Unnamed: 0
int64
0
4.66k
page content
stringlengths
23
2k
description
stringlengths
8
925
output
stringlengths
38
2.93k
3,300
Runhouse | 🦜️🔗 Langchain
This page covers how to use the Runhouse ecosystem within LangChain.
This page covers how to use the Runhouse ecosystem within LangChain. ->: Runhouse | 🦜️🔗 Langchain
3,301
Skip to main content🦜️🔗 LangChainDocsUse casesIntegrationsAPICommunityChat our docsLangSmithJS/TS DocsSearchCTRLKProvidersAnthropicAWSGoogleMicrosoftOpenAIMoreActiveloop Deep LakeAI21 LabsAimAINetworkAirbyteAirtableAleph AlphaAlibaba Cloud OpensearchAnalyticDBAnnoyAnyscaleApifyArangoDBArgillaArthurArxivAtlasAwaDBAWS DynamoDBAZLyricsBagelDBBananaBasetenBeamBeautiful SoupBiliBiliNIBittensorBlackboardBrave SearchCassandraCerebriumAIChaindeskChromaClarifaiClearMLClickHouseCnosDBCohereCollege ConfidentialCometConfident AIConfluenceC TransformersDashVectorDatabricksDatadog TracingDatadog LogsDataForSEODeepInfraDeepSparseDiffbotDingoDiscordDocArrayDoctranDocugamiDuckDBElasticsearchEpsillaEverNoteFacebook ChatFacebook FaissFigmaFireworksFlyteForefrontAIGitGitBookGoldenGoogle Document AIGoogle SerperGooseAIGPT4AllGradientGraphsignalGrobidGutenbergHacker NewsHazy ResearchHeliconeHologresHTML to textHugging FaceiFixitIMSDbInfinoJavelin AI GatewayJinaKonkoLanceDBLangChain Decorators ✨Llama.cppLog10MarqoMediaWikiDumpMeilisearchMetalMilvusMinimaxMLflow AI GatewayMLflowModalModelScopeModern TreasuryMomentoMongoDB AtlasMotherduckMotörheadMyScaleNeo4jNLPCloudNotion DBNucliaObsidianOpenLLMOpenSearchOpenWeatherMapPetalsPostgres EmbeddingPGVectorPineconePipelineAIPortkeyPredibasePrediction GuardPromptLayerprovidersPsychicPubMedQdrantRay ServeRebuffRedditRedisReplicateRoamRocksetRunhouseRWKV-4ScaNNSearchApiSearxNG Search APISerpAPIShale ProtocolSingleStoreDBscikit-learnSlackspaCySpreedlyStarRocksStochasticAIStripeSupabase (Postgres)NebulaTairTelegramTencentVectorDBTensorFlow DatasetsTigris2MarkdownTrelloTruLensTwitterTypesenseUnstructuredUpstash RedisUSearchVearchVectaraVespaWandB TracingWeights & BiasesWeatherWeaviateWhatsAppWhyLabsWikipediaWolfram AlphaWriterXataXorbits Inference (Xinference)YandexYeager.aiYouTubeZepZillizComponentsLLMsChat modelsDocument loadersDocument transformersText embedding modelsVector storesRetrieversToolsAgents and toolkitsMemoryCallbacksChat
This page covers how to use the Runhouse ecosystem within LangChain.
This page covers how to use the Runhouse ecosystem within LangChain. ->: Skip to main content🦜️🔗 LangChainDocsUse casesIntegrationsAPICommunityChat our docsLangSmithJS/TS DocsSearchCTRLKProvidersAnthropicAWSGoogleMicrosoftOpenAIMoreActiveloop Deep LakeAI21 LabsAimAINetworkAirbyteAirtableAleph AlphaAlibaba Cloud OpensearchAnalyticDBAnnoyAnyscaleApifyArangoDBArgillaArthurArxivAtlasAwaDBAWS DynamoDBAZLyricsBagelDBBananaBasetenBeamBeautiful SoupBiliBiliNIBittensorBlackboardBrave SearchCassandraCerebriumAIChaindeskChromaClarifaiClearMLClickHouseCnosDBCohereCollege ConfidentialCometConfident AIConfluenceC TransformersDashVectorDatabricksDatadog TracingDatadog LogsDataForSEODeepInfraDeepSparseDiffbotDingoDiscordDocArrayDoctranDocugamiDuckDBElasticsearchEpsillaEverNoteFacebook ChatFacebook FaissFigmaFireworksFlyteForefrontAIGitGitBookGoldenGoogle Document AIGoogle SerperGooseAIGPT4AllGradientGraphsignalGrobidGutenbergHacker NewsHazy ResearchHeliconeHologresHTML to textHugging FaceiFixitIMSDbInfinoJavelin AI GatewayJinaKonkoLanceDBLangChain Decorators ✨Llama.cppLog10MarqoMediaWikiDumpMeilisearchMetalMilvusMinimaxMLflow AI GatewayMLflowModalModelScopeModern TreasuryMomentoMongoDB AtlasMotherduckMotörheadMyScaleNeo4jNLPCloudNotion DBNucliaObsidianOpenLLMOpenSearchOpenWeatherMapPetalsPostgres EmbeddingPGVectorPineconePipelineAIPortkeyPredibasePrediction GuardPromptLayerprovidersPsychicPubMedQdrantRay ServeRebuffRedditRedisReplicateRoamRocksetRunhouseRWKV-4ScaNNSearchApiSearxNG Search APISerpAPIShale ProtocolSingleStoreDBscikit-learnSlackspaCySpreedlyStarRocksStochasticAIStripeSupabase (Postgres)NebulaTairTelegramTencentVectorDBTensorFlow DatasetsTigris2MarkdownTrelloTruLensTwitterTypesenseUnstructuredUpstash RedisUSearchVearchVectaraVespaWandB TracingWeights & BiasesWeatherWeaviateWhatsAppWhyLabsWikipediaWolfram AlphaWriterXataXorbits Inference (Xinference)YandexYeager.aiYouTubeZepZillizComponentsLLMsChat modelsDocument loadersDocument transformersText embedding modelsVector storesRetrieversToolsAgents and toolkitsMemoryCallbacksChat
3,302
and toolkitsMemoryCallbacksChat loadersProvidersMoreRunhouseOn this pageRunhouseThis page covers how to use the Runhouse ecosystem within LangChain.
This page covers how to use the Runhouse ecosystem within LangChain.
This page covers how to use the Runhouse ecosystem within LangChain. ->: and toolkitsMemoryCallbacksChat loadersProvidersMoreRunhouseOn this pageRunhouseThis page covers how to use the Runhouse ecosystem within LangChain.
3,303
It is broken into three parts: installation and setup, LLMs, and Embeddings.Installation and Setup​Install the Python SDK with pip install runhouseIf you'd like to use on-demand cluster, check your cloud credentials with sky checkSelf-hosted LLMs​For a basic self-hosted LLM, you can use the SelfHostedHuggingFaceLLM class. For more custom LLMs, you can use the SelfHostedPipeline parent class.from langchain.llms import SelfHostedPipeline, SelfHostedHuggingFaceLLMFor a more detailed walkthrough of the Self-hosted LLMs, see this notebookSelf-hosted Embeddings​There are several ways to use self-hosted embeddings with LangChain via Runhouse.For a basic self-hosted embedding from a Hugging Face Transformers model, you can use the SelfHostedEmbedding class.from langchain.llms import SelfHostedPipeline, SelfHostedHuggingFaceLLMFor a more detailed walkthrough of the Self-hosted Embeddings, see this notebookPreviousRocksetNextRWKV-4Installation and SetupSelf-hosted LLMsSelf-hosted EmbeddingsCommunityDiscordTwitterGitHubPythonJS/TSMoreHomepageBlogCopyright © 2023 LangChain, Inc.
This page covers how to use the Runhouse ecosystem within LangChain.
This page covers how to use the Runhouse ecosystem within LangChain. ->: It is broken into three parts: installation and setup, LLMs, and Embeddings.Installation and Setup​Install the Python SDK with pip install runhouseIf you'd like to use on-demand cluster, check your cloud credentials with sky checkSelf-hosted LLMs​For a basic self-hosted LLM, you can use the SelfHostedHuggingFaceLLM class. For more custom LLMs, you can use the SelfHostedPipeline parent class.from langchain.llms import SelfHostedPipeline, SelfHostedHuggingFaceLLMFor a more detailed walkthrough of the Self-hosted LLMs, see this notebookSelf-hosted Embeddings​There are several ways to use self-hosted embeddings with LangChain via Runhouse.For a basic self-hosted embedding from a Hugging Face Transformers model, you can use the SelfHostedEmbedding class.from langchain.llms import SelfHostedPipeline, SelfHostedHuggingFaceLLMFor a more detailed walkthrough of the Self-hosted Embeddings, see this notebookPreviousRocksetNextRWKV-4Installation and SetupSelf-hosted LLMsSelf-hosted EmbeddingsCommunityDiscordTwitterGitHubPythonJS/TSMoreHomepageBlogCopyright © 2023 LangChain, Inc.
3,304
Modern Treasury | 🦜️🔗 Langchain
Modern Treasury simplifies complex payment operations. It is a unified platform to power products and processes that move money.
Modern Treasury simplifies complex payment operations. It is a unified platform to power products and processes that move money. ->: Modern Treasury | 🦜️🔗 Langchain
3,305
Skip to main content🦜️🔗 LangChainDocsUse casesIntegrationsAPICommunityChat our docsLangSmithJS/TS DocsSearchCTRLKProvidersAnthropicAWSGoogleMicrosoftOpenAIMoreActiveloop Deep LakeAI21 LabsAimAINetworkAirbyteAirtableAleph AlphaAlibaba Cloud OpensearchAnalyticDBAnnoyAnyscaleApifyArangoDBArgillaArthurArxivAtlasAwaDBAWS DynamoDBAZLyricsBagelDBBananaBasetenBeamBeautiful SoupBiliBiliNIBittensorBlackboardBrave SearchCassandraCerebriumAIChaindeskChromaClarifaiClearMLClickHouseCnosDBCohereCollege ConfidentialCometConfident AIConfluenceC TransformersDashVectorDatabricksDatadog TracingDatadog LogsDataForSEODeepInfraDeepSparseDiffbotDingoDiscordDocArrayDoctranDocugamiDuckDBElasticsearchEpsillaEverNoteFacebook ChatFacebook FaissFigmaFireworksFlyteForefrontAIGitGitBookGoldenGoogle Document AIGoogle SerperGooseAIGPT4AllGradientGraphsignalGrobidGutenbergHacker NewsHazy ResearchHeliconeHologresHTML to textHugging FaceiFixitIMSDbInfinoJavelin AI GatewayJinaKonkoLanceDBLangChain Decorators ✨Llama.cppLog10MarqoMediaWikiDumpMeilisearchMetalMilvusMinimaxMLflow AI GatewayMLflowModalModelScopeModern TreasuryMomentoMongoDB AtlasMotherduckMotörheadMyScaleNeo4jNLPCloudNotion DBNucliaObsidianOpenLLMOpenSearchOpenWeatherMapPetalsPostgres EmbeddingPGVectorPineconePipelineAIPortkeyPredibasePrediction GuardPromptLayerprovidersPsychicPubMedQdrantRay ServeRebuffRedditRedisReplicateRoamRocksetRunhouseRWKV-4ScaNNSearchApiSearxNG Search APISerpAPIShale ProtocolSingleStoreDBscikit-learnSlackspaCySpreedlyStarRocksStochasticAIStripeSupabase (Postgres)NebulaTairTelegramTencentVectorDBTensorFlow DatasetsTigris2MarkdownTrelloTruLensTwitterTypesenseUnstructuredUpstash RedisUSearchVearchVectaraVespaWandB TracingWeights & BiasesWeatherWeaviateWhatsAppWhyLabsWikipediaWolfram AlphaWriterXataXorbits Inference (Xinference)YandexYeager.aiYouTubeZepZillizComponentsLLMsChat modelsDocument loadersDocument transformersText embedding modelsVector storesRetrieversToolsAgents and toolkitsMemoryCallbacksChat
Modern Treasury simplifies complex payment operations. It is a unified platform to power products and processes that move money.
Modern Treasury simplifies complex payment operations. It is a unified platform to power products and processes that move money. ->: Skip to main content🦜️🔗 LangChainDocsUse casesIntegrationsAPICommunityChat our docsLangSmithJS/TS DocsSearchCTRLKProvidersAnthropicAWSGoogleMicrosoftOpenAIMoreActiveloop Deep LakeAI21 LabsAimAINetworkAirbyteAirtableAleph AlphaAlibaba Cloud OpensearchAnalyticDBAnnoyAnyscaleApifyArangoDBArgillaArthurArxivAtlasAwaDBAWS DynamoDBAZLyricsBagelDBBananaBasetenBeamBeautiful SoupBiliBiliNIBittensorBlackboardBrave SearchCassandraCerebriumAIChaindeskChromaClarifaiClearMLClickHouseCnosDBCohereCollege ConfidentialCometConfident AIConfluenceC TransformersDashVectorDatabricksDatadog TracingDatadog LogsDataForSEODeepInfraDeepSparseDiffbotDingoDiscordDocArrayDoctranDocugamiDuckDBElasticsearchEpsillaEverNoteFacebook ChatFacebook FaissFigmaFireworksFlyteForefrontAIGitGitBookGoldenGoogle Document AIGoogle SerperGooseAIGPT4AllGradientGraphsignalGrobidGutenbergHacker NewsHazy ResearchHeliconeHologresHTML to textHugging FaceiFixitIMSDbInfinoJavelin AI GatewayJinaKonkoLanceDBLangChain Decorators ✨Llama.cppLog10MarqoMediaWikiDumpMeilisearchMetalMilvusMinimaxMLflow AI GatewayMLflowModalModelScopeModern TreasuryMomentoMongoDB AtlasMotherduckMotörheadMyScaleNeo4jNLPCloudNotion DBNucliaObsidianOpenLLMOpenSearchOpenWeatherMapPetalsPostgres EmbeddingPGVectorPineconePipelineAIPortkeyPredibasePrediction GuardPromptLayerprovidersPsychicPubMedQdrantRay ServeRebuffRedditRedisReplicateRoamRocksetRunhouseRWKV-4ScaNNSearchApiSearxNG Search APISerpAPIShale ProtocolSingleStoreDBscikit-learnSlackspaCySpreedlyStarRocksStochasticAIStripeSupabase (Postgres)NebulaTairTelegramTencentVectorDBTensorFlow DatasetsTigris2MarkdownTrelloTruLensTwitterTypesenseUnstructuredUpstash RedisUSearchVearchVectaraVespaWandB TracingWeights & BiasesWeatherWeaviateWhatsAppWhyLabsWikipediaWolfram AlphaWriterXataXorbits Inference (Xinference)YandexYeager.aiYouTubeZepZillizComponentsLLMsChat modelsDocument loadersDocument transformersText embedding modelsVector storesRetrieversToolsAgents and toolkitsMemoryCallbacksChat
3,306
and toolkitsMemoryCallbacksChat loadersProvidersMoreModern TreasuryOn this pageModern TreasuryModern Treasury simplifies complex payment operations. It is a unified platform to power products and processes that move money.Connect to banks and payment systemsTrack transactions and balances in real-timeAutomate payment operations for scaleInstallation and Setup​There isn't any special setup for it.Document Loader​See a usage example.from langchain.document_loaders import ModernTreasuryLoaderPreviousModelScopeNextMomentoInstallation and SetupDocument LoaderCommunityDiscordTwitterGitHubPythonJS/TSMoreHomepageBlogCopyright © 2023 LangChain, Inc.
Modern Treasury simplifies complex payment operations. It is a unified platform to power products and processes that move money.
Modern Treasury simplifies complex payment operations. It is a unified platform to power products and processes that move money. ->: and toolkitsMemoryCallbacksChat loadersProvidersMoreModern TreasuryOn this pageModern TreasuryModern Treasury simplifies complex payment operations. It is a unified platform to power products and processes that move money.Connect to banks and payment systemsTrack transactions and balances in real-timeAutomate payment operations for scaleInstallation and Setup​There isn't any special setup for it.Document Loader​See a usage example.from langchain.document_loaders import ModernTreasuryLoaderPreviousModelScopeNextMomentoInstallation and SetupDocument LoaderCommunityDiscordTwitterGitHubPythonJS/TSMoreHomepageBlogCopyright © 2023 LangChain, Inc.
3,307
SemaDB | 🦜️🔗 Langchain
SemaDB is a no fuss vector similarity search engine. It provides a low-cost cloud hosted version to help you build AI applications with ease.
SemaDB is a no fuss vector similarity search engine. It provides a low-cost cloud hosted version to help you build AI applications with ease. ->: SemaDB | 🦜️🔗 Langchain
3,308
Skip to main content🦜️🔗 LangChainDocsUse casesIntegrationsAPICommunityChat our docsLangSmithJS/TS DocsSearchCTRLKProvidersAnthropicAWSGoogleMicrosoftOpenAIMoreActiveloop Deep LakeAI21 LabsAimAINetworkAirbyteAirtableAleph AlphaAlibaba Cloud OpensearchAnalyticDBAnnoyAnyscaleApifyArangoDBArgillaArthurArxivAtlasAwaDBAWS DynamoDBAZLyricsBagelDBBananaBasetenBeamBeautiful SoupBiliBiliNIBittensorBlackboardBrave SearchCassandraCerebriumAIChaindeskChromaClarifaiClearMLClickHouseCnosDBCohereCollege ConfidentialCometConfident AIConfluenceC TransformersDashVectorDatabricksDatadog TracingDatadog LogsDataForSEODeepInfraDeepSparseDiffbotDingoDiscordDocArrayDoctranDocugamiDuckDBElasticsearchEpsillaEverNoteFacebook ChatFacebook FaissFigmaFireworksFlyteForefrontAIGitGitBookGoldenGoogle Document AIGoogle SerperGooseAIGPT4AllGradientGraphsignalGrobidGutenbergHacker NewsHazy ResearchHeliconeHologresHTML to textHugging FaceiFixitIMSDbInfinoJavelin AI GatewayJinaKonkoLanceDBLangChain Decorators ✨Llama.cppLog10MarqoMediaWikiDumpMeilisearchMetalMilvusMinimaxMLflow AI GatewayMLflowModalModelScopeModern TreasuryMomentoMongoDB AtlasMotherduckMotörheadMyScaleNeo4jNLPCloudNotion DBNucliaObsidianOpenLLMOpenSearchOpenWeatherMapPetalsPostgres EmbeddingPGVectorPineconePipelineAIPortkeyPredibasePrediction GuardPromptLayerprovidersSemaDBPsychicPubMedQdrantRay ServeRebuffRedditRedisReplicateRoamRocksetRunhouseRWKV-4ScaNNSearchApiSearxNG Search APISerpAPIShale ProtocolSingleStoreDBscikit-learnSlackspaCySpreedlyStarRocksStochasticAIStripeSupabase (Postgres)NebulaTairTelegramTencentVectorDBTensorFlow DatasetsTigris2MarkdownTrelloTruLensTwitterTypesenseUnstructuredUpstash RedisUSearchVearchVectaraVespaWandB TracingWeights & BiasesWeatherWeaviateWhatsAppWhyLabsWikipediaWolfram AlphaWriterXataXorbits Inference (Xinference)YandexYeager.aiYouTubeZepZillizComponentsLLMsChat modelsDocument loadersDocument transformersText embedding modelsVector storesRetrieversToolsAgents and
SemaDB is a no fuss vector similarity search engine. It provides a low-cost cloud hosted version to help you build AI applications with ease.
SemaDB is a no fuss vector similarity search engine. It provides a low-cost cloud hosted version to help you build AI applications with ease. ->: Skip to main content🦜️🔗 LangChainDocsUse casesIntegrationsAPICommunityChat our docsLangSmithJS/TS DocsSearchCTRLKProvidersAnthropicAWSGoogleMicrosoftOpenAIMoreActiveloop Deep LakeAI21 LabsAimAINetworkAirbyteAirtableAleph AlphaAlibaba Cloud OpensearchAnalyticDBAnnoyAnyscaleApifyArangoDBArgillaArthurArxivAtlasAwaDBAWS DynamoDBAZLyricsBagelDBBananaBasetenBeamBeautiful SoupBiliBiliNIBittensorBlackboardBrave SearchCassandraCerebriumAIChaindeskChromaClarifaiClearMLClickHouseCnosDBCohereCollege ConfidentialCometConfident AIConfluenceC TransformersDashVectorDatabricksDatadog TracingDatadog LogsDataForSEODeepInfraDeepSparseDiffbotDingoDiscordDocArrayDoctranDocugamiDuckDBElasticsearchEpsillaEverNoteFacebook ChatFacebook FaissFigmaFireworksFlyteForefrontAIGitGitBookGoldenGoogle Document AIGoogle SerperGooseAIGPT4AllGradientGraphsignalGrobidGutenbergHacker NewsHazy ResearchHeliconeHologresHTML to textHugging FaceiFixitIMSDbInfinoJavelin AI GatewayJinaKonkoLanceDBLangChain Decorators ✨Llama.cppLog10MarqoMediaWikiDumpMeilisearchMetalMilvusMinimaxMLflow AI GatewayMLflowModalModelScopeModern TreasuryMomentoMongoDB AtlasMotherduckMotörheadMyScaleNeo4jNLPCloudNotion DBNucliaObsidianOpenLLMOpenSearchOpenWeatherMapPetalsPostgres EmbeddingPGVectorPineconePipelineAIPortkeyPredibasePrediction GuardPromptLayerprovidersSemaDBPsychicPubMedQdrantRay ServeRebuffRedditRedisReplicateRoamRocksetRunhouseRWKV-4ScaNNSearchApiSearxNG Search APISerpAPIShale ProtocolSingleStoreDBscikit-learnSlackspaCySpreedlyStarRocksStochasticAIStripeSupabase (Postgres)NebulaTairTelegramTencentVectorDBTensorFlow DatasetsTigris2MarkdownTrelloTruLensTwitterTypesenseUnstructuredUpstash RedisUSearchVearchVectaraVespaWandB TracingWeights & BiasesWeatherWeaviateWhatsAppWhyLabsWikipediaWolfram AlphaWriterXataXorbits Inference (Xinference)YandexYeager.aiYouTubeZepZillizComponentsLLMsChat modelsDocument loadersDocument transformersText embedding modelsVector storesRetrieversToolsAgents and
3,309
modelsVector storesRetrieversToolsAgents and toolkitsMemoryCallbacksChat loadersProvidersMoreprovidersSemaDBOn this pageSemaDBSemaDB is a no fuss vector similarity search engine. It provides a low-cost cloud hosted version to help you build AI applications with ease.With SemaDB Cloud, our hosted version, no fuss means no pod size calculations, no schema definitions, no partition settings, no parameter tuning, no search algorithm tuning, no complex installation, no complex API. It is integrated with RapidAPI providing transparent billing, automatic sharding and an interactive API playground.Installation​None required, get started directly with SemaDB Cloud at RapidAPI.Vector Store​There is a basic wrapper around SemaDB collections allowing you to use it as a vectorstore.from langchain.vectorstores import SemaDBYou can follow a tutorial on how to use the wrapper in this notebook.PreviousPromptLayerNextPsychicInstallationVector StoreCommunityDiscordTwitterGitHubPythonJS/TSMoreHomepageBlogCopyright © 2023 LangChain, Inc.
SemaDB is a no fuss vector similarity search engine. It provides a low-cost cloud hosted version to help you build AI applications with ease.
SemaDB is a no fuss vector similarity search engine. It provides a low-cost cloud hosted version to help you build AI applications with ease. ->: modelsVector storesRetrieversToolsAgents and toolkitsMemoryCallbacksChat loadersProvidersMoreprovidersSemaDBOn this pageSemaDBSemaDB is a no fuss vector similarity search engine. It provides a low-cost cloud hosted version to help you build AI applications with ease.With SemaDB Cloud, our hosted version, no fuss means no pod size calculations, no schema definitions, no partition settings, no parameter tuning, no search algorithm tuning, no complex installation, no complex API. It is integrated with RapidAPI providing transparent billing, automatic sharding and an interactive API playground.Installation​None required, get started directly with SemaDB Cloud at RapidAPI.Vector Store​There is a basic wrapper around SemaDB collections allowing you to use it as a vectorstore.from langchain.vectorstores import SemaDBYou can follow a tutorial on how to use the wrapper in this notebook.PreviousPromptLayerNextPsychicInstallationVector StoreCommunityDiscordTwitterGitHubPythonJS/TSMoreHomepageBlogCopyright © 2023 LangChain, Inc.
3,310
MLflow | 🦜️🔗 Langchain
MLflow is a versatile, expandable, open-source platform for managing workflows and artifacts across the machine learning lifecycle. It has built-in integrations with many popular ML libraries, but can be used with any library, algorithm, or deployment tool. It is designed to be extensible, so you can write plugins to support new workflows, libraries, and tools.
MLflow is a versatile, expandable, open-source platform for managing workflows and artifacts across the machine learning lifecycle. It has built-in integrations with many popular ML libraries, but can be used with any library, algorithm, or deployment tool. It is designed to be extensible, so you can write plugins to support new workflows, libraries, and tools. ->: MLflow | 🦜️🔗 Langchain
3,311
Skip to main content🦜️🔗 LangChainDocsUse casesIntegrationsAPICommunityChat our docsLangSmithJS/TS DocsSearchCTRLKProvidersAnthropicAWSGoogleMicrosoftOpenAIMoreActiveloop Deep LakeAI21 LabsAimAINetworkAirbyteAirtableAleph AlphaAlibaba Cloud OpensearchAnalyticDBAnnoyAnyscaleApifyArangoDBArgillaArthurArxivAtlasAwaDBAWS DynamoDBAZLyricsBagelDBBananaBasetenBeamBeautiful SoupBiliBiliNIBittensorBlackboardBrave SearchCassandraCerebriumAIChaindeskChromaClarifaiClearMLClickHouseCnosDBCohereCollege ConfidentialCometConfident AIConfluenceC TransformersDashVectorDatabricksDatadog TracingDatadog LogsDataForSEODeepInfraDeepSparseDiffbotDingoDiscordDocArrayDoctranDocugamiDuckDBElasticsearchEpsillaEverNoteFacebook ChatFacebook FaissFigmaFireworksFlyteForefrontAIGitGitBookGoldenGoogle Document AIGoogle SerperGooseAIGPT4AllGradientGraphsignalGrobidGutenbergHacker NewsHazy ResearchHeliconeHologresHTML to textHugging FaceiFixitIMSDbInfinoJavelin AI GatewayJinaKonkoLanceDBLangChain Decorators ✨Llama.cppLog10MarqoMediaWikiDumpMeilisearchMetalMilvusMinimaxMLflow AI GatewayMLflowModalModelScopeModern TreasuryMomentoMongoDB AtlasMotherduckMotörheadMyScaleNeo4jNLPCloudNotion DBNucliaObsidianOpenLLMOpenSearchOpenWeatherMapPetalsPostgres EmbeddingPGVectorPineconePipelineAIPortkeyPredibasePrediction GuardPromptLayerprovidersPsychicPubMedQdrantRay ServeRebuffRedditRedisReplicateRoamRocksetRunhouseRWKV-4ScaNNSearchApiSearxNG Search APISerpAPIShale ProtocolSingleStoreDBscikit-learnSlackspaCySpreedlyStarRocksStochasticAIStripeSupabase (Postgres)NebulaTairTelegramTencentVectorDBTensorFlow DatasetsTigris2MarkdownTrelloTruLensTwitterTypesenseUnstructuredUpstash RedisUSearchVearchVectaraVespaWandB TracingWeights & BiasesWeatherWeaviateWhatsAppWhyLabsWikipediaWolfram AlphaWriterXataXorbits Inference (Xinference)YandexYeager.aiYouTubeZepZillizComponentsLLMsChat modelsDocument loadersDocument transformersText embedding modelsVector storesRetrieversToolsAgents and toolkitsMemoryCallbacksChat
MLflow is a versatile, expandable, open-source platform for managing workflows and artifacts across the machine learning lifecycle. It has built-in integrations with many popular ML libraries, but can be used with any library, algorithm, or deployment tool. It is designed to be extensible, so you can write plugins to support new workflows, libraries, and tools.
MLflow is a versatile, expandable, open-source platform for managing workflows and artifacts across the machine learning lifecycle. It has built-in integrations with many popular ML libraries, but can be used with any library, algorithm, or deployment tool. It is designed to be extensible, so you can write plugins to support new workflows, libraries, and tools. ->: Skip to main content🦜️🔗 LangChainDocsUse casesIntegrationsAPICommunityChat our docsLangSmithJS/TS DocsSearchCTRLKProvidersAnthropicAWSGoogleMicrosoftOpenAIMoreActiveloop Deep LakeAI21 LabsAimAINetworkAirbyteAirtableAleph AlphaAlibaba Cloud OpensearchAnalyticDBAnnoyAnyscaleApifyArangoDBArgillaArthurArxivAtlasAwaDBAWS DynamoDBAZLyricsBagelDBBananaBasetenBeamBeautiful SoupBiliBiliNIBittensorBlackboardBrave SearchCassandraCerebriumAIChaindeskChromaClarifaiClearMLClickHouseCnosDBCohereCollege ConfidentialCometConfident AIConfluenceC TransformersDashVectorDatabricksDatadog TracingDatadog LogsDataForSEODeepInfraDeepSparseDiffbotDingoDiscordDocArrayDoctranDocugamiDuckDBElasticsearchEpsillaEverNoteFacebook ChatFacebook FaissFigmaFireworksFlyteForefrontAIGitGitBookGoldenGoogle Document AIGoogle SerperGooseAIGPT4AllGradientGraphsignalGrobidGutenbergHacker NewsHazy ResearchHeliconeHologresHTML to textHugging FaceiFixitIMSDbInfinoJavelin AI GatewayJinaKonkoLanceDBLangChain Decorators ✨Llama.cppLog10MarqoMediaWikiDumpMeilisearchMetalMilvusMinimaxMLflow AI GatewayMLflowModalModelScopeModern TreasuryMomentoMongoDB AtlasMotherduckMotörheadMyScaleNeo4jNLPCloudNotion DBNucliaObsidianOpenLLMOpenSearchOpenWeatherMapPetalsPostgres EmbeddingPGVectorPineconePipelineAIPortkeyPredibasePrediction GuardPromptLayerprovidersPsychicPubMedQdrantRay ServeRebuffRedditRedisReplicateRoamRocksetRunhouseRWKV-4ScaNNSearchApiSearxNG Search APISerpAPIShale ProtocolSingleStoreDBscikit-learnSlackspaCySpreedlyStarRocksStochasticAIStripeSupabase (Postgres)NebulaTairTelegramTencentVectorDBTensorFlow DatasetsTigris2MarkdownTrelloTruLensTwitterTypesenseUnstructuredUpstash RedisUSearchVearchVectaraVespaWandB TracingWeights & BiasesWeatherWeaviateWhatsAppWhyLabsWikipediaWolfram AlphaWriterXataXorbits Inference (Xinference)YandexYeager.aiYouTubeZepZillizComponentsLLMsChat modelsDocument loadersDocument transformersText embedding modelsVector storesRetrieversToolsAgents and toolkitsMemoryCallbacksChat
3,312
and toolkitsMemoryCallbacksChat loadersProvidersMoreMLflowOn this pageMLflowMLflow is a versatile, expandable, open-source platform for managing workflows and artifacts across the machine learning lifecycle. It has built-in integrations with many popular ML libraries, but can be used with any library, algorithm, or deployment tool. It is designed to be extensible, so you can write plugins to support new workflows, libraries, and tools.This notebook goes over how to track your LangChain experiments into your MLflow ServerExternal examples‚ÄãMLflow provides several examples for the LangChain integration:simple_chainsimple_agentretriever_chainretrieval_qa_chainExample‚Äãpip install azureml-mlflowpip install pandaspip install textstatpip install spacypip install openaipip install google-search-resultspython -m spacy download en_core_web_smimport osos.environ["MLFLOW_TRACKING_URI"] = ""os.environ["OPENAI_API_KEY"] = ""os.environ["SERPAPI_API_KEY"] = ""from langchain.callbacks import MlflowCallbackHandlerfrom langchain.llms import OpenAI"""Main function.This function is used to try the callback handler.Scenarios:1. OpenAI LLM2. Chain with multiple SubChains on multiple generations3. Agent with Tools"""mlflow_callback = MlflowCallbackHandler()llm = OpenAI( model_name="gpt-3.5-turbo", temperature=0, callbacks=[mlflow_callback], verbose=True)# SCENARIO 1 - LLMllm_result = llm.generate(["Tell me a joke"])mlflow_callback.flush_tracker(llm)from langchain.prompts import PromptTemplatefrom langchain.chains import LLMChain# SCENARIO 2 - Chaintemplate = """You are a playwright. Given the title of play, it is your job to write a synopsis for that title.Title: {title}Playwright: This is a synopsis for the above play:"""prompt_template = PromptTemplate(input_variables=["title"], template=template)synopsis_chain = LLMChain(llm=llm, prompt=prompt_template, callbacks=[mlflow_callback])test_prompts = [ { "title": "documentary about good video games that push the boundary of
MLflow is a versatile, expandable, open-source platform for managing workflows and artifacts across the machine learning lifecycle. It has built-in integrations with many popular ML libraries, but can be used with any library, algorithm, or deployment tool. It is designed to be extensible, so you can write plugins to support new workflows, libraries, and tools.
MLflow is a versatile, expandable, open-source platform for managing workflows and artifacts across the machine learning lifecycle. It has built-in integrations with many popular ML libraries, but can be used with any library, algorithm, or deployment tool. It is designed to be extensible, so you can write plugins to support new workflows, libraries, and tools. ->: and toolkitsMemoryCallbacksChat loadersProvidersMoreMLflowOn this pageMLflowMLflow is a versatile, expandable, open-source platform for managing workflows and artifacts across the machine learning lifecycle. It has built-in integrations with many popular ML libraries, but can be used with any library, algorithm, or deployment tool. It is designed to be extensible, so you can write plugins to support new workflows, libraries, and tools.This notebook goes over how to track your LangChain experiments into your MLflow ServerExternal examples‚ÄãMLflow provides several examples for the LangChain integration:simple_chainsimple_agentretriever_chainretrieval_qa_chainExample‚Äãpip install azureml-mlflowpip install pandaspip install textstatpip install spacypip install openaipip install google-search-resultspython -m spacy download en_core_web_smimport osos.environ["MLFLOW_TRACKING_URI"] = ""os.environ["OPENAI_API_KEY"] = ""os.environ["SERPAPI_API_KEY"] = ""from langchain.callbacks import MlflowCallbackHandlerfrom langchain.llms import OpenAI"""Main function.This function is used to try the callback handler.Scenarios:1. OpenAI LLM2. Chain with multiple SubChains on multiple generations3. Agent with Tools"""mlflow_callback = MlflowCallbackHandler()llm = OpenAI( model_name="gpt-3.5-turbo", temperature=0, callbacks=[mlflow_callback], verbose=True)# SCENARIO 1 - LLMllm_result = llm.generate(["Tell me a joke"])mlflow_callback.flush_tracker(llm)from langchain.prompts import PromptTemplatefrom langchain.chains import LLMChain# SCENARIO 2 - Chaintemplate = """You are a playwright. Given the title of play, it is your job to write a synopsis for that title.Title: {title}Playwright: This is a synopsis for the above play:"""prompt_template = PromptTemplate(input_variables=["title"], template=template)synopsis_chain = LLMChain(llm=llm, prompt=prompt_template, callbacks=[mlflow_callback])test_prompts = [ { "title": "documentary about good video games that push the boundary of
3,313
about good video games that push the boundary of game design" },]synopsis_chain.apply(test_prompts)mlflow_callback.flush_tracker(synopsis_chain)from langchain.agents import initialize_agent, load_toolsfrom langchain.agents import AgentType# SCENARIO 3 - Agent with Toolstools = load_tools(["serpapi", "llm-math"], llm=llm, callbacks=[mlflow_callback])agent = initialize_agent( tools, llm, agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION, callbacks=[mlflow_callback], verbose=True,)agent.run( "Who is Leo DiCaprio's girlfriend? What is her current age raised to the 0.43 power?")mlflow_callback.flush_tracker(agent, finish=True)PreviousMLflow AI GatewayNextModalExternal examplesExampleCommunityDiscordTwitterGitHubPythonJS/TSMoreHomepageBlogCopyright © 2023 LangChain, Inc.
MLflow is a versatile, expandable, open-source platform for managing workflows and artifacts across the machine learning lifecycle. It has built-in integrations with many popular ML libraries, but can be used with any library, algorithm, or deployment tool. It is designed to be extensible, so you can write plugins to support new workflows, libraries, and tools.
MLflow is a versatile, expandable, open-source platform for managing workflows and artifacts across the machine learning lifecycle. It has built-in integrations with many popular ML libraries, but can be used with any library, algorithm, or deployment tool. It is designed to be extensible, so you can write plugins to support new workflows, libraries, and tools. ->: about good video games that push the boundary of game design" },]synopsis_chain.apply(test_prompts)mlflow_callback.flush_tracker(synopsis_chain)from langchain.agents import initialize_agent, load_toolsfrom langchain.agents import AgentType# SCENARIO 3 - Agent with Toolstools = load_tools(["serpapi", "llm-math"], llm=llm, callbacks=[mlflow_callback])agent = initialize_agent( tools, llm, agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION, callbacks=[mlflow_callback], verbose=True,)agent.run( "Who is Leo DiCaprio's girlfriend? What is her current age raised to the 0.43 power?")mlflow_callback.flush_tracker(agent, finish=True)PreviousMLflow AI GatewayNextModalExternal examplesExampleCommunityDiscordTwitterGitHubPythonJS/TSMoreHomepageBlogCopyright © 2023 LangChain, Inc.
3,314
LanceDB | 🦜️🔗 Langchain
This page covers how to use LanceDB within LangChain.
This page covers how to use LanceDB within LangChain. ->: LanceDB | 🦜️🔗 Langchain
3,315
Skip to main content🦜️🔗 LangChainDocsUse casesIntegrationsAPICommunityChat our docsLangSmithJS/TS DocsSearchCTRLKProvidersAnthropicAWSGoogleMicrosoftOpenAIMoreActiveloop Deep LakeAI21 LabsAimAINetworkAirbyteAirtableAleph AlphaAlibaba Cloud OpensearchAnalyticDBAnnoyAnyscaleApifyArangoDBArgillaArthurArxivAtlasAwaDBAWS DynamoDBAZLyricsBagelDBBananaBasetenBeamBeautiful SoupBiliBiliNIBittensorBlackboardBrave SearchCassandraCerebriumAIChaindeskChromaClarifaiClearMLClickHouseCnosDBCohereCollege ConfidentialCometConfident AIConfluenceC TransformersDashVectorDatabricksDatadog TracingDatadog LogsDataForSEODeepInfraDeepSparseDiffbotDingoDiscordDocArrayDoctranDocugamiDuckDBElasticsearchEpsillaEverNoteFacebook ChatFacebook FaissFigmaFireworksFlyteForefrontAIGitGitBookGoldenGoogle Document AIGoogle SerperGooseAIGPT4AllGradientGraphsignalGrobidGutenbergHacker NewsHazy ResearchHeliconeHologresHTML to textHugging FaceiFixitIMSDbInfinoJavelin AI GatewayJinaKonkoLanceDBLangChain Decorators ✨Llama.cppLog10MarqoMediaWikiDumpMeilisearchMetalMilvusMinimaxMLflow AI GatewayMLflowModalModelScopeModern TreasuryMomentoMongoDB AtlasMotherduckMotörheadMyScaleNeo4jNLPCloudNotion DBNucliaObsidianOpenLLMOpenSearchOpenWeatherMapPetalsPostgres EmbeddingPGVectorPineconePipelineAIPortkeyPredibasePrediction GuardPromptLayerprovidersPsychicPubMedQdrantRay ServeRebuffRedditRedisReplicateRoamRocksetRunhouseRWKV-4ScaNNSearchApiSearxNG Search APISerpAPIShale ProtocolSingleStoreDBscikit-learnSlackspaCySpreedlyStarRocksStochasticAIStripeSupabase (Postgres)NebulaTairTelegramTencentVectorDBTensorFlow DatasetsTigris2MarkdownTrelloTruLensTwitterTypesenseUnstructuredUpstash RedisUSearchVearchVectaraVespaWandB TracingWeights & BiasesWeatherWeaviateWhatsAppWhyLabsWikipediaWolfram AlphaWriterXataXorbits Inference (Xinference)YandexYeager.aiYouTubeZepZillizComponentsLLMsChat modelsDocument loadersDocument transformersText embedding modelsVector storesRetrieversToolsAgents and toolkitsMemoryCallbacksChat
This page covers how to use LanceDB within LangChain.
This page covers how to use LanceDB within LangChain. ->: Skip to main content🦜️🔗 LangChainDocsUse casesIntegrationsAPICommunityChat our docsLangSmithJS/TS DocsSearchCTRLKProvidersAnthropicAWSGoogleMicrosoftOpenAIMoreActiveloop Deep LakeAI21 LabsAimAINetworkAirbyteAirtableAleph AlphaAlibaba Cloud OpensearchAnalyticDBAnnoyAnyscaleApifyArangoDBArgillaArthurArxivAtlasAwaDBAWS DynamoDBAZLyricsBagelDBBananaBasetenBeamBeautiful SoupBiliBiliNIBittensorBlackboardBrave SearchCassandraCerebriumAIChaindeskChromaClarifaiClearMLClickHouseCnosDBCohereCollege ConfidentialCometConfident AIConfluenceC TransformersDashVectorDatabricksDatadog TracingDatadog LogsDataForSEODeepInfraDeepSparseDiffbotDingoDiscordDocArrayDoctranDocugamiDuckDBElasticsearchEpsillaEverNoteFacebook ChatFacebook FaissFigmaFireworksFlyteForefrontAIGitGitBookGoldenGoogle Document AIGoogle SerperGooseAIGPT4AllGradientGraphsignalGrobidGutenbergHacker NewsHazy ResearchHeliconeHologresHTML to textHugging FaceiFixitIMSDbInfinoJavelin AI GatewayJinaKonkoLanceDBLangChain Decorators ✨Llama.cppLog10MarqoMediaWikiDumpMeilisearchMetalMilvusMinimaxMLflow AI GatewayMLflowModalModelScopeModern TreasuryMomentoMongoDB AtlasMotherduckMotörheadMyScaleNeo4jNLPCloudNotion DBNucliaObsidianOpenLLMOpenSearchOpenWeatherMapPetalsPostgres EmbeddingPGVectorPineconePipelineAIPortkeyPredibasePrediction GuardPromptLayerprovidersPsychicPubMedQdrantRay ServeRebuffRedditRedisReplicateRoamRocksetRunhouseRWKV-4ScaNNSearchApiSearxNG Search APISerpAPIShale ProtocolSingleStoreDBscikit-learnSlackspaCySpreedlyStarRocksStochasticAIStripeSupabase (Postgres)NebulaTairTelegramTencentVectorDBTensorFlow DatasetsTigris2MarkdownTrelloTruLensTwitterTypesenseUnstructuredUpstash RedisUSearchVearchVectaraVespaWandB TracingWeights & BiasesWeatherWeaviateWhatsAppWhyLabsWikipediaWolfram AlphaWriterXataXorbits Inference (Xinference)YandexYeager.aiYouTubeZepZillizComponentsLLMsChat modelsDocument loadersDocument transformersText embedding modelsVector storesRetrieversToolsAgents and toolkitsMemoryCallbacksChat
3,316
and toolkitsMemoryCallbacksChat loadersProvidersMoreLanceDBOn this pageLanceDBThis page covers how to use LanceDB within LangChain.
This page covers how to use LanceDB within LangChain.
This page covers how to use LanceDB within LangChain. ->: and toolkitsMemoryCallbacksChat loadersProvidersMoreLanceDBOn this pageLanceDBThis page covers how to use LanceDB within LangChain.
3,317
It is broken into two parts: installation and setup, and then references to specific LanceDB wrappers.Installation and Setup​Install the Python SDK with pip install lancedbWrappers​VectorStore​There exists a wrapper around LanceDB databases, allowing you to use it as a vectorstore, whether for semantic search or example selection.To import this vectorstore:from langchain.vectorstores import LanceDBFor a more detailed walkthrough of the LanceDB wrapper, see this notebookPreviousKonkoNextLangChain Decorators ✨Installation and SetupWrappersVectorStoreCommunityDiscordTwitterGitHubPythonJS/TSMoreHomepageBlogCopyright © 2023 LangChain, Inc.
This page covers how to use LanceDB within LangChain.
This page covers how to use LanceDB within LangChain. ->: It is broken into two parts: installation and setup, and then references to specific LanceDB wrappers.Installation and Setup​Install the Python SDK with pip install lancedbWrappers​VectorStore​There exists a wrapper around LanceDB databases, allowing you to use it as a vectorstore, whether for semantic search or example selection.To import this vectorstore:from langchain.vectorstores import LanceDBFor a more detailed walkthrough of the LanceDB wrapper, see this notebookPreviousKonkoNextLangChain Decorators ✨Installation and SetupWrappersVectorStoreCommunityDiscordTwitterGitHubPythonJS/TSMoreHomepageBlogCopyright © 2023 LangChain, Inc.
3,318
Weaviate | 🦜️🔗 Langchain
Weaviate is an open-source vector database. It allows you to store data objects and vector embeddings from
Weaviate is an open-source vector database. It allows you to store data objects and vector embeddings from ->: Weaviate | 🦜️🔗 Langchain
3,319
Skip to main content🦜️🔗 LangChainDocsUse casesIntegrationsAPICommunityChat our docsLangSmithJS/TS DocsSearchCTRLKProvidersAnthropicAWSGoogleMicrosoftOpenAIMoreActiveloop Deep LakeAI21 LabsAimAINetworkAirbyteAirtableAleph AlphaAlibaba Cloud OpensearchAnalyticDBAnnoyAnyscaleApifyArangoDBArgillaArthurArxivAtlasAwaDBAWS DynamoDBAZLyricsBagelDBBananaBasetenBeamBeautiful SoupBiliBiliNIBittensorBlackboardBrave SearchCassandraCerebriumAIChaindeskChromaClarifaiClearMLClickHouseCnosDBCohereCollege ConfidentialCometConfident AIConfluenceC TransformersDashVectorDatabricksDatadog TracingDatadog LogsDataForSEODeepInfraDeepSparseDiffbotDingoDiscordDocArrayDoctranDocugamiDuckDBElasticsearchEpsillaEverNoteFacebook ChatFacebook FaissFigmaFireworksFlyteForefrontAIGitGitBookGoldenGoogle Document AIGoogle SerperGooseAIGPT4AllGradientGraphsignalGrobidGutenbergHacker NewsHazy ResearchHeliconeHologresHTML to textHugging FaceiFixitIMSDbInfinoJavelin AI GatewayJinaKonkoLanceDBLangChain Decorators ✨Llama.cppLog10MarqoMediaWikiDumpMeilisearchMetalMilvusMinimaxMLflow AI GatewayMLflowModalModelScopeModern TreasuryMomentoMongoDB AtlasMotherduckMotörheadMyScaleNeo4jNLPCloudNotion DBNucliaObsidianOpenLLMOpenSearchOpenWeatherMapPetalsPostgres EmbeddingPGVectorPineconePipelineAIPortkeyPredibasePrediction GuardPromptLayerprovidersPsychicPubMedQdrantRay ServeRebuffRedditRedisReplicateRoamRocksetRunhouseRWKV-4ScaNNSearchApiSearxNG Search APISerpAPIShale ProtocolSingleStoreDBscikit-learnSlackspaCySpreedlyStarRocksStochasticAIStripeSupabase (Postgres)NebulaTairTelegramTencentVectorDBTensorFlow DatasetsTigris2MarkdownTrelloTruLensTwitterTypesenseUnstructuredUpstash RedisUSearchVearchVectaraVespaWandB TracingWeights & BiasesWeatherWeaviateWhatsAppWhyLabsWikipediaWolfram AlphaWriterXataXorbits Inference (Xinference)YandexYeager.aiYouTubeZepZillizComponentsLLMsChat modelsDocument loadersDocument transformersText embedding modelsVector storesRetrieversToolsAgents and toolkitsMemoryCallbacksChat
Weaviate is an open-source vector database. It allows you to store data objects and vector embeddings from
Weaviate is an open-source vector database. It allows you to store data objects and vector embeddings from ->: Skip to main content🦜️🔗 LangChainDocsUse casesIntegrationsAPICommunityChat our docsLangSmithJS/TS DocsSearchCTRLKProvidersAnthropicAWSGoogleMicrosoftOpenAIMoreActiveloop Deep LakeAI21 LabsAimAINetworkAirbyteAirtableAleph AlphaAlibaba Cloud OpensearchAnalyticDBAnnoyAnyscaleApifyArangoDBArgillaArthurArxivAtlasAwaDBAWS DynamoDBAZLyricsBagelDBBananaBasetenBeamBeautiful SoupBiliBiliNIBittensorBlackboardBrave SearchCassandraCerebriumAIChaindeskChromaClarifaiClearMLClickHouseCnosDBCohereCollege ConfidentialCometConfident AIConfluenceC TransformersDashVectorDatabricksDatadog TracingDatadog LogsDataForSEODeepInfraDeepSparseDiffbotDingoDiscordDocArrayDoctranDocugamiDuckDBElasticsearchEpsillaEverNoteFacebook ChatFacebook FaissFigmaFireworksFlyteForefrontAIGitGitBookGoldenGoogle Document AIGoogle SerperGooseAIGPT4AllGradientGraphsignalGrobidGutenbergHacker NewsHazy ResearchHeliconeHologresHTML to textHugging FaceiFixitIMSDbInfinoJavelin AI GatewayJinaKonkoLanceDBLangChain Decorators ✨Llama.cppLog10MarqoMediaWikiDumpMeilisearchMetalMilvusMinimaxMLflow AI GatewayMLflowModalModelScopeModern TreasuryMomentoMongoDB AtlasMotherduckMotörheadMyScaleNeo4jNLPCloudNotion DBNucliaObsidianOpenLLMOpenSearchOpenWeatherMapPetalsPostgres EmbeddingPGVectorPineconePipelineAIPortkeyPredibasePrediction GuardPromptLayerprovidersPsychicPubMedQdrantRay ServeRebuffRedditRedisReplicateRoamRocksetRunhouseRWKV-4ScaNNSearchApiSearxNG Search APISerpAPIShale ProtocolSingleStoreDBscikit-learnSlackspaCySpreedlyStarRocksStochasticAIStripeSupabase (Postgres)NebulaTairTelegramTencentVectorDBTensorFlow DatasetsTigris2MarkdownTrelloTruLensTwitterTypesenseUnstructuredUpstash RedisUSearchVearchVectaraVespaWandB TracingWeights & BiasesWeatherWeaviateWhatsAppWhyLabsWikipediaWolfram AlphaWriterXataXorbits Inference (Xinference)YandexYeager.aiYouTubeZepZillizComponentsLLMsChat modelsDocument loadersDocument transformersText embedding modelsVector storesRetrieversToolsAgents and toolkitsMemoryCallbacksChat
3,320
and toolkitsMemoryCallbacksChat loadersProvidersMoreWeaviateOn this pageWeaviateWeaviate is an open-source vector database. It allows you to store data objects and vector embeddings from
Weaviate is an open-source vector database. It allows you to store data objects and vector embeddings from
Weaviate is an open-source vector database. It allows you to store data objects and vector embeddings from ->: and toolkitsMemoryCallbacksChat loadersProvidersMoreWeaviateOn this pageWeaviateWeaviate is an open-source vector database. It allows you to store data objects and vector embeddings from
3,321
your favorite ML models, and scale seamlessly into billions of data objects.What is Weaviate?Weaviate is an open-source ​database of the type ​vector search engine.Weaviate allows you to store JSON documents in a class property-like fashion while attaching machine learning vectors to these documents to represent them in vector space.Weaviate can be used stand-alone (aka bring your vectors) or with a variety of modules that can do the vectorization for you and extend the core capabilities.Weaviate has a GraphQL-API to access your data easily.We aim to bring your vector search set up to production to query in mere milliseconds (check our open-source benchmarks to see if Weaviate fits your use case).Get to know Weaviate in the basics getting started guide in under five minutes.Weaviate in detail:Weaviate is a low-latency vector search engine with out-of-the-box support for different media types (text, images, etc.). It offers Semantic Search, Question-Answer Extraction, Classification, Customizable Models (PyTorch/TensorFlow/Keras), etc. Built from scratch in Go, Weaviate stores both objects and vectors, allowing for combining vector search with structured filtering and the fault tolerance of a cloud-native database. It is all accessible through GraphQL, REST, and various client-side programming languages.Installation and Setup​Install the Python SDK:pip install weaviate-clientVector Store​There exists a wrapper around Weaviate indexes, allowing you to use it as a vectorstore, whether for semantic search or example selection.To import this vectorstore:from langchain.vectorstores import WeaviateFor a more detailed walkthrough of the Weaviate wrapper, see this notebookPreviousWeatherNextWhatsAppInstallation and SetupVector StoreCommunityDiscordTwitterGitHubPythonJS/TSMoreHomepageBlogCopyright © 2023 LangChain, Inc.
Weaviate is an open-source vector database. It allows you to store data objects and vector embeddings from
Weaviate is an open-source vector database. It allows you to store data objects and vector embeddings from ->: your favorite ML models, and scale seamlessly into billions of data objects.What is Weaviate?Weaviate is an open-source ​database of the type ​vector search engine.Weaviate allows you to store JSON documents in a class property-like fashion while attaching machine learning vectors to these documents to represent them in vector space.Weaviate can be used stand-alone (aka bring your vectors) or with a variety of modules that can do the vectorization for you and extend the core capabilities.Weaviate has a GraphQL-API to access your data easily.We aim to bring your vector search set up to production to query in mere milliseconds (check our open-source benchmarks to see if Weaviate fits your use case).Get to know Weaviate in the basics getting started guide in under five minutes.Weaviate in detail:Weaviate is a low-latency vector search engine with out-of-the-box support for different media types (text, images, etc.). It offers Semantic Search, Question-Answer Extraction, Classification, Customizable Models (PyTorch/TensorFlow/Keras), etc. Built from scratch in Go, Weaviate stores both objects and vectors, allowing for combining vector search with structured filtering and the fault tolerance of a cloud-native database. It is all accessible through GraphQL, REST, and various client-side programming languages.Installation and Setup​Install the Python SDK:pip install weaviate-clientVector Store​There exists a wrapper around Weaviate indexes, allowing you to use it as a vectorstore, whether for semantic search or example selection.To import this vectorstore:from langchain.vectorstores import WeaviateFor a more detailed walkthrough of the Weaviate wrapper, see this notebookPreviousWeatherNextWhatsAppInstallation and SetupVector StoreCommunityDiscordTwitterGitHubPythonJS/TSMoreHomepageBlogCopyright © 2023 LangChain, Inc.
3,322
Git | 🦜️🔗 Langchain
Git is a distributed version control system that tracks changes in any set of computer files, usually used for coordinating work among programmers collaboratively developing source code during software development.
Git is a distributed version control system that tracks changes in any set of computer files, usually used for coordinating work among programmers collaboratively developing source code during software development. ->: Git | 🦜️🔗 Langchain
3,323
Skip to main content🦜️🔗 LangChainDocsUse casesIntegrationsAPICommunityChat our docsLangSmithJS/TS DocsSearchCTRLKProvidersAnthropicAWSGoogleMicrosoftOpenAIMoreActiveloop Deep LakeAI21 LabsAimAINetworkAirbyteAirtableAleph AlphaAlibaba Cloud OpensearchAnalyticDBAnnoyAnyscaleApifyArangoDBArgillaArthurArxivAtlasAwaDBAWS DynamoDBAZLyricsBagelDBBananaBasetenBeamBeautiful SoupBiliBiliNIBittensorBlackboardBrave SearchCassandraCerebriumAIChaindeskChromaClarifaiClearMLClickHouseCnosDBCohereCollege ConfidentialCometConfident AIConfluenceC TransformersDashVectorDatabricksDatadog TracingDatadog LogsDataForSEODeepInfraDeepSparseDiffbotDingoDiscordDocArrayDoctranDocugamiDuckDBElasticsearchEpsillaEverNoteFacebook ChatFacebook FaissFigmaFireworksFlyteForefrontAIGitGitBookGoldenGoogle Document AIGoogle SerperGooseAIGPT4AllGradientGraphsignalGrobidGutenbergHacker NewsHazy ResearchHeliconeHologresHTML to textHugging FaceiFixitIMSDbInfinoJavelin AI GatewayJinaKonkoLanceDBLangChain Decorators ✨Llama.cppLog10MarqoMediaWikiDumpMeilisearchMetalMilvusMinimaxMLflow AI GatewayMLflowModalModelScopeModern TreasuryMomentoMongoDB AtlasMotherduckMotörheadMyScaleNeo4jNLPCloudNotion DBNucliaObsidianOpenLLMOpenSearchOpenWeatherMapPetalsPostgres EmbeddingPGVectorPineconePipelineAIPortkeyPredibasePrediction GuardPromptLayerprovidersPsychicPubMedQdrantRay ServeRebuffRedditRedisReplicateRoamRocksetRunhouseRWKV-4ScaNNSearchApiSearxNG Search APISerpAPIShale ProtocolSingleStoreDBscikit-learnSlackspaCySpreedlyStarRocksStochasticAIStripeSupabase (Postgres)NebulaTairTelegramTencentVectorDBTensorFlow DatasetsTigris2MarkdownTrelloTruLensTwitterTypesenseUnstructuredUpstash RedisUSearchVearchVectaraVespaWandB TracingWeights & BiasesWeatherWeaviateWhatsAppWhyLabsWikipediaWolfram AlphaWriterXataXorbits Inference (Xinference)YandexYeager.aiYouTubeZepZillizComponentsLLMsChat modelsDocument loadersDocument transformersText embedding modelsVector storesRetrieversToolsAgents and toolkitsMemoryCallbacksChat
Git is a distributed version control system that tracks changes in any set of computer files, usually used for coordinating work among programmers collaboratively developing source code during software development.
Git is a distributed version control system that tracks changes in any set of computer files, usually used for coordinating work among programmers collaboratively developing source code during software development. ->: Skip to main content🦜️🔗 LangChainDocsUse casesIntegrationsAPICommunityChat our docsLangSmithJS/TS DocsSearchCTRLKProvidersAnthropicAWSGoogleMicrosoftOpenAIMoreActiveloop Deep LakeAI21 LabsAimAINetworkAirbyteAirtableAleph AlphaAlibaba Cloud OpensearchAnalyticDBAnnoyAnyscaleApifyArangoDBArgillaArthurArxivAtlasAwaDBAWS DynamoDBAZLyricsBagelDBBananaBasetenBeamBeautiful SoupBiliBiliNIBittensorBlackboardBrave SearchCassandraCerebriumAIChaindeskChromaClarifaiClearMLClickHouseCnosDBCohereCollege ConfidentialCometConfident AIConfluenceC TransformersDashVectorDatabricksDatadog TracingDatadog LogsDataForSEODeepInfraDeepSparseDiffbotDingoDiscordDocArrayDoctranDocugamiDuckDBElasticsearchEpsillaEverNoteFacebook ChatFacebook FaissFigmaFireworksFlyteForefrontAIGitGitBookGoldenGoogle Document AIGoogle SerperGooseAIGPT4AllGradientGraphsignalGrobidGutenbergHacker NewsHazy ResearchHeliconeHologresHTML to textHugging FaceiFixitIMSDbInfinoJavelin AI GatewayJinaKonkoLanceDBLangChain Decorators ✨Llama.cppLog10MarqoMediaWikiDumpMeilisearchMetalMilvusMinimaxMLflow AI GatewayMLflowModalModelScopeModern TreasuryMomentoMongoDB AtlasMotherduckMotörheadMyScaleNeo4jNLPCloudNotion DBNucliaObsidianOpenLLMOpenSearchOpenWeatherMapPetalsPostgres EmbeddingPGVectorPineconePipelineAIPortkeyPredibasePrediction GuardPromptLayerprovidersPsychicPubMedQdrantRay ServeRebuffRedditRedisReplicateRoamRocksetRunhouseRWKV-4ScaNNSearchApiSearxNG Search APISerpAPIShale ProtocolSingleStoreDBscikit-learnSlackspaCySpreedlyStarRocksStochasticAIStripeSupabase (Postgres)NebulaTairTelegramTencentVectorDBTensorFlow DatasetsTigris2MarkdownTrelloTruLensTwitterTypesenseUnstructuredUpstash RedisUSearchVearchVectaraVespaWandB TracingWeights & BiasesWeatherWeaviateWhatsAppWhyLabsWikipediaWolfram AlphaWriterXataXorbits Inference (Xinference)YandexYeager.aiYouTubeZepZillizComponentsLLMsChat modelsDocument loadersDocument transformersText embedding modelsVector storesRetrieversToolsAgents and toolkitsMemoryCallbacksChat
3,324
and toolkitsMemoryCallbacksChat loadersProvidersMoreGitOn this pageGitGit is a distributed version control system that tracks changes in any set of computer files, usually used for coordinating work among programmers collaboratively developing source code during software development.Installation and Setup​First, you need to install GitPython python package.pip install GitPythonDocument Loader​See a usage example.from langchain.document_loaders import GitLoaderPreviousForefrontAINextGitBookInstallation and SetupDocument LoaderCommunityDiscordTwitterGitHubPythonJS/TSMoreHomepageBlogCopyright © 2023 LangChain, Inc.
Git is a distributed version control system that tracks changes in any set of computer files, usually used for coordinating work among programmers collaboratively developing source code during software development.
Git is a distributed version control system that tracks changes in any set of computer files, usually used for coordinating work among programmers collaboratively developing source code during software development. ->: and toolkitsMemoryCallbacksChat loadersProvidersMoreGitOn this pageGitGit is a distributed version control system that tracks changes in any set of computer files, usually used for coordinating work among programmers collaboratively developing source code during software development.Installation and Setup​First, you need to install GitPython python package.pip install GitPythonDocument Loader​See a usage example.from langchain.document_loaders import GitLoaderPreviousForefrontAINextGitBookInstallation and SetupDocument LoaderCommunityDiscordTwitterGitHubPythonJS/TSMoreHomepageBlogCopyright © 2023 LangChain, Inc.
3,325
Google | 🦜️🔗 Langchain
All functionality related to Google Cloud Platform
All functionality related to Google Cloud Platform ->: Google | 🦜️🔗 Langchain
3,326
Skip to main content🦜️🔗 LangChainDocsUse casesIntegrationsAPICommunityChat our docsLangSmithJS/TS DocsSearchCTRLKProvidersAnthropicAWSGoogleMicrosoftOpenAIMoreComponentsLLMsChat modelsDocument loadersDocument transformersText embedding modelsVector storesRetrieversToolsAgents and toolkitsMemoryCallbacksChat loadersProvidersGoogleOn this pageGoogleAll functionality related to Google Cloud PlatformLLMs​Vertex AI​Access PaLM LLMs like text-bison and code-bison via Google Cloud.from langchain.llms import VertexAIModel Garden​Access PaLM and hundreds of OSS models via Vertex AI Model Garden.from langchain.llms import VertexAIModelGardenChat models​Vertex AI​Access PaLM chat models like chat-bison and codechat-bison via Google Cloud.from langchain.chat_models import ChatVertexAIDocument Loader​Google BigQuery​Google BigQuery is a serverless and cost-effective enterprise data warehouse that works across clouds and scales with your data.
All functionality related to Google Cloud Platform
All functionality related to Google Cloud Platform ->: Skip to main content🦜️🔗 LangChainDocsUse casesIntegrationsAPICommunityChat our docsLangSmithJS/TS DocsSearchCTRLKProvidersAnthropicAWSGoogleMicrosoftOpenAIMoreComponentsLLMsChat modelsDocument loadersDocument transformersText embedding modelsVector storesRetrieversToolsAgents and toolkitsMemoryCallbacksChat loadersProvidersGoogleOn this pageGoogleAll functionality related to Google Cloud PlatformLLMs​Vertex AI​Access PaLM LLMs like text-bison and code-bison via Google Cloud.from langchain.llms import VertexAIModel Garden​Access PaLM and hundreds of OSS models via Vertex AI Model Garden.from langchain.llms import VertexAIModelGardenChat models​Vertex AI​Access PaLM chat models like chat-bison and codechat-bison via Google Cloud.from langchain.chat_models import ChatVertexAIDocument Loader​Google BigQuery​Google BigQuery is a serverless and cost-effective enterprise data warehouse that works across clouds and scales with your data.
3,327
BigQuery is a part of the Google Cloud Platform.First, we need to install google-cloud-bigquery python package.pip install google-cloud-bigquerySee a usage example.from langchain.document_loaders import BigQueryLoaderGoogle Cloud Storage‚ÄãGoogle Cloud Storage is a managed service for storing unstructured data.First, we need to install google-cloud-storage python package.pip install google-cloud-storageThere are two loaders for the Google Cloud Storage: the Directory and the File loaders.See a usage example.from langchain.document_loaders import GCSDirectoryLoaderSee a usage example.from langchain.document_loaders import GCSFileLoaderGoogle Drive‚ÄãGoogle Drive is a file storage and synchronization service developed by Google.Currently, only Google Docs are supported.First, we need to install several python package.pip install google-api-python-client google-auth-httplib2 google-auth-oauthlibSee a usage example and authorizing instructions.from langchain.document_loaders import GoogleDriveLoaderVector Store‚ÄãGoogle Vertex AI MatchingEngine‚ÄãGoogle Vertex AI Matching Engine provides the industry's leading high-scale low latency vector database. These vector databases are commonly referred to as vector similarity-matching or an approximate nearest neighbor (ANN) service.We need to install several python packages.pip install tensorflow google-cloud-aiplatform tensorflow-hub tensorflow-textSee a usage example.from langchain.vectorstores import MatchingEngineGoogle ScaNN‚ÄãGoogle ScaNN (Scalable Nearest Neighbors) is a python package.ScaNN is a method for efficient vector similarity search at scale.ScaNN includes search space pruning and quantization for Maximum Inner Product Search and also supports other distance functions such as Euclidean distance. The implementation is optimized for x86 processors with AVX2 support. See its Google Research github
All functionality related to Google Cloud Platform
All functionality related to Google Cloud Platform ->: BigQuery is a part of the Google Cloud Platform.First, we need to install google-cloud-bigquery python package.pip install google-cloud-bigquerySee a usage example.from langchain.document_loaders import BigQueryLoaderGoogle Cloud Storage‚ÄãGoogle Cloud Storage is a managed service for storing unstructured data.First, we need to install google-cloud-storage python package.pip install google-cloud-storageThere are two loaders for the Google Cloud Storage: the Directory and the File loaders.See a usage example.from langchain.document_loaders import GCSDirectoryLoaderSee a usage example.from langchain.document_loaders import GCSFileLoaderGoogle Drive‚ÄãGoogle Drive is a file storage and synchronization service developed by Google.Currently, only Google Docs are supported.First, we need to install several python package.pip install google-api-python-client google-auth-httplib2 google-auth-oauthlibSee a usage example and authorizing instructions.from langchain.document_loaders import GoogleDriveLoaderVector Store‚ÄãGoogle Vertex AI MatchingEngine‚ÄãGoogle Vertex AI Matching Engine provides the industry's leading high-scale low latency vector database. These vector databases are commonly referred to as vector similarity-matching or an approximate nearest neighbor (ANN) service.We need to install several python packages.pip install tensorflow google-cloud-aiplatform tensorflow-hub tensorflow-textSee a usage example.from langchain.vectorstores import MatchingEngineGoogle ScaNN‚ÄãGoogle ScaNN (Scalable Nearest Neighbors) is a python package.ScaNN is a method for efficient vector similarity search at scale.ScaNN includes search space pruning and quantization for Maximum Inner Product Search and also supports other distance functions such as Euclidean distance. The implementation is optimized for x86 processors with AVX2 support. See its Google Research github
3,328
with AVX2 support. See its Google Research github for more details.We need to install scann python package.pip install scannSee a usage example.from langchain.vectorstores import ScaNNRetrievers‚ÄãVertex AI Search‚ÄãGoogle Cloud Vertex AI Search allows developers to quickly build generative AI powered search engines for customers and employees.First, you need to install the google-cloud-discoveryengine Python package.pip install google-cloud-discoveryengineSee a usage example.from langchain.retrievers import GoogleVertexAISearchRetrieverDocument AI Warehouse‚ÄãGoogle Cloud Document AI Warehouse allows enterprises to search, store, govern, and manage documents and their AI-extracted data and metadata in a single platform. Documents should be uploaded outside of Langchain,from langchain.retrievers import GoogleDocumentAIWarehouseRetrieverdocai_wh_retriever = GoogleDocumentAIWarehouseRetriever( project_number=...)query = ...documents = docai_wh_retriever.get_relevant_documents( query, user_ldap=...)Tools‚ÄãGoogle Search‚ÄãInstall requirements with pip install google-api-python-clientSet up a Custom Search Engine, following these instructionsGet an API Key and Custom Search Engine ID from the previous step, and set them as environment variables GOOGLE_API_KEY and GOOGLE_CSE_ID respectivelyThere exists a GoogleSearchAPIWrapper utility which wraps this API. To import this utility:from langchain.utilities import GoogleSearchAPIWrapperFor a more detailed walkthrough of this wrapper, see this notebook.We can easily load this wrapper as a Tool (to use with an Agent). We can do this with:from langchain.agents import load_toolstools = load_tools(["google-search"])Document Transformer‚ÄãGoogle Document AI‚ÄãDocument AI is a Google Cloud Platform service to transform unstructured data from documents into structured data, making it easier to understand, analyze, and consume. We need to set up a GCS bucket and create your own OCR processor
All functionality related to Google Cloud Platform
All functionality related to Google Cloud Platform ->: with AVX2 support. See its Google Research github for more details.We need to install scann python package.pip install scannSee a usage example.from langchain.vectorstores import ScaNNRetrievers‚ÄãVertex AI Search‚ÄãGoogle Cloud Vertex AI Search allows developers to quickly build generative AI powered search engines for customers and employees.First, you need to install the google-cloud-discoveryengine Python package.pip install google-cloud-discoveryengineSee a usage example.from langchain.retrievers import GoogleVertexAISearchRetrieverDocument AI Warehouse‚ÄãGoogle Cloud Document AI Warehouse allows enterprises to search, store, govern, and manage documents and their AI-extracted data and metadata in a single platform. Documents should be uploaded outside of Langchain,from langchain.retrievers import GoogleDocumentAIWarehouseRetrieverdocai_wh_retriever = GoogleDocumentAIWarehouseRetriever( project_number=...)query = ...documents = docai_wh_retriever.get_relevant_documents( query, user_ldap=...)Tools‚ÄãGoogle Search‚ÄãInstall requirements with pip install google-api-python-clientSet up a Custom Search Engine, following these instructionsGet an API Key and Custom Search Engine ID from the previous step, and set them as environment variables GOOGLE_API_KEY and GOOGLE_CSE_ID respectivelyThere exists a GoogleSearchAPIWrapper utility which wraps this API. To import this utility:from langchain.utilities import GoogleSearchAPIWrapperFor a more detailed walkthrough of this wrapper, see this notebook.We can easily load this wrapper as a Tool (to use with an Agent). We can do this with:from langchain.agents import load_toolstools = load_tools(["google-search"])Document Transformer‚ÄãGoogle Document AI‚ÄãDocument AI is a Google Cloud Platform service to transform unstructured data from documents into structured data, making it easier to understand, analyze, and consume. We need to set up a GCS bucket and create your own OCR processor
3,329
The GCS_OUTPUT_PATH should be a path to a folder on GCS (starting with gs://) and a processor name should look like projects/PROJECT_NUMBER/locations/LOCATION/processors/PROCESSOR_ID. We can get it either programmatically or copy from the Prediction endpoint section of the Processor details tab in the Google Cloud Console.pip install google-cloud-documentaipip install google-cloud-documentai-toolboxSee a usage example.from langchain.document_loaders.blob_loaders import Blobfrom langchain.document_loaders.parsers import DocAIParserPreviousAWSNextMicrosoftLLMsVertex AIModel GardenChat modelsVertex AIDocument LoaderGoogle BigQueryGoogle Cloud StorageGoogle DriveVector StoreGoogle Vertex AI MatchingEngineGoogle ScaNNRetrieversVertex AI SearchDocument AI WarehouseToolsGoogle SearchDocument TransformerGoogle Document AICommunityDiscordTwitterGitHubPythonJS/TSMoreHomepageBlogCopyright © 2023 LangChain, Inc.
All functionality related to Google Cloud Platform
All functionality related to Google Cloud Platform ->: The GCS_OUTPUT_PATH should be a path to a folder on GCS (starting with gs://) and a processor name should look like projects/PROJECT_NUMBER/locations/LOCATION/processors/PROCESSOR_ID. We can get it either programmatically or copy from the Prediction endpoint section of the Processor details tab in the Google Cloud Console.pip install google-cloud-documentaipip install google-cloud-documentai-toolboxSee a usage example.from langchain.document_loaders.blob_loaders import Blobfrom langchain.document_loaders.parsers import DocAIParserPreviousAWSNextMicrosoftLLMsVertex AIModel GardenChat modelsVertex AIDocument LoaderGoogle BigQueryGoogle Cloud StorageGoogle DriveVector StoreGoogle Vertex AI MatchingEngineGoogle ScaNNRetrieversVertex AI SearchDocument AI WarehouseToolsGoogle SearchDocument TransformerGoogle Document AICommunityDiscordTwitterGitHubPythonJS/TSMoreHomepageBlogCopyright © 2023 LangChain, Inc.
3,330
AZLyrics | 🦜️🔗 Langchain
AZLyrics is a large, legal, every day growing collection of lyrics.
AZLyrics is a large, legal, every day growing collection of lyrics. ->: AZLyrics | 🦜️🔗 Langchain
3,331
Skip to main content🦜️🔗 LangChainDocsUse casesIntegrationsAPICommunityChat our docsLangSmithJS/TS DocsSearchCTRLKProvidersAnthropicAWSGoogleMicrosoftOpenAIMoreActiveloop Deep LakeAI21 LabsAimAINetworkAirbyteAirtableAleph AlphaAlibaba Cloud OpensearchAnalyticDBAnnoyAnyscaleApifyArangoDBArgillaArthurArxivAtlasAwaDBAWS DynamoDBAZLyricsBagelDBBananaBasetenBeamBeautiful SoupBiliBiliNIBittensorBlackboardBrave SearchCassandraCerebriumAIChaindeskChromaClarifaiClearMLClickHouseCnosDBCohereCollege ConfidentialCometConfident AIConfluenceC TransformersDashVectorDatabricksDatadog TracingDatadog LogsDataForSEODeepInfraDeepSparseDiffbotDingoDiscordDocArrayDoctranDocugamiDuckDBElasticsearchEpsillaEverNoteFacebook ChatFacebook FaissFigmaFireworksFlyteForefrontAIGitGitBookGoldenGoogle Document AIGoogle SerperGooseAIGPT4AllGradientGraphsignalGrobidGutenbergHacker NewsHazy ResearchHeliconeHologresHTML to textHugging FaceiFixitIMSDbInfinoJavelin AI GatewayJinaKonkoLanceDBLangChain Decorators ✨Llama.cppLog10MarqoMediaWikiDumpMeilisearchMetalMilvusMinimaxMLflow AI GatewayMLflowModalModelScopeModern TreasuryMomentoMongoDB AtlasMotherduckMotörheadMyScaleNeo4jNLPCloudNotion DBNucliaObsidianOpenLLMOpenSearchOpenWeatherMapPetalsPostgres EmbeddingPGVectorPineconePipelineAIPortkeyPredibasePrediction GuardPromptLayerprovidersPsychicPubMedQdrantRay ServeRebuffRedditRedisReplicateRoamRocksetRunhouseRWKV-4ScaNNSearchApiSearxNG Search APISerpAPIShale ProtocolSingleStoreDBscikit-learnSlackspaCySpreedlyStarRocksStochasticAIStripeSupabase (Postgres)NebulaTairTelegramTencentVectorDBTensorFlow DatasetsTigris2MarkdownTrelloTruLensTwitterTypesenseUnstructuredUpstash RedisUSearchVearchVectaraVespaWandB TracingWeights & BiasesWeatherWeaviateWhatsAppWhyLabsWikipediaWolfram AlphaWriterXataXorbits Inference (Xinference)YandexYeager.aiYouTubeZepZillizComponentsLLMsChat modelsDocument loadersDocument transformersText embedding modelsVector storesRetrieversToolsAgents and toolkitsMemoryCallbacksChat
AZLyrics is a large, legal, every day growing collection of lyrics.
AZLyrics is a large, legal, every day growing collection of lyrics. ->: Skip to main content🦜️🔗 LangChainDocsUse casesIntegrationsAPICommunityChat our docsLangSmithJS/TS DocsSearchCTRLKProvidersAnthropicAWSGoogleMicrosoftOpenAIMoreActiveloop Deep LakeAI21 LabsAimAINetworkAirbyteAirtableAleph AlphaAlibaba Cloud OpensearchAnalyticDBAnnoyAnyscaleApifyArangoDBArgillaArthurArxivAtlasAwaDBAWS DynamoDBAZLyricsBagelDBBananaBasetenBeamBeautiful SoupBiliBiliNIBittensorBlackboardBrave SearchCassandraCerebriumAIChaindeskChromaClarifaiClearMLClickHouseCnosDBCohereCollege ConfidentialCometConfident AIConfluenceC TransformersDashVectorDatabricksDatadog TracingDatadog LogsDataForSEODeepInfraDeepSparseDiffbotDingoDiscordDocArrayDoctranDocugamiDuckDBElasticsearchEpsillaEverNoteFacebook ChatFacebook FaissFigmaFireworksFlyteForefrontAIGitGitBookGoldenGoogle Document AIGoogle SerperGooseAIGPT4AllGradientGraphsignalGrobidGutenbergHacker NewsHazy ResearchHeliconeHologresHTML to textHugging FaceiFixitIMSDbInfinoJavelin AI GatewayJinaKonkoLanceDBLangChain Decorators ✨Llama.cppLog10MarqoMediaWikiDumpMeilisearchMetalMilvusMinimaxMLflow AI GatewayMLflowModalModelScopeModern TreasuryMomentoMongoDB AtlasMotherduckMotörheadMyScaleNeo4jNLPCloudNotion DBNucliaObsidianOpenLLMOpenSearchOpenWeatherMapPetalsPostgres EmbeddingPGVectorPineconePipelineAIPortkeyPredibasePrediction GuardPromptLayerprovidersPsychicPubMedQdrantRay ServeRebuffRedditRedisReplicateRoamRocksetRunhouseRWKV-4ScaNNSearchApiSearxNG Search APISerpAPIShale ProtocolSingleStoreDBscikit-learnSlackspaCySpreedlyStarRocksStochasticAIStripeSupabase (Postgres)NebulaTairTelegramTencentVectorDBTensorFlow DatasetsTigris2MarkdownTrelloTruLensTwitterTypesenseUnstructuredUpstash RedisUSearchVearchVectaraVespaWandB TracingWeights & BiasesWeatherWeaviateWhatsAppWhyLabsWikipediaWolfram AlphaWriterXataXorbits Inference (Xinference)YandexYeager.aiYouTubeZepZillizComponentsLLMsChat modelsDocument loadersDocument transformersText embedding modelsVector storesRetrieversToolsAgents and toolkitsMemoryCallbacksChat
3,332
and toolkitsMemoryCallbacksChat loadersProvidersMoreAZLyricsOn this pageAZLyricsAZLyrics is a large, legal, every day growing collection of lyrics.Installation and Setup​There isn't any special setup for it.Document Loader​See a usage example.from langchain.document_loaders import AZLyricsLoaderPreviousAWS DynamoDBNextBagelDBInstallation and SetupDocument LoaderCommunityDiscordTwitterGitHubPythonJS/TSMoreHomepageBlogCopyright © 2023 LangChain, Inc.
AZLyrics is a large, legal, every day growing collection of lyrics.
AZLyrics is a large, legal, every day growing collection of lyrics. ->: and toolkitsMemoryCallbacksChat loadersProvidersMoreAZLyricsOn this pageAZLyricsAZLyrics is a large, legal, every day growing collection of lyrics.Installation and Setup​There isn't any special setup for it.Document Loader​See a usage example.from langchain.document_loaders import AZLyricsLoaderPreviousAWS DynamoDBNextBagelDBInstallation and SetupDocument LoaderCommunityDiscordTwitterGitHubPythonJS/TSMoreHomepageBlogCopyright © 2023 LangChain, Inc.
3,333
AI21 Labs | 🦜️🔗 Langchain
This page covers how to use the AI21 ecosystem within LangChain.
This page covers how to use the AI21 ecosystem within LangChain. ->: AI21 Labs | 🦜️🔗 Langchain
3,334
Skip to main content🦜️🔗 LangChainDocsUse casesIntegrationsAPICommunityChat our docsLangSmithJS/TS DocsSearchCTRLKProvidersAnthropicAWSGoogleMicrosoftOpenAIMoreActiveloop Deep LakeAI21 LabsAimAINetworkAirbyteAirtableAleph AlphaAlibaba Cloud OpensearchAnalyticDBAnnoyAnyscaleApifyArangoDBArgillaArthurArxivAtlasAwaDBAWS DynamoDBAZLyricsBagelDBBananaBasetenBeamBeautiful SoupBiliBiliNIBittensorBlackboardBrave SearchCassandraCerebriumAIChaindeskChromaClarifaiClearMLClickHouseCnosDBCohereCollege ConfidentialCometConfident AIConfluenceC TransformersDashVectorDatabricksDatadog TracingDatadog LogsDataForSEODeepInfraDeepSparseDiffbotDingoDiscordDocArrayDoctranDocugamiDuckDBElasticsearchEpsillaEverNoteFacebook ChatFacebook FaissFigmaFireworksFlyteForefrontAIGitGitBookGoldenGoogle Document AIGoogle SerperGooseAIGPT4AllGradientGraphsignalGrobidGutenbergHacker NewsHazy ResearchHeliconeHologresHTML to textHugging FaceiFixitIMSDbInfinoJavelin AI GatewayJinaKonkoLanceDBLangChain Decorators ✨Llama.cppLog10MarqoMediaWikiDumpMeilisearchMetalMilvusMinimaxMLflow AI GatewayMLflowModalModelScopeModern TreasuryMomentoMongoDB AtlasMotherduckMotörheadMyScaleNeo4jNLPCloudNotion DBNucliaObsidianOpenLLMOpenSearchOpenWeatherMapPetalsPostgres EmbeddingPGVectorPineconePipelineAIPortkeyPredibasePrediction GuardPromptLayerprovidersPsychicPubMedQdrantRay ServeRebuffRedditRedisReplicateRoamRocksetRunhouseRWKV-4ScaNNSearchApiSearxNG Search APISerpAPIShale ProtocolSingleStoreDBscikit-learnSlackspaCySpreedlyStarRocksStochasticAIStripeSupabase (Postgres)NebulaTairTelegramTencentVectorDBTensorFlow DatasetsTigris2MarkdownTrelloTruLensTwitterTypesenseUnstructuredUpstash RedisUSearchVearchVectaraVespaWandB TracingWeights & BiasesWeatherWeaviateWhatsAppWhyLabsWikipediaWolfram AlphaWriterXataXorbits Inference (Xinference)YandexYeager.aiYouTubeZepZillizComponentsLLMsChat modelsDocument loadersDocument transformersText embedding modelsVector storesRetrieversToolsAgents and toolkitsMemoryCallbacksChat
This page covers how to use the AI21 ecosystem within LangChain.
This page covers how to use the AI21 ecosystem within LangChain. ->: Skip to main content🦜️🔗 LangChainDocsUse casesIntegrationsAPICommunityChat our docsLangSmithJS/TS DocsSearchCTRLKProvidersAnthropicAWSGoogleMicrosoftOpenAIMoreActiveloop Deep LakeAI21 LabsAimAINetworkAirbyteAirtableAleph AlphaAlibaba Cloud OpensearchAnalyticDBAnnoyAnyscaleApifyArangoDBArgillaArthurArxivAtlasAwaDBAWS DynamoDBAZLyricsBagelDBBananaBasetenBeamBeautiful SoupBiliBiliNIBittensorBlackboardBrave SearchCassandraCerebriumAIChaindeskChromaClarifaiClearMLClickHouseCnosDBCohereCollege ConfidentialCometConfident AIConfluenceC TransformersDashVectorDatabricksDatadog TracingDatadog LogsDataForSEODeepInfraDeepSparseDiffbotDingoDiscordDocArrayDoctranDocugamiDuckDBElasticsearchEpsillaEverNoteFacebook ChatFacebook FaissFigmaFireworksFlyteForefrontAIGitGitBookGoldenGoogle Document AIGoogle SerperGooseAIGPT4AllGradientGraphsignalGrobidGutenbergHacker NewsHazy ResearchHeliconeHologresHTML to textHugging FaceiFixitIMSDbInfinoJavelin AI GatewayJinaKonkoLanceDBLangChain Decorators ✨Llama.cppLog10MarqoMediaWikiDumpMeilisearchMetalMilvusMinimaxMLflow AI GatewayMLflowModalModelScopeModern TreasuryMomentoMongoDB AtlasMotherduckMotörheadMyScaleNeo4jNLPCloudNotion DBNucliaObsidianOpenLLMOpenSearchOpenWeatherMapPetalsPostgres EmbeddingPGVectorPineconePipelineAIPortkeyPredibasePrediction GuardPromptLayerprovidersPsychicPubMedQdrantRay ServeRebuffRedditRedisReplicateRoamRocksetRunhouseRWKV-4ScaNNSearchApiSearxNG Search APISerpAPIShale ProtocolSingleStoreDBscikit-learnSlackspaCySpreedlyStarRocksStochasticAIStripeSupabase (Postgres)NebulaTairTelegramTencentVectorDBTensorFlow DatasetsTigris2MarkdownTrelloTruLensTwitterTypesenseUnstructuredUpstash RedisUSearchVearchVectaraVespaWandB TracingWeights & BiasesWeatherWeaviateWhatsAppWhyLabsWikipediaWolfram AlphaWriterXataXorbits Inference (Xinference)YandexYeager.aiYouTubeZepZillizComponentsLLMsChat modelsDocument loadersDocument transformersText embedding modelsVector storesRetrieversToolsAgents and toolkitsMemoryCallbacksChat
3,335
and toolkitsMemoryCallbacksChat loadersProvidersMoreAI21 LabsOn this pageAI21 LabsThis page covers how to use the AI21 ecosystem within LangChain.
This page covers how to use the AI21 ecosystem within LangChain.
This page covers how to use the AI21 ecosystem within LangChain. ->: and toolkitsMemoryCallbacksChat loadersProvidersMoreAI21 LabsOn this pageAI21 LabsThis page covers how to use the AI21 ecosystem within LangChain.
3,336
It is broken into two parts: installation and setup, and then references to specific AI21 wrappers.Installation and Setup​Get an AI21 api key and set it as an environment variable (AI21_API_KEY)Wrappers​LLM​There exists an AI21 LLM wrapper, which you can access with from langchain.llms import AI21PreviousActiveloop Deep LakeNextAimInstallation and SetupWrappersLLMCommunityDiscordTwitterGitHubPythonJS/TSMoreHomepageBlogCopyright © 2023 LangChain, Inc.
This page covers how to use the AI21 ecosystem within LangChain.
This page covers how to use the AI21 ecosystem within LangChain. ->: It is broken into two parts: installation and setup, and then references to specific AI21 wrappers.Installation and Setup​Get an AI21 api key and set it as an environment variable (AI21_API_KEY)Wrappers​LLM​There exists an AI21 LLM wrapper, which you can access with from langchain.llms import AI21PreviousActiveloop Deep LakeNextAimInstallation and SetupWrappersLLMCommunityDiscordTwitterGitHubPythonJS/TSMoreHomepageBlogCopyright © 2023 LangChain, Inc.
3,337
Reddit | 🦜️🔗 Langchain
Reddit is an American social news aggregation, content rating, and discussion website.
Reddit is an American social news aggregation, content rating, and discussion website. ->: Reddit | 🦜️🔗 Langchain
3,338
Skip to main content🦜️🔗 LangChainDocsUse casesIntegrationsAPICommunityChat our docsLangSmithJS/TS DocsSearchCTRLKProvidersAnthropicAWSGoogleMicrosoftOpenAIMoreActiveloop Deep LakeAI21 LabsAimAINetworkAirbyteAirtableAleph AlphaAlibaba Cloud OpensearchAnalyticDBAnnoyAnyscaleApifyArangoDBArgillaArthurArxivAtlasAwaDBAWS DynamoDBAZLyricsBagelDBBananaBasetenBeamBeautiful SoupBiliBiliNIBittensorBlackboardBrave SearchCassandraCerebriumAIChaindeskChromaClarifaiClearMLClickHouseCnosDBCohereCollege ConfidentialCometConfident AIConfluenceC TransformersDashVectorDatabricksDatadog TracingDatadog LogsDataForSEODeepInfraDeepSparseDiffbotDingoDiscordDocArrayDoctranDocugamiDuckDBElasticsearchEpsillaEverNoteFacebook ChatFacebook FaissFigmaFireworksFlyteForefrontAIGitGitBookGoldenGoogle Document AIGoogle SerperGooseAIGPT4AllGradientGraphsignalGrobidGutenbergHacker NewsHazy ResearchHeliconeHologresHTML to textHugging FaceiFixitIMSDbInfinoJavelin AI GatewayJinaKonkoLanceDBLangChain Decorators ✨Llama.cppLog10MarqoMediaWikiDumpMeilisearchMetalMilvusMinimaxMLflow AI GatewayMLflowModalModelScopeModern TreasuryMomentoMongoDB AtlasMotherduckMotörheadMyScaleNeo4jNLPCloudNotion DBNucliaObsidianOpenLLMOpenSearchOpenWeatherMapPetalsPostgres EmbeddingPGVectorPineconePipelineAIPortkeyPredibasePrediction GuardPromptLayerprovidersPsychicPubMedQdrantRay ServeRebuffRedditRedisReplicateRoamRocksetRunhouseRWKV-4ScaNNSearchApiSearxNG Search APISerpAPIShale ProtocolSingleStoreDBscikit-learnSlackspaCySpreedlyStarRocksStochasticAIStripeSupabase (Postgres)NebulaTairTelegramTencentVectorDBTensorFlow DatasetsTigris2MarkdownTrelloTruLensTwitterTypesenseUnstructuredUpstash RedisUSearchVearchVectaraVespaWandB TracingWeights & BiasesWeatherWeaviateWhatsAppWhyLabsWikipediaWolfram AlphaWriterXataXorbits Inference (Xinference)YandexYeager.aiYouTubeZepZillizComponentsLLMsChat modelsDocument loadersDocument transformersText embedding modelsVector storesRetrieversToolsAgents and toolkitsMemoryCallbacksChat
Reddit is an American social news aggregation, content rating, and discussion website.
Reddit is an American social news aggregation, content rating, and discussion website. ->: Skip to main content🦜️🔗 LangChainDocsUse casesIntegrationsAPICommunityChat our docsLangSmithJS/TS DocsSearchCTRLKProvidersAnthropicAWSGoogleMicrosoftOpenAIMoreActiveloop Deep LakeAI21 LabsAimAINetworkAirbyteAirtableAleph AlphaAlibaba Cloud OpensearchAnalyticDBAnnoyAnyscaleApifyArangoDBArgillaArthurArxivAtlasAwaDBAWS DynamoDBAZLyricsBagelDBBananaBasetenBeamBeautiful SoupBiliBiliNIBittensorBlackboardBrave SearchCassandraCerebriumAIChaindeskChromaClarifaiClearMLClickHouseCnosDBCohereCollege ConfidentialCometConfident AIConfluenceC TransformersDashVectorDatabricksDatadog TracingDatadog LogsDataForSEODeepInfraDeepSparseDiffbotDingoDiscordDocArrayDoctranDocugamiDuckDBElasticsearchEpsillaEverNoteFacebook ChatFacebook FaissFigmaFireworksFlyteForefrontAIGitGitBookGoldenGoogle Document AIGoogle SerperGooseAIGPT4AllGradientGraphsignalGrobidGutenbergHacker NewsHazy ResearchHeliconeHologresHTML to textHugging FaceiFixitIMSDbInfinoJavelin AI GatewayJinaKonkoLanceDBLangChain Decorators ✨Llama.cppLog10MarqoMediaWikiDumpMeilisearchMetalMilvusMinimaxMLflow AI GatewayMLflowModalModelScopeModern TreasuryMomentoMongoDB AtlasMotherduckMotörheadMyScaleNeo4jNLPCloudNotion DBNucliaObsidianOpenLLMOpenSearchOpenWeatherMapPetalsPostgres EmbeddingPGVectorPineconePipelineAIPortkeyPredibasePrediction GuardPromptLayerprovidersPsychicPubMedQdrantRay ServeRebuffRedditRedisReplicateRoamRocksetRunhouseRWKV-4ScaNNSearchApiSearxNG Search APISerpAPIShale ProtocolSingleStoreDBscikit-learnSlackspaCySpreedlyStarRocksStochasticAIStripeSupabase (Postgres)NebulaTairTelegramTencentVectorDBTensorFlow DatasetsTigris2MarkdownTrelloTruLensTwitterTypesenseUnstructuredUpstash RedisUSearchVearchVectaraVespaWandB TracingWeights & BiasesWeatherWeaviateWhatsAppWhyLabsWikipediaWolfram AlphaWriterXataXorbits Inference (Xinference)YandexYeager.aiYouTubeZepZillizComponentsLLMsChat modelsDocument loadersDocument transformersText embedding modelsVector storesRetrieversToolsAgents and toolkitsMemoryCallbacksChat
3,339
and toolkitsMemoryCallbacksChat loadersProvidersMoreRedditOn this pageRedditReddit is an American social news aggregation, content rating, and discussion website.Installation and Setup​First, you need to install a python package.pip install prawMake a Reddit Application and initialize the loader with your Reddit API credentials.Document Loader​See a usage example.from langchain.document_loaders import RedditPostsLoaderPreviousRebuffNextRedisInstallation and SetupDocument LoaderCommunityDiscordTwitterGitHubPythonJS/TSMoreHomepageBlogCopyright © 2023 LangChain, Inc.
Reddit is an American social news aggregation, content rating, and discussion website.
Reddit is an American social news aggregation, content rating, and discussion website. ->: and toolkitsMemoryCallbacksChat loadersProvidersMoreRedditOn this pageRedditReddit is an American social news aggregation, content rating, and discussion website.Installation and Setup​First, you need to install a python package.pip install prawMake a Reddit Application and initialize the loader with your Reddit API credentials.Document Loader​See a usage example.from langchain.document_loaders import RedditPostsLoaderPreviousRebuffNextRedisInstallation and SetupDocument LoaderCommunityDiscordTwitterGitHubPythonJS/TSMoreHomepageBlogCopyright © 2023 LangChain, Inc.
3,340
Hacker News | 🦜️🔗 Langchain
Hacker News (sometimes abbreviated as HN) is a social news
Hacker News (sometimes abbreviated as HN) is a social news ->: Hacker News | 🦜️🔗 Langchain
3,341
Skip to main content🦜️🔗 LangChainDocsUse casesIntegrationsAPICommunityChat our docsLangSmithJS/TS DocsSearchCTRLKProvidersAnthropicAWSGoogleMicrosoftOpenAIMoreActiveloop Deep LakeAI21 LabsAimAINetworkAirbyteAirtableAleph AlphaAlibaba Cloud OpensearchAnalyticDBAnnoyAnyscaleApifyArangoDBArgillaArthurArxivAtlasAwaDBAWS DynamoDBAZLyricsBagelDBBananaBasetenBeamBeautiful SoupBiliBiliNIBittensorBlackboardBrave SearchCassandraCerebriumAIChaindeskChromaClarifaiClearMLClickHouseCnosDBCohereCollege ConfidentialCometConfident AIConfluenceC TransformersDashVectorDatabricksDatadog TracingDatadog LogsDataForSEODeepInfraDeepSparseDiffbotDingoDiscordDocArrayDoctranDocugamiDuckDBElasticsearchEpsillaEverNoteFacebook ChatFacebook FaissFigmaFireworksFlyteForefrontAIGitGitBookGoldenGoogle Document AIGoogle SerperGooseAIGPT4AllGradientGraphsignalGrobidGutenbergHacker NewsHazy ResearchHeliconeHologresHTML to textHugging FaceiFixitIMSDbInfinoJavelin AI GatewayJinaKonkoLanceDBLangChain Decorators ✨Llama.cppLog10MarqoMediaWikiDumpMeilisearchMetalMilvusMinimaxMLflow AI GatewayMLflowModalModelScopeModern TreasuryMomentoMongoDB AtlasMotherduckMotörheadMyScaleNeo4jNLPCloudNotion DBNucliaObsidianOpenLLMOpenSearchOpenWeatherMapPetalsPostgres EmbeddingPGVectorPineconePipelineAIPortkeyPredibasePrediction GuardPromptLayerprovidersPsychicPubMedQdrantRay ServeRebuffRedditRedisReplicateRoamRocksetRunhouseRWKV-4ScaNNSearchApiSearxNG Search APISerpAPIShale ProtocolSingleStoreDBscikit-learnSlackspaCySpreedlyStarRocksStochasticAIStripeSupabase (Postgres)NebulaTairTelegramTencentVectorDBTensorFlow DatasetsTigris2MarkdownTrelloTruLensTwitterTypesenseUnstructuredUpstash RedisUSearchVearchVectaraVespaWandB TracingWeights & BiasesWeatherWeaviateWhatsAppWhyLabsWikipediaWolfram AlphaWriterXataXorbits Inference (Xinference)YandexYeager.aiYouTubeZepZillizComponentsLLMsChat modelsDocument loadersDocument transformersText embedding modelsVector storesRetrieversToolsAgents and toolkitsMemoryCallbacksChat
Hacker News (sometimes abbreviated as HN) is a social news
Hacker News (sometimes abbreviated as HN) is a social news ->: Skip to main content🦜️🔗 LangChainDocsUse casesIntegrationsAPICommunityChat our docsLangSmithJS/TS DocsSearchCTRLKProvidersAnthropicAWSGoogleMicrosoftOpenAIMoreActiveloop Deep LakeAI21 LabsAimAINetworkAirbyteAirtableAleph AlphaAlibaba Cloud OpensearchAnalyticDBAnnoyAnyscaleApifyArangoDBArgillaArthurArxivAtlasAwaDBAWS DynamoDBAZLyricsBagelDBBananaBasetenBeamBeautiful SoupBiliBiliNIBittensorBlackboardBrave SearchCassandraCerebriumAIChaindeskChromaClarifaiClearMLClickHouseCnosDBCohereCollege ConfidentialCometConfident AIConfluenceC TransformersDashVectorDatabricksDatadog TracingDatadog LogsDataForSEODeepInfraDeepSparseDiffbotDingoDiscordDocArrayDoctranDocugamiDuckDBElasticsearchEpsillaEverNoteFacebook ChatFacebook FaissFigmaFireworksFlyteForefrontAIGitGitBookGoldenGoogle Document AIGoogle SerperGooseAIGPT4AllGradientGraphsignalGrobidGutenbergHacker NewsHazy ResearchHeliconeHologresHTML to textHugging FaceiFixitIMSDbInfinoJavelin AI GatewayJinaKonkoLanceDBLangChain Decorators ✨Llama.cppLog10MarqoMediaWikiDumpMeilisearchMetalMilvusMinimaxMLflow AI GatewayMLflowModalModelScopeModern TreasuryMomentoMongoDB AtlasMotherduckMotörheadMyScaleNeo4jNLPCloudNotion DBNucliaObsidianOpenLLMOpenSearchOpenWeatherMapPetalsPostgres EmbeddingPGVectorPineconePipelineAIPortkeyPredibasePrediction GuardPromptLayerprovidersPsychicPubMedQdrantRay ServeRebuffRedditRedisReplicateRoamRocksetRunhouseRWKV-4ScaNNSearchApiSearxNG Search APISerpAPIShale ProtocolSingleStoreDBscikit-learnSlackspaCySpreedlyStarRocksStochasticAIStripeSupabase (Postgres)NebulaTairTelegramTencentVectorDBTensorFlow DatasetsTigris2MarkdownTrelloTruLensTwitterTypesenseUnstructuredUpstash RedisUSearchVearchVectaraVespaWandB TracingWeights & BiasesWeatherWeaviateWhatsAppWhyLabsWikipediaWolfram AlphaWriterXataXorbits Inference (Xinference)YandexYeager.aiYouTubeZepZillizComponentsLLMsChat modelsDocument loadersDocument transformersText embedding modelsVector storesRetrieversToolsAgents and toolkitsMemoryCallbacksChat
3,342
and toolkitsMemoryCallbacksChat loadersProvidersMoreHacker NewsOn this pageHacker NewsHacker News (sometimes abbreviated as HN) is a social news
Hacker News (sometimes abbreviated as HN) is a social news
Hacker News (sometimes abbreviated as HN) is a social news ->: and toolkitsMemoryCallbacksChat loadersProvidersMoreHacker NewsOn this pageHacker NewsHacker News (sometimes abbreviated as HN) is a social news
3,343
website focusing on computer science and entrepreneurship. It is run by the investment fund and startup incubator Y Combinator. In general, content that can be submitted is defined as "anything that gratifies one's intellectual curiosity."Installation and Setup​There isn't any special setup for it.Document Loader​See a usage example.from langchain.document_loaders import HNLoaderPreviousGutenbergNextHazy ResearchInstallation and SetupDocument LoaderCommunityDiscordTwitterGitHubPythonJS/TSMoreHomepageBlogCopyright © 2023 LangChain, Inc.
Hacker News (sometimes abbreviated as HN) is a social news
Hacker News (sometimes abbreviated as HN) is a social news ->: website focusing on computer science and entrepreneurship. It is run by the investment fund and startup incubator Y Combinator. In general, content that can be submitted is defined as "anything that gratifies one's intellectual curiosity."Installation and Setup​There isn't any special setup for it.Document Loader​See a usage example.from langchain.document_loaders import HNLoaderPreviousGutenbergNextHazy ResearchInstallation and SetupDocument LoaderCommunityDiscordTwitterGitHubPythonJS/TSMoreHomepageBlogCopyright © 2023 LangChain, Inc.
3,344
Tair | 🦜️🔗 Langchain
This page covers how to use the Tair ecosystem within LangChain.
This page covers how to use the Tair ecosystem within LangChain. ->: Tair | 🦜️🔗 Langchain
3,345
Skip to main content🦜️🔗 LangChainDocsUse casesIntegrationsAPICommunityChat our docsLangSmithJS/TS DocsSearchCTRLKProvidersAnthropicAWSGoogleMicrosoftOpenAIMoreActiveloop Deep LakeAI21 LabsAimAINetworkAirbyteAirtableAleph AlphaAlibaba Cloud OpensearchAnalyticDBAnnoyAnyscaleApifyArangoDBArgillaArthurArxivAtlasAwaDBAWS DynamoDBAZLyricsBagelDBBananaBasetenBeamBeautiful SoupBiliBiliNIBittensorBlackboardBrave SearchCassandraCerebriumAIChaindeskChromaClarifaiClearMLClickHouseCnosDBCohereCollege ConfidentialCometConfident AIConfluenceC TransformersDashVectorDatabricksDatadog TracingDatadog LogsDataForSEODeepInfraDeepSparseDiffbotDingoDiscordDocArrayDoctranDocugamiDuckDBElasticsearchEpsillaEverNoteFacebook ChatFacebook FaissFigmaFireworksFlyteForefrontAIGitGitBookGoldenGoogle Document AIGoogle SerperGooseAIGPT4AllGradientGraphsignalGrobidGutenbergHacker NewsHazy ResearchHeliconeHologresHTML to textHugging FaceiFixitIMSDbInfinoJavelin AI GatewayJinaKonkoLanceDBLangChain Decorators ✨Llama.cppLog10MarqoMediaWikiDumpMeilisearchMetalMilvusMinimaxMLflow AI GatewayMLflowModalModelScopeModern TreasuryMomentoMongoDB AtlasMotherduckMotörheadMyScaleNeo4jNLPCloudNotion DBNucliaObsidianOpenLLMOpenSearchOpenWeatherMapPetalsPostgres EmbeddingPGVectorPineconePipelineAIPortkeyPredibasePrediction GuardPromptLayerprovidersPsychicPubMedQdrantRay ServeRebuffRedditRedisReplicateRoamRocksetRunhouseRWKV-4ScaNNSearchApiSearxNG Search APISerpAPIShale ProtocolSingleStoreDBscikit-learnSlackspaCySpreedlyStarRocksStochasticAIStripeSupabase (Postgres)NebulaTairTelegramTencentVectorDBTensorFlow DatasetsTigris2MarkdownTrelloTruLensTwitterTypesenseUnstructuredUpstash RedisUSearchVearchVectaraVespaWandB TracingWeights & BiasesWeatherWeaviateWhatsAppWhyLabsWikipediaWolfram AlphaWriterXataXorbits Inference (Xinference)YandexYeager.aiYouTubeZepZillizComponentsLLMsChat modelsDocument loadersDocument transformersText embedding modelsVector storesRetrieversToolsAgents and toolkitsMemoryCallbacksChat
This page covers how to use the Tair ecosystem within LangChain.
This page covers how to use the Tair ecosystem within LangChain. ->: Skip to main content🦜️🔗 LangChainDocsUse casesIntegrationsAPICommunityChat our docsLangSmithJS/TS DocsSearchCTRLKProvidersAnthropicAWSGoogleMicrosoftOpenAIMoreActiveloop Deep LakeAI21 LabsAimAINetworkAirbyteAirtableAleph AlphaAlibaba Cloud OpensearchAnalyticDBAnnoyAnyscaleApifyArangoDBArgillaArthurArxivAtlasAwaDBAWS DynamoDBAZLyricsBagelDBBananaBasetenBeamBeautiful SoupBiliBiliNIBittensorBlackboardBrave SearchCassandraCerebriumAIChaindeskChromaClarifaiClearMLClickHouseCnosDBCohereCollege ConfidentialCometConfident AIConfluenceC TransformersDashVectorDatabricksDatadog TracingDatadog LogsDataForSEODeepInfraDeepSparseDiffbotDingoDiscordDocArrayDoctranDocugamiDuckDBElasticsearchEpsillaEverNoteFacebook ChatFacebook FaissFigmaFireworksFlyteForefrontAIGitGitBookGoldenGoogle Document AIGoogle SerperGooseAIGPT4AllGradientGraphsignalGrobidGutenbergHacker NewsHazy ResearchHeliconeHologresHTML to textHugging FaceiFixitIMSDbInfinoJavelin AI GatewayJinaKonkoLanceDBLangChain Decorators ✨Llama.cppLog10MarqoMediaWikiDumpMeilisearchMetalMilvusMinimaxMLflow AI GatewayMLflowModalModelScopeModern TreasuryMomentoMongoDB AtlasMotherduckMotörheadMyScaleNeo4jNLPCloudNotion DBNucliaObsidianOpenLLMOpenSearchOpenWeatherMapPetalsPostgres EmbeddingPGVectorPineconePipelineAIPortkeyPredibasePrediction GuardPromptLayerprovidersPsychicPubMedQdrantRay ServeRebuffRedditRedisReplicateRoamRocksetRunhouseRWKV-4ScaNNSearchApiSearxNG Search APISerpAPIShale ProtocolSingleStoreDBscikit-learnSlackspaCySpreedlyStarRocksStochasticAIStripeSupabase (Postgres)NebulaTairTelegramTencentVectorDBTensorFlow DatasetsTigris2MarkdownTrelloTruLensTwitterTypesenseUnstructuredUpstash RedisUSearchVearchVectaraVespaWandB TracingWeights & BiasesWeatherWeaviateWhatsAppWhyLabsWikipediaWolfram AlphaWriterXataXorbits Inference (Xinference)YandexYeager.aiYouTubeZepZillizComponentsLLMsChat modelsDocument loadersDocument transformersText embedding modelsVector storesRetrieversToolsAgents and toolkitsMemoryCallbacksChat
3,346
and toolkitsMemoryCallbacksChat loadersProvidersMoreTairOn this pageTairThis page covers how to use the Tair ecosystem within LangChain.Installation and Setup‚ÄãInstall Tair Python SDK with pip install tair.Wrappers‚ÄãVectorStore‚ÄãThere exists a wrapper around TairVector, allowing you to use it as a vectorstore,
This page covers how to use the Tair ecosystem within LangChain.
This page covers how to use the Tair ecosystem within LangChain. ->: and toolkitsMemoryCallbacksChat loadersProvidersMoreTairOn this pageTairThis page covers how to use the Tair ecosystem within LangChain.Installation and Setup‚ÄãInstall Tair Python SDK with pip install tair.Wrappers‚ÄãVectorStore‚ÄãThere exists a wrapper around TairVector, allowing you to use it as a vectorstore,
3,347
whether for semantic search or example selection.To import this vectorstore:from langchain.vectorstores import TairFor a more detailed walkthrough of the Tair wrapper, see this notebookPreviousNebulaNextTelegramInstallation and SetupWrappersVectorStoreCommunityDiscordTwitterGitHubPythonJS/TSMoreHomepageBlogCopyright © 2023 LangChain, Inc.
This page covers how to use the Tair ecosystem within LangChain.
This page covers how to use the Tair ecosystem within LangChain. ->: whether for semantic search or example selection.To import this vectorstore:from langchain.vectorstores import TairFor a more detailed walkthrough of the Tair wrapper, see this notebookPreviousNebulaNextTelegramInstallation and SetupWrappersVectorStoreCommunityDiscordTwitterGitHubPythonJS/TSMoreHomepageBlogCopyright © 2023 LangChain, Inc.
3,348
OpenWeatherMap | 🦜️🔗 Langchain
OpenWeatherMap provides all essential weather data for a specific location:
OpenWeatherMap provides all essential weather data for a specific location: ->: OpenWeatherMap | 🦜️🔗 Langchain
3,349
Skip to main content🦜️🔗 LangChainDocsUse casesIntegrationsAPICommunityChat our docsLangSmithJS/TS DocsSearchCTRLKProvidersAnthropicAWSGoogleMicrosoftOpenAIMoreActiveloop Deep LakeAI21 LabsAimAINetworkAirbyteAirtableAleph AlphaAlibaba Cloud OpensearchAnalyticDBAnnoyAnyscaleApifyArangoDBArgillaArthurArxivAtlasAwaDBAWS DynamoDBAZLyricsBagelDBBananaBasetenBeamBeautiful SoupBiliBiliNIBittensorBlackboardBrave SearchCassandraCerebriumAIChaindeskChromaClarifaiClearMLClickHouseCnosDBCohereCollege ConfidentialCometConfident AIConfluenceC TransformersDashVectorDatabricksDatadog TracingDatadog LogsDataForSEODeepInfraDeepSparseDiffbotDingoDiscordDocArrayDoctranDocugamiDuckDBElasticsearchEpsillaEverNoteFacebook ChatFacebook FaissFigmaFireworksFlyteForefrontAIGitGitBookGoldenGoogle Document AIGoogle SerperGooseAIGPT4AllGradientGraphsignalGrobidGutenbergHacker NewsHazy ResearchHeliconeHologresHTML to textHugging FaceiFixitIMSDbInfinoJavelin AI GatewayJinaKonkoLanceDBLangChain Decorators ✨Llama.cppLog10MarqoMediaWikiDumpMeilisearchMetalMilvusMinimaxMLflow AI GatewayMLflowModalModelScopeModern TreasuryMomentoMongoDB AtlasMotherduckMotörheadMyScaleNeo4jNLPCloudNotion DBNucliaObsidianOpenLLMOpenSearchOpenWeatherMapPetalsPostgres EmbeddingPGVectorPineconePipelineAIPortkeyPredibasePrediction GuardPromptLayerprovidersPsychicPubMedQdrantRay ServeRebuffRedditRedisReplicateRoamRocksetRunhouseRWKV-4ScaNNSearchApiSearxNG Search APISerpAPIShale ProtocolSingleStoreDBscikit-learnSlackspaCySpreedlyStarRocksStochasticAIStripeSupabase (Postgres)NebulaTairTelegramTencentVectorDBTensorFlow DatasetsTigris2MarkdownTrelloTruLensTwitterTypesenseUnstructuredUpstash RedisUSearchVearchVectaraVespaWandB TracingWeights & BiasesWeatherWeaviateWhatsAppWhyLabsWikipediaWolfram AlphaWriterXataXorbits Inference (Xinference)YandexYeager.aiYouTubeZepZillizComponentsLLMsChat modelsDocument loadersDocument transformersText embedding modelsVector storesRetrieversToolsAgents and toolkitsMemoryCallbacksChat
OpenWeatherMap provides all essential weather data for a specific location:
OpenWeatherMap provides all essential weather data for a specific location: ->: Skip to main content🦜️🔗 LangChainDocsUse casesIntegrationsAPICommunityChat our docsLangSmithJS/TS DocsSearchCTRLKProvidersAnthropicAWSGoogleMicrosoftOpenAIMoreActiveloop Deep LakeAI21 LabsAimAINetworkAirbyteAirtableAleph AlphaAlibaba Cloud OpensearchAnalyticDBAnnoyAnyscaleApifyArangoDBArgillaArthurArxivAtlasAwaDBAWS DynamoDBAZLyricsBagelDBBananaBasetenBeamBeautiful SoupBiliBiliNIBittensorBlackboardBrave SearchCassandraCerebriumAIChaindeskChromaClarifaiClearMLClickHouseCnosDBCohereCollege ConfidentialCometConfident AIConfluenceC TransformersDashVectorDatabricksDatadog TracingDatadog LogsDataForSEODeepInfraDeepSparseDiffbotDingoDiscordDocArrayDoctranDocugamiDuckDBElasticsearchEpsillaEverNoteFacebook ChatFacebook FaissFigmaFireworksFlyteForefrontAIGitGitBookGoldenGoogle Document AIGoogle SerperGooseAIGPT4AllGradientGraphsignalGrobidGutenbergHacker NewsHazy ResearchHeliconeHologresHTML to textHugging FaceiFixitIMSDbInfinoJavelin AI GatewayJinaKonkoLanceDBLangChain Decorators ✨Llama.cppLog10MarqoMediaWikiDumpMeilisearchMetalMilvusMinimaxMLflow AI GatewayMLflowModalModelScopeModern TreasuryMomentoMongoDB AtlasMotherduckMotörheadMyScaleNeo4jNLPCloudNotion DBNucliaObsidianOpenLLMOpenSearchOpenWeatherMapPetalsPostgres EmbeddingPGVectorPineconePipelineAIPortkeyPredibasePrediction GuardPromptLayerprovidersPsychicPubMedQdrantRay ServeRebuffRedditRedisReplicateRoamRocksetRunhouseRWKV-4ScaNNSearchApiSearxNG Search APISerpAPIShale ProtocolSingleStoreDBscikit-learnSlackspaCySpreedlyStarRocksStochasticAIStripeSupabase (Postgres)NebulaTairTelegramTencentVectorDBTensorFlow DatasetsTigris2MarkdownTrelloTruLensTwitterTypesenseUnstructuredUpstash RedisUSearchVearchVectaraVespaWandB TracingWeights & BiasesWeatherWeaviateWhatsAppWhyLabsWikipediaWolfram AlphaWriterXataXorbits Inference (Xinference)YandexYeager.aiYouTubeZepZillizComponentsLLMsChat modelsDocument loadersDocument transformersText embedding modelsVector storesRetrieversToolsAgents and toolkitsMemoryCallbacksChat
3,350
and toolkitsMemoryCallbacksChat loadersProvidersMoreOpenWeatherMapOn this pageOpenWeatherMapOpenWeatherMap provides all essential weather data for a specific location:Current weatherMinute forecast for 1 hourHourly forecast for 48 hoursDaily forecast for 8 daysNational weather alertsHistorical weather data for 40+ years backThis page covers how to use the OpenWeatherMap API within LangChain.Installation and Setup‚ÄãInstall requirements withpip install pyowmGo to OpenWeatherMap and sign up for an account to get your API key hereSet your API key as OPENWEATHERMAP_API_KEY environment variableWrappers‚ÄãUtility‚ÄãThere exists a OpenWeatherMapAPIWrapper utility which wraps this API. To import this utility:from langchain.utilities.openweathermap import OpenWeatherMapAPIWrapperFor a more detailed walkthrough of this wrapper, see this notebook.Tool‚ÄãYou can also easily load this wrapper as a Tool (to use with an Agent).
OpenWeatherMap provides all essential weather data for a specific location:
OpenWeatherMap provides all essential weather data for a specific location: ->: and toolkitsMemoryCallbacksChat loadersProvidersMoreOpenWeatherMapOn this pageOpenWeatherMapOpenWeatherMap provides all essential weather data for a specific location:Current weatherMinute forecast for 1 hourHourly forecast for 48 hoursDaily forecast for 8 daysNational weather alertsHistorical weather data for 40+ years backThis page covers how to use the OpenWeatherMap API within LangChain.Installation and Setup‚ÄãInstall requirements withpip install pyowmGo to OpenWeatherMap and sign up for an account to get your API key hereSet your API key as OPENWEATHERMAP_API_KEY environment variableWrappers‚ÄãUtility‚ÄãThere exists a OpenWeatherMapAPIWrapper utility which wraps this API. To import this utility:from langchain.utilities.openweathermap import OpenWeatherMapAPIWrapperFor a more detailed walkthrough of this wrapper, see this notebook.Tool‚ÄãYou can also easily load this wrapper as a Tool (to use with an Agent).
3,351
You can do this with:from langchain.agents import load_toolstools = load_tools(["openweathermap-api"])For more information on tools, see this page.PreviousOpenSearchNextPetalsInstallation and SetupWrappersUtilityToolCommunityDiscordTwitterGitHubPythonJS/TSMoreHomepageBlogCopyright © 2023 LangChain, Inc.
OpenWeatherMap provides all essential weather data for a specific location:
OpenWeatherMap provides all essential weather data for a specific location: ->: You can do this with:from langchain.agents import load_toolstools = load_tools(["openweathermap-api"])For more information on tools, see this page.PreviousOpenSearchNextPetalsInstallation and SetupWrappersUtilityToolCommunityDiscordTwitterGitHubPythonJS/TSMoreHomepageBlogCopyright © 2023 LangChain, Inc.
3,352
Predibase | 🦜️🔗 Langchain
Learn how to use LangChain with models on Predibase.
Learn how to use LangChain with models on Predibase. ->: Predibase | 🦜️🔗 Langchain
3,353
Skip to main content🦜️🔗 LangChainDocsUse casesIntegrationsAPICommunityChat our docsLangSmithJS/TS DocsSearchCTRLKProvidersAnthropicAWSGoogleMicrosoftOpenAIMoreActiveloop Deep LakeAI21 LabsAimAINetworkAirbyteAirtableAleph AlphaAlibaba Cloud OpensearchAnalyticDBAnnoyAnyscaleApifyArangoDBArgillaArthurArxivAtlasAwaDBAWS DynamoDBAZLyricsBagelDBBananaBasetenBeamBeautiful SoupBiliBiliNIBittensorBlackboardBrave SearchCassandraCerebriumAIChaindeskChromaClarifaiClearMLClickHouseCnosDBCohereCollege ConfidentialCometConfident AIConfluenceC TransformersDashVectorDatabricksDatadog TracingDatadog LogsDataForSEODeepInfraDeepSparseDiffbotDingoDiscordDocArrayDoctranDocugamiDuckDBElasticsearchEpsillaEverNoteFacebook ChatFacebook FaissFigmaFireworksFlyteForefrontAIGitGitBookGoldenGoogle Document AIGoogle SerperGooseAIGPT4AllGradientGraphsignalGrobidGutenbergHacker NewsHazy ResearchHeliconeHologresHTML to textHugging FaceiFixitIMSDbInfinoJavelin AI GatewayJinaKonkoLanceDBLangChain Decorators ✨Llama.cppLog10MarqoMediaWikiDumpMeilisearchMetalMilvusMinimaxMLflow AI GatewayMLflowModalModelScopeModern TreasuryMomentoMongoDB AtlasMotherduckMotörheadMyScaleNeo4jNLPCloudNotion DBNucliaObsidianOpenLLMOpenSearchOpenWeatherMapPetalsPostgres EmbeddingPGVectorPineconePipelineAIPortkeyPredibasePrediction GuardPromptLayerprovidersPsychicPubMedQdrantRay ServeRebuffRedditRedisReplicateRoamRocksetRunhouseRWKV-4ScaNNSearchApiSearxNG Search APISerpAPIShale ProtocolSingleStoreDBscikit-learnSlackspaCySpreedlyStarRocksStochasticAIStripeSupabase (Postgres)NebulaTairTelegramTencentVectorDBTensorFlow DatasetsTigris2MarkdownTrelloTruLensTwitterTypesenseUnstructuredUpstash RedisUSearchVearchVectaraVespaWandB TracingWeights & BiasesWeatherWeaviateWhatsAppWhyLabsWikipediaWolfram AlphaWriterXataXorbits Inference (Xinference)YandexYeager.aiYouTubeZepZillizComponentsLLMsChat modelsDocument loadersDocument transformersText embedding modelsVector storesRetrieversToolsAgents and toolkitsMemoryCallbacksChat
Learn how to use LangChain with models on Predibase.
Learn how to use LangChain with models on Predibase. ->: Skip to main content🦜️🔗 LangChainDocsUse casesIntegrationsAPICommunityChat our docsLangSmithJS/TS DocsSearchCTRLKProvidersAnthropicAWSGoogleMicrosoftOpenAIMoreActiveloop Deep LakeAI21 LabsAimAINetworkAirbyteAirtableAleph AlphaAlibaba Cloud OpensearchAnalyticDBAnnoyAnyscaleApifyArangoDBArgillaArthurArxivAtlasAwaDBAWS DynamoDBAZLyricsBagelDBBananaBasetenBeamBeautiful SoupBiliBiliNIBittensorBlackboardBrave SearchCassandraCerebriumAIChaindeskChromaClarifaiClearMLClickHouseCnosDBCohereCollege ConfidentialCometConfident AIConfluenceC TransformersDashVectorDatabricksDatadog TracingDatadog LogsDataForSEODeepInfraDeepSparseDiffbotDingoDiscordDocArrayDoctranDocugamiDuckDBElasticsearchEpsillaEverNoteFacebook ChatFacebook FaissFigmaFireworksFlyteForefrontAIGitGitBookGoldenGoogle Document AIGoogle SerperGooseAIGPT4AllGradientGraphsignalGrobidGutenbergHacker NewsHazy ResearchHeliconeHologresHTML to textHugging FaceiFixitIMSDbInfinoJavelin AI GatewayJinaKonkoLanceDBLangChain Decorators ✨Llama.cppLog10MarqoMediaWikiDumpMeilisearchMetalMilvusMinimaxMLflow AI GatewayMLflowModalModelScopeModern TreasuryMomentoMongoDB AtlasMotherduckMotörheadMyScaleNeo4jNLPCloudNotion DBNucliaObsidianOpenLLMOpenSearchOpenWeatherMapPetalsPostgres EmbeddingPGVectorPineconePipelineAIPortkeyPredibasePrediction GuardPromptLayerprovidersPsychicPubMedQdrantRay ServeRebuffRedditRedisReplicateRoamRocksetRunhouseRWKV-4ScaNNSearchApiSearxNG Search APISerpAPIShale ProtocolSingleStoreDBscikit-learnSlackspaCySpreedlyStarRocksStochasticAIStripeSupabase (Postgres)NebulaTairTelegramTencentVectorDBTensorFlow DatasetsTigris2MarkdownTrelloTruLensTwitterTypesenseUnstructuredUpstash RedisUSearchVearchVectaraVespaWandB TracingWeights & BiasesWeatherWeaviateWhatsAppWhyLabsWikipediaWolfram AlphaWriterXataXorbits Inference (Xinference)YandexYeager.aiYouTubeZepZillizComponentsLLMsChat modelsDocument loadersDocument transformersText embedding modelsVector storesRetrieversToolsAgents and toolkitsMemoryCallbacksChat
3,354
and toolkitsMemoryCallbacksChat loadersProvidersMorePredibaseOn this pagePredibaseLearn how to use LangChain with models on Predibase. Setup​Create a Predibase account and API key.Install the Predibase Python client with pip install predibaseUse your API key to authenticateLLM​Predibase integrates with LangChain by implementing LLM module. You can see a short example below or a full notebook under LLM > Integrations > Predibase. import osos.environ["PREDIBASE_API_TOKEN"] = "{PREDIBASE_API_TOKEN}"from langchain.llms import Predibasemodel = Predibase(model = 'vicuna-13b', predibase_api_key=os.environ.get('PREDIBASE_API_TOKEN'))response = model("Can you recommend me a nice dry wine?")print(response)PreviousLog, Trace, and MonitorNextPrediction GuardSetupLLMCommunityDiscordTwitterGitHubPythonJS/TSMoreHomepageBlogCopyright © 2023 LangChain, Inc.
Learn how to use LangChain with models on Predibase.
Learn how to use LangChain with models on Predibase. ->: and toolkitsMemoryCallbacksChat loadersProvidersMorePredibaseOn this pagePredibaseLearn how to use LangChain with models on Predibase. Setup​Create a Predibase account and API key.Install the Predibase Python client with pip install predibaseUse your API key to authenticateLLM​Predibase integrates with LangChain by implementing LLM module. You can see a short example below or a full notebook under LLM > Integrations > Predibase. import osos.environ["PREDIBASE_API_TOKEN"] = "{PREDIBASE_API_TOKEN}"from langchain.llms import Predibasemodel = Predibase(model = 'vicuna-13b', predibase_api_key=os.environ.get('PREDIBASE_API_TOKEN'))response = model("Can you recommend me a nice dry wine?")print(response)PreviousLog, Trace, and MonitorNextPrediction GuardSetupLLMCommunityDiscordTwitterGitHubPythonJS/TSMoreHomepageBlogCopyright © 2023 LangChain, Inc.
3,355
Blackboard | 🦜️🔗 Langchain
Blackboard Learn (previously the Blackboard Learning Management System)
Blackboard Learn (previously the Blackboard Learning Management System) ->: Blackboard | 🦜️🔗 Langchain
3,356
Skip to main content🦜️🔗 LangChainDocsUse casesIntegrationsAPICommunityChat our docsLangSmithJS/TS DocsSearchCTRLKProvidersAnthropicAWSGoogleMicrosoftOpenAIMoreActiveloop Deep LakeAI21 LabsAimAINetworkAirbyteAirtableAleph AlphaAlibaba Cloud OpensearchAnalyticDBAnnoyAnyscaleApifyArangoDBArgillaArthurArxivAtlasAwaDBAWS DynamoDBAZLyricsBagelDBBananaBasetenBeamBeautiful SoupBiliBiliNIBittensorBlackboardBrave SearchCassandraCerebriumAIChaindeskChromaClarifaiClearMLClickHouseCnosDBCohereCollege ConfidentialCometConfident AIConfluenceC TransformersDashVectorDatabricksDatadog TracingDatadog LogsDataForSEODeepInfraDeepSparseDiffbotDingoDiscordDocArrayDoctranDocugamiDuckDBElasticsearchEpsillaEverNoteFacebook ChatFacebook FaissFigmaFireworksFlyteForefrontAIGitGitBookGoldenGoogle Document AIGoogle SerperGooseAIGPT4AllGradientGraphsignalGrobidGutenbergHacker NewsHazy ResearchHeliconeHologresHTML to textHugging FaceiFixitIMSDbInfinoJavelin AI GatewayJinaKonkoLanceDBLangChain Decorators ✨Llama.cppLog10MarqoMediaWikiDumpMeilisearchMetalMilvusMinimaxMLflow AI GatewayMLflowModalModelScopeModern TreasuryMomentoMongoDB AtlasMotherduckMotörheadMyScaleNeo4jNLPCloudNotion DBNucliaObsidianOpenLLMOpenSearchOpenWeatherMapPetalsPostgres EmbeddingPGVectorPineconePipelineAIPortkeyPredibasePrediction GuardPromptLayerprovidersPsychicPubMedQdrantRay ServeRebuffRedditRedisReplicateRoamRocksetRunhouseRWKV-4ScaNNSearchApiSearxNG Search APISerpAPIShale ProtocolSingleStoreDBscikit-learnSlackspaCySpreedlyStarRocksStochasticAIStripeSupabase (Postgres)NebulaTairTelegramTencentVectorDBTensorFlow DatasetsTigris2MarkdownTrelloTruLensTwitterTypesenseUnstructuredUpstash RedisUSearchVearchVectaraVespaWandB TracingWeights & BiasesWeatherWeaviateWhatsAppWhyLabsWikipediaWolfram AlphaWriterXataXorbits Inference (Xinference)YandexYeager.aiYouTubeZepZillizComponentsLLMsChat modelsDocument loadersDocument transformersText embedding modelsVector storesRetrieversToolsAgents and toolkitsMemoryCallbacksChat
Blackboard Learn (previously the Blackboard Learning Management System)
Blackboard Learn (previously the Blackboard Learning Management System) ->: Skip to main content🦜️🔗 LangChainDocsUse casesIntegrationsAPICommunityChat our docsLangSmithJS/TS DocsSearchCTRLKProvidersAnthropicAWSGoogleMicrosoftOpenAIMoreActiveloop Deep LakeAI21 LabsAimAINetworkAirbyteAirtableAleph AlphaAlibaba Cloud OpensearchAnalyticDBAnnoyAnyscaleApifyArangoDBArgillaArthurArxivAtlasAwaDBAWS DynamoDBAZLyricsBagelDBBananaBasetenBeamBeautiful SoupBiliBiliNIBittensorBlackboardBrave SearchCassandraCerebriumAIChaindeskChromaClarifaiClearMLClickHouseCnosDBCohereCollege ConfidentialCometConfident AIConfluenceC TransformersDashVectorDatabricksDatadog TracingDatadog LogsDataForSEODeepInfraDeepSparseDiffbotDingoDiscordDocArrayDoctranDocugamiDuckDBElasticsearchEpsillaEverNoteFacebook ChatFacebook FaissFigmaFireworksFlyteForefrontAIGitGitBookGoldenGoogle Document AIGoogle SerperGooseAIGPT4AllGradientGraphsignalGrobidGutenbergHacker NewsHazy ResearchHeliconeHologresHTML to textHugging FaceiFixitIMSDbInfinoJavelin AI GatewayJinaKonkoLanceDBLangChain Decorators ✨Llama.cppLog10MarqoMediaWikiDumpMeilisearchMetalMilvusMinimaxMLflow AI GatewayMLflowModalModelScopeModern TreasuryMomentoMongoDB AtlasMotherduckMotörheadMyScaleNeo4jNLPCloudNotion DBNucliaObsidianOpenLLMOpenSearchOpenWeatherMapPetalsPostgres EmbeddingPGVectorPineconePipelineAIPortkeyPredibasePrediction GuardPromptLayerprovidersPsychicPubMedQdrantRay ServeRebuffRedditRedisReplicateRoamRocksetRunhouseRWKV-4ScaNNSearchApiSearxNG Search APISerpAPIShale ProtocolSingleStoreDBscikit-learnSlackspaCySpreedlyStarRocksStochasticAIStripeSupabase (Postgres)NebulaTairTelegramTencentVectorDBTensorFlow DatasetsTigris2MarkdownTrelloTruLensTwitterTypesenseUnstructuredUpstash RedisUSearchVearchVectaraVespaWandB TracingWeights & BiasesWeatherWeaviateWhatsAppWhyLabsWikipediaWolfram AlphaWriterXataXorbits Inference (Xinference)YandexYeager.aiYouTubeZepZillizComponentsLLMsChat modelsDocument loadersDocument transformersText embedding modelsVector storesRetrieversToolsAgents and toolkitsMemoryCallbacksChat
3,357
and toolkitsMemoryCallbacksChat loadersProvidersMoreBlackboardOn this pageBlackboardBlackboard Learn (previously the Blackboard Learning Management System)
Blackboard Learn (previously the Blackboard Learning Management System)
Blackboard Learn (previously the Blackboard Learning Management System) ->: and toolkitsMemoryCallbacksChat loadersProvidersMoreBlackboardOn this pageBlackboardBlackboard Learn (previously the Blackboard Learning Management System)
3,358
is a web-based virtual learning environment and learning management system developed by Blackboard Inc. The software features course management, customizable open architecture, and scalable design that allows integration with student information systems and authentication protocols. It may be installed on local servers, hosted by Blackboard ASP Solutions, or provided as Software as a Service hosted on Amazon Web Services. Its main purposes are stated to include the addition of online elements to courses traditionally delivered face-to-face and development of completely online courses with few or no face-to-face meetings.Installation and Setup​There isn't any special setup for it.Document Loader​See a usage example.from langchain.document_loaders import BlackboardLoaderPreviousNIBittensorNextBrave SearchInstallation and SetupDocument LoaderCommunityDiscordTwitterGitHubPythonJS/TSMoreHomepageBlogCopyright © 2023 LangChain, Inc.
Blackboard Learn (previously the Blackboard Learning Management System)
Blackboard Learn (previously the Blackboard Learning Management System) ->: is a web-based virtual learning environment and learning management system developed by Blackboard Inc. The software features course management, customizable open architecture, and scalable design that allows integration with student information systems and authentication protocols. It may be installed on local servers, hosted by Blackboard ASP Solutions, or provided as Software as a Service hosted on Amazon Web Services. Its main purposes are stated to include the addition of online elements to courses traditionally delivered face-to-face and development of completely online courses with few or no face-to-face meetings.Installation and Setup​There isn't any special setup for it.Document Loader​See a usage example.from langchain.document_loaders import BlackboardLoaderPreviousNIBittensorNextBrave SearchInstallation and SetupDocument LoaderCommunityDiscordTwitterGitHubPythonJS/TSMoreHomepageBlogCopyright © 2023 LangChain, Inc.
3,359
EverNote | 🦜️🔗 Langchain
EverNote is intended for archiving and creating notes in which photos, audio and saved web content can be embedded. Notes are stored in virtual "notebooks" and can be tagged, annotated, edited, searched, and exported.
EverNote is intended for archiving and creating notes in which photos, audio and saved web content can be embedded. Notes are stored in virtual "notebooks" and can be tagged, annotated, edited, searched, and exported. ->: EverNote | 🦜️🔗 Langchain
3,360
Skip to main content🦜️🔗 LangChainDocsUse casesIntegrationsAPICommunityChat our docsLangSmithJS/TS DocsSearchCTRLKProvidersAnthropicAWSGoogleMicrosoftOpenAIMoreActiveloop Deep LakeAI21 LabsAimAINetworkAirbyteAirtableAleph AlphaAlibaba Cloud OpensearchAnalyticDBAnnoyAnyscaleApifyArangoDBArgillaArthurArxivAtlasAwaDBAWS DynamoDBAZLyricsBagelDBBananaBasetenBeamBeautiful SoupBiliBiliNIBittensorBlackboardBrave SearchCassandraCerebriumAIChaindeskChromaClarifaiClearMLClickHouseCnosDBCohereCollege ConfidentialCometConfident AIConfluenceC TransformersDashVectorDatabricksDatadog TracingDatadog LogsDataForSEODeepInfraDeepSparseDiffbotDingoDiscordDocArrayDoctranDocugamiDuckDBElasticsearchEpsillaEverNoteFacebook ChatFacebook FaissFigmaFireworksFlyteForefrontAIGitGitBookGoldenGoogle Document AIGoogle SerperGooseAIGPT4AllGradientGraphsignalGrobidGutenbergHacker NewsHazy ResearchHeliconeHologresHTML to textHugging FaceiFixitIMSDbInfinoJavelin AI GatewayJinaKonkoLanceDBLangChain Decorators ✨Llama.cppLog10MarqoMediaWikiDumpMeilisearchMetalMilvusMinimaxMLflow AI GatewayMLflowModalModelScopeModern TreasuryMomentoMongoDB AtlasMotherduckMotörheadMyScaleNeo4jNLPCloudNotion DBNucliaObsidianOpenLLMOpenSearchOpenWeatherMapPetalsPostgres EmbeddingPGVectorPineconePipelineAIPortkeyPredibasePrediction GuardPromptLayerprovidersPsychicPubMedQdrantRay ServeRebuffRedditRedisReplicateRoamRocksetRunhouseRWKV-4ScaNNSearchApiSearxNG Search APISerpAPIShale ProtocolSingleStoreDBscikit-learnSlackspaCySpreedlyStarRocksStochasticAIStripeSupabase (Postgres)NebulaTairTelegramTencentVectorDBTensorFlow DatasetsTigris2MarkdownTrelloTruLensTwitterTypesenseUnstructuredUpstash RedisUSearchVearchVectaraVespaWandB TracingWeights & BiasesWeatherWeaviateWhatsAppWhyLabsWikipediaWolfram AlphaWriterXataXorbits Inference (Xinference)YandexYeager.aiYouTubeZepZillizComponentsLLMsChat modelsDocument loadersDocument transformersText embedding modelsVector storesRetrieversToolsAgents and toolkitsMemoryCallbacksChat
EverNote is intended for archiving and creating notes in which photos, audio and saved web content can be embedded. Notes are stored in virtual "notebooks" and can be tagged, annotated, edited, searched, and exported.
EverNote is intended for archiving and creating notes in which photos, audio and saved web content can be embedded. Notes are stored in virtual "notebooks" and can be tagged, annotated, edited, searched, and exported. ->: Skip to main content🦜️🔗 LangChainDocsUse casesIntegrationsAPICommunityChat our docsLangSmithJS/TS DocsSearchCTRLKProvidersAnthropicAWSGoogleMicrosoftOpenAIMoreActiveloop Deep LakeAI21 LabsAimAINetworkAirbyteAirtableAleph AlphaAlibaba Cloud OpensearchAnalyticDBAnnoyAnyscaleApifyArangoDBArgillaArthurArxivAtlasAwaDBAWS DynamoDBAZLyricsBagelDBBananaBasetenBeamBeautiful SoupBiliBiliNIBittensorBlackboardBrave SearchCassandraCerebriumAIChaindeskChromaClarifaiClearMLClickHouseCnosDBCohereCollege ConfidentialCometConfident AIConfluenceC TransformersDashVectorDatabricksDatadog TracingDatadog LogsDataForSEODeepInfraDeepSparseDiffbotDingoDiscordDocArrayDoctranDocugamiDuckDBElasticsearchEpsillaEverNoteFacebook ChatFacebook FaissFigmaFireworksFlyteForefrontAIGitGitBookGoldenGoogle Document AIGoogle SerperGooseAIGPT4AllGradientGraphsignalGrobidGutenbergHacker NewsHazy ResearchHeliconeHologresHTML to textHugging FaceiFixitIMSDbInfinoJavelin AI GatewayJinaKonkoLanceDBLangChain Decorators ✨Llama.cppLog10MarqoMediaWikiDumpMeilisearchMetalMilvusMinimaxMLflow AI GatewayMLflowModalModelScopeModern TreasuryMomentoMongoDB AtlasMotherduckMotörheadMyScaleNeo4jNLPCloudNotion DBNucliaObsidianOpenLLMOpenSearchOpenWeatherMapPetalsPostgres EmbeddingPGVectorPineconePipelineAIPortkeyPredibasePrediction GuardPromptLayerprovidersPsychicPubMedQdrantRay ServeRebuffRedditRedisReplicateRoamRocksetRunhouseRWKV-4ScaNNSearchApiSearxNG Search APISerpAPIShale ProtocolSingleStoreDBscikit-learnSlackspaCySpreedlyStarRocksStochasticAIStripeSupabase (Postgres)NebulaTairTelegramTencentVectorDBTensorFlow DatasetsTigris2MarkdownTrelloTruLensTwitterTypesenseUnstructuredUpstash RedisUSearchVearchVectaraVespaWandB TracingWeights & BiasesWeatherWeaviateWhatsAppWhyLabsWikipediaWolfram AlphaWriterXataXorbits Inference (Xinference)YandexYeager.aiYouTubeZepZillizComponentsLLMsChat modelsDocument loadersDocument transformersText embedding modelsVector storesRetrieversToolsAgents and toolkitsMemoryCallbacksChat
3,361
and toolkitsMemoryCallbacksChat loadersProvidersMoreEverNoteOn this pageEverNoteEverNote is intended for archiving and creating notes in which photos, audio and saved web content can be embedded. Notes are stored in virtual "notebooks" and can be tagged, annotated, edited, searched, and exported.Installation and Setup​First, you need to install lxml and html2text python packages.pip install lxmlpip install html2textDocument Loader​See a usage example.from langchain.document_loaders import EverNoteLoaderPreviousEpsillaNextFacebook ChatInstallation and SetupDocument LoaderCommunityDiscordTwitterGitHubPythonJS/TSMoreHomepageBlogCopyright © 2023 LangChain, Inc.
EverNote is intended for archiving and creating notes in which photos, audio and saved web content can be embedded. Notes are stored in virtual "notebooks" and can be tagged, annotated, edited, searched, and exported.
EverNote is intended for archiving and creating notes in which photos, audio and saved web content can be embedded. Notes are stored in virtual "notebooks" and can be tagged, annotated, edited, searched, and exported. ->: and toolkitsMemoryCallbacksChat loadersProvidersMoreEverNoteOn this pageEverNoteEverNote is intended for archiving and creating notes in which photos, audio and saved web content can be embedded. Notes are stored in virtual "notebooks" and can be tagged, annotated, edited, searched, and exported.Installation and Setup​First, you need to install lxml and html2text python packages.pip install lxmlpip install html2textDocument Loader​See a usage example.from langchain.document_loaders import EverNoteLoaderPreviousEpsillaNextFacebook ChatInstallation and SetupDocument LoaderCommunityDiscordTwitterGitHubPythonJS/TSMoreHomepageBlogCopyright © 2023 LangChain, Inc.
3,362
SearxNG Search API | 🦜️🔗 Langchain
This page covers how to use the SearxNG search API within LangChain.
This page covers how to use the SearxNG search API within LangChain. ->: SearxNG Search API | 🦜️🔗 Langchain
3,363
Skip to main content🦜️🔗 LangChainDocsUse casesIntegrationsAPICommunityChat our docsLangSmithJS/TS DocsSearchCTRLKProvidersAnthropicAWSGoogleMicrosoftOpenAIMoreActiveloop Deep LakeAI21 LabsAimAINetworkAirbyteAirtableAleph AlphaAlibaba Cloud OpensearchAnalyticDBAnnoyAnyscaleApifyArangoDBArgillaArthurArxivAtlasAwaDBAWS DynamoDBAZLyricsBagelDBBananaBasetenBeamBeautiful SoupBiliBiliNIBittensorBlackboardBrave SearchCassandraCerebriumAIChaindeskChromaClarifaiClearMLClickHouseCnosDBCohereCollege ConfidentialCometConfident AIConfluenceC TransformersDashVectorDatabricksDatadog TracingDatadog LogsDataForSEODeepInfraDeepSparseDiffbotDingoDiscordDocArrayDoctranDocugamiDuckDBElasticsearchEpsillaEverNoteFacebook ChatFacebook FaissFigmaFireworksFlyteForefrontAIGitGitBookGoldenGoogle Document AIGoogle SerperGooseAIGPT4AllGradientGraphsignalGrobidGutenbergHacker NewsHazy ResearchHeliconeHologresHTML to textHugging FaceiFixitIMSDbInfinoJavelin AI GatewayJinaKonkoLanceDBLangChain Decorators ✨Llama.cppLog10MarqoMediaWikiDumpMeilisearchMetalMilvusMinimaxMLflow AI GatewayMLflowModalModelScopeModern TreasuryMomentoMongoDB AtlasMotherduckMotörheadMyScaleNeo4jNLPCloudNotion DBNucliaObsidianOpenLLMOpenSearchOpenWeatherMapPetalsPostgres EmbeddingPGVectorPineconePipelineAIPortkeyPredibasePrediction GuardPromptLayerprovidersPsychicPubMedQdrantRay ServeRebuffRedditRedisReplicateRoamRocksetRunhouseRWKV-4ScaNNSearchApiSearxNG Search APISerpAPIShale ProtocolSingleStoreDBscikit-learnSlackspaCySpreedlyStarRocksStochasticAIStripeSupabase (Postgres)NebulaTairTelegramTencentVectorDBTensorFlow DatasetsTigris2MarkdownTrelloTruLensTwitterTypesenseUnstructuredUpstash RedisUSearchVearchVectaraVespaWandB TracingWeights & BiasesWeatherWeaviateWhatsAppWhyLabsWikipediaWolfram AlphaWriterXataXorbits Inference (Xinference)YandexYeager.aiYouTubeZepZillizComponentsLLMsChat modelsDocument loadersDocument transformersText embedding modelsVector storesRetrieversToolsAgents and toolkitsMemoryCallbacksChat
This page covers how to use the SearxNG search API within LangChain.
This page covers how to use the SearxNG search API within LangChain. ->: Skip to main content🦜️🔗 LangChainDocsUse casesIntegrationsAPICommunityChat our docsLangSmithJS/TS DocsSearchCTRLKProvidersAnthropicAWSGoogleMicrosoftOpenAIMoreActiveloop Deep LakeAI21 LabsAimAINetworkAirbyteAirtableAleph AlphaAlibaba Cloud OpensearchAnalyticDBAnnoyAnyscaleApifyArangoDBArgillaArthurArxivAtlasAwaDBAWS DynamoDBAZLyricsBagelDBBananaBasetenBeamBeautiful SoupBiliBiliNIBittensorBlackboardBrave SearchCassandraCerebriumAIChaindeskChromaClarifaiClearMLClickHouseCnosDBCohereCollege ConfidentialCometConfident AIConfluenceC TransformersDashVectorDatabricksDatadog TracingDatadog LogsDataForSEODeepInfraDeepSparseDiffbotDingoDiscordDocArrayDoctranDocugamiDuckDBElasticsearchEpsillaEverNoteFacebook ChatFacebook FaissFigmaFireworksFlyteForefrontAIGitGitBookGoldenGoogle Document AIGoogle SerperGooseAIGPT4AllGradientGraphsignalGrobidGutenbergHacker NewsHazy ResearchHeliconeHologresHTML to textHugging FaceiFixitIMSDbInfinoJavelin AI GatewayJinaKonkoLanceDBLangChain Decorators ✨Llama.cppLog10MarqoMediaWikiDumpMeilisearchMetalMilvusMinimaxMLflow AI GatewayMLflowModalModelScopeModern TreasuryMomentoMongoDB AtlasMotherduckMotörheadMyScaleNeo4jNLPCloudNotion DBNucliaObsidianOpenLLMOpenSearchOpenWeatherMapPetalsPostgres EmbeddingPGVectorPineconePipelineAIPortkeyPredibasePrediction GuardPromptLayerprovidersPsychicPubMedQdrantRay ServeRebuffRedditRedisReplicateRoamRocksetRunhouseRWKV-4ScaNNSearchApiSearxNG Search APISerpAPIShale ProtocolSingleStoreDBscikit-learnSlackspaCySpreedlyStarRocksStochasticAIStripeSupabase (Postgres)NebulaTairTelegramTencentVectorDBTensorFlow DatasetsTigris2MarkdownTrelloTruLensTwitterTypesenseUnstructuredUpstash RedisUSearchVearchVectaraVespaWandB TracingWeights & BiasesWeatherWeaviateWhatsAppWhyLabsWikipediaWolfram AlphaWriterXataXorbits Inference (Xinference)YandexYeager.aiYouTubeZepZillizComponentsLLMsChat modelsDocument loadersDocument transformersText embedding modelsVector storesRetrieversToolsAgents and toolkitsMemoryCallbacksChat
3,364
and toolkitsMemoryCallbacksChat loadersProvidersMoreSearxNG Search APIOn this pageSearxNG Search APIThis page covers how to use the SearxNG search API within LangChain.
This page covers how to use the SearxNG search API within LangChain.
This page covers how to use the SearxNG search API within LangChain. ->: and toolkitsMemoryCallbacksChat loadersProvidersMoreSearxNG Search APIOn this pageSearxNG Search APIThis page covers how to use the SearxNG search API within LangChain.
3,365
It is broken into two parts: installation and setup, and then references to the specific SearxNG API wrapper.Installation and Setup‚ÄãWhile it is possible to utilize the wrapper in conjunction with public searx instances these instances frequently do not permit API access (see note on output format below) and have limitations on the frequency of requests. It is recommended to opt for a self-hosted instance instead.Self Hosted Instance:‚ÄãSee this page for installation instructions.When you install SearxNG, the only active output format by default is the HTML format.
This page covers how to use the SearxNG search API within LangChain.
This page covers how to use the SearxNG search API within LangChain. ->: It is broken into two parts: installation and setup, and then references to the specific SearxNG API wrapper.Installation and Setup‚ÄãWhile it is possible to utilize the wrapper in conjunction with public searx instances these instances frequently do not permit API access (see note on output format below) and have limitations on the frequency of requests. It is recommended to opt for a self-hosted instance instead.Self Hosted Instance:‚ÄãSee this page for installation instructions.When you install SearxNG, the only active output format by default is the HTML format.
3,366
You need to activate the json format to use the API. This can be done by adding the following line to the settings.yml file:search: formats: - html - jsonYou can make sure that the API is working by issuing a curl request to the API endpoint:curl -kLX GET --data-urlencode q='langchain' -d format=json http://localhost:8888This should return a JSON object with the results.Wrappers‚ÄãUtility‚ÄãTo use the wrapper we need to pass the host of the SearxNG instance to the wrapper with:1. the named parameter `searx_host` when creating the instance.2. exporting the environment variable `SEARXNG_HOST`.You can use the wrapper to get results from a SearxNG instance. from langchain.utilities import SearxSearchWrappers = SearxSearchWrapper(searx_host="http://localhost:8888")s.run("what is a large language model?")Tool‚ÄãYou can also load this wrapper as a Tool (to use with an Agent).You can do this with:from langchain.agents import load_toolstools = load_tools(["searx-search"], searx_host="http://localhost:8888", engines=["github"])Note that we could optionally pass custom engines to use.If you want to obtain results with metadata as json you can use:tools = load_tools(["searx-search-results-json"], searx_host="http://localhost:8888", num_results=5)Quickly creating tools‚ÄãThis examples showcases a quick way to create multiple tools from the same
This page covers how to use the SearxNG search API within LangChain.
This page covers how to use the SearxNG search API within LangChain. ->: You need to activate the json format to use the API. This can be done by adding the following line to the settings.yml file:search: formats: - html - jsonYou can make sure that the API is working by issuing a curl request to the API endpoint:curl -kLX GET --data-urlencode q='langchain' -d format=json http://localhost:8888This should return a JSON object with the results.Wrappers‚ÄãUtility‚ÄãTo use the wrapper we need to pass the host of the SearxNG instance to the wrapper with:1. the named parameter `searx_host` when creating the instance.2. exporting the environment variable `SEARXNG_HOST`.You can use the wrapper to get results from a SearxNG instance. from langchain.utilities import SearxSearchWrappers = SearxSearchWrapper(searx_host="http://localhost:8888")s.run("what is a large language model?")Tool‚ÄãYou can also load this wrapper as a Tool (to use with an Agent).You can do this with:from langchain.agents import load_toolstools = load_tools(["searx-search"], searx_host="http://localhost:8888", engines=["github"])Note that we could optionally pass custom engines to use.If you want to obtain results with metadata as json you can use:tools = load_tools(["searx-search-results-json"], searx_host="http://localhost:8888", num_results=5)Quickly creating tools‚ÄãThis examples showcases a quick way to create multiple tools from the same
3,367
wrapper.from langchain.tools.searx_search.tool import SearxSearchResultswrapper = SearxSearchWrapper(searx_host="**")github_tool = SearxSearchResults(name="Github", wrapper=wrapper, kwargs = { "engines": ["github"], })arxiv_tool = SearxSearchResults(name="Arxiv", wrapper=wrapper, kwargs = { "engines": ["arxiv"] })For more information on tools, see this page.PreviousSearchApiNextSerpAPIInstallation and SetupSelf Hosted Instance:WrappersUtilityToolCommunityDiscordTwitterGitHubPythonJS/TSMoreHomepageBlogCopyright © 2023 LangChain, Inc.
This page covers how to use the SearxNG search API within LangChain.
This page covers how to use the SearxNG search API within LangChain. ->: wrapper.from langchain.tools.searx_search.tool import SearxSearchResultswrapper = SearxSearchWrapper(searx_host="**")github_tool = SearxSearchResults(name="Github", wrapper=wrapper, kwargs = { "engines": ["github"], })arxiv_tool = SearxSearchResults(name="Arxiv", wrapper=wrapper, kwargs = { "engines": ["arxiv"] })For more information on tools, see this page.PreviousSearchApiNextSerpAPIInstallation and SetupSelf Hosted Instance:WrappersUtilityToolCommunityDiscordTwitterGitHubPythonJS/TSMoreHomepageBlogCopyright © 2023 LangChain, Inc.
3,368
Tigris | 🦜️🔗 Langchain
Tigris is an open-source Serverless NoSQL Database and Search Platform designed to simplify building high-performance vector search applications.
Tigris is an open-source Serverless NoSQL Database and Search Platform designed to simplify building high-performance vector search applications. ->: Tigris | 🦜️🔗 Langchain
3,369
Skip to main content🦜️🔗 LangChainDocsUse casesIntegrationsAPICommunityChat our docsLangSmithJS/TS DocsSearchCTRLKProvidersAnthropicAWSGoogleMicrosoftOpenAIMoreActiveloop Deep LakeAI21 LabsAimAINetworkAirbyteAirtableAleph AlphaAlibaba Cloud OpensearchAnalyticDBAnnoyAnyscaleApifyArangoDBArgillaArthurArxivAtlasAwaDBAWS DynamoDBAZLyricsBagelDBBananaBasetenBeamBeautiful SoupBiliBiliNIBittensorBlackboardBrave SearchCassandraCerebriumAIChaindeskChromaClarifaiClearMLClickHouseCnosDBCohereCollege ConfidentialCometConfident AIConfluenceC TransformersDashVectorDatabricksDatadog TracingDatadog LogsDataForSEODeepInfraDeepSparseDiffbotDingoDiscordDocArrayDoctranDocugamiDuckDBElasticsearchEpsillaEverNoteFacebook ChatFacebook FaissFigmaFireworksFlyteForefrontAIGitGitBookGoldenGoogle Document AIGoogle SerperGooseAIGPT4AllGradientGraphsignalGrobidGutenbergHacker NewsHazy ResearchHeliconeHologresHTML to textHugging FaceiFixitIMSDbInfinoJavelin AI GatewayJinaKonkoLanceDBLangChain Decorators ✨Llama.cppLog10MarqoMediaWikiDumpMeilisearchMetalMilvusMinimaxMLflow AI GatewayMLflowModalModelScopeModern TreasuryMomentoMongoDB AtlasMotherduckMotörheadMyScaleNeo4jNLPCloudNotion DBNucliaObsidianOpenLLMOpenSearchOpenWeatherMapPetalsPostgres EmbeddingPGVectorPineconePipelineAIPortkeyPredibasePrediction GuardPromptLayerprovidersPsychicPubMedQdrantRay ServeRebuffRedditRedisReplicateRoamRocksetRunhouseRWKV-4ScaNNSearchApiSearxNG Search APISerpAPIShale ProtocolSingleStoreDBscikit-learnSlackspaCySpreedlyStarRocksStochasticAIStripeSupabase (Postgres)NebulaTairTelegramTencentVectorDBTensorFlow DatasetsTigris2MarkdownTrelloTruLensTwitterTypesenseUnstructuredUpstash RedisUSearchVearchVectaraVespaWandB TracingWeights & BiasesWeatherWeaviateWhatsAppWhyLabsWikipediaWolfram AlphaWriterXataXorbits Inference (Xinference)YandexYeager.aiYouTubeZepZillizComponentsLLMsChat modelsDocument loadersDocument transformersText embedding modelsVector storesRetrieversToolsAgents and toolkitsMemoryCallbacksChat
Tigris is an open-source Serverless NoSQL Database and Search Platform designed to simplify building high-performance vector search applications.
Tigris is an open-source Serverless NoSQL Database and Search Platform designed to simplify building high-performance vector search applications. ->: Skip to main content🦜️🔗 LangChainDocsUse casesIntegrationsAPICommunityChat our docsLangSmithJS/TS DocsSearchCTRLKProvidersAnthropicAWSGoogleMicrosoftOpenAIMoreActiveloop Deep LakeAI21 LabsAimAINetworkAirbyteAirtableAleph AlphaAlibaba Cloud OpensearchAnalyticDBAnnoyAnyscaleApifyArangoDBArgillaArthurArxivAtlasAwaDBAWS DynamoDBAZLyricsBagelDBBananaBasetenBeamBeautiful SoupBiliBiliNIBittensorBlackboardBrave SearchCassandraCerebriumAIChaindeskChromaClarifaiClearMLClickHouseCnosDBCohereCollege ConfidentialCometConfident AIConfluenceC TransformersDashVectorDatabricksDatadog TracingDatadog LogsDataForSEODeepInfraDeepSparseDiffbotDingoDiscordDocArrayDoctranDocugamiDuckDBElasticsearchEpsillaEverNoteFacebook ChatFacebook FaissFigmaFireworksFlyteForefrontAIGitGitBookGoldenGoogle Document AIGoogle SerperGooseAIGPT4AllGradientGraphsignalGrobidGutenbergHacker NewsHazy ResearchHeliconeHologresHTML to textHugging FaceiFixitIMSDbInfinoJavelin AI GatewayJinaKonkoLanceDBLangChain Decorators ✨Llama.cppLog10MarqoMediaWikiDumpMeilisearchMetalMilvusMinimaxMLflow AI GatewayMLflowModalModelScopeModern TreasuryMomentoMongoDB AtlasMotherduckMotörheadMyScaleNeo4jNLPCloudNotion DBNucliaObsidianOpenLLMOpenSearchOpenWeatherMapPetalsPostgres EmbeddingPGVectorPineconePipelineAIPortkeyPredibasePrediction GuardPromptLayerprovidersPsychicPubMedQdrantRay ServeRebuffRedditRedisReplicateRoamRocksetRunhouseRWKV-4ScaNNSearchApiSearxNG Search APISerpAPIShale ProtocolSingleStoreDBscikit-learnSlackspaCySpreedlyStarRocksStochasticAIStripeSupabase (Postgres)NebulaTairTelegramTencentVectorDBTensorFlow DatasetsTigris2MarkdownTrelloTruLensTwitterTypesenseUnstructuredUpstash RedisUSearchVearchVectaraVespaWandB TracingWeights & BiasesWeatherWeaviateWhatsAppWhyLabsWikipediaWolfram AlphaWriterXataXorbits Inference (Xinference)YandexYeager.aiYouTubeZepZillizComponentsLLMsChat modelsDocument loadersDocument transformersText embedding modelsVector storesRetrieversToolsAgents and toolkitsMemoryCallbacksChat
3,370
and toolkitsMemoryCallbacksChat loadersProvidersMoreTigrisOn this pageTigrisTigris is an open-source Serverless NoSQL Database and Search Platform designed to simplify building high-performance vector search applications.
Tigris is an open-source Serverless NoSQL Database and Search Platform designed to simplify building high-performance vector search applications.
Tigris is an open-source Serverless NoSQL Database and Search Platform designed to simplify building high-performance vector search applications. ->: and toolkitsMemoryCallbacksChat loadersProvidersMoreTigrisOn this pageTigrisTigris is an open-source Serverless NoSQL Database and Search Platform designed to simplify building high-performance vector search applications.
3,371
Tigris eliminates the infrastructure complexity of managing, operating, and synchronizing multiple tools, allowing you to focus on building great applications instead.Installation and Setup​pip install tigrisdb openapi-schema-pydantic openai tiktokenVector Store​See a usage example.from langchain.vectorstores import TigrisPreviousTensorFlow DatasetsNext2MarkdownInstallation and SetupVector StoreCommunityDiscordTwitterGitHubPythonJS/TSMoreHomepageBlogCopyright © 2023 LangChain, Inc.
Tigris is an open-source Serverless NoSQL Database and Search Platform designed to simplify building high-performance vector search applications.
Tigris is an open-source Serverless NoSQL Database and Search Platform designed to simplify building high-performance vector search applications. ->: Tigris eliminates the infrastructure complexity of managing, operating, and synchronizing multiple tools, allowing you to focus on building great applications instead.Installation and Setup​pip install tigrisdb openapi-schema-pydantic openai tiktokenVector Store​See a usage example.from langchain.vectorstores import TigrisPreviousTensorFlow DatasetsNext2MarkdownInstallation and SetupVector StoreCommunityDiscordTwitterGitHubPythonJS/TSMoreHomepageBlogCopyright © 2023 LangChain, Inc.
3,372
Wikipedia | 🦜️🔗 Langchain
Wikipedia is a multilingual free online encyclopedia written and maintained by a community of volunteers, known as Wikipedians, through open collaboration and using a wiki-based editing system called MediaWiki. Wikipedia is the largest and most-read reference work in history.
Wikipedia is a multilingual free online encyclopedia written and maintained by a community of volunteers, known as Wikipedians, through open collaboration and using a wiki-based editing system called MediaWiki. Wikipedia is the largest and most-read reference work in history. ->: Wikipedia | 🦜️🔗 Langchain
3,373
Skip to main content🦜️🔗 LangChainDocsUse casesIntegrationsAPICommunityChat our docsLangSmithJS/TS DocsSearchCTRLKProvidersAnthropicAWSGoogleMicrosoftOpenAIMoreActiveloop Deep LakeAI21 LabsAimAINetworkAirbyteAirtableAleph AlphaAlibaba Cloud OpensearchAnalyticDBAnnoyAnyscaleApifyArangoDBArgillaArthurArxivAtlasAwaDBAWS DynamoDBAZLyricsBagelDBBananaBasetenBeamBeautiful SoupBiliBiliNIBittensorBlackboardBrave SearchCassandraCerebriumAIChaindeskChromaClarifaiClearMLClickHouseCnosDBCohereCollege ConfidentialCometConfident AIConfluenceC TransformersDashVectorDatabricksDatadog TracingDatadog LogsDataForSEODeepInfraDeepSparseDiffbotDingoDiscordDocArrayDoctranDocugamiDuckDBElasticsearchEpsillaEverNoteFacebook ChatFacebook FaissFigmaFireworksFlyteForefrontAIGitGitBookGoldenGoogle Document AIGoogle SerperGooseAIGPT4AllGradientGraphsignalGrobidGutenbergHacker NewsHazy ResearchHeliconeHologresHTML to textHugging FaceiFixitIMSDbInfinoJavelin AI GatewayJinaKonkoLanceDBLangChain Decorators ✨Llama.cppLog10MarqoMediaWikiDumpMeilisearchMetalMilvusMinimaxMLflow AI GatewayMLflowModalModelScopeModern TreasuryMomentoMongoDB AtlasMotherduckMotörheadMyScaleNeo4jNLPCloudNotion DBNucliaObsidianOpenLLMOpenSearchOpenWeatherMapPetalsPostgres EmbeddingPGVectorPineconePipelineAIPortkeyPredibasePrediction GuardPromptLayerprovidersPsychicPubMedQdrantRay ServeRebuffRedditRedisReplicateRoamRocksetRunhouseRWKV-4ScaNNSearchApiSearxNG Search APISerpAPIShale ProtocolSingleStoreDBscikit-learnSlackspaCySpreedlyStarRocksStochasticAIStripeSupabase (Postgres)NebulaTairTelegramTencentVectorDBTensorFlow DatasetsTigris2MarkdownTrelloTruLensTwitterTypesenseUnstructuredUpstash RedisUSearchVearchVectaraVespaWandB TracingWeights & BiasesWeatherWeaviateWhatsAppWhyLabsWikipediaWolfram AlphaWriterXataXorbits Inference (Xinference)YandexYeager.aiYouTubeZepZillizComponentsLLMsChat modelsDocument loadersDocument transformersText embedding modelsVector storesRetrieversToolsAgents and toolkitsMemoryCallbacksChat
Wikipedia is a multilingual free online encyclopedia written and maintained by a community of volunteers, known as Wikipedians, through open collaboration and using a wiki-based editing system called MediaWiki. Wikipedia is the largest and most-read reference work in history.
Wikipedia is a multilingual free online encyclopedia written and maintained by a community of volunteers, known as Wikipedians, through open collaboration and using a wiki-based editing system called MediaWiki. Wikipedia is the largest and most-read reference work in history. ->: Skip to main content🦜️🔗 LangChainDocsUse casesIntegrationsAPICommunityChat our docsLangSmithJS/TS DocsSearchCTRLKProvidersAnthropicAWSGoogleMicrosoftOpenAIMoreActiveloop Deep LakeAI21 LabsAimAINetworkAirbyteAirtableAleph AlphaAlibaba Cloud OpensearchAnalyticDBAnnoyAnyscaleApifyArangoDBArgillaArthurArxivAtlasAwaDBAWS DynamoDBAZLyricsBagelDBBananaBasetenBeamBeautiful SoupBiliBiliNIBittensorBlackboardBrave SearchCassandraCerebriumAIChaindeskChromaClarifaiClearMLClickHouseCnosDBCohereCollege ConfidentialCometConfident AIConfluenceC TransformersDashVectorDatabricksDatadog TracingDatadog LogsDataForSEODeepInfraDeepSparseDiffbotDingoDiscordDocArrayDoctranDocugamiDuckDBElasticsearchEpsillaEverNoteFacebook ChatFacebook FaissFigmaFireworksFlyteForefrontAIGitGitBookGoldenGoogle Document AIGoogle SerperGooseAIGPT4AllGradientGraphsignalGrobidGutenbergHacker NewsHazy ResearchHeliconeHologresHTML to textHugging FaceiFixitIMSDbInfinoJavelin AI GatewayJinaKonkoLanceDBLangChain Decorators ✨Llama.cppLog10MarqoMediaWikiDumpMeilisearchMetalMilvusMinimaxMLflow AI GatewayMLflowModalModelScopeModern TreasuryMomentoMongoDB AtlasMotherduckMotörheadMyScaleNeo4jNLPCloudNotion DBNucliaObsidianOpenLLMOpenSearchOpenWeatherMapPetalsPostgres EmbeddingPGVectorPineconePipelineAIPortkeyPredibasePrediction GuardPromptLayerprovidersPsychicPubMedQdrantRay ServeRebuffRedditRedisReplicateRoamRocksetRunhouseRWKV-4ScaNNSearchApiSearxNG Search APISerpAPIShale ProtocolSingleStoreDBscikit-learnSlackspaCySpreedlyStarRocksStochasticAIStripeSupabase (Postgres)NebulaTairTelegramTencentVectorDBTensorFlow DatasetsTigris2MarkdownTrelloTruLensTwitterTypesenseUnstructuredUpstash RedisUSearchVearchVectaraVespaWandB TracingWeights & BiasesWeatherWeaviateWhatsAppWhyLabsWikipediaWolfram AlphaWriterXataXorbits Inference (Xinference)YandexYeager.aiYouTubeZepZillizComponentsLLMsChat modelsDocument loadersDocument transformersText embedding modelsVector storesRetrieversToolsAgents and toolkitsMemoryCallbacksChat
3,374
and toolkitsMemoryCallbacksChat loadersProvidersMoreWikipediaOn this pageWikipediaWikipedia is a multilingual free online encyclopedia written and maintained by a community of volunteers, known as Wikipedians, through open collaboration and using a wiki-based editing system called MediaWiki. Wikipedia is the largest and most-read reference work in history.Installation and Setup​pip install wikipediaDocument Loader​See a usage example.from langchain.document_loaders import WikipediaLoaderRetriever​See a usage example.from langchain.retrievers import WikipediaRetrieverPreviousWhyLabsNextWolfram AlphaInstallation and SetupDocument LoaderRetrieverCommunityDiscordTwitterGitHubPythonJS/TSMoreHomepageBlogCopyright © 2023 LangChain, Inc.
Wikipedia is a multilingual free online encyclopedia written and maintained by a community of volunteers, known as Wikipedians, through open collaboration and using a wiki-based editing system called MediaWiki. Wikipedia is the largest and most-read reference work in history.
Wikipedia is a multilingual free online encyclopedia written and maintained by a community of volunteers, known as Wikipedians, through open collaboration and using a wiki-based editing system called MediaWiki. Wikipedia is the largest and most-read reference work in history. ->: and toolkitsMemoryCallbacksChat loadersProvidersMoreWikipediaOn this pageWikipediaWikipedia is a multilingual free online encyclopedia written and maintained by a community of volunteers, known as Wikipedians, through open collaboration and using a wiki-based editing system called MediaWiki. Wikipedia is the largest and most-read reference work in history.Installation and Setup​pip install wikipediaDocument Loader​See a usage example.from langchain.document_loaders import WikipediaLoaderRetriever​See a usage example.from langchain.retrievers import WikipediaRetrieverPreviousWhyLabsNextWolfram AlphaInstallation and SetupDocument LoaderRetrieverCommunityDiscordTwitterGitHubPythonJS/TSMoreHomepageBlogCopyright © 2023 LangChain, Inc.
3,375
Elasticsearch | 🦜️🔗 Langchain
Elasticsearch is a distributed, RESTful search and analytics engine.
Elasticsearch is a distributed, RESTful search and analytics engine. ->: Elasticsearch | 🦜️🔗 Langchain
3,376
Skip to main content🦜️🔗 LangChainDocsUse casesIntegrationsAPICommunityChat our docsLangSmithJS/TS DocsSearchCTRLKProvidersAnthropicAWSGoogleMicrosoftOpenAIMoreActiveloop Deep LakeAI21 LabsAimAINetworkAirbyteAirtableAleph AlphaAlibaba Cloud OpensearchAnalyticDBAnnoyAnyscaleApifyArangoDBArgillaArthurArxivAtlasAwaDBAWS DynamoDBAZLyricsBagelDBBananaBasetenBeamBeautiful SoupBiliBiliNIBittensorBlackboardBrave SearchCassandraCerebriumAIChaindeskChromaClarifaiClearMLClickHouseCnosDBCohereCollege ConfidentialCometConfident AIConfluenceC TransformersDashVectorDatabricksDatadog TracingDatadog LogsDataForSEODeepInfraDeepSparseDiffbotDingoDiscordDocArrayDoctranDocugamiDuckDBElasticsearchEpsillaEverNoteFacebook ChatFacebook FaissFigmaFireworksFlyteForefrontAIGitGitBookGoldenGoogle Document AIGoogle SerperGooseAIGPT4AllGradientGraphsignalGrobidGutenbergHacker NewsHazy ResearchHeliconeHologresHTML to textHugging FaceiFixitIMSDbInfinoJavelin AI GatewayJinaKonkoLanceDBLangChain Decorators ✨Llama.cppLog10MarqoMediaWikiDumpMeilisearchMetalMilvusMinimaxMLflow AI GatewayMLflowModalModelScopeModern TreasuryMomentoMongoDB AtlasMotherduckMotörheadMyScaleNeo4jNLPCloudNotion DBNucliaObsidianOpenLLMOpenSearchOpenWeatherMapPetalsPostgres EmbeddingPGVectorPineconePipelineAIPortkeyPredibasePrediction GuardPromptLayerprovidersPsychicPubMedQdrantRay ServeRebuffRedditRedisReplicateRoamRocksetRunhouseRWKV-4ScaNNSearchApiSearxNG Search APISerpAPIShale ProtocolSingleStoreDBscikit-learnSlackspaCySpreedlyStarRocksStochasticAIStripeSupabase (Postgres)NebulaTairTelegramTencentVectorDBTensorFlow DatasetsTigris2MarkdownTrelloTruLensTwitterTypesenseUnstructuredUpstash RedisUSearchVearchVectaraVespaWandB TracingWeights & BiasesWeatherWeaviateWhatsAppWhyLabsWikipediaWolfram AlphaWriterXataXorbits Inference (Xinference)YandexYeager.aiYouTubeZepZillizComponentsLLMsChat modelsDocument loadersDocument transformersText embedding modelsVector storesRetrieversToolsAgents and toolkitsMemoryCallbacksChat
Elasticsearch is a distributed, RESTful search and analytics engine.
Elasticsearch is a distributed, RESTful search and analytics engine. ->: Skip to main content🦜️🔗 LangChainDocsUse casesIntegrationsAPICommunityChat our docsLangSmithJS/TS DocsSearchCTRLKProvidersAnthropicAWSGoogleMicrosoftOpenAIMoreActiveloop Deep LakeAI21 LabsAimAINetworkAirbyteAirtableAleph AlphaAlibaba Cloud OpensearchAnalyticDBAnnoyAnyscaleApifyArangoDBArgillaArthurArxivAtlasAwaDBAWS DynamoDBAZLyricsBagelDBBananaBasetenBeamBeautiful SoupBiliBiliNIBittensorBlackboardBrave SearchCassandraCerebriumAIChaindeskChromaClarifaiClearMLClickHouseCnosDBCohereCollege ConfidentialCometConfident AIConfluenceC TransformersDashVectorDatabricksDatadog TracingDatadog LogsDataForSEODeepInfraDeepSparseDiffbotDingoDiscordDocArrayDoctranDocugamiDuckDBElasticsearchEpsillaEverNoteFacebook ChatFacebook FaissFigmaFireworksFlyteForefrontAIGitGitBookGoldenGoogle Document AIGoogle SerperGooseAIGPT4AllGradientGraphsignalGrobidGutenbergHacker NewsHazy ResearchHeliconeHologresHTML to textHugging FaceiFixitIMSDbInfinoJavelin AI GatewayJinaKonkoLanceDBLangChain Decorators ✨Llama.cppLog10MarqoMediaWikiDumpMeilisearchMetalMilvusMinimaxMLflow AI GatewayMLflowModalModelScopeModern TreasuryMomentoMongoDB AtlasMotherduckMotörheadMyScaleNeo4jNLPCloudNotion DBNucliaObsidianOpenLLMOpenSearchOpenWeatherMapPetalsPostgres EmbeddingPGVectorPineconePipelineAIPortkeyPredibasePrediction GuardPromptLayerprovidersPsychicPubMedQdrantRay ServeRebuffRedditRedisReplicateRoamRocksetRunhouseRWKV-4ScaNNSearchApiSearxNG Search APISerpAPIShale ProtocolSingleStoreDBscikit-learnSlackspaCySpreedlyStarRocksStochasticAIStripeSupabase (Postgres)NebulaTairTelegramTencentVectorDBTensorFlow DatasetsTigris2MarkdownTrelloTruLensTwitterTypesenseUnstructuredUpstash RedisUSearchVearchVectaraVespaWandB TracingWeights & BiasesWeatherWeaviateWhatsAppWhyLabsWikipediaWolfram AlphaWriterXataXorbits Inference (Xinference)YandexYeager.aiYouTubeZepZillizComponentsLLMsChat modelsDocument loadersDocument transformersText embedding modelsVector storesRetrieversToolsAgents and toolkitsMemoryCallbacksChat
3,377
and toolkitsMemoryCallbacksChat loadersProvidersMoreElasticsearchOn this pageElasticsearchElasticsearch is a distributed, RESTful search and analytics engine.
Elasticsearch is a distributed, RESTful search and analytics engine.
Elasticsearch is a distributed, RESTful search and analytics engine. ->: and toolkitsMemoryCallbacksChat loadersProvidersMoreElasticsearchOn this pageElasticsearchElasticsearch is a distributed, RESTful search and analytics engine.
3,378
It provides a distributed, multi-tenant-capable full-text search engine with an HTTP web interface and schema-free JSON documents.Installation and Setup​There are two ways to get started with Elasticsearch:Install Elasticsearch on your local machine via docker​Example: Run a single-node Elasticsearch instance with security disabled. This is not recommended for production use. docker run -p 9200:9200 -e "discovery.type=single-node" -e "xpack.security.enabled=false" -e "xpack.security.http.ssl.enabled=false" docker.elastic.co/elasticsearch/elasticsearch:8.9.0Deploy Elasticsearch on Elastic Cloud​Elastic Cloud is a managed Elasticsearch service. Signup for a free trial.Install Client​pip install elasticsearchVector Store​The vector store is a simple wrapper around Elasticsearch. It provides a simple interface to store and retrieve vectors.from langchain.vectorstores import ElasticsearchStorefrom langchain.document_loaders import TextLoaderfrom langchain.text_splitter import CharacterTextSplitterloader = TextLoader("./state_of_the_union.txt")documents = loader.load()text_splitter = CharacterTextSplitter(chunk_size=500, chunk_overlap=0)docs = text_splitter.split_documents(documents)embeddings = OpenAIEmbeddings()db = ElasticsearchStore.from_documents( docs, embeddings, es_url="http://localhost:9200", index_name="test-basic",)db.client.indices.refresh(index="test-basic")query = "What did the president say about Ketanji Brown Jackson"results = db.similarity_search(query)PreviousDuckDBNextEpsillaInstallation and SetupInstall ClientVector StoreCommunityDiscordTwitterGitHubPythonJS/TSMoreHomepageBlogCopyright © 2023 LangChain, Inc.
Elasticsearch is a distributed, RESTful search and analytics engine.
Elasticsearch is a distributed, RESTful search and analytics engine. ->: It provides a distributed, multi-tenant-capable full-text search engine with an HTTP web interface and schema-free JSON documents.Installation and Setup​There are two ways to get started with Elasticsearch:Install Elasticsearch on your local machine via docker​Example: Run a single-node Elasticsearch instance with security disabled. This is not recommended for production use. docker run -p 9200:9200 -e "discovery.type=single-node" -e "xpack.security.enabled=false" -e "xpack.security.http.ssl.enabled=false" docker.elastic.co/elasticsearch/elasticsearch:8.9.0Deploy Elasticsearch on Elastic Cloud​Elastic Cloud is a managed Elasticsearch service. Signup for a free trial.Install Client​pip install elasticsearchVector Store​The vector store is a simple wrapper around Elasticsearch. It provides a simple interface to store and retrieve vectors.from langchain.vectorstores import ElasticsearchStorefrom langchain.document_loaders import TextLoaderfrom langchain.text_splitter import CharacterTextSplitterloader = TextLoader("./state_of_the_union.txt")documents = loader.load()text_splitter = CharacterTextSplitter(chunk_size=500, chunk_overlap=0)docs = text_splitter.split_documents(documents)embeddings = OpenAIEmbeddings()db = ElasticsearchStore.from_documents( docs, embeddings, es_url="http://localhost:9200", index_name="test-basic",)db.client.indices.refresh(index="test-basic")query = "What did the president say about Ketanji Brown Jackson"results = db.similarity_search(query)PreviousDuckDBNextEpsillaInstallation and SetupInstall ClientVector StoreCommunityDiscordTwitterGitHubPythonJS/TSMoreHomepageBlogCopyright © 2023 LangChain, Inc.
3,379
Vearch | 🦜️🔗 Langchain
Vearch is a scalable distributed system for efficient similarity search of deep learning vectors.
Vearch is a scalable distributed system for efficient similarity search of deep learning vectors. ->: Vearch | 🦜️🔗 Langchain
3,380
Skip to main content🦜️🔗 LangChainDocsUse casesIntegrationsAPICommunityChat our docsLangSmithJS/TS DocsSearchCTRLKProvidersAnthropicAWSGoogleMicrosoftOpenAIMoreActiveloop Deep LakeAI21 LabsAimAINetworkAirbyteAirtableAleph AlphaAlibaba Cloud OpensearchAnalyticDBAnnoyAnyscaleApifyArangoDBArgillaArthurArxivAtlasAwaDBAWS DynamoDBAZLyricsBagelDBBananaBasetenBeamBeautiful SoupBiliBiliNIBittensorBlackboardBrave SearchCassandraCerebriumAIChaindeskChromaClarifaiClearMLClickHouseCnosDBCohereCollege ConfidentialCometConfident AIConfluenceC TransformersDashVectorDatabricksDatadog TracingDatadog LogsDataForSEODeepInfraDeepSparseDiffbotDingoDiscordDocArrayDoctranDocugamiDuckDBElasticsearchEpsillaEverNoteFacebook ChatFacebook FaissFigmaFireworksFlyteForefrontAIGitGitBookGoldenGoogle Document AIGoogle SerperGooseAIGPT4AllGradientGraphsignalGrobidGutenbergHacker NewsHazy ResearchHeliconeHologresHTML to textHugging FaceiFixitIMSDbInfinoJavelin AI GatewayJinaKonkoLanceDBLangChain Decorators ✨Llama.cppLog10MarqoMediaWikiDumpMeilisearchMetalMilvusMinimaxMLflow AI GatewayMLflowModalModelScopeModern TreasuryMomentoMongoDB AtlasMotherduckMotörheadMyScaleNeo4jNLPCloudNotion DBNucliaObsidianOpenLLMOpenSearchOpenWeatherMapPetalsPostgres EmbeddingPGVectorPineconePipelineAIPortkeyPredibasePrediction GuardPromptLayerprovidersPsychicPubMedQdrantRay ServeRebuffRedditRedisReplicateRoamRocksetRunhouseRWKV-4ScaNNSearchApiSearxNG Search APISerpAPIShale ProtocolSingleStoreDBscikit-learnSlackspaCySpreedlyStarRocksStochasticAIStripeSupabase (Postgres)NebulaTairTelegramTencentVectorDBTensorFlow DatasetsTigris2MarkdownTrelloTruLensTwitterTypesenseUnstructuredUpstash RedisUSearchVearchVectaraVespaWandB TracingWeights & BiasesWeatherWeaviateWhatsAppWhyLabsWikipediaWolfram AlphaWriterXataXorbits Inference (Xinference)YandexYeager.aiYouTubeZepZillizComponentsLLMsChat modelsDocument loadersDocument transformersText embedding modelsVector storesRetrieversToolsAgents and toolkitsMemoryCallbacksChat
Vearch is a scalable distributed system for efficient similarity search of deep learning vectors.
Vearch is a scalable distributed system for efficient similarity search of deep learning vectors. ->: Skip to main content🦜️🔗 LangChainDocsUse casesIntegrationsAPICommunityChat our docsLangSmithJS/TS DocsSearchCTRLKProvidersAnthropicAWSGoogleMicrosoftOpenAIMoreActiveloop Deep LakeAI21 LabsAimAINetworkAirbyteAirtableAleph AlphaAlibaba Cloud OpensearchAnalyticDBAnnoyAnyscaleApifyArangoDBArgillaArthurArxivAtlasAwaDBAWS DynamoDBAZLyricsBagelDBBananaBasetenBeamBeautiful SoupBiliBiliNIBittensorBlackboardBrave SearchCassandraCerebriumAIChaindeskChromaClarifaiClearMLClickHouseCnosDBCohereCollege ConfidentialCometConfident AIConfluenceC TransformersDashVectorDatabricksDatadog TracingDatadog LogsDataForSEODeepInfraDeepSparseDiffbotDingoDiscordDocArrayDoctranDocugamiDuckDBElasticsearchEpsillaEverNoteFacebook ChatFacebook FaissFigmaFireworksFlyteForefrontAIGitGitBookGoldenGoogle Document AIGoogle SerperGooseAIGPT4AllGradientGraphsignalGrobidGutenbergHacker NewsHazy ResearchHeliconeHologresHTML to textHugging FaceiFixitIMSDbInfinoJavelin AI GatewayJinaKonkoLanceDBLangChain Decorators ✨Llama.cppLog10MarqoMediaWikiDumpMeilisearchMetalMilvusMinimaxMLflow AI GatewayMLflowModalModelScopeModern TreasuryMomentoMongoDB AtlasMotherduckMotörheadMyScaleNeo4jNLPCloudNotion DBNucliaObsidianOpenLLMOpenSearchOpenWeatherMapPetalsPostgres EmbeddingPGVectorPineconePipelineAIPortkeyPredibasePrediction GuardPromptLayerprovidersPsychicPubMedQdrantRay ServeRebuffRedditRedisReplicateRoamRocksetRunhouseRWKV-4ScaNNSearchApiSearxNG Search APISerpAPIShale ProtocolSingleStoreDBscikit-learnSlackspaCySpreedlyStarRocksStochasticAIStripeSupabase (Postgres)NebulaTairTelegramTencentVectorDBTensorFlow DatasetsTigris2MarkdownTrelloTruLensTwitterTypesenseUnstructuredUpstash RedisUSearchVearchVectaraVespaWandB TracingWeights & BiasesWeatherWeaviateWhatsAppWhyLabsWikipediaWolfram AlphaWriterXataXorbits Inference (Xinference)YandexYeager.aiYouTubeZepZillizComponentsLLMsChat modelsDocument loadersDocument transformersText embedding modelsVector storesRetrieversToolsAgents and toolkitsMemoryCallbacksChat
3,381
and toolkitsMemoryCallbacksChat loadersProvidersMoreVearchVearchVearch is a scalable distributed system for efficient similarity search of deep learning vectors.Installation and SetupVearch Python SDK enables vearch to use locally. Vearch python sdk can be installed easily by pip install vearch.VectorstoreVearch also can used as vectorstore. Most detalis in this notebookfrom langchain.vectorstores import VearchPreviousUSearchNextVectaraCommunityDiscordTwitterGitHubPythonJS/TSMoreHomepageBlogCopyright © 2023 LangChain, Inc.
Vearch is a scalable distributed system for efficient similarity search of deep learning vectors.
Vearch is a scalable distributed system for efficient similarity search of deep learning vectors. ->: and toolkitsMemoryCallbacksChat loadersProvidersMoreVearchVearchVearch is a scalable distributed system for efficient similarity search of deep learning vectors.Installation and SetupVearch Python SDK enables vearch to use locally. Vearch python sdk can be installed easily by pip install vearch.VectorstoreVearch also can used as vectorstore. Most detalis in this notebookfrom langchain.vectorstores import VearchPreviousUSearchNextVectaraCommunityDiscordTwitterGitHubPythonJS/TSMoreHomepageBlogCopyright © 2023 LangChain, Inc.
3,382
MLflow AI Gateway | 🦜️🔗 Langchain
The MLflow AI Gateway service is a powerful tool designed to streamline the usage and management of various large
The MLflow AI Gateway service is a powerful tool designed to streamline the usage and management of various large ->: MLflow AI Gateway | 🦜️🔗 Langchain
3,383
Skip to main content🦜️🔗 LangChainDocsUse casesIntegrationsAPICommunityChat our docsLangSmithJS/TS DocsSearchCTRLKProvidersAnthropicAWSGoogleMicrosoftOpenAIMoreActiveloop Deep LakeAI21 LabsAimAINetworkAirbyteAirtableAleph AlphaAlibaba Cloud OpensearchAnalyticDBAnnoyAnyscaleApifyArangoDBArgillaArthurArxivAtlasAwaDBAWS DynamoDBAZLyricsBagelDBBananaBasetenBeamBeautiful SoupBiliBiliNIBittensorBlackboardBrave SearchCassandraCerebriumAIChaindeskChromaClarifaiClearMLClickHouseCnosDBCohereCollege ConfidentialCometConfident AIConfluenceC TransformersDashVectorDatabricksDatadog TracingDatadog LogsDataForSEODeepInfraDeepSparseDiffbotDingoDiscordDocArrayDoctranDocugamiDuckDBElasticsearchEpsillaEverNoteFacebook ChatFacebook FaissFigmaFireworksFlyteForefrontAIGitGitBookGoldenGoogle Document AIGoogle SerperGooseAIGPT4AllGradientGraphsignalGrobidGutenbergHacker NewsHazy ResearchHeliconeHologresHTML to textHugging FaceiFixitIMSDbInfinoJavelin AI GatewayJinaKonkoLanceDBLangChain Decorators ✨Llama.cppLog10MarqoMediaWikiDumpMeilisearchMetalMilvusMinimaxMLflow AI GatewayMLflowModalModelScopeModern TreasuryMomentoMongoDB AtlasMotherduckMotörheadMyScaleNeo4jNLPCloudNotion DBNucliaObsidianOpenLLMOpenSearchOpenWeatherMapPetalsPostgres EmbeddingPGVectorPineconePipelineAIPortkeyPredibasePrediction GuardPromptLayerprovidersPsychicPubMedQdrantRay ServeRebuffRedditRedisReplicateRoamRocksetRunhouseRWKV-4ScaNNSearchApiSearxNG Search APISerpAPIShale ProtocolSingleStoreDBscikit-learnSlackspaCySpreedlyStarRocksStochasticAIStripeSupabase (Postgres)NebulaTairTelegramTencentVectorDBTensorFlow DatasetsTigris2MarkdownTrelloTruLensTwitterTypesenseUnstructuredUpstash RedisUSearchVearchVectaraVespaWandB TracingWeights & BiasesWeatherWeaviateWhatsAppWhyLabsWikipediaWolfram AlphaWriterXataXorbits Inference (Xinference)YandexYeager.aiYouTubeZepZillizComponentsLLMsChat modelsDocument loadersDocument transformersText embedding modelsVector storesRetrieversToolsAgents and toolkitsMemoryCallbacksChat
The MLflow AI Gateway service is a powerful tool designed to streamline the usage and management of various large
The MLflow AI Gateway service is a powerful tool designed to streamline the usage and management of various large ->: Skip to main content🦜️🔗 LangChainDocsUse casesIntegrationsAPICommunityChat our docsLangSmithJS/TS DocsSearchCTRLKProvidersAnthropicAWSGoogleMicrosoftOpenAIMoreActiveloop Deep LakeAI21 LabsAimAINetworkAirbyteAirtableAleph AlphaAlibaba Cloud OpensearchAnalyticDBAnnoyAnyscaleApifyArangoDBArgillaArthurArxivAtlasAwaDBAWS DynamoDBAZLyricsBagelDBBananaBasetenBeamBeautiful SoupBiliBiliNIBittensorBlackboardBrave SearchCassandraCerebriumAIChaindeskChromaClarifaiClearMLClickHouseCnosDBCohereCollege ConfidentialCometConfident AIConfluenceC TransformersDashVectorDatabricksDatadog TracingDatadog LogsDataForSEODeepInfraDeepSparseDiffbotDingoDiscordDocArrayDoctranDocugamiDuckDBElasticsearchEpsillaEverNoteFacebook ChatFacebook FaissFigmaFireworksFlyteForefrontAIGitGitBookGoldenGoogle Document AIGoogle SerperGooseAIGPT4AllGradientGraphsignalGrobidGutenbergHacker NewsHazy ResearchHeliconeHologresHTML to textHugging FaceiFixitIMSDbInfinoJavelin AI GatewayJinaKonkoLanceDBLangChain Decorators ✨Llama.cppLog10MarqoMediaWikiDumpMeilisearchMetalMilvusMinimaxMLflow AI GatewayMLflowModalModelScopeModern TreasuryMomentoMongoDB AtlasMotherduckMotörheadMyScaleNeo4jNLPCloudNotion DBNucliaObsidianOpenLLMOpenSearchOpenWeatherMapPetalsPostgres EmbeddingPGVectorPineconePipelineAIPortkeyPredibasePrediction GuardPromptLayerprovidersPsychicPubMedQdrantRay ServeRebuffRedditRedisReplicateRoamRocksetRunhouseRWKV-4ScaNNSearchApiSearxNG Search APISerpAPIShale ProtocolSingleStoreDBscikit-learnSlackspaCySpreedlyStarRocksStochasticAIStripeSupabase (Postgres)NebulaTairTelegramTencentVectorDBTensorFlow DatasetsTigris2MarkdownTrelloTruLensTwitterTypesenseUnstructuredUpstash RedisUSearchVearchVectaraVespaWandB TracingWeights & BiasesWeatherWeaviateWhatsAppWhyLabsWikipediaWolfram AlphaWriterXataXorbits Inference (Xinference)YandexYeager.aiYouTubeZepZillizComponentsLLMsChat modelsDocument loadersDocument transformersText embedding modelsVector storesRetrieversToolsAgents and toolkitsMemoryCallbacksChat
3,384
and toolkitsMemoryCallbacksChat loadersProvidersMoreMLflow AI GatewayOn this pageMLflow AI GatewayThe MLflow AI Gateway service is a powerful tool designed to streamline the usage and management of various large
The MLflow AI Gateway service is a powerful tool designed to streamline the usage and management of various large
The MLflow AI Gateway service is a powerful tool designed to streamline the usage and management of various large ->: and toolkitsMemoryCallbacksChat loadersProvidersMoreMLflow AI GatewayOn this pageMLflow AI GatewayThe MLflow AI Gateway service is a powerful tool designed to streamline the usage and management of various large
3,385
language model (LLM) providers, such as OpenAI and Anthropic, within an organization. It offers a high-level interface that simplifies the interaction with these services by providing a unified endpoint to handle specific LLM related requests. See the MLflow AI Gateway documentation for more details.Installation and Setup‚ÄãInstall mlflow with MLflow AI Gateway dependencies:pip install 'mlflow[gateway]'Set the OpenAI API key as an environment variable:export OPENAI_API_KEY=...Create a configuration file:routes: - name: completions route_type: llm/v1/completions model: provider: openai name: text-davinci-003 config: openai_api_key: $OPENAI_API_KEY - name: embeddings route_type: llm/v1/embeddings model: provider: openai name: text-embedding-ada-002 config: openai_api_key: $OPENAI_API_KEYStart the Gateway server:mlflow gateway start --config-path /path/to/config.yamlExample provided by MLflow‚ÄãThe mlflow.langchain module provides an API for logging and loading LangChain models. This module exports multivariate LangChain models in the langchain flavor and univariate LangChain
The MLflow AI Gateway service is a powerful tool designed to streamline the usage and management of various large
The MLflow AI Gateway service is a powerful tool designed to streamline the usage and management of various large ->: language model (LLM) providers, such as OpenAI and Anthropic, within an organization. It offers a high-level interface that simplifies the interaction with these services by providing a unified endpoint to handle specific LLM related requests. See the MLflow AI Gateway documentation for more details.Installation and Setup‚ÄãInstall mlflow with MLflow AI Gateway dependencies:pip install 'mlflow[gateway]'Set the OpenAI API key as an environment variable:export OPENAI_API_KEY=...Create a configuration file:routes: - name: completions route_type: llm/v1/completions model: provider: openai name: text-davinci-003 config: openai_api_key: $OPENAI_API_KEY - name: embeddings route_type: llm/v1/embeddings model: provider: openai name: text-embedding-ada-002 config: openai_api_key: $OPENAI_API_KEYStart the Gateway server:mlflow gateway start --config-path /path/to/config.yamlExample provided by MLflow‚ÄãThe mlflow.langchain module provides an API for logging and loading LangChain models. This module exports multivariate LangChain models in the langchain flavor and univariate LangChain
3,386
models in the pyfunc flavor.See the API documentation and examples.Completions Example‚Äãimport mlflowfrom langchain.chains import LLMChain, PromptTemplatefrom langchain.llms import MlflowAIGatewaygateway = MlflowAIGateway( gateway_uri="http://127.0.0.1:5000", route="completions", params={ "temperature": 0.0, "top_p": 0.1, },)llm_chain = LLMChain( llm=gateway, prompt=PromptTemplate( input_variables=["adjective"], template="Tell me a {adjective} joke", ),)result = llm_chain.run(adjective="funny")print(result)with mlflow.start_run(): model_info = mlflow.langchain.log_model(chain, "model")model = mlflow.pyfunc.load_model(model_info.model_uri)print(model.predict([{"adjective": "funny"}]))Embeddings Example‚Äãfrom langchain.embeddings import MlflowAIGatewayEmbeddingsembeddings = MlflowAIGatewayEmbeddings( gateway_uri="http://127.0.0.1:5000", route="embeddings",)print(embeddings.embed_query("hello"))print(embeddings.embed_documents(["hello"]))Chat Example‚Äãfrom langchain.chat_models import ChatMLflowAIGatewayfrom langchain.schema import HumanMessage, SystemMessagechat = ChatMLflowAIGateway( gateway_uri="http://127.0.0.1:5000", route="chat", params={ "temperature": 0.1 })messages = [ SystemMessage( content="You are a helpful assistant that translates English to French." ), HumanMessage( content="Translate this sentence from English to French: I love programming." ),]print(chat(messages))Databricks MLflow AI Gateway‚ÄãDatabricks MLflow AI Gateway is in private preview.
The MLflow AI Gateway service is a powerful tool designed to streamline the usage and management of various large
The MLflow AI Gateway service is a powerful tool designed to streamline the usage and management of various large ->: models in the pyfunc flavor.See the API documentation and examples.Completions Example‚Äãimport mlflowfrom langchain.chains import LLMChain, PromptTemplatefrom langchain.llms import MlflowAIGatewaygateway = MlflowAIGateway( gateway_uri="http://127.0.0.1:5000", route="completions", params={ "temperature": 0.0, "top_p": 0.1, },)llm_chain = LLMChain( llm=gateway, prompt=PromptTemplate( input_variables=["adjective"], template="Tell me a {adjective} joke", ),)result = llm_chain.run(adjective="funny")print(result)with mlflow.start_run(): model_info = mlflow.langchain.log_model(chain, "model")model = mlflow.pyfunc.load_model(model_info.model_uri)print(model.predict([{"adjective": "funny"}]))Embeddings Example‚Äãfrom langchain.embeddings import MlflowAIGatewayEmbeddingsembeddings = MlflowAIGatewayEmbeddings( gateway_uri="http://127.0.0.1:5000", route="embeddings",)print(embeddings.embed_query("hello"))print(embeddings.embed_documents(["hello"]))Chat Example‚Äãfrom langchain.chat_models import ChatMLflowAIGatewayfrom langchain.schema import HumanMessage, SystemMessagechat = ChatMLflowAIGateway( gateway_uri="http://127.0.0.1:5000", route="chat", params={ "temperature": 0.1 })messages = [ SystemMessage( content="You are a helpful assistant that translates English to French." ), HumanMessage( content="Translate this sentence from English to French: I love programming." ),]print(chat(messages))Databricks MLflow AI Gateway‚ÄãDatabricks MLflow AI Gateway is in private preview.
3,387
Please contact a Databricks representative to enroll in the preview.from langchain.chains import LLMChainfrom langchain.prompts import PromptTemplatefrom langchain.llms import MlflowAIGatewaygateway = MlflowAIGateway( gateway_uri="databricks", route="completions",)llm_chain = LLMChain( llm=gateway, prompt=PromptTemplate( input_variables=["adjective"], template="Tell me a {adjective} joke", ),)result = llm_chain.run(adjective="funny")print(result)PreviousMinimaxNextMLflowInstallation and SetupExample provided by MLflowCompletions ExampleEmbeddings ExampleChat ExampleDatabricks MLflow AI GatewayCommunityDiscordTwitterGitHubPythonJS/TSMoreHomepageBlogCopyright © 2023 LangChain, Inc.
The MLflow AI Gateway service is a powerful tool designed to streamline the usage and management of various large
The MLflow AI Gateway service is a powerful tool designed to streamline the usage and management of various large ->: Please contact a Databricks representative to enroll in the preview.from langchain.chains import LLMChainfrom langchain.prompts import PromptTemplatefrom langchain.llms import MlflowAIGatewaygateway = MlflowAIGateway( gateway_uri="databricks", route="completions",)llm_chain = LLMChain( llm=gateway, prompt=PromptTemplate( input_variables=["adjective"], template="Tell me a {adjective} joke", ),)result = llm_chain.run(adjective="funny")print(result)PreviousMinimaxNextMLflowInstallation and SetupExample provided by MLflowCompletions ExampleEmbeddings ExampleChat ExampleDatabricks MLflow AI GatewayCommunityDiscordTwitterGitHubPythonJS/TSMoreHomepageBlogCopyright © 2023 LangChain, Inc.
3,388
Hazy Research | 🦜️🔗 Langchain
This page covers how to use the Hazy Research ecosystem within LangChain.
This page covers how to use the Hazy Research ecosystem within LangChain. ->: Hazy Research | 🦜️🔗 Langchain
3,389
Skip to main content🦜️🔗 LangChainDocsUse casesIntegrationsAPICommunityChat our docsLangSmithJS/TS DocsSearchCTRLKProvidersAnthropicAWSGoogleMicrosoftOpenAIMoreActiveloop Deep LakeAI21 LabsAimAINetworkAirbyteAirtableAleph AlphaAlibaba Cloud OpensearchAnalyticDBAnnoyAnyscaleApifyArangoDBArgillaArthurArxivAtlasAwaDBAWS DynamoDBAZLyricsBagelDBBananaBasetenBeamBeautiful SoupBiliBiliNIBittensorBlackboardBrave SearchCassandraCerebriumAIChaindeskChromaClarifaiClearMLClickHouseCnosDBCohereCollege ConfidentialCometConfident AIConfluenceC TransformersDashVectorDatabricksDatadog TracingDatadog LogsDataForSEODeepInfraDeepSparseDiffbotDingoDiscordDocArrayDoctranDocugamiDuckDBElasticsearchEpsillaEverNoteFacebook ChatFacebook FaissFigmaFireworksFlyteForefrontAIGitGitBookGoldenGoogle Document AIGoogle SerperGooseAIGPT4AllGradientGraphsignalGrobidGutenbergHacker NewsHazy ResearchHeliconeHologresHTML to textHugging FaceiFixitIMSDbInfinoJavelin AI GatewayJinaKonkoLanceDBLangChain Decorators ✨Llama.cppLog10MarqoMediaWikiDumpMeilisearchMetalMilvusMinimaxMLflow AI GatewayMLflowModalModelScopeModern TreasuryMomentoMongoDB AtlasMotherduckMotörheadMyScaleNeo4jNLPCloudNotion DBNucliaObsidianOpenLLMOpenSearchOpenWeatherMapPetalsPostgres EmbeddingPGVectorPineconePipelineAIPortkeyPredibasePrediction GuardPromptLayerprovidersPsychicPubMedQdrantRay ServeRebuffRedditRedisReplicateRoamRocksetRunhouseRWKV-4ScaNNSearchApiSearxNG Search APISerpAPIShale ProtocolSingleStoreDBscikit-learnSlackspaCySpreedlyStarRocksStochasticAIStripeSupabase (Postgres)NebulaTairTelegramTencentVectorDBTensorFlow DatasetsTigris2MarkdownTrelloTruLensTwitterTypesenseUnstructuredUpstash RedisUSearchVearchVectaraVespaWandB TracingWeights & BiasesWeatherWeaviateWhatsAppWhyLabsWikipediaWolfram AlphaWriterXataXorbits Inference (Xinference)YandexYeager.aiYouTubeZepZillizComponentsLLMsChat modelsDocument loadersDocument transformersText embedding modelsVector storesRetrieversToolsAgents and toolkitsMemoryCallbacksChat
This page covers how to use the Hazy Research ecosystem within LangChain.
This page covers how to use the Hazy Research ecosystem within LangChain. ->: Skip to main content🦜️🔗 LangChainDocsUse casesIntegrationsAPICommunityChat our docsLangSmithJS/TS DocsSearchCTRLKProvidersAnthropicAWSGoogleMicrosoftOpenAIMoreActiveloop Deep LakeAI21 LabsAimAINetworkAirbyteAirtableAleph AlphaAlibaba Cloud OpensearchAnalyticDBAnnoyAnyscaleApifyArangoDBArgillaArthurArxivAtlasAwaDBAWS DynamoDBAZLyricsBagelDBBananaBasetenBeamBeautiful SoupBiliBiliNIBittensorBlackboardBrave SearchCassandraCerebriumAIChaindeskChromaClarifaiClearMLClickHouseCnosDBCohereCollege ConfidentialCometConfident AIConfluenceC TransformersDashVectorDatabricksDatadog TracingDatadog LogsDataForSEODeepInfraDeepSparseDiffbotDingoDiscordDocArrayDoctranDocugamiDuckDBElasticsearchEpsillaEverNoteFacebook ChatFacebook FaissFigmaFireworksFlyteForefrontAIGitGitBookGoldenGoogle Document AIGoogle SerperGooseAIGPT4AllGradientGraphsignalGrobidGutenbergHacker NewsHazy ResearchHeliconeHologresHTML to textHugging FaceiFixitIMSDbInfinoJavelin AI GatewayJinaKonkoLanceDBLangChain Decorators ✨Llama.cppLog10MarqoMediaWikiDumpMeilisearchMetalMilvusMinimaxMLflow AI GatewayMLflowModalModelScopeModern TreasuryMomentoMongoDB AtlasMotherduckMotörheadMyScaleNeo4jNLPCloudNotion DBNucliaObsidianOpenLLMOpenSearchOpenWeatherMapPetalsPostgres EmbeddingPGVectorPineconePipelineAIPortkeyPredibasePrediction GuardPromptLayerprovidersPsychicPubMedQdrantRay ServeRebuffRedditRedisReplicateRoamRocksetRunhouseRWKV-4ScaNNSearchApiSearxNG Search APISerpAPIShale ProtocolSingleStoreDBscikit-learnSlackspaCySpreedlyStarRocksStochasticAIStripeSupabase (Postgres)NebulaTairTelegramTencentVectorDBTensorFlow DatasetsTigris2MarkdownTrelloTruLensTwitterTypesenseUnstructuredUpstash RedisUSearchVearchVectaraVespaWandB TracingWeights & BiasesWeatherWeaviateWhatsAppWhyLabsWikipediaWolfram AlphaWriterXataXorbits Inference (Xinference)YandexYeager.aiYouTubeZepZillizComponentsLLMsChat modelsDocument loadersDocument transformersText embedding modelsVector storesRetrieversToolsAgents and toolkitsMemoryCallbacksChat
3,390
and toolkitsMemoryCallbacksChat loadersProvidersMoreHazy ResearchOn this pageHazy ResearchThis page covers how to use the Hazy Research ecosystem within LangChain.
This page covers how to use the Hazy Research ecosystem within LangChain.
This page covers how to use the Hazy Research ecosystem within LangChain. ->: and toolkitsMemoryCallbacksChat loadersProvidersMoreHazy ResearchOn this pageHazy ResearchThis page covers how to use the Hazy Research ecosystem within LangChain.
3,391
It is broken into two parts: installation and setup, and then references to specific Hazy Research wrappers.Installation and Setup​To use the manifest, install it with pip install manifest-mlWrappers​LLM​There exists an LLM wrapper around Hazy Research's manifest library. manifest is a python library which is itself a wrapper around many model providers, and adds in caching, history, and more.To use this wrapper:from langchain.llms.manifest import ManifestWrapperPreviousHacker NewsNextHeliconeInstallation and SetupWrappersLLMCommunityDiscordTwitterGitHubPythonJS/TSMoreHomepageBlogCopyright © 2023 LangChain, Inc.
This page covers how to use the Hazy Research ecosystem within LangChain.
This page covers how to use the Hazy Research ecosystem within LangChain. ->: It is broken into two parts: installation and setup, and then references to specific Hazy Research wrappers.Installation and Setup​To use the manifest, install it with pip install manifest-mlWrappers​LLM​There exists an LLM wrapper around Hazy Research's manifest library. manifest is a python library which is itself a wrapper around many model providers, and adds in caching, history, and more.To use this wrapper:from langchain.llms.manifest import ManifestWrapperPreviousHacker NewsNextHeliconeInstallation and SetupWrappersLLMCommunityDiscordTwitterGitHubPythonJS/TSMoreHomepageBlogCopyright © 2023 LangChain, Inc.
3,392
Doctran | 🦜️🔗 Langchain
Doctran is a python package. It uses LLMs and open-source
Doctran is a python package. It uses LLMs and open-source ->: Doctran | 🦜️🔗 Langchain
3,393
Skip to main content🦜️🔗 LangChainDocsUse casesIntegrationsAPICommunityChat our docsLangSmithJS/TS DocsSearchCTRLKProvidersAnthropicAWSGoogleMicrosoftOpenAIMoreActiveloop Deep LakeAI21 LabsAimAINetworkAirbyteAirtableAleph AlphaAlibaba Cloud OpensearchAnalyticDBAnnoyAnyscaleApifyArangoDBArgillaArthurArxivAtlasAwaDBAWS DynamoDBAZLyricsBagelDBBananaBasetenBeamBeautiful SoupBiliBiliNIBittensorBlackboardBrave SearchCassandraCerebriumAIChaindeskChromaClarifaiClearMLClickHouseCnosDBCohereCollege ConfidentialCometConfident AIConfluenceC TransformersDashVectorDatabricksDatadog TracingDatadog LogsDataForSEODeepInfraDeepSparseDiffbotDingoDiscordDocArrayDoctranDocugamiDuckDBElasticsearchEpsillaEverNoteFacebook ChatFacebook FaissFigmaFireworksFlyteForefrontAIGitGitBookGoldenGoogle Document AIGoogle SerperGooseAIGPT4AllGradientGraphsignalGrobidGutenbergHacker NewsHazy ResearchHeliconeHologresHTML to textHugging FaceiFixitIMSDbInfinoJavelin AI GatewayJinaKonkoLanceDBLangChain Decorators ✨Llama.cppLog10MarqoMediaWikiDumpMeilisearchMetalMilvusMinimaxMLflow AI GatewayMLflowModalModelScopeModern TreasuryMomentoMongoDB AtlasMotherduckMotörheadMyScaleNeo4jNLPCloudNotion DBNucliaObsidianOpenLLMOpenSearchOpenWeatherMapPetalsPostgres EmbeddingPGVectorPineconePipelineAIPortkeyPredibasePrediction GuardPromptLayerprovidersPsychicPubMedQdrantRay ServeRebuffRedditRedisReplicateRoamRocksetRunhouseRWKV-4ScaNNSearchApiSearxNG Search APISerpAPIShale ProtocolSingleStoreDBscikit-learnSlackspaCySpreedlyStarRocksStochasticAIStripeSupabase (Postgres)NebulaTairTelegramTencentVectorDBTensorFlow DatasetsTigris2MarkdownTrelloTruLensTwitterTypesenseUnstructuredUpstash RedisUSearchVearchVectaraVespaWandB TracingWeights & BiasesWeatherWeaviateWhatsAppWhyLabsWikipediaWolfram AlphaWriterXataXorbits Inference (Xinference)YandexYeager.aiYouTubeZepZillizComponentsLLMsChat modelsDocument loadersDocument transformersText embedding modelsVector storesRetrieversToolsAgents and toolkitsMemoryCallbacksChat
Doctran is a python package. It uses LLMs and open-source
Doctran is a python package. It uses LLMs and open-source ->: Skip to main content🦜️🔗 LangChainDocsUse casesIntegrationsAPICommunityChat our docsLangSmithJS/TS DocsSearchCTRLKProvidersAnthropicAWSGoogleMicrosoftOpenAIMoreActiveloop Deep LakeAI21 LabsAimAINetworkAirbyteAirtableAleph AlphaAlibaba Cloud OpensearchAnalyticDBAnnoyAnyscaleApifyArangoDBArgillaArthurArxivAtlasAwaDBAWS DynamoDBAZLyricsBagelDBBananaBasetenBeamBeautiful SoupBiliBiliNIBittensorBlackboardBrave SearchCassandraCerebriumAIChaindeskChromaClarifaiClearMLClickHouseCnosDBCohereCollege ConfidentialCometConfident AIConfluenceC TransformersDashVectorDatabricksDatadog TracingDatadog LogsDataForSEODeepInfraDeepSparseDiffbotDingoDiscordDocArrayDoctranDocugamiDuckDBElasticsearchEpsillaEverNoteFacebook ChatFacebook FaissFigmaFireworksFlyteForefrontAIGitGitBookGoldenGoogle Document AIGoogle SerperGooseAIGPT4AllGradientGraphsignalGrobidGutenbergHacker NewsHazy ResearchHeliconeHologresHTML to textHugging FaceiFixitIMSDbInfinoJavelin AI GatewayJinaKonkoLanceDBLangChain Decorators ✨Llama.cppLog10MarqoMediaWikiDumpMeilisearchMetalMilvusMinimaxMLflow AI GatewayMLflowModalModelScopeModern TreasuryMomentoMongoDB AtlasMotherduckMotörheadMyScaleNeo4jNLPCloudNotion DBNucliaObsidianOpenLLMOpenSearchOpenWeatherMapPetalsPostgres EmbeddingPGVectorPineconePipelineAIPortkeyPredibasePrediction GuardPromptLayerprovidersPsychicPubMedQdrantRay ServeRebuffRedditRedisReplicateRoamRocksetRunhouseRWKV-4ScaNNSearchApiSearxNG Search APISerpAPIShale ProtocolSingleStoreDBscikit-learnSlackspaCySpreedlyStarRocksStochasticAIStripeSupabase (Postgres)NebulaTairTelegramTencentVectorDBTensorFlow DatasetsTigris2MarkdownTrelloTruLensTwitterTypesenseUnstructuredUpstash RedisUSearchVearchVectaraVespaWandB TracingWeights & BiasesWeatherWeaviateWhatsAppWhyLabsWikipediaWolfram AlphaWriterXataXorbits Inference (Xinference)YandexYeager.aiYouTubeZepZillizComponentsLLMsChat modelsDocument loadersDocument transformersText embedding modelsVector storesRetrieversToolsAgents and toolkitsMemoryCallbacksChat
3,394
and toolkitsMemoryCallbacksChat loadersProvidersMoreDoctranOn this pageDoctranDoctran is a python package. It uses LLMs and open-source
Doctran is a python package. It uses LLMs and open-source
Doctran is a python package. It uses LLMs and open-source ->: and toolkitsMemoryCallbacksChat loadersProvidersMoreDoctranOn this pageDoctranDoctran is a python package. It uses LLMs and open-source
3,395
NLP libraries to transform raw text into clean, structured, information-dense documents that are optimized for vector space retrieval. You can think of Doctran as a black box where messy strings go in and nice, clean, labelled strings come out.Installation and Setup​pip install doctranDocument Transformers​Document Interrogator​See a usage example for DoctranQATransformer.from langchain.document_loaders import DoctranQATransformerProperty Extractor​See a usage example for DoctranPropertyExtractor.from langchain.document_loaders import DoctranPropertyExtractorDocument Translator​See a usage example for DoctranTextTranslator.from langchain.document_loaders import DoctranTextTranslatorPreviousDocArrayNextDocugamiInstallation and SetupDocument TransformersDocument InterrogatorProperty ExtractorDocument TranslatorCommunityDiscordTwitterGitHubPythonJS/TSMoreHomepageBlogCopyright © 2023 LangChain, Inc.
Doctran is a python package. It uses LLMs and open-source
Doctran is a python package. It uses LLMs and open-source ->: NLP libraries to transform raw text into clean, structured, information-dense documents that are optimized for vector space retrieval. You can think of Doctran as a black box where messy strings go in and nice, clean, labelled strings come out.Installation and Setup​pip install doctranDocument Transformers​Document Interrogator​See a usage example for DoctranQATransformer.from langchain.document_loaders import DoctranQATransformerProperty Extractor​See a usage example for DoctranPropertyExtractor.from langchain.document_loaders import DoctranPropertyExtractorDocument Translator​See a usage example for DoctranTextTranslator.from langchain.document_loaders import DoctranTextTranslatorPreviousDocArrayNextDocugamiInstallation and SetupDocument TransformersDocument InterrogatorProperty ExtractorDocument TranslatorCommunityDiscordTwitterGitHubPythonJS/TSMoreHomepageBlogCopyright © 2023 LangChain, Inc.
3,396
Zep | 🦜️🔗 Langchain
Zep - A long-term memory store for LLM applications.
Zep - A long-term memory store for LLM applications. ->: Zep | 🦜️🔗 Langchain
3,397
Skip to main content🦜️🔗 LangChainDocsUse casesIntegrationsAPICommunityChat our docsLangSmithJS/TS DocsSearchCTRLKProvidersAnthropicAWSGoogleMicrosoftOpenAIMoreActiveloop Deep LakeAI21 LabsAimAINetworkAirbyteAirtableAleph AlphaAlibaba Cloud OpensearchAnalyticDBAnnoyAnyscaleApifyArangoDBArgillaArthurArxivAtlasAwaDBAWS DynamoDBAZLyricsBagelDBBananaBasetenBeamBeautiful SoupBiliBiliNIBittensorBlackboardBrave SearchCassandraCerebriumAIChaindeskChromaClarifaiClearMLClickHouseCnosDBCohereCollege ConfidentialCometConfident AIConfluenceC TransformersDashVectorDatabricksDatadog TracingDatadog LogsDataForSEODeepInfraDeepSparseDiffbotDingoDiscordDocArrayDoctranDocugamiDuckDBElasticsearchEpsillaEverNoteFacebook ChatFacebook FaissFigmaFireworksFlyteForefrontAIGitGitBookGoldenGoogle Document AIGoogle SerperGooseAIGPT4AllGradientGraphsignalGrobidGutenbergHacker NewsHazy ResearchHeliconeHologresHTML to textHugging FaceiFixitIMSDbInfinoJavelin AI GatewayJinaKonkoLanceDBLangChain Decorators ✨Llama.cppLog10MarqoMediaWikiDumpMeilisearchMetalMilvusMinimaxMLflow AI GatewayMLflowModalModelScopeModern TreasuryMomentoMongoDB AtlasMotherduckMotörheadMyScaleNeo4jNLPCloudNotion DBNucliaObsidianOpenLLMOpenSearchOpenWeatherMapPetalsPostgres EmbeddingPGVectorPineconePipelineAIPortkeyPredibasePrediction GuardPromptLayerprovidersPsychicPubMedQdrantRay ServeRebuffRedditRedisReplicateRoamRocksetRunhouseRWKV-4ScaNNSearchApiSearxNG Search APISerpAPIShale ProtocolSingleStoreDBscikit-learnSlackspaCySpreedlyStarRocksStochasticAIStripeSupabase (Postgres)NebulaTairTelegramTencentVectorDBTensorFlow DatasetsTigris2MarkdownTrelloTruLensTwitterTypesenseUnstructuredUpstash RedisUSearchVearchVectaraVespaWandB TracingWeights & BiasesWeatherWeaviateWhatsAppWhyLabsWikipediaWolfram AlphaWriterXataXorbits Inference (Xinference)YandexYeager.aiYouTubeZepZillizComponentsLLMsChat modelsDocument loadersDocument transformersText embedding modelsVector storesRetrieversToolsAgents and toolkitsMemoryCallbacksChat
Zep - A long-term memory store for LLM applications.
Zep - A long-term memory store for LLM applications. ->: Skip to main content🦜️🔗 LangChainDocsUse casesIntegrationsAPICommunityChat our docsLangSmithJS/TS DocsSearchCTRLKProvidersAnthropicAWSGoogleMicrosoftOpenAIMoreActiveloop Deep LakeAI21 LabsAimAINetworkAirbyteAirtableAleph AlphaAlibaba Cloud OpensearchAnalyticDBAnnoyAnyscaleApifyArangoDBArgillaArthurArxivAtlasAwaDBAWS DynamoDBAZLyricsBagelDBBananaBasetenBeamBeautiful SoupBiliBiliNIBittensorBlackboardBrave SearchCassandraCerebriumAIChaindeskChromaClarifaiClearMLClickHouseCnosDBCohereCollege ConfidentialCometConfident AIConfluenceC TransformersDashVectorDatabricksDatadog TracingDatadog LogsDataForSEODeepInfraDeepSparseDiffbotDingoDiscordDocArrayDoctranDocugamiDuckDBElasticsearchEpsillaEverNoteFacebook ChatFacebook FaissFigmaFireworksFlyteForefrontAIGitGitBookGoldenGoogle Document AIGoogle SerperGooseAIGPT4AllGradientGraphsignalGrobidGutenbergHacker NewsHazy ResearchHeliconeHologresHTML to textHugging FaceiFixitIMSDbInfinoJavelin AI GatewayJinaKonkoLanceDBLangChain Decorators ✨Llama.cppLog10MarqoMediaWikiDumpMeilisearchMetalMilvusMinimaxMLflow AI GatewayMLflowModalModelScopeModern TreasuryMomentoMongoDB AtlasMotherduckMotörheadMyScaleNeo4jNLPCloudNotion DBNucliaObsidianOpenLLMOpenSearchOpenWeatherMapPetalsPostgres EmbeddingPGVectorPineconePipelineAIPortkeyPredibasePrediction GuardPromptLayerprovidersPsychicPubMedQdrantRay ServeRebuffRedditRedisReplicateRoamRocksetRunhouseRWKV-4ScaNNSearchApiSearxNG Search APISerpAPIShale ProtocolSingleStoreDBscikit-learnSlackspaCySpreedlyStarRocksStochasticAIStripeSupabase (Postgres)NebulaTairTelegramTencentVectorDBTensorFlow DatasetsTigris2MarkdownTrelloTruLensTwitterTypesenseUnstructuredUpstash RedisUSearchVearchVectaraVespaWandB TracingWeights & BiasesWeatherWeaviateWhatsAppWhyLabsWikipediaWolfram AlphaWriterXataXorbits Inference (Xinference)YandexYeager.aiYouTubeZepZillizComponentsLLMsChat modelsDocument loadersDocument transformersText embedding modelsVector storesRetrieversToolsAgents and toolkitsMemoryCallbacksChat
3,398
and toolkitsMemoryCallbacksChat loadersProvidersMoreZepOn this pageZepZep - A long-term memory store for LLM applications.Zep stores, summarizes, embeds, indexes, and enriches conversational AI chat histories, and exposes them via simple, low-latency APIs.Long-term memory persistence, with access to historical messages irrespective of your summarization strategy.Auto-summarization of memory messages based on a configurable message window. A series of summaries are stored, providing flexibility for future summarization strategies.Vector search over memories, with messages automatically embedded on creation.Auto-token counting of memories and summaries, allowing finer-grained control over prompt assembly.Python and JavaScript SDKs.Zep project Installation and Setup​pip install zep_pythonRetriever​See a usage example.from langchain.retrievers import ZepRetrieverPreviousYouTubeNextZillizInstallation and SetupRetrieverCommunityDiscordTwitterGitHubPythonJS/TSMoreHomepageBlogCopyright © 2023 LangChain, Inc.
Zep - A long-term memory store for LLM applications.
Zep - A long-term memory store for LLM applications. ->: and toolkitsMemoryCallbacksChat loadersProvidersMoreZepOn this pageZepZep - A long-term memory store for LLM applications.Zep stores, summarizes, embeds, indexes, and enriches conversational AI chat histories, and exposes them via simple, low-latency APIs.Long-term memory persistence, with access to historical messages irrespective of your summarization strategy.Auto-summarization of memory messages based on a configurable message window. A series of summaries are stored, providing flexibility for future summarization strategies.Vector search over memories, with messages automatically embedded on creation.Auto-token counting of memories and summaries, allowing finer-grained control over prompt assembly.Python and JavaScript SDKs.Zep project Installation and Setup​pip install zep_pythonRetriever​See a usage example.from langchain.retrievers import ZepRetrieverPreviousYouTubeNextZillizInstallation and SetupRetrieverCommunityDiscordTwitterGitHubPythonJS/TSMoreHomepageBlogCopyright © 2023 LangChain, Inc.
3,399
Typesense | 🦜️🔗 Langchain
Typesense is an open-source, in-memory search engine, that you can either
Typesense is an open-source, in-memory search engine, that you can either ->: Typesense | 🦜️🔗 Langchain