Unnamed: 0
int64
0
4.66k
page content
stringlengths
23
2k
description
stringlengths
8
925
output
stringlengths
38
2.93k
3,400
Skip to main content🦜️🔗 LangChainDocsUse casesIntegrationsAPICommunityChat our docsLangSmithJS/TS DocsSearchCTRLKProvidersAnthropicAWSGoogleMicrosoftOpenAIMoreActiveloop Deep LakeAI21 LabsAimAINetworkAirbyteAirtableAleph AlphaAlibaba Cloud OpensearchAnalyticDBAnnoyAnyscaleApifyArangoDBArgillaArthurArxivAtlasAwaDBAWS DynamoDBAZLyricsBagelDBBananaBasetenBeamBeautiful SoupBiliBiliNIBittensorBlackboardBrave SearchCassandraCerebriumAIChaindeskChromaClarifaiClearMLClickHouseCnosDBCohereCollege ConfidentialCometConfident AIConfluenceC TransformersDashVectorDatabricksDatadog TracingDatadog LogsDataForSEODeepInfraDeepSparseDiffbotDingoDiscordDocArrayDoctranDocugamiDuckDBElasticsearchEpsillaEverNoteFacebook ChatFacebook FaissFigmaFireworksFlyteForefrontAIGitGitBookGoldenGoogle Document AIGoogle SerperGooseAIGPT4AllGradientGraphsignalGrobidGutenbergHacker NewsHazy ResearchHeliconeHologresHTML to textHugging FaceiFixitIMSDbInfinoJavelin AI GatewayJinaKonkoLanceDBLangChain Decorators ✨Llama.cppLog10MarqoMediaWikiDumpMeilisearchMetalMilvusMinimaxMLflow AI GatewayMLflowModalModelScopeModern TreasuryMomentoMongoDB AtlasMotherduckMotörheadMyScaleNeo4jNLPCloudNotion DBNucliaObsidianOpenLLMOpenSearchOpenWeatherMapPetalsPostgres EmbeddingPGVectorPineconePipelineAIPortkeyPredibasePrediction GuardPromptLayerprovidersPsychicPubMedQdrantRay ServeRebuffRedditRedisReplicateRoamRocksetRunhouseRWKV-4ScaNNSearchApiSearxNG Search APISerpAPIShale ProtocolSingleStoreDBscikit-learnSlackspaCySpreedlyStarRocksStochasticAIStripeSupabase (Postgres)NebulaTairTelegramTencentVectorDBTensorFlow DatasetsTigris2MarkdownTrelloTruLensTwitterTypesenseUnstructuredUpstash RedisUSearchVearchVectaraVespaWandB TracingWeights & BiasesWeatherWeaviateWhatsAppWhyLabsWikipediaWolfram AlphaWriterXataXorbits Inference (Xinference)YandexYeager.aiYouTubeZepZillizComponentsLLMsChat modelsDocument loadersDocument transformersText embedding modelsVector storesRetrieversToolsAgents and toolkitsMemoryCallbacksChat
Typesense is an open-source, in-memory search engine, that you can either
Typesense is an open-source, in-memory search engine, that you can either ->: Skip to main content🦜️🔗 LangChainDocsUse casesIntegrationsAPICommunityChat our docsLangSmithJS/TS DocsSearchCTRLKProvidersAnthropicAWSGoogleMicrosoftOpenAIMoreActiveloop Deep LakeAI21 LabsAimAINetworkAirbyteAirtableAleph AlphaAlibaba Cloud OpensearchAnalyticDBAnnoyAnyscaleApifyArangoDBArgillaArthurArxivAtlasAwaDBAWS DynamoDBAZLyricsBagelDBBananaBasetenBeamBeautiful SoupBiliBiliNIBittensorBlackboardBrave SearchCassandraCerebriumAIChaindeskChromaClarifaiClearMLClickHouseCnosDBCohereCollege ConfidentialCometConfident AIConfluenceC TransformersDashVectorDatabricksDatadog TracingDatadog LogsDataForSEODeepInfraDeepSparseDiffbotDingoDiscordDocArrayDoctranDocugamiDuckDBElasticsearchEpsillaEverNoteFacebook ChatFacebook FaissFigmaFireworksFlyteForefrontAIGitGitBookGoldenGoogle Document AIGoogle SerperGooseAIGPT4AllGradientGraphsignalGrobidGutenbergHacker NewsHazy ResearchHeliconeHologresHTML to textHugging FaceiFixitIMSDbInfinoJavelin AI GatewayJinaKonkoLanceDBLangChain Decorators ✨Llama.cppLog10MarqoMediaWikiDumpMeilisearchMetalMilvusMinimaxMLflow AI GatewayMLflowModalModelScopeModern TreasuryMomentoMongoDB AtlasMotherduckMotörheadMyScaleNeo4jNLPCloudNotion DBNucliaObsidianOpenLLMOpenSearchOpenWeatherMapPetalsPostgres EmbeddingPGVectorPineconePipelineAIPortkeyPredibasePrediction GuardPromptLayerprovidersPsychicPubMedQdrantRay ServeRebuffRedditRedisReplicateRoamRocksetRunhouseRWKV-4ScaNNSearchApiSearxNG Search APISerpAPIShale ProtocolSingleStoreDBscikit-learnSlackspaCySpreedlyStarRocksStochasticAIStripeSupabase (Postgres)NebulaTairTelegramTencentVectorDBTensorFlow DatasetsTigris2MarkdownTrelloTruLensTwitterTypesenseUnstructuredUpstash RedisUSearchVearchVectaraVespaWandB TracingWeights & BiasesWeatherWeaviateWhatsAppWhyLabsWikipediaWolfram AlphaWriterXataXorbits Inference (Xinference)YandexYeager.aiYouTubeZepZillizComponentsLLMsChat modelsDocument loadersDocument transformersText embedding modelsVector storesRetrieversToolsAgents and toolkitsMemoryCallbacksChat
3,401
and toolkitsMemoryCallbacksChat loadersProvidersMoreTypesenseOn this pageTypesenseTypesense is an open-source, in-memory search engine, that you can either
Typesense is an open-source, in-memory search engine, that you can either
Typesense is an open-source, in-memory search engine, that you can either ->: and toolkitsMemoryCallbacksChat loadersProvidersMoreTypesenseOn this pageTypesenseTypesense is an open-source, in-memory search engine, that you can either
3,402
self-host or run on Typesense Cloud. Typesense focuses on performance by storing the entire index in RAM (with a backup on disk) and also focuses on providing an out-of-the-box developer experience by simplifying available options and setting good defaults.Installation and Setup​pip install typesense openapi-schema-pydantic openai tiktokenVector Store​See a usage example.from langchain.vectorstores import TypesensePreviousTwitterNextUnstructuredInstallation and SetupVector StoreCommunityDiscordTwitterGitHubPythonJS/TSMoreHomepageBlogCopyright © 2023 LangChain, Inc.
Typesense is an open-source, in-memory search engine, that you can either
Typesense is an open-source, in-memory search engine, that you can either ->: self-host or run on Typesense Cloud. Typesense focuses on performance by storing the entire index in RAM (with a backup on disk) and also focuses on providing an out-of-the-box developer experience by simplifying available options and setting good defaults.Installation and Setup​pip install typesense openapi-schema-pydantic openai tiktokenVector Store​See a usage example.from langchain.vectorstores import TypesensePreviousTwitterNextUnstructuredInstallation and SetupVector StoreCommunityDiscordTwitterGitHubPythonJS/TSMoreHomepageBlogCopyright © 2023 LangChain, Inc.
3,403
Arthur | 🦜️🔗 Langchain
Arthur is a model monitoring and observability platform.
Arthur is a model monitoring and observability platform. ->: Arthur | 🦜️🔗 Langchain
3,404
Skip to main content🦜️🔗 LangChainDocsUse casesIntegrationsAPICommunityChat our docsLangSmithJS/TS DocsSearchCTRLKProvidersAnthropicAWSGoogleMicrosoftOpenAIMoreActiveloop Deep LakeAI21 LabsAimAINetworkAirbyteAirtableAleph AlphaAlibaba Cloud OpensearchAnalyticDBAnnoyAnyscaleApifyArangoDBArgillaArthurArxivAtlasAwaDBAWS DynamoDBAZLyricsBagelDBBananaBasetenBeamBeautiful SoupBiliBiliNIBittensorBlackboardBrave SearchCassandraCerebriumAIChaindeskChromaClarifaiClearMLClickHouseCnosDBCohereCollege ConfidentialCometConfident AIConfluenceC TransformersDashVectorDatabricksDatadog TracingDatadog LogsDataForSEODeepInfraDeepSparseDiffbotDingoDiscordDocArrayDoctranDocugamiDuckDBElasticsearchEpsillaEverNoteFacebook ChatFacebook FaissFigmaFireworksFlyteForefrontAIGitGitBookGoldenGoogle Document AIGoogle SerperGooseAIGPT4AllGradientGraphsignalGrobidGutenbergHacker NewsHazy ResearchHeliconeHologresHTML to textHugging FaceiFixitIMSDbInfinoJavelin AI GatewayJinaKonkoLanceDBLangChain Decorators ✨Llama.cppLog10MarqoMediaWikiDumpMeilisearchMetalMilvusMinimaxMLflow AI GatewayMLflowModalModelScopeModern TreasuryMomentoMongoDB AtlasMotherduckMotörheadMyScaleNeo4jNLPCloudNotion DBNucliaObsidianOpenLLMOpenSearchOpenWeatherMapPetalsPostgres EmbeddingPGVectorPineconePipelineAIPortkeyPredibasePrediction GuardPromptLayerprovidersPsychicPubMedQdrantRay ServeRebuffRedditRedisReplicateRoamRocksetRunhouseRWKV-4ScaNNSearchApiSearxNG Search APISerpAPIShale ProtocolSingleStoreDBscikit-learnSlackspaCySpreedlyStarRocksStochasticAIStripeSupabase (Postgres)NebulaTairTelegramTencentVectorDBTensorFlow DatasetsTigris2MarkdownTrelloTruLensTwitterTypesenseUnstructuredUpstash RedisUSearchVearchVectaraVespaWandB TracingWeights & BiasesWeatherWeaviateWhatsAppWhyLabsWikipediaWolfram AlphaWriterXataXorbits Inference (Xinference)YandexYeager.aiYouTubeZepZillizComponentsLLMsChat modelsDocument loadersDocument transformersText embedding modelsVector storesRetrieversToolsAgents and toolkitsMemoryCallbacksChat
Arthur is a model monitoring and observability platform.
Arthur is a model monitoring and observability platform. ->: Skip to main content🦜️🔗 LangChainDocsUse casesIntegrationsAPICommunityChat our docsLangSmithJS/TS DocsSearchCTRLKProvidersAnthropicAWSGoogleMicrosoftOpenAIMoreActiveloop Deep LakeAI21 LabsAimAINetworkAirbyteAirtableAleph AlphaAlibaba Cloud OpensearchAnalyticDBAnnoyAnyscaleApifyArangoDBArgillaArthurArxivAtlasAwaDBAWS DynamoDBAZLyricsBagelDBBananaBasetenBeamBeautiful SoupBiliBiliNIBittensorBlackboardBrave SearchCassandraCerebriumAIChaindeskChromaClarifaiClearMLClickHouseCnosDBCohereCollege ConfidentialCometConfident AIConfluenceC TransformersDashVectorDatabricksDatadog TracingDatadog LogsDataForSEODeepInfraDeepSparseDiffbotDingoDiscordDocArrayDoctranDocugamiDuckDBElasticsearchEpsillaEverNoteFacebook ChatFacebook FaissFigmaFireworksFlyteForefrontAIGitGitBookGoldenGoogle Document AIGoogle SerperGooseAIGPT4AllGradientGraphsignalGrobidGutenbergHacker NewsHazy ResearchHeliconeHologresHTML to textHugging FaceiFixitIMSDbInfinoJavelin AI GatewayJinaKonkoLanceDBLangChain Decorators ✨Llama.cppLog10MarqoMediaWikiDumpMeilisearchMetalMilvusMinimaxMLflow AI GatewayMLflowModalModelScopeModern TreasuryMomentoMongoDB AtlasMotherduckMotörheadMyScaleNeo4jNLPCloudNotion DBNucliaObsidianOpenLLMOpenSearchOpenWeatherMapPetalsPostgres EmbeddingPGVectorPineconePipelineAIPortkeyPredibasePrediction GuardPromptLayerprovidersPsychicPubMedQdrantRay ServeRebuffRedditRedisReplicateRoamRocksetRunhouseRWKV-4ScaNNSearchApiSearxNG Search APISerpAPIShale ProtocolSingleStoreDBscikit-learnSlackspaCySpreedlyStarRocksStochasticAIStripeSupabase (Postgres)NebulaTairTelegramTencentVectorDBTensorFlow DatasetsTigris2MarkdownTrelloTruLensTwitterTypesenseUnstructuredUpstash RedisUSearchVearchVectaraVespaWandB TracingWeights & BiasesWeatherWeaviateWhatsAppWhyLabsWikipediaWolfram AlphaWriterXataXorbits Inference (Xinference)YandexYeager.aiYouTubeZepZillizComponentsLLMsChat modelsDocument loadersDocument transformersText embedding modelsVector storesRetrieversToolsAgents and toolkitsMemoryCallbacksChat
3,405
and toolkitsMemoryCallbacksChat loadersProvidersMoreArthurArthurArthur is a model monitoring and observability platform.The following guide shows how to run a registered chat LLM with the Arthur callback handler to automatically log model inferences to Arthur.If you do not have a model currently onboarded to Arthur, visit our onboarding guide for generative text models. For more information about how to use the Arthur SDK, visit our docs.from langchain.callbacks import ArthurCallbackHandlerfrom langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandlerfrom langchain.chat_models import ChatOpenAIfrom langchain.schema import HumanMessagePlace Arthur credentials herearthur_url = "https://app.arthur.ai"arthur_login = "your-arthur-login-username-here"arthur_model_id = "your-arthur-model-id-here"Create Langchain LLM with Arthur callback handlerdef make_langchain_chat_llm(chat_model=): return ChatOpenAI( streaming=True, temperature=0.1, callbacks=[ StreamingStdOutCallbackHandler(), ArthurCallbackHandler.from_credentials( arthur_model_id, arthur_url=arthur_url, arthur_login=arthur_login) ])chatgpt = make_langchain_chat_llm() Please enter password for admin: ········Running the chat LLM with this run function will save the chat history in an ongoing list so that the conversation can reference earlier messages and log each response to the Arthur platform. You can view the history of this model's inferences on your model dashboard page.Enter q to quit the run loopdef run(llm): history = [] while True: user_input = input("\n>>> input >>>\n>>>: ") if user_input == "q": break history.append(HumanMessage(content=user_input)) history.append(llm(history))run(chatgpt) >>> input >>> >>>: What is a callback handler? A callback handler, also known as a callback function or callback method, is a piece of
Arthur is a model monitoring and observability platform.
Arthur is a model monitoring and observability platform. ->: and toolkitsMemoryCallbacksChat loadersProvidersMoreArthurArthurArthur is a model monitoring and observability platform.The following guide shows how to run a registered chat LLM with the Arthur callback handler to automatically log model inferences to Arthur.If you do not have a model currently onboarded to Arthur, visit our onboarding guide for generative text models. For more information about how to use the Arthur SDK, visit our docs.from langchain.callbacks import ArthurCallbackHandlerfrom langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandlerfrom langchain.chat_models import ChatOpenAIfrom langchain.schema import HumanMessagePlace Arthur credentials herearthur_url = "https://app.arthur.ai"arthur_login = "your-arthur-login-username-here"arthur_model_id = "your-arthur-model-id-here"Create Langchain LLM with Arthur callback handlerdef make_langchain_chat_llm(chat_model=): return ChatOpenAI( streaming=True, temperature=0.1, callbacks=[ StreamingStdOutCallbackHandler(), ArthurCallbackHandler.from_credentials( arthur_model_id, arthur_url=arthur_url, arthur_login=arthur_login) ])chatgpt = make_langchain_chat_llm() Please enter password for admin: ········Running the chat LLM with this run function will save the chat history in an ongoing list so that the conversation can reference earlier messages and log each response to the Arthur platform. You can view the history of this model's inferences on your model dashboard page.Enter q to quit the run loopdef run(llm): history = [] while True: user_input = input("\n>>> input >>>\n>>>: ") if user_input == "q": break history.append(HumanMessage(content=user_input)) history.append(llm(history))run(chatgpt) >>> input >>> >>>: What is a callback handler? A callback handler, also known as a callback function or callback method, is a piece of
3,406
function or callback method, is a piece of code that is executed in response to a specific event or condition. It is commonly used in programming languages that support event-driven or asynchronous programming paradigms. The purpose of a callback handler is to provide a way for developers to define custom behavior that should be executed when a certain event occurs. Instead of waiting for a result or blocking the execution, the program registers a callback function and continues with other tasks. When the event is triggered, the callback function is invoked, allowing the program to respond accordingly. Callback handlers are commonly used in various scenarios, such as handling user input, responding to network requests, processing asynchronous operations, and implementing event-driven architectures. They provide a flexible and modular way to handle events and decouple different components of a system. >>> input >>> >>>: What do I need to do to get the full benefits of this To get the full benefits of using a callback handler, you should consider the following: 1. Understand the event or condition: Identify the specific event or condition that you want to respond to with a callback handler. This could be user input, network requests, or any other asynchronous operation. 2. Define the callback function: Create a function that will be executed when the event or condition occurs. This function should contain the desired behavior or actions you want to take in response to the event. 3. Register the callback function: Depending on the programming language or framework you are using, you may need to register or attach the callback function to the appropriate event or condition. This ensures that the callback function is invoked when the event occurs. 4. Handle the callback: Implement the necessary logic within the callback function to handle the event or condition. This could involve updating the user interface, processing
Arthur is a model monitoring and observability platform.
Arthur is a model monitoring and observability platform. ->: function or callback method, is a piece of code that is executed in response to a specific event or condition. It is commonly used in programming languages that support event-driven or asynchronous programming paradigms. The purpose of a callback handler is to provide a way for developers to define custom behavior that should be executed when a certain event occurs. Instead of waiting for a result or blocking the execution, the program registers a callback function and continues with other tasks. When the event is triggered, the callback function is invoked, allowing the program to respond accordingly. Callback handlers are commonly used in various scenarios, such as handling user input, responding to network requests, processing asynchronous operations, and implementing event-driven architectures. They provide a flexible and modular way to handle events and decouple different components of a system. >>> input >>> >>>: What do I need to do to get the full benefits of this To get the full benefits of using a callback handler, you should consider the following: 1. Understand the event or condition: Identify the specific event or condition that you want to respond to with a callback handler. This could be user input, network requests, or any other asynchronous operation. 2. Define the callback function: Create a function that will be executed when the event or condition occurs. This function should contain the desired behavior or actions you want to take in response to the event. 3. Register the callback function: Depending on the programming language or framework you are using, you may need to register or attach the callback function to the appropriate event or condition. This ensures that the callback function is invoked when the event occurs. 4. Handle the callback: Implement the necessary logic within the callback function to handle the event or condition. This could involve updating the user interface, processing
3,407
involve updating the user interface, processing data, making further requests, or triggering other actions. 5. Consider error handling: It's important to handle any potential errors or exceptions that may occur within the callback function. This ensures that your program can gracefully handle unexpected situations and prevent crashes or undesired behavior. 6. Maintain code readability and modularity: As your codebase grows, it's crucial to keep your callback handlers organized and maintainable. Consider using design patterns or architectural principles to structure your code in a modular and scalable way. By following these steps, you can leverage the benefits of callback handlers, such as asynchronous and event-driven programming, improved responsiveness, and modular code design. >>> input >>> >>>: qPreviousArgillaNextArxivCommunityDiscordTwitterGitHubPythonJS/TSMoreHomepageBlogCopyright © 2023 LangChain, Inc.
Arthur is a model monitoring and observability platform.
Arthur is a model monitoring and observability platform. ->: involve updating the user interface, processing data, making further requests, or triggering other actions. 5. Consider error handling: It's important to handle any potential errors or exceptions that may occur within the callback function. This ensures that your program can gracefully handle unexpected situations and prevent crashes or undesired behavior. 6. Maintain code readability and modularity: As your codebase grows, it's crucial to keep your callback handlers organized and maintainable. Consider using design patterns or architectural principles to structure your code in a modular and scalable way. By following these steps, you can leverage the benefits of callback handlers, such as asynchronous and event-driven programming, improved responsiveness, and modular code design. >>> input >>> >>>: qPreviousArgillaNextArxivCommunityDiscordTwitterGitHubPythonJS/TSMoreHomepageBlogCopyright © 2023 LangChain, Inc.
3,408
StarRocks | 🦜️🔗 Langchain
StarRocks is a High-Performance Analytical Database.
StarRocks is a High-Performance Analytical Database. ->: StarRocks | 🦜️🔗 Langchain
3,409
Skip to main content🦜️🔗 LangChainDocsUse casesIntegrationsAPICommunityChat our docsLangSmithJS/TS DocsSearchCTRLKProvidersAnthropicAWSGoogleMicrosoftOpenAIMoreActiveloop Deep LakeAI21 LabsAimAINetworkAirbyteAirtableAleph AlphaAlibaba Cloud OpensearchAnalyticDBAnnoyAnyscaleApifyArangoDBArgillaArthurArxivAtlasAwaDBAWS DynamoDBAZLyricsBagelDBBananaBasetenBeamBeautiful SoupBiliBiliNIBittensorBlackboardBrave SearchCassandraCerebriumAIChaindeskChromaClarifaiClearMLClickHouseCnosDBCohereCollege ConfidentialCometConfident AIConfluenceC TransformersDashVectorDatabricksDatadog TracingDatadog LogsDataForSEODeepInfraDeepSparseDiffbotDingoDiscordDocArrayDoctranDocugamiDuckDBElasticsearchEpsillaEverNoteFacebook ChatFacebook FaissFigmaFireworksFlyteForefrontAIGitGitBookGoldenGoogle Document AIGoogle SerperGooseAIGPT4AllGradientGraphsignalGrobidGutenbergHacker NewsHazy ResearchHeliconeHologresHTML to textHugging FaceiFixitIMSDbInfinoJavelin AI GatewayJinaKonkoLanceDBLangChain Decorators ✨Llama.cppLog10MarqoMediaWikiDumpMeilisearchMetalMilvusMinimaxMLflow AI GatewayMLflowModalModelScopeModern TreasuryMomentoMongoDB AtlasMotherduckMotörheadMyScaleNeo4jNLPCloudNotion DBNucliaObsidianOpenLLMOpenSearchOpenWeatherMapPetalsPostgres EmbeddingPGVectorPineconePipelineAIPortkeyPredibasePrediction GuardPromptLayerprovidersPsychicPubMedQdrantRay ServeRebuffRedditRedisReplicateRoamRocksetRunhouseRWKV-4ScaNNSearchApiSearxNG Search APISerpAPIShale ProtocolSingleStoreDBscikit-learnSlackspaCySpreedlyStarRocksStochasticAIStripeSupabase (Postgres)NebulaTairTelegramTencentVectorDBTensorFlow DatasetsTigris2MarkdownTrelloTruLensTwitterTypesenseUnstructuredUpstash RedisUSearchVearchVectaraVespaWandB TracingWeights & BiasesWeatherWeaviateWhatsAppWhyLabsWikipediaWolfram AlphaWriterXataXorbits Inference (Xinference)YandexYeager.aiYouTubeZepZillizComponentsLLMsChat modelsDocument loadersDocument transformersText embedding modelsVector storesRetrieversToolsAgents and toolkitsMemoryCallbacksChat
StarRocks is a High-Performance Analytical Database.
StarRocks is a High-Performance Analytical Database. ->: Skip to main content🦜️🔗 LangChainDocsUse casesIntegrationsAPICommunityChat our docsLangSmithJS/TS DocsSearchCTRLKProvidersAnthropicAWSGoogleMicrosoftOpenAIMoreActiveloop Deep LakeAI21 LabsAimAINetworkAirbyteAirtableAleph AlphaAlibaba Cloud OpensearchAnalyticDBAnnoyAnyscaleApifyArangoDBArgillaArthurArxivAtlasAwaDBAWS DynamoDBAZLyricsBagelDBBananaBasetenBeamBeautiful SoupBiliBiliNIBittensorBlackboardBrave SearchCassandraCerebriumAIChaindeskChromaClarifaiClearMLClickHouseCnosDBCohereCollege ConfidentialCometConfident AIConfluenceC TransformersDashVectorDatabricksDatadog TracingDatadog LogsDataForSEODeepInfraDeepSparseDiffbotDingoDiscordDocArrayDoctranDocugamiDuckDBElasticsearchEpsillaEverNoteFacebook ChatFacebook FaissFigmaFireworksFlyteForefrontAIGitGitBookGoldenGoogle Document AIGoogle SerperGooseAIGPT4AllGradientGraphsignalGrobidGutenbergHacker NewsHazy ResearchHeliconeHologresHTML to textHugging FaceiFixitIMSDbInfinoJavelin AI GatewayJinaKonkoLanceDBLangChain Decorators ✨Llama.cppLog10MarqoMediaWikiDumpMeilisearchMetalMilvusMinimaxMLflow AI GatewayMLflowModalModelScopeModern TreasuryMomentoMongoDB AtlasMotherduckMotörheadMyScaleNeo4jNLPCloudNotion DBNucliaObsidianOpenLLMOpenSearchOpenWeatherMapPetalsPostgres EmbeddingPGVectorPineconePipelineAIPortkeyPredibasePrediction GuardPromptLayerprovidersPsychicPubMedQdrantRay ServeRebuffRedditRedisReplicateRoamRocksetRunhouseRWKV-4ScaNNSearchApiSearxNG Search APISerpAPIShale ProtocolSingleStoreDBscikit-learnSlackspaCySpreedlyStarRocksStochasticAIStripeSupabase (Postgres)NebulaTairTelegramTencentVectorDBTensorFlow DatasetsTigris2MarkdownTrelloTruLensTwitterTypesenseUnstructuredUpstash RedisUSearchVearchVectaraVespaWandB TracingWeights & BiasesWeatherWeaviateWhatsAppWhyLabsWikipediaWolfram AlphaWriterXataXorbits Inference (Xinference)YandexYeager.aiYouTubeZepZillizComponentsLLMsChat modelsDocument loadersDocument transformersText embedding modelsVector storesRetrieversToolsAgents and toolkitsMemoryCallbacksChat
3,410
and toolkitsMemoryCallbacksChat loadersProvidersMoreStarRocksOn this pageStarRocksStarRocks is a High-Performance Analytical Database.
StarRocks is a High-Performance Analytical Database.
StarRocks is a High-Performance Analytical Database. ->: and toolkitsMemoryCallbacksChat loadersProvidersMoreStarRocksOn this pageStarRocksStarRocks is a High-Performance Analytical Database.
3,411
StarRocks is a next-gen sub-second MPP database for full analytics scenarios, including multi-dimensional analytics, real-time analytics and ad-hoc query.Usually StarRocks is categorized into OLAP, and it has showed excellent performance in ClickBench — a Benchmark For Analytical DBMS. Since it has a super-fast vectorized execution engine, it could also be used as a fast vectordb.Installation and Setup​pip install pymysqlVector Store​See a usage example.from langchain.vectorstores import StarRocksPreviousSpreedlyNextStochasticAIInstallation and SetupVector StoreCommunityDiscordTwitterGitHubPythonJS/TSMoreHomepageBlogCopyright © 2023 LangChain, Inc.
StarRocks is a High-Performance Analytical Database.
StarRocks is a High-Performance Analytical Database. ->: StarRocks is a next-gen sub-second MPP database for full analytics scenarios, including multi-dimensional analytics, real-time analytics and ad-hoc query.Usually StarRocks is categorized into OLAP, and it has showed excellent performance in ClickBench — a Benchmark For Analytical DBMS. Since it has a super-fast vectorized execution engine, it could also be used as a fast vectordb.Installation and Setup​pip install pymysqlVector Store​See a usage example.from langchain.vectorstores import StarRocksPreviousSpreedlyNextStochasticAIInstallation and SetupVector StoreCommunityDiscordTwitterGitHubPythonJS/TSMoreHomepageBlogCopyright © 2023 LangChain, Inc.
3,412
Nuclia | 🦜️🔗 Langchain
Nuclia automatically indexes your unstructured data from any internal
Nuclia automatically indexes your unstructured data from any internal ->: Nuclia | 🦜️🔗 Langchain
3,413
Skip to main content🦜️🔗 LangChainDocsUse casesIntegrationsAPICommunityChat our docsLangSmithJS/TS DocsSearchCTRLKProvidersAnthropicAWSGoogleMicrosoftOpenAIMoreActiveloop Deep LakeAI21 LabsAimAINetworkAirbyteAirtableAleph AlphaAlibaba Cloud OpensearchAnalyticDBAnnoyAnyscaleApifyArangoDBArgillaArthurArxivAtlasAwaDBAWS DynamoDBAZLyricsBagelDBBananaBasetenBeamBeautiful SoupBiliBiliNIBittensorBlackboardBrave SearchCassandraCerebriumAIChaindeskChromaClarifaiClearMLClickHouseCnosDBCohereCollege ConfidentialCometConfident AIConfluenceC TransformersDashVectorDatabricksDatadog TracingDatadog LogsDataForSEODeepInfraDeepSparseDiffbotDingoDiscordDocArrayDoctranDocugamiDuckDBElasticsearchEpsillaEverNoteFacebook ChatFacebook FaissFigmaFireworksFlyteForefrontAIGitGitBookGoldenGoogle Document AIGoogle SerperGooseAIGPT4AllGradientGraphsignalGrobidGutenbergHacker NewsHazy ResearchHeliconeHologresHTML to textHugging FaceiFixitIMSDbInfinoJavelin AI GatewayJinaKonkoLanceDBLangChain Decorators ✨Llama.cppLog10MarqoMediaWikiDumpMeilisearchMetalMilvusMinimaxMLflow AI GatewayMLflowModalModelScopeModern TreasuryMomentoMongoDB AtlasMotherduckMotörheadMyScaleNeo4jNLPCloudNotion DBNucliaObsidianOpenLLMOpenSearchOpenWeatherMapPetalsPostgres EmbeddingPGVectorPineconePipelineAIPortkeyPredibasePrediction GuardPromptLayerprovidersPsychicPubMedQdrantRay ServeRebuffRedditRedisReplicateRoamRocksetRunhouseRWKV-4ScaNNSearchApiSearxNG Search APISerpAPIShale ProtocolSingleStoreDBscikit-learnSlackspaCySpreedlyStarRocksStochasticAIStripeSupabase (Postgres)NebulaTairTelegramTencentVectorDBTensorFlow DatasetsTigris2MarkdownTrelloTruLensTwitterTypesenseUnstructuredUpstash RedisUSearchVearchVectaraVespaWandB TracingWeights & BiasesWeatherWeaviateWhatsAppWhyLabsWikipediaWolfram AlphaWriterXataXorbits Inference (Xinference)YandexYeager.aiYouTubeZepZillizComponentsLLMsChat modelsDocument loadersDocument transformersText embedding modelsVector storesRetrieversToolsAgents and toolkitsMemoryCallbacksChat
Nuclia automatically indexes your unstructured data from any internal
Nuclia automatically indexes your unstructured data from any internal ->: Skip to main content🦜️🔗 LangChainDocsUse casesIntegrationsAPICommunityChat our docsLangSmithJS/TS DocsSearchCTRLKProvidersAnthropicAWSGoogleMicrosoftOpenAIMoreActiveloop Deep LakeAI21 LabsAimAINetworkAirbyteAirtableAleph AlphaAlibaba Cloud OpensearchAnalyticDBAnnoyAnyscaleApifyArangoDBArgillaArthurArxivAtlasAwaDBAWS DynamoDBAZLyricsBagelDBBananaBasetenBeamBeautiful SoupBiliBiliNIBittensorBlackboardBrave SearchCassandraCerebriumAIChaindeskChromaClarifaiClearMLClickHouseCnosDBCohereCollege ConfidentialCometConfident AIConfluenceC TransformersDashVectorDatabricksDatadog TracingDatadog LogsDataForSEODeepInfraDeepSparseDiffbotDingoDiscordDocArrayDoctranDocugamiDuckDBElasticsearchEpsillaEverNoteFacebook ChatFacebook FaissFigmaFireworksFlyteForefrontAIGitGitBookGoldenGoogle Document AIGoogle SerperGooseAIGPT4AllGradientGraphsignalGrobidGutenbergHacker NewsHazy ResearchHeliconeHologresHTML to textHugging FaceiFixitIMSDbInfinoJavelin AI GatewayJinaKonkoLanceDBLangChain Decorators ✨Llama.cppLog10MarqoMediaWikiDumpMeilisearchMetalMilvusMinimaxMLflow AI GatewayMLflowModalModelScopeModern TreasuryMomentoMongoDB AtlasMotherduckMotörheadMyScaleNeo4jNLPCloudNotion DBNucliaObsidianOpenLLMOpenSearchOpenWeatherMapPetalsPostgres EmbeddingPGVectorPineconePipelineAIPortkeyPredibasePrediction GuardPromptLayerprovidersPsychicPubMedQdrantRay ServeRebuffRedditRedisReplicateRoamRocksetRunhouseRWKV-4ScaNNSearchApiSearxNG Search APISerpAPIShale ProtocolSingleStoreDBscikit-learnSlackspaCySpreedlyStarRocksStochasticAIStripeSupabase (Postgres)NebulaTairTelegramTencentVectorDBTensorFlow DatasetsTigris2MarkdownTrelloTruLensTwitterTypesenseUnstructuredUpstash RedisUSearchVearchVectaraVespaWandB TracingWeights & BiasesWeatherWeaviateWhatsAppWhyLabsWikipediaWolfram AlphaWriterXataXorbits Inference (Xinference)YandexYeager.aiYouTubeZepZillizComponentsLLMsChat modelsDocument loadersDocument transformersText embedding modelsVector storesRetrieversToolsAgents and toolkitsMemoryCallbacksChat
3,414
and toolkitsMemoryCallbacksChat loadersProvidersMoreNucliaOn this pageNucliaNuclia automatically indexes your unstructured data from any internal
Nuclia automatically indexes your unstructured data from any internal
Nuclia automatically indexes your unstructured data from any internal ->: and toolkitsMemoryCallbacksChat loadersProvidersMoreNucliaOn this pageNucliaNuclia automatically indexes your unstructured data from any internal
3,415
and external source, providing optimized search results and generative answers. It can handle video and audio transcription, image content extraction, and document parsing.Nuclia Understanding API document transformer splits text into paragraphs and sentences, identifies entities, provides a summary of the text and generates embeddings for all the sentences.Installation and Setup​We need to install the nucliadb-protos package to use the Nuclia Understanding API.pip install nucliadb-protosTo use the Nuclia Understanding API, we need to have a Nuclia account. We can create one for free at https://nuclia.cloud, and then create a NUA key.To use the Nuclia document transformer, we need to instantiate a NucliaUnderstandingAPI tool with enable_ml set to True:from langchain.tools.nuclia import NucliaUnderstandingAPInua = NucliaUnderstandingAPI(enable_ml=True)Document Transformer​See a usage example.from langchain.document_transformers.nuclia_text_transform import NucliaTextTransformerPreviousNotion DBNextObsidianInstallation and SetupDocument TransformerCommunityDiscordTwitterGitHubPythonJS/TSMoreHomepageBlogCopyright © 2023 LangChain, Inc.
Nuclia automatically indexes your unstructured data from any internal
Nuclia automatically indexes your unstructured data from any internal ->: and external source, providing optimized search results and generative answers. It can handle video and audio transcription, image content extraction, and document parsing.Nuclia Understanding API document transformer splits text into paragraphs and sentences, identifies entities, provides a summary of the text and generates embeddings for all the sentences.Installation and Setup​We need to install the nucliadb-protos package to use the Nuclia Understanding API.pip install nucliadb-protosTo use the Nuclia Understanding API, we need to have a Nuclia account. We can create one for free at https://nuclia.cloud, and then create a NUA key.To use the Nuclia document transformer, we need to instantiate a NucliaUnderstandingAPI tool with enable_ml set to True:from langchain.tools.nuclia import NucliaUnderstandingAPInua = NucliaUnderstandingAPI(enable_ml=True)Document Transformer​See a usage example.from langchain.document_transformers.nuclia_text_transform import NucliaTextTransformerPreviousNotion DBNextObsidianInstallation and SetupDocument TransformerCommunityDiscordTwitterGitHubPythonJS/TSMoreHomepageBlogCopyright © 2023 LangChain, Inc.
3,416
Prediction Guard | 🦜️🔗 Langchain
This page covers how to use the Prediction Guard ecosystem within LangChain.
This page covers how to use the Prediction Guard ecosystem within LangChain. ->: Prediction Guard | 🦜️🔗 Langchain
3,417
Skip to main content🦜️🔗 LangChainDocsUse casesIntegrationsAPICommunityChat our docsLangSmithJS/TS DocsSearchCTRLKProvidersAnthropicAWSGoogleMicrosoftOpenAIMoreActiveloop Deep LakeAI21 LabsAimAINetworkAirbyteAirtableAleph AlphaAlibaba Cloud OpensearchAnalyticDBAnnoyAnyscaleApifyArangoDBArgillaArthurArxivAtlasAwaDBAWS DynamoDBAZLyricsBagelDBBananaBasetenBeamBeautiful SoupBiliBiliNIBittensorBlackboardBrave SearchCassandraCerebriumAIChaindeskChromaClarifaiClearMLClickHouseCnosDBCohereCollege ConfidentialCometConfident AIConfluenceC TransformersDashVectorDatabricksDatadog TracingDatadog LogsDataForSEODeepInfraDeepSparseDiffbotDingoDiscordDocArrayDoctranDocugamiDuckDBElasticsearchEpsillaEverNoteFacebook ChatFacebook FaissFigmaFireworksFlyteForefrontAIGitGitBookGoldenGoogle Document AIGoogle SerperGooseAIGPT4AllGradientGraphsignalGrobidGutenbergHacker NewsHazy ResearchHeliconeHologresHTML to textHugging FaceiFixitIMSDbInfinoJavelin AI GatewayJinaKonkoLanceDBLangChain Decorators ✨Llama.cppLog10MarqoMediaWikiDumpMeilisearchMetalMilvusMinimaxMLflow AI GatewayMLflowModalModelScopeModern TreasuryMomentoMongoDB AtlasMotherduckMotörheadMyScaleNeo4jNLPCloudNotion DBNucliaObsidianOpenLLMOpenSearchOpenWeatherMapPetalsPostgres EmbeddingPGVectorPineconePipelineAIPortkeyPredibasePrediction GuardPromptLayerprovidersPsychicPubMedQdrantRay ServeRebuffRedditRedisReplicateRoamRocksetRunhouseRWKV-4ScaNNSearchApiSearxNG Search APISerpAPIShale ProtocolSingleStoreDBscikit-learnSlackspaCySpreedlyStarRocksStochasticAIStripeSupabase (Postgres)NebulaTairTelegramTencentVectorDBTensorFlow DatasetsTigris2MarkdownTrelloTruLensTwitterTypesenseUnstructuredUpstash RedisUSearchVearchVectaraVespaWandB TracingWeights & BiasesWeatherWeaviateWhatsAppWhyLabsWikipediaWolfram AlphaWriterXataXorbits Inference (Xinference)YandexYeager.aiYouTubeZepZillizComponentsLLMsChat modelsDocument loadersDocument transformersText embedding modelsVector storesRetrieversToolsAgents and toolkitsMemoryCallbacksChat
This page covers how to use the Prediction Guard ecosystem within LangChain.
This page covers how to use the Prediction Guard ecosystem within LangChain. ->: Skip to main content🦜️🔗 LangChainDocsUse casesIntegrationsAPICommunityChat our docsLangSmithJS/TS DocsSearchCTRLKProvidersAnthropicAWSGoogleMicrosoftOpenAIMoreActiveloop Deep LakeAI21 LabsAimAINetworkAirbyteAirtableAleph AlphaAlibaba Cloud OpensearchAnalyticDBAnnoyAnyscaleApifyArangoDBArgillaArthurArxivAtlasAwaDBAWS DynamoDBAZLyricsBagelDBBananaBasetenBeamBeautiful SoupBiliBiliNIBittensorBlackboardBrave SearchCassandraCerebriumAIChaindeskChromaClarifaiClearMLClickHouseCnosDBCohereCollege ConfidentialCometConfident AIConfluenceC TransformersDashVectorDatabricksDatadog TracingDatadog LogsDataForSEODeepInfraDeepSparseDiffbotDingoDiscordDocArrayDoctranDocugamiDuckDBElasticsearchEpsillaEverNoteFacebook ChatFacebook FaissFigmaFireworksFlyteForefrontAIGitGitBookGoldenGoogle Document AIGoogle SerperGooseAIGPT4AllGradientGraphsignalGrobidGutenbergHacker NewsHazy ResearchHeliconeHologresHTML to textHugging FaceiFixitIMSDbInfinoJavelin AI GatewayJinaKonkoLanceDBLangChain Decorators ✨Llama.cppLog10MarqoMediaWikiDumpMeilisearchMetalMilvusMinimaxMLflow AI GatewayMLflowModalModelScopeModern TreasuryMomentoMongoDB AtlasMotherduckMotörheadMyScaleNeo4jNLPCloudNotion DBNucliaObsidianOpenLLMOpenSearchOpenWeatherMapPetalsPostgres EmbeddingPGVectorPineconePipelineAIPortkeyPredibasePrediction GuardPromptLayerprovidersPsychicPubMedQdrantRay ServeRebuffRedditRedisReplicateRoamRocksetRunhouseRWKV-4ScaNNSearchApiSearxNG Search APISerpAPIShale ProtocolSingleStoreDBscikit-learnSlackspaCySpreedlyStarRocksStochasticAIStripeSupabase (Postgres)NebulaTairTelegramTencentVectorDBTensorFlow DatasetsTigris2MarkdownTrelloTruLensTwitterTypesenseUnstructuredUpstash RedisUSearchVearchVectaraVespaWandB TracingWeights & BiasesWeatherWeaviateWhatsAppWhyLabsWikipediaWolfram AlphaWriterXataXorbits Inference (Xinference)YandexYeager.aiYouTubeZepZillizComponentsLLMsChat modelsDocument loadersDocument transformersText embedding modelsVector storesRetrieversToolsAgents and toolkitsMemoryCallbacksChat
3,418
and toolkitsMemoryCallbacksChat loadersProvidersMorePrediction GuardOn this pagePrediction GuardThis page covers how to use the Prediction Guard ecosystem within LangChain.
This page covers how to use the Prediction Guard ecosystem within LangChain.
This page covers how to use the Prediction Guard ecosystem within LangChain. ->: and toolkitsMemoryCallbacksChat loadersProvidersMorePrediction GuardOn this pagePrediction GuardThis page covers how to use the Prediction Guard ecosystem within LangChain.
3,419
It is broken into two parts: installation and setup, and then references to specific Prediction Guard wrappers.Installation and Setup​Install the Python SDK with pip install predictionguardGet a Prediction Guard access token (as described here) and set it as an environment variable (PREDICTIONGUARD_TOKEN)LLM Wrapper​There exists a Prediction Guard LLM wrapper, which you can access with from langchain.llms import PredictionGuardYou can provide the name of the Prediction Guard model as an argument when initializing the LLM:pgllm = PredictionGuard(model="MPT-7B-Instruct")You can also provide your access token directly as an argument:pgllm = PredictionGuard(model="MPT-7B-Instruct", token="<your access token>")Finally, you can provide an "output" argument that is used to structure/ control the output of the LLM:pgllm = PredictionGuard(model="MPT-7B-Instruct", output={"type": "boolean"})Example usage​Basic usage of the controlled or guarded LLM wrapper:import osimport predictionguard as pgfrom langchain.llms import PredictionGuardfrom langchain.prompts import PromptTemplatefrom langchain.chains import LLMChain# Your Prediction Guard API key. Get one at predictionguard.comos.environ["PREDICTIONGUARD_TOKEN"] = "<your Prediction Guard access token>"# Define a prompt templatetemplate = """Respond to the following query based on the context.Context: EVERY comment, DM + email suggestion has led us to this EXCITING announcement! 🎉 We have officially added TWO new candle subscription box options! 📦Exclusive Candle Box - $80 Monthly Candle Box - $45 (NEW!)Scent of The Month Box - $28 (NEW!)Head to stories to get ALL the deets on each box! 👆 BONUS: Save 50% on your first box with code 50OFF! 🎉Query: {query}Result: """prompt = PromptTemplate(template=template, input_variables=["query"])# With "guarding" or controlling the output of the LLM. See the # Prediction Guard docs (https://docs.predictionguard.com) to learn how to # control the output with integer, float,
This page covers how to use the Prediction Guard ecosystem within LangChain.
This page covers how to use the Prediction Guard ecosystem within LangChain. ->: It is broken into two parts: installation and setup, and then references to specific Prediction Guard wrappers.Installation and Setup​Install the Python SDK with pip install predictionguardGet a Prediction Guard access token (as described here) and set it as an environment variable (PREDICTIONGUARD_TOKEN)LLM Wrapper​There exists a Prediction Guard LLM wrapper, which you can access with from langchain.llms import PredictionGuardYou can provide the name of the Prediction Guard model as an argument when initializing the LLM:pgllm = PredictionGuard(model="MPT-7B-Instruct")You can also provide your access token directly as an argument:pgllm = PredictionGuard(model="MPT-7B-Instruct", token="<your access token>")Finally, you can provide an "output" argument that is used to structure/ control the output of the LLM:pgllm = PredictionGuard(model="MPT-7B-Instruct", output={"type": "boolean"})Example usage​Basic usage of the controlled or guarded LLM wrapper:import osimport predictionguard as pgfrom langchain.llms import PredictionGuardfrom langchain.prompts import PromptTemplatefrom langchain.chains import LLMChain# Your Prediction Guard API key. Get one at predictionguard.comos.environ["PREDICTIONGUARD_TOKEN"] = "<your Prediction Guard access token>"# Define a prompt templatetemplate = """Respond to the following query based on the context.Context: EVERY comment, DM + email suggestion has led us to this EXCITING announcement! 🎉 We have officially added TWO new candle subscription box options! 📦Exclusive Candle Box - $80 Monthly Candle Box - $45 (NEW!)Scent of The Month Box - $28 (NEW!)Head to stories to get ALL the deets on each box! 👆 BONUS: Save 50% on your first box with code 50OFF! 🎉Query: {query}Result: """prompt = PromptTemplate(template=template, input_variables=["query"])# With "guarding" or controlling the output of the LLM. See the # Prediction Guard docs (https://docs.predictionguard.com) to learn how to # control the output with integer, float,
3,420
how to # control the output with integer, float, boolean, JSON, and other types and# structures.pgllm = PredictionGuard(model="MPT-7B-Instruct", output={ "type": "categorical", "categories": [ "product announcement", "apology", "relational" ] })pgllm(prompt.format(query="What kind of post is this?"))Basic LLM Chaining with the Prediction Guard wrapper:import osfrom langchain.prompts import PromptTemplatefrom langchain.chains import LLMChainfrom langchain.llms import PredictionGuard# Optional, add your OpenAI API Key. This is optional, as Prediction Guard allows# you to access all the latest open access models (see https://docs.predictionguard.com)os.environ["OPENAI_API_KEY"] = "<your OpenAI api key>"# Your Prediction Guard API key. Get one at predictionguard.comos.environ["PREDICTIONGUARD_TOKEN"] = "<your Prediction Guard access token>"pgllm = PredictionGuard(model="OpenAI-text-davinci-003")template = """Question: {question}Answer: Let's think step by step."""prompt = PromptTemplate(template=template, input_variables=["question"])llm_chain = LLMChain(prompt=prompt, llm=pgllm, verbose=True)question = "What NFL team won the Super Bowl in the year Justin Beiber was born?"llm_chain.predict(question=question)PreviousPredibaseNextPromptLayerInstallation and SetupLLM WrapperExample usageCommunityDiscordTwitterGitHubPythonJS/TSMoreHomepageBlogCopyright © 2023 LangChain, Inc.
This page covers how to use the Prediction Guard ecosystem within LangChain.
This page covers how to use the Prediction Guard ecosystem within LangChain. ->: how to # control the output with integer, float, boolean, JSON, and other types and# structures.pgllm = PredictionGuard(model="MPT-7B-Instruct", output={ "type": "categorical", "categories": [ "product announcement", "apology", "relational" ] })pgllm(prompt.format(query="What kind of post is this?"))Basic LLM Chaining with the Prediction Guard wrapper:import osfrom langchain.prompts import PromptTemplatefrom langchain.chains import LLMChainfrom langchain.llms import PredictionGuard# Optional, add your OpenAI API Key. This is optional, as Prediction Guard allows# you to access all the latest open access models (see https://docs.predictionguard.com)os.environ["OPENAI_API_KEY"] = "<your OpenAI api key>"# Your Prediction Guard API key. Get one at predictionguard.comos.environ["PREDICTIONGUARD_TOKEN"] = "<your Prediction Guard access token>"pgllm = PredictionGuard(model="OpenAI-text-davinci-003")template = """Question: {question}Answer: Let's think step by step."""prompt = PromptTemplate(template=template, input_variables=["question"])llm_chain = LLMChain(prompt=prompt, llm=pgllm, verbose=True)question = "What NFL team won the Super Bowl in the year Justin Beiber was born?"llm_chain.predict(question=question)PreviousPredibaseNextPromptLayerInstallation and SetupLLM WrapperExample usageCommunityDiscordTwitterGitHubPythonJS/TSMoreHomepageBlogCopyright © 2023 LangChain, Inc.
3,421
Replicate | 🦜️🔗 Langchain
This page covers how to run models on Replicate within LangChain.
This page covers how to run models on Replicate within LangChain. ->: Replicate | 🦜️🔗 Langchain
3,422
Skip to main content🦜️🔗 LangChainDocsUse casesIntegrationsAPICommunityChat our docsLangSmithJS/TS DocsSearchCTRLKProvidersAnthropicAWSGoogleMicrosoftOpenAIMoreActiveloop Deep LakeAI21 LabsAimAINetworkAirbyteAirtableAleph AlphaAlibaba Cloud OpensearchAnalyticDBAnnoyAnyscaleApifyArangoDBArgillaArthurArxivAtlasAwaDBAWS DynamoDBAZLyricsBagelDBBananaBasetenBeamBeautiful SoupBiliBiliNIBittensorBlackboardBrave SearchCassandraCerebriumAIChaindeskChromaClarifaiClearMLClickHouseCnosDBCohereCollege ConfidentialCometConfident AIConfluenceC TransformersDashVectorDatabricksDatadog TracingDatadog LogsDataForSEODeepInfraDeepSparseDiffbotDingoDiscordDocArrayDoctranDocugamiDuckDBElasticsearchEpsillaEverNoteFacebook ChatFacebook FaissFigmaFireworksFlyteForefrontAIGitGitBookGoldenGoogle Document AIGoogle SerperGooseAIGPT4AllGradientGraphsignalGrobidGutenbergHacker NewsHazy ResearchHeliconeHologresHTML to textHugging FaceiFixitIMSDbInfinoJavelin AI GatewayJinaKonkoLanceDBLangChain Decorators ✨Llama.cppLog10MarqoMediaWikiDumpMeilisearchMetalMilvusMinimaxMLflow AI GatewayMLflowModalModelScopeModern TreasuryMomentoMongoDB AtlasMotherduckMotörheadMyScaleNeo4jNLPCloudNotion DBNucliaObsidianOpenLLMOpenSearchOpenWeatherMapPetalsPostgres EmbeddingPGVectorPineconePipelineAIPortkeyPredibasePrediction GuardPromptLayerprovidersPsychicPubMedQdrantRay ServeRebuffRedditRedisReplicateRoamRocksetRunhouseRWKV-4ScaNNSearchApiSearxNG Search APISerpAPIShale ProtocolSingleStoreDBscikit-learnSlackspaCySpreedlyStarRocksStochasticAIStripeSupabase (Postgres)NebulaTairTelegramTencentVectorDBTensorFlow DatasetsTigris2MarkdownTrelloTruLensTwitterTypesenseUnstructuredUpstash RedisUSearchVearchVectaraVespaWandB TracingWeights & BiasesWeatherWeaviateWhatsAppWhyLabsWikipediaWolfram AlphaWriterXataXorbits Inference (Xinference)YandexYeager.aiYouTubeZepZillizComponentsLLMsChat modelsDocument loadersDocument transformersText embedding modelsVector storesRetrieversToolsAgents and toolkitsMemoryCallbacksChat
This page covers how to run models on Replicate within LangChain.
This page covers how to run models on Replicate within LangChain. ->: Skip to main content🦜️🔗 LangChainDocsUse casesIntegrationsAPICommunityChat our docsLangSmithJS/TS DocsSearchCTRLKProvidersAnthropicAWSGoogleMicrosoftOpenAIMoreActiveloop Deep LakeAI21 LabsAimAINetworkAirbyteAirtableAleph AlphaAlibaba Cloud OpensearchAnalyticDBAnnoyAnyscaleApifyArangoDBArgillaArthurArxivAtlasAwaDBAWS DynamoDBAZLyricsBagelDBBananaBasetenBeamBeautiful SoupBiliBiliNIBittensorBlackboardBrave SearchCassandraCerebriumAIChaindeskChromaClarifaiClearMLClickHouseCnosDBCohereCollege ConfidentialCometConfident AIConfluenceC TransformersDashVectorDatabricksDatadog TracingDatadog LogsDataForSEODeepInfraDeepSparseDiffbotDingoDiscordDocArrayDoctranDocugamiDuckDBElasticsearchEpsillaEverNoteFacebook ChatFacebook FaissFigmaFireworksFlyteForefrontAIGitGitBookGoldenGoogle Document AIGoogle SerperGooseAIGPT4AllGradientGraphsignalGrobidGutenbergHacker NewsHazy ResearchHeliconeHologresHTML to textHugging FaceiFixitIMSDbInfinoJavelin AI GatewayJinaKonkoLanceDBLangChain Decorators ✨Llama.cppLog10MarqoMediaWikiDumpMeilisearchMetalMilvusMinimaxMLflow AI GatewayMLflowModalModelScopeModern TreasuryMomentoMongoDB AtlasMotherduckMotörheadMyScaleNeo4jNLPCloudNotion DBNucliaObsidianOpenLLMOpenSearchOpenWeatherMapPetalsPostgres EmbeddingPGVectorPineconePipelineAIPortkeyPredibasePrediction GuardPromptLayerprovidersPsychicPubMedQdrantRay ServeRebuffRedditRedisReplicateRoamRocksetRunhouseRWKV-4ScaNNSearchApiSearxNG Search APISerpAPIShale ProtocolSingleStoreDBscikit-learnSlackspaCySpreedlyStarRocksStochasticAIStripeSupabase (Postgres)NebulaTairTelegramTencentVectorDBTensorFlow DatasetsTigris2MarkdownTrelloTruLensTwitterTypesenseUnstructuredUpstash RedisUSearchVearchVectaraVespaWandB TracingWeights & BiasesWeatherWeaviateWhatsAppWhyLabsWikipediaWolfram AlphaWriterXataXorbits Inference (Xinference)YandexYeager.aiYouTubeZepZillizComponentsLLMsChat modelsDocument loadersDocument transformersText embedding modelsVector storesRetrieversToolsAgents and toolkitsMemoryCallbacksChat
3,423
and toolkitsMemoryCallbacksChat loadersProvidersMoreReplicateOn this pageReplicateThis page covers how to run models on Replicate within LangChain.Installation and Setup‚ÄãCreate a Replicate account. Get your API key and set it as an environment variable (REPLICATE_API_TOKEN)Install the Replicate python client with pip install replicateCalling a model‚ÄãFind a model on the Replicate explore page, and then paste in the model name and version in this format: owner-name/model-name:versionFor example, for this dolly model, click on the API tab. The model name/version would be: "replicate/dolly-v2-12b:ef0e1aefc61f8e096ebe4db6b2bacc297daf2ef6899f0f7e001ec445893500e5"Only the model param is required, but any other model parameters can also be passed in with the format input={model_param: value, ...}For example, if we were running stable diffusion and wanted to change the image dimensions:Replicate(model="stability-ai/stable-diffusion:db21e45d3f7023abc2a46ee38a23973f6dce16bb082a930b0c49861f96d1e5bf", input={'image_dimensions': '512x512'})Note that only the first output of a model will be returned.
This page covers how to run models on Replicate within LangChain.
This page covers how to run models on Replicate within LangChain. ->: and toolkitsMemoryCallbacksChat loadersProvidersMoreReplicateOn this pageReplicateThis page covers how to run models on Replicate within LangChain.Installation and Setup‚ÄãCreate a Replicate account. Get your API key and set it as an environment variable (REPLICATE_API_TOKEN)Install the Replicate python client with pip install replicateCalling a model‚ÄãFind a model on the Replicate explore page, and then paste in the model name and version in this format: owner-name/model-name:versionFor example, for this dolly model, click on the API tab. The model name/version would be: "replicate/dolly-v2-12b:ef0e1aefc61f8e096ebe4db6b2bacc297daf2ef6899f0f7e001ec445893500e5"Only the model param is required, but any other model parameters can also be passed in with the format input={model_param: value, ...}For example, if we were running stable diffusion and wanted to change the image dimensions:Replicate(model="stability-ai/stable-diffusion:db21e45d3f7023abc2a46ee38a23973f6dce16bb082a930b0c49861f96d1e5bf", input={'image_dimensions': '512x512'})Note that only the first output of a model will be returned.
3,424
From here, we can initialize our model:llm = Replicate(model="replicate/dolly-v2-12b:ef0e1aefc61f8e096ebe4db6b2bacc297daf2ef6899f0f7e001ec445893500e5")And run it:prompt = """Answer the following yes/no question by reasoning step by step.Can a dog drive a car?"""llm(prompt)We can call any Replicate model (not just LLMs) using this syntax. For example, we can call Stable Diffusion:text2image = Replicate(model="stability-ai/stable-diffusion:db21e45d3f7023abc2a46ee38a23973f6dce16bb082a930b0c49861f96d1e5bf", input={'image_dimensions':'512x512'})image_output = text2image("A cat riding a motorcycle by Picasso")PreviousRedisNextRoamInstallation and SetupCalling a modelCommunityDiscordTwitterGitHubPythonJS/TSMoreHomepageBlogCopyright © 2023 LangChain, Inc.
This page covers how to run models on Replicate within LangChain.
This page covers how to run models on Replicate within LangChain. ->: From here, we can initialize our model:llm = Replicate(model="replicate/dolly-v2-12b:ef0e1aefc61f8e096ebe4db6b2bacc297daf2ef6899f0f7e001ec445893500e5")And run it:prompt = """Answer the following yes/no question by reasoning step by step.Can a dog drive a car?"""llm(prompt)We can call any Replicate model (not just LLMs) using this syntax. For example, we can call Stable Diffusion:text2image = Replicate(model="stability-ai/stable-diffusion:db21e45d3f7023abc2a46ee38a23973f6dce16bb082a930b0c49861f96d1e5bf", input={'image_dimensions':'512x512'})image_output = text2image("A cat riding a motorcycle by Picasso")PreviousRedisNextRoamInstallation and SetupCalling a modelCommunityDiscordTwitterGitHubPythonJS/TSMoreHomepageBlogCopyright © 2023 LangChain, Inc.
3,425
Jina | 🦜️🔗 Langchain
This page covers how to use the Jina ecosystem within LangChain.
This page covers how to use the Jina ecosystem within LangChain. ->: Jina | 🦜️🔗 Langchain
3,426
Skip to main content🦜️🔗 LangChainDocsUse casesIntegrationsAPICommunityChat our docsLangSmithJS/TS DocsSearchCTRLKProvidersAnthropicAWSGoogleMicrosoftOpenAIMoreActiveloop Deep LakeAI21 LabsAimAINetworkAirbyteAirtableAleph AlphaAlibaba Cloud OpensearchAnalyticDBAnnoyAnyscaleApifyArangoDBArgillaArthurArxivAtlasAwaDBAWS DynamoDBAZLyricsBagelDBBananaBasetenBeamBeautiful SoupBiliBiliNIBittensorBlackboardBrave SearchCassandraCerebriumAIChaindeskChromaClarifaiClearMLClickHouseCnosDBCohereCollege ConfidentialCometConfident AIConfluenceC TransformersDashVectorDatabricksDatadog TracingDatadog LogsDataForSEODeepInfraDeepSparseDiffbotDingoDiscordDocArrayDoctranDocugamiDuckDBElasticsearchEpsillaEverNoteFacebook ChatFacebook FaissFigmaFireworksFlyteForefrontAIGitGitBookGoldenGoogle Document AIGoogle SerperGooseAIGPT4AllGradientGraphsignalGrobidGutenbergHacker NewsHazy ResearchHeliconeHologresHTML to textHugging FaceiFixitIMSDbInfinoJavelin AI GatewayJinaKonkoLanceDBLangChain Decorators ✨Llama.cppLog10MarqoMediaWikiDumpMeilisearchMetalMilvusMinimaxMLflow AI GatewayMLflowModalModelScopeModern TreasuryMomentoMongoDB AtlasMotherduckMotörheadMyScaleNeo4jNLPCloudNotion DBNucliaObsidianOpenLLMOpenSearchOpenWeatherMapPetalsPostgres EmbeddingPGVectorPineconePipelineAIPortkeyPredibasePrediction GuardPromptLayerprovidersPsychicPubMedQdrantRay ServeRebuffRedditRedisReplicateRoamRocksetRunhouseRWKV-4ScaNNSearchApiSearxNG Search APISerpAPIShale ProtocolSingleStoreDBscikit-learnSlackspaCySpreedlyStarRocksStochasticAIStripeSupabase (Postgres)NebulaTairTelegramTencentVectorDBTensorFlow DatasetsTigris2MarkdownTrelloTruLensTwitterTypesenseUnstructuredUpstash RedisUSearchVearchVectaraVespaWandB TracingWeights & BiasesWeatherWeaviateWhatsAppWhyLabsWikipediaWolfram AlphaWriterXataXorbits Inference (Xinference)YandexYeager.aiYouTubeZepZillizComponentsLLMsChat modelsDocument loadersDocument transformersText embedding modelsVector storesRetrieversToolsAgents and toolkitsMemoryCallbacksChat
This page covers how to use the Jina ecosystem within LangChain.
This page covers how to use the Jina ecosystem within LangChain. ->: Skip to main content🦜️🔗 LangChainDocsUse casesIntegrationsAPICommunityChat our docsLangSmithJS/TS DocsSearchCTRLKProvidersAnthropicAWSGoogleMicrosoftOpenAIMoreActiveloop Deep LakeAI21 LabsAimAINetworkAirbyteAirtableAleph AlphaAlibaba Cloud OpensearchAnalyticDBAnnoyAnyscaleApifyArangoDBArgillaArthurArxivAtlasAwaDBAWS DynamoDBAZLyricsBagelDBBananaBasetenBeamBeautiful SoupBiliBiliNIBittensorBlackboardBrave SearchCassandraCerebriumAIChaindeskChromaClarifaiClearMLClickHouseCnosDBCohereCollege ConfidentialCometConfident AIConfluenceC TransformersDashVectorDatabricksDatadog TracingDatadog LogsDataForSEODeepInfraDeepSparseDiffbotDingoDiscordDocArrayDoctranDocugamiDuckDBElasticsearchEpsillaEverNoteFacebook ChatFacebook FaissFigmaFireworksFlyteForefrontAIGitGitBookGoldenGoogle Document AIGoogle SerperGooseAIGPT4AllGradientGraphsignalGrobidGutenbergHacker NewsHazy ResearchHeliconeHologresHTML to textHugging FaceiFixitIMSDbInfinoJavelin AI GatewayJinaKonkoLanceDBLangChain Decorators ✨Llama.cppLog10MarqoMediaWikiDumpMeilisearchMetalMilvusMinimaxMLflow AI GatewayMLflowModalModelScopeModern TreasuryMomentoMongoDB AtlasMotherduckMotörheadMyScaleNeo4jNLPCloudNotion DBNucliaObsidianOpenLLMOpenSearchOpenWeatherMapPetalsPostgres EmbeddingPGVectorPineconePipelineAIPortkeyPredibasePrediction GuardPromptLayerprovidersPsychicPubMedQdrantRay ServeRebuffRedditRedisReplicateRoamRocksetRunhouseRWKV-4ScaNNSearchApiSearxNG Search APISerpAPIShale ProtocolSingleStoreDBscikit-learnSlackspaCySpreedlyStarRocksStochasticAIStripeSupabase (Postgres)NebulaTairTelegramTencentVectorDBTensorFlow DatasetsTigris2MarkdownTrelloTruLensTwitterTypesenseUnstructuredUpstash RedisUSearchVearchVectaraVespaWandB TracingWeights & BiasesWeatherWeaviateWhatsAppWhyLabsWikipediaWolfram AlphaWriterXataXorbits Inference (Xinference)YandexYeager.aiYouTubeZepZillizComponentsLLMsChat modelsDocument loadersDocument transformersText embedding modelsVector storesRetrieversToolsAgents and toolkitsMemoryCallbacksChat
3,427
and toolkitsMemoryCallbacksChat loadersProvidersMoreJinaOn this pageJinaThis page covers how to use the Jina ecosystem within LangChain.
This page covers how to use the Jina ecosystem within LangChain.
This page covers how to use the Jina ecosystem within LangChain. ->: and toolkitsMemoryCallbacksChat loadersProvidersMoreJinaOn this pageJinaThis page covers how to use the Jina ecosystem within LangChain.
3,428
It is broken into two parts: installation and setup, and then references to specific Jina wrappers.Installation and Setup‚ÄãInstall the Python SDK with pip install jinaGet a Jina AI Cloud auth token from here and set it as an environment variable (JINA_AUTH_TOKEN)Wrappers‚ÄãEmbeddings‚ÄãThere exists a Jina Embeddings wrapper, which you can access with from langchain.embeddings import JinaEmbeddingsFor a more detailed walkthrough of this, see this notebookDeployment‚ÄãLangchain-serve, powered by Jina, helps take LangChain apps to production with easy to use REST/WebSocket APIs and Slack bots. Usage‚ÄãInstall the package from PyPI. pip install langchain-serveWrap your LangChain app with the @serving decorator. # app.pyfrom lcserve import serving@servingdef ask(input: str) -> str: from langchain.chains import LLMChain from langchain.llms import OpenAI from langchain.agents import AgentExecutor, ZeroShotAgent tools = [...] # list of tools prompt = ZeroShotAgent.create_prompt( tools, input_variables=["input", "agent_scratchpad"], ) llm_chain = LLMChain(llm=OpenAI(temperature=0), prompt=prompt) agent = ZeroShotAgent( llm_chain=llm_chain, allowed_tools=[tool.name for tool in tools] ) agent_executor = AgentExecutor.from_agent_and_tools( agent=agent, tools=tools, verbose=True, ) return agent_executor.run(input)Deploy on Jina AI Cloud with lc-serve deploy jcloud app. Once deployed, we can send a POST request to the API endpoint to get a response.curl -X 'POST' 'https://<your-app>.wolf.jina.ai/ask' \ -d '{ "input": "Your Question here?", "envs": { "OPENAI_API_KEY": "sk-***" }}'You can also self-host the app on your infrastructure with Docker-compose or Kubernetes. See here for more details.Langchain-serve also allows to deploy the apps with WebSocket APIs and Slack Bots both on Jina AI Cloud or self-hosted infrastructure.PreviousJavelin AI GatewayNextKonkoInstallation and
This page covers how to use the Jina ecosystem within LangChain.
This page covers how to use the Jina ecosystem within LangChain. ->: It is broken into two parts: installation and setup, and then references to specific Jina wrappers.Installation and Setup‚ÄãInstall the Python SDK with pip install jinaGet a Jina AI Cloud auth token from here and set it as an environment variable (JINA_AUTH_TOKEN)Wrappers‚ÄãEmbeddings‚ÄãThere exists a Jina Embeddings wrapper, which you can access with from langchain.embeddings import JinaEmbeddingsFor a more detailed walkthrough of this, see this notebookDeployment‚ÄãLangchain-serve, powered by Jina, helps take LangChain apps to production with easy to use REST/WebSocket APIs and Slack bots. Usage‚ÄãInstall the package from PyPI. pip install langchain-serveWrap your LangChain app with the @serving decorator. # app.pyfrom lcserve import serving@servingdef ask(input: str) -> str: from langchain.chains import LLMChain from langchain.llms import OpenAI from langchain.agents import AgentExecutor, ZeroShotAgent tools = [...] # list of tools prompt = ZeroShotAgent.create_prompt( tools, input_variables=["input", "agent_scratchpad"], ) llm_chain = LLMChain(llm=OpenAI(temperature=0), prompt=prompt) agent = ZeroShotAgent( llm_chain=llm_chain, allowed_tools=[tool.name for tool in tools] ) agent_executor = AgentExecutor.from_agent_and_tools( agent=agent, tools=tools, verbose=True, ) return agent_executor.run(input)Deploy on Jina AI Cloud with lc-serve deploy jcloud app. Once deployed, we can send a POST request to the API endpoint to get a response.curl -X 'POST' 'https://<your-app>.wolf.jina.ai/ask' \ -d '{ "input": "Your Question here?", "envs": { "OPENAI_API_KEY": "sk-***" }}'You can also self-host the app on your infrastructure with Docker-compose or Kubernetes. See here for more details.Langchain-serve also allows to deploy the apps with WebSocket APIs and Slack Bots both on Jina AI Cloud or self-hosted infrastructure.PreviousJavelin AI GatewayNextKonkoInstallation and
3,429
AI GatewayNextKonkoInstallation and SetupWrappersEmbeddingsDeploymentUsageCommunityDiscordTwitterGitHubPythonJS/TSMoreHomepageBlogCopyright © 2023 LangChain, Inc.
This page covers how to use the Jina ecosystem within LangChain.
This page covers how to use the Jina ecosystem within LangChain. ->: AI GatewayNextKonkoInstallation and SetupWrappersEmbeddingsDeploymentUsageCommunityDiscordTwitterGitHubPythonJS/TSMoreHomepageBlogCopyright © 2023 LangChain, Inc.
3,430
Twitter | 🦜️🔗 Langchain
Twitter is an online social media and social networking service.
Twitter is an online social media and social networking service. ->: Twitter | 🦜️🔗 Langchain
3,431
Skip to main content🦜️🔗 LangChainDocsUse casesIntegrationsAPICommunityChat our docsLangSmithJS/TS DocsSearchCTRLKProvidersAnthropicAWSGoogleMicrosoftOpenAIMoreActiveloop Deep LakeAI21 LabsAimAINetworkAirbyteAirtableAleph AlphaAlibaba Cloud OpensearchAnalyticDBAnnoyAnyscaleApifyArangoDBArgillaArthurArxivAtlasAwaDBAWS DynamoDBAZLyricsBagelDBBananaBasetenBeamBeautiful SoupBiliBiliNIBittensorBlackboardBrave SearchCassandraCerebriumAIChaindeskChromaClarifaiClearMLClickHouseCnosDBCohereCollege ConfidentialCometConfident AIConfluenceC TransformersDashVectorDatabricksDatadog TracingDatadog LogsDataForSEODeepInfraDeepSparseDiffbotDingoDiscordDocArrayDoctranDocugamiDuckDBElasticsearchEpsillaEverNoteFacebook ChatFacebook FaissFigmaFireworksFlyteForefrontAIGitGitBookGoldenGoogle Document AIGoogle SerperGooseAIGPT4AllGradientGraphsignalGrobidGutenbergHacker NewsHazy ResearchHeliconeHologresHTML to textHugging FaceiFixitIMSDbInfinoJavelin AI GatewayJinaKonkoLanceDBLangChain Decorators ✨Llama.cppLog10MarqoMediaWikiDumpMeilisearchMetalMilvusMinimaxMLflow AI GatewayMLflowModalModelScopeModern TreasuryMomentoMongoDB AtlasMotherduckMotörheadMyScaleNeo4jNLPCloudNotion DBNucliaObsidianOpenLLMOpenSearchOpenWeatherMapPetalsPostgres EmbeddingPGVectorPineconePipelineAIPortkeyPredibasePrediction GuardPromptLayerprovidersPsychicPubMedQdrantRay ServeRebuffRedditRedisReplicateRoamRocksetRunhouseRWKV-4ScaNNSearchApiSearxNG Search APISerpAPIShale ProtocolSingleStoreDBscikit-learnSlackspaCySpreedlyStarRocksStochasticAIStripeSupabase (Postgres)NebulaTairTelegramTencentVectorDBTensorFlow DatasetsTigris2MarkdownTrelloTruLensTwitterTypesenseUnstructuredUpstash RedisUSearchVearchVectaraVespaWandB TracingWeights & BiasesWeatherWeaviateWhatsAppWhyLabsWikipediaWolfram AlphaWriterXataXorbits Inference (Xinference)YandexYeager.aiYouTubeZepZillizComponentsLLMsChat modelsDocument loadersDocument transformersText embedding modelsVector storesRetrieversToolsAgents and toolkitsMemoryCallbacksChat
Twitter is an online social media and social networking service.
Twitter is an online social media and social networking service. ->: Skip to main content🦜️🔗 LangChainDocsUse casesIntegrationsAPICommunityChat our docsLangSmithJS/TS DocsSearchCTRLKProvidersAnthropicAWSGoogleMicrosoftOpenAIMoreActiveloop Deep LakeAI21 LabsAimAINetworkAirbyteAirtableAleph AlphaAlibaba Cloud OpensearchAnalyticDBAnnoyAnyscaleApifyArangoDBArgillaArthurArxivAtlasAwaDBAWS DynamoDBAZLyricsBagelDBBananaBasetenBeamBeautiful SoupBiliBiliNIBittensorBlackboardBrave SearchCassandraCerebriumAIChaindeskChromaClarifaiClearMLClickHouseCnosDBCohereCollege ConfidentialCometConfident AIConfluenceC TransformersDashVectorDatabricksDatadog TracingDatadog LogsDataForSEODeepInfraDeepSparseDiffbotDingoDiscordDocArrayDoctranDocugamiDuckDBElasticsearchEpsillaEverNoteFacebook ChatFacebook FaissFigmaFireworksFlyteForefrontAIGitGitBookGoldenGoogle Document AIGoogle SerperGooseAIGPT4AllGradientGraphsignalGrobidGutenbergHacker NewsHazy ResearchHeliconeHologresHTML to textHugging FaceiFixitIMSDbInfinoJavelin AI GatewayJinaKonkoLanceDBLangChain Decorators ✨Llama.cppLog10MarqoMediaWikiDumpMeilisearchMetalMilvusMinimaxMLflow AI GatewayMLflowModalModelScopeModern TreasuryMomentoMongoDB AtlasMotherduckMotörheadMyScaleNeo4jNLPCloudNotion DBNucliaObsidianOpenLLMOpenSearchOpenWeatherMapPetalsPostgres EmbeddingPGVectorPineconePipelineAIPortkeyPredibasePrediction GuardPromptLayerprovidersPsychicPubMedQdrantRay ServeRebuffRedditRedisReplicateRoamRocksetRunhouseRWKV-4ScaNNSearchApiSearxNG Search APISerpAPIShale ProtocolSingleStoreDBscikit-learnSlackspaCySpreedlyStarRocksStochasticAIStripeSupabase (Postgres)NebulaTairTelegramTencentVectorDBTensorFlow DatasetsTigris2MarkdownTrelloTruLensTwitterTypesenseUnstructuredUpstash RedisUSearchVearchVectaraVespaWandB TracingWeights & BiasesWeatherWeaviateWhatsAppWhyLabsWikipediaWolfram AlphaWriterXataXorbits Inference (Xinference)YandexYeager.aiYouTubeZepZillizComponentsLLMsChat modelsDocument loadersDocument transformersText embedding modelsVector storesRetrieversToolsAgents and toolkitsMemoryCallbacksChat
3,432
and toolkitsMemoryCallbacksChat loadersProvidersMoreTwitterOn this pageTwitterTwitter is an online social media and social networking service.Installation and Setup​pip install tweepyWe must initialize the loader with the Twitter API token, and we need to set up the Twitter username.Document Loader​See a usage example.from langchain.document_loaders import TwitterTweetLoaderPreviousTruLensNextTypesenseInstallation and SetupDocument LoaderCommunityDiscordTwitterGitHubPythonJS/TSMoreHomepageBlogCopyright © 2023 LangChain, Inc.
Twitter is an online social media and social networking service.
Twitter is an online social media and social networking service. ->: and toolkitsMemoryCallbacksChat loadersProvidersMoreTwitterOn this pageTwitterTwitter is an online social media and social networking service.Installation and Setup​pip install tweepyWe must initialize the loader with the Twitter API token, and we need to set up the Twitter username.Document Loader​See a usage example.from langchain.document_loaders import TwitterTweetLoaderPreviousTruLensNextTypesenseInstallation and SetupDocument LoaderCommunityDiscordTwitterGitHubPythonJS/TSMoreHomepageBlogCopyright © 2023 LangChain, Inc.
3,433
spaCy | 🦜️🔗 Langchain
spaCy is an open-source software library for advanced natural language processing, written in the programming languages Python and Cython.
spaCy is an open-source software library for advanced natural language processing, written in the programming languages Python and Cython. ->: spaCy | 🦜️🔗 Langchain
3,434
Skip to main content🦜️🔗 LangChainDocsUse casesIntegrationsAPICommunityChat our docsLangSmithJS/TS DocsSearchCTRLKProvidersAnthropicAWSGoogleMicrosoftOpenAIMoreActiveloop Deep LakeAI21 LabsAimAINetworkAirbyteAirtableAleph AlphaAlibaba Cloud OpensearchAnalyticDBAnnoyAnyscaleApifyArangoDBArgillaArthurArxivAtlasAwaDBAWS DynamoDBAZLyricsBagelDBBananaBasetenBeamBeautiful SoupBiliBiliNIBittensorBlackboardBrave SearchCassandraCerebriumAIChaindeskChromaClarifaiClearMLClickHouseCnosDBCohereCollege ConfidentialCometConfident AIConfluenceC TransformersDashVectorDatabricksDatadog TracingDatadog LogsDataForSEODeepInfraDeepSparseDiffbotDingoDiscordDocArrayDoctranDocugamiDuckDBElasticsearchEpsillaEverNoteFacebook ChatFacebook FaissFigmaFireworksFlyteForefrontAIGitGitBookGoldenGoogle Document AIGoogle SerperGooseAIGPT4AllGradientGraphsignalGrobidGutenbergHacker NewsHazy ResearchHeliconeHologresHTML to textHugging FaceiFixitIMSDbInfinoJavelin AI GatewayJinaKonkoLanceDBLangChain Decorators ✨Llama.cppLog10MarqoMediaWikiDumpMeilisearchMetalMilvusMinimaxMLflow AI GatewayMLflowModalModelScopeModern TreasuryMomentoMongoDB AtlasMotherduckMotörheadMyScaleNeo4jNLPCloudNotion DBNucliaObsidianOpenLLMOpenSearchOpenWeatherMapPetalsPostgres EmbeddingPGVectorPineconePipelineAIPortkeyPredibasePrediction GuardPromptLayerprovidersPsychicPubMedQdrantRay ServeRebuffRedditRedisReplicateRoamRocksetRunhouseRWKV-4ScaNNSearchApiSearxNG Search APISerpAPIShale ProtocolSingleStoreDBscikit-learnSlackspaCySpreedlyStarRocksStochasticAIStripeSupabase (Postgres)NebulaTairTelegramTencentVectorDBTensorFlow DatasetsTigris2MarkdownTrelloTruLensTwitterTypesenseUnstructuredUpstash RedisUSearchVearchVectaraVespaWandB TracingWeights & BiasesWeatherWeaviateWhatsAppWhyLabsWikipediaWolfram AlphaWriterXataXorbits Inference (Xinference)YandexYeager.aiYouTubeZepZillizComponentsLLMsChat modelsDocument loadersDocument transformersText embedding modelsVector storesRetrieversToolsAgents and toolkitsMemoryCallbacksChat
spaCy is an open-source software library for advanced natural language processing, written in the programming languages Python and Cython.
spaCy is an open-source software library for advanced natural language processing, written in the programming languages Python and Cython. ->: Skip to main content🦜️🔗 LangChainDocsUse casesIntegrationsAPICommunityChat our docsLangSmithJS/TS DocsSearchCTRLKProvidersAnthropicAWSGoogleMicrosoftOpenAIMoreActiveloop Deep LakeAI21 LabsAimAINetworkAirbyteAirtableAleph AlphaAlibaba Cloud OpensearchAnalyticDBAnnoyAnyscaleApifyArangoDBArgillaArthurArxivAtlasAwaDBAWS DynamoDBAZLyricsBagelDBBananaBasetenBeamBeautiful SoupBiliBiliNIBittensorBlackboardBrave SearchCassandraCerebriumAIChaindeskChromaClarifaiClearMLClickHouseCnosDBCohereCollege ConfidentialCometConfident AIConfluenceC TransformersDashVectorDatabricksDatadog TracingDatadog LogsDataForSEODeepInfraDeepSparseDiffbotDingoDiscordDocArrayDoctranDocugamiDuckDBElasticsearchEpsillaEverNoteFacebook ChatFacebook FaissFigmaFireworksFlyteForefrontAIGitGitBookGoldenGoogle Document AIGoogle SerperGooseAIGPT4AllGradientGraphsignalGrobidGutenbergHacker NewsHazy ResearchHeliconeHologresHTML to textHugging FaceiFixitIMSDbInfinoJavelin AI GatewayJinaKonkoLanceDBLangChain Decorators ✨Llama.cppLog10MarqoMediaWikiDumpMeilisearchMetalMilvusMinimaxMLflow AI GatewayMLflowModalModelScopeModern TreasuryMomentoMongoDB AtlasMotherduckMotörheadMyScaleNeo4jNLPCloudNotion DBNucliaObsidianOpenLLMOpenSearchOpenWeatherMapPetalsPostgres EmbeddingPGVectorPineconePipelineAIPortkeyPredibasePrediction GuardPromptLayerprovidersPsychicPubMedQdrantRay ServeRebuffRedditRedisReplicateRoamRocksetRunhouseRWKV-4ScaNNSearchApiSearxNG Search APISerpAPIShale ProtocolSingleStoreDBscikit-learnSlackspaCySpreedlyStarRocksStochasticAIStripeSupabase (Postgres)NebulaTairTelegramTencentVectorDBTensorFlow DatasetsTigris2MarkdownTrelloTruLensTwitterTypesenseUnstructuredUpstash RedisUSearchVearchVectaraVespaWandB TracingWeights & BiasesWeatherWeaviateWhatsAppWhyLabsWikipediaWolfram AlphaWriterXataXorbits Inference (Xinference)YandexYeager.aiYouTubeZepZillizComponentsLLMsChat modelsDocument loadersDocument transformersText embedding modelsVector storesRetrieversToolsAgents and toolkitsMemoryCallbacksChat
3,435
and toolkitsMemoryCallbacksChat loadersProvidersMorespaCyOn this pagespaCyspaCy is an open-source software library for advanced natural language processing, written in the programming languages Python and Cython.Installation and Setup​pip install spacyText Splitter​See a usage example.from langchain.text_splitter import SpacyTextSplitterText Embedding Models​See a usage examplefrom langchain.embeddings.spacy_embeddings import SpacyEmbeddingsPreviousSlackNextSpreedlyInstallation and SetupText SplitterText Embedding ModelsCommunityDiscordTwitterGitHubPythonJS/TSMoreHomepageBlogCopyright © 2023 LangChain, Inc.
spaCy is an open-source software library for advanced natural language processing, written in the programming languages Python and Cython.
spaCy is an open-source software library for advanced natural language processing, written in the programming languages Python and Cython. ->: and toolkitsMemoryCallbacksChat loadersProvidersMorespaCyOn this pagespaCyspaCy is an open-source software library for advanced natural language processing, written in the programming languages Python and Cython.Installation and Setup​pip install spacyText Splitter​See a usage example.from langchain.text_splitter import SpacyTextSplitterText Embedding Models​See a usage examplefrom langchain.embeddings.spacy_embeddings import SpacyEmbeddingsPreviousSlackNextSpreedlyInstallation and SetupText SplitterText Embedding ModelsCommunityDiscordTwitterGitHubPythonJS/TSMoreHomepageBlogCopyright © 2023 LangChain, Inc.
3,436
Datadog Logs | 🦜️🔗 Langchain
Datadog is a monitoring and analytics platform for cloud-scale applications.
Datadog is a monitoring and analytics platform for cloud-scale applications. ->: Datadog Logs | 🦜️🔗 Langchain
3,437
Skip to main content🦜️🔗 LangChainDocsUse casesIntegrationsAPICommunityChat our docsLangSmithJS/TS DocsSearchCTRLKProvidersAnthropicAWSGoogleMicrosoftOpenAIMoreActiveloop Deep LakeAI21 LabsAimAINetworkAirbyteAirtableAleph AlphaAlibaba Cloud OpensearchAnalyticDBAnnoyAnyscaleApifyArangoDBArgillaArthurArxivAtlasAwaDBAWS DynamoDBAZLyricsBagelDBBananaBasetenBeamBeautiful SoupBiliBiliNIBittensorBlackboardBrave SearchCassandraCerebriumAIChaindeskChromaClarifaiClearMLClickHouseCnosDBCohereCollege ConfidentialCometConfident AIConfluenceC TransformersDashVectorDatabricksDatadog TracingDatadog LogsDataForSEODeepInfraDeepSparseDiffbotDingoDiscordDocArrayDoctranDocugamiDuckDBElasticsearchEpsillaEverNoteFacebook ChatFacebook FaissFigmaFireworksFlyteForefrontAIGitGitBookGoldenGoogle Document AIGoogle SerperGooseAIGPT4AllGradientGraphsignalGrobidGutenbergHacker NewsHazy ResearchHeliconeHologresHTML to textHugging FaceiFixitIMSDbInfinoJavelin AI GatewayJinaKonkoLanceDBLangChain Decorators ✨Llama.cppLog10MarqoMediaWikiDumpMeilisearchMetalMilvusMinimaxMLflow AI GatewayMLflowModalModelScopeModern TreasuryMomentoMongoDB AtlasMotherduckMotörheadMyScaleNeo4jNLPCloudNotion DBNucliaObsidianOpenLLMOpenSearchOpenWeatherMapPetalsPostgres EmbeddingPGVectorPineconePipelineAIPortkeyPredibasePrediction GuardPromptLayerprovidersPsychicPubMedQdrantRay ServeRebuffRedditRedisReplicateRoamRocksetRunhouseRWKV-4ScaNNSearchApiSearxNG Search APISerpAPIShale ProtocolSingleStoreDBscikit-learnSlackspaCySpreedlyStarRocksStochasticAIStripeSupabase (Postgres)NebulaTairTelegramTencentVectorDBTensorFlow DatasetsTigris2MarkdownTrelloTruLensTwitterTypesenseUnstructuredUpstash RedisUSearchVearchVectaraVespaWandB TracingWeights & BiasesWeatherWeaviateWhatsAppWhyLabsWikipediaWolfram AlphaWriterXataXorbits Inference (Xinference)YandexYeager.aiYouTubeZepZillizComponentsLLMsChat modelsDocument loadersDocument transformersText embedding modelsVector storesRetrieversToolsAgents and toolkitsMemoryCallbacksChat
Datadog is a monitoring and analytics platform for cloud-scale applications.
Datadog is a monitoring and analytics platform for cloud-scale applications. ->: Skip to main content🦜️🔗 LangChainDocsUse casesIntegrationsAPICommunityChat our docsLangSmithJS/TS DocsSearchCTRLKProvidersAnthropicAWSGoogleMicrosoftOpenAIMoreActiveloop Deep LakeAI21 LabsAimAINetworkAirbyteAirtableAleph AlphaAlibaba Cloud OpensearchAnalyticDBAnnoyAnyscaleApifyArangoDBArgillaArthurArxivAtlasAwaDBAWS DynamoDBAZLyricsBagelDBBananaBasetenBeamBeautiful SoupBiliBiliNIBittensorBlackboardBrave SearchCassandraCerebriumAIChaindeskChromaClarifaiClearMLClickHouseCnosDBCohereCollege ConfidentialCometConfident AIConfluenceC TransformersDashVectorDatabricksDatadog TracingDatadog LogsDataForSEODeepInfraDeepSparseDiffbotDingoDiscordDocArrayDoctranDocugamiDuckDBElasticsearchEpsillaEverNoteFacebook ChatFacebook FaissFigmaFireworksFlyteForefrontAIGitGitBookGoldenGoogle Document AIGoogle SerperGooseAIGPT4AllGradientGraphsignalGrobidGutenbergHacker NewsHazy ResearchHeliconeHologresHTML to textHugging FaceiFixitIMSDbInfinoJavelin AI GatewayJinaKonkoLanceDBLangChain Decorators ✨Llama.cppLog10MarqoMediaWikiDumpMeilisearchMetalMilvusMinimaxMLflow AI GatewayMLflowModalModelScopeModern TreasuryMomentoMongoDB AtlasMotherduckMotörheadMyScaleNeo4jNLPCloudNotion DBNucliaObsidianOpenLLMOpenSearchOpenWeatherMapPetalsPostgres EmbeddingPGVectorPineconePipelineAIPortkeyPredibasePrediction GuardPromptLayerprovidersPsychicPubMedQdrantRay ServeRebuffRedditRedisReplicateRoamRocksetRunhouseRWKV-4ScaNNSearchApiSearxNG Search APISerpAPIShale ProtocolSingleStoreDBscikit-learnSlackspaCySpreedlyStarRocksStochasticAIStripeSupabase (Postgres)NebulaTairTelegramTencentVectorDBTensorFlow DatasetsTigris2MarkdownTrelloTruLensTwitterTypesenseUnstructuredUpstash RedisUSearchVearchVectaraVespaWandB TracingWeights & BiasesWeatherWeaviateWhatsAppWhyLabsWikipediaWolfram AlphaWriterXataXorbits Inference (Xinference)YandexYeager.aiYouTubeZepZillizComponentsLLMsChat modelsDocument loadersDocument transformersText embedding modelsVector storesRetrieversToolsAgents and toolkitsMemoryCallbacksChat
3,438
and toolkitsMemoryCallbacksChat loadersProvidersMoreDatadog LogsOn this pageDatadog LogsDatadog is a monitoring and analytics platform for cloud-scale applications.Installation and Setup​pip install datadog_api_clientWe must initialize the loader with the Datadog API key and APP key, and we need to set up the query to extract the desired logs.Document Loader​See a usage example.from langchain.document_loaders import DatadogLogsLoaderPreviousDatadog TracingNextDataForSEOInstallation and SetupDocument LoaderCommunityDiscordTwitterGitHubPythonJS/TSMoreHomepageBlogCopyright © 2023 LangChain, Inc.
Datadog is a monitoring and analytics platform for cloud-scale applications.
Datadog is a monitoring and analytics platform for cloud-scale applications. ->: and toolkitsMemoryCallbacksChat loadersProvidersMoreDatadog LogsOn this pageDatadog LogsDatadog is a monitoring and analytics platform for cloud-scale applications.Installation and Setup​pip install datadog_api_clientWe must initialize the loader with the Datadog API key and APP key, and we need to set up the query to extract the desired logs.Document Loader​See a usage example.from langchain.document_loaders import DatadogLogsLoaderPreviousDatadog TracingNextDataForSEOInstallation and SetupDocument LoaderCommunityDiscordTwitterGitHubPythonJS/TSMoreHomepageBlogCopyright © 2023 LangChain, Inc.
3,439
Chaindesk | 🦜️🔗 Langchain
Chaindesk is an open-source document retrieval platform that helps to connect your personal data with Large Language Models.
Chaindesk is an open-source document retrieval platform that helps to connect your personal data with Large Language Models. ->: Chaindesk | 🦜️🔗 Langchain
3,440
Skip to main content🦜️🔗 LangChainDocsUse casesIntegrationsAPICommunityChat our docsLangSmithJS/TS DocsSearchCTRLKProvidersAnthropicAWSGoogleMicrosoftOpenAIMoreActiveloop Deep LakeAI21 LabsAimAINetworkAirbyteAirtableAleph AlphaAlibaba Cloud OpensearchAnalyticDBAnnoyAnyscaleApifyArangoDBArgillaArthurArxivAtlasAwaDBAWS DynamoDBAZLyricsBagelDBBananaBasetenBeamBeautiful SoupBiliBiliNIBittensorBlackboardBrave SearchCassandraCerebriumAIChaindeskChromaClarifaiClearMLClickHouseCnosDBCohereCollege ConfidentialCometConfident AIConfluenceC TransformersDashVectorDatabricksDatadog TracingDatadog LogsDataForSEODeepInfraDeepSparseDiffbotDingoDiscordDocArrayDoctranDocugamiDuckDBElasticsearchEpsillaEverNoteFacebook ChatFacebook FaissFigmaFireworksFlyteForefrontAIGitGitBookGoldenGoogle Document AIGoogle SerperGooseAIGPT4AllGradientGraphsignalGrobidGutenbergHacker NewsHazy ResearchHeliconeHologresHTML to textHugging FaceiFixitIMSDbInfinoJavelin AI GatewayJinaKonkoLanceDBLangChain Decorators ✨Llama.cppLog10MarqoMediaWikiDumpMeilisearchMetalMilvusMinimaxMLflow AI GatewayMLflowModalModelScopeModern TreasuryMomentoMongoDB AtlasMotherduckMotörheadMyScaleNeo4jNLPCloudNotion DBNucliaObsidianOpenLLMOpenSearchOpenWeatherMapPetalsPostgres EmbeddingPGVectorPineconePipelineAIPortkeyPredibasePrediction GuardPromptLayerprovidersPsychicPubMedQdrantRay ServeRebuffRedditRedisReplicateRoamRocksetRunhouseRWKV-4ScaNNSearchApiSearxNG Search APISerpAPIShale ProtocolSingleStoreDBscikit-learnSlackspaCySpreedlyStarRocksStochasticAIStripeSupabase (Postgres)NebulaTairTelegramTencentVectorDBTensorFlow DatasetsTigris2MarkdownTrelloTruLensTwitterTypesenseUnstructuredUpstash RedisUSearchVearchVectaraVespaWandB TracingWeights & BiasesWeatherWeaviateWhatsAppWhyLabsWikipediaWolfram AlphaWriterXataXorbits Inference (Xinference)YandexYeager.aiYouTubeZepZillizComponentsLLMsChat modelsDocument loadersDocument transformersText embedding modelsVector storesRetrieversToolsAgents and toolkitsMemoryCallbacksChat
Chaindesk is an open-source document retrieval platform that helps to connect your personal data with Large Language Models.
Chaindesk is an open-source document retrieval platform that helps to connect your personal data with Large Language Models. ->: Skip to main content🦜️🔗 LangChainDocsUse casesIntegrationsAPICommunityChat our docsLangSmithJS/TS DocsSearchCTRLKProvidersAnthropicAWSGoogleMicrosoftOpenAIMoreActiveloop Deep LakeAI21 LabsAimAINetworkAirbyteAirtableAleph AlphaAlibaba Cloud OpensearchAnalyticDBAnnoyAnyscaleApifyArangoDBArgillaArthurArxivAtlasAwaDBAWS DynamoDBAZLyricsBagelDBBananaBasetenBeamBeautiful SoupBiliBiliNIBittensorBlackboardBrave SearchCassandraCerebriumAIChaindeskChromaClarifaiClearMLClickHouseCnosDBCohereCollege ConfidentialCometConfident AIConfluenceC TransformersDashVectorDatabricksDatadog TracingDatadog LogsDataForSEODeepInfraDeepSparseDiffbotDingoDiscordDocArrayDoctranDocugamiDuckDBElasticsearchEpsillaEverNoteFacebook ChatFacebook FaissFigmaFireworksFlyteForefrontAIGitGitBookGoldenGoogle Document AIGoogle SerperGooseAIGPT4AllGradientGraphsignalGrobidGutenbergHacker NewsHazy ResearchHeliconeHologresHTML to textHugging FaceiFixitIMSDbInfinoJavelin AI GatewayJinaKonkoLanceDBLangChain Decorators ✨Llama.cppLog10MarqoMediaWikiDumpMeilisearchMetalMilvusMinimaxMLflow AI GatewayMLflowModalModelScopeModern TreasuryMomentoMongoDB AtlasMotherduckMotörheadMyScaleNeo4jNLPCloudNotion DBNucliaObsidianOpenLLMOpenSearchOpenWeatherMapPetalsPostgres EmbeddingPGVectorPineconePipelineAIPortkeyPredibasePrediction GuardPromptLayerprovidersPsychicPubMedQdrantRay ServeRebuffRedditRedisReplicateRoamRocksetRunhouseRWKV-4ScaNNSearchApiSearxNG Search APISerpAPIShale ProtocolSingleStoreDBscikit-learnSlackspaCySpreedlyStarRocksStochasticAIStripeSupabase (Postgres)NebulaTairTelegramTencentVectorDBTensorFlow DatasetsTigris2MarkdownTrelloTruLensTwitterTypesenseUnstructuredUpstash RedisUSearchVearchVectaraVespaWandB TracingWeights & BiasesWeatherWeaviateWhatsAppWhyLabsWikipediaWolfram AlphaWriterXataXorbits Inference (Xinference)YandexYeager.aiYouTubeZepZillizComponentsLLMsChat modelsDocument loadersDocument transformersText embedding modelsVector storesRetrieversToolsAgents and toolkitsMemoryCallbacksChat
3,441
and toolkitsMemoryCallbacksChat loadersProvidersMoreChaindeskOn this pageChaindeskChaindesk is an open-source document retrieval platform that helps to connect your personal data with Large Language Models.Installation and Setup‚ÄãWe need to sign up for Chaindesk, create a datastore, add some data and get your datastore api endpoint url.
Chaindesk is an open-source document retrieval platform that helps to connect your personal data with Large Language Models.
Chaindesk is an open-source document retrieval platform that helps to connect your personal data with Large Language Models. ->: and toolkitsMemoryCallbacksChat loadersProvidersMoreChaindeskOn this pageChaindeskChaindesk is an open-source document retrieval platform that helps to connect your personal data with Large Language Models.Installation and Setup‚ÄãWe need to sign up for Chaindesk, create a datastore, add some data and get your datastore api endpoint url.
3,442
We need the API Key.Retriever​See a usage example.from langchain.retrievers import ChaindeskRetrieverPreviousCerebriumAINextChromaInstallation and SetupRetrieverCommunityDiscordTwitterGitHubPythonJS/TSMoreHomepageBlogCopyright © 2023 LangChain, Inc.
Chaindesk is an open-source document retrieval platform that helps to connect your personal data with Large Language Models.
Chaindesk is an open-source document retrieval platform that helps to connect your personal data with Large Language Models. ->: We need the API Key.Retriever​See a usage example.from langchain.retrievers import ChaindeskRetrieverPreviousCerebriumAINextChromaInstallation and SetupRetrieverCommunityDiscordTwitterGitHubPythonJS/TSMoreHomepageBlogCopyright © 2023 LangChain, Inc.
3,443
SingleStoreDB | 🦜️🔗 Langchain
SingleStoreDB is a high-performance distributed SQL database that supports deployment both in the cloud and on-premises. It provides vector storage, and vector functions including dotproduct and euclideandistance, thereby supporting AI applications that require text similarity matching.
SingleStoreDB is a high-performance distributed SQL database that supports deployment both in the cloud and on-premises. It provides vector storage, and vector functions including dotproduct and euclideandistance, thereby supporting AI applications that require text similarity matching. ->: SingleStoreDB | 🦜️🔗 Langchain
3,444
Skip to main content🦜️🔗 LangChainDocsUse casesIntegrationsAPICommunityChat our docsLangSmithJS/TS DocsSearchCTRLKProvidersAnthropicAWSGoogleMicrosoftOpenAIMoreActiveloop Deep LakeAI21 LabsAimAINetworkAirbyteAirtableAleph AlphaAlibaba Cloud OpensearchAnalyticDBAnnoyAnyscaleApifyArangoDBArgillaArthurArxivAtlasAwaDBAWS DynamoDBAZLyricsBagelDBBananaBasetenBeamBeautiful SoupBiliBiliNIBittensorBlackboardBrave SearchCassandraCerebriumAIChaindeskChromaClarifaiClearMLClickHouseCnosDBCohereCollege ConfidentialCometConfident AIConfluenceC TransformersDashVectorDatabricksDatadog TracingDatadog LogsDataForSEODeepInfraDeepSparseDiffbotDingoDiscordDocArrayDoctranDocugamiDuckDBElasticsearchEpsillaEverNoteFacebook ChatFacebook FaissFigmaFireworksFlyteForefrontAIGitGitBookGoldenGoogle Document AIGoogle SerperGooseAIGPT4AllGradientGraphsignalGrobidGutenbergHacker NewsHazy ResearchHeliconeHologresHTML to textHugging FaceiFixitIMSDbInfinoJavelin AI GatewayJinaKonkoLanceDBLangChain Decorators ✨Llama.cppLog10MarqoMediaWikiDumpMeilisearchMetalMilvusMinimaxMLflow AI GatewayMLflowModalModelScopeModern TreasuryMomentoMongoDB AtlasMotherduckMotörheadMyScaleNeo4jNLPCloudNotion DBNucliaObsidianOpenLLMOpenSearchOpenWeatherMapPetalsPostgres EmbeddingPGVectorPineconePipelineAIPortkeyPredibasePrediction GuardPromptLayerprovidersPsychicPubMedQdrantRay ServeRebuffRedditRedisReplicateRoamRocksetRunhouseRWKV-4ScaNNSearchApiSearxNG Search APISerpAPIShale ProtocolSingleStoreDBscikit-learnSlackspaCySpreedlyStarRocksStochasticAIStripeSupabase (Postgres)NebulaTairTelegramTencentVectorDBTensorFlow DatasetsTigris2MarkdownTrelloTruLensTwitterTypesenseUnstructuredUpstash RedisUSearchVearchVectaraVespaWandB TracingWeights & BiasesWeatherWeaviateWhatsAppWhyLabsWikipediaWolfram AlphaWriterXataXorbits Inference (Xinference)YandexYeager.aiYouTubeZepZillizComponentsLLMsChat modelsDocument loadersDocument transformersText embedding modelsVector storesRetrieversToolsAgents and toolkitsMemoryCallbacksChat
SingleStoreDB is a high-performance distributed SQL database that supports deployment both in the cloud and on-premises. It provides vector storage, and vector functions including dotproduct and euclideandistance, thereby supporting AI applications that require text similarity matching.
SingleStoreDB is a high-performance distributed SQL database that supports deployment both in the cloud and on-premises. It provides vector storage, and vector functions including dotproduct and euclideandistance, thereby supporting AI applications that require text similarity matching. ->: Skip to main content🦜️🔗 LangChainDocsUse casesIntegrationsAPICommunityChat our docsLangSmithJS/TS DocsSearchCTRLKProvidersAnthropicAWSGoogleMicrosoftOpenAIMoreActiveloop Deep LakeAI21 LabsAimAINetworkAirbyteAirtableAleph AlphaAlibaba Cloud OpensearchAnalyticDBAnnoyAnyscaleApifyArangoDBArgillaArthurArxivAtlasAwaDBAWS DynamoDBAZLyricsBagelDBBananaBasetenBeamBeautiful SoupBiliBiliNIBittensorBlackboardBrave SearchCassandraCerebriumAIChaindeskChromaClarifaiClearMLClickHouseCnosDBCohereCollege ConfidentialCometConfident AIConfluenceC TransformersDashVectorDatabricksDatadog TracingDatadog LogsDataForSEODeepInfraDeepSparseDiffbotDingoDiscordDocArrayDoctranDocugamiDuckDBElasticsearchEpsillaEverNoteFacebook ChatFacebook FaissFigmaFireworksFlyteForefrontAIGitGitBookGoldenGoogle Document AIGoogle SerperGooseAIGPT4AllGradientGraphsignalGrobidGutenbergHacker NewsHazy ResearchHeliconeHologresHTML to textHugging FaceiFixitIMSDbInfinoJavelin AI GatewayJinaKonkoLanceDBLangChain Decorators ✨Llama.cppLog10MarqoMediaWikiDumpMeilisearchMetalMilvusMinimaxMLflow AI GatewayMLflowModalModelScopeModern TreasuryMomentoMongoDB AtlasMotherduckMotörheadMyScaleNeo4jNLPCloudNotion DBNucliaObsidianOpenLLMOpenSearchOpenWeatherMapPetalsPostgres EmbeddingPGVectorPineconePipelineAIPortkeyPredibasePrediction GuardPromptLayerprovidersPsychicPubMedQdrantRay ServeRebuffRedditRedisReplicateRoamRocksetRunhouseRWKV-4ScaNNSearchApiSearxNG Search APISerpAPIShale ProtocolSingleStoreDBscikit-learnSlackspaCySpreedlyStarRocksStochasticAIStripeSupabase (Postgres)NebulaTairTelegramTencentVectorDBTensorFlow DatasetsTigris2MarkdownTrelloTruLensTwitterTypesenseUnstructuredUpstash RedisUSearchVearchVectaraVespaWandB TracingWeights & BiasesWeatherWeaviateWhatsAppWhyLabsWikipediaWolfram AlphaWriterXataXorbits Inference (Xinference)YandexYeager.aiYouTubeZepZillizComponentsLLMsChat modelsDocument loadersDocument transformersText embedding modelsVector storesRetrieversToolsAgents and toolkitsMemoryCallbacksChat
3,445
and toolkitsMemoryCallbacksChat loadersProvidersMoreSingleStoreDBOn this pageSingleStoreDBSingleStoreDB is a high-performance distributed SQL database that supports deployment both in the cloud and on-premises. It provides vector storage, and vector functions including dot_product and euclidean_distance, thereby supporting AI applications that require text similarity matching. Installation and Setup‚ÄãThere are several ways to establish a connection to the database. You can either set up environment variables or pass named parameters to the SingleStoreDB constructor.
SingleStoreDB is a high-performance distributed SQL database that supports deployment both in the cloud and on-premises. It provides vector storage, and vector functions including dotproduct and euclideandistance, thereby supporting AI applications that require text similarity matching.
SingleStoreDB is a high-performance distributed SQL database that supports deployment both in the cloud and on-premises. It provides vector storage, and vector functions including dotproduct and euclideandistance, thereby supporting AI applications that require text similarity matching. ->: and toolkitsMemoryCallbacksChat loadersProvidersMoreSingleStoreDBOn this pageSingleStoreDBSingleStoreDB is a high-performance distributed SQL database that supports deployment both in the cloud and on-premises. It provides vector storage, and vector functions including dot_product and euclidean_distance, thereby supporting AI applications that require text similarity matching. Installation and Setup‚ÄãThere are several ways to establish a connection to the database. You can either set up environment variables or pass named parameters to the SingleStoreDB constructor.
3,446
Alternatively, you may provide these parameters to the from_documents and from_texts methods.pip install singlestoredbVector Store​See a usage example.from langchain.vectorstores import SingleStoreDBPreviousShale ProtocolNextscikit-learnInstallation and SetupVector StoreCommunityDiscordTwitterGitHubPythonJS/TSMoreHomepageBlogCopyright © 2023 LangChain, Inc.
SingleStoreDB is a high-performance distributed SQL database that supports deployment both in the cloud and on-premises. It provides vector storage, and vector functions including dotproduct and euclideandistance, thereby supporting AI applications that require text similarity matching.
SingleStoreDB is a high-performance distributed SQL database that supports deployment both in the cloud and on-premises. It provides vector storage, and vector functions including dotproduct and euclideandistance, thereby supporting AI applications that require text similarity matching. ->: Alternatively, you may provide these parameters to the from_documents and from_texts methods.pip install singlestoredbVector Store​See a usage example.from langchain.vectorstores import SingleStoreDBPreviousShale ProtocolNextscikit-learnInstallation and SetupVector StoreCommunityDiscordTwitterGitHubPythonJS/TSMoreHomepageBlogCopyright © 2023 LangChain, Inc.
3,447
Discord | 🦜️🔗 Langchain
Discord is a VoIP and instant messaging social platform. Users have the ability to communicate
Discord is a VoIP and instant messaging social platform. Users have the ability to communicate ->: Discord | 🦜️🔗 Langchain
3,448
Skip to main content🦜️🔗 LangChainDocsUse casesIntegrationsAPICommunityChat our docsLangSmithJS/TS DocsSearchCTRLKProvidersAnthropicAWSGoogleMicrosoftOpenAIMoreActiveloop Deep LakeAI21 LabsAimAINetworkAirbyteAirtableAleph AlphaAlibaba Cloud OpensearchAnalyticDBAnnoyAnyscaleApifyArangoDBArgillaArthurArxivAtlasAwaDBAWS DynamoDBAZLyricsBagelDBBananaBasetenBeamBeautiful SoupBiliBiliNIBittensorBlackboardBrave SearchCassandraCerebriumAIChaindeskChromaClarifaiClearMLClickHouseCnosDBCohereCollege ConfidentialCometConfident AIConfluenceC TransformersDashVectorDatabricksDatadog TracingDatadog LogsDataForSEODeepInfraDeepSparseDiffbotDingoDiscordDocArrayDoctranDocugamiDuckDBElasticsearchEpsillaEverNoteFacebook ChatFacebook FaissFigmaFireworksFlyteForefrontAIGitGitBookGoldenGoogle Document AIGoogle SerperGooseAIGPT4AllGradientGraphsignalGrobidGutenbergHacker NewsHazy ResearchHeliconeHologresHTML to textHugging FaceiFixitIMSDbInfinoJavelin AI GatewayJinaKonkoLanceDBLangChain Decorators ✨Llama.cppLog10MarqoMediaWikiDumpMeilisearchMetalMilvusMinimaxMLflow AI GatewayMLflowModalModelScopeModern TreasuryMomentoMongoDB AtlasMotherduckMotörheadMyScaleNeo4jNLPCloudNotion DBNucliaObsidianOpenLLMOpenSearchOpenWeatherMapPetalsPostgres EmbeddingPGVectorPineconePipelineAIPortkeyPredibasePrediction GuardPromptLayerprovidersPsychicPubMedQdrantRay ServeRebuffRedditRedisReplicateRoamRocksetRunhouseRWKV-4ScaNNSearchApiSearxNG Search APISerpAPIShale ProtocolSingleStoreDBscikit-learnSlackspaCySpreedlyStarRocksStochasticAIStripeSupabase (Postgres)NebulaTairTelegramTencentVectorDBTensorFlow DatasetsTigris2MarkdownTrelloTruLensTwitterTypesenseUnstructuredUpstash RedisUSearchVearchVectaraVespaWandB TracingWeights & BiasesWeatherWeaviateWhatsAppWhyLabsWikipediaWolfram AlphaWriterXataXorbits Inference (Xinference)YandexYeager.aiYouTubeZepZillizComponentsLLMsChat modelsDocument loadersDocument transformersText embedding modelsVector storesRetrieversToolsAgents and toolkitsMemoryCallbacksChat
Discord is a VoIP and instant messaging social platform. Users have the ability to communicate
Discord is a VoIP and instant messaging social platform. Users have the ability to communicate ->: Skip to main content🦜️🔗 LangChainDocsUse casesIntegrationsAPICommunityChat our docsLangSmithJS/TS DocsSearchCTRLKProvidersAnthropicAWSGoogleMicrosoftOpenAIMoreActiveloop Deep LakeAI21 LabsAimAINetworkAirbyteAirtableAleph AlphaAlibaba Cloud OpensearchAnalyticDBAnnoyAnyscaleApifyArangoDBArgillaArthurArxivAtlasAwaDBAWS DynamoDBAZLyricsBagelDBBananaBasetenBeamBeautiful SoupBiliBiliNIBittensorBlackboardBrave SearchCassandraCerebriumAIChaindeskChromaClarifaiClearMLClickHouseCnosDBCohereCollege ConfidentialCometConfident AIConfluenceC TransformersDashVectorDatabricksDatadog TracingDatadog LogsDataForSEODeepInfraDeepSparseDiffbotDingoDiscordDocArrayDoctranDocugamiDuckDBElasticsearchEpsillaEverNoteFacebook ChatFacebook FaissFigmaFireworksFlyteForefrontAIGitGitBookGoldenGoogle Document AIGoogle SerperGooseAIGPT4AllGradientGraphsignalGrobidGutenbergHacker NewsHazy ResearchHeliconeHologresHTML to textHugging FaceiFixitIMSDbInfinoJavelin AI GatewayJinaKonkoLanceDBLangChain Decorators ✨Llama.cppLog10MarqoMediaWikiDumpMeilisearchMetalMilvusMinimaxMLflow AI GatewayMLflowModalModelScopeModern TreasuryMomentoMongoDB AtlasMotherduckMotörheadMyScaleNeo4jNLPCloudNotion DBNucliaObsidianOpenLLMOpenSearchOpenWeatherMapPetalsPostgres EmbeddingPGVectorPineconePipelineAIPortkeyPredibasePrediction GuardPromptLayerprovidersPsychicPubMedQdrantRay ServeRebuffRedditRedisReplicateRoamRocksetRunhouseRWKV-4ScaNNSearchApiSearxNG Search APISerpAPIShale ProtocolSingleStoreDBscikit-learnSlackspaCySpreedlyStarRocksStochasticAIStripeSupabase (Postgres)NebulaTairTelegramTencentVectorDBTensorFlow DatasetsTigris2MarkdownTrelloTruLensTwitterTypesenseUnstructuredUpstash RedisUSearchVearchVectaraVespaWandB TracingWeights & BiasesWeatherWeaviateWhatsAppWhyLabsWikipediaWolfram AlphaWriterXataXorbits Inference (Xinference)YandexYeager.aiYouTubeZepZillizComponentsLLMsChat modelsDocument loadersDocument transformersText embedding modelsVector storesRetrieversToolsAgents and toolkitsMemoryCallbacksChat
3,449
and toolkitsMemoryCallbacksChat loadersProvidersMoreDiscordOn this pageDiscordDiscord is a VoIP and instant messaging social platform. Users have the ability to communicate
Discord is a VoIP and instant messaging social platform. Users have the ability to communicate
Discord is a VoIP and instant messaging social platform. Users have the ability to communicate ->: and toolkitsMemoryCallbacksChat loadersProvidersMoreDiscordOn this pageDiscordDiscord is a VoIP and instant messaging social platform. Users have the ability to communicate
3,450
with voice calls, video calls, text messaging, media and files in private chats or as part of communities called "servers". A server is a collection of persistent chat rooms and voice channels which can be accessed via invite links.Installation and Setup​pip install pandasFollow these steps to download your Discord data:Go to your User SettingsThen go to Privacy and SafetyHead over to the Request all of my Data and click on Request Data buttonIt might take 30 days for you to receive your data. You'll receive an email at the address which is registered with Discord. That email will have a download button using which you would be able to download your personal Discord data.Document Loader​See a usage example.from langchain.document_loaders import DiscordChatLoaderPreviousDingoNextDocArrayInstallation and SetupDocument LoaderCommunityDiscordTwitterGitHubPythonJS/TSMoreHomepageBlogCopyright © 2023 LangChain, Inc.
Discord is a VoIP and instant messaging social platform. Users have the ability to communicate
Discord is a VoIP and instant messaging social platform. Users have the ability to communicate ->: with voice calls, video calls, text messaging, media and files in private chats or as part of communities called "servers". A server is a collection of persistent chat rooms and voice channels which can be accessed via invite links.Installation and Setup​pip install pandasFollow these steps to download your Discord data:Go to your User SettingsThen go to Privacy and SafetyHead over to the Request all of my Data and click on Request Data buttonIt might take 30 days for you to receive your data. You'll receive an email at the address which is registered with Discord. That email will have a download button using which you would be able to download your personal Discord data.Document Loader​See a usage example.from langchain.document_loaders import DiscordChatLoaderPreviousDingoNextDocArrayInstallation and SetupDocument LoaderCommunityDiscordTwitterGitHubPythonJS/TSMoreHomepageBlogCopyright © 2023 LangChain, Inc.
3,451
Confident AI | 🦜️🔗 Langchain
Confident - Unit Testing for LLMs
Confident - Unit Testing for LLMs ->: Confident AI | 🦜️🔗 Langchain
3,452
Skip to main content🦜️🔗 LangChainDocsUse casesIntegrationsAPICommunityChat our docsLangSmithJS/TS DocsSearchCTRLKProvidersAnthropicAWSGoogleMicrosoftOpenAIMoreActiveloop Deep LakeAI21 LabsAimAINetworkAirbyteAirtableAleph AlphaAlibaba Cloud OpensearchAnalyticDBAnnoyAnyscaleApifyArangoDBArgillaArthurArxivAtlasAwaDBAWS DynamoDBAZLyricsBagelDBBananaBasetenBeamBeautiful SoupBiliBiliNIBittensorBlackboardBrave SearchCassandraCerebriumAIChaindeskChromaClarifaiClearMLClickHouseCnosDBCohereCollege ConfidentialCometConfident AIConfluenceC TransformersDashVectorDatabricksDatadog TracingDatadog LogsDataForSEODeepInfraDeepSparseDiffbotDingoDiscordDocArrayDoctranDocugamiDuckDBElasticsearchEpsillaEverNoteFacebook ChatFacebook FaissFigmaFireworksFlyteForefrontAIGitGitBookGoldenGoogle Document AIGoogle SerperGooseAIGPT4AllGradientGraphsignalGrobidGutenbergHacker NewsHazy ResearchHeliconeHologresHTML to textHugging FaceiFixitIMSDbInfinoJavelin AI GatewayJinaKonkoLanceDBLangChain Decorators ✨Llama.cppLog10MarqoMediaWikiDumpMeilisearchMetalMilvusMinimaxMLflow AI GatewayMLflowModalModelScopeModern TreasuryMomentoMongoDB AtlasMotherduckMotörheadMyScaleNeo4jNLPCloudNotion DBNucliaObsidianOpenLLMOpenSearchOpenWeatherMapPetalsPostgres EmbeddingPGVectorPineconePipelineAIPortkeyPredibasePrediction GuardPromptLayerprovidersPsychicPubMedQdrantRay ServeRebuffRedditRedisReplicateRoamRocksetRunhouseRWKV-4ScaNNSearchApiSearxNG Search APISerpAPIShale ProtocolSingleStoreDBscikit-learnSlackspaCySpreedlyStarRocksStochasticAIStripeSupabase (Postgres)NebulaTairTelegramTencentVectorDBTensorFlow DatasetsTigris2MarkdownTrelloTruLensTwitterTypesenseUnstructuredUpstash RedisUSearchVearchVectaraVespaWandB TracingWeights & BiasesWeatherWeaviateWhatsAppWhyLabsWikipediaWolfram AlphaWriterXataXorbits Inference (Xinference)YandexYeager.aiYouTubeZepZillizComponentsLLMsChat modelsDocument loadersDocument transformersText embedding modelsVector storesRetrieversToolsAgents and toolkitsMemoryCallbacksChat
Confident - Unit Testing for LLMs
Confident - Unit Testing for LLMs ->: Skip to main content🦜️🔗 LangChainDocsUse casesIntegrationsAPICommunityChat our docsLangSmithJS/TS DocsSearchCTRLKProvidersAnthropicAWSGoogleMicrosoftOpenAIMoreActiveloop Deep LakeAI21 LabsAimAINetworkAirbyteAirtableAleph AlphaAlibaba Cloud OpensearchAnalyticDBAnnoyAnyscaleApifyArangoDBArgillaArthurArxivAtlasAwaDBAWS DynamoDBAZLyricsBagelDBBananaBasetenBeamBeautiful SoupBiliBiliNIBittensorBlackboardBrave SearchCassandraCerebriumAIChaindeskChromaClarifaiClearMLClickHouseCnosDBCohereCollege ConfidentialCometConfident AIConfluenceC TransformersDashVectorDatabricksDatadog TracingDatadog LogsDataForSEODeepInfraDeepSparseDiffbotDingoDiscordDocArrayDoctranDocugamiDuckDBElasticsearchEpsillaEverNoteFacebook ChatFacebook FaissFigmaFireworksFlyteForefrontAIGitGitBookGoldenGoogle Document AIGoogle SerperGooseAIGPT4AllGradientGraphsignalGrobidGutenbergHacker NewsHazy ResearchHeliconeHologresHTML to textHugging FaceiFixitIMSDbInfinoJavelin AI GatewayJinaKonkoLanceDBLangChain Decorators ✨Llama.cppLog10MarqoMediaWikiDumpMeilisearchMetalMilvusMinimaxMLflow AI GatewayMLflowModalModelScopeModern TreasuryMomentoMongoDB AtlasMotherduckMotörheadMyScaleNeo4jNLPCloudNotion DBNucliaObsidianOpenLLMOpenSearchOpenWeatherMapPetalsPostgres EmbeddingPGVectorPineconePipelineAIPortkeyPredibasePrediction GuardPromptLayerprovidersPsychicPubMedQdrantRay ServeRebuffRedditRedisReplicateRoamRocksetRunhouseRWKV-4ScaNNSearchApiSearxNG Search APISerpAPIShale ProtocolSingleStoreDBscikit-learnSlackspaCySpreedlyStarRocksStochasticAIStripeSupabase (Postgres)NebulaTairTelegramTencentVectorDBTensorFlow DatasetsTigris2MarkdownTrelloTruLensTwitterTypesenseUnstructuredUpstash RedisUSearchVearchVectaraVespaWandB TracingWeights & BiasesWeatherWeaviateWhatsAppWhyLabsWikipediaWolfram AlphaWriterXataXorbits Inference (Xinference)YandexYeager.aiYouTubeZepZillizComponentsLLMsChat modelsDocument loadersDocument transformersText embedding modelsVector storesRetrieversToolsAgents and toolkitsMemoryCallbacksChat
3,453
and toolkitsMemoryCallbacksChat loadersProvidersMoreConfident AIOn this pageConfident AIDeepEval package for unit testing LLMs.
Confident - Unit Testing for LLMs
Confident - Unit Testing for LLMs ->: and toolkitsMemoryCallbacksChat loadersProvidersMoreConfident AIOn this pageConfident AIDeepEval package for unit testing LLMs.
3,454
Using Confident, everyone can build robust language models through faster iterations using both unit testing and integration testing. We provide support for each step in the iteration from synthetic data creation to testing.Installation and Setup​First, you'll need to install the DeepEval Python package as follows:pip install deepevalAfterwards, you can get started in as little as a few lines of code.from langchain.callbacks import DeepEvalCallbackPreviousCometNextConfluenceInstallation and SetupCommunityDiscordTwitterGitHubPythonJS/TSMoreHomepageBlogCopyright © 2023 LangChain, Inc.
Confident - Unit Testing for LLMs
Confident - Unit Testing for LLMs ->: Using Confident, everyone can build robust language models through faster iterations using both unit testing and integration testing. We provide support for each step in the iteration from synthetic data creation to testing.Installation and Setup​First, you'll need to install the DeepEval Python package as follows:pip install deepevalAfterwards, you can get started in as little as a few lines of code.from langchain.callbacks import DeepEvalCallbackPreviousCometNextConfluenceInstallation and SetupCommunityDiscordTwitterGitHubPythonJS/TSMoreHomepageBlogCopyright © 2023 LangChain, Inc.
3,455
Notion DB | 🦜️🔗 Langchain
Notion is a collaboration platform with modified Markdown support that integrates kanban
Notion is a collaboration platform with modified Markdown support that integrates kanban ->: Notion DB | 🦜️🔗 Langchain
3,456
Skip to main content🦜️🔗 LangChainDocsUse casesIntegrationsAPICommunityChat our docsLangSmithJS/TS DocsSearchCTRLKProvidersAnthropicAWSGoogleMicrosoftOpenAIMoreActiveloop Deep LakeAI21 LabsAimAINetworkAirbyteAirtableAleph AlphaAlibaba Cloud OpensearchAnalyticDBAnnoyAnyscaleApifyArangoDBArgillaArthurArxivAtlasAwaDBAWS DynamoDBAZLyricsBagelDBBananaBasetenBeamBeautiful SoupBiliBiliNIBittensorBlackboardBrave SearchCassandraCerebriumAIChaindeskChromaClarifaiClearMLClickHouseCnosDBCohereCollege ConfidentialCometConfident AIConfluenceC TransformersDashVectorDatabricksDatadog TracingDatadog LogsDataForSEODeepInfraDeepSparseDiffbotDingoDiscordDocArrayDoctranDocugamiDuckDBElasticsearchEpsillaEverNoteFacebook ChatFacebook FaissFigmaFireworksFlyteForefrontAIGitGitBookGoldenGoogle Document AIGoogle SerperGooseAIGPT4AllGradientGraphsignalGrobidGutenbergHacker NewsHazy ResearchHeliconeHologresHTML to textHugging FaceiFixitIMSDbInfinoJavelin AI GatewayJinaKonkoLanceDBLangChain Decorators ✨Llama.cppLog10MarqoMediaWikiDumpMeilisearchMetalMilvusMinimaxMLflow AI GatewayMLflowModalModelScopeModern TreasuryMomentoMongoDB AtlasMotherduckMotörheadMyScaleNeo4jNLPCloudNotion DBNucliaObsidianOpenLLMOpenSearchOpenWeatherMapPetalsPostgres EmbeddingPGVectorPineconePipelineAIPortkeyPredibasePrediction GuardPromptLayerprovidersPsychicPubMedQdrantRay ServeRebuffRedditRedisReplicateRoamRocksetRunhouseRWKV-4ScaNNSearchApiSearxNG Search APISerpAPIShale ProtocolSingleStoreDBscikit-learnSlackspaCySpreedlyStarRocksStochasticAIStripeSupabase (Postgres)NebulaTairTelegramTencentVectorDBTensorFlow DatasetsTigris2MarkdownTrelloTruLensTwitterTypesenseUnstructuredUpstash RedisUSearchVearchVectaraVespaWandB TracingWeights & BiasesWeatherWeaviateWhatsAppWhyLabsWikipediaWolfram AlphaWriterXataXorbits Inference (Xinference)YandexYeager.aiYouTubeZepZillizComponentsLLMsChat modelsDocument loadersDocument transformersText embedding modelsVector storesRetrieversToolsAgents and toolkitsMemoryCallbacksChat
Notion is a collaboration platform with modified Markdown support that integrates kanban
Notion is a collaboration platform with modified Markdown support that integrates kanban ->: Skip to main content🦜️🔗 LangChainDocsUse casesIntegrationsAPICommunityChat our docsLangSmithJS/TS DocsSearchCTRLKProvidersAnthropicAWSGoogleMicrosoftOpenAIMoreActiveloop Deep LakeAI21 LabsAimAINetworkAirbyteAirtableAleph AlphaAlibaba Cloud OpensearchAnalyticDBAnnoyAnyscaleApifyArangoDBArgillaArthurArxivAtlasAwaDBAWS DynamoDBAZLyricsBagelDBBananaBasetenBeamBeautiful SoupBiliBiliNIBittensorBlackboardBrave SearchCassandraCerebriumAIChaindeskChromaClarifaiClearMLClickHouseCnosDBCohereCollege ConfidentialCometConfident AIConfluenceC TransformersDashVectorDatabricksDatadog TracingDatadog LogsDataForSEODeepInfraDeepSparseDiffbotDingoDiscordDocArrayDoctranDocugamiDuckDBElasticsearchEpsillaEverNoteFacebook ChatFacebook FaissFigmaFireworksFlyteForefrontAIGitGitBookGoldenGoogle Document AIGoogle SerperGooseAIGPT4AllGradientGraphsignalGrobidGutenbergHacker NewsHazy ResearchHeliconeHologresHTML to textHugging FaceiFixitIMSDbInfinoJavelin AI GatewayJinaKonkoLanceDBLangChain Decorators ✨Llama.cppLog10MarqoMediaWikiDumpMeilisearchMetalMilvusMinimaxMLflow AI GatewayMLflowModalModelScopeModern TreasuryMomentoMongoDB AtlasMotherduckMotörheadMyScaleNeo4jNLPCloudNotion DBNucliaObsidianOpenLLMOpenSearchOpenWeatherMapPetalsPostgres EmbeddingPGVectorPineconePipelineAIPortkeyPredibasePrediction GuardPromptLayerprovidersPsychicPubMedQdrantRay ServeRebuffRedditRedisReplicateRoamRocksetRunhouseRWKV-4ScaNNSearchApiSearxNG Search APISerpAPIShale ProtocolSingleStoreDBscikit-learnSlackspaCySpreedlyStarRocksStochasticAIStripeSupabase (Postgres)NebulaTairTelegramTencentVectorDBTensorFlow DatasetsTigris2MarkdownTrelloTruLensTwitterTypesenseUnstructuredUpstash RedisUSearchVearchVectaraVespaWandB TracingWeights & BiasesWeatherWeaviateWhatsAppWhyLabsWikipediaWolfram AlphaWriterXataXorbits Inference (Xinference)YandexYeager.aiYouTubeZepZillizComponentsLLMsChat modelsDocument loadersDocument transformersText embedding modelsVector storesRetrieversToolsAgents and toolkitsMemoryCallbacksChat
3,457
and toolkitsMemoryCallbacksChat loadersProvidersMoreNotion DBOn this pageNotion DBNotion is a collaboration platform with modified Markdown support that integrates kanban
Notion is a collaboration platform with modified Markdown support that integrates kanban
Notion is a collaboration platform with modified Markdown support that integrates kanban ->: and toolkitsMemoryCallbacksChat loadersProvidersMoreNotion DBOn this pageNotion DBNotion is a collaboration platform with modified Markdown support that integrates kanban
3,458
boards, tasks, wikis and databases. It is an all-in-one workspace for notetaking, knowledge and data management, and project and task management.Installation and Setup​All instructions are in examples below.Document Loader​We have two different loaders: NotionDirectoryLoader and NotionDBLoader.See a usage example for the NotionDirectoryLoader.from langchain.document_loaders import NotionDirectoryLoaderSee a usage example for the NotionDBLoader.from langchain.document_loaders import NotionDBLoaderPreviousNLPCloudNextNucliaInstallation and SetupDocument LoaderCommunityDiscordTwitterGitHubPythonJS/TSMoreHomepageBlogCopyright © 2023 LangChain, Inc.
Notion is a collaboration platform with modified Markdown support that integrates kanban
Notion is a collaboration platform with modified Markdown support that integrates kanban ->: boards, tasks, wikis and databases. It is an all-in-one workspace for notetaking, knowledge and data management, and project and task management.Installation and Setup​All instructions are in examples below.Document Loader​We have two different loaders: NotionDirectoryLoader and NotionDBLoader.See a usage example for the NotionDirectoryLoader.from langchain.document_loaders import NotionDirectoryLoaderSee a usage example for the NotionDBLoader.from langchain.document_loaders import NotionDBLoaderPreviousNLPCloudNextNucliaInstallation and SetupDocument LoaderCommunityDiscordTwitterGitHubPythonJS/TSMoreHomepageBlogCopyright © 2023 LangChain, Inc.
3,459
Vespa | 🦜️🔗 Langchain
Vespa is a fully featured search engine and vector database.
Vespa is a fully featured search engine and vector database. ->: Vespa | 🦜️🔗 Langchain
3,460
Skip to main content🦜️🔗 LangChainDocsUse casesIntegrationsAPICommunityChat our docsLangSmithJS/TS DocsSearchCTRLKProvidersAnthropicAWSGoogleMicrosoftOpenAIMoreActiveloop Deep LakeAI21 LabsAimAINetworkAirbyteAirtableAleph AlphaAlibaba Cloud OpensearchAnalyticDBAnnoyAnyscaleApifyArangoDBArgillaArthurArxivAtlasAwaDBAWS DynamoDBAZLyricsBagelDBBananaBasetenBeamBeautiful SoupBiliBiliNIBittensorBlackboardBrave SearchCassandraCerebriumAIChaindeskChromaClarifaiClearMLClickHouseCnosDBCohereCollege ConfidentialCometConfident AIConfluenceC TransformersDashVectorDatabricksDatadog TracingDatadog LogsDataForSEODeepInfraDeepSparseDiffbotDingoDiscordDocArrayDoctranDocugamiDuckDBElasticsearchEpsillaEverNoteFacebook ChatFacebook FaissFigmaFireworksFlyteForefrontAIGitGitBookGoldenGoogle Document AIGoogle SerperGooseAIGPT4AllGradientGraphsignalGrobidGutenbergHacker NewsHazy ResearchHeliconeHologresHTML to textHugging FaceiFixitIMSDbInfinoJavelin AI GatewayJinaKonkoLanceDBLangChain Decorators ✨Llama.cppLog10MarqoMediaWikiDumpMeilisearchMetalMilvusMinimaxMLflow AI GatewayMLflowModalModelScopeModern TreasuryMomentoMongoDB AtlasMotherduckMotörheadMyScaleNeo4jNLPCloudNotion DBNucliaObsidianOpenLLMOpenSearchOpenWeatherMapPetalsPostgres EmbeddingPGVectorPineconePipelineAIPortkeyPredibasePrediction GuardPromptLayerprovidersPsychicPubMedQdrantRay ServeRebuffRedditRedisReplicateRoamRocksetRunhouseRWKV-4ScaNNSearchApiSearxNG Search APISerpAPIShale ProtocolSingleStoreDBscikit-learnSlackspaCySpreedlyStarRocksStochasticAIStripeSupabase (Postgres)NebulaTairTelegramTencentVectorDBTensorFlow DatasetsTigris2MarkdownTrelloTruLensTwitterTypesenseUnstructuredUpstash RedisUSearchVearchVectaraVespaWandB TracingWeights & BiasesWeatherWeaviateWhatsAppWhyLabsWikipediaWolfram AlphaWriterXataXorbits Inference (Xinference)YandexYeager.aiYouTubeZepZillizComponentsLLMsChat modelsDocument loadersDocument transformersText embedding modelsVector storesRetrieversToolsAgents and toolkitsMemoryCallbacksChat
Vespa is a fully featured search engine and vector database.
Vespa is a fully featured search engine and vector database. ->: Skip to main content🦜️🔗 LangChainDocsUse casesIntegrationsAPICommunityChat our docsLangSmithJS/TS DocsSearchCTRLKProvidersAnthropicAWSGoogleMicrosoftOpenAIMoreActiveloop Deep LakeAI21 LabsAimAINetworkAirbyteAirtableAleph AlphaAlibaba Cloud OpensearchAnalyticDBAnnoyAnyscaleApifyArangoDBArgillaArthurArxivAtlasAwaDBAWS DynamoDBAZLyricsBagelDBBananaBasetenBeamBeautiful SoupBiliBiliNIBittensorBlackboardBrave SearchCassandraCerebriumAIChaindeskChromaClarifaiClearMLClickHouseCnosDBCohereCollege ConfidentialCometConfident AIConfluenceC TransformersDashVectorDatabricksDatadog TracingDatadog LogsDataForSEODeepInfraDeepSparseDiffbotDingoDiscordDocArrayDoctranDocugamiDuckDBElasticsearchEpsillaEverNoteFacebook ChatFacebook FaissFigmaFireworksFlyteForefrontAIGitGitBookGoldenGoogle Document AIGoogle SerperGooseAIGPT4AllGradientGraphsignalGrobidGutenbergHacker NewsHazy ResearchHeliconeHologresHTML to textHugging FaceiFixitIMSDbInfinoJavelin AI GatewayJinaKonkoLanceDBLangChain Decorators ✨Llama.cppLog10MarqoMediaWikiDumpMeilisearchMetalMilvusMinimaxMLflow AI GatewayMLflowModalModelScopeModern TreasuryMomentoMongoDB AtlasMotherduckMotörheadMyScaleNeo4jNLPCloudNotion DBNucliaObsidianOpenLLMOpenSearchOpenWeatherMapPetalsPostgres EmbeddingPGVectorPineconePipelineAIPortkeyPredibasePrediction GuardPromptLayerprovidersPsychicPubMedQdrantRay ServeRebuffRedditRedisReplicateRoamRocksetRunhouseRWKV-4ScaNNSearchApiSearxNG Search APISerpAPIShale ProtocolSingleStoreDBscikit-learnSlackspaCySpreedlyStarRocksStochasticAIStripeSupabase (Postgres)NebulaTairTelegramTencentVectorDBTensorFlow DatasetsTigris2MarkdownTrelloTruLensTwitterTypesenseUnstructuredUpstash RedisUSearchVearchVectaraVespaWandB TracingWeights & BiasesWeatherWeaviateWhatsAppWhyLabsWikipediaWolfram AlphaWriterXataXorbits Inference (Xinference)YandexYeager.aiYouTubeZepZillizComponentsLLMsChat modelsDocument loadersDocument transformersText embedding modelsVector storesRetrieversToolsAgents and toolkitsMemoryCallbacksChat
3,461
and toolkitsMemoryCallbacksChat loadersProvidersMoreVespaOn this pageVespaVespa is a fully featured search engine and vector database.
Vespa is a fully featured search engine and vector database.
Vespa is a fully featured search engine and vector database. ->: and toolkitsMemoryCallbacksChat loadersProvidersMoreVespaOn this pageVespaVespa is a fully featured search engine and vector database.
3,462
It supports vector search (ANN), lexical search, and search in structured data, all in the same query.Installation and Setup​pip install pyvespaRetriever​See a usage example.from langchain.retrievers import VespaRetrieverPreviousVectara Text GenerationNextWandB TracingInstallation and SetupRetrieverCommunityDiscordTwitterGitHubPythonJS/TSMoreHomepageBlogCopyright © 2023 LangChain, Inc.
Vespa is a fully featured search engine and vector database.
Vespa is a fully featured search engine and vector database. ->: It supports vector search (ANN), lexical search, and search in structured data, all in the same query.Installation and Setup​pip install pyvespaRetriever​See a usage example.from langchain.retrievers import VespaRetrieverPreviousVectara Text GenerationNextWandB TracingInstallation and SetupRetrieverCommunityDiscordTwitterGitHubPythonJS/TSMoreHomepageBlogCopyright © 2023 LangChain, Inc.
3,463
Vectara Text Generation | 🦜️🔗 Langchain
This notebook is based on text generation notebook and adapted to Vectara.
This notebook is based on text generation notebook and adapted to Vectara. ->: Vectara Text Generation | 🦜️🔗 Langchain
3,464
Skip to main content🦜️🔗 LangChainDocsUse casesIntegrationsAPICommunityChat our docsLangSmithJS/TS DocsSearchCTRLKProvidersAnthropicAWSGoogleMicrosoftOpenAIMoreActiveloop Deep LakeAI21 LabsAimAINetworkAirbyteAirtableAleph AlphaAlibaba Cloud OpensearchAnalyticDBAnnoyAnyscaleApifyArangoDBArgillaArthurArxivAtlasAwaDBAWS DynamoDBAZLyricsBagelDBBananaBasetenBeamBeautiful SoupBiliBiliNIBittensorBlackboardBrave SearchCassandraCerebriumAIChaindeskChromaClarifaiClearMLClickHouseCnosDBCohereCollege ConfidentialCometConfident AIConfluenceC TransformersDashVectorDatabricksDatadog TracingDatadog LogsDataForSEODeepInfraDeepSparseDiffbotDingoDiscordDocArrayDoctranDocugamiDuckDBElasticsearchEpsillaEverNoteFacebook ChatFacebook FaissFigmaFireworksFlyteForefrontAIGitGitBookGoldenGoogle Document AIGoogle SerperGooseAIGPT4AllGradientGraphsignalGrobidGutenbergHacker NewsHazy ResearchHeliconeHologresHTML to textHugging FaceiFixitIMSDbInfinoJavelin AI GatewayJinaKonkoLanceDBLangChain Decorators ✨Llama.cppLog10MarqoMediaWikiDumpMeilisearchMetalMilvusMinimaxMLflow AI GatewayMLflowModalModelScopeModern TreasuryMomentoMongoDB AtlasMotherduckMotörheadMyScaleNeo4jNLPCloudNotion DBNucliaObsidianOpenLLMOpenSearchOpenWeatherMapPetalsPostgres EmbeddingPGVectorPineconePipelineAIPortkeyPredibasePrediction GuardPromptLayerprovidersPsychicPubMedQdrantRay ServeRebuffRedditRedisReplicateRoamRocksetRunhouseRWKV-4ScaNNSearchApiSearxNG Search APISerpAPIShale ProtocolSingleStoreDBscikit-learnSlackspaCySpreedlyStarRocksStochasticAIStripeSupabase (Postgres)NebulaTairTelegramTencentVectorDBTensorFlow DatasetsTigris2MarkdownTrelloTruLensTwitterTypesenseUnstructuredUpstash RedisUSearchVearchVectaraChat Over Documents with VectaraVectara Text GenerationVespaWandB TracingWeights & BiasesWeatherWeaviateWhatsAppWhyLabsWikipediaWolfram AlphaWriterXataXorbits Inference (Xinference)YandexYeager.aiYouTubeZepZillizComponentsLLMsChat modelsDocument loadersDocument transformersText embedding modelsVector
This notebook is based on text generation notebook and adapted to Vectara.
This notebook is based on text generation notebook and adapted to Vectara. ->: Skip to main content🦜️🔗 LangChainDocsUse casesIntegrationsAPICommunityChat our docsLangSmithJS/TS DocsSearchCTRLKProvidersAnthropicAWSGoogleMicrosoftOpenAIMoreActiveloop Deep LakeAI21 LabsAimAINetworkAirbyteAirtableAleph AlphaAlibaba Cloud OpensearchAnalyticDBAnnoyAnyscaleApifyArangoDBArgillaArthurArxivAtlasAwaDBAWS DynamoDBAZLyricsBagelDBBananaBasetenBeamBeautiful SoupBiliBiliNIBittensorBlackboardBrave SearchCassandraCerebriumAIChaindeskChromaClarifaiClearMLClickHouseCnosDBCohereCollege ConfidentialCometConfident AIConfluenceC TransformersDashVectorDatabricksDatadog TracingDatadog LogsDataForSEODeepInfraDeepSparseDiffbotDingoDiscordDocArrayDoctranDocugamiDuckDBElasticsearchEpsillaEverNoteFacebook ChatFacebook FaissFigmaFireworksFlyteForefrontAIGitGitBookGoldenGoogle Document AIGoogle SerperGooseAIGPT4AllGradientGraphsignalGrobidGutenbergHacker NewsHazy ResearchHeliconeHologresHTML to textHugging FaceiFixitIMSDbInfinoJavelin AI GatewayJinaKonkoLanceDBLangChain Decorators ✨Llama.cppLog10MarqoMediaWikiDumpMeilisearchMetalMilvusMinimaxMLflow AI GatewayMLflowModalModelScopeModern TreasuryMomentoMongoDB AtlasMotherduckMotörheadMyScaleNeo4jNLPCloudNotion DBNucliaObsidianOpenLLMOpenSearchOpenWeatherMapPetalsPostgres EmbeddingPGVectorPineconePipelineAIPortkeyPredibasePrediction GuardPromptLayerprovidersPsychicPubMedQdrantRay ServeRebuffRedditRedisReplicateRoamRocksetRunhouseRWKV-4ScaNNSearchApiSearxNG Search APISerpAPIShale ProtocolSingleStoreDBscikit-learnSlackspaCySpreedlyStarRocksStochasticAIStripeSupabase (Postgres)NebulaTairTelegramTencentVectorDBTensorFlow DatasetsTigris2MarkdownTrelloTruLensTwitterTypesenseUnstructuredUpstash RedisUSearchVearchVectaraChat Over Documents with VectaraVectara Text GenerationVespaWandB TracingWeights & BiasesWeatherWeaviateWhatsAppWhyLabsWikipediaWolfram AlphaWriterXataXorbits Inference (Xinference)YandexYeager.aiYouTubeZepZillizComponentsLLMsChat modelsDocument loadersDocument transformersText embedding modelsVector
3,465
transformersText embedding modelsVector storesRetrieversToolsAgents and toolkitsMemoryCallbacksChat loadersProvidersMoreVectaraVectara Text GenerationOn this pageVectara Text GenerationThis notebook is based on text generation notebook and adapted to Vectara.Prepare Data‚ÄãFirst, we prepare the data. For this example, we fetch a documentation site that consists of markdown files hosted on Github and split them into small enough Documents.import osfrom langchain.llms import OpenAIfrom langchain.docstore.document import Documentimport requestsfrom langchain.vectorstores import Vectarafrom langchain.text_splitter import CharacterTextSplitterfrom langchain.prompts import PromptTemplateimport pathlibimport subprocessimport tempfiledef get_github_docs(repo_owner, repo_name): with tempfile.TemporaryDirectory() as d: subprocess.check_call( f"git clone --depth 1 https://github.com/{repo_owner}/{repo_name}.git .", cwd=d, shell=True, ) git_sha = ( subprocess.check_output("git rev-parse HEAD", shell=True, cwd=d) .decode("utf-8") .strip() ) repo_path = pathlib.Path(d) markdown_files = list(repo_path.glob("*/*.md")) + list( repo_path.glob("*/*.mdx") ) for markdown_file in markdown_files: with open(markdown_file, "r") as f: relative_path = markdown_file.relative_to(repo_path) github_url = f"https://github.com/{repo_owner}/{repo_name}/blob/{git_sha}/{relative_path}" yield Document(page_content=f.read(), metadata={"source": github_url})sources = get_github_docs("yirenlu92", "deno-manual-forked")source_chunks = []splitter = CharacterTextSplitter(separator=" ", chunk_size=1024, chunk_overlap=0)for source in sources: for chunk in splitter.split_text(source.page_content): source_chunks.append(chunk) Cloning into '.'...Set Up Vector DB‚ÄãNow that we have the documentation content in
This notebook is based on text generation notebook and adapted to Vectara.
This notebook is based on text generation notebook and adapted to Vectara. ->: transformersText embedding modelsVector storesRetrieversToolsAgents and toolkitsMemoryCallbacksChat loadersProvidersMoreVectaraVectara Text GenerationOn this pageVectara Text GenerationThis notebook is based on text generation notebook and adapted to Vectara.Prepare Data‚ÄãFirst, we prepare the data. For this example, we fetch a documentation site that consists of markdown files hosted on Github and split them into small enough Documents.import osfrom langchain.llms import OpenAIfrom langchain.docstore.document import Documentimport requestsfrom langchain.vectorstores import Vectarafrom langchain.text_splitter import CharacterTextSplitterfrom langchain.prompts import PromptTemplateimport pathlibimport subprocessimport tempfiledef get_github_docs(repo_owner, repo_name): with tempfile.TemporaryDirectory() as d: subprocess.check_call( f"git clone --depth 1 https://github.com/{repo_owner}/{repo_name}.git .", cwd=d, shell=True, ) git_sha = ( subprocess.check_output("git rev-parse HEAD", shell=True, cwd=d) .decode("utf-8") .strip() ) repo_path = pathlib.Path(d) markdown_files = list(repo_path.glob("*/*.md")) + list( repo_path.glob("*/*.mdx") ) for markdown_file in markdown_files: with open(markdown_file, "r") as f: relative_path = markdown_file.relative_to(repo_path) github_url = f"https://github.com/{repo_owner}/{repo_name}/blob/{git_sha}/{relative_path}" yield Document(page_content=f.read(), metadata={"source": github_url})sources = get_github_docs("yirenlu92", "deno-manual-forked")source_chunks = []splitter = CharacterTextSplitter(separator=" ", chunk_size=1024, chunk_overlap=0)for source in sources: for chunk in splitter.split_text(source.page_content): source_chunks.append(chunk) Cloning into '.'...Set Up Vector DB‚ÄãNow that we have the documentation content in
3,466
that we have the documentation content in chunks, let's put all this information in a vector index for easy retrieval.search_index = Vectara.from_texts(source_chunks, embedding=None)Set Up LLM Chain with Custom Prompt‚ÄãNext, let's set up a simple LLM chain but give it a custom prompt for blog post generation. Note that the custom prompt is parameterized and takes two inputs: context, which will be the documents fetched from the vector search, and topic, which is given by the user.from langchain.chains import LLMChainprompt_template = """Use the context below to write a 400 word blog post about the topic below: Context: {context} Topic: {topic} Blog post:"""PROMPT = PromptTemplate(template=prompt_template, input_variables=["context", "topic"])llm = OpenAI(openai_api_key=os.environ["OPENAI_API_KEY"], temperature=0)chain = LLMChain(llm=llm, prompt=PROMPT)Generate Text‚ÄãFinally, we write a function to apply our inputs to the chain. The function takes an input parameter topic. We find the documents in the vector index that correspond to that topic, and use them as additional context in our simple LLM chain.def generate_blog_post(topic): docs = search_index.similarity_search(topic, k=4) inputs = [{"context": doc.page_content, "topic": topic} for doc in docs] print(chain.apply(inputs))generate_blog_post("environment variables") [{'text': '\n\nWhen it comes to running Deno CLI tasks, environment variables can be a powerful tool for customizing the behavior of your tasks. With the Deno Task Definition interface, you can easily configure environment variables to be set when executing your tasks.\n\nThe Deno Task Definition interface is configured in a `tasks.json` within your workspace. It includes a `env` field, which allows you to specify any environment variables that should be set when executing the task. For example, if you wanted to set the `NODE_ENV` environment variable to `production` when running a Deno task, you could add the following to
This notebook is based on text generation notebook and adapted to Vectara.
This notebook is based on text generation notebook and adapted to Vectara. ->: that we have the documentation content in chunks, let's put all this information in a vector index for easy retrieval.search_index = Vectara.from_texts(source_chunks, embedding=None)Set Up LLM Chain with Custom Prompt‚ÄãNext, let's set up a simple LLM chain but give it a custom prompt for blog post generation. Note that the custom prompt is parameterized and takes two inputs: context, which will be the documents fetched from the vector search, and topic, which is given by the user.from langchain.chains import LLMChainprompt_template = """Use the context below to write a 400 word blog post about the topic below: Context: {context} Topic: {topic} Blog post:"""PROMPT = PromptTemplate(template=prompt_template, input_variables=["context", "topic"])llm = OpenAI(openai_api_key=os.environ["OPENAI_API_KEY"], temperature=0)chain = LLMChain(llm=llm, prompt=PROMPT)Generate Text‚ÄãFinally, we write a function to apply our inputs to the chain. The function takes an input parameter topic. We find the documents in the vector index that correspond to that topic, and use them as additional context in our simple LLM chain.def generate_blog_post(topic): docs = search_index.similarity_search(topic, k=4) inputs = [{"context": doc.page_content, "topic": topic} for doc in docs] print(chain.apply(inputs))generate_blog_post("environment variables") [{'text': '\n\nWhen it comes to running Deno CLI tasks, environment variables can be a powerful tool for customizing the behavior of your tasks. With the Deno Task Definition interface, you can easily configure environment variables to be set when executing your tasks.\n\nThe Deno Task Definition interface is configured in a `tasks.json` within your workspace. It includes a `env` field, which allows you to specify any environment variables that should be set when executing the task. For example, if you wanted to set the `NODE_ENV` environment variable to `production` when running a Deno task, you could add the following to
3,467
a Deno task, you could add the following to your `tasks.json`:\n\n```json\n{\n "version": "2.0.0",\n "tasks": [\n {\n "type": "deno",\n "command": "run",\n "args": [\n "mod.ts"\n ],\n "env": {\n "NODE_ENV": "production"\n },\n "problemMatcher": [\n "$deno"\n ],\n "label": "deno: run"\n }\n ]\n}\n```\n\nThe Deno language server and this extension also'}, {'text': '\n\nEnvironment variables are a great way to store and access data in your applications. They are especially useful when you need to store sensitive information such as API keys, passwords, and other credentials.\n\nDeno.env is a library that provides getter and setter methods for environment variables. This makes it easy to store and retrieve data from environment variables. For example, you can use the setter method to set a variable like this:\n\n```ts\nDeno.env.set("FIREBASE_API_KEY", "examplekey123");\nDeno.env.set("FIREBASE_AUTH_DOMAIN", "firebasedomain.com");\n```\n\nAnd then you can use the getter method to retrieve the data like this:\n\n```ts\nconsole.log(Deno.env.get("FIREBASE_API_KEY")); // examplekey123\nconsole.log(Deno.env.get("FIREBASE_AUTH_DOMAIN")); // firebasedomain.com\n```\n\nYou can also store environment variables in a `.env` file and retrieve them using `dotenv` in the standard'}, {'text': '\n\nEnvironment variables are a powerful tool for developers, allowing them to store and access data without hard-coding it into their applications. Deno, the secure JavaScript and TypeScript runtime, offers built-in support for environment variables with the `Deno.env` API.\n\nUsing `Deno.env` is simple. It has getter and setter methods that allow you to easily set and retrieve environment variables. For example, you can set the `FIREBASE_API_KEY` and `FIREBASE_AUTH_DOMAIN` environment variables like this:\n\n```ts\nDeno.env.set("FIREBASE_API_KEY", "examplekey123");\nDeno.env.set("FIREBASE_AUTH_DOMAIN", "firebasedomain.com");\n```\n\nAnd then you can retrieve them like
This notebook is based on text generation notebook and adapted to Vectara.
This notebook is based on text generation notebook and adapted to Vectara. ->: a Deno task, you could add the following to your `tasks.json`:\n\n```json\n{\n "version": "2.0.0",\n "tasks": [\n {\n "type": "deno",\n "command": "run",\n "args": [\n "mod.ts"\n ],\n "env": {\n "NODE_ENV": "production"\n },\n "problemMatcher": [\n "$deno"\n ],\n "label": "deno: run"\n }\n ]\n}\n```\n\nThe Deno language server and this extension also'}, {'text': '\n\nEnvironment variables are a great way to store and access data in your applications. They are especially useful when you need to store sensitive information such as API keys, passwords, and other credentials.\n\nDeno.env is a library that provides getter and setter methods for environment variables. This makes it easy to store and retrieve data from environment variables. For example, you can use the setter method to set a variable like this:\n\n```ts\nDeno.env.set("FIREBASE_API_KEY", "examplekey123");\nDeno.env.set("FIREBASE_AUTH_DOMAIN", "firebasedomain.com");\n```\n\nAnd then you can use the getter method to retrieve the data like this:\n\n```ts\nconsole.log(Deno.env.get("FIREBASE_API_KEY")); // examplekey123\nconsole.log(Deno.env.get("FIREBASE_AUTH_DOMAIN")); // firebasedomain.com\n```\n\nYou can also store environment variables in a `.env` file and retrieve them using `dotenv` in the standard'}, {'text': '\n\nEnvironment variables are a powerful tool for developers, allowing them to store and access data without hard-coding it into their applications. Deno, the secure JavaScript and TypeScript runtime, offers built-in support for environment variables with the `Deno.env` API.\n\nUsing `Deno.env` is simple. It has getter and setter methods that allow you to easily set and retrieve environment variables. For example, you can set the `FIREBASE_API_KEY` and `FIREBASE_AUTH_DOMAIN` environment variables like this:\n\n```ts\nDeno.env.set("FIREBASE_API_KEY", "examplekey123");\nDeno.env.set("FIREBASE_AUTH_DOMAIN", "firebasedomain.com");\n```\n\nAnd then you can retrieve them like
3,468
then you can retrieve them like this:\n\n```ts\nconsole.log(Deno.env.get("FIREBASE_API_KEY")); // examplekey123\nconsole.log(Deno.env.get("FIREBASE_AUTH_DOMAIN")); // firebasedomain.com\n```'}, {'text': '\n\nEnvironment variables are an important part of any programming language, and Deno is no exception. Environment variables are used to store information about the environment in which a program is running, such as the operating system, user preferences, and other settings. In Deno, environment variables are used to set up proxies, control the output of colors, and more.\n\nThe `NO_PROXY` environment variable is a de facto standard in Deno that indicates which hosts should bypass the proxy set in other environment variables. This is useful for developers who want to access certain resources without having to go through a proxy. For more information on this standard, you can check out the website no-color.org.\n\nThe `Deno.noColor` environment variable is another important environment variable in Deno. This variable is used to control the output of colors in the Deno terminal. By setting this variable to true, you can disable the output of colors in the terminal. This can be useful for developers who want to focus on the output of their code without being distracted by the colors.\n\nFinally, the `Deno.env` environment variable is used to access the environment variables set in the Deno runtime. This variable is useful for developers who want'}]PreviousChat Over Documents with VectaraNextVespaPrepare DataSet Up Vector DBSet Up LLM Chain with Custom PromptGenerate TextCommunityDiscordTwitterGitHubPythonJS/TSMoreHomepageBlogCopyright © 2023 LangChain, Inc.
This notebook is based on text generation notebook and adapted to Vectara.
This notebook is based on text generation notebook and adapted to Vectara. ->: then you can retrieve them like this:\n\n```ts\nconsole.log(Deno.env.get("FIREBASE_API_KEY")); // examplekey123\nconsole.log(Deno.env.get("FIREBASE_AUTH_DOMAIN")); // firebasedomain.com\n```'}, {'text': '\n\nEnvironment variables are an important part of any programming language, and Deno is no exception. Environment variables are used to store information about the environment in which a program is running, such as the operating system, user preferences, and other settings. In Deno, environment variables are used to set up proxies, control the output of colors, and more.\n\nThe `NO_PROXY` environment variable is a de facto standard in Deno that indicates which hosts should bypass the proxy set in other environment variables. This is useful for developers who want to access certain resources without having to go through a proxy. For more information on this standard, you can check out the website no-color.org.\n\nThe `Deno.noColor` environment variable is another important environment variable in Deno. This variable is used to control the output of colors in the Deno terminal. By setting this variable to true, you can disable the output of colors in the terminal. This can be useful for developers who want to focus on the output of their code without being distracted by the colors.\n\nFinally, the `Deno.env` environment variable is used to access the environment variables set in the Deno runtime. This variable is useful for developers who want'}]PreviousChat Over Documents with VectaraNextVespaPrepare DataSet Up Vector DBSet Up LLM Chain with Custom PromptGenerate TextCommunityDiscordTwitterGitHubPythonJS/TSMoreHomepageBlogCopyright © 2023 LangChain, Inc.
3,469
Chat Over Documents with Vectara | 🦜️🔗 Langchain
This notebook is based on the chatvectordb notebook, but using Vectara as the vector database.
This notebook is based on the chatvectordb notebook, but using Vectara as the vector database. ->: Chat Over Documents with Vectara | 🦜️🔗 Langchain
3,470
Skip to main content🦜️🔗 LangChainDocsUse casesIntegrationsAPICommunityChat our docsLangSmithJS/TS DocsSearchCTRLKProvidersAnthropicAWSGoogleMicrosoftOpenAIMoreActiveloop Deep LakeAI21 LabsAimAINetworkAirbyteAirtableAleph AlphaAlibaba Cloud OpensearchAnalyticDBAnnoyAnyscaleApifyArangoDBArgillaArthurArxivAtlasAwaDBAWS DynamoDBAZLyricsBagelDBBananaBasetenBeamBeautiful SoupBiliBiliNIBittensorBlackboardBrave SearchCassandraCerebriumAIChaindeskChromaClarifaiClearMLClickHouseCnosDBCohereCollege ConfidentialCometConfident AIConfluenceC TransformersDashVectorDatabricksDatadog TracingDatadog LogsDataForSEODeepInfraDeepSparseDiffbotDingoDiscordDocArrayDoctranDocugamiDuckDBElasticsearchEpsillaEverNoteFacebook ChatFacebook FaissFigmaFireworksFlyteForefrontAIGitGitBookGoldenGoogle Document AIGoogle SerperGooseAIGPT4AllGradientGraphsignalGrobidGutenbergHacker NewsHazy ResearchHeliconeHologresHTML to textHugging FaceiFixitIMSDbInfinoJavelin AI GatewayJinaKonkoLanceDBLangChain Decorators ✨Llama.cppLog10MarqoMediaWikiDumpMeilisearchMetalMilvusMinimaxMLflow AI GatewayMLflowModalModelScopeModern TreasuryMomentoMongoDB AtlasMotherduckMotörheadMyScaleNeo4jNLPCloudNotion DBNucliaObsidianOpenLLMOpenSearchOpenWeatherMapPetalsPostgres EmbeddingPGVectorPineconePipelineAIPortkeyPredibasePrediction GuardPromptLayerprovidersPsychicPubMedQdrantRay ServeRebuffRedditRedisReplicateRoamRocksetRunhouseRWKV-4ScaNNSearchApiSearxNG Search APISerpAPIShale ProtocolSingleStoreDBscikit-learnSlackspaCySpreedlyStarRocksStochasticAIStripeSupabase (Postgres)NebulaTairTelegramTencentVectorDBTensorFlow DatasetsTigris2MarkdownTrelloTruLensTwitterTypesenseUnstructuredUpstash RedisUSearchVearchVectaraChat Over Documents with VectaraVectara Text GenerationVespaWandB TracingWeights & BiasesWeatherWeaviateWhatsAppWhyLabsWikipediaWolfram AlphaWriterXataXorbits Inference (Xinference)YandexYeager.aiYouTubeZepZillizComponentsLLMsChat modelsDocument loadersDocument transformersText embedding modelsVector
This notebook is based on the chatvectordb notebook, but using Vectara as the vector database.
This notebook is based on the chatvectordb notebook, but using Vectara as the vector database. ->: Skip to main content🦜️🔗 LangChainDocsUse casesIntegrationsAPICommunityChat our docsLangSmithJS/TS DocsSearchCTRLKProvidersAnthropicAWSGoogleMicrosoftOpenAIMoreActiveloop Deep LakeAI21 LabsAimAINetworkAirbyteAirtableAleph AlphaAlibaba Cloud OpensearchAnalyticDBAnnoyAnyscaleApifyArangoDBArgillaArthurArxivAtlasAwaDBAWS DynamoDBAZLyricsBagelDBBananaBasetenBeamBeautiful SoupBiliBiliNIBittensorBlackboardBrave SearchCassandraCerebriumAIChaindeskChromaClarifaiClearMLClickHouseCnosDBCohereCollege ConfidentialCometConfident AIConfluenceC TransformersDashVectorDatabricksDatadog TracingDatadog LogsDataForSEODeepInfraDeepSparseDiffbotDingoDiscordDocArrayDoctranDocugamiDuckDBElasticsearchEpsillaEverNoteFacebook ChatFacebook FaissFigmaFireworksFlyteForefrontAIGitGitBookGoldenGoogle Document AIGoogle SerperGooseAIGPT4AllGradientGraphsignalGrobidGutenbergHacker NewsHazy ResearchHeliconeHologresHTML to textHugging FaceiFixitIMSDbInfinoJavelin AI GatewayJinaKonkoLanceDBLangChain Decorators ✨Llama.cppLog10MarqoMediaWikiDumpMeilisearchMetalMilvusMinimaxMLflow AI GatewayMLflowModalModelScopeModern TreasuryMomentoMongoDB AtlasMotherduckMotörheadMyScaleNeo4jNLPCloudNotion DBNucliaObsidianOpenLLMOpenSearchOpenWeatherMapPetalsPostgres EmbeddingPGVectorPineconePipelineAIPortkeyPredibasePrediction GuardPromptLayerprovidersPsychicPubMedQdrantRay ServeRebuffRedditRedisReplicateRoamRocksetRunhouseRWKV-4ScaNNSearchApiSearxNG Search APISerpAPIShale ProtocolSingleStoreDBscikit-learnSlackspaCySpreedlyStarRocksStochasticAIStripeSupabase (Postgres)NebulaTairTelegramTencentVectorDBTensorFlow DatasetsTigris2MarkdownTrelloTruLensTwitterTypesenseUnstructuredUpstash RedisUSearchVearchVectaraChat Over Documents with VectaraVectara Text GenerationVespaWandB TracingWeights & BiasesWeatherWeaviateWhatsAppWhyLabsWikipediaWolfram AlphaWriterXataXorbits Inference (Xinference)YandexYeager.aiYouTubeZepZillizComponentsLLMsChat modelsDocument loadersDocument transformersText embedding modelsVector
3,471
transformersText embedding modelsVector storesRetrieversToolsAgents and toolkitsMemoryCallbacksChat loadersProvidersMoreVectaraChat Over Documents with VectaraOn this pageChat Over Documents with VectaraThis notebook is based on the chat_vector_db notebook, but using Vectara as the vector database.import osfrom langchain.vectorstores import Vectarafrom langchain.vectorstores.vectara import VectaraRetrieverfrom langchain.llms import OpenAIfrom langchain.chains import ConversationalRetrievalChainLoad in documents. You can replace this with a loader for whatever type of data you wantfrom langchain.document_loaders import TextLoaderloader = TextLoader("../../../modules/state_of_the_union.txt")documents = loader.load()We now split the documents, create embeddings for them, and put them in a vectorstore. This allows us to do semantic search over them.vectorstore = Vectara.from_documents(documents, embedding=None)We can now create a memory object, which is neccessary to track the inputs/outputs and hold a conversation.from langchain.memory import ConversationBufferMemorymemory = ConversationBufferMemory(memory_key="chat_history", return_messages=True)We now initialize the ConversationalRetrievalChainopenai_api_key = os.environ["OPENAI_API_KEY"]llm = OpenAI(openai_api_key=openai_api_key, temperature=0)retriever = vectorstore.as_retriever(lambda_val=0.025, k=5, filter=None)d = retriever.get_relevant_documents( "What did the president say about Ketanji Brown Jackson")qa = ConversationalRetrievalChain.from_llm(llm, retriever, memory=memory)query = "What did the president say about Ketanji Brown Jackson"result = qa({"question": query})result["answer"] " The president said that Ketanji Brown Jackson is one of the nation's top legal minds and a former top litigator in private practice, and that she will continue Justice Breyer's legacy of excellence."query = "Did he mention who she succeeded"result = qa({"question": query})result["answer"] ' Ketanji Brown Jackson
This notebook is based on the chatvectordb notebook, but using Vectara as the vector database.
This notebook is based on the chatvectordb notebook, but using Vectara as the vector database. ->: transformersText embedding modelsVector storesRetrieversToolsAgents and toolkitsMemoryCallbacksChat loadersProvidersMoreVectaraChat Over Documents with VectaraOn this pageChat Over Documents with VectaraThis notebook is based on the chat_vector_db notebook, but using Vectara as the vector database.import osfrom langchain.vectorstores import Vectarafrom langchain.vectorstores.vectara import VectaraRetrieverfrom langchain.llms import OpenAIfrom langchain.chains import ConversationalRetrievalChainLoad in documents. You can replace this with a loader for whatever type of data you wantfrom langchain.document_loaders import TextLoaderloader = TextLoader("../../../modules/state_of_the_union.txt")documents = loader.load()We now split the documents, create embeddings for them, and put them in a vectorstore. This allows us to do semantic search over them.vectorstore = Vectara.from_documents(documents, embedding=None)We can now create a memory object, which is neccessary to track the inputs/outputs and hold a conversation.from langchain.memory import ConversationBufferMemorymemory = ConversationBufferMemory(memory_key="chat_history", return_messages=True)We now initialize the ConversationalRetrievalChainopenai_api_key = os.environ["OPENAI_API_KEY"]llm = OpenAI(openai_api_key=openai_api_key, temperature=0)retriever = vectorstore.as_retriever(lambda_val=0.025, k=5, filter=None)d = retriever.get_relevant_documents( "What did the president say about Ketanji Brown Jackson")qa = ConversationalRetrievalChain.from_llm(llm, retriever, memory=memory)query = "What did the president say about Ketanji Brown Jackson"result = qa({"question": query})result["answer"] " The president said that Ketanji Brown Jackson is one of the nation's top legal minds and a former top litigator in private practice, and that she will continue Justice Breyer's legacy of excellence."query = "Did he mention who she succeeded"result = qa({"question": query})result["answer"] ' Ketanji Brown Jackson
3,472
' Ketanji Brown Jackson succeeded Justice Breyer.'Pass in chat history​In the above example, we used a Memory object to track chat history. We can also just pass it in explicitly. In order to do this, we need to initialize a chain without any memory object.qa = ConversationalRetrievalChain.from_llm( OpenAI(temperature=0), vectorstore.as_retriever())Here's an example of asking a question with no chat historychat_history = []query = "What did the president say about Ketanji Brown Jackson"result = qa({"question": query, "chat_history": chat_history})result["answer"] " The president said that Ketanji Brown Jackson is one of the nation's top legal minds and a former top litigator in private practice, and that she will continue Justice Breyer's legacy of excellence."Here's an example of asking a question with some chat historychat_history = [(query, result["answer"])]query = "Did he mention who she succeeded"result = qa({"question": query, "chat_history": chat_history})result["answer"] ' Ketanji Brown Jackson succeeded Justice Breyer.'Return Source Documents​You can also easily return source documents from the ConversationalRetrievalChain. This is useful for when you want to inspect what documents were returned.qa = ConversationalRetrievalChain.from_llm( llm, vectorstore.as_retriever(), return_source_documents=True)chat_history = []query = "What did the president say about Ketanji Brown Jackson"result = qa({"question": query, "chat_history": chat_history})result["source_documents"][0] Document(page_content='Justice Breyer, thank you for your service. One of the most serious constitutional responsibilities a President has is nominating someone to serve on the United States Supreme Court. And I did that 4 days ago, when I nominated Circuit Court of Appeals Judge Ketanji Brown Jackson. One of our nation’s top legal minds, who will continue Justice Breyer’s legacy of excellence. A former top litigator in private practice.', metadata={'source':
This notebook is based on the chatvectordb notebook, but using Vectara as the vector database.
This notebook is based on the chatvectordb notebook, but using Vectara as the vector database. ->: ' Ketanji Brown Jackson succeeded Justice Breyer.'Pass in chat history​In the above example, we used a Memory object to track chat history. We can also just pass it in explicitly. In order to do this, we need to initialize a chain without any memory object.qa = ConversationalRetrievalChain.from_llm( OpenAI(temperature=0), vectorstore.as_retriever())Here's an example of asking a question with no chat historychat_history = []query = "What did the president say about Ketanji Brown Jackson"result = qa({"question": query, "chat_history": chat_history})result["answer"] " The president said that Ketanji Brown Jackson is one of the nation's top legal minds and a former top litigator in private practice, and that she will continue Justice Breyer's legacy of excellence."Here's an example of asking a question with some chat historychat_history = [(query, result["answer"])]query = "Did he mention who she succeeded"result = qa({"question": query, "chat_history": chat_history})result["answer"] ' Ketanji Brown Jackson succeeded Justice Breyer.'Return Source Documents​You can also easily return source documents from the ConversationalRetrievalChain. This is useful for when you want to inspect what documents were returned.qa = ConversationalRetrievalChain.from_llm( llm, vectorstore.as_retriever(), return_source_documents=True)chat_history = []query = "What did the president say about Ketanji Brown Jackson"result = qa({"question": query, "chat_history": chat_history})result["source_documents"][0] Document(page_content='Justice Breyer, thank you for your service. One of the most serious constitutional responsibilities a President has is nominating someone to serve on the United States Supreme Court. And I did that 4 days ago, when I nominated Circuit Court of Appeals Judge Ketanji Brown Jackson. One of our nation’s top legal minds, who will continue Justice Breyer’s legacy of excellence. A former top litigator in private practice.', metadata={'source':
3,473
in private practice.', metadata={'source': '../../../modules/state_of_the_union.txt'})ConversationalRetrievalChain with search_distance‚ÄãIf you are using a vector store that supports filtering by search distance, you can add a threshold value parameter.vectordbkwargs = {"search_distance": 0.9}qa = ConversationalRetrievalChain.from_llm( OpenAI(temperature=0), vectorstore.as_retriever(), return_source_documents=True)chat_history = []query = "What did the president say about Ketanji Brown Jackson"result = qa( {"question": query, "chat_history": chat_history, "vectordbkwargs": vectordbkwargs})print(result["answer"]) The president said that Ketanji Brown Jackson is one of the nation's top legal minds and a former top litigator in private practice, and that she will continue Justice Breyer's legacy of excellence.ConversationalRetrievalChain with map_reduce‚ÄãWe can also use different types of combine document chains with the ConversationalRetrievalChain chain.from langchain.chains import LLMChainfrom langchain.chains.question_answering import load_qa_chainfrom langchain.chains.conversational_retrieval.prompts import CONDENSE_QUESTION_PROMPTquestion_generator = LLMChain(llm=llm, prompt=CONDENSE_QUESTION_PROMPT)doc_chain = load_qa_chain(llm, chain_type="map_reduce")chain = ConversationalRetrievalChain( retriever=vectorstore.as_retriever(), question_generator=question_generator, combine_docs_chain=doc_chain,)chat_history = []query = "What did the president say about Ketanji Brown Jackson"result = chain({"question": query, "chat_history": chat_history})result["answer"] " The president said that he nominated Circuit Court of Appeals Judge Ketanji Brown Jackson, who is one of the nation's top legal minds and a former top litigator in private practice."ConversationalRetrievalChain with Question Answering with sources‚ÄãYou can also use this chain with the question answering with sources chain.from langchain.chains.qa_with_sources import
This notebook is based on the chatvectordb notebook, but using Vectara as the vector database.
This notebook is based on the chatvectordb notebook, but using Vectara as the vector database. ->: in private practice.', metadata={'source': '../../../modules/state_of_the_union.txt'})ConversationalRetrievalChain with search_distance‚ÄãIf you are using a vector store that supports filtering by search distance, you can add a threshold value parameter.vectordbkwargs = {"search_distance": 0.9}qa = ConversationalRetrievalChain.from_llm( OpenAI(temperature=0), vectorstore.as_retriever(), return_source_documents=True)chat_history = []query = "What did the president say about Ketanji Brown Jackson"result = qa( {"question": query, "chat_history": chat_history, "vectordbkwargs": vectordbkwargs})print(result["answer"]) The president said that Ketanji Brown Jackson is one of the nation's top legal minds and a former top litigator in private practice, and that she will continue Justice Breyer's legacy of excellence.ConversationalRetrievalChain with map_reduce‚ÄãWe can also use different types of combine document chains with the ConversationalRetrievalChain chain.from langchain.chains import LLMChainfrom langchain.chains.question_answering import load_qa_chainfrom langchain.chains.conversational_retrieval.prompts import CONDENSE_QUESTION_PROMPTquestion_generator = LLMChain(llm=llm, prompt=CONDENSE_QUESTION_PROMPT)doc_chain = load_qa_chain(llm, chain_type="map_reduce")chain = ConversationalRetrievalChain( retriever=vectorstore.as_retriever(), question_generator=question_generator, combine_docs_chain=doc_chain,)chat_history = []query = "What did the president say about Ketanji Brown Jackson"result = chain({"question": query, "chat_history": chat_history})result["answer"] " The president said that he nominated Circuit Court of Appeals Judge Ketanji Brown Jackson, who is one of the nation's top legal minds and a former top litigator in private practice."ConversationalRetrievalChain with Question Answering with sources‚ÄãYou can also use this chain with the question answering with sources chain.from langchain.chains.qa_with_sources import
3,474
langchain.chains.qa_with_sources import load_qa_with_sources_chainquestion_generator = LLMChain(llm=llm, prompt=CONDENSE_QUESTION_PROMPT)doc_chain = load_qa_with_sources_chain(llm, chain_type="map_reduce")chain = ConversationalRetrievalChain( retriever=vectorstore.as_retriever(), question_generator=question_generator, combine_docs_chain=doc_chain,)chat_history = []query = "What did the president say about Ketanji Brown Jackson"result = chain({"question": query, "chat_history": chat_history})result["answer"] " The president said that Ketanji Brown Jackson is one of the nation's top legal minds and a former top litigator in private practice.\nSOURCES: ../../../modules/state_of_the_union.txt"ConversationalRetrievalChain with streaming to stdout‚ÄãOutput from the chain will be streamed to stdout token by token in this example.from langchain.chains.llm import LLMChainfrom langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandlerfrom langchain.chains.conversational_retrieval.prompts import ( CONDENSE_QUESTION_PROMPT, QA_PROMPT,)from langchain.chains.question_answering import load_qa_chain# Construct a ConversationalRetrievalChain with a streaming llm for combine docs# and a separate, non-streaming llm for question generationllm = OpenAI(temperature=0, openai_api_key=openai_api_key)streaming_llm = OpenAI( streaming=True, callbacks=[StreamingStdOutCallbackHandler()], temperature=0, openai_api_key=openai_api_key,)question_generator = LLMChain(llm=llm, prompt=CONDENSE_QUESTION_PROMPT)doc_chain = load_qa_chain(streaming_llm, chain_type="stuff", prompt=QA_PROMPT)qa = ConversationalRetrievalChain( retriever=vectorstore.as_retriever(), combine_docs_chain=doc_chain, question_generator=question_generator,)chat_history = []query = "What did the president say about Ketanji Brown Jackson"result = qa({"question": query, "chat_history": chat_history}) The president said that Ketanji Brown Jackson is one of the nation's top
This notebook is based on the chatvectordb notebook, but using Vectara as the vector database.
This notebook is based on the chatvectordb notebook, but using Vectara as the vector database. ->: langchain.chains.qa_with_sources import load_qa_with_sources_chainquestion_generator = LLMChain(llm=llm, prompt=CONDENSE_QUESTION_PROMPT)doc_chain = load_qa_with_sources_chain(llm, chain_type="map_reduce")chain = ConversationalRetrievalChain( retriever=vectorstore.as_retriever(), question_generator=question_generator, combine_docs_chain=doc_chain,)chat_history = []query = "What did the president say about Ketanji Brown Jackson"result = chain({"question": query, "chat_history": chat_history})result["answer"] " The president said that Ketanji Brown Jackson is one of the nation's top legal minds and a former top litigator in private practice.\nSOURCES: ../../../modules/state_of_the_union.txt"ConversationalRetrievalChain with streaming to stdout‚ÄãOutput from the chain will be streamed to stdout token by token in this example.from langchain.chains.llm import LLMChainfrom langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandlerfrom langchain.chains.conversational_retrieval.prompts import ( CONDENSE_QUESTION_PROMPT, QA_PROMPT,)from langchain.chains.question_answering import load_qa_chain# Construct a ConversationalRetrievalChain with a streaming llm for combine docs# and a separate, non-streaming llm for question generationllm = OpenAI(temperature=0, openai_api_key=openai_api_key)streaming_llm = OpenAI( streaming=True, callbacks=[StreamingStdOutCallbackHandler()], temperature=0, openai_api_key=openai_api_key,)question_generator = LLMChain(llm=llm, prompt=CONDENSE_QUESTION_PROMPT)doc_chain = load_qa_chain(streaming_llm, chain_type="stuff", prompt=QA_PROMPT)qa = ConversationalRetrievalChain( retriever=vectorstore.as_retriever(), combine_docs_chain=doc_chain, question_generator=question_generator,)chat_history = []query = "What did the president say about Ketanji Brown Jackson"result = qa({"question": query, "chat_history": chat_history}) The president said that Ketanji Brown Jackson is one of the nation's top
3,475
Ketanji Brown Jackson is one of the nation's top legal minds and a former top litigator in private practice, and that she will continue Justice Breyer's legacy of excellence.chat_history = [(query, result["answer"])]query = "Did he mention who she succeeded"result = qa({"question": query, "chat_history": chat_history}) Justice Breyerget_chat_history Function​You can also specify a get_chat_history function, which can be used to format the chat_history string.def get_chat_history(inputs) -> str: res = [] for human, ai in inputs: res.append(f"Human:{human}\nAI:{ai}") return "\n".join(res)qa = ConversationalRetrievalChain.from_llm( llm, vectorstore.as_retriever(), get_chat_history=get_chat_history)chat_history = []query = "What did the president say about Ketanji Brown Jackson"result = qa({"question": query, "chat_history": chat_history})result["answer"] " The president said that Ketanji Brown Jackson is one of the nation's top legal minds and a former top litigator in private practice, and that she will continue Justice Breyer's legacy of excellence."PreviousVectaraNextVectara Text GenerationPass in chat historyReturn Source DocumentsConversationalRetrievalChain with search_distanceConversationalRetrievalChain with map_reduceConversationalRetrievalChain with Question Answering with sourcesConversationalRetrievalChain with streaming to stdoutget_chat_history FunctionCommunityDiscordTwitterGitHubPythonJS/TSMoreHomepageBlogCopyright © 2023 LangChain, Inc.
This notebook is based on the chatvectordb notebook, but using Vectara as the vector database.
This notebook is based on the chatvectordb notebook, but using Vectara as the vector database. ->: Ketanji Brown Jackson is one of the nation's top legal minds and a former top litigator in private practice, and that she will continue Justice Breyer's legacy of excellence.chat_history = [(query, result["answer"])]query = "Did he mention who she succeeded"result = qa({"question": query, "chat_history": chat_history}) Justice Breyerget_chat_history Function​You can also specify a get_chat_history function, which can be used to format the chat_history string.def get_chat_history(inputs) -> str: res = [] for human, ai in inputs: res.append(f"Human:{human}\nAI:{ai}") return "\n".join(res)qa = ConversationalRetrievalChain.from_llm( llm, vectorstore.as_retriever(), get_chat_history=get_chat_history)chat_history = []query = "What did the president say about Ketanji Brown Jackson"result = qa({"question": query, "chat_history": chat_history})result["answer"] " The president said that Ketanji Brown Jackson is one of the nation's top legal minds and a former top litigator in private practice, and that she will continue Justice Breyer's legacy of excellence."PreviousVectaraNextVectara Text GenerationPass in chat historyReturn Source DocumentsConversationalRetrievalChain with search_distanceConversationalRetrievalChain with map_reduceConversationalRetrievalChain with Question Answering with sourcesConversationalRetrievalChain with streaming to stdoutget_chat_history FunctionCommunityDiscordTwitterGitHubPythonJS/TSMoreHomepageBlogCopyright © 2023 LangChain, Inc.
3,476
iFixit | 🦜️🔗 Langchain
iFixit is the largest, open repair community on the web. The site contains nearly 100k
iFixit is the largest, open repair community on the web. The site contains nearly 100k ->: iFixit | 🦜️🔗 Langchain
3,477
Skip to main content🦜️🔗 LangChainDocsUse casesIntegrationsAPICommunityChat our docsLangSmithJS/TS DocsSearchCTRLKProvidersAnthropicAWSGoogleMicrosoftOpenAIMoreActiveloop Deep LakeAI21 LabsAimAINetworkAirbyteAirtableAleph AlphaAlibaba Cloud OpensearchAnalyticDBAnnoyAnyscaleApifyArangoDBArgillaArthurArxivAtlasAwaDBAWS DynamoDBAZLyricsBagelDBBananaBasetenBeamBeautiful SoupBiliBiliNIBittensorBlackboardBrave SearchCassandraCerebriumAIChaindeskChromaClarifaiClearMLClickHouseCnosDBCohereCollege ConfidentialCometConfident AIConfluenceC TransformersDashVectorDatabricksDatadog TracingDatadog LogsDataForSEODeepInfraDeepSparseDiffbotDingoDiscordDocArrayDoctranDocugamiDuckDBElasticsearchEpsillaEverNoteFacebook ChatFacebook FaissFigmaFireworksFlyteForefrontAIGitGitBookGoldenGoogle Document AIGoogle SerperGooseAIGPT4AllGradientGraphsignalGrobidGutenbergHacker NewsHazy ResearchHeliconeHologresHTML to textHugging FaceiFixitIMSDbInfinoJavelin AI GatewayJinaKonkoLanceDBLangChain Decorators ✨Llama.cppLog10MarqoMediaWikiDumpMeilisearchMetalMilvusMinimaxMLflow AI GatewayMLflowModalModelScopeModern TreasuryMomentoMongoDB AtlasMotherduckMotörheadMyScaleNeo4jNLPCloudNotion DBNucliaObsidianOpenLLMOpenSearchOpenWeatherMapPetalsPostgres EmbeddingPGVectorPineconePipelineAIPortkeyPredibasePrediction GuardPromptLayerprovidersPsychicPubMedQdrantRay ServeRebuffRedditRedisReplicateRoamRocksetRunhouseRWKV-4ScaNNSearchApiSearxNG Search APISerpAPIShale ProtocolSingleStoreDBscikit-learnSlackspaCySpreedlyStarRocksStochasticAIStripeSupabase (Postgres)NebulaTairTelegramTencentVectorDBTensorFlow DatasetsTigris2MarkdownTrelloTruLensTwitterTypesenseUnstructuredUpstash RedisUSearchVearchVectaraVespaWandB TracingWeights & BiasesWeatherWeaviateWhatsAppWhyLabsWikipediaWolfram AlphaWriterXataXorbits Inference (Xinference)YandexYeager.aiYouTubeZepZillizComponentsLLMsChat modelsDocument loadersDocument transformersText embedding modelsVector storesRetrieversToolsAgents and toolkitsMemoryCallbacksChat
iFixit is the largest, open repair community on the web. The site contains nearly 100k
iFixit is the largest, open repair community on the web. The site contains nearly 100k ->: Skip to main content🦜️🔗 LangChainDocsUse casesIntegrationsAPICommunityChat our docsLangSmithJS/TS DocsSearchCTRLKProvidersAnthropicAWSGoogleMicrosoftOpenAIMoreActiveloop Deep LakeAI21 LabsAimAINetworkAirbyteAirtableAleph AlphaAlibaba Cloud OpensearchAnalyticDBAnnoyAnyscaleApifyArangoDBArgillaArthurArxivAtlasAwaDBAWS DynamoDBAZLyricsBagelDBBananaBasetenBeamBeautiful SoupBiliBiliNIBittensorBlackboardBrave SearchCassandraCerebriumAIChaindeskChromaClarifaiClearMLClickHouseCnosDBCohereCollege ConfidentialCometConfident AIConfluenceC TransformersDashVectorDatabricksDatadog TracingDatadog LogsDataForSEODeepInfraDeepSparseDiffbotDingoDiscordDocArrayDoctranDocugamiDuckDBElasticsearchEpsillaEverNoteFacebook ChatFacebook FaissFigmaFireworksFlyteForefrontAIGitGitBookGoldenGoogle Document AIGoogle SerperGooseAIGPT4AllGradientGraphsignalGrobidGutenbergHacker NewsHazy ResearchHeliconeHologresHTML to textHugging FaceiFixitIMSDbInfinoJavelin AI GatewayJinaKonkoLanceDBLangChain Decorators ✨Llama.cppLog10MarqoMediaWikiDumpMeilisearchMetalMilvusMinimaxMLflow AI GatewayMLflowModalModelScopeModern TreasuryMomentoMongoDB AtlasMotherduckMotörheadMyScaleNeo4jNLPCloudNotion DBNucliaObsidianOpenLLMOpenSearchOpenWeatherMapPetalsPostgres EmbeddingPGVectorPineconePipelineAIPortkeyPredibasePrediction GuardPromptLayerprovidersPsychicPubMedQdrantRay ServeRebuffRedditRedisReplicateRoamRocksetRunhouseRWKV-4ScaNNSearchApiSearxNG Search APISerpAPIShale ProtocolSingleStoreDBscikit-learnSlackspaCySpreedlyStarRocksStochasticAIStripeSupabase (Postgres)NebulaTairTelegramTencentVectorDBTensorFlow DatasetsTigris2MarkdownTrelloTruLensTwitterTypesenseUnstructuredUpstash RedisUSearchVearchVectaraVespaWandB TracingWeights & BiasesWeatherWeaviateWhatsAppWhyLabsWikipediaWolfram AlphaWriterXataXorbits Inference (Xinference)YandexYeager.aiYouTubeZepZillizComponentsLLMsChat modelsDocument loadersDocument transformersText embedding modelsVector storesRetrieversToolsAgents and toolkitsMemoryCallbacksChat
3,478
and toolkitsMemoryCallbacksChat loadersProvidersMoreiFixitOn this pageiFixitiFixit is the largest, open repair community on the web. The site contains nearly 100k
iFixit is the largest, open repair community on the web. The site contains nearly 100k
iFixit is the largest, open repair community on the web. The site contains nearly 100k ->: and toolkitsMemoryCallbacksChat loadersProvidersMoreiFixitOn this pageiFixitiFixit is the largest, open repair community on the web. The site contains nearly 100k
3,479
repair manuals, 200k Questions & Answers on 42k devices, and all the data is licensed under CC-BY-NC-SA 3.0.Installation and Setup​There isn't any special setup for it.Document Loader​See a usage example.from langchain.document_loaders import IFixitLoaderPreviousHugging FaceNextIMSDbInstallation and SetupDocument LoaderCommunityDiscordTwitterGitHubPythonJS/TSMoreHomepageBlogCopyright © 2023 LangChain, Inc.
iFixit is the largest, open repair community on the web. The site contains nearly 100k
iFixit is the largest, open repair community on the web. The site contains nearly 100k ->: repair manuals, 200k Questions & Answers on 42k devices, and all the data is licensed under CC-BY-NC-SA 3.0.Installation and Setup​There isn't any special setup for it.Document Loader​See a usage example.from langchain.document_loaders import IFixitLoaderPreviousHugging FaceNextIMSDbInstallation and SetupDocument LoaderCommunityDiscordTwitterGitHubPythonJS/TSMoreHomepageBlogCopyright © 2023 LangChain, Inc.
3,480
Argilla | 🦜️🔗 Langchain
Argilla - Open-source data platform for LLMs
Argilla - Open-source data platform for LLMs ->: Argilla | 🦜️🔗 Langchain
3,481
Skip to main content🦜️🔗 LangChainDocsUse casesIntegrationsAPICommunityChat our docsLangSmithJS/TS DocsSearchCTRLKProvidersAnthropicAWSGoogleMicrosoftOpenAIMoreActiveloop Deep LakeAI21 LabsAimAINetworkAirbyteAirtableAleph AlphaAlibaba Cloud OpensearchAnalyticDBAnnoyAnyscaleApifyArangoDBArgillaArthurArxivAtlasAwaDBAWS DynamoDBAZLyricsBagelDBBananaBasetenBeamBeautiful SoupBiliBiliNIBittensorBlackboardBrave SearchCassandraCerebriumAIChaindeskChromaClarifaiClearMLClickHouseCnosDBCohereCollege ConfidentialCometConfident AIConfluenceC TransformersDashVectorDatabricksDatadog TracingDatadog LogsDataForSEODeepInfraDeepSparseDiffbotDingoDiscordDocArrayDoctranDocugamiDuckDBElasticsearchEpsillaEverNoteFacebook ChatFacebook FaissFigmaFireworksFlyteForefrontAIGitGitBookGoldenGoogle Document AIGoogle SerperGooseAIGPT4AllGradientGraphsignalGrobidGutenbergHacker NewsHazy ResearchHeliconeHologresHTML to textHugging FaceiFixitIMSDbInfinoJavelin AI GatewayJinaKonkoLanceDBLangChain Decorators ✨Llama.cppLog10MarqoMediaWikiDumpMeilisearchMetalMilvusMinimaxMLflow AI GatewayMLflowModalModelScopeModern TreasuryMomentoMongoDB AtlasMotherduckMotörheadMyScaleNeo4jNLPCloudNotion DBNucliaObsidianOpenLLMOpenSearchOpenWeatherMapPetalsPostgres EmbeddingPGVectorPineconePipelineAIPortkeyPredibasePrediction GuardPromptLayerprovidersPsychicPubMedQdrantRay ServeRebuffRedditRedisReplicateRoamRocksetRunhouseRWKV-4ScaNNSearchApiSearxNG Search APISerpAPIShale ProtocolSingleStoreDBscikit-learnSlackspaCySpreedlyStarRocksStochasticAIStripeSupabase (Postgres)NebulaTairTelegramTencentVectorDBTensorFlow DatasetsTigris2MarkdownTrelloTruLensTwitterTypesenseUnstructuredUpstash RedisUSearchVearchVectaraVespaWandB TracingWeights & BiasesWeatherWeaviateWhatsAppWhyLabsWikipediaWolfram AlphaWriterXataXorbits Inference (Xinference)YandexYeager.aiYouTubeZepZillizComponentsLLMsChat modelsDocument loadersDocument transformersText embedding modelsVector storesRetrieversToolsAgents and toolkitsMemoryCallbacksChat
Argilla - Open-source data platform for LLMs
Argilla - Open-source data platform for LLMs ->: Skip to main content🦜️🔗 LangChainDocsUse casesIntegrationsAPICommunityChat our docsLangSmithJS/TS DocsSearchCTRLKProvidersAnthropicAWSGoogleMicrosoftOpenAIMoreActiveloop Deep LakeAI21 LabsAimAINetworkAirbyteAirtableAleph AlphaAlibaba Cloud OpensearchAnalyticDBAnnoyAnyscaleApifyArangoDBArgillaArthurArxivAtlasAwaDBAWS DynamoDBAZLyricsBagelDBBananaBasetenBeamBeautiful SoupBiliBiliNIBittensorBlackboardBrave SearchCassandraCerebriumAIChaindeskChromaClarifaiClearMLClickHouseCnosDBCohereCollege ConfidentialCometConfident AIConfluenceC TransformersDashVectorDatabricksDatadog TracingDatadog LogsDataForSEODeepInfraDeepSparseDiffbotDingoDiscordDocArrayDoctranDocugamiDuckDBElasticsearchEpsillaEverNoteFacebook ChatFacebook FaissFigmaFireworksFlyteForefrontAIGitGitBookGoldenGoogle Document AIGoogle SerperGooseAIGPT4AllGradientGraphsignalGrobidGutenbergHacker NewsHazy ResearchHeliconeHologresHTML to textHugging FaceiFixitIMSDbInfinoJavelin AI GatewayJinaKonkoLanceDBLangChain Decorators ✨Llama.cppLog10MarqoMediaWikiDumpMeilisearchMetalMilvusMinimaxMLflow AI GatewayMLflowModalModelScopeModern TreasuryMomentoMongoDB AtlasMotherduckMotörheadMyScaleNeo4jNLPCloudNotion DBNucliaObsidianOpenLLMOpenSearchOpenWeatherMapPetalsPostgres EmbeddingPGVectorPineconePipelineAIPortkeyPredibasePrediction GuardPromptLayerprovidersPsychicPubMedQdrantRay ServeRebuffRedditRedisReplicateRoamRocksetRunhouseRWKV-4ScaNNSearchApiSearxNG Search APISerpAPIShale ProtocolSingleStoreDBscikit-learnSlackspaCySpreedlyStarRocksStochasticAIStripeSupabase (Postgres)NebulaTairTelegramTencentVectorDBTensorFlow DatasetsTigris2MarkdownTrelloTruLensTwitterTypesenseUnstructuredUpstash RedisUSearchVearchVectaraVespaWandB TracingWeights & BiasesWeatherWeaviateWhatsAppWhyLabsWikipediaWolfram AlphaWriterXataXorbits Inference (Xinference)YandexYeager.aiYouTubeZepZillizComponentsLLMsChat modelsDocument loadersDocument transformersText embedding modelsVector storesRetrieversToolsAgents and toolkitsMemoryCallbacksChat
3,482
and toolkitsMemoryCallbacksChat loadersProvidersMoreArgillaOn this pageArgillaArgilla is an open-source data curation platform for LLMs.
Argilla - Open-source data platform for LLMs
Argilla - Open-source data platform for LLMs ->: and toolkitsMemoryCallbacksChat loadersProvidersMoreArgillaOn this pageArgillaArgilla is an open-source data curation platform for LLMs.
3,483
Using Argilla, everyone can build robust language models through faster data curation using both human and machine feedback. We provide support for each step in the MLOps cycle, from data labelling to model monitoring.Installation and Setup​First, you'll need to install the argilla Python package as follows:pip install argilla --upgradeIf you already have an Argilla Server running, then you're good to go; but if you don't, follow the next steps to install it.If you don't you can refer to Argilla - 🚀 Quickstart to deploy Argilla either on HuggingFace Spaces, locally, or on a server.Tracking​See a usage example of ArgillaCallbackHandler.from langchain.callbacks import ArgillaCallbackHandlerPreviousArangoDBNextArthurInstallation and SetupTrackingCommunityDiscordTwitterGitHubPythonJS/TSMoreHomepageBlogCopyright © 2023 LangChain, Inc.
Argilla - Open-source data platform for LLMs
Argilla - Open-source data platform for LLMs ->: Using Argilla, everyone can build robust language models through faster data curation using both human and machine feedback. We provide support for each step in the MLOps cycle, from data labelling to model monitoring.Installation and Setup​First, you'll need to install the argilla Python package as follows:pip install argilla --upgradeIf you already have an Argilla Server running, then you're good to go; but if you don't, follow the next steps to install it.If you don't you can refer to Argilla - 🚀 Quickstart to deploy Argilla either on HuggingFace Spaces, locally, or on a server.Tracking​See a usage example of ArgillaCallbackHandler.from langchain.callbacks import ArgillaCallbackHandlerPreviousArangoDBNextArthurInstallation and SetupTrackingCommunityDiscordTwitterGitHubPythonJS/TSMoreHomepageBlogCopyright © 2023 LangChain, Inc.
3,484
TensorFlow Datasets | 🦜️🔗 Langchain
TensorFlow Datasets is a collection of datasets ready to use,
TensorFlow Datasets is a collection of datasets ready to use, ->: TensorFlow Datasets | 🦜️🔗 Langchain
3,485
Skip to main content🦜️🔗 LangChainDocsUse casesIntegrationsAPICommunityChat our docsLangSmithJS/TS DocsSearchCTRLKProvidersAnthropicAWSGoogleMicrosoftOpenAIMoreActiveloop Deep LakeAI21 LabsAimAINetworkAirbyteAirtableAleph AlphaAlibaba Cloud OpensearchAnalyticDBAnnoyAnyscaleApifyArangoDBArgillaArthurArxivAtlasAwaDBAWS DynamoDBAZLyricsBagelDBBananaBasetenBeamBeautiful SoupBiliBiliNIBittensorBlackboardBrave SearchCassandraCerebriumAIChaindeskChromaClarifaiClearMLClickHouseCnosDBCohereCollege ConfidentialCometConfident AIConfluenceC TransformersDashVectorDatabricksDatadog TracingDatadog LogsDataForSEODeepInfraDeepSparseDiffbotDingoDiscordDocArrayDoctranDocugamiDuckDBElasticsearchEpsillaEverNoteFacebook ChatFacebook FaissFigmaFireworksFlyteForefrontAIGitGitBookGoldenGoogle Document AIGoogle SerperGooseAIGPT4AllGradientGraphsignalGrobidGutenbergHacker NewsHazy ResearchHeliconeHologresHTML to textHugging FaceiFixitIMSDbInfinoJavelin AI GatewayJinaKonkoLanceDBLangChain Decorators ✨Llama.cppLog10MarqoMediaWikiDumpMeilisearchMetalMilvusMinimaxMLflow AI GatewayMLflowModalModelScopeModern TreasuryMomentoMongoDB AtlasMotherduckMotörheadMyScaleNeo4jNLPCloudNotion DBNucliaObsidianOpenLLMOpenSearchOpenWeatherMapPetalsPostgres EmbeddingPGVectorPineconePipelineAIPortkeyPredibasePrediction GuardPromptLayerprovidersPsychicPubMedQdrantRay ServeRebuffRedditRedisReplicateRoamRocksetRunhouseRWKV-4ScaNNSearchApiSearxNG Search APISerpAPIShale ProtocolSingleStoreDBscikit-learnSlackspaCySpreedlyStarRocksStochasticAIStripeSupabase (Postgres)NebulaTairTelegramTencentVectorDBTensorFlow DatasetsTigris2MarkdownTrelloTruLensTwitterTypesenseUnstructuredUpstash RedisUSearchVearchVectaraVespaWandB TracingWeights & BiasesWeatherWeaviateWhatsAppWhyLabsWikipediaWolfram AlphaWriterXataXorbits Inference (Xinference)YandexYeager.aiYouTubeZepZillizComponentsLLMsChat modelsDocument loadersDocument transformersText embedding modelsVector storesRetrieversToolsAgents and toolkitsMemoryCallbacksChat
TensorFlow Datasets is a collection of datasets ready to use,
TensorFlow Datasets is a collection of datasets ready to use, ->: Skip to main content🦜️🔗 LangChainDocsUse casesIntegrationsAPICommunityChat our docsLangSmithJS/TS DocsSearchCTRLKProvidersAnthropicAWSGoogleMicrosoftOpenAIMoreActiveloop Deep LakeAI21 LabsAimAINetworkAirbyteAirtableAleph AlphaAlibaba Cloud OpensearchAnalyticDBAnnoyAnyscaleApifyArangoDBArgillaArthurArxivAtlasAwaDBAWS DynamoDBAZLyricsBagelDBBananaBasetenBeamBeautiful SoupBiliBiliNIBittensorBlackboardBrave SearchCassandraCerebriumAIChaindeskChromaClarifaiClearMLClickHouseCnosDBCohereCollege ConfidentialCometConfident AIConfluenceC TransformersDashVectorDatabricksDatadog TracingDatadog LogsDataForSEODeepInfraDeepSparseDiffbotDingoDiscordDocArrayDoctranDocugamiDuckDBElasticsearchEpsillaEverNoteFacebook ChatFacebook FaissFigmaFireworksFlyteForefrontAIGitGitBookGoldenGoogle Document AIGoogle SerperGooseAIGPT4AllGradientGraphsignalGrobidGutenbergHacker NewsHazy ResearchHeliconeHologresHTML to textHugging FaceiFixitIMSDbInfinoJavelin AI GatewayJinaKonkoLanceDBLangChain Decorators ✨Llama.cppLog10MarqoMediaWikiDumpMeilisearchMetalMilvusMinimaxMLflow AI GatewayMLflowModalModelScopeModern TreasuryMomentoMongoDB AtlasMotherduckMotörheadMyScaleNeo4jNLPCloudNotion DBNucliaObsidianOpenLLMOpenSearchOpenWeatherMapPetalsPostgres EmbeddingPGVectorPineconePipelineAIPortkeyPredibasePrediction GuardPromptLayerprovidersPsychicPubMedQdrantRay ServeRebuffRedditRedisReplicateRoamRocksetRunhouseRWKV-4ScaNNSearchApiSearxNG Search APISerpAPIShale ProtocolSingleStoreDBscikit-learnSlackspaCySpreedlyStarRocksStochasticAIStripeSupabase (Postgres)NebulaTairTelegramTencentVectorDBTensorFlow DatasetsTigris2MarkdownTrelloTruLensTwitterTypesenseUnstructuredUpstash RedisUSearchVearchVectaraVespaWandB TracingWeights & BiasesWeatherWeaviateWhatsAppWhyLabsWikipediaWolfram AlphaWriterXataXorbits Inference (Xinference)YandexYeager.aiYouTubeZepZillizComponentsLLMsChat modelsDocument loadersDocument transformersText embedding modelsVector storesRetrieversToolsAgents and toolkitsMemoryCallbacksChat
3,486
and toolkitsMemoryCallbacksChat loadersProvidersMoreTensorFlow DatasetsOn this pageTensorFlow DatasetsTensorFlow Datasets is a collection of datasets ready to use,
TensorFlow Datasets is a collection of datasets ready to use,
TensorFlow Datasets is a collection of datasets ready to use, ->: and toolkitsMemoryCallbacksChat loadersProvidersMoreTensorFlow DatasetsOn this pageTensorFlow DatasetsTensorFlow Datasets is a collection of datasets ready to use,
3,487
with TensorFlow or other Python ML frameworks, such as Jax. All datasets are exposed as tf.data.Datasets, enabling easy-to-use and high-performance input pipelines. To get started see the guide and the list of datasets.Installation and Setup​You need to install tensorflow and tensorflow-datasets python packages.pip install tensorflowpip install tensorflow-datasetDocument Loader​See a usage example.from langchain.document_loaders import TensorflowDatasetLoaderPreviousTencentVectorDBNextTigrisInstallation and SetupDocument LoaderCommunityDiscordTwitterGitHubPythonJS/TSMoreHomepageBlogCopyright © 2023 LangChain, Inc.
TensorFlow Datasets is a collection of datasets ready to use,
TensorFlow Datasets is a collection of datasets ready to use, ->: with TensorFlow or other Python ML frameworks, such as Jax. All datasets are exposed as tf.data.Datasets, enabling easy-to-use and high-performance input pipelines. To get started see the guide and the list of datasets.Installation and Setup​You need to install tensorflow and tensorflow-datasets python packages.pip install tensorflowpip install tensorflow-datasetDocument Loader​See a usage example.from langchain.document_loaders import TensorflowDatasetLoaderPreviousTencentVectorDBNextTigrisInstallation and SetupDocument LoaderCommunityDiscordTwitterGitHubPythonJS/TSMoreHomepageBlogCopyright © 2023 LangChain, Inc.
3,488
MyScale | 🦜️🔗 Langchain
This page covers how to use MyScale vector database within LangChain.
This page covers how to use MyScale vector database within LangChain. ->: MyScale | 🦜️🔗 Langchain
3,489
Skip to main content🦜️🔗 LangChainDocsUse casesIntegrationsAPICommunityChat our docsLangSmithJS/TS DocsSearchCTRLKProvidersAnthropicAWSGoogleMicrosoftOpenAIMoreActiveloop Deep LakeAI21 LabsAimAINetworkAirbyteAirtableAleph AlphaAlibaba Cloud OpensearchAnalyticDBAnnoyAnyscaleApifyArangoDBArgillaArthurArxivAtlasAwaDBAWS DynamoDBAZLyricsBagelDBBananaBasetenBeamBeautiful SoupBiliBiliNIBittensorBlackboardBrave SearchCassandraCerebriumAIChaindeskChromaClarifaiClearMLClickHouseCnosDBCohereCollege ConfidentialCometConfident AIConfluenceC TransformersDashVectorDatabricksDatadog TracingDatadog LogsDataForSEODeepInfraDeepSparseDiffbotDingoDiscordDocArrayDoctranDocugamiDuckDBElasticsearchEpsillaEverNoteFacebook ChatFacebook FaissFigmaFireworksFlyteForefrontAIGitGitBookGoldenGoogle Document AIGoogle SerperGooseAIGPT4AllGradientGraphsignalGrobidGutenbergHacker NewsHazy ResearchHeliconeHologresHTML to textHugging FaceiFixitIMSDbInfinoJavelin AI GatewayJinaKonkoLanceDBLangChain Decorators ✨Llama.cppLog10MarqoMediaWikiDumpMeilisearchMetalMilvusMinimaxMLflow AI GatewayMLflowModalModelScopeModern TreasuryMomentoMongoDB AtlasMotherduckMotörheadMyScaleNeo4jNLPCloudNotion DBNucliaObsidianOpenLLMOpenSearchOpenWeatherMapPetalsPostgres EmbeddingPGVectorPineconePipelineAIPortkeyPredibasePrediction GuardPromptLayerprovidersPsychicPubMedQdrantRay ServeRebuffRedditRedisReplicateRoamRocksetRunhouseRWKV-4ScaNNSearchApiSearxNG Search APISerpAPIShale ProtocolSingleStoreDBscikit-learnSlackspaCySpreedlyStarRocksStochasticAIStripeSupabase (Postgres)NebulaTairTelegramTencentVectorDBTensorFlow DatasetsTigris2MarkdownTrelloTruLensTwitterTypesenseUnstructuredUpstash RedisUSearchVearchVectaraVespaWandB TracingWeights & BiasesWeatherWeaviateWhatsAppWhyLabsWikipediaWolfram AlphaWriterXataXorbits Inference (Xinference)YandexYeager.aiYouTubeZepZillizComponentsLLMsChat modelsDocument loadersDocument transformersText embedding modelsVector storesRetrieversToolsAgents and toolkitsMemoryCallbacksChat
This page covers how to use MyScale vector database within LangChain.
This page covers how to use MyScale vector database within LangChain. ->: Skip to main content🦜️🔗 LangChainDocsUse casesIntegrationsAPICommunityChat our docsLangSmithJS/TS DocsSearchCTRLKProvidersAnthropicAWSGoogleMicrosoftOpenAIMoreActiveloop Deep LakeAI21 LabsAimAINetworkAirbyteAirtableAleph AlphaAlibaba Cloud OpensearchAnalyticDBAnnoyAnyscaleApifyArangoDBArgillaArthurArxivAtlasAwaDBAWS DynamoDBAZLyricsBagelDBBananaBasetenBeamBeautiful SoupBiliBiliNIBittensorBlackboardBrave SearchCassandraCerebriumAIChaindeskChromaClarifaiClearMLClickHouseCnosDBCohereCollege ConfidentialCometConfident AIConfluenceC TransformersDashVectorDatabricksDatadog TracingDatadog LogsDataForSEODeepInfraDeepSparseDiffbotDingoDiscordDocArrayDoctranDocugamiDuckDBElasticsearchEpsillaEverNoteFacebook ChatFacebook FaissFigmaFireworksFlyteForefrontAIGitGitBookGoldenGoogle Document AIGoogle SerperGooseAIGPT4AllGradientGraphsignalGrobidGutenbergHacker NewsHazy ResearchHeliconeHologresHTML to textHugging FaceiFixitIMSDbInfinoJavelin AI GatewayJinaKonkoLanceDBLangChain Decorators ✨Llama.cppLog10MarqoMediaWikiDumpMeilisearchMetalMilvusMinimaxMLflow AI GatewayMLflowModalModelScopeModern TreasuryMomentoMongoDB AtlasMotherduckMotörheadMyScaleNeo4jNLPCloudNotion DBNucliaObsidianOpenLLMOpenSearchOpenWeatherMapPetalsPostgres EmbeddingPGVectorPineconePipelineAIPortkeyPredibasePrediction GuardPromptLayerprovidersPsychicPubMedQdrantRay ServeRebuffRedditRedisReplicateRoamRocksetRunhouseRWKV-4ScaNNSearchApiSearxNG Search APISerpAPIShale ProtocolSingleStoreDBscikit-learnSlackspaCySpreedlyStarRocksStochasticAIStripeSupabase (Postgres)NebulaTairTelegramTencentVectorDBTensorFlow DatasetsTigris2MarkdownTrelloTruLensTwitterTypesenseUnstructuredUpstash RedisUSearchVearchVectaraVespaWandB TracingWeights & BiasesWeatherWeaviateWhatsAppWhyLabsWikipediaWolfram AlphaWriterXataXorbits Inference (Xinference)YandexYeager.aiYouTubeZepZillizComponentsLLMsChat modelsDocument loadersDocument transformersText embedding modelsVector storesRetrieversToolsAgents and toolkitsMemoryCallbacksChat
3,490
and toolkitsMemoryCallbacksChat loadersProvidersMoreMyScaleOn this pageMyScaleThis page covers how to use MyScale vector database within LangChain.
This page covers how to use MyScale vector database within LangChain.
This page covers how to use MyScale vector database within LangChain. ->: and toolkitsMemoryCallbacksChat loadersProvidersMoreMyScaleOn this pageMyScaleThis page covers how to use MyScale vector database within LangChain.
3,491
It is broken into two parts: installation and setup, and then references to specific MyScale wrappers.With MyScale, you can manage both structured and unstructured (vectorized) data, and perform joint queries and analytics on both types of data using SQL. Plus, MyScale's cloud-native OLAP architecture, built on top of ClickHouse, enables lightning-fast data processing even on massive datasets.Introduction‚ÄãOverview to MyScale and High performance vector searchYou can now register on our SaaS and start a cluster now!If you are also interested in how we managed to integrate SQL and vector, please refer to this document for further syntax reference.We also deliver with live demo on huggingface! Please checkout our huggingface space! They search millions of vector within a blink!Installation and Setup‚ÄãInstall the Python SDK with pip install clickhouse-connectSetting up environments‚ÄãThere are two ways to set up parameters for myscale index.Environment VariablesBefore you run the app, please set the environment variable with export: export MYSCALE_HOST='<your-endpoints-url>' MYSCALE_PORT=<your-endpoints-port> MYSCALE_USERNAME=<your-username> MYSCALE_PASSWORD=<your-password> ...You can easily find your account, password and other info on our SaaS. For details please refer to this document Every attributes under MyScaleSettings can be set with prefix MYSCALE_ and is case insensitive.Create MyScaleSettings object with parameters```pythonfrom langchain.vectorstores import MyScale, MyScaleSettingsconfig = MyScaleSetting(host="<your-backend-url>", port=8443, ...)index = MyScale(embedding_function, config)index.add_documents(...)```Wrappers‚Äãsupported functions:add_textsadd_documentsfrom_textsfrom_documentssimilarity_searchasimilarity_searchsimilarity_search_by_vectorasimilarity_search_by_vectorsimilarity_search_with_relevance_scoresdeleteVectorStore‚ÄãThere exists a wrapper around MyScale database, allowing you to use it as a vectorstore,
This page covers how to use MyScale vector database within LangChain.
This page covers how to use MyScale vector database within LangChain. ->: It is broken into two parts: installation and setup, and then references to specific MyScale wrappers.With MyScale, you can manage both structured and unstructured (vectorized) data, and perform joint queries and analytics on both types of data using SQL. Plus, MyScale's cloud-native OLAP architecture, built on top of ClickHouse, enables lightning-fast data processing even on massive datasets.Introduction‚ÄãOverview to MyScale and High performance vector searchYou can now register on our SaaS and start a cluster now!If you are also interested in how we managed to integrate SQL and vector, please refer to this document for further syntax reference.We also deliver with live demo on huggingface! Please checkout our huggingface space! They search millions of vector within a blink!Installation and Setup‚ÄãInstall the Python SDK with pip install clickhouse-connectSetting up environments‚ÄãThere are two ways to set up parameters for myscale index.Environment VariablesBefore you run the app, please set the environment variable with export: export MYSCALE_HOST='<your-endpoints-url>' MYSCALE_PORT=<your-endpoints-port> MYSCALE_USERNAME=<your-username> MYSCALE_PASSWORD=<your-password> ...You can easily find your account, password and other info on our SaaS. For details please refer to this document Every attributes under MyScaleSettings can be set with prefix MYSCALE_ and is case insensitive.Create MyScaleSettings object with parameters```pythonfrom langchain.vectorstores import MyScale, MyScaleSettingsconfig = MyScaleSetting(host="<your-backend-url>", port=8443, ...)index = MyScale(embedding_function, config)index.add_documents(...)```Wrappers‚Äãsupported functions:add_textsadd_documentsfrom_textsfrom_documentssimilarity_searchasimilarity_searchsimilarity_search_by_vectorasimilarity_search_by_vectorsimilarity_search_with_relevance_scoresdeleteVectorStore‚ÄãThere exists a wrapper around MyScale database, allowing you to use it as a vectorstore,
3,492
whether for semantic search or similar example retrieval.To import this vectorstore:from langchain.vectorstores import MyScaleFor a more detailed walkthrough of the MyScale wrapper, see this notebookPreviousMotörheadNextNeo4jIntroductionInstallation and SetupSetting up environmentsWrappersVectorStoreCommunityDiscordTwitterGitHubPythonJS/TSMoreHomepageBlogCopyright © 2023 LangChain, Inc.
This page covers how to use MyScale vector database within LangChain.
This page covers how to use MyScale vector database within LangChain. ->: whether for semantic search or similar example retrieval.To import this vectorstore:from langchain.vectorstores import MyScaleFor a more detailed walkthrough of the MyScale wrapper, see this notebookPreviousMotörheadNextNeo4jIntroductionInstallation and SetupSetting up environmentsWrappersVectorStoreCommunityDiscordTwitterGitHubPythonJS/TSMoreHomepageBlogCopyright © 2023 LangChain, Inc.
3,493
Baseten | 🦜️🔗 Langchain
Learn how to use LangChain with models deployed on Baseten.
Learn how to use LangChain with models deployed on Baseten. ->: Baseten | 🦜️🔗 Langchain
3,494
Skip to main content🦜️🔗 LangChainDocsUse casesIntegrationsAPICommunityChat our docsLangSmithJS/TS DocsSearchCTRLKProvidersAnthropicAWSGoogleMicrosoftOpenAIMoreActiveloop Deep LakeAI21 LabsAimAINetworkAirbyteAirtableAleph AlphaAlibaba Cloud OpensearchAnalyticDBAnnoyAnyscaleApifyArangoDBArgillaArthurArxivAtlasAwaDBAWS DynamoDBAZLyricsBagelDBBananaBasetenBeamBeautiful SoupBiliBiliNIBittensorBlackboardBrave SearchCassandraCerebriumAIChaindeskChromaClarifaiClearMLClickHouseCnosDBCohereCollege ConfidentialCometConfident AIConfluenceC TransformersDashVectorDatabricksDatadog TracingDatadog LogsDataForSEODeepInfraDeepSparseDiffbotDingoDiscordDocArrayDoctranDocugamiDuckDBElasticsearchEpsillaEverNoteFacebook ChatFacebook FaissFigmaFireworksFlyteForefrontAIGitGitBookGoldenGoogle Document AIGoogle SerperGooseAIGPT4AllGradientGraphsignalGrobidGutenbergHacker NewsHazy ResearchHeliconeHologresHTML to textHugging FaceiFixitIMSDbInfinoJavelin AI GatewayJinaKonkoLanceDBLangChain Decorators ✨Llama.cppLog10MarqoMediaWikiDumpMeilisearchMetalMilvusMinimaxMLflow AI GatewayMLflowModalModelScopeModern TreasuryMomentoMongoDB AtlasMotherduckMotörheadMyScaleNeo4jNLPCloudNotion DBNucliaObsidianOpenLLMOpenSearchOpenWeatherMapPetalsPostgres EmbeddingPGVectorPineconePipelineAIPortkeyPredibasePrediction GuardPromptLayerprovidersPsychicPubMedQdrantRay ServeRebuffRedditRedisReplicateRoamRocksetRunhouseRWKV-4ScaNNSearchApiSearxNG Search APISerpAPIShale ProtocolSingleStoreDBscikit-learnSlackspaCySpreedlyStarRocksStochasticAIStripeSupabase (Postgres)NebulaTairTelegramTencentVectorDBTensorFlow DatasetsTigris2MarkdownTrelloTruLensTwitterTypesenseUnstructuredUpstash RedisUSearchVearchVectaraVespaWandB TracingWeights & BiasesWeatherWeaviateWhatsAppWhyLabsWikipediaWolfram AlphaWriterXataXorbits Inference (Xinference)YandexYeager.aiYouTubeZepZillizComponentsLLMsChat modelsDocument loadersDocument transformersText embedding modelsVector storesRetrieversToolsAgents and toolkitsMemoryCallbacksChat
Learn how to use LangChain with models deployed on Baseten.
Learn how to use LangChain with models deployed on Baseten. ->: Skip to main content🦜️🔗 LangChainDocsUse casesIntegrationsAPICommunityChat our docsLangSmithJS/TS DocsSearchCTRLKProvidersAnthropicAWSGoogleMicrosoftOpenAIMoreActiveloop Deep LakeAI21 LabsAimAINetworkAirbyteAirtableAleph AlphaAlibaba Cloud OpensearchAnalyticDBAnnoyAnyscaleApifyArangoDBArgillaArthurArxivAtlasAwaDBAWS DynamoDBAZLyricsBagelDBBananaBasetenBeamBeautiful SoupBiliBiliNIBittensorBlackboardBrave SearchCassandraCerebriumAIChaindeskChromaClarifaiClearMLClickHouseCnosDBCohereCollege ConfidentialCometConfident AIConfluenceC TransformersDashVectorDatabricksDatadog TracingDatadog LogsDataForSEODeepInfraDeepSparseDiffbotDingoDiscordDocArrayDoctranDocugamiDuckDBElasticsearchEpsillaEverNoteFacebook ChatFacebook FaissFigmaFireworksFlyteForefrontAIGitGitBookGoldenGoogle Document AIGoogle SerperGooseAIGPT4AllGradientGraphsignalGrobidGutenbergHacker NewsHazy ResearchHeliconeHologresHTML to textHugging FaceiFixitIMSDbInfinoJavelin AI GatewayJinaKonkoLanceDBLangChain Decorators ✨Llama.cppLog10MarqoMediaWikiDumpMeilisearchMetalMilvusMinimaxMLflow AI GatewayMLflowModalModelScopeModern TreasuryMomentoMongoDB AtlasMotherduckMotörheadMyScaleNeo4jNLPCloudNotion DBNucliaObsidianOpenLLMOpenSearchOpenWeatherMapPetalsPostgres EmbeddingPGVectorPineconePipelineAIPortkeyPredibasePrediction GuardPromptLayerprovidersPsychicPubMedQdrantRay ServeRebuffRedditRedisReplicateRoamRocksetRunhouseRWKV-4ScaNNSearchApiSearxNG Search APISerpAPIShale ProtocolSingleStoreDBscikit-learnSlackspaCySpreedlyStarRocksStochasticAIStripeSupabase (Postgres)NebulaTairTelegramTencentVectorDBTensorFlow DatasetsTigris2MarkdownTrelloTruLensTwitterTypesenseUnstructuredUpstash RedisUSearchVearchVectaraVespaWandB TracingWeights & BiasesWeatherWeaviateWhatsAppWhyLabsWikipediaWolfram AlphaWriterXataXorbits Inference (Xinference)YandexYeager.aiYouTubeZepZillizComponentsLLMsChat modelsDocument loadersDocument transformersText embedding modelsVector storesRetrieversToolsAgents and toolkitsMemoryCallbacksChat
3,495
and toolkitsMemoryCallbacksChat loadersProvidersMoreBasetenOn this pageBasetenLearn how to use LangChain with models deployed on Baseten.Installation and setup​Create a Baseten account and API key.Install the Baseten Python client with pip install basetenUse your API key to authenticate with baseten loginInvoking a model​Baseten integrates with LangChain through the LLM module, which provides a standardized and interoperable interface for models that are deployed on your Baseten workspace.You can deploy foundation models like WizardLM and Alpaca with one click from the Baseten model library or if you have your own model, deploy it with this tutorial.In this example, we'll work with WizardLM. Deploy WizardLM here and follow along with the deployed model's version ID.from langchain.llms import Basetenwizardlm = Baseten(model="MODEL_VERSION_ID", verbose=True)wizardlm("What is the difference between a Wizard and a Sorcerer?")PreviousBananaNextBeamInstallation and setupInvoking a modelCommunityDiscordTwitterGitHubPythonJS/TSMoreHomepageBlogCopyright © 2023 LangChain, Inc.
Learn how to use LangChain with models deployed on Baseten.
Learn how to use LangChain with models deployed on Baseten. ->: and toolkitsMemoryCallbacksChat loadersProvidersMoreBasetenOn this pageBasetenLearn how to use LangChain with models deployed on Baseten.Installation and setup​Create a Baseten account and API key.Install the Baseten Python client with pip install basetenUse your API key to authenticate with baseten loginInvoking a model​Baseten integrates with LangChain through the LLM module, which provides a standardized and interoperable interface for models that are deployed on your Baseten workspace.You can deploy foundation models like WizardLM and Alpaca with one click from the Baseten model library or if you have your own model, deploy it with this tutorial.In this example, we'll work with WizardLM. Deploy WizardLM here and follow along with the deployed model's version ID.from langchain.llms import Basetenwizardlm = Baseten(model="MODEL_VERSION_ID", verbose=True)wizardlm("What is the difference between a Wizard and a Sorcerer?")PreviousBananaNextBeamInstallation and setupInvoking a modelCommunityDiscordTwitterGitHubPythonJS/TSMoreHomepageBlogCopyright © 2023 LangChain, Inc.
3,496
Obsidian | 🦜️🔗 Langchain
Obsidian is a powerful and extensible knowledge base
Obsidian is a powerful and extensible knowledge base ->: Obsidian | 🦜️🔗 Langchain
3,497
Skip to main content🦜️🔗 LangChainDocsUse casesIntegrationsAPICommunityChat our docsLangSmithJS/TS DocsSearchCTRLKProvidersAnthropicAWSGoogleMicrosoftOpenAIMoreActiveloop Deep LakeAI21 LabsAimAINetworkAirbyteAirtableAleph AlphaAlibaba Cloud OpensearchAnalyticDBAnnoyAnyscaleApifyArangoDBArgillaArthurArxivAtlasAwaDBAWS DynamoDBAZLyricsBagelDBBananaBasetenBeamBeautiful SoupBiliBiliNIBittensorBlackboardBrave SearchCassandraCerebriumAIChaindeskChromaClarifaiClearMLClickHouseCnosDBCohereCollege ConfidentialCometConfident AIConfluenceC TransformersDashVectorDatabricksDatadog TracingDatadog LogsDataForSEODeepInfraDeepSparseDiffbotDingoDiscordDocArrayDoctranDocugamiDuckDBElasticsearchEpsillaEverNoteFacebook ChatFacebook FaissFigmaFireworksFlyteForefrontAIGitGitBookGoldenGoogle Document AIGoogle SerperGooseAIGPT4AllGradientGraphsignalGrobidGutenbergHacker NewsHazy ResearchHeliconeHologresHTML to textHugging FaceiFixitIMSDbInfinoJavelin AI GatewayJinaKonkoLanceDBLangChain Decorators ✨Llama.cppLog10MarqoMediaWikiDumpMeilisearchMetalMilvusMinimaxMLflow AI GatewayMLflowModalModelScopeModern TreasuryMomentoMongoDB AtlasMotherduckMotörheadMyScaleNeo4jNLPCloudNotion DBNucliaObsidianOpenLLMOpenSearchOpenWeatherMapPetalsPostgres EmbeddingPGVectorPineconePipelineAIPortkeyPredibasePrediction GuardPromptLayerprovidersPsychicPubMedQdrantRay ServeRebuffRedditRedisReplicateRoamRocksetRunhouseRWKV-4ScaNNSearchApiSearxNG Search APISerpAPIShale ProtocolSingleStoreDBscikit-learnSlackspaCySpreedlyStarRocksStochasticAIStripeSupabase (Postgres)NebulaTairTelegramTencentVectorDBTensorFlow DatasetsTigris2MarkdownTrelloTruLensTwitterTypesenseUnstructuredUpstash RedisUSearchVearchVectaraVespaWandB TracingWeights & BiasesWeatherWeaviateWhatsAppWhyLabsWikipediaWolfram AlphaWriterXataXorbits Inference (Xinference)YandexYeager.aiYouTubeZepZillizComponentsLLMsChat modelsDocument loadersDocument transformersText embedding modelsVector storesRetrieversToolsAgents and toolkitsMemoryCallbacksChat
Obsidian is a powerful and extensible knowledge base
Obsidian is a powerful and extensible knowledge base ->: Skip to main content🦜️🔗 LangChainDocsUse casesIntegrationsAPICommunityChat our docsLangSmithJS/TS DocsSearchCTRLKProvidersAnthropicAWSGoogleMicrosoftOpenAIMoreActiveloop Deep LakeAI21 LabsAimAINetworkAirbyteAirtableAleph AlphaAlibaba Cloud OpensearchAnalyticDBAnnoyAnyscaleApifyArangoDBArgillaArthurArxivAtlasAwaDBAWS DynamoDBAZLyricsBagelDBBananaBasetenBeamBeautiful SoupBiliBiliNIBittensorBlackboardBrave SearchCassandraCerebriumAIChaindeskChromaClarifaiClearMLClickHouseCnosDBCohereCollege ConfidentialCometConfident AIConfluenceC TransformersDashVectorDatabricksDatadog TracingDatadog LogsDataForSEODeepInfraDeepSparseDiffbotDingoDiscordDocArrayDoctranDocugamiDuckDBElasticsearchEpsillaEverNoteFacebook ChatFacebook FaissFigmaFireworksFlyteForefrontAIGitGitBookGoldenGoogle Document AIGoogle SerperGooseAIGPT4AllGradientGraphsignalGrobidGutenbergHacker NewsHazy ResearchHeliconeHologresHTML to textHugging FaceiFixitIMSDbInfinoJavelin AI GatewayJinaKonkoLanceDBLangChain Decorators ✨Llama.cppLog10MarqoMediaWikiDumpMeilisearchMetalMilvusMinimaxMLflow AI GatewayMLflowModalModelScopeModern TreasuryMomentoMongoDB AtlasMotherduckMotörheadMyScaleNeo4jNLPCloudNotion DBNucliaObsidianOpenLLMOpenSearchOpenWeatherMapPetalsPostgres EmbeddingPGVectorPineconePipelineAIPortkeyPredibasePrediction GuardPromptLayerprovidersPsychicPubMedQdrantRay ServeRebuffRedditRedisReplicateRoamRocksetRunhouseRWKV-4ScaNNSearchApiSearxNG Search APISerpAPIShale ProtocolSingleStoreDBscikit-learnSlackspaCySpreedlyStarRocksStochasticAIStripeSupabase (Postgres)NebulaTairTelegramTencentVectorDBTensorFlow DatasetsTigris2MarkdownTrelloTruLensTwitterTypesenseUnstructuredUpstash RedisUSearchVearchVectaraVespaWandB TracingWeights & BiasesWeatherWeaviateWhatsAppWhyLabsWikipediaWolfram AlphaWriterXataXorbits Inference (Xinference)YandexYeager.aiYouTubeZepZillizComponentsLLMsChat modelsDocument loadersDocument transformersText embedding modelsVector storesRetrieversToolsAgents and toolkitsMemoryCallbacksChat
3,498
and toolkitsMemoryCallbacksChat loadersProvidersMoreObsidianOn this pageObsidianObsidian is a powerful and extensible knowledge base
Obsidian is a powerful and extensible knowledge base
Obsidian is a powerful and extensible knowledge base ->: and toolkitsMemoryCallbacksChat loadersProvidersMoreObsidianOn this pageObsidianObsidian is a powerful and extensible knowledge base
3,499
that works on top of your local folder of plain text files.Installation and Setup​All instructions are in examples below.Document Loader​See a usage example.from langchain.document_loaders import ObsidianLoaderPreviousNucliaNextOpenLLMInstallation and SetupDocument LoaderCommunityDiscordTwitterGitHubPythonJS/TSMoreHomepageBlogCopyright © 2023 LangChain, Inc.
Obsidian is a powerful and extensible knowledge base
Obsidian is a powerful and extensible knowledge base ->: that works on top of your local folder of plain text files.Installation and Setup​All instructions are in examples below.Document Loader​See a usage example.from langchain.document_loaders import ObsidianLoaderPreviousNucliaNextOpenLLMInstallation and SetupDocument LoaderCommunityDiscordTwitterGitHubPythonJS/TSMoreHomepageBlogCopyright © 2023 LangChain, Inc.