE> <INDENT> self.comm.write(telemetry) <NEW_LINE> <DEDENT> self.timer = QtCore.QTimer() <NEW_LINE> self.timer.timeout.connect(self.readContinuousData) <NEW_LINE> self.timer.start(10) | This method starts a timer used for any long running loops in a subpanel | 625941b363f4b57ef0000eea |
def add(self, vec2): <NEW_LINE> <INDENT> self.x += vec2.x <NEW_LINE> self.y += vec2.y <NEW_LINE> return Vec2(self.x, self.y) | This method is destructive! <returns tears in non-functional approach> | 625941b38e71fb1e9831d575 |
def _end_selection(self, accel_group, acceleratable, keyval, modifier): <NEW_LINE> <INDENT> self.ui.action_selection.set_active(False) | End of the selection mode | 625941b3b545ff76a8913be1 |
def test_delete_server_wait_for_deleted(self): <NEW_LINE> <INDENT> server = fakes.make_fake_server('9999', 'wily', 'ACTIVE') <NEW_LINE> self.register_uris([ self.get_nova_discovery_mock_dict(), dict(method='GET', uri=self.get_mock_url( 'compute', 'public', append=['servers', 'detail']), json={'servers': [server]}), dict(method='DELETE', uri=self.get_mock_url( 'compute', 'public', append=['servers', '9999'])), dict(method='GET', uri=self.get_mock_url( 'compute', 'public', append=['servers', 'detail']), json={'servers': [server]}), dict(method='GET', uri=self.get_mock_url( 'compute', 'public', append=['servers', 'detail']), json={'servers': []}), ]) <NEW_LINE> self.assertTrue(self.cloud.delete_server('wily', wait=True)) <NEW_LINE> self.assert_calls() | Test that delete_server waits for the server to be gone | 625941b3baa26c4b54cb0ee4 |
def wait_for_repetition(m): <NEW_LINE> <INDENT> prevnumber = m + 1 <NEW_LINE> while True: <NEW_LINE> <INDENT> number = random.randrange(m) <NEW_LINE> print(number, end=' ') <NEW_LINE> if number == prevnumber: <NEW_LINE> <INDENT> break <NEW_LINE> <DEDENT> prevnumber = number <NEW_LINE> <DEDENT> print() <NEW_LINE> return number | Repeatedly generates random integers in the range [0, m).
Stops generating random integers when one is generated that is the
same as the previous one. Returns that last generated integer.
For example, if the random integers generated are (in order):
37 23 13 50 32 32
then 32 is returned.
Precondition: m is a positive integer. | 625941b376d4e153a657e8f0 |
def summarise(self, field, maxlen=600, hl=('<b>', '</b>'), query=None): <NEW_LINE> <INDENT> highlighter = highlight.Highlighter(language_code=self._get_language(field)) <NEW_LINE> field = self.data[field] <NEW_LINE> results = [] <NEW_LINE> text = '\n'.join(field) <NEW_LINE> if query is None: <NEW_LINE> <INDENT> query = self._query <NEW_LINE> <DEDENT> return highlighter.makeSample(text, query, maxlen, hl) | Return a summarised version of the field specified.
This will return a summary of the contents of the field stored in the
search result, with words which match the query highlighted.
The maximum length of the summary (in characters) may be set using the
maxlen parameter.
The return value will be a string holding the summary, with
highlighting applied. If there are multiple instances of the field in
the document, the instances will be joined with a newline character.
To turn off highlighting, set hl to None. Each highlight will consist
of the first entry in the `hl` list being placed before the word, and
the second entry in the `hl` list being placed after the word.
Any XML or HTML style markup tags in the field will be stripped before
the summarisation algorithm is applied.
If `query` is supplied, it should contain a Query object, as returned
from SearchConnection.query_parse() or related methods, which will be
used as the basis of the summarisation and highlighting rather than the
query which was used for the search.
Raises KeyError if the field is not known. | 625941b36fece00bbac2d4fb |
def h_setlevel(self): <NEW_LINE> <INDENT> def is_all_mutex(layer): <NEW_LINE> <INDENT> for subgoalA, subgoalB in combinations(self.goal, 2): <NEW_LINE> <INDENT> if subgoalA in layer and subgoalB in layer: <NEW_LINE> <INDENT> if layer.is_mutex(subgoalA, subgoalB): <NEW_LINE> <INDENT> return False <NEW_LINE> <DEDENT> <DEDENT> <DEDENT> return True <NEW_LINE> <DEDENT> self.fill() <NEW_LINE> for i, layer in enumerate(self.literal_layers): <NEW_LINE> <INDENT> goal_reached = True <NEW_LINE> for g in self.goal: <NEW_LINE> <INDENT> if g not in layer: <NEW_LINE> <INDENT> goal_reached = False <NEW_LINE> <DEDENT> <DEDENT> if goal_reached and is_all_mutex(layer): <NEW_LINE> <INDENT> return i <NEW_LINE> <DEDENT> <DEDENT> return -1 | Calculate the set level heuristic for the planning graph
The set level of a planning graph is the first level where all goals
appear such that no pair of goal literals are mutex in the last
layer of the planning graph.
Hints
-----
- See the pseudocode folder for help on a simple implementation
- You can implement this function more efficiently if you expand
the graph one level at a time until you find the set level rather
than filling the whole graph at the start.
See Also
--------
Russell-Norvig 10.3.1 (3rd Edition)
Notes
-----
WARNING: you should expect long runtimes using this heuristic on complex problems | 625941b30c0af96317bb7fa9 |
def get_num_seeds_peers(self): <NEW_LINE> <INDENT> if not self.lt_status or self.get_status() not in [DLSTATUS_DOWNLOADING, DLSTATUS_SEEDING]: <NEW_LINE> <INDENT> return 0, 0 <NEW_LINE> <DEDENT> total = self.lt_status.list_peers <NEW_LINE> seeds = self.lt_status.list_seeds <NEW_LINE> return seeds, total - seeds | Returns the sum of the number of seeds and peers.
@return A tuple (num seeds, num peers) | 625941b3d99f1b3c44c67360 |
def on_aprs_status(self, origframe, source, payload, via=None): <NEW_LINE> <INDENT> pass | APRS status packet (data type: >)
| 625941b315fb5d323cde08c8 |
def __init__( self, workers: Optional[List[Dict]] = list(), managers: Optional[Dict] = None ): <NEW_LINE> <INDENT> self._workerspecs = {doc['name']: doc for doc in workers} <NEW_LINE> self._workers = dict() <NEW_LINE> self.managers = managers if managers is not None else dict() | Initialize the specifications for the workers that are managed by
this worker pool and the optional list of task managers for individual
workflow steps.
Parameters
----------
workers: list, default=list
List of worker specifications.
managers: dict, default=None
Mapping from workflow step identifier to worker identifier that
defines the worker that is responsible for the execution of the
respective workflow step. | 625941b3d18da76e23532290 |
@commands.command(r'clearcache') <NEW_LINE> def clearcache(): <NEW_LINE> <INDENT> g.pafs = {} <NEW_LINE> g.streams = {} <NEW_LINE> dbg("%scache cleared%s", c.p, c.w) <NEW_LINE> g.message = "cache cleared" | Clear cached items - for debugging use. | 625941b3b7558d58953c4cdc |
def buckets(resource): <NEW_LINE> <INDENT> all_buckets = [] <NEW_LINE> for bucket in resource.buckets.all(): <NEW_LINE> <INDENT> all_buckets.append(bucket) <NEW_LINE> <DEDENT> return all_buckets | Return all available buckets object. | 625941b3aad79263cf3907fb |
def make_lookup(self, results): <NEW_LINE> <INDENT> return {r['category'].lower(): r for r in results} | Convert Trading API category list into a lookup table.
Parameters
----------
results : list of dicts
a `parse` result
Returns
-------
Category lookup table : dict
Examples
--------
>>> trading = Trading(sandbox=True)
>>> response = trading.get_categories()
>>> results = trading.parse(response.CategoryArray.Category)
>>> set(trading.make_lookup(results)) == {
... 'toys & hobbies', 'health & beauty', 'music',
... 'musical instruments & gear', 'clothing, shoes & accessories',
... 'real estate', 'art', 'antiques', 'home & garden',
... 'dolls & bears', 'computers/tablets & networking',
... 'business & industrial', 'video games & consoles',
... 'consumer electronics', 'tickets & experiences',
... 'sports mem, cards & fan shop', 'jewelry & watches',
... 'gift cards & coupons', 'entertainment memorabilia',
... 'specialty services', 'stamps', 'cameras & photo',
... 'pottery & glass', 'coins & paper money', 'everything else',
... 'dvds & movies', 'crafts', 'travel', 'pet supplies', 'baby',
... 'collectibles', 'books', 'sporting goods',
... 'cell phones & accessories'}
True | 625941b355399d3f05588474 |
def choose_new_tile(key, board): <NEW_LINE> <INDENT> if NEW_TILE_STRATEGY == 'random': <NEW_LINE> <INDENT> return random_tile(board) <NEW_LINE> <DEDENT> elif NEW_TILE_STRATEGY == 'always2': <NEW_LINE> <INDENT> return always2_tile(board) <NEW_LINE> <DEDENT> elif NEW_TILE_STRATEGY == 'minmax_worst': <NEW_LINE> <INDENT> return minmax_worst_tile(board) <NEW_LINE> <DEDENT> elif NEW_TILE_STRATEGY == 'minmax_best': <NEW_LINE> <INDENT> return minmax_best_tile(board) <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> raise ValueError('No such strategy', NEW_TILE_STRATEGY) | selectionne la strategie a utiliser pour placer les tuiles | 625941b330dc7b766590172b |
def _init_table_dict_list(self): <NEW_LINE> <INDENT> if not self._information_schema_columns: <NEW_LINE> <INDENT> self._init_information_schema_columns() <NEW_LINE> <DEDENT> sql = "SELECT TABLE_NAME FROM information_schema.`TABLES` WHERE TABLE_SCHEMA='%s'" % ( self._database) <NEW_LINE> table_tuple = self.execute_query(sql) <NEW_LINE> self._table_dict = {t[0]: {} for t in table_tuple} <NEW_LINE> for table in table_tuple: <NEW_LINE> <INDENT> self._init_table_dict(table[0]) | 初始化表字典对象 | 625941b3091ae35668666d27 |
def __str__(self): <NEW_LINE> <INDENT> raise NotImplementedError() | Debug string
| 625941b363d6d428bbe442b7 |
def stringMerge(rawInputs,gtfFile,genoFile): <NEW_LINE> <INDENT> print ("\n#### Generating list of lib-specific assemblies to merge") <NEW_LINE> assemblyFile = 'mergelist.txt' <NEW_LINE> assemblyOut = open(assemblyFile,'w') <NEW_LINE> for aninput in rawInputs: <NEW_LINE> <INDENT> lib,ext,nthreads = aninput <NEW_LINE> assemblyPath = './%s.%s\n' % (lib,ext) <NEW_LINE> print("adding lib to list for merging:%s" % (assemblyPath)) <NEW_LINE> assemblyOut.write(assemblyPath) <NEW_LINE> <DEDENT> assemblyOut.close() <NEW_LINE> print ("\n#### Merging lib-specific assemblies from StringTie") <NEW_LINE> mergedAssembly = "stringtie_merged.gtf" <NEW_LINE> nproc2 = str(nproc) <NEW_LINE> if referenceGTF == 'T': <NEW_LINE> <INDENT> print("CMD:", stringtie, "--merge", "-p", nproc2, "-G", gtfFile, "-o", mergedAssembly, assemblyFile) <NEW_LINE> retcode = subprocess.call([stringtie, "--merge", "-p", nproc2, "-G", gtfFile, "-o", mergedAssembly, assemblyFile]) <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> print("CMD:", stringtie, "--merge", "-p", nproc2, "-o", mergedAssembly, assemblyFile) <NEW_LINE> retcode = subprocess.call([stringtie, "--merge", "-p", nproc2, "-o", mergedAssembly, assemblyFile]) <NEW_LINE> <DEDENT> if retcode == 0: <NEW_LINE> <INDENT> print("Lib-speciifc assemblies merged successfully\n\n") <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> print("Problem merging lib-specific assemblies - System wil exit now\n") <NEW_LINE> sys.exit() <NEW_LINE> <DEDENT> return None | merge all output for stringtie from pheno file; first generate a merge list and then
supply that for merging
https://github.com/griffithlab/rnaseq_tutorial/wiki/Transcript-Assembly-Merge | 625941b323e79379d52ee32a |
@operation <NEW_LINE> def group(group, present=True, system=False, gid=None, state=None, host=None): <NEW_LINE> <INDENT> groups = host.get_fact(Groups) <NEW_LINE> is_present = group in groups <NEW_LINE> if not present and is_present: <NEW_LINE> <INDENT> yield 'groupdel {0}'.format(group) <NEW_LINE> groups.remove(group) <NEW_LINE> <DEDENT> elif present and not is_present: <NEW_LINE> <INDENT> args = [] <NEW_LINE> if system and 'BSD' not in host.get_fact(Os): <NEW_LINE> <INDENT> args.append('-r') <NEW_LINE> <DEDENT> args.append(group) <NEW_LINE> if gid: <NEW_LINE> <INDENT> args.append('--gid {0}'.format(gid)) <NEW_LINE> <DEDENT> yield "grep '^{0}:' /etc/group || groupadd {1}".format( group, ' '.join(args), ) <NEW_LINE> groups.append(group) | Add/remove system groups.
+ group: name of the group to ensure
+ present: whether the group should be present or not
+ system: whether to create a system group
System users:
System users don't exist on BSD, so the argument is ignored for BSD targets.
Examples:
.. code:: python
server.group(
name='Create docker group',
group='docker',
)
# multiple groups
for group in ['wheel', 'lusers']:
server.group(
name=f'Create the group {group}',
group=group,
) | 625941b3c432627299f04a04 |
def total_meet_medals(details=False): <NEW_LINE> <INDENT> medalsa = Division.objects.exclude(event_award_count__lte=3). aggregate( num_divisions_indiv_other_places=Count('name'), indiv_other_place_medals=(Sum(F('event_award_count') * 6) - (Count('name') * 3 * 6)), ) <NEW_LINE> medalsb = Division.objects.exclude(all_around_award_count__lte=3). aggregate( num_divisions_aa_other_places=Count('name'), aa_other_place_medals=(Sum('all_around_award_count') - (Count('name') * 3)) ) <NEW_LINE> medalsc = Division.objects.all(). aggregate( num_divisions_total=Count('name'), indiv_top_3_total=Count('name') * 6 * 3, aa_top_3_total=Count('name') * 3, total_awards=Sum('all_around_award_count') + Sum(F('event_award_count') * 6) ) <NEW_LINE> medals = {} <NEW_LINE> medals.update(medalsa) <NEW_LINE> medals.update(medalsb) <NEW_LINE> medals.update(medalsc) <NEW_LINE> try: <NEW_LINE> <INDENT> medals['total_awards'] = medalsa['indiv_other_place_medals'] + medalsb['aa_other_place_medals'] + medalsc['indiv_top_3_total'] + medalsc['aa_top_3_total'] <NEW_LINE> <DEDENT> except Exception: <NEW_LINE> <INDENT> medals['total_awards'] = 0 <NEW_LINE> <DEDENT> if details: <NEW_LINE> <INDENT> return medals <NEW_LINE> <DEDENT> if medals['total_awards'] < 0: <NEW_LINE> <INDENT> return 0 <NEW_LINE> <DEDENT> return medals['total_awards'] | For individual medals, count the number of awards we are giving in each division
and multiply by the number of events
For all around medals, count the number of awards we are giving in each division
and subtract 3 for each division, as 1st-3rd place get trophies | 625941b391f36d47f21ac2b5 |
def test_account_info(self): <NEW_LINE> <INDENT> from invenio_oauthclient.client import oauth <NEW_LINE> self.client.get(url_for("oauthclient.login", remote_app='orcid')) <NEW_LINE> self.assertEqual( account_info(oauth.remote_apps['orcid'], self.example_data), dict(external_id="0000-0002-1825-0097", external_method="orcid", nickname="0000-0002-1825-0097") ) <NEW_LINE> self.assertEqual( account_info(oauth.remote_apps['orcid'], {}), dict(external_id=None, external_method="orcid", nickname=None) ) | Test account info extraction. | 625941b3d164cc6175782b0e |
def run_game(self): <NEW_LINE> <INDENT> while True: <NEW_LINE> <INDENT> self._check_events() <NEW_LINE> self.mario.update() <NEW_LINE> self._update_bullets() <NEW_LINE> self._update_enemies() <NEW_LINE> self._update_screen() | Main loop | 625941b3c432627299f04a05 |
def acceptedPercent(self, lower, upper=None, msg=None): <NEW_LINE> <INDENT> return AcceptedPercent(lower, upper, msg) | acceptedPercent(tolerance, /, msg=None)
acceptedPercent(lower, upper, msg=None)
Wrapper for :meth:`accepted.percent`. | 625941b3498bea3a759b9872 |
def train(train_data, test_data, net, loss, trainer, ctx, num_epochs, print_batches=None): <NEW_LINE> <INDENT> print("Start training on ", ctx) <NEW_LINE> if isinstance(ctx, mx.Context): <NEW_LINE> <INDENT> ctx = [ctx] <NEW_LINE> <DEDENT> for epoch in range(num_epochs): <NEW_LINE> <INDENT> train_loss, train_acc, n, m = 0.0, 0.0, 0.0, 0.0 <NEW_LINE> if isinstance(train_data, mx.io.MXDataIter) or isinstance(train_data,mx.image.ImageIter): <NEW_LINE> <INDENT> train_data.reset() <NEW_LINE> <DEDENT> start = time() <NEW_LINE> for i, batch in enumerate(train_data): <NEW_LINE> <INDENT> data, label, batch_size = _get_batch(batch, ctx) <NEW_LINE> losses = [] <NEW_LINE> with autograd.record(): <NEW_LINE> <INDENT> outputs = [net(X) for X in data] <NEW_LINE> losses = [loss(yhat, y) for yhat, y in zip(outputs, label)] <NEW_LINE> <DEDENT> for l in losses: <NEW_LINE> <INDENT> l.backward() <NEW_LINE> <DEDENT> train_acc += sum([(yhat.argmax(axis=1)==y).sum().asscalar() for yhat, y in zip(outputs, label)]) <NEW_LINE> train_loss += sum([l.sum().asscalar() for l in losses]) <NEW_LINE> trainer.step(batch_size) <NEW_LINE> n += batch_size <NEW_LINE> m += sum([y.size for y in label]) <NEW_LINE> if print_batches and (i+1) % print_batches == 0: <NEW_LINE> <INDENT> print("Batch %d. Loss: %f, Train acc %f" % ( n, train_loss/n, train_acc/m )) <NEW_LINE> <DEDENT> <DEDENT> test_acc = evaluate_accuracy(test_data, net, ctx) <NEW_LINE> print("Epoch %d. Loss: %.3f, Train acc %.2f, Test acc %.2f, Time %.1f sec" % ( epoch, train_loss/n, train_acc/m, test_acc, time() - start )) <NEW_LINE> print("done") | Train a network | 625941b3d53ae8145f87a03b |
def word_count(filename): <NEW_LINE> <INDENT> word_count_dict = {} <NEW_LINE> with open(filename, 'r') as f: <NEW_LINE> <INDENT> for line in f: <NEW_LINE> <INDENT> words = line.split() <NEW_LINE> for word in words: <NEW_LINE> <INDENT> pass <NEW_LINE> <DEDENT> <DEDENT> <DEDENT> return word_count_dict | A function that returns a dictionary with tokens as keys
and counts of how many times each token appeared as values in
the file with the given filename.
Inputs:
filename - the name of a plaintext file
Outputs:
A dictionary mapping tokens to counts. | 625941b34d74a7450ccd3f84 |
def get_drmaa_imformation(): <NEW_LINE> <INDENT> with drmaa.Session() as s: <NEW_LINE> <INDENT> print('A DRMAA object was created') <NEW_LINE> print('Supported contact strings: %s' % s.contact) <NEW_LINE> print('Supported DRM systems: %s' % s.drmsInfo) <NEW_LINE> print('Supported DRMAA implementations: %s' % s.drmaaImplementation) <NEW_LINE> print('Exiting') | Query the system. | 625941b323849d37ff7b2e53 |
@app.route('/video_feed') <NEW_LINE> def video_feed(): <NEW_LINE> <INDENT> return Response(gen(cv2.VideoCapture(2)), mimetype='multipart/x-mixed-replace; boundary=frame') | Video streaming route. Put this in the src attribute of an img tag. | 625941b3925a0f43d2549c33 |
def delete(self, room_name): <NEW_LINE> <INDENT> if room_name is None: <NEW_LINE> <INDENT> Room.drop_collection() <NEW_LINE> return 'no content', 204 <NEW_LINE> <DEDENT> try: <NEW_LINE> <INDENT> Room.objects.get(name=room_name).delete() <NEW_LINE> return 'no content', 204 <NEW_LINE> <DEDENT> except db.DoesNotExist: <NEW_LINE> <INDENT> abort(404) | Delete specified room. | 625941b31b99ca400220a871 |
def genNewParticles(self, num_particles=100): <NEW_LINE> <INDENT> particles = np.random.rand(num_particles,2) <NEW_LINE> particles[:,0] *= self.img.shape[0] <NEW_LINE> particles[:,1] *= self.img.shape[1] <NEW_LINE> return particles.astype(int).tolist() | Generate a new set particles
:return (numpy.array): Array of new particles | 625941b316aa5153ce362238 |
def get_cdrom_attach_config_spec(client_factory, datastore, file_path, cdrom_unit_number): <NEW_LINE> <INDENT> config_spec = client_factory.create('ns0:VirtualMachineConfigSpec') <NEW_LINE> device_config_spec = [] <NEW_LINE> controller_key = 200 <NEW_LINE> virtual_device_config_spec = create_virtual_cdrom_spec(client_factory, datastore, controller_key, file_path, cdrom_unit_number) <NEW_LINE> device_config_spec.append(virtual_device_config_spec) <NEW_LINE> config_spec.deviceChange = device_config_spec <NEW_LINE> return config_spec | Builds and returns the cdrom attach config spec. | 625941b332920d7e50b27f8e |
def queryDataRows(self, **options): <NEW_LINE> <INDENT> from .datarow import DataRow <NEW_LINE> return self._api.newApiCursor(DataRow, self.getBaseApiPath() + "/rows", options) | Queries data rows associated with this contact (in any data table).
Arguments:
- time_created (UNIX timestamp)
* Filter data rows by the time they were created
* Allowed modifiers: time_created[ne], time_created[min], time_created[max]
- vars (dict)
* Filter data rows by value of a custom variable (e.g. vars[q1], vars[foo], etc.)
* Allowed modifiers: vars[foo][exists], vars[foo][ne], vars[foo][prefix],
vars[foo][not_prefix], vars[foo][gte], vars[foo][gt], vars[foo][lt], vars[foo][lte],
vars[foo][min], vars[foo][max]
- sort
* Sort the results based on a field
* Allowed values: default
* Default: default
- sort_dir
* Sort the results in ascending or descending order
* Allowed values: asc, desc
* Default: asc
- page_size (int)
* Number of results returned per page (max 200)
* Default: 50
- offset (int)
* Number of items to skip from beginning of result set
* Default: 0
Returns:
APICursor (of DataRow) | 625941b3e64d504609d74601 |
def solve(n=50): <NEW_LINE> <INDENT> return triangle_count(n) | For this problem, there appears to be 2 fundamental cases.
All triangles that are not fundamental cases can be found from fundamental cases by rotation.
A fundamental case will either:
1. have it's 90 degree angle on the origin.
In this case, there are 3 possible rotations (including not rotating at all).
2. have it's 90 degree angle NOT on an axis. If it is not on the axis it will be located somewhere in the grid.
We will say that for this type of triangle to be fundamental, one leg of the 90 degrees will go towards the
origin, and the other towards the x-axis. In this case, there are 2 possible triangles
(1 fundamental, 1 mirror).
Also it can be observed that the triangles possible on an n * n grid will be the triangles possible on a
(n - 1) * (n - 1) grid + all the new triangles that have a corner on the last column or highest row.
So this problem can be solved with a recursive function.
It is easy to test and observe that for the first type of fundamental triangle, there are n**2 possible.
Since we are making a recursive function, we are only concerned with the possible triangles of type 1 that have
a corner on the highest row or last column. Of these, there are 3 *(2*n - 1). 2 * n for each row and column and
subtract 1 because there is only 1 that goes from the top of the first column to the outside of the first row.
Then multiply by 3 for all 3 rotations.
Triangles of type 2 have 2 subtypes. The first is with a corner on the farthest column. The second is with a corner
on the highest row. Those with corner on the farthest column come first, and the right angle may be anywhere.
This means all points must be tested to find some that satisfy this. For those with the right angle on the
highest row, the 3rd corner may or may not be on the farthest right column. Also count 2 for each fundamental
triangle found for their mirrors. | 625941b3956e5f7376d70c3d |
def fasta_parser(self, target_file): <NEW_LINE> <INDENT> target_handle = open(target_file, 'r') <NEW_LINE> verified_ids = set() <NEW_LINE> for lines in target_handle: <NEW_LINE> <INDENT> if lines.startswith(">"): <NEW_LINE> <INDENT> seqid = re.match("([^\s]+)", lines).group(0)[1:] <NEW_LINE> verified_ids.add(seqid) <NEW_LINE> <DEDENT> <DEDENT> target_handle.close() <NEW_LINE> return verified_ids | Parses a FASTA file and retruns a set of found Accession numbers | 625941b316aa5153ce362239 |
def create_vm(self, vcpu, ram, disk, name, network_uuid, os_image_uuid, cloud_config): <NEW_LINE> <INDENT> data = { "name": name, "memory_mb": ram * 1024, "num_vcpus": vcpu, "description": "", "num_cores_per_vcpu": 1, "vm_disks": [ { "is_cdrom": True, "is_empty": True, "disk_address": { "device_bus": "ide" } }, { "is_cdrom": False, "disk_address": { "device_bus": "scsi" }, "vm_disk_clone": { "disk_address": { "vmdisk_uuid": os_image_uuid }, "minimum_size": disk * 1024 ** 3 } } ], "vm_nics": [ { "network_uuid": network_uuid } ], "hypervisor_type": "ACROPOLIS", "affinity": None, "vm_customization_config": { "userdata": cloud_config, "files_to_inject_list": [] } } <NEW_LINE> self.wait_for_task( self.api.vms_create(data) ) | Create Virtual Machine with specified configuration.
This method call asynchronous operation and wait for it to report success
or failure.
:param int vcpu: Number of vCPUs for Virtual Machine.
:param int ram: Size of RAM (GB) for Virtual Machine.
:param int disk: Size of Disk (GB) for Virtual Machine.
:param str name: Name of Virtual Machine.
:param str network_uuid: Uuid of Nutanix network used for Virtual Machine.
:param str os_image_uuid: Uuid of OS Image used for Virtual Machine.
:param str cloud_config: Cloud config for customization of Virtual Machine.
:return: None
:raises HTTPError: If API call was not successful.
:raises TaskFailed: If creation task failed | 625941b3f548e778e58cd33c |
def get_items_with_key_prefix(items, prefix, strip_prefix=True, processors=()): <NEW_LINE> <INDENT> include = lambda k, v: k.startswith(prefix) <NEW_LINE> if strip_prefix: <NEW_LINE> <INDENT> prefix_len = len(prefix) <NEW_LINE> processors = (lambda k, v: (k[prefix_len:], v),) + processors <NEW_LINE> <DEDENT> filtered = filter_items(items, include=include, processors=processors) <NEW_LINE> return items.__class__(filtered) | Filter ``items`` to those with a key that starts with ``prefix``.
``items`` is typically a dict but can also be a sequence. See
:func:`filter_items` for more on that. | 625941b396565a6dacc8f496 |
def delete(self, guid): <NEW_LINE> <INDENT> return super().delete(id=guid) | A method to delete an CloudAccounts object.
:param guid: A string representing the object GUID.
:return response json | 625941b32ae34c7f2600cef3 |
def test_from_theta(self): <NEW_LINE> <INDENT> riskfree = .01 <NEW_LINE> mean_v = .5 <NEW_LINE> kappa = 1.5 <NEW_LINE> eta = .1 <NEW_LINE> lmbd = .01 <NEW_LINE> lmbd_v = .5 <NEW_LINE> rho = -.5 <NEW_LINE> theta = [riskfree, mean_v, kappa, eta, rho, lmbd, lmbd_v] <NEW_LINE> param = HestonParam.from_theta(theta, measure='P') <NEW_LINE> self.assertEqual(param.measure, 'P') <NEW_LINE> self.assertEqual(param.riskfree, riskfree) <NEW_LINE> self.assertEqual(param.lmbd, lmbd) <NEW_LINE> self.assertEqual(param.lmbd_v, lmbd_v) <NEW_LINE> self.assertEqual(param.mean_v, mean_v) <NEW_LINE> self.assertEqual(param.kappa, kappa) <NEW_LINE> self.assertEqual(param.eta, eta) <NEW_LINE> self.assertEqual(param.rho, rho) <NEW_LINE> self.assertTrue(param.is_valid()) | Test from theta. | 625941b30c0af96317bb7faa |
def test_decode_nibbles_fixed_partial() -> None: <NEW_LINE> <INDENT> spec = copy.deepcopy(iso8583.specs.default) <NEW_LINE> spec["t"]["data_enc"] = "ascii" <NEW_LINE> spec["p"]["data_enc"] = "ascii" <NEW_LINE> spec["2"]["data_enc"] = "ascii" <NEW_LINE> spec["2"]["len_enc"] = "ascii" <NEW_LINE> spec["2"]["len_type"] = 0 <NEW_LINE> spec["2"]["max_len"] = 4 <NEW_LINE> spec["2"]["len_count"] = "nibbles" <NEW_LINE> s = b"020040000000000000001" <NEW_LINE> with pytest.raises( iso8583.DecodeError, match="Field data is 2 nibbles, expecting 4: field 2 pos 20", ): <NEW_LINE> <INDENT> iso8583.decode(s, spec=spec) | Fixed field is provided partially | 625941b37b180e01f3dc45c9 |
def extract_func_typedata(typedata, table): <NEW_LINE> <INDENT> func_typedata_split = typedata.split("&&&") <NEW_LINE> param_segment = func_typedata_split[0] <NEW_LINE> parameters = param_segment.split("---")[1:] <NEW_LINE> default_values = [] <NEW_LINE> for seg in func_typedata_split[1:]: <NEW_LINE> <INDENT> default_value, _, _, _, _ = table.get_by_id(int(seg)) <NEW_LINE> default_values.append(default_value) <NEW_LINE> <DEDENT> return parameters, default_values | Extract typedata of function
Params
======
typedata (string) = Typedata of function in format "function---param1---param2---...&&&default_val1&&&...
table (SymbolTable) = Symbol table
Returns
=======
parameters (list) = Parameter names
default_values (list) = Default values | 625941b3ab23a570cc24ff48 |
def dls(td): <NEW_LINE> <INDENT> td2 = [] <NEW_LINE> dd = [] <NEW_LINE> for i in range(0, len(td)): <NEW_LINE> <INDENT> td2.append((0.25/td[i])) <NEW_LINE> dd.append(0.5*np.exp(-1.0*td2[i])) <NEW_LINE> <DEDENT> sd = 0.5*sp.special.expn(1,td2) <NEW_LINE> return sd, dd | THS_DLS - Dimensionless drawdown of the Theis model
Syntax: sd,dd = hp.ths.dls(td)
Description:
Calculates the dimensionless drawdown sd and the dimensionless
derivative dd for a given dimensionless reduced time td/rd^2
See also: ths_lap | 625941b3baa26c4b54cb0ee5 |
def get_vthr(self): <NEW_LINE> <INDENT> if self.vthr > 0: <NEW_LINE> <INDENT> thr = self.vthr <NEW_LINE> self.vthr = [] <NEW_LINE> for roc in self.dut.rocs(): <NEW_LINE> <INDENT> self.vthr.append(thr) <NEW_LINE> <DEDENT> self.logger.info('Using min VthrComp %s from config' %self.vthr) <NEW_LINE> return <NEW_LINE> <DEDENT> self.tb.set_dac('Vcal', self.vcal) <NEW_LINE> self.dut_VthrComp_map = self.tb.get_threshold(self.n_triggers, 'VthrComp', self.xtalk, self.cals, self.reverse) <NEW_LINE> self.vthr = [] <NEW_LINE> for i, roc in enumerate(self.dut.rocs()): <NEW_LINE> <INDENT> mean = numpy.mean(self.dut_VthrComp_map[roc.number]) <NEW_LINE> std_dev = numpy.std(self.dut_VthrComp_map[roc.number])/2. <NEW_LINE> minimum = numpy.amin(numpy.ma.masked_less_equal(self.dut_VthrComp_map[roc.number],0)) <NEW_LINE> noise_min = -1 <NEW_LINE> dut_vthr_min = int(minimum) <NEW_LINE> self.logger.debug('VthrComp %s mean: %.2f sigma: %.2f min: %s noise_min %s set: %s' %(roc, mean, std_dev, minimum, noise_min, dut_vthr_min)) <NEW_LINE> self.vthr.append(dut_vthr_min) <NEW_LINE> self.tb.set_dac_roc(roc,'Vcal', roc.dac('Vcal').stored_value) | Find minimal VthrComp threshold for each ROC with Vcal = self.vcal | 625941b3fbf16365ca6f5f84 |
def gfaks89(): <NEW_LINE> <INDENT> return _loadnan('gfaks89.dat') | Return Surface elevation measured at Gullfaks C 24.12.1989
Data summary
------------
Size : 39000 X 2
Sampling Rate : 2.5 Hz
Device : EMI laser
Source : STATOIL
Format : ascii, c1: time c2: surface elevation
Description
------------
The wave data was measured 24th December 1989 at the Gullfaks C platform
in the North Sea from 17.00 to 21.20. The period from 20.00 to 20.20
is missing and contains NaNs. The water depth of 218 m is
regarded as deep water for the most important wave components.
There are two EMI laser sensors named 219 and 220. This data set is
obtained from sensor 219, which is located in the Northwest
corner approximately two platform leg diameters away from
the closest leg.
Thus the wave elevation is not expected to be significantly
affected by diffraction effects for incoming waves in the western sector.
The wind direction for this period is from the south.
Some difficulties in calibration of the instruments have been reported
resulting in several consecutive measured values being equal or almost equal
in the observed data set.
This dataset is for non-commercial use only.
Hm0 = 6.8m, Tm02 = 8s, Tp = 10.5
Example
-------
>>> import pylab
>>> import wafo
>>> x = wafo.data.gfaks89()
>>> h = pylab.plot(x[:,0],x[:,1])
Acknowledgement:
---------------
This dataset were prepared and made available by Dr. S. Haver,
STATOIL, Norway
See also
--------
gfaksr89, northsea | 625941b356ac1b37e6263fa3 |
def __init__(self, type=None, name=None): <NEW_LINE> <INDENT> self._type = None <NEW_LINE> self._name = None <NEW_LINE> self.discriminator = 'type' <NEW_LINE> self.type = type <NEW_LINE> self.name = name | QACheckDtoV2 - a model defined in Swagger | 625941b391af0d3eaac9b7d4 |
def consecutiveNumbersSum_v2(self, N): <NEW_LINE> <INDENT> count = 0 <NEW_LINE> for d in range(1, N + 1): <NEW_LINE> <INDENT> dsum = d * (d - 1) / 2 <NEW_LINE> nd = N - dsum <NEW_LINE> if nd <= 0: break <NEW_LINE> if nd % d == 0: count += 1 <NEW_LINE> <DEDENT> return count | :type N: int
:rtype: int | 625941b3925a0f43d2549c34 |
def onBrowseFolder(self, event): <NEW_LINE> <INDENT> widget = event.GetEventObject() <NEW_LINE> name = widget.GetName() <NEW_LINE> if name == "InputFiles": <NEW_LINE> <INDENT> infomessage = "Choose a folder containing the data:" <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> infomessage = "Choose an output folder for the maps:" <NEW_LINE> <DEDENT> dlg = wx.DirDialog( self, message=infomessage, style=wx.DD_DEFAULT_STYLE ) <NEW_LINE> if dlg.ShowModal() == wx.ID_OK: <NEW_LINE> <INDENT> path = dlg.GetPath() <NEW_LINE> if name == "InputFiles": <NEW_LINE> <INDENT> self.InputFold.SetValue(path) <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> self.outputPath.SetValue(path) <NEW_LINE> <DEDENT> if "self.currentPath" in locals(): <NEW_LINE> <INDENT> self.currentPath = os.path.dirname(path) <NEW_LINE> <DEDENT> <DEDENT> dlg.Destroy() | Browse for folders | 625941b33539df3088e2e10c |
def applyEdits(self, addFeatures=[], updateFeatures=[], deleteFeatures=None, gdbVersion=None, rollbackOnFailure=True): <NEW_LINE> <INDENT> editURL = self._url + "/applyEdits" <NEW_LINE> params = {"f": "json", 'rollbackOnFailure' : rollbackOnFailure } <NEW_LINE> if not gdbVersion is None: <NEW_LINE> <INDENT> params['gdbVersion'] = gdbVersion <NEW_LINE> <DEDENT> if len(addFeatures) > 0 and isinstance(addFeatures[0], Feature): <NEW_LINE> <INDENT> params['adds'] = json.dumps([f.asDictionary for f in addFeatures], default=_date_handler) <NEW_LINE> <DEDENT> elif isinstance(addFeatures, FeatureSet): <NEW_LINE> <INDENT> params['adds'] = json.dumps([f.asDictionary for f in addFeatures], default=_date_handler) <NEW_LINE> <DEDENT> if len(updateFeatures) > 0 and isinstance(updateFeatures[0], Feature): <NEW_LINE> <INDENT> params['updates'] = json.dumps([f.asDictionary for f in updateFeatures], default=_date_handler) <NEW_LINE> <DEDENT> if deleteFeatures is not None and isinstance(deleteFeatures, str): <NEW_LINE> <INDENT> params['deletes'] = deleteFeatures <NEW_LINE> <DEDENT> return self._post(url=editURL, param_dict=params, securityHandler=self._securityHandler, proxy_port=self._proxy_port, proxy_url=self._proxy_url) | This operation adds, updates, and deletes features to the
associated feature layer or table in a single call.
Inputs:
addFeatures - The array of features to be added. These
features should be common.general.Feature
objects, or they should be a
common.general.FeatureSet object.
updateFeatures - The array of features to be updateded.
These features should be common.Feature
objects
deleteFeatures - string of OIDs to remove from service
gdbVersion - Geodatabase version to apply the edits.
rollbackOnFailure - Optional parameter to specify if the
edits should be applied only if all
submitted edits succeed. If false, the
server will apply the edits that succeed
even if some of the submitted edits fail.
If true, the server will apply the edits
only if all edits succeed. The default
value is true.
Output:
dictionary of messages | 625941b37c178a314d6ef219 |
def is_point_blocked(self, p): <NEW_LINE> <INDENT> for obs in self.obstacles: <NEW_LINE> <INDENT> if obs.point_inside(p): <NEW_LINE> <INDENT> return True <NEW_LINE> <DEDENT> <DEDENT> return False | Determines if the point is blocked or not.
p: The point to check.
returns: True if the point is blocked by an obstacle, False otherwise. | 625941b3dc8b845886cb52f5 |
def actor(self): <NEW_LINE> <INDENT> return utils.lib.zproc_actor(self._p) | return internal actor, useful for the polling if process died | 625941b326068e7796caea99 |
def retrieve_positions(position_file): <NEW_LINE> <INDENT> position_lines = open(position_file, 'r').readlines() <NEW_LINE> positions = [line.split() for line in position_lines] <NEW_LINE> return positions | This function returns a list of strings in the right format representing
the positions that will be read out. [spatialfrequency,xi,xf,y].
Args:
position_file (str): The path of the position file.
Returns:
positions (list,str): List representing the positions that will be read. | 625941b3cc0a2c11143dcc5a |
def SetMaximumNumberOfIterations(self, *args): <NEW_LINE> <INDENT> return _ITKOptimizersPython.itkSPSAOptimizer_SetMaximumNumberOfIterations(self, *args) | SetMaximumNumberOfIterations(self, unsigned long _arg) | 625941b3d8ef3951e32432ff |
def testCheckForAutoconnect(self): <NEW_LINE> <INDENT> args = mock.MagicMock() <NEW_LINE> args.autoconnect = True <NEW_LINE> args.no_prompt = False <NEW_LINE> self.Patch(utils, "InteractWithQuestion", return_value="Y") <NEW_LINE> self.Patch(utils, "FindExecutable", return_value=None) <NEW_LINE> self.Patch(os.environ, "get", return_value=None) <NEW_LINE> create._CheckForAutoconnect(args) <NEW_LINE> self.assertEqual(args.autoconnect, False) <NEW_LINE> args.autoconnect = True <NEW_LINE> self.Patch(subprocess, "check_call", return_value=True) <NEW_LINE> self.Patch(os.environ, "get", return_value="/fake_dir2") <NEW_LINE> create._CheckForAutoconnect(args) <NEW_LINE> self.assertEqual(args.autoconnect, True) <NEW_LINE> self.Patch(utils, "InteractWithQuestion", return_value="N") <NEW_LINE> create._CheckForAutoconnect(args) <NEW_LINE> self.assertEqual(args.autoconnect, False) | Test CheckForAutoconnect. | 625941b3a05bb46b383ec5ef |
def save_image(filename, image, metadata): <NEW_LINE> <INDENT> path = os.path.dirname(filename) <NEW_LINE> assert path == "" or os.path.exists(path), ("Invalid directory name") <NEW_LINE> assert isinstance(image, np.ndarray), ("image must be a numpy.ndarray") <NEW_LINE> assert len(image.shape) == 3, ("image must be an numpy.ndarray with shape (H,W,D)") <NEW_LINE> rows = image.shape[0] <NEW_LINE> cols = image.shape[1] <NEW_LINE> n_bands = image.shape[2] <NEW_LINE> assert isinstance(metadata, Metadata) <NEW_LINE> geotransform = metadata.geotransform <NEW_LINE> assert len(geotransform) == 6, ("Geotransform must be 6 elements") <NEW_LINE> projection = metadata.projection <NEW_LINE> spatial_reference = osr.SpatialReference() <NEW_LINE> spatial_reference.ImportFromWkt(projection) <NEW_LINE> isprojected = spatial_reference.IsProjected() <NEW_LINE> assert isprojected, ("WKT projection not parsed by OGR") <NEW_LINE> x, y, datatype = metadata.create() <NEW_LINE> assert y == rows <NEW_LINE> assert x == cols <NEW_LINE> assert datatype in Metadata.GDAL_DATATYPES, ( "datatype is not recognized as a valid GDAL datatype for GeoTiff.") <NEW_LINE> ndv = metadata.ndv <NEW_LINE> format = "GTiff" <NEW_LINE> driver = gdal.GetDriverByName(format) <NEW_LINE> dataset = driver.Create(filename, x, y, n_bands, datatype) <NEW_LINE> dataset.SetGeoTransform(geotransform) <NEW_LINE> dataset.SetProjection(projection) <NEW_LINE> depth_axis_len = image.shape[2] <NEW_LINE> for depth in range(depth_axis_len): <NEW_LINE> <INDENT> band = depth + 1 <NEW_LINE> dataset.GetRasterBand(band).WriteArray(image[:,:, depth]) <NEW_LINE> if band == 1 and ndv is not None: <NEW_LINE> <INDENT> dataset.GetRasterBand(1).SetNoDataValue(ndv) <NEW_LINE> <DEDENT> <DEDENT> dataset = None | Save an image
Saves an image as a GeoTiff.
Args:
image: a numpy `ndarray` with array shape (H,W,D)
metadata: object of class `Metadata`
filename: `string` a valid system path
Returns:
None
Raises:
AssertionError | 625941b3097d151d1a222c25 |
def testProxyGetProductRatePlanCharge(self): <NEW_LINE> <INDENT> pass | Test ProxyGetProductRatePlanCharge | 625941b30383005118ecf3a6 |
def psirt_query(token): <NEW_LINE> <INDENT> url = 'https://api.cisco.com/security/advisories/cvrf/latest/10' <NEW_LINE> headers = { 'Accept': 'application/json', 'Authorization': 'Bearer ' + token, } <NEW_LINE> last_10_vulns = requests.get(url, headers=headers) <NEW_LINE> logger.info('query response code = ' + str(last_10_vulns.status_code)) <NEW_LINE> logger.debug(last_10_vulns) | Send required information to PSIRT API and return true if vulnerable?
{"access_token":"blablablablabla","token_type":"Bearer","expires_in":3599}
TODO: Add exception handling
:return: bool | 625941b34a966d76dd550dcd |
def registerPlayer(name): <NEW_LINE> <INDENT> DB = connect() <NEW_LINE> cur = DB.cursor() <NEW_LINE> safe_name = bleach.clean(name) <NEW_LINE> cur.execute("""insert into players(player_name) values(%s)""",(safe_name,)) <NEW_LINE> DB.commit() <NEW_LINE> DB.close() | Adds a player to the tournament database.
The database assigns a unique serial id number for the player. (This
should be handled by your SQL database schema, not in your Python code.)
Args:
name: the player's full name (need not be unique). | 625941b3377c676e91271f70 |
def __init__(self): <NEW_LINE> <INDENT> rospy.init_node('red_depth_node') <NEW_LINE> self.image_pub = rospy.Publisher('red_marked_image', Image, queue_size=10) <NEW_LINE> self.marker_pub = rospy.Publisher('red_marker', Marker, queue_size=10) <NEW_LINE> self.cv_bridge = CvBridge() <NEW_LINE> img_sub = message_filters.Subscriber('/camera/rgb/image_color', Image) <NEW_LINE> cloud_sub = message_filters.Subscriber( '/camera/depth_registered/points', PointCloud2) <NEW_LINE> self.kinect_synch = ApproximateTimeSynchronizer([img_sub, cloud_sub], queue_size=10, slop=.02) <NEW_LINE> self.kinect_synch.registerCallback(self.image_points_callback) <NEW_LINE> rospy.spin() | Construct the red-pixel finder node. | 625941b3507cdc57c6306a93 |
def _import_record(self, record): <NEW_LINE> <INDENT> raise NotImplementedError | Import a record directly or delay the import of the record | 625941b38e05c05ec3eea132 |
def train(hps, server): <NEW_LINE> <INDENT> images, labels = input_fn(True, FLAGS.train_data_path, FLAGS.batch_size, FLAGS.num_epochs) <NEW_LINE> model = resnet_model.ResNet(hps, images, labels, FLAGS.mode) <NEW_LINE> model.build_graph() <NEW_LINE> truth = tf.argmax(model.labels, axis=1) <NEW_LINE> predictions = tf.argmax(model.predictions, axis=1) <NEW_LINE> precision = tf.reduce_mean(tf.to_float(tf.equal(predictions, truth))) <NEW_LINE> summary_hook = tf.train.SummarySaverHook( save_steps=100, output_dir=FLAGS.train_dir, summary_op=tf.summary.merge([model.summaries, tf.summary.scalar('Precision', precision)])) <NEW_LINE> logging_hook = tf.train.LoggingTensorHook( tensors={'step': model.global_step, 'loss': model.cost, 'precision': precision}, every_n_iter=40) <NEW_LINE> class _LearningRateSetterHook(tf.train.SessionRunHook): <NEW_LINE> <INDENT> def begin(self): <NEW_LINE> <INDENT> self._lrn_rate = 0.4 <NEW_LINE> <DEDENT> def before_run(self, run_context): <NEW_LINE> <INDENT> return tf.train.SessionRunArgs( model.global_step, feed_dict={model.lrn_rate: self._lrn_rate}) <NEW_LINE> <DEDENT> def after_run(self, run_context, run_values): <NEW_LINE> <INDENT> train_step = run_values.results <NEW_LINE> if train_step < 6240: <NEW_LINE> <INDENT> self._lrn_rate = 0.1 + 0.3*train_step/6240.0 <NEW_LINE> <DEDENT> elif train_step < 37440: <NEW_LINE> <INDENT> self._lrn_rate = 0.4 <NEW_LINE> <DEDENT> elif train_step < 74880: <NEW_LINE> <INDENT> self._lrn_rate = 0.1 * 0.4 <NEW_LINE> <DEDENT> elif train_step < 99840: <NEW_LINE> <INDENT> self._lrn_rate = 0.01 * 0.4 <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> self._lrn_rate = 0.001 * 0.4 <NEW_LINE> <DEDENT> <DEDENT> <DEDENT> is_chief = (FLAGS.task_index == 0) <NEW_LINE> with tf.train.MonitoredTrainingSession( master=server.target, is_chief=is_chief, checkpoint_dir=FLAGS.log_root, hooks=[tf.train.StopAtStepHook(last_step=FLAGS.train_steps), logging_hook, _LearningRateSetterHook()], chief_only_hooks=[model.replicas_hook, summary_hook], save_summaries_steps=0, stop_grace_period_secs=120, config=tf.ConfigProto(allow_soft_placement=True)) as mon_sess: <NEW_LINE> <INDENT> while not mon_sess.should_stop(): <NEW_LINE> <INDENT> mon_sess.run(model.train_op) | Training loop. | 625941b34d74a7450ccd3f85 |
def rec_replace(in_str, old, new): <NEW_LINE> <INDENT> if old == new: <NEW_LINE> <INDENT> return in_str <NEW_LINE> <DEDENT> if old not in in_str: <NEW_LINE> <INDENT> return in_str <NEW_LINE> <DEDENT> return rec_replace(in_str.replace(old, new), old, new) | Recursively replace a string in a string | 625941b3a17c0f6771cbde16 |
def show_possible_nodes(self): <NEW_LINE> <INDENT> possible_core_nodes = np.logical_and( self.steep_nodes, self.aspect_close_nodes) <NEW_LINE> figure(1) <NEW_LINE> gridshow.imshow_grid_at_node(self.grid, self.elevs) <NEW_LINE> figure(2) <NEW_LINE> gridshow.imshow_grid_at_node(self.grid, self.slopes) <NEW_LINE> figure(3) <NEW_LINE> gridshow.imshow_grid_at_node(self.grid, self.aspect) <NEW_LINE> figure(4) <NEW_LINE> gridshow.imshow_grid_at_node(self.grid, possible_core_nodes) <NEW_LINE> show() | Once the subsets by aspect and slope have been set, call this function
to see both the whole elevation map, and the subset of nodes that
will be searched. | 625941b34527f215b584c21e |
def TransitiveSecondaryParents(self, interface, propagate_event_target): <NEW_LINE> <INDENT> def walk(parents): <NEW_LINE> <INDENT> for parent in parents: <NEW_LINE> <INDENT> parent_name = parent.type.id <NEW_LINE> if IsDartCollectionType(parent_name): <NEW_LINE> <INDENT> result.append(parent_name) <NEW_LINE> continue <NEW_LINE> <DEDENT> if self.HasInterface(parent_name): <NEW_LINE> <INDENT> parent_interface = self.GetInterface(parent_name) <NEW_LINE> result.append(parent_interface) <NEW_LINE> walk(parent_interface.parents) <NEW_LINE> <DEDENT> <DEDENT> <DEDENT> result = [] <NEW_LINE> if interface.parents: <NEW_LINE> <INDENT> parent = interface.parents[0] <NEW_LINE> if (IsPureInterface(parent.type.id) or (propagate_event_target and parent.type.id == 'EventTarget')): <NEW_LINE> <INDENT> walk(interface.parents) <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> walk(interface.parents[1:]) <NEW_LINE> <DEDENT> <DEDENT> return result | Returns a list of all non-primary parents.
The list contains the interface objects for interfaces defined in the
database, and the name for undefined interfaces. | 625941b3009cb60464c63180 |
def lit_pix(self): <NEW_LINE> <INDENT> lit = 0 <NEW_LINE> for i in range(len(s.screen)): <NEW_LINE> <INDENT> for j in range(len(s.screen[0])): <NEW_LINE> <INDENT> if s.screen[i][j] == '#': <NEW_LINE> <INDENT> lit += 1 <NEW_LINE> <DEDENT> <DEDENT> <DEDENT> return lit | Count the number of lit pixels | 625941b331939e2706e4cc33 |
def strip_tags(self): <NEW_LINE> <INDENT> return lib.strip_tags(self.content) | return content field with no html tags included
| 625941b34527f215b584c21f |
def fetchMany(critic, user_ids=None, names=None): <NEW_LINE> <INDENT> import api.impl <NEW_LINE> assert isinstance(critic, api.critic.Critic) <NEW_LINE> assert (user_ids is None) != (names is None) <NEW_LINE> users = api.impl.user.fetchMany(critic, user_ids, names) <NEW_LINE> return users | Fetch many User objects with given user ids or names
Exactly one of the 'user_ids' and 'names' arguments can be used.
If the value of the provided 'user_ids' or 'names' argument is a set, the
return value is a also set of User objects, otherwise it is a list of
User objects, in the same order as the argument sequence.
Exceptions:
InvalidUserIds: if 'user_ids' is used and any element in it is not a
valid user id.
InvalidUserNames: if 'names' is used and any element in it is not a
valid user name. | 625941b36aa9bd52df036b64 |
def make_dict(cir_def,element): <NEW_LINE> <INDENT> e = element <NEW_LINE> volt_dict = {} <NEW_LINE> volt_names = [one_port_element(line).tokens[0] for line in cir_def if one_port_element(line).tokens[0][0].lower()== e] <NEW_LINE> for ind,name in enumerate(volt_names): <NEW_LINE> <INDENT> volt_dict[name] = ind <NEW_LINE> <DEDENT> return volt_dict | Makes a dictionary for each component of the particular type of element | 625941b3167d2b6e31218960 |
def __save_ro_album_artwork(self, data, album): <NEW_LINE> <INDENT> filename = self.get_album_cache_name(album) + ".jpg" <NEW_LINE> store_path = self._STORE_PATH + "/" + filename <NEW_LINE> self._save_pixbuf_from_data(store_path, data) <NEW_LINE> self.clean_album_cache(album) <NEW_LINE> GLib.idle_add(self.album_artwork_update, album.id) | Save artwork for a read only album
@param data as bytes
@param album as Album | 625941b38e71fb1e9831d577 |
def __init__(self, directory, channels=None, defaultMode=None, systemRotateLength=1000000): <NEW_LINE> <INDENT> self._directory = directory <NEW_LINE> self._system_logger = logfile.LogFile( 'system.logs', directory, systemRotateLength, defaultMode) <NEW_LINE> self._channel_loggers = {} <NEW_LINE> for channel_name in channels: <NEW_LINE> <INDENT> self._channel_loggers[channel_name] = DailyFileLogger( channel_name, directory, defaultMode) | Creates one L{DailyFileLogger} logger for each channel in the list,
and one L{twisted.python.logfile.LogFile} (which rotates based on
the length of the file) for system messages.
@param directory: path where all the log files should go
@type directory: C{str}
@param channels: a list of channel names
@type channels: C{list}
@param defaultMode: mode used to create the files.
@type defaultMode: C{int}
@param systemRotateLength: size of the system log file where it
rotates. Default to 1M.
@type rotateLength: C{int} | 625941b3aad79263cf3907fc |
def get_words_in_creator_names(df, creator_column): <NEW_LINE> <INDENT> creators = list(set(df[creator_column].tolist())) <NEW_LINE> words_in_creator_names = [str(creator).split(' ') for creator in creators] <NEW_LINE> words_in_creator_names = [item for sublist in words_in_creator_names for item in sublist] <NEW_LINE> words_in_creator_names = set(words_in_creator_names) <NEW_LINE> return words_in_creator_names | Filters out creator names from words --> see filter_title_words()
| 625941b321a7993f00bc7aaa |
def main(): <NEW_LINE> <INDENT> logging.basicConfig(level=logging.INFO, format='%(levelname)s: %(message)s') <NEW_LINE> if len(sys.argv) != 2: <NEW_LINE> <INDENT> logger.critical("Pass the script one directory") <NEW_LINE> sys.exit(1) <NEW_LINE> <DEDENT> basedir = sys.argv[1] <NEW_LINE> for filepath in datastore_filepaths(basedir): <NEW_LINE> <INDENT> fix_file(filepath) | Main method, called when you run the script. | 625941b394891a1f4081b869 |
def display(self, new_file = False, done_message = None): <NEW_LINE> <INDENT> if new_file: <NEW_LINE> <INDENT> self.output_labels() <NEW_LINE> self._stdout.write(self.ANSI_save_cursor_pos) <NEW_LINE> self._stdout.flush() <NEW_LINE> return <NEW_LINE> <DEDENT> if not (new_file or done_message) and not self._display_needed(): <NEW_LINE> <INDENT> return <NEW_LINE> <DEDENT> timedelta = self.time_current - self.time_start <NEW_LINE> sec_elapsed = timedelta.days * 86400 + timedelta.seconds + float(timedelta.microseconds)/1000000.0 <NEW_LINE> if (sec_elapsed > 0): <NEW_LINE> <INDENT> print_speed = Utils.formatSize((self.current_position - self.initial_position) / sec_elapsed, True, True) <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> print_speed = (0, "") <NEW_LINE> <DEDENT> self._stdout.write(self.ANSI_restore_cursor_pos) <NEW_LINE> self._stdout.write(self.ANSI_erase_to_eol) <NEW_LINE> self._stdout.write("%(current)s of %(total)s %(percent)3d%% in %(elapsed)ds %(speed).2f %(speed_coeff)sB/s" % { "current" : str(self.current_position).rjust(len(str(self.total_size))), "total" : self.total_size, "percent" : self.total_size and (self.current_position * 100 / self.total_size) or 0, "elapsed" : sec_elapsed, "speed" : print_speed[0], "speed_coeff" : print_speed[1] }) <NEW_LINE> if done_message: <NEW_LINE> <INDENT> self._stdout.write(" %s\n" % done_message) <NEW_LINE> <DEDENT> self._stdout.flush() | display(new_file = False[/True], done_message = None) | 625941b3d164cc6175782b0f |
def on_train_begin(self, logs=None, **kwargs): <NEW_LINE> <INDENT> logs = logs or {} <NEW_LINE> for logger in self.loggers: <NEW_LINE> <INDENT> logger.on_train_begin(logs, **kwargs) | At the start of training
Args:
logs: dictionary of logs | 625941b36fece00bbac2d4fd |
def test_api_challenge_get_flags_non_admin(): <NEW_LINE> <INDENT> app = create_kmactf() <NEW_LINE> with app.app_context(): <NEW_LINE> <INDENT> gen_challenge(app.db) <NEW_LINE> with app.test_client() as client: <NEW_LINE> <INDENT> r = client.get("/api/v1/challenges/1/flags", json="") <NEW_LINE> assert r.status_code == 403 <NEW_LINE> <DEDENT> <DEDENT> destroy_kmactf(app) | Can a user get /api/v1/challenges/<challenge_id>/flags if not admin | 625941b35510c4643540f1bc |
def contentor(generator): <NEW_LINE> <INDENT> for page in generator.pages: <NEW_LINE> <INDENT> if page.summary == page.content: <NEW_LINE> <INDENT> page.get_summary = lambda disable: '' <NEW_LINE> <DEDENT> if hasattr(page, 'image') and hasattr(page, 'type') and page.type.lower() == 'team': <NEW_LINE> <INDENT> image_dest_path = os.path.join(os.path.dirname(page.url), page.image.split('}')[-1]) <NEW_LINE> image_source_pth = os.path.join(os.path.dirname(page.source_path), page.image) <NEW_LINE> image_dest_path = image_source_pth.split("content")[0] + "output/" + image_dest_path <NEW_LINE> if not os.path.exists(os.path.dirname(image_dest_path)): <NEW_LINE> <INDENT> os.makedirs(os.path.dirname(image_dest_path)) <NEW_LINE> <DEDENT> shutil.copy(image_source_pth, image_dest_path) <NEW_LINE> page.image = os.path.join(os.path.dirname(page.url), page.image) | Suppress page summary, if none at all. | 625941b32eb69b55b151c66c |
def is_version_newer(semver1, semver2): <NEW_LINE> <INDENT> semver1 = tuple(map(int, (re.sub("[^0-9\.]", "", semver1).split(".")))) <NEW_LINE> semver2 = tuple(map(int, (re.sub("[^0-9\.]", "", semver2).split(".")))) <NEW_LINE> return semver1 >= semver2 | Compares version strings and checks if the semver1 is
newer than semver2.
:returns:
True if semver1 is latest or matches semver2,
False otherwise. | 625941b385dfad0860c3ac1b |
def api_update(self): <NEW_LINE> <INDENT> try: <NEW_LINE> <INDENT> result = self._api_frontend.send(endpoint='Frontend/GetStatus', opts={'timeout': 1}) <NEW_LINE> if list(result.keys())[0] in ['Abort', 'Warning']: <NEW_LINE> <INDENT> self._volume['control'] = False <NEW_LINE> if self._ping_host(): <NEW_LINE> <INDENT> self._state = STATE_UNKNOWN <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> self._state = STATE_OFF <NEW_LINE> <DEDENT> return False <NEW_LINE> <DEDENT> self._frontend = result['FrontendStatus']['State'] <NEW_LINE> if self._frontend['state'] == 'idle': <NEW_LINE> <INDENT> self._state = STATE_IDLE <NEW_LINE> <DEDENT> elif self._frontend['state'].startswith('Watching'): <NEW_LINE> <INDENT> if self._frontend['playspeed'] == '0': <NEW_LINE> <INDENT> self._state = STATE_PAUSED <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> self._state = STATE_PLAYING <NEW_LINE> <DEDENT> <DEDENT> else: <NEW_LINE> <INDENT> self._state = STATE_ON <NEW_LINE> <DEDENT> if 'volume' in self._frontend: <NEW_LINE> <INDENT> self._volume['control'] = True <NEW_LINE> self._volume['level'] = int(self._frontend['volume']) <NEW_LINE> <DEDENT> if 'mute' in self._frontend: <NEW_LINE> <INDENT> self._volume['muted'] = (self._frontend['mute'] != '0') <NEW_LINE> <DEDENT> if self._state not in [STATE_PLAYING, STATE_PAUSED]: <NEW_LINE> <INDENT> self._media_image_url = None <NEW_LINE> <DEDENT> elif self._show_artwork and self._has_playing_media_changed(): <NEW_LINE> <INDENT> self._media_image_url = self._get_artwork() <NEW_LINE> <DEDENT> <DEDENT> except Exception as error: <NEW_LINE> <INDENT> self._state = STATE_OFF <NEW_LINE> _LOGGER.warning("Error with '%s' at %s:%d - %s", self._name, self._host_frontend, self._port_frontend, error) <NEW_LINE> _LOGGER.warning(self._frontend) <NEW_LINE> return False <NEW_LINE> <DEDENT> return True | Use the API to get the latest status. | 625941b3e64d504609d74602 |
def test_uninstall_raise(self): <NEW_LINE> <INDENT> mock_hana_inst = MagicMock() <NEW_LINE> mock_hana_inst.uninstall.side_effect = hanamod.hana.HanaError( 'hana error' ) <NEW_LINE> mock_hana = MagicMock(return_value=mock_hana_inst) <NEW_LINE> with patch.object(hanamod, '_init', mock_hana): <NEW_LINE> <INDENT> with pytest.raises(exceptions.CommandExecutionError) as err: <NEW_LINE> <INDENT> hanamod.uninstall('root', 'pass', None, 'prd', '00', 'pass') <NEW_LINE> <DEDENT> mock_hana.assert_called_once_with('prd', '00', 'pass') <NEW_LINE> mock_hana_inst.uninstall.assert_called_once_with('root', 'pass') <NEW_LINE> assert 'hana error' in str(err) | Test uninstall method - raise | 625941b3507cdc57c6306a94 |
def get_next_state(self, a, i): <NEW_LINE> <INDENT> cs = self.states[i] <NEW_LINE> ac = self.dcoords(a) <NEW_LINE> ns = cs + ac <NEW_LINE> ns = tuple(ns) <NEW_LINE> if self.is_state(ns): <NEW_LINE> <INDENT> return self.state_index(ns) <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> return i | Fast next state computation for deterministic models. | 625941b39b70327d1c4e0b96 |
Subsets and Splits