code
stringlengths 4
4.48k
| docstring
stringlengths 1
6.45k
| _id
stringlengths 24
24
|
---|---|---|
def __init__(self, data, _id=None, session=None, date=None, source=None, destination=None): <NEW_LINE> <INDENT> if data is None: <NEW_LINE> <INDENT> data = '' <NEW_LINE> <DEDENT> self.data = data <NEW_LINE> self.session = session <NEW_LINE> if _id is None: <NEW_LINE> <INDENT> _id = uuid.uuid4() <NEW_LINE> <DEDENT> self.id = _id <NEW_LINE> if date is None: <NEW_LINE> <INDENT> date = time.mktime(time.gmtime()) <NEW_LINE> <DEDENT> self.__date = date <NEW_LINE> self.__source = source <NEW_LINE> self.__destination = destination <NEW_LINE> self.__visualizationFunctions = TypedList(VisualizationFunction) <NEW_LINE> self.__metadata = OrderedDict() <NEW_LINE> self.__semanticTags = OrderedDict() | :parameter data: the content of the message
:type data: a :class:`object`
:parameter _id: the unique identifier of the message
:type _id: :class:`uuid.UUID`
:keyword session: the session in which the message was captures
:type session: :class:`netzob.Common.Models.Vocabulary.Session.Session`
:parameter date: the timestamp of the message
:type date: a :class:`int`
:parameter source: the optional source address of the message
:type source: a :class:`str`
:parameter destination: the optional destination address of the message
:type destination: a :class:`str` | 625941b3656771135c3eb622 |
def to_int(facts): <NEW_LINE> <INDENT> result = functools.reduce(lambda x, y: x * (y[0] ** y[1]), facts, 1) <NEW_LINE> return result | Assuming the input is a list of tuples of the form (p_i, a_i), this method
returns the scalar product (p_i ** a_i) * (p_j ** a_j) * ... | 625941b36aa9bd52df036b52 |
def set_disable_keyboard_on_lock(enable): <NEW_LINE> <INDENT> state = __utils__['mac_utils.validate_enabled'](enable) <NEW_LINE> cmd = 'systemsetup -setdisablekeyboardwhenenclosurelockisengaged ' '{0}'.format(state) <NEW_LINE> __utils__['mac_utils.execute_return_success'](cmd) <NEW_LINE> return __utils__['mac_utils.confirm_updated']( state, get_disable_keyboard_on_lock, normalize_ret=True, ) | Get whether or not the keyboard should be disabled when the X Serve
enclosure lock is engaged.
:param bool enable: True to enable, False to disable. "On" and "Off" are
also acceptable values. Additionally you can pass 1 and 0 to represent
True and False respectively
:return: True if successful, False if not
:rtype: bool
CLI Example:
.. code-block:: bash
salt '*' system.set_disable_keyboard_on_lock False | 625941b3507cdc57c6306a81 |
def fetch_access_token(self, request_token=None, **kwargs): <NEW_LINE> <INDENT> with self._get_oauth_client() as client: <NEW_LINE> <INDENT> if request_token is None: <NEW_LINE> <INDENT> raise MissingRequestTokenError() <NEW_LINE> <DEDENT> token = {} <NEW_LINE> token.update(request_token) <NEW_LINE> token.update(kwargs) <NEW_LINE> client.token = token <NEW_LINE> params = self.access_token_params or {} <NEW_LINE> token = client.fetch_access_token(self.access_token_url, **params) <NEW_LINE> <DEDENT> return token | Fetch access token in one step.
:param request_token: A previous request token for OAuth 1.
:param kwargs: Extra parameters to fetch access token.
:return: A token dict. | 625941b397e22403b379cd48 |
def set_captain(self) -> None: <NEW_LINE> <INDENT> self.print_players() <NEW_LINE> print("-"*50) <NEW_LINE> captain_nr = int(input("Write the shirt number of your upcoming captain: ")) <NEW_LINE> if self.team.set_captain(captain_nr) == False: <NEW_LINE> <INDENT> print("There isn't a player in the squad with nr: " + str(captain_nr)) <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> print("Nr:" + str(captain_nr) + " is now your new captain") | Makes a player the team captain | 625941b394891a1f4081b858 |
def get_optimizer_param_groups_lr( model: OptimizerModelsType, base_lr: float, bias_lr_factor: float = 1.0, lr_multipliers_overwrite: Optional[Dict[str, float]] = None, ): <NEW_LINE> <INDENT> params: List[Dict[str, Any]] = [] <NEW_LINE> for ( module_name, _module, module_param_name, value, ) in iterate_module_named_parameters(model): <NEW_LINE> <INDENT> cur_lr = base_lr <NEW_LINE> if module_param_name == "bias": <NEW_LINE> <INDENT> cur_lr = base_lr * bias_lr_factor <NEW_LINE> <DEDENT> if lr_multipliers_overwrite is not None: <NEW_LINE> <INDENT> for kname, mult in lr_multipliers_overwrite.items(): <NEW_LINE> <INDENT> if kname in module_name: <NEW_LINE> <INDENT> cur_lr = cur_lr * mult <NEW_LINE> <DEDENT> <DEDENT> <DEDENT> params += [ { "params": [value], "lr": cur_lr, } ] <NEW_LINE> <DEDENT> return params | Allow setting up lr for modules
base_lr: lr for all modules
bias_lr_factor: scale factor for lr for bias term
lr_multipliers_overwrite (dict: str-> float):
Applying different lr multiplier to a set of parameters whose names
containing certain keys. For example, if lr_multipliers_overwrite={'backbone': 0.1},
the LR for the parameters whose names containing 'backbone' will be scaled to 0.1x.
Set lr_multipliers_overwrite=None if no multipliers required. | 625941b3187af65679ca4ed5 |
@receiver(post_save, sender=User) <NEW_LINE> def create_notification_setting(sender, **kwargs): <NEW_LINE> <INDENT> if kwargs['created']: <NEW_LINE> <INDENT> NotificationSetting.objects.get_or_create(user=kwargs['instance']) | ユーザー作成時に空のnotification_settingも作成する | 625941b3baa26c4b54cb0ed4 |
def readData(self): <NEW_LINE> <INDENT> self.filepath = askopenfilename(parent=root, title="Choose data set!").__str__() <NEW_LINE> file = open(self.filepath,'r') <NEW_LINE> root.destroy() <NEW_LINE> strm1 = file.read().split('\n') <NEW_LINE> inData = np.zeros([4, len(strm1)-1]) <NEW_LINE> output = np.zeros([1, len(strm1)-1]) <NEW_LINE> for ln in range(len(strm1)-1): <NEW_LINE> <INDENT> smp = np.array( [float(i) for i in strm1[ln].split(',')]) <NEW_LINE> inData[:, ln] = smp[0:4] <NEW_LINE> output[0][ln] = smp[-1] <NEW_LINE> <DEDENT> file.close() <NEW_LINE> return [inData, output] | doc strig | 625941b355399d3f05588463 |
def stripFormatting(s): <NEW_LINE> <INDENT> s = stripColor(s) <NEW_LINE> s = stripBold(s) <NEW_LINE> s = stripReverse(s) <NEW_LINE> s = stripUnderline(s) <NEW_LINE> s = stripItalic(s) <NEW_LINE> return s.replace('\x0f', '').replace('\x0F', '') | Returns the string s, with all formatting removed. | 625941b36fece00bbac2d4eb |
def _backpropagate(self, path, reward): <NEW_LINE> <INDENT> for node in reversed(path): <NEW_LINE> <INDENT> self.N[node] += 1 <NEW_LINE> self.Q[node] += reward | Send the reward back up to the ancestors of the leaf | 625941b345492302aab5e070 |
def test_dict(): <NEW_LINE> <INDENT> pass | Test C{dict} interface
>>> import gbp.git
>>> modifier = gbp.git.GitModifier('foo', 'bar', 1)
>>> sorted(modifier.keys())
['date', 'email', 'name']
>>> sorted(modifier.items())
[('date', '1 +0000'), ('email', 'bar'), ('name', 'foo')] | 625941b38c3a87329515816e |
@array <NEW_LINE> @score_10 <NEW_LINE> def pscore(detections, annotations, tolerance=PSCORE_TOLERANCE): <NEW_LINE> <INDENT> if len(annotations) < 2: <NEW_LINE> <INDENT> raise BeatIntervalError("At least 2 annotations are needed for" "P-Score.") <NEW_LINE> <DEDENT> if float(tolerance) <= 0: <NEW_LINE> <INDENT> raise ValueError("`tolerance` must be greater than 0.") <NEW_LINE> <DEDENT> window = tolerance * np.median(np.diff(annotations)) <NEW_LINE> errors = calc_absolute_errors(detections, annotations) <NEW_LINE> p = len(detections[errors <= window]) <NEW_LINE> p /= float(max(len(detections), len(annotations))) <NEW_LINE> return p | Calculate the P-score accuracy for the given detections and annotations.
The P-score is determined by taking the sum of the cross-correlation
between two impulse trains, representing the detections and annotations
allowing for a tolerance of 20% of the median annotated interval [1]_.
Parameters
----------
detections : list or numpy array
Detected beats.
annotations : list or numpy array
Annotated beats.
tolerance : float, optional
Evaluation tolerance (fraction of the median beat interval).
Returns
-------
pscore : float
P-Score.
Notes
-----
Contrary to the original implementation which samples the two impulse
trains with 100Hz, we do not quantise the annotations and detections but
rather count all detections falling withing the defined tolerance window.
References
----------
.. [1] M. McKinney, D. Moelants, M. Davies and A. Klapuri,
"Evaluation of audio beat tracking and music tempo extraction
algorithms",
Journal of New Music Research, vol. 36, no. 1, 2007. | 625941b3b830903b967e96c9 |
def calculate_euclidean_distance(out_dir, ref_set, params, fit_type, datasets, subset=None): <NEW_LINE> <INDENT> euclidean_base_csv = 'euclidean_distances_from_{}_datasets_{}'.format(len(datasets), fit_type) <NEW_LINE> if subset is not None: <NEW_LINE> <INDENT> euclidean_base_csv = euclidean_base_csv.rsplit('.')[0] + subset + '.csv' <NEW_LINE> <DEDENT> for residue, data in ref_set.iterrows(): <NEW_LINE> <INDENT> euclidean_csv='{}'.format(residue) + euclidean_base_csv <NEW_LINE> if not os.path.exists(os.path.join(out_dir,residue,euclidean_csv)): <NEW_LINE> <INDENT> start=time.time() <NEW_LINE> parameters_csv_filename = '{}_from_{}_datasets_{}.csv'.format( residue,len(datasets),fit_type) <NEW_LINE> fit_parameters=pandas.read_csv(os.path.join(out_dir,residue,parameters_csv_filename), index_col=0, header=0) <NEW_LINE> euclidean_distance=pandas.DataFrame(index=fit_parameters.index, columns=fit_parameters.index) <NEW_LINE> if subset == 'Amplitudes': <NEW_LINE> <INDENT> fit_parameters = fit_parameters[['a1','a2','a3']] <NEW_LINE> <DEDENT> elif subset == 'Amplitudes_Means': <NEW_LINE> <INDENT> fit_parameters = fit_parameters[['a1','a2','a3','mean_1','mean_2','mean_3']] <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> logger.warning('Incorrect identifier for subset of parameters on which to perform clustering') <NEW_LINE> <DEDENT> for dataset_col in fit_parameters.index: <NEW_LINE> <INDENT> for dataset_row in fit_parameters.index: <NEW_LINE> <INDENT> euclidean_distance.loc[dataset_col][dataset_row] = euclidean( fit_parameters.loc[dataset_col].values,fit_parameters.loc[dataset_row].values) <NEW_LINE> <DEDENT> <DEDENT> euclidean_distance.to_csv(os.path.join(out_dir,residue,euclidean_csv)) <NEW_LINE> end=time.time() <NEW_LINE> duration=end-start <NEW_LINE> logger.info('{}: Euclidean distance ' 'for {} datasets in ' '{} seconds'.format(residue, len(datasets), duration)) <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> logger.info('{}: Euclidean distance already calculated for these {} datasets'.format(residue,len(datasets))) <NEW_LINE> <DEDENT> <DEDENT> return euclidean_base_csv | Calculates and store pairwise euclidean distances | 625941b37c178a314d6ef208 |
@log_func <NEW_LINE> def ProposeClassView(request): <NEW_LINE> <INDENT> if request.method == 'POST': <NEW_LINE> <INDENT> form = ClassProposalForm(request.POST) <NEW_LINE> user_message = UserMessage.objects.get_or_create( view='ProposeClassView', code="SUBMIT_SUCCESS", defaults={ 'summary': "Class Proposal Success", 'description': default_propose_submit_msg}) <NEW_LINE> if form.is_valid(): <NEW_LINE> <INDENT> form.save() <NEW_LINE> messages.success(request, user_message[0].description) <NEW_LINE> return HttpResponseRedirect(reverse('home', urlconf='gbe.urls')) <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> template = loader.get_template('gbe/class_proposal.tmpl') <NEW_LINE> context = RequestContext(request, {'form': form}) <NEW_LINE> return HttpResponse(template.render(context)) <NEW_LINE> <DEDENT> <DEDENT> else: <NEW_LINE> <INDENT> form = ClassProposalForm() <NEW_LINE> template = loader.get_template('gbe/class_proposal.tmpl') <NEW_LINE> context = RequestContext(request, {'form': form}) <NEW_LINE> return HttpResponse(template.render(context)) | Handle suggestions for classes from the great unwashed | 625941b3507cdc57c6306a82 |
def fileSyntaxCheck(fileInfo, timeoutInterval=20): <NEW_LINE> <INDENT> return hdlConvertor.parse(fileInfo.fileName, fileInfo.lang) | Perform syntax check on whole file | 625941b3046cf37aa974cafb |
def __init__(self, word_to_idx, mode='train', features_L=196,features_D=512, dim_embed=512, dim_hidden=1024, n_time_step=16, alpha_c=0.0, lstm_dropout_keep_prob=0.5): <NEW_LINE> <INDENT> assert mode in ["train", "eval"] <NEW_LINE> self.word_to_idx = word_to_idx <NEW_LINE> self.vocab_size = len(word_to_idx) <NEW_LINE> self.mode = mode <NEW_LINE> self.idx_to_word = {i: w for w, i in word_to_idx.iteritems()} <NEW_LINE> self.alpha_c = alpha_c <NEW_LINE> self.lstm_dropout_keep_prob = lstm_dropout_keep_prob <NEW_LINE> self.V = len(word_to_idx) <NEW_LINE> self.L = features_L <NEW_LINE> self.D = features_D <NEW_LINE> self.M = dim_embed <NEW_LINE> self.H = dim_hidden <NEW_LINE> self.T = n_time_step <NEW_LINE> self._start = word_to_idx['<START>'] <NEW_LINE> self._null = word_to_idx['<NULL>'] <NEW_LINE> self.global_step = 0 <NEW_LINE> self.weight_initializer = tf.random_uniform_initializer(minval=-0.08, maxval=0.08) <NEW_LINE> self.const_initializer = tf.constant_initializer(0.0) <NEW_LINE> self.emb_initializer = tf.random_uniform_initializer(minval=-1.0, maxval=1.0) <NEW_LINE> self.features = tf.placeholder(tf.float32, [None, self.L, self.D]) <NEW_LINE> self.captions = tf.placeholder(tf.int32, [None, self.T + 1]) | Args:
word_to_idx: word-to-index mapping dictionary.
mode: train or evaluation
features_L, features_D: (optional) Dimension of vggnet19 conv5_3 feature vectors.
dim_embed: (optional) Dimension of word embedding.
dim_hidden: (optional) Dimension of all hidden state.
n_time_step: (optional) Time step size of LSTM.
alpha_c: (optional) Doubly stochastic regularization coefficient. (see Section (4.2.1) for explanation)
lstm_dropout_keep_prob: (optional) The possibility a hidden layer to be kept. | 625941b37d43ff24873a2a54 |
def __init__(self, top, bot): <NEW_LINE> <INDENT> self.top = top <NEW_LINE> self.bot = bot | initializer for RationalFraction instance. top and bot are
Polynomial object representing numerator and denominator | 625941b391af0d3eaac9b7c3 |
def write_image_fluxes(self): <NEW_LINE> <INDENT> log.info("Writing image fluxes ...") <NEW_LINE> self.images_fluxes.saveto(self.images_fluxes_filepath) | This function ...
:return: | 625941b3d164cc6175782afe |
def InsertListCtrlItem(self, index, value, item): <NEW_LINE> <INDENT> i = self.__id(item) <NEW_LINE> some_long = self.InsertStringItem(index, value) <NEW_LINE> gItem = self.GetItem(index) <NEW_LINE> gItem.SetData(i) <NEW_LINE> self.SetItem(gItem) <NEW_LINE> return some_long | Insert an item to the list control giving it an internal id. | 625941b399cbb53fe6792998 |
def hash_password(plain_password): <NEW_LINE> <INDENT> return pwd_context.hash(plain_password) | Hash the password, using the pre-configured CryptContext. | 625941b32c8b7c6e89b3557c |
def get(self, key): <NEW_LINE> <INDENT> if key not in self.key_map: <NEW_LINE> <INDENT> return -1 <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> self.touch(key) <NEW_LINE> return self.val_map[key] | :type key: int
:rtype: int | 625941b330dc7b766590171c |
def unshift(self): <NEW_LINE> <INDENT> if self.begin is None: <NEW_LINE> <INDENT> firstvalue = None <NEW_LINE> <DEDENT> elif self.begin == self.end: <NEW_LINE> <INDENT> firstvalue = self.end.value <NEW_LINE> self.begin = None <NEW_LINE> self.end = None <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> firstvalue = self.begin.value <NEW_LINE> self.begin = self.begin.next <NEW_LINE> self.begin.prev = None <NEW_LINE> <DEDENT> return firstvalue | Removes the first item (from begin) and returns it. | 625941b3d58c6744b4257a11 |
def datetime_to_seconds(dt): <NEW_LINE> <INDENT> return dt.timestamp() | Name this, just because its confusing. | 625941b3a4f1c619b28afdfc |
def is_bool(value: Union[str, bool]) -> bool: <NEW_LINE> <INDENT> return (value in true_list + false_list) or (isinstance(value, bool)) | validate whether the value is boolean | 625941b3cb5e8a47e48b7869 |
def create_carrier_proposed_assignment(self, **kwargs): <NEW_LINE> <INDENT> kwargs['_return_http_data_only'] = True <NEW_LINE> return self.create_carrier_proposed_assignment_with_http_info(**kwargs) | Create an assignment # noqa: E501
Creates a new assignment that a driver can later use. Each driver can only have one future assignment. **Submit Feedback**: Likes, dislikes, and API feature requests should be filed as feedback in our <a href="https://forms.gle/zkD4NCH7HjKb7mm69" target="_blank">API feedback form</a>. If you encountered an issue or noticed inaccuracies in the API documentation, please <a href="https://www.samsara.com/help" target="_blank">submit a case</a> to our support team. # noqa: E501
This method makes a synchronous HTTP request by default. To make an
asynchronous HTTP request, please pass async_req=True
>>> thread = api.create_carrier_proposed_assignment(async_req=True)
>>> result = thread.get()
:param async_req bool: execute request asynchronously
:param CreateCarrierProposedAssignmentRequest carrier_proposed_assignment: The assignment to create.
:param _preload_content: if False, the urllib3.HTTPResponse object will
be returned without reading/decoding response
data. Default is True.
:param _request_timeout: timeout setting for this request. If one
number provided, it will be total request
timeout. It can also be a pair (tuple) of
(connection, read) timeouts.
:return: CarrierProposedAssignmentResponse
If the method is called asynchronously,
returns the request thread. | 625941b3287bf620b61d3822 |
@celery.task(bind=True, ignore_results=True, base=AttributeManager) <NEW_LINE> def update_attributes(self: AttributeManager, app_name: str, user_id: str) -> None: <NEW_LINE> <INDENT> warnings.warn("This function will be removed. Use update_attributes_keep_result instead.", DeprecationWarning) <NEW_LINE> _update_attributes(self, app_name, user_id) | Task executing on the Celery worker service as an RPC called from
the different eduID applications.
:param self: base class
:param app_name: calling application name, like 'eduid_signup'
:param user_id: id for the user that has been updated by the calling application | 625941b301c39578d7e74bf5 |
def get_loaded_modules(): <NEW_LINE> <INDENT> return " ".join(os.environ.get("LOADEDMODULES", "").split(":")) | Returns a space separated list of loaded modules
These are modules loaded by the environment-modules system. This function
just looks in the LOADEDMODULES environment variable for the list. | 625941b3fff4ab517eb2f1e9 |
def filter_old_data(filename): <NEW_LINE> <INDENT> dataframe = pd.read_csv(filename) <NEW_LINE> to_remove = set([dt for dt in dataframe.date_and_time if flip_dates(dt) < deadline_time(6)]) <NEW_LINE> for dt in to_remove: dataframe = dataframe[dataframe.date_and_time != dt] <NEW_LINE> dataframe.to_csv(path_or_buf="services/frontend_files/recent_severe_crimes.csv", sep=",", index=False) | Removes entries from the csv that occur before the threshhold date
:param filename: file to remove entries from | 625941b3eab8aa0e5d26d90f |
def plot_confusion_matrix(cm, classes, normalize=False, title='Confusion matrix', cmap=plt.cm.Blues): <NEW_LINE> <INDENT> if normalize: <NEW_LINE> <INDENT> cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis] <NEW_LINE> print("Normalized confusion matrix") <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> print('Confusion matrix, without normalization') <NEW_LINE> <DEDENT> print(cm) <NEW_LINE> plt.imshow(cm, interpolation='nearest', cmap=cmap) <NEW_LINE> plt.title(title) <NEW_LINE> plt.colorbar() <NEW_LINE> tick_marks = np.arange(len(classes)) <NEW_LINE> plt.xticks(tick_marks, classes, rotation=45) <NEW_LINE> plt.yticks(tick_marks, classes) <NEW_LINE> fmt = '.2f' if normalize else 'd' <NEW_LINE> thresh = cm.max() / 2. <NEW_LINE> for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])): <NEW_LINE> <INDENT> plt.text(j, i, format(cm[i, j], fmt), horizontalalignment="center", color="white" if cm[i, j] > thresh else "black") <NEW_LINE> <DEDENT> plt.tight_layout() <NEW_LINE> plt.ylabel('True label') <NEW_LINE> plt.xlabel('Predicted label') <NEW_LINE> plt.savefig('Confusion_Matrix_' + '.png') <NEW_LINE> plt.close() | This function prints and plots the confusion matrix.
Normalization can be applied by setting `normalize=True`.
Input
- cm : 计算出的混淆矩阵的值
- classes : 混淆矩阵中每一行每一列对应的列
- normalize : True:显示百分比, False:显示个数 | 625941b33539df3088e2e0fc |
def create_test_data(user=None): <NEW_LINE> <INDENT> SiteFactory() <NEW_LINE> UserFactory.create_batch(size=10) | Create test data. | 625941b394891a1f4081b859 |
def set_trigger(self): <NEW_LINE> <INDENT> ret = self.uEyeDll.is_SetExternalTrigger(self.cam, c_uint(IS_SET_TRIGGER_SOFTWARE)) <NEW_LINE> if ret == IS_SUCCESS: <NEW_LINE> <INDENT> self.logger.info("Successfully set software trigger") <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> self.logger.error("Failed to set software trigger; error code: " + str(ret)) <NEW_LINE> return | Wrapped call to set trigger type to software trigger. | 625941b3462c4b4f79d1d481 |
def split(l, idx): <NEW_LINE> <INDENT> if isinstance(idx, numbers.Integral): <NEW_LINE> <INDENT> idx = [idx] <NEW_LINE> <DEDENT> if idx: <NEW_LINE> <INDENT> idx = [0, *sorted(idx), len(l)] <NEW_LINE> for i, j in mit.pairwise(idx): <NEW_LINE> <INDENT> yield l[i:j] <NEW_LINE> <DEDENT> <DEDENT> else: <NEW_LINE> <INDENT> yield l | Split a list into sub-lists at the given indices | 625941b3adb09d7d5db6c545 |
def test_generate_orphans_by_type_with_unit_keys(self): <NEW_LINE> <INDENT> unit_1 = gen_content_unit(PHONY_TYPE_1.id, self.content_root) <NEW_LINE> gen_content_unit(PHONY_TYPE_2.id, self.content_root) <NEW_LINE> results = list(self.orphan_manager.generate_orphans_by_type_with_unit_keys(PHONY_TYPE_1.id)) <NEW_LINE> self.assertEqual(1, len(results)) <NEW_LINE> self.assertEqual(unit_1['_content_type_id'], results[0]['_content_type_id']) | Assert that orphans are retrieved by type with unit keys correctly | 625941b3ad47b63b2c509d3e |
def __init__(self, item): <NEW_LINE> <INDENT> self.__item = item <NEW_LINE> self.itemID = item.ID if item is not None else None <NEW_LINE> self.amount = 0 <NEW_LINE> self.__itemModifiedAttributes = ModifiedAttributeDict() <NEW_LINE> self.__itemModifiedAttributes.original = item.attributes <NEW_LINE> self.__itemModifiedAttributes.overrides = item.overrides | Initialize cargo from the program | 625941b3b57a9660fec33630 |
def test_transcribe_dna_to_rna(): <NEW_LINE> <INDENT> assert 'GAUGGAACUUGACUACGUAAAUU' == transcribe_dna_to_rna('GATGGAACTTGACTACGTAAATT') | Test for transcribe_dna_to_rna. | 625941b38c0ade5d55d3e770 |
def endomorphism_ring(self, category=None): <NEW_LINE> <INDENT> try: <NEW_LINE> <INDENT> return self.__endomorphism_ring <NEW_LINE> <DEDENT> except AttributeError: <NEW_LINE> <INDENT> pass <NEW_LINE> <DEDENT> self.__endomorphism_ring = homspace.EndomorphismSubring(self, category=category) <NEW_LINE> return self.__endomorphism_ring | Return the endomorphism ring of self.
OUTPUT: b = self.sturm_bound()
EXAMPLES: We compute a few endomorphism rings::
sage: from sage_modabvar import J0
sage: J0(11).endomorphism_ring()
Endomorphism ring of Abelian variety J0(11) of dimension 1
sage: J0(37).endomorphism_ring()
Endomorphism ring of Abelian variety J0(37) of dimension 2
sage: J0(33)[2].endomorphism_ring()
Endomorphism ring of Simple abelian subvariety 33a(1,33) of dimension 1 of J0(33)
No real computation is done::
sage: from sage_modabvar import J1
sage: J1(123456).endomorphism_ring()
Endomorphism ring of Abelian variety J1(123456) of dimension 423185857 | 625941b3097d151d1a222c15 |
def num_processes(tree, fn): <NEW_LINE> <INDENT> c = Counter() <NEW_LINE> for proc in tree.iter('process'): <NEW_LINE> <INDENT> c['num_processes'] += 1 <NEW_LINE> <DEDENT> return c | gets the number of processes in the exe | 625941b3a79ad161976cbef7 |
def is_valid_type(self, filepath): <NEW_LINE> <INDENT> if len(self._validators) == 0: <NEW_LINE> <INDENT> validators = [self.default_validator, self.not_repo] <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> validators = self._validators + [self.not_repo] <NEW_LINE> <DEDENT> for validator in validators: <NEW_LINE> <INDENT> if not validator(filepath): <NEW_LINE> <INDENT> return False <NEW_LINE> <DEDENT> <DEDENT> return True | Returns True if the given filepath is a valid watchable filetype.
The filepath can be assumed to be a file (not a directory). | 625941b36e29344779a623c9 |
def getShortDescription(self, test, room): <NEW_LINE> <INDENT> room -= 1 <NEW_LINE> s = str(test) <NEW_LINE> if len(s) > room: <NEW_LINE> <INDENT> pos = s.find(" (") <NEW_LINE> if pos >= 0: <NEW_LINE> <INDENT> w = room - (pos + 5) <NEW_LINE> if w < 1: <NEW_LINE> <INDENT> s = s[:room-3] + "..." <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> pre = s[:pos+2] <NEW_LINE> post = s[-w:] <NEW_LINE> s = "%s...%s" % (pre, post) <NEW_LINE> <DEDENT> <DEDENT> else: <NEW_LINE> <INDENT> w = room - 4 <NEW_LINE> s = '... ' + s[-w:] <NEW_LINE> <DEDENT> <DEDENT> return ' ' + s[:room] | Return a description of a test that fits in ``room`` characters. | 625941b34e696a04525c9207 |
def consume_attribute_type_information(line: str) -> Tuple[Optional[str], Optional[Tuple[Union[str, List[str]]]], str]: <NEW_LINE> <INDENT> attribute_type, line = consume(line, ATTRIBUTE_TYPE_PATTERN) <NEW_LINE> if attribute_type is None: <NEW_LINE> <INDENT> return None, None, line <NEW_LINE> <DEDENT> additional = None <NEW_LINE> if attribute_type.startswith('{'): <NEW_LINE> <INDENT> additional = parse_nominal_values(attribute_type) <NEW_LINE> attribute_type = constants.NOMINAL_ATTRIBUTE_KEYWORD <NEW_LINE> <DEDENT> attribute_type = attribute_type.lower() <NEW_LINE> if attribute_type == constants.DATE_ATTRIBUTE_KEYWORD: <NEW_LINE> <INDENT> additional, line = consume(line, DATE_FORMAT_PATTERN) <NEW_LINE> <DEDENT> elif attribute_type == constants.REAL_ATTRIBUTE_KEYWORD or attribute_type == constants.INTEGER_ATTRIBUTE_KEYWORD: <NEW_LINE> <INDENT> additional = attribute_type <NEW_LINE> attribute_type = constants.NUMERIC_ATTRIBUTE_KEYWORD <NEW_LINE> <DEDENT> return attribute_type, (additional,) if additional is not None else tuple(), line | Extracts the type of an attribute from the beginning of a line.
:param line: The line to extract the attribute type from.
:return: The attribute type, any additional type information, and the remainder of the line. | 625941b30383005118ecf396 |
def parse_ggt_format(data_dir): <NEW_LINE> <INDENT> gt_fnames = glob.glob(osp.join(data_dir,'*.json')) <NEW_LINE> id_match = re.compile('.*?([\d]+_*[\d]*).*') <NEW_LINE> gt = {} <NEW_LINE> for gt_fn in gt_fnames: <NEW_LINE> <INDENT> im_id = id_match.match(osp.basename(gt_fn)).groups()[0] <NEW_LINE> gt_dat = [] <NEW_LINE> try: <NEW_LINE> <INDENT> with open(gt_fn,'r') as f: <NEW_LINE> <INDENT> gt_dat = json.load(f) <NEW_LINE> <DEDENT> <DEDENT> except: <NEW_LINE> <INDENT> gt[im_id] = (np.empty((5,0)),[]) <NEW_LINE> <DEDENT> bbs, txt = np.zeros((5,0)), [] <NEW_LINE> for i in xrange(1,len(gt_dat)): <NEW_LINE> <INDENT> try: <NEW_LINE> <INDENT> i_gt = gt_dat[i] <NEW_LINE> if isinstance(i_gt['boundingPoly'],list): <NEW_LINE> <INDENT> verts = [i_gt['boundingPoly'][i]['vertices'] for i in xrange(len(i_gt['boundingPoly']))] <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> verts = i_gt['boundingPoly']['vertices'] <NEW_LINE> <DEDENT> x1y1 = np.array([[verts[0]['x']],[verts[0]['y']]]) <NEW_LINE> x2y2 = np.array([[verts[2]['x']],[verts[2]['y']]]) <NEW_LINE> wh = x2y2 - x1y1 <NEW_LINE> try: <NEW_LINE> <INDENT> score = i_gt['score'] <NEW_LINE> <DEDENT> except KeyError: <NEW_LINE> <INDENT> score = 1 <NEW_LINE> <DEDENT> bbs = np.c_[bbs, np.r_[x1y1,wh,[[score]]]] <NEW_LINE> txt.append(i_gt['description']) <NEW_LINE> gt[im_id] = (bbs,txt) <NEW_LINE> <DEDENT> except KeyError: <NEW_LINE> <INDENT> continue <NEW_LINE> <DEDENT> <DEDENT> <DEDENT> return gt | Parses Google OCR json and returns the
ground-truth in standard format:
image-id --> [5xn, [text_1,text_2,..., text_n]] dict.
Where 5xn is a matrix for n boxes, with first four
numbers being x,y,w,h and the 5th being the "score". | 625941b3e5267d203edcda53 |
def __pingBack(ircMsg): <NEW_LINE> <INDENT> commands = [] <NEW_LINE> nick = ircMsg.net.findNick(ircMsg.src) <NEW_LINE> if nick.pingOut > 0: <NEW_LINE> <INDENT> lagTime = time.time() - nick.pingOut <NEW_LINE> lagTime = round(lagTime, 4) <NEW_LINE> commands.append( "PRIVMSG " + nick.pingDest + " :Your current ping is " + str(lagTime) + " seconds " + ircMsg.src + ".") <NEW_LINE> nick.pingOut = 0 <NEW_LINE> nick.pingDest = None <NEW_LINE> <DEDENT> return commands | Processes a return ping, relays the lag back. | 625941b326238365f5f0ec1a |
def get_or_compute_grads(loss_or_grads, params): <NEW_LINE> <INDENT> if any(not isinstance(p, theano.compile.SharedVariable) for p in params): <NEW_LINE> <INDENT> raise ValueError("params must contain shared variables only. If it " "contains arbitrary parameter expressions, then " "lasagne.utils.collect_shared_vars() may help you.") <NEW_LINE> <DEDENT> if isinstance(loss_or_grads, list): <NEW_LINE> <INDENT> if not len(loss_or_grads) == len(params): <NEW_LINE> <INDENT> raise ValueError("Got %d gradient expressions for %d parameters" % (len(loss_or_grads), len(params))) <NEW_LINE> <DEDENT> return loss_or_grads <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> return theano.grad(loss_or_grads, params, disconnected_inputs='warn') | Helper function returning a list of gradients
Parameters
----------
loss_or_grads : symbolic expression or list of expressions
A scalar loss expression, or a list of gradient expressions
params : list of shared variables
The variables to return the gradients for
Returns
-------
list of expressions
If `loss_or_grads` is a list, it is assumed to be a list of
gradients and returned as is, unless it does not match the length
of `params`, in which case a `ValueError` is raised.
Otherwise, `loss_or_grads` is assumed to be a cost expression and
the function returns `theano.grad(loss_or_grads, params)`.
Raises
------
ValueError
If `loss_or_grads` is a list of a different length than `params`, or if
any element of `params` is not a shared variable (while we could still
compute its gradient, we can never update it and want to fail early). | 625941b3dd821e528d63af63 |
def postproc(self): <NEW_LINE> <INDENT> return True | post-processing | 625941b35f7d997b8717484d |
def __init__(self, data=None, local_vars_configuration=None): <NEW_LINE> <INDENT> if local_vars_configuration is None: <NEW_LINE> <INDENT> local_vars_configuration = Configuration.get_default_copy() <NEW_LINE> <DEDENT> self.local_vars_configuration = local_vars_configuration <NEW_LINE> self._data = None <NEW_LINE> self.discriminator = None <NEW_LINE> if data is not None: <NEW_LINE> <INDENT> self.data = data | GetLiveStreamPlaybackIDResponse - a model defined in OpenAPI | 625941b34527f215b584c214 |
def __init__(self, primary_smtp_address, fullname=None, access_type=None, autodiscover=False, credentials=None, config=None, locale=None, default_timezone=None): <NEW_LINE> <INDENT> if '@' not in primary_smtp_address: <NEW_LINE> <INDENT> raise ValueError("primary_smtp_address '%s' is not an email address" % primary_smtp_address) <NEW_LINE> <DEDENT> self.primary_smtp_address = primary_smtp_address <NEW_LINE> self.fullname = fullname <NEW_LINE> try: <NEW_LINE> <INDENT> self.locale = locale or getlocale()[0] or None <NEW_LINE> <DEDENT> except ValueError as e: <NEW_LINE> <INDENT> log.warning('Failed to get locale (%s)' % e) <NEW_LINE> self.locale = None <NEW_LINE> <DEDENT> if self.locale is not None: <NEW_LINE> <INDENT> if not isinstance(self.locale, string_types): <NEW_LINE> <INDENT> raise ValueError("Expected 'locale' to be a string, got %s" % self.locale) <NEW_LINE> <DEDENT> <DEDENT> self.access_type = access_type or (DELEGATE if credentials else IMPERSONATION) <NEW_LINE> if self.access_type not in ACCESS_TYPES: <NEW_LINE> <INDENT> raise ValueError("'access_type' %s must be one of %s" % (self.access_type, ACCESS_TYPES)) <NEW_LINE> <DEDENT> if autodiscover: <NEW_LINE> <INDENT> if not credentials: <NEW_LINE> <INDENT> raise AttributeError('autodiscover requires credentials') <NEW_LINE> <DEDENT> if config: <NEW_LINE> <INDENT> raise AttributeError('config is ignored when autodiscover is active') <NEW_LINE> <DEDENT> self.primary_smtp_address, self.protocol = discover(email=self.primary_smtp_address, credentials=credentials) <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> if not config: <NEW_LINE> <INDENT> raise AttributeError('non-autodiscover requires a config') <NEW_LINE> <DEDENT> self.protocol = config.protocol <NEW_LINE> <DEDENT> try: <NEW_LINE> <INDENT> self.default_timezone = default_timezone or EWSTimeZone.localzone() <NEW_LINE> <DEDENT> except (ValueError, UnknownTimeZone) as e: <NEW_LINE> <INDENT> log.warning('%s. Fallback to UTC', e.args[0]) <NEW_LINE> self.default_timezone = UTC <NEW_LINE> <DEDENT> if not isinstance(self.default_timezone, EWSTimeZone): <NEW_LINE> <INDENT> raise ValueError("Expected 'default_timezone' to be an EWSTimeZone, got %s" % self.default_timezone) <NEW_LINE> <DEDENT> self.version = self.protocol.version <NEW_LINE> try: <NEW_LINE> <INDENT> self.root = Root.get_distinguished(account=self) <NEW_LINE> <DEDENT> except ErrorAccessDenied: <NEW_LINE> <INDENT> log.warning('Access denied to root folder') <NEW_LINE> self.root = Root(account=self) <NEW_LINE> <DEDENT> if not isinstance(self.protocol, Protocol): <NEW_LINE> <INDENT> raise ValueError("Expected 'protocol' to be a Protocol, got %s" % self.protocol) <NEW_LINE> <DEDENT> log.debug('Added account: %s', self) | :param primary_smtp_address: The primary email address associated with the account on the Exchange server
:param fullname: The full name of the account. Optional.
:param access_type: The access type granted to 'credentials' for this account. Valid options are 'delegate'
(default) and 'impersonation'.
:param autodiscover: Whether to look up the EWS endpoint automatically using the autodiscover protocol.
:param credentials: A Credentials object containing valid credentials for this account.
:param config: A Configuration object containing EWS endpoint information. Required if autodiscover is disabled
:param locale: The locale of the user, e.g. 'en_US'. Defaults to the locale of the host, if available.
:param default_timezone: EWS may return some datetime values without timezone information. In this case, we will
assume values to be in the provided timezone. Defaults to the timezone of the host. | 625941b3507cdc57c6306a83 |
def _getRoutingSrcPortDst(self, G): <NEW_LINE> <INDENT> node_port_dst = {} <NEW_LINE> for node in G: <NEW_LINE> <INDENT> port_dst = {} <NEW_LINE> node_port_dst[node] = port_dst <NEW_LINE> for destination in G[node].keys(): <NEW_LINE> <INDENT> port = G[node][destination][0]['port'] <NEW_LINE> node_port_dst[node][port] = destination <NEW_LINE> <DEDENT> <DEDENT> return(node_port_dst) | Return a dictionary of dictionaries with the format:
node_port_dst[node][port] = next_node
Parameters
----------
G : TYPE
DESCRIPTION.
Returns
-------
None. | 625941b38da39b475bd64d28 |
def reverse(dim, R): <NEW_LINE> <INDENT> p = numpy.zeros(dim*(dim+1)/2) <NEW_LINE> k=0 <NEW_LINE> for i in range(dim): <NEW_LINE> <INDENT> for j in range(0,i+1): <NEW_LINE> <INDENT> p[k] = R[i,j] <NEW_LINE> k +=1 <NEW_LINE> <DEDENT> <DEDENT> return p | Transforms a symmetric matrix into a vector containig the lower triangle
:param R: the symmetric matrix
:return: the vector | 625941b3596a89723608987d |
def test_multiple(labels, decisions, tests=('ztest', 'fisher', 'chi2', 'BF', 'prop'), display=False): <NEW_LINE> <INDENT> decisions = boolean_array(decisions) <NEW_LINE> crosstab = pd.crosstab(pd.Series(labels), pd.Series(decisions)) <NEW_LINE> crosstab = crosstab.values <NEW_LINE> tb_crosstab = top_bottom_crosstab(labels, decisions) <NEW_LINE> results = {} <NEW_LINE> if 'ztest' in tests: <NEW_LINE> <INDENT> results['z_score'] = crosstab_ztest(tb_crosstab) <NEW_LINE> <DEDENT> if 'fisher' in tests: <NEW_LINE> <INDENT> results['fisher_p'] = fisher_exact(tb_crosstab)[:2] <NEW_LINE> <DEDENT> if 'chi2' in tests: <NEW_LINE> <INDENT> results['chi2_p'] = chi2_contingency(crosstab)[:2] <NEW_LINE> <DEDENT> if 'BF' in tests: <NEW_LINE> <INDENT> results['BF'] = crosstab_bayes_factor(crosstab) <NEW_LINE> <DEDENT> if 'prop' in tests: <NEW_LINE> <INDENT> results['prop'] = min(proportion_test(labels, decisions)) <NEW_LINE> <DEDENT> if display: <NEW_LINE> <INDENT> for key in results: <NEW_LINE> <INDENT> print("{}: {}".format(key, results[key])) <NEW_LINE> <DEDENT> <DEDENT> return results | Function that returns p_values for z-score, fisher exact, and chi2 test
of 2x2 crosstab of passing rate by labels and decisions
See docs for z_test_ctabs, fisher_exact, chi2_contingency and
bf_ctabs for details of specific tests
Parameters
----------
labels : array_like
categorical labels for each corresponding value of `decision` ie. M/F
decisions : array_like
binary decision values, ie. True/False or 0/1
tests : list
a list of strings specifying the tests to run, valid options
are 'ztest', 'fisher', 'chi2' and 'bayes'. Defaults to all four.
-ztest: p-value for two-sided z-score for proportions
-fisher: p-value for Fisher's exact test for proportions
-chi2: p-value for chi-squared test of independence for proportions
-bayes: bayes factor for independence assuming uniform prior
-prop: proportion of lowest to highest passing rates by group
display : bool
print the results of each test in addition to returning them
Returns
-------
results : dict
dictionary of values, one for each test.
Valid keys are: 'z_score', 'fisher_p', 'chi2_p', 'BF', and 'prop'
Examples
--------
>>> # no real difference between groups
>>> labels = ['group1']*100 + ['group2']*100 + ['group3']*100
>>> decisions = [1,0,0]*100
>>> all_test_ctabs(dependent_ctabs)
(0.0, 1.0, 1.0, 0.26162148804907587)
>>> # massively biased ratio of hits/misses by group
>>> ind_ctabs = np.array([[75,50],[25,50]])
>>> all_test_ctabs(ind_ctabs)
(-3.651483716701106,
0.0004203304586999487,
0.0004558800052056139,
202.95548692414306)
>>> # correcting with a biased prior
>>> biased_prior = np.array([[5,10],[70,10]])
>>> all_test_ctabs(ind_ctabs, biased_prior)
(-3.651483716701106,
0.0004203304586999487,
0.0004558800052056139,
0.00012159518854984268) | 625941b385dfad0860c3ac0a |
def predict_trajectory(x_init, v, y, config): <NEW_LINE> <INDENT> x = np.array(x_init) <NEW_LINE> traj = np.array(x) <NEW_LINE> time = 0 <NEW_LINE> while time <= config.predict_time: <NEW_LINE> <INDENT> x = motion(x, [v, y], config.dt) <NEW_LINE> traj = np.vstack((traj, x)) <NEW_LINE> time += config.dt <NEW_LINE> <DEDENT> return traj | predict trajectory with an input
轨迹产生的原理是,利用motion函数,基于当前机器人的状态x,在未来一段时间内(predict_time)产生一串状态x的序列 | 625941b394891a1f4081b85a |
def single_view(self,request): <NEW_LINE> <INDENT> if request.method == 'GET': <NEW_LINE> <INDENT> form = SingleModelForm() <NEW_LINE> return render(request,'single_view.html',{'form':form}) <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> form = SingleModelForm(request.POST) <NEW_LINE> if form.is_valid(): <NEW_LINE> <INDENT> sale_id = AutoSale.get_sale_id() <NEW_LINE> if not sale_id: <NEW_LINE> <INDENT> return HttpResponse('没有销售,无法进行自动分配') <NEW_LINE> <DEDENT> try: <NEW_LINE> <INDENT> with transaction.atomic(): <NEW_LINE> <INDENT> form.instance.consultant_id = sale_id <NEW_LINE> form.instance.recv_date = datetime.datetime.now().date() <NEW_LINE> newcustomer_obj = form.save() <NEW_LINE> models.CustomerDistribution.objects.create(user_id=sale_id, customer=newcustomer_obj.id,memo='系统分配') <NEW_LINE> <DEDENT> <DEDENT> except Exception as e: <NEW_LINE> <INDENT> AutoSale.rollback(sale_id) <NEW_LINE> return HttpResponse('录入异常') <NEW_LINE> <DEDENT> return HttpResponse('录入成功') <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> print(form.errors) <NEW_LINE> return render(request,'single_view.html',{'form':form}) | 单条录入
:param request:
:return: | 625941b360cbc95b062c62fb |
def addCounts(countDict, fname): <NEW_LINE> <INDENT> logging.debug("Parsing %s" % fname) <NEW_LINE> for line in open(fname): <NEW_LINE> <INDENT> line = line.strip() <NEW_LINE> fields = line.split("\t") <NEW_LINE> if len(fields)!=2: <NEW_LINE> <INDENT> logging.error("Count line %s does not contain two fields" % repr(line)) <NEW_LINE> continue <NEW_LINE> <DEDENT> id, count = fields <NEW_LINE> count = int(count) <NEW_LINE> countDict[id]+=count <NEW_LINE> <DEDENT> return countDict | parse line of file with format <id>tab<count>, add counts to dict, return dict | 625941b3187af65679ca4ed7 |
def has_in(self): <NEW_LINE> <INDENT> return self._idx < len(self.stdin) | Return true if input queue has data | 625941b3baa26c4b54cb0ed6 |
def file2groupname(filename, slen=5, symtable=None): <NEW_LINE> <INDENT> def randstr(n): <NEW_LINE> <INDENT> return ''.join([chr(random.randint(97, 122)) for i in range(n)]) <NEW_LINE> <DEDENT> gname = fix_varname(filename).lower() + randstr(slen) <NEW_LINE> if '_' in gname: <NEW_LINE> <INDENT> gname = gname.replace('_', '') <NEW_LINE> gname = fix_varname(gname) <NEW_LINE> <DEDENT> fmt, count, maxcount = "%s{:04d}", 1, 999 <NEW_LINE> fstr = fmt % (gname[:slen]) <NEW_LINE> gname = fstr.format(count) <NEW_LINE> if symtable is not None: <NEW_LINE> <INDENT> scount = 0 <NEW_LINE> while hasattr(symtable, gname): <NEW_LINE> <INDENT> count += 1 <NEW_LINE> if count > maxcount: <NEW_LINE> <INDENT> scount += 1 <NEW_LINE> count = 1 <NEW_LINE> fstr = fmt % randstr(slen) <NEW_LINE> <DEDENT> gname = fstr.format(count) <NEW_LINE> if scount > 1000: <NEW_LINE> <INDENT> raise ValueError("exhausted unique group names") <NEW_LINE> <DEDENT> <DEDENT> <DEDENT> return gname | create a group name based of filename
the group name will have a string component of
length slen followed by a 4 digit number
Arguments
---------
filename (str) filename to use
slen (int) length of string portion (default 5)
symtable (None or larch symbol table) symbol table for
checking that the group name is unique | 625941b30a50d4780f666c41 |
def create_sriov_logicalport(self, ip, logicalpartition_uuid, x_api_session): <NEW_LINE> <INDENT> log.log_debug("starting SRIOV LogicalPort creation") <NEW_LINE> header_object = HmcHeaders.HmcHeaders("web") <NEW_LINE> ns = header_object.ns["xmlns"] <NEW_LINE> sriov_logical_port_object = UOM.SRIOVEthernetLogicalPort() <NEW_LINE> sriov_logical_port_object.AdapterID = ADAPTER_ID <NEW_LINE> sriov_logical_port_object.PhysicalPortID = PHYSICALPORT_ID <NEW_LINE> sriov_logical_port_object.schemaVersion = SCHEMA_VER <NEW_LINE> xml = sriov_logical_port_object.toxml() <NEW_LINE> http_object = HTTPClient.HTTPClient("uom", ip, self.root, self.content_type, x_api_session) <NEW_LINE> http_object.HTTPPut(xml, append = logicalpartition_uuid+"/SRIOVEthernetLogicalPort") <NEW_LINE> log.log_debug("response of SRIOV logical port creation %s"%(http_object.response)) <NEW_LINE> if http_object.response_b: <NEW_LINE> <INDENT> print("SRIOV Logical Port created successfully") <NEW_LINE> <DEDENT> else : <NEW_LINE> <INDENT> root = etree.fromstring(http_object.response.content) <NEW_LINE> error = root.findall(".//{%s}Message"%(ns))[0] <NEW_LINE> log.log_error(error.text) | Creates SRIOV Logical Port for a given LogicaPartition
Args:
ip:ip address of hmc
logicalpartition_uuid : UUID of partition the LoicalPort to be created
x_api_session :session to be used | 625941b363b5f9789fde6e97 |
@app.route("/register", methods=["GET", "POST"]) <NEW_LINE> def register(): <NEW_LINE> <INDENT> if request.method == "POST": <NEW_LINE> <INDENT> if request.form.get("password") != request.form.get("confirm-password"): <NEW_LINE> <INDENT> return render_template("register.html", nomatch=1) <NEW_LINE> <DEDENT> rows = db.execute("SELECT * FROM users WHERE username = :username", username=request.form.get("username")) <NEW_LINE> if len(rows): <NEW_LINE> <INDENT> return render_template("register.html", usernametaken=1) <NEW_LINE> <DEDENT> db.execute("INSERT INTO users (username, hash) VALUES (:username, :hash)", username=request.form.get( "username"), hash=generate_password_hash(request.form.get("password"))) <NEW_LINE> return redirect("/login") <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> return render_template("register.html") | Register user | 625941b338b623060ff0aba8 |
def loss(self, logits, labels): <NEW_LINE> <INDENT> with tf.name_scope('loss'): <NEW_LINE> <INDENT> logits = tf.reshape(logits, (-1, 2)) <NEW_LINE> shape = [logits.get_shape()[0], 2] <NEW_LINE> epsilon = tf.constant(value=1e-8, shape=shape) <NEW_LINE> logits = logits + epsilon <NEW_LINE> labels = tf.to_float(tf.reshape(labels, (-1, 2))) <NEW_LINE> softmax = tf.nn.softmax(logits) <NEW_LINE> cross_entropy = -tf.reduce_sum(labels * tf.log(softmax), reduction_indices=[1]) <NEW_LINE> cross_entropy_mean = tf.reduce_mean(cross_entropy, name='xentropy_mean') <NEW_LINE> tf.add_to_collection('losses', cross_entropy_mean) <NEW_LINE> loss = tf.add_n(tf.get_collection('losses'), name='total_loss') <NEW_LINE> <DEDENT> return loss | Calculates the loss from the logits and the labels.
Args:
logits: Logits tensor, float - [batch_size, 2].
labels: Labels tensor, int32 - [batch_size, 2].
Returns:
loss: Loss tensor of type float. | 625941b36fece00bbac2d4ed |
def register_observation(self, obs: Observation): <NEW_LINE> <INDENT> obs.client = self._client <NEW_LINE> lbl_len = len(obs.labels) <NEW_LINE> obs_space_len = len(obs.observation_space.low) <NEW_LINE> obs_len = obs.compute().size <NEW_LINE> if lbl_len != obs_space_len: <NEW_LINE> <INDENT> raise ValueError('Labels have length {} != obs space len {}'.format( lbl_len, obs_space_len)) <NEW_LINE> <DEDENT> if lbl_len != obs_len: <NEW_LINE> <INDENT> raise ValueError('Labels have length {} != obs len {}'.format( lbl_len, obs_len)) <NEW_LINE> <DEDENT> self._observations.append(obs) | Add an observation to be computed.
Args:
obs (Observation): Observation to be tracked. | 625941b3dc8b845886cb52e6 |
def _select_polarization (self,value): <NEW_LINE> <INDENT> self.ms_corr_names = value.split(" "); <NEW_LINE> ncorr = len(self.ms_corr_names); <NEW_LINE> if ncorr < 2: <NEW_LINE> <INDENT> corrlist = [self._corr_1, self._corr_1_2x2]; <NEW_LINE> <DEDENT> elif ncorr < 4: <NEW_LINE> <INDENT> corrlist = [self._corr_2,self._corr_1, self._corr_1_2x2]; <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> corrlist = [self._corr_2x2,self._corr_2x2_diag,self._corr_2,self._corr_1, self._corr_1_2x2]; <NEW_LINE> <DEDENT> self.corrsel_option.set_option_list(corrlist); | Called when the polarization representation is selected | 625941b345492302aab5e072 |
def get_item_type(self, xml_str: bytes): <NEW_LINE> <INDENT> root = Etree.fromstring(xml_str) <NEW_LINE> for x in root.findall('entry'): <NEW_LINE> <INDENT> if x.get('key') == "type": <NEW_LINE> <INDENT> raw_type = x.text <NEW_LINE> <DEDENT> <DEDENT> if raw_type in SUPPORTED_ELEMENT_TYPES: <NEW_LINE> <INDENT> if raw_type == 'ScriptModule': <NEW_LINE> <INDENT> return "Action" <NEW_LINE> <DEDENT> return raw_type <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> logger.warning("Unsupported element type for item: %s (%s)" % (self.id, raw_type)) <NEW_LINE> return "Unsupported" | Get the item type.
Args:
xml_str (bytes): The XML content for item info.
Returns:
str: The type name. | 625941b3b7558d58953c4ccf |
def get_params(self): <NEW_LINE> <INDENT> return self._params | Returns the DecentParams structure which originated these results. | 625941b3be7bc26dc91cd3b9 |
def fit(self, X, y=None): <NEW_LINE> <INDENT> return self | Could add a method here to fill in pixels with surrounding median
so that the model could pick up digits that are thinner | 625941b3b830903b967e96cb |
def get_parent(self): <NEW_LINE> <INDENT> return self.__parent | Gets the scope's parent scope.
:return: The current scope's parent scope. | 625941b38e7ae83300e4ad7f |
def ahead(ant): <NEW_LINE> <INDENT> return neighbor(ant, ant.direction) | Gets the ant's ahead neighbor. | 625941b366673b3332b91e49 |
def list_mountables(self): <NEW_LINE> <INDENT> self.output.info('Mountable overlays:') <NEW_LINE> self.output.info('~~~~~~~~~~~~~~~~~~~') <NEW_LINE> if self.mountables: <NEW_LINE> <INDENT> for ovl in sorted(self.mountables): <NEW_LINE> <INDENT> self.output.info(ovl) <NEW_LINE> <DEDENT> <DEDENT> else: <NEW_LINE> <INDENT> self.output.warn('N/A') | Lists all overlays that can be mounted. | 625941b37047854f462a11c0 |
def runZlib(WRS, compressLevel = 6): <NEW_LINE> <INDENT> if WRS.compresslevel: compressLevel = WRS.compresslevel <NEW_LINE> useTimer = perf_counter() <NEW_LINE> writeTimer = perf_counter() <NEW_LINE> with open(WRS.fileName, 'wb') as f: <NEW_LINE> <INDENT> f.write(zlib.compress(bytes(json.dumps(data), encoding="ascii"), level=compressLevel)) <NEW_LINE> <DEDENT> f.close() <NEW_LINE> readTimer = perf_counter() <NEW_LINE> with open(WRS.fileName, "rb") as f: <NEW_LINE> <INDENT> res = json.loads(zlib.decompress(f.read())) <NEW_LINE> <DEDENT> f.close() <NEW_LINE> endTimer = perf_counter() <NEW_LINE> WRS.addRecord(useTimer, writeTimer, readTimer, endTimer) <NEW_LINE> WRS.printThisStat() | json zlib | 625941b3d268445f265b4c27 |
def test_ContactHandler_read_filter_id(self): <NEW_LINE> <INDENT> handler = ContactHandler <NEW_LINE> type = 'read' <NEW_LINE> test_data = ( ('?id=1&id=2', {}, 'populated_list', 2), ('?id=1', {}, 'populated_list', 1), ('?id=', {}, 'unprocessable', 1), ('?id=&id=1&id=2', {}, 'unprocessable', 1), ('?id=lalalala', {}, 'unprocessable', 1), ) <NEW_LINE> self.execute(type, handler, test_data) | Plural DELETE request, applying the filter ``id``. | 625941b3f7d966606f6a9dbb |
def _get_as_dict(self, resource_id, fields=None, os_ironic_api_version=None, global_request_id=None): <NEW_LINE> <INDENT> resource = self._get(resource_id, fields=fields, os_ironic_api_version=os_ironic_api_version, global_request_id=global_request_id) <NEW_LINE> if resource: <NEW_LINE> <INDENT> return resource.to_dict() <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> return {} | Retrieve a resource as a dictionary
:param resource_id: Identifier of the resource.
:param fields: List of specific fields to be returned.
:param os_ironic_api_version: String version (e.g. "1.35") to use for
the request. If not specified, the client's default is used.
:param global_request_id: String containing global request ID header
value (in form "req-<UUID>") to use for the request.
:returns: a dictionary representing the resource; may be empty | 625941b31b99ca400220a862 |
def search_hashtag(self, hashtag): <NEW_LINE> <INDENT> search_hashtag = f'#{hashtag} -filter:retweets' <NEW_LINE> client = self.API() <NEW_LINE> numTweets = 100 <NEW_LINE> distinct_hashtags = collections.defaultdict(int) <NEW_LINE> for tweet in tweepy.Cursor(client.search, q=search_hashtag, tweet_mode='extended').items(numTweets): <NEW_LINE> <INDENT> data = tweet._json['entities']['hashtags'] <NEW_LINE> for i in range(len(data)): <NEW_LINE> <INDENT> distinct_hashtags[data[i]['text']] += 1 <NEW_LINE> <DEDENT> <DEDENT> hashtag_df = pd.DataFrame(distinct_hashtags.items(),columns=['Hashtag','Occurences']) <NEW_LINE> hashtag_df = hashtag_df.sort_values('Hashtag') <NEW_LINE> pd.set_option('display.max_rows',None) <NEW_LINE> if not os.path.exists(self.logs_folder()+f'{hashtag}_hashtag_{self.get_timestamp()}.csv'): <NEW_LINE> <INDENT> with open(self.logs_folder()+f'{hashtag}_hashtag_{self.get_timestamp()}.csv', 'w+'): pass <NEW_LINE> <DEDENT> hashtag_df.to_csv(self.logs_folder()+f'{hashtag}_hashtag_{self.get_timestamp()}.csv',encoding='utf-8-sig', index=False) <NEW_LINE> print(hashtag_df.to_string(index=False)) | Print hashtags and the number of their occurences in the first 100 tweets with specified hashtag | 625941b3956e5f7376d70c2f |
def object_info(self, oname, detail_level=0): <NEW_LINE> <INDENT> content = dict(oname=oname, detail_level=detail_level) <NEW_LINE> msg = self.session.msg('object_info_request', content) <NEW_LINE> self._queue_send(msg) <NEW_LINE> return msg['header']['msg_id'] | Get metadata information about an object.
Parameters
----------
oname : str
A string specifying the object name.
detail_level : int, optional
The level of detail for the introspection (0-2)
Returns
-------
The msg_id of the message sent. | 625941b363b5f9789fde6e98 |
def _finite_field_ext_pari_(self): <NEW_LINE> <INDENT> f = self.polynomial() <NEW_LINE> return FiniteField_ext_pari(self.order(), self.variable_name(), f) | Return a :class:`FiniteField_ext_pari` isomorphic to ``self`` with
the same defining polynomial.
.. NOTE::
This method will vanish eventually because that implementation of
finite fields will be deprecated.
EXAMPLES::
sage: k.<a> = GF(2^20)
sage: kP = k._finite_field_ext_pari_()
sage: kP
Finite Field in a of size 2^20
sage: type(kP)
<class 'sage.rings.finite_rings.finite_field_ext_pari.FiniteField_ext_pari_with_category'> | 625941b3f8510a7c17cf94b8 |
def get_samples_from_labels(self, labels, trials=5): <NEW_LINE> <INDENT> clamped = np.ones(labels.shape, dtype=np.float32) <NEW_LINE> data = self.get_samples([(self.label_idx, labels)], walkback=self.calc_walkback(trials), indices=[self.input_idx], clamped=[clamped], symbolic=False) <NEW_LINE> return np.array(data)[:, 0, :, :] | Clamps labels and generates samples.
Parameters
----------
labels : WRITEME
trials : WRITEME | 625941b3d18da76e23532283 |
def delete_blocked_domain_with_http_info(self, domain, **kwargs): <NEW_LINE> <INDENT> all_params = ['domain'] <NEW_LINE> all_params.append('async_req') <NEW_LINE> all_params.append('_return_http_data_only') <NEW_LINE> all_params.append('_preload_content') <NEW_LINE> all_params.append('_request_timeout') <NEW_LINE> params = locals() <NEW_LINE> for key, val in six.iteritems(params['kwargs']): <NEW_LINE> <INDENT> if key not in all_params: <NEW_LINE> <INDENT> raise TypeError( "Got an unexpected keyword argument '%s'" " to method delete_blocked_domain" % key ) <NEW_LINE> <DEDENT> params[key] = val <NEW_LINE> <DEDENT> del params['kwargs'] <NEW_LINE> if ('domain' not in params or params['domain'] is None): <NEW_LINE> <INDENT> raise ValueError("Missing the required parameter `domain` when calling `delete_blocked_domain`") <NEW_LINE> <DEDENT> collection_formats = {} <NEW_LINE> path_params = {} <NEW_LINE> if 'domain' in params: <NEW_LINE> <INDENT> path_params['domain'] = params['domain'] <NEW_LINE> <DEDENT> query_params = [] <NEW_LINE> header_params = {} <NEW_LINE> form_params = [] <NEW_LINE> local_var_files = {} <NEW_LINE> body_params = None <NEW_LINE> header_params['Accept'] = self.api_client.select_header_accept( ['application/json']) <NEW_LINE> header_params['Content-Type'] = self.api_client.select_header_content_type( ['application/json']) <NEW_LINE> auth_settings = ['api-key', 'partner-key'] <NEW_LINE> return self.api_client.call_api( '/smtp/blockedDomains/{domain}', 'DELETE', path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_type=None, auth_settings=auth_settings, async_req=params.get('async_req'), _return_http_data_only=params.get('_return_http_data_only'), _preload_content=params.get('_preload_content', True), _request_timeout=params.get('_request_timeout'), collection_formats=collection_formats) | Unblock an existing domain from the list of blocked domains # noqa: E501
Unblocks an existing domain from the list of blocked domains # noqa: E501
This method makes a synchronous HTTP request by default. To make an
asynchronous HTTP request, please pass async_req=True
>>> thread = api.delete_blocked_domain_with_http_info(domain, async_req=True)
>>> result = thread.get()
:param async_req bool
:param str domain: The name of the domain to be deleted (required)
:return: None
If the method is called asynchronously,
returns the request thread. | 625941b3046cf37aa974cafe |
def fit(self,X,y): <NEW_LINE> <INDENT> X, y = check_X_y(X, y, accept_sparse = None, dtype=np.float64) <NEW_LINE> if self.normalize: <NEW_LINE> <INDENT> self._x_mean = np.mean(X,0) <NEW_LINE> self._x_std = np.std(X,0) <NEW_LINE> X = (X - self._x_mean) / self._x_std <NEW_LINE> <DEDENT> if self.fit_intercept: <NEW_LINE> <INDENT> X = np.concatenate((np.ones([X.shape[0],1]),X),1) <NEW_LINE> <DEDENT> check_classification_targets(y) <NEW_LINE> self.classes_ = np.unique(y) <NEW_LINE> n_classes = len(self.classes_) <NEW_LINE> if n_classes < 2: <NEW_LINE> <INDENT> raise ValueError("Need samples of at least 2 classes" " in the data, but the data contains only one" " class: %r" % self.classes_[0]) <NEW_LINE> <DEDENT> if n_classes < 2: <NEW_LINE> <INDENT> raise ValueError("Need samples of at least 2 classes") <NEW_LINE> <DEDENT> if n_classes > 2: <NEW_LINE> <INDENT> self.coef_, self.sigma_ = [0]*n_classes,[0]*n_classes <NEW_LINE> self.intercept_ , self.active_ = [0]*n_classes, [0]*n_classes <NEW_LINE> self.lambda_ = [0]*n_classes <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> self.coef_, self.sigma_, self.intercept_,self.active_ = [0],[0],[0],[0] <NEW_LINE> self.lambda_ = [0] <NEW_LINE> <DEDENT> for i in range(len(self.classes_)): <NEW_LINE> <INDENT> if n_classes == 2: <NEW_LINE> <INDENT> pos_class = self.classes_[1] <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> pos_class = self.classes_[i] <NEW_LINE> <DEDENT> mask = (y == pos_class) <NEW_LINE> y_bin = np.zeros(y.shape, dtype=np.float64) <NEW_LINE> y_bin[mask] = 1 <NEW_LINE> coef,bias,active,sigma,lambda_ = self._fit(X,y_bin) <NEW_LINE> self.coef_[i], self.intercept_[i], self.sigma_[i] = coef, bias, sigma <NEW_LINE> self.active_[i], self.lambda_[i] = active, lambda_ <NEW_LINE> if n_classes == 2: <NEW_LINE> <INDENT> break <NEW_LINE> <DEDENT> <DEDENT> self.coef_ = np.asarray(self.coef_) <NEW_LINE> self.intercept_ = np.asarray(self.intercept_) <NEW_LINE> return self | Fits Logistic Regression with ARD
Parameters
----------
X: array-like of size [n_samples, n_features]
Training data, matrix of explanatory variables
y: array-like of size [n_samples]
Target values
Returns
-------
self : object
Returns self. | 625941b32c8b7c6e89b3557e |
def save(self): <NEW_LINE> <INDENT> self.send('save') | Save current parameters in non-volatile memory. | 625941b34f6381625f1147f9 |
def connect( self, resource_group_name, resource_provider_namespace, parent_resource_type, parent_resource, serial_port, **kwargs ): <NEW_LINE> <INDENT> cls = kwargs.pop('cls', None) <NEW_LINE> error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } <NEW_LINE> error_map.update(kwargs.pop('error_map', {})) <NEW_LINE> api_version = "2018-05-01" <NEW_LINE> accept = "application/json" <NEW_LINE> url = self.connect.metadata['url'] <NEW_LINE> path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'resourceProviderNamespace': self._serialize.url("resource_provider_namespace", resource_provider_namespace, 'str'), 'parentResourceType': self._serialize.url("parent_resource_type", parent_resource_type, 'str', skip_quote=True), 'parentResource': self._serialize.url("parent_resource", parent_resource, 'str'), 'serialPort': self._serialize.url("serial_port", serial_port, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } <NEW_LINE> url = self._client.format_url(url, **path_format_arguments) <NEW_LINE> query_parameters = {} <NEW_LINE> query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') <NEW_LINE> header_parameters = {} <NEW_LINE> header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') <NEW_LINE> request = self._client.post(url, query_parameters, header_parameters) <NEW_LINE> pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) <NEW_LINE> response = pipeline_response.http_response <NEW_LINE> if response.status_code not in [200]: <NEW_LINE> <INDENT> map_error(status_code=response.status_code, response=response, error_map=error_map) <NEW_LINE> raise HttpResponseError(response=response, error_format=ARMErrorFormat) <NEW_LINE> <DEDENT> deserialized = self._deserialize('SerialPortConnectResult', pipeline_response) <NEW_LINE> if cls: <NEW_LINE> <INDENT> return cls(pipeline_response, deserialized, {}) <NEW_LINE> <DEDENT> return deserialized | Connect to serial port of the target resource.
:param resource_group_name: The name of the resource group.
:type resource_group_name: str
:param resource_provider_namespace: The namespace of the resource provider.
:type resource_provider_namespace: str
:param parent_resource_type: The resource type of the parent resource. For example:
'virtualMachines' or 'virtualMachineScaleSets'.
:type parent_resource_type: str
:param parent_resource: The resource name, or subordinate path, for the parent of the serial
port. For example: the name of the virtual machine.
:type parent_resource: str
:param serial_port: The name of the serial port to connect to.
:type serial_port: str
:keyword callable cls: A custom type or function that will be passed the direct response
:return: SerialPortConnectResult, or the result of cls(response)
:rtype: ~azure.mgmt.serialconsole.models.SerialPortConnectResult
:raises: ~azure.core.exceptions.HttpResponseError | 625941b37b180e01f3dc45bb |
def get_mem_usage(pid): <NEW_LINE> <INDENT> mem = {} <NEW_LINE> pid_status_path='/proc/%s/status'%pid <NEW_LINE> with open(pid_status_path) as f: <NEW_LINE> <INDENT> for line in f: <NEW_LINE> <INDENT> mem[line.split(':')[0]] = line.split(':')[1].strip() <NEW_LINE> <DEDENT> <DEDENT> return mem | 得到进程的pid号,查看/proc/pid/status文件,格式如下
VmPeak: 23836 kB
VmSize: 23796 kB
VmLck: 0 kB
VmHWM: 2012 kB
VmRSS: 2012 kB
VmData: 680 kB
VmStk: 88 kB
VmExe: 116 kB
VmLib: 2356 kB
然后将其放到字典中,以:为分隔第一列是key,第二列是value,最后函数返回字典mem | 625941b3c432627299f049fa |
def cal_cost(self, X, groups): <NEW_LINE> <INDENT> k = self.k <NEW_LINE> total_cost = 0. <NEW_LINE> for i in xrange(k): <NEW_LINE> <INDENT> idx = np.where(groups == i) <NEW_LINE> group_X = X[idx, :] <NEW_LINE> diff = group_X - self.centers[i, :] <NEW_LINE> cost = np.power(diff, 2).sum() <NEW_LINE> total_cost += cost <NEW_LINE> <DEDENT> avg_cost = total_cost / X.shape[0] <NEW_LINE> return avg_cost | return cost of all clusters | 625941b316aa5153ce36222b |
def flatten_SIF(data): <NEW_LINE> <INDENT> result = np.zeros(data[0].shape) + 2 <NEW_LINE> for z in range(data.shape[0]): <NEW_LINE> <INDENT> mask = result == 2 <NEW_LINE> result[mask] = data[z][mask] <NEW_LINE> <DEDENT> return result.astype(int) | Color of pixel is the first non-transparent layer.
0=black, 1=white, 2=transparent | 625941b33346ee7daa2b2b1b |
def create_mlb_target(self, target): <NEW_LINE> <INDENT> target = spotinst_mlb.TargetRequest(target) <NEW_LINE> excluded_group_dict = self.exclude_missing(json.loads(target.toJSON())) <NEW_LINE> formatted_group_dict = self.convert_json( excluded_group_dict, self.underscore_to_camel) <NEW_LINE> body_json = json.dumps(formatted_group_dict) <NEW_LINE> self.print_output(body_json) <NEW_LINE> response = self.send_post( url=self.__base_lb_url + "/target", body=body_json, entity_name="mlb target" ) <NEW_LINE> formatted_response = self.convert_json( response, self.camel_to_underscore) <NEW_LINE> retVal = formatted_response["response"]["items"][0] <NEW_LINE> return retVal | Create MLB target
# Arguments
target (Target): Target Object
# Returns
(Object): Spotinst API response | 625941b32ae34c7f2600cee4 |
def __init__(self): <NEW_LINE> <INDENT> with open('authorizer_rules.yaml') as rules_file: <NEW_LINE> <INDENT> self._rules = yaml.load(rules_file) | Initialise the authorizer by loading the rules file | 625941b356ac1b37e6263f94 |
def test_flatten_by_keys_validList(): <NEW_LINE> <INDENT> flattened = flatten_by_keys(FORECAST, keys=['city', 'coord.lat']) <NEW_LINE> assert flattened == {'city': 'jacksonville', 'coord.lat': 30.332} | GIVEN a json-serialzed document converted to a python dict
WHEN the user requests to flatten and specifies a list of keys
THEN assert it flattens only the specified keys | 625941b32ae34c7f2600cee5 |
def spikeGet(t,v,vT=None): <NEW_LINE> <INDENT> if vT == None: <NEW_LINE> <INDENT> vT = [(0.75*(np.max(v)-np.sqrt(np.std(v)))), 10] <NEW_LINE> vT = np.max(vT) <NEW_LINE> <DEDENT> vTF = v>vT <NEW_LINE> idx = np.nonzero((vTF[:-1]==0) & (vTF[1:]==1)) <NEW_LINE> return t[idx[0]+1] | Extract spike time using boolean logic. Seperate array at T/F
order offset one place, compare and detect.
Args:
t: numpy time array
v: numpy voltage array
vT = voltage threshold (optional)
Returns:
firing rate of neuron | 625941b3fff4ab517eb2f1eb |
def deducirajPobjednika (konacni_rezultat): <NEW_LINE> <INDENT> pobjednik = [0] <NEW_LINE> for i in range(1, len(konacni_rezultat)): <NEW_LINE> <INDENT> if konacni_rezultat[i] > konacni_rezultat[pobjednik[0]]: <NEW_LINE> <INDENT> pobjednik = [i] <NEW_LINE> <DEDENT> elif konacni_rezultat[i] == konacni_rezultat[pobjednik[0]]: <NEW_LINE> <INDENT> pobjednik.append(i) <NEW_LINE> <DEDENT> <DEDENT> if len(pobjednik) > 1: <NEW_LINE> <INDENT> return tuple(pobjednik) <NEW_LINE> <DEDENT> return pobjednik[0] | Otkrij tko je skupio strogo najvise bodova.
Argument funkcije mora biti povratna vrijednost funkcije
Tablic.Log.konacniRezultat iz koje se trazi indeks igraca sa strogo
najvecim brojem skupljenih bodova. Ako vise igraca dijeli prvo mjesto,
povratna vrijednost je uzlazno sortirani tuple njihovih indeksa. | 625941b3627d3e7fe0d68c01 |
def _get_name_for_type(self, type_value): <NEW_LINE> <INDENT> datadict = json.loads(self.instance.xform.json) <NEW_LINE> for item in datadict['children']: <NEW_LINE> <INDENT> if type(item) == dict and item.get('type') == type_value: <NEW_LINE> <INDENT> return item['name'] | We cannot assume that start time and end times always use the same
XPath. This is causing problems for other peoples' forms.
This is a quick fix to determine from the original XLSForm's JSON
representation what the 'name' was for a given
type_value ('start' or 'end') | 625941b3ab23a570cc24ff3a |
def sign(self, request, consumer, token): <NEW_LINE> <INDENT> key, raw = self.signing_base(request, consumer, token) <NEW_LINE> hashed = hmac.new(key, raw, sha) <NEW_LINE> return binascii.b2a_base64(hashed.digest())[:-1] | Builds the base signature string. | 625941b324f1403a92600925 |
def _get_env_vars(self): <NEW_LINE> <INDENT> env_vars = {} <NEW_LINE> if self.auth_token: <NEW_LINE> <INDENT> env_vars['st2_auth_token'] = self.auth_token.token <NEW_LINE> <DEDENT> if self._env: <NEW_LINE> <INDENT> env_vars.update(self._env) <NEW_LINE> <DEDENT> return env_vars | :rtype: ``dict`` | 625941b321a7993f00bc7a9b |
def fit(self, examples, min_word_count=10, min_char_count=100, num_chars_per_word=16): <NEW_LINE> <INDENT> tokenized_examples = [ _tokenize(example, self._tokenizer, num_chars_per_word) for example in tqdm(examples, 'tokenizing') ] <NEW_LINE> word_counter = _get_word_counter(tokenized_examples) <NEW_LINE> char_counter = _get_char_counter(tokenized_examples) <NEW_LINE> self._word2idx_dict = _counter2vocab(word_counter, min_word_count) <NEW_LINE> tf.logging.info('Word vocab size: %d' % len(self._word2idx_dict)) <NEW_LINE> self._char2idx_dict = _counter2vocab(char_counter, min_char_count) <NEW_LINE> tf.logging.info('Char vocab size: %d' % len(self._char2idx_dict)) <NEW_LINE> glove_word2idx_dict = _get_glove_vocab( self._glove_words, counter=word_counter) <NEW_LINE> tf.logging.info('Glove word vocab size: %d' % len(glove_word2idx_dict)) <NEW_LINE> def glove_word2idx(word): <NEW_LINE> <INDENT> word = word.lower() <NEW_LINE> return glove_word2idx_dict[word] if word in glove_word2idx_dict else 1 <NEW_LINE> <DEDENT> indexed_examples = [ _index(example, self.word2idx, glove_word2idx, self.char2idx) for example in tqdm(tokenized_examples, desc='indexing') ] <NEW_LINE> metadata = self._get_metadata(indexed_examples) <NEW_LINE> metadata['glove_word2idx'] = glove_word2idx_dict <NEW_LINE> metadata['num_chars_per_word'] = num_chars_per_word <NEW_LINE> return indexed_examples, metadata | Fits examples and return indexed examples with metadata.
Fitting examples means the vocab is created out of the examples.
The vocab can be saved via `save` and loaded via `load` methods.
Args:
examples: list of dictionary, where each dictionary is an example.
min_word_count: `int` value, minimum word count to be included in vocab.
min_char_count: `int` value, minimum char count to be included in vocab.
num_chars_per_word: `int` value, number of chars to store per word.
This is fixed, so if word is shorter, then the rest is padded with 0.
The characters are flattened, so need to be reshaped when using them.
Returns:
a tuple `(indexed_examples, metadata)`, where `indexed_examples` is a
list of dict (each dict being indexed example) and `metadata` is a dict
of `glove_word2idx_dict` and statistics of the examples. | 625941b3d58c6744b4257a14 |
def download_playlist(db: DBMuziek, name: str): <NEW_LINE> <INDENT> playlist_query = db.get_playlist(name) <NEW_LINE> if not playlist_query: <NEW_LINE> <INDENT> print(f"The playlist {name} doesn't exist.") <NEW_LINE> return <NEW_LINE> <DEDENT> songs = db.get_playlist_songs(playlist_query["playlist_id"]) <NEW_LINE> if not songs: <NEW_LINE> <INDENT> print(f"The playlist {name} is empty.") <NEW_LINE> return <NEW_LINE> <DEDENT> for song in songs: <NEW_LINE> <INDENT> download_song(db, song["song_name"], song["group_id"]) | Downloads the playlist requested based on the urls stored in the database.
:author: Carlos
:param db: The database used.
:param name: Name of the playlist to download.
:PRE: The database object needs to be connected.
:POST: All the songs in the playlist are downloaded | 625941b3fff4ab517eb2f1ec |
@app.route('/') <NEW_LINE> def viz_page(): <NEW_LINE> <INDENT> return flask.render_template("nmf_demo.html") | Homepage: serve our visualization page, awesome.html | 625941b394891a1f4081b85b |
def __init__(self, **specs): <NEW_LINE> <INDENT> BackgroundSources.__init__(self, **specs) | Constructor for class GalaxiesFaintStars | 625941b3099cdd3c635f0a10 |
def set_params(self, params): <NEW_LINE> <INDENT> pass | Set parameters from an array, using the same ordering as the list
returned by self.params(). | 625941b30a366e3fb873e5c9 |
def _hm_event_callback(self, device, caller, attribute, value): <NEW_LINE> <INDENT> _LOGGER.debug("%s received event '%s' value: %s", self._name, attribute, value) <NEW_LINE> has_changed = False <NEW_LINE> if attribute in self._data: <NEW_LINE> <INDENT> if self._data[attribute] != value: <NEW_LINE> <INDENT> self._data[attribute] = value <NEW_LINE> has_changed = True <NEW_LINE> <DEDENT> <DEDENT> if attribute == 'UNREACH': <NEW_LINE> <INDENT> self._available = bool(value) <NEW_LINE> has_changed = True <NEW_LINE> <DEDENT> if has_changed: <NEW_LINE> <INDENT> self.schedule_update_ha_state() | Handle all pyhomematic device events. | 625941b31f5feb6acb0c4910 |
def from_labelling_and_area_sequence(L, D): <NEW_LINE> <INDENT> return ParkingFunction_class([L.index(i)+1-D[L.index(i)] for i in range(1,len(L)+1)]) | Returns the parking function corresponding to the labelling area sequence pair.
INPUT:
- ``L`` -- a labelling permutation
- ``D`` -- an area sequence for a Dyck word
OUTPUT:
- returns the parking function corresponding the labelling permutation ``L``
and ``D`` an area sequence of the corresponding Dyck path
EXAMPLES::
sage: from sage.combinat.parking_functions import from_labelling_and_area_sequence
sage: from_labelling_and_area_sequence([2, 6, 4, 5, 3, 7, 1], [0, 1, 1, 2, 0, 1, 1])
[6, 1, 5, 2, 2, 1, 5]
::
sage: from_labelling_and_area_sequence([1, 2, 3], [0, 1, 2])
[1, 1, 1]
sage: from_labelling_and_area_sequence([1, 2, 3], [0, 0, 0])
[1, 2, 3]
sage: from_labelling_and_area_sequence([1, 2, 3], [0, 1, 1])
[1, 1, 2]
sage: from_labelling_and_area_sequence([1, 2, 4, 3], [0, 1, 2, 1])
[1, 1, 3, 1] | 625941b331939e2706e4cc25 |
def add_neighbor(self, vertex_obj, weight): <NEW_LINE> <INDENT> self.neighbors_dict[vertex_obj.__id] = (vertex_obj, weight) <NEW_LINE> return self.neighbors_dict | Add a neighbor along a weighted edge by storing it in the neighbors dictionary.
Parameters:
vertex_obj (Vertex): An instance of Vertex to be stored as a neighbor.
weight (int): The edge weight from self -> neighbor. | 625941b36aa9bd52df036b55 |
def hostRoles(opt): <NEW_LINE> <INDENT> return hostFact(opt.role_fact, opt) | Return a dict matching hostnames and system roles (as selected via
role_fact). | 625941b3d7e4931a7ee9dccf |
def __get_block(self, block_hash): <NEW_LINE> <INDENT> sql = 'SELECT * FROM block WHERE hash = "{}";'.format(block_hash) <NEW_LINE> return self.__query(sql) | Retrieves a block from the database with a hash.
| 625941b3a05bb46b383ec5e1 |
def get_subcategory(self, id, **data): <NEW_LINE> <INDENT> return self.get("/subcategories/{0}/".format(id), data=data) | GET /subcategories/:id/
Gets a :format:`subcategory` by ID as ``subcategory``. | 625941b3097d151d1a222c17 |
def scripting_start(self): <NEW_LINE> <INDENT> self.wd = tk.Toplevel(self.root.master) <NEW_LINE> if self.root.octadist_icon is not None: <NEW_LINE> <INDENT> self.wd.wm_iconbitmap(self.root.octadist_icon) <NEW_LINE> <DEDENT> self.wd.title("OctaDist Scripting Interface") <NEW_LINE> self.wd.bind("<Return>", self.script_execute) <NEW_LINE> self.wd.resizable(0, 0) <NEW_LINE> lbl = tk.Label(self.wd, text="Output:") <NEW_LINE> lbl.grid(padx="5", pady="5", sticky=tk.W, row=0, column=0) <NEW_LINE> self.box_script = tk.Text(self.wd, width=70, height=20) <NEW_LINE> self.box_script.grid(padx="5", pady="5", row=1, column=0, columnspan=2) <NEW_LINE> lbl = tk.Label(self.wd, text="Input:") <NEW_LINE> lbl.grid(padx="5", pady="5", sticky=tk.W, row=2, column=0) <NEW_LINE> self.entry_script = tk.Entry(self.wd, width=62) <NEW_LINE> self.entry_script.grid(padx="5", pady="5", sticky=tk.W, row=3, column=0) <NEW_LINE> btn_script = tk.Button(self.wd, text="Run") <NEW_LINE> btn_script.bind("<Button-1>", self.script_execute) <NEW_LINE> btn_script.grid(padx="5", pady="5", row=3, column=1) <NEW_LINE> self.box_script.insert( tk.INSERT, "Welcome to OctaDist interactive scripting console\n" ) <NEW_LINE> self.box_script.insert( tk.INSERT, "If you have no idea what to do about scripting, " 'type "help" to get started.\n\n', ) <NEW_LINE> self.wd.mainloop() | Start scripting console. | 625941b3b5575c28eb68ddb0 |
def _getting_file_path(self) -> tuple: <NEW_LINE> <INDENT> file_list = os.listdir(self.path) <NEW_LINE> file_list = [os.path.join(self.path, i) for i in file_list] <NEW_LINE> file_list = sorted(file_list, key=os.path.getmtime) <NEW_LINE> file_list.reverse() <NEW_LINE> return tuple(file_list) | Получаем все файлы в нужной дерриктории | 625941b36fece00bbac2d4ee |
Subsets and Splits