Unnamed: 0
int64 0
4.66k
| page content
stringlengths 23
2k
| description
stringlengths 8
925
| output
stringlengths 38
2.93k
|
---|---|---|---|
3,600 | and toolkitsMemoryCallbacksChat loadersProvidersMoreDataForSEOOn this pageDataForSEOThis page provides instructions on how to use the DataForSEO search APIs within LangChain.Installation and Setup​Get a DataForSEO API Access login and password, and set them as environment variables (DATAFORSEO_LOGIN and DATAFORSEO_PASSWORD respectively). You can find it in your dashboard.Wrappers​Utility​The DataForSEO utility wraps the API. To import this utility, use:from langchain.utilities.dataforseo_api_search import DataForSeoAPIWrapperFor a detailed walkthrough of this wrapper, see this notebook.Tool​You can also load this wrapper as a Tool to use with an Agent:from langchain.agents import load_toolstools = load_tools(["dataforseo-api-search"])Example usage​dataforseo = DataForSeoAPIWrapper(api_login="your_login", api_password="your_password")result = dataforseo.run("Bill Gates")print(result)Environment Variables​You can store your DataForSEO API Access login and password as environment variables. The wrapper will automatically check for these environment variables if no values are provided:import osos.environ["DATAFORSEO_LOGIN"] = "your_login"os.environ["DATAFORSEO_PASSWORD"] = "your_password"dataforseo = DataForSeoAPIWrapper()result = dataforseo.run("weather in Los Angeles")print(result)PreviousDatadog LogsNextDeepInfraInstallation and SetupWrappersUtilityToolExample usageEnvironment VariablesCommunityDiscordTwitterGitHubPythonJS/TSMoreHomepageBlogCopyright © 2023 LangChain, Inc. | This page provides instructions on how to use the DataForSEO search APIs within LangChain. | This page provides instructions on how to use the DataForSEO search APIs within LangChain. ->: and toolkitsMemoryCallbacksChat loadersProvidersMoreDataForSEOOn this pageDataForSEOThis page provides instructions on how to use the DataForSEO search APIs within LangChain.Installation and Setup​Get a DataForSEO API Access login and password, and set them as environment variables (DATAFORSEO_LOGIN and DATAFORSEO_PASSWORD respectively). You can find it in your dashboard.Wrappers​Utility​The DataForSEO utility wraps the API. To import this utility, use:from langchain.utilities.dataforseo_api_search import DataForSeoAPIWrapperFor a detailed walkthrough of this wrapper, see this notebook.Tool​You can also load this wrapper as a Tool to use with an Agent:from langchain.agents import load_toolstools = load_tools(["dataforseo-api-search"])Example usage​dataforseo = DataForSeoAPIWrapper(api_login="your_login", api_password="your_password")result = dataforseo.run("Bill Gates")print(result)Environment Variables​You can store your DataForSEO API Access login and password as environment variables. The wrapper will automatically check for these environment variables if no values are provided:import osos.environ["DATAFORSEO_LOGIN"] = "your_login"os.environ["DATAFORSEO_PASSWORD"] = "your_password"dataforseo = DataForSeoAPIWrapper()result = dataforseo.run("weather in Los Angeles")print(result)PreviousDatadog LogsNextDeepInfraInstallation and SetupWrappersUtilityToolExample usageEnvironment VariablesCommunityDiscordTwitterGitHubPythonJS/TSMoreHomepageBlogCopyright © 2023 LangChain, Inc. |
3,601 | WhatsApp | ü¶úÔ∏èüîó Langchain | WhatsApp (also called WhatsApp Messenger) is a freeware, cross-platform, centralized instant messaging (IM) and voice-over-IP (VoIP) service. It allows users to send text and voice messages, make voice and video calls, and share images, documents, user locations, and other content. | WhatsApp (also called WhatsApp Messenger) is a freeware, cross-platform, centralized instant messaging (IM) and voice-over-IP (VoIP) service. It allows users to send text and voice messages, make voice and video calls, and share images, documents, user locations, and other content. ->: WhatsApp | ü¶úÔ∏èüîó Langchain |
3,602 | Skip to main contentü¶úÔ∏èüîó LangChainDocsUse casesIntegrationsAPICommunityChat our docsLangSmithJS/TS DocsSearchCTRLKProvidersAnthropicAWSGoogleMicrosoftOpenAIMoreActiveloop Deep LakeAI21 LabsAimAINetworkAirbyteAirtableAleph AlphaAlibaba Cloud OpensearchAnalyticDBAnnoyAnyscaleApifyArangoDBArgillaArthurArxivAtlasAwaDBAWS DynamoDBAZLyricsBagelDBBananaBasetenBeamBeautiful SoupBiliBiliNIBittensorBlackboardBrave SearchCassandraCerebriumAIChaindeskChromaClarifaiClearMLClickHouseCnosDBCohereCollege ConfidentialCometConfident AIConfluenceC TransformersDashVectorDatabricksDatadog TracingDatadog LogsDataForSEODeepInfraDeepSparseDiffbotDingoDiscordDocArrayDoctranDocugamiDuckDBElasticsearchEpsillaEverNoteFacebook ChatFacebook FaissFigmaFireworksFlyteForefrontAIGitGitBookGoldenGoogle Document AIGoogle SerperGooseAIGPT4AllGradientGraphsignalGrobidGutenbergHacker NewsHazy ResearchHeliconeHologresHTML to textHugging FaceiFixitIMSDbInfinoJavelin AI GatewayJinaKonkoLanceDBLangChain Decorators ‚ú®Llama.cppLog10MarqoMediaWikiDumpMeilisearchMetalMilvusMinimaxMLflow AI GatewayMLflowModalModelScopeModern TreasuryMomentoMongoDB AtlasMotherduckMot√∂rheadMyScaleNeo4jNLPCloudNotion DBNucliaObsidianOpenLLMOpenSearchOpenWeatherMapPetalsPostgres EmbeddingPGVectorPineconePipelineAIPortkeyPredibasePrediction GuardPromptLayerprovidersPsychicPubMedQdrantRay ServeRebuffRedditRedisReplicateRoamRocksetRunhouseRWKV-4ScaNNSearchApiSearxNG Search APISerpAPIShale ProtocolSingleStoreDBscikit-learnSlackspaCySpreedlyStarRocksStochasticAIStripeSupabase (Postgres)NebulaTairTelegramTencentVectorDBTensorFlow DatasetsTigris2MarkdownTrelloTruLensTwitterTypesenseUnstructuredUpstash RedisUSearchVearchVectaraVespaWandB TracingWeights & BiasesWeatherWeaviateWhatsAppWhyLabsWikipediaWolfram AlphaWriterXataXorbits Inference (Xinference)YandexYeager.aiYouTubeZepZillizComponentsLLMsChat modelsDocument loadersDocument transformersText embedding modelsVector storesRetrieversToolsAgents and toolkitsMemoryCallbacksChat | WhatsApp (also called WhatsApp Messenger) is a freeware, cross-platform, centralized instant messaging (IM) and voice-over-IP (VoIP) service. It allows users to send text and voice messages, make voice and video calls, and share images, documents, user locations, and other content. | WhatsApp (also called WhatsApp Messenger) is a freeware, cross-platform, centralized instant messaging (IM) and voice-over-IP (VoIP) service. It allows users to send text and voice messages, make voice and video calls, and share images, documents, user locations, and other content. ->: Skip to main contentü¶úÔ∏èüîó LangChainDocsUse casesIntegrationsAPICommunityChat our docsLangSmithJS/TS DocsSearchCTRLKProvidersAnthropicAWSGoogleMicrosoftOpenAIMoreActiveloop Deep LakeAI21 LabsAimAINetworkAirbyteAirtableAleph AlphaAlibaba Cloud OpensearchAnalyticDBAnnoyAnyscaleApifyArangoDBArgillaArthurArxivAtlasAwaDBAWS DynamoDBAZLyricsBagelDBBananaBasetenBeamBeautiful SoupBiliBiliNIBittensorBlackboardBrave SearchCassandraCerebriumAIChaindeskChromaClarifaiClearMLClickHouseCnosDBCohereCollege ConfidentialCometConfident AIConfluenceC TransformersDashVectorDatabricksDatadog TracingDatadog LogsDataForSEODeepInfraDeepSparseDiffbotDingoDiscordDocArrayDoctranDocugamiDuckDBElasticsearchEpsillaEverNoteFacebook ChatFacebook FaissFigmaFireworksFlyteForefrontAIGitGitBookGoldenGoogle Document AIGoogle SerperGooseAIGPT4AllGradientGraphsignalGrobidGutenbergHacker NewsHazy ResearchHeliconeHologresHTML to textHugging FaceiFixitIMSDbInfinoJavelin AI GatewayJinaKonkoLanceDBLangChain Decorators ‚ú®Llama.cppLog10MarqoMediaWikiDumpMeilisearchMetalMilvusMinimaxMLflow AI GatewayMLflowModalModelScopeModern TreasuryMomentoMongoDB AtlasMotherduckMot√∂rheadMyScaleNeo4jNLPCloudNotion DBNucliaObsidianOpenLLMOpenSearchOpenWeatherMapPetalsPostgres EmbeddingPGVectorPineconePipelineAIPortkeyPredibasePrediction GuardPromptLayerprovidersPsychicPubMedQdrantRay ServeRebuffRedditRedisReplicateRoamRocksetRunhouseRWKV-4ScaNNSearchApiSearxNG Search APISerpAPIShale ProtocolSingleStoreDBscikit-learnSlackspaCySpreedlyStarRocksStochasticAIStripeSupabase (Postgres)NebulaTairTelegramTencentVectorDBTensorFlow DatasetsTigris2MarkdownTrelloTruLensTwitterTypesenseUnstructuredUpstash RedisUSearchVearchVectaraVespaWandB TracingWeights & BiasesWeatherWeaviateWhatsAppWhyLabsWikipediaWolfram AlphaWriterXataXorbits Inference (Xinference)YandexYeager.aiYouTubeZepZillizComponentsLLMsChat modelsDocument loadersDocument transformersText embedding modelsVector storesRetrieversToolsAgents and toolkitsMemoryCallbacksChat |
3,603 | and toolkitsMemoryCallbacksChat loadersProvidersMoreWhatsAppOn this pageWhatsAppWhatsApp (also called WhatsApp Messenger) is a freeware, cross-platform, centralized instant messaging (IM) and voice-over-IP (VoIP) service. It allows users to send text and voice messages, make voice and video calls, and share images, documents, user locations, and other content.Installation and Setup​There isn't any special setup for it.Document Loader​See a usage example.from langchain.document_loaders import WhatsAppChatLoaderPreviousWeaviateNextWhyLabsInstallation and SetupDocument LoaderCommunityDiscordTwitterGitHubPythonJS/TSMoreHomepageBlogCopyright © 2023 LangChain, Inc. | WhatsApp (also called WhatsApp Messenger) is a freeware, cross-platform, centralized instant messaging (IM) and voice-over-IP (VoIP) service. It allows users to send text and voice messages, make voice and video calls, and share images, documents, user locations, and other content. | WhatsApp (also called WhatsApp Messenger) is a freeware, cross-platform, centralized instant messaging (IM) and voice-over-IP (VoIP) service. It allows users to send text and voice messages, make voice and video calls, and share images, documents, user locations, and other content. ->: and toolkitsMemoryCallbacksChat loadersProvidersMoreWhatsAppOn this pageWhatsAppWhatsApp (also called WhatsApp Messenger) is a freeware, cross-platform, centralized instant messaging (IM) and voice-over-IP (VoIP) service. It allows users to send text and voice messages, make voice and video calls, and share images, documents, user locations, and other content.Installation and Setup​There isn't any special setup for it.Document Loader​See a usage example.from langchain.document_loaders import WhatsAppChatLoaderPreviousWeaviateNextWhyLabsInstallation and SetupDocument LoaderCommunityDiscordTwitterGitHubPythonJS/TSMoreHomepageBlogCopyright © 2023 LangChain, Inc. |
3,604 | CerebriumAI | ü¶úÔ∏èüîó Langchain | This page covers how to use the CerebriumAI ecosystem within LangChain. | This page covers how to use the CerebriumAI ecosystem within LangChain. ->: CerebriumAI | ü¶úÔ∏èüîó Langchain |
3,605 | Skip to main contentü¶úÔ∏èüîó LangChainDocsUse casesIntegrationsAPICommunityChat our docsLangSmithJS/TS DocsSearchCTRLKProvidersAnthropicAWSGoogleMicrosoftOpenAIMoreActiveloop Deep LakeAI21 LabsAimAINetworkAirbyteAirtableAleph AlphaAlibaba Cloud OpensearchAnalyticDBAnnoyAnyscaleApifyArangoDBArgillaArthurArxivAtlasAwaDBAWS DynamoDBAZLyricsBagelDBBananaBasetenBeamBeautiful SoupBiliBiliNIBittensorBlackboardBrave SearchCassandraCerebriumAIChaindeskChromaClarifaiClearMLClickHouseCnosDBCohereCollege ConfidentialCometConfident AIConfluenceC TransformersDashVectorDatabricksDatadog TracingDatadog LogsDataForSEODeepInfraDeepSparseDiffbotDingoDiscordDocArrayDoctranDocugamiDuckDBElasticsearchEpsillaEverNoteFacebook ChatFacebook FaissFigmaFireworksFlyteForefrontAIGitGitBookGoldenGoogle Document AIGoogle SerperGooseAIGPT4AllGradientGraphsignalGrobidGutenbergHacker NewsHazy ResearchHeliconeHologresHTML to textHugging FaceiFixitIMSDbInfinoJavelin AI GatewayJinaKonkoLanceDBLangChain Decorators ‚ú®Llama.cppLog10MarqoMediaWikiDumpMeilisearchMetalMilvusMinimaxMLflow AI GatewayMLflowModalModelScopeModern TreasuryMomentoMongoDB AtlasMotherduckMot√∂rheadMyScaleNeo4jNLPCloudNotion DBNucliaObsidianOpenLLMOpenSearchOpenWeatherMapPetalsPostgres EmbeddingPGVectorPineconePipelineAIPortkeyPredibasePrediction GuardPromptLayerprovidersPsychicPubMedQdrantRay ServeRebuffRedditRedisReplicateRoamRocksetRunhouseRWKV-4ScaNNSearchApiSearxNG Search APISerpAPIShale ProtocolSingleStoreDBscikit-learnSlackspaCySpreedlyStarRocksStochasticAIStripeSupabase (Postgres)NebulaTairTelegramTencentVectorDBTensorFlow DatasetsTigris2MarkdownTrelloTruLensTwitterTypesenseUnstructuredUpstash RedisUSearchVearchVectaraVespaWandB TracingWeights & BiasesWeatherWeaviateWhatsAppWhyLabsWikipediaWolfram AlphaWriterXataXorbits Inference (Xinference)YandexYeager.aiYouTubeZepZillizComponentsLLMsChat modelsDocument loadersDocument transformersText embedding modelsVector storesRetrieversToolsAgents and toolkitsMemoryCallbacksChat | This page covers how to use the CerebriumAI ecosystem within LangChain. | This page covers how to use the CerebriumAI ecosystem within LangChain. ->: Skip to main contentü¶úÔ∏èüîó LangChainDocsUse casesIntegrationsAPICommunityChat our docsLangSmithJS/TS DocsSearchCTRLKProvidersAnthropicAWSGoogleMicrosoftOpenAIMoreActiveloop Deep LakeAI21 LabsAimAINetworkAirbyteAirtableAleph AlphaAlibaba Cloud OpensearchAnalyticDBAnnoyAnyscaleApifyArangoDBArgillaArthurArxivAtlasAwaDBAWS DynamoDBAZLyricsBagelDBBananaBasetenBeamBeautiful SoupBiliBiliNIBittensorBlackboardBrave SearchCassandraCerebriumAIChaindeskChromaClarifaiClearMLClickHouseCnosDBCohereCollege ConfidentialCometConfident AIConfluenceC TransformersDashVectorDatabricksDatadog TracingDatadog LogsDataForSEODeepInfraDeepSparseDiffbotDingoDiscordDocArrayDoctranDocugamiDuckDBElasticsearchEpsillaEverNoteFacebook ChatFacebook FaissFigmaFireworksFlyteForefrontAIGitGitBookGoldenGoogle Document AIGoogle SerperGooseAIGPT4AllGradientGraphsignalGrobidGutenbergHacker NewsHazy ResearchHeliconeHologresHTML to textHugging FaceiFixitIMSDbInfinoJavelin AI GatewayJinaKonkoLanceDBLangChain Decorators ‚ú®Llama.cppLog10MarqoMediaWikiDumpMeilisearchMetalMilvusMinimaxMLflow AI GatewayMLflowModalModelScopeModern TreasuryMomentoMongoDB AtlasMotherduckMot√∂rheadMyScaleNeo4jNLPCloudNotion DBNucliaObsidianOpenLLMOpenSearchOpenWeatherMapPetalsPostgres EmbeddingPGVectorPineconePipelineAIPortkeyPredibasePrediction GuardPromptLayerprovidersPsychicPubMedQdrantRay ServeRebuffRedditRedisReplicateRoamRocksetRunhouseRWKV-4ScaNNSearchApiSearxNG Search APISerpAPIShale ProtocolSingleStoreDBscikit-learnSlackspaCySpreedlyStarRocksStochasticAIStripeSupabase (Postgres)NebulaTairTelegramTencentVectorDBTensorFlow DatasetsTigris2MarkdownTrelloTruLensTwitterTypesenseUnstructuredUpstash RedisUSearchVearchVectaraVespaWandB TracingWeights & BiasesWeatherWeaviateWhatsAppWhyLabsWikipediaWolfram AlphaWriterXataXorbits Inference (Xinference)YandexYeager.aiYouTubeZepZillizComponentsLLMsChat modelsDocument loadersDocument transformersText embedding modelsVector storesRetrieversToolsAgents and toolkitsMemoryCallbacksChat |
3,606 | and toolkitsMemoryCallbacksChat loadersProvidersMoreCerebriumAIOn this pageCerebriumAIThis page covers how to use the CerebriumAI ecosystem within LangChain. | This page covers how to use the CerebriumAI ecosystem within LangChain. | This page covers how to use the CerebriumAI ecosystem within LangChain. ->: and toolkitsMemoryCallbacksChat loadersProvidersMoreCerebriumAIOn this pageCerebriumAIThis page covers how to use the CerebriumAI ecosystem within LangChain. |
3,607 | It is broken into two parts: installation and setup, and then references to specific CerebriumAI wrappers.Installation and Setup​Install with pip install cerebriumGet an CerebriumAI api key and set it as an environment variable (CEREBRIUMAI_API_KEY)Wrappers​LLM​There exists an CerebriumAI LLM wrapper, which you can access with from langchain.llms import CerebriumAIPreviousCassandraNextChaindeskInstallation and SetupWrappersLLMCommunityDiscordTwitterGitHubPythonJS/TSMoreHomepageBlogCopyright © 2023 LangChain, Inc. | This page covers how to use the CerebriumAI ecosystem within LangChain. | This page covers how to use the CerebriumAI ecosystem within LangChain. ->: It is broken into two parts: installation and setup, and then references to specific CerebriumAI wrappers.Installation and Setup​Install with pip install cerebriumGet an CerebriumAI api key and set it as an environment variable (CEREBRIUMAI_API_KEY)Wrappers​LLM​There exists an CerebriumAI LLM wrapper, which you can access with from langchain.llms import CerebriumAIPreviousCassandraNextChaindeskInstallation and SetupWrappersLLMCommunityDiscordTwitterGitHubPythonJS/TSMoreHomepageBlogCopyright © 2023 LangChain, Inc. |
3,608 | CnosDB | ü¶úÔ∏èüîó Langchain | CnosDB is an open-source distributed time series database with high performance, high compression rate and high ease of use. | CnosDB is an open-source distributed time series database with high performance, high compression rate and high ease of use. ->: CnosDB | ü¶úÔ∏èüîó Langchain |
3,609 | Skip to main contentü¶úÔ∏èüîó LangChainDocsUse casesIntegrationsAPICommunityChat our docsLangSmithJS/TS DocsSearchCTRLKProvidersAnthropicAWSGoogleMicrosoftOpenAIMoreActiveloop Deep LakeAI21 LabsAimAINetworkAirbyteAirtableAleph AlphaAlibaba Cloud OpensearchAnalyticDBAnnoyAnyscaleApifyArangoDBArgillaArthurArxivAtlasAwaDBAWS DynamoDBAZLyricsBagelDBBananaBasetenBeamBeautiful SoupBiliBiliNIBittensorBlackboardBrave SearchCassandraCerebriumAIChaindeskChromaClarifaiClearMLClickHouseCnosDBCohereCollege ConfidentialCometConfident AIConfluenceC TransformersDashVectorDatabricksDatadog TracingDatadog LogsDataForSEODeepInfraDeepSparseDiffbotDingoDiscordDocArrayDoctranDocugamiDuckDBElasticsearchEpsillaEverNoteFacebook ChatFacebook FaissFigmaFireworksFlyteForefrontAIGitGitBookGoldenGoogle Document AIGoogle SerperGooseAIGPT4AllGradientGraphsignalGrobidGutenbergHacker NewsHazy ResearchHeliconeHologresHTML to textHugging FaceiFixitIMSDbInfinoJavelin AI GatewayJinaKonkoLanceDBLangChain Decorators ‚ú®Llama.cppLog10MarqoMediaWikiDumpMeilisearchMetalMilvusMinimaxMLflow AI GatewayMLflowModalModelScopeModern TreasuryMomentoMongoDB AtlasMotherduckMot√∂rheadMyScaleNeo4jNLPCloudNotion DBNucliaObsidianOpenLLMOpenSearchOpenWeatherMapPetalsPostgres EmbeddingPGVectorPineconePipelineAIPortkeyPredibasePrediction GuardPromptLayerprovidersPsychicPubMedQdrantRay ServeRebuffRedditRedisReplicateRoamRocksetRunhouseRWKV-4ScaNNSearchApiSearxNG Search APISerpAPIShale ProtocolSingleStoreDBscikit-learnSlackspaCySpreedlyStarRocksStochasticAIStripeSupabase (Postgres)NebulaTairTelegramTencentVectorDBTensorFlow DatasetsTigris2MarkdownTrelloTruLensTwitterTypesenseUnstructuredUpstash RedisUSearchVearchVectaraVespaWandB TracingWeights & BiasesWeatherWeaviateWhatsAppWhyLabsWikipediaWolfram AlphaWriterXataXorbits Inference (Xinference)YandexYeager.aiYouTubeZepZillizComponentsLLMsChat modelsDocument loadersDocument transformersText embedding modelsVector storesRetrieversToolsAgents and toolkitsMemoryCallbacksChat | CnosDB is an open-source distributed time series database with high performance, high compression rate and high ease of use. | CnosDB is an open-source distributed time series database with high performance, high compression rate and high ease of use. ->: Skip to main contentü¶úÔ∏èüîó LangChainDocsUse casesIntegrationsAPICommunityChat our docsLangSmithJS/TS DocsSearchCTRLKProvidersAnthropicAWSGoogleMicrosoftOpenAIMoreActiveloop Deep LakeAI21 LabsAimAINetworkAirbyteAirtableAleph AlphaAlibaba Cloud OpensearchAnalyticDBAnnoyAnyscaleApifyArangoDBArgillaArthurArxivAtlasAwaDBAWS DynamoDBAZLyricsBagelDBBananaBasetenBeamBeautiful SoupBiliBiliNIBittensorBlackboardBrave SearchCassandraCerebriumAIChaindeskChromaClarifaiClearMLClickHouseCnosDBCohereCollege ConfidentialCometConfident AIConfluenceC TransformersDashVectorDatabricksDatadog TracingDatadog LogsDataForSEODeepInfraDeepSparseDiffbotDingoDiscordDocArrayDoctranDocugamiDuckDBElasticsearchEpsillaEverNoteFacebook ChatFacebook FaissFigmaFireworksFlyteForefrontAIGitGitBookGoldenGoogle Document AIGoogle SerperGooseAIGPT4AllGradientGraphsignalGrobidGutenbergHacker NewsHazy ResearchHeliconeHologresHTML to textHugging FaceiFixitIMSDbInfinoJavelin AI GatewayJinaKonkoLanceDBLangChain Decorators ‚ú®Llama.cppLog10MarqoMediaWikiDumpMeilisearchMetalMilvusMinimaxMLflow AI GatewayMLflowModalModelScopeModern TreasuryMomentoMongoDB AtlasMotherduckMot√∂rheadMyScaleNeo4jNLPCloudNotion DBNucliaObsidianOpenLLMOpenSearchOpenWeatherMapPetalsPostgres EmbeddingPGVectorPineconePipelineAIPortkeyPredibasePrediction GuardPromptLayerprovidersPsychicPubMedQdrantRay ServeRebuffRedditRedisReplicateRoamRocksetRunhouseRWKV-4ScaNNSearchApiSearxNG Search APISerpAPIShale ProtocolSingleStoreDBscikit-learnSlackspaCySpreedlyStarRocksStochasticAIStripeSupabase (Postgres)NebulaTairTelegramTencentVectorDBTensorFlow DatasetsTigris2MarkdownTrelloTruLensTwitterTypesenseUnstructuredUpstash RedisUSearchVearchVectaraVespaWandB TracingWeights & BiasesWeatherWeaviateWhatsAppWhyLabsWikipediaWolfram AlphaWriterXataXorbits Inference (Xinference)YandexYeager.aiYouTubeZepZillizComponentsLLMsChat modelsDocument loadersDocument transformersText embedding modelsVector storesRetrieversToolsAgents and toolkitsMemoryCallbacksChat |
3,610 | and toolkitsMemoryCallbacksChat loadersProvidersMoreCnosDBOn this pageCnosDBCnosDB is an open-source distributed time series database with high performance, high compression rate and high ease of use.Installation and Setup‚Äãpip install cnos-connectorConnecting to CnosDB‚ÄãYou can connect to CnosDB using the SQLDatabase.from_cnosdb() method.Syntax‚Äãdef SQLDatabase.from_cnosdb(url: str = "127.0.0.1:8902", user: str = "root", password: str = "", tenant: str = "cnosdb", database: str = "public")Args:url (str): The HTTP connection host name and port number of the CnosDB | CnosDB is an open-source distributed time series database with high performance, high compression rate and high ease of use. | CnosDB is an open-source distributed time series database with high performance, high compression rate and high ease of use. ->: and toolkitsMemoryCallbacksChat loadersProvidersMoreCnosDBOn this pageCnosDBCnosDB is an open-source distributed time series database with high performance, high compression rate and high ease of use.Installation and Setup‚Äãpip install cnos-connectorConnecting to CnosDB‚ÄãYou can connect to CnosDB using the SQLDatabase.from_cnosdb() method.Syntax‚Äãdef SQLDatabase.from_cnosdb(url: str = "127.0.0.1:8902", user: str = "root", password: str = "", tenant: str = "cnosdb", database: str = "public")Args:url (str): The HTTP connection host name and port number of the CnosDB |
3,611 | service, excluding "http://" or "https://", with a default value
of "127.0.0.1:8902".user (str): The username used to connect to the CnosDB service, with a
default value of "root".password (str): The password of the user connecting to the CnosDB service,
with a default value of "".tenant (str): The name of the tenant used to connect to the CnosDB service, | CnosDB is an open-source distributed time series database with high performance, high compression rate and high ease of use. | CnosDB is an open-source distributed time series database with high performance, high compression rate and high ease of use. ->: service, excluding "http://" or "https://", with a default value
of "127.0.0.1:8902".user (str): The username used to connect to the CnosDB service, with a
default value of "root".password (str): The password of the user connecting to the CnosDB service,
with a default value of "".tenant (str): The name of the tenant used to connect to the CnosDB service, |
3,612 | with a default value of "cnosdb".database (str): The name of the database in the CnosDB tenant.Examples‚Äã# Connecting to CnosDB with SQLDatabase Wrapperfrom langchain.utilities import SQLDatabasedb = SQLDatabase.from_cnosdb()# Creating a OpenAI Chat LLM Wrapperfrom langchain.chat_models import ChatOpenAIllm = ChatOpenAI(temperature=0, model_name="gpt-3.5-turbo")SQL Database Chain‚ÄãThis example demonstrates the use of the SQL Chain for answering a question over a CnosDB.from langchain.utilities import SQLDatabaseChaindb_chain = SQLDatabaseChain.from_llm(llm, db, verbose=True)db_chain.run( "What is the average temperature of air at station XiaoMaiDao between October 19, 2022 and Occtober 20, 2022?")> Entering new chain...What is the average temperature of air at station XiaoMaiDao between October 19, 2022 and Occtober 20, 2022?SQLQuery:SELECT AVG(temperature) FROM air WHERE station = 'XiaoMaiDao' AND time >= '2022-10-19' AND time < '2022-10-20'SQLResult: [(68.0,)]Answer:The average temperature of air at station XiaoMaiDao between October 19, 2022 and October 20, 2022 is 68.0.> Finished chain.SQL Database Agent‚ÄãThis example demonstrates the use of the SQL Database Agent for answering questions over a CnosDB.from langchain.agents import create_sql_agentfrom langchain.agents.agent_toolkits import SQLDatabaseToolkittoolkit = SQLDatabaseToolkit(db=db, llm=llm)agent = create_sql_agent(llm=llm, toolkit=toolkit, verbose=True)agent.run( "What is the average temperature of air at station XiaoMaiDao between October 19, 2022 and Occtober 20, 2022?")> Entering new chain...Action: sql_db_list_tablesAction Input: ""Observation: airThought:The "air" table seems relevant to the question. I should query the schema of the "air" table to see what columns are available.Action: sql_db_schemaAction Input: "air"Observation:CREATE TABLE air ( pressure FLOAT, station STRING, temperature FLOAT, time TIMESTAMP, visibility FLOAT)/*3 rows from air table:pressure | CnosDB is an open-source distributed time series database with high performance, high compression rate and high ease of use. | CnosDB is an open-source distributed time series database with high performance, high compression rate and high ease of use. ->: with a default value of "cnosdb".database (str): The name of the database in the CnosDB tenant.Examples‚Äã# Connecting to CnosDB with SQLDatabase Wrapperfrom langchain.utilities import SQLDatabasedb = SQLDatabase.from_cnosdb()# Creating a OpenAI Chat LLM Wrapperfrom langchain.chat_models import ChatOpenAIllm = ChatOpenAI(temperature=0, model_name="gpt-3.5-turbo")SQL Database Chain‚ÄãThis example demonstrates the use of the SQL Chain for answering a question over a CnosDB.from langchain.utilities import SQLDatabaseChaindb_chain = SQLDatabaseChain.from_llm(llm, db, verbose=True)db_chain.run( "What is the average temperature of air at station XiaoMaiDao between October 19, 2022 and Occtober 20, 2022?")> Entering new chain...What is the average temperature of air at station XiaoMaiDao between October 19, 2022 and Occtober 20, 2022?SQLQuery:SELECT AVG(temperature) FROM air WHERE station = 'XiaoMaiDao' AND time >= '2022-10-19' AND time < '2022-10-20'SQLResult: [(68.0,)]Answer:The average temperature of air at station XiaoMaiDao between October 19, 2022 and October 20, 2022 is 68.0.> Finished chain.SQL Database Agent‚ÄãThis example demonstrates the use of the SQL Database Agent for answering questions over a CnosDB.from langchain.agents import create_sql_agentfrom langchain.agents.agent_toolkits import SQLDatabaseToolkittoolkit = SQLDatabaseToolkit(db=db, llm=llm)agent = create_sql_agent(llm=llm, toolkit=toolkit, verbose=True)agent.run( "What is the average temperature of air at station XiaoMaiDao between October 19, 2022 and Occtober 20, 2022?")> Entering new chain...Action: sql_db_list_tablesAction Input: ""Observation: airThought:The "air" table seems relevant to the question. I should query the schema of the "air" table to see what columns are available.Action: sql_db_schemaAction Input: "air"Observation:CREATE TABLE air ( pressure FLOAT, station STRING, temperature FLOAT, time TIMESTAMP, visibility FLOAT)/*3 rows from air table:pressure |
3,613 | FLOAT)/*3 rows from air table:pressure station temperature time visibility75.0 XiaoMaiDao 67.0 2022-10-19T03:40:00 54.077.0 XiaoMaiDao 69.0 2022-10-19T04:40:00 56.076.0 XiaoMaiDao 68.0 2022-10-19T05:40:00 55.0*/Thought:The "temperature" column in the "air" table is relevant to the question. I can query the average temperature between the specified dates.Action: sql_db_queryAction Input: "SELECT AVG(temperature) FROM air WHERE station = 'XiaoMaiDao' AND time >= '2022-10-19' AND time <= '2022-10-20'"Observation: [(68.0,)]Thought:The average temperature of air at station XiaoMaiDao between October 19, 2022 and October 20, 2022 is 68.0.Final Answer: 68.0> Finished chain.PreviousClickHouseNextCohereInstallation and SetupConnecting to CnosDBSyntaxExamplesSQL Database ChainSQL Database AgentCommunityDiscordTwitterGitHubPythonJS/TSMoreHomepageBlogCopyright © 2023 LangChain, Inc. | CnosDB is an open-source distributed time series database with high performance, high compression rate and high ease of use. | CnosDB is an open-source distributed time series database with high performance, high compression rate and high ease of use. ->: FLOAT)/*3 rows from air table:pressure station temperature time visibility75.0 XiaoMaiDao 67.0 2022-10-19T03:40:00 54.077.0 XiaoMaiDao 69.0 2022-10-19T04:40:00 56.076.0 XiaoMaiDao 68.0 2022-10-19T05:40:00 55.0*/Thought:The "temperature" column in the "air" table is relevant to the question. I can query the average temperature between the specified dates.Action: sql_db_queryAction Input: "SELECT AVG(temperature) FROM air WHERE station = 'XiaoMaiDao' AND time >= '2022-10-19' AND time <= '2022-10-20'"Observation: [(68.0,)]Thought:The average temperature of air at station XiaoMaiDao between October 19, 2022 and October 20, 2022 is 68.0.Final Answer: 68.0> Finished chain.PreviousClickHouseNextCohereInstallation and SetupConnecting to CnosDBSyntaxExamplesSQL Database ChainSQL Database AgentCommunityDiscordTwitterGitHubPythonJS/TSMoreHomepageBlogCopyright © 2023 LangChain, Inc. |
3,614 | Arxiv | ü¶úÔ∏èüîó Langchain | arXiv is an open-access archive for 2 million scholarly articles in the fields of physics, | arXiv is an open-access archive for 2 million scholarly articles in the fields of physics, ->: Arxiv | ü¶úÔ∏èüîó Langchain |
3,615 | Skip to main contentü¶úÔ∏èüîó LangChainDocsUse casesIntegrationsAPICommunityChat our docsLangSmithJS/TS DocsSearchCTRLKProvidersAnthropicAWSGoogleMicrosoftOpenAIMoreActiveloop Deep LakeAI21 LabsAimAINetworkAirbyteAirtableAleph AlphaAlibaba Cloud OpensearchAnalyticDBAnnoyAnyscaleApifyArangoDBArgillaArthurArxivAtlasAwaDBAWS DynamoDBAZLyricsBagelDBBananaBasetenBeamBeautiful SoupBiliBiliNIBittensorBlackboardBrave SearchCassandraCerebriumAIChaindeskChromaClarifaiClearMLClickHouseCnosDBCohereCollege ConfidentialCometConfident AIConfluenceC TransformersDashVectorDatabricksDatadog TracingDatadog LogsDataForSEODeepInfraDeepSparseDiffbotDingoDiscordDocArrayDoctranDocugamiDuckDBElasticsearchEpsillaEverNoteFacebook ChatFacebook FaissFigmaFireworksFlyteForefrontAIGitGitBookGoldenGoogle Document AIGoogle SerperGooseAIGPT4AllGradientGraphsignalGrobidGutenbergHacker NewsHazy ResearchHeliconeHologresHTML to textHugging FaceiFixitIMSDbInfinoJavelin AI GatewayJinaKonkoLanceDBLangChain Decorators ‚ú®Llama.cppLog10MarqoMediaWikiDumpMeilisearchMetalMilvusMinimaxMLflow AI GatewayMLflowModalModelScopeModern TreasuryMomentoMongoDB AtlasMotherduckMot√∂rheadMyScaleNeo4jNLPCloudNotion DBNucliaObsidianOpenLLMOpenSearchOpenWeatherMapPetalsPostgres EmbeddingPGVectorPineconePipelineAIPortkeyPredibasePrediction GuardPromptLayerprovidersPsychicPubMedQdrantRay ServeRebuffRedditRedisReplicateRoamRocksetRunhouseRWKV-4ScaNNSearchApiSearxNG Search APISerpAPIShale ProtocolSingleStoreDBscikit-learnSlackspaCySpreedlyStarRocksStochasticAIStripeSupabase (Postgres)NebulaTairTelegramTencentVectorDBTensorFlow DatasetsTigris2MarkdownTrelloTruLensTwitterTypesenseUnstructuredUpstash RedisUSearchVearchVectaraVespaWandB TracingWeights & BiasesWeatherWeaviateWhatsAppWhyLabsWikipediaWolfram AlphaWriterXataXorbits Inference (Xinference)YandexYeager.aiYouTubeZepZillizComponentsLLMsChat modelsDocument loadersDocument transformersText embedding modelsVector storesRetrieversToolsAgents and toolkitsMemoryCallbacksChat | arXiv is an open-access archive for 2 million scholarly articles in the fields of physics, | arXiv is an open-access archive for 2 million scholarly articles in the fields of physics, ->: Skip to main contentü¶úÔ∏èüîó LangChainDocsUse casesIntegrationsAPICommunityChat our docsLangSmithJS/TS DocsSearchCTRLKProvidersAnthropicAWSGoogleMicrosoftOpenAIMoreActiveloop Deep LakeAI21 LabsAimAINetworkAirbyteAirtableAleph AlphaAlibaba Cloud OpensearchAnalyticDBAnnoyAnyscaleApifyArangoDBArgillaArthurArxivAtlasAwaDBAWS DynamoDBAZLyricsBagelDBBananaBasetenBeamBeautiful SoupBiliBiliNIBittensorBlackboardBrave SearchCassandraCerebriumAIChaindeskChromaClarifaiClearMLClickHouseCnosDBCohereCollege ConfidentialCometConfident AIConfluenceC TransformersDashVectorDatabricksDatadog TracingDatadog LogsDataForSEODeepInfraDeepSparseDiffbotDingoDiscordDocArrayDoctranDocugamiDuckDBElasticsearchEpsillaEverNoteFacebook ChatFacebook FaissFigmaFireworksFlyteForefrontAIGitGitBookGoldenGoogle Document AIGoogle SerperGooseAIGPT4AllGradientGraphsignalGrobidGutenbergHacker NewsHazy ResearchHeliconeHologresHTML to textHugging FaceiFixitIMSDbInfinoJavelin AI GatewayJinaKonkoLanceDBLangChain Decorators ‚ú®Llama.cppLog10MarqoMediaWikiDumpMeilisearchMetalMilvusMinimaxMLflow AI GatewayMLflowModalModelScopeModern TreasuryMomentoMongoDB AtlasMotherduckMot√∂rheadMyScaleNeo4jNLPCloudNotion DBNucliaObsidianOpenLLMOpenSearchOpenWeatherMapPetalsPostgres EmbeddingPGVectorPineconePipelineAIPortkeyPredibasePrediction GuardPromptLayerprovidersPsychicPubMedQdrantRay ServeRebuffRedditRedisReplicateRoamRocksetRunhouseRWKV-4ScaNNSearchApiSearxNG Search APISerpAPIShale ProtocolSingleStoreDBscikit-learnSlackspaCySpreedlyStarRocksStochasticAIStripeSupabase (Postgres)NebulaTairTelegramTencentVectorDBTensorFlow DatasetsTigris2MarkdownTrelloTruLensTwitterTypesenseUnstructuredUpstash RedisUSearchVearchVectaraVespaWandB TracingWeights & BiasesWeatherWeaviateWhatsAppWhyLabsWikipediaWolfram AlphaWriterXataXorbits Inference (Xinference)YandexYeager.aiYouTubeZepZillizComponentsLLMsChat modelsDocument loadersDocument transformersText embedding modelsVector storesRetrieversToolsAgents and toolkitsMemoryCallbacksChat |
3,616 | and toolkitsMemoryCallbacksChat loadersProvidersMoreArxivOn this pageArxivarXiv is an open-access archive for 2 million scholarly articles in the fields of physics, | arXiv is an open-access archive for 2 million scholarly articles in the fields of physics, | arXiv is an open-access archive for 2 million scholarly articles in the fields of physics, ->: and toolkitsMemoryCallbacksChat loadersProvidersMoreArxivOn this pageArxivarXiv is an open-access archive for 2 million scholarly articles in the fields of physics, |
3,617 | mathematics, computer science, quantitative biology, quantitative finance, statistics, electrical engineering and
systems science, and economics.Installation and Setup​First, you need to install arxiv python package.pip install arxivSecond, you need to install PyMuPDF python package which transforms PDF files downloaded from the arxiv.org site into the text format.pip install pymupdfDocument Loader​See a usage example.from langchain.document_loaders import ArxivLoaderRetriever​See a usage example.from langchain.retrievers import ArxivRetrieverPreviousArthurNextAtlasInstallation and SetupDocument LoaderRetrieverCommunityDiscordTwitterGitHubPythonJS/TSMoreHomepageBlogCopyright © 2023 LangChain, Inc. | arXiv is an open-access archive for 2 million scholarly articles in the fields of physics, | arXiv is an open-access archive for 2 million scholarly articles in the fields of physics, ->: mathematics, computer science, quantitative biology, quantitative finance, statistics, electrical engineering and
systems science, and economics.Installation and Setup​First, you need to install arxiv python package.pip install arxivSecond, you need to install PyMuPDF python package which transforms PDF files downloaded from the arxiv.org site into the text format.pip install pymupdfDocument Loader​See a usage example.from langchain.document_loaders import ArxivLoaderRetriever​See a usage example.from langchain.retrievers import ArxivRetrieverPreviousArthurNextAtlasInstallation and SetupDocument LoaderRetrieverCommunityDiscordTwitterGitHubPythonJS/TSMoreHomepageBlogCopyright © 2023 LangChain, Inc. |
3,618 | Meilisearch | ü¶úÔ∏èüîó Langchain | Meilisearch is an open-source, lightning-fast, and hyper | Meilisearch is an open-source, lightning-fast, and hyper ->: Meilisearch | ü¶úÔ∏èüîó Langchain |
3,619 | Skip to main contentü¶úÔ∏èüîó LangChainDocsUse casesIntegrationsAPICommunityChat our docsLangSmithJS/TS DocsSearchCTRLKProvidersAnthropicAWSGoogleMicrosoftOpenAIMoreActiveloop Deep LakeAI21 LabsAimAINetworkAirbyteAirtableAleph AlphaAlibaba Cloud OpensearchAnalyticDBAnnoyAnyscaleApifyArangoDBArgillaArthurArxivAtlasAwaDBAWS DynamoDBAZLyricsBagelDBBananaBasetenBeamBeautiful SoupBiliBiliNIBittensorBlackboardBrave SearchCassandraCerebriumAIChaindeskChromaClarifaiClearMLClickHouseCnosDBCohereCollege ConfidentialCometConfident AIConfluenceC TransformersDashVectorDatabricksDatadog TracingDatadog LogsDataForSEODeepInfraDeepSparseDiffbotDingoDiscordDocArrayDoctranDocugamiDuckDBElasticsearchEpsillaEverNoteFacebook ChatFacebook FaissFigmaFireworksFlyteForefrontAIGitGitBookGoldenGoogle Document AIGoogle SerperGooseAIGPT4AllGradientGraphsignalGrobidGutenbergHacker NewsHazy ResearchHeliconeHologresHTML to textHugging FaceiFixitIMSDbInfinoJavelin AI GatewayJinaKonkoLanceDBLangChain Decorators ‚ú®Llama.cppLog10MarqoMediaWikiDumpMeilisearchMetalMilvusMinimaxMLflow AI GatewayMLflowModalModelScopeModern TreasuryMomentoMongoDB AtlasMotherduckMot√∂rheadMyScaleNeo4jNLPCloudNotion DBNucliaObsidianOpenLLMOpenSearchOpenWeatherMapPetalsPostgres EmbeddingPGVectorPineconePipelineAIPortkeyPredibasePrediction GuardPromptLayerprovidersPsychicPubMedQdrantRay ServeRebuffRedditRedisReplicateRoamRocksetRunhouseRWKV-4ScaNNSearchApiSearxNG Search APISerpAPIShale ProtocolSingleStoreDBscikit-learnSlackspaCySpreedlyStarRocksStochasticAIStripeSupabase (Postgres)NebulaTairTelegramTencentVectorDBTensorFlow DatasetsTigris2MarkdownTrelloTruLensTwitterTypesenseUnstructuredUpstash RedisUSearchVearchVectaraVespaWandB TracingWeights & BiasesWeatherWeaviateWhatsAppWhyLabsWikipediaWolfram AlphaWriterXataXorbits Inference (Xinference)YandexYeager.aiYouTubeZepZillizComponentsLLMsChat modelsDocument loadersDocument transformersText embedding modelsVector storesRetrieversToolsAgents and toolkitsMemoryCallbacksChat | Meilisearch is an open-source, lightning-fast, and hyper | Meilisearch is an open-source, lightning-fast, and hyper ->: Skip to main contentü¶úÔ∏èüîó LangChainDocsUse casesIntegrationsAPICommunityChat our docsLangSmithJS/TS DocsSearchCTRLKProvidersAnthropicAWSGoogleMicrosoftOpenAIMoreActiveloop Deep LakeAI21 LabsAimAINetworkAirbyteAirtableAleph AlphaAlibaba Cloud OpensearchAnalyticDBAnnoyAnyscaleApifyArangoDBArgillaArthurArxivAtlasAwaDBAWS DynamoDBAZLyricsBagelDBBananaBasetenBeamBeautiful SoupBiliBiliNIBittensorBlackboardBrave SearchCassandraCerebriumAIChaindeskChromaClarifaiClearMLClickHouseCnosDBCohereCollege ConfidentialCometConfident AIConfluenceC TransformersDashVectorDatabricksDatadog TracingDatadog LogsDataForSEODeepInfraDeepSparseDiffbotDingoDiscordDocArrayDoctranDocugamiDuckDBElasticsearchEpsillaEverNoteFacebook ChatFacebook FaissFigmaFireworksFlyteForefrontAIGitGitBookGoldenGoogle Document AIGoogle SerperGooseAIGPT4AllGradientGraphsignalGrobidGutenbergHacker NewsHazy ResearchHeliconeHologresHTML to textHugging FaceiFixitIMSDbInfinoJavelin AI GatewayJinaKonkoLanceDBLangChain Decorators ‚ú®Llama.cppLog10MarqoMediaWikiDumpMeilisearchMetalMilvusMinimaxMLflow AI GatewayMLflowModalModelScopeModern TreasuryMomentoMongoDB AtlasMotherduckMot√∂rheadMyScaleNeo4jNLPCloudNotion DBNucliaObsidianOpenLLMOpenSearchOpenWeatherMapPetalsPostgres EmbeddingPGVectorPineconePipelineAIPortkeyPredibasePrediction GuardPromptLayerprovidersPsychicPubMedQdrantRay ServeRebuffRedditRedisReplicateRoamRocksetRunhouseRWKV-4ScaNNSearchApiSearxNG Search APISerpAPIShale ProtocolSingleStoreDBscikit-learnSlackspaCySpreedlyStarRocksStochasticAIStripeSupabase (Postgres)NebulaTairTelegramTencentVectorDBTensorFlow DatasetsTigris2MarkdownTrelloTruLensTwitterTypesenseUnstructuredUpstash RedisUSearchVearchVectaraVespaWandB TracingWeights & BiasesWeatherWeaviateWhatsAppWhyLabsWikipediaWolfram AlphaWriterXataXorbits Inference (Xinference)YandexYeager.aiYouTubeZepZillizComponentsLLMsChat modelsDocument loadersDocument transformersText embedding modelsVector storesRetrieversToolsAgents and toolkitsMemoryCallbacksChat |
3,620 | and toolkitsMemoryCallbacksChat loadersProvidersMoreMeilisearchOn this pageMeilisearchMeilisearch is an open-source, lightning-fast, and hyper | Meilisearch is an open-source, lightning-fast, and hyper | Meilisearch is an open-source, lightning-fast, and hyper ->: and toolkitsMemoryCallbacksChat loadersProvidersMoreMeilisearchOn this pageMeilisearchMeilisearch is an open-source, lightning-fast, and hyper |
3,621 | relevant search engine.
It comes with great defaults to help developers build snappy search experiences. You can self-host Meilisearch
or run on Meilisearch Cloud.Meilisearch v1.3 supports vector search.Installation and Setup​See a usage example for detail configuration instructions.We need to install meilisearch python package.pip install meilisearchvVector Store​See a usage example.from langchain.vectorstores import MeilisearchPreviousMediaWikiDumpNextMetalInstallation and SetupVector StoreCommunityDiscordTwitterGitHubPythonJS/TSMoreHomepageBlogCopyright © 2023 LangChain, Inc. | Meilisearch is an open-source, lightning-fast, and hyper | Meilisearch is an open-source, lightning-fast, and hyper ->: relevant search engine.
It comes with great defaults to help developers build snappy search experiences. You can self-host Meilisearch
or run on Meilisearch Cloud.Meilisearch v1.3 supports vector search.Installation and Setup​See a usage example for detail configuration instructions.We need to install meilisearch python package.pip install meilisearchvVector Store​See a usage example.from langchain.vectorstores import MeilisearchPreviousMediaWikiDumpNextMetalInstallation and SetupVector StoreCommunityDiscordTwitterGitHubPythonJS/TSMoreHomepageBlogCopyright © 2023 LangChain, Inc. |
3,622 | Weights & Biases | ü¶úÔ∏èüîó Langchain | This notebook goes over how to track your LangChain experiments into one centralized Weights and Biases dashboard. To learn more about prompt engineering and the callback please refer to this Report which explains both alongside the resultant dashboards you can expect to see. | This notebook goes over how to track your LangChain experiments into one centralized Weights and Biases dashboard. To learn more about prompt engineering and the callback please refer to this Report which explains both alongside the resultant dashboards you can expect to see. ->: Weights & Biases | ü¶úÔ∏èüîó Langchain |
3,623 | Skip to main contentü¶úÔ∏èüîó LangChainDocsUse casesIntegrationsAPICommunityChat our docsLangSmithJS/TS DocsSearchCTRLKProvidersAnthropicAWSGoogleMicrosoftOpenAIMoreActiveloop Deep LakeAI21 LabsAimAINetworkAirbyteAirtableAleph AlphaAlibaba Cloud OpensearchAnalyticDBAnnoyAnyscaleApifyArangoDBArgillaArthurArxivAtlasAwaDBAWS DynamoDBAZLyricsBagelDBBananaBasetenBeamBeautiful SoupBiliBiliNIBittensorBlackboardBrave SearchCassandraCerebriumAIChaindeskChromaClarifaiClearMLClickHouseCnosDBCohereCollege ConfidentialCometConfident AIConfluenceC TransformersDashVectorDatabricksDatadog TracingDatadog LogsDataForSEODeepInfraDeepSparseDiffbotDingoDiscordDocArrayDoctranDocugamiDuckDBElasticsearchEpsillaEverNoteFacebook ChatFacebook FaissFigmaFireworksFlyteForefrontAIGitGitBookGoldenGoogle Document AIGoogle SerperGooseAIGPT4AllGradientGraphsignalGrobidGutenbergHacker NewsHazy ResearchHeliconeHologresHTML to textHugging FaceiFixitIMSDbInfinoJavelin AI GatewayJinaKonkoLanceDBLangChain Decorators ‚ú®Llama.cppLog10MarqoMediaWikiDumpMeilisearchMetalMilvusMinimaxMLflow AI GatewayMLflowModalModelScopeModern TreasuryMomentoMongoDB AtlasMotherduckMot√∂rheadMyScaleNeo4jNLPCloudNotion DBNucliaObsidianOpenLLMOpenSearchOpenWeatherMapPetalsPostgres EmbeddingPGVectorPineconePipelineAIPortkeyPredibasePrediction GuardPromptLayerprovidersPsychicPubMedQdrantRay ServeRebuffRedditRedisReplicateRoamRocksetRunhouseRWKV-4ScaNNSearchApiSearxNG Search APISerpAPIShale ProtocolSingleStoreDBscikit-learnSlackspaCySpreedlyStarRocksStochasticAIStripeSupabase (Postgres)NebulaTairTelegramTencentVectorDBTensorFlow DatasetsTigris2MarkdownTrelloTruLensTwitterTypesenseUnstructuredUpstash RedisUSearchVearchVectaraVespaWandB TracingWeights & BiasesWeatherWeaviateWhatsAppWhyLabsWikipediaWolfram AlphaWriterXataXorbits Inference (Xinference)YandexYeager.aiYouTubeZepZillizComponentsLLMsChat modelsDocument loadersDocument transformersText embedding modelsVector storesRetrieversToolsAgents and toolkitsMemoryCallbacksChat | This notebook goes over how to track your LangChain experiments into one centralized Weights and Biases dashboard. To learn more about prompt engineering and the callback please refer to this Report which explains both alongside the resultant dashboards you can expect to see. | This notebook goes over how to track your LangChain experiments into one centralized Weights and Biases dashboard. To learn more about prompt engineering and the callback please refer to this Report which explains both alongside the resultant dashboards you can expect to see. ->: Skip to main contentü¶úÔ∏èüîó LangChainDocsUse casesIntegrationsAPICommunityChat our docsLangSmithJS/TS DocsSearchCTRLKProvidersAnthropicAWSGoogleMicrosoftOpenAIMoreActiveloop Deep LakeAI21 LabsAimAINetworkAirbyteAirtableAleph AlphaAlibaba Cloud OpensearchAnalyticDBAnnoyAnyscaleApifyArangoDBArgillaArthurArxivAtlasAwaDBAWS DynamoDBAZLyricsBagelDBBananaBasetenBeamBeautiful SoupBiliBiliNIBittensorBlackboardBrave SearchCassandraCerebriumAIChaindeskChromaClarifaiClearMLClickHouseCnosDBCohereCollege ConfidentialCometConfident AIConfluenceC TransformersDashVectorDatabricksDatadog TracingDatadog LogsDataForSEODeepInfraDeepSparseDiffbotDingoDiscordDocArrayDoctranDocugamiDuckDBElasticsearchEpsillaEverNoteFacebook ChatFacebook FaissFigmaFireworksFlyteForefrontAIGitGitBookGoldenGoogle Document AIGoogle SerperGooseAIGPT4AllGradientGraphsignalGrobidGutenbergHacker NewsHazy ResearchHeliconeHologresHTML to textHugging FaceiFixitIMSDbInfinoJavelin AI GatewayJinaKonkoLanceDBLangChain Decorators ‚ú®Llama.cppLog10MarqoMediaWikiDumpMeilisearchMetalMilvusMinimaxMLflow AI GatewayMLflowModalModelScopeModern TreasuryMomentoMongoDB AtlasMotherduckMot√∂rheadMyScaleNeo4jNLPCloudNotion DBNucliaObsidianOpenLLMOpenSearchOpenWeatherMapPetalsPostgres EmbeddingPGVectorPineconePipelineAIPortkeyPredibasePrediction GuardPromptLayerprovidersPsychicPubMedQdrantRay ServeRebuffRedditRedisReplicateRoamRocksetRunhouseRWKV-4ScaNNSearchApiSearxNG Search APISerpAPIShale ProtocolSingleStoreDBscikit-learnSlackspaCySpreedlyStarRocksStochasticAIStripeSupabase (Postgres)NebulaTairTelegramTencentVectorDBTensorFlow DatasetsTigris2MarkdownTrelloTruLensTwitterTypesenseUnstructuredUpstash RedisUSearchVearchVectaraVespaWandB TracingWeights & BiasesWeatherWeaviateWhatsAppWhyLabsWikipediaWolfram AlphaWriterXataXorbits Inference (Xinference)YandexYeager.aiYouTubeZepZillizComponentsLLMsChat modelsDocument loadersDocument transformersText embedding modelsVector storesRetrieversToolsAgents and toolkitsMemoryCallbacksChat |
3,624 | and toolkitsMemoryCallbacksChat loadersProvidersMoreWeights & BiasesWeights & BiasesThis notebook goes over how to track your LangChain experiments into one centralized Weights and Biases dashboard. To learn more about prompt engineering and the callback please refer to this Report which explains both alongside the resultant dashboards you can expect to see.View Report Note: the WandbCallbackHandler is being deprecated in favour of the WandbTracer . In future please use the WandbTracer as it is more flexible and allows for more granular logging. To know more about the WandbTracer refer to the agent_with_wandb_tracing.html notebook or use the following colab notebook. To know more about Weights & Biases Prompts refer to the following prompts documentation.pip install wandbpip install pandaspip install textstatpip install spacypython -m spacy download en_core_web_smimport osos.environ["WANDB_API_KEY"] = ""# os.environ["OPENAI_API_KEY"] = ""# os.environ["SERPAPI_API_KEY"] = ""from datetime import datetimefrom langchain.callbacks import WandbCallbackHandler, StdOutCallbackHandlerfrom langchain.llms import OpenAICallback Handler that logs to Weights and Biases.Parameters: job_type (str): The type of job. project (str): The project to log to. entity (str): The entity to log to. tags (list): The tags to log. group (str): The group to log to. name (str): The name of the run. notes (str): The notes to log. visualize (bool): Whether to visualize the run. complexity_metrics (bool): Whether to log complexity metrics. stream_logs (bool): Whether to stream callback actions to W&BDefault values for WandbCallbackHandler(...)visualize: bool = False,complexity_metrics: bool = False,stream_logs: bool = False,NOTE: For beta workflows we have made the default analysis based on textstat and the visualizations based on spacy"""Main function.This function is used to try the callback handler.Scenarios:1. OpenAI LLM2. Chain with multiple SubChains on multiple | This notebook goes over how to track your LangChain experiments into one centralized Weights and Biases dashboard. To learn more about prompt engineering and the callback please refer to this Report which explains both alongside the resultant dashboards you can expect to see. | This notebook goes over how to track your LangChain experiments into one centralized Weights and Biases dashboard. To learn more about prompt engineering and the callback please refer to this Report which explains both alongside the resultant dashboards you can expect to see. ->: and toolkitsMemoryCallbacksChat loadersProvidersMoreWeights & BiasesWeights & BiasesThis notebook goes over how to track your LangChain experiments into one centralized Weights and Biases dashboard. To learn more about prompt engineering and the callback please refer to this Report which explains both alongside the resultant dashboards you can expect to see.View Report Note: the WandbCallbackHandler is being deprecated in favour of the WandbTracer . In future please use the WandbTracer as it is more flexible and allows for more granular logging. To know more about the WandbTracer refer to the agent_with_wandb_tracing.html notebook or use the following colab notebook. To know more about Weights & Biases Prompts refer to the following prompts documentation.pip install wandbpip install pandaspip install textstatpip install spacypython -m spacy download en_core_web_smimport osos.environ["WANDB_API_KEY"] = ""# os.environ["OPENAI_API_KEY"] = ""# os.environ["SERPAPI_API_KEY"] = ""from datetime import datetimefrom langchain.callbacks import WandbCallbackHandler, StdOutCallbackHandlerfrom langchain.llms import OpenAICallback Handler that logs to Weights and Biases.Parameters: job_type (str): The type of job. project (str): The project to log to. entity (str): The entity to log to. tags (list): The tags to log. group (str): The group to log to. name (str): The name of the run. notes (str): The notes to log. visualize (bool): Whether to visualize the run. complexity_metrics (bool): Whether to log complexity metrics. stream_logs (bool): Whether to stream callback actions to W&BDefault values for WandbCallbackHandler(...)visualize: bool = False,complexity_metrics: bool = False,stream_logs: bool = False,NOTE: For beta workflows we have made the default analysis based on textstat and the visualizations based on spacy"""Main function.This function is used to try the callback handler.Scenarios:1. OpenAI LLM2. Chain with multiple SubChains on multiple |
3,625 | LLM2. Chain with multiple SubChains on multiple generations3. Agent with Tools"""session_group = datetime.now().strftime("%m.%d.%Y_%H.%M.%S")wandb_callback = WandbCallbackHandler( job_type="inference", project="langchain_callback_demo", group=f"minimal_{session_group}", name="llm", tags=["test"],)callbacks = [StdOutCallbackHandler(), wandb_callback]llm = OpenAI(temperature=0, callbacks=callbacks)[34m[1mwandb[0m: Currently logged in as: [33mharrison-chase[0m. Use [1m`wandb login --relogin`[0m to force reloginTracking run with wandb version 0.14.0Run data is saved locally in <code>/Users/harrisonchase/workplace/langchain/docs/ecosystem/wandb/run-20230318_150408-e47j1914</code>Syncing run <strong><a href='https://wandb.ai/harrison-chase/langchain_callback_demo/runs/e47j1914' target="_blank">llm</a></strong> to <a href='https://wandb.ai/harrison-chase/langchain_callback_demo' target="_blank">Weights & Biases</a> (<a href='https://wandb.me/run' target="_blank">docs</a>)<br/>View project at <a href='https://wandb.ai/harrison-chase/langchain_callback_demo' target="_blank">https://wandb.ai/harrison-chase/langchain_callback_demo</a>View run at <a href='https://wandb.ai/harrison-chase/langchain_callback_demo/runs/e47j1914' target="_blank">https://wandb.ai/harrison-chase/langchain_callback_demo/runs/e47j1914</a>[34m[1mwandb[0m: [33mWARNING[0m The wandb callback is currently in beta and is subject to change based on updates to `langchain`. Please report any issues to https://github.com/wandb/wandb/issues with the tag `langchain`.# Defaults for WandbCallbackHandler.flush_tracker(...)reset: bool = True,finish: bool = False,The flush_tracker function is used to log LangChain sessions to Weights & Biases. It takes in the LangChain module or agent, and logs at minimum the prompts and generations alongside the serialized form of the LangChain module to the specified Weights & Biases project. By default we reset the session as opposed to concluding the | This notebook goes over how to track your LangChain experiments into one centralized Weights and Biases dashboard. To learn more about prompt engineering and the callback please refer to this Report which explains both alongside the resultant dashboards you can expect to see. | This notebook goes over how to track your LangChain experiments into one centralized Weights and Biases dashboard. To learn more about prompt engineering and the callback please refer to this Report which explains both alongside the resultant dashboards you can expect to see. ->: LLM2. Chain with multiple SubChains on multiple generations3. Agent with Tools"""session_group = datetime.now().strftime("%m.%d.%Y_%H.%M.%S")wandb_callback = WandbCallbackHandler( job_type="inference", project="langchain_callback_demo", group=f"minimal_{session_group}", name="llm", tags=["test"],)callbacks = [StdOutCallbackHandler(), wandb_callback]llm = OpenAI(temperature=0, callbacks=callbacks)[34m[1mwandb[0m: Currently logged in as: [33mharrison-chase[0m. Use [1m`wandb login --relogin`[0m to force reloginTracking run with wandb version 0.14.0Run data is saved locally in <code>/Users/harrisonchase/workplace/langchain/docs/ecosystem/wandb/run-20230318_150408-e47j1914</code>Syncing run <strong><a href='https://wandb.ai/harrison-chase/langchain_callback_demo/runs/e47j1914' target="_blank">llm</a></strong> to <a href='https://wandb.ai/harrison-chase/langchain_callback_demo' target="_blank">Weights & Biases</a> (<a href='https://wandb.me/run' target="_blank">docs</a>)<br/>View project at <a href='https://wandb.ai/harrison-chase/langchain_callback_demo' target="_blank">https://wandb.ai/harrison-chase/langchain_callback_demo</a>View run at <a href='https://wandb.ai/harrison-chase/langchain_callback_demo/runs/e47j1914' target="_blank">https://wandb.ai/harrison-chase/langchain_callback_demo/runs/e47j1914</a>[34m[1mwandb[0m: [33mWARNING[0m The wandb callback is currently in beta and is subject to change based on updates to `langchain`. Please report any issues to https://github.com/wandb/wandb/issues with the tag `langchain`.# Defaults for WandbCallbackHandler.flush_tracker(...)reset: bool = True,finish: bool = False,The flush_tracker function is used to log LangChain sessions to Weights & Biases. It takes in the LangChain module or agent, and logs at minimum the prompts and generations alongside the serialized form of the LangChain module to the specified Weights & Biases project. By default we reset the session as opposed to concluding the |
3,626 | we reset the session as opposed to concluding the session outright.# SCENARIO 1 - LLMllm_result = llm.generate(["Tell me a joke", "Tell me a poem"] * 3)wandb_callback.flush_tracker(llm, name="simple_sequential")Waiting for W&B process to finish... <strong style="color:green">(success).</strong>View run <strong style="color:#cdcd00">llm</strong> at: <a href='https://wandb.ai/harrison-chase/langchain_callback_demo/runs/e47j1914' target="_blank">https://wandb.ai/harrison-chase/langchain_callback_demo/runs/e47j1914</a><br/>Synced 5 W&B file(s), 2 media file(s), 5 artifact file(s) and 0 other file(s)Find logs at: <code>./wandb/run-20230318_150408-e47j1914/logs</code>VBox(children=(Label(value='Waiting for wandb.init()...\r'), FloatProgress(value=0.016745895149999985, max=1.0…Tracking run with wandb version 0.14.0Run data is saved locally in <code>/Users/harrisonchase/workplace/langchain/docs/ecosystem/wandb/run-20230318_150534-jyxma7hu</code>Syncing run <strong><a href='https://wandb.ai/harrison-chase/langchain_callback_demo/runs/jyxma7hu' target="_blank">simple_sequential</a></strong> to <a href='https://wandb.ai/harrison-chase/langchain_callback_demo' target="_blank">Weights & Biases</a> (<a href='https://wandb.me/run' target="_blank">docs</a>)<br/>View project at <a href='https://wandb.ai/harrison-chase/langchain_callback_demo' target="_blank">https://wandb.ai/harrison-chase/langchain_callback_demo</a>View run at <a href='https://wandb.ai/harrison-chase/langchain_callback_demo/runs/jyxma7hu' target="_blank">https://wandb.ai/harrison-chase/langchain_callback_demo/runs/jyxma7hu</a>from langchain.prompts import PromptTemplatefrom langchain.chains import LLMChain# SCENARIO 2 - Chaintemplate = """You are a playwright. Given the title of play, it is your job to write a synopsis for that title.Title: {title}Playwright: This is a synopsis for the above play:"""prompt_template = PromptTemplate(input_variables=["title"], template=template)synopsis_chain = LLMChain(llm=llm, | This notebook goes over how to track your LangChain experiments into one centralized Weights and Biases dashboard. To learn more about prompt engineering and the callback please refer to this Report which explains both alongside the resultant dashboards you can expect to see. | This notebook goes over how to track your LangChain experiments into one centralized Weights and Biases dashboard. To learn more about prompt engineering and the callback please refer to this Report which explains both alongside the resultant dashboards you can expect to see. ->: we reset the session as opposed to concluding the session outright.# SCENARIO 1 - LLMllm_result = llm.generate(["Tell me a joke", "Tell me a poem"] * 3)wandb_callback.flush_tracker(llm, name="simple_sequential")Waiting for W&B process to finish... <strong style="color:green">(success).</strong>View run <strong style="color:#cdcd00">llm</strong> at: <a href='https://wandb.ai/harrison-chase/langchain_callback_demo/runs/e47j1914' target="_blank">https://wandb.ai/harrison-chase/langchain_callback_demo/runs/e47j1914</a><br/>Synced 5 W&B file(s), 2 media file(s), 5 artifact file(s) and 0 other file(s)Find logs at: <code>./wandb/run-20230318_150408-e47j1914/logs</code>VBox(children=(Label(value='Waiting for wandb.init()...\r'), FloatProgress(value=0.016745895149999985, max=1.0…Tracking run with wandb version 0.14.0Run data is saved locally in <code>/Users/harrisonchase/workplace/langchain/docs/ecosystem/wandb/run-20230318_150534-jyxma7hu</code>Syncing run <strong><a href='https://wandb.ai/harrison-chase/langchain_callback_demo/runs/jyxma7hu' target="_blank">simple_sequential</a></strong> to <a href='https://wandb.ai/harrison-chase/langchain_callback_demo' target="_blank">Weights & Biases</a> (<a href='https://wandb.me/run' target="_blank">docs</a>)<br/>View project at <a href='https://wandb.ai/harrison-chase/langchain_callback_demo' target="_blank">https://wandb.ai/harrison-chase/langchain_callback_demo</a>View run at <a href='https://wandb.ai/harrison-chase/langchain_callback_demo/runs/jyxma7hu' target="_blank">https://wandb.ai/harrison-chase/langchain_callback_demo/runs/jyxma7hu</a>from langchain.prompts import PromptTemplatefrom langchain.chains import LLMChain# SCENARIO 2 - Chaintemplate = """You are a playwright. Given the title of play, it is your job to write a synopsis for that title.Title: {title}Playwright: This is a synopsis for the above play:"""prompt_template = PromptTemplate(input_variables=["title"], template=template)synopsis_chain = LLMChain(llm=llm, |
3,627 | = LLMChain(llm=llm, prompt=prompt_template, callbacks=callbacks)test_prompts = [ { "title": "documentary about good video games that push the boundary of game design" }, {"title": "cocaine bear vs heroin wolf"}, {"title": "the best in class mlops tooling"},]synopsis_chain.apply(test_prompts)wandb_callback.flush_tracker(synopsis_chain, name="agent")Waiting for W&B process to finish... <strong style="color:green">(success).</strong>View run <strong style="color:#cdcd00">simple_sequential</strong> at: <a href='https://wandb.ai/harrison-chase/langchain_callback_demo/runs/jyxma7hu' target="_blank">https://wandb.ai/harrison-chase/langchain_callback_demo/runs/jyxma7hu</a><br/>Synced 4 W&B file(s), 2 media file(s), 6 artifact file(s) and 0 other file(s)Find logs at: <code>./wandb/run-20230318_150534-jyxma7hu/logs</code>VBox(children=(Label(value='Waiting for wandb.init()...\r'), FloatProgress(value=0.016736786816666675, max=1.0…Tracking run with wandb version 0.14.0Run data is saved locally in <code>/Users/harrisonchase/workplace/langchain/docs/ecosystem/wandb/run-20230318_150550-wzy59zjq</code>Syncing run <strong><a href='https://wandb.ai/harrison-chase/langchain_callback_demo/runs/wzy59zjq' target="_blank">agent</a></strong> to <a href='https://wandb.ai/harrison-chase/langchain_callback_demo' target="_blank">Weights & Biases</a> (<a href='https://wandb.me/run' target="_blank">docs</a>)<br/>View project at <a href='https://wandb.ai/harrison-chase/langchain_callback_demo' target="_blank">https://wandb.ai/harrison-chase/langchain_callback_demo</a>View run at <a href='https://wandb.ai/harrison-chase/langchain_callback_demo/runs/wzy59zjq' target="_blank">https://wandb.ai/harrison-chase/langchain_callback_demo/runs/wzy59zjq</a>from langchain.agents import initialize_agent, load_toolsfrom langchain.agents import AgentType# SCENARIO 3 - Agent with Toolstools = load_tools(["serpapi", "llm-math"], llm=llm)agent = initialize_agent( tools, llm, | This notebook goes over how to track your LangChain experiments into one centralized Weights and Biases dashboard. To learn more about prompt engineering and the callback please refer to this Report which explains both alongside the resultant dashboards you can expect to see. | This notebook goes over how to track your LangChain experiments into one centralized Weights and Biases dashboard. To learn more about prompt engineering and the callback please refer to this Report which explains both alongside the resultant dashboards you can expect to see. ->: = LLMChain(llm=llm, prompt=prompt_template, callbacks=callbacks)test_prompts = [ { "title": "documentary about good video games that push the boundary of game design" }, {"title": "cocaine bear vs heroin wolf"}, {"title": "the best in class mlops tooling"},]synopsis_chain.apply(test_prompts)wandb_callback.flush_tracker(synopsis_chain, name="agent")Waiting for W&B process to finish... <strong style="color:green">(success).</strong>View run <strong style="color:#cdcd00">simple_sequential</strong> at: <a href='https://wandb.ai/harrison-chase/langchain_callback_demo/runs/jyxma7hu' target="_blank">https://wandb.ai/harrison-chase/langchain_callback_demo/runs/jyxma7hu</a><br/>Synced 4 W&B file(s), 2 media file(s), 6 artifact file(s) and 0 other file(s)Find logs at: <code>./wandb/run-20230318_150534-jyxma7hu/logs</code>VBox(children=(Label(value='Waiting for wandb.init()...\r'), FloatProgress(value=0.016736786816666675, max=1.0…Tracking run with wandb version 0.14.0Run data is saved locally in <code>/Users/harrisonchase/workplace/langchain/docs/ecosystem/wandb/run-20230318_150550-wzy59zjq</code>Syncing run <strong><a href='https://wandb.ai/harrison-chase/langchain_callback_demo/runs/wzy59zjq' target="_blank">agent</a></strong> to <a href='https://wandb.ai/harrison-chase/langchain_callback_demo' target="_blank">Weights & Biases</a> (<a href='https://wandb.me/run' target="_blank">docs</a>)<br/>View project at <a href='https://wandb.ai/harrison-chase/langchain_callback_demo' target="_blank">https://wandb.ai/harrison-chase/langchain_callback_demo</a>View run at <a href='https://wandb.ai/harrison-chase/langchain_callback_demo/runs/wzy59zjq' target="_blank">https://wandb.ai/harrison-chase/langchain_callback_demo/runs/wzy59zjq</a>from langchain.agents import initialize_agent, load_toolsfrom langchain.agents import AgentType# SCENARIO 3 - Agent with Toolstools = load_tools(["serpapi", "llm-math"], llm=llm)agent = initialize_agent( tools, llm, |
3,628 | = initialize_agent( tools, llm, agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION,)agent.run( "Who is Leo DiCaprio's girlfriend? What is her current age raised to the 0.43 power?", callbacks=callbacks,)wandb_callback.flush_tracker(agent, reset=False, finish=True)> Entering new AgentExecutor chain... I need to find out who Leo DiCaprio's girlfriend is and then calculate her age raised to the 0.43 power.Action: SearchAction Input: "Leo DiCaprio girlfriend"Observation: DiCaprio had a steady girlfriend in Camila Morrone. He had been with the model turned actress for nearly five years, as they were first said to be dating at the end of 2017. And the now 26-year-old Morrone is no stranger to Hollywood.Thought: I need to calculate her age raised to the 0.43 power.Action: CalculatorAction Input: 26^0.43Observation: Answer: 4.059182145592686Thought: I now know the final answer.Final Answer: Leo DiCaprio's girlfriend is Camila Morrone and her current age raised to the 0.43 power is 4.059182145592686.> Finished chain.Waiting for W&B process to finish... <strong style="color:green">(success).</strong>View run <strong style="color:#cdcd00">agent</strong> at: <a href='https://wandb.ai/harrison-chase/langchain_callback_demo/runs/wzy59zjq' target="_blank">https://wandb.ai/harrison-chase/langchain_callback_demo/runs/wzy59zjq</a><br/>Synced 5 W&B file(s), 2 media file(s), 7 artifact file(s) and 0 other file(s)Find logs at: <code>./wandb/run-20230318_150550-wzy59zjq/logs</code>PreviousWandB TracingNextWeatherCommunityDiscordTwitterGitHubPythonJS/TSMoreHomepageBlogCopyright © 2023 LangChain, Inc. | This notebook goes over how to track your LangChain experiments into one centralized Weights and Biases dashboard. To learn more about prompt engineering and the callback please refer to this Report which explains both alongside the resultant dashboards you can expect to see. | This notebook goes over how to track your LangChain experiments into one centralized Weights and Biases dashboard. To learn more about prompt engineering and the callback please refer to this Report which explains both alongside the resultant dashboards you can expect to see. ->: = initialize_agent( tools, llm, agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION,)agent.run( "Who is Leo DiCaprio's girlfriend? What is her current age raised to the 0.43 power?", callbacks=callbacks,)wandb_callback.flush_tracker(agent, reset=False, finish=True)> Entering new AgentExecutor chain... I need to find out who Leo DiCaprio's girlfriend is and then calculate her age raised to the 0.43 power.Action: SearchAction Input: "Leo DiCaprio girlfriend"Observation: DiCaprio had a steady girlfriend in Camila Morrone. He had been with the model turned actress for nearly five years, as they were first said to be dating at the end of 2017. And the now 26-year-old Morrone is no stranger to Hollywood.Thought: I need to calculate her age raised to the 0.43 power.Action: CalculatorAction Input: 26^0.43Observation: Answer: 4.059182145592686Thought: I now know the final answer.Final Answer: Leo DiCaprio's girlfriend is Camila Morrone and her current age raised to the 0.43 power is 4.059182145592686.> Finished chain.Waiting for W&B process to finish... <strong style="color:green">(success).</strong>View run <strong style="color:#cdcd00">agent</strong> at: <a href='https://wandb.ai/harrison-chase/langchain_callback_demo/runs/wzy59zjq' target="_blank">https://wandb.ai/harrison-chase/langchain_callback_demo/runs/wzy59zjq</a><br/>Synced 5 W&B file(s), 2 media file(s), 7 artifact file(s) and 0 other file(s)Find logs at: <code>./wandb/run-20230318_150550-wzy59zjq/logs</code>PreviousWandB TracingNextWeatherCommunityDiscordTwitterGitHubPythonJS/TSMoreHomepageBlogCopyright © 2023 LangChain, Inc. |
3,629 | Gradient | ü¶úÔ∏èüîó Langchain | Gradient allows to fine tune and get completions on LLMs with a simple web API. | Gradient allows to fine tune and get completions on LLMs with a simple web API. ->: Gradient | ü¶úÔ∏èüîó Langchain |
3,630 | Skip to main contentü¶úÔ∏èüîó LangChainDocsUse casesIntegrationsAPICommunityChat our docsLangSmithJS/TS DocsSearchCTRLKProvidersAnthropicAWSGoogleMicrosoftOpenAIMoreActiveloop Deep LakeAI21 LabsAimAINetworkAirbyteAirtableAleph AlphaAlibaba Cloud OpensearchAnalyticDBAnnoyAnyscaleApifyArangoDBArgillaArthurArxivAtlasAwaDBAWS DynamoDBAZLyricsBagelDBBananaBasetenBeamBeautiful SoupBiliBiliNIBittensorBlackboardBrave SearchCassandraCerebriumAIChaindeskChromaClarifaiClearMLClickHouseCnosDBCohereCollege ConfidentialCometConfident AIConfluenceC TransformersDashVectorDatabricksDatadog TracingDatadog LogsDataForSEODeepInfraDeepSparseDiffbotDingoDiscordDocArrayDoctranDocugamiDuckDBElasticsearchEpsillaEverNoteFacebook ChatFacebook FaissFigmaFireworksFlyteForefrontAIGitGitBookGoldenGoogle Document AIGoogle SerperGooseAIGPT4AllGradientGraphsignalGrobidGutenbergHacker NewsHazy ResearchHeliconeHologresHTML to textHugging FaceiFixitIMSDbInfinoJavelin AI GatewayJinaKonkoLanceDBLangChain Decorators ‚ú®Llama.cppLog10MarqoMediaWikiDumpMeilisearchMetalMilvusMinimaxMLflow AI GatewayMLflowModalModelScopeModern TreasuryMomentoMongoDB AtlasMotherduckMot√∂rheadMyScaleNeo4jNLPCloudNotion DBNucliaObsidianOpenLLMOpenSearchOpenWeatherMapPetalsPostgres EmbeddingPGVectorPineconePipelineAIPortkeyPredibasePrediction GuardPromptLayerprovidersPsychicPubMedQdrantRay ServeRebuffRedditRedisReplicateRoamRocksetRunhouseRWKV-4ScaNNSearchApiSearxNG Search APISerpAPIShale ProtocolSingleStoreDBscikit-learnSlackspaCySpreedlyStarRocksStochasticAIStripeSupabase (Postgres)NebulaTairTelegramTencentVectorDBTensorFlow DatasetsTigris2MarkdownTrelloTruLensTwitterTypesenseUnstructuredUpstash RedisUSearchVearchVectaraVespaWandB TracingWeights & BiasesWeatherWeaviateWhatsAppWhyLabsWikipediaWolfram AlphaWriterXataXorbits Inference (Xinference)YandexYeager.aiYouTubeZepZillizComponentsLLMsChat modelsDocument loadersDocument transformersText embedding modelsVector storesRetrieversToolsAgents and toolkitsMemoryCallbacksChat | Gradient allows to fine tune and get completions on LLMs with a simple web API. | Gradient allows to fine tune and get completions on LLMs with a simple web API. ->: Skip to main contentü¶úÔ∏èüîó LangChainDocsUse casesIntegrationsAPICommunityChat our docsLangSmithJS/TS DocsSearchCTRLKProvidersAnthropicAWSGoogleMicrosoftOpenAIMoreActiveloop Deep LakeAI21 LabsAimAINetworkAirbyteAirtableAleph AlphaAlibaba Cloud OpensearchAnalyticDBAnnoyAnyscaleApifyArangoDBArgillaArthurArxivAtlasAwaDBAWS DynamoDBAZLyricsBagelDBBananaBasetenBeamBeautiful SoupBiliBiliNIBittensorBlackboardBrave SearchCassandraCerebriumAIChaindeskChromaClarifaiClearMLClickHouseCnosDBCohereCollege ConfidentialCometConfident AIConfluenceC TransformersDashVectorDatabricksDatadog TracingDatadog LogsDataForSEODeepInfraDeepSparseDiffbotDingoDiscordDocArrayDoctranDocugamiDuckDBElasticsearchEpsillaEverNoteFacebook ChatFacebook FaissFigmaFireworksFlyteForefrontAIGitGitBookGoldenGoogle Document AIGoogle SerperGooseAIGPT4AllGradientGraphsignalGrobidGutenbergHacker NewsHazy ResearchHeliconeHologresHTML to textHugging FaceiFixitIMSDbInfinoJavelin AI GatewayJinaKonkoLanceDBLangChain Decorators ‚ú®Llama.cppLog10MarqoMediaWikiDumpMeilisearchMetalMilvusMinimaxMLflow AI GatewayMLflowModalModelScopeModern TreasuryMomentoMongoDB AtlasMotherduckMot√∂rheadMyScaleNeo4jNLPCloudNotion DBNucliaObsidianOpenLLMOpenSearchOpenWeatherMapPetalsPostgres EmbeddingPGVectorPineconePipelineAIPortkeyPredibasePrediction GuardPromptLayerprovidersPsychicPubMedQdrantRay ServeRebuffRedditRedisReplicateRoamRocksetRunhouseRWKV-4ScaNNSearchApiSearxNG Search APISerpAPIShale ProtocolSingleStoreDBscikit-learnSlackspaCySpreedlyStarRocksStochasticAIStripeSupabase (Postgres)NebulaTairTelegramTencentVectorDBTensorFlow DatasetsTigris2MarkdownTrelloTruLensTwitterTypesenseUnstructuredUpstash RedisUSearchVearchVectaraVespaWandB TracingWeights & BiasesWeatherWeaviateWhatsAppWhyLabsWikipediaWolfram AlphaWriterXataXorbits Inference (Xinference)YandexYeager.aiYouTubeZepZillizComponentsLLMsChat modelsDocument loadersDocument transformersText embedding modelsVector storesRetrieversToolsAgents and toolkitsMemoryCallbacksChat |
3,631 | and toolkitsMemoryCallbacksChat loadersProvidersMoreGradientOn this pageGradientGradient allows to fine tune and get completions on LLMs with a simple web API.Installation and Setup‚ÄãInstall the Python SDK :pip install gradientaiGet a Gradient access token and workspace and set it as an environment variable (Gradient_ACCESS_TOKEN) and (GRADIENT_WORKSPACE_ID)LLM‚ÄãThere exists an Gradient LLM wrapper, which you can access with | Gradient allows to fine tune and get completions on LLMs with a simple web API. | Gradient allows to fine tune and get completions on LLMs with a simple web API. ->: and toolkitsMemoryCallbacksChat loadersProvidersMoreGradientOn this pageGradientGradient allows to fine tune and get completions on LLMs with a simple web API.Installation and Setup‚ÄãInstall the Python SDK :pip install gradientaiGet a Gradient access token and workspace and set it as an environment variable (Gradient_ACCESS_TOKEN) and (GRADIENT_WORKSPACE_ID)LLM‚ÄãThere exists an Gradient LLM wrapper, which you can access with |
3,632 | See a usage example.from langchain.llms import GradientLLMText Embedding Model​There exists an Gradient Embedding model, which you can access with from langchain.embeddings import GradientEmbeddingsFor a more detailed walkthrough of this, see this notebookPreviousGPT4AllNextGraphsignalInstallation and SetupLLMText Embedding ModelCommunityDiscordTwitterGitHubPythonJS/TSMoreHomepageBlogCopyright © 2023 LangChain, Inc. | Gradient allows to fine tune and get completions on LLMs with a simple web API. | Gradient allows to fine tune and get completions on LLMs with a simple web API. ->: See a usage example.from langchain.llms import GradientLLMText Embedding Model​There exists an Gradient Embedding model, which you can access with from langchain.embeddings import GradientEmbeddingsFor a more detailed walkthrough of this, see this notebookPreviousGPT4AllNextGraphsignalInstallation and SetupLLMText Embedding ModelCommunityDiscordTwitterGitHubPythonJS/TSMoreHomepageBlogCopyright © 2023 LangChain, Inc. |
3,633 | Aim | ü¶úÔ∏èüîó Langchain | Aim makes it super easy to visualize and debug LangChain executions. Aim tracks inputs and outputs of LLMs and tools, as well as actions of agents. | Aim makes it super easy to visualize and debug LangChain executions. Aim tracks inputs and outputs of LLMs and tools, as well as actions of agents. ->: Aim | ü¶úÔ∏èüîó Langchain |
3,634 | Skip to main contentü¶úÔ∏èüîó LangChainDocsUse casesIntegrationsAPICommunityChat our docsLangSmithJS/TS DocsSearchCTRLKProvidersAnthropicAWSGoogleMicrosoftOpenAIMoreActiveloop Deep LakeAI21 LabsAimAINetworkAirbyteAirtableAleph AlphaAlibaba Cloud OpensearchAnalyticDBAnnoyAnyscaleApifyArangoDBArgillaArthurArxivAtlasAwaDBAWS DynamoDBAZLyricsBagelDBBananaBasetenBeamBeautiful SoupBiliBiliNIBittensorBlackboardBrave SearchCassandraCerebriumAIChaindeskChromaClarifaiClearMLClickHouseCnosDBCohereCollege ConfidentialCometConfident AIConfluenceC TransformersDashVectorDatabricksDatadog TracingDatadog LogsDataForSEODeepInfraDeepSparseDiffbotDingoDiscordDocArrayDoctranDocugamiDuckDBElasticsearchEpsillaEverNoteFacebook ChatFacebook FaissFigmaFireworksFlyteForefrontAIGitGitBookGoldenGoogle Document AIGoogle SerperGooseAIGPT4AllGradientGraphsignalGrobidGutenbergHacker NewsHazy ResearchHeliconeHologresHTML to textHugging FaceiFixitIMSDbInfinoJavelin AI GatewayJinaKonkoLanceDBLangChain Decorators ‚ú®Llama.cppLog10MarqoMediaWikiDumpMeilisearchMetalMilvusMinimaxMLflow AI GatewayMLflowModalModelScopeModern TreasuryMomentoMongoDB AtlasMotherduckMot√∂rheadMyScaleNeo4jNLPCloudNotion DBNucliaObsidianOpenLLMOpenSearchOpenWeatherMapPetalsPostgres EmbeddingPGVectorPineconePipelineAIPortkeyPredibasePrediction GuardPromptLayerprovidersPsychicPubMedQdrantRay ServeRebuffRedditRedisReplicateRoamRocksetRunhouseRWKV-4ScaNNSearchApiSearxNG Search APISerpAPIShale ProtocolSingleStoreDBscikit-learnSlackspaCySpreedlyStarRocksStochasticAIStripeSupabase (Postgres)NebulaTairTelegramTencentVectorDBTensorFlow DatasetsTigris2MarkdownTrelloTruLensTwitterTypesenseUnstructuredUpstash RedisUSearchVearchVectaraVespaWandB TracingWeights & BiasesWeatherWeaviateWhatsAppWhyLabsWikipediaWolfram AlphaWriterXataXorbits Inference (Xinference)YandexYeager.aiYouTubeZepZillizComponentsLLMsChat modelsDocument loadersDocument transformersText embedding modelsVector storesRetrieversToolsAgents and toolkitsMemoryCallbacksChat | Aim makes it super easy to visualize and debug LangChain executions. Aim tracks inputs and outputs of LLMs and tools, as well as actions of agents. | Aim makes it super easy to visualize and debug LangChain executions. Aim tracks inputs and outputs of LLMs and tools, as well as actions of agents. ->: Skip to main contentü¶úÔ∏èüîó LangChainDocsUse casesIntegrationsAPICommunityChat our docsLangSmithJS/TS DocsSearchCTRLKProvidersAnthropicAWSGoogleMicrosoftOpenAIMoreActiveloop Deep LakeAI21 LabsAimAINetworkAirbyteAirtableAleph AlphaAlibaba Cloud OpensearchAnalyticDBAnnoyAnyscaleApifyArangoDBArgillaArthurArxivAtlasAwaDBAWS DynamoDBAZLyricsBagelDBBananaBasetenBeamBeautiful SoupBiliBiliNIBittensorBlackboardBrave SearchCassandraCerebriumAIChaindeskChromaClarifaiClearMLClickHouseCnosDBCohereCollege ConfidentialCometConfident AIConfluenceC TransformersDashVectorDatabricksDatadog TracingDatadog LogsDataForSEODeepInfraDeepSparseDiffbotDingoDiscordDocArrayDoctranDocugamiDuckDBElasticsearchEpsillaEverNoteFacebook ChatFacebook FaissFigmaFireworksFlyteForefrontAIGitGitBookGoldenGoogle Document AIGoogle SerperGooseAIGPT4AllGradientGraphsignalGrobidGutenbergHacker NewsHazy ResearchHeliconeHologresHTML to textHugging FaceiFixitIMSDbInfinoJavelin AI GatewayJinaKonkoLanceDBLangChain Decorators ‚ú®Llama.cppLog10MarqoMediaWikiDumpMeilisearchMetalMilvusMinimaxMLflow AI GatewayMLflowModalModelScopeModern TreasuryMomentoMongoDB AtlasMotherduckMot√∂rheadMyScaleNeo4jNLPCloudNotion DBNucliaObsidianOpenLLMOpenSearchOpenWeatherMapPetalsPostgres EmbeddingPGVectorPineconePipelineAIPortkeyPredibasePrediction GuardPromptLayerprovidersPsychicPubMedQdrantRay ServeRebuffRedditRedisReplicateRoamRocksetRunhouseRWKV-4ScaNNSearchApiSearxNG Search APISerpAPIShale ProtocolSingleStoreDBscikit-learnSlackspaCySpreedlyStarRocksStochasticAIStripeSupabase (Postgres)NebulaTairTelegramTencentVectorDBTensorFlow DatasetsTigris2MarkdownTrelloTruLensTwitterTypesenseUnstructuredUpstash RedisUSearchVearchVectaraVespaWandB TracingWeights & BiasesWeatherWeaviateWhatsAppWhyLabsWikipediaWolfram AlphaWriterXataXorbits Inference (Xinference)YandexYeager.aiYouTubeZepZillizComponentsLLMsChat modelsDocument loadersDocument transformersText embedding modelsVector storesRetrieversToolsAgents and toolkitsMemoryCallbacksChat |
3,635 | and toolkitsMemoryCallbacksChat loadersProvidersMoreAimAimAim makes it super easy to visualize and debug LangChain executions. Aim tracks inputs and outputs of LLMs and tools, as well as actions of agents. With Aim, you can easily debug and examine an individual execution:Additionally, you have the option to compare multiple executions side by side:Aim is fully open source, learn more about Aim on GitHub.Let's move forward and see how to enable and configure Aim callback.Tracking LangChain Executions with AimIn this notebook we will explore three usage scenarios. To start off, we will install the necessary packages and import certain modules. Subsequently, we will configure two environment variables that can be established either within the Python script or through the terminal.pip install aimpip install langchainpip install openaipip install google-search-resultsimport osfrom datetime import datetimefrom langchain.llms import OpenAIfrom langchain.callbacks import AimCallbackHandler, StdOutCallbackHandlerOur examples use a GPT model as the LLM, and OpenAI offers an API for this purpose. You can obtain the key from the following link: https://platform.openai.com/account/api-keys .We will use the SerpApi to retrieve search results from Google. To acquire the SerpApi key, please go to https://serpapi.com/manage-api-key .os.environ["OPENAI_API_KEY"] = "..."os.environ["SERPAPI_API_KEY"] = "..."The event methods of AimCallbackHandler accept the LangChain module or agent as input and log at least the prompts and generated results, as well as the serialized version of the LangChain module, to the designated Aim run.session_group = datetime.now().strftime("%m.%d.%Y_%H.%M.%S")aim_callback = AimCallbackHandler( repo=".", experiment_name="scenario 1: OpenAI LLM",)callbacks = [StdOutCallbackHandler(), aim_callback]llm = OpenAI(temperature=0, callbacks=callbacks)The flush_tracker function is used to record LangChain assets on Aim. By default, the session is reset rather | Aim makes it super easy to visualize and debug LangChain executions. Aim tracks inputs and outputs of LLMs and tools, as well as actions of agents. | Aim makes it super easy to visualize and debug LangChain executions. Aim tracks inputs and outputs of LLMs and tools, as well as actions of agents. ->: and toolkitsMemoryCallbacksChat loadersProvidersMoreAimAimAim makes it super easy to visualize and debug LangChain executions. Aim tracks inputs and outputs of LLMs and tools, as well as actions of agents. With Aim, you can easily debug and examine an individual execution:Additionally, you have the option to compare multiple executions side by side:Aim is fully open source, learn more about Aim on GitHub.Let's move forward and see how to enable and configure Aim callback.Tracking LangChain Executions with AimIn this notebook we will explore three usage scenarios. To start off, we will install the necessary packages and import certain modules. Subsequently, we will configure two environment variables that can be established either within the Python script or through the terminal.pip install aimpip install langchainpip install openaipip install google-search-resultsimport osfrom datetime import datetimefrom langchain.llms import OpenAIfrom langchain.callbacks import AimCallbackHandler, StdOutCallbackHandlerOur examples use a GPT model as the LLM, and OpenAI offers an API for this purpose. You can obtain the key from the following link: https://platform.openai.com/account/api-keys .We will use the SerpApi to retrieve search results from Google. To acquire the SerpApi key, please go to https://serpapi.com/manage-api-key .os.environ["OPENAI_API_KEY"] = "..."os.environ["SERPAPI_API_KEY"] = "..."The event methods of AimCallbackHandler accept the LangChain module or agent as input and log at least the prompts and generated results, as well as the serialized version of the LangChain module, to the designated Aim run.session_group = datetime.now().strftime("%m.%d.%Y_%H.%M.%S")aim_callback = AimCallbackHandler( repo=".", experiment_name="scenario 1: OpenAI LLM",)callbacks = [StdOutCallbackHandler(), aim_callback]llm = OpenAI(temperature=0, callbacks=callbacks)The flush_tracker function is used to record LangChain assets on Aim. By default, the session is reset rather |
3,636 | on Aim. By default, the session is reset rather than being terminated outright.Scenario 1 In the first scenario, we will use OpenAI LLM.# scenario 1 - LLMllm_result = llm.generate(["Tell me a joke", "Tell me a poem"] * 3)aim_callback.flush_tracker( langchain_asset=llm, experiment_name="scenario 2: Chain with multiple SubChains on multiple generations",)Scenario 2 Scenario two involves chaining with multiple SubChains across multiple generations.from langchain.prompts import PromptTemplatefrom langchain.chains import LLMChain# scenario 2 - Chaintemplate = """You are a playwright. Given the title of play, it is your job to write a synopsis for that title.Title: {title}Playwright: This is a synopsis for the above play:"""prompt_template = PromptTemplate(input_variables=["title"], template=template)synopsis_chain = LLMChain(llm=llm, prompt=prompt_template, callbacks=callbacks)test_prompts = [ { "title": "documentary about good video games that push the boundary of game design" }, {"title": "the phenomenon behind the remarkable speed of cheetahs"}, {"title": "the best in class mlops tooling"},]synopsis_chain.apply(test_prompts)aim_callback.flush_tracker( langchain_asset=synopsis_chain, experiment_name="scenario 3: Agent with Tools")Scenario 3 The third scenario involves an agent with tools.from langchain.agents import initialize_agent, load_toolsfrom langchain.agents import AgentType# scenario 3 - Agent with Toolstools = load_tools(["serpapi", "llm-math"], llm=llm, callbacks=callbacks)agent = initialize_agent( tools, llm, agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION, callbacks=callbacks,)agent.run( "Who is Leo DiCaprio's girlfriend? What is her current age raised to the 0.43 power?")aim_callback.flush_tracker(langchain_asset=agent, reset=False, finish=True) > Entering new AgentExecutor chain... I need to find out who Leo DiCaprio's girlfriend is and then calculate her age raised to the 0.43 power. Action: | Aim makes it super easy to visualize and debug LangChain executions. Aim tracks inputs and outputs of LLMs and tools, as well as actions of agents. | Aim makes it super easy to visualize and debug LangChain executions. Aim tracks inputs and outputs of LLMs and tools, as well as actions of agents. ->: on Aim. By default, the session is reset rather than being terminated outright.Scenario 1 In the first scenario, we will use OpenAI LLM.# scenario 1 - LLMllm_result = llm.generate(["Tell me a joke", "Tell me a poem"] * 3)aim_callback.flush_tracker( langchain_asset=llm, experiment_name="scenario 2: Chain with multiple SubChains on multiple generations",)Scenario 2 Scenario two involves chaining with multiple SubChains across multiple generations.from langchain.prompts import PromptTemplatefrom langchain.chains import LLMChain# scenario 2 - Chaintemplate = """You are a playwright. Given the title of play, it is your job to write a synopsis for that title.Title: {title}Playwright: This is a synopsis for the above play:"""prompt_template = PromptTemplate(input_variables=["title"], template=template)synopsis_chain = LLMChain(llm=llm, prompt=prompt_template, callbacks=callbacks)test_prompts = [ { "title": "documentary about good video games that push the boundary of game design" }, {"title": "the phenomenon behind the remarkable speed of cheetahs"}, {"title": "the best in class mlops tooling"},]synopsis_chain.apply(test_prompts)aim_callback.flush_tracker( langchain_asset=synopsis_chain, experiment_name="scenario 3: Agent with Tools")Scenario 3 The third scenario involves an agent with tools.from langchain.agents import initialize_agent, load_toolsfrom langchain.agents import AgentType# scenario 3 - Agent with Toolstools = load_tools(["serpapi", "llm-math"], llm=llm, callbacks=callbacks)agent = initialize_agent( tools, llm, agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION, callbacks=callbacks,)agent.run( "Who is Leo DiCaprio's girlfriend? What is her current age raised to the 0.43 power?")aim_callback.flush_tracker(langchain_asset=agent, reset=False, finish=True) > Entering new AgentExecutor chain... I need to find out who Leo DiCaprio's girlfriend is and then calculate her age raised to the 0.43 power. Action: |
3,637 | her age raised to the 0.43 power. Action: Search Action Input: "Leo DiCaprio girlfriend" Observation: Leonardo DiCaprio seemed to prove a long-held theory about his love life right after splitting from girlfriend Camila Morrone just months ... Thought: I need to find out Camila Morrone's age Action: Search Action Input: "Camila Morrone age" Observation: 25 years Thought: I need to calculate 25 raised to the 0.43 power Action: Calculator Action Input: 25^0.43 Observation: Answer: 3.991298452658078 Thought: I now know the final answer Final Answer: Camila Morrone is Leo DiCaprio's girlfriend and her current age raised to the 0.43 power is 3.991298452658078. > Finished chain.PreviousAI21 LabsNextAINetworkCommunityDiscordTwitterGitHubPythonJS/TSMoreHomepageBlogCopyright © 2023 LangChain, Inc. | Aim makes it super easy to visualize and debug LangChain executions. Aim tracks inputs and outputs of LLMs and tools, as well as actions of agents. | Aim makes it super easy to visualize and debug LangChain executions. Aim tracks inputs and outputs of LLMs and tools, as well as actions of agents. ->: her age raised to the 0.43 power. Action: Search Action Input: "Leo DiCaprio girlfriend" Observation: Leonardo DiCaprio seemed to prove a long-held theory about his love life right after splitting from girlfriend Camila Morrone just months ... Thought: I need to find out Camila Morrone's age Action: Search Action Input: "Camila Morrone age" Observation: 25 years Thought: I need to calculate 25 raised to the 0.43 power Action: Calculator Action Input: 25^0.43 Observation: Answer: 3.991298452658078 Thought: I now know the final answer Final Answer: Camila Morrone is Leo DiCaprio's girlfriend and her current age raised to the 0.43 power is 3.991298452658078. > Finished chain.PreviousAI21 LabsNextAINetworkCommunityDiscordTwitterGitHubPythonJS/TSMoreHomepageBlogCopyright © 2023 LangChain, Inc. |
3,638 | Docugami | ü¶úÔ∏èüîó Langchain | Docugami converts business documents into a Document XML Knowledge Graph, generating forests | Docugami converts business documents into a Document XML Knowledge Graph, generating forests ->: Docugami | ü¶úÔ∏èüîó Langchain |
3,639 | Skip to main contentü¶úÔ∏èüîó LangChainDocsUse casesIntegrationsAPICommunityChat our docsLangSmithJS/TS DocsSearchCTRLKProvidersAnthropicAWSGoogleMicrosoftOpenAIMoreActiveloop Deep LakeAI21 LabsAimAINetworkAirbyteAirtableAleph AlphaAlibaba Cloud OpensearchAnalyticDBAnnoyAnyscaleApifyArangoDBArgillaArthurArxivAtlasAwaDBAWS DynamoDBAZLyricsBagelDBBananaBasetenBeamBeautiful SoupBiliBiliNIBittensorBlackboardBrave SearchCassandraCerebriumAIChaindeskChromaClarifaiClearMLClickHouseCnosDBCohereCollege ConfidentialCometConfident AIConfluenceC TransformersDashVectorDatabricksDatadog TracingDatadog LogsDataForSEODeepInfraDeepSparseDiffbotDingoDiscordDocArrayDoctranDocugamiDuckDBElasticsearchEpsillaEverNoteFacebook ChatFacebook FaissFigmaFireworksFlyteForefrontAIGitGitBookGoldenGoogle Document AIGoogle SerperGooseAIGPT4AllGradientGraphsignalGrobidGutenbergHacker NewsHazy ResearchHeliconeHologresHTML to textHugging FaceiFixitIMSDbInfinoJavelin AI GatewayJinaKonkoLanceDBLangChain Decorators ‚ú®Llama.cppLog10MarqoMediaWikiDumpMeilisearchMetalMilvusMinimaxMLflow AI GatewayMLflowModalModelScopeModern TreasuryMomentoMongoDB AtlasMotherduckMot√∂rheadMyScaleNeo4jNLPCloudNotion DBNucliaObsidianOpenLLMOpenSearchOpenWeatherMapPetalsPostgres EmbeddingPGVectorPineconePipelineAIPortkeyPredibasePrediction GuardPromptLayerprovidersPsychicPubMedQdrantRay ServeRebuffRedditRedisReplicateRoamRocksetRunhouseRWKV-4ScaNNSearchApiSearxNG Search APISerpAPIShale ProtocolSingleStoreDBscikit-learnSlackspaCySpreedlyStarRocksStochasticAIStripeSupabase (Postgres)NebulaTairTelegramTencentVectorDBTensorFlow DatasetsTigris2MarkdownTrelloTruLensTwitterTypesenseUnstructuredUpstash RedisUSearchVearchVectaraVespaWandB TracingWeights & BiasesWeatherWeaviateWhatsAppWhyLabsWikipediaWolfram AlphaWriterXataXorbits Inference (Xinference)YandexYeager.aiYouTubeZepZillizComponentsLLMsChat modelsDocument loadersDocument transformersText embedding modelsVector storesRetrieversToolsAgents and toolkitsMemoryCallbacksChat | Docugami converts business documents into a Document XML Knowledge Graph, generating forests | Docugami converts business documents into a Document XML Knowledge Graph, generating forests ->: Skip to main contentü¶úÔ∏èüîó LangChainDocsUse casesIntegrationsAPICommunityChat our docsLangSmithJS/TS DocsSearchCTRLKProvidersAnthropicAWSGoogleMicrosoftOpenAIMoreActiveloop Deep LakeAI21 LabsAimAINetworkAirbyteAirtableAleph AlphaAlibaba Cloud OpensearchAnalyticDBAnnoyAnyscaleApifyArangoDBArgillaArthurArxivAtlasAwaDBAWS DynamoDBAZLyricsBagelDBBananaBasetenBeamBeautiful SoupBiliBiliNIBittensorBlackboardBrave SearchCassandraCerebriumAIChaindeskChromaClarifaiClearMLClickHouseCnosDBCohereCollege ConfidentialCometConfident AIConfluenceC TransformersDashVectorDatabricksDatadog TracingDatadog LogsDataForSEODeepInfraDeepSparseDiffbotDingoDiscordDocArrayDoctranDocugamiDuckDBElasticsearchEpsillaEverNoteFacebook ChatFacebook FaissFigmaFireworksFlyteForefrontAIGitGitBookGoldenGoogle Document AIGoogle SerperGooseAIGPT4AllGradientGraphsignalGrobidGutenbergHacker NewsHazy ResearchHeliconeHologresHTML to textHugging FaceiFixitIMSDbInfinoJavelin AI GatewayJinaKonkoLanceDBLangChain Decorators ‚ú®Llama.cppLog10MarqoMediaWikiDumpMeilisearchMetalMilvusMinimaxMLflow AI GatewayMLflowModalModelScopeModern TreasuryMomentoMongoDB AtlasMotherduckMot√∂rheadMyScaleNeo4jNLPCloudNotion DBNucliaObsidianOpenLLMOpenSearchOpenWeatherMapPetalsPostgres EmbeddingPGVectorPineconePipelineAIPortkeyPredibasePrediction GuardPromptLayerprovidersPsychicPubMedQdrantRay ServeRebuffRedditRedisReplicateRoamRocksetRunhouseRWKV-4ScaNNSearchApiSearxNG Search APISerpAPIShale ProtocolSingleStoreDBscikit-learnSlackspaCySpreedlyStarRocksStochasticAIStripeSupabase (Postgres)NebulaTairTelegramTencentVectorDBTensorFlow DatasetsTigris2MarkdownTrelloTruLensTwitterTypesenseUnstructuredUpstash RedisUSearchVearchVectaraVespaWandB TracingWeights & BiasesWeatherWeaviateWhatsAppWhyLabsWikipediaWolfram AlphaWriterXataXorbits Inference (Xinference)YandexYeager.aiYouTubeZepZillizComponentsLLMsChat modelsDocument loadersDocument transformersText embedding modelsVector storesRetrieversToolsAgents and toolkitsMemoryCallbacksChat |
3,640 | and toolkitsMemoryCallbacksChat loadersProvidersMoreDocugamiOn this pageDocugamiDocugami converts business documents into a Document XML Knowledge Graph, generating forests | Docugami converts business documents into a Document XML Knowledge Graph, generating forests | Docugami converts business documents into a Document XML Knowledge Graph, generating forests ->: and toolkitsMemoryCallbacksChat loadersProvidersMoreDocugamiOn this pageDocugamiDocugami converts business documents into a Document XML Knowledge Graph, generating forests |
3,641 | of XML semantic trees representing entire documents. This is a rich representation that includes the semantic and
structural characteristics of various chunks in the document as an XML tree.Installation and Setup​pip install lxmlDocument Loader​See a usage example.from langchain.document_loaders import DocugamiLoaderPreviousDoctranNextDuckDBInstallation and SetupDocument LoaderCommunityDiscordTwitterGitHubPythonJS/TSMoreHomepageBlogCopyright © 2023 LangChain, Inc. | Docugami converts business documents into a Document XML Knowledge Graph, generating forests | Docugami converts business documents into a Document XML Knowledge Graph, generating forests ->: of XML semantic trees representing entire documents. This is a rich representation that includes the semantic and
structural characteristics of various chunks in the document as an XML tree.Installation and Setup​pip install lxmlDocument Loader​See a usage example.from langchain.document_loaders import DocugamiLoaderPreviousDoctranNextDuckDBInstallation and SetupDocument LoaderCommunityDiscordTwitterGitHubPythonJS/TSMoreHomepageBlogCopyright © 2023 LangChain, Inc. |
3,642 | Grobid | ü¶úÔ∏èüîó Langchain | GROBID is a machine learning library for extracting, parsing, and re-structuring raw documents. | GROBID is a machine learning library for extracting, parsing, and re-structuring raw documents. ->: Grobid | ü¶úÔ∏èüîó Langchain |
3,643 | Skip to main contentü¶úÔ∏èüîó LangChainDocsUse casesIntegrationsAPICommunityChat our docsLangSmithJS/TS DocsSearchCTRLKProvidersAnthropicAWSGoogleMicrosoftOpenAIMoreActiveloop Deep LakeAI21 LabsAimAINetworkAirbyteAirtableAleph AlphaAlibaba Cloud OpensearchAnalyticDBAnnoyAnyscaleApifyArangoDBArgillaArthurArxivAtlasAwaDBAWS DynamoDBAZLyricsBagelDBBananaBasetenBeamBeautiful SoupBiliBiliNIBittensorBlackboardBrave SearchCassandraCerebriumAIChaindeskChromaClarifaiClearMLClickHouseCnosDBCohereCollege ConfidentialCometConfident AIConfluenceC TransformersDashVectorDatabricksDatadog TracingDatadog LogsDataForSEODeepInfraDeepSparseDiffbotDingoDiscordDocArrayDoctranDocugamiDuckDBElasticsearchEpsillaEverNoteFacebook ChatFacebook FaissFigmaFireworksFlyteForefrontAIGitGitBookGoldenGoogle Document AIGoogle SerperGooseAIGPT4AllGradientGraphsignalGrobidGutenbergHacker NewsHazy ResearchHeliconeHologresHTML to textHugging FaceiFixitIMSDbInfinoJavelin AI GatewayJinaKonkoLanceDBLangChain Decorators ‚ú®Llama.cppLog10MarqoMediaWikiDumpMeilisearchMetalMilvusMinimaxMLflow AI GatewayMLflowModalModelScopeModern TreasuryMomentoMongoDB AtlasMotherduckMot√∂rheadMyScaleNeo4jNLPCloudNotion DBNucliaObsidianOpenLLMOpenSearchOpenWeatherMapPetalsPostgres EmbeddingPGVectorPineconePipelineAIPortkeyPredibasePrediction GuardPromptLayerprovidersPsychicPubMedQdrantRay ServeRebuffRedditRedisReplicateRoamRocksetRunhouseRWKV-4ScaNNSearchApiSearxNG Search APISerpAPIShale ProtocolSingleStoreDBscikit-learnSlackspaCySpreedlyStarRocksStochasticAIStripeSupabase (Postgres)NebulaTairTelegramTencentVectorDBTensorFlow DatasetsTigris2MarkdownTrelloTruLensTwitterTypesenseUnstructuredUpstash RedisUSearchVearchVectaraVespaWandB TracingWeights & BiasesWeatherWeaviateWhatsAppWhyLabsWikipediaWolfram AlphaWriterXataXorbits Inference (Xinference)YandexYeager.aiYouTubeZepZillizComponentsLLMsChat modelsDocument loadersDocument transformersText embedding modelsVector storesRetrieversToolsAgents and toolkitsMemoryCallbacksChat | GROBID is a machine learning library for extracting, parsing, and re-structuring raw documents. | GROBID is a machine learning library for extracting, parsing, and re-structuring raw documents. ->: Skip to main contentü¶úÔ∏èüîó LangChainDocsUse casesIntegrationsAPICommunityChat our docsLangSmithJS/TS DocsSearchCTRLKProvidersAnthropicAWSGoogleMicrosoftOpenAIMoreActiveloop Deep LakeAI21 LabsAimAINetworkAirbyteAirtableAleph AlphaAlibaba Cloud OpensearchAnalyticDBAnnoyAnyscaleApifyArangoDBArgillaArthurArxivAtlasAwaDBAWS DynamoDBAZLyricsBagelDBBananaBasetenBeamBeautiful SoupBiliBiliNIBittensorBlackboardBrave SearchCassandraCerebriumAIChaindeskChromaClarifaiClearMLClickHouseCnosDBCohereCollege ConfidentialCometConfident AIConfluenceC TransformersDashVectorDatabricksDatadog TracingDatadog LogsDataForSEODeepInfraDeepSparseDiffbotDingoDiscordDocArrayDoctranDocugamiDuckDBElasticsearchEpsillaEverNoteFacebook ChatFacebook FaissFigmaFireworksFlyteForefrontAIGitGitBookGoldenGoogle Document AIGoogle SerperGooseAIGPT4AllGradientGraphsignalGrobidGutenbergHacker NewsHazy ResearchHeliconeHologresHTML to textHugging FaceiFixitIMSDbInfinoJavelin AI GatewayJinaKonkoLanceDBLangChain Decorators ‚ú®Llama.cppLog10MarqoMediaWikiDumpMeilisearchMetalMilvusMinimaxMLflow AI GatewayMLflowModalModelScopeModern TreasuryMomentoMongoDB AtlasMotherduckMot√∂rheadMyScaleNeo4jNLPCloudNotion DBNucliaObsidianOpenLLMOpenSearchOpenWeatherMapPetalsPostgres EmbeddingPGVectorPineconePipelineAIPortkeyPredibasePrediction GuardPromptLayerprovidersPsychicPubMedQdrantRay ServeRebuffRedditRedisReplicateRoamRocksetRunhouseRWKV-4ScaNNSearchApiSearxNG Search APISerpAPIShale ProtocolSingleStoreDBscikit-learnSlackspaCySpreedlyStarRocksStochasticAIStripeSupabase (Postgres)NebulaTairTelegramTencentVectorDBTensorFlow DatasetsTigris2MarkdownTrelloTruLensTwitterTypesenseUnstructuredUpstash RedisUSearchVearchVectaraVespaWandB TracingWeights & BiasesWeatherWeaviateWhatsAppWhyLabsWikipediaWolfram AlphaWriterXataXorbits Inference (Xinference)YandexYeager.aiYouTubeZepZillizComponentsLLMsChat modelsDocument loadersDocument transformersText embedding modelsVector storesRetrieversToolsAgents and toolkitsMemoryCallbacksChat |
3,644 | and toolkitsMemoryCallbacksChat loadersProvidersMoreGrobidOn this pageGrobidGROBID is a machine learning library for extracting, parsing, and re-structuring raw documents.It is designed and expected to be used to parse academic papers, where it works particularly well.Note: if the articles supplied to Grobid are large documents (e.g. dissertations) exceeding a certain number | GROBID is a machine learning library for extracting, parsing, and re-structuring raw documents. | GROBID is a machine learning library for extracting, parsing, and re-structuring raw documents. ->: and toolkitsMemoryCallbacksChat loadersProvidersMoreGrobidOn this pageGrobidGROBID is a machine learning library for extracting, parsing, and re-structuring raw documents.It is designed and expected to be used to parse academic papers, where it works particularly well.Note: if the articles supplied to Grobid are large documents (e.g. dissertations) exceeding a certain number |
3,645 | of elements, they might not be processed.This page covers how to use the Grobid to parse articles for LangChain.Installation‚ÄãThe grobid installation is described in details in https://grobid.readthedocs.io/en/latest/Install-Grobid/.
However, it is probably easier and less troublesome to run grobid through a docker container,
as documented here.Use Grobid with LangChain‚ÄãOnce grobid is installed and up and running (you can check by accessing it http://localhost:8070),
you're ready to go.You can now use the GrobidParser to produce documentsfrom langchain.document_loaders.parsers import GrobidParserfrom langchain.document_loaders.generic import GenericLoader#Produce chunks from article paragraphsloader = GenericLoader.from_filesystem( "/Users/31treehaus/Desktop/Papers/", glob="*", suffixes=[".pdf"], parser= GrobidParser(segment_sentences=False))docs = loader.load()#Produce chunks from article sentencesloader = GenericLoader.from_filesystem( "/Users/31treehaus/Desktop/Papers/", glob="*", suffixes=[".pdf"], parser= GrobidParser(segment_sentences=True))docs = loader.load()Chunk metadata will include Bounding Boxes. Although these are a bit funky to parse,
they are explained in https://grobid.readthedocs.io/en/latest/Coordinates-in-PDF/PreviousGraphsignalNextGutenbergInstallationUse Grobid with LangChainCommunityDiscordTwitterGitHubPythonJS/TSMoreHomepageBlogCopyright © 2023 LangChain, Inc. | GROBID is a machine learning library for extracting, parsing, and re-structuring raw documents. | GROBID is a machine learning library for extracting, parsing, and re-structuring raw documents. ->: of elements, they might not be processed.This page covers how to use the Grobid to parse articles for LangChain.Installation​The grobid installation is described in details in https://grobid.readthedocs.io/en/latest/Install-Grobid/.
However, it is probably easier and less troublesome to run grobid through a docker container,
as documented here.Use Grobid with LangChain‚ÄãOnce grobid is installed and up and running (you can check by accessing it http://localhost:8070),
you're ready to go.You can now use the GrobidParser to produce documentsfrom langchain.document_loaders.parsers import GrobidParserfrom langchain.document_loaders.generic import GenericLoader#Produce chunks from article paragraphsloader = GenericLoader.from_filesystem( "/Users/31treehaus/Desktop/Papers/", glob="*", suffixes=[".pdf"], parser= GrobidParser(segment_sentences=False))docs = loader.load()#Produce chunks from article sentencesloader = GenericLoader.from_filesystem( "/Users/31treehaus/Desktop/Papers/", glob="*", suffixes=[".pdf"], parser= GrobidParser(segment_sentences=True))docs = loader.load()Chunk metadata will include Bounding Boxes. Although these are a bit funky to parse,
they are explained in https://grobid.readthedocs.io/en/latest/Coordinates-in-PDF/PreviousGraphsignalNextGutenbergInstallationUse Grobid with LangChainCommunityDiscordTwitterGitHubPythonJS/TSMoreHomepageBlogCopyright © 2023 LangChain, Inc. |
3,646 | Mot√∂rhead | ü¶úÔ∏èüîó Langchain | Mot√∂rhead is a memory server implemented in Rust. It automatically handles incremental summarization in the background and allows for stateless applications. | Mot√∂rhead is a memory server implemented in Rust. It automatically handles incremental summarization in the background and allows for stateless applications. ->: Mot√∂rhead | ü¶úÔ∏èüîó Langchain |
3,647 | Skip to main contentü¶úÔ∏èüîó LangChainDocsUse casesIntegrationsAPICommunityChat our docsLangSmithJS/TS DocsSearchCTRLKProvidersAnthropicAWSGoogleMicrosoftOpenAIMoreActiveloop Deep LakeAI21 LabsAimAINetworkAirbyteAirtableAleph AlphaAlibaba Cloud OpensearchAnalyticDBAnnoyAnyscaleApifyArangoDBArgillaArthurArxivAtlasAwaDBAWS DynamoDBAZLyricsBagelDBBananaBasetenBeamBeautiful SoupBiliBiliNIBittensorBlackboardBrave SearchCassandraCerebriumAIChaindeskChromaClarifaiClearMLClickHouseCnosDBCohereCollege ConfidentialCometConfident AIConfluenceC TransformersDashVectorDatabricksDatadog TracingDatadog LogsDataForSEODeepInfraDeepSparseDiffbotDingoDiscordDocArrayDoctranDocugamiDuckDBElasticsearchEpsillaEverNoteFacebook ChatFacebook FaissFigmaFireworksFlyteForefrontAIGitGitBookGoldenGoogle Document AIGoogle SerperGooseAIGPT4AllGradientGraphsignalGrobidGutenbergHacker NewsHazy ResearchHeliconeHologresHTML to textHugging FaceiFixitIMSDbInfinoJavelin AI GatewayJinaKonkoLanceDBLangChain Decorators ‚ú®Llama.cppLog10MarqoMediaWikiDumpMeilisearchMetalMilvusMinimaxMLflow AI GatewayMLflowModalModelScopeModern TreasuryMomentoMongoDB AtlasMotherduckMot√∂rheadMyScaleNeo4jNLPCloudNotion DBNucliaObsidianOpenLLMOpenSearchOpenWeatherMapPetalsPostgres EmbeddingPGVectorPineconePipelineAIPortkeyPredibasePrediction GuardPromptLayerprovidersPsychicPubMedQdrantRay ServeRebuffRedditRedisReplicateRoamRocksetRunhouseRWKV-4ScaNNSearchApiSearxNG Search APISerpAPIShale ProtocolSingleStoreDBscikit-learnSlackspaCySpreedlyStarRocksStochasticAIStripeSupabase (Postgres)NebulaTairTelegramTencentVectorDBTensorFlow DatasetsTigris2MarkdownTrelloTruLensTwitterTypesenseUnstructuredUpstash RedisUSearchVearchVectaraVespaWandB TracingWeights & BiasesWeatherWeaviateWhatsAppWhyLabsWikipediaWolfram AlphaWriterXataXorbits Inference (Xinference)YandexYeager.aiYouTubeZepZillizComponentsLLMsChat modelsDocument loadersDocument transformersText embedding modelsVector storesRetrieversToolsAgents and toolkitsMemoryCallbacksChat | Mot√∂rhead is a memory server implemented in Rust. It automatically handles incremental summarization in the background and allows for stateless applications. | Mot√∂rhead is a memory server implemented in Rust. It automatically handles incremental summarization in the background and allows for stateless applications. ->: Skip to main contentü¶úÔ∏èüîó LangChainDocsUse casesIntegrationsAPICommunityChat our docsLangSmithJS/TS DocsSearchCTRLKProvidersAnthropicAWSGoogleMicrosoftOpenAIMoreActiveloop Deep LakeAI21 LabsAimAINetworkAirbyteAirtableAleph AlphaAlibaba Cloud OpensearchAnalyticDBAnnoyAnyscaleApifyArangoDBArgillaArthurArxivAtlasAwaDBAWS DynamoDBAZLyricsBagelDBBananaBasetenBeamBeautiful SoupBiliBiliNIBittensorBlackboardBrave SearchCassandraCerebriumAIChaindeskChromaClarifaiClearMLClickHouseCnosDBCohereCollege ConfidentialCometConfident AIConfluenceC TransformersDashVectorDatabricksDatadog TracingDatadog LogsDataForSEODeepInfraDeepSparseDiffbotDingoDiscordDocArrayDoctranDocugamiDuckDBElasticsearchEpsillaEverNoteFacebook ChatFacebook FaissFigmaFireworksFlyteForefrontAIGitGitBookGoldenGoogle Document AIGoogle SerperGooseAIGPT4AllGradientGraphsignalGrobidGutenbergHacker NewsHazy ResearchHeliconeHologresHTML to textHugging FaceiFixitIMSDbInfinoJavelin AI GatewayJinaKonkoLanceDBLangChain Decorators ‚ú®Llama.cppLog10MarqoMediaWikiDumpMeilisearchMetalMilvusMinimaxMLflow AI GatewayMLflowModalModelScopeModern TreasuryMomentoMongoDB AtlasMotherduckMot√∂rheadMyScaleNeo4jNLPCloudNotion DBNucliaObsidianOpenLLMOpenSearchOpenWeatherMapPetalsPostgres EmbeddingPGVectorPineconePipelineAIPortkeyPredibasePrediction GuardPromptLayerprovidersPsychicPubMedQdrantRay ServeRebuffRedditRedisReplicateRoamRocksetRunhouseRWKV-4ScaNNSearchApiSearxNG Search APISerpAPIShale ProtocolSingleStoreDBscikit-learnSlackspaCySpreedlyStarRocksStochasticAIStripeSupabase (Postgres)NebulaTairTelegramTencentVectorDBTensorFlow DatasetsTigris2MarkdownTrelloTruLensTwitterTypesenseUnstructuredUpstash RedisUSearchVearchVectaraVespaWandB TracingWeights & BiasesWeatherWeaviateWhatsAppWhyLabsWikipediaWolfram AlphaWriterXataXorbits Inference (Xinference)YandexYeager.aiYouTubeZepZillizComponentsLLMsChat modelsDocument loadersDocument transformersText embedding modelsVector storesRetrieversToolsAgents and toolkitsMemoryCallbacksChat |
3,648 | and toolkitsMemoryCallbacksChat loadersProvidersMoreMotörheadOn this pageMotörheadMotörhead is a memory server implemented in Rust. It automatically handles incremental summarization in the background and allows for stateless applications.Installation and Setup​See instructions at Motörhead for running the server locally.Memory​See a usage example.from langchain.memory import MotorheadMemoryPreviousMotherduckNextMyScaleInstallation and SetupMemoryCommunityDiscordTwitterGitHubPythonJS/TSMoreHomepageBlogCopyright © 2023 LangChain, Inc. | Motörhead is a memory server implemented in Rust. It automatically handles incremental summarization in the background and allows for stateless applications. | Motörhead is a memory server implemented in Rust. It automatically handles incremental summarization in the background and allows for stateless applications. ->: and toolkitsMemoryCallbacksChat loadersProvidersMoreMotörheadOn this pageMotörheadMotörhead is a memory server implemented in Rust. It automatically handles incremental summarization in the background and allows for stateless applications.Installation and Setup​See instructions at Motörhead for running the server locally.Memory​See a usage example.from langchain.memory import MotorheadMemoryPreviousMotherduckNextMyScaleInstallation and SetupMemoryCommunityDiscordTwitterGitHubPythonJS/TSMoreHomepageBlogCopyright © 2023 LangChain, Inc. |
3,649 | TencentVectorDB | ü¶úÔ∏èüîó Langchain | This page covers how to use the TencentVectorDB ecosystem within LangChain. | This page covers how to use the TencentVectorDB ecosystem within LangChain. ->: TencentVectorDB | ü¶úÔ∏èüîó Langchain |
3,650 | Skip to main contentü¶úÔ∏èüîó LangChainDocsUse casesIntegrationsAPICommunityChat our docsLangSmithJS/TS DocsSearchCTRLKProvidersAnthropicAWSGoogleMicrosoftOpenAIMoreActiveloop Deep LakeAI21 LabsAimAINetworkAirbyteAirtableAleph AlphaAlibaba Cloud OpensearchAnalyticDBAnnoyAnyscaleApifyArangoDBArgillaArthurArxivAtlasAwaDBAWS DynamoDBAZLyricsBagelDBBananaBasetenBeamBeautiful SoupBiliBiliNIBittensorBlackboardBrave SearchCassandraCerebriumAIChaindeskChromaClarifaiClearMLClickHouseCnosDBCohereCollege ConfidentialCometConfident AIConfluenceC TransformersDashVectorDatabricksDatadog TracingDatadog LogsDataForSEODeepInfraDeepSparseDiffbotDingoDiscordDocArrayDoctranDocugamiDuckDBElasticsearchEpsillaEverNoteFacebook ChatFacebook FaissFigmaFireworksFlyteForefrontAIGitGitBookGoldenGoogle Document AIGoogle SerperGooseAIGPT4AllGradientGraphsignalGrobidGutenbergHacker NewsHazy ResearchHeliconeHologresHTML to textHugging FaceiFixitIMSDbInfinoJavelin AI GatewayJinaKonkoLanceDBLangChain Decorators ‚ú®Llama.cppLog10MarqoMediaWikiDumpMeilisearchMetalMilvusMinimaxMLflow AI GatewayMLflowModalModelScopeModern TreasuryMomentoMongoDB AtlasMotherduckMot√∂rheadMyScaleNeo4jNLPCloudNotion DBNucliaObsidianOpenLLMOpenSearchOpenWeatherMapPetalsPostgres EmbeddingPGVectorPineconePipelineAIPortkeyPredibasePrediction GuardPromptLayerprovidersPsychicPubMedQdrantRay ServeRebuffRedditRedisReplicateRoamRocksetRunhouseRWKV-4ScaNNSearchApiSearxNG Search APISerpAPIShale ProtocolSingleStoreDBscikit-learnSlackspaCySpreedlyStarRocksStochasticAIStripeSupabase (Postgres)NebulaTairTelegramTencentVectorDBTensorFlow DatasetsTigris2MarkdownTrelloTruLensTwitterTypesenseUnstructuredUpstash RedisUSearchVearchVectaraVespaWandB TracingWeights & BiasesWeatherWeaviateWhatsAppWhyLabsWikipediaWolfram AlphaWriterXataXorbits Inference (Xinference)YandexYeager.aiYouTubeZepZillizComponentsLLMsChat modelsDocument loadersDocument transformersText embedding modelsVector storesRetrieversToolsAgents and toolkitsMemoryCallbacksChat | This page covers how to use the TencentVectorDB ecosystem within LangChain. | This page covers how to use the TencentVectorDB ecosystem within LangChain. ->: Skip to main contentü¶úÔ∏èüîó LangChainDocsUse casesIntegrationsAPICommunityChat our docsLangSmithJS/TS DocsSearchCTRLKProvidersAnthropicAWSGoogleMicrosoftOpenAIMoreActiveloop Deep LakeAI21 LabsAimAINetworkAirbyteAirtableAleph AlphaAlibaba Cloud OpensearchAnalyticDBAnnoyAnyscaleApifyArangoDBArgillaArthurArxivAtlasAwaDBAWS DynamoDBAZLyricsBagelDBBananaBasetenBeamBeautiful SoupBiliBiliNIBittensorBlackboardBrave SearchCassandraCerebriumAIChaindeskChromaClarifaiClearMLClickHouseCnosDBCohereCollege ConfidentialCometConfident AIConfluenceC TransformersDashVectorDatabricksDatadog TracingDatadog LogsDataForSEODeepInfraDeepSparseDiffbotDingoDiscordDocArrayDoctranDocugamiDuckDBElasticsearchEpsillaEverNoteFacebook ChatFacebook FaissFigmaFireworksFlyteForefrontAIGitGitBookGoldenGoogle Document AIGoogle SerperGooseAIGPT4AllGradientGraphsignalGrobidGutenbergHacker NewsHazy ResearchHeliconeHologresHTML to textHugging FaceiFixitIMSDbInfinoJavelin AI GatewayJinaKonkoLanceDBLangChain Decorators ‚ú®Llama.cppLog10MarqoMediaWikiDumpMeilisearchMetalMilvusMinimaxMLflow AI GatewayMLflowModalModelScopeModern TreasuryMomentoMongoDB AtlasMotherduckMot√∂rheadMyScaleNeo4jNLPCloudNotion DBNucliaObsidianOpenLLMOpenSearchOpenWeatherMapPetalsPostgres EmbeddingPGVectorPineconePipelineAIPortkeyPredibasePrediction GuardPromptLayerprovidersPsychicPubMedQdrantRay ServeRebuffRedditRedisReplicateRoamRocksetRunhouseRWKV-4ScaNNSearchApiSearxNG Search APISerpAPIShale ProtocolSingleStoreDBscikit-learnSlackspaCySpreedlyStarRocksStochasticAIStripeSupabase (Postgres)NebulaTairTelegramTencentVectorDBTensorFlow DatasetsTigris2MarkdownTrelloTruLensTwitterTypesenseUnstructuredUpstash RedisUSearchVearchVectaraVespaWandB TracingWeights & BiasesWeatherWeaviateWhatsAppWhyLabsWikipediaWolfram AlphaWriterXataXorbits Inference (Xinference)YandexYeager.aiYouTubeZepZillizComponentsLLMsChat modelsDocument loadersDocument transformersText embedding modelsVector storesRetrieversToolsAgents and toolkitsMemoryCallbacksChat |
3,651 | and toolkitsMemoryCallbacksChat loadersProvidersMoreTencentVectorDBOn this pageTencentVectorDBThis page covers how to use the TencentVectorDB ecosystem within LangChain.VectorStore‚ÄãThere exists a wrapper around TencentVectorDB, allowing you to use it as a vectorstore, | This page covers how to use the TencentVectorDB ecosystem within LangChain. | This page covers how to use the TencentVectorDB ecosystem within LangChain. ->: and toolkitsMemoryCallbacksChat loadersProvidersMoreTencentVectorDBOn this pageTencentVectorDBThis page covers how to use the TencentVectorDB ecosystem within LangChain.VectorStore‚ÄãThere exists a wrapper around TencentVectorDB, allowing you to use it as a vectorstore, |
3,652 | whether for semantic search or example selection.To import this vectorstore:from langchain.vectorstores import TencentVectorDBFor a more detailed walkthrough of the TencentVectorDB wrapper, see this notebookPreviousTelegramNextTensorFlow DatasetsVectorStoreCommunityDiscordTwitterGitHubPythonJS/TSMoreHomepageBlogCopyright © 2023 LangChain, Inc. | This page covers how to use the TencentVectorDB ecosystem within LangChain. | This page covers how to use the TencentVectorDB ecosystem within LangChain. ->: whether for semantic search or example selection.To import this vectorstore:from langchain.vectorstores import TencentVectorDBFor a more detailed walkthrough of the TencentVectorDB wrapper, see this notebookPreviousTelegramNextTensorFlow DatasetsVectorStoreCommunityDiscordTwitterGitHubPythonJS/TSMoreHomepageBlogCopyright © 2023 LangChain, Inc. |
3,653 | OpenSearch | ü¶úÔ∏èüîó Langchain | This page covers how to use the OpenSearch ecosystem within LangChain. | This page covers how to use the OpenSearch ecosystem within LangChain. ->: OpenSearch | ü¶úÔ∏èüîó Langchain |
3,654 | Skip to main contentü¶úÔ∏èüîó LangChainDocsUse casesIntegrationsAPICommunityChat our docsLangSmithJS/TS DocsSearchCTRLKProvidersAnthropicAWSGoogleMicrosoftOpenAIMoreActiveloop Deep LakeAI21 LabsAimAINetworkAirbyteAirtableAleph AlphaAlibaba Cloud OpensearchAnalyticDBAnnoyAnyscaleApifyArangoDBArgillaArthurArxivAtlasAwaDBAWS DynamoDBAZLyricsBagelDBBananaBasetenBeamBeautiful SoupBiliBiliNIBittensorBlackboardBrave SearchCassandraCerebriumAIChaindeskChromaClarifaiClearMLClickHouseCnosDBCohereCollege ConfidentialCometConfident AIConfluenceC TransformersDashVectorDatabricksDatadog TracingDatadog LogsDataForSEODeepInfraDeepSparseDiffbotDingoDiscordDocArrayDoctranDocugamiDuckDBElasticsearchEpsillaEverNoteFacebook ChatFacebook FaissFigmaFireworksFlyteForefrontAIGitGitBookGoldenGoogle Document AIGoogle SerperGooseAIGPT4AllGradientGraphsignalGrobidGutenbergHacker NewsHazy ResearchHeliconeHologresHTML to textHugging FaceiFixitIMSDbInfinoJavelin AI GatewayJinaKonkoLanceDBLangChain Decorators ‚ú®Llama.cppLog10MarqoMediaWikiDumpMeilisearchMetalMilvusMinimaxMLflow AI GatewayMLflowModalModelScopeModern TreasuryMomentoMongoDB AtlasMotherduckMot√∂rheadMyScaleNeo4jNLPCloudNotion DBNucliaObsidianOpenLLMOpenSearchOpenWeatherMapPetalsPostgres EmbeddingPGVectorPineconePipelineAIPortkeyPredibasePrediction GuardPromptLayerprovidersPsychicPubMedQdrantRay ServeRebuffRedditRedisReplicateRoamRocksetRunhouseRWKV-4ScaNNSearchApiSearxNG Search APISerpAPIShale ProtocolSingleStoreDBscikit-learnSlackspaCySpreedlyStarRocksStochasticAIStripeSupabase (Postgres)NebulaTairTelegramTencentVectorDBTensorFlow DatasetsTigris2MarkdownTrelloTruLensTwitterTypesenseUnstructuredUpstash RedisUSearchVearchVectaraVespaWandB TracingWeights & BiasesWeatherWeaviateWhatsAppWhyLabsWikipediaWolfram AlphaWriterXataXorbits Inference (Xinference)YandexYeager.aiYouTubeZepZillizComponentsLLMsChat modelsDocument loadersDocument transformersText embedding modelsVector storesRetrieversToolsAgents and toolkitsMemoryCallbacksChat | This page covers how to use the OpenSearch ecosystem within LangChain. | This page covers how to use the OpenSearch ecosystem within LangChain. ->: Skip to main contentü¶úÔ∏èüîó LangChainDocsUse casesIntegrationsAPICommunityChat our docsLangSmithJS/TS DocsSearchCTRLKProvidersAnthropicAWSGoogleMicrosoftOpenAIMoreActiveloop Deep LakeAI21 LabsAimAINetworkAirbyteAirtableAleph AlphaAlibaba Cloud OpensearchAnalyticDBAnnoyAnyscaleApifyArangoDBArgillaArthurArxivAtlasAwaDBAWS DynamoDBAZLyricsBagelDBBananaBasetenBeamBeautiful SoupBiliBiliNIBittensorBlackboardBrave SearchCassandraCerebriumAIChaindeskChromaClarifaiClearMLClickHouseCnosDBCohereCollege ConfidentialCometConfident AIConfluenceC TransformersDashVectorDatabricksDatadog TracingDatadog LogsDataForSEODeepInfraDeepSparseDiffbotDingoDiscordDocArrayDoctranDocugamiDuckDBElasticsearchEpsillaEverNoteFacebook ChatFacebook FaissFigmaFireworksFlyteForefrontAIGitGitBookGoldenGoogle Document AIGoogle SerperGooseAIGPT4AllGradientGraphsignalGrobidGutenbergHacker NewsHazy ResearchHeliconeHologresHTML to textHugging FaceiFixitIMSDbInfinoJavelin AI GatewayJinaKonkoLanceDBLangChain Decorators ‚ú®Llama.cppLog10MarqoMediaWikiDumpMeilisearchMetalMilvusMinimaxMLflow AI GatewayMLflowModalModelScopeModern TreasuryMomentoMongoDB AtlasMotherduckMot√∂rheadMyScaleNeo4jNLPCloudNotion DBNucliaObsidianOpenLLMOpenSearchOpenWeatherMapPetalsPostgres EmbeddingPGVectorPineconePipelineAIPortkeyPredibasePrediction GuardPromptLayerprovidersPsychicPubMedQdrantRay ServeRebuffRedditRedisReplicateRoamRocksetRunhouseRWKV-4ScaNNSearchApiSearxNG Search APISerpAPIShale ProtocolSingleStoreDBscikit-learnSlackspaCySpreedlyStarRocksStochasticAIStripeSupabase (Postgres)NebulaTairTelegramTencentVectorDBTensorFlow DatasetsTigris2MarkdownTrelloTruLensTwitterTypesenseUnstructuredUpstash RedisUSearchVearchVectaraVespaWandB TracingWeights & BiasesWeatherWeaviateWhatsAppWhyLabsWikipediaWolfram AlphaWriterXataXorbits Inference (Xinference)YandexYeager.aiYouTubeZepZillizComponentsLLMsChat modelsDocument loadersDocument transformersText embedding modelsVector storesRetrieversToolsAgents and toolkitsMemoryCallbacksChat |
3,655 | and toolkitsMemoryCallbacksChat loadersProvidersMoreOpenSearchOn this pageOpenSearchThis page covers how to use the OpenSearch ecosystem within LangChain. | This page covers how to use the OpenSearch ecosystem within LangChain. | This page covers how to use the OpenSearch ecosystem within LangChain. ->: and toolkitsMemoryCallbacksChat loadersProvidersMoreOpenSearchOn this pageOpenSearchThis page covers how to use the OpenSearch ecosystem within LangChain. |
3,656 | It is broken into two parts: installation and setup, and then references to specific OpenSearch wrappers.Installation and Setup‚ÄãInstall the Python package with pip install opensearch-pyWrappers‚ÄãVectorStore‚ÄãThere exists a wrapper around OpenSearch vector databases, allowing you to use it as a vectorstore
for semantic search using approximate vector search powered by lucene, nmslib and faiss engines
or using painless scripting and script scoring functions for bruteforce vector search.To import this vectorstore:from langchain.vectorstores import OpenSearchVectorSearchFor a more detailed walkthrough of the OpenSearch wrapper, see this notebookPreviousOpenLLMNextOpenWeatherMapInstallation and SetupWrappersVectorStoreCommunityDiscordTwitterGitHubPythonJS/TSMoreHomepageBlogCopyright © 2023 LangChain, Inc. | This page covers how to use the OpenSearch ecosystem within LangChain. | This page covers how to use the OpenSearch ecosystem within LangChain. ->: It is broken into two parts: installation and setup, and then references to specific OpenSearch wrappers.Installation and Setup​Install the Python package with pip install opensearch-pyWrappers​VectorStore​There exists a wrapper around OpenSearch vector databases, allowing you to use it as a vectorstore
for semantic search using approximate vector search powered by lucene, nmslib and faiss engines
or using painless scripting and script scoring functions for bruteforce vector search.To import this vectorstore:from langchain.vectorstores import OpenSearchVectorSearchFor a more detailed walkthrough of the OpenSearch wrapper, see this notebookPreviousOpenLLMNextOpenWeatherMapInstallation and SetupWrappersVectorStoreCommunityDiscordTwitterGitHubPythonJS/TSMoreHomepageBlogCopyright © 2023 LangChain, Inc. |
3,657 | IMSDb | ü¶úÔ∏èüîó Langchain | IMSDb is the Internet Movie Script Database. | IMSDb is the Internet Movie Script Database. ->: IMSDb | ü¶úÔ∏èüîó Langchain |
3,658 | Skip to main contentü¶úÔ∏èüîó LangChainDocsUse casesIntegrationsAPICommunityChat our docsLangSmithJS/TS DocsSearchCTRLKProvidersAnthropicAWSGoogleMicrosoftOpenAIMoreActiveloop Deep LakeAI21 LabsAimAINetworkAirbyteAirtableAleph AlphaAlibaba Cloud OpensearchAnalyticDBAnnoyAnyscaleApifyArangoDBArgillaArthurArxivAtlasAwaDBAWS DynamoDBAZLyricsBagelDBBananaBasetenBeamBeautiful SoupBiliBiliNIBittensorBlackboardBrave SearchCassandraCerebriumAIChaindeskChromaClarifaiClearMLClickHouseCnosDBCohereCollege ConfidentialCometConfident AIConfluenceC TransformersDashVectorDatabricksDatadog TracingDatadog LogsDataForSEODeepInfraDeepSparseDiffbotDingoDiscordDocArrayDoctranDocugamiDuckDBElasticsearchEpsillaEverNoteFacebook ChatFacebook FaissFigmaFireworksFlyteForefrontAIGitGitBookGoldenGoogle Document AIGoogle SerperGooseAIGPT4AllGradientGraphsignalGrobidGutenbergHacker NewsHazy ResearchHeliconeHologresHTML to textHugging FaceiFixitIMSDbInfinoJavelin AI GatewayJinaKonkoLanceDBLangChain Decorators ‚ú®Llama.cppLog10MarqoMediaWikiDumpMeilisearchMetalMilvusMinimaxMLflow AI GatewayMLflowModalModelScopeModern TreasuryMomentoMongoDB AtlasMotherduckMot√∂rheadMyScaleNeo4jNLPCloudNotion DBNucliaObsidianOpenLLMOpenSearchOpenWeatherMapPetalsPostgres EmbeddingPGVectorPineconePipelineAIPortkeyPredibasePrediction GuardPromptLayerprovidersPsychicPubMedQdrantRay ServeRebuffRedditRedisReplicateRoamRocksetRunhouseRWKV-4ScaNNSearchApiSearxNG Search APISerpAPIShale ProtocolSingleStoreDBscikit-learnSlackspaCySpreedlyStarRocksStochasticAIStripeSupabase (Postgres)NebulaTairTelegramTencentVectorDBTensorFlow DatasetsTigris2MarkdownTrelloTruLensTwitterTypesenseUnstructuredUpstash RedisUSearchVearchVectaraVespaWandB TracingWeights & BiasesWeatherWeaviateWhatsAppWhyLabsWikipediaWolfram AlphaWriterXataXorbits Inference (Xinference)YandexYeager.aiYouTubeZepZillizComponentsLLMsChat modelsDocument loadersDocument transformersText embedding modelsVector storesRetrieversToolsAgents and toolkitsMemoryCallbacksChat | IMSDb is the Internet Movie Script Database. | IMSDb is the Internet Movie Script Database. ->: Skip to main contentü¶úÔ∏èüîó LangChainDocsUse casesIntegrationsAPICommunityChat our docsLangSmithJS/TS DocsSearchCTRLKProvidersAnthropicAWSGoogleMicrosoftOpenAIMoreActiveloop Deep LakeAI21 LabsAimAINetworkAirbyteAirtableAleph AlphaAlibaba Cloud OpensearchAnalyticDBAnnoyAnyscaleApifyArangoDBArgillaArthurArxivAtlasAwaDBAWS DynamoDBAZLyricsBagelDBBananaBasetenBeamBeautiful SoupBiliBiliNIBittensorBlackboardBrave SearchCassandraCerebriumAIChaindeskChromaClarifaiClearMLClickHouseCnosDBCohereCollege ConfidentialCometConfident AIConfluenceC TransformersDashVectorDatabricksDatadog TracingDatadog LogsDataForSEODeepInfraDeepSparseDiffbotDingoDiscordDocArrayDoctranDocugamiDuckDBElasticsearchEpsillaEverNoteFacebook ChatFacebook FaissFigmaFireworksFlyteForefrontAIGitGitBookGoldenGoogle Document AIGoogle SerperGooseAIGPT4AllGradientGraphsignalGrobidGutenbergHacker NewsHazy ResearchHeliconeHologresHTML to textHugging FaceiFixitIMSDbInfinoJavelin AI GatewayJinaKonkoLanceDBLangChain Decorators ‚ú®Llama.cppLog10MarqoMediaWikiDumpMeilisearchMetalMilvusMinimaxMLflow AI GatewayMLflowModalModelScopeModern TreasuryMomentoMongoDB AtlasMotherduckMot√∂rheadMyScaleNeo4jNLPCloudNotion DBNucliaObsidianOpenLLMOpenSearchOpenWeatherMapPetalsPostgres EmbeddingPGVectorPineconePipelineAIPortkeyPredibasePrediction GuardPromptLayerprovidersPsychicPubMedQdrantRay ServeRebuffRedditRedisReplicateRoamRocksetRunhouseRWKV-4ScaNNSearchApiSearxNG Search APISerpAPIShale ProtocolSingleStoreDBscikit-learnSlackspaCySpreedlyStarRocksStochasticAIStripeSupabase (Postgres)NebulaTairTelegramTencentVectorDBTensorFlow DatasetsTigris2MarkdownTrelloTruLensTwitterTypesenseUnstructuredUpstash RedisUSearchVearchVectaraVespaWandB TracingWeights & BiasesWeatherWeaviateWhatsAppWhyLabsWikipediaWolfram AlphaWriterXataXorbits Inference (Xinference)YandexYeager.aiYouTubeZepZillizComponentsLLMsChat modelsDocument loadersDocument transformersText embedding modelsVector storesRetrieversToolsAgents and toolkitsMemoryCallbacksChat |
3,659 | and toolkitsMemoryCallbacksChat loadersProvidersMoreIMSDbOn this pageIMSDbIMSDb is the Internet Movie Script Database.Installation and Setup​There isn't any special setup for it.Document Loader​See a usage example.from langchain.document_loaders import IMSDbLoaderPreviousiFixitNextInfinoDocument LoaderCommunityDiscordTwitterGitHubPythonJS/TSMoreHomepageBlogCopyright © 2023 LangChain, Inc. | IMSDb is the Internet Movie Script Database. | IMSDb is the Internet Movie Script Database. ->: and toolkitsMemoryCallbacksChat loadersProvidersMoreIMSDbOn this pageIMSDbIMSDb is the Internet Movie Script Database.Installation and Setup​There isn't any special setup for it.Document Loader​See a usage example.from langchain.document_loaders import IMSDbLoaderPreviousiFixitNextInfinoDocument LoaderCommunityDiscordTwitterGitHubPythonJS/TSMoreHomepageBlogCopyright © 2023 LangChain, Inc. |
3,660 | Neo4j | ü¶úÔ∏èüîó Langchain | This page covers how to use the Neo4j ecosystem within LangChain. | This page covers how to use the Neo4j ecosystem within LangChain. ->: Neo4j | ü¶úÔ∏èüîó Langchain |
3,661 | Skip to main contentü¶úÔ∏èüîó LangChainDocsUse casesIntegrationsAPICommunityChat our docsLangSmithJS/TS DocsSearchCTRLKProvidersAnthropicAWSGoogleMicrosoftOpenAIMoreActiveloop Deep LakeAI21 LabsAimAINetworkAirbyteAirtableAleph AlphaAlibaba Cloud OpensearchAnalyticDBAnnoyAnyscaleApifyArangoDBArgillaArthurArxivAtlasAwaDBAWS DynamoDBAZLyricsBagelDBBananaBasetenBeamBeautiful SoupBiliBiliNIBittensorBlackboardBrave SearchCassandraCerebriumAIChaindeskChromaClarifaiClearMLClickHouseCnosDBCohereCollege ConfidentialCometConfident AIConfluenceC TransformersDashVectorDatabricksDatadog TracingDatadog LogsDataForSEODeepInfraDeepSparseDiffbotDingoDiscordDocArrayDoctranDocugamiDuckDBElasticsearchEpsillaEverNoteFacebook ChatFacebook FaissFigmaFireworksFlyteForefrontAIGitGitBookGoldenGoogle Document AIGoogle SerperGooseAIGPT4AllGradientGraphsignalGrobidGutenbergHacker NewsHazy ResearchHeliconeHologresHTML to textHugging FaceiFixitIMSDbInfinoJavelin AI GatewayJinaKonkoLanceDBLangChain Decorators ‚ú®Llama.cppLog10MarqoMediaWikiDumpMeilisearchMetalMilvusMinimaxMLflow AI GatewayMLflowModalModelScopeModern TreasuryMomentoMongoDB AtlasMotherduckMot√∂rheadMyScaleNeo4jNLPCloudNotion DBNucliaObsidianOpenLLMOpenSearchOpenWeatherMapPetalsPostgres EmbeddingPGVectorPineconePipelineAIPortkeyPredibasePrediction GuardPromptLayerprovidersPsychicPubMedQdrantRay ServeRebuffRedditRedisReplicateRoamRocksetRunhouseRWKV-4ScaNNSearchApiSearxNG Search APISerpAPIShale ProtocolSingleStoreDBscikit-learnSlackspaCySpreedlyStarRocksStochasticAIStripeSupabase (Postgres)NebulaTairTelegramTencentVectorDBTensorFlow DatasetsTigris2MarkdownTrelloTruLensTwitterTypesenseUnstructuredUpstash RedisUSearchVearchVectaraVespaWandB TracingWeights & BiasesWeatherWeaviateWhatsAppWhyLabsWikipediaWolfram AlphaWriterXataXorbits Inference (Xinference)YandexYeager.aiYouTubeZepZillizComponentsLLMsChat modelsDocument loadersDocument transformersText embedding modelsVector storesRetrieversToolsAgents and toolkitsMemoryCallbacksChat | This page covers how to use the Neo4j ecosystem within LangChain. | This page covers how to use the Neo4j ecosystem within LangChain. ->: Skip to main contentü¶úÔ∏èüîó LangChainDocsUse casesIntegrationsAPICommunityChat our docsLangSmithJS/TS DocsSearchCTRLKProvidersAnthropicAWSGoogleMicrosoftOpenAIMoreActiveloop Deep LakeAI21 LabsAimAINetworkAirbyteAirtableAleph AlphaAlibaba Cloud OpensearchAnalyticDBAnnoyAnyscaleApifyArangoDBArgillaArthurArxivAtlasAwaDBAWS DynamoDBAZLyricsBagelDBBananaBasetenBeamBeautiful SoupBiliBiliNIBittensorBlackboardBrave SearchCassandraCerebriumAIChaindeskChromaClarifaiClearMLClickHouseCnosDBCohereCollege ConfidentialCometConfident AIConfluenceC TransformersDashVectorDatabricksDatadog TracingDatadog LogsDataForSEODeepInfraDeepSparseDiffbotDingoDiscordDocArrayDoctranDocugamiDuckDBElasticsearchEpsillaEverNoteFacebook ChatFacebook FaissFigmaFireworksFlyteForefrontAIGitGitBookGoldenGoogle Document AIGoogle SerperGooseAIGPT4AllGradientGraphsignalGrobidGutenbergHacker NewsHazy ResearchHeliconeHologresHTML to textHugging FaceiFixitIMSDbInfinoJavelin AI GatewayJinaKonkoLanceDBLangChain Decorators ‚ú®Llama.cppLog10MarqoMediaWikiDumpMeilisearchMetalMilvusMinimaxMLflow AI GatewayMLflowModalModelScopeModern TreasuryMomentoMongoDB AtlasMotherduckMot√∂rheadMyScaleNeo4jNLPCloudNotion DBNucliaObsidianOpenLLMOpenSearchOpenWeatherMapPetalsPostgres EmbeddingPGVectorPineconePipelineAIPortkeyPredibasePrediction GuardPromptLayerprovidersPsychicPubMedQdrantRay ServeRebuffRedditRedisReplicateRoamRocksetRunhouseRWKV-4ScaNNSearchApiSearxNG Search APISerpAPIShale ProtocolSingleStoreDBscikit-learnSlackspaCySpreedlyStarRocksStochasticAIStripeSupabase (Postgres)NebulaTairTelegramTencentVectorDBTensorFlow DatasetsTigris2MarkdownTrelloTruLensTwitterTypesenseUnstructuredUpstash RedisUSearchVearchVectaraVespaWandB TracingWeights & BiasesWeatherWeaviateWhatsAppWhyLabsWikipediaWolfram AlphaWriterXataXorbits Inference (Xinference)YandexYeager.aiYouTubeZepZillizComponentsLLMsChat modelsDocument loadersDocument transformersText embedding modelsVector storesRetrieversToolsAgents and toolkitsMemoryCallbacksChat |
3,662 | and toolkitsMemoryCallbacksChat loadersProvidersMoreNeo4jOn this pageNeo4jThis page covers how to use the Neo4j ecosystem within LangChain.What is Neo4j?Neo4j in a nutshell:Neo4j is an open-source database management system that specializes in graph database technology.Neo4j allows you to represent and store data in nodes and edges, making it ideal for handling connected data and relationships.Neo4j provides a Cypher Query Language, making it easy to interact with and query your graph data.With Neo4j, you can achieve high-performance graph traversals and queries, suitable for production-level systems.Get started quickly with Neo4j by visiting their website.Installation and Setup‚ÄãInstall the Python SDK with pip install neo4jWrappers‚ÄãVectorStore‚ÄãThere exists a wrapper around Neo4j vector index, allowing you to use it as a vectorstore, | This page covers how to use the Neo4j ecosystem within LangChain. | This page covers how to use the Neo4j ecosystem within LangChain. ->: and toolkitsMemoryCallbacksChat loadersProvidersMoreNeo4jOn this pageNeo4jThis page covers how to use the Neo4j ecosystem within LangChain.What is Neo4j?Neo4j in a nutshell:Neo4j is an open-source database management system that specializes in graph database technology.Neo4j allows you to represent and store data in nodes and edges, making it ideal for handling connected data and relationships.Neo4j provides a Cypher Query Language, making it easy to interact with and query your graph data.With Neo4j, you can achieve high-performance graph traversals and queries, suitable for production-level systems.Get started quickly with Neo4j by visiting their website.Installation and Setup‚ÄãInstall the Python SDK with pip install neo4jWrappers‚ÄãVectorStore‚ÄãThere exists a wrapper around Neo4j vector index, allowing you to use it as a vectorstore, |
3,663 | whether for semantic search or example selection.To import this vectorstore:from langchain.vectorstores import Neo4jVectorFor a more detailed walkthrough of the Neo4j vector index wrapper, see documentationGraphCypherQAChain‚ÄãThere exists a wrapper around Neo4j graph database that allows you to generate Cypher statements based on the user input
and use them to retrieve relevant information from the database.from langchain.graphs import Neo4jGraphfrom langchain.chains import GraphCypherQAChainFor a more detailed walkthrough of Cypher generating chain, see documentationConstructing a knowledge graph from text‚ÄãText data often contain rich relationships and insights that can be useful for various analytics, recommendation engines, or knowledge management applications.
Diffbot's NLP API allows for the extraction of entities, relationships, and semantic meaning from unstructured text data.
By coupling Diffbot's NLP API with Neo4j, a graph database, you can create powerful, dynamic graph structures based on the information extracted from text.
These graph structures are fully queryable and can be integrated into various applications.from langchain.graphs import Neo4jGraphfrom langchain_experimental.graph_transformers.diffbot import DiffbotGraphTransformerFor a more detailed walkthrough generating graphs from text, see documentationPreviousMyScaleNextNLPCloudInstallation and SetupWrappersVectorStoreGraphCypherQAChainConstructing a knowledge graph from textCommunityDiscordTwitterGitHubPythonJS/TSMoreHomepageBlogCopyright © 2023 LangChain, Inc. | This page covers how to use the Neo4j ecosystem within LangChain. | This page covers how to use the Neo4j ecosystem within LangChain. ->: whether for semantic search or example selection.To import this vectorstore:from langchain.vectorstores import Neo4jVectorFor a more detailed walkthrough of the Neo4j vector index wrapper, see documentationGraphCypherQAChain​There exists a wrapper around Neo4j graph database that allows you to generate Cypher statements based on the user input
and use them to retrieve relevant information from the database.from langchain.graphs import Neo4jGraphfrom langchain.chains import GraphCypherQAChainFor a more detailed walkthrough of Cypher generating chain, see documentationConstructing a knowledge graph from text‚ÄãText data often contain rich relationships and insights that can be useful for various analytics, recommendation engines, or knowledge management applications.
Diffbot's NLP API allows for the extraction of entities, relationships, and semantic meaning from unstructured text data.
By coupling Diffbot's NLP API with Neo4j, a graph database, you can create powerful, dynamic graph structures based on the information extracted from text.
These graph structures are fully queryable and can be integrated into various applications.from langchain.graphs import Neo4jGraphfrom langchain_experimental.graph_transformers.diffbot import DiffbotGraphTransformerFor a more detailed walkthrough generating graphs from text, see documentationPreviousMyScaleNextNLPCloudInstallation and SetupWrappersVectorStoreGraphCypherQAChainConstructing a knowledge graph from textCommunityDiscordTwitterGitHubPythonJS/TSMoreHomepageBlogCopyright © 2023 LangChain, Inc. |
3,664 | Writer | ü¶úÔ∏èüîó Langchain | This page covers how to use the Writer ecosystem within LangChain. | This page covers how to use the Writer ecosystem within LangChain. ->: Writer | ü¶úÔ∏èüîó Langchain |
3,665 | Skip to main contentü¶úÔ∏èüîó LangChainDocsUse casesIntegrationsAPICommunityChat our docsLangSmithJS/TS DocsSearchCTRLKProvidersAnthropicAWSGoogleMicrosoftOpenAIMoreActiveloop Deep LakeAI21 LabsAimAINetworkAirbyteAirtableAleph AlphaAlibaba Cloud OpensearchAnalyticDBAnnoyAnyscaleApifyArangoDBArgillaArthurArxivAtlasAwaDBAWS DynamoDBAZLyricsBagelDBBananaBasetenBeamBeautiful SoupBiliBiliNIBittensorBlackboardBrave SearchCassandraCerebriumAIChaindeskChromaClarifaiClearMLClickHouseCnosDBCohereCollege ConfidentialCometConfident AIConfluenceC TransformersDashVectorDatabricksDatadog TracingDatadog LogsDataForSEODeepInfraDeepSparseDiffbotDingoDiscordDocArrayDoctranDocugamiDuckDBElasticsearchEpsillaEverNoteFacebook ChatFacebook FaissFigmaFireworksFlyteForefrontAIGitGitBookGoldenGoogle Document AIGoogle SerperGooseAIGPT4AllGradientGraphsignalGrobidGutenbergHacker NewsHazy ResearchHeliconeHologresHTML to textHugging FaceiFixitIMSDbInfinoJavelin AI GatewayJinaKonkoLanceDBLangChain Decorators ‚ú®Llama.cppLog10MarqoMediaWikiDumpMeilisearchMetalMilvusMinimaxMLflow AI GatewayMLflowModalModelScopeModern TreasuryMomentoMongoDB AtlasMotherduckMot√∂rheadMyScaleNeo4jNLPCloudNotion DBNucliaObsidianOpenLLMOpenSearchOpenWeatherMapPetalsPostgres EmbeddingPGVectorPineconePipelineAIPortkeyPredibasePrediction GuardPromptLayerprovidersPsychicPubMedQdrantRay ServeRebuffRedditRedisReplicateRoamRocksetRunhouseRWKV-4ScaNNSearchApiSearxNG Search APISerpAPIShale ProtocolSingleStoreDBscikit-learnSlackspaCySpreedlyStarRocksStochasticAIStripeSupabase (Postgres)NebulaTairTelegramTencentVectorDBTensorFlow DatasetsTigris2MarkdownTrelloTruLensTwitterTypesenseUnstructuredUpstash RedisUSearchVearchVectaraVespaWandB TracingWeights & BiasesWeatherWeaviateWhatsAppWhyLabsWikipediaWolfram AlphaWriterXataXorbits Inference (Xinference)YandexYeager.aiYouTubeZepZillizComponentsLLMsChat modelsDocument loadersDocument transformersText embedding modelsVector storesRetrieversToolsAgents and toolkitsMemoryCallbacksChat | This page covers how to use the Writer ecosystem within LangChain. | This page covers how to use the Writer ecosystem within LangChain. ->: Skip to main contentü¶úÔ∏èüîó LangChainDocsUse casesIntegrationsAPICommunityChat our docsLangSmithJS/TS DocsSearchCTRLKProvidersAnthropicAWSGoogleMicrosoftOpenAIMoreActiveloop Deep LakeAI21 LabsAimAINetworkAirbyteAirtableAleph AlphaAlibaba Cloud OpensearchAnalyticDBAnnoyAnyscaleApifyArangoDBArgillaArthurArxivAtlasAwaDBAWS DynamoDBAZLyricsBagelDBBananaBasetenBeamBeautiful SoupBiliBiliNIBittensorBlackboardBrave SearchCassandraCerebriumAIChaindeskChromaClarifaiClearMLClickHouseCnosDBCohereCollege ConfidentialCometConfident AIConfluenceC TransformersDashVectorDatabricksDatadog TracingDatadog LogsDataForSEODeepInfraDeepSparseDiffbotDingoDiscordDocArrayDoctranDocugamiDuckDBElasticsearchEpsillaEverNoteFacebook ChatFacebook FaissFigmaFireworksFlyteForefrontAIGitGitBookGoldenGoogle Document AIGoogle SerperGooseAIGPT4AllGradientGraphsignalGrobidGutenbergHacker NewsHazy ResearchHeliconeHologresHTML to textHugging FaceiFixitIMSDbInfinoJavelin AI GatewayJinaKonkoLanceDBLangChain Decorators ‚ú®Llama.cppLog10MarqoMediaWikiDumpMeilisearchMetalMilvusMinimaxMLflow AI GatewayMLflowModalModelScopeModern TreasuryMomentoMongoDB AtlasMotherduckMot√∂rheadMyScaleNeo4jNLPCloudNotion DBNucliaObsidianOpenLLMOpenSearchOpenWeatherMapPetalsPostgres EmbeddingPGVectorPineconePipelineAIPortkeyPredibasePrediction GuardPromptLayerprovidersPsychicPubMedQdrantRay ServeRebuffRedditRedisReplicateRoamRocksetRunhouseRWKV-4ScaNNSearchApiSearxNG Search APISerpAPIShale ProtocolSingleStoreDBscikit-learnSlackspaCySpreedlyStarRocksStochasticAIStripeSupabase (Postgres)NebulaTairTelegramTencentVectorDBTensorFlow DatasetsTigris2MarkdownTrelloTruLensTwitterTypesenseUnstructuredUpstash RedisUSearchVearchVectaraVespaWandB TracingWeights & BiasesWeatherWeaviateWhatsAppWhyLabsWikipediaWolfram AlphaWriterXataXorbits Inference (Xinference)YandexYeager.aiYouTubeZepZillizComponentsLLMsChat modelsDocument loadersDocument transformersText embedding modelsVector storesRetrieversToolsAgents and toolkitsMemoryCallbacksChat |
3,666 | and toolkitsMemoryCallbacksChat loadersProvidersMoreWriterOn this pageWriterThis page covers how to use the Writer ecosystem within LangChain. | This page covers how to use the Writer ecosystem within LangChain. | This page covers how to use the Writer ecosystem within LangChain. ->: and toolkitsMemoryCallbacksChat loadersProvidersMoreWriterOn this pageWriterThis page covers how to use the Writer ecosystem within LangChain. |
3,667 | It is broken into two parts: installation and setup, and then references to specific Writer wrappers.Installation and Setup​Get an Writer api key and set it as an environment variable (WRITER_API_KEY)Wrappers​LLM​There exists an Writer LLM wrapper, which you can access with from langchain.llms import WriterPreviousWolfram AlphaNextXataInstallation and SetupWrappersLLMCommunityDiscordTwitterGitHubPythonJS/TSMoreHomepageBlogCopyright © 2023 LangChain, Inc. | This page covers how to use the Writer ecosystem within LangChain. | This page covers how to use the Writer ecosystem within LangChain. ->: It is broken into two parts: installation and setup, and then references to specific Writer wrappers.Installation and Setup​Get an Writer api key and set it as an environment variable (WRITER_API_KEY)Wrappers​LLM​There exists an Writer LLM wrapper, which you can access with from langchain.llms import WriterPreviousWolfram AlphaNextXataInstallation and SetupWrappersLLMCommunityDiscordTwitterGitHubPythonJS/TSMoreHomepageBlogCopyright © 2023 LangChain, Inc. |
3,668 | Clarifai | ü¶úÔ∏èüîó Langchain | Clarifai is one of first deep learning platforms having been founded in 2013. Clarifai provides an AI platform with the full AI lifecycle for data exploration, data labeling, model training, evaluation and inference around images, video, text and audio data. In the LangChain ecosystem, as far as we're aware, Clarifai is the only provider that supports LLMs, embeddings and a vector store in one production scale platform, making it an excellent choice to operationalize your LangChain implementations. | Clarifai is one of first deep learning platforms having been founded in 2013. Clarifai provides an AI platform with the full AI lifecycle for data exploration, data labeling, model training, evaluation and inference around images, video, text and audio data. In the LangChain ecosystem, as far as we're aware, Clarifai is the only provider that supports LLMs, embeddings and a vector store in one production scale platform, making it an excellent choice to operationalize your LangChain implementations. ->: Clarifai | ü¶úÔ∏èüîó Langchain |
3,669 | Skip to main contentü¶úÔ∏èüîó LangChainDocsUse casesIntegrationsAPICommunityChat our docsLangSmithJS/TS DocsSearchCTRLKProvidersAnthropicAWSGoogleMicrosoftOpenAIMoreActiveloop Deep LakeAI21 LabsAimAINetworkAirbyteAirtableAleph AlphaAlibaba Cloud OpensearchAnalyticDBAnnoyAnyscaleApifyArangoDBArgillaArthurArxivAtlasAwaDBAWS DynamoDBAZLyricsBagelDBBananaBasetenBeamBeautiful SoupBiliBiliNIBittensorBlackboardBrave SearchCassandraCerebriumAIChaindeskChromaClarifaiClearMLClickHouseCnosDBCohereCollege ConfidentialCometConfident AIConfluenceC TransformersDashVectorDatabricksDatadog TracingDatadog LogsDataForSEODeepInfraDeepSparseDiffbotDingoDiscordDocArrayDoctranDocugamiDuckDBElasticsearchEpsillaEverNoteFacebook ChatFacebook FaissFigmaFireworksFlyteForefrontAIGitGitBookGoldenGoogle Document AIGoogle SerperGooseAIGPT4AllGradientGraphsignalGrobidGutenbergHacker NewsHazy ResearchHeliconeHologresHTML to textHugging FaceiFixitIMSDbInfinoJavelin AI GatewayJinaKonkoLanceDBLangChain Decorators ‚ú®Llama.cppLog10MarqoMediaWikiDumpMeilisearchMetalMilvusMinimaxMLflow AI GatewayMLflowModalModelScopeModern TreasuryMomentoMongoDB AtlasMotherduckMot√∂rheadMyScaleNeo4jNLPCloudNotion DBNucliaObsidianOpenLLMOpenSearchOpenWeatherMapPetalsPostgres EmbeddingPGVectorPineconePipelineAIPortkeyPredibasePrediction GuardPromptLayerprovidersPsychicPubMedQdrantRay ServeRebuffRedditRedisReplicateRoamRocksetRunhouseRWKV-4ScaNNSearchApiSearxNG Search APISerpAPIShale ProtocolSingleStoreDBscikit-learnSlackspaCySpreedlyStarRocksStochasticAIStripeSupabase (Postgres)NebulaTairTelegramTencentVectorDBTensorFlow DatasetsTigris2MarkdownTrelloTruLensTwitterTypesenseUnstructuredUpstash RedisUSearchVearchVectaraVespaWandB TracingWeights & BiasesWeatherWeaviateWhatsAppWhyLabsWikipediaWolfram AlphaWriterXataXorbits Inference (Xinference)YandexYeager.aiYouTubeZepZillizComponentsLLMsChat modelsDocument loadersDocument transformersText embedding modelsVector storesRetrieversToolsAgents and toolkitsMemoryCallbacksChat | Clarifai is one of first deep learning platforms having been founded in 2013. Clarifai provides an AI platform with the full AI lifecycle for data exploration, data labeling, model training, evaluation and inference around images, video, text and audio data. In the LangChain ecosystem, as far as we're aware, Clarifai is the only provider that supports LLMs, embeddings and a vector store in one production scale platform, making it an excellent choice to operationalize your LangChain implementations. | Clarifai is one of first deep learning platforms having been founded in 2013. Clarifai provides an AI platform with the full AI lifecycle for data exploration, data labeling, model training, evaluation and inference around images, video, text and audio data. In the LangChain ecosystem, as far as we're aware, Clarifai is the only provider that supports LLMs, embeddings and a vector store in one production scale platform, making it an excellent choice to operationalize your LangChain implementations. ->: Skip to main contentü¶úÔ∏èüîó LangChainDocsUse casesIntegrationsAPICommunityChat our docsLangSmithJS/TS DocsSearchCTRLKProvidersAnthropicAWSGoogleMicrosoftOpenAIMoreActiveloop Deep LakeAI21 LabsAimAINetworkAirbyteAirtableAleph AlphaAlibaba Cloud OpensearchAnalyticDBAnnoyAnyscaleApifyArangoDBArgillaArthurArxivAtlasAwaDBAWS DynamoDBAZLyricsBagelDBBananaBasetenBeamBeautiful SoupBiliBiliNIBittensorBlackboardBrave SearchCassandraCerebriumAIChaindeskChromaClarifaiClearMLClickHouseCnosDBCohereCollege ConfidentialCometConfident AIConfluenceC TransformersDashVectorDatabricksDatadog TracingDatadog LogsDataForSEODeepInfraDeepSparseDiffbotDingoDiscordDocArrayDoctranDocugamiDuckDBElasticsearchEpsillaEverNoteFacebook ChatFacebook FaissFigmaFireworksFlyteForefrontAIGitGitBookGoldenGoogle Document AIGoogle SerperGooseAIGPT4AllGradientGraphsignalGrobidGutenbergHacker NewsHazy ResearchHeliconeHologresHTML to textHugging FaceiFixitIMSDbInfinoJavelin AI GatewayJinaKonkoLanceDBLangChain Decorators ‚ú®Llama.cppLog10MarqoMediaWikiDumpMeilisearchMetalMilvusMinimaxMLflow AI GatewayMLflowModalModelScopeModern TreasuryMomentoMongoDB AtlasMotherduckMot√∂rheadMyScaleNeo4jNLPCloudNotion DBNucliaObsidianOpenLLMOpenSearchOpenWeatherMapPetalsPostgres EmbeddingPGVectorPineconePipelineAIPortkeyPredibasePrediction GuardPromptLayerprovidersPsychicPubMedQdrantRay ServeRebuffRedditRedisReplicateRoamRocksetRunhouseRWKV-4ScaNNSearchApiSearxNG Search APISerpAPIShale ProtocolSingleStoreDBscikit-learnSlackspaCySpreedlyStarRocksStochasticAIStripeSupabase (Postgres)NebulaTairTelegramTencentVectorDBTensorFlow DatasetsTigris2MarkdownTrelloTruLensTwitterTypesenseUnstructuredUpstash RedisUSearchVearchVectaraVespaWandB TracingWeights & BiasesWeatherWeaviateWhatsAppWhyLabsWikipediaWolfram AlphaWriterXataXorbits Inference (Xinference)YandexYeager.aiYouTubeZepZillizComponentsLLMsChat modelsDocument loadersDocument transformersText embedding modelsVector storesRetrieversToolsAgents and toolkitsMemoryCallbacksChat |
3,670 | and toolkitsMemoryCallbacksChat loadersProvidersMoreClarifaiOn this pageClarifaiClarifai is one of first deep learning platforms having been founded in 2013. Clarifai provides an AI platform with the full AI lifecycle for data exploration, data labeling, model training, evaluation and inference around images, video, text and audio data. In the LangChain ecosystem, as far as we're aware, Clarifai is the only provider that supports LLMs, embeddings and a vector store in one production scale platform, making it an excellent choice to operationalize your LangChain implementations.Installation and Setup‚ÄãInstall the Python SDK:pip install clarifaiSign-up for a Clarifai account, then get a personal access token to access the Clarifai API from your security settings and set it as an environment variable (CLARIFAI_PAT).Models‚ÄãClarifai provides 1,000s of AI models for many different use cases. You can explore them here to find the one most suited for your use case. These models include those created by other providers such as OpenAI, Anthropic, Cohere, AI21, etc. as well as state of the art from open source such as Falcon, InstructorXL, etc. so that you build the best in AI into your products. You'll find these organized by the creator's user_id and into projects we call applications denoted by their app_id. Those IDs will be needed in additional to the model_id and optionally the version_id, so make note of all these IDs once you found the best model for your use case!Also note that given there are many models for images, video, text and audio understanding, you can build some interested AI agents that utilize the variety of AI models as experts to understand those data types.LLMs‚ÄãTo find the selection of LLMs in the Clarifai platform you can select the text to text model type here.from langchain.llms import Clarifaillm = Clarifai(pat=CLARIFAI_PAT, user_id=USER_ID, app_id=APP_ID, model_id=MODEL_ID)For more details, the docs on the Clarifai LLM wrapper provide a | Clarifai is one of first deep learning platforms having been founded in 2013. Clarifai provides an AI platform with the full AI lifecycle for data exploration, data labeling, model training, evaluation and inference around images, video, text and audio data. In the LangChain ecosystem, as far as we're aware, Clarifai is the only provider that supports LLMs, embeddings and a vector store in one production scale platform, making it an excellent choice to operationalize your LangChain implementations. | Clarifai is one of first deep learning platforms having been founded in 2013. Clarifai provides an AI platform with the full AI lifecycle for data exploration, data labeling, model training, evaluation and inference around images, video, text and audio data. In the LangChain ecosystem, as far as we're aware, Clarifai is the only provider that supports LLMs, embeddings and a vector store in one production scale platform, making it an excellent choice to operationalize your LangChain implementations. ->: and toolkitsMemoryCallbacksChat loadersProvidersMoreClarifaiOn this pageClarifaiClarifai is one of first deep learning platforms having been founded in 2013. Clarifai provides an AI platform with the full AI lifecycle for data exploration, data labeling, model training, evaluation and inference around images, video, text and audio data. In the LangChain ecosystem, as far as we're aware, Clarifai is the only provider that supports LLMs, embeddings and a vector store in one production scale platform, making it an excellent choice to operationalize your LangChain implementations.Installation and Setup‚ÄãInstall the Python SDK:pip install clarifaiSign-up for a Clarifai account, then get a personal access token to access the Clarifai API from your security settings and set it as an environment variable (CLARIFAI_PAT).Models‚ÄãClarifai provides 1,000s of AI models for many different use cases. You can explore them here to find the one most suited for your use case. These models include those created by other providers such as OpenAI, Anthropic, Cohere, AI21, etc. as well as state of the art from open source such as Falcon, InstructorXL, etc. so that you build the best in AI into your products. You'll find these organized by the creator's user_id and into projects we call applications denoted by their app_id. Those IDs will be needed in additional to the model_id and optionally the version_id, so make note of all these IDs once you found the best model for your use case!Also note that given there are many models for images, video, text and audio understanding, you can build some interested AI agents that utilize the variety of AI models as experts to understand those data types.LLMs‚ÄãTo find the selection of LLMs in the Clarifai platform you can select the text to text model type here.from langchain.llms import Clarifaillm = Clarifai(pat=CLARIFAI_PAT, user_id=USER_ID, app_id=APP_ID, model_id=MODEL_ID)For more details, the docs on the Clarifai LLM wrapper provide a |
3,671 | the docs on the Clarifai LLM wrapper provide a detailed walkthrough.Text Embedding Models‚ÄãTo find the selection of text embeddings models in the Clarifai platform you can select the text to embedding model type here.There is a Clarifai Embedding model in LangChain, which you can access with:from langchain.embeddings import ClarifaiEmbeddingsembeddings = ClarifaiEmbeddings(pat=CLARIFAI_PAT, user_id=USER_ID, app_id=APP_ID, model_id=MODEL_ID)For more details, the docs on the Clarifai Embeddings wrapper provide a detailed walkthrough.Vectorstore‚ÄãClarifai's vector DB was launched in 2016 and has been optimized to support live search queries. With workflows in the Clarifai platform, you data is automatically indexed by am embedding model and optionally other models as well to index that information in the DB for search. You can query the DB not only via the vectors but also filter by metadata matches, other AI predicted concepts, and even do geo-coordinate search. Simply create an application, select the appropriate base workflow for your type of data, and upload it (through the API as documented here or the UIs at clarifai.com).You can also add data directly from LangChain as well, and the auto-indexing will take place for you. You'll notice this is a little different than other vectorstores where you need to provide an embedding model in their constructor and have LangChain coordinate getting the embeddings from text and writing those to the index. Not only is it more convenient, but it's much more scalable to use Clarifai's distributed cloud to do all the index in the background.from langchain.vectorstores import Clarifaiclarifai_vector_db = Clarifai.from_texts(user_id=USER_ID, app_id=APP_ID, texts=texts, pat=CLARIFAI_PAT, number_of_docs=NUMBER_OF_DOCS, metadatas = metadatas)For more details, the docs on the Clarifai vector store provide a detailed walkthrough.PreviousChromaNextClearMLInstallation and SetupModelsLLMsText Embedding | Clarifai is one of first deep learning platforms having been founded in 2013. Clarifai provides an AI platform with the full AI lifecycle for data exploration, data labeling, model training, evaluation and inference around images, video, text and audio data. In the LangChain ecosystem, as far as we're aware, Clarifai is the only provider that supports LLMs, embeddings and a vector store in one production scale platform, making it an excellent choice to operationalize your LangChain implementations. | Clarifai is one of first deep learning platforms having been founded in 2013. Clarifai provides an AI platform with the full AI lifecycle for data exploration, data labeling, model training, evaluation and inference around images, video, text and audio data. In the LangChain ecosystem, as far as we're aware, Clarifai is the only provider that supports LLMs, embeddings and a vector store in one production scale platform, making it an excellent choice to operationalize your LangChain implementations. ->: the docs on the Clarifai LLM wrapper provide a detailed walkthrough.Text Embedding Models‚ÄãTo find the selection of text embeddings models in the Clarifai platform you can select the text to embedding model type here.There is a Clarifai Embedding model in LangChain, which you can access with:from langchain.embeddings import ClarifaiEmbeddingsembeddings = ClarifaiEmbeddings(pat=CLARIFAI_PAT, user_id=USER_ID, app_id=APP_ID, model_id=MODEL_ID)For more details, the docs on the Clarifai Embeddings wrapper provide a detailed walkthrough.Vectorstore‚ÄãClarifai's vector DB was launched in 2016 and has been optimized to support live search queries. With workflows in the Clarifai platform, you data is automatically indexed by am embedding model and optionally other models as well to index that information in the DB for search. You can query the DB not only via the vectors but also filter by metadata matches, other AI predicted concepts, and even do geo-coordinate search. Simply create an application, select the appropriate base workflow for your type of data, and upload it (through the API as documented here or the UIs at clarifai.com).You can also add data directly from LangChain as well, and the auto-indexing will take place for you. You'll notice this is a little different than other vectorstores where you need to provide an embedding model in their constructor and have LangChain coordinate getting the embeddings from text and writing those to the index. Not only is it more convenient, but it's much more scalable to use Clarifai's distributed cloud to do all the index in the background.from langchain.vectorstores import Clarifaiclarifai_vector_db = Clarifai.from_texts(user_id=USER_ID, app_id=APP_ID, texts=texts, pat=CLARIFAI_PAT, number_of_docs=NUMBER_OF_DOCS, metadatas = metadatas)For more details, the docs on the Clarifai vector store provide a detailed walkthrough.PreviousChromaNextClearMLInstallation and SetupModelsLLMsText Embedding |
3,672 | and SetupModelsLLMsText Embedding ModelsVectorstoreCommunityDiscordTwitterGitHubPythonJS/TSMoreHomepageBlogCopyright © 2023 LangChain, Inc. | Clarifai is one of first deep learning platforms having been founded in 2013. Clarifai provides an AI platform with the full AI lifecycle for data exploration, data labeling, model training, evaluation and inference around images, video, text and audio data. In the LangChain ecosystem, as far as we're aware, Clarifai is the only provider that supports LLMs, embeddings and a vector store in one production scale platform, making it an excellent choice to operationalize your LangChain implementations. | Clarifai is one of first deep learning platforms having been founded in 2013. Clarifai provides an AI platform with the full AI lifecycle for data exploration, data labeling, model training, evaluation and inference around images, video, text and audio data. In the LangChain ecosystem, as far as we're aware, Clarifai is the only provider that supports LLMs, embeddings and a vector store in one production scale platform, making it an excellent choice to operationalize your LangChain implementations. ->: and SetupModelsLLMsText Embedding ModelsVectorstoreCommunityDiscordTwitterGitHubPythonJS/TSMoreHomepageBlogCopyright © 2023 LangChain, Inc. |
3,673 | Datadog Tracing | ü¶úÔ∏èüîó Langchain | ddtrace is a Datadog application performance monitoring (APM) library which provides an integration to monitor your LangChain application. | ddtrace is a Datadog application performance monitoring (APM) library which provides an integration to monitor your LangChain application. ->: Datadog Tracing | ü¶úÔ∏èüîó Langchain |
3,674 | Skip to main contentü¶úÔ∏èüîó LangChainDocsUse casesIntegrationsAPICommunityChat our docsLangSmithJS/TS DocsSearchCTRLKProvidersAnthropicAWSGoogleMicrosoftOpenAIMoreActiveloop Deep LakeAI21 LabsAimAINetworkAirbyteAirtableAleph AlphaAlibaba Cloud OpensearchAnalyticDBAnnoyAnyscaleApifyArangoDBArgillaArthurArxivAtlasAwaDBAWS DynamoDBAZLyricsBagelDBBananaBasetenBeamBeautiful SoupBiliBiliNIBittensorBlackboardBrave SearchCassandraCerebriumAIChaindeskChromaClarifaiClearMLClickHouseCnosDBCohereCollege ConfidentialCometConfident AIConfluenceC TransformersDashVectorDatabricksDatadog TracingDatadog LogsDataForSEODeepInfraDeepSparseDiffbotDingoDiscordDocArrayDoctranDocugamiDuckDBElasticsearchEpsillaEverNoteFacebook ChatFacebook FaissFigmaFireworksFlyteForefrontAIGitGitBookGoldenGoogle Document AIGoogle SerperGooseAIGPT4AllGradientGraphsignalGrobidGutenbergHacker NewsHazy ResearchHeliconeHologresHTML to textHugging FaceiFixitIMSDbInfinoJavelin AI GatewayJinaKonkoLanceDBLangChain Decorators ‚ú®Llama.cppLog10MarqoMediaWikiDumpMeilisearchMetalMilvusMinimaxMLflow AI GatewayMLflowModalModelScopeModern TreasuryMomentoMongoDB AtlasMotherduckMot√∂rheadMyScaleNeo4jNLPCloudNotion DBNucliaObsidianOpenLLMOpenSearchOpenWeatherMapPetalsPostgres EmbeddingPGVectorPineconePipelineAIPortkeyPredibasePrediction GuardPromptLayerprovidersPsychicPubMedQdrantRay ServeRebuffRedditRedisReplicateRoamRocksetRunhouseRWKV-4ScaNNSearchApiSearxNG Search APISerpAPIShale ProtocolSingleStoreDBscikit-learnSlackspaCySpreedlyStarRocksStochasticAIStripeSupabase (Postgres)NebulaTairTelegramTencentVectorDBTensorFlow DatasetsTigris2MarkdownTrelloTruLensTwitterTypesenseUnstructuredUpstash RedisUSearchVearchVectaraVespaWandB TracingWeights & BiasesWeatherWeaviateWhatsAppWhyLabsWikipediaWolfram AlphaWriterXataXorbits Inference (Xinference)YandexYeager.aiYouTubeZepZillizComponentsLLMsChat modelsDocument loadersDocument transformersText embedding modelsVector storesRetrieversToolsAgents and toolkitsMemoryCallbacksChat | ddtrace is a Datadog application performance monitoring (APM) library which provides an integration to monitor your LangChain application. | ddtrace is a Datadog application performance monitoring (APM) library which provides an integration to monitor your LangChain application. ->: Skip to main contentü¶úÔ∏èüîó LangChainDocsUse casesIntegrationsAPICommunityChat our docsLangSmithJS/TS DocsSearchCTRLKProvidersAnthropicAWSGoogleMicrosoftOpenAIMoreActiveloop Deep LakeAI21 LabsAimAINetworkAirbyteAirtableAleph AlphaAlibaba Cloud OpensearchAnalyticDBAnnoyAnyscaleApifyArangoDBArgillaArthurArxivAtlasAwaDBAWS DynamoDBAZLyricsBagelDBBananaBasetenBeamBeautiful SoupBiliBiliNIBittensorBlackboardBrave SearchCassandraCerebriumAIChaindeskChromaClarifaiClearMLClickHouseCnosDBCohereCollege ConfidentialCometConfident AIConfluenceC TransformersDashVectorDatabricksDatadog TracingDatadog LogsDataForSEODeepInfraDeepSparseDiffbotDingoDiscordDocArrayDoctranDocugamiDuckDBElasticsearchEpsillaEverNoteFacebook ChatFacebook FaissFigmaFireworksFlyteForefrontAIGitGitBookGoldenGoogle Document AIGoogle SerperGooseAIGPT4AllGradientGraphsignalGrobidGutenbergHacker NewsHazy ResearchHeliconeHologresHTML to textHugging FaceiFixitIMSDbInfinoJavelin AI GatewayJinaKonkoLanceDBLangChain Decorators ‚ú®Llama.cppLog10MarqoMediaWikiDumpMeilisearchMetalMilvusMinimaxMLflow AI GatewayMLflowModalModelScopeModern TreasuryMomentoMongoDB AtlasMotherduckMot√∂rheadMyScaleNeo4jNLPCloudNotion DBNucliaObsidianOpenLLMOpenSearchOpenWeatherMapPetalsPostgres EmbeddingPGVectorPineconePipelineAIPortkeyPredibasePrediction GuardPromptLayerprovidersPsychicPubMedQdrantRay ServeRebuffRedditRedisReplicateRoamRocksetRunhouseRWKV-4ScaNNSearchApiSearxNG Search APISerpAPIShale ProtocolSingleStoreDBscikit-learnSlackspaCySpreedlyStarRocksStochasticAIStripeSupabase (Postgres)NebulaTairTelegramTencentVectorDBTensorFlow DatasetsTigris2MarkdownTrelloTruLensTwitterTypesenseUnstructuredUpstash RedisUSearchVearchVectaraVespaWandB TracingWeights & BiasesWeatherWeaviateWhatsAppWhyLabsWikipediaWolfram AlphaWriterXataXorbits Inference (Xinference)YandexYeager.aiYouTubeZepZillizComponentsLLMsChat modelsDocument loadersDocument transformersText embedding modelsVector storesRetrieversToolsAgents and toolkitsMemoryCallbacksChat |
3,675 | and toolkitsMemoryCallbacksChat loadersProvidersMoreDatadog TracingOn this pageDatadog Tracingddtrace is a Datadog application performance monitoring (APM) library which provides an integration to monitor your LangChain application.Key features of the ddtrace integration for LangChain:Traces: Capture LangChain requests, parameters, prompt-completions, and help visualize LangChain operations.Metrics: Capture LangChain request latency, errors, and token/cost usage (for OpenAI LLMs and chat models).Logs: Store prompt completion data for each LangChain operation.Dashboard: Combine metrics, logs, and trace data into a single plane to monitor LangChain requests.Monitors: Provide alerts in response to spikes in LangChain request latency or error rate.Note: The ddtrace LangChain integration currently provides tracing for LLMs, chat models, Text Embedding Models, Chains, and Vectorstores.Installation and Setup‚ÄãEnable APM and StatsD in your Datadog Agent, along with a Datadog API key. For example, in Docker:docker run -d --cgroupns host \ --pid host \ -v /var/run/docker.sock:/var/run/docker.sock:ro \ -v /proc/:/host/proc/:ro \ -v /sys/fs/cgroup/:/host/sys/fs/cgroup:ro \ -e DD_API_KEY=<DATADOG_API_KEY> \ -p 127.0.0.1:8126:8126/tcp \ -p 127.0.0.1:8125:8125/udp \ -e DD_DOGSTATSD_NON_LOCAL_TRAFFIC=true \ -e DD_APM_ENABLED=true \ gcr.io/datadoghq/agent:latestInstall the Datadog APM Python library.pip install ddtrace>=1.17The LangChain integration can be enabled automatically when you prefix your LangChain Python application command with ddtrace-run:DD_SERVICE="my-service" DD_ENV="staging" DD_API_KEY=<DATADOG_API_KEY> ddtrace-run python <your-app>.pyNote: If the Agent is using a non-default hostname or port, be sure to also set DD_AGENT_HOST, DD_TRACE_AGENT_PORT, or DD_DOGSTATSD_PORT.Additionally, the LangChain integration can be enabled | ddtrace is a Datadog application performance monitoring (APM) library which provides an integration to monitor your LangChain application. | ddtrace is a Datadog application performance monitoring (APM) library which provides an integration to monitor your LangChain application. ->: and toolkitsMemoryCallbacksChat loadersProvidersMoreDatadog TracingOn this pageDatadog Tracingddtrace is a Datadog application performance monitoring (APM) library which provides an integration to monitor your LangChain application.Key features of the ddtrace integration for LangChain:Traces: Capture LangChain requests, parameters, prompt-completions, and help visualize LangChain operations.Metrics: Capture LangChain request latency, errors, and token/cost usage (for OpenAI LLMs and chat models).Logs: Store prompt completion data for each LangChain operation.Dashboard: Combine metrics, logs, and trace data into a single plane to monitor LangChain requests.Monitors: Provide alerts in response to spikes in LangChain request latency or error rate.Note: The ddtrace LangChain integration currently provides tracing for LLMs, chat models, Text Embedding Models, Chains, and Vectorstores.Installation and Setup‚ÄãEnable APM and StatsD in your Datadog Agent, along with a Datadog API key. For example, in Docker:docker run -d --cgroupns host \ --pid host \ -v /var/run/docker.sock:/var/run/docker.sock:ro \ -v /proc/:/host/proc/:ro \ -v /sys/fs/cgroup/:/host/sys/fs/cgroup:ro \ -e DD_API_KEY=<DATADOG_API_KEY> \ -p 127.0.0.1:8126:8126/tcp \ -p 127.0.0.1:8125:8125/udp \ -e DD_DOGSTATSD_NON_LOCAL_TRAFFIC=true \ -e DD_APM_ENABLED=true \ gcr.io/datadoghq/agent:latestInstall the Datadog APM Python library.pip install ddtrace>=1.17The LangChain integration can be enabled automatically when you prefix your LangChain Python application command with ddtrace-run:DD_SERVICE="my-service" DD_ENV="staging" DD_API_KEY=<DATADOG_API_KEY> ddtrace-run python <your-app>.pyNote: If the Agent is using a non-default hostname or port, be sure to also set DD_AGENT_HOST, DD_TRACE_AGENT_PORT, or DD_DOGSTATSD_PORT.Additionally, the LangChain integration can be enabled |
3,676 | the LangChain integration can be enabled programmatically by adding patch_all() or patch(langchain=True) before the first import of langchain in your application.Note that using ddtrace-run or patch_all() will also enable the requests and aiohttp integrations which trace HTTP requests to LLM providers, as well as the openai integration which traces requests to the OpenAI library.from ddtrace import config, patch# Note: be sure to configure the integration before calling ``patch()``!# e.g. config.langchain["logs_enabled"] = Truepatch(langchain=True)# to trace synchronous HTTP requests# patch(langchain=True, requests=True)# to trace asynchronous HTTP requests (to the OpenAI library)# patch(langchain=True, aiohttp=True)# to include underlying OpenAI spans from the OpenAI integration# patch(langchain=True, openai=True)patch_allSee the [APM Python library documentation][https://ddtrace.readthedocs.io/en/stable/installation_quickstart.html] for more advanced usage.Configuration​See the [APM Python library documentation][https://ddtrace.readthedocs.io/en/stable/integrations.html#langchain] for all the available configuration options.Log Prompt & Completion Sampling​To enable log prompt and completion sampling, set the DD_LANGCHAIN_LOGS_ENABLED=1 environment variable. By default, 10% of traced requests will emit logs containing the prompts and completions.To adjust the log sample rate, see the [APM library documentation][https://ddtrace.readthedocs.io/en/stable/integrations.html#langchain].Note: Logs submission requires DD_API_KEY to be specified when running ddtrace-run.Troubleshooting​Need help? Create an issue on ddtrace or contact [Datadog support][https://docs.datadoghq.com/help/].PreviousDatabricksNextDatadog LogsInstallation and SetupConfigurationLog Prompt & Completion SamplingTroubleshootingCommunityDiscordTwitterGitHubPythonJS/TSMoreHomepageBlogCopyright © 2023 LangChain, Inc. | ddtrace is a Datadog application performance monitoring (APM) library which provides an integration to monitor your LangChain application. | ddtrace is a Datadog application performance monitoring (APM) library which provides an integration to monitor your LangChain application. ->: the LangChain integration can be enabled programmatically by adding patch_all() or patch(langchain=True) before the first import of langchain in your application.Note that using ddtrace-run or patch_all() will also enable the requests and aiohttp integrations which trace HTTP requests to LLM providers, as well as the openai integration which traces requests to the OpenAI library.from ddtrace import config, patch# Note: be sure to configure the integration before calling ``patch()``!# e.g. config.langchain["logs_enabled"] = Truepatch(langchain=True)# to trace synchronous HTTP requests# patch(langchain=True, requests=True)# to trace asynchronous HTTP requests (to the OpenAI library)# patch(langchain=True, aiohttp=True)# to include underlying OpenAI spans from the OpenAI integration# patch(langchain=True, openai=True)patch_allSee the [APM Python library documentation][https://ddtrace.readthedocs.io/en/stable/installation_quickstart.html] for more advanced usage.Configuration​See the [APM Python library documentation][https://ddtrace.readthedocs.io/en/stable/integrations.html#langchain] for all the available configuration options.Log Prompt & Completion Sampling​To enable log prompt and completion sampling, set the DD_LANGCHAIN_LOGS_ENABLED=1 environment variable. By default, 10% of traced requests will emit logs containing the prompts and completions.To adjust the log sample rate, see the [APM library documentation][https://ddtrace.readthedocs.io/en/stable/integrations.html#langchain].Note: Logs submission requires DD_API_KEY to be specified when running ddtrace-run.Troubleshooting​Need help? Create an issue on ddtrace or contact [Datadog support][https://docs.datadoghq.com/help/].PreviousDatabricksNextDatadog LogsInstallation and SetupConfigurationLog Prompt & Completion SamplingTroubleshootingCommunityDiscordTwitterGitHubPythonJS/TSMoreHomepageBlogCopyright © 2023 LangChain, Inc. |
3,677 | StochasticAI | ü¶úÔ∏èüîó Langchain | This page covers how to use the StochasticAI ecosystem within LangChain. | This page covers how to use the StochasticAI ecosystem within LangChain. ->: StochasticAI | ü¶úÔ∏èüîó Langchain |
3,678 | Skip to main contentü¶úÔ∏èüîó LangChainDocsUse casesIntegrationsAPICommunityChat our docsLangSmithJS/TS DocsSearchCTRLKProvidersAnthropicAWSGoogleMicrosoftOpenAIMoreActiveloop Deep LakeAI21 LabsAimAINetworkAirbyteAirtableAleph AlphaAlibaba Cloud OpensearchAnalyticDBAnnoyAnyscaleApifyArangoDBArgillaArthurArxivAtlasAwaDBAWS DynamoDBAZLyricsBagelDBBananaBasetenBeamBeautiful SoupBiliBiliNIBittensorBlackboardBrave SearchCassandraCerebriumAIChaindeskChromaClarifaiClearMLClickHouseCnosDBCohereCollege ConfidentialCometConfident AIConfluenceC TransformersDashVectorDatabricksDatadog TracingDatadog LogsDataForSEODeepInfraDeepSparseDiffbotDingoDiscordDocArrayDoctranDocugamiDuckDBElasticsearchEpsillaEverNoteFacebook ChatFacebook FaissFigmaFireworksFlyteForefrontAIGitGitBookGoldenGoogle Document AIGoogle SerperGooseAIGPT4AllGradientGraphsignalGrobidGutenbergHacker NewsHazy ResearchHeliconeHologresHTML to textHugging FaceiFixitIMSDbInfinoJavelin AI GatewayJinaKonkoLanceDBLangChain Decorators ‚ú®Llama.cppLog10MarqoMediaWikiDumpMeilisearchMetalMilvusMinimaxMLflow AI GatewayMLflowModalModelScopeModern TreasuryMomentoMongoDB AtlasMotherduckMot√∂rheadMyScaleNeo4jNLPCloudNotion DBNucliaObsidianOpenLLMOpenSearchOpenWeatherMapPetalsPostgres EmbeddingPGVectorPineconePipelineAIPortkeyPredibasePrediction GuardPromptLayerprovidersPsychicPubMedQdrantRay ServeRebuffRedditRedisReplicateRoamRocksetRunhouseRWKV-4ScaNNSearchApiSearxNG Search APISerpAPIShale ProtocolSingleStoreDBscikit-learnSlackspaCySpreedlyStarRocksStochasticAIStripeSupabase (Postgres)NebulaTairTelegramTencentVectorDBTensorFlow DatasetsTigris2MarkdownTrelloTruLensTwitterTypesenseUnstructuredUpstash RedisUSearchVearchVectaraVespaWandB TracingWeights & BiasesWeatherWeaviateWhatsAppWhyLabsWikipediaWolfram AlphaWriterXataXorbits Inference (Xinference)YandexYeager.aiYouTubeZepZillizComponentsLLMsChat modelsDocument loadersDocument transformersText embedding modelsVector storesRetrieversToolsAgents and toolkitsMemoryCallbacksChat | This page covers how to use the StochasticAI ecosystem within LangChain. | This page covers how to use the StochasticAI ecosystem within LangChain. ->: Skip to main contentü¶úÔ∏èüîó LangChainDocsUse casesIntegrationsAPICommunityChat our docsLangSmithJS/TS DocsSearchCTRLKProvidersAnthropicAWSGoogleMicrosoftOpenAIMoreActiveloop Deep LakeAI21 LabsAimAINetworkAirbyteAirtableAleph AlphaAlibaba Cloud OpensearchAnalyticDBAnnoyAnyscaleApifyArangoDBArgillaArthurArxivAtlasAwaDBAWS DynamoDBAZLyricsBagelDBBananaBasetenBeamBeautiful SoupBiliBiliNIBittensorBlackboardBrave SearchCassandraCerebriumAIChaindeskChromaClarifaiClearMLClickHouseCnosDBCohereCollege ConfidentialCometConfident AIConfluenceC TransformersDashVectorDatabricksDatadog TracingDatadog LogsDataForSEODeepInfraDeepSparseDiffbotDingoDiscordDocArrayDoctranDocugamiDuckDBElasticsearchEpsillaEverNoteFacebook ChatFacebook FaissFigmaFireworksFlyteForefrontAIGitGitBookGoldenGoogle Document AIGoogle SerperGooseAIGPT4AllGradientGraphsignalGrobidGutenbergHacker NewsHazy ResearchHeliconeHologresHTML to textHugging FaceiFixitIMSDbInfinoJavelin AI GatewayJinaKonkoLanceDBLangChain Decorators ‚ú®Llama.cppLog10MarqoMediaWikiDumpMeilisearchMetalMilvusMinimaxMLflow AI GatewayMLflowModalModelScopeModern TreasuryMomentoMongoDB AtlasMotherduckMot√∂rheadMyScaleNeo4jNLPCloudNotion DBNucliaObsidianOpenLLMOpenSearchOpenWeatherMapPetalsPostgres EmbeddingPGVectorPineconePipelineAIPortkeyPredibasePrediction GuardPromptLayerprovidersPsychicPubMedQdrantRay ServeRebuffRedditRedisReplicateRoamRocksetRunhouseRWKV-4ScaNNSearchApiSearxNG Search APISerpAPIShale ProtocolSingleStoreDBscikit-learnSlackspaCySpreedlyStarRocksStochasticAIStripeSupabase (Postgres)NebulaTairTelegramTencentVectorDBTensorFlow DatasetsTigris2MarkdownTrelloTruLensTwitterTypesenseUnstructuredUpstash RedisUSearchVearchVectaraVespaWandB TracingWeights & BiasesWeatherWeaviateWhatsAppWhyLabsWikipediaWolfram AlphaWriterXataXorbits Inference (Xinference)YandexYeager.aiYouTubeZepZillizComponentsLLMsChat modelsDocument loadersDocument transformersText embedding modelsVector storesRetrieversToolsAgents and toolkitsMemoryCallbacksChat |
3,679 | and toolkitsMemoryCallbacksChat loadersProvidersMoreStochasticAIOn this pageStochasticAIThis page covers how to use the StochasticAI ecosystem within LangChain. | This page covers how to use the StochasticAI ecosystem within LangChain. | This page covers how to use the StochasticAI ecosystem within LangChain. ->: and toolkitsMemoryCallbacksChat loadersProvidersMoreStochasticAIOn this pageStochasticAIThis page covers how to use the StochasticAI ecosystem within LangChain. |
3,680 | It is broken into two parts: installation and setup, and then references to specific StochasticAI wrappers.Installation and Setup​Install with pip install stochasticxGet an StochasticAI api key and set it as an environment variable (STOCHASTICAI_API_KEY)Wrappers​LLM​There exists an StochasticAI LLM wrapper, which you can access with from langchain.llms import StochasticAIPreviousStarRocksNextStripeInstallation and SetupWrappersLLMCommunityDiscordTwitterGitHubPythonJS/TSMoreHomepageBlogCopyright © 2023 LangChain, Inc. | This page covers how to use the StochasticAI ecosystem within LangChain. | This page covers how to use the StochasticAI ecosystem within LangChain. ->: It is broken into two parts: installation and setup, and then references to specific StochasticAI wrappers.Installation and Setup​Install with pip install stochasticxGet an StochasticAI api key and set it as an environment variable (STOCHASTICAI_API_KEY)Wrappers​LLM​There exists an StochasticAI LLM wrapper, which you can access with from langchain.llms import StochasticAIPreviousStarRocksNextStripeInstallation and SetupWrappersLLMCommunityDiscordTwitterGitHubPythonJS/TSMoreHomepageBlogCopyright © 2023 LangChain, Inc. |
3,681 | GitBook | ü¶úÔ∏èüîó Langchain | GitBook is a modern documentation platform where teams can document everything from products to internal knowledge bases and APIs. | GitBook is a modern documentation platform where teams can document everything from products to internal knowledge bases and APIs. ->: GitBook | ü¶úÔ∏èüîó Langchain |
3,682 | Skip to main contentü¶úÔ∏èüîó LangChainDocsUse casesIntegrationsAPICommunityChat our docsLangSmithJS/TS DocsSearchCTRLKProvidersAnthropicAWSGoogleMicrosoftOpenAIMoreActiveloop Deep LakeAI21 LabsAimAINetworkAirbyteAirtableAleph AlphaAlibaba Cloud OpensearchAnalyticDBAnnoyAnyscaleApifyArangoDBArgillaArthurArxivAtlasAwaDBAWS DynamoDBAZLyricsBagelDBBananaBasetenBeamBeautiful SoupBiliBiliNIBittensorBlackboardBrave SearchCassandraCerebriumAIChaindeskChromaClarifaiClearMLClickHouseCnosDBCohereCollege ConfidentialCometConfident AIConfluenceC TransformersDashVectorDatabricksDatadog TracingDatadog LogsDataForSEODeepInfraDeepSparseDiffbotDingoDiscordDocArrayDoctranDocugamiDuckDBElasticsearchEpsillaEverNoteFacebook ChatFacebook FaissFigmaFireworksFlyteForefrontAIGitGitBookGoldenGoogle Document AIGoogle SerperGooseAIGPT4AllGradientGraphsignalGrobidGutenbergHacker NewsHazy ResearchHeliconeHologresHTML to textHugging FaceiFixitIMSDbInfinoJavelin AI GatewayJinaKonkoLanceDBLangChain Decorators ‚ú®Llama.cppLog10MarqoMediaWikiDumpMeilisearchMetalMilvusMinimaxMLflow AI GatewayMLflowModalModelScopeModern TreasuryMomentoMongoDB AtlasMotherduckMot√∂rheadMyScaleNeo4jNLPCloudNotion DBNucliaObsidianOpenLLMOpenSearchOpenWeatherMapPetalsPostgres EmbeddingPGVectorPineconePipelineAIPortkeyPredibasePrediction GuardPromptLayerprovidersPsychicPubMedQdrantRay ServeRebuffRedditRedisReplicateRoamRocksetRunhouseRWKV-4ScaNNSearchApiSearxNG Search APISerpAPIShale ProtocolSingleStoreDBscikit-learnSlackspaCySpreedlyStarRocksStochasticAIStripeSupabase (Postgres)NebulaTairTelegramTencentVectorDBTensorFlow DatasetsTigris2MarkdownTrelloTruLensTwitterTypesenseUnstructuredUpstash RedisUSearchVearchVectaraVespaWandB TracingWeights & BiasesWeatherWeaviateWhatsAppWhyLabsWikipediaWolfram AlphaWriterXataXorbits Inference (Xinference)YandexYeager.aiYouTubeZepZillizComponentsLLMsChat modelsDocument loadersDocument transformersText embedding modelsVector storesRetrieversToolsAgents and toolkitsMemoryCallbacksChat | GitBook is a modern documentation platform where teams can document everything from products to internal knowledge bases and APIs. | GitBook is a modern documentation platform where teams can document everything from products to internal knowledge bases and APIs. ->: Skip to main contentü¶úÔ∏èüîó LangChainDocsUse casesIntegrationsAPICommunityChat our docsLangSmithJS/TS DocsSearchCTRLKProvidersAnthropicAWSGoogleMicrosoftOpenAIMoreActiveloop Deep LakeAI21 LabsAimAINetworkAirbyteAirtableAleph AlphaAlibaba Cloud OpensearchAnalyticDBAnnoyAnyscaleApifyArangoDBArgillaArthurArxivAtlasAwaDBAWS DynamoDBAZLyricsBagelDBBananaBasetenBeamBeautiful SoupBiliBiliNIBittensorBlackboardBrave SearchCassandraCerebriumAIChaindeskChromaClarifaiClearMLClickHouseCnosDBCohereCollege ConfidentialCometConfident AIConfluenceC TransformersDashVectorDatabricksDatadog TracingDatadog LogsDataForSEODeepInfraDeepSparseDiffbotDingoDiscordDocArrayDoctranDocugamiDuckDBElasticsearchEpsillaEverNoteFacebook ChatFacebook FaissFigmaFireworksFlyteForefrontAIGitGitBookGoldenGoogle Document AIGoogle SerperGooseAIGPT4AllGradientGraphsignalGrobidGutenbergHacker NewsHazy ResearchHeliconeHologresHTML to textHugging FaceiFixitIMSDbInfinoJavelin AI GatewayJinaKonkoLanceDBLangChain Decorators ‚ú®Llama.cppLog10MarqoMediaWikiDumpMeilisearchMetalMilvusMinimaxMLflow AI GatewayMLflowModalModelScopeModern TreasuryMomentoMongoDB AtlasMotherduckMot√∂rheadMyScaleNeo4jNLPCloudNotion DBNucliaObsidianOpenLLMOpenSearchOpenWeatherMapPetalsPostgres EmbeddingPGVectorPineconePipelineAIPortkeyPredibasePrediction GuardPromptLayerprovidersPsychicPubMedQdrantRay ServeRebuffRedditRedisReplicateRoamRocksetRunhouseRWKV-4ScaNNSearchApiSearxNG Search APISerpAPIShale ProtocolSingleStoreDBscikit-learnSlackspaCySpreedlyStarRocksStochasticAIStripeSupabase (Postgres)NebulaTairTelegramTencentVectorDBTensorFlow DatasetsTigris2MarkdownTrelloTruLensTwitterTypesenseUnstructuredUpstash RedisUSearchVearchVectaraVespaWandB TracingWeights & BiasesWeatherWeaviateWhatsAppWhyLabsWikipediaWolfram AlphaWriterXataXorbits Inference (Xinference)YandexYeager.aiYouTubeZepZillizComponentsLLMsChat modelsDocument loadersDocument transformersText embedding modelsVector storesRetrieversToolsAgents and toolkitsMemoryCallbacksChat |
3,683 | and toolkitsMemoryCallbacksChat loadersProvidersMoreGitBookOn this pageGitBookGitBook is a modern documentation platform where teams can document everything from products to internal knowledge bases and APIs.Installation and Setup​There isn't any special setup for it.Document Loader​See a usage example.from langchain.document_loaders import GitbookLoaderPreviousGitNextGoldenInstallation and SetupDocument LoaderCommunityDiscordTwitterGitHubPythonJS/TSMoreHomepageBlogCopyright © 2023 LangChain, Inc. | GitBook is a modern documentation platform where teams can document everything from products to internal knowledge bases and APIs. | GitBook is a modern documentation platform where teams can document everything from products to internal knowledge bases and APIs. ->: and toolkitsMemoryCallbacksChat loadersProvidersMoreGitBookOn this pageGitBookGitBook is a modern documentation platform where teams can document everything from products to internal knowledge bases and APIs.Installation and Setup​There isn't any special setup for it.Document Loader​See a usage example.from langchain.document_loaders import GitbookLoaderPreviousGitNextGoldenInstallation and SetupDocument LoaderCommunityDiscordTwitterGitHubPythonJS/TSMoreHomepageBlogCopyright © 2023 LangChain, Inc. |
3,684 | DuckDB | ü¶úÔ∏èüîó Langchain | DuckDB is an in-process SQL OLAP database management system. | DuckDB is an in-process SQL OLAP database management system. ->: DuckDB | ü¶úÔ∏èüîó Langchain |
3,685 | Skip to main contentü¶úÔ∏èüîó LangChainDocsUse casesIntegrationsAPICommunityChat our docsLangSmithJS/TS DocsSearchCTRLKProvidersAnthropicAWSGoogleMicrosoftOpenAIMoreActiveloop Deep LakeAI21 LabsAimAINetworkAirbyteAirtableAleph AlphaAlibaba Cloud OpensearchAnalyticDBAnnoyAnyscaleApifyArangoDBArgillaArthurArxivAtlasAwaDBAWS DynamoDBAZLyricsBagelDBBananaBasetenBeamBeautiful SoupBiliBiliNIBittensorBlackboardBrave SearchCassandraCerebriumAIChaindeskChromaClarifaiClearMLClickHouseCnosDBCohereCollege ConfidentialCometConfident AIConfluenceC TransformersDashVectorDatabricksDatadog TracingDatadog LogsDataForSEODeepInfraDeepSparseDiffbotDingoDiscordDocArrayDoctranDocugamiDuckDBElasticsearchEpsillaEverNoteFacebook ChatFacebook FaissFigmaFireworksFlyteForefrontAIGitGitBookGoldenGoogle Document AIGoogle SerperGooseAIGPT4AllGradientGraphsignalGrobidGutenbergHacker NewsHazy ResearchHeliconeHologresHTML to textHugging FaceiFixitIMSDbInfinoJavelin AI GatewayJinaKonkoLanceDBLangChain Decorators ‚ú®Llama.cppLog10MarqoMediaWikiDumpMeilisearchMetalMilvusMinimaxMLflow AI GatewayMLflowModalModelScopeModern TreasuryMomentoMongoDB AtlasMotherduckMot√∂rheadMyScaleNeo4jNLPCloudNotion DBNucliaObsidianOpenLLMOpenSearchOpenWeatherMapPetalsPostgres EmbeddingPGVectorPineconePipelineAIPortkeyPredibasePrediction GuardPromptLayerprovidersPsychicPubMedQdrantRay ServeRebuffRedditRedisReplicateRoamRocksetRunhouseRWKV-4ScaNNSearchApiSearxNG Search APISerpAPIShale ProtocolSingleStoreDBscikit-learnSlackspaCySpreedlyStarRocksStochasticAIStripeSupabase (Postgres)NebulaTairTelegramTencentVectorDBTensorFlow DatasetsTigris2MarkdownTrelloTruLensTwitterTypesenseUnstructuredUpstash RedisUSearchVearchVectaraVespaWandB TracingWeights & BiasesWeatherWeaviateWhatsAppWhyLabsWikipediaWolfram AlphaWriterXataXorbits Inference (Xinference)YandexYeager.aiYouTubeZepZillizComponentsLLMsChat modelsDocument loadersDocument transformersText embedding modelsVector storesRetrieversToolsAgents and toolkitsMemoryCallbacksChat | DuckDB is an in-process SQL OLAP database management system. | DuckDB is an in-process SQL OLAP database management system. ->: Skip to main contentü¶úÔ∏èüîó LangChainDocsUse casesIntegrationsAPICommunityChat our docsLangSmithJS/TS DocsSearchCTRLKProvidersAnthropicAWSGoogleMicrosoftOpenAIMoreActiveloop Deep LakeAI21 LabsAimAINetworkAirbyteAirtableAleph AlphaAlibaba Cloud OpensearchAnalyticDBAnnoyAnyscaleApifyArangoDBArgillaArthurArxivAtlasAwaDBAWS DynamoDBAZLyricsBagelDBBananaBasetenBeamBeautiful SoupBiliBiliNIBittensorBlackboardBrave SearchCassandraCerebriumAIChaindeskChromaClarifaiClearMLClickHouseCnosDBCohereCollege ConfidentialCometConfident AIConfluenceC TransformersDashVectorDatabricksDatadog TracingDatadog LogsDataForSEODeepInfraDeepSparseDiffbotDingoDiscordDocArrayDoctranDocugamiDuckDBElasticsearchEpsillaEverNoteFacebook ChatFacebook FaissFigmaFireworksFlyteForefrontAIGitGitBookGoldenGoogle Document AIGoogle SerperGooseAIGPT4AllGradientGraphsignalGrobidGutenbergHacker NewsHazy ResearchHeliconeHologresHTML to textHugging FaceiFixitIMSDbInfinoJavelin AI GatewayJinaKonkoLanceDBLangChain Decorators ‚ú®Llama.cppLog10MarqoMediaWikiDumpMeilisearchMetalMilvusMinimaxMLflow AI GatewayMLflowModalModelScopeModern TreasuryMomentoMongoDB AtlasMotherduckMot√∂rheadMyScaleNeo4jNLPCloudNotion DBNucliaObsidianOpenLLMOpenSearchOpenWeatherMapPetalsPostgres EmbeddingPGVectorPineconePipelineAIPortkeyPredibasePrediction GuardPromptLayerprovidersPsychicPubMedQdrantRay ServeRebuffRedditRedisReplicateRoamRocksetRunhouseRWKV-4ScaNNSearchApiSearxNG Search APISerpAPIShale ProtocolSingleStoreDBscikit-learnSlackspaCySpreedlyStarRocksStochasticAIStripeSupabase (Postgres)NebulaTairTelegramTencentVectorDBTensorFlow DatasetsTigris2MarkdownTrelloTruLensTwitterTypesenseUnstructuredUpstash RedisUSearchVearchVectaraVespaWandB TracingWeights & BiasesWeatherWeaviateWhatsAppWhyLabsWikipediaWolfram AlphaWriterXataXorbits Inference (Xinference)YandexYeager.aiYouTubeZepZillizComponentsLLMsChat modelsDocument loadersDocument transformersText embedding modelsVector storesRetrieversToolsAgents and toolkitsMemoryCallbacksChat |
3,686 | and toolkitsMemoryCallbacksChat loadersProvidersMoreDuckDBOn this pageDuckDBDuckDB is an in-process SQL OLAP database management system.Installation and Setup​First, you need to install duckdb python package.pip install duckdbDocument Loader​See a usage example.from langchain.document_loaders import DuckDBLoaderPreviousDocugamiNextElasticsearchInstallation and SetupDocument LoaderCommunityDiscordTwitterGitHubPythonJS/TSMoreHomepageBlogCopyright © 2023 LangChain, Inc. | DuckDB is an in-process SQL OLAP database management system. | DuckDB is an in-process SQL OLAP database management system. ->: and toolkitsMemoryCallbacksChat loadersProvidersMoreDuckDBOn this pageDuckDBDuckDB is an in-process SQL OLAP database management system.Installation and Setup​First, you need to install duckdb python package.pip install duckdbDocument Loader​See a usage example.from langchain.document_loaders import DuckDBLoaderPreviousDocugamiNextElasticsearchInstallation and SetupDocument LoaderCommunityDiscordTwitterGitHubPythonJS/TSMoreHomepageBlogCopyright © 2023 LangChain, Inc. |
3,687 | Zilliz | ü¶úÔ∏èüîó Langchain | Zilliz Cloud is a fully managed service on cloud for LF AI Milvus¬Æ, | Zilliz Cloud is a fully managed service on cloud for LF AI Milvus¬Æ, ->: Zilliz | ü¶úÔ∏èüîó Langchain |
3,688 | Skip to main contentü¶úÔ∏èüîó LangChainDocsUse casesIntegrationsAPICommunityChat our docsLangSmithJS/TS DocsSearchCTRLKProvidersAnthropicAWSGoogleMicrosoftOpenAIMoreActiveloop Deep LakeAI21 LabsAimAINetworkAirbyteAirtableAleph AlphaAlibaba Cloud OpensearchAnalyticDBAnnoyAnyscaleApifyArangoDBArgillaArthurArxivAtlasAwaDBAWS DynamoDBAZLyricsBagelDBBananaBasetenBeamBeautiful SoupBiliBiliNIBittensorBlackboardBrave SearchCassandraCerebriumAIChaindeskChromaClarifaiClearMLClickHouseCnosDBCohereCollege ConfidentialCometConfident AIConfluenceC TransformersDashVectorDatabricksDatadog TracingDatadog LogsDataForSEODeepInfraDeepSparseDiffbotDingoDiscordDocArrayDoctranDocugamiDuckDBElasticsearchEpsillaEverNoteFacebook ChatFacebook FaissFigmaFireworksFlyteForefrontAIGitGitBookGoldenGoogle Document AIGoogle SerperGooseAIGPT4AllGradientGraphsignalGrobidGutenbergHacker NewsHazy ResearchHeliconeHologresHTML to textHugging FaceiFixitIMSDbInfinoJavelin AI GatewayJinaKonkoLanceDBLangChain Decorators ‚ú®Llama.cppLog10MarqoMediaWikiDumpMeilisearchMetalMilvusMinimaxMLflow AI GatewayMLflowModalModelScopeModern TreasuryMomentoMongoDB AtlasMotherduckMot√∂rheadMyScaleNeo4jNLPCloudNotion DBNucliaObsidianOpenLLMOpenSearchOpenWeatherMapPetalsPostgres EmbeddingPGVectorPineconePipelineAIPortkeyPredibasePrediction GuardPromptLayerprovidersPsychicPubMedQdrantRay ServeRebuffRedditRedisReplicateRoamRocksetRunhouseRWKV-4ScaNNSearchApiSearxNG Search APISerpAPIShale ProtocolSingleStoreDBscikit-learnSlackspaCySpreedlyStarRocksStochasticAIStripeSupabase (Postgres)NebulaTairTelegramTencentVectorDBTensorFlow DatasetsTigris2MarkdownTrelloTruLensTwitterTypesenseUnstructuredUpstash RedisUSearchVearchVectaraVespaWandB TracingWeights & BiasesWeatherWeaviateWhatsAppWhyLabsWikipediaWolfram AlphaWriterXataXorbits Inference (Xinference)YandexYeager.aiYouTubeZepZillizComponentsLLMsChat modelsDocument loadersDocument transformersText embedding modelsVector storesRetrieversToolsAgents and toolkitsMemoryCallbacksChat | Zilliz Cloud is a fully managed service on cloud for LF AI Milvus¬Æ, | Zilliz Cloud is a fully managed service on cloud for LF AI Milvus¬Æ, ->: Skip to main contentü¶úÔ∏èüîó LangChainDocsUse casesIntegrationsAPICommunityChat our docsLangSmithJS/TS DocsSearchCTRLKProvidersAnthropicAWSGoogleMicrosoftOpenAIMoreActiveloop Deep LakeAI21 LabsAimAINetworkAirbyteAirtableAleph AlphaAlibaba Cloud OpensearchAnalyticDBAnnoyAnyscaleApifyArangoDBArgillaArthurArxivAtlasAwaDBAWS DynamoDBAZLyricsBagelDBBananaBasetenBeamBeautiful SoupBiliBiliNIBittensorBlackboardBrave SearchCassandraCerebriumAIChaindeskChromaClarifaiClearMLClickHouseCnosDBCohereCollege ConfidentialCometConfident AIConfluenceC TransformersDashVectorDatabricksDatadog TracingDatadog LogsDataForSEODeepInfraDeepSparseDiffbotDingoDiscordDocArrayDoctranDocugamiDuckDBElasticsearchEpsillaEverNoteFacebook ChatFacebook FaissFigmaFireworksFlyteForefrontAIGitGitBookGoldenGoogle Document AIGoogle SerperGooseAIGPT4AllGradientGraphsignalGrobidGutenbergHacker NewsHazy ResearchHeliconeHologresHTML to textHugging FaceiFixitIMSDbInfinoJavelin AI GatewayJinaKonkoLanceDBLangChain Decorators ‚ú®Llama.cppLog10MarqoMediaWikiDumpMeilisearchMetalMilvusMinimaxMLflow AI GatewayMLflowModalModelScopeModern TreasuryMomentoMongoDB AtlasMotherduckMot√∂rheadMyScaleNeo4jNLPCloudNotion DBNucliaObsidianOpenLLMOpenSearchOpenWeatherMapPetalsPostgres EmbeddingPGVectorPineconePipelineAIPortkeyPredibasePrediction GuardPromptLayerprovidersPsychicPubMedQdrantRay ServeRebuffRedditRedisReplicateRoamRocksetRunhouseRWKV-4ScaNNSearchApiSearxNG Search APISerpAPIShale ProtocolSingleStoreDBscikit-learnSlackspaCySpreedlyStarRocksStochasticAIStripeSupabase (Postgres)NebulaTairTelegramTencentVectorDBTensorFlow DatasetsTigris2MarkdownTrelloTruLensTwitterTypesenseUnstructuredUpstash RedisUSearchVearchVectaraVespaWandB TracingWeights & BiasesWeatherWeaviateWhatsAppWhyLabsWikipediaWolfram AlphaWriterXataXorbits Inference (Xinference)YandexYeager.aiYouTubeZepZillizComponentsLLMsChat modelsDocument loadersDocument transformersText embedding modelsVector storesRetrieversToolsAgents and toolkitsMemoryCallbacksChat |
3,689 | and toolkitsMemoryCallbacksChat loadersProvidersMoreZillizOn this pageZillizZilliz Cloud is a fully managed service on cloud for LF AI Milvus®,Installation and Setup​Install the Python SDK:pip install pymilvusVectorstore​A wrapper around Zilliz indexes allows you to use it as a vectorstore, | Zilliz Cloud is a fully managed service on cloud for LF AI Milvus®, | Zilliz Cloud is a fully managed service on cloud for LF AI Milvus®, ->: and toolkitsMemoryCallbacksChat loadersProvidersMoreZillizOn this pageZillizZilliz Cloud is a fully managed service on cloud for LF AI Milvus®,Installation and Setup​Install the Python SDK:pip install pymilvusVectorstore​A wrapper around Zilliz indexes allows you to use it as a vectorstore, |
3,690 | whether for semantic search or example selection.from langchain.vectorstores import MilvusFor a more detailed walkthrough of the Miluvs wrapper, see this notebookPreviousZepNextComponentsInstallation and SetupVectorstoreCommunityDiscordTwitterGitHubPythonJS/TSMoreHomepageBlogCopyright © 2023 LangChain, Inc. | Zilliz Cloud is a fully managed service on cloud for LF AI Milvus®, | Zilliz Cloud is a fully managed service on cloud for LF AI Milvus®, ->: whether for semantic search or example selection.from langchain.vectorstores import MilvusFor a more detailed walkthrough of the Miluvs wrapper, see this notebookPreviousZepNextComponentsInstallation and SetupVectorstoreCommunityDiscordTwitterGitHubPythonJS/TSMoreHomepageBlogCopyright © 2023 LangChain, Inc. |
3,691 | Xorbits Inference (Xinference) | ü¶úÔ∏èüîó Langchain | This page demonstrates how to use Xinference | This page demonstrates how to use Xinference ->: Xorbits Inference (Xinference) | ü¶úÔ∏èüîó Langchain |
3,692 | Skip to main contentü¶úÔ∏èüîó LangChainDocsUse casesIntegrationsAPICommunityChat our docsLangSmithJS/TS DocsSearchCTRLKProvidersAnthropicAWSGoogleMicrosoftOpenAIMoreActiveloop Deep LakeAI21 LabsAimAINetworkAirbyteAirtableAleph AlphaAlibaba Cloud OpensearchAnalyticDBAnnoyAnyscaleApifyArangoDBArgillaArthurArxivAtlasAwaDBAWS DynamoDBAZLyricsBagelDBBananaBasetenBeamBeautiful SoupBiliBiliNIBittensorBlackboardBrave SearchCassandraCerebriumAIChaindeskChromaClarifaiClearMLClickHouseCnosDBCohereCollege ConfidentialCometConfident AIConfluenceC TransformersDashVectorDatabricksDatadog TracingDatadog LogsDataForSEODeepInfraDeepSparseDiffbotDingoDiscordDocArrayDoctranDocugamiDuckDBElasticsearchEpsillaEverNoteFacebook ChatFacebook FaissFigmaFireworksFlyteForefrontAIGitGitBookGoldenGoogle Document AIGoogle SerperGooseAIGPT4AllGradientGraphsignalGrobidGutenbergHacker NewsHazy ResearchHeliconeHologresHTML to textHugging FaceiFixitIMSDbInfinoJavelin AI GatewayJinaKonkoLanceDBLangChain Decorators ‚ú®Llama.cppLog10MarqoMediaWikiDumpMeilisearchMetalMilvusMinimaxMLflow AI GatewayMLflowModalModelScopeModern TreasuryMomentoMongoDB AtlasMotherduckMot√∂rheadMyScaleNeo4jNLPCloudNotion DBNucliaObsidianOpenLLMOpenSearchOpenWeatherMapPetalsPostgres EmbeddingPGVectorPineconePipelineAIPortkeyPredibasePrediction GuardPromptLayerprovidersPsychicPubMedQdrantRay ServeRebuffRedditRedisReplicateRoamRocksetRunhouseRWKV-4ScaNNSearchApiSearxNG Search APISerpAPIShale ProtocolSingleStoreDBscikit-learnSlackspaCySpreedlyStarRocksStochasticAIStripeSupabase (Postgres)NebulaTairTelegramTencentVectorDBTensorFlow DatasetsTigris2MarkdownTrelloTruLensTwitterTypesenseUnstructuredUpstash RedisUSearchVearchVectaraVespaWandB TracingWeights & BiasesWeatherWeaviateWhatsAppWhyLabsWikipediaWolfram AlphaWriterXataXorbits Inference (Xinference)YandexYeager.aiYouTubeZepZillizComponentsLLMsChat modelsDocument loadersDocument transformersText embedding modelsVector storesRetrieversToolsAgents and toolkitsMemoryCallbacksChat | This page demonstrates how to use Xinference | This page demonstrates how to use Xinference ->: Skip to main contentü¶úÔ∏èüîó LangChainDocsUse casesIntegrationsAPICommunityChat our docsLangSmithJS/TS DocsSearchCTRLKProvidersAnthropicAWSGoogleMicrosoftOpenAIMoreActiveloop Deep LakeAI21 LabsAimAINetworkAirbyteAirtableAleph AlphaAlibaba Cloud OpensearchAnalyticDBAnnoyAnyscaleApifyArangoDBArgillaArthurArxivAtlasAwaDBAWS DynamoDBAZLyricsBagelDBBananaBasetenBeamBeautiful SoupBiliBiliNIBittensorBlackboardBrave SearchCassandraCerebriumAIChaindeskChromaClarifaiClearMLClickHouseCnosDBCohereCollege ConfidentialCometConfident AIConfluenceC TransformersDashVectorDatabricksDatadog TracingDatadog LogsDataForSEODeepInfraDeepSparseDiffbotDingoDiscordDocArrayDoctranDocugamiDuckDBElasticsearchEpsillaEverNoteFacebook ChatFacebook FaissFigmaFireworksFlyteForefrontAIGitGitBookGoldenGoogle Document AIGoogle SerperGooseAIGPT4AllGradientGraphsignalGrobidGutenbergHacker NewsHazy ResearchHeliconeHologresHTML to textHugging FaceiFixitIMSDbInfinoJavelin AI GatewayJinaKonkoLanceDBLangChain Decorators ‚ú®Llama.cppLog10MarqoMediaWikiDumpMeilisearchMetalMilvusMinimaxMLflow AI GatewayMLflowModalModelScopeModern TreasuryMomentoMongoDB AtlasMotherduckMot√∂rheadMyScaleNeo4jNLPCloudNotion DBNucliaObsidianOpenLLMOpenSearchOpenWeatherMapPetalsPostgres EmbeddingPGVectorPineconePipelineAIPortkeyPredibasePrediction GuardPromptLayerprovidersPsychicPubMedQdrantRay ServeRebuffRedditRedisReplicateRoamRocksetRunhouseRWKV-4ScaNNSearchApiSearxNG Search APISerpAPIShale ProtocolSingleStoreDBscikit-learnSlackspaCySpreedlyStarRocksStochasticAIStripeSupabase (Postgres)NebulaTairTelegramTencentVectorDBTensorFlow DatasetsTigris2MarkdownTrelloTruLensTwitterTypesenseUnstructuredUpstash RedisUSearchVearchVectaraVespaWandB TracingWeights & BiasesWeatherWeaviateWhatsAppWhyLabsWikipediaWolfram AlphaWriterXataXorbits Inference (Xinference)YandexYeager.aiYouTubeZepZillizComponentsLLMsChat modelsDocument loadersDocument transformersText embedding modelsVector storesRetrieversToolsAgents and toolkitsMemoryCallbacksChat |
3,693 | and toolkitsMemoryCallbacksChat loadersProvidersMoreXorbits Inference (Xinference)On this pageXorbits Inference (Xinference)This page demonstrates how to use Xinference | This page demonstrates how to use Xinference | This page demonstrates how to use Xinference ->: and toolkitsMemoryCallbacksChat loadersProvidersMoreXorbits Inference (Xinference)On this pageXorbits Inference (Xinference)This page demonstrates how to use Xinference |
3,694 | with LangChain.Xinference is a powerful and versatile library designed to serve LLMs,
speech recognition models, and multimodal models, even on your laptop.
With Xorbits Inference, you can effortlessly deploy and serve your or
state-of-the-art built-in models using just a single command.Installation and Setup‚ÄãXinference can be installed via pip from PyPI: pip install "xinference[all]"LLM‚ÄãXinference supports various models compatible with GGML, including chatglm, baichuan, whisper,
vicuna, and orca. To view the builtin models, run the command:xinference list --allWrapper for Xinference‚ÄãYou can start a local instance of Xinference by running:xinferenceYou can also deploy Xinference in a distributed cluster. To do so, first start an Xinference supervisor
on the server you want to run it:xinference-supervisor -H "${supervisor_host}"Then, start the Xinference workers on each of the other servers where you want to run them on:xinference-worker -e "http://${supervisor_host}:9997"You can also start a local instance of Xinference by running:xinferenceOnce Xinference is running, an endpoint will be accessible for model management via CLI or
Xinference client. For local deployment, the endpoint will be http://localhost:9997. For cluster deployment, the endpoint will be http://${supervisor_host}:9997.Then, you need to launch a model. You can specify the model names and other attributes
including model_size_in_billions and quantization. You can use command line interface (CLI) to
do it. For example, xinference launch -n orca -s 3 -q q4_0A model uid will be returned.Example usage:from langchain.llms import Xinferencellm = Xinference( server_url="http://0.0.0.0:9997", model_uid = {model_uid} # replace model_uid with the model UID return from launching the model)llm( prompt="Q: where can we visit in the capital of France? A:", generate_config={"max_tokens": 1024, "stream": True},)Usage‚ÄãFor more information and detailed examples, refer to the | This page demonstrates how to use Xinference | This page demonstrates how to use Xinference ->: with LangChain.Xinference is a powerful and versatile library designed to serve LLMs,
speech recognition models, and multimodal models, even on your laptop.
With Xorbits Inference, you can effortlessly deploy and serve your or
state-of-the-art built-in models using just a single command.Installation and Setup‚ÄãXinference can be installed via pip from PyPI: pip install "xinference[all]"LLM‚ÄãXinference supports various models compatible with GGML, including chatglm, baichuan, whisper,
vicuna, and orca. To view the builtin models, run the command:xinference list --allWrapper for Xinference‚ÄãYou can start a local instance of Xinference by running:xinferenceYou can also deploy Xinference in a distributed cluster. To do so, first start an Xinference supervisor
on the server you want to run it:xinference-supervisor -H "${supervisor_host}"Then, start the Xinference workers on each of the other servers where you want to run them on:xinference-worker -e "http://${supervisor_host}:9997"You can also start a local instance of Xinference by running:xinferenceOnce Xinference is running, an endpoint will be accessible for model management via CLI or
Xinference client. For local deployment, the endpoint will be http://localhost:9997. For cluster deployment, the endpoint will be http://${supervisor_host}:9997.Then, you need to launch a model. You can specify the model names and other attributes
including model_size_in_billions and quantization. You can use command line interface (CLI) to
do it. For example, xinference launch -n orca -s 3 -q q4_0A model uid will be returned.Example usage:from langchain.llms import Xinferencellm = Xinference( server_url="http://0.0.0.0:9997", model_uid = {model_uid} # replace model_uid with the model UID return from launching the model)llm( prompt="Q: where can we visit in the capital of France? A:", generate_config={"max_tokens": 1024, "stream": True},)Usage‚ÄãFor more information and detailed examples, refer to the |
3,695 | example for xinference LLMsEmbeddings‚ÄãXinference also supports embedding queries and documents. See
example for xinference embeddings
for a more detailed demo.PreviousXataNextYandexInstallation and SetupLLMWrapper for XinferenceUsageEmbeddingsCommunityDiscordTwitterGitHubPythonJS/TSMoreHomepageBlogCopyright © 2023 LangChain, Inc. | This page demonstrates how to use Xinference | This page demonstrates how to use Xinference ->: example for xinference LLMsEmbeddings​Xinference also supports embedding queries and documents. See
example for xinference embeddings
for a more detailed demo.PreviousXataNextYandexInstallation and SetupLLMWrapper for XinferenceUsageEmbeddingsCommunityDiscordTwitterGitHubPythonJS/TSMoreHomepageBlogCopyright © 2023 LangChain, Inc. |
3,696 | Facebook Chat | ü¶úÔ∏èüîó Langchain | Messenger) is an American proprietary instant messaging app and | Messenger) is an American proprietary instant messaging app and ->: Facebook Chat | ü¶úÔ∏èüîó Langchain |
3,697 | Skip to main contentü¶úÔ∏èüîó LangChainDocsUse casesIntegrationsAPICommunityChat our docsLangSmithJS/TS DocsSearchCTRLKProvidersAnthropicAWSGoogleMicrosoftOpenAIMoreActiveloop Deep LakeAI21 LabsAimAINetworkAirbyteAirtableAleph AlphaAlibaba Cloud OpensearchAnalyticDBAnnoyAnyscaleApifyArangoDBArgillaArthurArxivAtlasAwaDBAWS DynamoDBAZLyricsBagelDBBananaBasetenBeamBeautiful SoupBiliBiliNIBittensorBlackboardBrave SearchCassandraCerebriumAIChaindeskChromaClarifaiClearMLClickHouseCnosDBCohereCollege ConfidentialCometConfident AIConfluenceC TransformersDashVectorDatabricksDatadog TracingDatadog LogsDataForSEODeepInfraDeepSparseDiffbotDingoDiscordDocArrayDoctranDocugamiDuckDBElasticsearchEpsillaEverNoteFacebook ChatFacebook FaissFigmaFireworksFlyteForefrontAIGitGitBookGoldenGoogle Document AIGoogle SerperGooseAIGPT4AllGradientGraphsignalGrobidGutenbergHacker NewsHazy ResearchHeliconeHologresHTML to textHugging FaceiFixitIMSDbInfinoJavelin AI GatewayJinaKonkoLanceDBLangChain Decorators ‚ú®Llama.cppLog10MarqoMediaWikiDumpMeilisearchMetalMilvusMinimaxMLflow AI GatewayMLflowModalModelScopeModern TreasuryMomentoMongoDB AtlasMotherduckMot√∂rheadMyScaleNeo4jNLPCloudNotion DBNucliaObsidianOpenLLMOpenSearchOpenWeatherMapPetalsPostgres EmbeddingPGVectorPineconePipelineAIPortkeyPredibasePrediction GuardPromptLayerprovidersPsychicPubMedQdrantRay ServeRebuffRedditRedisReplicateRoamRocksetRunhouseRWKV-4ScaNNSearchApiSearxNG Search APISerpAPIShale ProtocolSingleStoreDBscikit-learnSlackspaCySpreedlyStarRocksStochasticAIStripeSupabase (Postgres)NebulaTairTelegramTencentVectorDBTensorFlow DatasetsTigris2MarkdownTrelloTruLensTwitterTypesenseUnstructuredUpstash RedisUSearchVearchVectaraVespaWandB TracingWeights & BiasesWeatherWeaviateWhatsAppWhyLabsWikipediaWolfram AlphaWriterXataXorbits Inference (Xinference)YandexYeager.aiYouTubeZepZillizComponentsLLMsChat modelsDocument loadersDocument transformersText embedding modelsVector storesRetrieversToolsAgents and toolkitsMemoryCallbacksChat | Messenger) is an American proprietary instant messaging app and | Messenger) is an American proprietary instant messaging app and ->: Skip to main contentü¶úÔ∏èüîó LangChainDocsUse casesIntegrationsAPICommunityChat our docsLangSmithJS/TS DocsSearchCTRLKProvidersAnthropicAWSGoogleMicrosoftOpenAIMoreActiveloop Deep LakeAI21 LabsAimAINetworkAirbyteAirtableAleph AlphaAlibaba Cloud OpensearchAnalyticDBAnnoyAnyscaleApifyArangoDBArgillaArthurArxivAtlasAwaDBAWS DynamoDBAZLyricsBagelDBBananaBasetenBeamBeautiful SoupBiliBiliNIBittensorBlackboardBrave SearchCassandraCerebriumAIChaindeskChromaClarifaiClearMLClickHouseCnosDBCohereCollege ConfidentialCometConfident AIConfluenceC TransformersDashVectorDatabricksDatadog TracingDatadog LogsDataForSEODeepInfraDeepSparseDiffbotDingoDiscordDocArrayDoctranDocugamiDuckDBElasticsearchEpsillaEverNoteFacebook ChatFacebook FaissFigmaFireworksFlyteForefrontAIGitGitBookGoldenGoogle Document AIGoogle SerperGooseAIGPT4AllGradientGraphsignalGrobidGutenbergHacker NewsHazy ResearchHeliconeHologresHTML to textHugging FaceiFixitIMSDbInfinoJavelin AI GatewayJinaKonkoLanceDBLangChain Decorators ‚ú®Llama.cppLog10MarqoMediaWikiDumpMeilisearchMetalMilvusMinimaxMLflow AI GatewayMLflowModalModelScopeModern TreasuryMomentoMongoDB AtlasMotherduckMot√∂rheadMyScaleNeo4jNLPCloudNotion DBNucliaObsidianOpenLLMOpenSearchOpenWeatherMapPetalsPostgres EmbeddingPGVectorPineconePipelineAIPortkeyPredibasePrediction GuardPromptLayerprovidersPsychicPubMedQdrantRay ServeRebuffRedditRedisReplicateRoamRocksetRunhouseRWKV-4ScaNNSearchApiSearxNG Search APISerpAPIShale ProtocolSingleStoreDBscikit-learnSlackspaCySpreedlyStarRocksStochasticAIStripeSupabase (Postgres)NebulaTairTelegramTencentVectorDBTensorFlow DatasetsTigris2MarkdownTrelloTruLensTwitterTypesenseUnstructuredUpstash RedisUSearchVearchVectaraVespaWandB TracingWeights & BiasesWeatherWeaviateWhatsAppWhyLabsWikipediaWolfram AlphaWriterXataXorbits Inference (Xinference)YandexYeager.aiYouTubeZepZillizComponentsLLMsChat modelsDocument loadersDocument transformersText embedding modelsVector storesRetrieversToolsAgents and toolkitsMemoryCallbacksChat |
3,698 | and toolkitsMemoryCallbacksChat loadersProvidersMoreFacebook ChatOn this pageFacebook ChatMessenger is an American proprietary instant messaging app and | Messenger) is an American proprietary instant messaging app and | Messenger) is an American proprietary instant messaging app and ->: and toolkitsMemoryCallbacksChat loadersProvidersMoreFacebook ChatOn this pageFacebook ChatMessenger is an American proprietary instant messaging app and |
3,699 | platform developed by Meta Platforms. Originally developed as Facebook Chat in 2008, the company revamped its
messaging service in 2010.Installation and Setup​First, you need to install pandas python package.pip install pandasDocument Loader​See a usage example.from langchain.document_loaders import FacebookChatLoaderPreviousEverNoteNextFacebook FaissInstallation and SetupDocument LoaderCommunityDiscordTwitterGitHubPythonJS/TSMoreHomepageBlogCopyright © 2023 LangChain, Inc. | Messenger) is an American proprietary instant messaging app and | Messenger) is an American proprietary instant messaging app and ->: platform developed by Meta Platforms. Originally developed as Facebook Chat in 2008, the company revamped its
messaging service in 2010.Installation and Setup​First, you need to install pandas python package.pip install pandasDocument Loader​See a usage example.from langchain.document_loaders import FacebookChatLoaderPreviousEverNoteNextFacebook FaissInstallation and SetupDocument LoaderCommunityDiscordTwitterGitHubPythonJS/TSMoreHomepageBlogCopyright © 2023 LangChain, Inc. |
Subsets and Splits