sha
null
last_modified
null
library_name
stringclasses
154 values
text
stringlengths
1
900k
metadata
stringlengths
2
348k
pipeline_tag
stringclasses
45 values
id
stringlengths
5
122
tags
listlengths
1
1.84k
created_at
stringlengths
25
25
arxiv
listlengths
0
201
languages
listlengths
0
1.83k
tags_str
stringlengths
17
9.34k
text_str
stringlengths
0
389k
text_lists
listlengths
0
722
processed_texts
listlengths
1
723
tokens_length
listlengths
1
723
input_texts
listlengths
1
61
embeddings
listlengths
768
768
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # fnet-base-finetuned-rte This model is a fine-tuned version of [google/fnet-base](https://huggingface.co/google/fnet-base) on the GLUE RTE dataset. It achieves the following results on the evaluation set: - Loss: 0.6978 - Accuracy: 0.6282 The model was fine-tuned to compare [google/fnet-base](https://huggingface.co/google/fnet-base) as introduced in [this paper](https://arxiv.org/abs/2105.03824) against [bert-base-cased](https://huggingface.co/bert-base-cased). ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure This model is trained using the [run_glue](https://github.com/huggingface/transformers/blob/master/examples/pytorch/text-classification/run_glue.py) script. The following command was used: ```bash #!/usr/bin/bash python ../run_glue.py \\n --model_name_or_path google/fnet-base \\n --task_name rte \\n --do_train \\n --do_eval \\n --max_seq_length 512 \\n --per_device_train_batch_size 16 \\n --learning_rate 2e-5 \\n --num_train_epochs 3 \\n --output_dir fnet-base-finetuned-rte \\n --push_to_hub \\n --hub_strategy all_checkpoints \\n --logging_strategy epoch \\n --save_strategy epoch \\n --evaluation_strategy epoch \\n``` ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.6829 | 1.0 | 156 | 0.6657 | 0.5704 | | 0.6174 | 2.0 | 312 | 0.6784 | 0.6101 | | 0.5141 | 3.0 | 468 | 0.6978 | 0.6282 | ### Framework versions - Transformers 4.11.0.dev0 - Pytorch 1.9.0 - Datasets 1.12.1 - Tokenizers 0.10.3
{"language": ["en"], "license": "apache-2.0", "tags": ["generated_from_trainer", "fnet-bert-base-comparison"], "datasets": ["glue"], "metrics": ["accuracy"], "model-index": [{"name": "fnet-base-finetuned-rte", "results": [{"task": {"type": "text-classification", "name": "Text Classification"}, "dataset": {"name": "GLUE RTE", "type": "glue", "args": "rte"}, "metrics": [{"type": "accuracy", "value": 0.628158844765343, "name": "Accuracy"}]}]}]}
text-classification
gchhablani/fnet-base-finetuned-rte
[ "transformers", "pytorch", "tensorboard", "fnet", "text-classification", "generated_from_trainer", "fnet-bert-base-comparison", "en", "dataset:glue", "arxiv:2105.03824", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[ "2105.03824" ]
[ "en" ]
TAGS #transformers #pytorch #tensorboard #fnet #text-classification #generated_from_trainer #fnet-bert-base-comparison #en #dataset-glue #arxiv-2105.03824 #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us
fnet-base-finetuned-rte ======================= This model is a fine-tuned version of google/fnet-base on the GLUE RTE dataset. It achieves the following results on the evaluation set: * Loss: 0.6978 * Accuracy: 0.6282 The model was fine-tuned to compare google/fnet-base as introduced in this paper against bert-base-cased. Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ This model is trained using the run\_glue script. The following command was used: ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 16 * eval\_batch\_size: 8 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 3.0 ### Training results ### Framework versions * Transformers 4.11.0.dev0 * Pytorch 1.9.0 * Datasets 1.12.1 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3.0", "### Training results", "### Framework versions\n\n\n* Transformers 4.11.0.dev0\n* Pytorch 1.9.0\n* Datasets 1.12.1\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #fnet #text-classification #generated_from_trainer #fnet-bert-base-comparison #en #dataset-glue #arxiv-2105.03824 #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3.0", "### Training results", "### Framework versions\n\n\n* Transformers 4.11.0.dev0\n* Pytorch 1.9.0\n* Datasets 1.12.1\n* Tokenizers 0.10.3" ]
[ 88, 98, 4, 34 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #fnet #text-classification #generated_from_trainer #fnet-bert-base-comparison #en #dataset-glue #arxiv-2105.03824 #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3.0### Training results### Framework versions\n\n\n* Transformers 4.11.0.dev0\n* Pytorch 1.9.0\n* Datasets 1.12.1\n* Tokenizers 0.10.3" ]
[ -0.1281575709581375, 0.15705668926239014, -0.0038979940582066774, 0.11255989223718643, 0.11293601244688034, -0.008617952466011047, 0.13138744235038757, 0.1563730537891388, -0.1094919964671135, 0.05590956658124924, 0.1562153697013855, 0.15063650906085968, 0.03187095746397972, 0.18714870512485504, -0.05448957160115242, -0.23206175863742828, 0.030974131077528, 0.07522018253803253, -0.05673399940133095, 0.13729923963546753, 0.09973176568746567, -0.11717205494642258, 0.09386496245861053, 0.041752949357032776, -0.20222944021224976, -0.015307755209505558, -0.0008101215353235602, -0.08269140124320984, 0.11289821565151215, 0.02265351265668869, 0.08919014781713486, 0.03242024779319763, 0.03147246316075325, -0.1466279774904251, 0.007479942869395018, 0.055549394339323044, 0.0026599117554724216, 0.11788346618413925, 0.03937623277306557, -0.014160647056996822, 0.07863719761371613, -0.09087078273296356, 0.046092916280031204, 0.026117689907550812, -0.10794810950756073, -0.2786095142364502, -0.08820846676826477, 0.07192650437355042, 0.042675234377384186, 0.0806850865483284, 0.001147752278484404, 0.17639178037643433, -0.007389090955257416, 0.11422055959701538, 0.2610849142074585, -0.3091604709625244, -0.061695314943790436, 0.024227019399404526, 0.009995708242058754, 0.06274503469467163, -0.08376740664243698, -0.031031707301735878, 0.04775812104344368, 0.04504694044589996, 0.17843511700630188, -0.011732942424714565, -0.007466572802513838, -0.025801893323659897, -0.14371579885482788, -0.07526436448097229, 0.19688530266284943, 0.04901329055428505, -0.048377830535173416, -0.06737475097179413, -0.08691056817770004, -0.16888527572155, -0.03213018923997879, -0.018070582300424576, 0.04411018267273903, -0.0378425307571888, -0.060805536806583405, -0.029689611867070198, -0.07623965293169022, -0.042504265904426575, -0.042007382959127426, 0.15460588037967682, 0.05135969817638397, 0.03275564685463905, -0.03648478910326958, 0.08528219908475876, -0.016176627948880196, -0.15604232251644135, -0.0033359206281602383, 0.008210553787648678, 0.032338954508304596, -0.01879490725696087, -0.03313892334699631, -0.09054049104452133, 0.012796161696314812, 0.12658193707466125, -0.09896866977214813, 0.0699896514415741, 0.014115668833255768, 0.05199545621871948, -0.0832819789648056, 0.18305599689483643, -0.03047999180853367, 0.014890378341078758, 0.025784319266676903, 0.0863259807229042, 0.045972537249326706, -0.02756713703274727, -0.10970760136842728, 0.026695188134908676, 0.13855181634426117, 0.006172229070216417, -0.03736800700426102, 0.07175908982753754, -0.04684898629784584, -0.04453456029295921, 0.056356143206357956, -0.11108183860778809, 0.012465346604585648, 0.0007881103083491325, -0.08858437836170197, -0.03560861945152283, 0.026957271620631218, -0.012466381303966045, -0.04220158979296684, 0.05419426038861275, -0.0943819209933281, 0.009732727892696857, -0.05831371992826462, -0.1146949976682663, 0.013262145221233368, -0.11782565712928772, 0.0005620947922579944, -0.11043663322925568, -0.13709686696529388, -0.008001538924872875, 0.05364624038338661, -0.021408166736364365, -0.0810130313038826, -0.055306028574705124, -0.09359939396381378, 0.02663268707692623, -0.015616829507052898, 0.05365283414721489, -0.06507189571857452, 0.08449108898639679, 0.049848102033138275, 0.07236256450414658, -0.03752796724438667, 0.04536004737019539, -0.07848503440618515, 0.0464148111641407, -0.20472228527069092, 0.07016371190547943, -0.064207062125206, 0.06198544800281525, -0.1068328395485878, -0.11787286400794983, 0.030897412449121475, -0.03552781045436859, 0.08240031450986862, 0.09914099425077438, -0.14732807874679565, -0.08291295915842056, 0.19005797803401947, -0.08365947753190994, -0.12725262343883514, 0.12337704747915268, -0.04553937166929245, 0.0029195500537753105, 0.05737419053912163, 0.2257438600063324, 0.0889558345079422, -0.0515265017747879, -0.02331758849322796, -0.0051168533973395824, 0.04387769103050232, -0.07846325635910034, 0.08052174746990204, 0.006332707591354847, 0.04367716237902641, 0.02254851721227169, -0.029947886243462563, 0.04004385322332382, -0.08367564529180527, -0.08474674820899963, -0.05332755297422409, -0.08056257665157318, 0.056404486298561096, 0.04767722263932228, 0.08231600373983383, -0.11374399065971375, -0.094481460750103, 0.02864118292927742, 0.09102724492549896, -0.08461901545524597, 0.04763771593570709, -0.09820594638586044, 0.12363352626562119, -0.06146226450800896, -0.004213334526866674, -0.18391123414039612, -0.009381342679262161, 0.0438222773373127, -0.023048149421811104, -0.0010736447293311357, -0.017531832680106163, 0.0634535625576973, 0.05774131044745445, -0.039399147033691406, -0.0408325120806694, -0.033703941851854324, -0.009450753219425678, -0.11244195699691772, -0.18618963658809662, -0.04849305376410484, -0.034880541265010834, 0.11852548271417618, -0.17111770808696747, 0.06201837584376335, 0.06472091376781464, 0.11162162572145462, 0.02296465076506138, -0.02818126603960991, -0.0076725417748093605, 0.041496098041534424, -0.039293959736824036, -0.0763016790151596, 0.06855007261037827, 0.03613912686705589, -0.0994340106844902, -0.021636441349983215, -0.11005594581365585, 0.18589626252651215, 0.12711931765079498, -0.015304340980947018, -0.046145275235176086, -0.0037261333782225847, -0.06693658232688904, -0.0252322256565094, 0.00010479353659320623, 0.02630312740802765, 0.18688923120498657, 0.007668614853173494, 0.17470361292362213, -0.10448402166366577, -0.054649028927087784, 0.04829766973853111, -0.027804838493466377, -0.012250205501914024, 0.11106427013874054, 0.000900426646694541, -0.11244355887174606, 0.14791768789291382, 0.12212676554918289, -0.06123341992497444, 0.1253422647714615, -0.06269760429859161, -0.042313165962696075, -0.03154568001627922, 0.0070209321565926075, 0.016009759157896042, 0.09681913256645203, -0.12338456511497498, -0.019060473889112473, 0.03688754513859749, 0.026065392419695854, 0.022046322003006935, -0.18368276953697205, 0.0016608438454568386, 0.046017080545425415, -0.06232096627354622, -0.0001330666127614677, -0.01134573481976986, -0.0014391003642231226, 0.09911268204450607, 0.018035314977169037, -0.08723576366901398, 0.04871227592229843, 0.008767826482653618, -0.07373929023742676, 0.20202793180942535, -0.10205624997615814, -0.19618737697601318, -0.11792904138565063, -0.0520332008600235, -0.09464605152606964, -0.00033909876947291195, 0.06213480234146118, -0.07916445285081863, -0.022073807194828987, -0.09520765393972397, -0.03123565763235092, -0.01737889274954796, 0.03542753681540489, 0.07313533127307892, -0.02203269489109516, 0.10872673243284225, -0.1269455999135971, -0.02306712418794632, -0.0358131118118763, 0.008673591539263725, 0.055851276963949203, 0.009536282159388065, 0.09724908322095871, 0.1170153021812439, -0.033818624913692474, 0.05197916179895401, -0.028282886371016502, 0.24284608662128448, -0.053264424204826355, -0.02976847253739834, 0.12733469903469086, -0.0040460084564983845, 0.08623170107603073, 0.08496475964784622, 0.04557865113019943, -0.08525460958480835, -0.01157840620726347, 0.00595470005646348, -0.03817666694521904, -0.21714363992214203, -0.036886055022478104, -0.04140350595116615, 0.02079310268163681, 0.10649195313453674, 0.04592718183994293, 0.043558333069086075, 0.057499635964632034, 0.023834481835365295, 0.04960625246167183, -0.02408022992312908, 0.09037080407142639, 0.1317465603351593, 0.04990197345614433, 0.13514135777950287, -0.04064502939581871, -0.03152943775057793, 0.039630502462387085, -0.002475862158462405, 0.19950714707374573, -0.02927609719336033, 0.1829756200313568, 0.04599745571613312, 0.1883370578289032, 0.011177031323313713, 0.06271716207265854, -0.024891022592782974, -0.006736312061548233, -0.009674341417849064, -0.0412435419857502, -0.05800659582018852, 0.0024435357190668583, -0.04474163055419922, 0.07293359190225601, -0.117747962474823, 0.040190309286117554, 0.06010587513446808, 0.29027169942855835, 0.022407572716474533, -0.37493225932121277, -0.11181744188070297, -0.016597270965576172, -0.031712714582681656, -0.04552937671542168, 0.010863134637475014, 0.11205030232667923, -0.09440278261899948, 0.06324154883623123, -0.08447496592998505, 0.09077057987451553, -0.07360748946666718, 0.03601958230137825, 0.05221237242221832, 0.09796657413244247, 0.006393694784492254, 0.06149907410144806, -0.26434561610221863, 0.25069257616996765, 0.018371766433119774, 0.05161698907613754, -0.06146470457315445, 0.015569853596389294, 0.02125987596809864, 0.06923633813858032, 0.07857105880975723, 0.0007500528590753675, -0.02767954021692276, -0.16410666704177856, -0.11515739560127258, 0.016607077792286873, 0.07020550966262817, -0.02121029421687126, 0.08431950211524963, -0.0010764591861516237, 0.004067974630743265, 0.04312531650066376, -0.008349082432687283, -0.027957666665315628, -0.09104249626398087, 0.016294151544570923, 0.06238500773906708, -0.04210955649614334, -0.08233670145273209, -0.1198863536119461, -0.08412427455186844, 0.1865774542093277, -0.008332050405442715, -0.0823029950261116, -0.12076611816883087, 0.06184208020567894, 0.06703545898199081, -0.09185026586055756, 0.042081426829099655, -0.017016833648085594, 0.12382151186466217, 0.003344601020216942, -0.07244402170181274, 0.09798984974622726, -0.04916444793343544, -0.16366566717624664, -0.03181470185518265, 0.13521257042884827, 0.034096188843250275, 0.05754973739385605, -0.012549868784844875, 0.019313739612698555, -0.026896705850958824, -0.0765208750963211, 0.03267578408122063, 0.002446891972795129, 0.09423114359378815, -0.015256565995514393, 0.0032036362681537867, 0.028266185894608498, -0.07761038839817047, 0.005427155178040266, 0.19771218299865723, 0.2606421709060669, -0.1043548434972763, 0.03651893138885498, 0.027820715680718422, -0.04207947105169296, -0.1520952433347702, 0.017168138176202774, 0.08070502430200577, 0.007420012727379799, -0.010656541213393211, -0.1764611452817917, 0.05012203007936478, 0.08809427171945572, -0.01788947917521, 0.08023256808519363, -0.29865652322769165, -0.11554376780986786, 0.11132355779409409, 0.12564530968666077, 0.09193845093250275, -0.13787555694580078, -0.04598912596702576, -0.0075193652883172035, -0.12548284232616425, 0.1158299669623375, -0.0956348180770874, 0.10974547266960144, -0.04320225492119789, 0.05354843661189079, 0.007337958551943302, -0.052445266395807266, 0.12752960622310638, 0.01908416859805584, 0.0783768892288208, -0.0478614941239357, 0.003130370983853936, 0.10798399150371552, -0.0758182629942894, 0.06092115119099617, -0.10174112766981125, 0.04936999827623367, -0.12913434207439423, -0.01087163481861353, -0.08215732127428055, 0.02880539558827877, -0.029542503878474236, -0.03560418263077736, -0.058059368282556534, 0.009000681340694427, 0.07482077181339264, -0.0021140656899660826, 0.17803633213043213, 0.047338198870420456, 0.12804824113845825, 0.2045678347349167, 0.07827051728963852, -0.11816922575235367, -0.10215629637241364, -0.0021673408336937428, -0.009365938603878021, 0.0566975399851799, -0.15991105139255524, 0.03947640210390091, 0.1441853940486908, 0.004068439826369286, 0.11697175353765488, 0.06757407635450363, -0.058885324746370316, -0.00002974093695229385, 0.04177243635058403, -0.17993171513080597, -0.10290152579545975, -0.014580353163182735, -0.012066712602972984, -0.13221070170402527, 0.07946693897247314, 0.11126816272735596, -0.07109289616346359, -0.018744582310318947, 0.0011641265591606498, -0.0008233633125200868, -0.025426305830478668, 0.18059362471103668, 0.0713382288813591, 0.07033462822437286, -0.10616692155599594, 0.09460733085870743, 0.0462157279253006, -0.0725565180182457, 0.04061013460159302, 0.06810374557971954, -0.11764568090438843, -0.022825488820672035, 0.037216611206531525, 0.14856918156147003, -0.027179433032870293, -0.05499974638223648, -0.17361967265605927, -0.1086450144648552, 0.08841122686862946, 0.13100364804267883, 0.10317601263523102, 0.017121080309152603, -0.04885329306125641, -0.009807179681956768, -0.11012768745422363, 0.09655274450778961, 0.05846559628844261, 0.0660039484500885, -0.16399246454238892, 0.11977937817573547, -0.0003578494652174413, 0.07169348001480103, -0.012192845344543457, 0.001448655384592712, -0.0843949168920517, 0.004430484492331743, -0.09232339262962341, 0.012558856047689915, -0.04001414775848389, 0.00048618309665471315, -0.022317882627248764, -0.04360825940966606, -0.0546182319521904, 0.03691510483622551, -0.10589302331209183, -0.03589541092514992, 0.030760591849684715, 0.02635170891880989, -0.11072052270174026, -0.031555552035570145, 0.0018842692952603102, -0.08543401211500168, 0.09491559118032455, 0.053661517798900604, -0.007116627413779497, 0.009966611862182617, -0.003835842479020357, 0.002103820675984025, 0.0713348463177681, 0.007812848314642906, 0.06204405426979065, -0.11863148212432861, -0.004516935441643, 0.004596107639372349, 0.001546198152936995, 0.019018597900867462, 0.12120135128498077, -0.12007837742567062, -0.014022485353052616, -0.022460926324129105, -0.022654950618743896, -0.0753025934100151, 0.05987093597650528, 0.10378355532884598, 0.041243866086006165, 0.19044536352157593, -0.06453124433755875, 0.015417633578181267, -0.2059982270002365, -0.0010957218473777175, 0.009144444018602371, -0.1515446901321411, -0.05387648567557335, -0.025656811892986298, 0.05819327011704445, -0.07224544882774353, 0.11503966152667999, 0.004568712320178747, -0.01583913527429104, 0.03687077388167381, -0.044159963726997375, -0.016699714586138725, 0.008686945773661137, 0.16097450256347656, 0.013965492136776447, -0.037191856652498245, 0.12147503346204758, 0.023390216752886772, 0.1060599610209465, 0.12157408893108368, 0.1685730367898941, 0.12814003229141235, 0.026453150436282158, 0.10737672448158264, 0.032515060156583786, -0.030444564297795296, -0.18784967064857483, 0.06720752269029617, -0.04578623175621033, 0.13226191699504852, 0.006823073141276836, 0.17648069560527802, 0.11036133766174316, -0.15301413834095, 0.049124132841825485, -0.021638398990035057, -0.09448863565921783, -0.10050928592681885, -0.09679119288921356, -0.07743744552135468, -0.15149177610874176, -0.01236912701278925, -0.11908751726150513, -0.001917796558700502, 0.06672867387533188, 0.0058901347219944, -0.021161947399377823, 0.13932976126670837, 0.023673847317695618, -0.0022931741550564766, 0.0803397074341774, -0.0035189997870475054, -0.05596965178847313, -0.07125981897115707, -0.07409729808568954, 0.013776594772934914, 0.013752772472798824, 0.05871286615729332, -0.02784240059554577, 0.009659827686846256, 0.051329080015420914, -0.02629757858812809, -0.10809190571308136, 0.009442382492125034, 0.021296720951795578, 0.054612502455711365, 0.020937973633408546, 0.013347321189939976, -0.011912370100617409, -0.017500825226306915, 0.17539910972118378, -0.06457335501909256, -0.022280963137745857, -0.10723160207271576, 0.20094625651836395, 0.036107197403907776, -0.03869583457708359, 0.040720485150814056, -0.06905907392501831, -0.020572103559970856, 0.18964605033397675, 0.20552918314933777, -0.026153136044740677, 0.0006357349921017885, -0.004643670748919249, -0.01797187142074108, -0.007700672838836908, 0.08245248347520828, 0.13317352533340454, -0.0074555822648108006, -0.06725732237100601, -0.026400936767458916, -0.06664355099201202, -0.004993689712136984, -0.048690151423215866, 0.06622577458620071, 0.027980800718069077, 0.012009805999696255, -0.046264056116342545, 0.022495536133646965, -0.042431484907865524, -0.07840681821107864, 0.030966809019446373, -0.20489253103733063, -0.15987305343151093, -0.008346200920641422, 0.03857562318444252, 0.0004496309265960008, 0.062375955283641815, -0.0009975176071748137, 0.012196631170809269, 0.0908537283539772, -0.02237413451075554, -0.08646247535943985, -0.07932375371456146, 0.09022057801485062, -0.17671364545822144, 0.2005920559167862, -0.04314102232456207, 0.049184780567884445, 0.1326240599155426, 0.04266604781150818, -0.10272050648927689, 0.0379687063395977, 0.03511279076337814, -0.008898447267711163, -0.004219701513648033, 0.09855833649635315, -0.012647976167500019, 0.07372915744781494, 0.03857356309890747, -0.09686969965696335, -0.039119016379117966, -0.07064490765333176, -0.0207537654787302, -0.040169861167669296, -0.052368659526109695, -0.05137869715690613, 0.11046379059553146, 0.19000554084777832, -0.049329470843076706, -0.017489463090896606, -0.06654652208089828, 0.005614506546407938, 0.07303186506032944, -0.011176830157637596, -0.04266827553510666, -0.253805011510849, 0.010820526629686356, 0.046582285314798355, -0.017032980918884277, -0.2275182157754898, -0.1029951274394989, -0.004221665672957897, -0.06776802986860275, -0.07437815517187119, 0.07514068484306335, 0.04294868931174278, 0.05498082563281059, -0.06696301698684692, 0.028071772307157516, -0.09679107367992401, 0.15699414908885956, -0.15248030424118042, -0.07556789368391037 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # fnet-base-finetuned-sst2 This model is a fine-tuned version of [google/fnet-base](https://huggingface.co/google/fnet-base) on the GLUE SST2 dataset. It achieves the following results on the evaluation set: - Loss: 0.4674 - Accuracy: 0.8945 The model was fine-tuned to compare [google/fnet-base](https://huggingface.co/google/fnet-base) as introduced in [this paper](https://arxiv.org/abs/2105.03824) against [bert-base-cased](https://huggingface.co/bert-base-cased). ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure This model is trained using the [run_glue](https://github.com/huggingface/transformers/blob/master/examples/pytorch/text-classification/run_glue.py) script. The following command was used: ```bash #!/usr/bin/bash python ../run_glue.py \\n --model_name_or_path google/fnet-base \\n --task_name sst2 \\n --do_train \\n --do_eval \\n --max_seq_length 512 \\n --per_device_train_batch_size 16 \\n --learning_rate 2e-5 \\n --num_train_epochs 3 \\n --output_dir fnet-base-finetuned-sst2 \\n --push_to_hub \\n --hub_strategy all_checkpoints \\n --logging_strategy epoch \\n --save_strategy epoch \\n --evaluation_strategy epoch \\n``` ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Accuracy | Validation Loss | |:-------------:|:-----:|:-----:|:--------:|:---------------:| | 0.2956 | 1.0 | 4210 | 0.8819 | 0.3128 | | 0.1746 | 2.0 | 8420 | 0.8979 | 0.3850 | | 0.1204 | 3.0 | 12630 | 0.8945 | 0.4674 | ### Framework versions - Transformers 4.11.0.dev0 - Pytorch 1.9.0 - Datasets 1.12.1 - Tokenizers 0.10.3
{"language": ["en"], "license": "apache-2.0", "tags": ["generated_from_trainer", "fnet-bert-base-comparison"], "datasets": ["glue"], "metrics": ["accuracy"], "model-index": [{"name": "fnet-base-finetuned-sst2", "results": [{"task": {"type": "text-classification", "name": "Text Classification"}, "dataset": {"name": "GLUE SST2", "type": "glue", "args": "sst2"}, "metrics": [{"type": "accuracy", "value": 0.8944954128440367, "name": "Accuracy"}]}]}]}
text-classification
gchhablani/fnet-base-finetuned-sst2
[ "transformers", "pytorch", "tensorboard", "rust", "fnet", "text-classification", "generated_from_trainer", "fnet-bert-base-comparison", "en", "dataset:glue", "arxiv:2105.03824", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[ "2105.03824" ]
[ "en" ]
TAGS #transformers #pytorch #tensorboard #rust #fnet #text-classification #generated_from_trainer #fnet-bert-base-comparison #en #dataset-glue #arxiv-2105.03824 #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us
fnet-base-finetuned-sst2 ======================== This model is a fine-tuned version of google/fnet-base on the GLUE SST2 dataset. It achieves the following results on the evaluation set: * Loss: 0.4674 * Accuracy: 0.8945 The model was fine-tuned to compare google/fnet-base as introduced in this paper against bert-base-cased. Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ This model is trained using the run\_glue script. The following command was used: ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 16 * eval\_batch\_size: 8 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 3.0 ### Training results ### Framework versions * Transformers 4.11.0.dev0 * Pytorch 1.9.0 * Datasets 1.12.1 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3.0", "### Training results", "### Framework versions\n\n\n* Transformers 4.11.0.dev0\n* Pytorch 1.9.0\n* Datasets 1.12.1\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #rust #fnet #text-classification #generated_from_trainer #fnet-bert-base-comparison #en #dataset-glue #arxiv-2105.03824 #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3.0", "### Training results", "### Framework versions\n\n\n* Transformers 4.11.0.dev0\n* Pytorch 1.9.0\n* Datasets 1.12.1\n* Tokenizers 0.10.3" ]
[ 90, 98, 4, 34 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #rust #fnet #text-classification #generated_from_trainer #fnet-bert-base-comparison #en #dataset-glue #arxiv-2105.03824 #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3.0### Training results### Framework versions\n\n\n* Transformers 4.11.0.dev0\n* Pytorch 1.9.0\n* Datasets 1.12.1\n* Tokenizers 0.10.3" ]
[ -0.13063226640224457, 0.15633131563663483, -0.0037925252690911293, 0.11203409731388092, 0.10461338609457016, -0.009861338883638382, 0.12661795318126678, 0.16349272429943085, -0.11580837517976761, 0.06316039711236954, 0.15490630269050598, 0.1429654210805893, 0.04123261198401451, 0.18948093056678772, -0.05874737352132797, -0.2199392020702362, 0.02797965705394745, 0.07121839374303818, -0.054610490798950195, 0.13441020250320435, 0.10405363887548447, -0.11449993401765823, 0.0932154580950737, 0.035935480147600174, -0.19936297833919525, -0.011124072596430779, -0.0005550032947212458, -0.08129789680242538, 0.10687530785799026, 0.017396055161952972, 0.08939015120267868, 0.02981581725180149, 0.03562062978744507, -0.14452964067459106, 0.0056946901604533195, 0.062086403369903564, 0.00092480075545609, 0.1255127191543579, 0.04625246301293373, -0.007567607332020998, 0.09029750525951385, -0.1046624407172203, 0.04411865025758743, 0.020654739812016487, -0.10070418566465378, -0.2709973156452179, -0.09050595760345459, 0.08346740156412125, 0.04028705507516861, 0.08496937155723572, 0.00040999046177603304, 0.18604964017868042, -0.01222275011241436, 0.11255290359258652, 0.26449301838874817, -0.3073347210884094, -0.059075888246297836, 0.025794774293899536, 0.0064407833851873875, 0.06442445516586304, -0.08867183327674866, -0.04175342991948128, 0.05119956657290459, 0.047084495425224304, 0.17069603502750397, -0.005674343556165695, -0.018662497401237488, -0.01976717822253704, -0.1417272835969925, -0.0775144025683403, 0.1959732323884964, 0.047194115817546844, -0.0452163927257061, -0.0673254132270813, -0.08256525546312332, -0.17563487589359283, -0.028148649260401726, -0.011444833129644394, 0.04169340431690216, -0.039965614676475525, -0.07059433311223984, -0.020428480580449104, -0.08025042712688446, -0.03841989114880562, -0.046485334634780884, 0.13423210382461548, 0.055206071585416794, 0.03951743617653847, -0.0316801555454731, 0.08464034646749496, -0.018299555405974388, -0.15670868754386902, 0.00040981906931847334, 0.008804244920611382, 0.03739367052912712, -0.01736285351216793, -0.032547298818826675, -0.08269580453634262, 0.019832247868180275, 0.12673035264015198, -0.11679986119270325, 0.06346418708562851, 0.015051589347422123, 0.05338345840573311, -0.0823562741279602, 0.17666569352149963, -0.0290383230894804, 0.0307563878595829, 0.026505332440137863, 0.08698103576898575, 0.04459889978170395, -0.02380429208278656, -0.10421646386384964, 0.028630105778574944, 0.14289671182632446, 0.005146459210664034, -0.03461004048585892, 0.05977455899119377, -0.045425333082675934, -0.04085938632488251, 0.06445733457803726, -0.11116056144237518, 0.011621400713920593, 0.00044130062451586127, -0.09109426289796829, -0.03252977505326271, 0.021522335708141327, -0.00864247977733612, -0.05097212642431259, 0.05620585009455681, -0.09146568924188614, 0.007124002557247877, -0.06363824754953384, -0.11520379036664963, 0.01581026241183281, -0.11959714442491531, -0.002699497388675809, -0.1089189276099205, -0.14425615966320038, -0.01837061159312725, 0.05058383569121361, -0.025914940983057022, -0.0896802768111229, -0.049672868102788925, -0.09426629543304443, 0.02425595186650753, -0.015957778319716454, 0.07887307554483414, -0.06591194868087769, 0.08837869763374329, 0.0402858704328537, 0.07137258350849152, -0.03602999821305275, 0.04139500856399536, -0.0784967914223671, 0.03722416236996651, -0.18634210526943207, 0.06024167686700821, -0.0588490329682827, 0.0562281608581543, -0.1098199114203453, -0.11847174167633057, 0.02833804301917553, -0.03466188535094261, 0.08629939705133438, 0.10089240223169327, -0.15412063896656036, -0.07549135386943817, 0.18851380050182343, -0.08410783112049103, -0.12087847292423248, 0.13110466301441193, -0.03991724178195, -0.0005008832085877657, 0.05830791965126991, 0.22815270721912384, 0.07839261740446091, -0.05640382692217827, -0.03120187669992447, -0.004218417685478926, 0.056883230805397034, -0.08858876675367355, 0.08376684039831161, 0.008970614522695541, 0.05215118080377579, 0.02382316254079342, -0.020018836483359337, 0.030172089114785194, -0.08699626475572586, -0.08231104165315628, -0.057634178549051285, -0.0847942903637886, 0.0395156666636467, 0.04896559566259384, 0.085788294672966, -0.11441800743341446, -0.09346102923154831, 0.00899489689618349, 0.09607084095478058, -0.07996120303869247, 0.04754983261227608, -0.09285339713096619, 0.12577758729457855, -0.060171764343976974, -0.008010689169168472, -0.1890554577112198, 0.002996897790580988, 0.04327888414263725, -0.006943043787032366, -0.0016399146988987923, -0.012384600937366486, 0.06187395751476288, 0.05335979163646698, -0.04247988015413284, -0.0369383879005909, -0.033413805067539215, -0.015020554885268211, -0.11645109951496124, -0.18868239223957062, -0.03757066652178764, -0.034698646515607834, 0.11190339177846909, -0.17388039827346802, 0.05636288970708847, 0.058224327862262726, 0.11816849559545517, 0.027149008587002754, -0.02961898222565651, -0.012199647724628448, 0.04524216800928116, -0.040020156651735306, -0.07441188395023346, 0.06467930227518082, 0.038477081805467606, -0.0929902121424675, -0.022192904725670815, -0.10324739664793015, 0.18369130790233612, 0.12562769651412964, -0.0006781669799238443, -0.051467813551425934, -0.013368522748351097, -0.07582661509513855, -0.025659918785095215, -0.011854519136250019, 0.029444551095366478, 0.18420574069023132, 0.008648110553622246, 0.1694212257862091, -0.10795796662569046, -0.06051081791520119, 0.04598398879170418, -0.02880842611193657, -0.008404575288295746, 0.12188856303691864, 0.0023433833848685026, -0.10419286042451859, 0.15016961097717285, 0.11519934237003326, -0.06997606158256531, 0.11930801719427109, -0.07269870489835739, -0.05238637700676918, -0.02686835639178753, 0.008327978663146496, 0.018042195588350296, 0.09764431416988373, -0.09955422580242157, -0.018946988508105278, 0.04220057651400566, 0.02424871362745762, 0.025213340297341347, -0.18747174739837646, 0.0014426866546273232, 0.0378492996096611, -0.06024162098765373, -0.004153205547481775, -0.009553560055792332, -0.0010891371639445424, 0.10583967715501785, 0.012650016695261002, -0.0829068124294281, 0.039985038340091705, 0.00892771128565073, -0.07517937570810318, 0.19816654920578003, -0.10037701576948166, -0.19453631341457367, -0.1128833070397377, -0.039358969777822495, -0.0855742022395134, -0.006700264289975166, 0.06084170937538147, -0.08822425454854965, -0.024503212422132492, -0.09890531748533249, -0.045181065797805786, -0.012304885312914848, 0.03484485670924187, 0.07599799335002899, -0.012380246073007584, 0.10611307621002197, -0.12071480602025986, -0.024149037897586823, -0.03593846410512924, 0.011456144042313099, 0.05634208396077156, 0.00892501138150692, 0.08890581130981445, 0.10901306569576263, -0.028440648689866066, 0.051646888256073, -0.031503159552812576, 0.23684518039226532, -0.04647887498140335, -0.03624913468956947, 0.13397109508514404, 0.0004287174961064011, 0.08576217293739319, 0.0813814178109169, 0.04096377268433571, -0.07712243497371674, -0.009418899193406105, 0.0055204154923558235, -0.03407372161746025, -0.2271113246679306, -0.03416678309440613, -0.03929072245955467, 0.020765453577041626, 0.11208493262529373, 0.047345120459795, 0.03553140535950661, 0.05425295978784561, 0.018916208297014236, 0.05288437753915787, -0.030659440904855728, 0.08983194082975388, 0.11400288343429565, 0.05064994841814041, 0.13473404943943024, -0.04515247046947479, -0.02823680453002453, 0.048377662897109985, -0.002433949848636985, 0.19940131902694702, -0.04144316911697388, 0.17221161723136902, 0.043075770139694214, 0.1924562007188797, 0.007562489248812199, 0.06979893893003464, -0.030760448426008224, -0.005231582093983889, -0.008554150350391865, -0.04285431280732155, -0.05821991711854935, 0.005189583171159029, -0.04531104490160942, 0.06922867894172668, -0.11856632679700851, 0.04238196462392807, 0.05632586404681206, 0.29192957282066345, 0.029188983142375946, -0.37035730481147766, -0.11157792806625366, -0.015739955008029938, -0.030478358268737793, -0.04239088296890259, 0.011899220757186413, 0.11510417610406876, -0.0897291973233223, 0.053587716072797775, -0.07642748206853867, 0.09408147633075714, -0.0711061879992485, 0.03527676686644554, 0.04610827937722206, 0.10399871319532394, 0.007797189522534609, 0.06642729043960571, -0.2723133862018585, 0.2539733946323395, 0.0168149471282959, 0.05572367459535599, -0.0685204342007637, 0.011051103472709656, 0.013551155105233192, 0.05040520802140236, 0.08040108531713486, 0.000967521860729903, -0.04329884424805641, -0.15111668407917023, -0.12764613330364227, 0.019946599379181862, 0.06591150164604187, -0.01305406354367733, 0.08375781774520874, -0.002510834950953722, 0.00672059366479516, 0.040556441992521286, -0.018693989142775536, -0.03143439069390297, -0.09134958684444427, 0.014838696457445621, 0.060506705194711685, -0.052714549005031586, -0.08286454528570175, -0.12293194234371185, -0.08703682571649551, 0.19172890484333038, -0.006368591915816069, -0.07997357845306396, -0.1183437630534172, 0.07543320208787918, 0.0750763863325119, -0.09050185233354568, 0.03079194389283657, -0.013024372048676014, 0.12397533655166626, 0.006440191995352507, -0.06937482953071594, 0.08778965473175049, -0.051547929644584656, -0.16751229763031006, -0.03421979770064354, 0.1292639672756195, 0.02789887972176075, 0.06132403016090393, -0.012717606499791145, 0.023007389158010483, -0.04030200466513634, -0.072586290538311, 0.03254525735974312, 0.0010567267891019583, 0.11101605743169785, -0.008316283114254475, -0.005813507363200188, 0.023243838921189308, -0.07502855360507965, -0.012216025032103062, 0.19287173449993134, 0.2598513662815094, -0.10139179974794388, 0.04272756725549698, 0.027167685329914093, -0.04014362767338753, -0.1525976061820984, 0.007239512167870998, 0.08735556900501251, 0.015635890886187553, -0.014053914695978165, -0.16497549414634705, 0.04335738345980644, 0.08901513367891312, -0.017982086166739464, 0.07383543998003006, -0.2933061420917511, -0.11565849184989929, 0.10940925776958466, 0.12217571586370468, 0.09801682829856873, -0.14232610166072845, -0.0419468879699707, -0.015194159932434559, -0.10476759821176529, 0.11601293832063675, -0.10654283314943314, 0.10379815846681595, -0.047635726630687714, 0.06407041102647781, 0.00958494283258915, -0.056945525109767914, 0.12801238894462585, 0.005692858248949051, 0.0746660903096199, -0.04752299562096596, 0.011951659806072712, 0.09785611927509308, -0.0782160833477974, 0.0642547458410263, -0.10825541615486145, 0.057282064110040665, -0.12708042562007904, -0.00792262889444828, -0.0784040242433548, 0.024450013414025307, -0.030641162768006325, -0.031962983310222626, -0.056421078741550446, 0.014327485114336014, 0.0703808069229126, -0.008604411035776138, 0.17678502202033997, 0.04890294745564461, 0.1412046104669571, 0.20197352766990662, 0.07084232568740845, -0.10379855334758759, -0.0964064672589302, 0.0007039987831376493, -0.012401307933032513, 0.051076799631118774, -0.1682175248861313, 0.030786538496613503, 0.14742203056812286, 0.0027169862296432257, 0.11752926558256149, 0.06319882720708847, -0.06321156024932861, -0.007134811021387577, 0.049133121967315674, -0.18155427277088165, -0.08285916596651077, -0.010584049858152866, 0.010095035657286644, -0.14054149389266968, 0.06606565415859222, 0.10521182417869568, -0.07349129021167755, -0.025234419852495193, 0.00028883255436085165, 0.009552503004670143, -0.02224339358508587, 0.1863895207643509, 0.07228333503007889, 0.06988339126110077, -0.10634329915046692, 0.09283725917339325, 0.05232072249054909, -0.07614095509052277, 0.042675863951444626, 0.0670136958360672, -0.11214848607778549, -0.02277013100683689, 0.061373841017484665, 0.14844553172588348, -0.020398838445544243, -0.062468890100717545, -0.17536185681819916, -0.1063779816031456, 0.09143218398094177, 0.12016201764345169, 0.10274738073348999, 0.015708038583397865, -0.041042134165763855, -0.01863032393157482, -0.11133535206317902, 0.09828272461891174, 0.07069218158721924, 0.062345054000616074, -0.15972255170345306, 0.11580965667963028, -0.005582467652857304, 0.0673426017165184, -0.007885712198913097, 0.015531334094703197, -0.094784215092659, 0.0008056078222580254, -0.09358330070972443, 0.020181704312562943, -0.029838014394044876, -0.003756989259272814, -0.01978219859302044, -0.04112142696976662, -0.052657920867204666, 0.038761645555496216, -0.10572616010904312, -0.03540357947349548, 0.024233359843492508, 0.025262825191020966, -0.10956046730279922, -0.03016810119152069, 0.00004374065974843688, -0.08225184679031372, 0.08771076053380966, 0.052139971405267715, -0.00394732179120183, 0.011389168910682201, -0.0036440121475607157, 0.009537899866700172, 0.06617105007171631, 0.011675015091896057, 0.061572082340717316, -0.11589525640010834, -0.003293219953775406, 0.011826855130493641, 0.0013611342292279005, 0.022601554170250893, 0.12110871821641922, -0.11655819416046143, -0.010821192525327206, -0.023522883653640747, -0.022827301174402237, -0.07513058185577393, 0.06335283815860748, 0.10025003552436829, 0.048545386642217636, 0.18745556473731995, -0.06630514562129974, 0.016041036695241928, -0.20688487589359283, 0.0048309508711099625, 0.006904290523380041, -0.14436574280261993, -0.05657172203063965, -0.02251015417277813, 0.06533834338188171, -0.06768489629030228, 0.1141919195652008, 0.015339010395109653, -0.014805036596953869, 0.03599223867058754, -0.043198004364967346, -0.022587396204471588, 0.005286360625177622, 0.15932518243789673, 0.01039932481944561, -0.032152608036994934, 0.11329957842826843, 0.013813790865242481, 0.10409053415060043, 0.12376110255718231, 0.17200680077075958, 0.12915633618831635, 0.033689770847558975, 0.10319431871175766, 0.026541225612163544, -0.038830678910017014, -0.1638840138912201, 0.06827042251825333, -0.04830608516931534, 0.1259995549917221, 0.0037670086603611708, 0.18351177871227264, 0.11120174825191498, -0.156941220164299, 0.04635832458734512, -0.028745491057634354, -0.09243429452180862, -0.10279085487127304, -0.09493518620729446, -0.08163266628980637, -0.14313632249832153, -0.011727920733392239, -0.12314673513174057, -0.0001119606604333967, 0.06378895789384842, 0.008631679229438305, -0.01658823899924755, 0.11941222846508026, 0.0199019443243742, -0.0028313337825238705, 0.07997620105743408, -0.0009426053147763014, -0.05454117804765701, -0.06781815737485886, -0.06792928278446198, 0.01648208126425743, 0.016566617414355278, 0.06634296476840973, -0.027873553335666656, 0.013387996703386307, 0.04931917414069176, -0.020463308319449425, -0.10177630931138992, 0.007021164055913687, 0.01602855883538723, 0.05895385518670082, 0.042454756796360016, 0.012704790569841862, -0.003998691216111183, -0.01944013684988022, 0.18521079421043396, -0.06868687272071838, -0.03497106954455376, -0.11111391335725784, 0.2134825736284256, 0.030410684645175934, -0.04923909157514572, 0.045359402894973755, -0.07342531532049179, -0.020052069798111916, 0.19482727348804474, 0.2061251550912857, -0.025739775970578194, -0.004483010619878769, -0.0011589471250772476, -0.016989540308713913, -0.016670143231749535, 0.08055374026298523, 0.14397574961185455, 0.0015819028485566378, -0.07257590442895889, -0.023858262225985527, -0.06706216931343079, 0.00024062630836851895, -0.057562168687582016, 0.05649811401963234, 0.02420194074511528, 0.007187279872596264, -0.04374741017818451, 0.021545272320508957, -0.04005713388323784, -0.08320048451423645, 0.022942014038562775, -0.20889990031719208, -0.16554507613182068, -0.0002199718583142385, 0.04263186827301979, -0.002593814395368099, 0.058943089097738266, -0.005378745496273041, 0.01758071780204773, 0.0853714644908905, -0.029487308114767075, -0.07979992032051086, -0.07162126898765564, 0.09276914596557617, -0.16957968473434448, 0.18944604694843292, -0.04122228920459747, 0.0698293074965477, 0.1310187429189682, 0.03684106469154358, -0.10431881248950958, 0.03226975351572037, 0.03390989080071449, -0.01958799734711647, -0.004574302118271589, 0.10153369605541229, -0.0165591798722744, 0.054169923067092896, 0.04157818853855133, -0.09150781482458115, -0.04808119311928749, -0.063088059425354, -0.012918472290039062, -0.036404240876436234, -0.03994256258010864, -0.05341881513595581, 0.11710771918296814, 0.18869613111019135, -0.04988042265176773, -0.01513571199029684, -0.0680389553308487, 0.009178905747830868, 0.0669013038277626, -0.017664512619376183, -0.035580288618803024, -0.251682847738266, 0.011223016306757927, 0.05258801579475403, -0.015884650871157646, -0.2378324270248413, -0.09532994776964188, -0.006329922471195459, -0.07142023742198944, -0.08623926341533661, 0.0746576189994812, 0.04345089569687843, 0.05326208472251892, -0.06762698292732239, 0.0311188492923975, -0.09114693105220795, 0.1469976007938385, -0.14606402814388275, -0.0775352269411087 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # fnet-base-finetuned-stsb This model is a fine-tuned version of [google/fnet-base](https://huggingface.co/google/fnet-base) on the GLUE STSB dataset. It achieves the following results on the evaluation set: - Loss: 0.7894 - Pearson: 0.8256 - Spearmanr: 0.8219 - Combined Score: 0.8238 The model was fine-tuned to compare [google/fnet-base](https://huggingface.co/google/fnet-base) as introduced in [this paper](https://arxiv.org/abs/2105.03824) against [bert-base-cased](https://huggingface.co/bert-base-cased). ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure This model is trained using the [run_glue](https://github.com/huggingface/transformers/blob/master/examples/pytorch/text-classification/run_glue.py) script. The following command was used: ```bash #!/usr/bin/bash python ../run_glue.py \\n --model_name_or_path google/fnet-base \\n --task_name stsb \\n --do_train \\n --do_eval \\n --max_seq_length 512 \\n --per_device_train_batch_size 16 \\n --learning_rate 2e-5 \\n --num_train_epochs 3 \\n --output_dir fnet-base-finetuned-stsb \\n --push_to_hub \\n --hub_strategy all_checkpoints \\n --logging_strategy epoch \\n --save_strategy epoch \\n --evaluation_strategy epoch \\n``` ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Combined Score | Validation Loss | Pearson | Spearmanr | |:-------------:|:-----:|:----:|:--------------:|:---------------:|:-------:|:---------:| | 1.5473 | 1.0 | 360 | 0.8120 | 0.7751 | 0.8115 | 0.8125 | | 0.6954 | 2.0 | 720 | 0.8145 | 0.8717 | 0.8160 | 0.8130 | | 0.4828 | 3.0 | 1080 | 0.8238 | 0.7894 | 0.8256 | 0.8219 | ### Framework versions - Transformers 4.11.0.dev0 - Pytorch 1.9.0 - Datasets 1.12.1 - Tokenizers 0.10.3
{"language": ["en"], "license": "apache-2.0", "tags": ["generated_from_trainer", "fnet-bert-base-comparison"], "datasets": ["glue"], "metrics": ["spearmanr"], "model-index": [{"name": "fnet-base-finetuned-stsb", "results": [{"task": {"type": "text-classification", "name": "Text Classification"}, "dataset": {"name": "GLUE STSB", "type": "glue", "args": "stsb"}, "metrics": [{"type": "spearmanr", "value": 0.8219397497728022, "name": "Spearmanr"}]}]}]}
text-classification
gchhablani/fnet-base-finetuned-stsb
[ "transformers", "pytorch", "tensorboard", "fnet", "text-classification", "generated_from_trainer", "fnet-bert-base-comparison", "en", "dataset:glue", "arxiv:2105.03824", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[ "2105.03824" ]
[ "en" ]
TAGS #transformers #pytorch #tensorboard #fnet #text-classification #generated_from_trainer #fnet-bert-base-comparison #en #dataset-glue #arxiv-2105.03824 #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us
fnet-base-finetuned-stsb ======================== This model is a fine-tuned version of google/fnet-base on the GLUE STSB dataset. It achieves the following results on the evaluation set: * Loss: 0.7894 * Pearson: 0.8256 * Spearmanr: 0.8219 * Combined Score: 0.8238 The model was fine-tuned to compare google/fnet-base as introduced in this paper against bert-base-cased. Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ This model is trained using the run\_glue script. The following command was used: ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 16 * eval\_batch\_size: 8 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 3.0 ### Training results ### Framework versions * Transformers 4.11.0.dev0 * Pytorch 1.9.0 * Datasets 1.12.1 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3.0", "### Training results", "### Framework versions\n\n\n* Transformers 4.11.0.dev0\n* Pytorch 1.9.0\n* Datasets 1.12.1\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #fnet #text-classification #generated_from_trainer #fnet-bert-base-comparison #en #dataset-glue #arxiv-2105.03824 #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3.0", "### Training results", "### Framework versions\n\n\n* Transformers 4.11.0.dev0\n* Pytorch 1.9.0\n* Datasets 1.12.1\n* Tokenizers 0.10.3" ]
[ 88, 98, 4, 34 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #fnet #text-classification #generated_from_trainer #fnet-bert-base-comparison #en #dataset-glue #arxiv-2105.03824 #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3.0### Training results### Framework versions\n\n\n* Transformers 4.11.0.dev0\n* Pytorch 1.9.0\n* Datasets 1.12.1\n* Tokenizers 0.10.3" ]
[ -0.1281575709581375, 0.15705668926239014, -0.0038979940582066774, 0.11255989223718643, 0.11293601244688034, -0.008617952466011047, 0.13138744235038757, 0.1563730537891388, -0.1094919964671135, 0.05590956658124924, 0.1562153697013855, 0.15063650906085968, 0.03187095746397972, 0.18714870512485504, -0.05448957160115242, -0.23206175863742828, 0.030974131077528, 0.07522018253803253, -0.05673399940133095, 0.13729923963546753, 0.09973176568746567, -0.11717205494642258, 0.09386496245861053, 0.041752949357032776, -0.20222944021224976, -0.015307755209505558, -0.0008101215353235602, -0.08269140124320984, 0.11289821565151215, 0.02265351265668869, 0.08919014781713486, 0.03242024779319763, 0.03147246316075325, -0.1466279774904251, 0.007479942869395018, 0.055549394339323044, 0.0026599117554724216, 0.11788346618413925, 0.03937623277306557, -0.014160647056996822, 0.07863719761371613, -0.09087078273296356, 0.046092916280031204, 0.026117689907550812, -0.10794810950756073, -0.2786095142364502, -0.08820846676826477, 0.07192650437355042, 0.042675234377384186, 0.0806850865483284, 0.001147752278484404, 0.17639178037643433, -0.007389090955257416, 0.11422055959701538, 0.2610849142074585, -0.3091604709625244, -0.061695314943790436, 0.024227019399404526, 0.009995708242058754, 0.06274503469467163, -0.08376740664243698, -0.031031707301735878, 0.04775812104344368, 0.04504694044589996, 0.17843511700630188, -0.011732942424714565, -0.007466572802513838, -0.025801893323659897, -0.14371579885482788, -0.07526436448097229, 0.19688530266284943, 0.04901329055428505, -0.048377830535173416, -0.06737475097179413, -0.08691056817770004, -0.16888527572155, -0.03213018923997879, -0.018070582300424576, 0.04411018267273903, -0.0378425307571888, -0.060805536806583405, -0.029689611867070198, -0.07623965293169022, -0.042504265904426575, -0.042007382959127426, 0.15460588037967682, 0.05135969817638397, 0.03275564685463905, -0.03648478910326958, 0.08528219908475876, -0.016176627948880196, -0.15604232251644135, -0.0033359206281602383, 0.008210553787648678, 0.032338954508304596, -0.01879490725696087, -0.03313892334699631, -0.09054049104452133, 0.012796161696314812, 0.12658193707466125, -0.09896866977214813, 0.0699896514415741, 0.014115668833255768, 0.05199545621871948, -0.0832819789648056, 0.18305599689483643, -0.03047999180853367, 0.014890378341078758, 0.025784319266676903, 0.0863259807229042, 0.045972537249326706, -0.02756713703274727, -0.10970760136842728, 0.026695188134908676, 0.13855181634426117, 0.006172229070216417, -0.03736800700426102, 0.07175908982753754, -0.04684898629784584, -0.04453456029295921, 0.056356143206357956, -0.11108183860778809, 0.012465346604585648, 0.0007881103083491325, -0.08858437836170197, -0.03560861945152283, 0.026957271620631218, -0.012466381303966045, -0.04220158979296684, 0.05419426038861275, -0.0943819209933281, 0.009732727892696857, -0.05831371992826462, -0.1146949976682663, 0.013262145221233368, -0.11782565712928772, 0.0005620947922579944, -0.11043663322925568, -0.13709686696529388, -0.008001538924872875, 0.05364624038338661, -0.021408166736364365, -0.0810130313038826, -0.055306028574705124, -0.09359939396381378, 0.02663268707692623, -0.015616829507052898, 0.05365283414721489, -0.06507189571857452, 0.08449108898639679, 0.049848102033138275, 0.07236256450414658, -0.03752796724438667, 0.04536004737019539, -0.07848503440618515, 0.0464148111641407, -0.20472228527069092, 0.07016371190547943, -0.064207062125206, 0.06198544800281525, -0.1068328395485878, -0.11787286400794983, 0.030897412449121475, -0.03552781045436859, 0.08240031450986862, 0.09914099425077438, -0.14732807874679565, -0.08291295915842056, 0.19005797803401947, -0.08365947753190994, -0.12725262343883514, 0.12337704747915268, -0.04553937166929245, 0.0029195500537753105, 0.05737419053912163, 0.2257438600063324, 0.0889558345079422, -0.0515265017747879, -0.02331758849322796, -0.0051168533973395824, 0.04387769103050232, -0.07846325635910034, 0.08052174746990204, 0.006332707591354847, 0.04367716237902641, 0.02254851721227169, -0.029947886243462563, 0.04004385322332382, -0.08367564529180527, -0.08474674820899963, -0.05332755297422409, -0.08056257665157318, 0.056404486298561096, 0.04767722263932228, 0.08231600373983383, -0.11374399065971375, -0.094481460750103, 0.02864118292927742, 0.09102724492549896, -0.08461901545524597, 0.04763771593570709, -0.09820594638586044, 0.12363352626562119, -0.06146226450800896, -0.004213334526866674, -0.18391123414039612, -0.009381342679262161, 0.0438222773373127, -0.023048149421811104, -0.0010736447293311357, -0.017531832680106163, 0.0634535625576973, 0.05774131044745445, -0.039399147033691406, -0.0408325120806694, -0.033703941851854324, -0.009450753219425678, -0.11244195699691772, -0.18618963658809662, -0.04849305376410484, -0.034880541265010834, 0.11852548271417618, -0.17111770808696747, 0.06201837584376335, 0.06472091376781464, 0.11162162572145462, 0.02296465076506138, -0.02818126603960991, -0.0076725417748093605, 0.041496098041534424, -0.039293959736824036, -0.0763016790151596, 0.06855007261037827, 0.03613912686705589, -0.0994340106844902, -0.021636441349983215, -0.11005594581365585, 0.18589626252651215, 0.12711931765079498, -0.015304340980947018, -0.046145275235176086, -0.0037261333782225847, -0.06693658232688904, -0.0252322256565094, 0.00010479353659320623, 0.02630312740802765, 0.18688923120498657, 0.007668614853173494, 0.17470361292362213, -0.10448402166366577, -0.054649028927087784, 0.04829766973853111, -0.027804838493466377, -0.012250205501914024, 0.11106427013874054, 0.000900426646694541, -0.11244355887174606, 0.14791768789291382, 0.12212676554918289, -0.06123341992497444, 0.1253422647714615, -0.06269760429859161, -0.042313165962696075, -0.03154568001627922, 0.0070209321565926075, 0.016009759157896042, 0.09681913256645203, -0.12338456511497498, -0.019060473889112473, 0.03688754513859749, 0.026065392419695854, 0.022046322003006935, -0.18368276953697205, 0.0016608438454568386, 0.046017080545425415, -0.06232096627354622, -0.0001330666127614677, -0.01134573481976986, -0.0014391003642231226, 0.09911268204450607, 0.018035314977169037, -0.08723576366901398, 0.04871227592229843, 0.008767826482653618, -0.07373929023742676, 0.20202793180942535, -0.10205624997615814, -0.19618737697601318, -0.11792904138565063, -0.0520332008600235, -0.09464605152606964, -0.00033909876947291195, 0.06213480234146118, -0.07916445285081863, -0.022073807194828987, -0.09520765393972397, -0.03123565763235092, -0.01737889274954796, 0.03542753681540489, 0.07313533127307892, -0.02203269489109516, 0.10872673243284225, -0.1269455999135971, -0.02306712418794632, -0.0358131118118763, 0.008673591539263725, 0.055851276963949203, 0.009536282159388065, 0.09724908322095871, 0.1170153021812439, -0.033818624913692474, 0.05197916179895401, -0.028282886371016502, 0.24284608662128448, -0.053264424204826355, -0.02976847253739834, 0.12733469903469086, -0.0040460084564983845, 0.08623170107603073, 0.08496475964784622, 0.04557865113019943, -0.08525460958480835, -0.01157840620726347, 0.00595470005646348, -0.03817666694521904, -0.21714363992214203, -0.036886055022478104, -0.04140350595116615, 0.02079310268163681, 0.10649195313453674, 0.04592718183994293, 0.043558333069086075, 0.057499635964632034, 0.023834481835365295, 0.04960625246167183, -0.02408022992312908, 0.09037080407142639, 0.1317465603351593, 0.04990197345614433, 0.13514135777950287, -0.04064502939581871, -0.03152943775057793, 0.039630502462387085, -0.002475862158462405, 0.19950714707374573, -0.02927609719336033, 0.1829756200313568, 0.04599745571613312, 0.1883370578289032, 0.011177031323313713, 0.06271716207265854, -0.024891022592782974, -0.006736312061548233, -0.009674341417849064, -0.0412435419857502, -0.05800659582018852, 0.0024435357190668583, -0.04474163055419922, 0.07293359190225601, -0.117747962474823, 0.040190309286117554, 0.06010587513446808, 0.29027169942855835, 0.022407572716474533, -0.37493225932121277, -0.11181744188070297, -0.016597270965576172, -0.031712714582681656, -0.04552937671542168, 0.010863134637475014, 0.11205030232667923, -0.09440278261899948, 0.06324154883623123, -0.08447496592998505, 0.09077057987451553, -0.07360748946666718, 0.03601958230137825, 0.05221237242221832, 0.09796657413244247, 0.006393694784492254, 0.06149907410144806, -0.26434561610221863, 0.25069257616996765, 0.018371766433119774, 0.05161698907613754, -0.06146470457315445, 0.015569853596389294, 0.02125987596809864, 0.06923633813858032, 0.07857105880975723, 0.0007500528590753675, -0.02767954021692276, -0.16410666704177856, -0.11515739560127258, 0.016607077792286873, 0.07020550966262817, -0.02121029421687126, 0.08431950211524963, -0.0010764591861516237, 0.004067974630743265, 0.04312531650066376, -0.008349082432687283, -0.027957666665315628, -0.09104249626398087, 0.016294151544570923, 0.06238500773906708, -0.04210955649614334, -0.08233670145273209, -0.1198863536119461, -0.08412427455186844, 0.1865774542093277, -0.008332050405442715, -0.0823029950261116, -0.12076611816883087, 0.06184208020567894, 0.06703545898199081, -0.09185026586055756, 0.042081426829099655, -0.017016833648085594, 0.12382151186466217, 0.003344601020216942, -0.07244402170181274, 0.09798984974622726, -0.04916444793343544, -0.16366566717624664, -0.03181470185518265, 0.13521257042884827, 0.034096188843250275, 0.05754973739385605, -0.012549868784844875, 0.019313739612698555, -0.026896705850958824, -0.0765208750963211, 0.03267578408122063, 0.002446891972795129, 0.09423114359378815, -0.015256565995514393, 0.0032036362681537867, 0.028266185894608498, -0.07761038839817047, 0.005427155178040266, 0.19771218299865723, 0.2606421709060669, -0.1043548434972763, 0.03651893138885498, 0.027820715680718422, -0.04207947105169296, -0.1520952433347702, 0.017168138176202774, 0.08070502430200577, 0.007420012727379799, -0.010656541213393211, -0.1764611452817917, 0.05012203007936478, 0.08809427171945572, -0.01788947917521, 0.08023256808519363, -0.29865652322769165, -0.11554376780986786, 0.11132355779409409, 0.12564530968666077, 0.09193845093250275, -0.13787555694580078, -0.04598912596702576, -0.0075193652883172035, -0.12548284232616425, 0.1158299669623375, -0.0956348180770874, 0.10974547266960144, -0.04320225492119789, 0.05354843661189079, 0.007337958551943302, -0.052445266395807266, 0.12752960622310638, 0.01908416859805584, 0.0783768892288208, -0.0478614941239357, 0.003130370983853936, 0.10798399150371552, -0.0758182629942894, 0.06092115119099617, -0.10174112766981125, 0.04936999827623367, -0.12913434207439423, -0.01087163481861353, -0.08215732127428055, 0.02880539558827877, -0.029542503878474236, -0.03560418263077736, -0.058059368282556534, 0.009000681340694427, 0.07482077181339264, -0.0021140656899660826, 0.17803633213043213, 0.047338198870420456, 0.12804824113845825, 0.2045678347349167, 0.07827051728963852, -0.11816922575235367, -0.10215629637241364, -0.0021673408336937428, -0.009365938603878021, 0.0566975399851799, -0.15991105139255524, 0.03947640210390091, 0.1441853940486908, 0.004068439826369286, 0.11697175353765488, 0.06757407635450363, -0.058885324746370316, -0.00002974093695229385, 0.04177243635058403, -0.17993171513080597, -0.10290152579545975, -0.014580353163182735, -0.012066712602972984, -0.13221070170402527, 0.07946693897247314, 0.11126816272735596, -0.07109289616346359, -0.018744582310318947, 0.0011641265591606498, -0.0008233633125200868, -0.025426305830478668, 0.18059362471103668, 0.0713382288813591, 0.07033462822437286, -0.10616692155599594, 0.09460733085870743, 0.0462157279253006, -0.0725565180182457, 0.04061013460159302, 0.06810374557971954, -0.11764568090438843, -0.022825488820672035, 0.037216611206531525, 0.14856918156147003, -0.027179433032870293, -0.05499974638223648, -0.17361967265605927, -0.1086450144648552, 0.08841122686862946, 0.13100364804267883, 0.10317601263523102, 0.017121080309152603, -0.04885329306125641, -0.009807179681956768, -0.11012768745422363, 0.09655274450778961, 0.05846559628844261, 0.0660039484500885, -0.16399246454238892, 0.11977937817573547, -0.0003578494652174413, 0.07169348001480103, -0.012192845344543457, 0.001448655384592712, -0.0843949168920517, 0.004430484492331743, -0.09232339262962341, 0.012558856047689915, -0.04001414775848389, 0.00048618309665471315, -0.022317882627248764, -0.04360825940966606, -0.0546182319521904, 0.03691510483622551, -0.10589302331209183, -0.03589541092514992, 0.030760591849684715, 0.02635170891880989, -0.11072052270174026, -0.031555552035570145, 0.0018842692952603102, -0.08543401211500168, 0.09491559118032455, 0.053661517798900604, -0.007116627413779497, 0.009966611862182617, -0.003835842479020357, 0.002103820675984025, 0.0713348463177681, 0.007812848314642906, 0.06204405426979065, -0.11863148212432861, -0.004516935441643, 0.004596107639372349, 0.001546198152936995, 0.019018597900867462, 0.12120135128498077, -0.12007837742567062, -0.014022485353052616, -0.022460926324129105, -0.022654950618743896, -0.0753025934100151, 0.05987093597650528, 0.10378355532884598, 0.041243866086006165, 0.19044536352157593, -0.06453124433755875, 0.015417633578181267, -0.2059982270002365, -0.0010957218473777175, 0.009144444018602371, -0.1515446901321411, -0.05387648567557335, -0.025656811892986298, 0.05819327011704445, -0.07224544882774353, 0.11503966152667999, 0.004568712320178747, -0.01583913527429104, 0.03687077388167381, -0.044159963726997375, -0.016699714586138725, 0.008686945773661137, 0.16097450256347656, 0.013965492136776447, -0.037191856652498245, 0.12147503346204758, 0.023390216752886772, 0.1060599610209465, 0.12157408893108368, 0.1685730367898941, 0.12814003229141235, 0.026453150436282158, 0.10737672448158264, 0.032515060156583786, -0.030444564297795296, -0.18784967064857483, 0.06720752269029617, -0.04578623175621033, 0.13226191699504852, 0.006823073141276836, 0.17648069560527802, 0.11036133766174316, -0.15301413834095, 0.049124132841825485, -0.021638398990035057, -0.09448863565921783, -0.10050928592681885, -0.09679119288921356, -0.07743744552135468, -0.15149177610874176, -0.01236912701278925, -0.11908751726150513, -0.001917796558700502, 0.06672867387533188, 0.0058901347219944, -0.021161947399377823, 0.13932976126670837, 0.023673847317695618, -0.0022931741550564766, 0.0803397074341774, -0.0035189997870475054, -0.05596965178847313, -0.07125981897115707, -0.07409729808568954, 0.013776594772934914, 0.013752772472798824, 0.05871286615729332, -0.02784240059554577, 0.009659827686846256, 0.051329080015420914, -0.02629757858812809, -0.10809190571308136, 0.009442382492125034, 0.021296720951795578, 0.054612502455711365, 0.020937973633408546, 0.013347321189939976, -0.011912370100617409, -0.017500825226306915, 0.17539910972118378, -0.06457335501909256, -0.022280963137745857, -0.10723160207271576, 0.20094625651836395, 0.036107197403907776, -0.03869583457708359, 0.040720485150814056, -0.06905907392501831, -0.020572103559970856, 0.18964605033397675, 0.20552918314933777, -0.026153136044740677, 0.0006357349921017885, -0.004643670748919249, -0.01797187142074108, -0.007700672838836908, 0.08245248347520828, 0.13317352533340454, -0.0074555822648108006, -0.06725732237100601, -0.026400936767458916, -0.06664355099201202, -0.004993689712136984, -0.048690151423215866, 0.06622577458620071, 0.027980800718069077, 0.012009805999696255, -0.046264056116342545, 0.022495536133646965, -0.042431484907865524, -0.07840681821107864, 0.030966809019446373, -0.20489253103733063, -0.15987305343151093, -0.008346200920641422, 0.03857562318444252, 0.0004496309265960008, 0.062375955283641815, -0.0009975176071748137, 0.012196631170809269, 0.0908537283539772, -0.02237413451075554, -0.08646247535943985, -0.07932375371456146, 0.09022057801485062, -0.17671364545822144, 0.2005920559167862, -0.04314102232456207, 0.049184780567884445, 0.1326240599155426, 0.04266604781150818, -0.10272050648927689, 0.0379687063395977, 0.03511279076337814, -0.008898447267711163, -0.004219701513648033, 0.09855833649635315, -0.012647976167500019, 0.07372915744781494, 0.03857356309890747, -0.09686969965696335, -0.039119016379117966, -0.07064490765333176, -0.0207537654787302, -0.040169861167669296, -0.052368659526109695, -0.05137869715690613, 0.11046379059553146, 0.19000554084777832, -0.049329470843076706, -0.017489463090896606, -0.06654652208089828, 0.005614506546407938, 0.07303186506032944, -0.011176830157637596, -0.04266827553510666, -0.253805011510849, 0.010820526629686356, 0.046582285314798355, -0.017032980918884277, -0.2275182157754898, -0.1029951274394989, -0.004221665672957897, -0.06776802986860275, -0.07437815517187119, 0.07514068484306335, 0.04294868931174278, 0.05498082563281059, -0.06696301698684692, 0.028071772307157516, -0.09679107367992401, 0.15699414908885956, -0.15248030424118042, -0.07556789368391037 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # fnet-base-finetuned-wnli This model is a fine-tuned version of [google/fnet-base](https://huggingface.co/google/fnet-base) on the GLUE WNLI dataset. It achieves the following results on the evaluation set: - Loss: 0.6887 - Accuracy: 0.5493 The model was fine-tuned to compare [google/fnet-base](https://huggingface.co/google/fnet-base) as introduced in [this paper](https://arxiv.org/abs/2105.03824) against [bert-base-cased](https://huggingface.co/bert-base-cased). ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure This model is trained using the [run_glue](https://github.com/huggingface/transformers/blob/master/examples/pytorch/text-classification/run_glue.py) script. The following command was used: ```bash #!/usr/bin/bash python ../run_glue.py \\n --model_name_or_path google/fnet-base \\n --task_name wnli \\n --do_train \\n --do_eval \\n --max_seq_length 512 \\n --per_device_train_batch_size 16 \\n --learning_rate 2e-5 \\n --num_train_epochs 5 \\n --output_dir fnet-base-finetuned-wnli \\n --push_to_hub \\n --hub_strategy all_checkpoints \\n --logging_strategy epoch \\n --save_strategy epoch \\n --evaluation_strategy epoch \\n``` ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.7052 | 1.0 | 40 | 0.6902 | 0.5634 | | 0.6957 | 2.0 | 80 | 0.7013 | 0.4366 | | 0.6898 | 3.0 | 120 | 0.6898 | 0.5352 | | 0.6958 | 4.0 | 160 | 0.6874 | 0.5634 | | 0.6982 | 5.0 | 200 | 0.6887 | 0.5493 | ### Framework versions - Transformers 4.11.0.dev0 - Pytorch 1.9.0 - Datasets 1.12.1 - Tokenizers 0.10.3
{"language": ["en"], "license": "apache-2.0", "tags": ["generated_from_trainer", "fnet-bert-base-comparison"], "datasets": ["glue"], "metrics": ["accuracy"], "model-index": [{"name": "fnet-base-finetuned-wnli", "results": [{"task": {"type": "text-classification", "name": "Text Classification"}, "dataset": {"name": "GLUE WNLI", "type": "glue", "args": "wnli"}, "metrics": [{"type": "accuracy", "value": 0.5492957746478874, "name": "Accuracy"}]}]}]}
text-classification
gchhablani/fnet-base-finetuned-wnli
[ "transformers", "pytorch", "tensorboard", "fnet", "text-classification", "generated_from_trainer", "fnet-bert-base-comparison", "en", "dataset:glue", "arxiv:2105.03824", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[ "2105.03824" ]
[ "en" ]
TAGS #transformers #pytorch #tensorboard #fnet #text-classification #generated_from_trainer #fnet-bert-base-comparison #en #dataset-glue #arxiv-2105.03824 #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us
fnet-base-finetuned-wnli ======================== This model is a fine-tuned version of google/fnet-base on the GLUE WNLI dataset. It achieves the following results on the evaluation set: * Loss: 0.6887 * Accuracy: 0.5493 The model was fine-tuned to compare google/fnet-base as introduced in this paper against bert-base-cased. Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ This model is trained using the run\_glue script. The following command was used: ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 16 * eval\_batch\_size: 8 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 5.0 ### Training results ### Framework versions * Transformers 4.11.0.dev0 * Pytorch 1.9.0 * Datasets 1.12.1 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5.0", "### Training results", "### Framework versions\n\n\n* Transformers 4.11.0.dev0\n* Pytorch 1.9.0\n* Datasets 1.12.1\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #fnet #text-classification #generated_from_trainer #fnet-bert-base-comparison #en #dataset-glue #arxiv-2105.03824 #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5.0", "### Training results", "### Framework versions\n\n\n* Transformers 4.11.0.dev0\n* Pytorch 1.9.0\n* Datasets 1.12.1\n* Tokenizers 0.10.3" ]
[ 88, 98, 4, 34 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #fnet #text-classification #generated_from_trainer #fnet-bert-base-comparison #en #dataset-glue #arxiv-2105.03824 #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5.0### Training results### Framework versions\n\n\n* Transformers 4.11.0.dev0\n* Pytorch 1.9.0\n* Datasets 1.12.1\n* Tokenizers 0.10.3" ]
[ -0.1294347047805786, 0.15776823461055756, -0.003917243331670761, 0.11227939277887344, 0.11287269741296768, -0.00867973268032074, 0.13006214797496796, 0.15599386394023895, -0.10833613574504852, 0.05695851519703865, 0.15625059604644775, 0.14928914606571198, 0.031990837305784225, 0.18835246562957764, -0.054748013615608215, -0.2318466156721115, 0.030150001868605614, 0.0764521062374115, -0.05639369785785675, 0.13710667192935944, 0.0989472046494484, -0.11860295385122299, 0.09347143769264221, 0.04175164923071861, -0.2037433683872223, -0.01586032286286354, 0.00032077240757644176, -0.08281534165143967, 0.11295787245035172, 0.022520827129483223, 0.08912119269371033, 0.03228167071938515, 0.03050021082162857, -0.1462295800447464, 0.007699727546423674, 0.05618569254875183, 0.0025992360897362232, 0.11889952421188354, 0.03863006457686424, -0.013525396585464478, 0.07942727953195572, -0.09125499427318573, 0.04518340900540352, 0.02592192031443119, -0.1080249696969986, -0.2819972038269043, -0.08688072115182877, 0.07268423587083817, 0.04202193394303322, 0.0803443118929863, 0.0008178367861546576, 0.17575936019420624, -0.007282824721187353, 0.1144152283668518, 0.2596985697746277, -0.3110000193119049, -0.06116798520088196, 0.02316102758049965, 0.009494342841207981, 0.06345420330762863, -0.08541600406169891, -0.031247681006789207, 0.048284538090229034, 0.04325330629944801, 0.1794067770242691, -0.011458450928330421, -0.007149836979806423, -0.025910677388310432, -0.14341889321804047, -0.0757712796330452, 0.19806008040905, 0.04967270791530609, -0.047597505152225494, -0.06660094112157822, -0.08804943412542343, -0.1688326746225357, -0.03264717012643814, -0.01801031455397606, 0.04462956637144089, -0.03791727125644684, -0.0589226633310318, -0.028534654527902603, -0.0764043927192688, -0.042577486485242844, -0.042390674352645874, 0.15392567217350006, 0.05139201879501343, 0.032932400703430176, -0.03843959793448448, 0.08476367592811584, -0.018588144332170486, -0.15685492753982544, -0.003073766129091382, 0.00831099133938551, 0.032669827342033386, -0.018471626564860344, -0.03288761153817177, -0.09086716920137405, 0.013486159965395927, 0.12598945200443268, -0.09839624166488647, 0.06968382745981216, 0.012926696799695492, 0.051633335649967194, -0.08377796411514282, 0.18277320265769958, -0.029339900240302086, 0.013655705377459526, 0.02643161453306675, 0.08627751469612122, 0.045253686606884, -0.027602221816778183, -0.10944601148366928, 0.026082325726747513, 0.138589009642601, 0.005100409034639597, -0.03699839860200882, 0.07159482687711716, -0.046671394258737564, -0.04377603530883789, 0.055555734783411026, -0.11096695065498352, 0.013195594772696495, 0.0012843089643865824, -0.08894145488739014, -0.036723051220178604, 0.026743998751044273, -0.01389769185334444, -0.043164223432540894, 0.05528248846530914, -0.09538555145263672, 0.009111303836107254, -0.059108372777700424, -0.11533742398023605, 0.01289414893835783, -0.11949043720960617, 0.0013519255444407463, -0.109888456761837, -0.1352292001247406, -0.008098151534795761, 0.05253935232758522, -0.02088603377342224, -0.08179537206888199, -0.05587518587708473, -0.09437811374664307, 0.027021823450922966, -0.01534327119588852, 0.0546845868229866, -0.0649983137845993, 0.08562931418418884, 0.05025998502969742, 0.0732530802488327, -0.03711319342255592, 0.045747533440589905, -0.07925648242235184, 0.04529445618391037, -0.20424382388591766, 0.06939747184515, -0.06434474140405655, 0.06229047104716301, -0.10715609043836594, -0.117185078561306, 0.029869243502616882, -0.03632883355021477, 0.08210492134094238, 0.09986089169979095, -0.1464376151561737, -0.08419061452150345, 0.19336776435375214, -0.08402501791715622, -0.1270311027765274, 0.12291108816862106, -0.04557105898857117, 0.002800210379064083, 0.05785496532917023, 0.22697393596172333, 0.08953249454498291, -0.05094270780682564, -0.023491637781262398, -0.005242811515927315, 0.043609559535980225, -0.07905299216508865, 0.07979247719049454, 0.006977790035307407, 0.04260342940688133, 0.022792303934693336, -0.029363535344600677, 0.04053501412272453, -0.08387166261672974, -0.08405832201242447, -0.054650142788887024, -0.08046764135360718, 0.05724374204874039, 0.04899771884083748, 0.08289357274770737, -0.11314118653535843, -0.09415262937545776, 0.027980055660009384, 0.09097029268741608, -0.08321060240268707, 0.04656745120882988, -0.09828027337789536, 0.1251775026321411, -0.0622311495244503, -0.0028876904398202896, -0.18514208495616913, -0.0072322809137403965, 0.04435204342007637, -0.02490418776869774, -0.000853859179187566, -0.01722896471619606, 0.06357277929782867, 0.05737774819135666, -0.038729820400476456, -0.04096408560872078, -0.034338995814323425, -0.009837169200181961, -0.11381691694259644, -0.1878732591867447, -0.04747845232486725, -0.03478720784187317, 0.11789482831954956, -0.17237557470798492, 0.06186696141958237, 0.06596499681472778, 0.11241570860147476, 0.024192502722144127, -0.02798614464700222, -0.0078679658472538, 0.04189065843820572, -0.03845973685383797, -0.07504423707723618, 0.06836918741464615, 0.03562292829155922, -0.09856722503900528, -0.022597767412662506, -0.10956339538097382, 0.1883760541677475, 0.12811586260795593, -0.01528948824852705, -0.04474876448512077, -0.0030113121028989553, -0.06595233082771301, -0.025376109406352043, 0.0001992616307688877, 0.028176143765449524, 0.18498769402503967, 0.006765210535377264, 0.17534932494163513, -0.10435620695352554, -0.05398137867450714, 0.04991708695888519, -0.026386620476841927, -0.010547580197453499, 0.1123865395784378, 0.0013204298447817564, -0.11275755614042282, 0.14809755980968475, 0.12280955165624619, -0.06073061749339104, 0.12605755031108856, -0.06380902230739594, -0.043400008231401443, -0.03124178946018219, 0.006571766920387745, 0.015356606803834438, 0.09826050698757172, -0.12633495032787323, -0.019942620769143105, 0.03755846247076988, 0.025127369910478592, 0.0213486235588789, -0.1836351752281189, 0.0026766532100737095, 0.0459781289100647, -0.06142926961183548, -0.002965846098959446, -0.010835528373718262, -0.0011737890308722854, 0.09970453381538391, 0.017555667087435722, -0.08726724237203598, 0.04739336669445038, 0.009003933519124985, -0.07242876291275024, 0.20206153392791748, -0.10128787904977798, -0.19561681151390076, -0.1166614294052124, -0.04983629286289215, -0.0937039852142334, -0.0009387843892909586, 0.06328993290662766, -0.07944092154502869, -0.021747061982750893, -0.09374503046274185, -0.031456977128982544, -0.016678253188729286, 0.03649067506194115, 0.07167337089776993, -0.02152007259428501, 0.10843265056610107, -0.1268416792154312, -0.022187968716025352, -0.036466311663389206, 0.009407520294189453, 0.055414751172065735, 0.010888321325182915, 0.09761083126068115, 0.11708344519138336, -0.03449703007936478, 0.051886748522520065, -0.02834194153547287, 0.2431972175836563, -0.0549328438937664, -0.029489416629076004, 0.12720809876918793, -0.0036414244677871466, 0.08575236052274704, 0.0850614607334137, 0.04563970863819122, -0.08425978571176529, -0.012521781027317047, 0.00530668580904603, -0.037102844566106796, -0.21723859012126923, -0.0365767739713192, -0.04194740578532219, 0.021104680374264717, 0.10723866522312164, 0.04582393541932106, 0.04446491226553917, 0.05713071674108505, 0.02403874322772026, 0.05055225268006325, -0.02454719878733158, 0.09011561423540115, 0.1325213462114334, 0.04956340417265892, 0.13514669239521027, -0.041864071041345596, -0.031858645379543304, 0.03866573050618172, -0.0034419160801917315, 0.2011357694864273, -0.028623657301068306, 0.18386606872081757, 0.04475536197423935, 0.19028805196285248, 0.012321713380515575, 0.06256132572889328, -0.0251434538513422, -0.006521121598780155, -0.009183596819639206, -0.04077095165848732, -0.057392667979002, 0.0030708396807312965, -0.04522627592086792, 0.07294609397649765, -0.11834508180618286, 0.03892838582396507, 0.06002010405063629, 0.29006633162498474, 0.022332480177283287, -0.37384721636772156, -0.1128094345331192, -0.01751832291483879, -0.03198004513978958, -0.04660427197813988, 0.010848252102732658, 0.11287738382816315, -0.09319595247507095, 0.06235712766647339, -0.08436550945043564, 0.09173392504453659, -0.07310128211975098, 0.036443956196308136, 0.0506972000002861, 0.09780693054199219, 0.006120195612311363, 0.06156545877456665, -0.2656126320362091, 0.25246939063072205, 0.01898382045328617, 0.05165523290634155, -0.06228072568774223, 0.014799673110246658, 0.020547624677419662, 0.07127467542886734, 0.07885634899139404, 0.0006794908549636602, -0.028727702796459198, -0.16280202567577362, -0.11423774808645248, 0.01696728728711605, 0.07045066356658936, -0.02243482507765293, 0.08354400843381882, -0.0007569814915768802, 0.0032902355305850506, 0.04280740022659302, -0.010342855006456375, -0.027652321383357048, -0.09026366472244263, 0.016356363892555237, 0.06345270574092865, -0.041483666747808456, -0.08211879432201385, -0.11932772397994995, -0.08241575956344604, 0.1833699345588684, -0.01318553276360035, -0.08128651231527328, -0.12019886076450348, 0.06338709592819214, 0.06619332730770111, -0.09245581924915314, 0.042988114058971405, -0.017607081681489944, 0.1234922781586647, 0.0032546466682106256, -0.07252337038516998, 0.09986564517021179, -0.04792711138725281, -0.16395272314548492, -0.03170733153820038, 0.13534678518772125, 0.03350100293755531, 0.057126160711050034, -0.013107032515108585, 0.019576072692871094, -0.02810630574822426, -0.07615172117948532, 0.033417459577322006, 0.0019211877370253205, 0.09283176064491272, -0.016100896522402763, 0.0036490904167294502, 0.02513909339904785, -0.07741467654705048, 0.005653811618685722, 0.1960393786430359, 0.2601768672466278, -0.1054224744439125, 0.03657129034399986, 0.028584623709321022, -0.04292646795511246, -0.15217222273349762, 0.018080569803714752, 0.07971378415822983, 0.007898523472249508, -0.012302767485380173, -0.17773962020874023, 0.050347067415714264, 0.08671995997428894, -0.018084589391946793, 0.08345312625169754, -0.29868802428245544, -0.11544010043144226, 0.11149483919143677, 0.12423747777938843, 0.09513396769762039, -0.1379803866147995, -0.04662996158003807, -0.006842230912297964, -0.12511427700519562, 0.11477506905794144, -0.09774457663297653, 0.10926564782857895, -0.04369644820690155, 0.05271214619278908, 0.0077659860253334045, -0.0524640791118145, 0.12633778154850006, 0.01897483877837658, 0.07942014187574387, -0.04729471355676651, 0.0028797932900488377, 0.10791897773742676, -0.07520560175180435, 0.06073889136314392, -0.10178165137767792, 0.04971356689929962, -0.12877590954303741, -0.010309635661542416, -0.082453154027462, 0.0295798871666193, -0.029397226870059967, -0.03437960892915726, -0.05814070999622345, 0.008260298520326614, 0.07413773238658905, -0.0016154507175087929, 0.17978344857692719, 0.04773912951350212, 0.12875743210315704, 0.20528703927993774, 0.07694612443447113, -0.11820431053638458, -0.10233582556247711, -0.0013466635718941689, -0.00923001766204834, 0.05888792872428894, -0.16294585168361664, 0.03940162807703018, 0.1446576565504074, 0.005404313560575247, 0.11615433543920517, 0.06740670651197433, -0.05869709327816963, -0.00048802205128595233, 0.0418846420943737, -0.18120436370372772, -0.1063351184129715, -0.014679894782602787, -0.012210211716592312, -0.13097167015075684, 0.08067499846220016, 0.1108740046620369, -0.07254352420568466, -0.018809350207448006, 0.000591395131777972, -0.0013111312873661518, -0.02480907179415226, 0.1805391013622284, 0.07104653865098953, 0.07086271047592163, -0.10655967146158218, 0.09469111263751984, 0.04809468612074852, -0.07629316300153732, 0.040003977715969086, 0.06678993254899979, -0.11828560382127762, -0.02318212017416954, 0.03783298283815384, 0.14980897307395935, -0.025542154908180237, -0.05531641095876694, -0.1733895242214203, -0.1079295352101326, 0.08900009095668793, 0.1341186910867691, 0.10272374749183655, 0.016925804316997528, -0.04834591969847679, -0.009077857248485088, -0.11072597652673721, 0.09780983626842499, 0.05804075300693512, 0.06632594019174576, -0.16388888657093048, 0.12005561590194702, 0.00006893343379488215, 0.07082127034664154, -0.01233591791242361, 0.0014726483495905995, -0.08466386049985886, 0.004197877366095781, -0.0903686061501503, 0.012840780429542065, -0.03902212157845497, 0.00046823700540699065, -0.02279692143201828, -0.04429886117577553, -0.05395001173019409, 0.03722048178315163, -0.10660385340452194, -0.035357195883989334, 0.03133080527186394, 0.02680857852101326, -0.11128820478916168, -0.031047474592924118, 0.002136401366442442, -0.08466892689466476, 0.0947682186961174, 0.05381849408149719, -0.007051385007798672, 0.010299705900251865, -0.0031958429608494043, 0.003333411179482937, 0.07069303095340729, 0.00807509757578373, 0.062125466763973236, -0.11772271990776062, -0.0033852620981633663, 0.003918701782822609, 0.0015556140569970012, 0.018365269526839256, 0.12068989127874374, -0.1207766979932785, -0.014938155189156532, -0.021776234731078148, -0.022403638809919357, -0.07529860734939575, 0.05935674160718918, 0.10323891043663025, 0.04002806171774864, 0.1898861676454544, -0.06376539915800095, 0.014657828956842422, -0.20644508302211761, -0.0007039525080472231, 0.008912970311939716, -0.15322327613830566, -0.05396716296672821, -0.026020385324954987, 0.05872125178575516, -0.07323415577411652, 0.11428996920585632, 0.005394491832703352, -0.014936160296201706, 0.03706309571862221, -0.04498806968331337, -0.019579971209168434, 0.009365580976009369, 0.16106203198432922, 0.014660797081887722, -0.037143524736166, 0.12152601033449173, 0.0238568764179945, 0.10519958287477493, 0.12467579543590546, 0.1681404858827591, 0.12871408462524414, 0.027525760233402252, 0.10744131356477737, 0.03219867870211601, -0.03000696748495102, -0.1889362335205078, 0.0689808651804924, -0.046327803283929825, 0.1342916637659073, 0.005838233977556229, 0.1764954775571823, 0.11104877293109894, -0.15142668783664703, 0.05000590160489082, -0.02190127596259117, -0.09401895105838776, -0.10003934055566788, -0.09683806449174881, -0.07801129668951035, -0.1528715342283249, -0.012698844075202942, -0.11861390620470047, -0.00156453310046345, 0.0643860250711441, 0.004968239460140467, -0.022064432501792908, 0.13960690796375275, 0.025364646688103676, -0.0021634565200656652, 0.08261991292238235, -0.003702986752614379, -0.05754280835390091, -0.0716606080532074, -0.07397709786891937, 0.014353367500007153, 0.01204715110361576, 0.05748964473605156, -0.02806028723716736, 0.008202285505831242, 0.05155220627784729, -0.025701100006699562, -0.10751278698444366, 0.009841586463153362, 0.021482164040207863, 0.05424986407160759, 0.020782899111509323, 0.013040878809988499, -0.012086511589586735, -0.017886120826005936, 0.1773153394460678, -0.06466637551784515, -0.021009275689721107, -0.10658837109804153, 0.19975638389587402, 0.03737352043390274, -0.03866131603717804, 0.04084712266921997, -0.06903629750013351, -0.019598117098212242, 0.1893388032913208, 0.20313337445259094, -0.02429080381989479, 0.0008256763103418052, -0.0044187759049236774, -0.01814758963882923, -0.007503405679017305, 0.0820104330778122, 0.1334698349237442, -0.0071779401041567326, -0.06694548577070236, -0.025810882449150085, -0.06658927351236343, -0.004836720880120993, -0.0482044480741024, 0.066391222178936, 0.027743671089410782, 0.010540149174630642, -0.046184465289115906, 0.022228645160794258, -0.04199829697608948, -0.07882942259311676, 0.03226859122514725, -0.20561571419239044, -0.16009460389614105, -0.009006503038108349, 0.04061219468712807, 0.001191785093396902, 0.06098309904336929, -0.0008008016739040613, 0.011895515024662018, 0.09127578884363174, -0.022390378639101982, -0.08587329834699631, -0.08225788921117783, 0.08901824802160263, -0.1791907101869583, 0.20023761689662933, -0.0428975448012352, 0.048247937113046646, 0.13208943605422974, 0.04311031848192215, -0.10308555513620377, 0.03702815622091293, 0.034668512642383575, -0.009859585203230381, -0.0046586100943386555, 0.10009314119815826, -0.011757995933294296, 0.07440435141324997, 0.03818235918879509, -0.09599507600069046, -0.039281949400901794, -0.0724983662366867, -0.02112523838877678, -0.04013347998261452, -0.051686834543943405, -0.05065472051501274, 0.10975289344787598, 0.189988374710083, -0.04916232079267502, -0.017519403249025345, -0.06736118346452713, 0.00519917719066143, 0.07361429184675217, -0.009850573725998402, -0.04280546307563782, -0.25230857729911804, 0.011408863589167595, 0.047809310257434845, -0.016395779326558113, -0.22591710090637207, -0.10197950899600983, -0.005344944540411234, -0.06733774393796921, -0.07399795949459076, 0.07431349903345108, 0.04495703801512718, 0.05470620095729828, -0.0674663856625557, 0.023926597088575363, -0.09551819413900375, 0.15745952725410461, -0.15249231457710266, -0.07582691311836243 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # fnet-large-finetuned-cola-copy This model is a fine-tuned version of [google/fnet-large](https://huggingface.co/google/fnet-large) on the GLUE COLA dataset. It achieves the following results on the evaluation set: - Loss: 0.6243 - Matthews Correlation: 0.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------------------:| | 0.6195 | 1.0 | 2138 | 0.6527 | 0.0 | | 0.6168 | 2.0 | 4276 | 0.6259 | 0.0 | | 0.616 | 3.0 | 6414 | 0.6243 | 0.0 | ### Framework versions - Transformers 4.11.0.dev0 - Pytorch 1.9.0 - Datasets 1.12.1 - Tokenizers 0.10.3
{"language": ["en"], "license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["glue"], "metrics": ["matthews_correlation"], "model-index": [{"name": "fnet-large-finetuned-cola-copy", "results": [{"task": {"type": "text-classification", "name": "Text Classification"}, "dataset": {"name": "GLUE COLA", "type": "glue", "args": "cola"}, "metrics": [{"type": "matthews_correlation", "value": 0.0, "name": "Matthews Correlation"}]}]}]}
text-classification
gchhablani/fnet-large-finetuned-cola-copy
[ "transformers", "pytorch", "tensorboard", "fnet", "text-classification", "generated_from_trainer", "en", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #tensorboard #fnet #text-classification #generated_from_trainer #en #dataset-glue #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us
fnet-large-finetuned-cola-copy ============================== This model is a fine-tuned version of google/fnet-large on the GLUE COLA dataset. It achieves the following results on the evaluation set: * Loss: 0.6243 * Matthews Correlation: 0.0 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 4 * eval\_batch\_size: 8 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 3.0 ### Training results ### Framework versions * Transformers 4.11.0.dev0 * Pytorch 1.9.0 * Datasets 1.12.1 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3.0", "### Training results", "### Framework versions\n\n\n* Transformers 4.11.0.dev0\n* Pytorch 1.9.0\n* Datasets 1.12.1\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #fnet #text-classification #generated_from_trainer #en #dataset-glue #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3.0", "### Training results", "### Framework versions\n\n\n* Transformers 4.11.0.dev0\n* Pytorch 1.9.0\n* Datasets 1.12.1\n* Tokenizers 0.10.3" ]
[ 68, 98, 4, 34 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #fnet #text-classification #generated_from_trainer #en #dataset-glue #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3.0### Training results### Framework versions\n\n\n* Transformers 4.11.0.dev0\n* Pytorch 1.9.0\n* Datasets 1.12.1\n* Tokenizers 0.10.3" ]
[ -0.09392090886831284, 0.086028553545475, -0.002810414880514145, 0.12563712894916534, 0.15835294127464294, 0.02616388164460659, 0.12096844613552094, 0.12440948188304901, -0.09253979474306107, 0.01095916610211134, 0.11961711943149567, 0.16139951348304749, 0.017056036740541458, 0.12809212505817413, -0.055080391466617584, -0.25876080989837646, -0.008076829835772514, 0.051302410662174225, -0.07248687744140625, 0.13545523583889008, 0.10696391016244888, -0.10981715470552444, 0.08594673126935959, 0.012483679689466953, -0.188598170876503, 0.0053088548593223095, 0.006561026908457279, -0.06197373941540718, 0.14454741775989532, 0.02627757005393505, 0.11637239903211594, -0.004603952635079622, 0.07419975847005844, -0.1947721242904663, 0.010915560647845268, 0.06143670529127121, -0.0008093014475889504, 0.0922541469335556, 0.04200132563710213, 0.016881262883543968, 0.12951737642288208, -0.07753071933984756, 0.047175586223602295, 0.024195468053221703, -0.10057501494884491, -0.2488769292831421, -0.06924816966056824, 0.04293599724769592, 0.0703204795718193, 0.114735446870327, -0.0025232243351638317, 0.12956556677818298, -0.07075148820877075, 0.09971623867750168, 0.2038886547088623, -0.28335192799568176, -0.06467258930206299, 0.053865209221839905, 0.00007339009607676417, 0.05563786253333092, -0.09489043802022934, -0.03489343822002411, 0.0464896559715271, 0.05855744704604149, 0.13576450943946838, -0.024170638993382454, -0.11294703930616379, -0.00035783895873464644, -0.14739225804805756, -0.03345825895667076, 0.18343965709209442, 0.04216032102704048, -0.031146908178925514, -0.0553949810564518, -0.07025839388370514, -0.13019998371601105, -0.03334832936525345, -0.016549253836274147, 0.042229484766721725, -0.017025606706738472, -0.02913014031946659, -0.02009456790983677, -0.10942849516868591, -0.06127852201461792, -0.07925374060869217, 0.12757611274719238, 0.03740452602505684, 0.026067685335874557, -0.036684900522232056, 0.1074313297867775, -0.008039964362978935, -0.12542767822742462, 0.02348942495882511, 0.014696755446493626, 0.02391907386481762, -0.029253896325826645, -0.05762016028165817, -0.07737185806035995, 0.013022209517657757, 0.11649444699287415, -0.06627753376960754, 0.045372430235147476, 0.03719029203057289, 0.052638933062553406, -0.08948004990816116, 0.17119163274765015, -0.03414352610707283, -0.020914733409881592, 0.017712917178869247, 0.04670121893286705, 0.026985853910446167, -0.018883170560002327, -0.12442363798618317, 0.01235498022288084, 0.09396601468324661, 0.002359611913561821, -0.05978254973888397, 0.08112926036119461, -0.03828165680170059, -0.03376328945159912, -0.004834178369492292, -0.09749481827020645, 0.019099729135632515, 0.006322276312857866, -0.08288158476352692, -0.019768934696912766, 0.03858035430312157, 0.014716193079948425, -0.02650129422545433, 0.09978698194026947, -0.08106034249067307, 0.02185039594769478, -0.08661425113677979, -0.10680398344993591, 0.017903147265315056, -0.0847211480140686, 0.01903758943080902, -0.10459426045417786, -0.19062873721122742, -0.0070509458892047405, 0.06475710868835449, -0.01869357004761696, -0.06680820137262344, -0.0446598045527935, -0.07923983782529831, 0.009182565845549107, -0.014331415295600891, 0.1251339614391327, -0.06613124161958694, 0.08929501473903656, 0.029013488441705704, 0.053821150213479996, -0.056043438613414764, 0.053580932319164276, -0.09583668410778046, 0.009967178106307983, -0.16321894526481628, 0.04253964126110077, -0.05672885477542877, 0.05521031841635704, -0.07788251340389252, -0.10970792174339294, 0.015046020038425922, -0.008545617572963238, 0.05209499970078468, 0.0823349803686142, -0.17201119661331177, -0.07378672808408737, 0.1421811878681183, -0.08395789563655853, -0.11804282665252686, 0.12395995855331421, -0.05760178342461586, 0.040096431970596313, 0.05442522466182709, 0.1759394258260727, 0.09057454019784927, -0.06562479585409164, 0.006790442857891321, 0.033411525189876556, 0.04206949099898338, -0.06806401163339615, 0.07068393379449844, 0.0191428791731596, 0.017440875992178917, 0.03589886054396629, -0.031538426876068115, 0.06567616760730743, -0.07883037626743317, -0.09648585319519043, -0.04541643336415291, -0.0845101922750473, 0.03634423762559891, 0.07191202789545059, 0.07480383664369583, -0.08777596801519394, -0.07665324211120605, 0.039373867213726044, 0.08542460203170776, -0.06039068102836609, 0.028123341500759125, -0.05340079590678215, 0.07857871055603027, -0.022135380655527115, -0.012152368202805519, -0.17895615100860596, -0.049802783876657486, 0.01269685197621584, -0.017068060114979744, 0.011587386019527912, 0.03449726849794388, 0.05857099965214729, 0.062182098627090454, -0.052427344024181366, -0.006858838256448507, -0.036305077373981476, -0.002348072361201048, -0.11779595166444778, -0.194713294506073, -0.033400148153305054, -0.021897103637456894, 0.16001500189304352, -0.20776410400867462, 0.05139097571372986, -0.009029606357216835, 0.08531299233436584, 0.003109408775344491, -0.004246857482939959, -0.0448564738035202, 0.05959697812795639, -0.04208480939269066, -0.048716846853494644, 0.08012443780899048, 0.02152360789477825, -0.08858314156532288, -0.049554068595170975, -0.09015779942274094, 0.17343412339687347, 0.1291024088859558, -0.1208619773387909, -0.06354694813489914, -0.005686518736183643, -0.07318001985549927, -0.032940808683633804, -0.04457523673772812, 0.025874445214867592, 0.19627976417541504, -0.00956712942570448, 0.1556379199028015, -0.073637954890728, -0.04745488986372948, 0.024473601952195168, -0.031531598418951035, 0.015794798731803894, 0.1174120306968689, 0.1146426871418953, -0.0827367752790451, 0.15341469645500183, 0.14470958709716797, -0.09353531897068024, 0.14427484571933746, -0.046857599169015884, -0.05337967351078987, -0.01239851489663124, -0.025734765455126762, -0.01986040733754635, 0.10185948759317398, -0.1591099053621292, 0.010827534832060337, 0.03590237349271774, 0.02313799038529396, 0.03406902775168419, -0.21511520445346832, -0.034339725971221924, 0.03387860581278801, -0.0499500147998333, -0.002659587422385812, -0.00680513633415103, 0.01076573971658945, 0.10498564690351486, -0.0029810734558850527, -0.10533218830823898, 0.05257336422801018, -0.0062987240962684155, -0.0899871438741684, 0.21725404262542725, -0.08747546374797821, -0.18725232779979706, -0.11880498379468918, -0.06220771372318268, -0.07559692859649658, -0.004758915398269892, 0.05759590119123459, -0.08066269010305405, -0.03158093988895416, -0.0806441456079483, 0.01446909736841917, -0.002284287940710783, 0.026104530319571495, 0.01951073668897152, 0.0022082950454205275, 0.08154694736003876, -0.11645926535129547, -0.015786167234182358, -0.06321795284748077, -0.04211984947323799, 0.04032707214355469, 0.04146743565797806, 0.0988055020570755, 0.15235096216201782, -0.019287779927253723, 0.02282365784049034, -0.02135869860649109, 0.24310164153575897, -0.06365299969911575, -0.018696533516049385, 0.1559664011001587, -0.009423095732927322, 0.0503767766058445, 0.11493933945894241, 0.07142814248800278, -0.07500948756933212, 0.006025242153555155, 0.03687376528978348, -0.037410885095596313, -0.2224632054567337, -0.06534454971551895, -0.05588307976722717, 0.020130153745412827, 0.07723241299390793, 0.03739004582166672, 0.04191461205482483, 0.059889692813158035, 0.04328415170311928, 0.06834448873996735, -0.02811642736196518, 0.0510883592069149, 0.15787187218666077, 0.03660351783037186, 0.12926755845546722, -0.03699519485235214, -0.0581619068980217, 0.044791772961616516, -0.015560021623969078, 0.2022491693496704, -0.011031819507479668, 0.10647973418235779, 0.05714922025799751, 0.1732620894908905, -0.01044081524014473, 0.07149824500083923, -0.01537350844591856, -0.03176766633987427, -0.01585426926612854, -0.03921106085181236, -0.030264299362897873, 0.018982039764523506, -0.0774182453751564, 0.060774918645620346, -0.1135101318359375, 0.01231792476028204, 0.05960399657487869, 0.24015723168849945, 0.03204027935862541, -0.3194168210029602, -0.09705868363380432, -0.004413720685988665, -0.03755950182676315, -0.021074343472719193, 0.033035874366760254, 0.0998033806681633, -0.10339818149805069, 0.04004545137286186, -0.07676628977060318, 0.09240566939115524, -0.04698125272989273, 0.054886672645807266, 0.09951405227184296, 0.09603190422058105, 0.020772648975253105, 0.09640488028526306, -0.2850910425186157, 0.25600531697273254, -0.0014360295608639717, 0.05562611296772957, -0.07749780267477036, 0.012023663148283958, 0.038247883319854736, 0.07425936311483383, 0.07044059038162231, -0.010851399041712284, -0.02008097432553768, -0.1768847107887268, -0.06550540030002594, 0.03150675445795059, 0.06631500273942947, -0.02683223783969879, 0.07452084869146347, -0.02882814034819603, 0.01022765226662159, 0.07610820233821869, 0.013070657849311829, -0.05542498826980591, -0.10068942606449127, 0.0006295169587247074, 0.052223872393369675, -0.06668298691511154, -0.06467423588037491, -0.11798346787691116, -0.1204783171415329, 0.1616269052028656, -0.020681016147136688, -0.052140481770038605, -0.11009234935045242, 0.08729247003793716, 0.058916110545396805, -0.08323338627815247, 0.04165558144450188, -0.002712355460971594, 0.0844990462064743, 0.02244596555829048, -0.08383654803037643, 0.09725132584571838, -0.0815984308719635, -0.15663672983646393, -0.05686290189623833, 0.1098857969045639, 0.03203533589839935, 0.0587601438164711, -0.010134214535355568, 0.0003890396619681269, -0.04276092350482941, -0.0972023457288742, 0.012183141894638538, -0.009019515477120876, 0.07961194217205048, 0.023807894438505173, -0.05628948658704758, 0.01429247297346592, -0.06137530878186226, -0.025577371940016747, 0.2017984837293625, 0.2101432830095291, -0.10181240737438202, 0.019432980567216873, 0.02815667726099491, -0.06017622724175453, -0.19818763434886932, 0.025082634761929512, 0.06268273293972015, -0.007134377025067806, 0.029622653499245644, -0.17602014541625977, 0.1417960673570633, 0.09607643634080887, -0.019160397350788116, 0.11625179648399353, -0.3190588355064392, -0.11957462131977081, 0.13578015565872192, 0.13038641214370728, 0.1082649901509285, -0.1275387704372406, -0.017696116119623184, -0.017272336408495903, -0.12869010865688324, 0.13378626108169556, -0.11559057980775833, 0.11307959258556366, -0.033666882663965225, 0.08151817321777344, 0.0013376958668231964, -0.05681246146559715, 0.11611095815896988, 0.02491697669029236, 0.09116630256175995, -0.062243860214948654, -0.00852359551936388, 0.034516509622335434, -0.03262631967663765, 0.04529916122555733, -0.09698519855737686, 0.03298477455973625, -0.10906574875116348, -0.022121058776974678, -0.07863457500934601, 0.05038856714963913, -0.03678201884031296, -0.07253073155879974, -0.04535432532429695, 0.024469682946801186, 0.058498598635196686, -0.007506924215704203, 0.13079454004764557, 0.037502311170101166, 0.1487056463956833, 0.14970152080059052, 0.06433167308568954, -0.08174005895853043, -0.0913252905011177, -0.023997897282242775, -0.008367595262825489, 0.05552287399768829, -0.1339290738105774, 0.025475962087512016, 0.14876805245876312, 0.009036448784172535, 0.1429215669631958, 0.0885363295674324, -0.024754323065280914, -0.01073932833969593, 0.05416949465870857, -0.1737722009420395, -0.09068270772695541, -0.022626888006925583, -0.06832322478294373, -0.11296725273132324, 0.05743652954697609, 0.10428833216428757, -0.08115601539611816, 0.002589004347100854, -0.0032136866357177496, 0.013669951818883419, -0.057341303676366806, 0.1853988766670227, 0.069394551217556, 0.04892005771398544, -0.1013467088341713, 0.08452849835157394, 0.04651455581188202, -0.058266013860702515, 0.004656137898564339, 0.0800386294722557, -0.0980244129896164, -0.053028371185064316, 0.05821079760789871, 0.17423874139785767, -0.0555633120238781, -0.05913792923092842, -0.1475023776292801, -0.13321906328201294, 0.07928811013698578, 0.1311376690864563, 0.11735476553440094, 0.007435607723891735, -0.07321388274431229, 0.0015353669878095388, -0.11065926402807236, 0.10537150502204895, 0.0464034266769886, 0.054856207221746445, -0.15510469675064087, 0.13737551867961884, 0.015811048448085785, 0.06363701820373535, -0.025411484763026237, 0.022845277562737465, -0.08434955775737762, 0.008706839755177498, -0.10348886996507645, -0.0216924250125885, -0.016252512112259865, 0.009890284389257431, -0.0053891371935606, -0.048445265740156174, -0.057025883346796036, 0.024999424815177917, -0.10565505921840668, -0.025227516889572144, 0.03321393206715584, 0.05191047862172127, -0.11662878841161728, -0.04512174427509308, 0.01624988205730915, -0.06121593341231346, 0.08542851358652115, 0.05370628833770752, 0.01167554035782814, 0.0522066168487072, -0.12207209318876266, 0.015587622299790382, 0.0742800235748291, 0.03451160714030266, 0.060766711831092834, -0.09618820250034332, -0.004330980591475964, 0.000620808859821409, 0.029649745672941208, 0.022910641506314278, 0.0777667984366417, -0.13724935054779053, -0.002710487926378846, -0.02783370390534401, -0.06454020738601685, -0.06714898347854614, 0.020097440108656883, 0.08303855359554291, 0.03637102618813515, 0.20598363876342773, -0.07561089843511581, 0.046382516622543335, -0.2131723165512085, 0.007946843281388283, -0.00018174469005316496, -0.11797532439231873, -0.09552253782749176, -0.05074607580900192, 0.05392405018210411, -0.06373390555381775, 0.15394343435764313, 0.04863494262099266, 0.014815868809819221, 0.02855541929602623, -0.017866145819425583, 0.0212584026157856, 0.007505857385694981, 0.1868983954191208, 0.03341247886419296, -0.030030297115445137, 0.07202771306037903, 0.038279302418231964, 0.11288387328386307, 0.11314141005277634, 0.19690823554992676, 0.13149374723434448, -0.0017040353268384933, 0.09504646062850952, 0.04710931330919266, -0.060035157948732376, -0.16356506943702698, 0.05060194432735443, -0.03684914484620094, 0.11947114020586014, -0.02734866924583912, 0.1927868127822876, 0.06847987323999405, -0.16221268475055695, 0.046570226550102234, -0.04790783300995827, -0.08729487657546997, -0.11747626960277557, -0.06214311346411705, -0.07060721516609192, -0.14227285981178284, -0.004479394759982824, -0.11955714225769043, -0.0012408922193571925, 0.11118984967470169, 0.01135226245969534, -0.034017469733953476, 0.14965499937534332, 0.004561042878776789, 0.015436336398124695, 0.06754950433969498, 0.006787540391087532, -0.03938409313559532, -0.10845154523849487, -0.05584019422531128, -0.02278803661465645, -0.009399445727467537, 0.0328291691839695, -0.06014551594853401, -0.03446387127041817, 0.03999267518520355, -0.022419964894652367, -0.091934934258461, 0.004938766360282898, 0.008898281492292881, 0.05622522905468941, 0.05688990280032158, 0.007466019131243229, 0.018164541572332382, -0.008829513564705849, 0.20546086132526398, -0.07387928664684296, -0.06927040219306946, -0.09953052550554276, 0.2376701980829239, 0.03024473413825035, -0.020175063982605934, 0.030588623136281967, -0.06754070520401001, -0.019916238263249397, 0.24630585312843323, 0.22834931313991547, -0.08888491988182068, -0.0023557317908853292, 0.022025488317012787, -0.012935125268995762, -0.015982933342456818, 0.10426705330610275, 0.14598897099494934, 0.06348761916160583, -0.0856001153588295, -0.030391816049814224, -0.061101991683244705, -0.0055675022304058075, -0.0447319820523262, 0.0732647031545639, 0.0502418652176857, 0.009062495082616806, -0.03542236611247063, 0.04821065813302994, -0.07359969615936279, -0.09477446228265762, 0.037203386425971985, -0.20104920864105225, -0.1598745882511139, -0.01462660450488329, 0.09054913371801376, 0.0001615012442925945, 0.0589400939643383, -0.030530771240592003, 0.004999163560569286, 0.08607053011655807, -0.024409007281064987, -0.09203089773654938, -0.0751798152923584, 0.09285302460193634, -0.1202358677983284, 0.22683995962142944, -0.049215227365493774, 0.07103195041418076, 0.12016253918409348, 0.053361181169748306, -0.06377849727869034, 0.06605267524719238, 0.04349633678793907, -0.03749271482229233, 0.012211945839226246, 0.07883132994174957, -0.02810114249587059, 0.0679730772972107, 0.042277514934539795, -0.1358688473701477, 0.0054893274791538715, -0.043648626655340195, -0.06824120879173279, -0.039956267923116684, -0.03296131268143654, -0.06381493806838989, 0.1260761022567749, 0.214870885014534, -0.02928794175386429, -0.012312759645283222, -0.08210945874452591, 0.007474972400814295, 0.048175226897001266, 0.016146136447787285, -0.04649002104997635, -0.21020174026489258, 0.016797954216599464, 0.041385382413864136, -0.022210748866200447, -0.2261059582233429, -0.09453583508729935, 0.006697536446154118, -0.07942066341638565, -0.08833836019039154, 0.06651146709918976, 0.08081953972578049, 0.043811965733766556, -0.05939081683754921, -0.029742924496531487, -0.0846235603094101, 0.13799507915973663, -0.1453099101781845, -0.08864983171224594 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # fnet-large-finetuned-cola-copy2 This model is a fine-tuned version of [google/fnet-large](https://huggingface.co/google/fnet-large) on the GLUE COLA dataset. It achieves the following results on the evaluation set: - Loss: 0.6173 - Matthews Correlation: 0.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------------------:| | 0.6192 | 1.0 | 2138 | 0.6443 | 0.0 | | 0.6177 | 2.0 | 4276 | 0.6296 | 0.0 | | 0.6128 | 3.0 | 6414 | 0.6173 | 0.0 | ### Framework versions - Transformers 4.11.0.dev0 - Pytorch 1.9.0 - Datasets 1.12.1 - Tokenizers 0.10.3
{"language": ["en"], "license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["glue"], "metrics": ["matthews_correlation"], "model-index": [{"name": "fnet-large-finetuned-cola-copy2", "results": [{"task": {"type": "text-classification", "name": "Text Classification"}, "dataset": {"name": "GLUE COLA", "type": "glue", "args": "cola"}, "metrics": [{"type": "matthews_correlation", "value": 0.0, "name": "Matthews Correlation"}]}]}]}
text-classification
gchhablani/fnet-large-finetuned-cola-copy2
[ "transformers", "pytorch", "tensorboard", "fnet", "text-classification", "generated_from_trainer", "en", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #tensorboard #fnet #text-classification #generated_from_trainer #en #dataset-glue #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us
fnet-large-finetuned-cola-copy2 =============================== This model is a fine-tuned version of google/fnet-large on the GLUE COLA dataset. It achieves the following results on the evaluation set: * Loss: 0.6173 * Matthews Correlation: 0.0 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 4 * eval\_batch\_size: 8 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * lr\_scheduler\_warmup\_ratio: 0.1 * num\_epochs: 3.0 ### Training results ### Framework versions * Transformers 4.11.0.dev0 * Pytorch 1.9.0 * Datasets 1.12.1 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_ratio: 0.1\n* num\\_epochs: 3.0", "### Training results", "### Framework versions\n\n\n* Transformers 4.11.0.dev0\n* Pytorch 1.9.0\n* Datasets 1.12.1\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #fnet #text-classification #generated_from_trainer #en #dataset-glue #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_ratio: 0.1\n* num\\_epochs: 3.0", "### Training results", "### Framework versions\n\n\n* Transformers 4.11.0.dev0\n* Pytorch 1.9.0\n* Datasets 1.12.1\n* Tokenizers 0.10.3" ]
[ 68, 116, 4, 34 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #fnet #text-classification #generated_from_trainer #en #dataset-glue #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_ratio: 0.1\n* num\\_epochs: 3.0### Training results### Framework versions\n\n\n* Transformers 4.11.0.dev0\n* Pytorch 1.9.0\n* Datasets 1.12.1\n* Tokenizers 0.10.3" ]
[ -0.08743564039468765, 0.11767483502626419, -0.004380743019282818, 0.10790295898914337, 0.11637401580810547, -0.0017209806246683002, 0.14107565581798553, 0.15623614192008972, -0.11030884087085724, 0.045144908130168915, 0.1322317272424698, 0.1547640860080719, 0.02968325838446617, 0.16563232243061066, -0.0642363578081131, -0.2750568687915802, 0.029009878635406494, 0.039126425981521606, -0.04970425367355347, 0.12443815171718597, 0.09249506145715714, -0.11462824791669846, 0.09580158442258835, 0.024957966059446335, -0.16143371164798737, -0.006230039056390524, 0.004855525214225054, -0.0858822911977768, 0.1152195855975151, 0.016376622021198273, 0.0930122584104538, 0.036427825689315796, 0.06748495250940323, -0.18962667882442474, 0.008104847744107246, 0.06899607926607132, 0.0016832760302349925, 0.09926356375217438, 0.04400775209069252, -0.01347266137599945, 0.12143182754516602, -0.08212513476610184, 0.07441894710063934, 0.030107466503977776, -0.1144680306315422, -0.26561182737350464, -0.09636149555444717, 0.05653825029730797, 0.05900046229362488, 0.07754601538181305, 0.0026641280855983496, 0.1647229641675949, -0.040871407836675644, 0.11897504329681396, 0.25628146529197693, -0.3051452040672302, -0.058123741298913956, 0.029499266296625137, 0.030015775933861732, 0.05616863816976547, -0.0919642299413681, -0.017476944252848625, 0.03169126436114311, 0.05059899762272835, 0.1649095118045807, -0.015477427281439304, -0.05941342934966087, -0.013972870074212551, -0.13660083711147308, -0.05296807736158371, 0.14392103254795074, 0.01850743032991886, -0.04449370875954628, -0.07281343638896942, -0.08043479174375534, -0.18101654946804047, -0.045286595821380615, -0.02345702238380909, 0.054845940321683884, -0.03331447020173073, -0.05265158787369728, -0.026161309331655502, -0.07374801486730576, -0.05033237487077713, -0.05904562398791313, 0.16344593465328217, 0.05186481028795242, 0.02747851237654686, -0.05085619539022446, 0.08638178557157516, -0.031899940222501755, -0.15726478397846222, -0.009825552813708782, 0.0012038351269438863, 0.017871549353003502, -0.034476056694984436, -0.029067736119031906, -0.09762363135814667, 0.014434999786317348, 0.165004163980484, -0.12068454176187515, 0.07703053951263428, -0.011698529124259949, 0.03547242283821106, -0.07867158949375153, 0.18422773480415344, -0.01435540895909071, 0.0006911102682352066, 0.013440216891467571, 0.06366860866546631, 0.04730484262108803, -0.03536973521113396, -0.11018085479736328, 0.036015670746564865, 0.09504545480012894, 0.026053430512547493, -0.04832237586379051, 0.08004391938447952, -0.03166641667485237, -0.02564558945596218, 0.04027101770043373, -0.11267008632421494, 0.03487589210271835, 0.002269777236506343, -0.07723380625247955, -0.037383366376161575, 0.03043130412697792, -0.0019962373189628124, -0.036616094410419464, 0.09981806576251984, -0.07799959182739258, 0.018621152266860008, -0.06932555884122849, -0.13113370537757874, 0.021362939849495888, -0.12848417460918427, -0.005631242413073778, -0.09391554445028305, -0.1546381264925003, -0.003077788045629859, 0.0627007856965065, -0.04273265600204468, -0.04208226874470711, -0.04191119223833084, -0.10450567305088043, 0.03276997432112694, -0.010382180102169514, 0.06282049417495728, -0.07663562148809433, 0.07579797506332397, 0.02918342687189579, 0.07881637662649155, -0.029357898980379105, 0.04273281618952751, -0.08799806982278824, 0.034078799188137054, -0.22850193083286285, 0.051566559821367264, -0.07510628551244736, 0.056090325117111206, -0.09116026014089584, -0.11088556051254272, 0.03380034118890762, -0.019948432222008705, 0.07322657108306885, 0.09770583361387253, -0.17262236773967743, -0.0733959823846817, 0.175649031996727, -0.10367991030216217, -0.10880356281995773, 0.11336462944746017, -0.047773491591215134, 0.009513420052826405, 0.05242976173758507, 0.20886559784412384, 0.0788106843829155, -0.10590480268001556, -0.016266174614429474, -0.016955308616161346, 0.024396853521466255, -0.030956219881772995, 0.05398307368159294, 0.015918901190161705, 0.07925659418106079, 0.021008586511015892, 0.0045506772585213184, 0.020594296976923943, -0.08010459691286087, -0.08587813377380371, -0.053115326911211014, -0.0664597600698471, 0.03868493810296059, 0.04499084874987602, 0.06367260217666626, -0.11381977796554565, -0.10220933705568314, 0.04708987474441528, 0.0733921006321907, -0.06596197187900543, 0.04993506148457527, -0.09810507297515869, 0.09512561559677124, -0.022724593058228493, -0.004561804234981537, -0.18216335773468018, -0.03642883524298668, 0.036716412752866745, -0.030655095353722572, 0.013279831036925316, -0.0196819007396698, 0.07302342355251312, 0.0695304349064827, -0.04743723198771477, -0.01539102103561163, -0.028644513338804245, 0.005288679152727127, -0.11034621298313141, -0.2167976349592209, -0.03551042824983597, -0.04038777947425842, 0.0713241919875145, -0.16449634730815887, 0.05854778364300728, 0.06711536645889282, 0.115606389939785, 0.040618471801280975, -0.017517367377877235, -0.016571570187807083, 0.05168769881129265, -0.04745340347290039, -0.07030058652162552, 0.05856065824627876, 0.017696740105748177, -0.07770188897848129, -0.007060549221932888, -0.13083787262439728, 0.16187439858913422, 0.13014593720436096, -0.0276279766112566, -0.07028574496507645, 0.000060931513871764764, -0.06569372117519379, -0.025033382698893547, -0.030358921736478806, 0.04143421724438667, 0.18133579194545746, 0.011668011546134949, 0.16289480030536652, -0.08842679113149643, -0.05776217207312584, 0.04946478456258774, -0.028119197115302086, 0.0009061484015546739, 0.10098952054977417, 0.05621805414557457, -0.08428095281124115, 0.14286209642887115, 0.12795805931091309, -0.062181439250707626, 0.14321480691432953, -0.05426683649420738, -0.04305564612150192, -0.028468569740653038, -0.020750680938363075, 0.008798385970294476, 0.1056412011384964, -0.11276597529649734, -0.009754466824233532, 0.03145276755094528, 0.03182848542928696, 0.0064464653842151165, -0.18867407739162445, 0.001119907945394516, 0.03875439614057541, -0.07149024307727814, -0.02601417899131775, -0.007211062125861645, 0.019054275006055832, 0.10553236305713654, 0.010701454244554043, -0.0831209272146225, 0.03342108428478241, 0.003800457576289773, -0.06248343363404274, 0.1928059607744217, -0.10157947987318039, -0.17510256171226501, -0.10383410006761551, -0.07098282873630524, -0.08274031430482864, -0.0027725733816623688, 0.07101235538721085, -0.09006423503160477, -0.04768822714686394, -0.10060358792543411, -0.011589167639613152, 0.013604440726339817, 0.0364745669066906, 0.031003128737211227, -0.003605401376262307, 0.07629158347845078, -0.12393850833177567, -0.033006466925144196, -0.04555657505989075, -0.013219044543802738, 0.051824234426021576, 0.0428432859480381, 0.09225337952375412, 0.12525220215320587, -0.03685353323817253, 0.04499607905745506, -0.031222356483340263, 0.23048293590545654, -0.07158584892749786, 0.002903892192989588, 0.128113254904747, -0.009865901432931423, 0.07637453079223633, 0.12956644594669342, 0.05710770934820175, -0.09038855880498886, -0.007001001387834549, 0.03252368047833443, -0.049027033150196075, -0.22198687493801117, -0.036967821419239044, -0.036309003829956055, 0.029623670503497124, 0.09615738689899445, 0.047311846166849136, 0.04563319683074951, 0.04312773793935776, 0.027418291196227074, 0.043114665895700455, -0.004948867950588465, 0.09644298255443573, 0.14630675315856934, 0.04963405057787895, 0.1411486119031906, -0.04608524590730667, -0.036003924906253815, 0.05184009671211243, -0.00012650452845264226, 0.20010317862033844, -0.01347768772393465, 0.152700275182724, 0.051011644303798676, 0.15036916732788086, 0.014462711289525032, 0.055494777858257294, -0.015461533330380917, -0.015071466565132141, -0.010587992146611214, -0.04714464768767357, -0.03068072535097599, 0.017496181651949883, -0.0679296925663948, 0.038216203451156616, -0.10787872970104218, 0.04574847221374512, 0.07012366503477097, 0.2988797128200531, 0.01976679638028145, -0.342637300491333, -0.09540979564189911, -0.00333083001896739, -0.050031568855047226, -0.029893148690462112, 0.028331151232123375, 0.10448899120092392, -0.08754544705152512, 0.08462320268154144, -0.08089683204889297, 0.09326338768005371, -0.05881118029356003, 0.04752538725733757, 0.08233179897069931, 0.10037606209516525, -0.0029365180525928736, 0.05178871750831604, -0.2691952884197235, 0.25633808970451355, 0.022381160408258438, 0.06522882729768753, -0.07073120772838593, 0.025103304535150528, 0.03175824135541916, 0.0817071795463562, 0.07234015315771103, -0.015968529507517815, -0.09858917444944382, -0.16068382561206818, -0.09530270099639893, 0.010131043381989002, 0.09713198989629745, 0.0025584474205970764, 0.09835126250982285, -0.021843675523996353, -0.004678479395806789, 0.04837504401803017, -0.0476614311337471, -0.0459146685898304, -0.08822435885667801, 0.013513493351638317, 0.047443751245737076, -0.04678517207503319, -0.06447339802980423, -0.10904688388109207, -0.07790695875883102, 0.17428742349147797, -0.016054343432188034, -0.07228447496891022, -0.12666581571102142, 0.036060772836208344, 0.06991785764694214, -0.08210190385580063, 0.04261589050292969, -0.012561564333736897, 0.11424214392900467, 0.007903912104666233, -0.07978133112192154, 0.1087435930967331, -0.0660335123538971, -0.19017748534679413, -0.045689623802900314, 0.11689799278974533, 0.024517493322491646, 0.05797130987048149, -0.009551959112286568, 0.03663337603211403, -0.01418417040258646, -0.08916807174682617, 0.026957863941788673, -0.001580505515448749, 0.08717874437570572, -0.022031525149941444, -0.03246252238750458, 0.02733585052192211, -0.06076717749238014, 0.0019508993718773127, 0.17182192206382751, 0.25466442108154297, -0.10966692864894867, 0.08250599354505539, 0.034576039761304855, -0.059216104447841644, -0.18285834789276123, 0.015208987519145012, 0.0551300011575222, -0.015696072950959206, 0.014366017654538155, -0.18076233565807343, 0.07291495054960251, 0.08906340599060059, -0.021365761756896973, 0.09372717887163162, -0.2955153286457062, -0.1298106461763382, 0.10892952978610992, 0.11701589077711105, 0.06536109745502472, -0.14358477294445038, -0.0369223952293396, -0.012758460827171803, -0.12481185048818588, 0.1328306347131729, -0.12025649100542068, 0.11335647106170654, -0.03552975878119469, 0.06847835332155228, 0.012005412019789219, -0.055629290640354156, 0.10917140543460846, 0.009400698356330395, 0.09398885071277618, -0.07044553011655807, 0.007394738961011171, 0.08134625852108002, -0.072870172560215, 0.06390547007322311, -0.10593390464782715, 0.03421108424663544, -0.09154702723026276, -0.015794863924384117, -0.07686599344015121, 0.027381381019949913, -0.03484455123543739, -0.053873900324106216, -0.06007566303014755, 0.013611371628940105, 0.07931453734636307, -0.024811390787363052, 0.19006101787090302, 0.024406960234045982, 0.15162812173366547, 0.19889359176158905, 0.08722473680973053, -0.11281854659318924, -0.0759444385766983, 0.011107340455055237, -0.014975705184042454, 0.056107304990291595, -0.1584850251674652, 0.04862050339579582, 0.13855674862861633, 0.005029216408729553, 0.12276603281497955, 0.07502426207065582, -0.03973596543073654, -0.0009424545569345355, 0.050991497933864594, -0.17286932468414307, -0.09448238462209702, 0.00866671185940504, -0.025744685903191566, -0.10720884799957275, 0.07239202409982681, 0.12616503238677979, -0.07179141789674759, -0.003281058743596077, 0.00905572809278965, 0.027756813913583755, -0.017674142494797707, 0.1783558875322342, 0.05063018202781677, 0.06191962584853172, -0.10890751332044601, 0.097181037068367, 0.04231150075793266, -0.08244256675243378, 0.04746931046247482, 0.1103028729557991, -0.10566215962171555, -0.030644213780760765, 0.04898369684815407, 0.15719570219516754, -0.04309460148215294, -0.05227024480700493, -0.17153926193714142, -0.13277235627174377, 0.0923362597823143, 0.19108040630817413, 0.08389941602945328, 0.010714779607951641, -0.053806472569704056, 0.00975420605391264, -0.11768358200788498, 0.10631024837493896, 0.03567760810256004, 0.0669296532869339, -0.1497289091348648, 0.12982189655303955, 0.005341693758964539, 0.05396641045808792, -0.02371257171034813, 0.015574776567518711, -0.10400150716304779, 0.0033690158743411303, -0.12405594438314438, 0.002822094364091754, -0.0376131571829319, 0.0062647731974720955, -0.012780656106770039, -0.041107624769210815, -0.06424278020858765, 0.025815950706601143, -0.1099792867898941, -0.026302410289645195, 0.01953716017305851, 0.03423655405640602, -0.1348583996295929, -0.025646591559052467, 0.0066924444399774075, -0.08056549727916718, 0.08922701328992844, 0.04076230525970459, -0.01307022012770176, 0.028367338702082634, -0.04695490375161171, 0.004752045031636953, 0.06955429166555405, 0.005184907931834459, 0.07118532806634903, -0.11160392314195633, -0.014185999520123005, -0.004696986172348261, 0.01286404300481081, 0.030797922983765602, 0.10816947370767593, -0.12542583048343658, 0.022001070901751518, -0.009404920972883701, -0.05724182352423668, -0.06277833878993988, 0.04870130494236946, 0.10598216205835342, 0.01417477335780859, 0.19325293600559235, -0.08172677457332611, 0.030653884634375572, -0.19802013039588928, -0.0008957354002632201, 0.015270938165485859, -0.13821306824684143, -0.0662035420536995, -0.028526103124022484, 0.06196122616529465, -0.07568599283695221, 0.14368996024131775, 0.03772798925638199, 0.0055669574066996574, 0.052137356251478195, -0.039191119372844696, -0.04591260477900505, 0.01754194125533104, 0.1303442120552063, 0.025656146928668022, -0.04710141569375992, 0.08540830761194229, 0.016667934134602547, 0.09710979461669922, 0.08531499654054642, 0.2152111679315567, 0.11764682829380035, 0.03843805938959122, 0.09950791299343109, 0.04869856312870979, -0.052275002002716064, -0.19163690507411957, 0.0727858915925026, -0.051565565168857574, 0.14714455604553223, -0.016257481649518013, 0.16115324199199677, 0.10640706866979599, -0.1558646410703659, 0.06298772990703583, -0.028543692082166672, -0.08802931010723114, -0.13325811922550201, -0.07537085562944412, -0.0834004282951355, -0.1481153666973114, -0.000605526496656239, -0.11901073157787323, 0.04053756967186928, 0.062455207109451294, 0.02047530934214592, -0.002124475548043847, 0.135965496301651, -0.010637509636580944, 0.019526617601513863, 0.06159181520342827, 0.009904839098453522, -0.050273358821868896, -0.07059496641159058, -0.06730102747678757, -0.008663766086101532, 0.003655151231214404, 0.03550635278224945, -0.014562315307557583, -0.008890142664313316, 0.04000004380941391, -0.028742238879203796, -0.10236569494009018, 0.018867669627070427, 0.020874742418527603, 0.055810313671827316, 0.03817141056060791, 0.012387007474899292, -0.0034413784742355347, -0.008348316885530949, 0.19683563709259033, -0.07859893888235092, -0.060213807970285416, -0.11723842471837997, 0.24300961196422577, 0.03733837604522705, -0.024746732786297798, 0.027223732322454453, -0.06676674634218216, -0.04147341847419739, 0.19833578169345856, 0.21840402483940125, -0.0368611216545105, 0.0028061482589691877, -0.013464203104376793, -0.011505292728543282, -0.0046491073444485664, 0.09005796164274216, 0.12546779215335846, 0.041602104902267456, -0.06710746884346008, -0.028477340936660767, -0.05119795724749565, -0.02009907364845276, -0.05785543471574783, 0.08331113308668137, 0.023867251351475716, 0.005446676164865494, -0.04139407351613045, 0.033926717936992645, -0.06702590733766556, -0.09344159811735153, 0.042351581156253815, -0.21387556195259094, -0.15279929339885712, 0.0013658956158906221, 0.07474125921726227, -0.008601312525570393, 0.05451534315943718, 0.005481261294335127, -0.01643436960875988, 0.09123165905475616, -0.024054139852523804, -0.08194858580827713, -0.08190055191516876, 0.09696811437606812, -0.15730032324790955, 0.22305946052074432, -0.03784516826272011, 0.03791552782058716, 0.1262645572423935, 0.0373552106320858, -0.0908704400062561, 0.05320734903216362, 0.04622283950448036, -0.0644288882613182, -0.01324300467967987, 0.11642850190401077, -0.030010322108864784, 0.07926376909017563, 0.04380663484334946, -0.1181393712759018, -0.015990905463695526, -0.0638398677110672, -0.06024209409952164, -0.030560800805687904, -0.042687561362981796, -0.04742871969938278, 0.11484210938215256, 0.21196763217449188, -0.027035662904381752, 0.0027457471005618572, -0.07261403650045395, 0.014278346672654152, 0.05656984820961952, -0.022736357524991035, -0.04638136550784111, -0.24358758330345154, 0.0249591376632452, 0.08043544739484787, -0.009738735854625702, -0.2280510514974594, -0.10346635431051254, 0.013476707972586155, -0.04691677913069725, -0.0958060696721077, 0.07442469149827957, 0.07281406968832016, 0.05427010729908943, -0.06060110777616501, -0.013884657062590122, -0.06724289804697037, 0.15483424067497253, -0.15512728691101074, -0.06515880674123764 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # fnet-large-finetuned-cola-copy3 This model is a fine-tuned version of [google/fnet-large](https://huggingface.co/google/fnet-large) on the GLUE COLA dataset. It achieves the following results on the evaluation set: - Loss: 0.6554 - Matthews Correlation: 0.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------------------:| | 0.6408 | 1.0 | 2138 | 0.7329 | 0.0 | | 0.6589 | 2.0 | 4276 | 0.6311 | 0.0 | | 0.6467 | 3.0 | 6414 | 0.6554 | 0.0 | ### Framework versions - Transformers 4.11.0.dev0 - Pytorch 1.9.0 - Datasets 1.12.1 - Tokenizers 0.10.3
{"language": ["en"], "license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["glue"], "metrics": ["matthews_correlation"], "model-index": [{"name": "fnet-large-finetuned-cola-copy3", "results": [{"task": {"type": "text-classification", "name": "Text Classification"}, "dataset": {"name": "GLUE COLA", "type": "glue", "args": "cola"}, "metrics": [{"type": "matthews_correlation", "value": 0.0, "name": "Matthews Correlation"}]}]}]}
text-classification
gchhablani/fnet-large-finetuned-cola-copy3
[ "transformers", "pytorch", "tensorboard", "fnet", "text-classification", "generated_from_trainer", "en", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #tensorboard #fnet #text-classification #generated_from_trainer #en #dataset-glue #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us
fnet-large-finetuned-cola-copy3 =============================== This model is a fine-tuned version of google/fnet-large on the GLUE COLA dataset. It achieves the following results on the evaluation set: * Loss: 0.6554 * Matthews Correlation: 0.0 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 0.0001 * train\_batch\_size: 4 * eval\_batch\_size: 8 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * lr\_scheduler\_warmup\_ratio: 0.1 * num\_epochs: 3.0 ### Training results ### Framework versions * Transformers 4.11.0.dev0 * Pytorch 1.9.0 * Datasets 1.12.1 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0001\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_ratio: 0.1\n* num\\_epochs: 3.0", "### Training results", "### Framework versions\n\n\n* Transformers 4.11.0.dev0\n* Pytorch 1.9.0\n* Datasets 1.12.1\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #fnet #text-classification #generated_from_trainer #en #dataset-glue #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0001\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_ratio: 0.1\n* num\\_epochs: 3.0", "### Training results", "### Framework versions\n\n\n* Transformers 4.11.0.dev0\n* Pytorch 1.9.0\n* Datasets 1.12.1\n* Tokenizers 0.10.3" ]
[ 68, 115, 4, 34 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #fnet #text-classification #generated_from_trainer #en #dataset-glue #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0001\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_ratio: 0.1\n* num\\_epochs: 3.0### Training results### Framework versions\n\n\n* Transformers 4.11.0.dev0\n* Pytorch 1.9.0\n* Datasets 1.12.1\n* Tokenizers 0.10.3" ]
[ -0.09301087260246277, 0.1165362149477005, -0.004076502285897732, 0.10862928628921509, 0.12303128093481064, 0.0038213501684367657, 0.133059561252594, 0.162727490067482, -0.08903800696134567, 0.04547015205025673, 0.1245267391204834, 0.14553114771842957, 0.031472641974687576, 0.1514068841934204, -0.0585181787610054, -0.28182074427604675, 0.021456416696310043, 0.03362289071083069, -0.07234123349189758, 0.1266171634197235, 0.08980587124824524, -0.10760901868343353, 0.09748174250125885, 0.016089145094156265, -0.13794678449630737, -0.0002208035730291158, 0.008576872758567333, -0.08170095086097717, 0.1244734674692154, 0.02164395898580551, 0.09479637444019318, 0.029363203793764114, 0.07145970314741135, -0.20165635645389557, 0.008965482003986835, 0.0746086910367012, 0.0017301983898505569, 0.10139960795640945, 0.05481478199362755, -0.005074613727629185, 0.14850464463233948, -0.0895385816693306, 0.06666826456785202, 0.033011093735694885, -0.10629595816135406, -0.24018633365631104, -0.08690046519041061, 0.049973659217357635, 0.05947898328304291, 0.09090011566877365, 0.004576602950692177, 0.136745423078537, -0.04410702735185623, 0.12025666981935501, 0.245400533080101, -0.29207703471183777, -0.060538072139024734, 0.04036868363618851, 0.027088914066553116, 0.05551164969801903, -0.10351886600255966, -0.011454152874648571, 0.026688477024435997, 0.04898132383823395, 0.15717189013957977, -0.020919444039463997, -0.07235714048147202, -0.00915495865046978, -0.1347457617521286, -0.051618024706840515, 0.14426466822624207, 0.02326381951570511, -0.03625188395380974, -0.07585056871175766, -0.08497758209705353, -0.17258550226688385, -0.045322053134441376, -0.018463578075170517, 0.04932761937379837, -0.02334989421069622, -0.04446636885404587, -0.03458685427904129, -0.08329588174819946, -0.06098838523030281, -0.05661727488040924, 0.13871821761131287, 0.0465538315474987, 0.026007093489170074, -0.04247439280152321, 0.09459111839532852, -0.011820121668279171, -0.15537500381469727, -0.003867188934236765, 0.0064421165734529495, 0.005736639257520437, -0.02222018875181675, -0.029979709535837173, -0.07612928748130798, 0.01995982974767685, 0.1382105052471161, -0.1113898977637291, 0.0739629715681076, -0.00638773525133729, 0.034046102315187454, -0.09388682246208191, 0.17717446386814117, -0.027748797088861465, -0.024996424093842506, 0.015303602442145348, 0.0695548728108406, 0.04389562830328941, -0.034024275839328766, -0.10060198605060577, 0.01912396214902401, 0.09721915423870087, 0.029909146949648857, -0.04247087240219116, 0.07904233038425446, -0.0286897923797369, -0.028557918965816498, 0.033576060086488724, -0.11084962636232376, 0.02827778458595276, 0.009111941792070866, -0.08360594511032104, -0.02684713341295719, 0.04165097326040268, -0.006631703115999699, -0.036014508455991745, 0.09757255017757416, -0.08074722439050674, 0.015272172167897224, -0.07042846828699112, -0.12352913618087769, 0.022866278886795044, -0.11513428390026093, -0.011302131228148937, -0.08967982977628708, -0.17309832572937012, -0.010134540498256683, 0.058600135147571564, -0.03917747363448143, -0.04330001026391983, -0.044305406510829926, -0.10312417149543762, 0.03176642954349518, -0.010238244198262691, 0.08443200588226318, -0.07368341088294983, 0.08627677708864212, 0.021047011017799377, 0.07302039116621017, -0.03000807575881481, 0.049749478697776794, -0.09219612181186676, 0.02706768549978733, -0.19792009890079498, 0.053515758365392685, -0.0743684321641922, 0.044923584908246994, -0.09568328410387039, -0.11124670505523682, 0.01586083695292473, -0.014961994253098965, 0.07007089257240295, 0.10570048540830612, -0.18091021478176117, -0.07235747575759888, 0.1610972285270691, -0.10606841742992401, -0.10317611694335938, 0.10625886917114258, -0.043385207653045654, 0.011974948458373547, 0.053321901708841324, 0.19396843016147614, 0.09838869422674179, -0.1038198173046112, -0.014742755331099033, 0.003399489214643836, 0.029891274869441986, -0.036803875118494034, 0.059127628803253174, 0.00892002321779728, 0.06101040914654732, 0.025395113974809647, -0.013226301409304142, 0.029538676142692566, -0.07808956503868103, -0.09155115485191345, -0.05138816684484482, -0.06921830773353577, 0.04099563509225845, 0.06105827912688255, 0.061463598161935806, -0.09841370582580566, -0.09755174815654755, 0.03208714351058006, 0.08735117316246033, -0.0725361555814743, 0.04552670568227768, -0.07639339566230774, 0.0832270011305809, -0.020866915583610535, -0.003621796378865838, -0.18997685611248016, -0.055525004863739014, 0.032778751105070114, -0.029448525980114937, 0.010995768941938877, 0.00873658712953329, 0.07626175880432129, 0.06579027324914932, -0.054681990295648575, -0.020849859341979027, -0.030833693221211433, -0.0023058729711920023, -0.10917271673679352, -0.21463541686534882, -0.035003792494535446, -0.034994710236787796, 0.0826965793967247, -0.1789235919713974, 0.05022610351443291, 0.051641810685396194, 0.10538984835147858, 0.03956175595521927, -0.01761733926832676, -0.013976276852190495, 0.05202408507466316, -0.04704863205552101, -0.06892488896846771, 0.06996322423219681, 0.011051411740481853, -0.08268366754055023, -0.00956596527248621, -0.1208646297454834, 0.15572814643383026, 0.12091722339391708, -0.038047220557928085, -0.06566265225410461, 0.0020167205948382616, -0.06787971407175064, -0.03312917798757553, -0.03694428503513336, 0.03548211604356766, 0.17580284178256989, 0.01537412591278553, 0.15890230238437653, -0.08205173164606094, -0.05036827549338341, 0.04060784727334976, -0.018859751522541046, 0.0006287301075644791, 0.11048604547977448, 0.06830944120883942, -0.0692458525300026, 0.14271607995033264, 0.126186802983284, -0.06746665388345718, 0.1517682671546936, -0.054350439459085464, -0.05576968565583229, -0.020254267379641533, -0.012002921663224697, 0.0029917543288320303, 0.10116630792617798, -0.12183132767677307, 0.0005661078612320125, 0.03244073688983917, 0.032410409301519394, 0.012811509892344475, -0.1945039927959442, -0.004458114039152861, 0.03238861635327339, -0.08343750238418579, -0.013246320188045502, 0.006128101143985987, 0.016819391399621964, 0.10821912437677383, 0.0029815055895596743, -0.08947796374559402, 0.029878364875912666, -0.0073336041532456875, -0.06891046464443207, 0.19614504277706146, -0.09445872157812119, -0.18897411227226257, -0.11676841229200363, -0.049365974962711334, -0.09138469398021698, -0.005132400430738926, 0.061428558081388474, -0.08348210901021957, -0.04205692186951637, -0.0981605276465416, -0.0043557933531701565, 0.010137592442333698, 0.03371090069413185, 0.015770722180604935, 0.0023978089448064566, 0.08022714406251907, -0.12578532099723816, -0.027370667085051537, -0.04878130927681923, -0.03329567238688469, 0.03796087205410004, 0.04748694971203804, 0.09599470347166061, 0.12932871282100677, -0.024926820769906044, 0.04015101492404938, -0.03262714296579361, 0.22161328792572021, -0.0692979022860527, 0.005652725230902433, 0.14537808299064636, -0.0005227861693128943, 0.07229939848184586, 0.13583369553089142, 0.05597097799181938, -0.08421411365270615, -0.0022875412832945585, 0.04499639943242073, -0.04208775982260704, -0.22007843852043152, -0.04906018078327179, -0.044630017131567, 0.03474627435207367, 0.09260102361440659, 0.04972273111343384, 0.0468670018017292, 0.04310069978237152, 0.02596626989543438, 0.03792349621653557, -0.011005611158907413, 0.08089956641197205, 0.154238760471344, 0.04566176235675812, 0.137748122215271, -0.047883789986371994, -0.037073541432619095, 0.054428618401288986, -0.005118471570312977, 0.2052777260541916, -0.023152543231844902, 0.14650943875312805, 0.0469059981405735, 0.15851250290870667, 0.008188938722014427, 0.06349058449268341, -0.015467237681150436, -0.017139149829745293, -0.009776048362255096, -0.05182099714875221, -0.037848178297281265, 0.015844685956835747, -0.06407443434000015, 0.04691554233431816, -0.11572804301977158, 0.04168398678302765, 0.058167990297079086, 0.28708916902542114, 0.024693859741091728, -0.3269064128398895, -0.09054944664239883, -0.005274253897368908, -0.054038021713495255, -0.02774706855416298, 0.031230419874191284, 0.1234068050980568, -0.09903625398874283, 0.074419304728508, -0.08741164952516556, 0.09102374315261841, -0.06336691230535507, 0.04515201598405838, 0.08910715579986572, 0.09896758198738098, 0.002761317417025566, 0.06286559253931046, -0.2694365382194519, 0.26476505398750305, 0.014298629015684128, 0.06312461942434311, -0.073744997382164, 0.024921150878071785, 0.046683501452207565, 0.07431713491678238, 0.0851576179265976, -0.02107306197285652, -0.08743605762720108, -0.1652141511440277, -0.09507960081100464, 0.015179866924881935, 0.09324079006910324, -0.017781730741262436, 0.0946386307477951, -0.03535100445151329, -0.01044371072202921, 0.05491378530859947, -0.03976564481854439, -0.05395326390862465, -0.09043088555335999, 0.014567730017006397, 0.057222478091716766, -0.04592173546552658, -0.06761996448040009, -0.11216691881418228, -0.0736926794052124, 0.1596253514289856, -0.027705367654561996, -0.06528166681528091, -0.12897677719593048, 0.04911534860730171, 0.08875451982021332, -0.09280448406934738, 0.039323367178440094, -0.01456647738814354, 0.1004888266324997, 0.022169869393110275, -0.08691825717687607, 0.09386392682790756, -0.07087898254394531, -0.18739396333694458, -0.04553757235407829, 0.1296457201242447, 0.014327678829431534, 0.06173194944858551, -0.0162330474704504, 0.02962236851453781, -0.013036128133535385, -0.09226306527853012, 0.013791386038064957, 0.009783731773495674, 0.07386459410190582, -0.0035759001038968563, -0.05157022550702095, 0.024502268061041832, -0.05539429187774658, -0.0031381347216665745, 0.17841428518295288, 0.231465145945549, -0.10657961666584015, 0.07968958467245102, 0.04000621661543846, -0.06139352545142174, -0.2001890242099762, 0.010623790323734283, 0.05761883780360222, -0.012167171575129032, 0.02876053936779499, -0.18534381687641144, 0.0797281339764595, 0.08148595690727234, -0.020436488091945648, 0.10452727973461151, -0.31251153349876404, -0.12702977657318115, 0.10681530088186264, 0.12101466208696365, 0.06558044999837875, -0.14884760975837708, -0.03961734101176262, -0.00498741352930665, -0.10603221505880356, 0.13227789103984833, -0.1013336256146431, 0.12128330767154694, -0.03918766602873802, 0.06648944318294525, 0.013956395909190178, -0.053794197738170624, 0.10845567286014557, 0.0036864099092781544, 0.0918404683470726, -0.06460171937942505, 0.009138393215835094, 0.06555434316396713, -0.0669022649526596, 0.06414902210235596, -0.10764897614717484, 0.035610344260931015, -0.09198043495416641, -0.015211021527647972, -0.08733615279197693, 0.03625597432255745, -0.03399040922522545, -0.05753367021679878, -0.054607097059488297, 0.022583764046430588, 0.07598743587732315, -0.02066180296242237, 0.17783884704113007, 0.0187422763556242, 0.14843983948230743, 0.18222279846668243, 0.08284533768892288, -0.07899879664182663, -0.0904536247253418, 0.0004248759360052645, -0.007672686129808426, 0.05607650429010391, -0.15517133474349976, 0.042137324810028076, 0.14312756061553955, 0.009597654454410076, 0.12801554799079895, 0.07288850098848343, -0.03418498858809471, -0.007852617651224136, 0.05769909918308258, -0.17301420867443085, -0.09895871579647064, -0.006843569688498974, -0.05036896839737892, -0.11847575008869171, 0.06025421619415283, 0.1261739283800125, -0.07251628488302231, 0.007090608589351177, 0.006644528359174728, 0.02820798009634018, -0.020634211599826813, 0.18873071670532227, 0.05434674024581909, 0.05485713109374046, -0.10921553522348404, 0.10428424179553986, 0.03760535269975662, -0.08981305360794067, 0.03691302239894867, 0.11737876385450363, -0.1003483310341835, -0.03729872778058052, 0.04361711069941521, 0.1618368923664093, -0.038482312113046646, -0.05578150972723961, -0.1631612777709961, -0.12322352081537247, 0.08654439449310303, 0.1776610165834427, 0.08818362653255463, 0.01900242082774639, -0.0637180283665657, 0.007902042008936405, -0.11326652765274048, 0.11374318599700928, 0.04239095002412796, 0.05558184161782265, -0.15815868973731995, 0.12914922833442688, 0.009016728028655052, 0.054063402116298676, -0.02402072586119175, 0.014459016732871532, -0.09348476678133011, -0.0031451350077986717, -0.1079489216208458, -0.0015086199855431914, -0.03829653188586235, 0.002601129002869129, -0.00904860533773899, -0.047747038304805756, -0.06414870917797089, 0.024682415649294853, -0.10590635985136032, -0.03197995945811272, 0.0101675596088171, 0.045166272670030594, -0.13941380381584167, -0.030626695603132248, 0.010812356136739254, -0.07621261477470398, 0.08807840198278427, 0.03688540682196617, -0.004836583975702524, 0.03821803256869316, -0.07511642575263977, 0.011295150965452194, 0.06585656851530075, 0.007272431626915932, 0.0613417848944664, -0.10806713998317719, -0.005510325077921152, -0.009588740766048431, 0.02046225033700466, 0.026465436443686485, 0.09402235597372055, -0.13352443277835846, 0.01617470197379589, -0.021148741245269775, -0.0548095777630806, -0.06339650601148605, 0.047102585434913635, 0.10433726757764816, 0.025778163224458694, 0.19815129041671753, -0.08556283265352249, 0.0433897040784359, -0.20769265294075012, 0.004709172528237104, 0.01001870259642601, -0.12851005792617798, -0.07556268572807312, -0.036626093089580536, 0.06563806533813477, -0.06871055066585541, 0.12149614095687866, 0.038290951400995255, 0.02894551306962967, 0.04379528760910034, -0.03612064942717552, -0.024062804877758026, 0.011028913781046867, 0.14903979003429413, 0.03287387639284134, -0.040237732231616974, 0.09055115282535553, 0.01993541046977043, 0.09530000388622284, 0.09979141503572464, 0.22085313498973846, 0.12145489454269409, 0.020626403391361237, 0.10628154873847961, 0.047016989439725876, -0.06010902673006058, -0.18080657720565796, 0.0708027109503746, -0.047452714294195175, 0.13811959326267242, -0.024820968508720398, 0.1784369796514511, 0.09122668206691742, -0.16611073911190033, 0.06690306961536407, -0.022757867351174355, -0.08500196039676666, -0.13791562616825104, -0.08273690193891525, -0.07956396043300629, -0.14454013109207153, -0.0033422342967242002, -0.1200585663318634, 0.04128372669219971, 0.07110844552516937, 0.017614014446735382, -0.009005101397633553, 0.14653435349464417, -0.019336193799972534, 0.011947330087423325, 0.0685882717370987, 0.018388396129012108, -0.04008064419031143, -0.07323119044303894, -0.06439969688653946, -0.014392969198524952, -0.0038314620032906532, 0.029615601524710655, -0.02261669933795929, -0.020462041720747948, 0.044476717710494995, -0.03049851581454277, -0.09952498227357864, 0.01507981400936842, 0.016851069405674934, 0.05958835035562515, 0.07025661319494247, 0.02092687599360943, -0.000888484064489603, -0.009136375039815903, 0.21769966185092926, -0.08549628406763077, -0.058136530220508575, -0.11641460657119751, 0.24190326035022736, 0.03659062832593918, -0.02686716988682747, 0.026469113305211067, -0.06655113399028778, -0.040085259824991226, 0.22303873300552368, 0.21314527094364166, -0.04958152398467064, 0.0027837019879370928, -0.0022047082893550396, -0.010450792498886585, -0.004827470518648624, 0.09653538465499878, 0.11814805120229721, 0.06925492733716965, -0.07028088718652725, -0.03366682678461075, -0.04435024410486221, -0.020041421055793762, -0.059444304555654526, 0.0820770412683487, 0.022323649376630783, 0.0038124455604702234, -0.03562047332525253, 0.03955330327153206, -0.066569983959198, -0.10688034445047379, 0.0423816442489624, -0.2182750254869461, -0.15058113634586334, -0.009379025548696518, 0.07961048930883408, 0.0019141167867928743, 0.051636066287755966, -0.0015093758702278137, -0.007510171737521887, 0.09535683691501617, -0.023592805489897728, -0.08992034941911697, -0.08457884192466736, 0.09030694514513016, -0.1335328072309494, 0.22268985211849213, -0.04042007401585579, 0.03303264081478119, 0.12072031199932098, 0.042135175317525864, -0.09328026324510574, 0.05718506500124931, 0.051313236355781555, -0.07408850640058517, -0.004674179013818502, 0.11927413940429688, -0.02943282574415207, 0.08002986758947372, 0.04161539301276207, -0.11472512781620026, -0.0097417701035738, -0.055857568979263306, -0.062230054289102554, -0.03230633959174156, -0.036999087780714035, -0.04953013360500336, 0.12551414966583252, 0.213893860578537, -0.025185037404298782, 0.001172514632344246, -0.0778343677520752, 0.009375516325235367, 0.04866311326622963, -0.005769393872469664, -0.04183465242385864, -0.22653183341026306, 0.021061578765511513, 0.06180494278669357, -0.012610889039933681, -0.2276887446641922, -0.10827122628688812, 0.02031170204281807, -0.05058624967932701, -0.10174305737018585, 0.07710724323987961, 0.06247563660144806, 0.04692690074443817, -0.04672664776444435, -0.022427434101700783, -0.06062297150492668, 0.15291625261306763, -0.16649438440799713, -0.06932090222835541 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # fnet-large-finetuned-cola-copy4 This model is a fine-tuned version of [google/fnet-large](https://huggingface.co/google/fnet-large) on the GLUE COLA dataset. It achieves the following results on the evaluation set: - Loss: 0.6500 - Matthews Correlation: 0.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 4e-05 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: polynomial - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------------------:| | 0.6345 | 1.0 | 2138 | 0.6611 | 0.0 | | 0.6359 | 2.0 | 4276 | 0.6840 | 0.0 | | 0.6331 | 3.0 | 6414 | 0.6500 | 0.0 | ### Framework versions - Transformers 4.11.0.dev0 - Pytorch 1.9.0 - Datasets 1.12.1 - Tokenizers 0.10.3
{"language": ["en"], "license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["glue"], "metrics": ["matthews_correlation"], "model-index": [{"name": "fnet-large-finetuned-cola-copy4", "results": [{"task": {"type": "text-classification", "name": "Text Classification"}, "dataset": {"name": "GLUE COLA", "type": "glue", "args": "cola"}, "metrics": [{"type": "matthews_correlation", "value": 0.0, "name": "Matthews Correlation"}]}]}]}
text-classification
gchhablani/fnet-large-finetuned-cola-copy4
[ "transformers", "pytorch", "tensorboard", "fnet", "text-classification", "generated_from_trainer", "en", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #tensorboard #fnet #text-classification #generated_from_trainer #en #dataset-glue #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us
fnet-large-finetuned-cola-copy4 =============================== This model is a fine-tuned version of google/fnet-large on the GLUE COLA dataset. It achieves the following results on the evaluation set: * Loss: 0.6500 * Matthews Correlation: 0.0 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 4e-05 * train\_batch\_size: 4 * eval\_batch\_size: 8 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: polynomial * num\_epochs: 3.0 ### Training results ### Framework versions * Transformers 4.11.0.dev0 * Pytorch 1.9.0 * Datasets 1.12.1 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 4e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: polynomial\n* num\\_epochs: 3.0", "### Training results", "### Framework versions\n\n\n* Transformers 4.11.0.dev0\n* Pytorch 1.9.0\n* Datasets 1.12.1\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #fnet #text-classification #generated_from_trainer #en #dataset-glue #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 4e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: polynomial\n* num\\_epochs: 3.0", "### Training results", "### Framework versions\n\n\n* Transformers 4.11.0.dev0\n* Pytorch 1.9.0\n* Datasets 1.12.1\n* Tokenizers 0.10.3" ]
[ 68, 100, 4, 34 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #fnet #text-classification #generated_from_trainer #en #dataset-glue #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 4e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: polynomial\n* num\\_epochs: 3.0### Training results### Framework versions\n\n\n* Transformers 4.11.0.dev0\n* Pytorch 1.9.0\n* Datasets 1.12.1\n* Tokenizers 0.10.3" ]
[ -0.09233275800943375, 0.09512945264577866, -0.003065334865823388, 0.1247669905424118, 0.15720099210739136, 0.014819260686635971, 0.1093737781047821, 0.12509053945541382, -0.1051739975810051, 0.01790531352162361, 0.12988686561584473, 0.1646781712770462, 0.01671697199344635, 0.1358242630958557, -0.06855105608701706, -0.25993701815605164, -0.004856702871620655, 0.05779449641704559, -0.058361832052469254, 0.13131386041641235, 0.11140216141939163, -0.11574908345937729, 0.09287762641906738, 0.01650150865316391, -0.1979927122592926, 0.0038727051578462124, 0.007748198229819536, -0.0682230070233345, 0.1342443972826004, 0.02915475144982338, 0.11438985168933868, -0.003759731538593769, 0.06577876210212708, -0.18901580572128296, 0.008525706827640533, 0.05932474136352539, 0.0005246849032118917, 0.09454575926065445, 0.04154572635889053, 0.0160653218626976, 0.13911603391170502, -0.08459139615297318, 0.04823097959160805, 0.018408600240945816, -0.10388068109750748, -0.25746238231658936, -0.07827635854482651, 0.048235949128866196, 0.0693022608757019, 0.10835829377174377, -0.003936451859772205, 0.14568111300468445, -0.06244703382253647, 0.1065765917301178, 0.2077585905790329, -0.29930374026298523, -0.06187231093645096, 0.03686806187033653, 0.003206562716513872, 0.04481332749128342, -0.08877745270729065, -0.03627109155058861, 0.04832904040813446, 0.060771457850933075, 0.14348381757736206, -0.030308183282613754, -0.10318541526794434, -0.0020865588448941708, -0.14790591597557068, -0.03919351473450661, 0.1780187040567398, 0.040289994329214096, -0.02904658578336239, -0.06276993453502655, -0.06828074902296066, -0.12733641266822815, -0.04040741175413132, -0.018814735114574432, 0.043984729796648026, -0.02478707768023014, -0.028355807065963745, -0.020001152530312538, -0.10822728276252747, -0.04445340484380722, -0.08476538956165314, 0.115586057305336, 0.03922015801072121, 0.029852185398340225, -0.04210149496793747, 0.09404022246599197, -0.024852003902196884, -0.12719585001468658, 0.018784616142511368, 0.010985801927745342, 0.03145045414566994, -0.03605981916189194, -0.05844790115952492, -0.07217251509428024, 0.01470858883112669, 0.12766627967357635, -0.08736921846866608, 0.04928255081176758, 0.03669619932770729, 0.045623622834682465, -0.07648246735334396, 0.17523980140686035, -0.04114501178264618, -0.014168416149914265, 0.02477232739329338, 0.034544818103313446, 0.028209369629621506, -0.01585005410015583, -0.12699714303016663, 0.015706531703472137, 0.10109711438417435, -0.0017797715263441205, -0.06115017086267471, 0.08852759748697281, -0.032349616289138794, -0.030706737190485, 0.012949003838002682, -0.09854428470134735, 0.026816805824637413, 0.0012309937737882137, -0.08246472477912903, -0.022865192964673042, 0.03647700697183609, 0.013990442268550396, -0.04176129400730133, 0.0968250036239624, -0.07641268521547318, 0.02463344670832157, -0.08395158499479294, -0.11545702069997787, 0.021551189944148064, -0.08830283582210541, 0.02501392737030983, -0.10790706425905228, -0.17335820198059082, -0.006669905502349138, 0.062387850135564804, -0.024137940257787704, -0.06518234312534332, -0.04265695437788963, -0.0865042582154274, 0.009156285785138607, -0.017632286995649338, 0.12698838114738464, -0.0660666972398758, 0.08387266099452972, 0.03743436560034752, 0.05658388510346413, -0.06848257035017014, 0.050200145691633224, -0.09195152670145035, 0.013190405443310738, -0.1792236864566803, 0.04520026594400406, -0.05468466132879257, 0.058493778109550476, -0.079399473965168, -0.11424562335014343, 0.02771143801510334, -0.008864525705575943, 0.05954881012439728, 0.07509133219718933, -0.14773103594779968, -0.06853806227445602, 0.14635972678661346, -0.07936394214630127, -0.12363702803850174, 0.12627044320106506, -0.0633881539106369, 0.03210955113172531, 0.05946922302246094, 0.1840452402830124, 0.08191072940826416, -0.07619595527648926, -0.00024150576791726053, 0.035252466797828674, 0.03499715402722359, -0.07122062146663666, 0.05987473949790001, 0.024856816977262497, 0.034891482442617416, 0.037574294954538345, -0.02263655513525009, 0.061248525977134705, -0.07868243753910065, -0.08805044740438461, -0.04709918797016144, -0.08671076595783234, 0.025309136137366295, 0.0700942724943161, 0.083065465092659, -0.09565918147563934, -0.07823575288057327, 0.050391800701618195, 0.0746447965502739, -0.06368174403905869, 0.03222660720348358, -0.06352562457323074, 0.09136843681335449, -0.025265958160161972, -0.014246711507439613, -0.18371163308620453, -0.032627083361148834, 0.014205286279320717, 0.0016399379819631577, 0.006114912685006857, 0.01740933023393154, 0.059542153030633926, 0.055963389575481415, -0.055016353726387024, 0.0023560954723507166, -0.012001898139715195, 0.004328112583607435, -0.12324753403663635, -0.18478065729141235, -0.0336662158370018, -0.024640899151563644, 0.14523087441921234, -0.20531970262527466, 0.04802195727825165, 0.007260829675942659, 0.09133994579315186, 0.002927270019426942, 0.0007110468577593565, -0.04424472153186798, 0.059639547020196915, -0.040603142231702805, -0.047593239694833755, 0.08031855523586273, 0.02992701530456543, -0.07765638828277588, -0.04063931852579117, -0.10103578120470047, 0.17500773072242737, 0.1376151591539383, -0.12657193839550018, -0.06505127251148224, -0.012219647876918316, -0.06840192526578903, -0.027870384976267815, -0.03493181988596916, 0.028798134997487068, 0.19706763327121735, -0.01458041463047266, 0.16647209227085114, -0.08209680765867233, -0.05784948170185089, 0.032615628093481064, -0.03674580901861191, 0.01474632229655981, 0.1215551421046257, 0.10172944515943527, -0.09988900274038315, 0.15515221655368805, 0.13784228265285492, -0.08681371808052063, 0.12966054677963257, -0.05156385526061058, -0.05125381797552109, -0.01754993386566639, -0.022134356200695038, -0.017823707312345505, 0.09421492367982864, -0.15958133339881897, 0.003134101163595915, 0.03757501766085625, 0.023562928661704063, 0.033355507999658585, -0.2084152102470398, -0.022593621164560318, 0.035269055515527725, -0.045329052954912186, -0.00580307561904192, -0.011826040223240852, 0.01568181999027729, 0.10432140529155731, -0.0019289932679384947, -0.10209478437900543, 0.05519438162446022, -0.002293555997312069, -0.08838749676942825, 0.21670860052108765, -0.09239088743925095, -0.18949273228645325, -0.10426730662584305, -0.075583815574646, -0.0670001432299614, -0.0037729968316853046, 0.057917334139347076, -0.07278434932231903, -0.0342622734606266, -0.08709461987018585, -0.002623616484925151, -0.006207508500665426, 0.024962766095995903, 0.019852055236697197, 0.0011892204638570547, 0.07990993559360504, -0.10965033620595932, -0.02263079397380352, -0.06664131581783295, -0.028440099209547043, 0.04562980681657791, 0.03406325355172157, 0.09519621729850769, 0.14147649705410004, -0.03038725070655346, 0.027144741266965866, -0.027893392369151115, 0.2512238621711731, -0.05921139195561409, -0.016831308603286743, 0.15021313726902008, -0.010622978210449219, 0.05199234187602997, 0.11375553160905838, 0.06421957910060883, -0.07900237292051315, 0.0029531349427998066, 0.028535865247249603, -0.040035001933574677, -0.21894553303718567, -0.06637489050626755, -0.05583241209387779, 0.01487064827233553, 0.08067278563976288, 0.030623022466897964, 0.03454406186938286, 0.05771647393703461, 0.04508524388074875, 0.07552418857812881, -0.026971518993377686, 0.05574258789420128, 0.1720634400844574, 0.03834931552410126, 0.13267982006072998, -0.04087376967072487, -0.05850344896316528, 0.04537014290690422, -0.010815618559718132, 0.19896966218948364, -0.017764857038855553, 0.1131005808711052, 0.05028647929430008, 0.17524059116840363, -0.008845261298120022, 0.06706786155700684, -0.021544305607676506, -0.03201686590909958, -0.012980715371668339, -0.03330077975988388, -0.030726173892617226, 0.017198627814650536, -0.07334477454423904, 0.0482911616563797, -0.11843068152666092, 0.015372583642601967, 0.058800581842660904, 0.2477571964263916, 0.03380488604307175, -0.32424047589302063, -0.09683819115161896, -0.007774604018777609, -0.044241391122341156, -0.02778438851237297, 0.03309032693505287, 0.10417934507131577, -0.09845829010009766, 0.047793999314308167, -0.07568784803152084, 0.09309320896863937, -0.04706546291708946, 0.05592344328761101, 0.09275910258293152, 0.09212326258420944, 0.02123185619711876, 0.09268396347761154, -0.2914220690727234, 0.25891977548599243, 0.004228134173899889, 0.05892276018857956, -0.08187481760978699, 0.014904065988957882, 0.028283890336751938, 0.06994342058897018, 0.07775736600160599, -0.011895506642758846, -0.044009629637002945, -0.17269784212112427, -0.06302323937416077, 0.027976326644420624, 0.07082512229681015, -0.0011837704805657268, 0.07714352011680603, -0.024835195392370224, 0.0076799169182777405, 0.07382135838270187, -0.0016453050775453448, -0.041140321642160416, -0.1088331788778305, -0.005208827089518309, 0.049144089221954346, -0.08543877303600311, -0.061183251440525055, -0.10903105139732361, -0.12609942257404327, 0.16371701657772064, -0.018206670880317688, -0.061221644282341, -0.10899707674980164, 0.09358765184879303, 0.05264882370829582, -0.08415330201387405, 0.04582873731851578, -0.002150632906705141, 0.08258465677499771, 0.021668823435902596, -0.0820770412683487, 0.10388047993183136, -0.0748441070318222, -0.15076611936092377, -0.050239499658346176, 0.1122477799654007, 0.031452324241399765, 0.05578535050153732, 0.000581849948503077, 0.011316362768411636, -0.043634865432977676, -0.09546930342912674, 0.010381952859461308, -0.016542639583349228, 0.10063199698925018, 0.012495787814259529, -0.04976334050297737, 0.01473340205848217, -0.057483356446027756, -0.017827924340963364, 0.21181000769138336, 0.21221749484539032, -0.10816640406847, 0.023791581392288208, 0.0230953898280859, -0.062437716871500015, -0.20183077454566956, 0.022502422332763672, 0.06667298823595047, -0.0073587228544056416, 0.02168300561606884, -0.16593994200229645, 0.13801442086696625, 0.09317358583211899, -0.01634751819074154, 0.10123719274997711, -0.2984839975833893, -0.12198083102703094, 0.1368626058101654, 0.12732064723968506, 0.10460025817155838, -0.13190113008022308, -0.016833331435918808, -0.01915566436946392, -0.12713098526000977, 0.14362749457359314, -0.11503395438194275, 0.10724924504756927, -0.026324685662984848, 0.08466499298810959, 0.0038833869621157646, -0.05768710747361183, 0.11118490993976593, 0.02210315689444542, 0.0894501581788063, -0.06575895100831985, -0.012948116287589073, 0.04429974779486656, -0.03683861345052719, 0.051103368401527405, -0.09431545436382294, 0.031746719032526016, -0.1138581708073616, -0.023863855749368668, -0.08127841353416443, 0.04316647723317146, -0.035768941044807434, -0.06282056123018265, -0.05115922912955284, 0.019959958270192146, 0.06679927557706833, -0.006885247305035591, 0.1349387764930725, 0.03270858898758888, 0.14021867513656616, 0.1730620115995407, 0.08050861954689026, -0.09682311117649078, -0.07620519399642944, -0.014986664988100529, -0.01329360343515873, 0.05166109651327133, -0.13897410035133362, 0.03210613504052162, 0.14939337968826294, 0.00653050048276782, 0.13511453568935394, 0.08364485204219818, -0.025246642529964447, -0.012206786312162876, 0.049290698021650314, -0.17614205181598663, -0.09459704905748367, -0.01580153964459896, -0.06113683432340622, -0.10869400203227997, 0.05536152794957161, 0.10568933933973312, -0.07989883422851562, -0.003682148875668645, -0.005677937995642424, 0.012828405946493149, -0.05436980724334717, 0.18447230756282806, 0.07306311279535294, 0.04691896587610245, -0.10561326891183853, 0.0796433687210083, 0.04686886444687843, -0.06615936756134033, 0.01825185865163803, 0.08183855563402176, -0.09784441441297531, -0.053216081112623215, 0.05644121393561363, 0.16658157110214233, -0.05047152563929558, -0.06140705570578575, -0.14625822007656097, -0.1395581066608429, 0.08723899722099304, 0.14527234435081482, 0.1146295890212059, 0.0048127686604857445, -0.06903456151485443, -0.0020093952771276236, -0.12212307006120682, 0.10608971118927002, 0.04618038982152939, 0.05523946136236191, -0.14981551468372345, 0.1381446272134781, 0.0044164699502289295, 0.06445992738008499, -0.02691238932311535, 0.028297582641243935, -0.09044655412435532, 0.008752789348363876, -0.11739658564329147, -0.006538760848343372, -0.018917301669716835, 0.01019852701574564, -0.004398648161441088, -0.04151419922709465, -0.05624544247984886, 0.027534134685993195, -0.10786119103431702, -0.020445266738533974, 0.036384742707014084, 0.04365149885416031, -0.11402267962694168, -0.04841025173664093, 0.00970064103603363, -0.06001601740717888, 0.08584681153297424, 0.051551930606365204, 0.004418548196554184, 0.048336461186409, -0.11712591350078583, 0.0003040441661141813, 0.07435277849435806, 0.03268049657344818, 0.06797278672456741, -0.10176217555999756, -9.178542086374364e-7, 0.015004346147179604, 0.03171688690781593, 0.025623533874750137, 0.08581408858299255, -0.13344013690948486, -0.005912679713219404, -0.023418787866830826, -0.05936991795897484, -0.06850530207157135, 0.02604781836271286, 0.08042415231466293, 0.029985297471284866, 0.20086462795734406, -0.07570258527994156, 0.03648511320352554, -0.21049068868160248, 0.006063299719244242, -0.0004535551415756345, -0.12867338955402374, -0.08793282508850098, -0.04498898237943649, 0.060817401856184006, -0.056758251041173935, 0.16669900715351105, 0.05250585079193115, 0.010740572586655617, 0.03446506708860397, -0.022191546857357025, 0.01781933754682541, 0.01640031859278679, 0.18934032320976257, 0.023245561867952347, -0.03899821266531944, 0.06896817684173584, 0.03949577361345291, 0.11209707707166672, 0.13094016909599304, 0.19307085871696472, 0.1355232149362564, 0.0009488848736509681, 0.09569990634918213, 0.044620100408792496, -0.048473093658685684, -0.1554585099220276, 0.05598536506295204, -0.04467339813709259, 0.12895017862319946, -0.02971630170941353, 0.17981234192848206, 0.06735704839229584, -0.1655966341495514, 0.04575532674789429, -0.05950343236327171, -0.09475401043891907, -0.11735506355762482, -0.06831412762403488, -0.0774361714720726, -0.13776525855064392, -0.003766128560528159, -0.12722247838974, -0.00041125761345028877, 0.10296083986759186, 0.01259323488920927, -0.03712952136993408, 0.13460665941238403, -0.002584537724032998, 0.017914963886141777, 0.0751262903213501, 0.004339549690485001, -0.03591177612543106, -0.09981860220432281, -0.05253158137202263, -0.01963178440928459, -0.006725162733346224, 0.03545477241277695, -0.0516805499792099, -0.02611083723604679, 0.040677759796381, -0.02363325096666813, -0.0899670198559761, 0.004122834652662277, 0.018914181739091873, 0.0635032057762146, 0.05918271094560623, 0.00532264169305563, 0.015121815726161003, -0.009309454821050167, 0.19844715297222137, -0.07516686618328094, -0.0684531182050705, -0.10911398380994797, 0.24448417127132416, 0.032753437757492065, -0.016633272171020508, 0.03297156095504761, -0.06548818200826645, -0.01991979405283928, 0.24830777943134308, 0.2277710735797882, -0.08171620965003967, -0.0024547544308006763, 0.013445607386529446, -0.011507655493915081, -0.012147458270192146, 0.10888799279928207, 0.15053923428058624, 0.06152213364839554, -0.0858483612537384, -0.03787026181817055, -0.05885991081595421, -0.005216280464082956, -0.053977303206920624, 0.072474904358387, 0.05398649349808693, 0.00975072756409645, -0.029473964124917984, 0.042551543563604355, -0.07279711216688156, -0.097336046397686, 0.03348561376333237, -0.20607492327690125, -0.15776149928569794, -0.0027424416039139032, 0.07768314331769943, 0.006029955577105284, 0.05825537443161011, -0.026230378076434135, 0.01024033036082983, 0.09320371598005295, -0.02758374810218811, -0.09376383572816849, -0.06231313198804855, 0.0939749926328659, -0.1360514760017395, 0.21829846501350403, -0.043917443603277206, 0.07810305804014206, 0.12809188663959503, 0.05089157074689865, -0.06530290096998215, 0.060449711978435516, 0.040770523250103, -0.03336869925260544, 0.01779806986451149, 0.07466362416744232, -0.026095615699887276, 0.061446528881788254, 0.039817020297050476, -0.13605281710624695, 0.0014098514802753925, -0.05766027793288231, -0.06557714939117432, -0.0423487052321434, -0.0335911400616169, -0.0659194067120552, 0.12307722866535187, 0.21699008345603943, -0.031558360904455185, -0.007292434107512236, -0.07748071104288101, 0.004243048373609781, 0.04589390754699707, 0.004072258714586496, -0.05104261636734009, -0.21407414972782135, 0.016236145049333572, 0.05227192863821983, -0.021652353927493095, -0.22077935934066772, -0.08553380519151688, -0.0022107886616140604, -0.07395731657743454, -0.09429778158664703, 0.06886898726224899, 0.08060850203037262, 0.04384591057896614, -0.06514234095811844, -0.012651219964027405, -0.08636467158794403, 0.1397591382265091, -0.1356358826160431, -0.08479206264019012 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # fnet-large-finetuned-cola This model is a fine-tuned version of [google/fnet-large](https://huggingface.co/google/fnet-large) on the GLUE COLA dataset. It achieves the following results on the evaluation set: - Loss: 0.6243 - Matthews Correlation: 0.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------------------:| | 0.6195 | 1.0 | 2138 | 0.6527 | 0.0 | | 0.6168 | 2.0 | 4276 | 0.6259 | 0.0 | | 0.616 | 3.0 | 6414 | 0.6243 | 0.0 | ### Framework versions - Transformers 4.11.0.dev0 - Pytorch 1.9.0 - Datasets 1.12.1 - Tokenizers 0.10.3
{"language": ["en"], "license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["glue"], "metrics": ["matthews_correlation"], "model-index": [{"name": "fnet-large-finetuned-cola", "results": [{"task": {"type": "text-classification", "name": "Text Classification"}, "dataset": {"name": "GLUE COLA", "type": "glue", "args": "cola"}, "metrics": [{"type": "matthews_correlation", "value": 0.0, "name": "Matthews Correlation"}]}]}]}
text-classification
gchhablani/fnet-large-finetuned-cola
[ "transformers", "pytorch", "tensorboard", "fnet", "text-classification", "generated_from_trainer", "en", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #tensorboard #fnet #text-classification #generated_from_trainer #en #dataset-glue #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us
fnet-large-finetuned-cola ========================= This model is a fine-tuned version of google/fnet-large on the GLUE COLA dataset. It achieves the following results on the evaluation set: * Loss: 0.6243 * Matthews Correlation: 0.0 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 1e-05 * train\_batch\_size: 4 * eval\_batch\_size: 8 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 3.0 ### Training results ### Framework versions * Transformers 4.11.0.dev0 * Pytorch 1.9.0 * Datasets 1.12.1 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 1e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3.0", "### Training results", "### Framework versions\n\n\n* Transformers 4.11.0.dev0\n* Pytorch 1.9.0\n* Datasets 1.12.1\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #fnet #text-classification #generated_from_trainer #en #dataset-glue #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 1e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3.0", "### Training results", "### Framework versions\n\n\n* Transformers 4.11.0.dev0\n* Pytorch 1.9.0\n* Datasets 1.12.1\n* Tokenizers 0.10.3" ]
[ 68, 98, 4, 34 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #fnet #text-classification #generated_from_trainer #en #dataset-glue #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 1e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3.0### Training results### Framework versions\n\n\n* Transformers 4.11.0.dev0\n* Pytorch 1.9.0\n* Datasets 1.12.1\n* Tokenizers 0.10.3" ]
[ -0.09435097873210907, 0.08421194553375244, -0.0027880712877959013, 0.12547148764133453, 0.15904685854911804, 0.02615882083773613, 0.12069503217935562, 0.1241118311882019, -0.09248494356870651, 0.011560988612473011, 0.12044978886842728, 0.16161780059337616, 0.016701841726899147, 0.12821362912654877, -0.05494244024157524, -0.25881245732307434, -0.007771983742713928, 0.05115014687180519, -0.07189690321683884, 0.13537853956222534, 0.10689590126276016, -0.1100701242685318, 0.08611386269330978, 0.012377075850963593, -0.1874523162841797, 0.004920303355902433, 0.006109331268817186, -0.061822667717933655, 0.14474309980869293, 0.026294700801372528, 0.11684288084506989, -0.004879044834524393, 0.07424716651439667, -0.19475165009498596, 0.010953853838145733, 0.061599865555763245, -0.0006898609572090209, 0.09198741614818573, 0.04121238365769386, 0.016308827325701714, 0.1290297955274582, -0.07783091813325882, 0.04760799556970596, 0.02466152422130108, -0.10124235600233078, -0.2494400143623352, -0.06905415654182434, 0.04278074577450752, 0.07005875557661057, 0.11541929841041565, -0.002867956180125475, 0.12875932455062866, -0.0707789734005928, 0.10008362680673599, 0.20369721949100494, -0.2828853130340576, -0.0647275447845459, 0.05513303726911545, -0.00020236789714545012, 0.05580358952283859, -0.09518837183713913, -0.035108208656311035, 0.047065891325473785, 0.05840061232447624, 0.13589154183864594, -0.024001594632864, -0.11207377165555954, -0.0003246897831559181, -0.14765164256095886, -0.0339391864836216, 0.1837419718503952, 0.042182985693216324, -0.03098602592945099, -0.055377792567014694, -0.0698784738779068, -0.13246363401412964, -0.03366117179393768, -0.015889128670096397, 0.04205029830336571, -0.01720787212252617, -0.02871776558458805, -0.019317759200930595, -0.10914051532745361, -0.06094752997159958, -0.07925911992788315, 0.12776292860507965, 0.03751957416534424, 0.02563166245818138, -0.036446068435907364, 0.10727158188819885, -0.008296688087284565, -0.1256551891565323, 0.023854248225688934, 0.015420990064740181, 0.023794319480657578, -0.02945687063038349, -0.057711854577064514, -0.0770222619175911, 0.01329171285033226, 0.11630858480930328, -0.06644808501005173, 0.045717719942331314, 0.037436164915561676, 0.052477072924375534, -0.08913107961416245, 0.1716603934764862, -0.03443245589733124, -0.020622581243515015, 0.017747394740581512, 0.04704255610704422, 0.02674841694533825, -0.01886206492781639, -0.12413250654935837, 0.013097265735268593, 0.09388524293899536, 0.002535618608817458, -0.059954434633255005, 0.08183281868696213, -0.038194689899683, -0.033323898911476135, -0.004796795081347227, -0.09764222055673599, 0.018554529175162315, 0.0063773770816624165, -0.08251193910837173, -0.019761210307478905, 0.03827506676316261, 0.014088655821979046, -0.02665414661169052, 0.10024002194404602, -0.08179781585931778, 0.021830689162015915, -0.08678390830755234, -0.10702545940876007, 0.017558949068188667, -0.08509497344493866, 0.0191718228161335, -0.10397984087467194, -0.19083718955516815, -0.007889867760241032, 0.06494387984275818, -0.01861901767551899, -0.06665554642677307, -0.045192331075668335, -0.07960332185029984, 0.009245702065527439, -0.014210081659257412, 0.1256672590970993, -0.06625761836767197, 0.08960525691509247, 0.029059095308184624, 0.05361932888627052, -0.05511719360947609, 0.05413501709699631, -0.0957532525062561, 0.010021492838859558, -0.16411904990673065, 0.042935315519571304, -0.05779934301972389, 0.056367989629507065, -0.07770342379808426, -0.10982010513544083, 0.0150128323584795, -0.008366541936993599, 0.05230874568223953, 0.08241644501686096, -0.17146196961402893, -0.07396326959133148, 0.14204980432987213, -0.08391902595758438, -0.11846151947975159, 0.12392982840538025, -0.05783189460635185, 0.03956197202205658, 0.05418945103883743, 0.1759374886751175, 0.09033717960119247, -0.06612788885831833, 0.006188058760017157, 0.03327813372015953, 0.04193338379263878, -0.06798793375492096, 0.07015901058912277, 0.01925581693649292, 0.01686580665409565, 0.03599608689546585, -0.031133893877267838, 0.06564007699489594, -0.07929158210754395, -0.09648094326257706, -0.045717786997556686, -0.08445670455694199, 0.035287342965602875, 0.07255207747220993, 0.07468617707490921, -0.08789877593517303, -0.076981320977211, 0.037754978984594345, 0.08531701564788818, -0.06047174707055092, 0.027737783268094063, -0.052868492901325226, 0.07869548350572586, -0.022249728441238403, -0.011849423870444298, -0.17947974801063538, -0.05010382458567619, 0.01248926017433405, -0.01671680435538292, 0.011573772877454758, 0.0340462364256382, 0.05847066640853882, 0.06170773133635521, -0.05226020887494087, -0.006742169614881277, -0.03587859496474266, -0.0023466311395168304, -0.1176379919052124, -0.1949375718832016, -0.033513251692056656, -0.022251050919294357, 0.15985170006752014, -0.20768983662128448, 0.05144825577735901, -0.00960769597440958, 0.08428152650594711, 0.002657628385350108, -0.004502991680055857, -0.044524095952510834, 0.060092028230428696, -0.04211358726024628, -0.04889362305402756, 0.07984418421983719, 0.021294519305229187, -0.08888031542301178, -0.04996927082538605, -0.09011505544185638, 0.17323893308639526, 0.1292029470205307, -0.12180405110120773, -0.0646495670080185, -0.005630622152239084, -0.07315146178007126, -0.032705649733543396, -0.0447271466255188, 0.026152674108743668, 0.19703759253025055, -0.009650024585425854, 0.1556764841079712, -0.07343330979347229, -0.047128260135650635, 0.025215646252036095, -0.0313401073217392, 0.01606483943760395, 0.1185009628534317, 0.1145080178976059, -0.08201359212398529, 0.15379412472248077, 0.14382275938987732, -0.09326194226741791, 0.1439264416694641, -0.04755913466215134, -0.053455084562301636, -0.012387750670313835, -0.0256897434592247, -0.019831068813800812, 0.10194675624370575, -0.16055643558502197, 0.010317876935005188, 0.03571614995598793, 0.023414237424731255, 0.03399579972028732, -0.2150789350271225, -0.03453387692570686, 0.033867496997117996, -0.050128690898418427, -0.0031231536995619535, -0.007135854568332434, 0.011046592146158218, 0.10478085279464722, -0.0031779888086020947, -0.10512698441743851, 0.052144378423690796, -0.006299050059169531, -0.08943869173526764, 0.21798454225063324, -0.08710946142673492, -0.18648970127105713, -0.1189730167388916, -0.06294762343168259, -0.07567699253559113, -0.004962088540196419, 0.05785910040140152, -0.08131179213523865, -0.03176778554916382, -0.0806071013212204, 0.014716072008013725, -0.0023878870997577906, 0.025631599128246307, 0.019848903641104698, 0.0016764418687671423, 0.08099467307329178, -0.1167442798614502, -0.016106992959976196, -0.06341078877449036, -0.04202750697731972, 0.04064585268497467, 0.041270118206739426, 0.0988377034664154, 0.15267616510391235, -0.019211841747164726, 0.023092860355973244, -0.021616701036691666, 0.24383974075317383, -0.06418726593255997, -0.019024580717086792, 0.15514269471168518, -0.008728032931685448, 0.050296343863010406, 0.11488067358732224, 0.07195909321308136, -0.07545755803585052, 0.005948644131422043, 0.03710569813847542, -0.037614114582538605, -0.222452774643898, -0.06562527269124985, -0.05583110451698303, 0.020605383440852165, 0.07728266716003418, 0.0375279039144516, 0.04231022298336029, 0.06005708873271942, 0.04346669837832451, 0.06828698515892029, -0.028533868491649628, 0.05104093626141548, 0.15856194496154785, 0.03599826246500015, 0.12920033931732178, -0.03730641305446625, -0.05810714140534401, 0.044433075934648514, -0.01565716788172722, 0.2037656158208847, -0.010564416646957397, 0.10792942345142365, 0.05741063505411148, 0.17277804017066956, -0.010603698901832104, 0.07187259942293167, -0.0156282726675272, -0.03243174031376839, -0.015594683587551117, -0.03912680223584175, -0.03011733666062355, 0.018046243116259575, -0.07835627347230911, 0.06085377186536789, -0.11395221948623657, 0.011723238043487072, 0.059220366179943085, 0.23981203138828278, 0.031606465578079224, -0.3190716505050659, -0.09729049354791641, -0.0049738045781850815, -0.03747718408703804, -0.021319236606359482, 0.03352221101522446, 0.09847861528396606, -0.10294825583696365, 0.03968765586614609, -0.07640799134969711, 0.09297142922878265, -0.047262147068977356, 0.055051255971193314, 0.09929996728897095, 0.09606239944696426, 0.02009269781410694, 0.09647487848997116, -0.2856273353099823, 0.2574538588523865, -0.0015189285622909665, 0.05592987686395645, -0.07764812558889389, 0.01195956114679575, 0.03816894814372063, 0.0747467428445816, 0.07086154818534851, -0.010851860977709293, -0.01917938143014908, -0.17785249650478363, -0.06546854972839355, 0.031339410692453384, 0.06611523777246475, -0.026507152244448662, 0.07482331246137619, -0.02870245650410652, 0.010354732163250446, 0.07601786404848099, 0.013834723271429539, -0.05484699457883835, -0.10062555968761444, 0.000409413012675941, 0.05253540724515915, -0.06643876433372498, -0.06450878828763962, -0.11783771961927414, -0.12188690900802612, 0.1601131409406662, -0.019451530650258064, -0.052096664905548096, -0.10999548435211182, 0.08760962635278702, 0.05935923010110855, -0.08340995758771896, 0.041804440319538116, -0.0031501352787017822, 0.0827924981713295, 0.02227838709950447, -0.083372101187706, 0.09709896892309189, -0.08145904541015625, -0.15635253489017487, -0.056967683136463165, 0.10923594236373901, 0.031557079404592514, 0.058893609791994095, -0.010793891735374928, 0.000662430131342262, -0.043718304485082626, -0.09768255800008774, 0.012185530737042427, -0.010665759444236755, 0.07959064096212387, 0.024116169661283493, -0.05656000226736069, 0.014147202484309673, -0.061718329787254333, -0.025965824723243713, 0.20178057253360748, 0.2106800675392151, -0.1018415093421936, 0.01837395504117012, 0.028721075505018234, -0.060019660741090775, -0.19802434742450714, 0.02453368529677391, 0.06254914402961731, -0.007151673547923565, 0.02866550162434578, -0.17643575370311737, 0.14242802560329437, 0.09663483500480652, -0.01912073977291584, 0.1173851490020752, -0.3189247250556946, -0.11955010890960693, 0.13650289177894592, 0.13054005801677704, 0.10922560840845108, -0.12862245738506317, -0.01757681742310524, -0.016488945111632347, -0.12940441071987152, 0.13275215029716492, -0.11361365020275116, 0.11405333131551743, -0.033281151205301285, 0.08113711327314377, 0.0011480002431198955, -0.05719071999192238, 0.11574403196573257, 0.025619203224778175, 0.09182140231132507, -0.06217515841126442, -0.009550973773002625, 0.034517161548137665, -0.03253617510199547, 0.045991234481334686, -0.09658768028020859, 0.03295158967375755, -0.10942183434963226, -0.022280361503362656, -0.07863087952136993, 0.050379473716020584, -0.03720703721046448, -0.07268305867910385, -0.045583344995975494, 0.024610958993434906, 0.058386627584695816, -0.007836049422621727, 0.1320382058620453, 0.03703298792243004, 0.1492828130722046, 0.14895401895046234, 0.0633077323436737, -0.08276274800300598, -0.09166482090950012, -0.02376432716846466, -0.008475062437355518, 0.05538862198591232, -0.13468174636363983, 0.02516511268913746, 0.14910313487052917, 0.009283688850700855, 0.1434093564748764, 0.08868255466222763, -0.024138309061527252, -0.010903424583375454, 0.05391009524464607, -0.17287656664848328, -0.0912737175822258, -0.022629106417298317, -0.06910163909196854, -0.11277623474597931, 0.0578177273273468, 0.10377898067235947, -0.08135166764259338, 0.0027894554659724236, -0.0035725918132811785, 0.013347047381103039, -0.05685470253229141, 0.18538351356983185, 0.06988276541233063, 0.04949139058589935, -0.10178396850824356, 0.08455973118543625, 0.04742245376110077, -0.05938874930143356, 0.004325795918703079, 0.0802963599562645, -0.09815271943807602, -0.05330231040716171, 0.0575033500790596, 0.17558030784130096, -0.05554148927330971, -0.05840103700757027, -0.14799155294895172, -0.1337965577840805, 0.08001518994569778, 0.13224905729293823, 0.11734503507614136, 0.007621163967996836, -0.0731721743941307, 0.0018782420083880424, -0.11119019240140915, 0.10568799078464508, 0.04611429572105408, 0.054635100066661835, -0.1548280417919159, 0.13684171438217163, 0.016183797270059586, 0.06361408531665802, -0.02537795715034008, 0.022304683923721313, -0.08460108935832977, 0.008917045779526234, -0.10307580232620239, -0.021674778312444687, -0.016643773764371872, 0.009908930398523808, -0.005108180455863476, -0.048300500959157944, -0.05661845579743385, 0.024906059727072716, -0.10549948364496231, -0.025202332064509392, 0.03343742713332176, 0.05218002200126648, -0.11639901250600815, -0.04493873566389084, 0.01591404154896736, -0.06088894605636597, 0.08527985960245132, 0.053717825561761856, 0.011508917436003685, 0.05170179903507233, -0.12246845662593842, 0.016817618161439896, 0.0738915354013443, 0.0340840183198452, 0.06104329973459244, -0.09633228182792664, -0.0042505268938839436, 0.000009833319381868932, 0.02962779812514782, 0.022913290187716484, 0.07663044333457947, -0.1377095878124237, -0.002321540145203471, -0.02691950649023056, -0.0646195262670517, -0.06714501231908798, 0.020013272762298584, 0.08294350653886795, 0.03559565171599388, 0.2057630866765976, -0.07553393393754959, 0.04691246524453163, -0.2135545313358307, 0.007876020856201649, -0.000216558575630188, -0.11841729283332825, -0.09525562822818756, -0.05129927024245262, 0.054044146090745926, -0.06362396478652954, 0.15451955795288086, 0.04878443479537964, 0.014883937314152718, 0.02846788428723812, -0.017297670245170593, 0.02067759819328785, 0.007559371646493673, 0.18741635978221893, 0.03372693434357643, -0.03029473125934601, 0.07180187851190567, 0.03866606578230858, 0.11274004727602005, 0.11382657289505005, 0.1963241696357727, 0.13170114159584045, -0.0013890049885958433, 0.09478294849395752, 0.04671492055058479, -0.060518838465213776, -0.16289113461971283, 0.050670377910137177, -0.03682221099734306, 0.11981121450662613, -0.02724079228937626, 0.19231046736240387, 0.0680035874247551, -0.16162194311618805, 0.04740280285477638, -0.04798690602183342, -0.08724562078714371, -0.11724910885095596, -0.06196066364645958, -0.0703415796160698, -0.14260202646255493, -0.004314409103244543, -0.11993777751922607, -0.0011970066698268056, 0.11179531365633011, 0.011872668750584126, -0.03381989151239395, 0.15067675709724426, 0.0049347300082445145, 0.01584346778690815, 0.06775166839361191, 0.006889836862683296, -0.03921027481555939, -0.10968586057424545, -0.05533943325281143, -0.022852586582303047, -0.010463658720254898, 0.03234920650720596, -0.05988675728440285, -0.03473479300737381, 0.04022863507270813, -0.022115882486104965, -0.09211068600416183, 0.0050157164223492146, 0.008778516203165054, 0.05603949353098869, 0.058358147740364075, 0.006786048412322998, 0.01867271214723587, -0.00904162973165512, 0.20554876327514648, -0.07349023222923279, -0.06961073726415634, -0.0994342714548111, 0.23794832825660706, 0.03023211844265461, -0.020472804084420204, 0.030288010835647583, -0.06730993092060089, -0.01924297772347927, 0.24743548035621643, 0.22831939160823822, -0.08813437819480896, -0.002375643001869321, 0.022723764181137085, -0.012981930747628212, -0.015660367906093597, 0.10397703945636749, 0.14611119031906128, 0.06380722671747208, -0.08587156981229782, -0.03012181632220745, -0.061355117708444595, -0.0057125394232571125, -0.04494314268231392, 0.07262426614761353, 0.05102216824889183, 0.0090905437245965, -0.03557809814810753, 0.0481061227619648, -0.07406124472618103, -0.09439066797494888, 0.03818196430802345, -0.20141011476516724, -0.15944211184978485, -0.015332120470702648, 0.0906912311911583, 0.00081416848115623, 0.05876147747039795, -0.029903501272201538, 0.004966472741216421, 0.0858391523361206, -0.02451716549694538, -0.09145668894052505, -0.07586037367582321, 0.0924239307641983, -0.11985260248184204, 0.2271886169910431, -0.04932300001382828, 0.07011982798576355, 0.12035950273275375, 0.05313970148563385, -0.06426870077848434, 0.06659746915102005, 0.04335322976112366, -0.03714822977781296, 0.012033305130898952, 0.07828888297080994, -0.027794616296887398, 0.06781288981437683, 0.04152531176805496, -0.13622832298278809, 0.006067936774343252, -0.04256989061832428, -0.06817709654569626, -0.039848849177360535, -0.03317209705710411, -0.06347433477640152, 0.1263163983821869, 0.21544258296489716, -0.029096631333231926, -0.012426361441612244, -0.0822412520647049, 0.0072579337283968925, 0.04832668974995613, 0.01631281152367592, -0.04694430157542229, -0.21067176759243011, 0.017074674367904663, 0.04200243577361107, -0.022419050335884094, -0.22656740248203278, -0.09428352117538452, 0.007315013557672501, -0.07921107113361359, -0.08809321373701096, 0.06588101387023926, 0.08122624456882477, 0.044515326619148254, -0.05935506150126457, -0.02902861498296261, -0.08415134996175766, 0.13841569423675537, -0.14506271481513977, -0.08880157023668289 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # fnet-large-finetuned-mrpc This model is a fine-tuned version of [google/fnet-large](https://huggingface.co/google/fnet-large) on the GLUE MRPC dataset. It achieves the following results on the evaluation set: - Loss: 1.0872 - Accuracy: 0.8260 - F1: 0.8799 - Combined Score: 0.8529 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Combined Score | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:--------------:| | 0.5656 | 1.0 | 917 | 0.6999 | 0.7843 | 0.8581 | 0.8212 | | 0.3874 | 2.0 | 1834 | 0.7280 | 0.8088 | 0.8691 | 0.8390 | | 0.1627 | 3.0 | 2751 | 1.1274 | 0.8162 | 0.8780 | 0.8471 | | 0.0751 | 4.0 | 3668 | 1.0289 | 0.8333 | 0.8870 | 0.8602 | | 0.0339 | 5.0 | 4585 | 1.0872 | 0.8260 | 0.8799 | 0.8529 | ### Framework versions - Transformers 4.11.0.dev0 - Pytorch 1.9.0 - Datasets 1.12.1 - Tokenizers 0.10.3
{"language": ["en"], "license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["glue"], "metrics": ["accuracy", "f1"], "model-index": [{"name": "fnet-large-finetuned-mrpc", "results": [{"task": {"type": "text-classification", "name": "Text Classification"}, "dataset": {"name": "GLUE MRPC", "type": "glue", "args": "mrpc"}, "metrics": [{"type": "accuracy", "value": 0.8259803921568627, "name": "Accuracy"}, {"type": "f1", "value": 0.8798646362098139, "name": "F1"}]}]}]}
text-classification
gchhablani/fnet-large-finetuned-mrpc
[ "transformers", "pytorch", "tensorboard", "fnet", "text-classification", "generated_from_trainer", "en", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #tensorboard #fnet #text-classification #generated_from_trainer #en #dataset-glue #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us
fnet-large-finetuned-mrpc ========================= This model is a fine-tuned version of google/fnet-large on the GLUE MRPC dataset. It achieves the following results on the evaluation set: * Loss: 1.0872 * Accuracy: 0.8260 * F1: 0.8799 * Combined Score: 0.8529 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 4 * eval\_batch\_size: 8 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 5.0 ### Training results ### Framework versions * Transformers 4.11.0.dev0 * Pytorch 1.9.0 * Datasets 1.12.1 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5.0", "### Training results", "### Framework versions\n\n\n* Transformers 4.11.0.dev0\n* Pytorch 1.9.0\n* Datasets 1.12.1\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #fnet #text-classification #generated_from_trainer #en #dataset-glue #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5.0", "### Training results", "### Framework versions\n\n\n* Transformers 4.11.0.dev0\n* Pytorch 1.9.0\n* Datasets 1.12.1\n* Tokenizers 0.10.3" ]
[ 68, 98, 4, 34 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #fnet #text-classification #generated_from_trainer #en #dataset-glue #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5.0### Training results### Framework versions\n\n\n* Transformers 4.11.0.dev0\n* Pytorch 1.9.0\n* Datasets 1.12.1\n* Tokenizers 0.10.3" ]
[ -0.09546191245317459, 0.08599092066287994, -0.002819906221702695, 0.12520475685596466, 0.15879055857658386, 0.026399699971079826, 0.11949319392442703, 0.12398721277713776, -0.09084320068359375, 0.011874276213347912, 0.11916262656450272, 0.15975700318813324, 0.017096880823373795, 0.1293363869190216, -0.05514799430966377, -0.2581601142883301, -0.009066539816558361, 0.05219760909676552, -0.0730782225728035, 0.13537991046905518, 0.10601045191287994, -0.11119034886360168, 0.0858348160982132, 0.012250698171555996, -0.19032633304595947, 0.005159530322998762, 0.007800718303769827, -0.06162724271416664, 0.14478495717048645, 0.026664696633815765, 0.11614209413528442, -0.005005354061722755, 0.07336033135652542, -0.19494523108005524, 0.011148547753691673, 0.062217213213443756, -0.0008450024761259556, 0.09304920583963394, 0.04146657511591911, 0.01810573972761631, 0.13009214401245117, -0.07812145352363586, 0.04607972502708435, 0.024277985095977783, -0.10066843777894974, -0.25224390625953674, -0.06780645996332169, 0.04294602945446968, 0.06958787888288498, 0.1144355908036232, -0.003222366329282522, 0.12924230098724365, -0.07112066447734833, 0.09992790967226028, 0.20228120684623718, -0.2846123278141022, -0.06414385139942169, 0.05315433070063591, -0.0006625417736358941, 0.05653926730155945, -0.09665023535490036, -0.03479963168501854, 0.047205254435539246, 0.056852784007787704, 0.13653863966464996, -0.02365931309759617, -0.11345908790826797, -0.00036166355130262673, -0.14659838378429413, -0.03392684459686279, 0.18420065939426422, 0.04295152425765991, -0.029913606122136116, -0.05532674118876457, -0.07111954689025879, -0.1298159509897232, -0.033634983003139496, -0.01663203164935112, 0.042924873530864716, -0.017111431807279587, -0.027516013011336327, -0.018441833555698395, -0.10968123376369476, -0.061496250331401825, -0.07938845455646515, 0.12648801505565643, 0.0373440757393837, 0.026029396802186966, -0.03856557980179787, 0.10718294978141785, -0.01039015781134367, -0.12635262310504913, 0.02376563660800457, 0.014790150336921215, 0.023429078981280327, -0.028944209218025208, -0.05729011818766594, -0.07710803300142288, 0.013970785774290562, 0.11589844524860382, -0.06570203602313995, 0.04521610215306282, 0.03654171898961067, 0.05179869011044502, -0.08960038423538208, 0.17069628834724426, -0.033626291900873184, -0.022550251334905624, 0.017764555290341377, 0.04625367373228073, 0.02610119618475437, -0.018981298431754112, -0.12368905544281006, 0.01198206003755331, 0.09392620623111725, 0.0013035978190600872, -0.05933376029133797, 0.08104883879423141, -0.038034044206142426, -0.033083993941545486, -0.005496066529303789, -0.09730266779661179, 0.019998257979750633, 0.006821903865784407, -0.08317822217941284, -0.020987385883927345, 0.037898458540439606, 0.013462735339999199, -0.027173368260264397, 0.10108006745576859, -0.08223720639944077, 0.021280832588672638, -0.0873541384935379, -0.1072964146733284, 0.01761503331363201, -0.08617527782917023, 0.019810689613223076, -0.10400725156068802, -0.18891578912734985, -0.0077062081545591354, 0.06357033550739288, -0.01852494478225708, -0.06713766604661942, -0.04489322751760483, -0.08013653755187988, 0.009742194786667824, -0.014273520559072495, 0.12686266005039215, -0.06624139845371246, 0.09025576710700989, 0.02989248000085354, 0.05423325300216675, -0.055293235927820206, 0.05391918867826462, -0.09691685438156128, 0.008810688741505146, -0.16241350769996643, 0.041948363184928894, -0.05697361379861832, 0.05600197985768318, -0.07802683860063553, -0.10861963778734207, 0.014010758139193058, -0.009118323214352131, 0.051885224878787994, 0.0832173079252243, -0.1714225709438324, -0.07527991384267807, 0.1451883614063263, -0.08433152735233307, -0.117959164083004, 0.12364167720079422, -0.05751069262623787, 0.03996153548359871, 0.055080514401197433, 0.17722031474113464, 0.09120480716228485, -0.06544680148363113, 0.005950626451522112, 0.03313767910003662, 0.04212610796093941, -0.06831853836774826, 0.06972771137952805, 0.019984891638159752, 0.016782991588115692, 0.03638952597975731, -0.03108343482017517, 0.06633422523736954, -0.07898469269275665, -0.09579379111528397, -0.046762142330408096, -0.08413276076316833, 0.03685159981250763, 0.07383585721254349, 0.07521867007017136, -0.08728065341711044, -0.07636827975511551, 0.03872332349419594, 0.08539536595344543, -0.05908842012286186, 0.026852475479245186, -0.053241580724716187, 0.07960749417543411, -0.022701889276504517, -0.010898844338953495, -0.18033812940120697, -0.0489765927195549, 0.013111790642142296, -0.019065599888563156, 0.011413183994591236, 0.034898094832897186, 0.05896642804145813, 0.06169478967785835, -0.05224358290433884, -0.006700506899505854, -0.03707636147737503, -0.002736605005338788, -0.11889437586069107, -0.19659262895584106, -0.03258073702454567, -0.0219099298119545, 0.1598203033208847, -0.20940329134464264, 0.051057182252407074, -0.007849784567952156, 0.08635152131319046, 0.004428023472428322, -0.004245837219059467, -0.04512714967131615, 0.05986940115690231, -0.04119914397597313, -0.04754257947206497, 0.0797266736626625, 0.020951641723513603, -0.08738018572330475, -0.05052084103226662, -0.08946986496448517, 0.17589566111564636, 0.13004666566848755, -0.1203686073422432, -0.06231275945901871, -0.005228476598858833, -0.07227027416229248, -0.03346370905637741, -0.04478921368718147, 0.027298297733068466, 0.19398172199726105, -0.010374259203672409, 0.15592092275619507, -0.07345370203256607, -0.04698825627565384, 0.025998717173933983, -0.029928049072623253, 0.01762254908680916, 0.11882616579532623, 0.11529583483934402, -0.08247628062963486, 0.15382464230060577, 0.14487947523593903, -0.09263201802968979, 0.14530399441719055, -0.04800577461719513, -0.05440796539187431, -0.012026961892843246, -0.02653445303440094, -0.02075771987438202, 0.10357513278722763, -0.1614956557750702, 0.010308556258678436, 0.03666393458843231, 0.022368796169757843, 0.033521343022584915, -0.21500913798809052, -0.033284418284893036, 0.03360406681895256, -0.04915229231119156, -0.005554342642426491, -0.00600228039547801, 0.011097459122538567, 0.10555184632539749, -0.0037921082694083452, -0.1044158786535263, 0.05074157938361168, -0.006137927062809467, -0.08894295990467072, 0.21745462715625763, -0.08632136881351471, -0.18696673214435577, -0.11720063537359238, -0.05977078899741173, -0.07440357655286789, -0.005697417538613081, 0.05866274610161781, -0.08173168450593948, -0.03133115917444229, -0.07904272526502609, 0.014714551158249378, -0.0008177160052582622, 0.02673378773033619, 0.017737895250320435, 0.003071904182434082, 0.08112871646881104, -0.11631204187870026, -0.014812331646680832, -0.06412842124700546, -0.04106014594435692, 0.039631348103284836, 0.04294215887784958, 0.09911496192216873, 0.15236623585224152, -0.01932796649634838, 0.022595083341002464, -0.021412083879113197, 0.24335768818855286, -0.06545376032590866, -0.018363337963819504, 0.15558351576328278, -0.00867502298206091, 0.04948771744966507, 0.11573895066976547, 0.0715351402759552, -0.07415314763784409, 0.0050702085718512535, 0.03689371049404144, -0.036363378167152405, -0.22274886071681976, -0.06535296142101288, -0.05658477544784546, 0.02026711404323578, 0.07761484384536743, 0.03714492544531822, 0.04264776408672333, 0.05929701030254364, 0.04340836778283119, 0.0686696395277977, -0.02882838249206543, 0.05045050010085106, 0.15857917070388794, 0.03623516485095024, 0.12905411422252655, -0.0383649580180645, -0.05830521136522293, 0.04401826858520508, -0.01650388538837433, 0.2045838087797165, -0.010560386814177036, 0.10752256959676743, 0.05580081418156624, 0.17469125986099243, -0.009762926027178764, 0.07077998667955399, -0.015204674564301968, -0.032061636447906494, -0.015053500421345234, -0.038609445095062256, -0.029359186068177223, 0.01937456801533699, -0.07770969718694687, 0.060527801513671875, -0.11411376297473907, 0.010677093639969826, 0.059778086841106415, 0.23909689486026764, 0.03223899379372597, -0.3180825710296631, -0.09792063385248184, -0.005235941149294376, -0.03779191896319389, -0.022020915523171425, 0.032515332102775574, 0.10104595869779587, -0.10247465968132019, 0.039183102548122406, -0.0768279880285263, 0.09344609081745148, -0.04620886594057083, 0.05521034076809883, 0.09871474653482437, 0.09597338736057281, 0.02048015221953392, 0.096494659781456, -0.2858371138572693, 0.25810134410858154, -0.0008917004452086985, 0.055689625442028046, -0.07825443148612976, 0.011470974422991276, 0.03769155591726303, 0.07573051750659943, 0.07050973176956177, -0.010998306795954704, -0.02132379449903965, -0.17557914555072784, -0.06484248489141464, 0.03208262845873833, 0.06640531122684479, -0.02824542112648487, 0.07367397099733353, -0.02855999954044819, 0.009517839178442955, 0.07583609968423843, 0.010695524513721466, -0.05560624599456787, -0.09996896237134933, 0.0005532020586542785, 0.053071361035108566, -0.06607106328010559, -0.06424704939126968, -0.1176302582025528, -0.11913973838090897, 0.15881624817848206, -0.024910470470786095, -0.05115595459938049, -0.10973544418811798, 0.0894245058298111, 0.05847169831395149, -0.08369704335927963, 0.042348362505435944, -0.003034900175407529, 0.08414874970912933, 0.022848933935165405, -0.08384497463703156, 0.09918875247240067, -0.08087218552827835, -0.15695929527282715, -0.056926511228084564, 0.11002043634653091, 0.03164108842611313, 0.058370400220155716, -0.01081100944429636, 0.0006559081957675517, -0.04384872689843178, -0.09692469984292984, 0.013017899356782436, -0.009734023362398148, 0.07791733741760254, 0.02332180365920067, -0.055519409477710724, 0.010724114254117012, -0.06127122417092323, -0.025878654792904854, 0.1999949812889099, 0.20991948246955872, -0.10273119807243347, 0.01914804056286812, 0.02892344444990158, -0.06101452186703682, -0.19818688929080963, 0.026290491223335266, 0.06219090148806572, -0.006466645747423172, 0.028350498527288437, -0.1772705316543579, 0.1424008160829544, 0.09497801214456558, -0.019320080056786537, 0.11905593425035477, -0.3191659450531006, -0.11980247497558594, 0.13569417595863342, 0.12890441715717316, 0.11123138666152954, -0.12752926349639893, -0.018578607589006424, -0.01675238274037838, -0.12915006279945374, 0.1329793781042099, -0.1172524243593216, 0.11238279938697815, -0.03414227068424225, 0.08010146021842957, 0.001642079558223486, -0.0570412315428257, 0.11512328684329987, 0.025005081668496132, 0.09225330501794815, -0.06164787337183952, -0.008495654910802841, 0.03452535346150398, -0.03190139681100845, 0.04483703896403313, -0.09700168669223785, 0.033334556967020035, -0.10865794122219086, -0.0214571263641119, -0.07938719540834427, 0.05095565319061279, -0.03664569556713104, -0.07135503739118576, -0.045485079288482666, 0.02403452806174755, 0.057519298046827316, -0.00724073639139533, 0.13187195360660553, 0.037778809666633606, 0.14953835308551788, 0.1497054547071457, 0.06296437233686447, -0.0816614180803299, -0.09189815074205399, -0.02339370734989643, -0.007961608469486237, 0.05737365782260895, -0.13682818412780762, 0.025487486273050308, 0.14920346438884735, 0.01067504845559597, 0.1419643610715866, 0.08810736984014511, -0.024375448003411293, -0.011216367594897747, 0.05464911088347435, -0.17467109858989716, -0.09439196437597275, -0.02270573377609253, -0.06931719183921814, -0.11218071728944778, 0.05837605893611908, 0.10388980060815811, -0.08238784968852997, 0.0025478980969637632, -0.0036189118400216103, 0.01330843847244978, -0.05678478628396988, 0.18629495799541473, 0.06895172595977783, 0.04923379421234131, -0.10211517661809921, 0.0844893679022789, 0.04786021634936333, -0.061863500624895096, 0.003803879488259554, 0.07889994233846664, -0.09867862612009048, -0.053205981850624084, 0.05900222063064575, 0.17500045895576477, -0.05377772077918053, -0.0596037320792675, -0.14735089242458344, -0.13265158236026764, 0.07988547533750534, 0.13361380994319916, 0.11714371293783188, 0.0073603312484920025, -0.07273177057504654, 0.002185244346037507, -0.11119045317173004, 0.10686644166707993, 0.0465870127081871, 0.055424951016902924, -0.1553489863872528, 0.13742566108703613, 0.016396204009652138, 0.06254139542579651, -0.02566162869334221, 0.02288627438247204, -0.08485285937786102, 0.008428186178207397, -0.10126855224370956, -0.02166859805583954, -0.015184788964688778, 0.009756003506481647, -0.005930773913860321, -0.04936628416180611, -0.05678648129105568, 0.02513021230697632, -0.10625382512807846, -0.02489090897142887, 0.033812735229730606, 0.05252465978264809, -0.1173783391714096, -0.04442751407623291, 0.016967257484793663, -0.06054551899433136, 0.08527270704507828, 0.053835052996873856, 0.012136760167777538, 0.05291440710425377, -0.12204016745090485, 0.016342202201485634, 0.07364647090435028, 0.0349479541182518, 0.06090749427676201, -0.09562382102012634, -0.003282394725829363, -0.00001865075682871975, 0.030004533007740974, 0.022373711690306664, 0.07710137963294983, -0.1379968672990799, -0.0034996774047613144, -0.027388708665966988, -0.06447653472423553, -0.06685411930084229, 0.019427789375185966, 0.08218405395746231, 0.03522159904241562, 0.20542800426483154, -0.07487155497074127, 0.045620422810316086, -0.21430227160453796, 0.00823394488543272, -0.0004625043657142669, -0.11957801133394241, -0.09532622992992401, -0.051133062690496445, 0.05481477826833725, -0.06431839615106583, 0.1534840315580368, 0.04941427335143089, 0.01592053472995758, 0.028808899223804474, -0.01811968721449375, 0.018443580716848373, 0.0080113485455513, 0.18708765506744385, 0.03429579362273216, -0.02985781617462635, 0.07225026190280914, 0.039080578833818436, 0.11195438355207443, 0.11603232473134995, 0.19704307615756989, 0.13246352970600128, -0.0008535053348168731, 0.0951245054602623, 0.04693981632590294, -0.06035655736923218, -0.16422057151794434, 0.05283075198531151, -0.03835199028253555, 0.12152128666639328, -0.028580691665410995, 0.19253279268741608, 0.06901441514492035, -0.16116325557231903, 0.04764442518353462, -0.04824594035744667, -0.08681273460388184, -0.11683184653520584, -0.06121692433953285, -0.07114308327436447, -0.1440211683511734, -0.004636962898075581, -0.11918430775403976, -0.0008277559536509216, 0.1097910925745964, 0.010498684830963612, -0.03498762845993042, 0.15053655207157135, 0.006402645725756884, 0.015238703228533268, 0.0695597305893898, 0.006615471560508013, -0.04100614786148071, -0.10920800268650055, -0.05520232766866684, -0.022179335355758667, -0.010697388090193272, 0.03149294853210449, -0.06045083701610565, -0.03633178025484085, 0.04040398821234703, -0.02195586822926998, -0.09119494259357452, 0.005079627502709627, 0.00920786615461111, 0.05570284649729729, 0.05661286786198616, 0.007228526286780834, 0.018431752920150757, -0.009099789895117283, 0.20788635313510895, -0.0740276426076889, -0.06805037707090378, -0.09928686916828156, 0.23586858808994293, 0.031392164528369904, -0.020330391824245453, 0.03078066185116768, -0.06767775863409042, -0.018910378217697144, 0.2457672357559204, 0.22598128020763397, -0.08714233338832855, -0.002273096702992916, 0.022417528554797173, -0.01315001118928194, -0.016113251447677612, 0.10431814938783646, 0.14606770873069763, 0.06461671739816666, -0.08543983101844788, -0.029877889901399612, -0.06068196892738342, -0.006037788465619087, -0.04389375448226929, 0.07362931221723557, 0.049937255680561066, 0.007489452138543129, -0.03518691286444664, 0.048443753272295, -0.07235494256019592, -0.09499064832925797, 0.038542162626981735, -0.20198656618595123, -0.16029119491577148, -0.015390058979392052, 0.09282878786325455, 0.0010308976052328944, 0.057557959109544754, -0.030114294961094856, 0.0048396289348602295, 0.08691193163394928, -0.024416247382760048, -0.09137684851884842, -0.07855791598558426, 0.09151489287614822, -0.12239585816860199, 0.22643736004829407, -0.04916463419795036, 0.07056054472923279, 0.11964943259954453, 0.05358283966779709, -0.06439071148633957, 0.06493911147117615, 0.04323429614305496, -0.03877938538789749, 0.012006440199911594, 0.08003684133291245, -0.027095813304185867, 0.06842819601297379, 0.041951268911361694, -0.1349412053823471, 0.005635885521769524, -0.04544267803430557, -0.06833399087190628, -0.040099576115608215, -0.03195123374462128, -0.0631319135427475, 0.12548556923866272, 0.2150724083185196, -0.029118625447154045, -0.012089218944311142, -0.08287710696458817, 0.007270357105880976, 0.048678286373615265, 0.018202396109700203, -0.046538036316633224, -0.2092742621898651, 0.017721407115459442, 0.0428425669670105, -0.02169046550989151, -0.224505215883255, -0.09362480044364929, 0.00570263434201479, -0.07918917387723923, -0.08765849471092224, 0.06609953939914703, 0.08304844796657562, 0.04343817010521889, -0.059563811868429184, -0.03427022323012352, -0.08322528004646301, 0.1385328769683838, -0.145302414894104, -0.08898579329252243 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # fnet-large-finetuned-qqp This model is a fine-tuned version of [google/fnet-large](https://huggingface.co/google/fnet-large) on the GLUE QQP dataset. It achieves the following results on the evaluation set: - Loss: 0.5515 - Accuracy: 0.8943 - F1: 0.8557 - Combined Score: 0.8750 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Combined Score | |:-------------:|:-----:|:------:|:---------------:|:--------:|:------:|:--------------:| | 0.4574 | 1.0 | 90962 | 0.4946 | 0.8694 | 0.8297 | 0.8496 | | 0.3387 | 2.0 | 181924 | 0.4745 | 0.8874 | 0.8437 | 0.8655 | | 0.2029 | 3.0 | 272886 | 0.5515 | 0.8943 | 0.8557 | 0.8750 | ### Framework versions - Transformers 4.11.0.dev0 - Pytorch 1.9.0 - Datasets 1.12.1 - Tokenizers 0.10.3
{"language": ["en"], "license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["glue"], "metrics": ["accuracy", "f1"], "model-index": [{"name": "fnet-large-finetuned-qqp", "results": [{"task": {"type": "text-classification", "name": "Text Classification"}, "dataset": {"name": "GLUE QQP", "type": "glue", "args": "qqp"}, "metrics": [{"type": "accuracy", "value": 0.8943111550828593, "name": "Accuracy"}, {"type": "f1", "value": 0.8556565212985171, "name": "F1"}]}]}]}
text-classification
gchhablani/fnet-large-finetuned-qqp
[ "transformers", "pytorch", "tensorboard", "fnet", "text-classification", "generated_from_trainer", "en", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #tensorboard #fnet #text-classification #generated_from_trainer #en #dataset-glue #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us
fnet-large-finetuned-qqp ======================== This model is a fine-tuned version of google/fnet-large on the GLUE QQP dataset. It achieves the following results on the evaluation set: * Loss: 0.5515 * Accuracy: 0.8943 * F1: 0.8557 * Combined Score: 0.8750 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 4 * eval\_batch\_size: 8 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 3.0 ### Training results ### Framework versions * Transformers 4.11.0.dev0 * Pytorch 1.9.0 * Datasets 1.12.1 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3.0", "### Training results", "### Framework versions\n\n\n* Transformers 4.11.0.dev0\n* Pytorch 1.9.0\n* Datasets 1.12.1\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #fnet #text-classification #generated_from_trainer #en #dataset-glue #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3.0", "### Training results", "### Framework versions\n\n\n* Transformers 4.11.0.dev0\n* Pytorch 1.9.0\n* Datasets 1.12.1\n* Tokenizers 0.10.3" ]
[ 68, 98, 4, 34 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #fnet #text-classification #generated_from_trainer #en #dataset-glue #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3.0### Training results### Framework versions\n\n\n* Transformers 4.11.0.dev0\n* Pytorch 1.9.0\n* Datasets 1.12.1\n* Tokenizers 0.10.3" ]
[ -0.09392090886831284, 0.086028553545475, -0.002810414880514145, 0.12563712894916534, 0.15835294127464294, 0.02616388164460659, 0.12096844613552094, 0.12440948188304901, -0.09253979474306107, 0.01095916610211134, 0.11961711943149567, 0.16139951348304749, 0.017056036740541458, 0.12809212505817413, -0.055080391466617584, -0.25876080989837646, -0.008076829835772514, 0.051302410662174225, -0.07248687744140625, 0.13545523583889008, 0.10696391016244888, -0.10981715470552444, 0.08594673126935959, 0.012483679689466953, -0.188598170876503, 0.0053088548593223095, 0.006561026908457279, -0.06197373941540718, 0.14454741775989532, 0.02627757005393505, 0.11637239903211594, -0.004603952635079622, 0.07419975847005844, -0.1947721242904663, 0.010915560647845268, 0.06143670529127121, -0.0008093014475889504, 0.0922541469335556, 0.04200132563710213, 0.016881262883543968, 0.12951737642288208, -0.07753071933984756, 0.047175586223602295, 0.024195468053221703, -0.10057501494884491, -0.2488769292831421, -0.06924816966056824, 0.04293599724769592, 0.0703204795718193, 0.114735446870327, -0.0025232243351638317, 0.12956556677818298, -0.07075148820877075, 0.09971623867750168, 0.2038886547088623, -0.28335192799568176, -0.06467258930206299, 0.053865209221839905, 0.00007339009607676417, 0.05563786253333092, -0.09489043802022934, -0.03489343822002411, 0.0464896559715271, 0.05855744704604149, 0.13576450943946838, -0.024170638993382454, -0.11294703930616379, -0.00035783895873464644, -0.14739225804805756, -0.03345825895667076, 0.18343965709209442, 0.04216032102704048, -0.031146908178925514, -0.0553949810564518, -0.07025839388370514, -0.13019998371601105, -0.03334832936525345, -0.016549253836274147, 0.042229484766721725, -0.017025606706738472, -0.02913014031946659, -0.02009456790983677, -0.10942849516868591, -0.06127852201461792, -0.07925374060869217, 0.12757611274719238, 0.03740452602505684, 0.026067685335874557, -0.036684900522232056, 0.1074313297867775, -0.008039964362978935, -0.12542767822742462, 0.02348942495882511, 0.014696755446493626, 0.02391907386481762, -0.029253896325826645, -0.05762016028165817, -0.07737185806035995, 0.013022209517657757, 0.11649444699287415, -0.06627753376960754, 0.045372430235147476, 0.03719029203057289, 0.052638933062553406, -0.08948004990816116, 0.17119163274765015, -0.03414352610707283, -0.020914733409881592, 0.017712917178869247, 0.04670121893286705, 0.026985853910446167, -0.018883170560002327, -0.12442363798618317, 0.01235498022288084, 0.09396601468324661, 0.002359611913561821, -0.05978254973888397, 0.08112926036119461, -0.03828165680170059, -0.03376328945159912, -0.004834178369492292, -0.09749481827020645, 0.019099729135632515, 0.006322276312857866, -0.08288158476352692, -0.019768934696912766, 0.03858035430312157, 0.014716193079948425, -0.02650129422545433, 0.09978698194026947, -0.08106034249067307, 0.02185039594769478, -0.08661425113677979, -0.10680398344993591, 0.017903147265315056, -0.0847211480140686, 0.01903758943080902, -0.10459426045417786, -0.19062873721122742, -0.0070509458892047405, 0.06475710868835449, -0.01869357004761696, -0.06680820137262344, -0.0446598045527935, -0.07923983782529831, 0.009182565845549107, -0.014331415295600891, 0.1251339614391327, -0.06613124161958694, 0.08929501473903656, 0.029013488441705704, 0.053821150213479996, -0.056043438613414764, 0.053580932319164276, -0.09583668410778046, 0.009967178106307983, -0.16321894526481628, 0.04253964126110077, -0.05672885477542877, 0.05521031841635704, -0.07788251340389252, -0.10970792174339294, 0.015046020038425922, -0.008545617572963238, 0.05209499970078468, 0.0823349803686142, -0.17201119661331177, -0.07378672808408737, 0.1421811878681183, -0.08395789563655853, -0.11804282665252686, 0.12395995855331421, -0.05760178342461586, 0.040096431970596313, 0.05442522466182709, 0.1759394258260727, 0.09057454019784927, -0.06562479585409164, 0.006790442857891321, 0.033411525189876556, 0.04206949099898338, -0.06806401163339615, 0.07068393379449844, 0.0191428791731596, 0.017440875992178917, 0.03589886054396629, -0.031538426876068115, 0.06567616760730743, -0.07883037626743317, -0.09648585319519043, -0.04541643336415291, -0.0845101922750473, 0.03634423762559891, 0.07191202789545059, 0.07480383664369583, -0.08777596801519394, -0.07665324211120605, 0.039373867213726044, 0.08542460203170776, -0.06039068102836609, 0.028123341500759125, -0.05340079590678215, 0.07857871055603027, -0.022135380655527115, -0.012152368202805519, -0.17895615100860596, -0.049802783876657486, 0.01269685197621584, -0.017068060114979744, 0.011587386019527912, 0.03449726849794388, 0.05857099965214729, 0.062182098627090454, -0.052427344024181366, -0.006858838256448507, -0.036305077373981476, -0.002348072361201048, -0.11779595166444778, -0.194713294506073, -0.033400148153305054, -0.021897103637456894, 0.16001500189304352, -0.20776410400867462, 0.05139097571372986, -0.009029606357216835, 0.08531299233436584, 0.003109408775344491, -0.004246857482939959, -0.0448564738035202, 0.05959697812795639, -0.04208480939269066, -0.048716846853494644, 0.08012443780899048, 0.02152360789477825, -0.08858314156532288, -0.049554068595170975, -0.09015779942274094, 0.17343412339687347, 0.1291024088859558, -0.1208619773387909, -0.06354694813489914, -0.005686518736183643, -0.07318001985549927, -0.032940808683633804, -0.04457523673772812, 0.025874445214867592, 0.19627976417541504, -0.00956712942570448, 0.1556379199028015, -0.073637954890728, -0.04745488986372948, 0.024473601952195168, -0.031531598418951035, 0.015794798731803894, 0.1174120306968689, 0.1146426871418953, -0.0827367752790451, 0.15341469645500183, 0.14470958709716797, -0.09353531897068024, 0.14427484571933746, -0.046857599169015884, -0.05337967351078987, -0.01239851489663124, -0.025734765455126762, -0.01986040733754635, 0.10185948759317398, -0.1591099053621292, 0.010827534832060337, 0.03590237349271774, 0.02313799038529396, 0.03406902775168419, -0.21511520445346832, -0.034339725971221924, 0.03387860581278801, -0.0499500147998333, -0.002659587422385812, -0.00680513633415103, 0.01076573971658945, 0.10498564690351486, -0.0029810734558850527, -0.10533218830823898, 0.05257336422801018, -0.0062987240962684155, -0.0899871438741684, 0.21725404262542725, -0.08747546374797821, -0.18725232779979706, -0.11880498379468918, -0.06220771372318268, -0.07559692859649658, -0.004758915398269892, 0.05759590119123459, -0.08066269010305405, -0.03158093988895416, -0.0806441456079483, 0.01446909736841917, -0.002284287940710783, 0.026104530319571495, 0.01951073668897152, 0.0022082950454205275, 0.08154694736003876, -0.11645926535129547, -0.015786167234182358, -0.06321795284748077, -0.04211984947323799, 0.04032707214355469, 0.04146743565797806, 0.0988055020570755, 0.15235096216201782, -0.019287779927253723, 0.02282365784049034, -0.02135869860649109, 0.24310164153575897, -0.06365299969911575, -0.018696533516049385, 0.1559664011001587, -0.009423095732927322, 0.0503767766058445, 0.11493933945894241, 0.07142814248800278, -0.07500948756933212, 0.006025242153555155, 0.03687376528978348, -0.037410885095596313, -0.2224632054567337, -0.06534454971551895, -0.05588307976722717, 0.020130153745412827, 0.07723241299390793, 0.03739004582166672, 0.04191461205482483, 0.059889692813158035, 0.04328415170311928, 0.06834448873996735, -0.02811642736196518, 0.0510883592069149, 0.15787187218666077, 0.03660351783037186, 0.12926755845546722, -0.03699519485235214, -0.0581619068980217, 0.044791772961616516, -0.015560021623969078, 0.2022491693496704, -0.011031819507479668, 0.10647973418235779, 0.05714922025799751, 0.1732620894908905, -0.01044081524014473, 0.07149824500083923, -0.01537350844591856, -0.03176766633987427, -0.01585426926612854, -0.03921106085181236, -0.030264299362897873, 0.018982039764523506, -0.0774182453751564, 0.060774918645620346, -0.1135101318359375, 0.01231792476028204, 0.05960399657487869, 0.24015723168849945, 0.03204027935862541, -0.3194168210029602, -0.09705868363380432, -0.004413720685988665, -0.03755950182676315, -0.021074343472719193, 0.033035874366760254, 0.0998033806681633, -0.10339818149805069, 0.04004545137286186, -0.07676628977060318, 0.09240566939115524, -0.04698125272989273, 0.054886672645807266, 0.09951405227184296, 0.09603190422058105, 0.020772648975253105, 0.09640488028526306, -0.2850910425186157, 0.25600531697273254, -0.0014360295608639717, 0.05562611296772957, -0.07749780267477036, 0.012023663148283958, 0.038247883319854736, 0.07425936311483383, 0.07044059038162231, -0.010851399041712284, -0.02008097432553768, -0.1768847107887268, -0.06550540030002594, 0.03150675445795059, 0.06631500273942947, -0.02683223783969879, 0.07452084869146347, -0.02882814034819603, 0.01022765226662159, 0.07610820233821869, 0.013070657849311829, -0.05542498826980591, -0.10068942606449127, 0.0006295169587247074, 0.052223872393369675, -0.06668298691511154, -0.06467423588037491, -0.11798346787691116, -0.1204783171415329, 0.1616269052028656, -0.020681016147136688, -0.052140481770038605, -0.11009234935045242, 0.08729247003793716, 0.058916110545396805, -0.08323338627815247, 0.04165558144450188, -0.002712355460971594, 0.0844990462064743, 0.02244596555829048, -0.08383654803037643, 0.09725132584571838, -0.0815984308719635, -0.15663672983646393, -0.05686290189623833, 0.1098857969045639, 0.03203533589839935, 0.0587601438164711, -0.010134214535355568, 0.0003890396619681269, -0.04276092350482941, -0.0972023457288742, 0.012183141894638538, -0.009019515477120876, 0.07961194217205048, 0.023807894438505173, -0.05628948658704758, 0.01429247297346592, -0.06137530878186226, -0.025577371940016747, 0.2017984837293625, 0.2101432830095291, -0.10181240737438202, 0.019432980567216873, 0.02815667726099491, -0.06017622724175453, -0.19818763434886932, 0.025082634761929512, 0.06268273293972015, -0.007134377025067806, 0.029622653499245644, -0.17602014541625977, 0.1417960673570633, 0.09607643634080887, -0.019160397350788116, 0.11625179648399353, -0.3190588355064392, -0.11957462131977081, 0.13578015565872192, 0.13038641214370728, 0.1082649901509285, -0.1275387704372406, -0.017696116119623184, -0.017272336408495903, -0.12869010865688324, 0.13378626108169556, -0.11559057980775833, 0.11307959258556366, -0.033666882663965225, 0.08151817321777344, 0.0013376958668231964, -0.05681246146559715, 0.11611095815896988, 0.02491697669029236, 0.09116630256175995, -0.062243860214948654, -0.00852359551936388, 0.034516509622335434, -0.03262631967663765, 0.04529916122555733, -0.09698519855737686, 0.03298477455973625, -0.10906574875116348, -0.022121058776974678, -0.07863457500934601, 0.05038856714963913, -0.03678201884031296, -0.07253073155879974, -0.04535432532429695, 0.024469682946801186, 0.058498598635196686, -0.007506924215704203, 0.13079454004764557, 0.037502311170101166, 0.1487056463956833, 0.14970152080059052, 0.06433167308568954, -0.08174005895853043, -0.0913252905011177, -0.023997897282242775, -0.008367595262825489, 0.05552287399768829, -0.1339290738105774, 0.025475962087512016, 0.14876805245876312, 0.009036448784172535, 0.1429215669631958, 0.0885363295674324, -0.024754323065280914, -0.01073932833969593, 0.05416949465870857, -0.1737722009420395, -0.09068270772695541, -0.022626888006925583, -0.06832322478294373, -0.11296725273132324, 0.05743652954697609, 0.10428833216428757, -0.08115601539611816, 0.002589004347100854, -0.0032136866357177496, 0.013669951818883419, -0.057341303676366806, 0.1853988766670227, 0.069394551217556, 0.04892005771398544, -0.1013467088341713, 0.08452849835157394, 0.04651455581188202, -0.058266013860702515, 0.004656137898564339, 0.0800386294722557, -0.0980244129896164, -0.053028371185064316, 0.05821079760789871, 0.17423874139785767, -0.0555633120238781, -0.05913792923092842, -0.1475023776292801, -0.13321906328201294, 0.07928811013698578, 0.1311376690864563, 0.11735476553440094, 0.007435607723891735, -0.07321388274431229, 0.0015353669878095388, -0.11065926402807236, 0.10537150502204895, 0.0464034266769886, 0.054856207221746445, -0.15510469675064087, 0.13737551867961884, 0.015811048448085785, 0.06363701820373535, -0.025411484763026237, 0.022845277562737465, -0.08434955775737762, 0.008706839755177498, -0.10348886996507645, -0.0216924250125885, -0.016252512112259865, 0.009890284389257431, -0.0053891371935606, -0.048445265740156174, -0.057025883346796036, 0.024999424815177917, -0.10565505921840668, -0.025227516889572144, 0.03321393206715584, 0.05191047862172127, -0.11662878841161728, -0.04512174427509308, 0.01624988205730915, -0.06121593341231346, 0.08542851358652115, 0.05370628833770752, 0.01167554035782814, 0.0522066168487072, -0.12207209318876266, 0.015587622299790382, 0.0742800235748291, 0.03451160714030266, 0.060766711831092834, -0.09618820250034332, -0.004330980591475964, 0.000620808859821409, 0.029649745672941208, 0.022910641506314278, 0.0777667984366417, -0.13724935054779053, -0.002710487926378846, -0.02783370390534401, -0.06454020738601685, -0.06714898347854614, 0.020097440108656883, 0.08303855359554291, 0.03637102618813515, 0.20598363876342773, -0.07561089843511581, 0.046382516622543335, -0.2131723165512085, 0.007946843281388283, -0.00018174469005316496, -0.11797532439231873, -0.09552253782749176, -0.05074607580900192, 0.05392405018210411, -0.06373390555381775, 0.15394343435764313, 0.04863494262099266, 0.014815868809819221, 0.02855541929602623, -0.017866145819425583, 0.0212584026157856, 0.007505857385694981, 0.1868983954191208, 0.03341247886419296, -0.030030297115445137, 0.07202771306037903, 0.038279302418231964, 0.11288387328386307, 0.11314141005277634, 0.19690823554992676, 0.13149374723434448, -0.0017040353268384933, 0.09504646062850952, 0.04710931330919266, -0.060035157948732376, -0.16356506943702698, 0.05060194432735443, -0.03684914484620094, 0.11947114020586014, -0.02734866924583912, 0.1927868127822876, 0.06847987323999405, -0.16221268475055695, 0.046570226550102234, -0.04790783300995827, -0.08729487657546997, -0.11747626960277557, -0.06214311346411705, -0.07060721516609192, -0.14227285981178284, -0.004479394759982824, -0.11955714225769043, -0.0012408922193571925, 0.11118984967470169, 0.01135226245969534, -0.034017469733953476, 0.14965499937534332, 0.004561042878776789, 0.015436336398124695, 0.06754950433969498, 0.006787540391087532, -0.03938409313559532, -0.10845154523849487, -0.05584019422531128, -0.02278803661465645, -0.009399445727467537, 0.0328291691839695, -0.06014551594853401, -0.03446387127041817, 0.03999267518520355, -0.022419964894652367, -0.091934934258461, 0.004938766360282898, 0.008898281492292881, 0.05622522905468941, 0.05688990280032158, 0.007466019131243229, 0.018164541572332382, -0.008829513564705849, 0.20546086132526398, -0.07387928664684296, -0.06927040219306946, -0.09953052550554276, 0.2376701980829239, 0.03024473413825035, -0.020175063982605934, 0.030588623136281967, -0.06754070520401001, -0.019916238263249397, 0.24630585312843323, 0.22834931313991547, -0.08888491988182068, -0.0023557317908853292, 0.022025488317012787, -0.012935125268995762, -0.015982933342456818, 0.10426705330610275, 0.14598897099494934, 0.06348761916160583, -0.0856001153588295, -0.030391816049814224, -0.061101991683244705, -0.0055675022304058075, -0.0447319820523262, 0.0732647031545639, 0.0502418652176857, 0.009062495082616806, -0.03542236611247063, 0.04821065813302994, -0.07359969615936279, -0.09477446228265762, 0.037203386425971985, -0.20104920864105225, -0.1598745882511139, -0.01462660450488329, 0.09054913371801376, 0.0001615012442925945, 0.0589400939643383, -0.030530771240592003, 0.004999163560569286, 0.08607053011655807, -0.024409007281064987, -0.09203089773654938, -0.0751798152923584, 0.09285302460193634, -0.1202358677983284, 0.22683995962142944, -0.049215227365493774, 0.07103195041418076, 0.12016253918409348, 0.053361181169748306, -0.06377849727869034, 0.06605267524719238, 0.04349633678793907, -0.03749271482229233, 0.012211945839226246, 0.07883132994174957, -0.02810114249587059, 0.0679730772972107, 0.042277514934539795, -0.1358688473701477, 0.0054893274791538715, -0.043648626655340195, -0.06824120879173279, -0.039956267923116684, -0.03296131268143654, -0.06381493806838989, 0.1260761022567749, 0.214870885014534, -0.02928794175386429, -0.012312759645283222, -0.08210945874452591, 0.007474972400814295, 0.048175226897001266, 0.016146136447787285, -0.04649002104997635, -0.21020174026489258, 0.016797954216599464, 0.041385382413864136, -0.022210748866200447, -0.2261059582233429, -0.09453583508729935, 0.006697536446154118, -0.07942066341638565, -0.08833836019039154, 0.06651146709918976, 0.08081953972578049, 0.043811965733766556, -0.05939081683754921, -0.029742924496531487, -0.0846235603094101, 0.13799507915973663, -0.1453099101781845, -0.08864983171224594 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # fnet-large-finetuned-rte This model is a fine-tuned version of [google/fnet-large](https://huggingface.co/google/fnet-large) on the GLUE RTE dataset. It achieves the following results on the evaluation set: - Loss: 0.7528 - Accuracy: 0.6426 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.7105 | 1.0 | 623 | 0.6887 | 0.5740 | | 0.6714 | 2.0 | 1246 | 0.6742 | 0.6209 | | 0.509 | 3.0 | 1869 | 0.7528 | 0.6426 | ### Framework versions - Transformers 4.11.0.dev0 - Pytorch 1.9.0 - Datasets 1.12.1 - Tokenizers 0.10.3
{"language": ["en"], "license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["glue"], "metrics": ["accuracy"], "model-index": [{"name": "fnet-large-finetuned-rte", "results": [{"task": {"type": "text-classification", "name": "Text Classification"}, "dataset": {"name": "GLUE RTE", "type": "glue", "args": "rte"}, "metrics": [{"type": "accuracy", "value": 0.6425992779783394, "name": "Accuracy"}]}]}]}
text-classification
gchhablani/fnet-large-finetuned-rte
[ "transformers", "pytorch", "tensorboard", "fnet", "text-classification", "generated_from_trainer", "en", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #tensorboard #fnet #text-classification #generated_from_trainer #en #dataset-glue #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us
fnet-large-finetuned-rte ======================== This model is a fine-tuned version of google/fnet-large on the GLUE RTE dataset. It achieves the following results on the evaluation set: * Loss: 0.7528 * Accuracy: 0.6426 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 4 * eval\_batch\_size: 8 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 3.0 ### Training results ### Framework versions * Transformers 4.11.0.dev0 * Pytorch 1.9.0 * Datasets 1.12.1 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3.0", "### Training results", "### Framework versions\n\n\n* Transformers 4.11.0.dev0\n* Pytorch 1.9.0\n* Datasets 1.12.1\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #fnet #text-classification #generated_from_trainer #en #dataset-glue #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3.0", "### Training results", "### Framework versions\n\n\n* Transformers 4.11.0.dev0\n* Pytorch 1.9.0\n* Datasets 1.12.1\n* Tokenizers 0.10.3" ]
[ 68, 98, 4, 34 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #fnet #text-classification #generated_from_trainer #en #dataset-glue #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3.0### Training results### Framework versions\n\n\n* Transformers 4.11.0.dev0\n* Pytorch 1.9.0\n* Datasets 1.12.1\n* Tokenizers 0.10.3" ]
[ -0.09392090886831284, 0.086028553545475, -0.002810414880514145, 0.12563712894916534, 0.15835294127464294, 0.02616388164460659, 0.12096844613552094, 0.12440948188304901, -0.09253979474306107, 0.01095916610211134, 0.11961711943149567, 0.16139951348304749, 0.017056036740541458, 0.12809212505817413, -0.055080391466617584, -0.25876080989837646, -0.008076829835772514, 0.051302410662174225, -0.07248687744140625, 0.13545523583889008, 0.10696391016244888, -0.10981715470552444, 0.08594673126935959, 0.012483679689466953, -0.188598170876503, 0.0053088548593223095, 0.006561026908457279, -0.06197373941540718, 0.14454741775989532, 0.02627757005393505, 0.11637239903211594, -0.004603952635079622, 0.07419975847005844, -0.1947721242904663, 0.010915560647845268, 0.06143670529127121, -0.0008093014475889504, 0.0922541469335556, 0.04200132563710213, 0.016881262883543968, 0.12951737642288208, -0.07753071933984756, 0.047175586223602295, 0.024195468053221703, -0.10057501494884491, -0.2488769292831421, -0.06924816966056824, 0.04293599724769592, 0.0703204795718193, 0.114735446870327, -0.0025232243351638317, 0.12956556677818298, -0.07075148820877075, 0.09971623867750168, 0.2038886547088623, -0.28335192799568176, -0.06467258930206299, 0.053865209221839905, 0.00007339009607676417, 0.05563786253333092, -0.09489043802022934, -0.03489343822002411, 0.0464896559715271, 0.05855744704604149, 0.13576450943946838, -0.024170638993382454, -0.11294703930616379, -0.00035783895873464644, -0.14739225804805756, -0.03345825895667076, 0.18343965709209442, 0.04216032102704048, -0.031146908178925514, -0.0553949810564518, -0.07025839388370514, -0.13019998371601105, -0.03334832936525345, -0.016549253836274147, 0.042229484766721725, -0.017025606706738472, -0.02913014031946659, -0.02009456790983677, -0.10942849516868591, -0.06127852201461792, -0.07925374060869217, 0.12757611274719238, 0.03740452602505684, 0.026067685335874557, -0.036684900522232056, 0.1074313297867775, -0.008039964362978935, -0.12542767822742462, 0.02348942495882511, 0.014696755446493626, 0.02391907386481762, -0.029253896325826645, -0.05762016028165817, -0.07737185806035995, 0.013022209517657757, 0.11649444699287415, -0.06627753376960754, 0.045372430235147476, 0.03719029203057289, 0.052638933062553406, -0.08948004990816116, 0.17119163274765015, -0.03414352610707283, -0.020914733409881592, 0.017712917178869247, 0.04670121893286705, 0.026985853910446167, -0.018883170560002327, -0.12442363798618317, 0.01235498022288084, 0.09396601468324661, 0.002359611913561821, -0.05978254973888397, 0.08112926036119461, -0.03828165680170059, -0.03376328945159912, -0.004834178369492292, -0.09749481827020645, 0.019099729135632515, 0.006322276312857866, -0.08288158476352692, -0.019768934696912766, 0.03858035430312157, 0.014716193079948425, -0.02650129422545433, 0.09978698194026947, -0.08106034249067307, 0.02185039594769478, -0.08661425113677979, -0.10680398344993591, 0.017903147265315056, -0.0847211480140686, 0.01903758943080902, -0.10459426045417786, -0.19062873721122742, -0.0070509458892047405, 0.06475710868835449, -0.01869357004761696, -0.06680820137262344, -0.0446598045527935, -0.07923983782529831, 0.009182565845549107, -0.014331415295600891, 0.1251339614391327, -0.06613124161958694, 0.08929501473903656, 0.029013488441705704, 0.053821150213479996, -0.056043438613414764, 0.053580932319164276, -0.09583668410778046, 0.009967178106307983, -0.16321894526481628, 0.04253964126110077, -0.05672885477542877, 0.05521031841635704, -0.07788251340389252, -0.10970792174339294, 0.015046020038425922, -0.008545617572963238, 0.05209499970078468, 0.0823349803686142, -0.17201119661331177, -0.07378672808408737, 0.1421811878681183, -0.08395789563655853, -0.11804282665252686, 0.12395995855331421, -0.05760178342461586, 0.040096431970596313, 0.05442522466182709, 0.1759394258260727, 0.09057454019784927, -0.06562479585409164, 0.006790442857891321, 0.033411525189876556, 0.04206949099898338, -0.06806401163339615, 0.07068393379449844, 0.0191428791731596, 0.017440875992178917, 0.03589886054396629, -0.031538426876068115, 0.06567616760730743, -0.07883037626743317, -0.09648585319519043, -0.04541643336415291, -0.0845101922750473, 0.03634423762559891, 0.07191202789545059, 0.07480383664369583, -0.08777596801519394, -0.07665324211120605, 0.039373867213726044, 0.08542460203170776, -0.06039068102836609, 0.028123341500759125, -0.05340079590678215, 0.07857871055603027, -0.022135380655527115, -0.012152368202805519, -0.17895615100860596, -0.049802783876657486, 0.01269685197621584, -0.017068060114979744, 0.011587386019527912, 0.03449726849794388, 0.05857099965214729, 0.062182098627090454, -0.052427344024181366, -0.006858838256448507, -0.036305077373981476, -0.002348072361201048, -0.11779595166444778, -0.194713294506073, -0.033400148153305054, -0.021897103637456894, 0.16001500189304352, -0.20776410400867462, 0.05139097571372986, -0.009029606357216835, 0.08531299233436584, 0.003109408775344491, -0.004246857482939959, -0.0448564738035202, 0.05959697812795639, -0.04208480939269066, -0.048716846853494644, 0.08012443780899048, 0.02152360789477825, -0.08858314156532288, -0.049554068595170975, -0.09015779942274094, 0.17343412339687347, 0.1291024088859558, -0.1208619773387909, -0.06354694813489914, -0.005686518736183643, -0.07318001985549927, -0.032940808683633804, -0.04457523673772812, 0.025874445214867592, 0.19627976417541504, -0.00956712942570448, 0.1556379199028015, -0.073637954890728, -0.04745488986372948, 0.024473601952195168, -0.031531598418951035, 0.015794798731803894, 0.1174120306968689, 0.1146426871418953, -0.0827367752790451, 0.15341469645500183, 0.14470958709716797, -0.09353531897068024, 0.14427484571933746, -0.046857599169015884, -0.05337967351078987, -0.01239851489663124, -0.025734765455126762, -0.01986040733754635, 0.10185948759317398, -0.1591099053621292, 0.010827534832060337, 0.03590237349271774, 0.02313799038529396, 0.03406902775168419, -0.21511520445346832, -0.034339725971221924, 0.03387860581278801, -0.0499500147998333, -0.002659587422385812, -0.00680513633415103, 0.01076573971658945, 0.10498564690351486, -0.0029810734558850527, -0.10533218830823898, 0.05257336422801018, -0.0062987240962684155, -0.0899871438741684, 0.21725404262542725, -0.08747546374797821, -0.18725232779979706, -0.11880498379468918, -0.06220771372318268, -0.07559692859649658, -0.004758915398269892, 0.05759590119123459, -0.08066269010305405, -0.03158093988895416, -0.0806441456079483, 0.01446909736841917, -0.002284287940710783, 0.026104530319571495, 0.01951073668897152, 0.0022082950454205275, 0.08154694736003876, -0.11645926535129547, -0.015786167234182358, -0.06321795284748077, -0.04211984947323799, 0.04032707214355469, 0.04146743565797806, 0.0988055020570755, 0.15235096216201782, -0.019287779927253723, 0.02282365784049034, -0.02135869860649109, 0.24310164153575897, -0.06365299969911575, -0.018696533516049385, 0.1559664011001587, -0.009423095732927322, 0.0503767766058445, 0.11493933945894241, 0.07142814248800278, -0.07500948756933212, 0.006025242153555155, 0.03687376528978348, -0.037410885095596313, -0.2224632054567337, -0.06534454971551895, -0.05588307976722717, 0.020130153745412827, 0.07723241299390793, 0.03739004582166672, 0.04191461205482483, 0.059889692813158035, 0.04328415170311928, 0.06834448873996735, -0.02811642736196518, 0.0510883592069149, 0.15787187218666077, 0.03660351783037186, 0.12926755845546722, -0.03699519485235214, -0.0581619068980217, 0.044791772961616516, -0.015560021623969078, 0.2022491693496704, -0.011031819507479668, 0.10647973418235779, 0.05714922025799751, 0.1732620894908905, -0.01044081524014473, 0.07149824500083923, -0.01537350844591856, -0.03176766633987427, -0.01585426926612854, -0.03921106085181236, -0.030264299362897873, 0.018982039764523506, -0.0774182453751564, 0.060774918645620346, -0.1135101318359375, 0.01231792476028204, 0.05960399657487869, 0.24015723168849945, 0.03204027935862541, -0.3194168210029602, -0.09705868363380432, -0.004413720685988665, -0.03755950182676315, -0.021074343472719193, 0.033035874366760254, 0.0998033806681633, -0.10339818149805069, 0.04004545137286186, -0.07676628977060318, 0.09240566939115524, -0.04698125272989273, 0.054886672645807266, 0.09951405227184296, 0.09603190422058105, 0.020772648975253105, 0.09640488028526306, -0.2850910425186157, 0.25600531697273254, -0.0014360295608639717, 0.05562611296772957, -0.07749780267477036, 0.012023663148283958, 0.038247883319854736, 0.07425936311483383, 0.07044059038162231, -0.010851399041712284, -0.02008097432553768, -0.1768847107887268, -0.06550540030002594, 0.03150675445795059, 0.06631500273942947, -0.02683223783969879, 0.07452084869146347, -0.02882814034819603, 0.01022765226662159, 0.07610820233821869, 0.013070657849311829, -0.05542498826980591, -0.10068942606449127, 0.0006295169587247074, 0.052223872393369675, -0.06668298691511154, -0.06467423588037491, -0.11798346787691116, -0.1204783171415329, 0.1616269052028656, -0.020681016147136688, -0.052140481770038605, -0.11009234935045242, 0.08729247003793716, 0.058916110545396805, -0.08323338627815247, 0.04165558144450188, -0.002712355460971594, 0.0844990462064743, 0.02244596555829048, -0.08383654803037643, 0.09725132584571838, -0.0815984308719635, -0.15663672983646393, -0.05686290189623833, 0.1098857969045639, 0.03203533589839935, 0.0587601438164711, -0.010134214535355568, 0.0003890396619681269, -0.04276092350482941, -0.0972023457288742, 0.012183141894638538, -0.009019515477120876, 0.07961194217205048, 0.023807894438505173, -0.05628948658704758, 0.01429247297346592, -0.06137530878186226, -0.025577371940016747, 0.2017984837293625, 0.2101432830095291, -0.10181240737438202, 0.019432980567216873, 0.02815667726099491, -0.06017622724175453, -0.19818763434886932, 0.025082634761929512, 0.06268273293972015, -0.007134377025067806, 0.029622653499245644, -0.17602014541625977, 0.1417960673570633, 0.09607643634080887, -0.019160397350788116, 0.11625179648399353, -0.3190588355064392, -0.11957462131977081, 0.13578015565872192, 0.13038641214370728, 0.1082649901509285, -0.1275387704372406, -0.017696116119623184, -0.017272336408495903, -0.12869010865688324, 0.13378626108169556, -0.11559057980775833, 0.11307959258556366, -0.033666882663965225, 0.08151817321777344, 0.0013376958668231964, -0.05681246146559715, 0.11611095815896988, 0.02491697669029236, 0.09116630256175995, -0.062243860214948654, -0.00852359551936388, 0.034516509622335434, -0.03262631967663765, 0.04529916122555733, -0.09698519855737686, 0.03298477455973625, -0.10906574875116348, -0.022121058776974678, -0.07863457500934601, 0.05038856714963913, -0.03678201884031296, -0.07253073155879974, -0.04535432532429695, 0.024469682946801186, 0.058498598635196686, -0.007506924215704203, 0.13079454004764557, 0.037502311170101166, 0.1487056463956833, 0.14970152080059052, 0.06433167308568954, -0.08174005895853043, -0.0913252905011177, -0.023997897282242775, -0.008367595262825489, 0.05552287399768829, -0.1339290738105774, 0.025475962087512016, 0.14876805245876312, 0.009036448784172535, 0.1429215669631958, 0.0885363295674324, -0.024754323065280914, -0.01073932833969593, 0.05416949465870857, -0.1737722009420395, -0.09068270772695541, -0.022626888006925583, -0.06832322478294373, -0.11296725273132324, 0.05743652954697609, 0.10428833216428757, -0.08115601539611816, 0.002589004347100854, -0.0032136866357177496, 0.013669951818883419, -0.057341303676366806, 0.1853988766670227, 0.069394551217556, 0.04892005771398544, -0.1013467088341713, 0.08452849835157394, 0.04651455581188202, -0.058266013860702515, 0.004656137898564339, 0.0800386294722557, -0.0980244129896164, -0.053028371185064316, 0.05821079760789871, 0.17423874139785767, -0.0555633120238781, -0.05913792923092842, -0.1475023776292801, -0.13321906328201294, 0.07928811013698578, 0.1311376690864563, 0.11735476553440094, 0.007435607723891735, -0.07321388274431229, 0.0015353669878095388, -0.11065926402807236, 0.10537150502204895, 0.0464034266769886, 0.054856207221746445, -0.15510469675064087, 0.13737551867961884, 0.015811048448085785, 0.06363701820373535, -0.025411484763026237, 0.022845277562737465, -0.08434955775737762, 0.008706839755177498, -0.10348886996507645, -0.0216924250125885, -0.016252512112259865, 0.009890284389257431, -0.0053891371935606, -0.048445265740156174, -0.057025883346796036, 0.024999424815177917, -0.10565505921840668, -0.025227516889572144, 0.03321393206715584, 0.05191047862172127, -0.11662878841161728, -0.04512174427509308, 0.01624988205730915, -0.06121593341231346, 0.08542851358652115, 0.05370628833770752, 0.01167554035782814, 0.0522066168487072, -0.12207209318876266, 0.015587622299790382, 0.0742800235748291, 0.03451160714030266, 0.060766711831092834, -0.09618820250034332, -0.004330980591475964, 0.000620808859821409, 0.029649745672941208, 0.022910641506314278, 0.0777667984366417, -0.13724935054779053, -0.002710487926378846, -0.02783370390534401, -0.06454020738601685, -0.06714898347854614, 0.020097440108656883, 0.08303855359554291, 0.03637102618813515, 0.20598363876342773, -0.07561089843511581, 0.046382516622543335, -0.2131723165512085, 0.007946843281388283, -0.00018174469005316496, -0.11797532439231873, -0.09552253782749176, -0.05074607580900192, 0.05392405018210411, -0.06373390555381775, 0.15394343435764313, 0.04863494262099266, 0.014815868809819221, 0.02855541929602623, -0.017866145819425583, 0.0212584026157856, 0.007505857385694981, 0.1868983954191208, 0.03341247886419296, -0.030030297115445137, 0.07202771306037903, 0.038279302418231964, 0.11288387328386307, 0.11314141005277634, 0.19690823554992676, 0.13149374723434448, -0.0017040353268384933, 0.09504646062850952, 0.04710931330919266, -0.060035157948732376, -0.16356506943702698, 0.05060194432735443, -0.03684914484620094, 0.11947114020586014, -0.02734866924583912, 0.1927868127822876, 0.06847987323999405, -0.16221268475055695, 0.046570226550102234, -0.04790783300995827, -0.08729487657546997, -0.11747626960277557, -0.06214311346411705, -0.07060721516609192, -0.14227285981178284, -0.004479394759982824, -0.11955714225769043, -0.0012408922193571925, 0.11118984967470169, 0.01135226245969534, -0.034017469733953476, 0.14965499937534332, 0.004561042878776789, 0.015436336398124695, 0.06754950433969498, 0.006787540391087532, -0.03938409313559532, -0.10845154523849487, -0.05584019422531128, -0.02278803661465645, -0.009399445727467537, 0.0328291691839695, -0.06014551594853401, -0.03446387127041817, 0.03999267518520355, -0.022419964894652367, -0.091934934258461, 0.004938766360282898, 0.008898281492292881, 0.05622522905468941, 0.05688990280032158, 0.007466019131243229, 0.018164541572332382, -0.008829513564705849, 0.20546086132526398, -0.07387928664684296, -0.06927040219306946, -0.09953052550554276, 0.2376701980829239, 0.03024473413825035, -0.020175063982605934, 0.030588623136281967, -0.06754070520401001, -0.019916238263249397, 0.24630585312843323, 0.22834931313991547, -0.08888491988182068, -0.0023557317908853292, 0.022025488317012787, -0.012935125268995762, -0.015982933342456818, 0.10426705330610275, 0.14598897099494934, 0.06348761916160583, -0.0856001153588295, -0.030391816049814224, -0.061101991683244705, -0.0055675022304058075, -0.0447319820523262, 0.0732647031545639, 0.0502418652176857, 0.009062495082616806, -0.03542236611247063, 0.04821065813302994, -0.07359969615936279, -0.09477446228265762, 0.037203386425971985, -0.20104920864105225, -0.1598745882511139, -0.01462660450488329, 0.09054913371801376, 0.0001615012442925945, 0.0589400939643383, -0.030530771240592003, 0.004999163560569286, 0.08607053011655807, -0.024409007281064987, -0.09203089773654938, -0.0751798152923584, 0.09285302460193634, -0.1202358677983284, 0.22683995962142944, -0.049215227365493774, 0.07103195041418076, 0.12016253918409348, 0.053361181169748306, -0.06377849727869034, 0.06605267524719238, 0.04349633678793907, -0.03749271482229233, 0.012211945839226246, 0.07883132994174957, -0.02810114249587059, 0.0679730772972107, 0.042277514934539795, -0.1358688473701477, 0.0054893274791538715, -0.043648626655340195, -0.06824120879173279, -0.039956267923116684, -0.03296131268143654, -0.06381493806838989, 0.1260761022567749, 0.214870885014534, -0.02928794175386429, -0.012312759645283222, -0.08210945874452591, 0.007474972400814295, 0.048175226897001266, 0.016146136447787285, -0.04649002104997635, -0.21020174026489258, 0.016797954216599464, 0.041385382413864136, -0.022210748866200447, -0.2261059582233429, -0.09453583508729935, 0.006697536446154118, -0.07942066341638565, -0.08833836019039154, 0.06651146709918976, 0.08081953972578049, 0.043811965733766556, -0.05939081683754921, -0.029742924496531487, -0.0846235603094101, 0.13799507915973663, -0.1453099101781845, -0.08864983171224594 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # fnet-large-finetuned-sst2 This model is a fine-tuned version of [google/fnet-large](https://huggingface.co/google/fnet-large) on the GLUE SST2 dataset. It achieves the following results on the evaluation set: - Loss: 0.5240 - Accuracy: 0.9048 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.394 | 1.0 | 16838 | 0.3896 | 0.8968 | | 0.2076 | 2.0 | 33676 | 0.5100 | 0.8956 | | 0.1148 | 3.0 | 50514 | 0.5240 | 0.9048 | ### Framework versions - Transformers 4.11.0.dev0 - Pytorch 1.9.0 - Datasets 1.12.1 - Tokenizers 0.10.3
{"language": ["en"], "license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["glue"], "metrics": ["accuracy"], "model-index": [{"name": "fnet-large-finetuned-sst2", "results": [{"task": {"type": "text-classification", "name": "Text Classification"}, "dataset": {"name": "GLUE SST2", "type": "glue", "args": "sst2"}, "metrics": [{"type": "accuracy", "value": 0.9048165137614679, "name": "Accuracy"}]}]}]}
text-classification
gchhablani/fnet-large-finetuned-sst2
[ "transformers", "pytorch", "tensorboard", "fnet", "text-classification", "generated_from_trainer", "en", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #tensorboard #fnet #text-classification #generated_from_trainer #en #dataset-glue #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us
fnet-large-finetuned-sst2 ========================= This model is a fine-tuned version of google/fnet-large on the GLUE SST2 dataset. It achieves the following results on the evaluation set: * Loss: 0.5240 * Accuracy: 0.9048 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 4 * eval\_batch\_size: 8 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 3.0 ### Training results ### Framework versions * Transformers 4.11.0.dev0 * Pytorch 1.9.0 * Datasets 1.12.1 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3.0", "### Training results", "### Framework versions\n\n\n* Transformers 4.11.0.dev0\n* Pytorch 1.9.0\n* Datasets 1.12.1\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #fnet #text-classification #generated_from_trainer #en #dataset-glue #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3.0", "### Training results", "### Framework versions\n\n\n* Transformers 4.11.0.dev0\n* Pytorch 1.9.0\n* Datasets 1.12.1\n* Tokenizers 0.10.3" ]
[ 68, 98, 4, 34 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #fnet #text-classification #generated_from_trainer #en #dataset-glue #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3.0### Training results### Framework versions\n\n\n* Transformers 4.11.0.dev0\n* Pytorch 1.9.0\n* Datasets 1.12.1\n* Tokenizers 0.10.3" ]
[ -0.09392090886831284, 0.086028553545475, -0.002810414880514145, 0.12563712894916534, 0.15835294127464294, 0.02616388164460659, 0.12096844613552094, 0.12440948188304901, -0.09253979474306107, 0.01095916610211134, 0.11961711943149567, 0.16139951348304749, 0.017056036740541458, 0.12809212505817413, -0.055080391466617584, -0.25876080989837646, -0.008076829835772514, 0.051302410662174225, -0.07248687744140625, 0.13545523583889008, 0.10696391016244888, -0.10981715470552444, 0.08594673126935959, 0.012483679689466953, -0.188598170876503, 0.0053088548593223095, 0.006561026908457279, -0.06197373941540718, 0.14454741775989532, 0.02627757005393505, 0.11637239903211594, -0.004603952635079622, 0.07419975847005844, -0.1947721242904663, 0.010915560647845268, 0.06143670529127121, -0.0008093014475889504, 0.0922541469335556, 0.04200132563710213, 0.016881262883543968, 0.12951737642288208, -0.07753071933984756, 0.047175586223602295, 0.024195468053221703, -0.10057501494884491, -0.2488769292831421, -0.06924816966056824, 0.04293599724769592, 0.0703204795718193, 0.114735446870327, -0.0025232243351638317, 0.12956556677818298, -0.07075148820877075, 0.09971623867750168, 0.2038886547088623, -0.28335192799568176, -0.06467258930206299, 0.053865209221839905, 0.00007339009607676417, 0.05563786253333092, -0.09489043802022934, -0.03489343822002411, 0.0464896559715271, 0.05855744704604149, 0.13576450943946838, -0.024170638993382454, -0.11294703930616379, -0.00035783895873464644, -0.14739225804805756, -0.03345825895667076, 0.18343965709209442, 0.04216032102704048, -0.031146908178925514, -0.0553949810564518, -0.07025839388370514, -0.13019998371601105, -0.03334832936525345, -0.016549253836274147, 0.042229484766721725, -0.017025606706738472, -0.02913014031946659, -0.02009456790983677, -0.10942849516868591, -0.06127852201461792, -0.07925374060869217, 0.12757611274719238, 0.03740452602505684, 0.026067685335874557, -0.036684900522232056, 0.1074313297867775, -0.008039964362978935, -0.12542767822742462, 0.02348942495882511, 0.014696755446493626, 0.02391907386481762, -0.029253896325826645, -0.05762016028165817, -0.07737185806035995, 0.013022209517657757, 0.11649444699287415, -0.06627753376960754, 0.045372430235147476, 0.03719029203057289, 0.052638933062553406, -0.08948004990816116, 0.17119163274765015, -0.03414352610707283, -0.020914733409881592, 0.017712917178869247, 0.04670121893286705, 0.026985853910446167, -0.018883170560002327, -0.12442363798618317, 0.01235498022288084, 0.09396601468324661, 0.002359611913561821, -0.05978254973888397, 0.08112926036119461, -0.03828165680170059, -0.03376328945159912, -0.004834178369492292, -0.09749481827020645, 0.019099729135632515, 0.006322276312857866, -0.08288158476352692, -0.019768934696912766, 0.03858035430312157, 0.014716193079948425, -0.02650129422545433, 0.09978698194026947, -0.08106034249067307, 0.02185039594769478, -0.08661425113677979, -0.10680398344993591, 0.017903147265315056, -0.0847211480140686, 0.01903758943080902, -0.10459426045417786, -0.19062873721122742, -0.0070509458892047405, 0.06475710868835449, -0.01869357004761696, -0.06680820137262344, -0.0446598045527935, -0.07923983782529831, 0.009182565845549107, -0.014331415295600891, 0.1251339614391327, -0.06613124161958694, 0.08929501473903656, 0.029013488441705704, 0.053821150213479996, -0.056043438613414764, 0.053580932319164276, -0.09583668410778046, 0.009967178106307983, -0.16321894526481628, 0.04253964126110077, -0.05672885477542877, 0.05521031841635704, -0.07788251340389252, -0.10970792174339294, 0.015046020038425922, -0.008545617572963238, 0.05209499970078468, 0.0823349803686142, -0.17201119661331177, -0.07378672808408737, 0.1421811878681183, -0.08395789563655853, -0.11804282665252686, 0.12395995855331421, -0.05760178342461586, 0.040096431970596313, 0.05442522466182709, 0.1759394258260727, 0.09057454019784927, -0.06562479585409164, 0.006790442857891321, 0.033411525189876556, 0.04206949099898338, -0.06806401163339615, 0.07068393379449844, 0.0191428791731596, 0.017440875992178917, 0.03589886054396629, -0.031538426876068115, 0.06567616760730743, -0.07883037626743317, -0.09648585319519043, -0.04541643336415291, -0.0845101922750473, 0.03634423762559891, 0.07191202789545059, 0.07480383664369583, -0.08777596801519394, -0.07665324211120605, 0.039373867213726044, 0.08542460203170776, -0.06039068102836609, 0.028123341500759125, -0.05340079590678215, 0.07857871055603027, -0.022135380655527115, -0.012152368202805519, -0.17895615100860596, -0.049802783876657486, 0.01269685197621584, -0.017068060114979744, 0.011587386019527912, 0.03449726849794388, 0.05857099965214729, 0.062182098627090454, -0.052427344024181366, -0.006858838256448507, -0.036305077373981476, -0.002348072361201048, -0.11779595166444778, -0.194713294506073, -0.033400148153305054, -0.021897103637456894, 0.16001500189304352, -0.20776410400867462, 0.05139097571372986, -0.009029606357216835, 0.08531299233436584, 0.003109408775344491, -0.004246857482939959, -0.0448564738035202, 0.05959697812795639, -0.04208480939269066, -0.048716846853494644, 0.08012443780899048, 0.02152360789477825, -0.08858314156532288, -0.049554068595170975, -0.09015779942274094, 0.17343412339687347, 0.1291024088859558, -0.1208619773387909, -0.06354694813489914, -0.005686518736183643, -0.07318001985549927, -0.032940808683633804, -0.04457523673772812, 0.025874445214867592, 0.19627976417541504, -0.00956712942570448, 0.1556379199028015, -0.073637954890728, -0.04745488986372948, 0.024473601952195168, -0.031531598418951035, 0.015794798731803894, 0.1174120306968689, 0.1146426871418953, -0.0827367752790451, 0.15341469645500183, 0.14470958709716797, -0.09353531897068024, 0.14427484571933746, -0.046857599169015884, -0.05337967351078987, -0.01239851489663124, -0.025734765455126762, -0.01986040733754635, 0.10185948759317398, -0.1591099053621292, 0.010827534832060337, 0.03590237349271774, 0.02313799038529396, 0.03406902775168419, -0.21511520445346832, -0.034339725971221924, 0.03387860581278801, -0.0499500147998333, -0.002659587422385812, -0.00680513633415103, 0.01076573971658945, 0.10498564690351486, -0.0029810734558850527, -0.10533218830823898, 0.05257336422801018, -0.0062987240962684155, -0.0899871438741684, 0.21725404262542725, -0.08747546374797821, -0.18725232779979706, -0.11880498379468918, -0.06220771372318268, -0.07559692859649658, -0.004758915398269892, 0.05759590119123459, -0.08066269010305405, -0.03158093988895416, -0.0806441456079483, 0.01446909736841917, -0.002284287940710783, 0.026104530319571495, 0.01951073668897152, 0.0022082950454205275, 0.08154694736003876, -0.11645926535129547, -0.015786167234182358, -0.06321795284748077, -0.04211984947323799, 0.04032707214355469, 0.04146743565797806, 0.0988055020570755, 0.15235096216201782, -0.019287779927253723, 0.02282365784049034, -0.02135869860649109, 0.24310164153575897, -0.06365299969911575, -0.018696533516049385, 0.1559664011001587, -0.009423095732927322, 0.0503767766058445, 0.11493933945894241, 0.07142814248800278, -0.07500948756933212, 0.006025242153555155, 0.03687376528978348, -0.037410885095596313, -0.2224632054567337, -0.06534454971551895, -0.05588307976722717, 0.020130153745412827, 0.07723241299390793, 0.03739004582166672, 0.04191461205482483, 0.059889692813158035, 0.04328415170311928, 0.06834448873996735, -0.02811642736196518, 0.0510883592069149, 0.15787187218666077, 0.03660351783037186, 0.12926755845546722, -0.03699519485235214, -0.0581619068980217, 0.044791772961616516, -0.015560021623969078, 0.2022491693496704, -0.011031819507479668, 0.10647973418235779, 0.05714922025799751, 0.1732620894908905, -0.01044081524014473, 0.07149824500083923, -0.01537350844591856, -0.03176766633987427, -0.01585426926612854, -0.03921106085181236, -0.030264299362897873, 0.018982039764523506, -0.0774182453751564, 0.060774918645620346, -0.1135101318359375, 0.01231792476028204, 0.05960399657487869, 0.24015723168849945, 0.03204027935862541, -0.3194168210029602, -0.09705868363380432, -0.004413720685988665, -0.03755950182676315, -0.021074343472719193, 0.033035874366760254, 0.0998033806681633, -0.10339818149805069, 0.04004545137286186, -0.07676628977060318, 0.09240566939115524, -0.04698125272989273, 0.054886672645807266, 0.09951405227184296, 0.09603190422058105, 0.020772648975253105, 0.09640488028526306, -0.2850910425186157, 0.25600531697273254, -0.0014360295608639717, 0.05562611296772957, -0.07749780267477036, 0.012023663148283958, 0.038247883319854736, 0.07425936311483383, 0.07044059038162231, -0.010851399041712284, -0.02008097432553768, -0.1768847107887268, -0.06550540030002594, 0.03150675445795059, 0.06631500273942947, -0.02683223783969879, 0.07452084869146347, -0.02882814034819603, 0.01022765226662159, 0.07610820233821869, 0.013070657849311829, -0.05542498826980591, -0.10068942606449127, 0.0006295169587247074, 0.052223872393369675, -0.06668298691511154, -0.06467423588037491, -0.11798346787691116, -0.1204783171415329, 0.1616269052028656, -0.020681016147136688, -0.052140481770038605, -0.11009234935045242, 0.08729247003793716, 0.058916110545396805, -0.08323338627815247, 0.04165558144450188, -0.002712355460971594, 0.0844990462064743, 0.02244596555829048, -0.08383654803037643, 0.09725132584571838, -0.0815984308719635, -0.15663672983646393, -0.05686290189623833, 0.1098857969045639, 0.03203533589839935, 0.0587601438164711, -0.010134214535355568, 0.0003890396619681269, -0.04276092350482941, -0.0972023457288742, 0.012183141894638538, -0.009019515477120876, 0.07961194217205048, 0.023807894438505173, -0.05628948658704758, 0.01429247297346592, -0.06137530878186226, -0.025577371940016747, 0.2017984837293625, 0.2101432830095291, -0.10181240737438202, 0.019432980567216873, 0.02815667726099491, -0.06017622724175453, -0.19818763434886932, 0.025082634761929512, 0.06268273293972015, -0.007134377025067806, 0.029622653499245644, -0.17602014541625977, 0.1417960673570633, 0.09607643634080887, -0.019160397350788116, 0.11625179648399353, -0.3190588355064392, -0.11957462131977081, 0.13578015565872192, 0.13038641214370728, 0.1082649901509285, -0.1275387704372406, -0.017696116119623184, -0.017272336408495903, -0.12869010865688324, 0.13378626108169556, -0.11559057980775833, 0.11307959258556366, -0.033666882663965225, 0.08151817321777344, 0.0013376958668231964, -0.05681246146559715, 0.11611095815896988, 0.02491697669029236, 0.09116630256175995, -0.062243860214948654, -0.00852359551936388, 0.034516509622335434, -0.03262631967663765, 0.04529916122555733, -0.09698519855737686, 0.03298477455973625, -0.10906574875116348, -0.022121058776974678, -0.07863457500934601, 0.05038856714963913, -0.03678201884031296, -0.07253073155879974, -0.04535432532429695, 0.024469682946801186, 0.058498598635196686, -0.007506924215704203, 0.13079454004764557, 0.037502311170101166, 0.1487056463956833, 0.14970152080059052, 0.06433167308568954, -0.08174005895853043, -0.0913252905011177, -0.023997897282242775, -0.008367595262825489, 0.05552287399768829, -0.1339290738105774, 0.025475962087512016, 0.14876805245876312, 0.009036448784172535, 0.1429215669631958, 0.0885363295674324, -0.024754323065280914, -0.01073932833969593, 0.05416949465870857, -0.1737722009420395, -0.09068270772695541, -0.022626888006925583, -0.06832322478294373, -0.11296725273132324, 0.05743652954697609, 0.10428833216428757, -0.08115601539611816, 0.002589004347100854, -0.0032136866357177496, 0.013669951818883419, -0.057341303676366806, 0.1853988766670227, 0.069394551217556, 0.04892005771398544, -0.1013467088341713, 0.08452849835157394, 0.04651455581188202, -0.058266013860702515, 0.004656137898564339, 0.0800386294722557, -0.0980244129896164, -0.053028371185064316, 0.05821079760789871, 0.17423874139785767, -0.0555633120238781, -0.05913792923092842, -0.1475023776292801, -0.13321906328201294, 0.07928811013698578, 0.1311376690864563, 0.11735476553440094, 0.007435607723891735, -0.07321388274431229, 0.0015353669878095388, -0.11065926402807236, 0.10537150502204895, 0.0464034266769886, 0.054856207221746445, -0.15510469675064087, 0.13737551867961884, 0.015811048448085785, 0.06363701820373535, -0.025411484763026237, 0.022845277562737465, -0.08434955775737762, 0.008706839755177498, -0.10348886996507645, -0.0216924250125885, -0.016252512112259865, 0.009890284389257431, -0.0053891371935606, -0.048445265740156174, -0.057025883346796036, 0.024999424815177917, -0.10565505921840668, -0.025227516889572144, 0.03321393206715584, 0.05191047862172127, -0.11662878841161728, -0.04512174427509308, 0.01624988205730915, -0.06121593341231346, 0.08542851358652115, 0.05370628833770752, 0.01167554035782814, 0.0522066168487072, -0.12207209318876266, 0.015587622299790382, 0.0742800235748291, 0.03451160714030266, 0.060766711831092834, -0.09618820250034332, -0.004330980591475964, 0.000620808859821409, 0.029649745672941208, 0.022910641506314278, 0.0777667984366417, -0.13724935054779053, -0.002710487926378846, -0.02783370390534401, -0.06454020738601685, -0.06714898347854614, 0.020097440108656883, 0.08303855359554291, 0.03637102618813515, 0.20598363876342773, -0.07561089843511581, 0.046382516622543335, -0.2131723165512085, 0.007946843281388283, -0.00018174469005316496, -0.11797532439231873, -0.09552253782749176, -0.05074607580900192, 0.05392405018210411, -0.06373390555381775, 0.15394343435764313, 0.04863494262099266, 0.014815868809819221, 0.02855541929602623, -0.017866145819425583, 0.0212584026157856, 0.007505857385694981, 0.1868983954191208, 0.03341247886419296, -0.030030297115445137, 0.07202771306037903, 0.038279302418231964, 0.11288387328386307, 0.11314141005277634, 0.19690823554992676, 0.13149374723434448, -0.0017040353268384933, 0.09504646062850952, 0.04710931330919266, -0.060035157948732376, -0.16356506943702698, 0.05060194432735443, -0.03684914484620094, 0.11947114020586014, -0.02734866924583912, 0.1927868127822876, 0.06847987323999405, -0.16221268475055695, 0.046570226550102234, -0.04790783300995827, -0.08729487657546997, -0.11747626960277557, -0.06214311346411705, -0.07060721516609192, -0.14227285981178284, -0.004479394759982824, -0.11955714225769043, -0.0012408922193571925, 0.11118984967470169, 0.01135226245969534, -0.034017469733953476, 0.14965499937534332, 0.004561042878776789, 0.015436336398124695, 0.06754950433969498, 0.006787540391087532, -0.03938409313559532, -0.10845154523849487, -0.05584019422531128, -0.02278803661465645, -0.009399445727467537, 0.0328291691839695, -0.06014551594853401, -0.03446387127041817, 0.03999267518520355, -0.022419964894652367, -0.091934934258461, 0.004938766360282898, 0.008898281492292881, 0.05622522905468941, 0.05688990280032158, 0.007466019131243229, 0.018164541572332382, -0.008829513564705849, 0.20546086132526398, -0.07387928664684296, -0.06927040219306946, -0.09953052550554276, 0.2376701980829239, 0.03024473413825035, -0.020175063982605934, 0.030588623136281967, -0.06754070520401001, -0.019916238263249397, 0.24630585312843323, 0.22834931313991547, -0.08888491988182068, -0.0023557317908853292, 0.022025488317012787, -0.012935125268995762, -0.015982933342456818, 0.10426705330610275, 0.14598897099494934, 0.06348761916160583, -0.0856001153588295, -0.030391816049814224, -0.061101991683244705, -0.0055675022304058075, -0.0447319820523262, 0.0732647031545639, 0.0502418652176857, 0.009062495082616806, -0.03542236611247063, 0.04821065813302994, -0.07359969615936279, -0.09477446228265762, 0.037203386425971985, -0.20104920864105225, -0.1598745882511139, -0.01462660450488329, 0.09054913371801376, 0.0001615012442925945, 0.0589400939643383, -0.030530771240592003, 0.004999163560569286, 0.08607053011655807, -0.024409007281064987, -0.09203089773654938, -0.0751798152923584, 0.09285302460193634, -0.1202358677983284, 0.22683995962142944, -0.049215227365493774, 0.07103195041418076, 0.12016253918409348, 0.053361181169748306, -0.06377849727869034, 0.06605267524719238, 0.04349633678793907, -0.03749271482229233, 0.012211945839226246, 0.07883132994174957, -0.02810114249587059, 0.0679730772972107, 0.042277514934539795, -0.1358688473701477, 0.0054893274791538715, -0.043648626655340195, -0.06824120879173279, -0.039956267923116684, -0.03296131268143654, -0.06381493806838989, 0.1260761022567749, 0.214870885014534, -0.02928794175386429, -0.012312759645283222, -0.08210945874452591, 0.007474972400814295, 0.048175226897001266, 0.016146136447787285, -0.04649002104997635, -0.21020174026489258, 0.016797954216599464, 0.041385382413864136, -0.022210748866200447, -0.2261059582233429, -0.09453583508729935, 0.006697536446154118, -0.07942066341638565, -0.08833836019039154, 0.06651146709918976, 0.08081953972578049, 0.043811965733766556, -0.05939081683754921, -0.029742924496531487, -0.0846235603094101, 0.13799507915973663, -0.1453099101781845, -0.08864983171224594 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # fnet-large-finetuned-stsb This model is a fine-tuned version of [google/fnet-large](https://huggingface.co/google/fnet-large) on the GLUE STSB dataset. It achieves the following results on the evaluation set: - Loss: 0.6250 - Pearson: 0.8554 - Spearmanr: 0.8533 - Combined Score: 0.8543 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Pearson | Spearmanr | Combined Score | |:-------------:|:-----:|:----:|:---------------:|:-------:|:---------:|:--------------:| | 1.0727 | 1.0 | 1438 | 0.7718 | 0.8187 | 0.8240 | 0.8214 | | 0.4619 | 2.0 | 2876 | 0.7704 | 0.8472 | 0.8500 | 0.8486 | | 0.2401 | 3.0 | 4314 | 0.6250 | 0.8554 | 0.8533 | 0.8543 | ### Framework versions - Transformers 4.11.0.dev0 - Pytorch 1.9.0 - Datasets 1.12.1 - Tokenizers 0.10.3
{"language": ["en"], "license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["glue"], "metrics": ["spearmanr"], "model-index": [{"name": "fnet-large-finetuned-stsb", "results": [{"task": {"type": "text-classification", "name": "Text Classification"}, "dataset": {"name": "GLUE STSB", "type": "glue", "args": "stsb"}, "metrics": [{"type": "spearmanr", "value": 0.8532669137129205, "name": "Spearmanr"}]}]}]}
text-classification
gchhablani/fnet-large-finetuned-stsb
[ "transformers", "pytorch", "tensorboard", "fnet", "text-classification", "generated_from_trainer", "en", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #tensorboard #fnet #text-classification #generated_from_trainer #en #dataset-glue #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us
fnet-large-finetuned-stsb ========================= This model is a fine-tuned version of google/fnet-large on the GLUE STSB dataset. It achieves the following results on the evaluation set: * Loss: 0.6250 * Pearson: 0.8554 * Spearmanr: 0.8533 * Combined Score: 0.8543 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 4 * eval\_batch\_size: 8 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 3.0 ### Training results ### Framework versions * Transformers 4.11.0.dev0 * Pytorch 1.9.0 * Datasets 1.12.1 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3.0", "### Training results", "### Framework versions\n\n\n* Transformers 4.11.0.dev0\n* Pytorch 1.9.0\n* Datasets 1.12.1\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #fnet #text-classification #generated_from_trainer #en #dataset-glue #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3.0", "### Training results", "### Framework versions\n\n\n* Transformers 4.11.0.dev0\n* Pytorch 1.9.0\n* Datasets 1.12.1\n* Tokenizers 0.10.3" ]
[ 68, 98, 4, 34 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #fnet #text-classification #generated_from_trainer #en #dataset-glue #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3.0### Training results### Framework versions\n\n\n* Transformers 4.11.0.dev0\n* Pytorch 1.9.0\n* Datasets 1.12.1\n* Tokenizers 0.10.3" ]
[ -0.09392090886831284, 0.086028553545475, -0.002810414880514145, 0.12563712894916534, 0.15835294127464294, 0.02616388164460659, 0.12096844613552094, 0.12440948188304901, -0.09253979474306107, 0.01095916610211134, 0.11961711943149567, 0.16139951348304749, 0.017056036740541458, 0.12809212505817413, -0.055080391466617584, -0.25876080989837646, -0.008076829835772514, 0.051302410662174225, -0.07248687744140625, 0.13545523583889008, 0.10696391016244888, -0.10981715470552444, 0.08594673126935959, 0.012483679689466953, -0.188598170876503, 0.0053088548593223095, 0.006561026908457279, -0.06197373941540718, 0.14454741775989532, 0.02627757005393505, 0.11637239903211594, -0.004603952635079622, 0.07419975847005844, -0.1947721242904663, 0.010915560647845268, 0.06143670529127121, -0.0008093014475889504, 0.0922541469335556, 0.04200132563710213, 0.016881262883543968, 0.12951737642288208, -0.07753071933984756, 0.047175586223602295, 0.024195468053221703, -0.10057501494884491, -0.2488769292831421, -0.06924816966056824, 0.04293599724769592, 0.0703204795718193, 0.114735446870327, -0.0025232243351638317, 0.12956556677818298, -0.07075148820877075, 0.09971623867750168, 0.2038886547088623, -0.28335192799568176, -0.06467258930206299, 0.053865209221839905, 0.00007339009607676417, 0.05563786253333092, -0.09489043802022934, -0.03489343822002411, 0.0464896559715271, 0.05855744704604149, 0.13576450943946838, -0.024170638993382454, -0.11294703930616379, -0.00035783895873464644, -0.14739225804805756, -0.03345825895667076, 0.18343965709209442, 0.04216032102704048, -0.031146908178925514, -0.0553949810564518, -0.07025839388370514, -0.13019998371601105, -0.03334832936525345, -0.016549253836274147, 0.042229484766721725, -0.017025606706738472, -0.02913014031946659, -0.02009456790983677, -0.10942849516868591, -0.06127852201461792, -0.07925374060869217, 0.12757611274719238, 0.03740452602505684, 0.026067685335874557, -0.036684900522232056, 0.1074313297867775, -0.008039964362978935, -0.12542767822742462, 0.02348942495882511, 0.014696755446493626, 0.02391907386481762, -0.029253896325826645, -0.05762016028165817, -0.07737185806035995, 0.013022209517657757, 0.11649444699287415, -0.06627753376960754, 0.045372430235147476, 0.03719029203057289, 0.052638933062553406, -0.08948004990816116, 0.17119163274765015, -0.03414352610707283, -0.020914733409881592, 0.017712917178869247, 0.04670121893286705, 0.026985853910446167, -0.018883170560002327, -0.12442363798618317, 0.01235498022288084, 0.09396601468324661, 0.002359611913561821, -0.05978254973888397, 0.08112926036119461, -0.03828165680170059, -0.03376328945159912, -0.004834178369492292, -0.09749481827020645, 0.019099729135632515, 0.006322276312857866, -0.08288158476352692, -0.019768934696912766, 0.03858035430312157, 0.014716193079948425, -0.02650129422545433, 0.09978698194026947, -0.08106034249067307, 0.02185039594769478, -0.08661425113677979, -0.10680398344993591, 0.017903147265315056, -0.0847211480140686, 0.01903758943080902, -0.10459426045417786, -0.19062873721122742, -0.0070509458892047405, 0.06475710868835449, -0.01869357004761696, -0.06680820137262344, -0.0446598045527935, -0.07923983782529831, 0.009182565845549107, -0.014331415295600891, 0.1251339614391327, -0.06613124161958694, 0.08929501473903656, 0.029013488441705704, 0.053821150213479996, -0.056043438613414764, 0.053580932319164276, -0.09583668410778046, 0.009967178106307983, -0.16321894526481628, 0.04253964126110077, -0.05672885477542877, 0.05521031841635704, -0.07788251340389252, -0.10970792174339294, 0.015046020038425922, -0.008545617572963238, 0.05209499970078468, 0.0823349803686142, -0.17201119661331177, -0.07378672808408737, 0.1421811878681183, -0.08395789563655853, -0.11804282665252686, 0.12395995855331421, -0.05760178342461586, 0.040096431970596313, 0.05442522466182709, 0.1759394258260727, 0.09057454019784927, -0.06562479585409164, 0.006790442857891321, 0.033411525189876556, 0.04206949099898338, -0.06806401163339615, 0.07068393379449844, 0.0191428791731596, 0.017440875992178917, 0.03589886054396629, -0.031538426876068115, 0.06567616760730743, -0.07883037626743317, -0.09648585319519043, -0.04541643336415291, -0.0845101922750473, 0.03634423762559891, 0.07191202789545059, 0.07480383664369583, -0.08777596801519394, -0.07665324211120605, 0.039373867213726044, 0.08542460203170776, -0.06039068102836609, 0.028123341500759125, -0.05340079590678215, 0.07857871055603027, -0.022135380655527115, -0.012152368202805519, -0.17895615100860596, -0.049802783876657486, 0.01269685197621584, -0.017068060114979744, 0.011587386019527912, 0.03449726849794388, 0.05857099965214729, 0.062182098627090454, -0.052427344024181366, -0.006858838256448507, -0.036305077373981476, -0.002348072361201048, -0.11779595166444778, -0.194713294506073, -0.033400148153305054, -0.021897103637456894, 0.16001500189304352, -0.20776410400867462, 0.05139097571372986, -0.009029606357216835, 0.08531299233436584, 0.003109408775344491, -0.004246857482939959, -0.0448564738035202, 0.05959697812795639, -0.04208480939269066, -0.048716846853494644, 0.08012443780899048, 0.02152360789477825, -0.08858314156532288, -0.049554068595170975, -0.09015779942274094, 0.17343412339687347, 0.1291024088859558, -0.1208619773387909, -0.06354694813489914, -0.005686518736183643, -0.07318001985549927, -0.032940808683633804, -0.04457523673772812, 0.025874445214867592, 0.19627976417541504, -0.00956712942570448, 0.1556379199028015, -0.073637954890728, -0.04745488986372948, 0.024473601952195168, -0.031531598418951035, 0.015794798731803894, 0.1174120306968689, 0.1146426871418953, -0.0827367752790451, 0.15341469645500183, 0.14470958709716797, -0.09353531897068024, 0.14427484571933746, -0.046857599169015884, -0.05337967351078987, -0.01239851489663124, -0.025734765455126762, -0.01986040733754635, 0.10185948759317398, -0.1591099053621292, 0.010827534832060337, 0.03590237349271774, 0.02313799038529396, 0.03406902775168419, -0.21511520445346832, -0.034339725971221924, 0.03387860581278801, -0.0499500147998333, -0.002659587422385812, -0.00680513633415103, 0.01076573971658945, 0.10498564690351486, -0.0029810734558850527, -0.10533218830823898, 0.05257336422801018, -0.0062987240962684155, -0.0899871438741684, 0.21725404262542725, -0.08747546374797821, -0.18725232779979706, -0.11880498379468918, -0.06220771372318268, -0.07559692859649658, -0.004758915398269892, 0.05759590119123459, -0.08066269010305405, -0.03158093988895416, -0.0806441456079483, 0.01446909736841917, -0.002284287940710783, 0.026104530319571495, 0.01951073668897152, 0.0022082950454205275, 0.08154694736003876, -0.11645926535129547, -0.015786167234182358, -0.06321795284748077, -0.04211984947323799, 0.04032707214355469, 0.04146743565797806, 0.0988055020570755, 0.15235096216201782, -0.019287779927253723, 0.02282365784049034, -0.02135869860649109, 0.24310164153575897, -0.06365299969911575, -0.018696533516049385, 0.1559664011001587, -0.009423095732927322, 0.0503767766058445, 0.11493933945894241, 0.07142814248800278, -0.07500948756933212, 0.006025242153555155, 0.03687376528978348, -0.037410885095596313, -0.2224632054567337, -0.06534454971551895, -0.05588307976722717, 0.020130153745412827, 0.07723241299390793, 0.03739004582166672, 0.04191461205482483, 0.059889692813158035, 0.04328415170311928, 0.06834448873996735, -0.02811642736196518, 0.0510883592069149, 0.15787187218666077, 0.03660351783037186, 0.12926755845546722, -0.03699519485235214, -0.0581619068980217, 0.044791772961616516, -0.015560021623969078, 0.2022491693496704, -0.011031819507479668, 0.10647973418235779, 0.05714922025799751, 0.1732620894908905, -0.01044081524014473, 0.07149824500083923, -0.01537350844591856, -0.03176766633987427, -0.01585426926612854, -0.03921106085181236, -0.030264299362897873, 0.018982039764523506, -0.0774182453751564, 0.060774918645620346, -0.1135101318359375, 0.01231792476028204, 0.05960399657487869, 0.24015723168849945, 0.03204027935862541, -0.3194168210029602, -0.09705868363380432, -0.004413720685988665, -0.03755950182676315, -0.021074343472719193, 0.033035874366760254, 0.0998033806681633, -0.10339818149805069, 0.04004545137286186, -0.07676628977060318, 0.09240566939115524, -0.04698125272989273, 0.054886672645807266, 0.09951405227184296, 0.09603190422058105, 0.020772648975253105, 0.09640488028526306, -0.2850910425186157, 0.25600531697273254, -0.0014360295608639717, 0.05562611296772957, -0.07749780267477036, 0.012023663148283958, 0.038247883319854736, 0.07425936311483383, 0.07044059038162231, -0.010851399041712284, -0.02008097432553768, -0.1768847107887268, -0.06550540030002594, 0.03150675445795059, 0.06631500273942947, -0.02683223783969879, 0.07452084869146347, -0.02882814034819603, 0.01022765226662159, 0.07610820233821869, 0.013070657849311829, -0.05542498826980591, -0.10068942606449127, 0.0006295169587247074, 0.052223872393369675, -0.06668298691511154, -0.06467423588037491, -0.11798346787691116, -0.1204783171415329, 0.1616269052028656, -0.020681016147136688, -0.052140481770038605, -0.11009234935045242, 0.08729247003793716, 0.058916110545396805, -0.08323338627815247, 0.04165558144450188, -0.002712355460971594, 0.0844990462064743, 0.02244596555829048, -0.08383654803037643, 0.09725132584571838, -0.0815984308719635, -0.15663672983646393, -0.05686290189623833, 0.1098857969045639, 0.03203533589839935, 0.0587601438164711, -0.010134214535355568, 0.0003890396619681269, -0.04276092350482941, -0.0972023457288742, 0.012183141894638538, -0.009019515477120876, 0.07961194217205048, 0.023807894438505173, -0.05628948658704758, 0.01429247297346592, -0.06137530878186226, -0.025577371940016747, 0.2017984837293625, 0.2101432830095291, -0.10181240737438202, 0.019432980567216873, 0.02815667726099491, -0.06017622724175453, -0.19818763434886932, 0.025082634761929512, 0.06268273293972015, -0.007134377025067806, 0.029622653499245644, -0.17602014541625977, 0.1417960673570633, 0.09607643634080887, -0.019160397350788116, 0.11625179648399353, -0.3190588355064392, -0.11957462131977081, 0.13578015565872192, 0.13038641214370728, 0.1082649901509285, -0.1275387704372406, -0.017696116119623184, -0.017272336408495903, -0.12869010865688324, 0.13378626108169556, -0.11559057980775833, 0.11307959258556366, -0.033666882663965225, 0.08151817321777344, 0.0013376958668231964, -0.05681246146559715, 0.11611095815896988, 0.02491697669029236, 0.09116630256175995, -0.062243860214948654, -0.00852359551936388, 0.034516509622335434, -0.03262631967663765, 0.04529916122555733, -0.09698519855737686, 0.03298477455973625, -0.10906574875116348, -0.022121058776974678, -0.07863457500934601, 0.05038856714963913, -0.03678201884031296, -0.07253073155879974, -0.04535432532429695, 0.024469682946801186, 0.058498598635196686, -0.007506924215704203, 0.13079454004764557, 0.037502311170101166, 0.1487056463956833, 0.14970152080059052, 0.06433167308568954, -0.08174005895853043, -0.0913252905011177, -0.023997897282242775, -0.008367595262825489, 0.05552287399768829, -0.1339290738105774, 0.025475962087512016, 0.14876805245876312, 0.009036448784172535, 0.1429215669631958, 0.0885363295674324, -0.024754323065280914, -0.01073932833969593, 0.05416949465870857, -0.1737722009420395, -0.09068270772695541, -0.022626888006925583, -0.06832322478294373, -0.11296725273132324, 0.05743652954697609, 0.10428833216428757, -0.08115601539611816, 0.002589004347100854, -0.0032136866357177496, 0.013669951818883419, -0.057341303676366806, 0.1853988766670227, 0.069394551217556, 0.04892005771398544, -0.1013467088341713, 0.08452849835157394, 0.04651455581188202, -0.058266013860702515, 0.004656137898564339, 0.0800386294722557, -0.0980244129896164, -0.053028371185064316, 0.05821079760789871, 0.17423874139785767, -0.0555633120238781, -0.05913792923092842, -0.1475023776292801, -0.13321906328201294, 0.07928811013698578, 0.1311376690864563, 0.11735476553440094, 0.007435607723891735, -0.07321388274431229, 0.0015353669878095388, -0.11065926402807236, 0.10537150502204895, 0.0464034266769886, 0.054856207221746445, -0.15510469675064087, 0.13737551867961884, 0.015811048448085785, 0.06363701820373535, -0.025411484763026237, 0.022845277562737465, -0.08434955775737762, 0.008706839755177498, -0.10348886996507645, -0.0216924250125885, -0.016252512112259865, 0.009890284389257431, -0.0053891371935606, -0.048445265740156174, -0.057025883346796036, 0.024999424815177917, -0.10565505921840668, -0.025227516889572144, 0.03321393206715584, 0.05191047862172127, -0.11662878841161728, -0.04512174427509308, 0.01624988205730915, -0.06121593341231346, 0.08542851358652115, 0.05370628833770752, 0.01167554035782814, 0.0522066168487072, -0.12207209318876266, 0.015587622299790382, 0.0742800235748291, 0.03451160714030266, 0.060766711831092834, -0.09618820250034332, -0.004330980591475964, 0.000620808859821409, 0.029649745672941208, 0.022910641506314278, 0.0777667984366417, -0.13724935054779053, -0.002710487926378846, -0.02783370390534401, -0.06454020738601685, -0.06714898347854614, 0.020097440108656883, 0.08303855359554291, 0.03637102618813515, 0.20598363876342773, -0.07561089843511581, 0.046382516622543335, -0.2131723165512085, 0.007946843281388283, -0.00018174469005316496, -0.11797532439231873, -0.09552253782749176, -0.05074607580900192, 0.05392405018210411, -0.06373390555381775, 0.15394343435764313, 0.04863494262099266, 0.014815868809819221, 0.02855541929602623, -0.017866145819425583, 0.0212584026157856, 0.007505857385694981, 0.1868983954191208, 0.03341247886419296, -0.030030297115445137, 0.07202771306037903, 0.038279302418231964, 0.11288387328386307, 0.11314141005277634, 0.19690823554992676, 0.13149374723434448, -0.0017040353268384933, 0.09504646062850952, 0.04710931330919266, -0.060035157948732376, -0.16356506943702698, 0.05060194432735443, -0.03684914484620094, 0.11947114020586014, -0.02734866924583912, 0.1927868127822876, 0.06847987323999405, -0.16221268475055695, 0.046570226550102234, -0.04790783300995827, -0.08729487657546997, -0.11747626960277557, -0.06214311346411705, -0.07060721516609192, -0.14227285981178284, -0.004479394759982824, -0.11955714225769043, -0.0012408922193571925, 0.11118984967470169, 0.01135226245969534, -0.034017469733953476, 0.14965499937534332, 0.004561042878776789, 0.015436336398124695, 0.06754950433969498, 0.006787540391087532, -0.03938409313559532, -0.10845154523849487, -0.05584019422531128, -0.02278803661465645, -0.009399445727467537, 0.0328291691839695, -0.06014551594853401, -0.03446387127041817, 0.03999267518520355, -0.022419964894652367, -0.091934934258461, 0.004938766360282898, 0.008898281492292881, 0.05622522905468941, 0.05688990280032158, 0.007466019131243229, 0.018164541572332382, -0.008829513564705849, 0.20546086132526398, -0.07387928664684296, -0.06927040219306946, -0.09953052550554276, 0.2376701980829239, 0.03024473413825035, -0.020175063982605934, 0.030588623136281967, -0.06754070520401001, -0.019916238263249397, 0.24630585312843323, 0.22834931313991547, -0.08888491988182068, -0.0023557317908853292, 0.022025488317012787, -0.012935125268995762, -0.015982933342456818, 0.10426705330610275, 0.14598897099494934, 0.06348761916160583, -0.0856001153588295, -0.030391816049814224, -0.061101991683244705, -0.0055675022304058075, -0.0447319820523262, 0.0732647031545639, 0.0502418652176857, 0.009062495082616806, -0.03542236611247063, 0.04821065813302994, -0.07359969615936279, -0.09477446228265762, 0.037203386425971985, -0.20104920864105225, -0.1598745882511139, -0.01462660450488329, 0.09054913371801376, 0.0001615012442925945, 0.0589400939643383, -0.030530771240592003, 0.004999163560569286, 0.08607053011655807, -0.024409007281064987, -0.09203089773654938, -0.0751798152923584, 0.09285302460193634, -0.1202358677983284, 0.22683995962142944, -0.049215227365493774, 0.07103195041418076, 0.12016253918409348, 0.053361181169748306, -0.06377849727869034, 0.06605267524719238, 0.04349633678793907, -0.03749271482229233, 0.012211945839226246, 0.07883132994174957, -0.02810114249587059, 0.0679730772972107, 0.042277514934539795, -0.1358688473701477, 0.0054893274791538715, -0.043648626655340195, -0.06824120879173279, -0.039956267923116684, -0.03296131268143654, -0.06381493806838989, 0.1260761022567749, 0.214870885014534, -0.02928794175386429, -0.012312759645283222, -0.08210945874452591, 0.007474972400814295, 0.048175226897001266, 0.016146136447787285, -0.04649002104997635, -0.21020174026489258, 0.016797954216599464, 0.041385382413864136, -0.022210748866200447, -0.2261059582233429, -0.09453583508729935, 0.006697536446154118, -0.07942066341638565, -0.08833836019039154, 0.06651146709918976, 0.08081953972578049, 0.043811965733766556, -0.05939081683754921, -0.029742924496531487, -0.0846235603094101, 0.13799507915973663, -0.1453099101781845, -0.08864983171224594 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # fnet-large-finetuned-wnli This model is a fine-tuned version of [google/fnet-large](https://huggingface.co/google/fnet-large) on the GLUE WNLI dataset. It achieves the following results on the evaluation set: - Loss: 0.6953 - Accuracy: 0.3803 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.7217 | 1.0 | 159 | 0.6864 | 0.5634 | | 0.7056 | 2.0 | 318 | 0.6869 | 0.5634 | | 0.706 | 3.0 | 477 | 0.6875 | 0.5634 | | 0.7032 | 4.0 | 636 | 0.6931 | 0.5634 | | 0.7025 | 5.0 | 795 | 0.6953 | 0.3803 | ### Framework versions - Transformers 4.11.0.dev0 - Pytorch 1.9.0 - Datasets 1.12.1 - Tokenizers 0.10.3
{"language": ["en"], "license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["glue"], "metrics": ["accuracy"], "model-index": [{"name": "fnet-large-finetuned-wnli", "results": [{"task": {"type": "text-classification", "name": "Text Classification"}, "dataset": {"name": "GLUE WNLI", "type": "glue", "args": "wnli"}, "metrics": [{"type": "accuracy", "value": 0.38028169014084506, "name": "Accuracy"}]}]}]}
text-classification
gchhablani/fnet-large-finetuned-wnli
[ "transformers", "pytorch", "tensorboard", "fnet", "text-classification", "generated_from_trainer", "en", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #tensorboard #fnet #text-classification #generated_from_trainer #en #dataset-glue #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us
fnet-large-finetuned-wnli ========================= This model is a fine-tuned version of google/fnet-large on the GLUE WNLI dataset. It achieves the following results on the evaluation set: * Loss: 0.6953 * Accuracy: 0.3803 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 4 * eval\_batch\_size: 8 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 5.0 ### Training results ### Framework versions * Transformers 4.11.0.dev0 * Pytorch 1.9.0 * Datasets 1.12.1 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5.0", "### Training results", "### Framework versions\n\n\n* Transformers 4.11.0.dev0\n* Pytorch 1.9.0\n* Datasets 1.12.1\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #fnet #text-classification #generated_from_trainer #en #dataset-glue #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5.0", "### Training results", "### Framework versions\n\n\n* Transformers 4.11.0.dev0\n* Pytorch 1.9.0\n* Datasets 1.12.1\n* Tokenizers 0.10.3" ]
[ 68, 98, 4, 34 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #fnet #text-classification #generated_from_trainer #en #dataset-glue #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5.0### Training results### Framework versions\n\n\n* Transformers 4.11.0.dev0\n* Pytorch 1.9.0\n* Datasets 1.12.1\n* Tokenizers 0.10.3" ]
[ -0.09546191245317459, 0.08599092066287994, -0.002819906221702695, 0.12520475685596466, 0.15879055857658386, 0.026399699971079826, 0.11949319392442703, 0.12398721277713776, -0.09084320068359375, 0.011874276213347912, 0.11916262656450272, 0.15975700318813324, 0.017096880823373795, 0.1293363869190216, -0.05514799430966377, -0.2581601142883301, -0.009066539816558361, 0.05219760909676552, -0.0730782225728035, 0.13537991046905518, 0.10601045191287994, -0.11119034886360168, 0.0858348160982132, 0.012250698171555996, -0.19032633304595947, 0.005159530322998762, 0.007800718303769827, -0.06162724271416664, 0.14478495717048645, 0.026664696633815765, 0.11614209413528442, -0.005005354061722755, 0.07336033135652542, -0.19494523108005524, 0.011148547753691673, 0.062217213213443756, -0.0008450024761259556, 0.09304920583963394, 0.04146657511591911, 0.01810573972761631, 0.13009214401245117, -0.07812145352363586, 0.04607972502708435, 0.024277985095977783, -0.10066843777894974, -0.25224390625953674, -0.06780645996332169, 0.04294602945446968, 0.06958787888288498, 0.1144355908036232, -0.003222366329282522, 0.12924230098724365, -0.07112066447734833, 0.09992790967226028, 0.20228120684623718, -0.2846123278141022, -0.06414385139942169, 0.05315433070063591, -0.0006625417736358941, 0.05653926730155945, -0.09665023535490036, -0.03479963168501854, 0.047205254435539246, 0.056852784007787704, 0.13653863966464996, -0.02365931309759617, -0.11345908790826797, -0.00036166355130262673, -0.14659838378429413, -0.03392684459686279, 0.18420065939426422, 0.04295152425765991, -0.029913606122136116, -0.05532674118876457, -0.07111954689025879, -0.1298159509897232, -0.033634983003139496, -0.01663203164935112, 0.042924873530864716, -0.017111431807279587, -0.027516013011336327, -0.018441833555698395, -0.10968123376369476, -0.061496250331401825, -0.07938845455646515, 0.12648801505565643, 0.0373440757393837, 0.026029396802186966, -0.03856557980179787, 0.10718294978141785, -0.01039015781134367, -0.12635262310504913, 0.02376563660800457, 0.014790150336921215, 0.023429078981280327, -0.028944209218025208, -0.05729011818766594, -0.07710803300142288, 0.013970785774290562, 0.11589844524860382, -0.06570203602313995, 0.04521610215306282, 0.03654171898961067, 0.05179869011044502, -0.08960038423538208, 0.17069628834724426, -0.033626291900873184, -0.022550251334905624, 0.017764555290341377, 0.04625367373228073, 0.02610119618475437, -0.018981298431754112, -0.12368905544281006, 0.01198206003755331, 0.09392620623111725, 0.0013035978190600872, -0.05933376029133797, 0.08104883879423141, -0.038034044206142426, -0.033083993941545486, -0.005496066529303789, -0.09730266779661179, 0.019998257979750633, 0.006821903865784407, -0.08317822217941284, -0.020987385883927345, 0.037898458540439606, 0.013462735339999199, -0.027173368260264397, 0.10108006745576859, -0.08223720639944077, 0.021280832588672638, -0.0873541384935379, -0.1072964146733284, 0.01761503331363201, -0.08617527782917023, 0.019810689613223076, -0.10400725156068802, -0.18891578912734985, -0.0077062081545591354, 0.06357033550739288, -0.01852494478225708, -0.06713766604661942, -0.04489322751760483, -0.08013653755187988, 0.009742194786667824, -0.014273520559072495, 0.12686266005039215, -0.06624139845371246, 0.09025576710700989, 0.02989248000085354, 0.05423325300216675, -0.055293235927820206, 0.05391918867826462, -0.09691685438156128, 0.008810688741505146, -0.16241350769996643, 0.041948363184928894, -0.05697361379861832, 0.05600197985768318, -0.07802683860063553, -0.10861963778734207, 0.014010758139193058, -0.009118323214352131, 0.051885224878787994, 0.0832173079252243, -0.1714225709438324, -0.07527991384267807, 0.1451883614063263, -0.08433152735233307, -0.117959164083004, 0.12364167720079422, -0.05751069262623787, 0.03996153548359871, 0.055080514401197433, 0.17722031474113464, 0.09120480716228485, -0.06544680148363113, 0.005950626451522112, 0.03313767910003662, 0.04212610796093941, -0.06831853836774826, 0.06972771137952805, 0.019984891638159752, 0.016782991588115692, 0.03638952597975731, -0.03108343482017517, 0.06633422523736954, -0.07898469269275665, -0.09579379111528397, -0.046762142330408096, -0.08413276076316833, 0.03685159981250763, 0.07383585721254349, 0.07521867007017136, -0.08728065341711044, -0.07636827975511551, 0.03872332349419594, 0.08539536595344543, -0.05908842012286186, 0.026852475479245186, -0.053241580724716187, 0.07960749417543411, -0.022701889276504517, -0.010898844338953495, -0.18033812940120697, -0.0489765927195549, 0.013111790642142296, -0.019065599888563156, 0.011413183994591236, 0.034898094832897186, 0.05896642804145813, 0.06169478967785835, -0.05224358290433884, -0.006700506899505854, -0.03707636147737503, -0.002736605005338788, -0.11889437586069107, -0.19659262895584106, -0.03258073702454567, -0.0219099298119545, 0.1598203033208847, -0.20940329134464264, 0.051057182252407074, -0.007849784567952156, 0.08635152131319046, 0.004428023472428322, -0.004245837219059467, -0.04512714967131615, 0.05986940115690231, -0.04119914397597313, -0.04754257947206497, 0.0797266736626625, 0.020951641723513603, -0.08738018572330475, -0.05052084103226662, -0.08946986496448517, 0.17589566111564636, 0.13004666566848755, -0.1203686073422432, -0.06231275945901871, -0.005228476598858833, -0.07227027416229248, -0.03346370905637741, -0.04478921368718147, 0.027298297733068466, 0.19398172199726105, -0.010374259203672409, 0.15592092275619507, -0.07345370203256607, -0.04698825627565384, 0.025998717173933983, -0.029928049072623253, 0.01762254908680916, 0.11882616579532623, 0.11529583483934402, -0.08247628062963486, 0.15382464230060577, 0.14487947523593903, -0.09263201802968979, 0.14530399441719055, -0.04800577461719513, -0.05440796539187431, -0.012026961892843246, -0.02653445303440094, -0.02075771987438202, 0.10357513278722763, -0.1614956557750702, 0.010308556258678436, 0.03666393458843231, 0.022368796169757843, 0.033521343022584915, -0.21500913798809052, -0.033284418284893036, 0.03360406681895256, -0.04915229231119156, -0.005554342642426491, -0.00600228039547801, 0.011097459122538567, 0.10555184632539749, -0.0037921082694083452, -0.1044158786535263, 0.05074157938361168, -0.006137927062809467, -0.08894295990467072, 0.21745462715625763, -0.08632136881351471, -0.18696673214435577, -0.11720063537359238, -0.05977078899741173, -0.07440357655286789, -0.005697417538613081, 0.05866274610161781, -0.08173168450593948, -0.03133115917444229, -0.07904272526502609, 0.014714551158249378, -0.0008177160052582622, 0.02673378773033619, 0.017737895250320435, 0.003071904182434082, 0.08112871646881104, -0.11631204187870026, -0.014812331646680832, -0.06412842124700546, -0.04106014594435692, 0.039631348103284836, 0.04294215887784958, 0.09911496192216873, 0.15236623585224152, -0.01932796649634838, 0.022595083341002464, -0.021412083879113197, 0.24335768818855286, -0.06545376032590866, -0.018363337963819504, 0.15558351576328278, -0.00867502298206091, 0.04948771744966507, 0.11573895066976547, 0.0715351402759552, -0.07415314763784409, 0.0050702085718512535, 0.03689371049404144, -0.036363378167152405, -0.22274886071681976, -0.06535296142101288, -0.05658477544784546, 0.02026711404323578, 0.07761484384536743, 0.03714492544531822, 0.04264776408672333, 0.05929701030254364, 0.04340836778283119, 0.0686696395277977, -0.02882838249206543, 0.05045050010085106, 0.15857917070388794, 0.03623516485095024, 0.12905411422252655, -0.0383649580180645, -0.05830521136522293, 0.04401826858520508, -0.01650388538837433, 0.2045838087797165, -0.010560386814177036, 0.10752256959676743, 0.05580081418156624, 0.17469125986099243, -0.009762926027178764, 0.07077998667955399, -0.015204674564301968, -0.032061636447906494, -0.015053500421345234, -0.038609445095062256, -0.029359186068177223, 0.01937456801533699, -0.07770969718694687, 0.060527801513671875, -0.11411376297473907, 0.010677093639969826, 0.059778086841106415, 0.23909689486026764, 0.03223899379372597, -0.3180825710296631, -0.09792063385248184, -0.005235941149294376, -0.03779191896319389, -0.022020915523171425, 0.032515332102775574, 0.10104595869779587, -0.10247465968132019, 0.039183102548122406, -0.0768279880285263, 0.09344609081745148, -0.04620886594057083, 0.05521034076809883, 0.09871474653482437, 0.09597338736057281, 0.02048015221953392, 0.096494659781456, -0.2858371138572693, 0.25810134410858154, -0.0008917004452086985, 0.055689625442028046, -0.07825443148612976, 0.011470974422991276, 0.03769155591726303, 0.07573051750659943, 0.07050973176956177, -0.010998306795954704, -0.02132379449903965, -0.17557914555072784, -0.06484248489141464, 0.03208262845873833, 0.06640531122684479, -0.02824542112648487, 0.07367397099733353, -0.02855999954044819, 0.009517839178442955, 0.07583609968423843, 0.010695524513721466, -0.05560624599456787, -0.09996896237134933, 0.0005532020586542785, 0.053071361035108566, -0.06607106328010559, -0.06424704939126968, -0.1176302582025528, -0.11913973838090897, 0.15881624817848206, -0.024910470470786095, -0.05115595459938049, -0.10973544418811798, 0.0894245058298111, 0.05847169831395149, -0.08369704335927963, 0.042348362505435944, -0.003034900175407529, 0.08414874970912933, 0.022848933935165405, -0.08384497463703156, 0.09918875247240067, -0.08087218552827835, -0.15695929527282715, -0.056926511228084564, 0.11002043634653091, 0.03164108842611313, 0.058370400220155716, -0.01081100944429636, 0.0006559081957675517, -0.04384872689843178, -0.09692469984292984, 0.013017899356782436, -0.009734023362398148, 0.07791733741760254, 0.02332180365920067, -0.055519409477710724, 0.010724114254117012, -0.06127122417092323, -0.025878654792904854, 0.1999949812889099, 0.20991948246955872, -0.10273119807243347, 0.01914804056286812, 0.02892344444990158, -0.06101452186703682, -0.19818688929080963, 0.026290491223335266, 0.06219090148806572, -0.006466645747423172, 0.028350498527288437, -0.1772705316543579, 0.1424008160829544, 0.09497801214456558, -0.019320080056786537, 0.11905593425035477, -0.3191659450531006, -0.11980247497558594, 0.13569417595863342, 0.12890441715717316, 0.11123138666152954, -0.12752926349639893, -0.018578607589006424, -0.01675238274037838, -0.12915006279945374, 0.1329793781042099, -0.1172524243593216, 0.11238279938697815, -0.03414227068424225, 0.08010146021842957, 0.001642079558223486, -0.0570412315428257, 0.11512328684329987, 0.025005081668496132, 0.09225330501794815, -0.06164787337183952, -0.008495654910802841, 0.03452535346150398, -0.03190139681100845, 0.04483703896403313, -0.09700168669223785, 0.033334556967020035, -0.10865794122219086, -0.0214571263641119, -0.07938719540834427, 0.05095565319061279, -0.03664569556713104, -0.07135503739118576, -0.045485079288482666, 0.02403452806174755, 0.057519298046827316, -0.00724073639139533, 0.13187195360660553, 0.037778809666633606, 0.14953835308551788, 0.1497054547071457, 0.06296437233686447, -0.0816614180803299, -0.09189815074205399, -0.02339370734989643, -0.007961608469486237, 0.05737365782260895, -0.13682818412780762, 0.025487486273050308, 0.14920346438884735, 0.01067504845559597, 0.1419643610715866, 0.08810736984014511, -0.024375448003411293, -0.011216367594897747, 0.05464911088347435, -0.17467109858989716, -0.09439196437597275, -0.02270573377609253, -0.06931719183921814, -0.11218071728944778, 0.05837605893611908, 0.10388980060815811, -0.08238784968852997, 0.0025478980969637632, -0.0036189118400216103, 0.01330843847244978, -0.05678478628396988, 0.18629495799541473, 0.06895172595977783, 0.04923379421234131, -0.10211517661809921, 0.0844893679022789, 0.04786021634936333, -0.061863500624895096, 0.003803879488259554, 0.07889994233846664, -0.09867862612009048, -0.053205981850624084, 0.05900222063064575, 0.17500045895576477, -0.05377772077918053, -0.0596037320792675, -0.14735089242458344, -0.13265158236026764, 0.07988547533750534, 0.13361380994319916, 0.11714371293783188, 0.0073603312484920025, -0.07273177057504654, 0.002185244346037507, -0.11119045317173004, 0.10686644166707993, 0.0465870127081871, 0.055424951016902924, -0.1553489863872528, 0.13742566108703613, 0.016396204009652138, 0.06254139542579651, -0.02566162869334221, 0.02288627438247204, -0.08485285937786102, 0.008428186178207397, -0.10126855224370956, -0.02166859805583954, -0.015184788964688778, 0.009756003506481647, -0.005930773913860321, -0.04936628416180611, -0.05678648129105568, 0.02513021230697632, -0.10625382512807846, -0.02489090897142887, 0.033812735229730606, 0.05252465978264809, -0.1173783391714096, -0.04442751407623291, 0.016967257484793663, -0.06054551899433136, 0.08527270704507828, 0.053835052996873856, 0.012136760167777538, 0.05291440710425377, -0.12204016745090485, 0.016342202201485634, 0.07364647090435028, 0.0349479541182518, 0.06090749427676201, -0.09562382102012634, -0.003282394725829363, -0.00001865075682871975, 0.030004533007740974, 0.022373711690306664, 0.07710137963294983, -0.1379968672990799, -0.0034996774047613144, -0.027388708665966988, -0.06447653472423553, -0.06685411930084229, 0.019427789375185966, 0.08218405395746231, 0.03522159904241562, 0.20542800426483154, -0.07487155497074127, 0.045620422810316086, -0.21430227160453796, 0.00823394488543272, -0.0004625043657142669, -0.11957801133394241, -0.09532622992992401, -0.051133062690496445, 0.05481477826833725, -0.06431839615106583, 0.1534840315580368, 0.04941427335143089, 0.01592053472995758, 0.028808899223804474, -0.01811968721449375, 0.018443580716848373, 0.0080113485455513, 0.18708765506744385, 0.03429579362273216, -0.02985781617462635, 0.07225026190280914, 0.039080578833818436, 0.11195438355207443, 0.11603232473134995, 0.19704307615756989, 0.13246352970600128, -0.0008535053348168731, 0.0951245054602623, 0.04693981632590294, -0.06035655736923218, -0.16422057151794434, 0.05283075198531151, -0.03835199028253555, 0.12152128666639328, -0.028580691665410995, 0.19253279268741608, 0.06901441514492035, -0.16116325557231903, 0.04764442518353462, -0.04824594035744667, -0.08681273460388184, -0.11683184653520584, -0.06121692433953285, -0.07114308327436447, -0.1440211683511734, -0.004636962898075581, -0.11918430775403976, -0.0008277559536509216, 0.1097910925745964, 0.010498684830963612, -0.03498762845993042, 0.15053655207157135, 0.006402645725756884, 0.015238703228533268, 0.0695597305893898, 0.006615471560508013, -0.04100614786148071, -0.10920800268650055, -0.05520232766866684, -0.022179335355758667, -0.010697388090193272, 0.03149294853210449, -0.06045083701610565, -0.03633178025484085, 0.04040398821234703, -0.02195586822926998, -0.09119494259357452, 0.005079627502709627, 0.00920786615461111, 0.05570284649729729, 0.05661286786198616, 0.007228526286780834, 0.018431752920150757, -0.009099789895117283, 0.20788635313510895, -0.0740276426076889, -0.06805037707090378, -0.09928686916828156, 0.23586858808994293, 0.031392164528369904, -0.020330391824245453, 0.03078066185116768, -0.06767775863409042, -0.018910378217697144, 0.2457672357559204, 0.22598128020763397, -0.08714233338832855, -0.002273096702992916, 0.022417528554797173, -0.01315001118928194, -0.016113251447677612, 0.10431814938783646, 0.14606770873069763, 0.06461671739816666, -0.08543983101844788, -0.029877889901399612, -0.06068196892738342, -0.006037788465619087, -0.04389375448226929, 0.07362931221723557, 0.049937255680561066, 0.007489452138543129, -0.03518691286444664, 0.048443753272295, -0.07235494256019592, -0.09499064832925797, 0.038542162626981735, -0.20198656618595123, -0.16029119491577148, -0.015390058979392052, 0.09282878786325455, 0.0010308976052328944, 0.057557959109544754, -0.030114294961094856, 0.0048396289348602295, 0.08691193163394928, -0.024416247382760048, -0.09137684851884842, -0.07855791598558426, 0.09151489287614822, -0.12239585816860199, 0.22643736004829407, -0.04916463419795036, 0.07056054472923279, 0.11964943259954453, 0.05358283966779709, -0.06439071148633957, 0.06493911147117615, 0.04323429614305496, -0.03877938538789749, 0.012006440199911594, 0.08003684133291245, -0.027095813304185867, 0.06842819601297379, 0.041951268911361694, -0.1349412053823471, 0.005635885521769524, -0.04544267803430557, -0.06833399087190628, -0.040099576115608215, -0.03195123374462128, -0.0631319135427475, 0.12548556923866272, 0.2150724083185196, -0.029118625447154045, -0.012089218944311142, -0.08287710696458817, 0.007270357105880976, 0.048678286373615265, 0.018202396109700203, -0.046538036316633224, -0.2092742621898651, 0.017721407115459442, 0.0428425669670105, -0.02169046550989151, -0.224505215883255, -0.09362480044364929, 0.00570263434201479, -0.07918917387723923, -0.08765849471092224, 0.06609953939914703, 0.08304844796657562, 0.04343817010521889, -0.059563811868429184, -0.03427022323012352, -0.08322528004646301, 0.1385328769683838, -0.145302414894104, -0.08898579329252243 ]
null
null
transformers
# Wav2Vec2-Large-XLSR-53-Hakha-Chin Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Hakha Chin using the [Common Voice](https://huggingface.co/datasets/common_voice) dataset. When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ```python import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor test_dataset = load_dataset("common_voice", "cnh", split="test[:2%]") processor = Wav2Vec2Processor.from_pretrained("gchhablani/wav2vec2-large-xlsr-cnh") model = Wav2Vec2ForCTC.from_pretrained("gchhablani/wav2vec2-large-xlsr-cnh/") resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset["sentence"][:2]) ``` ## Evaluation The model can be evaluated as follows on the Portuguese test data of Common Voice. ```python import torch import torchaudio from datasets import load_dataset, load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import re test_dataset = load_dataset("common_voice", "cnh", split="test") wer = load_metric("wer") processor = Wav2Vec2Processor.from_pretrained("gchhablani/wav2vec2-large-xlsr-cnh") model = Wav2Vec2ForCTC.from_pretrained("gchhablani/wav2vec2-large-xlsr-cnh") model.to("cuda") chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\“\%\‘\”\�\/]' resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) # Preprocessing the datasets. # We need to read the aduio files as arrays def evaluate(batch): inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits pred_ids = torch.argmax(logits, dim=-1) batch["pred_strings"] = processor.batch_decode(pred_ids) return batch result = test_dataset.map(evaluate, batched=True, batch_size=8) print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"]))) ``` **Test Result**: 31.38 % ## Training The Common Voice `train` and `validation` datasets were used for training. The script used for training can be found [here](https://colab.research.google.com/drive/1pejk9gv9vMcUOjyVQ_vsV2ngW4NiWLWy?usp=sharing).
{"language": "cnh", "license": "apache-2.0", "tags": ["audio", "automatic-speech-recognition", "speech", "xlsr-fine-tuning-week"], "datasets": ["common_voice"], "metrics": ["wer"], "model-index": [{"name": "Wav2Vec2 Large 53 Hakha Chin by Gunjan Chhablani", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Speech Recognition"}, "dataset": {"name": "Common Voice cnh", "type": "common_voice", "args": "cnh"}, "metrics": [{"type": "wer", "value": 31.38, "name": "Test WER"}]}]}]}
automatic-speech-recognition
gchhablani/wav2vec2-large-xlsr-cnh
[ "transformers", "pytorch", "jax", "wav2vec2", "automatic-speech-recognition", "audio", "speech", "xlsr-fine-tuning-week", "cnh", "dataset:common_voice", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "cnh" ]
TAGS #transformers #pytorch #jax #wav2vec2 #automatic-speech-recognition #audio #speech #xlsr-fine-tuning-week #cnh #dataset-common_voice #license-apache-2.0 #model-index #endpoints_compatible #region-us
# Wav2Vec2-Large-XLSR-53-Hakha-Chin Fine-tuned facebook/wav2vec2-large-xlsr-53 on Hakha Chin using the Common Voice dataset. When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ## Evaluation The model can be evaluated as follows on the Portuguese test data of Common Voice. Test Result: 31.38 % ## Training The Common Voice 'train' and 'validation' datasets were used for training. The script used for training can be found here.
[ "# Wav2Vec2-Large-XLSR-53-Hakha-Chin\n\nFine-tuned facebook/wav2vec2-large-xlsr-53 on Hakha Chin using the Common Voice dataset. \nWhen using this model, make sure that your speech input is sampled at 16kHz.", "## Usage\n\nThe model can be used directly (without a language model) as follows:", "## Evaluation\n\nThe model can be evaluated as follows on the Portuguese test data of Common Voice.\n\n\n\n\nTest Result: 31.38 %", "## Training\n\nThe Common Voice 'train' and 'validation' datasets were used for training. The script used for training can be found here." ]
[ "TAGS\n#transformers #pytorch #jax #wav2vec2 #automatic-speech-recognition #audio #speech #xlsr-fine-tuning-week #cnh #dataset-common_voice #license-apache-2.0 #model-index #endpoints_compatible #region-us \n", "# Wav2Vec2-Large-XLSR-53-Hakha-Chin\n\nFine-tuned facebook/wav2vec2-large-xlsr-53 on Hakha Chin using the Common Voice dataset. \nWhen using this model, make sure that your speech input is sampled at 16kHz.", "## Usage\n\nThe model can be used directly (without a language model) as follows:", "## Evaluation\n\nThe model can be evaluated as follows on the Portuguese test data of Common Voice.\n\n\n\n\nTest Result: 31.38 %", "## Training\n\nThe Common Voice 'train' and 'validation' datasets were used for training. The script used for training can be found here." ]
[ 81, 69, 20, 29, 33 ]
[ "passage: TAGS\n#transformers #pytorch #jax #wav2vec2 #automatic-speech-recognition #audio #speech #xlsr-fine-tuning-week #cnh #dataset-common_voice #license-apache-2.0 #model-index #endpoints_compatible #region-us \n# Wav2Vec2-Large-XLSR-53-Hakha-Chin\n\nFine-tuned facebook/wav2vec2-large-xlsr-53 on Hakha Chin using the Common Voice dataset. \nWhen using this model, make sure that your speech input is sampled at 16kHz.## Usage\n\nThe model can be used directly (without a language model) as follows:## Evaluation\n\nThe model can be evaluated as follows on the Portuguese test data of Common Voice.\n\n\n\n\nTest Result: 31.38 %## Training\n\nThe Common Voice 'train' and 'validation' datasets were used for training. The script used for training can be found here." ]
[ -0.17322692275047302, 0.026642607524991035, -0.001407379051670432, -0.028769079595804214, 0.07448530942201614, -0.04717632010579109, 0.16471755504608154, 0.10739834606647491, -0.03518256917595863, -0.009502695873379707, 0.02058388851583004, -0.04933178052306175, 0.09283628314733505, 0.10286643356084824, 0.020424045622348785, -0.1659296452999115, 0.014492196962237358, 0.01124205719679594, 0.024113643914461136, 0.10492001473903656, 0.09913039207458496, -0.06427212804555893, 0.008795860223472118, 0.09508918970823288, -0.14312990009784698, 0.04421079531311989, 0.01630224473774433, -0.13442295789718628, 0.13827218115329742, 0.06420675665140152, 0.08869800716638565, 0.05046094208955765, 0.10574987530708313, -0.20224490761756897, 0.03003830276429653, 0.0366012342274189, 0.04029448330402374, 0.02580735832452774, 0.0633237287402153, 0.008389294147491455, 0.10528723895549774, 0.08368510752916336, -0.04153637960553169, 0.09648877382278442, -0.061981067061424255, -0.215006485581398, -0.018450064584612846, -0.010075218975543976, 0.09313930571079254, 0.14287987351417542, -0.062264204025268555, 0.10462997853755951, -0.15406310558319092, 0.07052694261074066, 0.1264723241329193, -0.1596112698316574, 0.012309481389820576, 0.11768221110105515, 0.07919475436210632, 0.03421720862388611, -0.05785197392106056, 0.031727589666843414, 0.0706111490726471, -0.0022643092088401318, 0.015856212005019188, -0.030110467225313187, -0.21387872099876404, -0.017880812287330627, -0.1148061603307724, -0.04289346560835838, 0.2295471578836441, -0.014947899617254734, -0.06459517031908035, -0.13447324931621552, -0.0006170012056827545, 0.01239338144659996, 0.012797126546502113, -0.03539958596229553, -0.011332059279084206, 0.029492823407053947, -0.006659031845629215, -0.017320696264505386, -0.1132884994149208, -0.14523862302303314, 0.05043921247124672, 0.001253026770427823, 0.02742503397166729, 0.0074493237771093845, -0.14368341863155365, 0.09195590019226074, -0.046402204781770706, -0.09584619104862213, -0.01964699849486351, 0.03737711161375046, -0.06282849609851837, -0.002770415274426341, -0.04412195831537247, -0.11872558295726776, 0.06724199652671814, -0.04934082552790642, 0.041195012629032135, 0.026600195094943047, -0.07473471015691757, 0.06147437170147896, 0.03761840984225273, 0.10304342955350876, -0.07764057070016861, 0.0005568036576732993, 0.04384225979447365, 0.007772029843181372, -0.049682218581438065, -0.011019003577530384, -0.0686541423201561, -0.05894146114587784, 0.015800246968865395, 0.0943262055516243, -0.05157903581857681, -0.025709128007292747, -0.03395957499742508, -0.03249015286564827, 0.042210884392261505, -0.10418824106454849, -0.03862040862441063, 0.08322373032569885, -0.013814299367368221, 0.11648305505514145, 0.0559234656393528, 0.04780561849474907, -0.09787382930517197, -0.04632234200835228, 0.006716195493936539, 0.06909965723752975, -0.02322281338274479, -0.08581022173166275, 0.037588704377412796, -0.006228119134902954, -0.03580303490161896, -0.09800078719854355, -0.12207367271184921, -0.08836726099252701, -0.029233096167445183, 0.02778594382107258, 0.032193247228860855, -0.10925088077783585, -0.0042365845292806625, -0.042329393327236176, -0.044270046055316925, 0.08718077093362808, -0.05791154131293297, 0.05915110558271408, 0.04016123712062836, 0.05934121459722519, 0.061905138194561005, 0.06040153652429581, -0.07539457827806473, -0.04388820379972458, 0.01689731702208519, 0.13616400957107544, -0.024735350161790848, -0.04817402735352516, -0.09630066156387329, -0.07479012757539749, -0.07120057195425034, 0.06260403990745544, 0.05664403364062309, 0.13473038375377655, -0.2730613946914673, -0.09293102473020554, 0.26349732279777527, -0.13016390800476074, -0.07018495351076126, 0.1971711814403534, -0.021319489926099777, 0.13235415518283844, 0.1207074299454689, 0.20182472467422485, 0.10031650960445404, -0.22007784247398376, 0.0511934831738472, -0.01510687731206417, 0.009456872008740902, -0.07235071808099747, 0.08758478611707687, -0.0714401826262474, 0.0028502722270786762, 0.022747015580534935, -0.11016403138637543, 0.09156617522239685, -0.026222940534353256, -0.06741217523813248, -0.016108956187963486, -0.07007147371768951, 0.0019362042658030987, 0.02714536525309086, 0.02520902268588543, -0.021723225712776184, -0.042662911117076874, -0.01316136959940195, 0.13454362750053406, -0.1457686424255371, 0.058825962245464325, -0.09755044430494308, 0.07153275609016418, -0.05365287512540817, -0.010259023867547512, -0.13033892214298248, 0.16708555817604065, -0.01820565015077591, 0.03505448251962662, 0.0288616381585598, 0.12289149314165115, 0.007107111159712076, 0.044503819197416306, -0.030426884070038795, -0.002919259248301387, -0.000685110513586551, -0.02745380997657776, -0.005514070857316256, -0.0929194763302803, -0.020651815459132195, -0.047784022986888885, 0.16181223094463348, -0.19909843802452087, 0.006240827962756157, 0.007480686996132135, 0.036436792463064194, -0.005244039930403233, -0.010279817506670952, 0.08500085771083832, 0.0847698450088501, -0.012508708983659744, -0.015646064653992653, 0.026232542470097542, 0.00961363036185503, -0.06413371115922928, 0.12487418204545975, -0.1299906224012375, -0.028807783499360085, 0.10473006963729858, -0.03596942126750946, 0.0011027406435459852, -0.004422035999596119, -0.005357890855520964, -0.020822109654545784, -0.14031103253364563, 0.0027154888957738876, 0.24953849613666534, -0.018056627362966537, 0.13640935719013214, -0.12483344972133636, 0.0006267203716561198, 0.015084685757756233, -0.07618892937898636, 0.049962177872657776, 0.036724213510751724, 0.0020203960593789816, 0.0328219048678875, 0.0138484425842762, -0.04978096857666969, -0.08211816102266312, 0.2610783874988556, -0.03926945477724075, -0.10529587417840958, 0.020550070330500603, 0.01033087819814682, -0.010965175926685333, 0.07686008512973785, -0.17541304230690002, -0.05869787558913231, 0.03220631554722786, 0.03656180948019028, 0.07059520483016968, -0.1569889336824417, 0.017589686438441277, 0.007218093145638704, -0.1350087970495224, -0.1684732288122177, 0.06287939846515656, -0.04811922088265419, 0.052073124796152115, -0.10302755236625671, -0.025029528886079788, -0.03498302027583122, -0.049332182854413986, -0.18245916068553925, 0.1436934620141983, -0.0698196068406105, -0.20582234859466553, -0.13921384513378143, 0.07900837063789368, 0.04312336817383766, 0.027471177279949188, 0.09369044750928879, -0.1295296996831894, 0.006699814461171627, -0.029526669532060623, 0.06045905873179436, 0.014148376882076263, -0.05078712850809097, -0.010596479289233685, 0.047003667801618576, 0.052869342267513275, -0.1492263376712799, 0.018848663195967674, -0.04274969547986984, -0.036173995584249496, -0.004347376059740782, -0.0335901640355587, 0.031745050102472305, 0.18359939754009247, 0.040942635387182236, 0.031775325536727905, -0.03891444578766823, 0.12457271665334702, -0.09189506620168686, -0.0299921166151762, 0.2168426662683487, 0.0023466108832508326, -0.03358753025531769, 0.05647744610905647, 0.014147632755339146, -0.06317576766014099, -0.004816947039216757, -0.044247716665267944, -0.09170389920473099, -0.2563210129737854, -0.09446245431900024, -0.06999242305755615, -0.05461108312010765, -0.01621728204190731, -0.00727958744391799, 0.06177227944135666, 0.015563114546239376, -0.0329924151301384, -0.06802777200937271, 0.08695174008607864, 0.00435239402577281, 0.03404028341174126, 0.021821442991495132, 0.07745073735713959, -0.046219032257795334, -0.030835028737783432, 0.018319301307201385, 0.029601147398352623, 0.1454564929008484, 0.02261548489332199, 0.10976757854223251, 0.10024453699588776, 0.11630946397781372, 0.10128370672464371, 0.06920596957206726, -0.012421466410160065, -0.008686103858053684, 0.018401194363832474, -0.0795874074101448, -0.044517748057842255, 0.03196386992931366, 0.12184163928031921, -0.04475034773349762, -0.0536300390958786, -0.005188970826566219, 0.021479392424225807, 0.1621111035346985, 0.09162687510251999, -0.22287796437740326, -0.07093272358179092, -0.023275675252079964, -0.015784071758389473, -0.0017822540830820799, 0.050826720893383026, 0.16917379200458527, -0.14794060587882996, 0.022971443831920624, 0.015932977199554443, 0.09716799110174179, -0.021460220217704773, 0.016416041180491447, -0.09824144095182419, 0.019173014909029007, -0.006980908568948507, 0.0987473726272583, -0.28614702820777893, 0.2074272185564041, 0.0006737062940374017, 0.132294699549675, -0.06386313587427139, 0.0037035439163446426, 0.022970689460635185, 0.026142805814743042, 0.12505070865154266, 0.015947457402944565, -0.0030395223293453455, -0.084376759827137, -0.07030807435512543, 0.06560228765010834, -0.028884703293442726, 0.02275286242365837, 0.03985162824392319, 0.02351733110845089, 0.0016806276980787516, -0.005647759884595871, -0.045051459223032, -0.1958828717470169, -0.042453642934560776, 0.009533635340631008, 0.16777415573596954, 0.10955499112606049, -0.036156877875328064, -0.08102498948574066, -0.07248008251190186, 0.061031196266412735, -0.11524558812379837, -0.05675237253308296, -0.06336378306150436, -0.007389596663415432, 0.08202018588781357, -0.06188604235649109, -0.017890485003590584, 0.09095213562250137, 0.1364801824092865, -0.0349825844168663, -0.021280543878674507, 0.06165294721722603, -0.12339839339256287, -0.1062508299946785, -0.0254368893802166, 0.20791584253311157, 0.10637198388576508, 0.059800200164318085, 0.07576793432235718, -0.013960366137325764, 0.004649462644010782, -0.044868648052215576, -0.009616067633032799, 0.14367890357971191, -0.07959830015897751, 0.035288967192173004, -0.020408323034644127, -0.18724346160888672, -0.11382506787776947, -0.08352551609277725, 0.15838809311389923, 0.06687845289707184, -0.04213012382388115, 0.14341233670711517, 0.2225625067949295, -0.09501513838768005, -0.1922202706336975, -0.014732295647263527, 0.08912266790866852, 0.11967228353023529, -0.030527757480740547, -0.17951373755931854, 0.053662724792957306, 0.01746886782348156, -0.023439472541213036, -0.056780554354190826, -0.3268935978412628, -0.15245503187179565, 0.12986081838607788, -0.024983512237668037, 0.12163729220628738, -0.005944661796092987, -0.027759965509176254, -0.04453793168067932, -0.06126886233687401, -0.002958844415843487, -0.18103523552417755, 0.0944969579577446, 0.02003627084195614, 0.047536056488752365, 0.029239479452371597, -0.04468071088194847, 0.09480889141559601, 0.11758555471897125, -0.012122008018195629, 0.010186568833887577, 0.10205520689487457, 0.06348980963230133, -0.008932762779295444, 0.14624406397342682, -0.07073856145143509, 0.022565461695194244, -0.1117113009095192, -0.07819148153066635, -0.08264622092247009, 0.07318692654371262, 0.014582712203264236, -0.013352898880839348, 0.01567402295768261, -0.04440842941403389, 0.006261094473302364, 0.010670664720237255, -0.05873145908117294, -0.10551067441701889, 0.07886047661304474, 0.12781669199466705, 0.18251933157444, -0.02432030625641346, -0.050377629697322845, -0.009738151915371418, -0.012767884880304337, 0.13121286034584045, -0.08960671722888947, 0.03985253721475601, 0.06639483571052551, 0.04834795370697975, 0.12310951203107834, 0.027056967839598656, -0.11244285106658936, 0.08023395389318466, 0.04213714972138405, -0.0412273146212101, -0.07218044251203537, -0.03926276043057442, -0.06341873854398727, -0.009640823118388653, 0.025329746305942535, 0.10987760126590729, -0.07832277566194534, -0.025966744869947433, -0.02051674947142601, 0.020240113139152527, -0.11309017986059189, 0.22747360169887543, 0.009200741536915302, 0.08001285046339035, -0.11892415583133698, 0.04377765953540802, 0.0050275493413209915, -0.023082418367266655, 0.042022593319416046, -0.00586611358448863, -0.10766841471195221, -0.06271304190158844, -0.025777872651815414, 0.14090459048748016, 0.03328073024749756, -0.16014431416988373, -0.06985026597976685, -0.0972115695476532, -0.01035535428673029, 0.06890140473842621, 0.04529767110943794, 0.018608467653393745, -0.06738455593585968, -0.06964292377233505, -0.11865691840648651, 0.051997680217027664, 0.09536318480968475, -0.016092492267489433, -0.0723503977060318, 0.19356614351272583, 0.09286556392908096, 0.02889465168118477, -0.03402938321232796, -0.07776699215173721, -0.02620876021683216, 0.09803039580583572, -0.08514729142189026, 0.024378035217523575, -0.08042803406715393, -0.009450572542846203, -0.011592443101108074, -0.0540720634162426, 0.006327721755951643, 0.10642624646425247, -0.07298164069652557, 0.060402221977710724, -0.029027801007032394, 0.09034138917922974, -0.09625118225812912, 0.021300844848155975, 0.007130071986466646, -0.07522166520357132, 0.07581505924463272, 0.11596356332302094, -0.09962832182645798, 0.12903623282909393, -0.21125571429729462, -0.0661977156996727, 0.07577034085988998, 0.0488484688103199, -0.02983417548239231, -0.13245880603790283, 0.05010940879583359, 0.08273618668317795, 0.06118643656373024, -0.011929739266633987, 0.07873028516769409, -0.03146923705935478, -0.02333858795464039, -0.06121954694390297, 0.0007124226540327072, -0.0057089743204414845, 0.058688174933195114, 0.08521649986505508, 0.12620079517364502, 0.12235458940267563, -0.11069963872432709, 0.10232628881931305, -0.13461415469646454, -0.00827618408948183, -0.05240807309746742, -0.003053412539884448, -0.1435060352087021, -0.07277190685272217, 0.0688076838850975, -0.057375468313694, 0.1163543313741684, 0.005240899045020342, 0.0978146642446518, -0.030537942424416542, -0.08043797314167023, 0.0015168729005381465, -0.006901290733367205, 0.2309749275445938, 0.04286229982972145, 0.029952900484204292, -0.005635898094624281, 0.007355386391282082, 0.030973311513662338, 0.11940113455057144, 0.03689318522810936, 0.11686863750219345, 0.010885344818234444, 0.0969182699918747, 0.06692425161600113, -0.07294543832540512, -0.03833971172571182, -0.03589889779686928, -0.10987012088298798, 0.03051847591996193, -0.0547674298286438, 0.10695300251245499, 0.16774360835552216, -0.10546240210533142, 0.05167404189705849, 0.027308695018291473, -0.101619191467762, -0.15474192798137665, -0.11396848410367966, -0.04986292123794556, -0.1349383443593979, 0.021748436614871025, -0.08451327681541443, 0.014131163246929646, 0.05377573147416115, 0.05929993838071823, -0.028654037043452263, 0.17646750807762146, 0.05278172716498375, -0.12763667106628418, 0.07870878279209137, -0.07120858877897263, 0.02356782741844654, -0.0710408166050911, 0.05454280972480774, 0.1601179540157318, -0.008142187260091305, 0.06844121217727661, 0.011717296205461025, -0.025187432765960693, 0.03634122014045715, -0.08085165917873383, -0.05425870418548584, -0.006681079510599375, -0.01203702762722969, 0.0760202631354332, 0.14087340235710144, 0.1347752809524536, -0.06680314987897873, 0.030697818845510483, 0.10770655423402786, -0.03735479339957237, -0.1385401338338852, -0.1728842556476593, 0.13790136575698853, 0.055231716483831406, -0.0031563681550323963, -0.014399093575775623, -0.03687063232064247, -0.00417690584436059, 0.25209298729896545, 0.1960555613040924, 0.048955079168081284, 0.025241918861865997, -0.03632012754678726, -0.010345184244215488, -0.03410746529698372, 0.06750142574310303, 0.0842655599117279, 0.17420728504657745, -0.007058215793222189, 0.010857030749320984, -0.06836897879838943, -0.10246943682432175, -0.03707767277956009, 0.03195972368121147, -0.0887630358338356, -0.09893450886011124, 0.022252043709158897, 0.13479799032211304, -0.048284828662872314, -0.11998921632766724, -0.09067314118146896, -0.059146132320165634, -0.07754801213741302, -0.011878021992743015, -0.00014870884479023516, 0.11788775771856308, 0.007864887826144695, -0.0664629191160202, 0.023032519966363907, 0.1835976541042328, 0.0063480413518846035, -0.05402221158146858, -0.07769936323165894, 0.025646498426795006, -0.11522536724805832, 0.03335707634687424, -0.0037840993609279394, 0.17032891511917114, 0.015825198963284492, 0.09229398518800735, -0.03106898069381714, 0.1351260542869568, -0.013094357214868069, -0.006851257756352425, 0.010962991043925285, 0.12245772033929825, -0.042394425719976425, 0.0787353590130806, 0.018009889870882034, -0.1394142210483551, 0.05124864727258682, -0.0980096086859703, 0.014403847977519035, -0.10578920692205429, 0.06285757571458817, -0.03143720328807831, 0.09781688451766968, 0.07094354182481766, -0.0790608823299408, -0.03180736303329468, -0.04736855626106262, 0.0723169669508934, 0.017636002972722054, -0.030962307006120682, -0.03957940638065338, -0.23717020452022552, -0.0006466420600190759, -0.10590814799070358, 0.0005784790264442563, -0.1932273507118225, 0.008203865960240364, -0.012413966469466686, -0.09754195064306259, 0.010266942903399467, 0.06166744977235794, 0.08089647442102432, 0.04243773967027664, -0.0009809014154598117, -0.02256365492939949, 0.05540349334478378, 0.11687643826007843, -0.1618070751428604, -0.11055975407361984 ]
null
null
transformers
# Wav2Vec2-Large-XLSR-53-Esperanto Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Esperanto using the [Common Voice](https://huggingface.co/datasets/common_voice) dataset. When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ```python import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor test_dataset = load_dataset("common_voice", "eo", split="test[:2%]") processor = Wav2Vec2Processor.from_pretrained('gchhablani/wav2vec2-large-xlsr-eo') model = Wav2Vec2ForCTC.from_pretrained('gchhablani/wav2vec2-large-xlsr-eo') resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset["sentence"][:2]) ``` ## Evaluation The model can be evaluated as follows on the Portuguese test data of Common Voice. ```python import torch import torchaudio from datasets import load_dataset, load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import re import jiwer def chunked_wer(targets, predictions, chunk_size=None): if chunk_size is None: return jiwer.wer(targets, predictions) start = 0 end = chunk_size H, S, D, I = 0, 0, 0, 0 while start < len(targets): chunk_metrics = jiwer.compute_measures(targets[start:end], predictions[start:end]) H = H + chunk_metrics["hits"] S = S + chunk_metrics["substitutions"] D = D + chunk_metrics["deletions"] I = I + chunk_metrics["insertions"] start += chunk_size end += chunk_size return float(S + D + I) / float(H + S + D) test_dataset = load_dataset("common_voice", "eo", split="test") #TODO: replace {lang_id} in your language code here. Make sure the code is one of the *ISO codes* of [this](https://huggingface.co/languages) site. wer = load_metric("wer") processor = Wav2Vec2Processor.from_pretrained('gchhablani/wav2vec2-large-xlsr-eo') model = Wav2Vec2ForCTC.from_pretrained('gchhablani/wav2vec2-large-xlsr-eo') model.to("cuda") chars_to_ignore_regex = """[\\\\\\\\,\\\\\\\\?\\\\\\\\.\\\\\\\\!\\\\\\\\-\\\\\\\\;\\\\\\\\:\\\\\\\\"\\\\\\\\“\\\\\\\\%\\\\\\\\‘\\\\\\\\”\\\\\\\\�\\\\\\\\„\\\\\\\\«\\\\\\\\(\\\\\\\\»\\\\\\\\)\\\\\\\\’\\\\\\\\']""" resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower().replace('—',' ').replace('–',' ') speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) # Preprocessing the datasets. # We need to read the aduio files as arrays def evaluate(batch): inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits pred_ids = torch.argmax(logits, dim=-1) batch["pred_strings"] = processor.batch_decode(pred_ids) return batch result = test_dataset.map(evaluate, batched=True, batch_size=8) print("WER: {:2f}".format(100 * chunked_wer(predictions=result["pred_strings"], targets=result["sentence"],chunk_size=5000))) ``` **Test Result**: 10.13 % ## Training The Common Voice `train` and `validation` datasets were used for training. The code can be found [here](https://github.com/gchhablani/wav2vec2-week/blob/main/fine-tune-xlsr-wav2vec2-on-esperanto-asr-with-transformers-final.ipynb).
{"language": "eo", "license": "apache-2.0", "tags": ["audio", "automatic-speech-recognition", "speech", "xlsr-fine-tuning-week"], "datasets": ["common_voice"], "metrics": ["wer"], "model-index": [{"name": "Wav2Vec2 Large 53 Esperanto by Gunjan Chhablani", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Speech Recognition"}, "dataset": {"name": "Common Voice eo", "type": "common_voice", "args": "eo"}, "metrics": [{"type": "wer", "value": 10.13, "name": "Test WER"}]}]}]}
automatic-speech-recognition
gchhablani/wav2vec2-large-xlsr-eo
[ "transformers", "pytorch", "jax", "wav2vec2", "automatic-speech-recognition", "audio", "speech", "xlsr-fine-tuning-week", "eo", "dataset:common_voice", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "eo" ]
TAGS #transformers #pytorch #jax #wav2vec2 #automatic-speech-recognition #audio #speech #xlsr-fine-tuning-week #eo #dataset-common_voice #license-apache-2.0 #model-index #endpoints_compatible #region-us
# Wav2Vec2-Large-XLSR-53-Esperanto Fine-tuned facebook/wav2vec2-large-xlsr-53 on Esperanto using the Common Voice dataset. When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ## Evaluation The model can be evaluated as follows on the Portuguese test data of Common Voice. Test Result: 10.13 % ## Training The Common Voice 'train' and 'validation' datasets were used for training. The code can be found here.
[ "# Wav2Vec2-Large-XLSR-53-Esperanto\n\nFine-tuned facebook/wav2vec2-large-xlsr-53 on Esperanto using the Common Voice dataset. \nWhen using this model, make sure that your speech input is sampled at 16kHz.", "## Usage\n\nThe model can be used directly (without a language model) as follows:", "## Evaluation\n\nThe model can be evaluated as follows on the Portuguese test data of Common Voice.\n\n\n\n\nTest Result: 10.13 %", "## Training\n\nThe Common Voice 'train' and 'validation' datasets were used for training. The code can be found here." ]
[ "TAGS\n#transformers #pytorch #jax #wav2vec2 #automatic-speech-recognition #audio #speech #xlsr-fine-tuning-week #eo #dataset-common_voice #license-apache-2.0 #model-index #endpoints_compatible #region-us \n", "# Wav2Vec2-Large-XLSR-53-Esperanto\n\nFine-tuned facebook/wav2vec2-large-xlsr-53 on Esperanto using the Common Voice dataset. \nWhen using this model, make sure that your speech input is sampled at 16kHz.", "## Usage\n\nThe model can be used directly (without a language model) as follows:", "## Evaluation\n\nThe model can be evaluated as follows on the Portuguese test data of Common Voice.\n\n\n\n\nTest Result: 10.13 %", "## Training\n\nThe Common Voice 'train' and 'validation' datasets were used for training. The code can be found here." ]
[ 80, 63, 20, 29, 30 ]
[ "passage: TAGS\n#transformers #pytorch #jax #wav2vec2 #automatic-speech-recognition #audio #speech #xlsr-fine-tuning-week #eo #dataset-common_voice #license-apache-2.0 #model-index #endpoints_compatible #region-us \n# Wav2Vec2-Large-XLSR-53-Esperanto\n\nFine-tuned facebook/wav2vec2-large-xlsr-53 on Esperanto using the Common Voice dataset. \nWhen using this model, make sure that your speech input is sampled at 16kHz.## Usage\n\nThe model can be used directly (without a language model) as follows:## Evaluation\n\nThe model can be evaluated as follows on the Portuguese test data of Common Voice.\n\n\n\n\nTest Result: 10.13 %## Training\n\nThe Common Voice 'train' and 'validation' datasets were used for training. The code can be found here." ]
[ -0.16733308136463165, 0.08048710227012634, -0.0028541393112391233, -0.004466724116355181, 0.11843447387218475, -0.04720776528120041, 0.13254572451114655, 0.09248120337724686, 0.018039386719465256, -0.022427255287766457, 0.005296843592077494, 0.07294576615095139, 0.04451729729771614, 0.13246631622314453, 0.011050814762711525, -0.2017822265625, -0.01702948659658432, 0.0445227324962616, 0.0319436676800251, 0.09422668814659119, 0.11503401398658752, -0.07787379622459412, -0.0008387087727896869, 0.09301043301820755, -0.13465313613414764, 0.09376562386751175, 0.006119367200881243, -0.1536330282688141, 0.12721996009349823, 0.052317772060632706, 0.10187164694070816, 0.05528587847948074, 0.07087895274162292, -0.14222055673599243, 0.016554497182369232, 0.02217200957238674, 0.0008558914414606988, 0.0115056112408638, 0.07006758451461792, -0.04706012085080147, 0.03327442705631256, 0.09605143219232559, -0.027211733162403107, 0.07266094535589218, -0.06624405086040497, -0.23351514339447021, 0.030247975140810013, -0.06475111097097397, 0.12043943256139755, 0.1673537641763687, -0.04346451908349991, 0.09491774439811707, -0.11182766407728195, 0.07815307378768921, 0.11216992884874344, -0.13539265096187592, 0.02352028712630272, 0.030584074556827545, 0.050348542630672455, 0.08882716298103333, -0.022103326395154, -0.008579778485000134, 0.0687599703669548, 0.0047493730671703815, 0.012020167894661427, -0.0657973438501358, -0.1967495083808899, -0.024195775389671326, -0.1254095882177353, -0.03871814161539078, 0.19538342952728271, -0.017825040966272354, -0.07234404236078262, -0.09490086883306503, -0.0269970390945673, -0.003928863909095526, 0.024456096813082695, -0.07292915880680084, 0.02539895847439766, 0.02842552401125431, 0.02275754138827324, -0.04409938305616379, -0.10523773729801178, -0.1346408575773239, 0.006010523531585932, 0.11996952444314957, 0.02177366241812706, -0.0064644538797438145, -0.12566301226615906, 0.056804556399583817, -0.05478079244494438, -0.0655163824558258, -0.01564270257949829, 0.04582147300243378, -0.018576137721538544, 0.04803977534174919, -0.07244843244552612, -0.16410306096076965, 0.050070565193891525, -0.04522065073251724, 0.0032324367202818394, 0.005090727470815182, 0.0070380219258368015, 0.0657215267419815, 0.045677561312913895, 0.11470691859722137, -0.0070977830328047276, -0.03482446447014809, 0.03481860086321831, -0.03132788464426994, -0.04598168656229973, -0.02675020694732666, -0.12089209258556366, -0.049267806112766266, -0.01296920608729124, 0.06616372615098953, -0.04354209825396538, -0.04116496071219444, -0.05431045964360237, -0.06768617033958435, 0.04167467728257179, -0.11112090200185776, -0.012293720617890358, 0.0742620974779129, -0.00937349908053875, 0.10449688136577606, 0.03191518783569336, 0.030056528747081757, -0.11842340975999832, -0.08808618783950806, 0.0029174911323934793, 0.04412386193871498, -0.06167372688651085, -0.10770384967327118, -0.0009832805953919888, -0.056486621499061584, 0.021686362102627754, -0.13910041749477386, -0.1174464300274849, -0.09960034489631653, -0.037058085203170776, 0.04339604079723358, -0.0013970626750960946, -0.138682022690773, -0.00322951702401042, -0.05110577121376991, -0.06403130292892456, -0.01566726341843605, -0.04718071222305298, 0.051451023668050766, 0.06537266820669174, 0.05635971203446388, 0.008801366202533245, 0.08822977542877197, -0.0887887179851532, -0.09169728308916092, -0.021387288346886635, 0.14436303079128265, -0.03008417598903179, -0.05765809863805771, -0.07453662902116776, -0.07149520516395569, -0.04282683506608009, 0.11045652627944946, 0.06083878129720688, 0.10548847913742065, -0.22212253510951996, -0.12266626209020615, 0.1981259286403656, -0.12002590298652649, -0.02405884861946106, 0.15619099140167236, 0.003309838706627488, 0.12402292340993881, 0.11011898517608643, 0.26224055886268616, 0.12869787216186523, -0.14798568189144135, 0.07620896399021149, 0.011375179514288902, 0.00622265599668026, -0.1352182924747467, 0.0932295173406601, -0.08450744301080704, -0.0017424889374524355, 0.033059582114219666, -0.0866892859339714, 0.0777125135064125, -0.017256584018468857, -0.03408889099955559, 0.010027497075498104, -0.06496074795722961, 0.03126097097992897, 0.03546157851815224, 0.046186916530132294, -0.03372154384851456, -0.06054513901472092, 0.09106411784887314, 0.12635740637779236, -0.14860737323760986, 0.041564907878637314, -0.11631817370653152, 0.06316271424293518, -0.06906723231077194, -0.038646478205919266, -0.14625997841358185, 0.20348533987998962, -0.006121678277850151, 0.043101031333208084, 0.035281695425510406, 0.16145892441272736, -0.00990165676921606, 0.019517771899700165, 0.006951541174203157, -0.057583652436733246, -0.04741249233484268, -0.008337498642504215, -0.0315149761736393, -0.047993987798690796, 0.0036309396382421255, -0.05782722309231758, 0.021118924021720886, -0.12399446964263916, -0.002297027502208948, 0.0036575086414813995, 0.010733946226537228, 0.0019882062915712595, -0.005287500564008951, 0.038286905735731125, 0.12481781095266342, -0.023020559921860695, 0.003919834271073341, 0.04067005589604378, 0.026125090196728706, -0.010006114840507507, 0.10006147623062134, -0.11056262254714966, 0.04717465117573738, 0.11260032653808594, -0.09790602326393127, 0.0025876369327306747, 0.07895360887050629, -0.006713098380714655, 0.0259271077811718, -0.10322796553373337, -0.03411058709025383, 0.3545953631401062, -0.0401063933968544, 0.14925682544708252, -0.11074017733335495, 0.016022393479943275, 0.014929632656276226, -0.07706810534000397, 0.050605352967977524, 0.06929628551006317, 0.04030010104179382, 0.09079055488109589, 0.0581800602376461, -0.04360540211200714, -0.09672459214925766, 0.24894672632217407, -0.01485554501414299, -0.09925822168588638, 0.027209755033254623, -0.025686688721179962, -0.023910537362098694, 0.038551442325115204, -0.20760399103164673, -0.058086466044187546, 0.01815858855843544, 0.05700379237532616, 0.0991377905011177, -0.14251922070980072, 0.016079392284154892, 0.03512651100754738, -0.11239681392908096, -0.1516529768705368, 0.031057873740792274, -0.05833154544234276, 0.02283935621380806, -0.1121271476149559, -0.08157239854335785, -0.01079422514885664, -0.03535722568631172, -0.16760964691638947, 0.15808984637260437, -0.10040358453989029, -0.27985161542892456, -0.17052771151065826, 0.11690938472747803, 0.04451938346028328, 0.04964711517095566, 0.14125798642635345, -0.13160790503025055, 0.000314966106088832, -0.021214907988905907, 0.09486356377601624, 0.001012178254313767, -0.04358172044157982, 0.009967347607016563, 0.03158103674650192, 0.031750429421663284, -0.17669512331485748, -0.002269109943881631, -0.028071457520127296, -0.05249444395303726, -0.00345664587803185, -0.03677131235599518, 0.02711152844130993, 0.20623892545700073, 0.023124631494283676, 0.011545923538506031, -0.0255596823990345, 0.15790188312530518, -0.09094756096601486, -0.0482926219701767, 0.23829300701618195, 0.016085445880889893, -0.024355286732316017, 0.02564726583659649, 0.021623563021421432, -0.0811995342373848, -0.007865875028073788, -0.03201280161738396, -0.06699741631746292, -0.2704181671142578, -0.10717539489269257, -0.050034791231155396, -0.06562396883964539, -0.03842678666114807, 0.013907291926443577, 0.06515181064605713, 0.025165705010294914, 0.025545231997966766, -0.05017835274338722, 0.013140658847987652, 0.0046155923046171665, 0.07504073530435562, -0.01341578084975481, 0.06295778602361679, -0.0449991375207901, -0.05784275382757187, 0.02664164826273918, 0.04591599479317665, 0.1151382103562355, 0.047258198261260986, 0.11394332349300385, 0.08092400431632996, 0.059448208659887314, 0.0912742018699646, 0.07710816711187363, -0.0328843779861927, 0.006638445891439915, -0.013719078153371811, -0.037851732224226, -0.04062510281801224, 0.034228209406137466, 0.10897184163331985, -0.02860936149954796, -0.10309235006570816, -0.05702411010861397, 0.011694364249706268, 0.13782213628292084, 0.06374707818031311, -0.22139406204223633, -0.06197551265358925, -0.02256663329899311, -0.038772061467170715, 0.0010278960689902306, 0.07953007519245148, 0.15924790501594543, -0.11197911947965622, -0.014502567239105701, 0.0475311316549778, 0.09575680643320084, -0.02880781888961792, 0.018080100417137146, -0.1039222851395607, 0.049724362790584564, 0.017077598720788956, 0.09827946126461029, -0.251417338848114, 0.1871180236339569, -0.0038468881975859404, 0.13651107251644135, -0.03634992614388466, 0.01819881796836853, -0.004546074196696281, 0.04327624663710594, 0.12357033044099808, 0.008158327080309391, 0.021242443472146988, -0.09732063114643097, -0.05537601187825203, 0.051314663141965866, -0.016437573358416557, -0.01799554005265236, 0.017471501603722572, 0.028317591175436974, 0.0012345421127974987, 0.0017795581370592117, -0.08454247564077377, -0.13918448984622955, -0.04499524459242821, -0.012697671540081501, 0.1482560634613037, 0.11447525769472122, -0.016017727553844452, -0.08987122029066086, -0.04260113462805748, 0.07718010991811752, -0.14001663029193878, -0.07705853134393692, -0.07563300430774689, -0.0643591657280922, 0.07003553956747055, -0.07785075902938843, 0.01851016841828823, 0.13152195513248444, 0.11504223942756653, -0.020412974059581757, -0.02646222710609436, 0.08347156643867493, -0.13036152720451355, -0.06633439660072327, -0.03630894422531128, 0.14277836680412292, 0.0944322794675827, 0.04847758635878563, 0.062031932175159454, -0.014872358180582523, -0.006785917095839977, -0.05485117435455322, 0.013114187866449356, 0.14210598170757294, -0.09153027832508087, 0.020650528371334076, -0.012571269646286964, -0.1487192064523697, -0.09676066040992737, -0.05862392112612724, 0.17028652131557465, 0.06939443200826645, -0.04253813624382019, 0.13955728709697723, 0.22276216745376587, -0.1254129558801651, -0.20690567791461945, -0.00006811170896980911, 0.13165245950222015, 0.12349237501621246, -0.007944058626890182, -0.2212609350681305, 0.055830419063568115, 0.02241009660065174, -0.006943514104932547, -0.04541923105716705, -0.3137394189834595, -0.1289607137441635, 0.14973920583724976, 0.013238183222711086, 0.17461690306663513, -0.016942352056503296, -0.028861235827207565, -0.022817088291049004, -0.0395306833088398, 0.029767895117402077, -0.10396786779165268, 0.09604042768478394, 0.039336975663900375, 0.04916752129793167, 0.037741757929325104, -0.012747797183692455, 0.07448132336139679, 0.09430299699306488, -0.02240127883851528, 0.02813948504626751, 0.04548485204577446, 0.02351602166891098, 0.026158491149544716, 0.10926654934883118, -0.03266433626413345, 0.03214603662490845, -0.16783730685710907, -0.10689253360033035, -0.06004801020026207, 0.09081537276506424, 0.03690500184893608, -0.04712614044547081, 0.051949672400951385, -0.06499400734901428, -0.00006939646118553355, 0.002600681269541383, 0.01012361142784357, -0.09583931416273117, 0.03253300115466118, 0.16812105476856232, 0.1635223776102066, -0.05251435562968254, -0.13718217611312866, -0.008880173787474632, -0.01567269116640091, 0.12621185183525085, -0.0871795266866684, 0.03311369568109512, 0.06262961775064468, 0.03817424550652504, 0.10204306989908218, 0.03376280516386032, -0.10127951949834824, 0.10373908281326294, 0.049652907997369766, -0.013689505867660046, -0.07433728873729706, -0.06441725045442581, -0.06975561380386353, 0.04850199818611145, 0.07256540656089783, 0.1247548833489418, -0.0628814697265625, -0.05760376900434494, -0.05173353850841522, 0.0002885714638978243, -0.10893657058477402, 0.211581289768219, 0.06585194170475006, 0.057012271136045456, -0.09363774955272675, 0.044402461498975754, 0.005211584735661745, -0.07298660278320312, 0.060393691062927246, -0.009254016913473606, -0.06549742072820663, -0.07325612008571625, 0.0058188424445688725, 0.14058102667331696, -0.0265232902020216, -0.1555396169424057, -0.13117198646068573, -0.05823981761932373, -0.01122029684484005, 0.07012761384248734, 0.06406962871551514, -0.012835257686674595, -0.07889110594987869, -0.04177810251712799, -0.08518390357494354, 0.018759293481707573, 0.05673450976610184, -0.0135217709466815, -0.08859612792730331, 0.20303316414356232, 0.08267412334680557, 0.03174044191837311, -0.041081614792346954, -0.0742909386754036, -0.05807831883430481, 0.08060606569051743, -0.03223650902509689, 0.021899119019508362, -0.05204911157488823, -0.007170974276959896, 0.006709778215736151, -0.07725339382886887, -0.010936398059129715, 0.11757057905197144, -0.10259287804365158, 0.06541787832975388, 0.003657236695289612, 0.08592066913843155, -0.04891655594110489, 0.016691947355866432, -0.014572126790881157, -0.0438317134976387, 0.056493744254112244, 0.09732253104448318, -0.10217905789613724, 0.11421244591474533, -0.21955867111682892, -0.01656205579638481, 0.08618094027042389, 0.07474078983068466, 0.012470245361328125, -0.073586106300354, 0.07352642714977264, 0.0983777865767479, 0.04367876425385475, -0.05437770485877991, 0.08843334019184113, -0.0728614330291748, -0.000809582183137536, -0.04661022499203682, -0.0443900041282177, -0.029118768870830536, 0.038046546280384064, 0.09824958443641663, 0.10263911634683609, 0.14547353982925415, -0.10249479115009308, 0.12316206842660904, -0.10135651379823685, 0.0034126692917197943, -0.04035648703575134, 0.004318528808653355, -0.11704415827989578, -0.07940443605184555, 0.05921214073896408, -0.045635294169187546, 0.12537534534931183, 0.06287579238414764, 0.1419481486082077, -0.042647428810596466, -0.14308273792266846, 0.058382656425237656, -0.0008581093861721456, 0.23737184703350067, 0.023879367858171463, 0.0410788469016552, -0.057664692401885986, 0.04582037031650543, 0.0703682079911232, 0.12524856626987457, -0.023156896233558655, 0.14340168237686157, 0.007742757443338633, 0.1294732242822647, 0.07029690593481064, -0.04440564289689064, -0.09595127403736115, -0.08559755235910416, -0.02710098773241043, 0.02840375155210495, -0.04670164734125137, 0.1188943088054657, 0.10918072611093521, -0.07967475056648254, 0.08010223507881165, 0.051514554768800735, -0.0650034248828888, -0.1548340618610382, -0.08393210172653198, -0.05715935304760933, -0.20057356357574463, 0.005644362885504961, -0.11005289852619171, 0.012295008637011051, 0.007746435701847076, 0.025178633630275726, -0.038472190499305725, 0.12539860606193542, 0.048601724207401276, -0.1250898540019989, 0.06107655167579651, -0.07294837385416031, 0.045794226229190826, -0.10943770408630371, 0.03815237805247307, 0.1275138258934021, 0.04363156855106354, 0.05782851204276085, 0.004922159016132355, -0.07414648681879044, 0.01429734192788601, -0.06793871521949768, -0.042569104582071304, -0.017632968723773956, -0.014136895537376404, 0.03631921485066414, 0.12029334157705307, 0.12463094294071198, -0.09862489998340607, 0.03580546751618385, 0.12443316727876663, -0.041922036558389664, -0.11648868769407272, -0.11602447181940079, 0.15966829657554626, 0.12342200428247452, 0.0706854835152626, 0.0070127504877746105, -0.08590686321258545, -0.05313269421458244, 0.24543270468711853, 0.16908308863639832, 0.07796170562505722, 0.017594758421182632, -0.002537249121814966, -0.0005779267521575093, -0.0021560543682426214, 0.06501612812280655, 0.08177091926336288, 0.28649261593818665, 0.00506211631000042, -0.019071023911237717, -0.08430221676826477, -0.03982151299715042, -0.02515227720141411, 0.045094236731529236, -0.08625693619251251, -0.1114792749285698, 0.02517145499587059, 0.11460620909929276, -0.055046409368515015, -0.11891257762908936, -0.05630602687597275, -0.08672486990690231, -0.0789380818605423, -0.016561197116971016, 0.04466712474822998, 0.11599113792181015, 0.045261528342962265, -0.03955942392349243, 0.002765270881354809, 0.17840659618377686, 0.008063551038503647, -0.09237592667341232, -0.0619824044406414, -0.006352352909743786, -0.20672042667865753, 0.032693248242139816, -0.02346084453165531, 0.17470861971378326, 0.0250078197568655, 0.11643426865339279, -0.0038617057725787163, 0.17411182820796967, -0.0325433611869812, -0.018655259162187576, 0.08565491437911987, 0.06223765388131142, -0.0522795207798481, 0.08487042039632797, -0.006703831721097231, -0.15519815683364868, 0.06306304782629013, -0.06906506419181824, -0.011023660190403461, -0.08658559620380402, 0.040447235107421875, -0.07995874434709549, 0.06447772681713104, 0.0434727743268013, -0.07440163940191269, -0.06605245918035507, -0.02745025046169758, 0.10259188711643219, 0.03100106120109558, -0.036509666591882706, -0.03423742204904556, -0.2469210922718048, -0.027068160474300385, -0.056730467826128006, 0.00691754836589098, -0.16989843547344208, 0.02298537641763687, -0.021667854860424995, -0.09870762377977371, -0.02639886736869812, 0.0012773098424077034, 0.0671665295958519, 0.028754109516739845, -0.01416686363518238, 0.02413279563188553, 0.019745346158742905, 0.13544988632202148, -0.13997860252857208, -0.1325104981660843 ]
null
null
transformers
# Wav2Vec2-Large-XLSR-53-Gujarati Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Gujarati using the [OpenSLR SLR78](http://openslr.org/78/) dataset. When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows, assuming you have a dataset with Gujarati `sentence` and `path` fields: ```python import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor # test_dataset = #TODO: WRITE YOUR CODE TO LOAD THE TEST DATASET. # For sample see the Colab link in Training Section. processor = Wav2Vec2Processor.from_pretrained("gchhablani/wav2vec2-large-xlsr-gu") model = Wav2Vec2ForCTC.from_pretrained("gchhablani/wav2vec2-large-xlsr-gu") resampler = torchaudio.transforms.Resample(48_000, 16_000) # The original data was with 48,000 sampling rate. You can change it according to your input. # Preprocessing the datasets. # We need to read the audio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset_eval = test_dataset_eval.map(speech_file_to_array_fn) inputs = processor(test_dataset_eval["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset_eval["sentence"][:2]) ``` ## Evaluation The model can be evaluated as follows on 10% of the Marathi data on OpenSLR. ```python import torch import torchaudio from datasets import load_dataset, load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import re # test_dataset = #TODO: WRITE YOUR CODE TO LOAD THE TEST DATASET. For sample see the Colab link in Training Section. wer = load_metric("wer") processor = Wav2Vec2Processor.from_pretrained("gchhablani/wav2vec2-large-xlsr-gu") model = Wav2Vec2ForCTC.from_pretrained("gchhablani/wav2vec2-large-xlsr-gu") model.to("cuda") chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\“\%\‘\”\�\–\…\'\_\’]' resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the audio files as arrays def speech_file_to_array_fn(batch): batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) # Preprocessing the datasets. # We need to read the aduio files as arrays def evaluate(batch): inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits pred_ids = torch.argmax(logits, dim=-1) batch["pred_strings"] = processor.batch_decode(pred_ids) return batch result = test_dataset.map(evaluate, batched=True, batch_size=8) print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"]))) ``` **Test Result**: 23.55 % ## Training 90% of the OpenSLR Gujarati Male+Female dataset was used for training, after removing few examples that contained Roman characters. The colab notebook used for training can be found [here](https://colab.research.google.com/drive/1fRQlgl4EPR4qKGScgza3MpWgbL5BeWtn?usp=sharing).
{"language": "gu", "license": "apache-2.0", "tags": ["audio", "automatic-speech-recognition", "speech", "xlsr-fine-tuning-week"], "datasets": ["openslr"], "metrics": ["wer"], "model-index": [{"name": "XLSR Wav2Vec2 Large 53 Gujarati by Gunjan Chhablani", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Speech Recognition"}, "dataset": {"name": "OpenSLR gu", "type": "openslr"}, "metrics": [{"type": "wer", "value": 23.55, "name": "Test WER"}]}]}]}
automatic-speech-recognition
gchhablani/wav2vec2-large-xlsr-gu
[ "transformers", "pytorch", "jax", "wav2vec2", "automatic-speech-recognition", "audio", "speech", "xlsr-fine-tuning-week", "gu", "dataset:openslr", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "gu" ]
TAGS #transformers #pytorch #jax #wav2vec2 #automatic-speech-recognition #audio #speech #xlsr-fine-tuning-week #gu #dataset-openslr #license-apache-2.0 #model-index #endpoints_compatible #region-us
# Wav2Vec2-Large-XLSR-53-Gujarati Fine-tuned facebook/wav2vec2-large-xlsr-53 on Gujarati using the OpenSLR SLR78 dataset. When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows, assuming you have a dataset with Gujarati 'sentence' and 'path' fields: ## Evaluation The model can be evaluated as follows on 10% of the Marathi data on OpenSLR. Test Result: 23.55 % ## Training 90% of the OpenSLR Gujarati Male+Female dataset was used for training, after removing few examples that contained Roman characters. The colab notebook used for training can be found here.
[ "# Wav2Vec2-Large-XLSR-53-Gujarati\n\nFine-tuned facebook/wav2vec2-large-xlsr-53 on Gujarati using the OpenSLR SLR78 dataset. When using this model, make sure that your speech input is sampled at 16kHz.", "## Usage\n\nThe model can be used directly (without a language model) as follows, assuming you have a dataset with Gujarati 'sentence' and 'path' fields:", "## Evaluation\n\nThe model can be evaluated as follows on 10% of the Marathi data on OpenSLR.\n\n\n\nTest Result: 23.55 %", "## Training\n\n90% of the OpenSLR Gujarati Male+Female dataset was used for training, after removing few examples that contained Roman characters.\nThe colab notebook used for training can be found here." ]
[ "TAGS\n#transformers #pytorch #jax #wav2vec2 #automatic-speech-recognition #audio #speech #xlsr-fine-tuning-week #gu #dataset-openslr #license-apache-2.0 #model-index #endpoints_compatible #region-us \n", "# Wav2Vec2-Large-XLSR-53-Gujarati\n\nFine-tuned facebook/wav2vec2-large-xlsr-53 on Gujarati using the OpenSLR SLR78 dataset. When using this model, make sure that your speech input is sampled at 16kHz.", "## Usage\n\nThe model can be used directly (without a language model) as follows, assuming you have a dataset with Gujarati 'sentence' and 'path' fields:", "## Evaluation\n\nThe model can be evaluated as follows on 10% of the Marathi data on OpenSLR.\n\n\n\nTest Result: 23.55 %", "## Training\n\n90% of the OpenSLR Gujarati Male+Female dataset was used for training, after removing few examples that contained Roman characters.\nThe colab notebook used for training can be found here." ]
[ 78, 69, 41, 29, 44 ]
[ "passage: TAGS\n#transformers #pytorch #jax #wav2vec2 #automatic-speech-recognition #audio #speech #xlsr-fine-tuning-week #gu #dataset-openslr #license-apache-2.0 #model-index #endpoints_compatible #region-us \n# Wav2Vec2-Large-XLSR-53-Gujarati\n\nFine-tuned facebook/wav2vec2-large-xlsr-53 on Gujarati using the OpenSLR SLR78 dataset. When using this model, make sure that your speech input is sampled at 16kHz.## Usage\n\nThe model can be used directly (without a language model) as follows, assuming you have a dataset with Gujarati 'sentence' and 'path' fields:## Evaluation\n\nThe model can be evaluated as follows on 10% of the Marathi data on OpenSLR.\n\n\n\nTest Result: 23.55 %## Training\n\n90% of the OpenSLR Gujarati Male+Female dataset was used for training, after removing few examples that contained Roman characters.\nThe colab notebook used for training can be found here." ]
[ -0.15924136340618134, 0.08624093979597092, 0.001232543378137052, 0.016768136993050575, 0.05502745881676674, -0.02654704451560974, 0.09700138866901398, 0.11256138235330582, -0.0002939591067843139, 0.0250511784106493, 0.08652672171592712, -0.021084830164909363, 0.05346959829330444, 0.11917193979024887, -0.013632760383188725, -0.10013718158006668, 0.007259096018970013, -0.023093661293387413, 0.01566888950765133, 0.1011759489774704, 0.1026538833975792, -0.07310350239276886, -0.018496928736567497, 0.07685660570859909, -0.07946718484163284, 0.0355985127389431, 0.0071335481479763985, -0.06904353946447372, 0.08124106377363205, 0.06657807528972626, 0.07156876474618912, 0.04301373288035393, 0.08479779213666916, -0.20283348858356476, 0.02294992469251156, 0.0063189188949763775, 0.037946272641420364, 0.004529118537902832, 0.07466431707143784, 0.028447609394788742, 0.089224673807621, 0.014704965986311436, -0.017215611413121223, 0.08278107643127441, -0.028721364215016365, -0.24613864719867706, -0.03095833957195282, -0.07779476791620255, 0.02253296598792076, 0.17160239815711975, -0.045052073895931244, 0.15114346146583557, -0.10523044317960739, 0.10216348618268967, 0.0954643115401268, -0.1262003481388092, -0.018312757834792137, 0.004753198474645615, 0.03574439138174057, 0.09081478416919708, -0.12030751258134842, -0.002944058272987604, 0.08476906269788742, -0.007306975312530994, -0.03421897441148758, 0.009268548339605331, -0.14688672125339508, -0.008989006280899048, -0.0776621401309967, -0.027568703517317772, 0.23265929520130157, 0.014824045822024345, -0.08557003736495972, -0.11601338535547256, -0.0647617056965828, -0.008362747728824615, 0.012718775309622288, 0.0277173463255167, -0.040715329349040985, 0.04788067191839218, 0.022167298942804337, -0.06545085459947586, -0.12190989404916763, -0.11357743293046951, 0.05291277915239334, 0.1176084578037262, 0.04176108539104462, 0.026559356600046158, -0.05322250351309776, 0.023032164201140404, -0.052190911024808884, -0.1008920967578888, -0.056630413979291916, 0.01819169707596302, -0.08735363185405731, 0.026674725115299225, -0.08298300206661224, -0.15646280348300934, 0.06465578079223633, -0.026531130075454712, -0.04026006907224655, 0.04033300653100014, 0.005396798253059387, 0.0072863223031163216, -0.014615548774600029, 0.08098766207695007, -0.032758165150880814, 0.03326267749071121, 0.03562663123011589, -0.02396349422633648, 0.00008601228182669729, -0.00832296907901764, 0.01788627728819847, -0.10061576217412949, -0.0015964596532285213, 0.06610031425952911, -0.08298150449991226, -0.008087958209216595, 0.012093557976186275, 0.01763675920665264, -0.005868668667972088, -0.12406477332115173, -0.03248406574130058, 0.0321236215531826, 0.018367033451795578, 0.09278594702482224, 0.03109343722462654, 0.0031469787936657667, -0.013058283366262913, -0.11218931525945663, -0.01691289246082306, 0.03325067460536957, -0.1022014394402504, -0.09752411395311356, -0.015019762329757214, -0.08213626593351364, -0.03494078293442726, -0.09521322697401047, -0.19473029673099518, -0.04910500720143318, -0.031403549015522, -0.009824282489717007, 0.06451132148504257, -0.1135740801692009, -0.029860058799386024, 0.01596767269074917, -0.023288261145353317, 0.10687649250030518, -0.0338420644402504, 0.09743677079677582, 0.054202307015657425, 0.06498085707426071, -0.003101927461102605, 0.06054374948143959, -0.06077291816473007, -0.013702389784157276, 0.1414097398519516, 0.11942921578884125, -0.08023766428232193, -0.03567080199718475, -0.09830909222364426, -0.05861666798591614, -0.05327794700860977, 0.037448350340127945, 0.08772514015436172, 0.09035515040159225, -0.24372906982898712, -0.0012893248349428177, 0.2591724395751953, -0.14803831279277802, -0.007102688774466515, 0.1425512582063675, -0.0027826563455164433, 0.10788369178771973, 0.061257798224687576, 0.155344620347023, 0.10917045921087265, -0.14366281032562256, 0.03871436417102814, 0.04841584339737892, 0.049949321895837784, -0.015413036569952965, 0.10456739366054535, -0.07801135629415512, 0.031544458121061325, 0.030035432428121567, -0.06155001372098923, 0.07681635767221451, -0.05894806236028671, -0.07207382470369339, -0.06074385717511177, -0.09833921492099762, 0.008945208974182606, 0.012889762409031391, 0.057713501155376434, -0.0471160002052784, -0.05649244785308838, -0.018684793263673782, 0.1739928126335144, -0.12254539877176285, 0.03977760672569275, -0.12527525424957275, 0.08890388906002045, -0.08983509987592697, -0.03203441575169563, -0.12279890477657318, 0.11369802802801132, 0.01913738250732422, 0.048121996223926544, -0.033977191895246506, 0.18666139245033264, 0.049266718327999115, 0.011633949354290962, -0.02490908093750477, -0.008927746675908566, 0.029660770669579506, -0.016382567584514618, -0.041284091770648956, -0.11265548318624496, 0.007988444529473782, -0.05721769109368324, 0.08575425297021866, -0.20092757046222687, -0.004057594574987888, 0.035890813916921616, 0.027743805199861526, 0.004386678338050842, -0.03989091515541077, 0.05689496174454689, 0.04250182956457138, 0.004513842985033989, -0.03135271742939949, 0.023548278957605362, 0.02894444763660431, -0.02713119424879551, 0.08968520164489746, -0.030369797721505165, -0.017977412790060043, 0.051590729504823685, -0.01014877948909998, -0.08828827738761902, 0.07141313701868057, -0.030322203412652016, -0.014996788464486599, -0.11512689292430878, -0.0550307035446167, 0.1863078773021698, -0.006935599725693464, 0.11918623745441437, -0.05813499167561531, -0.014461965300142765, 0.017235135659575462, -0.08567994832992554, 0.03873651847243309, 0.06926550716161728, -0.0012457255506888032, -0.05643122270703316, 0.06041315570473671, -0.08334024995565414, -0.15913325548171997, 0.2250104397535324, -0.037488218396902084, -0.10350474715232849, 0.042776305228471756, 0.08061708509922028, -0.06960522383451462, 0.021212415769696236, -0.1767635941505432, -0.011147648096084595, 0.043999265879392624, 0.06219182908535004, 0.035023048520088196, -0.12360271066427231, -0.006805430632084608, 0.03956839069724083, -0.07044733315706253, -0.09819851070642471, 0.10910503566265106, -0.08980052173137665, 0.06823237985372543, -0.08820793032646179, 0.02660498581826687, 0.00008546561002731323, -0.037851929664611816, -0.18614798784255981, 0.12577711045742035, -0.0776183009147644, -0.07711253315210342, -0.13341137766838074, 0.024161985144019127, 0.07544272392988205, -0.006280891597270966, 0.08102107793092728, -0.14827848970890045, -0.06514661014080048, -0.053675126284360886, 0.0063468581065535545, -0.010722423903644085, -0.009092428721487522, 0.0014004420954734087, -0.005356389097869396, 0.063146211206913, -0.1458645910024643, 0.03585813194513321, 0.04525890573859215, -0.05575171858072281, 0.03232700377702713, -0.01737436093389988, 0.03152432292699814, 0.03792651370167732, -0.03741548955440521, 0.016750434413552284, 0.027015047147870064, 0.15344573557376862, -0.05074445530772209, -0.022071154788136482, 0.1708216816186905, 0.01468137837946415, -0.04373275488615036, 0.03650384023785591, -0.018145525828003883, -0.0929640382528305, 0.008449920453131199, -0.005988556891679764, -0.06489113718271255, -0.24918630719184875, -0.051951926201581955, -0.09718598425388336, -0.09937193989753723, -0.03646248206496239, -0.011046509258449078, 0.034615810960531235, 0.041629038751125336, -0.0352075956761837, -0.034079838544130325, -0.045065999031066895, -0.008560574613511562, 0.12273844331502914, -0.018322937190532684, 0.08401833474636078, -0.10079533606767654, 0.017838213592767715, 0.03851636126637459, -0.038771454244852066, 0.2320985049009323, -0.007386969868093729, 0.15966884791851044, 0.1218423992395401, 0.119059719145298, 0.05667934566736221, 0.030214328318834305, -0.03799303248524666, -0.028000961989164352, 0.025944342836737633, -0.06532226502895355, -0.049608565866947174, 0.08140354603528976, 0.058073557913303375, -0.03938675299286842, 0.00611426355317235, -0.047320153564214706, 0.02427603118121624, 0.18408043682575226, 0.05916575714945793, -0.20124034583568573, -0.07825006544589996, -0.015987399965524673, -0.10131891071796417, -0.0389733761548996, -0.0002832069876603782, 0.2008277326822281, -0.08584647625684738, 0.0053955973125994205, 0.03470822423696518, 0.07649320363998413, 0.011725395917892456, -0.015066883526742458, -0.07505997270345688, 0.007796278689056635, -0.01297159492969513, 0.10465609282255173, -0.2940201461315155, 0.2376244217157364, 0.013139464892446995, 0.11666146665811539, -0.0028640853706747293, -0.023847704753279686, 0.013544430024921894, -0.07141619175672531, 0.10034743696451187, -0.017636766657233238, -0.009006411768496037, -0.06864093244075775, -0.05732543021440506, 0.07661004364490509, -0.0017742131603881717, 0.10192108154296875, 0.08279260247945786, -0.013448499143123627, 0.042389821261167526, 0.042916007339954376, 0.07664617151021957, -0.15109308063983917, -0.03448992595076561, -0.008861756883561611, 0.1537657380104065, 0.014499399811029434, -0.043607331812381744, -0.10413403064012527, -0.11974900960922241, 0.10878562927246094, -0.11706464737653732, -0.08627299964427948, -0.09006090462207794, 0.07821105420589447, 0.06634264439344406, -0.039551619440317154, 0.02589539624750614, 0.06466447561979294, 0.0975654199719429, -0.012025292962789536, 0.04823561757802963, -0.009416284039616585, -0.050594527274370193, -0.12319876253604889, -0.03061188943684101, 0.10615084320306778, 0.09891211986541748, 0.030482081696391106, 0.018376585096120834, 0.007822980172932148, -0.00030430193874053657, -0.07875999063253403, 0.01698419824242592, 0.1757662296295166, -0.11964604258537292, -0.056918010115623474, 0.01890924759209156, -0.10346979647874832, -0.023416783660650253, -0.14274081587791443, 0.18785426020622253, 0.14341826736927032, -0.05312351509928703, 0.12761880457401276, 0.11684902012348175, -0.08013685792684555, -0.1480063498020172, 0.027945758774876595, 0.11307282745838165, 0.1329507678747177, -0.040022317320108414, -0.17698730528354645, 0.006369425915181637, 0.006805071607232094, -0.02810920774936676, -0.027459939941763878, -0.17716360092163086, -0.13992922008037567, 0.09938298165798187, 0.07877279818058014, 0.164972186088562, -0.023014429956674576, -0.043227147310972214, -0.035086095333099365, -0.04738155007362366, -0.045131247490644455, -0.05554194748401642, 0.09393701702356339, -0.004092373885214329, 0.05621613562107086, 0.04100386053323746, -0.056489843875169754, 0.11557058244943619, -0.006821824237704277, 0.010597475804388523, -0.025696516036987305, 0.15798474848270416, 0.06464044004678726, 0.07067303359508514, 0.15295450389385223, -0.09968248009681702, 0.036119040101766586, -0.09231496602296829, -0.10217135399580002, -0.05001116544008255, 0.04630526527762413, 0.017723826691508293, -0.04953915253281593, 0.031774457544088364, -0.033517416566610336, 0.044444482773542404, -0.008637171238660812, -0.11269531399011612, -0.09003137052059174, 0.03918023779988289, 0.07785745710134506, 0.16769953072071075, 0.09519778192043304, 0.0226382277905941, -0.027580438181757927, -0.002537823049351573, 0.09466610848903656, -0.13304610550403595, -0.0037977416068315506, 0.05059991031885147, 0.09234335273504257, 0.10262226313352585, -0.024512087926268578, -0.06996957212686539, 0.09713279455900192, 0.028703873977065086, 0.014970976859331131, -0.09212661534547806, 0.0008716267184354365, 0.03512439504265785, -0.06647844612598419, -0.058346930891275406, 0.09649699926376343, -0.09840362519025803, 0.0056617711670696735, -0.06062089279294014, 0.015709489583969116, -0.11839687079191208, 0.24258878827095032, 0.042295150458812714, 0.05337369814515114, -0.06415904313325882, -0.024328192695975304, -0.03700750321149826, -0.02793494239449501, 0.0663318932056427, 0.007259340491145849, -0.11846936494112015, -0.05425979569554329, 0.02380182407796383, 0.058336291462183, -0.003857456147670746, -0.09713441878557205, -0.05909893289208412, -0.05645689368247986, 0.019314363598823547, 0.08619087189435959, 0.034635864198207855, 0.06384824961423874, -0.062457375228405, -0.051348328590393066, -0.06878381967544556, 0.0640529990196228, 0.019107531756162643, -0.04345255717635155, -0.062473781406879425, 0.13801461458206177, 0.032704297453165054, -0.02259465493261814, -0.035133954137563705, -0.03442532196640968, 0.011020089499652386, 0.07815175503492355, -0.16175754368305206, 0.03427612781524658, -0.026381460949778557, -0.02914178930222988, -0.015567613765597343, -0.06278129667043686, -0.005016989074647427, 0.08327914029359818, -0.06025008484721184, 0.03404363989830017, -0.015336666256189346, 0.08393359929323196, -0.055118076503276825, 0.014322343282401562, 0.03142474964261055, -0.0522124357521534, 0.04185705631971359, 0.09947935491800308, -0.09611885249614716, 0.07116388529539108, -0.23029978573322296, 0.03839237987995148, 0.02752835862338543, 0.06742994487285614, -0.03126775100827217, -0.1654656082391739, 0.04531209170818329, 0.0969216376543045, 0.05103111267089844, 0.019329963251948357, 0.1025165542960167, -0.032254815101623535, 0.03472340106964111, -0.0993553027510643, 0.024515429511666298, -0.0690050721168518, 0.05592403933405876, 0.05939507856965065, 0.12237866222858429, 0.10799931734800339, -0.08314452320337296, 0.06571120768785477, -0.1368473321199417, 0.01895926706492901, -0.024289611726999283, 0.02822386473417282, -0.1191214919090271, -0.0453345850110054, 0.08205185830593109, -0.06494931131601334, 0.14655721187591553, -0.0606696717441082, -0.0023351560812443495, -0.0005752044380642474, -0.1394750028848648, 0.08617647737264633, -0.006715152412652969, 0.3236235976219177, 0.03600660338997841, 0.06672462821006775, -0.04398731142282486, -0.008973927237093449, -0.017110655084252357, 0.07437704503536224, 0.007762494497001171, 0.21429532766342163, -0.048304907977581024, 0.0544276237487793, -0.016254175454378128, -0.15783452987670898, -0.03138921037316322, 0.04767294600605965, -0.10641724616289139, 0.022065158933401108, -0.06535666435956955, 0.12134779989719391, 0.193451926112175, -0.13445945084095, 0.057317811995744705, -0.012963231652975082, -0.07411868870258331, -0.10792366415262222, -0.10159168392419815, -0.06557018309831619, -0.12019628286361694, 0.07783845067024231, -0.07747369259595871, 0.04718327894806862, -0.01776769384741783, 0.03468111529946327, -0.04483846575021744, 0.18491756916046143, 0.04025382548570633, -0.09076030552387238, 0.0253509059548378, -0.06535013765096664, -0.02568306215107441, -0.10432987660169601, -0.010389599949121475, 0.14854499697685242, -0.04307752102613449, 0.05582480505108833, 0.018767116591334343, -0.03580446168780327, -0.009630498476326466, -0.07464032620191574, -0.028472522273659706, -0.008054622448980808, 0.019148364663124084, 0.07728651165962219, 0.19134759902954102, 0.10715784132480621, -0.02672419138252735, -0.004100162070244551, 0.0890672355890274, -0.012823752127587795, -0.11432831734418869, -0.16047976911067963, 0.054159704595804214, 0.052853673696517944, -0.00741744227707386, 0.03391169756650925, -0.014673012308776379, 0.06404995918273926, 0.20518511533737183, 0.07837537676095963, 0.027268027886748314, 0.033828005194664, -0.030916471034288406, -0.016147490590810776, -0.05941691994667053, 0.0705529972910881, 0.052253663539886475, 0.1551036685705185, -0.0581108033657074, -0.046383630484342575, -0.09643064439296722, -0.032141778618097305, 0.01757976971566677, 0.046976592391729355, -0.06833554804325104, -0.08036990463733673, -0.01759963668882847, 0.10713116824626923, -0.038770951330661774, -0.11043936014175415, -0.056244585663080215, -0.0048875450156629086, -0.07028894871473312, 0.005800252314656973, -0.08272262662649155, 0.07356759160757065, -0.03568197041749954, -0.07053390890359879, 0.051886677742004395, 0.1525823026895523, -0.00668367650359869, -0.0206963699311018, -0.04271332919597626, 0.05851907655596733, -0.1490335911512375, -0.027550052851438522, -0.012897856533527374, 0.20931382477283478, 0.056563641875982285, 0.08973533660173416, -0.024494493380188942, 0.19921110570430756, 0.025602085515856743, -0.04434226453304291, 0.010485416278243065, 0.14691226184368134, -0.03307431936264038, 0.14783765375614166, 0.04346299171447754, -0.04859456419944763, 0.05506915599107742, -0.0237235426902771, -0.009254327975213528, -0.13033437728881836, 0.09542534500360489, -0.055219873785972595, 0.1229301393032074, 0.10320630669593811, -0.095870740711689, -0.06279391050338745, -0.0584249421954155, 0.057106271386146545, -0.013267507776618004, -0.04324011877179146, -0.05561019852757454, -0.293860524892807, 0.017384279519319534, -0.02338920719921589, 0.008388743735849857, -0.2215878963470459, -0.044323649257421494, -0.033788107335567474, -0.09065228700637817, 0.05812237784266472, 0.04873235896229744, 0.07519713044166565, 0.045235004276037216, 0.00823866669088602, -0.098554827272892, 0.06227729469537735, 0.0985821858048439, -0.10648065060377121, -0.1111735925078392 ]
null
null
transformers
# Wav2Vec2-Large-XLSR-53-Hungarian Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Hungarian using the [Common Voice](https://huggingface.co/datasets/common_voice) dataset. When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ```python import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor test_dataset = load_dataset("common_voice", "hu", split="test[:2%]") processor = Wav2Vec2Processor.from_pretrained("gchhablani/wav2vec2-large-xlsr-hu") model = Wav2Vec2ForCTC.from_pretrained("gchhablani/wav2vec2-large-xlsr-hu") resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset["sentence"][:2]) ``` ## Evaluation The model can be evaluated as follows on the Portuguese test data of Common Voice. ```python import torch import torchaudio from datasets import load_dataset, load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import re test_dataset = load_dataset("common_voice", "hu", split="test") wer = load_metric("wer") processor = Wav2Vec2Processor.from_pretrained("gchhablani/wav2vec2-large-xlsr-hu") model = Wav2Vec2ForCTC.from_pretrained("gchhablani/wav2vec2-large-xlsr-hu") model.to("cuda") chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\“\%\‘\”\�\–\…]' resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) # Preprocessing the datasets. # We need to read the aduio files as arrays def evaluate(batch): inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits pred_ids = torch.argmax(logits, dim=-1) batch["pred_strings"] = processor.batch_decode(pred_ids) return batch result = test_dataset.map(evaluate, batched=True, batch_size=8) print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"]))) ``` **Test Result**: 46.75 % ## Training The Common Voice `train` and `validation` datasets were used for training. The code can be found [here](https://github.com/gchhablani/wav2vec2-week/blob/main/fine-tune-xlsr-wav2vec2-on-hungarian-asr.ipynb). The notebook containing the code used for evaluation can be found [here](https://colab.research.google.com/drive/1esYvWS6IkTQFfRqi_b6lAJEycuecInHE?usp=sharing).
{"language": "hu", "license": "apache-2.0", "tags": ["audio", "automatic-speech-recognition", "speech", "xlsr-fine-tuning-week"], "datasets": ["common_voice"], "metrics": ["wer"], "model-index": [{"name": "Wav2Vec2 Large 53 Hungarian by Gunjan Chhablani", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Speech Recognition"}, "dataset": {"name": "Common Voice hu", "type": "common_voice", "args": "hu"}, "metrics": [{"type": "wer", "value": 46.75, "name": "Test WER"}]}]}]}
automatic-speech-recognition
gchhablani/wav2vec2-large-xlsr-hu
[ "transformers", "pytorch", "jax", "wav2vec2", "automatic-speech-recognition", "audio", "speech", "xlsr-fine-tuning-week", "hu", "dataset:common_voice", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "hu" ]
TAGS #transformers #pytorch #jax #wav2vec2 #automatic-speech-recognition #audio #speech #xlsr-fine-tuning-week #hu #dataset-common_voice #license-apache-2.0 #model-index #endpoints_compatible #region-us
# Wav2Vec2-Large-XLSR-53-Hungarian Fine-tuned facebook/wav2vec2-large-xlsr-53 on Hungarian using the Common Voice dataset. When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ## Evaluation The model can be evaluated as follows on the Portuguese test data of Common Voice. Test Result: 46.75 % ## Training The Common Voice 'train' and 'validation' datasets were used for training. The code can be found here. The notebook containing the code used for evaluation can be found here.
[ "# Wav2Vec2-Large-XLSR-53-Hungarian\n\nFine-tuned facebook/wav2vec2-large-xlsr-53 on Hungarian using the Common Voice dataset. \nWhen using this model, make sure that your speech input is sampled at 16kHz.", "## Usage\n\nThe model can be used directly (without a language model) as follows:", "## Evaluation\n\nThe model can be evaluated as follows on the Portuguese test data of Common Voice.\n\n\n\n\nTest Result: 46.75 %", "## Training\n\nThe Common Voice 'train' and 'validation' datasets were used for training. The code can be found here. The notebook containing the code used for evaluation can be found here." ]
[ "TAGS\n#transformers #pytorch #jax #wav2vec2 #automatic-speech-recognition #audio #speech #xlsr-fine-tuning-week #hu #dataset-common_voice #license-apache-2.0 #model-index #endpoints_compatible #region-us \n", "# Wav2Vec2-Large-XLSR-53-Hungarian\n\nFine-tuned facebook/wav2vec2-large-xlsr-53 on Hungarian using the Common Voice dataset. \nWhen using this model, make sure that your speech input is sampled at 16kHz.", "## Usage\n\nThe model can be used directly (without a language model) as follows:", "## Evaluation\n\nThe model can be evaluated as follows on the Portuguese test data of Common Voice.\n\n\n\n\nTest Result: 46.75 %", "## Training\n\nThe Common Voice 'train' and 'validation' datasets were used for training. The code can be found here. The notebook containing the code used for evaluation can be found here." ]
[ 80, 66, 20, 30, 44 ]
[ "passage: TAGS\n#transformers #pytorch #jax #wav2vec2 #automatic-speech-recognition #audio #speech #xlsr-fine-tuning-week #hu #dataset-common_voice #license-apache-2.0 #model-index #endpoints_compatible #region-us \n# Wav2Vec2-Large-XLSR-53-Hungarian\n\nFine-tuned facebook/wav2vec2-large-xlsr-53 on Hungarian using the Common Voice dataset. \nWhen using this model, make sure that your speech input is sampled at 16kHz.## Usage\n\nThe model can be used directly (without a language model) as follows:## Evaluation\n\nThe model can be evaluated as follows on the Portuguese test data of Common Voice.\n\n\n\n\nTest Result: 46.75 %## Training\n\nThe Common Voice 'train' and 'validation' datasets were used for training. The code can be found here. The notebook containing the code used for evaluation can be found here." ]
[ -0.16231359541416168, 0.06481017917394638, -0.0011002484243363142, -0.017732644453644753, 0.12601040303707123, -0.0535879023373127, 0.19906696677207947, 0.09090850502252579, -0.014554324559867382, -0.004921562969684601, -0.016406448557972908, 0.02862565964460373, 0.0702095776796341, 0.07966109365224838, 0.034497857093811035, -0.18044854700565338, 0.02059841714799404, -0.01115722581744194, 0.0493563674390316, 0.08793597668409348, 0.10332313925027847, -0.06348104774951935, 0.0036176186986267567, 0.08513432741165161, -0.12081539630889893, 0.06760244071483612, -0.005568876396864653, -0.12234693020582199, 0.13663539290428162, 0.03937111049890518, 0.07376524060964584, 0.05171354487538338, 0.06071079149842262, -0.1594495177268982, 0.01921183429658413, 0.03277352824807167, 0.013949960470199585, 0.007137460168451071, 0.06561770290136337, -0.04631553962826729, 0.13539119064807892, 0.08403455466032028, -0.03348596766591072, 0.09002449363470078, -0.062424153089523315, -0.26451170444488525, -0.014238404110074043, -0.014880509115755558, 0.10251235216856003, 0.13985390961170197, -0.05929116904735565, 0.12118037045001984, -0.09420115500688553, 0.08210904151201248, 0.10465454310178757, -0.19838878512382507, 0.017216280102729797, 0.08885222673416138, 0.06128503382205963, 0.11945322155952454, -0.044460177421569824, 0.029671650379896164, 0.05026679486036301, 0.005186345428228378, 0.021540367975831032, -0.0544176921248436, -0.2936275601387024, -0.03535788133740425, -0.13731828331947327, -0.049776773899793625, 0.22139258682727814, -0.028346659615635872, -0.06932733952999115, -0.11991535872220993, 0.003012519795447588, 0.0051017822697758675, 0.011540913954377174, -0.015821054577827454, -0.024724861606955528, 0.043735306710004807, 0.013975015841424465, -0.02391468733549118, -0.09590446949005127, -0.11967513710260391, 0.049860239028930664, 0.0658661350607872, 0.007506962865591049, 0.009801479987800121, -0.10850125551223755, 0.07521034777164459, -0.03941766172647476, -0.09434323757886887, -0.009132303297519684, 0.047654539346694946, -0.06946757435798645, 0.0014667520299553871, -0.0631401315331459, -0.11948270350694656, 0.044952042400836945, -0.027919385582208633, 0.07074274122714996, 0.012285270728170872, -0.04049943387508392, 0.06129666045308113, 0.02048288658261299, 0.1379317194223404, -0.04626363515853882, -0.07239188998937607, 0.012995898723602295, -0.028482291847467422, -0.017653029412031174, -0.05061615630984306, -0.10071150958538055, -0.06556560844182968, 0.0016643364215269685, 0.09404313564300537, -0.036904942244291306, -0.0044802650809288025, -0.020803019404411316, -0.05882340669631958, 0.02899077534675598, -0.10584240406751633, -0.030908536165952682, 0.09950003772974014, 0.006320185028016567, 0.05813963711261749, 0.017878711223602295, 0.044212717562913895, -0.11341241747140884, -0.06451749056577682, 0.01815633662045002, 0.04338480159640312, -0.04521694406867027, -0.1293017566204071, 0.022149285301566124, -0.03261442855000496, 0.005338659044355154, -0.09795663505792618, -0.06556925922632217, -0.0801214799284935, -0.025329528376460075, 0.03823117911815643, 0.041374482214450836, -0.10510141402482986, -0.03870599716901779, -0.040811844170093536, -0.039609335362911224, 0.024786628782749176, -0.04886173456907272, 0.07121029496192932, 0.002923330757766962, 0.04555976390838623, -0.008673575706779957, 0.06672180444002151, -0.10642177611589432, -0.06616732478141785, 0.002039786195382476, 0.12011009454727173, -0.06369801610708237, 0.00818158034235239, -0.06891831755638123, -0.043127987533807755, -0.0070140790194272995, 0.0431656613945961, 0.07305732369422913, 0.10592284053564072, -0.2807902693748474, -0.11339840292930603, 0.18108420073986053, -0.16343238949775696, -0.0608980655670166, 0.1672898679971695, -0.004756661131978035, 0.1395355463027954, 0.10945580899715424, 0.2807854115962982, 0.20453979074954987, -0.15014885365962982, 0.005486429203301668, -0.025861453264951706, 0.000783591705840081, -0.1052018329501152, 0.09937190264463425, -0.05512712150812149, -0.009153642691671848, 0.04227307811379433, -0.08121520280838013, 0.07440277934074402, -0.0007111084996722639, -0.0581747367978096, -0.0025172107852995396, -0.06049220263957977, 0.037814460694789886, 0.05868129804730415, 0.01955392211675644, -0.05100150778889656, -0.02573637291789055, 0.04456877335906029, 0.13029834628105164, -0.14870961010456085, 0.029970379546284676, -0.09126513451337814, 0.12521471083164215, -0.06709320098161697, -0.009370866231620312, -0.13159584999084473, 0.19651181995868683, -0.004739173222333193, 0.0603053905069828, 0.026155943050980568, 0.13716673851013184, 0.00942105520516634, 0.04892845079302788, 0.011033531278371811, -0.004170757718384266, -0.04430563002824783, -0.004712268710136414, -0.02301470935344696, -0.0751083567738533, -0.03552598878741264, -0.05112908408045769, 0.12628909945487976, -0.15370318293571472, 0.010001776739954948, 0.06954941898584366, 0.02806328795850277, 0.0037985024973750114, -0.040481843054294586, 0.043028078973293304, 0.10856036096811295, -0.017122499644756317, -0.01051104161888361, 0.05311977490782738, 0.04411500319838524, -0.005723122041672468, 0.07920821011066437, -0.151448592543602, -0.027369769290089607, 0.1139645203948021, -0.07044634968042374, -0.0019326565088704228, 0.029275568202137947, -0.018350858241319656, 0.018788723275065422, -0.09807690978050232, -0.018436972051858902, 0.29096153378486633, -0.028666101396083832, 0.12620729207992554, -0.08991137892007828, 0.0059464857913553715, 0.022715939208865166, -0.05220286548137665, 0.061661574989557266, 0.07498749345541, 0.028280893340706825, 0.08663268387317657, 0.031376685947179794, -0.014549238607287407, -0.06148780509829521, 0.2673121988773346, -0.036348890513181686, -0.11611581593751907, 0.030951015651226044, -0.001881562639027834, 0.010806656442582607, 0.0769515410065651, -0.22248928248882294, -0.03592190518975258, 0.02952677756547928, 0.04237476363778114, 0.06797605752944946, -0.12175318598747253, 0.01911907084286213, 0.024413933977484703, -0.12686216831207275, -0.18938565254211426, 0.05435160547494888, -0.042125944048166275, 0.03164125233888626, -0.09031551331281662, -0.02638970874249935, -0.046212680637836456, -0.05233437940478325, -0.17666378617286682, 0.12445017695426941, -0.07998927682638168, -0.20903782546520233, -0.21645329892635345, 0.0927223488688469, 0.022834889590740204, 0.03329752758145332, 0.11450515687465668, -0.12404178828001022, 0.008140957914292812, -0.023216795176267624, 0.13715320825576782, 0.019471900537610054, -0.052667275071144104, 0.021941615268588066, 0.05940062925219536, 0.039535775780677795, -0.14723946154117584, 0.021230008453130722, -0.017645474523305893, -0.056190598756074905, -0.03752471134066582, -0.02173842303454876, 0.026388810947537422, 0.17548207938671112, 0.018812010064721107, 0.0365060493350029, -0.0216108039021492, 0.19277530908584595, -0.1110280379652977, -0.03499278798699379, 0.20138657093048096, -0.04068712145090103, -0.0362921878695488, 0.10296133905649185, 0.025511138141155243, -0.05581675469875336, -0.019191298633813858, -0.03159509599208832, -0.09568949788808823, -0.22022446990013123, -0.137300044298172, -0.06867596507072449, -0.03096592053771019, -0.06130493804812431, -0.003992271143943071, 0.040871281176805496, 0.034704968333244324, -0.03221220150589943, -0.06754541397094727, 0.04304823651909828, 0.014237118884921074, 0.08491789549589157, -0.002506022807210684, 0.05658864229917526, -0.08373096585273743, -0.040342848747968674, 0.033119939267635345, 0.03414429351687431, 0.14856533706188202, 0.034845802932977676, 0.12439936399459839, 0.08790168166160583, 0.09687402099370956, 0.1017930805683136, 0.08476592600345612, -0.03454681858420372, -0.009605158120393753, 0.014992393553256989, -0.0891609862446785, -0.03299841657280922, 0.00948165450245142, 0.06261584162712097, -0.027836918830871582, -0.11579485982656479, -0.094114750623703, 0.03014112263917923, 0.16338904201984406, 0.10046979784965515, -0.19560128450393677, -0.09324603527784348, 0.004281194880604744, -0.012602532282471657, 0.0015607367968186736, 0.03378577157855034, 0.1934790015220642, -0.1273304671049118, -0.0038792830891907215, 0.03480745851993561, 0.09003160893917084, -0.07017053663730621, 0.021265557035803795, -0.10615779459476471, -0.01776902563869953, 0.005716846790164709, 0.11514265090227127, -0.1692514717578888, 0.19481207430362701, 0.01597077026963234, 0.1284249871969223, -0.07117880135774612, 0.005341116338968277, 0.022346394136548042, 0.04838886484503746, 0.10072819143533707, 0.020573632791638374, 0.026147985830903053, -0.1369410753250122, -0.07796024531126022, 0.050729140639305115, -0.014841138385236263, -0.02759646438062191, 0.03576444089412689, -0.018200691789388657, 0.012888060882687569, -0.036075107753276825, -0.07966701686382294, -0.1135953962802887, -0.05781998857855797, 0.02066914550960064, 0.18410220742225647, 0.10742677003145218, -0.024804187938570976, -0.08726770430803299, -0.05429139733314514, 0.11891555786132812, -0.13953612744808197, -0.06485545635223389, -0.07289763540029526, -0.08383266627788544, 0.09322625398635864, -0.07010149210691452, -0.02062373235821724, 0.11028272658586502, 0.13183344900608063, -0.033074699342250824, -0.06899858266115189, 0.02497842349112034, -0.11279931664466858, -0.06930740177631378, -0.012518090195953846, 0.17501069605350494, 0.09474734216928482, 0.05837952345609665, 0.06250467896461487, 0.0157674178481102, 0.012073934078216553, -0.07483555376529694, -0.013933495618402958, 0.13661278784275055, -0.11050288379192352, -0.004473311826586723, -0.01584315486252308, -0.17100106179714203, -0.10363323986530304, -0.06111523509025574, 0.18182812631130219, 0.10705520212650299, -0.07924468070268631, 0.16024088859558105, 0.21096020936965942, -0.09953795373439789, -0.22354960441589355, 0.0023446271661669016, 0.09226539731025696, 0.12796279788017273, 0.022407688200473785, -0.17231005430221558, 0.04145599156618118, -0.01057148352265358, -0.027956359088420868, -0.026368964463472366, -0.3387748897075653, -0.11426562070846558, 0.13992974162101746, 0.018441705033183098, 0.1271805316209793, -0.009236948564648628, -0.04735253378748894, -0.00960950180888176, -0.07834118604660034, -0.01019535306841135, -0.18749845027923584, 0.09651856124401093, 0.04224666208028793, 0.03800268471240997, 0.05869586765766144, -0.024217618629336357, 0.08909869939088821, 0.08235706388950348, -0.031398460268974304, -0.017912013456225395, 0.058879077434539795, 0.07457812875509262, 0.001456919126212597, 0.10380782186985016, -0.053726475685834885, 0.042169615626335144, -0.14413243532180786, -0.06745140254497528, -0.05714259296655655, 0.0853475034236908, 0.0038816281594336033, -0.0382632277905941, 0.011103947646915913, -0.038514748215675354, -0.0020992388017475605, 0.0009778756648302078, -0.04510164633393288, -0.10140658169984818, 0.0627252534031868, 0.14133095741271973, 0.16261959075927734, -0.036956459283828735, -0.029203470796346664, 0.017648568376898766, -0.017429722473025322, 0.11576932668685913, -0.04156810790300369, 0.04495687037706375, 0.07808380573987961, 0.03565860167145729, 0.08344872295856476, 0.017775120213627815, -0.10556791722774506, 0.08887328952550888, 0.06525794416666031, -0.07274854928255081, -0.05359258875250816, -0.07257014513015747, -0.05069471523165703, 0.004862604662775993, 0.06654758006334305, 0.13059961795806885, -0.07378187030553818, -0.02542075328528881, -0.04245581850409508, -0.016964923590421677, -0.11058659851551056, 0.1774200201034546, 0.011809329502284527, 0.07451487332582474, -0.11462293565273285, 0.025953879579901695, 0.025971345603466034, -0.034116972237825394, 0.05017266422510147, -0.005425689741969109, -0.10680123418569565, -0.06083320081233978, -0.0026493652258068323, 0.126332089304924, 0.020870978012681007, -0.14065134525299072, -0.09525658190250397, -0.07104906439781189, -0.04201582446694374, 0.09237724542617798, 0.07404985278844833, 0.02216961234807968, -0.10243597626686096, -0.07447561621665955, -0.11484821140766144, 0.04236799478530884, 0.037392571568489075, -0.030026651918888092, -0.08702684938907623, 0.21153797209262848, 0.0750749260187149, 0.0037117628380656242, -0.04687248915433884, -0.10558391362428665, -0.04496445506811142, 0.06644461303949356, -0.06983722746372223, -0.038023851811885834, -0.06622104346752167, 0.0075687021017074585, -0.012755628675222397, -0.08283597975969315, -0.015395772643387318, 0.09209953248500824, -0.08306628465652466, 0.054015401750802994, -0.04771089181303978, 0.09289207309484482, -0.09196757525205612, 0.02889685146510601, 0.04012483358383179, -0.061541419476270676, 0.0738912895321846, 0.09078674018383026, -0.08461057394742966, 0.11908159404993057, -0.17306987941265106, -0.05476223677396774, 0.041096724569797516, 0.05463968589901924, 0.026191776618361473, -0.08116643875837326, 0.05301688611507416, 0.07516290992498398, 0.059308938682079315, 0.003440074622631073, 0.12873448431491852, -0.03874163329601288, -0.03714532032608986, -0.036027975380420685, -0.023933297023177147, -0.004191644489765167, 0.074488565325737, 0.08423568308353424, 0.10914460569620132, 0.12466277927160263, -0.09433313459157944, 0.11375763267278671, -0.10686548054218292, -0.001529667992144823, -0.05845457315444946, -0.009739106521010399, -0.12162850797176361, -0.08521777391433716, 0.04765700176358223, -0.049054618924856186, 0.10688040405511856, 0.024158403277397156, 0.14799506962299347, -0.02371288277208805, -0.09423170983791351, 0.039292700588703156, -0.019324876368045807, 0.2674083709716797, 0.0627162978053093, 0.03804480656981468, -0.031109515577554703, 0.03164080157876015, 0.029054906219244003, 0.09923791885375977, -0.0034352729562669992, 0.12126538157463074, -0.03158421441912651, 0.07634441554546356, 0.08194189518690109, -0.04534672573208809, -0.09630248695611954, -0.08792590349912643, -0.05108720809221268, 0.030500907450914383, -0.08523115515708923, 0.15469813346862793, 0.17089352011680603, -0.10349931567907333, 0.0821629986166954, 0.05446287989616394, -0.07332419604063034, -0.13973619043827057, -0.08216803520917892, -0.042116679251194, -0.17215265333652496, 0.012298423796892166, -0.08679917454719543, 0.01208161748945713, 0.030552782118320465, 0.04048590362071991, -0.03423215448856354, 0.1673949807882309, 0.016628779470920563, -0.0871821939945221, 0.04816935956478119, -0.09226401895284653, 0.04652933403849602, -0.09757654368877411, 0.04991622269153595, 0.13731276988983154, 0.03536665067076683, 0.06781000643968582, 0.026699764654040337, -0.057723596692085266, -0.0032456049229949713, -0.09422501176595688, -0.05683528259396553, -0.014342171140015125, -0.024843107908964157, 0.05827346444129944, 0.14605046808719635, 0.14331655204296112, -0.08497108519077301, 0.008158297277987003, 0.13978831470012665, -0.0508061945438385, -0.12468282133340836, -0.15197214484214783, 0.1262279748916626, 0.06481213122606277, 0.02474098466336727, -0.01620342582464218, -0.06690648198127747, -0.04612492397427559, 0.2954155206680298, 0.18850228190422058, 0.10249973088502884, 0.022583596408367157, -0.02027391828596592, -0.005995030514895916, -0.014480255544185638, 0.09661580622196198, 0.055140651762485504, 0.26427674293518066, -0.01050237100571394, -0.012805507518351078, -0.09420635551214218, -0.07177077978849411, -0.02776791900396347, 0.08503764867782593, -0.11341476440429688, -0.11666601151227951, 0.027030346915125847, 0.16231383383274078, -0.0463114008307457, -0.10140354186296463, -0.09234718978404999, -0.08566109091043472, -0.09855673462152481, -0.0025837994180619717, 0.037148647010326385, 0.09540966153144836, 0.010999233461916447, -0.03829455003142357, 0.021318508312106133, 0.15937526524066925, 0.0041376687586307526, -0.04158689081668854, -0.09560316056013107, 0.01445873361080885, -0.22323250770568848, 0.07552950084209442, -0.04211817681789398, 0.11364470422267914, 0.04393312707543373, 0.11495672166347504, -0.02230362594127655, 0.14752304553985596, -0.007915575057268143, -0.05166373401880264, 0.03940366953611374, 0.10702314227819443, -0.06345529109239578, 0.10704261809587479, 0.011168054305016994, -0.13608258962631226, 0.07869797199964523, -0.12495262920856476, 0.03091701865196228, -0.06596188992261887, 0.03752380982041359, -0.044519633054733276, 0.08318977802991867, 0.08675172179937363, -0.07788937538862228, -0.036453016102313995, -0.05506451800465584, 0.04822428151965141, 0.031479086726903915, -0.07257601618766785, -0.03133183345198631, -0.2461712658405304, -0.03760267049074173, -0.07507020980119705, -0.010590375401079655, -0.20402060449123383, 0.014498715288937092, -0.00023233696992974728, -0.07958546280860901, -0.015926053747534752, 0.03526479750871658, 0.08446552604436874, 0.009608892723917961, -0.008267074823379517, -0.012388868257403374, 0.03539043664932251, 0.1265275925397873, -0.17067302763462067, -0.13654328882694244 ]
null
null
transformers
# Wav2Vec2-Large-XLSR-53-Interlingua Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Interlingua using the [Common Voice](https://huggingface.co/datasets/common_voice). When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ```python import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor test_dataset = load_dataset("common_voice", "ia", split="test[:2%]") processor = Wav2Vec2Processor.from_pretrained("gchhablani/wav2vec2-large-xlsr-ia") model = Wav2Vec2ForCTC.from_pretrained("gchhablani/wav2vec2-large-xlsr-ia") resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset["sentence"][:2]) ``` ## Evaluation The model can be evaluated as follows on the Odia test data of Common Voice. ```python import torch import torchaudio from datasets import load_dataset, load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import re test_dataset = load_dataset("common_voice", "ia", split="test") wer = load_metric("wer") processor = Wav2Vec2Processor.from_pretrained("gchhablani/wav2vec2-large-xlsr-ia") model = Wav2Vec2ForCTC.from_pretrained("gchhablani/wav2vec2-large-xlsr-ia") model.to("cuda") chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\“\%\‘\”\�\']' resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) # Preprocessing the datasets. # We need to read the aduio files as arrays def evaluate(batch): inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits pred_ids = torch.argmax(logits, dim=-1) batch["pred_strings"] = processor.batch_decode(pred_ids) return batch result = test_dataset.map(evaluate, batched=True, batch_size=8) print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"]))) ``` **Test Result**: 25.09 % ## Training The Common Voice `train` and `validation` datasets were used for training for 4000 steps due to GPU timeout. The results are based on the 4000 steps checkpoint. There is a good chance that full training will lead to better results. The colab notebook used can be found [here](https://colab.research.google.com/drive/1nbqvVwS8DTNrCzzh3vgrN55qxgoqbita?usp=sharing) and the evaluation can be found [here](https://colab.research.google.com/drive/18pCWBwNNUMUYV1FiqT_0EsTbCfwwe7ms?usp=sharing).
{"language": "ia", "license": "apache-2.0", "tags": ["audio", "automatic-speech-recognition", "speech", "xlsr-fine-tuning-week"], "datasets": ["common_voice"], "metrics": ["wer"], "model-index": [{"name": "XLSR Wav2Vec2 Large 53 Interlingua by Gunjan Chhablani", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Speech Recognition"}, "dataset": {"name": "Common Voice ia", "type": "common_voice", "args": "ia"}, "metrics": [{"type": "wer", "value": 25.09, "name": "Test WER"}]}]}]}
automatic-speech-recognition
gchhablani/wav2vec2-large-xlsr-ia
[ "transformers", "pytorch", "jax", "wav2vec2", "automatic-speech-recognition", "audio", "speech", "xlsr-fine-tuning-week", "ia", "dataset:common_voice", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "ia" ]
TAGS #transformers #pytorch #jax #wav2vec2 #automatic-speech-recognition #audio #speech #xlsr-fine-tuning-week #ia #dataset-common_voice #license-apache-2.0 #model-index #endpoints_compatible #region-us
# Wav2Vec2-Large-XLSR-53-Interlingua Fine-tuned facebook/wav2vec2-large-xlsr-53 on Interlingua using the Common Voice. When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ## Evaluation The model can be evaluated as follows on the Odia test data of Common Voice. Test Result: 25.09 % ## Training The Common Voice 'train' and 'validation' datasets were used for training for 4000 steps due to GPU timeout. The results are based on the 4000 steps checkpoint. There is a good chance that full training will lead to better results. The colab notebook used can be found here and the evaluation can be found here.
[ "# Wav2Vec2-Large-XLSR-53-Interlingua\nFine-tuned facebook/wav2vec2-large-xlsr-53 on Interlingua using the Common Voice.\nWhen using this model, make sure that your speech input is sampled at 16kHz.", "## Usage\nThe model can be used directly (without a language model) as follows:", "## Evaluation\nThe model can be evaluated as follows on the Odia test data of Common Voice.\n\nTest Result: 25.09 %", "## Training\nThe Common Voice 'train' and 'validation' datasets were used for training for 4000 steps due to GPU timeout. The results are based on the 4000 steps checkpoint. There is a good chance that full training will lead to better results.\n\nThe colab notebook used can be found here and the evaluation can be found here." ]
[ "TAGS\n#transformers #pytorch #jax #wav2vec2 #automatic-speech-recognition #audio #speech #xlsr-fine-tuning-week #ia #dataset-common_voice #license-apache-2.0 #model-index #endpoints_compatible #region-us \n", "# Wav2Vec2-Large-XLSR-53-Interlingua\nFine-tuned facebook/wav2vec2-large-xlsr-53 on Interlingua using the Common Voice.\nWhen using this model, make sure that your speech input is sampled at 16kHz.", "## Usage\nThe model can be used directly (without a language model) as follows:", "## Evaluation\nThe model can be evaluated as follows on the Odia test data of Common Voice.\n\nTest Result: 25.09 %", "## Training\nThe Common Voice 'train' and 'validation' datasets were used for training for 4000 steps due to GPU timeout. The results are based on the 4000 steps checkpoint. There is a good chance that full training will lead to better results.\n\nThe colab notebook used can be found here and the evaluation can be found here." ]
[ 80, 65, 20, 28, 73 ]
[ "passage: TAGS\n#transformers #pytorch #jax #wav2vec2 #automatic-speech-recognition #audio #speech #xlsr-fine-tuning-week #ia #dataset-common_voice #license-apache-2.0 #model-index #endpoints_compatible #region-us \n# Wav2Vec2-Large-XLSR-53-Interlingua\nFine-tuned facebook/wav2vec2-large-xlsr-53 on Interlingua using the Common Voice.\nWhen using this model, make sure that your speech input is sampled at 16kHz.## Usage\nThe model can be used directly (without a language model) as follows:## Evaluation\nThe model can be evaluated as follows on the Odia test data of Common Voice.\n\nTest Result: 25.09 %## Training\nThe Common Voice 'train' and 'validation' datasets were used for training for 4000 steps due to GPU timeout. The results are based on the 4000 steps checkpoint. There is a good chance that full training will lead to better results.\n\nThe colab notebook used can be found here and the evaluation can be found here." ]
[ -0.1465993970632553, 0.038170069456100464, -0.0009598427568562329, 0.020533487200737, 0.06254571676254272, 0.028397688642144203, 0.1521599441766739, 0.12486373633146286, -0.024282408878207207, 0.013463743962347507, 0.06801319122314453, -0.003434802172705531, 0.1169358566403389, 0.1426832377910614, 0.04739341512322426, -0.1882447898387909, 0.022990062832832336, -0.002286724979057908, 0.06854264438152313, 0.12549671530723572, 0.06403426080942154, -0.086252361536026, 0.034410785883665085, 0.11238544434309006, -0.16777414083480835, -0.045250993221998215, 0.06518805772066116, -0.11538976430892944, 0.15083573758602142, 0.0782509446144104, -0.008494418114423752, 0.02733132801949978, 0.10619243234395981, -0.10844603180885315, 0.019375044852495193, 0.09722276777029037, 0.016188982874155045, 0.05644947662949562, 0.0696851834654808, 0.08566876500844955, 0.06962160021066666, 0.07584137469530106, -0.009633623994886875, 0.0780419185757637, -0.08675697445869446, -0.22404538094997406, -0.07004404067993164, -0.04747492074966431, 0.05483114346861839, 0.10772991180419922, -0.060172755271196365, 0.1473272442817688, -0.07727478444576263, 0.061268873512744904, 0.11532604694366455, -0.1704605519771576, -0.016463397070765495, 0.09877651184797287, 0.04866969957947731, 0.05009492486715317, -0.031287241727113724, 0.04430689290165901, 0.03773551806807518, -0.014999116770923138, 0.06904514878988266, -0.002562643028795719, -0.03395259007811546, 0.013216553255915642, -0.129037544131279, -0.06647734344005585, 0.10179547965526581, -0.010150210000574589, -0.08993463963270187, -0.22027118504047394, -0.06539969146251678, -0.06245654448866844, 0.01988230273127556, -0.05539340153336525, 0.011132050305604935, 0.0186462365090847, 0.025685841217637062, -0.01312010083347559, -0.08503904193639755, -0.16116051375865936, -0.01806841418147087, 0.16329826414585114, 0.042954619973897934, 0.06480679661035538, -0.055020540952682495, 0.14798276126384735, -0.04753513261675835, -0.06689377129077911, -0.05810178816318512, -0.013639654964208603, -0.126572385430336, 0.05927039682865143, -0.05737188830971718, 0.0070859286934137344, -0.07498589903116226, 0.033932462334632874, 0.05670972168445587, -0.0013535204343497753, 0.0740325078368187, 0.003173834178596735, 0.02550560049712658, 0.1435682326555252, -0.10506758093833923, -0.10099423676729202, -0.0012090251548215747, 0.006354365032166243, -0.04441765695810318, -0.046718038618564606, -0.02407325617969036, -0.0972638875246048, 0.0029532192274928093, -0.0010898106265813112, -0.02870951034128666, 0.01757025346159935, -0.039820555597543716, -0.07247024029493332, 0.08983917534351349, -0.08114305883646011, -0.006302099674940109, 0.05902963876724243, -0.07383213192224503, 0.08541132509708405, 0.08043617010116577, -0.029424164444208145, -0.10746317356824875, -0.08980938047170639, -0.006761925294995308, -0.014634979888796806, -0.09830345958471298, -0.08985070884227753, -0.011037972755730152, -0.06735048443078995, -0.04262326657772064, -0.07483883202075958, -0.14660847187042236, -0.07063210755586624, 0.01712324097752571, 0.021448124200105667, -0.0029908183496445417, -0.04826999083161354, 0.05761076509952545, 0.0151829794049263, -0.0590532049536705, 0.11657054722309113, -0.032643064856529236, 0.07853671908378601, 0.03080780990421772, 0.08636429160833359, 0.08830209076404572, 0.07982737571001053, -0.020562028512358665, -0.06626533716917038, 0.049142640084028244, 0.08340472728013992, 0.02190195769071579, -0.11547381430864334, -0.04297858104109764, -0.07088015228509903, -0.03148368000984192, 0.07040883600711823, 0.0476800911128521, 0.11022482812404633, -0.20983745157718658, -0.06922803074121475, 0.20461323857307434, -0.07758861780166626, -0.001546074403449893, 0.16466782987117767, -0.024432746693491936, 0.09347938001155853, 0.09694138914346695, 0.11131896078586578, 0.10571759939193726, -0.22526763379573822, 0.021039703860878944, -0.018436508253216743, -0.0760839655995369, -0.0804564356803894, 0.07992953807115555, 0.018331125378608704, 0.02598864585161209, 0.07796098291873932, -0.03708934038877487, 0.05327572673559189, -0.02780805714428425, -0.043948158621788025, -0.03420978784561157, -0.039773955941200256, 0.0074552432633936405, 0.040833402425050735, -0.007101899478584528, 0.0047473241575062275, -0.10461397469043732, -0.023651011288166046, 0.15150795876979828, -0.07488589733839035, 0.038717787712812424, -0.10560336709022522, 0.05938578024506569, -0.04204597696661949, 0.01980513148009777, -0.15152698755264282, 0.14829707145690918, 0.027247024700045586, 0.020446322858333588, 0.03488968312740326, 0.09691517800092697, 0.020531807094812393, 0.0022449407260864973, -0.013201412744820118, 0.00960581749677658, 0.018810590729117393, -0.07463447004556656, -0.0441102534532547, -0.05419038608670235, 0.006662401370704174, -0.032836612313985825, 0.06474102288484573, -0.14508658647537231, 0.011385583318769932, 0.06548517197370529, -0.018908148631453514, 0.01929483748972416, -0.06956452131271362, 0.0405709408223629, 0.01890362985432148, -0.038023728877305984, -0.013587094843387604, 0.003978028427809477, -0.001664142357185483, -0.016850421205163002, 0.1313387006521225, -0.21160799264907837, -0.024606024846434593, 0.1242728903889656, 0.07267923653125763, -0.045078814029693604, 0.012867117300629616, -0.03131144121289253, -0.027712885290384293, -0.07554610073566437, 0.01314141508191824, 0.28763288259506226, -0.0008104548323899508, 0.11233879625797272, -0.07616590708494186, -0.005842340644448996, 0.051264334470033646, 0.018198709934949875, 0.024744179099798203, 0.016948126256465912, 0.00909329205751419, 0.10755358636379242, 0.007216245401650667, -0.09864676743745804, 0.0259220190346241, 0.20677883923053741, 0.027510259300470352, -0.12578101456165314, -0.03911107778549194, -0.06303796172142029, -0.0052979676984250546, 0.15061382949352264, -0.09750672429800034, -0.05112401768565178, 0.06914526224136353, 0.0684070959687233, 0.018229715526103973, -0.2209014892578125, 0.05529036000370979, 0.04327069967985153, -0.09359953552484512, -0.11691253632307053, 0.0379701666533947, -0.05566594749689102, 0.06027575954794884, -0.046488530933856964, 0.0056684184819459915, -0.016901252791285515, -0.05943680554628372, -0.14523477852344513, 0.14879898726940155, -0.06222939491271973, -0.2584003508090973, -0.15743054449558258, -0.002042805776000023, 0.0018171181436628103, 0.037808820605278015, 0.03934934362769127, -0.051180899143218994, -0.02218501828610897, -0.019712653011083603, 0.08198028802871704, 0.026491915807127953, 0.009584590792655945, -0.04991323500871658, 0.0150906415656209, 0.007353445515036583, -0.15106286108493805, 0.03743215277791023, -0.06511779874563217, -0.020647410303354263, 0.053127437829971313, 0.02300810068845749, 0.022624028846621513, 0.1400529146194458, 0.038958609104156494, 0.0146713238209486, -0.038736194372177124, 0.1353093385696411, -0.16982980072498322, 0.000575847050640732, 0.20938751101493835, 0.024119369685649872, -0.016737526282668114, 0.014547339640557766, 0.0010009388206526637, -0.10242477059364319, 0.008432096801698208, -0.03422816842794418, -0.09215866029262543, -0.18761324882507324, -0.057833995670080185, -0.07845472544431686, -0.013713791966438293, 0.022285951301455498, -0.013968224637210369, 0.02471034601330757, 0.03741857409477234, -0.013873033225536346, -0.0048470040783286095, 0.05008842051029205, 0.014776776544749737, 0.03517533838748932, -0.03791153430938721, 0.09052367508411407, -0.0339275486767292, 0.0264913197606802, 0.11065217852592468, 0.06742249429225922, 0.1980573982000351, -0.03243039548397064, 0.1054995059967041, 0.05043644830584526, 0.12171085178852081, 0.09675930440425873, 0.06317289918661118, -0.014502775855362415, -0.01729626953601837, -0.02766544185578823, -0.035355355590581894, -0.067035011947155, 0.0550207681953907, 0.0972132533788681, -0.021228034049272537, -0.035644397139549255, -0.03218585625290871, -0.006898310501128435, 0.2381781041622162, 0.07220491021871567, -0.2630225121974945, -0.07908693701028824, -0.04759794846177101, -0.07196003198623657, -0.07536907494068146, 0.05328979715704918, 0.09211397171020508, -0.11824478954076767, -0.004330760799348354, -0.03622680529952049, 0.0675143301486969, -0.06960020214319229, -0.016868535429239273, -0.0076634762808680534, 0.042335644364356995, -0.03577123209834099, 0.046214669942855835, -0.20175933837890625, 0.15981683135032654, 0.004396490287035704, 0.11314716190099716, -0.09690944850444794, 0.02467242442071438, 0.04021639749407768, -0.009458442218601704, 0.12390347570180893, -0.022431185469031334, -0.045425791293382645, -0.11046453565359116, -0.0771201103925705, 0.003699029330164194, 0.014436187222599983, 0.04815097153186798, 0.04170271381735802, -0.0005734523292630911, 0.040405500680208206, 0.04068250581622124, -0.08008085191249847, -0.032707005739212036, -0.06464871764183044, 0.06310641020536423, 0.08191294223070145, 0.0682678297162056, -0.011606250889599323, -0.09605731815099716, -0.1445334553718567, 0.07767128199338913, -0.14064030349254608, -0.02763136476278305, -0.12042451649904251, -0.03620971366763115, 0.0929311215877533, -0.027197478339076042, 0.040371157228946686, 0.09319553524255753, 0.15077243745326996, -0.025746164843440056, -0.06565065681934357, 0.051212627440690994, -0.08397676050662994, -0.12830901145935059, -0.039614349603652954, 0.08906262367963791, 0.08892476558685303, 0.06000320240855217, -0.009546203538775444, 0.002283375710248947, -0.09339026361703873, -0.03883780539035797, 0.06328348815441132, 0.13896670937538147, -0.06137824058532715, -0.029388727620244026, 0.07134488224983215, -0.10095850378274918, -0.04006711766123772, -0.06201382726430893, 0.017930500209331512, 0.16645006835460663, -0.07024779915809631, 0.18890613317489624, 0.15756331384181976, -0.04794054850935936, -0.2229507863521576, 0.04908250644803047, 0.07340184599161148, 0.1606592983007431, -0.03438800573348999, -0.1881982982158661, -0.002169145504012704, 0.012857228517532349, -0.04444215074181557, 0.057417985051870346, -0.20992819964885712, -0.1441822052001953, 0.1062396690249443, 0.027287917211651802, 0.1444936841726303, -0.002785230055451393, 0.022899439558386803, 0.04051043093204498, 0.015626201406121254, 0.02625732310116291, -0.007429797202348709, 0.13359200954437256, -0.010374507866799831, 0.09657255560159683, 0.02671641856431961, -0.04182352125644684, 0.07999877631664276, 0.017196152359247208, 0.052471861243247986, 0.0006909422809258103, 0.07092325389385223, 0.058174505829811096, -0.0228774081915617, 0.09438639879226685, 0.05140582099556923, 0.04169513285160065, -0.10430698841810226, -0.1224510669708252, -0.049999579787254333, 0.0083541888743639, 0.011223305948078632, -0.06830839067697525, -0.01573360711336136, 0.027783330529928207, 0.0025699043180793524, -0.056697357445955276, -0.1051216870546341, -0.04436448961496353, -0.11709088087081909, 0.10223336517810822, 0.10667087137699127, -0.05350962281227112, -0.0911809653043747, -0.017638584598898888, -0.0030245971865952015, 0.11876900494098663, -0.09670881927013397, -0.008229830302298069, 0.0588325671851635, 0.061630234122276306, 0.08877187967300415, 0.012942436151206493, -0.09992482513189316, 0.049058761447668076, 0.021110758185386658, -0.08213988691568375, -0.09384183585643768, -0.01813502423465252, -0.13473713397979736, -0.030801920220255852, 0.005979598965495825, 0.08984705805778503, -0.05539151281118393, -0.009283131919801235, 0.010724467225372791, 0.038850463926792145, -0.03261513635516167, 0.2034713476896286, -0.014045588672161102, 0.034283991903066635, -0.11976467072963715, 0.07865136861801147, -0.00006250190926948562, -0.10679469257593155, 0.03186110034584999, -0.0709109678864479, -0.13775068521499634, -0.009956897236406803, -0.07708462327718735, -0.05447787046432495, 0.02131156250834465, -0.1016484722495079, -0.09208136051893234, -0.09979557245969772, 0.025506800040602684, -0.04827947914600372, 0.06538046151399612, 0.03752727806568146, -0.08888401836156845, -0.010571948252618313, -0.1132107600569725, 0.07178856432437897, 0.04804534465074539, -0.03528890386223793, -0.06417866051197052, 0.18924878537654877, 0.06786448508501053, 0.015451518818736076, -0.061810240149497986, -0.08634784817695618, -0.019349081441760063, 0.07991356402635574, -0.024907803162932396, -0.015406531281769276, -0.035677749663591385, 0.009566823951900005, -0.009023739024996758, -0.02340780943632126, -0.0081245182082057, 0.06954535096883774, -0.05302686616778374, 0.049069732427597046, -0.009900268167257309, 0.04533106088638306, -0.030874213203787804, -0.001031456864438951, 0.02895846776664257, -0.07695382833480835, 0.08692209422588348, 0.10716499388217926, -0.061243895441293716, 0.02878979966044426, -0.07840050011873245, -0.0020105773583054543, 0.041798751801252365, 0.08220753818750381, -0.012346982024610043, -0.15233343839645386, 0.08525840193033218, 0.028299542143940926, -0.021365685388445854, -0.020325616002082825, -0.005003644619137049, -0.05897970497608185, 0.014908283948898315, -0.05364586412906647, 0.04387510195374489, -0.048122309148311615, 0.06506207585334778, 0.01013612188398838, 0.12316283583641052, 0.05770493671298027, -0.03033355064690113, 0.03122260607779026, -0.16279108822345734, -0.005397975444793701, -0.014642000198364258, -0.048353809863328934, -0.07963429391384125, -0.0713476613163948, 0.10206545889377594, 0.023063896223902702, 0.19786033034324646, 0.03988251835107803, -0.0064460234716534615, -0.0211515873670578, -0.09790872037410736, 0.008957474492490292, -0.02550053410232067, 0.1765841692686081, 0.03605324774980545, 0.04714960232377052, 0.05418357998132706, 0.07578970491886139, 0.0399334579706192, 0.09887835383415222, 0.05053063854575157, 0.12554806470870972, 0.07151390612125397, 0.08955437690019608, -0.02213822677731514, -0.1091386005282402, -0.1266760528087616, 0.012197853066027164, -0.22025106847286224, 0.04506658762693405, -0.052715566009283066, 0.113156758248806, 0.08404005318880081, -0.10875939577817917, 0.09955088794231415, 0.015622996725142002, -0.04270019009709358, -0.11764192581176758, -0.10162188857793808, -0.02234380505979061, -0.13131289184093475, 0.03707406297326088, -0.07294982671737671, 0.05511435493826866, 0.043208520859479904, 0.06289441883563995, 0.0012518537696450949, 0.12759354710578918, -0.05905524268746376, -0.06680011749267578, 0.07671485841274261, -0.02824215404689312, -0.04525267705321312, -0.06769397854804993, -0.019635634496808052, 0.1029224693775177, -0.07148394733667374, 0.11763555556535721, -0.051865775138139725, -0.02756989747285843, 0.04625400900840759, -0.0006893552490510046, -0.012060866691172123, -0.04282859340310097, -0.0325867123901844, 0.0562467947602272, 0.11655430495738983, 0.08255840092897415, -0.022608695551753044, -0.006285990588366985, 0.09007302671670914, -0.03496208041906357, -0.0398889034986496, -0.16864578425884247, 0.12701177597045898, 0.019632184877991676, -0.022109152749180794, 0.013230212964117527, -0.054307326674461365, -0.014511761255562305, 0.2826814651489258, 0.15109753608703613, 0.020301923155784607, -0.039602577686309814, 0.018641402944922447, -0.01641654223203659, -0.02938619628548622, 0.1404549926519394, 0.014155278913676739, 0.26857107877731323, 0.015107404440641403, -0.02159724198281765, -0.008703848347067833, -0.06659991294145584, 0.044124457985162735, 0.12314880639314651, -0.05303868278861046, -0.027229655534029007, -0.0478065051138401, 0.02228146232664585, 0.030463358387351036, -0.17942820489406586, 0.011394674889743328, -0.052794743329286575, -0.07177413254976273, 0.004002378322184086, -0.0777895376086235, 0.029274461790919304, 0.050340116024017334, -0.03539491444826126, 0.04877966269850731, 0.19837084412574768, -0.015581646002829075, -0.08912340551614761, -0.033498745411634445, 0.05153905972838402, -0.05522136762738228, 0.1369716078042984, -0.04871576279401779, 0.1226927638053894, 0.02709958143532276, 0.04682685434818268, -0.09298312664031982, 0.08183735609054565, -0.04746721684932709, -0.1280517429113388, -0.007664740085601807, 0.12912236154079437, -0.015104712918400764, 0.039573658257722855, 0.0028231581673026085, -0.0066202194429934025, 0.04578035697340965, -0.19311076402664185, -0.0033312803134322166, -0.09174492210149765, 0.0393512062728405, 0.01638970896601677, 0.12483282387256622, 0.10007577389478683, -0.03549310192465782, -0.03477328270673752, -0.055628396570682526, 0.04260578751564026, 0.013203074224293232, 0.06829507648944855, 0.004689544904977083, -0.1797996461391449, 0.014169218949973583, -0.04793664067983627, -0.05051983892917633, -0.21154560148715973, -0.09716902673244476, 0.021566253155469894, -0.14890801906585693, 0.029943199828267097, 0.0400543250143528, 0.048300597816705704, 0.04651982709765434, -0.012981594540178776, -0.01638130657374859, 0.014450054615736008, 0.10156259685754776, -0.13587243854999542, -0.12690435349941254 ]
null
null
transformers
# Wav2Vec2-Large-XLSR-53-Italian Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Italian using the [Common Voice](https://huggingface.co/datasets/common_voice) dataset. When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ```python import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor test_dataset = load_dataset("common_voice", "it", split="test[:2%]") processor = Wav2Vec2Processor.from_pretrained('gchhablani/wav2vec2-large-xlsr-it') model = Wav2Vec2ForCTC.from_pretrained('gchhablani/wav2vec2-large-xlsr-it') resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset["sentence"][:2]) ``` ## Evaluation The model can be evaluated as follows on the Portuguese test data of Common Voice. ```python import torch import torchaudio from datasets import load_dataset, load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import re import unicodedata import jiwer def chunked_wer(targets, predictions, chunk_size=None): if chunk_size is None: return jiwer.wer(targets, predictions) start = 0 end = chunk_size H, S, D, I = 0, 0, 0, 0 while start < len(targets): chunk_metrics = jiwer.compute_measures(targets[start:end], predictions[start:end]) H = H + chunk_metrics["hits"] S = S + chunk_metrics["substitutions"] D = D + chunk_metrics["deletions"] I = I + chunk_metrics["insertions"] start += chunk_size end += chunk_size return float(S + D + I) / float(H + S + D) allowed_characters = [ " ", "'", 'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', 'y', 'z', 'à', 'á', 'è', 'é', 'ì', 'í', 'ò', 'ó', 'ù', 'ú', ] def remove_accents(input_str): if input_str in allowed_characters: return input_str if input_str == 'ø': return 'o' elif input_str=='ß' or input_str =='ß': return 'b' elif input_str=='ё': return 'e' elif input_str=='đ': return 'd' nfkd_form = unicodedata.normalize('NFKD', input_str) only_ascii = nfkd_form.encode('ASCII', 'ignore').decode() if only_ascii is None or only_ascii=='': return input_str else: return only_ascii def fix_accents(sentence): new_sentence='' for char in sentence: new_sentence+=remove_accents(char) return new_sentence test_dataset = load_dataset("common_voice", "it", split="test") wer = load_metric("wer") processor = Wav2Vec2Processor.from_pretrained('gchhablani/wav2vec2-large-xlsr-it') model = Wav2Vec2ForCTC.from_pretrained('gchhablani/wav2vec2-large-xlsr-it') model.to("cuda") resampler = torchaudio.transforms.Resample(48_000, 16_000) chars_to_remove= [",", "?", ".", "!", "-", ";", ":", '""', "%", '"', "�",'ʿ','“','”','(','=','`','_','+','«','<','>','~','…','«','»','–','\[','\]','°','̇','´','ʾ','„','̇','̇','̇','¡'] # All extra characters chars_to_remove_regex = f'[{"".join(chars_to_remove)}]' # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): batch["sentence"] = re.sub(chars_to_remove_regex, '', batch["sentence"]).lower().replace('‘',"'").replace('ʻ',"'").replace('ʼ',"'").replace('’',"'").replace('ʹ',"''").replace('̇','') batch["sentence"] = fix_accents(batch["sentence"]) speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) # Preprocessing the datasets. # We need to read the aduio files as arrays def evaluate(batch): inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits pred_ids = torch.argmax(logits, dim=-1) batch["pred_strings"] = processor.batch_decode(pred_ids) return batch result = test_dataset.map(evaluate, batched=True, batch_size=8) print("WER: {:2f}".format(100 * chunked_wer(predictions=result["pred_strings"], targets=result["sentence"],chunk_size=5000))) ``` **Test Result**: 11.49 % ## Training The Common Voice `train` and `validation` datasets were used for training. The code can be found [here](https://github.com/gchhablani/wav2vec2-week/blob/main/fine-tune-xlsr-wav2vec2-on-italian-asr-with-transformers_final.ipynb).
{"language": "it", "license": "apache-2.0", "tags": ["audio", "automatic-speech-recognition", "speech", "xlsr-fine-tuning-week"], "datasets": ["common_voice"], "metrics": ["wer"], "model-index": [{"name": "Wav2Vec2 Large 53 Italian by Gunjan Chhablani", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Speech Recognition"}, "dataset": {"name": "Common Voice it", "type": "common_voice", "args": "it"}, "metrics": [{"type": "wer", "value": 11.49, "name": "Test WER"}]}]}]}
automatic-speech-recognition
gchhablani/wav2vec2-large-xlsr-it
[ "transformers", "pytorch", "jax", "wav2vec2", "automatic-speech-recognition", "audio", "speech", "xlsr-fine-tuning-week", "it", "dataset:common_voice", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "it" ]
TAGS #transformers #pytorch #jax #wav2vec2 #automatic-speech-recognition #audio #speech #xlsr-fine-tuning-week #it #dataset-common_voice #license-apache-2.0 #model-index #endpoints_compatible #region-us
# Wav2Vec2-Large-XLSR-53-Italian Fine-tuned facebook/wav2vec2-large-xlsr-53 on Italian using the Common Voice dataset. When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ## Evaluation The model can be evaluated as follows on the Portuguese test data of Common Voice. Test Result: 11.49 % ## Training The Common Voice 'train' and 'validation' datasets were used for training. The code can be found here.
[ "# Wav2Vec2-Large-XLSR-53-Italian\nFine-tuned facebook/wav2vec2-large-xlsr-53 on Italian using the Common Voice dataset. \nWhen using this model, make sure that your speech input is sampled at 16kHz.", "## Usage\n\nThe model can be used directly (without a language model) as follows:", "## Evaluation\n\nThe model can be evaluated as follows on the Portuguese test data of Common Voice.\n\n\n\n\nTest Result: 11.49 %", "## Training\n\nThe Common Voice 'train' and 'validation' datasets were used for training. The code can be found here." ]
[ "TAGS\n#transformers #pytorch #jax #wav2vec2 #automatic-speech-recognition #audio #speech #xlsr-fine-tuning-week #it #dataset-common_voice #license-apache-2.0 #model-index #endpoints_compatible #region-us \n", "# Wav2Vec2-Large-XLSR-53-Italian\nFine-tuned facebook/wav2vec2-large-xlsr-53 on Italian using the Common Voice dataset. \nWhen using this model, make sure that your speech input is sampled at 16kHz.", "## Usage\n\nThe model can be used directly (without a language model) as follows:", "## Evaluation\n\nThe model can be evaluated as follows on the Portuguese test data of Common Voice.\n\n\n\n\nTest Result: 11.49 %", "## Training\n\nThe Common Voice 'train' and 'validation' datasets were used for training. The code can be found here." ]
[ 80, 64, 20, 29, 30 ]
[ "passage: TAGS\n#transformers #pytorch #jax #wav2vec2 #automatic-speech-recognition #audio #speech #xlsr-fine-tuning-week #it #dataset-common_voice #license-apache-2.0 #model-index #endpoints_compatible #region-us \n# Wav2Vec2-Large-XLSR-53-Italian\nFine-tuned facebook/wav2vec2-large-xlsr-53 on Italian using the Common Voice dataset. \nWhen using this model, make sure that your speech input is sampled at 16kHz.## Usage\n\nThe model can be used directly (without a language model) as follows:## Evaluation\n\nThe model can be evaluated as follows on the Portuguese test data of Common Voice.\n\n\n\n\nTest Result: 11.49 %## Training\n\nThe Common Voice 'train' and 'validation' datasets were used for training. The code can be found here." ]
[ -0.1908435970544815, 0.10301430523395538, -0.0014249648666009307, 0.010374925099313259, 0.11414660513401031, -0.049995213747024536, 0.16511385142803192, 0.1118219867348671, 0.00015680478827562183, -0.00042677888995967805, -0.005378189962357283, 0.03690040856599808, 0.0665537640452385, 0.11929279565811157, 0.007908906787633896, -0.17856022715568542, 0.0017505863215774298, 0.008647228591144085, 0.043857380747795105, 0.11394984275102615, 0.09846655279397964, -0.07776272296905518, 0.0044374833814799786, 0.08031097799539566, -0.15497498214244843, 0.07718037068843842, 0.02383151836693287, -0.13030409812927246, 0.13382548093795776, 0.06583137065172195, 0.09539389610290527, 0.045374058187007904, 0.08265265077352524, -0.14016006886959076, 0.0248203594237566, 0.05203220620751381, 0.011054590344429016, 0.01642111875116825, 0.08918769657611847, -0.027531668543815613, 0.06465484946966171, 0.12359057366847992, -0.05460919067263603, 0.08647200465202332, -0.06302157044410706, -0.21301062405109406, -0.00039124605245888233, -0.03509313613176346, 0.07544932514429092, 0.1628762185573578, -0.04701690003275871, 0.12247931212186813, -0.13816016912460327, 0.08017787337303162, 0.105999656021595, -0.1696503907442093, 0.0026129214093089104, 0.0409541018307209, 0.035518769174814224, 0.09677532315254211, -0.023480206727981567, 0.018245842307806015, 0.033565692603588104, -0.0006356615340337157, -0.031817562878131866, -0.03626062721014023, -0.2009977251291275, -0.023938648402690887, -0.13179074227809906, -0.05232158303260803, 0.1878279596567154, -0.025799229741096497, -0.0736430287361145, -0.11872435361146927, -0.01151776872575283, -0.0038847250398248434, -0.0004545349220279604, -0.04360869154334068, -0.017486605793237686, 0.04905747249722481, 0.012002600356936455, -0.01660553365945816, -0.09306848049163818, -0.1477890908718109, 0.02295701391994953, 0.11072982102632523, 0.016865340992808342, 0.011707006022334099, -0.11468682438135147, 0.06423058360815048, -0.0698886513710022, -0.06160347908735275, 0.0007632059277966619, 0.029896289110183716, -0.030515601858496666, 0.0314340703189373, -0.08355750143527985, -0.15620550513267517, 0.059515535831451416, -0.04761617258191109, 0.06088673695921898, -0.00870694313198328, -0.04470657557249069, 0.07579237967729568, 0.011004194617271423, 0.09540194272994995, -0.0779527947306633, -0.04364568740129471, 0.026935160160064697, -0.015598388388752937, -0.037046290934085846, -0.030438020825386047, -0.11401837319135666, -0.07386963069438934, -0.042269133031368256, 0.08596169203519821, -0.006448694504797459, -0.0234017763286829, -0.04885973781347275, -0.07402078062295914, 0.03856673836708069, -0.11381632834672928, -0.013329449109733105, 0.09071165323257446, -0.012776524759829044, 0.09852729737758636, 0.024274656549096107, 0.030185753479599953, -0.12345481663942337, -0.07131354510784149, 0.005974758416414261, 0.038903724402189255, -0.05340682342648506, -0.1145467609167099, 0.008555175736546516, -0.051177896559238434, -0.012065090239048004, -0.10384635627269745, -0.08504512161016464, -0.08160001784563065, -0.027832666411995888, 0.019838780164718628, 0.02460126392543316, -0.11091123521327972, -0.009321304038167, -0.04787609353661537, -0.042263854295015335, 0.020089851692318916, -0.04484661668539047, 0.0756361111998558, 0.03447292745113373, 0.0638418048620224, -0.015842711552977562, 0.0817321389913559, -0.09804020822048187, -0.08710335195064545, 0.013893059454858303, 0.13712383806705475, -0.04863676428794861, -0.06982669234275818, -0.0853085070848465, -0.06291981041431427, -0.055975768715143204, 0.0712229460477829, 0.09654118865728378, 0.14202533662319183, -0.26858851313591003, -0.1157224103808403, 0.2212827503681183, -0.1404951512813568, -0.022961389273405075, 0.1802111119031906, 0.007471880875527859, 0.12094152718782425, 0.10810237377882004, 0.24080154299736023, 0.15927663445472717, -0.16658812761306763, 0.05449632182717323, 0.0013358020223677158, -0.015560263767838478, -0.13332606852054596, 0.08171627670526505, -0.06231401860713959, 0.02182704024016857, 0.04640165716409683, -0.08675944805145264, 0.08177641779184341, -0.026418358087539673, -0.06887352466583252, -0.015293555334210396, -0.08728853613138199, 0.03795558959245682, 0.06731253862380981, 0.02400059998035431, -0.021888772025704384, -0.05418013781309128, 0.0008508806931786239, 0.11339298635721207, -0.1494293063879013, 0.038140177726745605, -0.10462003946304321, 0.11932924389839172, -0.06915044039487839, -0.02923738770186901, -0.14864997565746307, 0.179956316947937, -0.007419298868626356, 0.08141215890645981, 0.03156290948390961, 0.14177252352237701, 0.01916687749326229, 0.030652757734060287, -0.006897446233779192, -0.023047715425491333, -0.018976552411913872, -0.018092358484864235, -0.025949005037546158, -0.07451630383729935, -0.03826447203755379, -0.04949051886796951, 0.08265487849712372, -0.1467445343732834, -0.004589336458593607, 0.04122837260365486, 0.023300964385271072, -0.00026168543263338506, -0.028333451598882675, 0.03958955779671669, 0.10788946598768234, -0.009587527252733707, 0.003090540412813425, 0.06183074414730072, 0.02298109605908394, -0.008313392288982868, 0.09612301737070084, -0.10108595341444016, 0.03773239254951477, 0.11402705311775208, -0.08237019181251526, 0.0017378984484821558, 0.027087200433015823, -0.016324670985341072, 0.01313888281583786, -0.09745602309703827, -0.0058114053681492805, 0.28118228912353516, -0.0105172423645854, 0.12094448506832123, -0.10698173940181732, 0.04397536814212799, 0.039825793355703354, -0.046676795929670334, 0.041465360671281815, 0.06253823637962341, 0.05834322050213814, 0.08008444309234619, 0.039651114493608475, -0.02540714479982853, -0.09246911853551865, 0.24806290864944458, -0.02920222096145153, -0.11586210876703262, 0.04282953590154648, -0.0018545106286183, -0.00044233721564523876, 0.037585049867630005, -0.19815027713775635, -0.035065263509750366, 0.03176147863268852, 0.03599794954061508, 0.07628830522298813, -0.13880924880504608, -0.0023134273942559958, 0.00900487881153822, -0.12769415974617004, -0.17757299542427063, 0.03680875524878502, -0.054627686738967896, 0.04974505305290222, -0.09305360913276672, -0.09254076331853867, -0.006438399199396372, -0.04522153362631798, -0.15515023469924927, 0.12424486130475998, -0.08203684538602829, -0.24094127118587494, -0.1758793443441391, 0.08965583145618439, 0.008243615739047527, 0.04243750870227814, 0.10032682120800018, -0.12826530635356903, 0.010822189971804619, -0.015729594975709915, 0.06735631078481674, 0.017514046281576157, -0.044179175049066544, -0.03783481940627098, 0.04980229213833809, 0.028730781748890877, -0.15511010587215424, 0.020023275166749954, -0.03657550364732742, -0.06892142444849014, -0.025234807282686234, -0.051633477210998535, 0.045590031892061234, 0.20619571208953857, 0.027689605951309204, 0.04885083809494972, -0.0069047678261995316, 0.16281086206436157, -0.10257471352815628, -0.03611774370074272, 0.23301587998867035, 0.009643997997045517, -0.026337580755352974, 0.08038061857223511, 0.038285404443740845, -0.07076374441385269, -0.028430091217160225, -0.02589629590511322, -0.0813295766711235, -0.2273482382297516, -0.13320668041706085, -0.06799294054508209, -0.0489695705473423, -0.04317527264356613, -0.0008766725077293813, 0.04705138877034187, 0.02465731091797352, 0.0008391994633711874, -0.10201579332351685, 0.03998372331261635, -0.009978705085814, 0.06462947279214859, -0.008191827684640884, 0.08637421578168869, -0.05612659826874733, -0.053225044161081314, 0.0496489480137825, 0.04879627376794815, 0.1300245076417923, 0.025581656023859978, 0.1314275860786438, 0.07138066738843918, 0.1186818853020668, 0.11289902776479721, 0.09400304406881332, -0.018634270876646042, -0.017105676233768463, 0.010171783156692982, -0.0726238265633583, -0.05758852884173393, 0.0157257579267025, 0.12187258154153824, -0.051610738039016724, -0.0814233049750328, -0.06927303969860077, 0.009161426685750484, 0.17156866192817688, 0.08604519814252853, -0.22557835280895233, -0.06688971072435379, -0.04269935190677643, -0.02057749032974243, -0.005060944240540266, 0.06061083823442459, 0.1802225261926651, -0.1154528260231018, -0.026322726160287857, 0.018845975399017334, 0.09581824392080307, -0.0472237803041935, 0.019808819517493248, -0.0887964740395546, 0.02131068892776966, 0.010161267593502998, 0.10582493245601654, -0.2267649918794632, 0.20169174671173096, 0.010901925154030323, 0.12633134424686432, -0.07427407801151276, 0.0036961394362151623, 0.011131757870316505, 0.07280091196298599, 0.1337985396385193, 0.008448892273008823, 0.047463271766901016, -0.11044242978096008, -0.07644132524728775, 0.04239790886640549, 0.007689462509006262, 0.018275544047355652, 0.016177726909518242, 0.006818078923970461, -0.01297216396778822, -0.00849528145045042, -0.03557267412543297, -0.1245877668261528, -0.058718241751194, 0.01683882065117359, 0.19342465698719025, 0.09937304258346558, -0.01322963647544384, -0.10163071006536484, -0.04203294217586517, 0.11338967084884644, -0.10395336151123047, -0.04427824541926384, -0.08761722594499588, -0.04613000899553299, 0.08316612243652344, -0.05870618671178818, 0.009868292137980461, 0.09547311812639236, 0.1125609427690506, -0.026162775233387947, -0.04189193993806839, 0.07803776115179062, -0.12093108147382736, -0.06170427054166794, -0.03908119350671768, 0.15204468369483948, 0.08913003653287888, 0.04995914176106453, 0.06878842413425446, 0.004364894703030586, -0.008712117560207844, -0.04575677588582039, 0.012667054310441017, 0.1129232719540596, -0.10838665068149567, 0.0288514643907547, -0.013223867863416672, -0.15741890668869019, -0.08446075767278671, -0.03874516114592552, 0.18807661533355713, 0.053839948028326035, -0.0671023353934288, 0.1453159898519516, 0.2037990391254425, -0.09306524693965912, -0.24830952286720276, 0.014337895438075066, 0.10871653258800507, 0.1168552041053772, -0.020187631249427795, -0.1979258507490158, 0.053327638655900955, 0.015438237227499485, -0.02585575543344021, -0.011287608183920383, -0.32313060760498047, -0.10739217698574066, 0.11501283198595047, 0.01906728744506836, 0.16989976167678833, -0.00064013188239187, -0.034196916967630386, -0.014999853447079659, -0.047127965837717056, 0.007057126611471176, -0.1390201896429062, 0.09670882672071457, 0.03833115100860596, 0.03010890632867813, 0.049592405557632446, -0.032328106462955475, 0.0543426014482975, 0.0864545926451683, -0.02993946522474289, 0.012486722320318222, 0.07030848413705826, 0.04961429908871651, 0.041076675057411194, 0.0973382517695427, -0.039169639348983765, 0.029785988852381706, -0.1337297260761261, -0.09018051624298096, -0.08283822238445282, 0.09087652713060379, 0.023442281410098076, -0.03440149873495102, 0.05430246889591217, -0.0355888232588768, -0.00311425793915987, 0.022280657663941383, -0.048826802521944046, -0.1214609369635582, 0.05300789326429367, 0.20498645305633545, 0.16814711689949036, -0.03182118013501167, -0.0846591666340828, -0.006814653053879738, -0.018123921006917953, 0.11331286281347275, -0.047571465373039246, 0.04246990755200386, 0.0639297291636467, 0.0482337549328804, 0.0686783418059349, 0.036721594631671906, -0.0997164249420166, 0.07202491909265518, 0.06739485263824463, -0.04754005745053291, -0.0692540779709816, -0.0662955790758133, -0.06444280594587326, 0.018669530749320984, 0.0707274004817009, 0.12226821482181549, -0.06371691823005676, -0.03836677968502045, -0.04758263751864433, 0.0014224339975044131, -0.12730459868907928, 0.21087642014026642, 0.05328129976987839, 0.048521798104047775, -0.11543693393468857, 0.046299468725919724, -0.000492774008307606, -0.06531485915184021, 0.034242063760757446, 0.004939007572829723, -0.08900240808725357, -0.08376996964216232, 0.016790611669421196, 0.11001061648130417, 0.000543070025742054, -0.1509028673171997, -0.11562596261501312, -0.05928802117705345, -0.0021846911404281855, 0.069347083568573, 0.061910342425107956, 0.003548074048012495, -0.10798683017492294, -0.08477286994457245, -0.1067008450627327, 0.04399479180574417, 0.04436882585287094, -0.02934771403670311, -0.06775552779436111, 0.20097920298576355, 0.06508486717939377, 0.000014241752069210634, -0.047629453241825104, -0.08768938481807709, -0.04453384131193161, 0.08820100128650665, -0.04543595016002655, -0.022225109860301018, -0.03434781730175018, 0.0030638817697763443, -0.028560025617480278, -0.06535939127206802, -0.009796572849154472, 0.09218797832727432, -0.10595055669546127, 0.05979107692837715, -0.02103940024971962, 0.06046229973435402, -0.08666044473648071, 0.045438092201948166, 0.002798603381961584, -0.03947041556239128, 0.07337573170661926, 0.1062275767326355, -0.10554758459329605, 0.10426043719053268, -0.2065133899450302, -0.03772912174463272, 0.03964196518063545, 0.06116081401705742, 0.0056230733171105385, -0.06405694037675858, 0.07727910578250885, 0.10876702517271042, 0.04697573557496071, -0.019218390807509422, 0.1093738004565239, -0.04945459961891174, 0.008975437842309475, -0.029000835493206978, -0.025810901075601578, -0.019931891933083534, 0.07686485350131989, 0.10582394897937775, 0.111417256295681, 0.11825107783079147, -0.0905865803360939, 0.11221951246261597, -0.1044091209769249, 0.002324817469343543, -0.040079742670059204, -0.021670889109373093, -0.13117073476314545, -0.07850200682878494, 0.06508927792310715, -0.028580624610185623, 0.10725152492523193, 0.06372164934873581, 0.1194356307387352, -0.04190471023321152, -0.11527164280414581, 0.04532112926244736, -0.00623207725584507, 0.2649080753326416, 0.05531515181064606, 0.03859454393386841, -0.027972867712378502, 0.03397513926029205, 0.018375173211097717, 0.18547917902469635, -0.015327326953411102, 0.1519388109445572, 0.016667552292346954, 0.0962967574596405, 0.099856898188591, -0.048770707100629807, -0.06290125846862793, -0.07505650073289871, -0.07106563448905945, 0.04334288090467453, -0.08676939457654953, 0.12589643895626068, 0.1045212596654892, -0.08505760133266449, 0.07589873671531677, 0.03854977712035179, -0.0757995992898941, -0.15183964371681213, -0.12582311034202576, -0.04684047773480415, -0.1849779635667801, 0.014246850274503231, -0.09884951263666153, 0.04252168536186218, 0.011376874521374702, 0.02855757810175419, -0.05262996256351471, 0.15571708977222443, 0.014416740275919437, -0.09707795083522797, 0.08600626140832901, -0.0828855112195015, 0.043690476566553116, -0.09390414506196976, 0.036676447838544846, 0.12166435271501541, 0.018576916307210922, 0.06945282965898514, 0.019281374290585518, -0.0631401538848877, 0.009388347156345844, -0.0756877213716507, -0.05769098922610283, -0.020142853260040283, -0.026660416275262833, 0.05344371497631073, 0.15451382100582123, 0.10898727923631668, -0.07777820527553558, 0.021617941558361053, 0.11837710440158844, -0.0509149469435215, -0.11975331604480743, -0.13738369941711426, 0.15763390064239502, 0.06490462273359299, 0.05402887612581253, -0.02830788493156433, -0.06849127262830734, -0.023084469139575958, 0.27680301666259766, 0.1912720650434494, 0.044901154935359955, 0.017665022984147072, 0.01853598654270172, -0.002644364256411791, -0.013315906748175621, 0.08355001360177994, 0.0708380937576294, 0.25381800532341003, -0.023567907512187958, 0.004332014825195074, -0.07591931521892548, -0.07010769098997116, -0.029567962512373924, 0.07077980041503906, -0.08661263436079025, -0.12058684974908829, -0.005844658240675926, 0.14313842356204987, -0.05628451332449913, -0.06868640333414078, -0.0548880435526371, -0.09652840346097946, -0.09655800461769104, -0.026442797854542732, 0.0030755270272493362, 0.11320016533136368, 0.043624188750982285, -0.05675826594233513, 0.022856049239635468, 0.16224655508995056, -0.0011860219528898597, -0.0746091976761818, -0.10595368593931198, -0.005579210352152586, -0.19540122151374817, 0.03823770582675934, -0.024311719462275505, 0.14819203317165375, 0.037786856293678284, 0.11317955702543259, -0.02214505895972252, 0.14759007096290588, -0.016144447028636932, -0.04183141142129898, 0.03498166799545288, 0.08416726440191269, -0.05973144248127937, 0.09366491436958313, -0.010940229520201683, -0.1560245007276535, 0.0856403186917305, -0.10746916383504868, -0.0009104267810471356, -0.09310837090015411, 0.04385523870587349, -0.05469338968396187, 0.08992397785186768, 0.0731281116604805, -0.06390378624200821, -0.05198633298277855, -0.05173880606889725, 0.08713577687740326, 0.029077235609292984, -0.03934509679675102, -0.041679613292217255, -0.25116464495658875, -0.033950325101614, -0.05673284828662872, 0.004511576611548662, -0.1901203691959381, 0.016841191798448563, -0.010185359045863152, -0.08654651790857315, -0.019777441397309303, 0.017261039465665817, 0.1015462875366211, 0.011691603809595108, -0.0008532065548934042, -0.008015512488782406, 0.047983963042497635, 0.11556485295295715, -0.14229816198349, -0.12244214862585068 ]
null
null
transformers
# Wav2Vec2-Large-XLSR-53-Marathi Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Marathi using a part of the [InterSpeech 2021 Marathi](https://navana-tech.github.io/IS21SS-indicASRchallenge/data.html) dataset. When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows, assuming you have a dataset with Marathi `sentence` and `path` fields: ```python import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor # test_dataset = #TODO: WRITE YOUR CODE TO LOAD THE TEST DATASET. For sample see the Colab link in Training Section. processor = Wav2Vec2Processor.from_pretrained("gchhablani/wav2vec2-large-xlsr-mr-2") model = Wav2Vec2ForCTC.from_pretrained("gchhablani/wav2vec2-large-xlsr-mr-2") resampler = torchaudio.transforms.Resample(8_000, 16_000) # The original data was with 8,000 sampling rate. You can change it according to your input. # Preprocessing the datasets. # We need to read the audio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset["sentence"][:2]) ``` ## Evaluation The model can be evaluated as follows on the test set of the Marathi data on InterSpeech-2021. ```python import torch import torchaudio from datasets import load_dataset, load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import re # test_dataset = #TODO: WRITE YOUR CODE TO LOAD THE TEST DATASET. For sample see the Colab link in Training Section. wer = load_metric("wer") processor = Wav2Vec2Processor.from_pretrained("gchhablani/wav2vec2-large-xlsr-mr-2") model = Wav2Vec2ForCTC.from_pretrained("gchhablani/wav2vec2-large-xlsr-mr-2") model.to("cuda") chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\“\'\�]' resampler = torchaudio.transforms.Resample(8_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) # Preprocessing the datasets. # We need to read the aduio files as arrays def evaluate(batch): inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits pred_ids = torch.argmax(logits, dim=-1) batch["pred_strings"] = processor.batch_decode(pred_ids) return batch result = test_dataset.map(evaluate, batched=True, batch_size=8) print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"]))) ``` **Test Result**: 19.98 % (555 examples from test set were used for evaluation) **Test Result on 10% of OpenSLR74 data**: 64.64 % ## Training 5000 examples of the InterSpeech Marathi dataset were used for training. The colab notebook used for training can be found [here](https://colab.research.google.com/drive/1sIwGOLJPQqhKm_wVZDkzRuoJqAEgArFr?usp=sharing).
{"language": "mr", "license": "apache-2.0", "tags": ["audio", "automatic-speech-recognition", "speech", "xlsr-fine-tuning-week"], "datasets": ["interspeech_2021_asr"], "metrics": ["wer"], "model-index": [{"name": "XLSR Wav2Vec2 Large 53 Marathi 2 by Gunjan Chhablani", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Speech Recognition"}, "dataset": {"name": "InterSpeech 2021 ASR mr", "type": "interspeech_2021_asr"}, "metrics": [{"type": "wer", "value": 14.53, "name": "Test WER"}]}]}]}
automatic-speech-recognition
gchhablani/wav2vec2-large-xlsr-mr-2
[ "transformers", "pytorch", "jax", "wav2vec2", "automatic-speech-recognition", "audio", "speech", "xlsr-fine-tuning-week", "mr", "dataset:interspeech_2021_asr", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "mr" ]
TAGS #transformers #pytorch #jax #wav2vec2 #automatic-speech-recognition #audio #speech #xlsr-fine-tuning-week #mr #dataset-interspeech_2021_asr #license-apache-2.0 #model-index #endpoints_compatible #region-us
# Wav2Vec2-Large-XLSR-53-Marathi Fine-tuned facebook/wav2vec2-large-xlsr-53 on Marathi using a part of the InterSpeech 2021 Marathi dataset. When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows, assuming you have a dataset with Marathi 'sentence' and 'path' fields: ## Evaluation The model can be evaluated as follows on the test set of the Marathi data on InterSpeech-2021. Test Result: 19.98 % (555 examples from test set were used for evaluation) Test Result on 10% of OpenSLR74 data: 64.64 % ## Training 5000 examples of the InterSpeech Marathi dataset were used for training. The colab notebook used for training can be found here.
[ "# Wav2Vec2-Large-XLSR-53-Marathi\n\nFine-tuned facebook/wav2vec2-large-xlsr-53 on Marathi using a part of the InterSpeech 2021 Marathi dataset. When using this model, make sure that your speech input is sampled at 16kHz.", "## Usage\n\nThe model can be used directly (without a language model) as follows, assuming you have a dataset with Marathi 'sentence' and 'path' fields:", "## Evaluation\n\nThe model can be evaluated as follows on the test set of the Marathi data on InterSpeech-2021.\n\n\n\nTest Result: 19.98 % (555 examples from test set were used for evaluation)\n\nTest Result on 10% of OpenSLR74 data: 64.64 %", "## Training\n\n5000 examples of the InterSpeech Marathi dataset were used for training. \nThe colab notebook used for training can be found here." ]
[ "TAGS\n#transformers #pytorch #jax #wav2vec2 #automatic-speech-recognition #audio #speech #xlsr-fine-tuning-week #mr #dataset-interspeech_2021_asr #license-apache-2.0 #model-index #endpoints_compatible #region-us \n", "# Wav2Vec2-Large-XLSR-53-Marathi\n\nFine-tuned facebook/wav2vec2-large-xlsr-53 on Marathi using a part of the InterSpeech 2021 Marathi dataset. When using this model, make sure that your speech input is sampled at 16kHz.", "## Usage\n\nThe model can be used directly (without a language model) as follows, assuming you have a dataset with Marathi 'sentence' and 'path' fields:", "## Evaluation\n\nThe model can be evaluated as follows on the test set of the Marathi data on InterSpeech-2021.\n\n\n\nTest Result: 19.98 % (555 examples from test set were used for evaluation)\n\nTest Result on 10% of OpenSLR74 data: 64.64 %", "## Training\n\n5000 examples of the InterSpeech Marathi dataset were used for training. \nThe colab notebook used for training can be found here." ]
[ 83, 72, 41, 61, 31 ]
[ "passage: TAGS\n#transformers #pytorch #jax #wav2vec2 #automatic-speech-recognition #audio #speech #xlsr-fine-tuning-week #mr #dataset-interspeech_2021_asr #license-apache-2.0 #model-index #endpoints_compatible #region-us \n# Wav2Vec2-Large-XLSR-53-Marathi\n\nFine-tuned facebook/wav2vec2-large-xlsr-53 on Marathi using a part of the InterSpeech 2021 Marathi dataset. When using this model, make sure that your speech input is sampled at 16kHz.## Usage\n\nThe model can be used directly (without a language model) as follows, assuming you have a dataset with Marathi 'sentence' and 'path' fields:## Evaluation\n\nThe model can be evaluated as follows on the test set of the Marathi data on InterSpeech-2021.\n\n\n\nTest Result: 19.98 % (555 examples from test set were used for evaluation)\n\nTest Result on 10% of OpenSLR74 data: 64.64 %## Training\n\n5000 examples of the InterSpeech Marathi dataset were used for training. \nThe colab notebook used for training can be found here." ]
[ -0.1624709814786911, -0.0018343804404139519, -0.0004367961664684117, 0.04166071116924286, 0.03658197820186615, -0.06940620392560959, 0.1456833779811859, 0.1413646936416626, -0.02770981565117836, 0.04792998358607292, 0.03679966926574707, 0.04129447788000107, 0.09137055277824402, 0.1338266134262085, 0.03245735168457031, -0.13462328910827637, -0.004899344407021999, -0.013185129500925541, -0.0657331794500351, 0.11556454747915268, 0.14472399652004242, -0.07276853173971176, 0.028795603662729263, 0.08768903464078903, -0.13858819007873535, 0.03572431206703186, -0.033579785376787186, -0.06159597635269165, 0.06734887510538101, 0.017315221950411797, 0.0864349752664566, 0.005576664116233587, 0.059678856283426285, -0.1598309725522995, 0.020675327628850937, 0.0158065352588892, 0.02038343995809555, 0.005850270390510559, 0.10968232154846191, -0.0027831753250211477, -0.004467476159334183, -0.012399646453559399, -0.006741332355886698, 0.03787923976778984, -0.0758955255150795, -0.16917838156223297, -0.08326907455921173, -0.030392872169613838, 0.03215509653091431, 0.1855907440185547, -0.059440404176712036, 0.1642870306968689, -0.0316786915063858, 0.12133856117725372, 0.1262250393629074, -0.17951226234436035, -0.0028125436510890722, 0.032635465264320374, 0.05972440540790558, 0.09900019317865372, -0.08766356110572815, -0.032290372997522354, 0.05807223543524742, -0.022447582334280014, 0.015226761810481548, -0.020145444199442863, -0.10005699843168259, 0.036554936319589615, -0.11075996607542038, 0.0030151980463415384, 0.17227689921855927, -0.04230877012014389, -0.07415776699781418, -0.13475461304187775, -0.01785595342516899, -0.005269842687994242, 0.02368089370429516, -0.025039728730916977, 0.017654944211244583, 0.03924417495727539, 0.026910820975899696, 0.01300747413188219, -0.11970145255327225, -0.07170522958040237, 0.06384360790252686, 0.06973226368427277, 0.028754647821187973, 0.030723795294761658, -0.08344791829586029, 0.0038245636969804764, -0.03053823858499527, -0.1258213073015213, -0.07703214138746262, -0.013425756245851517, -0.07527666538953781, 0.0004398767196107656, -0.07143920660018921, -0.14498592913150787, 0.01952182501554489, 0.05768359452486038, -0.025232596322894096, 0.054453302174806595, -0.010142733342945576, 0.014249827712774277, 0.06768395006656647, 0.14284540712833405, -0.01946166716516018, -0.018554657697677612, 0.006795367691665888, 0.005156929139047861, 0.04902074113488197, 0.008878836408257484, 0.026997510343790054, -0.009007488377392292, -0.014642450027167797, 0.05424803867936134, -0.039413075894117355, -0.011669082567095757, -0.03768853470683098, -0.0034926095977425575, 0.07752979546785355, -0.1383187174797058, -0.03679569065570831, 0.003918620757758617, -0.037856996059417725, 0.07184374332427979, -0.0012245740508660674, 0.011432411149144173, -0.061959825456142426, -0.13820818066596985, -0.014348185621201992, 0.059820860624313354, -0.09822221845388412, -0.09628382325172424, -0.00186274410225451, 0.023031460121273994, -0.023456117138266563, -0.1186608150601387, -0.22273953258991241, -0.07842409610748291, -0.021930932998657227, -0.05636954307556152, 0.0981764867901802, -0.05757942795753479, 0.02623598650097847, -0.01698228158056736, -0.0359349250793457, 0.038132842630147934, -0.048243239521980286, 0.06374488770961761, 0.02070959471166134, 0.07396999001502991, 0.07595188170671463, 0.08201321214437485, -0.1182962954044342, -0.03200816363096237, -0.0032328488305211067, 0.1339968591928482, -0.09527188539505005, -0.03454557806253433, -0.09607566893100739, -0.03447362780570984, -0.05169914290308952, 0.027843475341796875, 0.10869255661964417, 0.12629887461662292, -0.23311369121074677, -0.05566621571779251, 0.1808800846338272, -0.19721278548240662, -0.10433319211006165, 0.1470838189125061, 0.004702181555330753, 0.13802491128444672, 0.05243309959769249, 0.22585922479629517, 0.040638137608766556, -0.17038479447364807, -0.08837252110242844, 0.01661347784101963, 0.004737661685794592, -0.00020390667486935854, 0.11693426966667175, -0.021861951798200607, 0.06683124601840973, 0.0037401497829705477, -0.047182921320199966, 0.054115768522024155, -0.03570026159286499, -0.04561867192387581, -0.02937854267656803, -0.04827718064188957, -0.01902960054576397, 0.0428035594522953, 0.022367922589182854, -0.048151347786188126, -0.04706062003970146, -0.02768881246447563, 0.12821875512599945, -0.09282860159873962, 0.05849282070994377, -0.08788318932056427, 0.14611977338790894, -0.029929157346487045, -0.0540631003677845, -0.19918058812618256, 0.09391500800848007, 0.04300325736403465, -0.006000859197229147, 0.005763014312833548, 0.06017424538731575, 0.03497805446386337, 0.025968099012970924, 0.01161274779587984, -0.020359693095088005, 0.03962392359972, -0.026880696415901184, -0.08829427510499954, -0.12565605342388153, 0.014513571746647358, -0.08287876844406128, 0.1795106828212738, -0.16770926117897034, 0.01516135223209858, 0.02421499416232109, 0.0521332323551178, 0.001637473120354116, -0.07750663161277771, 0.07574160397052765, 0.04407825693488121, -0.0068880184553563595, -0.046761404722929, 0.020811310037970543, 0.06999015808105469, 0.033846158534288406, 0.08636432886123657, -0.07121627032756805, -0.11724977940320969, 0.07492320984601974, -0.08307913690805435, -0.065434031188488, -0.07607340067625046, -0.016613783314824104, -0.03264632076025009, -0.09902113676071167, -0.0058082942850887775, 0.22634610533714294, -0.02071996219456196, 0.1533736139535904, -0.08389171957969666, -0.04248865321278572, -0.04400181397795677, -0.06441979855298996, -0.003168690949678421, 0.06402934342622757, -0.062144968658685684, -0.07356090098619461, 0.10250455141067505, 0.0011237236903980374, -0.029417240992188454, 0.1772572100162506, -0.03191071376204491, -0.11277015507221222, 0.008573547005653381, 0.06090665981173515, -0.03746672719717026, 0.0714351236820221, -0.16461032629013062, -0.027304913848638535, 0.049931399524211884, 0.0016318683046847582, 0.03473927080631256, -0.05651245266199112, 0.03429345786571503, 0.027061166241765022, -0.04077354818582535, -0.08518063277006149, 0.0749744400382042, -0.047873951494693756, 0.041185855865478516, -0.0663679838180542, 0.07962426543235779, -0.046896349638700485, -0.046834882348775864, -0.18034668266773224, 0.168991819024086, -0.13750432431697845, -0.24229611456394196, -0.13802063465118408, 0.0012902551097795367, 0.07895511388778687, -0.023784814402461052, 0.07872796803712845, -0.17223447561264038, -0.07280384749174118, -0.0748264268040657, 0.051360681653022766, 0.023622700944542885, -0.047994647175073624, 0.007626143284142017, -0.019350839778780937, 0.00913029070943594, -0.18068625032901764, 0.03767292946577072, 0.017655083909630775, 0.053534019738435745, 0.05085272341966629, -0.020782500505447388, -0.002237253123894334, 0.048801373690366745, -0.014569534920156002, 0.015494298189878464, -0.009707926772534847, 0.18719996511936188, -0.09639324992895126, 0.04127874597907066, 0.16093400120735168, 0.004968961235135794, -0.0036411697510629892, 0.034642163664102554, -0.04294702410697937, -0.061161674559116364, 0.004238949157297611, -0.043207164853811264, -0.016142472624778748, -0.29080548882484436, -0.0890243873000145, -0.04825517535209656, -0.030555259436368942, -0.009556926786899567, -0.01239748764783144, 0.039998941123485565, 0.05632416531443596, -0.030380139127373695, -0.03208030387759209, 0.005907885264605284, 0.05342275649309158, 0.08923232555389404, -0.025325389578938484, 0.1018543615937233, -0.0652749240398407, 0.07488331198692322, 0.04997057467699051, -0.034704700112342834, 0.17677609622478485, -0.02703084424138069, 0.1642584204673767, 0.07864993065595627, 0.1525135040283203, 0.056512631475925446, 0.05585089698433876, -0.06211196631193161, -0.021788345649838448, 0.04641426354646683, -0.07293815910816193, -0.07859593629837036, 0.06344692409038544, 0.026754748076200485, -0.021897749975323677, -0.006666194181889296, -0.011110294610261917, 0.018533717840909958, 0.11512614041566849, 0.0912865698337555, -0.20136642456054688, -0.09239310771226883, -0.026680583134293556, -0.049452442675828934, -0.08498355001211166, 0.008720478042960167, 0.1237698346376419, -0.07851103693246841, 0.017355095595121384, -0.026719383895397186, 0.06164969876408577, 0.010695894248783588, -0.028856562450528145, -0.025552604347467422, -0.018203938379883766, -0.027859261259436607, 0.07198743522167206, -0.17089244723320007, 0.1862354576587677, 0.04143017902970314, 0.06690502911806107, -0.03468763083219528, 0.026417190209031105, 0.018007563427090645, -0.012475816532969475, 0.09580133855342865, 0.014831028878688812, -0.03036913461983204, -0.10525475442409515, -0.07355232536792755, 0.004052671138197184, 0.06769128888845444, 0.0965857058763504, 0.08491731435060501, -0.021054524928331375, 0.040406644344329834, -0.012862893752753735, -0.07560639083385468, -0.13564272224903107, -0.08082744479179382, 0.03887985646724701, 0.016439832746982574, 0.08020307868719101, -0.04457363486289978, -0.10039553791284561, -0.17172691226005554, 0.16406813263893127, -0.14714542031288147, -0.10701457411050797, -0.08904723823070526, 0.15012764930725098, 0.05548150837421417, -0.05824460834264755, 0.03177236020565033, 0.016494741663336754, 0.10106980800628662, 0.006466158665716648, -0.013107096776366234, -0.03124547004699707, -0.08539637923240662, -0.07789038866758347, -0.02926214598119259, 0.08340729773044586, 0.10116355121135712, 0.02268877439200878, 0.05378122255206108, 0.06094270572066307, -0.022752687335014343, -0.0354071706533432, -0.001775194425135851, 0.05281222239136696, 0.023850200697779655, 0.06608173996210098, -0.04626918211579323, -0.11480315774679184, -0.06934225559234619, -0.1311485320329666, 0.15589693188667297, 0.12253604084253311, -0.02212142013013363, 0.14289192855358124, 0.19241230189800262, -0.11987028270959854, -0.17317712306976318, 0.05604192614555359, 0.07282224297523499, 0.11034157872200012, 0.012565035372972488, -0.19207295775413513, 0.06694739311933517, 0.07900195568799973, -0.0054582892917096615, -0.06891082227230072, -0.1472683548927307, -0.1205567717552185, 0.06279438734054565, 0.06153807416558266, 0.0247124582529068, -0.10536058992147446, -0.049216002225875854, 0.03360472247004509, 0.021170971915125847, -0.10636186599731445, -0.039595961570739746, 0.06105814874172211, -0.023104701191186905, -0.023597201332449913, 0.038449667394161224, -0.04071220010519028, 0.09075390547513962, 0.011542181484401226, 0.013229300267994404, -0.0563664436340332, 0.12860475480556488, 0.1275758296251297, 0.02331925369799137, 0.1783532202243805, -0.042444486171007156, 0.06700317561626434, -0.16200678050518036, -0.04053601250052452, -0.03628961741924286, 0.021681107580661774, -0.007687770761549473, -0.04833231121301651, -0.0693616047501564, 0.05913706123828888, 0.030712351202964783, -0.0320042222738266, -0.03212808072566986, -0.03539268672466278, 0.014185006730258465, 0.13030283153057098, 0.12311413139104843, 0.04961889237165451, -0.022803038358688354, -0.013166210614144802, 0.0022488911636173725, 0.049489643424749374, -0.11692588776350021, -0.018572282046079636, 0.05082865431904793, 0.07355296611785889, 0.07424329221248627, -0.01645851694047451, -0.10008129477500916, 0.06176034361124039, 0.046267520636320114, 0.007091438863426447, -0.026802709326148033, -0.007725378032773733, 0.030434925109148026, -0.03435204550623894, -0.013051792047917843, 0.11892197281122208, -0.05804534628987312, -0.011227556504309177, -0.04299608990550041, 0.039586517959833145, -0.04199521988630295, 0.1894313544034958, 0.027028843760490417, 0.04993736743927002, -0.08951827883720398, 0.052690550684928894, 0.027752090245485306, -0.07181138545274734, 0.04906028136610985, 0.047140028327703476, -0.09429957717657089, -0.05884367227554321, 0.04354695603251457, 0.07363588362932205, 0.0448247455060482, -0.04928415268659592, -0.08024433255195618, -0.04297541081905365, 0.016224291175603867, 0.15912872552871704, 0.057087577879428864, 0.000021240619389573112, -0.03767566382884979, -0.03232308477163315, -0.11459802091121674, 0.11226680129766464, 0.03621792048215866, -0.0098591772839427, -0.029518021270632744, 0.09562144428491592, 0.02526364102959633, 0.009437989443540573, -0.03207295015454292, -0.08997436612844467, -0.03490652143955231, 0.029667437076568604, -0.0773739218711853, 0.018932057544589043, -0.08417122066020966, -0.04300984367728233, -0.04371466487646103, -0.030797243118286133, 0.02440137043595314, 0.06869658082723618, -0.018451208248734474, 0.027031537145376205, -0.03298506140708923, 0.09404973685741425, -0.14020393788814545, -0.01191173680126667, 0.03170742839574814, -0.07828278839588165, 0.058212053030729294, 0.10882949829101562, -0.049427129328250885, 0.04652198776602745, -0.07910139113664627, -0.00007624222052982077, 0.011469266377389431, 0.09373804181814194, -0.002471317769959569, -0.20569318532943726, 0.018827781081199646, 0.03217138350009918, 0.0004669215704780072, 0.052098896354436874, 0.19462433457374573, 0.0017360388301312923, 0.06560086458921432, -0.1156066358089447, 0.015976347029209137, -0.08035285770893097, 0.11450260132551193, 0.040664173662662506, 0.08220849931240082, 0.1443488895893097, -0.0857362225651741, 0.048024099320173264, -0.13547608256340027, 0.005886617116630077, -0.000648347195237875, -0.012450838461518288, -0.032892562448978424, -0.07631149142980576, 0.07293318212032318, -0.025464266538619995, 0.16202957928180695, 0.008732329122722149, -0.004476952366530895, 0.05382449924945831, -0.11969873309135437, 0.07671527564525604, -0.005514401476830244, 0.1593851000070572, 0.04461738467216492, 0.03446905314922333, -0.02297799475491047, 0.026111185550689697, 0.042577121406793594, 0.08562110364437103, 0.02077476866543293, 0.28394201397895813, -0.04315508157014847, 0.07902567088603973, -0.02625388279557228, -0.1519012451171875, -0.05985506996512413, -0.07490622997283936, -0.14213435351848602, 0.01301606185734272, -0.005529071670025587, 0.18606621026992798, 0.15347564220428467, -0.15666165947914124, 0.059823568910360336, -0.03198041021823883, -0.10033363848924637, -0.05167125165462494, -0.043183472007513046, -0.0383005253970623, -0.09774498641490936, 0.023895107209682465, -0.10398739576339722, 0.07085605710744858, 0.06636574119329453, 0.08493690192699432, 0.008346003480255604, 0.15410959720611572, -0.035756614059209824, -0.07381218671798706, 0.03675360977649689, -0.0518454909324646, 0.017209989950060844, -0.0665762647986412, 0.0007090848521329463, 0.07351616024971008, -0.033020175993442535, 0.040555112063884735, 0.04182133078575134, 0.0469655767083168, 0.013354870490729809, -0.04535670578479767, -0.06331118196249008, -0.001312972279265523, 0.027249472215771675, 0.04294928163290024, 0.1555510014295578, 0.09233036637306213, 0.006006198935210705, 0.004508778918534517, 0.07495786994695663, -0.002957593882456422, -0.08179760724306107, -0.15453889966011047, -0.006933803204447031, 0.03040359541773796, -0.026890084147453308, 0.039708059281110764, -0.05571815371513367, 0.016453664749860764, 0.24379314482212067, 0.08716987073421478, 0.04332904517650604, -0.0014704500790685415, 0.00792825035750866, -0.016145404428243637, -0.07139058411121368, 0.09323633462190628, 0.07417742162942886, 0.14690858125686646, -0.07684945315122604, -0.04757033661007881, -0.111111581325531, -0.09403146058320999, -0.06899479031562805, 0.05164198949933052, -0.0716906264424324, -0.08597897738218307, -0.014232669025659561, 0.12158665060997009, 0.024206409230828285, -0.1412951499223709, 0.0005666365032084286, -0.06573978066444397, -0.11612362414598465, -0.01865413784980774, -0.04059022292494774, 0.03292560577392578, 0.009796669706702232, 0.020395055413246155, 0.04939545318484306, 0.1582852005958557, 0.029551822692155838, -0.020021382719278336, -0.08025915175676346, 0.08559879660606384, -0.18816113471984863, 0.012947076000273228, -0.0022963692899793386, 0.24098484218120575, 0.07211942970752716, 0.091423898935318, -0.06479231268167496, 0.06904123723506927, 0.0383826345205307, -0.04384928569197655, 0.006071758456528187, 0.12138456851243973, 0.0008506689919158816, 0.1317044496536255, 0.052212703973054886, 0.0018449811032041907, 0.0789875015616417, -0.0181607473641634, -0.017663054168224335, -0.10945679247379303, 0.04590383544564247, -0.033078018575906754, 0.13455307483673096, 0.11534343659877777, -0.04818280413746834, -0.04264123737812042, -0.03384888917207718, 0.031049618497490883, 0.04207790642976761, -0.00463944161310792, -0.02611435018479824, -0.2855587601661682, 0.017505085095763206, -0.07573609054088593, 0.027955960482358932, -0.22271601855754852, -0.06970133632421494, 0.02215900458395481, -0.0799780860543251, 0.01405070535838604, 0.10287691652774811, 0.04913623631000519, 0.015184607356786728, 0.010634914971888065, -0.02004736289381981, 0.04080065339803696, 0.10291452705860138, -0.11752866208553314, -0.09959937632083893 ]
null
null
transformers
# Wav2Vec2-Large-XLSR-53-Marathi Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Marathi using the [OpenSLR SLR64](http://openslr.org/64/) dataset and [InterSpeech 2021](https://navana-tech.github.io/IS21SS-indicASRchallenge/data.html) Marathi datasets. Note that this data OpenSLR contains only female voices. Please keep this in mind before using the model for your task. When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows, assuming you have a dataset with Marathi `text` and `audio_path` fields: ```python import torch import torchaudio import librosa from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor # test_data = #TODO: WRITE YOUR CODE TO LOAD THE TEST DATASET. For sample see the Colab link in Training Section. processor = Wav2Vec2Processor.from_pretrained("gchhablani/wav2vec2-large-xlsr-mr-3") model = Wav2Vec2ForCTC.from_pretrained("gchhablani/wav2vec2-large-xlsr-mr-3") # Preprocessing the datasets. # We need to read the audio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = torchaudio.load(batch["audio_path"]) batch["speech"] = librosa.resample(speech_array[0].numpy(), sampling_rate, 16_000) # sampling_rate can vary return batch test_data= test_data.map(speech_file_to_array_fn) inputs = processor(test_data["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_data["text"][:2]) ``` ## Evaluation The model can be evaluated as follows on 10% of the Marathi data on OpenSLR. ```python import torch import torchaudio import librosa from datasets import load_dataset, load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import re # test_data = #TODO: WRITE YOUR CODE TO LOAD THE TEST DATASET. For sample see the Colab link in Training Section. wer = load_metric("wer") processor = Wav2Vec2Processor.from_pretrained("gchhablani/wav2vec2-large-xlsr-mr-3") model = Wav2Vec2ForCTC.from_pretrained("gchhablani/wav2vec2-large-xlsr-mr-3") model.to("cuda") chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\“\%\‘\”\�\–\…]' # Preprocessing the datasets. # We need to read the audio files as arrays def speech_file_to_array_fn(batch): batch["text"] = re.sub(chars_to_ignore_regex, '', batch["text"]).lower() speech_array, sampling_rate = torchaudio.load(batch["audio_path"]) batch["speech"] = librosa.resample(speech_array[0].numpy(), sampling_rate, 16_000) return batch test_data= test_data.map(speech_file_to_array_fn) # Preprocessing the datasets. # We need to read the audio files as arrays def evaluate(batch): inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits pred_ids = torch.argmax(logits, dim=-1) batch["pred_strings"] = processor.batch_decode(pred_ids) return batch result = test_data.map(evaluate, batched=True, batch_size=8) print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["text"]))) ``` **Test Result**: 19.05 % (157+157 examples) **Test Result on OpenSLR test**: 14.15 % (157 examples) **Test Results on InterSpeech test**: 27.14 % (157 examples) ## Training 1412 examples of the OpenSLR Marathi dataset and 1412 examples of InterSpeech 2021 Marathi ASR dataset were used for training. For testing, 157 examples from each were used. The colab notebook used for training and evaluation can be found [here](https://colab.research.google.com/drive/15fUhb4bUFFGJyNLr-_alvPxVX4w0YXRu?usp=sharing).
{"language": "mr", "license": "apache-2.0", "tags": ["audio", "automatic-speech-recognition", "speech", "xlsr-fine-tuning-week"], "datasets": ["openslr", "interspeech_2021_asr"], "metrics": ["wer"], "model-index": [{"name": "XLSR Wav2Vec2 Large 53 Marathi by Gunjan Chhablani", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Speech Recognition"}, "dataset": {"name": "OpenSLR mr, InterSpeech 2021 ASR mr", "type": "openslr, interspeech_2021_asr"}, "metrics": [{"type": "wer", "value": 19.05, "name": "Test WER"}]}]}]}
automatic-speech-recognition
gchhablani/wav2vec2-large-xlsr-mr-3
[ "transformers", "pytorch", "jax", "wav2vec2", "automatic-speech-recognition", "audio", "speech", "xlsr-fine-tuning-week", "mr", "dataset:openslr", "dataset:interspeech_2021_asr", "license:apache-2.0", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "mr" ]
TAGS #transformers #pytorch #jax #wav2vec2 #automatic-speech-recognition #audio #speech #xlsr-fine-tuning-week #mr #dataset-openslr #dataset-interspeech_2021_asr #license-apache-2.0 #endpoints_compatible #region-us
# Wav2Vec2-Large-XLSR-53-Marathi Fine-tuned facebook/wav2vec2-large-xlsr-53 on Marathi using the OpenSLR SLR64 dataset and InterSpeech 2021 Marathi datasets. Note that this data OpenSLR contains only female voices. Please keep this in mind before using the model for your task. When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows, assuming you have a dataset with Marathi 'text' and 'audio_path' fields: ## Evaluation The model can be evaluated as follows on 10% of the Marathi data on OpenSLR. Test Result: 19.05 % (157+157 examples) Test Result on OpenSLR test: 14.15 % (157 examples) Test Results on InterSpeech test: 27.14 % (157 examples) ## Training 1412 examples of the OpenSLR Marathi dataset and 1412 examples of InterSpeech 2021 Marathi ASR dataset were used for training. For testing, 157 examples from each were used. The colab notebook used for training and evaluation can be found here.
[ "# Wav2Vec2-Large-XLSR-53-Marathi\n\nFine-tuned facebook/wav2vec2-large-xlsr-53 on Marathi using the OpenSLR SLR64 dataset and InterSpeech 2021 Marathi datasets. Note that this data OpenSLR contains only female voices. Please keep this in mind before using the model for your task. When using this model, make sure that your speech input is sampled at 16kHz.", "## Usage\n\nThe model can be used directly (without a language model) as follows, assuming you have a dataset with Marathi 'text' and 'audio_path' fields:", "## Evaluation\n\nThe model can be evaluated as follows on 10% of the Marathi data on OpenSLR.\n\n\n\nTest Result: 19.05 % (157+157 examples)\n \nTest Result on OpenSLR test: 14.15 % (157 examples)\n\nTest Results on InterSpeech test: 27.14 % (157 examples)", "## Training\n\n1412 examples of the OpenSLR Marathi dataset and 1412 examples of InterSpeech 2021 Marathi ASR dataset were used for training. For testing, 157 examples from each were used.\n\nThe colab notebook used for training and evaluation can be found here." ]
[ "TAGS\n#transformers #pytorch #jax #wav2vec2 #automatic-speech-recognition #audio #speech #xlsr-fine-tuning-week #mr #dataset-openslr #dataset-interspeech_2021_asr #license-apache-2.0 #endpoints_compatible #region-us \n", "# Wav2Vec2-Large-XLSR-53-Marathi\n\nFine-tuned facebook/wav2vec2-large-xlsr-53 on Marathi using the OpenSLR SLR64 dataset and InterSpeech 2021 Marathi datasets. Note that this data OpenSLR contains only female voices. Please keep this in mind before using the model for your task. When using this model, make sure that your speech input is sampled at 16kHz.", "## Usage\n\nThe model can be used directly (without a language model) as follows, assuming you have a dataset with Marathi 'text' and 'audio_path' fields:", "## Evaluation\n\nThe model can be evaluated as follows on 10% of the Marathi data on OpenSLR.\n\n\n\nTest Result: 19.05 % (157+157 examples)\n \nTest Result on OpenSLR test: 14.15 % (157 examples)\n\nTest Results on InterSpeech test: 27.14 % (157 examples)", "## Training\n\n1412 examples of the OpenSLR Marathi dataset and 1412 examples of InterSpeech 2021 Marathi ASR dataset were used for training. For testing, 157 examples from each were used.\n\nThe colab notebook used for training and evaluation can be found here." ]
[ 86, 106, 43, 69, 60 ]
[ "passage: TAGS\n#transformers #pytorch #jax #wav2vec2 #automatic-speech-recognition #audio #speech #xlsr-fine-tuning-week #mr #dataset-openslr #dataset-interspeech_2021_asr #license-apache-2.0 #endpoints_compatible #region-us \n# Wav2Vec2-Large-XLSR-53-Marathi\n\nFine-tuned facebook/wav2vec2-large-xlsr-53 on Marathi using the OpenSLR SLR64 dataset and InterSpeech 2021 Marathi datasets. Note that this data OpenSLR contains only female voices. Please keep this in mind before using the model for your task. When using this model, make sure that your speech input is sampled at 16kHz.## Usage\n\nThe model can be used directly (without a language model) as follows, assuming you have a dataset with Marathi 'text' and 'audio_path' fields:## Evaluation\n\nThe model can be evaluated as follows on 10% of the Marathi data on OpenSLR.\n\n\n\nTest Result: 19.05 % (157+157 examples)\n \nTest Result on OpenSLR test: 14.15 % (157 examples)\n\nTest Results on InterSpeech test: 27.14 % (157 examples)## Training\n\n1412 examples of the OpenSLR Marathi dataset and 1412 examples of InterSpeech 2021 Marathi ASR dataset were used for training. For testing, 157 examples from each were used.\n\nThe colab notebook used for training and evaluation can be found here." ]
[ -0.1628420054912567, 0.05496589094400406, -0.0034707558806985617, 0.049603965133428574, 0.033781684935092926, -0.04522339999675751, 0.10832417756319046, 0.11840904504060745, 0.0007357836584560573, 0.07873206585645676, 0.042994603514671326, 0.02489572763442993, 0.05856522545218468, 0.11255303025245667, -0.03281340375542641, -0.09497786313295364, -0.009071850217878819, -0.06268967688083649, -0.09189172834157944, 0.082835853099823, 0.15687718987464905, -0.035536281764507294, 0.043722886592149734, 0.0862714946269989, -0.04418887570500374, 0.039160292595624924, -0.003669087076559663, -0.04038313031196594, 0.048310231417417526, 0.03922683373093605, 0.06067712977528572, -0.00031204140395857394, 0.02025560662150383, -0.18043172359466553, 0.01690629869699478, 0.016698438674211502, 0.027941638603806496, -0.0012047981144860387, 0.1511373221874237, -0.018884947523474693, 0.016046589240431786, -0.05158150941133499, 0.01317108329385519, 0.05341588333249092, -0.04242303594946861, -0.17866505682468414, -0.12863951921463013, -0.05730455741286278, 0.004396144300699234, 0.1654185652732849, -0.05078307166695595, 0.13406050205230713, -0.023714395239949226, 0.12008631974458694, 0.10712562501430511, -0.08746614307165146, -0.017305413261055946, -0.011681546457111835, 0.04638180881738663, 0.08597691357135773, -0.06159323453903198, -0.04404569789767265, 0.061588846147060394, -0.012406136840581894, -0.044608112424612045, -0.021812545135617256, -0.05011700838804245, 0.031177757307887077, -0.11047685146331787, -0.01355674397200346, 0.19517245888710022, -0.034411851316690445, -0.09950073063373566, -0.18334099650382996, -0.055602625012397766, 0.06676352769136429, 0.05908389389514923, 0.007832101546227932, 0.0034767386969178915, 0.0440061129629612, 0.05997738614678383, -0.007785087451338768, -0.10187065601348877, -0.047156065702438354, 0.03662608191370964, 0.04269467666745186, 0.031201910227537155, 0.024596331641077995, -0.05138382315635681, -0.0250465776771307, -0.09492413699626923, -0.14954428374767303, -0.08025804162025452, -0.03896448388695717, -0.07942512631416321, -0.011468769051134586, -0.0723474845290184, -0.276008665561676, 0.08469873666763306, 0.08681255578994751, -0.05671229213476181, 0.06905976682901382, -0.09722672402858734, -0.014491291716694832, 0.060235220938920975, 0.13687609136104584, -0.02133302204310894, 0.054738711565732956, 0.017823467031121254, -0.011970993131399155, 0.06554093211889267, 0.0034266184084117413, 0.07854414731264114, -0.0357377789914608, -0.024959085509181023, 0.06403201073408127, 0.0015491218073293567, -0.016650820150971413, -0.03311857208609581, 0.02417399361729622, 0.09617940336465836, -0.16634102165699005, -0.0008489892934449017, 0.006811388302594423, -0.00401041004806757, 0.026155291125178337, 0.014873170293867588, 0.014854803681373596, -0.029937243089079857, -0.0833040326833725, -0.030891040340065956, 0.020711390301585197, -0.08587586879730225, -0.06319884955883026, 0.034331437200307846, 0.05062253400683403, -0.031008558347821236, -0.08348668366670609, -0.20974266529083252, -0.07283101230859756, -0.009866447187960148, -0.0685749426484108, 0.05876769497990608, 0.01666201278567314, -0.005593597888946533, 0.017416922375559807, -0.009783612564206123, 0.07016301900148392, -0.02405036799609661, 0.06573719531297684, 0.06308448314666748, 0.036620136350393295, 0.12180396169424057, 0.060997724533081055, -0.10309306532144547, 0.038696978241205215, -0.06798171252012253, 0.1781609207391739, -0.1478111445903778, -0.07671153545379639, -0.10464166849851608, -0.006515856366604567, -0.0394565612077713, 0.016208497807383537, 0.10606316477060318, 0.1276710033416748, -0.18639232218265533, -0.01017430517822504, 0.18752406537532806, -0.19557492434978485, -0.0964026227593422, 0.15347062051296234, 0.005803671665489674, 0.051240600645542145, 0.011758189648389816, 0.18069760501384735, 0.10197135806083679, -0.17282384634017944, -0.06309708207845688, 0.021470440551638603, 0.02398764342069626, 0.11635711789131165, 0.13428060710430145, -0.0713273212313652, 0.06895621865987778, -0.02748880162835121, -0.04462876915931702, 0.023267827928066254, -0.017056254670023918, -0.036684565246105194, -0.06073728948831558, -0.05980917811393738, -0.01428605429828167, 0.025828339159488678, -0.02916828915476799, -0.04183189198374748, -0.08654490113258362, -0.0793163925409317, 0.11286661028862, -0.07360372692346573, 0.06304285675287247, -0.10709031671285629, 0.14876259863376617, -0.07014945149421692, -0.06645085662603378, -0.1954987496137619, 0.022212054580450058, 0.048580363392829895, -0.09494232386350632, -0.004976003896445036, 0.007143047638237476, 0.03139297291636467, 0.017963817343115807, -0.03344810754060745, -0.008308540098369122, 0.06212138757109642, -0.03693009912967682, -0.06328001618385315, -0.1634155660867691, 0.011971302330493927, -0.06685925275087357, 0.15644699335098267, -0.17359673976898193, 0.001278178533539176, 0.10232563316822052, 0.06282375007867813, 0.012902557849884033, -0.08753165602684021, 0.08941025286912918, 0.00851088110357523, 0.013858145102858543, -0.05122421309351921, -0.04519316181540489, 0.04096481204032898, 0.000021002604626119137, 0.11040768027305603, -0.06892397254705429, -0.09135767817497253, 0.012444966472685337, 0.007279383018612862, -0.08699927479028702, -0.010235952213406563, -0.0245108250528574, -0.032717667520046234, -0.15231716632843018, -0.04238985851407051, 0.13563136756420135, -0.0034648997243493795, 0.12453149259090424, -0.09176237136125565, -0.02541421167552471, -0.010003594681620598, -0.08637981861829758, -0.026315972208976746, 0.0938120186328888, -0.04849240183830261, -0.07817745953798294, 0.07853764295578003, -0.08450499176979065, -0.06447190791368484, 0.1299782246351242, -0.059874989092350006, -0.1116853728890419, 0.0053501310758292675, 0.08175728470087051, -0.017464665696024895, 0.04620887711644173, -0.13323752582073212, 0.058057814836502075, 0.06296773999929428, 0.016784464940428734, 0.038764018565416336, -0.03544825315475464, 0.018919959664344788, 0.045823510736227036, -0.0170760415494442, -0.08929811418056488, 0.1263824701309204, -0.015362752601504326, 0.042352937161922455, -0.06035329028964043, 0.1166517436504364, -0.021631993353366852, -0.0642073005437851, -0.21188774704933167, 0.14567892253398895, -0.1226322129368782, -0.15278835594654083, -0.17420905828475952, 0.013370895758271217, 0.03544485941529274, -0.03219529613852501, 0.07470272481441498, -0.12801870703697205, -0.11105083674192429, -0.09600678086280823, 0.0543757863342762, 0.027909427881240845, -0.05221681669354439, 0.018017766997218132, -0.034433674067258835, 0.038385018706321716, -0.17198596894741058, 0.032873913645744324, 0.0667712464928627, 0.045905809849500656, 0.02634197287261486, 0.011871365830302238, 0.04798270761966705, 0.029461495578289032, -0.012161198072135448, -0.0038956981152296066, 0.028874993324279785, 0.1957859992980957, -0.11497609317302704, 0.04677872732281685, 0.19416257739067078, -0.059792786836624146, 0.031598933041095734, 0.042102571576833725, -0.04709862172603607, -0.03917315974831581, 0.011861289851367474, 0.004740825388580561, -0.014670447446405888, -0.34903883934020996, -0.06740321964025497, -0.07704591006040573, -0.0007429021643474698, -0.05272173881530762, -0.01899135671555996, 0.047804705798625946, 0.05555422231554985, -0.037641845643520355, -0.05654577165842056, 0.01132290344685316, 0.03976866602897644, 0.17849530279636383, 0.0012755927164107561, 0.07767131924629211, -0.0939963087439537, 0.07975668460130692, 0.07070865482091904, -0.08212482929229736, 0.1453223079442978, -0.06395959109067917, 0.129757359623909, 0.11217471957206726, 0.10800302773714066, 0.02078644558787346, 0.028344668447971344, -0.08311338722705841, 0.006733612157404423, 0.05772887170314789, -0.0901695117354393, -0.0723467692732811, 0.07965531945228577, -0.0016772912349551916, -0.05183665081858635, 0.016043540090322495, 0.03108014352619648, -0.003334963694214821, 0.08182230591773987, 0.07138071954250336, -0.11871258914470673, -0.06880944222211838, -0.010213013738393784, -0.11876262724399567, -0.0985535979270935, -0.011660216376185417, 0.13512122631072998, -0.09048497676849365, 0.09208256751298904, -0.03128475695848465, 0.059415802359580994, 0.06730629503726959, -0.05389408394694328, -0.01829843409359455, 0.007654333487153053, -0.038618531078100204, 0.08346788585186005, -0.217014878988266, 0.12995170056819916, 0.0357065349817276, 0.042783696204423904, -0.04548230022192001, 0.06727645546197891, 0.028901034966111183, -0.05398176982998848, 0.07664558291435242, 0.009494802914559841, -0.06595005095005035, -0.0003260950034018606, -0.029781008139252663, 0.009685094468295574, 0.07579916715621948, 0.09302956610918045, 0.09943103790283203, -0.034002456814050674, 0.030894257128238678, -0.0026818825863301754, 0.056035351008176804, -0.12964829802513123, -0.10550443083047867, 0.05464042350649834, -0.029800767078995705, 0.047050125896930695, -0.05780470371246338, -0.06763076037168503, -0.15709900856018066, 0.08763863146305084, -0.1422184705734253, -0.11171183735132217, -0.10575530678033829, 0.08158876746892929, 0.13473671674728394, -0.06254420429468155, 0.055310893803834915, -0.007707392796874046, 0.1354030966758728, -0.019061099737882614, 0.0208041463047266, -0.04784993827342987, -0.054050203412771225, -0.17917561531066895, -0.009778589941561222, 0.08616473525762558, 0.07895949482917786, 0.029238708317279816, 0.025561193004250526, 0.09743843227624893, -0.010096495039761066, -0.02581154741346836, 0.026756657287478447, 0.0525674894452095, 0.009759427979588509, 0.09168913960456848, 0.014459514990448952, -0.11483392119407654, -0.04585029557347298, -0.1804359406232834, 0.10551384836435318, 0.11555743962526321, 0.005131994374096394, 0.12478827685117722, 0.08391863107681274, -0.12443961948156357, -0.15000422298908234, 0.06043984740972519, 0.09308134764432907, 0.06637689471244812, 0.05423852428793907, -0.17196007072925568, 0.09181396663188934, 0.043140560388565063, -0.018991654738783836, -0.04411603882908821, -0.11073528230190277, -0.13661514222621918, 0.03351125121116638, 0.018399691209197044, -0.09616164863109589, -0.1226217970252037, -0.05869266390800476, -0.00583610637113452, 0.000354903721017763, -0.11410635709762573, -0.0023220067378133535, 0.029331538826227188, -0.004001022782176733, 0.03188997879624367, 0.06976312398910522, -0.05670392885804176, 0.10662030428647995, 0.0029301894828677177, 0.018107308074831963, -0.05292069539427757, 0.15827994048595428, 0.10015267878770828, 0.031449563801288605, 0.18758241832256317, -0.02935843914747238, 0.06750012189149857, -0.16232039034366608, -0.04967598617076874, -0.020232142880558968, 0.0191318541765213, -0.01719284988939762, -0.0315825380384922, -0.06601779907941818, 0.04299868270754814, 0.06755219399929047, -0.04357871040701866, -0.014075580053031445, -0.06263115257024765, 0.019508477300405502, 0.12070981413125992, 0.19989359378814697, 0.13540324568748474, -0.012784555554389954, -0.011780984699726105, 0.005600036587566137, 0.020612772554159164, -0.16034989058971405, 0.04298694059252739, 0.026178894564509392, 0.0852426066994667, 0.06585649400949478, -0.04721221327781677, -0.1156296655535698, 0.049545980989933014, 0.04165190830826759, 0.00842334982007742, -0.05051993951201439, 0.0031778085976839066, 0.07579541951417923, -0.0990438312292099, -0.07639575749635696, 0.12182590365409851, -0.013136366382241249, -0.003240833757445216, -0.04089635983109474, 0.09107048809528351, -0.03353254869580269, 0.17496562004089355, 0.06665287166833878, 0.05771774798631668, -0.06115340813994408, 0.04221648350358009, 0.013203654438257217, -0.11840720474720001, 0.07204759120941162, 0.06806065887212753, -0.042389094829559326, -0.0467742383480072, 0.03609937056899071, 0.08691735565662384, 0.016372451558709145, -0.051865965127944946, -0.05098944529891014, -0.05788961425423622, 0.03173625096678734, 0.2408369928598404, 0.035275693982839584, 0.04105337709188461, -0.0022866635117679834, -0.027246590703725815, -0.12098269164562225, 0.1506129950284958, 0.06511782854795456, 0.01295692753046751, -0.06534601747989655, 0.03976909816265106, -0.019783014431595802, -0.014833984896540642, -0.01966395601630211, -0.02600056864321232, -0.014116388745605946, 0.01847100257873535, -0.16304410994052887, 0.05272616073489189, -0.04673168808221817, -0.022903302684426308, -0.03925726190209389, -0.03884848579764366, 0.013586586341261864, 0.05922478064894676, -0.0005453944904729724, -0.0017300705658271909, -0.0337417908012867, 0.09645930677652359, -0.15371623635292053, -0.0024986944627016783, 0.07633598148822784, -0.09546366333961487, 0.05694066360592842, 0.06570432335138321, -0.07994885742664337, -0.007903552614152431, -0.08915247768163681, 0.02786126546561718, -0.015077164396643639, 0.08262158185243607, -0.059093113988637924, -0.24259960651397705, 0.01930590532720089, 0.0336221419274807, -0.020708084106445312, 0.06466823071241379, 0.1743685007095337, -0.022441841661930084, 0.13644666969776154, -0.07547494769096375, -0.02189396135509014, -0.08924663066864014, 0.1062081828713417, 0.062096722424030304, 0.061814602464437485, 0.11083714663982391, -0.06632333248853683, 0.08508811146020889, -0.14318770170211792, 0.00013872218551114202, 0.016801152378320694, 0.027616506442427635, -0.011065905913710594, -0.02919766679406166, 0.08183562755584717, -0.044090405106544495, 0.2016621232032776, 0.027603331953287125, -0.03468763455748558, 0.07297143340110779, -0.06256608664989471, 0.12290218472480774, 0.01900123804807663, 0.09320171177387238, -0.01743089035153389, 0.0443369522690773, -0.01712711527943611, -0.024032598361372948, -0.006104836706072092, 0.04501049220561981, 0.008562623523175716, 0.24886615574359894, -0.017825139686465263, 0.012180937454104424, -0.022851597517728806, -0.16811321675777435, -0.058320313692092896, -0.08560813218355179, -0.12346646934747696, 0.00521913543343544, -0.02054961770772934, 0.1094672828912735, 0.1123301237821579, -0.1650833636522293, 0.11723854392766953, -0.047786734998226166, -0.08334077894687653, -0.09617409110069275, -0.08764050155878067, -0.0493435300886631, -0.07510514557361603, 0.043478820472955704, -0.1036902368068695, 0.10051343590021133, 0.0591275729238987, 0.02129269391298294, -0.0033605818171054125, 0.1650187224149704, -0.10230227559804916, -0.07002109289169312, 0.016994738951325417, -0.030257921665906906, 0.02726970613002777, 0.06251829862594604, 0.019203200936317444, 0.08948779106140137, -0.01967785134911537, 0.037951093167066574, 0.06955014914274216, 0.03317389264702797, -0.0026082636322826147, -0.07236972451210022, -0.06219777464866638, 0.02061094529926777, 0.014833703637123108, 0.04264869540929794, 0.16743594408035278, 0.046189747750759125, 0.0403447300195694, -0.0030229659751057625, 0.10771357268095016, 0.00556431757286191, -0.06912726908922195, -0.17274002730846405, -0.03012450784444809, -0.015457850880920887, -0.0184797253459692, 0.04764552786946297, -0.08744385093450546, 0.06370077282190323, 0.1849908083677292, 0.025013336911797523, 0.04538717120885849, 0.005386462435126305, 0.03300414979457855, -0.00758732482790947, -0.06557875126600266, 0.056183524429798126, 0.0523265041410923, 0.22221684455871582, -0.07489891350269318, -0.005492970813065767, -0.08884882181882858, -0.06793128699064255, -0.049685124307870865, 0.10155168175697327, -0.0699663832783699, -0.07171428203582764, -0.00915499683469534, 0.13700082898139954, -0.017868947237730026, -0.17898915708065033, -0.002256576670333743, -0.028560860082507133, -0.10202477872371674, -0.015729470178484917, -0.028919775038957596, 0.007706968579441309, -0.0057981270365417, 0.033100489526987076, 0.018997859209775925, 0.1386619210243225, 0.04404190182685852, 0.015241175889968872, -0.01364590972661972, 0.07173660397529602, -0.19606633484363556, 0.013813614845275879, 0.017541423439979553, 0.2531645596027374, 0.09726182371377945, 0.050079260021448135, -0.056042540818452835, 0.04267016425728798, 0.09005782753229141, -0.05886735022068024, 0.017442874610424042, 0.16839691996574402, 0.018450157716870308, 0.1702992469072342, 0.09401597827672958, 0.01465828437358141, 0.053838081657886505, 0.02545955218374729, -0.03188084065914154, -0.11982928216457367, 0.07012699544429779, -0.09073576331138611, 0.1151093915104866, 0.11513085663318634, -0.0577930323779583, -0.00485056871548295, -0.04454680532217026, 0.025151561945676804, 0.012032325379550457, 0.02697952277958393, 0.003623504191637039, -0.2903955578804016, 0.03666588291525841, -0.029625041410326958, 0.040730152279138565, -0.24044831097126007, -0.06496378779411316, 0.03460002318024635, -0.06765314191579819, 0.03209448978304863, 0.08033914864063263, 0.051116202026605606, -0.020092841237783432, 0.016433415934443474, -0.06593851745128632, 0.05240499600768089, 0.09980513900518417, -0.08715532720088959, -0.03671806678175926 ]
null
null
transformers
# Wav2Vec2-Large-XLSR-53-Marathi Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Marathi using the [OpenSLR SLR64](http://openslr.org/64/) dataset. Note that this data contains only female voices. Please keep this in mind before using the model for your task, although it works very well for male voice too. When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows, assuming you have a dataset with Marathi `sentence` and `path` fields: ```python import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor # test_dataset = #TODO: WRITE YOUR CODE TO LOAD THE TEST DATASET. For sample see the Colab link in Training Section. processor = Wav2Vec2Processor.from_pretrained("gchhablani/wav2vec2-large-xlsr-mr") model = Wav2Vec2ForCTC.from_pretrained("gchhablani/wav2vec2-large-xlsr-mr") resampler = torchaudio.transforms.Resample(48_000, 16_000) # The original data was with 48,000 sampling rate. You can change it according to your input. # Preprocessing the datasets. # We need to read the audio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset["sentence"][:2]) ``` ## Evaluation The model can be evaluated as follows on 10% of the Marathi data on OpenSLR. ```python import torch import torchaudio from datasets import load_dataset, load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import re # test_dataset = #TODO: WRITE YOUR CODE TO LOAD THE TEST DATASET. For sample see the Colab link in Training Section. wer = load_metric("wer") processor = Wav2Vec2Processor.from_pretrained("gchhablani/wav2vec2-large-xlsr-mr") model = Wav2Vec2ForCTC.from_pretrained("gchhablani/wav2vec2-large-xlsr-mr") model.to("cuda") chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\“\%\‘\”\�\–\…]' resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) # Preprocessing the datasets. # We need to read the aduio files as arrays def evaluate(batch): inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits pred_ids = torch.argmax(logits, dim=-1) batch["pred_strings"] = processor.batch_decode(pred_ids) return batch result = test_dataset.map(evaluate, batched=True, batch_size=8) print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"]))) ``` **Test Result**: 14.53 % ## Training 90% of the OpenSLR Marathi dataset was used for training. The colab notebook used for training can be found [here](https://colab.research.google.com/drive/1_BbLyLqDUsXG3RpSULfLRjC6UY3RjwME?usp=sharing).
{"language": "mr", "license": "apache-2.0", "tags": ["audio", "automatic-speech-recognition", "speech", "xlsr-fine-tuning-week"], "datasets": ["openslr"], "metrics": ["wer"], "model-index": [{"name": "XLSR Wav2Vec2 Large 53 Marathi by Gunjan Chhablani", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Speech Recognition"}, "dataset": {"name": "OpenSLR mr", "type": "openslr"}, "metrics": [{"type": "wer", "value": 14.53, "name": "Test WER"}]}]}]}
automatic-speech-recognition
gchhablani/wav2vec2-large-xlsr-mr
[ "transformers", "pytorch", "jax", "wav2vec2", "automatic-speech-recognition", "audio", "speech", "xlsr-fine-tuning-week", "mr", "dataset:openslr", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "mr" ]
TAGS #transformers #pytorch #jax #wav2vec2 #automatic-speech-recognition #audio #speech #xlsr-fine-tuning-week #mr #dataset-openslr #license-apache-2.0 #model-index #endpoints_compatible #region-us
# Wav2Vec2-Large-XLSR-53-Marathi Fine-tuned facebook/wav2vec2-large-xlsr-53 on Marathi using the OpenSLR SLR64 dataset. Note that this data contains only female voices. Please keep this in mind before using the model for your task, although it works very well for male voice too. When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows, assuming you have a dataset with Marathi 'sentence' and 'path' fields: ## Evaluation The model can be evaluated as follows on 10% of the Marathi data on OpenSLR. Test Result: 14.53 % ## Training 90% of the OpenSLR Marathi dataset was used for training. The colab notebook used for training can be found here.
[ "# Wav2Vec2-Large-XLSR-53-Marathi\n\nFine-tuned facebook/wav2vec2-large-xlsr-53 on Marathi using the OpenSLR SLR64 dataset. Note that this data contains only female voices. Please keep this in mind before using the model for your task, although it works very well for male voice too. When using this model, make sure that your speech input is sampled at 16kHz.", "## Usage\n\nThe model can be used directly (without a language model) as follows, assuming you have a dataset with Marathi 'sentence' and 'path' fields:", "## Evaluation\n\nThe model can be evaluated as follows on 10% of the Marathi data on OpenSLR.\n\n\n\nTest Result: 14.53 %", "## Training\n\n90% of the OpenSLR Marathi dataset was used for training.\nThe colab notebook used for training can be found here." ]
[ "TAGS\n#transformers #pytorch #jax #wav2vec2 #automatic-speech-recognition #audio #speech #xlsr-fine-tuning-week #mr #dataset-openslr #license-apache-2.0 #model-index #endpoints_compatible #region-us \n", "# Wav2Vec2-Large-XLSR-53-Marathi\n\nFine-tuned facebook/wav2vec2-large-xlsr-53 on Marathi using the OpenSLR SLR64 dataset. Note that this data contains only female voices. Please keep this in mind before using the model for your task, although it works very well for male voice too. When using this model, make sure that your speech input is sampled at 16kHz.", "## Usage\n\nThe model can be used directly (without a language model) as follows, assuming you have a dataset with Marathi 'sentence' and 'path' fields:", "## Evaluation\n\nThe model can be evaluated as follows on 10% of the Marathi data on OpenSLR.\n\n\n\nTest Result: 14.53 %", "## Training\n\n90% of the OpenSLR Marathi dataset was used for training.\nThe colab notebook used for training can be found here." ]
[ 78, 103, 41, 29, 28 ]
[ "passage: TAGS\n#transformers #pytorch #jax #wav2vec2 #automatic-speech-recognition #audio #speech #xlsr-fine-tuning-week #mr #dataset-openslr #license-apache-2.0 #model-index #endpoints_compatible #region-us \n# Wav2Vec2-Large-XLSR-53-Marathi\n\nFine-tuned facebook/wav2vec2-large-xlsr-53 on Marathi using the OpenSLR SLR64 dataset. Note that this data contains only female voices. Please keep this in mind before using the model for your task, although it works very well for male voice too. When using this model, make sure that your speech input is sampled at 16kHz.## Usage\n\nThe model can be used directly (without a language model) as follows, assuming you have a dataset with Marathi 'sentence' and 'path' fields:## Evaluation\n\nThe model can be evaluated as follows on 10% of the Marathi data on OpenSLR.\n\n\n\nTest Result: 14.53 %## Training\n\n90% of the OpenSLR Marathi dataset was used for training.\nThe colab notebook used for training can be found here." ]
[ -0.14064158499240875, 0.03931112587451935, -0.0007290017092600465, 0.0197933167219162, 0.08570568263530731, -0.06901244819164276, 0.15479505062103271, 0.08988252282142639, -0.06108381971716881, 0.019858304411172867, 0.016141418367624283, 0.02785462886095047, 0.060221150517463684, 0.14245609939098358, 0.016560954973101616, -0.17385181784629822, 0.0005505825974978507, 0.0006122778868302703, -0.04510495439171791, 0.10929132252931595, 0.13644275069236755, -0.06951094418764114, -0.040059931576251984, 0.10651721060276031, -0.16184002161026, 0.00995442271232605, 0.013927045278251171, -0.058384593576192856, 0.07271581143140793, 0.04501673951745033, 0.08155014365911484, 0.05127610266208649, 0.0653582215309143, -0.16708268225193024, 0.034522645175457, 0.012964270077645779, 0.021271610632538795, 0.03883718326687813, 0.08193054795265198, -0.02726052701473236, 0.047886673361063004, 0.0214861948043108, 0.009682521224021912, 0.058891136199235916, -0.03426331654191017, -0.23616841435432434, -0.048637595027685165, 0.007801526226103306, 0.10049641877412796, 0.14821188151836395, -0.03734273463487625, 0.13445767760276794, -0.07508188486099243, 0.13330398499965668, 0.09583234786987305, -0.1357906609773636, -0.020461855456233025, 0.10102888196706772, 0.03546089679002762, 0.10153257101774216, -0.12346186488866806, 0.0073846979066729546, 0.03161173686385155, -0.04060864448547363, 0.09516022354364395, -0.013353271409869194, -0.12777858972549438, -0.01924266666173935, -0.0991227850317955, 0.004435480106621981, 0.20949959754943848, -0.02077866531908512, -0.05109458044171333, -0.13387610018253326, -0.05521601065993309, -0.008365387097001076, 0.006615170277655125, -0.02057538740336895, -0.02375420741736889, 0.042976707220077515, 0.03873283788561821, -0.06335967779159546, -0.10247650742530823, -0.09006725996732712, 0.061861418187618256, 0.13457877933979034, 0.007982457056641579, -0.0035408069379627705, -0.058345407247543335, 0.051361408084630966, -0.09051572531461716, -0.11956238746643066, -0.02138931304216385, 0.02985561080276966, -0.10959549993276596, 0.007463360205292702, -0.05634503439068794, -0.20300807058811188, 0.0025835803244262934, -0.031076297163963318, 0.047808632254600525, 0.027475403621792793, -0.03687335550785065, 0.04847954958677292, 0.029047895222902298, 0.14405152201652527, -0.022925036028027534, 0.013237180188298225, 0.0757865235209465, -0.021766113117337227, 0.002026689238846302, -0.02693316712975502, -0.028273362666368484, -0.050114624202251434, 0.007029591593891382, 0.05623263865709305, -0.07406964153051376, 0.03628556802868843, -0.007539226673543453, -0.013389972038567066, 0.04826672002673149, -0.12914910912513733, -0.00215916964225471, 0.04238247498869896, -0.00032837814069353044, 0.08201439678668976, 0.03961033374071121, 0.013381658121943474, -0.06136768311262131, -0.08040747046470642, -0.03883513808250427, 0.05170917883515358, -0.11807220429182053, -0.11660107970237732, -0.013011910021305084, -0.0025127262342721224, -0.017858698964118958, -0.11284411698579788, -0.1853858381509781, -0.0558895617723465, -0.03089527040719986, -0.011316481977701187, 0.01756022498011589, -0.08022986352443695, -0.03093721903860569, 0.003833106253296137, -0.04570207744836807, 0.05864030122756958, -0.026056233793497086, 0.06855888664722443, 0.004657916259020567, 0.05119568109512329, 0.06017851084470749, 0.07787822186946869, -0.03703118860721588, -0.0185746718198061, -0.044417474418878555, 0.1449156254529953, -0.09475450962781906, -0.02963566966354847, -0.10588948428630829, -0.04774139076471329, 0.004022593144327402, 0.028108863160014153, 0.07417857646942139, 0.07561986893415451, -0.1607113778591156, -0.018956560641527176, 0.21251270174980164, -0.15282753109931946, -0.01240114402025938, 0.1358424723148346, -0.02374039590358734, 0.1433073729276657, 0.05168761685490608, 0.20043522119522095, 0.1942151039838791, -0.11327620595693588, 0.058162588626146317, 0.020688390359282494, 0.011056971736252308, -0.02422661893069744, 0.10239533334970474, -0.01450587809085846, -0.012166041880846024, 0.0057498314417898655, -0.10484342277050018, 0.07012876868247986, -0.035209570080041885, -0.06758229434490204, -0.03521686792373657, -0.042189884930849075, 0.003037448972463608, 0.007524191867560148, 0.04603559151291847, -0.013781314715743065, -0.061118580400943756, 0.036586128175258636, 0.14316393435001373, -0.145111545920372, 0.03958442062139511, -0.0842428207397461, 0.0854613333940506, -0.09244730323553085, -0.03077930212020874, -0.17041447758674622, 0.07620885223150253, 0.007693602703511715, 0.001976753817871213, 0.010391701012849808, 0.16356851160526276, 0.005641289055347443, 0.04618844389915466, -0.043511491268873215, -0.0140099311247468, 0.026853008195757866, 0.0011378562776371837, -0.04514442756772041, -0.12686914205551147, 0.01828032359480858, -0.07335519045591354, 0.11449125409126282, -0.20082633197307587, 0.03860081732273102, 0.05236388370394707, 0.01964806765317917, 0.012801785953342915, -0.03765003755688667, 0.08225126564502716, 0.05948597565293312, 0.010006112977862358, -0.017092762514948845, 0.037188004702329636, 0.058846551924943924, -0.03061491623520851, 0.09071435779333115, -0.10151854157447815, 0.003090887563303113, 0.04479461908340454, -0.026354955509305, -0.09310227632522583, -0.050266917794942856, -0.01050008274614811, -0.031215794384479523, -0.1021478995680809, -0.03808683902025223, 0.18715651333332062, -0.021298274397850037, 0.1572948396205902, -0.07381582260131836, -0.015267422422766685, -0.0005082158604636788, -0.08833255618810654, 0.07639145851135254, 0.06341410428285599, -0.023694444447755814, -0.023396054282784462, 0.07556179910898209, -0.11783009022474289, -0.11891883611679077, 0.15696820616722107, -0.004126746207475662, -0.06199783459305763, 0.015610561706125736, 0.03635890409350395, -0.04688463732600212, 0.020667560398578644, -0.15363658964633942, -0.010336472652852535, 0.057428400963544846, 0.05542499199509621, 0.0270683690905571, -0.12581388652324677, 0.015147943049669266, 0.039669644087553024, -0.05197504907846451, -0.10274302959442139, 0.1019023135304451, -0.06336168199777603, 0.055759552866220474, -0.07878617942333221, 0.05423343926668167, -0.009287583641707897, -0.04328303784132004, -0.18772728741168976, 0.16282489895820618, -0.1160338893532753, -0.1707916259765625, -0.1696339100599289, -0.01966998726129532, 0.05344916507601738, -0.00726697500795126, 0.08209837973117828, -0.09139897674322128, -0.07162374258041382, -0.0224610585719347, 0.13394641876220703, 0.014110381714999676, -0.055780649185180664, -0.012664437294006348, -0.026158271357417107, 0.026508046314120293, -0.15942278504371643, 0.035295382142066956, 0.07033400982618332, -0.03127765655517578, 0.046044714748859406, -0.014518370851874352, 0.013407209888100624, 0.11473073065280914, -0.049937453120946884, -0.00042592297540977597, -0.012196178548038006, 0.11935141682624817, -0.0931345522403717, 0.027158506214618683, 0.16492752730846405, -0.005129145458340645, -0.0015550532843917608, 0.0841565728187561, -0.0015012342482805252, -0.0356748141348362, -0.004350002855062485, -0.049752313643693924, -0.06705530732870102, -0.2696763575077057, -0.08482100814580917, -0.08140445500612259, -0.037450291216373444, -0.055624984204769135, -0.007273655850440264, 0.12360883504152298, 0.06669218838214874, -0.018100949004292488, -0.0567636676132679, 0.013887990266084671, 0.0454208180308342, 0.13483569025993347, -0.019294243305921555, 0.11325933784246445, -0.05860328674316406, 0.052198901772499084, 0.017733709886670113, 0.01576838828623295, 0.16843567788600922, -0.022399941459298134, 0.09724202752113342, 0.11839378625154495, 0.09500839561223984, 0.10179927945137024, 0.06417429447174072, -0.06004174053668976, -0.03047511912882328, 0.030894333496689796, -0.06870144605636597, -0.06732607632875443, 0.05844426900148392, 0.0394732803106308, -0.012546621263027191, -0.042669303715229034, -0.04871286451816559, 0.008147756569087505, 0.10518361628055573, 0.038729965686798096, -0.17439045011997223, -0.09809515625238419, -0.026259295642375946, -0.06810414046049118, -0.05663234367966652, 0.019518334418535233, 0.14982087910175323, -0.10801831632852554, -0.03391415253281593, -0.0016846504295244813, 0.09344353526830673, 0.006853795610368252, -0.033377163112163544, -0.08593928813934326, 0.04149473085999489, -0.013586667366325855, 0.08921626210212708, -0.1697923094034195, 0.22316843271255493, 0.01710653491318226, 0.08677329123020172, 0.010233374312520027, -0.016437368467450142, 0.02446550317108631, 0.061253901571035385, 0.0868116244673729, 0.011412126943469048, 0.014750619418919086, -0.07288751751184464, -0.08624937385320663, 0.014973064884543419, -0.0040341634303331375, 0.029402893036603928, 0.06779415160417557, 0.001968416618183255, 0.028490029275417328, 0.02078210934996605, -0.003634792985394597, -0.09680597484111786, -0.05434688553214073, 0.011204379610717297, 0.08529181033372879, 0.09620283544063568, -0.0455433689057827, -0.10339391231536865, -0.14761607348918915, 0.1559603214263916, -0.06061062589287758, -0.10469536483287811, -0.1047835424542427, 0.08554121851921082, 0.01391503494232893, -0.06654135882854462, 0.037714213132858276, 0.01665056310594082, 0.131090447306633, 0.0018150205723941326, 0.017207449302077293, -0.0044568441808223724, -0.05652925744652748, -0.07733751088380814, -0.019191492348909378, 0.13438497483730316, 0.09396380931138992, 0.040519554167985916, 0.05512232333421707, 0.0240031611174345, -0.012293180450797081, -0.06791633367538452, -0.012817159295082092, 0.1432933211326599, -0.04659197852015495, 0.03349192067980766, -0.027395084500312805, -0.1495385766029358, -0.04796266928315163, -0.13513316214084625, 0.18776246905326843, 0.12768858671188354, -0.0712505578994751, 0.15667743980884552, 0.16998088359832764, -0.09486740827560425, -0.20884451270103455, 0.058418747037649155, 0.11785101890563965, 0.1262294501066208, -0.002474468434229493, -0.19218547642230988, 0.060322873294353485, -0.023984558880329132, -0.017919249832630157, -0.0967428907752037, -0.21676278114318848, -0.1205645352602005, 0.10246129333972931, 0.08587958663702011, 0.10185721516609192, -0.07239719480276108, -0.04599307104945183, 0.006674277596175671, -0.10513486713171005, -0.045502688735723495, -0.09799763560295105, 0.10424050688743591, -0.005136734340339899, 0.0839671716094017, 0.045634202659130096, -0.05306541174650192, 0.10509475320577621, 0.030441056936979294, 0.010371743701398373, -0.03759878873825073, 0.13164915144443512, 0.09556356072425842, 0.028207039460539818, 0.15671758353710175, -0.0060348608531057835, 0.05622675642371178, -0.11208439618349075, -0.0918770506978035, -0.04436364024877548, 0.03213292732834816, 0.014852694235742092, -0.07312982529401779, -0.03758891299366951, 0.005930112209171057, 0.06236269697546959, -0.033471155911684036, -0.07223492115736008, -0.08738446235656738, 0.051047515124082565, 0.10581759363412857, 0.16928379237651825, 0.09521710127592087, -0.07055943459272385, -0.04061085730791092, -0.020285144448280334, 0.10490396618843079, -0.17590081691741943, 0.013292239047586918, 0.04903585463762283, 0.06569866091012955, 0.11717217415571213, -0.0076831914484500885, -0.04663359746336937, 0.07339683175086975, 0.0380888395011425, -0.0077758352272212505, -0.11682998389005661, -0.01538640446960926, 0.07301308214664459, -0.010097253136336803, -0.01188619900494814, 0.1268772929906845, -0.10974220931529999, 0.000777368142735213, -0.018089499324560165, 0.004525701981037855, -0.07386302202939987, 0.1825089454650879, 0.051315419375896454, 0.08290731906890869, -0.06350875645875931, -0.023208945989608765, 0.00048042749403975904, -0.048921458423137665, 0.022744398564100266, 0.019580194726586342, -0.1261497288942337, -0.057471368461847305, 0.024968700483441353, 0.06048950180411339, 0.005854046903550625, -0.0693918764591217, -0.028628205880522728, -0.08861729502677917, -0.011599984019994736, 0.15217165648937225, 0.03800290822982788, 0.020011303946375847, -0.1082267090678215, -0.016571497544646263, -0.10531098395586014, 0.07119257003068924, 0.018884697929024696, -0.031493086367845535, -0.06301118433475494, 0.19150125980377197, 0.0376426987349987, 0.02154405787587166, -0.044329479336738586, -0.08448633551597595, -0.02751033566892147, 0.04784305393695831, -0.10129769891500473, 0.013813862577080727, -0.03085305728018284, -0.02853512205183506, -0.04630309343338013, -0.04700334370136261, 0.018564313650131226, 0.09066951274871826, -0.04198436066508293, 0.031663928180933, -0.03065529093146324, 0.09011325985193253, -0.05816709250211716, -0.017979765310883522, 0.04729865491390228, -0.05137791112065315, 0.06626570969820023, 0.07304469496011734, -0.07945545762777328, 0.05790386348962784, -0.19262705743312836, 0.028143638744950294, 0.02492007613182068, 0.052856698632240295, -0.019343463703989983, -0.22305075824260712, 0.04231269285082817, 0.046812910586595535, 0.02613871917128563, 0.017768830060958862, 0.12347310781478882, -0.036314528435468674, 0.03639848902821541, -0.12699437141418457, 0.021708836778998375, -0.09831864386796951, 0.08169663697481155, 0.016421347856521606, 0.127243772149086, 0.11045610904693604, -0.06706184148788452, 0.08427875488996506, -0.11725228279829025, 0.007196689024567604, -0.006336198654025793, -0.006941587198525667, -0.08041093498468399, -0.06324592232704163, 0.055399760603904724, -0.07687216997146606, 0.12160318344831467, 0.022730806842446327, -0.06257346272468567, 0.007405139971524477, -0.09485108405351639, 0.07873740792274475, -0.01314109843224287, 0.2129739224910736, 0.040377888828516006, 0.05830542743206024, 0.018673233687877655, 0.03285285085439682, -0.004369363188743591, 0.08101548999547958, 0.01900077611207962, 0.1543205976486206, -0.0588872954249382, 0.04836086928844452, -0.010809195227921009, -0.10923904180526733, -0.1013224646449089, -0.04970497265458107, -0.0805826261639595, 0.006942177191376686, -0.0829504057765007, 0.15031930804252625, 0.1983523815870285, -0.10463007539510727, 0.11238030344247818, 0.019217561930418015, -0.110256128013134, -0.09136620163917542, -0.09765901416540146, -0.052835073322057724, -0.11737670004367828, 0.028801588341593742, -0.09943655878305435, 0.03235660120844841, -0.0165605116635561, 0.044160764664411545, -0.01670791581273079, 0.19756199419498444, -0.05289708822965622, -0.07939761132001877, 0.017891570925712585, -0.05929291993379593, 0.0350581631064415, -0.10546433925628662, 0.034782230854034424, 0.10737019777297974, 0.012726517394185066, 0.06012284383177757, 0.03880895674228668, 0.02327868342399597, -0.00901163648813963, -0.10160697251558304, -0.041279859840869904, -0.007302223239094019, 0.015517983585596085, 0.06386684626340866, 0.21400992572307587, 0.0823458805680275, -0.05457261577248573, -0.013604368083178997, 0.1530306190252304, 0.0038666578475385904, -0.11172221601009369, -0.15355578064918518, 0.07592461258172989, 0.05164676159620285, -0.01636141911149025, 0.03605077415704727, -0.022679805755615234, 0.03304876387119293, 0.24581271409988403, 0.12899595499038696, 0.04307032749056816, 0.03887658566236496, -0.003570968983694911, -0.013984267599880695, -0.04407254979014397, 0.11823678016662598, 0.07420664280653, 0.16589030623435974, -0.047189950942993164, -0.0004885696689598262, -0.1299104243516922, -0.0522528775036335, -0.025251569226384163, 0.0043947733938694, -0.06264571845531464, -0.07703694701194763, -0.034229062497615814, 0.12424442172050476, -0.0026494686026126146, -0.11533303558826447, -0.08316162973642349, -0.027204463258385658, -0.10045880079269409, 0.011331881396472454, -0.0656537264585495, 0.04367977753281593, -0.03258093073964119, -0.025280460715293884, 0.04547177255153656, 0.1944216936826706, 0.011969446204602718, 0.026130152866244316, 0.009212425909936428, 0.08987432718276978, -0.1497543901205063, -0.011005844920873642, -0.01992250233888626, 0.19305948913097382, 0.05889563634991646, 0.08248448371887207, -0.016692934557795525, 0.14265654981136322, 0.023638851940631866, -0.07284754514694214, 0.02276904508471489, 0.17221581935882568, -0.029632044956088066, 0.07226534187793732, 0.013913373462855816, -0.038747403770685196, 0.04612075537443161, -0.09460298717021942, -0.01892692968249321, -0.07257344573736191, 0.0803014412522316, -0.040466926991939545, 0.11104337126016617, 0.10489650815725327, -0.06969912350177765, -0.07518139481544495, -0.04738785699009895, 0.015909112989902496, -0.002049430273473263, -0.035776495933532715, -0.02635975368320942, -0.25982949137687683, 0.004182257689535618, -0.051962319761514664, 0.02427426539361477, -0.2506650984287262, -0.08347712457180023, -0.015585272572934628, -0.0728861391544342, 0.01108365599066019, 0.08044490963220596, 0.05082840844988823, 0.02985924854874611, -0.006014698650687933, -0.17949476838111877, 0.024651918560266495, 0.09891539067029953, -0.11923348158597946, -0.11412704735994339 ]
null
null
transformers
# Wav2Vec2-Large-XLSR-53-Odia Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Odia using the [Common Voice](https://huggingface.co/datasets/common_voice). When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ```python import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor test_dataset = load_dataset("common_voice", "or", split="test[:2%]") processor = Wav2Vec2Processor.from_pretrained("gchhablani/wav2vec2-large-xlsr-or") model = Wav2Vec2ForCTC.from_pretrained("gchhablani/wav2vec2-large-xlsr-or") resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset["sentence"][:2]) ``` ## Evaluation The model can be evaluated as follows on the Odia test data of Common Voice. ```python import torch import torchaudio from datasets import load_dataset, load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import re test_dataset = load_dataset("common_voice", "or", split="test") wer = load_metric("wer") processor = Wav2Vec2Processor.from_pretrained("gchhablani/wav2vec2-large-xlsr-or") model = Wav2Vec2ForCTC.from_pretrained("gchhablani/wav2vec2-large-xlsr-or") model.to("cuda") chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\“\%\‘\”\�\–\…\'\_\’\।\|]' resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) # Preprocessing the datasets. # We need to read the aduio files as arrays def evaluate(batch): inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits pred_ids = torch.argmax(logits, dim=-1) batch["pred_strings"] = processor.batch_decode(pred_ids) return batch result = test_dataset.map(evaluate, batched=True, batch_size=8) print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"]))) ``` **Test Result**: 52.64 % ## Training The Common Voice `train` and `validation` datasets were used for training.The colab notebook used can be found [here](https://colab.research.google.com/drive/1s8DrwgB5y4Z7xXIrPXo1rQA5_1OZ8WD5?usp=sharing).
{"language": "or", "license": "apache-2.0", "tags": ["audio", "automatic-speech-recognition", "speech", "xlsr-fine-tuning-week"], "datasets": ["common_voice"], "metrics": ["wer"], "model-index": [{"name": "XLSR Wav2Vec2 Large 53 Odia by Gunjan Chhablani", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Speech Recognition"}, "dataset": {"name": "Common Voice or", "type": "common_voice", "args": "or"}, "metrics": [{"type": "wer", "value": 52.64, "name": "Test WER"}]}]}]}
automatic-speech-recognition
gchhablani/wav2vec2-large-xlsr-or
[ "transformers", "pytorch", "jax", "wav2vec2", "automatic-speech-recognition", "audio", "speech", "xlsr-fine-tuning-week", "or", "dataset:common_voice", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "or" ]
TAGS #transformers #pytorch #jax #wav2vec2 #automatic-speech-recognition #audio #speech #xlsr-fine-tuning-week #or #dataset-common_voice #license-apache-2.0 #model-index #endpoints_compatible #region-us
# Wav2Vec2-Large-XLSR-53-Odia Fine-tuned facebook/wav2vec2-large-xlsr-53 on Odia using the Common Voice. When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ## Evaluation The model can be evaluated as follows on the Odia test data of Common Voice. Test Result: 52.64 % ## Training The Common Voice 'train' and 'validation' datasets were used for training.The colab notebook used can be found here.
[ "# Wav2Vec2-Large-XLSR-53-Odia\nFine-tuned facebook/wav2vec2-large-xlsr-53 on Odia using the Common Voice.\nWhen using this model, make sure that your speech input is sampled at 16kHz.", "## Usage\nThe model can be used directly (without a language model) as follows:", "## Evaluation\nThe model can be evaluated as follows on the Odia test data of Common Voice.\n\nTest Result: 52.64 %", "## Training\nThe Common Voice 'train' and 'validation' datasets were used for training.The colab notebook used can be found here." ]
[ "TAGS\n#transformers #pytorch #jax #wav2vec2 #automatic-speech-recognition #audio #speech #xlsr-fine-tuning-week #or #dataset-common_voice #license-apache-2.0 #model-index #endpoints_compatible #region-us \n", "# Wav2Vec2-Large-XLSR-53-Odia\nFine-tuned facebook/wav2vec2-large-xlsr-53 on Odia using the Common Voice.\nWhen using this model, make sure that your speech input is sampled at 16kHz.", "## Usage\nThe model can be used directly (without a language model) as follows:", "## Evaluation\nThe model can be evaluated as follows on the Odia test data of Common Voice.\n\nTest Result: 52.64 %", "## Training\nThe Common Voice 'train' and 'validation' datasets were used for training.The colab notebook used can be found here." ]
[ 80, 63, 20, 29, 33 ]
[ "passage: TAGS\n#transformers #pytorch #jax #wav2vec2 #automatic-speech-recognition #audio #speech #xlsr-fine-tuning-week #or #dataset-common_voice #license-apache-2.0 #model-index #endpoints_compatible #region-us \n# Wav2Vec2-Large-XLSR-53-Odia\nFine-tuned facebook/wav2vec2-large-xlsr-53 on Odia using the Common Voice.\nWhen using this model, make sure that your speech input is sampled at 16kHz.## Usage\nThe model can be used directly (without a language model) as follows:## Evaluation\nThe model can be evaluated as follows on the Odia test data of Common Voice.\n\nTest Result: 52.64 %## Training\nThe Common Voice 'train' and 'validation' datasets were used for training.The colab notebook used can be found here." ]
[ -0.13317465782165527, 0.03680947795510292, -0.0017117433017119765, -0.0014778324402868748, 0.06938573718070984, -0.04021764174103737, 0.2317367047071457, 0.09008678048849106, -0.03441401198506355, -0.026782754808664322, -0.015197386965155602, 0.04216489940881729, 0.04584186151623726, 0.10698867589235306, 0.011208031326532364, -0.19052016735076904, -0.011638559401035309, 0.04520566016435623, 0.021774791181087494, 0.09972590953111649, 0.07802987843751907, -0.06626535207033157, -0.03480271250009537, 0.1172415167093277, -0.1821422576904297, 0.025879815220832825, 0.028325935825705528, -0.11747990548610687, 0.126645028591156, 0.09770825505256653, 0.10942095518112183, 0.04620776325464249, 0.08202862739562988, -0.1720295548439026, 0.03802816569805145, 0.018221424892544746, 0.013544336892664433, 0.04315099120140076, 0.0367312990128994, -0.016664426773786545, 0.02967805042862892, 0.1118374913930893, -0.012206701561808586, 0.07081817835569382, -0.07065337896347046, -0.25879958271980286, -0.003945064730942249, 0.008617239072918892, 0.08798477053642273, 0.12320178747177124, -0.05188406631350517, 0.13520735502243042, -0.10180234909057617, 0.092795230448246, 0.14676962792873383, -0.20900945365428925, -0.008652455173432827, 0.1204029992222786, 0.06891658902168274, 0.054208461195230484, -0.05805268511176109, 0.0186303798109293, 0.024690214544534683, 0.006861121393740177, 0.060917336493730545, -0.044248200953006744, -0.22244271636009216, -0.027653897181153297, -0.11756114661693573, -0.016584746539592743, 0.1926255226135254, -0.026094797998666763, -0.06094285845756531, -0.09784576296806335, -0.0164503026753664, -0.009401185438036919, -0.016290966421365738, -0.041251782327890396, 0.0012710769660770893, 0.03258100152015686, -0.0076123736798763275, -0.053148798644542694, -0.13087685406208038, -0.12452632188796997, -0.03273779898881912, 0.08855026960372925, 0.002622969215735793, 0.01117086224257946, -0.09820972383022308, 0.07888881862163544, -0.07231149077415466, -0.07032861560583115, 0.006257484667003155, 0.04234857112169266, -0.07763363420963287, 0.01257143821567297, -0.09493761509656906, -0.12899909913539886, 0.021294042468070984, -0.004962693899869919, 0.11669288575649261, 0.004270108416676521, -0.027347400784492493, 0.06797608733177185, 0.04287080839276314, 0.11589161306619644, 0.00548181589692831, -0.03310646861791611, 0.07600179314613342, 0.016120795160531998, -0.03866034373641014, -0.03416884317994118, -0.096128910779953, -0.04969312995672226, -0.0016075659077614546, 0.03042050078511238, -0.021643679589033127, 0.013518830761313438, -0.05598866939544678, -0.045979879796504974, 0.02238963358104229, -0.10478372126817703, -0.012949294410645962, 0.08722906559705734, 0.009321050718426704, 0.06142912060022354, 0.09758246690034866, 0.04772959649562836, -0.06747337430715561, -0.08230416476726532, 0.00227342383004725, 0.0583721362054348, -0.06783197820186615, -0.09313498437404633, -0.002645219210535288, 0.023362064734101295, -0.003409819444641471, -0.11353237926959991, -0.10657739639282227, -0.07455503195524216, 0.007244336884468794, 0.03856996074318886, -0.026084991171956062, -0.08461993932723999, 0.006208624225109816, -0.0359223298728466, -0.0689622312784195, 0.012442982755601406, -0.04489296302199364, 0.07520980387926102, 0.0489831417798996, 0.05714971572160721, -0.018200913444161415, 0.07697416096925735, -0.0504969097673893, -0.0600811205804348, 0.007959243841469288, 0.10711735486984253, -0.04596531391143799, -0.01737520843744278, -0.06468646228313446, -0.05819494277238846, -0.02316362038254738, 0.06410505622625351, 0.04713224247097969, 0.05169787257909775, -0.2212669551372528, -0.09887619316577911, 0.176650732755661, -0.11751651018857956, -0.02294648252427578, 0.18960827589035034, -0.023012222722172737, 0.1368357092142105, 0.11006630212068558, 0.23330572247505188, 0.1688307672739029, -0.19341124594211578, 0.04781351983547211, -0.02215784229338169, 0.0278595220297575, -0.08966801315546036, 0.05490460619330406, 0.019367631524801254, -0.013057214207947254, 0.03714852035045624, -0.01896604150533676, 0.08113949000835419, -0.012017766013741493, -0.07049178332090378, -0.009774581529200077, -0.06618733704090118, 0.012308946810662746, 0.042484261095523834, 0.03500118851661682, -0.002124947030097246, -0.04497889056801796, 0.11134164780378342, 0.10270272195339203, -0.15351729094982147, 0.03186120092868805, -0.10383693873882294, 0.07439793646335602, -0.09017004072666168, -0.02452111802995205, -0.1593976616859436, 0.1242741271853447, -0.006588388234376907, 0.05084314942359924, 0.08094877749681473, 0.2268100380897522, -0.008981738239526749, 0.03049902804195881, -0.014583169482648373, 0.02340012975037098, -0.002003925386816263, -0.01718512363731861, -0.04424821957945824, -0.06425679475069046, -0.007166248746216297, -0.06287841498851776, 0.1023496612906456, -0.1624245047569275, 0.02766006998717785, 0.013537297956645489, -0.013061495497822762, 0.015577796846628189, -0.015787336975336075, 0.06994779407978058, 0.09908297657966614, 0.002971296664327383, 0.025417936965823174, 0.0653216615319252, 0.056526489555835724, -0.03127927705645561, 0.07745274901390076, -0.18716461956501007, 0.017805563285946846, 0.11198052763938904, -0.02779054082930088, -0.021538712084293365, -0.0623970590531826, -0.02676713466644287, -0.01096794381737709, -0.08339281380176544, -0.0045852563343942165, 0.3271259665489197, -0.034738484770059586, 0.1154346615076065, -0.08638034015893936, -0.011268101632595062, -0.003725066315382719, -0.08295175433158875, 0.0803561806678772, 0.047044072300195694, -0.012660105712711811, 0.042115092277526855, 0.03494507446885109, -0.04265892133116722, -0.12271172553300858, 0.20032407343387604, -0.010384839028120041, -0.07448265701532364, -0.002126385923475027, -0.06242095306515694, 0.011194130405783653, 0.07659101486206055, -0.12222253531217575, -0.027213487774133682, 0.04701736569404602, 0.032532986253499985, 0.04534537345170975, -0.16744917631149292, 0.03749211132526398, 0.035860635340213776, -0.1072433665394783, -0.12878359854221344, 0.04046932980418205, -0.041426870971918106, 0.019437076523900032, -0.09465083479881287, -0.008028242737054825, -0.01132122240960598, -0.036366384476423264, -0.13668440282344818, 0.14214234054088593, -0.09264068305492401, -0.22593916952610016, -0.15610402822494507, -0.009548518806695938, 0.05362139642238617, 0.03989178314805031, 0.10653406381607056, -0.047995470464229584, -0.016834931448101997, -0.036120422184467316, 0.13726161420345306, 0.08112668991088867, -0.044001419097185135, -0.019000960513949394, 0.02339581958949566, 0.05650269612669945, -0.16526557505130768, 0.01558526512235403, -0.01884193904697895, -0.0595351979136467, 0.019546661525964737, -0.021990390494465828, -0.01803985796868801, 0.1589658558368683, 0.030965127050876617, -0.0028638686053454876, -0.019975587725639343, 0.17894688248634338, -0.08517569303512573, -0.034411754459142685, 0.17730174958705902, -0.034467898309230804, -0.021729150786995888, 0.08938965946435928, 0.03601786121726036, -0.07345101237297058, -0.003861468518152833, -0.02350233681499958, -0.08356910198926926, -0.2227584272623062, -0.10346491634845734, -0.06594932824373245, -0.02520231157541275, -0.027767974883317947, -0.0045103877782821655, 0.06326594203710556, 0.043011460453271866, 0.020366089418530464, -0.011714617721736431, 0.017320457845926285, -0.0017234266269952059, 0.18466459214687347, -0.005476790480315685, 0.09426434338092804, -0.04806949943304062, -0.019870884716510773, 0.02038697525858879, 0.09222080558538437, 0.15571993589401245, 0.024051541462540627, 0.11451958119869232, 0.08135402947664261, 0.09018490463495255, 0.13433495163917542, 0.0805225595831871, -0.042037226259708405, -0.022870466113090515, 0.011884021572768688, -0.05683785304427147, -0.05941588059067726, 0.02821744792163372, 0.10269477218389511, -0.04213032126426697, -0.04438285529613495, -0.10903692245483398, 0.0029025673866271973, 0.16554081439971924, 0.05770436301827431, -0.23039771616458893, -0.09309861063957214, -0.025788523256778717, -0.057749271392822266, -0.006973680574446917, 0.05158166214823723, 0.14424879848957062, -0.10958711057901382, -0.028870539739727974, 0.009411709383130074, 0.09354819357395172, -0.07293695956468582, 0.006827457342296839, -0.08711332827806473, 0.02790331095457077, 0.003461550222709775, 0.07291195541620255, -0.17374053597450256, 0.18487097322940826, 0.013930846005678177, 0.09737994521856308, -0.0196677315980196, -0.00617598183453083, 0.022559821605682373, 0.06240823492407799, 0.06702149659395218, -0.0010205494472756982, 0.022166309878230095, -0.10983318090438843, -0.1238740012049675, 0.058709148317575455, -0.05547265708446503, 0.013155653141438961, 0.04206286370754242, -0.0017398128984495997, 0.005068919155746698, 0.002094259485602379, -0.08022474497556686, -0.1235598474740982, -0.07275624573230743, 0.011020321398973465, 0.16588179767131805, 0.1103992760181427, -0.02719194069504738, -0.10930487513542175, -0.08244886249303818, 0.13085393607616425, -0.03385177254676819, -0.035184457898139954, -0.07245101034641266, 0.0022403066977858543, 0.07203183323144913, -0.04898801073431969, 0.01380134467035532, 0.08866680413484573, 0.11495862901210785, -0.024123061448335648, -0.06571368128061295, 0.04932665824890137, -0.10337680578231812, -0.06543411314487457, -0.039842765778303146, 0.13124410808086395, 0.10229246318340302, 0.0854920893907547, 0.07579292356967926, 0.0040578292682766914, -0.03706891089677811, -0.030247846618294716, -0.01932845264673233, 0.13972103595733643, -0.037464022636413574, -0.021663304418325424, -0.030661435797810555, -0.18242990970611572, -0.06409507244825363, -0.039100442081689835, 0.17432108521461487, 0.10339976847171783, -0.05307785049080849, 0.17007172107696533, 0.21146659553050995, -0.09620631486177444, -0.21245872974395752, -0.010861855000257492, 0.12823301553726196, 0.13592912256717682, 0.028224673122167587, -0.18767546117305756, 0.08991724997758865, 0.019995467737317085, -0.03687131777405739, 0.006996199022978544, -0.2643094062805176, -0.1355038583278656, 0.16986024379730225, 0.03558929264545441, 0.14357322454452515, -0.04688478633761406, -0.01823795959353447, -0.010934853926301003, -0.10348573327064514, 0.08922459185123444, -0.11595381051301956, 0.1394735425710678, 0.010413339361548424, 0.06675302982330322, 0.04276119917631149, -0.02760579064488411, 0.07440592348575592, 0.05438763275742531, -0.014084133319556713, -0.020784158259630203, 0.07033350318670273, 0.04231691360473633, 0.0015117444563657045, 0.08181946724653244, -0.051798440515995026, 0.03303757682442665, -0.08798053860664368, -0.10535692423582077, -0.04984831064939499, 0.06761738657951355, 0.015116124413907528, -0.04749798774719238, -0.001994685735553503, -0.024054154753684998, 0.0013225700240582228, -0.013226095587015152, -0.046195611357688904, -0.12849818170070648, 0.07377775013446808, 0.1586623638868332, 0.16318458318710327, -0.009661509655416012, -0.1134212538599968, -0.005448722746223211, -0.03000504896044731, 0.11746276915073395, -0.09727008640766144, 0.025025147944688797, 0.07792104780673981, 0.019520271569490433, 0.11957906186580658, 0.02717117965221405, -0.08471480756998062, 0.08645283430814743, 0.06003039702773094, -0.06980600953102112, -0.048179611563682556, -0.02209394983947277, 0.01847410574555397, -0.018448207527399063, 0.017736639827489853, 0.1347840130329132, -0.07754883915185928, -0.04210525378584862, 0.012999016791582108, -0.016319895163178444, -0.10777805000543594, 0.183675616979599, 0.010418021120131016, 0.0676070973277092, -0.08654937148094177, -0.014495446346700191, 0.02298114448785782, -0.057158276438713074, 0.010645885951817036, -0.018986204639077187, -0.07957814633846283, -0.07652624696493149, 0.03883295878767967, 0.08813323825597763, 0.0233139730989933, -0.09323009848594666, -0.07796968519687653, -0.08526004105806351, -0.026784244924783707, 0.1142420545220375, 0.07097204774618149, 0.014854278415441513, -0.10962788760662079, -0.04054342955350876, -0.07405766099691391, 0.06993736326694489, 0.03376878425478935, -0.0034383912570774555, -0.060954540967941284, 0.1803126037120819, 0.04218808934092522, 0.02732808142900467, -0.0533260814845562, -0.08255865424871445, -0.0620308592915535, 0.05710161477327347, -0.0579926036298275, 0.004449624568223953, -0.044524360448122025, 0.019420968368649483, 0.0030111372470855713, -0.05728514865040779, 0.011629446409642696, 0.08111440390348434, -0.1010952889919281, 0.06708979606628418, -0.019707519561052322, 0.06702591478824615, -0.05029267817735672, -0.002969166496768594, 0.047165755182504654, -0.04551827162504196, 0.08492078632116318, 0.10710399597883224, -0.1001516804099083, 0.0842248946428299, -0.21200639009475708, -0.02727236971259117, 0.07071342319250107, 0.08184120059013367, 0.000494000967592001, -0.1321638822555542, 0.0440242700278759, 0.07046538591384888, 0.07562513649463654, -0.011711488477885723, 0.1306118369102478, -0.0702977180480957, -0.0442705936729908, -0.07563170045614243, -0.009764638729393482, -0.04752200469374657, -0.008738678880035877, 0.041003867983818054, 0.15313228964805603, 0.12565991282463074, -0.09027724713087082, 0.08935219049453735, -0.1110333651304245, 0.005432024132460356, -0.02859828621149063, -0.05397907271981239, -0.10141563415527344, -0.1028202474117279, 0.051209498196840286, -0.009131550788879395, 0.11987373977899551, 0.016555067151784897, 0.03320162370800972, -0.04995765537023544, -0.1401321291923523, 0.06220172718167305, -0.02470593899488449, 0.23762346804141998, 0.04417342692613602, 0.029275404289364815, 0.005498351063579321, 0.03143298253417015, 0.025357145816087723, 0.08204136788845062, 0.012404385954141617, 0.07171199470758438, -0.01826276071369648, 0.07496299594640732, 0.0784110352396965, -0.03372740000486374, -0.06929613649845123, -0.04741021618247032, -0.10870223492383957, 0.04877690598368645, -0.09160786122083664, 0.1458636373281479, 0.11784759163856506, -0.06021663174033165, 0.09791717678308487, 0.021736780181527138, -0.08123582601547241, -0.14271000027656555, -0.10393635183572769, -0.05317122861742973, -0.16467656195163727, 0.007444226182997227, -0.10138211399316788, 0.009573745541274548, 0.032934244722127914, 0.034990713000297546, -0.00238714343868196, 0.17111775279045105, 0.00018115746206603944, -0.061565469950437546, 0.02812856249511242, -0.08238869160413742, -0.014453917741775513, -0.14727364480495453, 0.04047466069459915, 0.1284853219985962, 0.044205836951732635, 0.05756078660488129, 0.01886874996125698, -0.031156392768025398, 0.026805637404322624, -0.07377307116985321, -0.056757859885692596, -0.039174940437078476, -0.01293351873755455, 0.07850639522075653, 0.11903849244117737, 0.11583148688077927, -0.06466051936149597, 0.017555825412273407, 0.11858516186475754, -0.03745017945766449, -0.16012048721313477, -0.1452489048242569, 0.10014880448579788, 0.008905830793082714, -0.01637471280992031, -0.009082862176001072, -0.022587472572922707, -0.00770148728042841, 0.2703559696674347, 0.17858323454856873, 0.05688967555761337, 0.040401700884103775, 0.01839330606162548, -0.011951669119298458, -0.03996589779853821, 0.0782713070511818, 0.09496812522411346, 0.25223207473754883, -0.018583834171295166, -0.07290609180927277, -0.05895063281059265, -0.06531523913145065, -0.019920840859413147, -0.02569642849266529, -0.08437356352806091, -0.07107146084308624, 0.011560587212443352, 0.10935619473457336, -0.03094971366226673, -0.11401227116584778, -0.06724964827299118, -0.05695819482207298, -0.08782890439033508, -0.013004028238356113, 0.04363883286714554, 0.06516334414482117, 0.008569460362195969, -0.07835206389427185, 0.026494339108467102, 0.1776750534772873, -0.03907941281795502, -0.06048951297998428, -0.018277490511536598, 0.051183804869651794, -0.13076834380626678, 0.034632302820682526, -0.0199675764888525, 0.16382265090942383, 0.017026051878929138, 0.08851559460163116, -0.016059458255767822, 0.1513298898935318, -0.022623851895332336, -0.11824192106723785, 0.027767838910222054, 0.11667497456073761, -0.035960759967565536, 0.06754328310489655, 0.006537273060530424, -0.09570597857236862, 0.07674366980791092, -0.1552046239376068, 0.00645696185529232, -0.05753406137228012, 0.03361370414495468, -0.04776248708367348, 0.08831249922513962, 0.0789676234126091, -0.07089369744062424, -0.07487257570028305, -0.02894672192633152, 0.05152256041765213, 0.043682340532541275, -0.0652250126004219, -0.0549142062664032, -0.21211721003055573, -0.01575864851474762, -0.073066346347332, -0.022634048014879227, -0.20223723351955414, -0.054310571402311325, -0.006537031382322311, -0.09615359455347061, -0.02251358889043331, 0.04100886359810829, 0.09222835302352905, 0.018481310456991196, -0.01885497011244297, -0.0775030329823494, 0.02983230911195278, 0.10025162994861603, -0.1789017617702484, -0.15327532589435577 ]
null
null
transformers
# Wav2Vec2-Large-XLSR-53-Portuguese Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Portuguese using the [Common Voice](https://huggingface.co/datasets/common_voice) dataset. When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ```python import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor test_dataset = load_dataset("common_voice", "pt", split="test[:2%]") processor = Wav2Vec2Processor.from_pretrained("gchhablani/wav2vec2-large-xlsr-pt") model = Wav2Vec2ForCTC.from_pretrained("gchhablani/wav2vec2-large-xlsr-pt") resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset["sentence"][:2]) ``` ## Evaluation The model can be evaluated as follows on the Portuguese test data of Common Voice. ```python import torch import torchaudio from datasets import load_dataset, load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import re test_dataset = load_dataset("common_voice", "pt", split="test") wer = load_metric("wer") processor = Wav2Vec2Processor.from_pretrained("gchhablani/wav2vec2-large-xlsr-pt") model = Wav2Vec2ForCTC.from_pretrained("gchhablani/wav2vec2-large-xlsr-pt") model.to("cuda") chars_to_ignore_regex = '[\,\?\.\!\-\;\;\"\“\'\�]' resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) # Preprocessing the datasets. # We need to read the aduio files as arrays def evaluate(batch): inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits pred_ids = torch.argmax(logits, dim=-1) batch["pred_strings"] = processor.batch_decode(pred_ids) return batch result = test_dataset.map(evaluate, batched=True, batch_size=8) print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"]))) ``` **Test Result**: 17.22 % ## Training The Common Voice `train` and `validation` datasets were used for training. The script used for training can be found [here](https://github.com/jqueguiner/wav2vec2-sprint/blob/main/run_common_voice.py). The parameters passed were: ```bash #!/usr/bin/env bash python run_common_voice.py \ --model_name_or_path="facebook/wav2vec2-large-xlsr-53" \ --dataset_config_name="pt" \ --output_dir=/workspace/output_models/pt/wav2vec2-large-xlsr-pt \ --cache_dir=/workspace/data \ --overwrite_output_dir \ --num_train_epochs="30" \ --per_device_train_batch_size="32" \ --per_device_eval_batch_size="32" \ --evaluation_strategy="steps" \ --learning_rate="3e-4" \ --warmup_steps="500" \ --fp16 \ --freeze_feature_extractor \ --save_steps="500" \ --eval_steps="500" \ --save_total_limit="1" \ --logging_steps="500" \ --group_by_length \ --feat_proj_dropout="0.0" \ --layerdrop="0.1" \ --gradient_checkpointing \ --do_train --do_eval \ ``` Notebook containing the evaluation can be found [here](https://colab.research.google.com/drive/14e-zNK_5pm8EMY9EbeZerpHx7WsGycqG?usp=sharing).
{"language": "pt", "license": "apache-2.0", "tags": ["audio", "automatic-speech-recognition", "speech", "xlsr-fine-tuning-week"], "datasets": ["common_voice"], "metrics": ["wer"], "model-index": [{"name": "Wav2Vec2 Large 53 Portugese by Gunjan Chhablani", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Speech Recognition"}, "dataset": {"name": "Common Voice pt", "type": "common_voice", "args": "pt"}, "metrics": [{"type": "wer", "value": 17.22, "name": "Test WER"}]}]}]}
automatic-speech-recognition
gchhablani/wav2vec2-large-xlsr-pt
[ "transformers", "pytorch", "jax", "wav2vec2", "automatic-speech-recognition", "audio", "speech", "xlsr-fine-tuning-week", "pt", "dataset:common_voice", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "pt" ]
TAGS #transformers #pytorch #jax #wav2vec2 #automatic-speech-recognition #audio #speech #xlsr-fine-tuning-week #pt #dataset-common_voice #license-apache-2.0 #model-index #endpoints_compatible #region-us
# Wav2Vec2-Large-XLSR-53-Portuguese Fine-tuned facebook/wav2vec2-large-xlsr-53 on Portuguese using the Common Voice dataset. When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ## Evaluation The model can be evaluated as follows on the Portuguese test data of Common Voice. Test Result: 17.22 % ## Training The Common Voice 'train' and 'validation' datasets were used for training. The script used for training can be found here. The parameters passed were: Notebook containing the evaluation can be found here.
[ "# Wav2Vec2-Large-XLSR-53-Portuguese\n\nFine-tuned facebook/wav2vec2-large-xlsr-53 on Portuguese using the Common Voice dataset. \nWhen using this model, make sure that your speech input is sampled at 16kHz.", "## Usage\n\nThe model can be used directly (without a language model) as follows:", "## Evaluation\n\nThe model can be evaluated as follows on the Portuguese test data of Common Voice.\n\n\n\n\nTest Result: 17.22 %", "## Training\n\nThe Common Voice 'train' and 'validation' datasets were used for training. The script used for training can be found here.\n The parameters passed were:\n\n\n\nNotebook containing the evaluation can be found here." ]
[ "TAGS\n#transformers #pytorch #jax #wav2vec2 #automatic-speech-recognition #audio #speech #xlsr-fine-tuning-week #pt #dataset-common_voice #license-apache-2.0 #model-index #endpoints_compatible #region-us \n", "# Wav2Vec2-Large-XLSR-53-Portuguese\n\nFine-tuned facebook/wav2vec2-large-xlsr-53 on Portuguese using the Common Voice dataset. \nWhen using this model, make sure that your speech input is sampled at 16kHz.", "## Usage\n\nThe model can be used directly (without a language model) as follows:", "## Evaluation\n\nThe model can be evaluated as follows on the Portuguese test data of Common Voice.\n\n\n\n\nTest Result: 17.22 %", "## Training\n\nThe Common Voice 'train' and 'validation' datasets were used for training. The script used for training can be found here.\n The parameters passed were:\n\n\n\nNotebook containing the evaluation can be found here." ]
[ 80, 67, 20, 29, 49 ]
[ "passage: TAGS\n#transformers #pytorch #jax #wav2vec2 #automatic-speech-recognition #audio #speech #xlsr-fine-tuning-week #pt #dataset-common_voice #license-apache-2.0 #model-index #endpoints_compatible #region-us \n# Wav2Vec2-Large-XLSR-53-Portuguese\n\nFine-tuned facebook/wav2vec2-large-xlsr-53 on Portuguese using the Common Voice dataset. \nWhen using this model, make sure that your speech input is sampled at 16kHz.## Usage\n\nThe model can be used directly (without a language model) as follows:## Evaluation\n\nThe model can be evaluated as follows on the Portuguese test data of Common Voice.\n\n\n\n\nTest Result: 17.22 %## Training\n\nThe Common Voice 'train' and 'validation' datasets were used for training. The script used for training can be found here.\n The parameters passed were:\n\n\n\nNotebook containing the evaluation can be found here." ]
[ -0.14910899102687836, 0.023432724177837372, -0.0020139378029853106, 0.00607210211455822, 0.13362321257591248, -0.055871929973363876, 0.17262285947799683, 0.11623161286115646, -0.06297843158245087, -0.02665073610842228, 0.01745113730430603, -0.004029807634651661, 0.06604428589344025, 0.09497375786304474, 0.0690816342830658, -0.20868481695652008, -0.00396781275048852, -0.01670280657708645, -0.030788108706474304, 0.11407015472650528, 0.09007594734430313, -0.06552644819021225, 0.0018078156281262636, 0.08645837008953094, -0.12783977389335632, 0.06505248695611954, 0.018827561289072037, -0.13781319558620453, 0.13857346773147583, 0.08477877825498581, 0.09923702478408813, 0.042573511600494385, 0.0901484563946724, -0.19870325922966003, 0.028552992269396782, 0.06564274430274963, 0.019789565354585648, 0.02522445283830166, 0.0707164853811264, -0.036268122494220734, 0.12785367667675018, 0.11012188345193863, -0.006829208694398403, 0.10038141161203384, -0.09368870407342911, -0.24502193927764893, -0.010805578902363777, -0.03204717859625816, 0.07458540052175522, 0.16712568700313568, -0.047204598784446716, 0.08057387173175812, -0.12089332193136215, 0.06559120863676071, 0.1288018673658371, -0.12690338492393494, -0.005425977520644665, 0.04502130299806595, 0.06606914103031158, 0.06264400482177734, -0.04443848505616188, 0.00829764548689127, 0.026036985218524933, 0.0019313161028549075, 0.047078266739845276, -0.02236299403011799, -0.20466701686382294, -0.02511587180197239, -0.11986132711172104, -0.06443145126104355, 0.2159949094057083, -0.027297213673591614, -0.07747070491313934, -0.12519152462482452, -0.0009608985274098814, 0.023902785032987595, 0.01915736496448517, -0.03252308815717697, -0.012606806121766567, 0.04866409674286842, -0.03166189417243004, -0.042780302464962006, -0.11145179718732834, -0.1473560482263565, 0.05477758124470711, 0.046204179525375366, 0.010067510418593884, 0.011997230350971222, -0.14622920751571655, 0.11010084301233292, -0.03365607559680939, -0.07273714989423752, -0.0010230483021587133, 0.016207009553909302, -0.028653819113969803, 0.021606456488370895, -0.04337509348988533, -0.1411842405796051, 0.013428471982479095, -0.016517752781510353, 0.0971846953034401, -0.007598078344017267, -0.036435555666685104, 0.07197196781635284, 0.016100026667118073, 0.10720254480838776, -0.06453656405210495, 0.0006045917980372906, 0.03121846169233322, 0.0053123654797673225, -0.058267075568437576, -0.02688778005540371, -0.0848584771156311, -0.02927403338253498, -0.018720019608736038, 0.09572991728782654, -0.0023598959669470787, -0.010041954927146435, -0.048224423080682755, -0.054616667330265045, 0.05312712490558624, -0.098729707300663, -0.03906432166695595, 0.08752284944057465, -0.043097805231809616, 0.08818377554416656, 0.11309917271137238, 0.035525381565093994, -0.10954349488019943, -0.047603365033864975, 0.019136033952236176, 0.058532778173685074, -0.06405213475227356, -0.11910944432020187, 0.019810227677226067, 0.012378801591694355, -0.024683883413672447, -0.09978927671909332, -0.11598774045705795, -0.08447807282209396, -0.01566222496330738, 0.03628729656338692, 0.037883978337049484, -0.09966570138931274, 0.0005597982672043145, -0.04355010390281677, -0.03515671193599701, 0.06779511272907257, -0.038429923355579376, 0.07123539596796036, 0.025486063212156296, 0.04838959872722626, 0.05828623101115227, 0.07851989567279816, -0.0793875902891159, -0.0760735422372818, -0.012982827611267567, 0.13354824483394623, -0.01637330837547779, -0.030188245698809624, -0.1034754291176796, -0.07941338419914246, -0.07895322889089584, 0.06295241415500641, 0.07338899374008179, 0.14057692885398865, -0.26298052072525024, -0.1108049750328064, 0.26045748591423035, -0.12781015038490295, -0.04245532304048538, 0.15293265879154205, -0.01667877472937107, 0.16940218210220337, 0.11371643841266632, 0.16706512868404388, 0.14448367059230804, -0.20754945278167725, 0.07945689558982849, -0.014017238281667233, -0.018215201795101166, -0.08011288940906525, 0.1142648383975029, -0.08719878643751144, 0.023257233202457428, 0.03158233314752579, -0.10762131959199905, 0.11140070855617523, -0.024127839133143425, -0.058102142065763474, 0.00002444788333377801, -0.04663269966840744, 0.02971864491701126, 0.04531730338931084, 0.018683521077036858, -0.0058907149359583855, -0.07797124981880188, 0.0667002871632576, 0.10305286943912506, -0.14465674757957458, 0.046112723648548126, -0.08518946170806885, 0.04869191721081734, -0.03866560384631157, -0.011012526229023933, -0.14137984812259674, 0.13683919608592987, -0.031711407005786896, 0.09078489989042282, 0.023235872387886047, 0.12031222134828568, 0.011935373768210411, 0.047373685985803604, -0.012562626972794533, -0.005356913898140192, -0.0453418530523777, -0.033425938338041306, -0.010265585035085678, -0.08601612597703934, -0.02712717466056347, -0.05461093410849571, 0.09615113586187363, -0.1662723273038864, 0.03764072805643082, 0.033774085342884064, -0.019066885113716125, 0.009843157604336739, -0.0382113978266716, 0.0746738538146019, 0.09368585795164108, -0.008802355267107487, -0.02753344736993313, 0.07019651681184769, 0.032884515821933746, -0.023593539372086525, 0.07727118581533432, -0.16157476603984833, -0.006312664598226547, 0.09536580741405487, -0.04986253008246422, -0.007783969398587942, -0.0027169426903128624, -0.0239780955016613, -0.004183163400739431, -0.1310633271932602, -0.0018923446768894792, 0.3039341866970062, 0.002954612486064434, 0.14398698508739471, -0.11123406141996384, 0.0026811815332621336, 0.023667581379413605, -0.06528013944625854, 0.05994002893567085, 0.03643994778394699, 0.0423525832593441, 0.1004100888967514, 0.02175852656364441, -0.04500749334692955, -0.04255859553813934, 0.273999959230423, -0.014479662291705608, -0.1015855222940445, 0.022977227345108986, 0.0059364717453718185, 0.01040671207010746, 0.043736059218645096, -0.18044520914554596, -0.04148627817630768, 0.028237223625183105, 0.039749693125486374, 0.05886780470609665, -0.1573389619588852, -0.0003756204096134752, 0.042143814265728, -0.1229536309838295, -0.19148573279380798, 0.035376567393541336, -0.06924998760223389, 0.04090069606900215, -0.08522205799818039, 0.008661358617246151, -0.027695532888174057, -0.04779260605573654, -0.18378405272960663, 0.15165214240550995, -0.08629368990659714, -0.22067762911319733, -0.1737615317106247, 0.10961830615997314, 0.06447527557611465, 0.038142189383506775, 0.09916606545448303, -0.12450253963470459, 0.017892006784677505, -0.022971825674176216, 0.11450657993555069, 0.02402796596288681, -0.06234253570437431, -0.02133648656308651, 0.06816604733467102, 0.055943988263607025, -0.16287009418010712, 0.019718453288078308, -0.017361152917146683, -0.07588818669319153, -0.02844194322824478, -0.027993138879537582, 0.03376759588718414, 0.1724516898393631, 0.04490718990564346, 0.021303053945302963, -0.042342789471149445, 0.14345389604568481, -0.09250103682279587, -0.028712112456560135, 0.24806922674179077, -0.007997680455446243, -0.018147679045796394, 0.03372000530362129, 0.026470186188817024, -0.057945702224969864, 0.006534957326948643, -0.029024513438344002, -0.11341226100921631, -0.2524932324886322, -0.08690720051527023, -0.05355909839272499, -0.03283203765749931, -0.0013818080769851804, -0.009444675408303738, 0.04450329765677452, 0.021778583526611328, -0.026569275185465813, -0.07251884043216705, 0.09695898741483688, 0.016269246116280556, 0.018726861104369164, -0.004716111347079277, 0.08698016405105591, -0.052997659891843796, -0.02217886596918106, 0.03837473690509796, 0.01716284640133381, 0.15669003129005432, 0.015122940763831139, 0.11529959738254547, 0.1005893424153328, 0.09757991135120392, 0.0839429423213005, 0.0989019125699997, -0.01970689371228218, -0.0070951879024505615, 0.0035745869390666485, -0.0754963606595993, -0.06839345395565033, 0.01220561284571886, 0.06760654598474503, -0.03179427608847618, -0.09756191074848175, -0.01247145514935255, 0.02262560836970806, 0.15555797517299652, 0.03293546289205551, -0.2054324895143509, -0.0885455533862114, -0.028828762471675873, -0.011915910989046097, 0.002993997186422348, 0.03823431208729744, 0.1918729841709137, -0.16202481091022491, -0.01426671352237463, -0.005671360529959202, 0.10131411999464035, -0.030267031863331795, 0.009625817649066448, -0.05806902423501015, 0.00570971705019474, -0.0027032429352402687, 0.1015813946723938, -0.2311556488275528, 0.19197556376457214, -0.007925408892333508, 0.1355372816324234, -0.06408070772886276, 0.014290244318544865, 0.013089265674352646, 0.02415172941982746, 0.14254136383533478, 0.00995122641324997, 0.026591993868350983, -0.09062165766954422, -0.08525174111127853, 0.04563545808196068, -0.021546222269535065, -0.01185451541095972, 0.031507231295108795, 0.0011425642296671867, 0.013045665808022022, 0.010522698983550072, -0.05656125769019127, -0.15584887564182281, -0.07485541701316833, 0.008217252790927887, 0.08270461857318878, 0.10568764060735703, -0.0477457270026207, -0.08848318457603455, -0.014519174583256245, 0.10865841805934906, -0.13667801022529602, -0.05458858609199524, -0.09226938337087631, 0.012782730162143707, 0.05569789558649063, -0.06687486916780472, 0.002143404446542263, 0.09280964732170105, 0.1182570606470108, -0.03206431493163109, -0.043128982186317444, 0.06898592412471771, -0.13249598443508148, -0.09869075566530228, -0.03953424096107483, 0.1668776273727417, 0.09747177362442017, 0.05707195773720741, 0.03800949081778526, -0.017302019521594048, 0.010180385783314705, -0.051785990595817566, -0.005026288330554962, 0.16702276468276978, -0.0759495347738266, -0.019149765372276306, -0.04184592142701149, -0.13241665065288544, -0.10832499712705612, -0.0747624933719635, 0.19279715418815613, 0.04570058360695839, -0.06702995300292969, 0.15089033544063568, 0.18132849037647247, -0.12558040022850037, -0.20910431444644928, 0.0024042839650064707, 0.11786509305238724, 0.10093487054109573, 0.003970946650952101, -0.24691219627857208, 0.022276513278484344, 0.02936377003788948, -0.006983764003962278, -0.05912093073129654, -0.37777429819107056, -0.14151401817798615, 0.1077491044998169, 0.020323656499385834, 0.1070069819688797, -0.014335532672703266, -0.023926354944705963, -0.026204897090792656, -0.03136056661605835, 0.01084114983677864, -0.17514687776565552, 0.08480808138847351, 0.031843401491642, 0.02380623109638691, 0.036827072501182556, -0.040178362280130386, 0.05998207628726959, 0.06305805593729019, -0.018266374245285988, -0.01376320794224739, 0.05124068632721901, 0.060116615146398544, -0.0044504269026219845, 0.11372867971658707, -0.047686632722616196, 0.02651248127222061, -0.12025972455739975, -0.09045596420764923, -0.07689215987920761, 0.06927540898323059, 0.005128258373588324, -0.030107535421848297, 0.03285295143723488, -0.04330847039818764, 0.008434446528553963, 0.006598672829568386, -0.07390984147787094, -0.11497699469327927, 0.050966065376996994, 0.14688675105571747, 0.16858062148094177, 0.038626305758953094, -0.09967377036809921, 0.0022129984572529793, 0.005211838521063328, 0.11282376945018768, -0.1278807818889618, 0.029680496081709862, 0.061377961188554764, 0.039558518677949905, 0.11590512096881866, 0.034084975719451904, -0.10606022924184799, 0.08452295511960983, 0.062032800167798996, -0.04529887065291405, -0.08951114863157272, -0.06528344750404358, -0.011292056180536747, -0.042305197566747665, 0.0014367616968229413, 0.09813277423381805, -0.08026856184005737, -0.031723830848932266, -0.028325682505965233, 0.0029599887784570456, -0.11503078043460846, 0.20788811147212982, 0.033332012593746185, 0.060214195400476456, -0.08511879295110703, 0.07003053277730942, 0.003623135620728135, -0.047836463898420334, 0.037818003445863724, 0.0016985881375148892, -0.09690240770578384, -0.06452903896570206, 0.024493834003806114, 0.13377635180950165, 0.014002007432281971, -0.12524576485157013, -0.08952923864126205, -0.0544925257563591, -0.005655334331095219, 0.07195399701595306, 0.03459138795733452, -0.0010333170648664236, -0.10418775677680969, -0.04433120787143707, -0.10035843402147293, 0.051828790456056595, 0.06229113042354584, -0.059532154351472855, -0.05537794530391693, 0.23165734112262726, 0.11159082502126694, -0.003196755424141884, -0.02703639306128025, -0.10011453926563263, -0.03962704539299011, 0.08622416853904724, -0.014522873796522617, -0.013551035895943642, -0.05469374358654022, -0.0017682308098301291, -0.01857360638678074, -0.049565717577934265, 0.025337684899568558, 0.09357167780399323, -0.07647716999053955, 0.03910673037171364, -0.03893614932894707, 0.08473032712936401, -0.09729256480932236, 0.011084353551268578, 0.018549326807260513, -0.053462788462638855, 0.06691375374794006, 0.10352376103401184, -0.08077280968427658, 0.10961990058422089, -0.19219784438610077, -0.014097824692726135, 0.062250107526779175, 0.03794366121292114, -0.03134426102042198, -0.09766614437103271, 0.06449069827795029, 0.0550389401614666, 0.047095708549022675, -0.022570570930838585, 0.09633912891149521, -0.06545368582010269, 0.00852553267031908, 0.009041668847203255, -0.010542081668972969, -0.020893149077892303, 0.08339116722345352, 0.05858789384365082, 0.11754142493009567, 0.12509022653102875, -0.10187693685293198, 0.13425873219966888, -0.14645658433437347, -0.0008301748894155025, -0.03159279748797417, -0.001777313998900354, -0.10330097377300262, -0.07002586871385574, 0.05578318238258362, -0.03268934041261673, 0.08746089041233063, 0.042259495705366135, 0.13081873953342438, -0.029341697692871094, -0.10080157220363617, 0.03872813656926155, -0.010393447242677212, 0.21174781024456024, 0.04071575775742531, 0.039205633103847504, -0.013126428239047527, 0.037454862147569656, 0.02422392927110195, 0.11963234096765518, 0.04716379567980766, 0.12481307983398438, 0.010562577284872532, 0.08476357161998749, 0.06091050058603287, -0.05204417183995247, -0.06821708381175995, -0.0987299233675003, -0.04879229515790939, 0.03304240107536316, -0.08362431079149246, 0.10215940326452255, 0.15544988214969635, -0.10165268182754517, 0.07873154431581497, 0.05206936597824097, -0.09356630593538284, -0.16113783419132233, -0.12074878811836243, -0.013792725279927254, -0.14935104548931122, 0.011592122726142406, -0.09296271950006485, 0.019382033497095108, 0.007535507902503014, 0.03980119526386261, -0.037284206598997116, 0.17067782580852509, 0.024055765941739082, -0.13260746002197266, 0.05599332973361015, -0.07687245309352875, 0.03892068937420845, -0.11191562563180923, 0.07667888700962067, 0.13187243044376373, 0.017847729846835136, 0.07415567338466644, 0.03207706660032272, -0.05633830651640892, 0.025146933272480965, -0.08046475052833557, -0.05646047368645668, -0.024721862748265266, -0.006806850899010897, 0.05147182196378708, 0.18063876032829285, 0.11671160161495209, -0.06872309744358063, 0.028810758143663406, 0.1424124836921692, -0.03986631706357002, -0.12858691811561584, -0.16216617822647095, 0.1334638148546219, 0.0688621923327446, 0.005550450179725885, -0.03771668300032616, -0.04078691080212593, -0.013024299405515194, 0.28363338112831116, 0.21375973522663116, 0.08543122559785843, 0.01856938935816288, -0.012064527720212936, -0.006094546057283878, 0.006132415030151606, 0.08575179427862167, 0.07625740021467209, 0.1906558722257614, -0.032543983310461044, 0.014921920374035835, -0.05821887403726578, -0.07321030646562576, -0.00784242432564497, 0.060805246233940125, -0.08398615568876266, -0.07281316071748734, 0.0069464766420423985, 0.13676738739013672, -0.03489915654063225, -0.11410532146692276, -0.07567460089921951, -0.05483074486255646, -0.06828156858682632, -0.025223804637789726, 0.003657461144030094, 0.1095678061246872, 0.04070957005023956, -0.04072610288858414, 0.008399042300879955, 0.19715270400047302, 0.01756400056183338, -0.08886634558439255, -0.09757569432258606, 0.01196600403636694, -0.1398863047361374, 0.0473705492913723, -0.03618962690234184, 0.1283475011587143, 0.022994814440608025, 0.09607380628585815, -0.04505814239382744, 0.11893611401319504, -0.02555103972554207, 0.006962015759199858, 0.008539307862520218, 0.07469699531793594, -0.05937239155173302, 0.08672574907541275, -0.00921703688800335, -0.13384267687797546, 0.07697923481464386, -0.11968625336885452, -0.004127994645386934, -0.08177204430103302, 0.060967545956373215, -0.04143040254712105, 0.08047723770141602, 0.09749279171228409, -0.07815952599048615, -0.05227695032954216, -0.05397987738251686, 0.05749940127134323, 0.02571079134941101, -0.006427780259400606, -0.03047998808324337, -0.22364823520183563, -0.026588473469018936, -0.0901840329170227, -0.009026536718010902, -0.20757712423801422, -0.008592710830271244, 0.017786385491490364, -0.10466734319925308, 0.0016498190816491842, 0.058938466012477875, 0.05271964520215988, 0.03673325851559639, -0.002886279718950391, -0.009938939474523067, 0.04763452336192131, 0.13707920908927917, -0.15594346821308136, -0.10505256056785583 ]
null
null
transformers
# Wav2Vec2-Large-XLSR-53-Romansh-Sursilvan Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Romansh Sursilvan using the [Common Voice](https://huggingface.co/datasets/common_voice) dataset. When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ```python import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor test_dataset = load_dataset("common_voice", "rm-sursilv", split="test[:2%]") processor = Wav2Vec2Processor.from_pretrained("gchhablani/wav2vec2-large-xlsr-rm-sursilv") model = Wav2Vec2ForCTC.from_pretrained("gchhablani/wav2vec2-large-xlsr-rm-sursilv") resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset["sentence"][:2]) ``` ## Evaluation The model can be evaluated as follows on the Portuguese test data of Common Voice. ```python import torch import torchaudio from datasets import load_dataset, load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import re test_dataset = load_dataset("common_voice", "rm-sursilv", split="test") wer = load_metric("wer") processor = Wav2Vec2Processor.from_pretrained("gchhablani/wav2vec2-large-xlsr-rm-sursilv") model = Wav2Vec2ForCTC.from_pretrained("gchhablani/wav2vec2-large-xlsr-rm-sursilv") model.to("cuda") chars_to_ignore_regex = '[\\,\\?\\.\\!\\-\\;\\:\\"\\“\\%\\‘\\”\\�\\…\\«\\»\\–]' resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) # Preprocessing the datasets. # We need to read the aduio files as arrays def evaluate(batch): inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits pred_ids = torch.argmax(logits, dim=-1) batch["pred_strings"] = processor.batch_decode(pred_ids) return batch result = test_dataset.map(evaluate, batched=True, batch_size=8) print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"]))) ``` **Test Result**: 25.16 % ## Training The Common Voice `train` and `validation` datasets were used for training. The code can be found [here](https://colab.research.google.com/drive/1dpZr_GzRowCciUbzM3GnW04TNKnB7vrP?usp=sharing).
{"language": "rm-sursilv", "license": "apache-2.0", "tags": ["audio", "automatic-speech-recognition", "speech", "xlsr-fine-tuning-week"], "datasets": ["common_voice"], "metrics": ["wer"], "model-index": [{"name": "Wav2Vec2 Large 53 Romansh Sursilvan by Gunjan Chhablani", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Speech Recognition"}, "dataset": {"name": "Common Voice rm-sursilv", "type": "common_voice", "args": "rm-sursilv"}, "metrics": [{"type": "wer", "value": 25.16, "name": "Test WER"}]}]}]}
automatic-speech-recognition
gchhablani/wav2vec2-large-xlsr-rm-sursilv
[ "transformers", "pytorch", "jax", "wav2vec2", "automatic-speech-recognition", "audio", "speech", "xlsr-fine-tuning-week", "dataset:common_voice", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "rm-sursilv" ]
TAGS #transformers #pytorch #jax #wav2vec2 #automatic-speech-recognition #audio #speech #xlsr-fine-tuning-week #dataset-common_voice #license-apache-2.0 #model-index #endpoints_compatible #region-us
# Wav2Vec2-Large-XLSR-53-Romansh-Sursilvan Fine-tuned facebook/wav2vec2-large-xlsr-53 on Romansh Sursilvan using the Common Voice dataset. When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ## Evaluation The model can be evaluated as follows on the Portuguese test data of Common Voice. Test Result: 25.16 % ## Training The Common Voice 'train' and 'validation' datasets were used for training. The code can be found here.
[ "# Wav2Vec2-Large-XLSR-53-Romansh-Sursilvan\n\nFine-tuned facebook/wav2vec2-large-xlsr-53 on Romansh Sursilvan using the Common Voice dataset. \nWhen using this model, make sure that your speech input is sampled at 16kHz.", "## Usage\n\nThe model can be used directly (without a language model) as follows:", "## Evaluation\n\nThe model can be evaluated as follows on the Portuguese test data of Common Voice.\n\n\n\n\nTest Result: 25.16 %", "## Training\n\nThe Common Voice 'train' and 'validation' datasets were used for training. The code can be found here." ]
[ "TAGS\n#transformers #pytorch #jax #wav2vec2 #automatic-speech-recognition #audio #speech #xlsr-fine-tuning-week #dataset-common_voice #license-apache-2.0 #model-index #endpoints_compatible #region-us \n", "# Wav2Vec2-Large-XLSR-53-Romansh-Sursilvan\n\nFine-tuned facebook/wav2vec2-large-xlsr-53 on Romansh Sursilvan using the Common Voice dataset. \nWhen using this model, make sure that your speech input is sampled at 16kHz.", "## Usage\n\nThe model can be used directly (without a language model) as follows:", "## Evaluation\n\nThe model can be evaluated as follows on the Portuguese test data of Common Voice.\n\n\n\n\nTest Result: 25.16 %", "## Training\n\nThe Common Voice 'train' and 'validation' datasets were used for training. The code can be found here." ]
[ 78, 72, 20, 29, 30 ]
[ "passage: TAGS\n#transformers #pytorch #jax #wav2vec2 #automatic-speech-recognition #audio #speech #xlsr-fine-tuning-week #dataset-common_voice #license-apache-2.0 #model-index #endpoints_compatible #region-us \n# Wav2Vec2-Large-XLSR-53-Romansh-Sursilvan\n\nFine-tuned facebook/wav2vec2-large-xlsr-53 on Romansh Sursilvan using the Common Voice dataset. \nWhen using this model, make sure that your speech input is sampled at 16kHz.## Usage\n\nThe model can be used directly (without a language model) as follows:## Evaluation\n\nThe model can be evaluated as follows on the Portuguese test data of Common Voice.\n\n\n\n\nTest Result: 25.16 %## Training\n\nThe Common Voice 'train' and 'validation' datasets were used for training. The code can be found here." ]
[ -0.18322943150997162, 0.10682005435228348, -0.0020146274473518133, 0.007506316062062979, 0.10492363572120667, -0.046422526240348816, 0.15865495800971985, 0.10089057683944702, -0.061347514390945435, -0.004828309174627066, 0.017275802791118622, -0.015742303803563118, 0.07017204910516739, 0.09898306429386139, 0.0075531937181949615, -0.14598767459392548, 0.01258398313075304, -0.0022864907514303923, 0.043661195784807205, 0.11150206625461578, 0.09128198772668839, -0.07769981771707535, 0.011994709260761738, 0.0678405836224556, -0.1370883285999298, 0.06189054623246193, 0.03135683760046959, -0.12153008580207825, 0.14184649288654327, 0.04266346991062164, 0.07719868421554565, 0.0574127733707428, 0.09320619702339172, -0.1625429093837738, 0.021673832088708878, 0.042777642607688904, 0.015021049417555332, 0.005673462525010109, 0.06962171941995621, -0.035206571221351624, 0.05962352082133293, 0.09312029927968979, -0.03279183432459831, 0.07751308381557465, -0.08150643855333328, -0.2224694788455963, -0.037602249532938004, -0.061154138296842575, 0.06347254663705826, 0.1531275510787964, -0.05572832375764847, 0.1472853124141693, -0.12514598667621613, 0.08189086616039276, 0.09373815357685089, -0.19491660594940186, -0.006639695726335049, 0.08345388621091843, 0.05391360819339752, 0.0867161974310875, -0.03602533042430878, 0.03826051950454712, 0.05681346729397774, 0.006141338963061571, -0.003325534053146839, -0.037021148949861526, -0.2352759689092636, -0.015223786234855652, -0.11986808478832245, -0.06383485347032547, 0.23132076859474182, -0.029905756935477257, -0.07128053158521652, -0.10819616168737411, -0.01833268627524376, 0.009863410145044327, 0.019809097051620483, -0.037259750068187714, -0.006729630287736654, 0.045323148369789124, -0.040032707154750824, -0.025376925244927406, -0.09717298299074173, -0.14701442420482635, 0.021706437692046165, 0.052708081901073456, 0.01858692616224289, 0.009763394482433796, -0.11904773861169815, 0.08492650091648102, -0.08353383839130402, -0.09217037260532379, -0.007545333821326494, 0.032533761113882065, -0.0690869614481926, 0.012358549050986767, -0.07956801354885101, -0.14157038927078247, 0.0717921182513237, 0.010228916071355343, 0.04928342252969742, -0.003295472590252757, -0.0782829150557518, 0.037467651069164276, 0.010248341597616673, 0.11411364376544952, -0.06489289551973343, -0.04497254267334938, 0.027571072801947594, -0.030771926045417786, -0.019488641992211342, -0.014700467698276043, -0.07431913167238235, -0.06632339954376221, 0.008679182268679142, 0.10484714806079865, -0.02083694189786911, -0.01961260288953781, -0.03977392241358757, -0.03810429573059082, 0.01950095035135746, -0.10496459901332855, -0.016808412969112396, 0.06363237649202347, -0.010511020198464394, 0.07518066465854645, 0.02697148360311985, 0.04657396301627159, -0.0980367586016655, -0.048016633838415146, 0.014510465785861015, 0.034052249044179916, -0.027074072510004044, -0.11346342414617538, 0.025388330221176147, -0.0808793231844902, -0.021290462464094162, -0.0925181582570076, -0.12898994982242584, -0.0893280953168869, -0.03195120394229889, 0.01682666689157486, 0.029633015394210815, -0.11850446462631226, -0.022384241223335266, -0.03288727626204491, -0.03879870846867561, 0.03364893049001694, -0.04937645420432091, 0.07507509738206863, 0.0626525953412056, 0.0622258186340332, 0.0004271834623068571, 0.0740400180220604, -0.10934456437826157, -0.06509244441986084, 0.059864312410354614, 0.13894356787204742, -0.03449607640504837, -0.05604347959160805, -0.08992454409599304, -0.053893059492111206, -0.07159825414419174, 0.04990129545331001, 0.09500609338283539, 0.13272812962532043, -0.31357258558273315, -0.0957292690873146, 0.26006758213043213, -0.15017475187778473, -0.04954221844673157, 0.17930787801742554, -0.002338218269869685, 0.10921608656644821, 0.13282200694084167, 0.21988698840141296, 0.11233940720558167, -0.17819629609584808, 0.04664512723684311, -0.04028034955263138, -0.010702426545321941, -0.08749257773160934, 0.09403146803379059, -0.07986551523208618, 0.034483905881643295, 0.041044313460588455, -0.08532334119081497, 0.07573206722736359, -0.030297821387648582, -0.07046584784984589, -0.03240117430686951, -0.07467064261436462, 0.05833375081419945, 0.05552418529987335, 0.011905037797987461, -0.04600350558757782, -0.04579330235719681, 0.005996375810354948, 0.1065182164311409, -0.15250688791275024, 0.042562469840049744, -0.10595270246267319, 0.09904072433710098, -0.0806727334856987, -0.012453150935471058, -0.15578195452690125, 0.14427362382411957, -0.007406430784612894, 0.11442936956882477, 0.025585368275642395, 0.12126031517982483, 0.020337501540780067, 0.016482573002576828, -0.021023940294981003, -0.01604386977851391, -0.009630189277231693, -0.026991914957761765, -0.007774658501148224, -0.06927520036697388, -0.015331513248383999, -0.057297442108392715, 0.12484954297542572, -0.16677020490169525, 0.006538663990795612, 0.06140759214758873, 0.03656879439949989, 0.009402880445122719, -0.03289850801229477, 0.052054036408662796, 0.10041636973619461, -0.010470897890627384, -0.022432735189795494, 0.03688014671206474, 0.02258879505097866, -0.0026942139957100153, 0.09131832420825958, -0.10317886620759964, 0.014860259369015694, 0.12841038405895233, -0.035274896770715714, 0.004236625507473946, 0.04677663370966911, 0.0005968367331661284, -0.002746821381151676, -0.12241514027118683, -0.015839481726288795, 0.2379167228937149, -0.004096945282071829, 0.12674735486507416, -0.11297125369310379, 0.018285777419805527, 0.03195875883102417, -0.04979419708251953, 0.04029157757759094, 0.05584176257252693, 0.017283305525779724, 0.06855513155460358, 0.0339963436126709, -0.026602240279316902, -0.09228937327861786, 0.22121255099773407, -0.048498161137104034, -0.10235967487096786, 0.02435101754963398, -0.0023494912311434746, 0.006547098513692617, 0.0510224886238575, -0.20246686041355133, -0.04796561598777771, 0.02869928628206253, 0.03451200947165489, 0.06385014951229095, -0.14096210896968842, 0.014360015280544758, 0.012286284938454628, -0.13659515976905823, -0.17522838711738586, 0.05077661573886871, -0.04732976481318474, 0.0389733724296093, -0.1157936304807663, -0.04774582013487816, -0.009019490331411362, -0.04202777147293091, -0.1654418259859085, 0.12229837477207184, -0.07980524748563766, -0.20971877872943878, -0.17209023237228394, 0.06681746244430542, -0.0010407359804958105, 0.048986297100782394, 0.11169899255037308, -0.11995960026979446, 0.008579245768487453, -0.02300574816763401, 0.07449071109294891, 0.015238245017826557, -0.024871187284588814, -0.03155533969402313, 0.04283417388796806, 0.04866381362080574, -0.15946705639362335, 0.020039409399032593, -0.037064842879772186, -0.07012851536273956, 0.002139241434633732, -0.03977199271321297, 0.057823214679956436, 0.17594961822032928, 0.008301571942865849, 0.037119705229997635, -0.018523503094911575, 0.16730724275112152, -0.09060677140951157, -0.0500127375125885, 0.2383277714252472, 0.01177039835602045, -0.03343702480196953, 0.0878206118941307, 0.02034861408174038, -0.07770700007677078, -0.010650725103914738, -0.02390143647789955, -0.09153909236192703, -0.2568102180957794, -0.1248253807425499, -0.06216239556670189, -0.07861685007810593, -0.02457083947956562, -0.005032591056078672, 0.048441898077726364, 0.027841057628393173, -0.023345503956079483, -0.07254024595022202, 0.06462380290031433, 0.0011338477488607168, 0.1067846491932869, 0.010767344385385513, 0.08981004357337952, -0.05354885011911392, -0.047203727066516876, 0.04302414506673813, 0.027889106422662735, 0.1372942477464676, 0.036078017204999924, 0.120076484978199, 0.08182306587696075, 0.12617620825767517, 0.09248248487710953, 0.0840810164809227, -0.017112018540501595, -0.007691261824220419, 0.018364695832133293, -0.07952205091714859, -0.05921363830566406, 0.010156802833080292, 0.12411897629499435, -0.034873321652412415, -0.06608932465314865, -0.048301488161087036, 0.02126600779592991, 0.1709548979997635, 0.10446370393037796, -0.2558371424674988, -0.06395604461431503, -0.029775967821478844, -0.013310309499502182, -0.0006160287302918732, 0.04353371635079384, 0.18788716197013855, -0.12830795347690582, 0.009098256938159466, 0.0031905958894640207, 0.09484884142875671, -0.03573976084589958, 0.023788414895534515, -0.08594575524330139, 0.0019852854311466217, 0.0064998809248209, 0.09552396833896637, -0.25109946727752686, 0.20255137979984283, 0.011024932377040386, 0.13259275257587433, -0.05312889441847801, 0.012872171588242054, -0.00003480406303424388, 0.05176728218793869, 0.120947927236557, -0.004447926767170429, 0.05113454535603523, -0.08233653753995895, -0.07166246324777603, 0.056186359375715256, -0.004082341678440571, 0.010429502464830875, 0.042519453912973404, 0.009854219853878021, 0.0003512814873829484, -0.008875786326825619, -0.026664361357688904, -0.17197461426258087, -0.05959790572524071, 0.0017581398133188486, 0.18619970977306366, 0.12054462730884552, -0.021073168143630028, -0.09326193481683731, -0.08623228222131729, 0.10888742655515671, -0.09882374107837677, -0.06143296882510185, -0.07945886999368668, -0.023972274735569954, 0.10631196200847626, -0.050879813730716705, -0.0008411801536567509, 0.09614332020282745, 0.1295504868030548, -0.03373729810118675, -0.022950313985347748, 0.06341847032308578, -0.10482729226350784, -0.09703056514263153, -0.040243301540613174, 0.18825644254684448, 0.0792432352900505, 0.04811296612024307, 0.07785752415657043, 0.018381115049123764, 0.003137296764180064, -0.04975508525967598, 0.012294132262468338, 0.11485118418931961, -0.09661690145730972, -0.0009870583890005946, 0.008566539734601974, -0.17431506514549255, -0.08982893079519272, -0.04647006839513779, 0.1788271814584732, 0.06431227177381516, -0.06229790672659874, 0.1485873907804489, 0.19345548748970032, -0.09369222074747086, -0.2209307998418808, 0.002084294566884637, 0.09477946162223816, 0.10861131548881531, -0.01060139387845993, -0.18648850917816162, 0.04870280250906944, 0.01404851395636797, -0.0242008063942194, -0.07292089611291885, -0.30972930788993835, -0.12330886721611023, 0.10551680624485016, -0.015464437194168568, 0.1254161298274994, -0.009423943236470222, -0.05426224321126938, -0.03917532041668892, -0.07835374772548676, 0.014735681936144829, -0.17367583513259888, 0.08258739113807678, 0.02985529787838459, 0.03210138529539108, 0.03674344718456268, -0.025747543200850487, 0.0767691358923912, 0.0976409912109375, -0.015488511882722378, 0.01167372241616249, 0.07405200600624084, 0.09980112314224243, 0.01747678406536579, 0.12136261910200119, -0.03599526360630989, 0.04570251330733299, -0.12631432712078094, -0.08023617416620255, -0.06368403881788254, 0.07715190947055817, 0.020075201988220215, -0.019145917147397995, 0.05130860581994057, -0.052757617086172104, -0.006008420139551163, 0.010310524143278599, -0.034198589622974396, -0.0947747603058815, 0.053442373871803284, 0.16243210434913635, 0.17461317777633667, -0.039127662777900696, -0.03916381299495697, -0.0038097614888101816, -0.015809867531061172, 0.10285185277462006, -0.056521330028772354, 0.05696472153067589, 0.06582359224557877, 0.05707674100995064, 0.08204269409179688, 0.026214947924017906, -0.09898567944765091, 0.08955725282430649, 0.050647176802158356, -0.05477248504757881, -0.07163099199533463, -0.048515502363443375, -0.08103621006011963, -0.005320177413523197, 0.07632197439670563, 0.13493533432483673, -0.05428491532802582, -0.031099356710910797, -0.04141250625252724, 0.00018450251081958413, -0.1018642783164978, 0.23879069089889526, 0.023702703416347504, 0.05967138335108757, -0.13585993647575378, 0.04807515814900398, 0.014859877526760101, -0.04631780460476875, 0.028914591297507286, -0.03285524621605873, -0.10915972292423248, -0.06255801767110825, -0.0018111462704837322, 0.0952925980091095, 0.01924395188689232, -0.15797194838523865, -0.08520810306072235, -0.06236491724848747, -0.007343311794102192, 0.07022809982299805, 0.0659039244055748, 0.028436284512281418, -0.09060594439506531, -0.08819618821144104, -0.09826882928609848, 0.045725591480731964, 0.07874010503292084, -0.008902029134333134, -0.0783059224486351, 0.18542245030403137, 0.05629809945821762, -0.0020027467980980873, -0.04381570219993591, -0.0870470181107521, -0.034452155232429504, 0.09552221745252609, -0.0627039223909378, 0.004354268778115511, -0.048051487654447556, 0.002908306894823909, -0.011359506286680698, -0.07309607416391373, -0.00671384995803237, 0.09713702648878098, -0.0863216295838356, 0.05109158158302307, -0.02603163942694664, 0.08060308545827866, -0.11784105747938156, 0.03400878980755806, 0.003943079616874456, -0.05271404981613159, 0.08091694861650467, 0.09961248934268951, -0.09698683768510818, 0.11450108140707016, -0.2290281504392624, -0.06786740571260452, 0.061327219009399414, 0.05657519772648811, -0.011950965970754623, -0.07995332032442093, 0.06681855767965317, 0.11189066618680954, 0.043885596096515656, 0.0040983473882079124, 0.10230943560600281, -0.04884825274348259, 0.0065039945766329765, -0.0471099317073822, -0.02774740941822529, 0.002559137064963579, 0.060174789279699326, 0.10293960571289062, 0.12333136051893234, 0.1535031795501709, -0.0979299545288086, 0.08590377122163773, -0.12898385524749756, 0.000955796567723155, -0.05527737736701965, -0.010179194621741772, -0.16973412036895752, -0.06279221922159195, 0.0731833279132843, -0.03339477255940437, 0.102182537317276, 0.05247191712260246, 0.14453347027301788, -0.03660060092806816, -0.05797648802399635, 0.023900484666228294, -0.009561516344547272, 0.25111302733421326, 0.06853997707366943, 0.0360809862613678, -0.022391540929675102, 0.01247350126504898, 0.025037240236997604, 0.133638396859169, 0.0012011174112558365, 0.1369430273771286, 0.009933937340974808, 0.09325235337018967, 0.09151219576597214, -0.041545502841472626, -0.047181639820337296, -0.051822323352098465, -0.07652371376752853, 0.03494979441165924, -0.06648952513933182, 0.1242186650633812, 0.11511977016925812, -0.09721122682094574, 0.046893712133169174, 0.03190989047288895, -0.07509689033031464, -0.14564882218837738, -0.11892572045326233, -0.07028800249099731, -0.16257941722869873, 0.022768668830394745, -0.10144123435020447, 0.031823720782995224, 0.058289796113967896, 0.031495824456214905, -0.04465688765048981, 0.1281844973564148, 0.020196398720145226, -0.10816656798124313, 0.06082931160926819, -0.08012507110834122, 0.03508028760552406, -0.06476695835590363, 0.046369608491659164, 0.13388127088546753, 0.03337424620985985, 0.0727856457233429, 0.03021387942135334, -0.02419230155646801, 0.005784572102129459, -0.08761528879404068, -0.05378378555178642, -0.01149815320968628, -0.011605365201830864, 0.05739586055278778, 0.1285802274942398, 0.13515372574329376, -0.07663214951753616, 0.029813814908266068, 0.1369418352842331, -0.04504421725869179, -0.1364700049161911, -0.16834700107574463, 0.10892587155103683, 0.06367861479520798, 0.0540340431034565, -0.014492571353912354, -0.07973181456327438, -0.003493725322186947, 0.2559512257575989, 0.19394080340862274, 0.08075688779354095, 0.023811008781194687, -0.003777395933866501, -0.007402441464364529, -0.012810228392481804, 0.0643799901008606, 0.05816732347011566, 0.2054906040430069, -0.022917892783880234, 0.002372447168454528, -0.07509669661521912, -0.07754542678594589, -0.022844575345516205, 0.05384579300880432, -0.11948416382074356, -0.11999979615211487, 0.017047733068466187, 0.1622275561094284, -0.030092431232333183, -0.08828722685575485, -0.06652085483074188, -0.09137453138828278, -0.09599456191062927, -0.012810316868126392, 0.0027584361378103495, 0.10701430588960648, 0.015913620591163635, -0.05557837337255478, 0.031649839133024216, 0.16266819834709167, 0.002481962088495493, -0.0747784897685051, -0.09492112696170807, 0.023871775716543198, -0.15751972794532776, 0.041816968470811844, -0.02720826119184494, 0.16354046761989594, 0.036938443779945374, 0.10457400977611542, -0.027657873928546906, 0.14606918394565582, -0.014647653326392174, -0.02422390505671501, 0.04418262839317322, 0.0827544629573822, -0.04211428388953209, 0.10175928473472595, 0.016297349706292152, -0.10443280637264252, 0.0750516876578331, -0.09103687852621078, 0.025714579969644547, -0.11099068075418472, 0.059661801904439926, -0.04656533896923065, 0.08391658961772919, 0.05917724221944809, -0.07157853245735168, -0.021832432597875595, -0.047515638172626495, 0.0760008841753006, 0.02226548083126545, -0.022189611569046974, -0.0366639718413353, -0.25860676169395447, -0.01675344444811344, -0.06155525892972946, -0.003867575665935874, -0.18880097568035126, 0.006416701711714268, -0.0050997380167245865, -0.0805312991142273, -0.004450078587979078, 0.047134920954704285, 0.09853212535381317, 0.018471648916602135, -0.0072192298248410225, -0.02636144310235977, 0.052127353847026825, 0.11767895519733429, -0.15039384365081787, -0.1112416684627533 ]
null
null
transformers
# GreekSocialBERT ## Model description A Greek language model based on [GreekBERT](https://huggingface.co/nlpaueb/bert-base-greek-uncased-v1) ## Training data The training data is a corpus of 458,293 documents collected from Greek social media accounts. The training corpus has been collected and provided by [Palo LTD](http://www.paloservices.com/) ## Eval results ### BibTeX entry and citation info ```bibtex @Article{info12080331, AUTHOR = {Alexandridis, Georgios and Varlamis, Iraklis and Korovesis, Konstantinos and Caridakis, George and Tsantilas, Panagiotis}, TITLE = {A Survey on Sentiment Analysis and Opinion Mining in Greek Social Media}, JOURNAL = {Information}, VOLUME = {12}, YEAR = {2021}, NUMBER = {8}, ARTICLE-NUMBER = {331}, URL = {https://www.mdpi.com/2078-2489/12/8/331}, ISSN = {2078-2489}, DOI = {10.3390/info12080331} } ```
{"language": "el"}
fill-mask
gealexandri/greeksocialbert-base-greek-uncased-v1
[ "transformers", "pytorch", "tf", "bert", "fill-mask", "el", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "el" ]
TAGS #transformers #pytorch #tf #bert #fill-mask #el #autotrain_compatible #endpoints_compatible #region-us
# GreekSocialBERT ## Model description A Greek language model based on GreekBERT ## Training data The training data is a corpus of 458,293 documents collected from Greek social media accounts. The training corpus has been collected and provided by Palo LTD ## Eval results ### BibTeX entry and citation info
[ "# GreekSocialBERT", "## Model description\n\nA Greek language model based on GreekBERT", "## Training data\n\nThe training data is a corpus of 458,293 documents collected from Greek social media accounts. \n\nThe training corpus has been collected and provided by Palo LTD", "## Eval results", "### BibTeX entry and citation info" ]
[ "TAGS\n#transformers #pytorch #tf #bert #fill-mask #el #autotrain_compatible #endpoints_compatible #region-us \n", "# GreekSocialBERT", "## Model description\n\nA Greek language model based on GreekBERT", "## Training data\n\nThe training data is a corpus of 458,293 documents collected from Greek social media accounts. \n\nThe training corpus has been collected and provided by Palo LTD", "## Eval results", "### BibTeX entry and citation info" ]
[ 41, 5, 12, 37, 4, 11 ]
[ "passage: TAGS\n#transformers #pytorch #tf #bert #fill-mask #el #autotrain_compatible #endpoints_compatible #region-us \n# GreekSocialBERT## Model description\n\nA Greek language model based on GreekBERT## Training data\n\nThe training data is a corpus of 458,293 documents collected from Greek social media accounts. \n\nThe training corpus has been collected and provided by Palo LTD## Eval results### BibTeX entry and citation info" ]
[ -0.12229442596435547, -0.14004483819007874, -0.0013704488519579172, 0.10577995330095291, 0.18900305032730103, 0.010348910465836525, 0.1925252079963684, 0.09336590766906738, 0.052923783659935, -0.048197511583566666, 0.09787634015083313, 0.11843466013669968, 0.03423197567462921, 0.1433657705783844, -0.017770882695913315, -0.30729082226753235, -0.025683050975203514, 0.04092671722173691, -0.06737968325614929, 0.07290452718734741, 0.09062784910202026, -0.03188682347536087, 0.09549585729837418, -0.057805053889751434, -0.08065242320299149, 0.06485392153263092, 0.049690838903188705, -0.11042934656143188, 0.1632211059331894, 0.08417307585477829, 0.0544225238263607, -0.030972110107541084, 0.06893720477819443, -0.0662413164973259, 0.030425719916820526, 0.0006427437183447182, -0.033748798072338104, 0.035812534391880035, 0.03466007858514786, -0.1026637852191925, 0.16899585723876953, -0.015152441337704659, 0.057456400245428085, -0.03146887198090553, -0.1905154138803482, -0.0532403402030468, -0.04148812219500542, 0.01990765519440174, 0.11786429584026337, 0.13695786893367767, -0.024628223851323128, 0.10315518081188202, -0.11607484519481659, 0.08850749582052231, 0.07059264928102493, -0.14482980966567993, -0.07172349095344543, 0.11763542890548706, 0.039126597344875336, 0.05506852641701698, -0.007112685590982437, 0.08684230595827103, 0.03539564833045006, 0.09059426188468933, -0.0030874651856720448, -0.013438157737255096, -0.06447946280241013, -0.014446116052567959, -0.07914315909147263, -0.016172613948583603, 0.2708178162574768, 0.013135474175214767, -0.012183155864477158, -0.02249380387365818, 0.05428505688905716, 0.11167740821838379, 0.019179625436663628, -0.053630560636520386, -0.05817735195159912, -0.011482751928269863, -0.03214358538389206, -0.052838802337646484, -0.10510377585887909, -0.05401383340358734, -0.13844621181488037, 0.16846589744091034, 0.04085187986493111, 0.058399591594934464, -0.10994015634059906, 0.09618505835533142, -0.078847236931324, -0.0477156899869442, 0.07910902053117752, 0.032226018607616425, 0.09109354019165039, -0.06450345367193222, 0.0007362360483966768, -0.18301603198051453, -0.007760887499898672, 0.10065039247274399, 0.011956321075558662, -0.04862982779741287, 0.036811187863349915, 0.08201096951961517, -0.026461109519004822, 0.057724107056856155, 0.036953236907720566, -0.038944363594055176, 0.014298775233328342, 0.014707903377711773, -0.055858198553323746, 0.030036788433790207, -0.15518708527088165, -0.036778971552848816, 0.03501661866903305, 0.016505207866430283, -0.061602283269166946, 0.07909438014030457, -0.003842003410682082, -0.04433131590485573, 0.01049136370420456, -0.08473281562328339, -0.05347009748220444, -0.10691885650157928, -0.12341400980949402, -0.03376220166683197, 0.12542733550071716, -0.0006686609121970832, -0.08564263582229614, 0.062000822275877, 0.03958853706717491, -0.024102937430143356, -0.010427228175103664, -0.10373757779598236, 0.048560790717601776, -0.10986903309822083, 0.07045581936836243, -0.20045998692512512, -0.21310557425022125, -0.05569707229733467, 0.07044294476509094, -0.04246227815747261, -0.03386639431118965, -0.06606724113225937, 0.04031503573060036, -0.06207561492919922, -0.009604062885046005, 0.0674094706773758, -0.05969281122088432, 0.07378619909286499, -0.07087860256433487, 0.060754988342523575, -0.12729479372501373, 0.050520848482847214, -0.09108999371528625, -0.0787748172879219, -0.08692071586847305, 0.05488927662372589, 0.011931074783205986, 0.015893809497356415, -0.08878842741250992, -0.03802793473005295, -0.09153275936841965, 0.06930495798587799, 0.05783950909972191, 0.2283836454153061, -0.1270555853843689, -0.10926929116249084, 0.23732556402683258, -0.04609832912683487, -0.10758678615093231, 0.1372484415769577, -0.07533249258995056, 0.19713342189788818, 0.1595684140920639, 0.13703274726867676, -0.12240354716777802, -0.1309107542037964, 0.015787668526172638, -0.013780460692942142, -0.010689030401408672, -0.026164552196860313, 0.05917670950293541, -0.004452497698366642, 0.012333273887634277, 0.06163119152188301, 0.012889540754258633, 0.09527085721492767, -0.08245410025119781, -0.05335771664977074, 0.028429469093680382, -0.07323689758777618, 0.04184218496084213, 0.04589996114373207, 0.1570688635110855, -0.09501020610332489, -0.06041601300239563, 0.10342901945114136, 0.051983751356601715, -0.013266205787658691, 0.002777848858386278, -0.07417908310890198, 0.1272878497838974, -0.015404026955366135, -0.00416192039847374, -0.10324324667453766, 0.028996460139751434, -0.037602804601192474, 0.1711319237947464, 0.14558374881744385, 0.019083619117736816, 0.131490096449852, 0.03046516515314579, -0.12295660376548767, 0.04114144667983055, 0.006636305246502161, 0.005180321168154478, -0.12253522872924805, -0.17456850409507751, 0.051032181829214096, 0.0072921570390462875, 0.07747901976108551, -0.25895601511001587, 0.06734161078929901, -0.03256160765886307, 0.12098850309848785, 0.01994260959327221, 0.003749681869521737, -0.1034550592303276, 0.03377952426671982, -0.044515226036310196, -0.04418765380978584, 0.03541167452931404, -0.04781695082783699, -0.05720340833067894, 0.04839468002319336, -0.0693676546216011, 0.16788068413734436, 0.1897088885307312, -0.16914807260036469, -0.09622393548488617, -0.01023260597139597, -0.022612806409597397, -0.044044073671102524, -0.09293182939291, -0.012174492701888084, 0.2259749174118042, -0.01672586053609848, 0.148405984044075, -0.04096581041812897, 0.007222214713692665, 0.07481296360492706, -0.11590638011693954, 0.015602885745465755, 0.12170316278934479, 0.052120134234428406, -0.09951354563236237, 0.12136528640985489, 0.046511851251125336, -0.0750570073723793, 0.2258327156305313, 0.027821410447359085, -0.06819198280572891, 0.007675157394260168, -0.039729125797748566, 0.056338775902986526, 0.1063423678278923, -0.2036014050245285, -0.0435381680727005, -0.022871946915984154, 0.05322933569550514, 0.06926025450229645, -0.13327360153198242, -0.08455672115087509, 0.05699077621102333, -0.026853427290916443, 0.03144929185509682, 0.05787073075771332, -0.05317806079983711, 0.1212075874209404, 0.00765925133600831, -0.11107110977172852, 0.0076492768712341785, 0.00006557833694387227, -0.10245725512504578, 0.1855410486459732, -0.010207303799688816, -0.17577210068702698, -0.16106516122817993, -0.05740482360124588, 0.0020134663209319115, 0.04323361814022064, 0.013573378324508667, -0.10441707819700241, 0.03548877313733101, 0.042947109788656235, 0.19647614657878876, -0.02101939357817173, -0.021902941167354584, -0.16138947010040283, 0.06401528418064117, -0.0679979920387268, -0.04196460545063019, -0.09278903156518936, -0.11089854687452316, -0.17405834794044495, -0.0346786230802536, -0.2613275647163391, 0.0075881448574364185, 0.08079921454191208, -0.08780699968338013, 0.04479725658893585, -0.07177891582250595, 0.1907012015581131, -0.14440637826919556, 0.05676935613155365, 0.1326512098312378, -0.0001504957617726177, -0.03340110927820206, 0.045588210225105286, 0.036954376846551895, -0.030771292746067047, 0.003041432239115238, -0.0010970832081511617, -0.1164131909608841, -0.2984943687915802, -0.12865574657917023, -0.05426805838942528, 0.039746664464473724, 0.05616895109415054, 0.04353528842329979, 0.17923220992088318, 0.09290297329425812, 0.05401751399040222, 0.09132660180330276, 0.08917125314474106, 0.017530599609017372, 0.04045117273926735, 0.023185471072793007, 0.10180314630270004, -0.01807195506989956, -0.05716853216290474, 0.12071250379085541, 0.05067097023129463, 0.20253852009773254, 0.041029009968042374, -0.0802106112241745, 0.03951466456055641, 0.04112958908081055, -0.042447518557310104, 0.07960914820432663, 0.041304804384708405, -0.015805961564183235, -0.005954924505203962, -0.033546045422554016, 0.007152987644076347, 0.07026059180498123, -0.029721742495894432, -0.032498303800821304, -0.14483913779258728, -0.022887149825692177, 0.06017180159687996, 0.15009209513664246, 0.026581088081002235, -0.25989624857902527, -0.1267963945865631, 0.007271833252161741, -0.03404863178730011, -0.06292124092578888, 0.027078447863459587, 0.041991960257291794, -0.19269269704818726, 0.026820216327905655, -0.04286865144968033, 0.10680343210697174, -0.12614896893501282, 0.020642660558223724, -0.012331446632742882, -0.07970128953456879, -0.009654604829847813, 0.10052143037319183, -0.22800259292125702, 0.3352978527545929, -0.023233208805322647, 0.1215418204665184, -0.0843346118927002, 0.0033964887261390686, 0.0465877428650856, 0.12697623670101166, 0.16735851764678955, 0.03271760419011116, 0.09367568045854568, -0.162380188703537, -0.084859199821949, 0.018663404509425163, 0.0009851256618276238, -0.1247088685631752, -0.031774602830410004, 0.01713620312511921, 0.035310372710227966, 0.017490752041339874, 0.02777751162648201, -0.08267854154109955, -0.11285264790058136, -0.02581845596432686, -0.05106088146567345, -0.06229311600327492, -0.005846153479069471, -0.1764817237854004, -0.05474204197525978, 0.16310231387615204, 0.057401541620492935, -0.04126804694533348, -0.06060168519616127, 0.09278504550457001, -0.024392545223236084, -0.08748088777065277, 0.03477306663990021, 0.01034407876431942, -0.081018827855587, -0.08875492215156555, -0.04794970899820328, 0.14866302907466888, -0.08874758332967758, -0.028888629749417305, -0.06312128901481628, 0.08556745946407318, 0.11948712170124054, 0.024253331124782562, 0.05734814703464508, -0.005835825111716986, 0.03726058080792427, -0.0010217346716672182, 0.010204088874161243, -0.050813790410757065, 0.06453416496515274, 0.07068338990211487, -0.08785125613212585, -0.1731913834810257, -0.10609786957502365, -0.09330715239048004, 0.1418713927268982, 0.11163825541734695, -0.062254518270492554, -0.052458640187978745, 0.08309106528759003, -0.14285913109779358, -0.17468245327472687, 0.08058102428913116, 0.013277637772262096, 0.12053745985031128, 0.005567133892327547, -0.19423788785934448, 0.08610199391841888, 0.13676631450653076, -0.025541674345731735, -0.02766367979347706, -0.19366155564785004, -0.1597495675086975, 0.16434286534786224, 0.03196774423122406, 0.26702210307121277, -0.07817724347114563, 0.0177399143576622, -0.01565946638584137, -0.04439368471503258, 0.05379471927881241, -0.05642570182681084, 0.09283456951379776, 0.010242612101137638, 0.035421110689640045, 0.015624379739165306, 0.008945304900407791, 0.10565424710512161, 0.0581434890627861, 0.04163770005106926, -0.08886295557022095, -0.200489804148674, 0.05313925817608833, -0.0021632371935993433, 0.09706996381282806, 0.02568010240793228, -0.040055051445961, -0.1899084448814392, -0.06101817637681961, -0.07070053368806839, 0.0677303671836853, 0.010904219932854176, -0.0878773182630539, 0.03295446187257767, 0.0760936439037323, -0.009971548803150654, 0.0189405158162117, 0.0758197233080864, -0.07420462369918823, 0.2173815816640854, 0.04008672386407852, 0.16747596859931946, 0.030324388295412064, -0.04726818576455116, 0.022067703306674957, -0.04680018126964569, 0.03096149116754532, -0.11849071085453033, -0.031913768500089645, 0.13254597783088684, -0.02401427924633026, 0.13459496200084686, 0.03455600142478943, -0.08903005719184875, 0.01476235780864954, 0.10301381349563599, -0.11661605536937714, -0.07619500905275345, -0.08761493116617203, 0.021263834089040756, 0.02924703061580658, 0.08792536705732346, 0.11744201928377151, -0.11598284542560577, -0.027133645489811897, -0.038483232259750366, -0.028941314667463303, -0.1404889076948166, 0.14626456797122955, 0.057973712682724, -0.01472856942564249, -0.037249527871608734, 0.05079759284853935, 0.06251246482133865, -0.06191970407962799, 0.05033969506621361, 0.09760771691799164, -0.05556916072964668, -0.029896104708313942, 0.0485980249941349, 0.14735813438892365, -0.05676102265715599, -0.07514238357543945, -0.08587045967578888, -0.11993227899074554, 0.011909609660506248, 0.14015859365463257, 0.1419377624988556, -0.0024110942613333464, -0.03633461892604828, 0.02692577801644802, -0.07778679579496384, 0.05142184719443321, 0.18764743208885193, -0.0374494306743145, 0.02210540696978569, 0.08811094611883163, 0.0651886910200119, 0.04824681952595711, -0.06870321929454803, -0.037236105650663376, -0.10974635928869247, 0.07500378042459488, -0.13266199827194214, -0.022603707388043404, -0.010986121371388435, -0.03317500650882721, -0.04175977036356926, -0.05682838335633278, -0.009942225180566311, -0.012221329845488071, -0.08802978694438934, 0.05500054731965065, 0.008040089160203934, 0.058875929564237595, -0.03148491680622101, -0.03725231811404228, 0.016010461375117302, -0.0011406365083530545, 0.060638461261987686, 0.10481540113687515, 0.01998874917626381, 0.09230397641658783, -0.1246444508433342, 0.07435067743062973, 0.05346306413412094, 0.04048794135451317, 0.06224394217133522, 0.016299281269311905, 0.02795891836285591, 0.011010225862264633, 0.10369907319545746, 0.08242084830999374, 0.013561548665165901, -0.04997370019555092, 0.06664838641881943, 0.07399590313434601, -0.06851014494895935, -0.0461261011660099, 0.13968177139759064, 0.00034193001920357347, 0.05732466280460358, -0.0008589171920903027, -0.09836702048778534, 0.06368009001016617, -0.16597488522529602, 0.0334949754178524, -0.028866220265626907, -0.14656847715377808, -0.050520408898591995, -0.017748182639479637, 0.07424493134021759, 0.0004263256851118058, 0.16602517664432526, 0.1777583807706833, 0.056862782686948776, 0.041981328278779984, 0.05279901251196861, 0.05289532244205475, -0.0031835197005420923, 0.0068703461438417435, 0.012247451581060886, -0.006326209753751755, -0.1395949274301529, 0.05538502708077431, 0.002195445355027914, 0.07018356770277023, 0.02702823095023632, 0.10072395950555801, -0.004911367315798998, 0.05796590447425842, 0.05870521068572998, 0.059397656470537186, -0.08839000016450882, -0.20403911173343658, -0.031738247722387314, 0.06174110621213913, -0.05784372612833977, 0.07881803810596466, 0.09346939623355865, -0.14640870690345764, 0.03106575645506382, -0.02325366623699665, -0.11159736663103104, -0.1621703952550888, -0.21375000476837158, -0.001761100022122264, -0.014624053612351418, 0.0007743024616502225, -0.09597186744213104, -0.052403856068849564, 0.14913450181484222, 0.061454787850379944, -0.07686421275138855, 0.10282357037067413, -0.025006283074617386, -0.03407564014196396, 0.13101065158843994, -0.060459498316049576, 0.06388566642999649, -0.180977925658226, -0.023735569790005684, -0.1313439905643463, -0.009658187627792358, -0.023904912173748016, -0.015841709449887276, -0.05211762711405754, 0.00844353437423706, 0.0018718542996793985, -0.04945174604654312, -0.019480345770716667, -0.027530664578080177, 0.01509209256619215, 0.12613387405872345, 0.020277544856071472, 0.003915059380233288, 0.025893742218613625, 0.20878413319587708, 0.007326224818825722, -0.047691695392131805, -0.11681944876909256, 0.13259083032608032, 0.028555339202284813, 0.04588845744729042, -0.02130851522088051, -0.03006836585700512, -0.028669502586126328, 0.3181982934474945, 0.3772626221179962, 0.03719174116849899, -0.0029100298415869474, 0.05789882317185402, 0.0166173055768013, 0.04274832084774971, 0.07737398892641068, -0.04738296568393707, 0.15301407873630524, -0.12121430784463882, 0.026565883308649063, -0.025927983224391937, -0.008764583617448807, 0.041864410042762756, -0.002666260115802288, 0.050342854112386703, -0.005305303260684013, -0.04445450007915497, 0.13037677109241486, -0.14891134202480316, -0.12027256935834885, -0.08100252598524094, -0.2600955367088318, -0.17706407606601715, -0.07569896429777145, -0.04510203376412392, 0.06820043176412582, 0.15242162346839905, -0.008503531105816364, -0.0009548256057314575, -0.04277917370200157, 0.02341518923640251, -0.12648387253284454, -0.13205072283744812, 0.14771614968776703, 0.07174766808748245, 0.11217384785413742, -0.046531274914741516, 0.11118929833173752, 0.05918896198272705, 0.0350748673081398, 0.07788949459791183, 0.014005200937390327, -0.009235350415110588, 0.18261310458183289, -0.011374450288712978, 0.005985978990793228, -0.07116780430078506, 0.014756003394722939, 0.037334226071834564, -0.16728141903877258, 0.07192203402519226, -0.13444507122039795, -0.14525820314884186, -0.07217484712600708, 0.09833623468875885, -0.06556618958711624, 0.04177095741033554, 0.21531330049037933, 0.0094078304246068, -0.03526294231414795, -0.05674358829855919, 0.022070972248911858, 0.12652170658111572, -0.06295253336429596, -0.08901333063840866, -0.14307790994644165, -0.07673557102680206, -0.11232390999794006, 0.011022835969924927, -0.20057563483715057, -0.056951139122247696, -0.10029909014701843, -0.10314098745584488, -0.08503212034702301, 0.08073645085096359, 0.13806699216365814, 0.010364025831222534, -0.02590523473918438, -0.003959740977734327, 0.023130541667342186, 0.0685664638876915, -0.1013014018535614, -0.09490973502397537 ]
null
null
transformers
# PaloBERT ## Model description A Greek language model based on [RoBERTa](https://arxiv.org/abs/1907.11692) ## Training data The training data is a corpus of 458,293 documents collected from Greek social media accounts. It also contains a GTP-2 tokenizer trained from scratch on the same corpus. The training corpus has been collected and provided by [Palo LTD](http://www.paloservices.com/) ## Eval results ### BibTeX entry and citation info ```bibtex @Article{info12080331, AUTHOR = {Alexandridis, Georgios and Varlamis, Iraklis and Korovesis, Konstantinos and Caridakis, George and Tsantilas, Panagiotis}, TITLE = {A Survey on Sentiment Analysis and Opinion Mining in Greek Social Media}, JOURNAL = {Information}, VOLUME = {12}, YEAR = {2021}, NUMBER = {8}, ARTICLE-NUMBER = {331}, URL = {https://www.mdpi.com/2078-2489/12/8/331}, ISSN = {2078-2489}, DOI = {10.3390/info12080331} } ```
{"language": "el"}
fill-mask
gealexandri/palobert-base-greek-uncased-v1
[ "transformers", "pytorch", "tf", "roberta", "fill-mask", "el", "arxiv:1907.11692", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[ "1907.11692" ]
[ "el" ]
TAGS #transformers #pytorch #tf #roberta #fill-mask #el #arxiv-1907.11692 #autotrain_compatible #endpoints_compatible #region-us
# PaloBERT ## Model description A Greek language model based on RoBERTa ## Training data The training data is a corpus of 458,293 documents collected from Greek social media accounts. It also contains a GTP-2 tokenizer trained from scratch on the same corpus. The training corpus has been collected and provided by Palo LTD ## Eval results ### BibTeX entry and citation info
[ "# PaloBERT", "## Model description\n\nA Greek language model based on RoBERTa", "## Training data\n\nThe training data is a corpus of 458,293 documents collected from Greek social media accounts. It also contains a GTP-2 tokenizer trained from scratch on the same corpus.\n\nThe training corpus has been collected and provided by Palo LTD", "## Eval results", "### BibTeX entry and citation info" ]
[ "TAGS\n#transformers #pytorch #tf #roberta #fill-mask #el #arxiv-1907.11692 #autotrain_compatible #endpoints_compatible #region-us \n", "# PaloBERT", "## Model description\n\nA Greek language model based on RoBERTa", "## Training data\n\nThe training data is a corpus of 458,293 documents collected from Greek social media accounts. It also contains a GTP-2 tokenizer trained from scratch on the same corpus.\n\nThe training corpus has been collected and provided by Palo LTD", "## Eval results", "### BibTeX entry and citation info" ]
[ 50, 4, 12, 57, 4, 11 ]
[ "passage: TAGS\n#transformers #pytorch #tf #roberta #fill-mask #el #arxiv-1907.11692 #autotrain_compatible #endpoints_compatible #region-us \n# PaloBERT## Model description\n\nA Greek language model based on RoBERTa## Training data\n\nThe training data is a corpus of 458,293 documents collected from Greek social media accounts. It also contains a GTP-2 tokenizer trained from scratch on the same corpus.\n\nThe training corpus has been collected and provided by Palo LTD## Eval results### BibTeX entry and citation info" ]
[ -0.09938175231218338, -0.03325428068637848, -0.0015135178109630942, 0.0969533696770668, 0.18347424268722534, 0.022674141451716423, 0.16746632754802704, 0.11628696322441101, 0.011110933497548103, -0.040914926677942276, 0.12647467851638794, 0.1774863302707672, 0.03799096867442131, 0.15391525626182556, 0.014604434370994568, -0.30606234073638916, -0.008937729522585869, 0.03651946783065796, -0.0217747762799263, 0.08323545753955841, 0.0867006927728653, -0.04003404825925827, 0.09623447060585022, -0.04514194279909134, -0.06766590476036072, 0.06076948344707489, 0.05154925957322121, -0.11131228506565094, 0.1664174646139145, 0.06189742311835289, 0.05395786091685295, -0.027731038630008698, 0.07101820409297943, -0.09502702206373215, 0.03608554229140282, -0.005706233903765678, -0.059728819876909256, 0.04490628093481064, 0.029308723285794258, -0.10663705319166183, 0.19650940597057343, 0.05211018770933151, 0.02934236079454422, -0.03807126358151436, -0.19937604665756226, -0.0966024175286293, -0.04520842060446739, 0.05744932219386101, 0.08685653656721115, 0.10734018683433533, -0.0027082611341029406, 0.11490101367235184, -0.08545347303152084, 0.08013173192739487, 0.11798471957445145, -0.20020011067390442, -0.07055601477622986, 0.11098956316709518, 0.0806947723031044, 0.06694197654724121, 0.022497639060020447, 0.06815196573734283, 0.05714432895183563, 0.09483404457569122, 0.008873038925230503, -0.04264804348349571, -0.055968597531318665, -0.006464680656790733, -0.08316292613744736, -0.05609384551644325, 0.22048179805278778, -0.03545891493558884, -0.017694808542728424, 0.03319737687706947, 0.03440096974372864, 0.07103817909955978, 0.021885570138692856, -0.06658612936735153, -0.03346337378025055, 0.005062386393547058, -0.024175919592380524, -0.03722340241074562, -0.09928219020366669, -0.0707927867770195, -0.13502207398414612, 0.12611716985702515, 0.046587225049734116, 0.06697224080562592, -0.1263752430677414, 0.09773869067430496, -0.1029699370265007, -0.06150469556450844, 0.06558605283498764, 0.023507846519351006, 0.09670314192771912, -0.041180383414030075, -0.025059007108211517, -0.09310369938611984, 0.005303225014358759, 0.18203352391719818, 0.026790466159582138, -0.01606292650103569, 0.07343951612710953, 0.08303704112768173, -0.006894142832607031, 0.06314250081777573, 0.020019102841615677, -0.05950099974870682, 0.05559372901916504, -0.016041090711951256, -0.012498850002884865, 0.015509597025811672, -0.19473737478256226, -0.056962959468364716, 0.05948060005903244, 0.02513836696743965, -0.020204227417707443, 0.08013232797384262, 0.0036309685092419386, -0.022725922986865044, 0.022809850051999092, -0.07421932369470596, -0.04988710582256317, -0.10951261967420578, -0.0812116265296936, -0.06917592883110046, 0.10031526535749435, -0.007645214442163706, -0.08542584627866745, 0.007520532235503197, -0.00703764520585537, -0.024259857833385468, -0.029197275638580322, -0.08891844004392624, 0.046094074845314026, -0.07650427520275116, 0.04167668893933296, -0.21187227964401245, -0.22838439047336578, -0.054228536784648895, 0.06675919890403748, -0.05371323972940445, -0.04828457906842232, -0.06588908284902573, 0.04274186119437218, -0.051885850727558136, -0.022860197350382805, 0.048164527863264084, -0.06070676073431969, 0.06515930593013763, -0.020986108109354973, 0.09682987630367279, -0.12307647615671158, 0.03345521539449692, -0.08531920611858368, -0.030157502740621567, -0.19152642786502838, 0.023938460275530815, 0.014133390039205551, 0.014708403497934341, -0.08780285716056824, -0.0301017165184021, -0.08947820216417313, 0.07411212474107742, 0.07588419318199158, 0.19488798081874847, -0.13615168631076813, -0.10024294257164001, 0.2224573791027069, -0.0878649353981018, -0.1198144480586052, 0.12751854956150055, -0.05779920145869255, 0.20510928332805634, 0.13195976614952087, 0.16636429727077484, -0.05885346606373787, -0.07378659397363663, 0.037063661962747574, -0.0015542813343927264, -0.018562670797109604, -0.10731831192970276, 0.05802760645747185, 0.0035927630960941315, -0.027297599241137505, 0.0491328239440918, -0.0030817140359431505, 0.07709945738315582, -0.08686742186546326, -0.0477847084403038, 0.035059526562690735, -0.05967967212200165, -0.01952201873064041, 0.01651271991431713, 0.14232003688812256, -0.07370200753211975, -0.05213563144207001, 0.011503095738589764, 0.05230892822146416, -0.01413820218294859, 0.02387845143675804, -0.07501812279224396, 0.1516268402338028, -0.06082091107964516, -0.004278830252587795, -0.11940295249223709, 0.08141838014125824, -0.031763169914484024, 0.11514438688755035, 0.09868159145116806, 0.013623077422380447, 0.09979227930307388, 0.0011613992974162102, -0.09118802100419998, 0.040424227714538574, 0.03535253554582596, -0.018719013780355453, -0.1078483909368515, -0.14582352340221405, 0.034220799803733826, -0.017612293362617493, -0.0044533442705869675, -0.18872271478176117, 0.03959311544895172, -0.09493958950042725, 0.09856433421373367, -0.02050146833062172, 0.0070550888776779175, -0.09010373800992966, 0.04071701318025589, -0.05353726074099541, -0.034731674939394, 0.053608134388923645, 0.004037107806652784, -0.04182945191860199, 0.09835154563188553, -0.10746755450963974, 0.17379239201545715, 0.16095206141471863, -0.1847955584526062, -0.11305342614650726, -0.013273490592837334, -0.0174568984657526, -0.02782757766544819, -0.07062740623950958, 0.005523039028048515, 0.19654446840286255, -0.04537631571292877, 0.14282415807247162, -0.056686852127313614, 0.006489911116659641, 0.05618606507778168, -0.12431953847408295, 0.022573307156562805, 0.12821470201015472, 0.10309018194675446, -0.07057856768369675, 0.09420376271009445, 0.03887231647968292, -0.102435402572155, 0.17686258256435394, 0.047814201563596725, -0.04694075882434845, -0.037926677614450455, -0.061089951545000076, 0.05504676327109337, 0.09111976623535156, -0.17887713015079498, -0.06146711856126785, -0.008547087199985981, 0.03525160998106003, 0.08423181623220444, -0.14474137127399445, -0.07003733515739441, 0.04021143913269043, -0.027039967477321625, -0.006942493841052055, 0.03599594160914421, -0.09032254666090012, 0.12124497443437576, 0.01405268907546997, -0.09481032937765121, 0.01747909188270569, 0.00998938549309969, -0.11213359236717224, 0.19040434062480927, -0.029196279123425484, -0.21001996099948883, -0.1719651222229004, -0.02519676834344864, 0.059788141399621964, 0.09421422332525253, 0.026059992611408234, -0.08171454071998596, 0.03199189901351929, 0.03221555054187775, 0.14275115728378296, -0.032310206443071365, 0.0058541265316307545, -0.10114509612321854, 0.050160184502601624, -0.04697796329855919, -0.0387604683637619, -0.08310634642839432, -0.1102941632270813, -0.16346780955791473, 0.009117974899709225, -0.2362338900566101, 0.047856662422418594, 0.10673055052757263, -0.05207204818725586, 0.05529553070664406, -0.06004796549677849, 0.17552028596401215, -0.10579226166009903, 0.023084772750735283, 0.1825501173734665, -0.003445890499278903, -0.01295517198741436, 0.030050775036215782, 0.009183328598737717, -0.05199987813830376, 0.009885150007903576, -0.04650352895259857, -0.1318466067314148, -0.26965582370758057, -0.08915358781814575, -0.03771403804421425, 0.0548548549413681, 0.05895920470356941, 0.03296991437673569, 0.11777721345424652, 0.10460925102233887, 0.050814464688301086, 0.1152639091014862, 0.02448582462966442, 0.029606392607092857, 0.06490468233823776, 0.015896055847406387, 0.11287220567464828, -0.0403812974691391, -0.06492333859205246, 0.09601710736751556, 0.06971264630556107, 0.18267513811588287, 0.053731519728899, -0.05963701009750366, 0.040223076939582825, 0.04931677132844925, -0.005857787095010281, 0.04662554711103439, 0.0524006262421608, -0.027303995564579964, -0.034018464386463165, -0.018328117206692696, -0.0846041664481163, 0.05687086284160614, -0.032192666083574295, -0.030139800161123276, -0.13547244668006897, 0.027558252215385437, 0.03784159943461418, 0.10242976248264313, 0.011595383286476135, -0.28350183367729187, -0.10385660082101822, 0.012659191153943539, -0.03609849512577057, -0.026511531323194504, 0.052233416587114334, 0.06164385750889778, -0.16766725480556488, 0.006877460982650518, -0.012154117226600647, 0.0899340808391571, -0.16164512932300568, 0.02609034813940525, -0.05102372542023659, -0.046345409005880356, -0.011238442733883858, 0.08935441076755524, -0.2718697488307953, 0.32752642035484314, -0.020866943523287773, 0.10383973270654678, -0.08677731454372406, -0.009621309116482735, 0.05185560882091522, 0.0758836567401886, 0.17330938577651978, 0.022609077394008636, -0.019385170191526413, -0.12030158936977386, -0.08465320616960526, 0.04251144826412201, -0.002068710047751665, -0.10454951226711273, 0.001573015353642404, -0.005531315226107836, 0.046904608607292175, 0.015207227319478989, 0.08942385762929916, -0.057225704193115234, -0.07533689588308334, -0.016816839575767517, -0.034226905554533005, -0.10046100616455078, -0.01635408215224743, -0.14877521991729736, -0.05838082358241081, 0.13754390180110931, 0.051205556839704514, -0.028273029252886772, -0.05014517530798912, 0.055146194994449615, -0.03145899623632431, -0.1148005872964859, 0.0376732237637043, 0.020884616300463676, -0.04021408036351204, -0.07475581765174866, -0.05945250019431114, 0.1395910382270813, -0.11179069429636002, -0.011851644143462181, -0.07699120789766312, 0.04473847895860672, 0.1010679081082344, 0.04430025815963745, 0.06559201329946518, -0.001984209753572941, 0.011335384100675583, -0.020423879846930504, 0.031186005100607872, -0.008004363626241684, 0.06835287064313889, 0.03550650179386139, -0.08118505030870438, -0.07381310313940048, -0.05815201997756958, -0.09323559701442719, 0.1389615684747696, 0.14351114630699158, -0.05362314730882645, -0.012190952897071838, 0.09529992192983627, -0.15259455144405365, -0.25889211893081665, 0.018827276304364204, 0.017223317176103592, 0.08007445931434631, -0.01413913257420063, -0.17789433896541595, 0.06031796708703041, 0.1164398193359375, -0.03715655952692032, -0.03458276763558388, -0.21118959784507751, -0.13383260369300842, 0.1896689534187317, 0.06535044312477112, 0.3485236167907715, -0.10606507211923599, -0.026991665363311768, -0.05561548471450806, -0.06991926580667496, 0.040366772562265396, -0.04407123476266861, 0.09063868224620819, -0.01846793293952942, 0.026690639555454254, -0.003610332030802965, -0.0033714103046804667, 0.10453850775957108, 0.07876316457986832, 0.033760055899620056, -0.1016453206539154, -0.14462201297283173, 0.07084657996892929, -0.022086793556809425, 0.05158328264951706, 0.05630727484822273, -0.01960393227636814, -0.156705841422081, -0.054731883108615875, -0.07786135375499725, 0.04873378574848175, 0.020005982369184494, -0.08195993304252625, 0.03983839228749275, 0.06783214956521988, -0.012010092847049236, 0.030072825029492378, 0.11235826462507248, -0.07567206770181656, 0.22058825194835663, 0.0644107311964035, 0.15534217655658722, 0.027860889211297035, -0.009396921843290329, 0.0066220201551914215, -0.06774922460317612, 0.04512179270386696, -0.09674686938524246, -0.015384235419332981, 0.09374570846557617, -0.026424162089824677, 0.09870077669620514, 0.04920993372797966, -0.0761537179350853, 0.021033329889178276, 0.13097447156906128, -0.13724133372306824, -0.04813213646411896, -0.04454313963651657, -0.011408255435526371, 0.02832202799618244, 0.08697371929883957, 0.12676666676998138, -0.09376541525125504, -0.04977334290742874, -0.03491325303912163, -0.025754641741514206, -0.107518769800663, 0.17055048048496246, 0.0943693146109581, -0.024935437366366386, -0.05121595785021782, 0.07589702308177948, 0.04721635580062866, -0.017824623733758926, 0.06431546807289124, 0.06741983443498611, -0.04779835045337677, -0.04921393096446991, 0.022561363875865936, 0.15776574611663818, -0.13785332441329956, -0.0914236530661583, -0.14347511529922485, -0.07159807533025742, 0.047991566359996796, 0.12570339441299438, 0.13625842332839966, 0.000563155161216855, -0.03360865265130997, 0.0368439219892025, -0.06623920798301697, 0.01770555041730404, 0.14837877452373505, -0.018570076674222946, 0.001170105766505003, 0.15261320769786835, 0.02464957721531391, 0.061207931488752365, -0.07068558782339096, -0.037118300795555115, -0.1568676233291626, 0.07699607312679291, -0.18080471456050873, 0.013662275858223438, -0.05056073144078255, -0.044279541820287704, -0.018650714308023453, -0.04276604205369949, -0.051932331174612045, -0.00002094213414238766, -0.10024500638246536, 0.05352674424648285, -0.0048148855566978455, 0.051212504506111145, -0.02187184989452362, -0.03155529871582985, 0.02508845366537571, 0.0011874907650053501, 0.058378107845783234, 0.099512979388237, 0.02351243980228901, 0.0782073363661766, -0.12410357594490051, 0.0638243705034256, 0.04978662729263306, 0.01645704172551632, 0.02653413452208042, 0.000796258042100817, 0.04200148954987526, 0.03240354359149933, 0.056027334183454514, 0.07400697469711304, 0.010920951142907143, -0.07074052095413208, 0.08010982722043991, 0.04434271156787872, -0.08111504465341568, -0.026092417538166046, 0.10215088725090027, 0.008811208419501781, 0.0536501482129097, 0.002910657087340951, -0.11312448978424072, 0.03418135270476341, -0.16960643231868744, 0.03339337557554245, -0.019983090460300446, -0.1120210736989975, -0.08220315724611282, -0.039392467588186264, 0.06524496525526047, 0.026510227471590042, 0.18348848819732666, 0.16681745648384094, 0.025856448337435722, 0.016370929777622223, 0.09262850135564804, 0.06495263427495956, -0.023653030395507812, 0.0331321582198143, 0.02915269136428833, -0.022684548050165176, -0.10411950200796127, 0.0834105908870697, 0.04698226600885391, 0.05280189961194992, 0.0742856040596962, 0.046115364879369736, 0.06541071087121964, 0.08613119274377823, 0.05745449289679527, 0.05272362381219864, -0.05828458070755005, -0.15808826684951782, -0.03322947770357132, 0.04478580504655838, -0.0013883351348340511, 0.014798242598772049, 0.13748782873153687, -0.12211084365844727, 0.01580212451517582, -0.030643748119473457, -0.07354072481393814, -0.1829398274421692, -0.3067367672920227, -0.03797687962651253, -0.04651077091693878, 0.0046662138774991035, -0.09713663905858994, -0.05565265193581581, 0.17411556839942932, 0.03882144019007683, -0.07758509367704391, 0.038759879767894745, -0.01827266812324524, -0.051929865032434464, 0.09735669940710068, -0.04567582905292511, 0.07757291197776794, -0.15726004540920258, -0.03840281814336777, -0.09165693074464798, 0.02752061001956463, -0.004487065132707357, -0.029262922704219818, -0.008072707802057266, -0.0037156343460083008, -0.0066175321117043495, -0.03735162317752838, -0.03521566838026047, -0.01374518871307373, 0.012391293421387672, 0.14267617464065552, 0.020544353872537613, -0.01622163876891136, 0.05878137797117233, 0.22780568897724152, -0.006862669251859188, -0.039201948791742325, -0.10943389683961868, 0.244988813996315, 0.026928644627332687, 0.06583227217197418, -0.02575998567044735, -0.011728759855031967, -0.006784580647945404, 0.3193856477737427, 0.3446618914604187, 0.002430843422189355, -0.0059226443991065025, 0.06977199018001556, 0.010934065096080303, 0.06143336743116379, 0.09643703699111938, 0.010563593357801437, 0.1476198434829712, -0.11022627353668213, -0.0170647781342268, -0.034920766949653625, 0.010368322022259235, 0.038451697677373886, 0.01840853877365589, 0.018143082037568092, 0.0016699816333130002, -0.037883006036281586, 0.0976414754986763, -0.16697664558887482, -0.12385427951812744, -0.07995230704545975, -0.20716053247451782, -0.15940135717391968, -0.040460020303726196, -0.007463681045919657, 0.06792039424180984, 0.15391667187213898, -0.019216734915971756, 0.006530435755848885, 0.0037618065252900124, 0.01985233463346958, -0.13458296656608582, -0.1379932165145874, 0.12368974089622498, 0.051994744688272476, 0.14360204339027405, -0.05169593170285225, 0.09059491753578186, 0.08329199254512787, 0.05139197036623955, 0.05201157554984093, 0.04997915402054787, -0.0007961545488797128, 0.13508076965808868, 0.0017019747756421566, -0.01679808646440506, -0.05583924800157547, -0.014175977557897568, 0.05211733281612396, -0.11264889687299728, 0.04997242987155914, -0.08146698027849197, -0.10554865002632141, -0.07513494789600372, 0.07047101855278015, -0.08274850249290466, 0.07528989017009735, 0.17009998857975006, -0.00927093904465437, -0.02244902402162552, -0.05346881225705147, 0.02123180404305458, 0.10179999470710754, -0.05371972173452377, -0.05770699679851532, -0.15096984803676605, -0.07200209051370621, -0.13402605056762695, 0.0012651820434257388, -0.19960923492908478, -0.05716116726398468, -0.10305464267730713, -0.11019659787416458, -0.08720497041940689, 0.06908658146858215, 0.07859017699956894, 0.04179529845714569, -0.03521871939301491, 0.05456873029470444, 0.010745909065008163, 0.06597737967967987, -0.1114521399140358, -0.12832637131214142 ]
null
null
transformers
hello
{}
feature-extraction
geekfeed/gpt2_ja
[ "transformers", "pytorch", "jax", "gpt2", "feature-extraction", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #jax #gpt2 #feature-extraction #endpoints_compatible #text-generation-inference #region-us
hello
[]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #feature-extraction #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 43 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #feature-extraction #endpoints_compatible #text-generation-inference #region-us \n" ]
[ -0.03398109972476959, 0.018888965249061584, -0.007880806922912598, 0.02206742763519287, 0.1638207882642746, 0.037731513381004333, 0.014167925342917442, 0.15188084542751312, 0.02111278846859932, -0.01889481209218502, 0.12038586288690567, 0.2157774418592453, 0.007423579227179289, 0.026820959523320198, -0.04919186979532242, -0.2778262794017792, 0.07768701016902924, 0.07007818669080734, -0.015200494788587093, 0.11311005800962448, 0.06332482397556305, -0.061867669224739075, 0.08461543172597885, -0.0075836158357560635, -0.16446669399738312, 0.02983976900577545, 0.03459633141756058, -0.09017550945281982, 0.09742081165313721, 0.031538162380456924, 0.08061277121305466, -0.0030193328857421875, -0.09619250148534775, -0.1701367348432541, 0.03636811301112175, 0.01950777694582939, -0.07170717418193817, 0.05267986282706261, 0.09415104985237122, -0.11167719960212708, 0.10849305242300034, 0.0750725269317627, -0.037247199565172195, 0.03811614215373993, -0.17764493823051453, -0.15073971450328827, -0.04758445918560028, 0.0533391609787941, 0.017745453864336014, 0.11936510354280472, -0.012455670163035393, 0.07070692628622055, -0.11889233440160751, 0.08903111517429352, 0.22376300394535065, -0.30080661177635193, 0.0018852984067052603, 0.07588654011487961, 0.10191844403743744, 0.03295342996716499, -0.03178124129772186, 0.040101271122694016, -0.003247296903282404, 0.013320171274244785, 0.011266719549894333, -0.08773378282785416, -0.11182939261198044, 0.07106613367795944, -0.09017190337181091, -0.10721877217292786, 0.21817174553871155, -0.03244520351290703, 0.05500418692827225, -0.014300752431154251, -0.09267299622297287, -0.04172993078827858, -0.03811154142022133, 0.030281148850917816, -0.03982057794928551, 0.09436848014593124, 0.04030688852071762, -0.09127417206764221, -0.11697132140398026, -0.04788464680314064, -0.1479818969964981, 0.16025954484939575, 0.012929270043969154, 0.08378656208515167, -0.20367296040058136, 0.09093020111322403, -0.06377104669809341, -0.09114819020032883, 0.0008944225264713168, -0.09258513897657394, 0.05764925107359886, 0.030522892251610756, -0.05159629508852959, -0.058944087475538254, 0.08484308421611786, 0.08071741461753845, -0.08752124011516571, 0.019243856891989708, -0.027394913136959076, 0.12002275139093399, 0.034472789615392685, 0.10747028142213821, -0.014223221689462662, 0.012611130252480507, 0.028984911739826202, -0.1251607984304428, -0.019202345982193947, -0.06676150113344193, -0.13292451202869415, -0.043604638427495956, 0.044865842908620834, 0.08819202333688736, 0.03449966385960579, 0.056729692965745926, -0.06338269263505936, -0.03321978077292442, 0.0426153689622879, -0.06894927471876144, -0.010898982174694538, 0.013982950709760189, 0.02018221653997898, 0.13711854815483093, -0.014758848585188389, -0.008163164369761944, -0.13247188925743103, 0.01187373697757721, -0.09224829077720642, 0.04010491073131561, -0.04569730535149574, -0.04844955727458, 0.029080700129270554, -0.11786365509033203, 0.015217216685414314, -0.12803979218006134, -0.19048921763896942, 0.021529939025640488, 0.022580565884709358, -0.016545366495847702, -0.007920068688690662, -0.03488989919424057, -0.048507750034332275, 0.03022949770092964, -0.06396739929914474, -0.04076502099633217, -0.07272981107234955, 0.11143545061349869, -0.045736029744148254, 0.057781461626291275, -0.1116175726056099, 0.08935883641242981, -0.12268462032079697, 0.02292976900935173, -0.13628758490085602, 0.07401396334171295, 0.0003269376466050744, 0.1265856772661209, -0.030688438564538956, -0.05801154300570488, -0.10415884852409363, 0.04890894889831543, -0.05099237710237503, 0.18874415755271912, -0.07314716279506683, -0.132068932056427, 0.2825451195240021, -0.08712209761142731, -0.1619558483362198, 0.0821814239025116, 0.002288002287968993, 0.0011562600266188383, 0.07734411209821701, 0.26328665018081665, 0.04767141491174698, 0.012914770282804966, 0.05733843892812729, 0.14165394008159637, -0.11889725178480148, -0.08776232600212097, 0.04592924565076828, -0.05467674508690834, -0.06730940192937851, 0.03713081777095795, 0.008485463447868824, 0.08996264636516571, -0.03478427976369858, -0.03712758049368858, -0.03343157842755318, 0.02333451248705387, 0.056347258388996124, 0.019738823175430298, 0.10667337477207184, -0.026125825941562653, -0.02497928962111473, -0.034567736089229584, -0.011004184372723103, -0.059423934668302536, 0.053771961480379105, -0.030248109251260757, 0.1906294971704483, -0.06823684275150299, 0.05094831436872482, -0.22435173392295837, -0.06820753216743469, -0.004211461171507835, 0.07073214650154114, -0.039220795035362244, 0.0832938551902771, 0.06353346258401871, -0.058927517384290695, 0.013046800158917904, -0.01576404459774494, 0.06569082289934158, -0.028422480449080467, -0.024334972724318504, -0.052377067506313324, 0.027739550918340683, -0.061196014285087585, -0.053170040249824524, -0.03612736985087395, 0.010731925256550312, 0.07667560130357742, 0.05965448543429375, 0.007638424169272184, 0.0006284333067014813, -0.015595687553286552, 0.007677802350372076, -0.036700669676065445, -0.012013350613415241, 0.0970931351184845, -0.016269613057374954, -0.05795665457844734, 0.21139363944530487, -0.11804867535829544, 0.229364275932312, 0.1870921552181244, -0.2910948693752289, 0.03751945123076439, -0.06085366755723953, -0.029841719195246696, 0.04603089764714241, 0.055164728313684464, -0.03180317208170891, 0.15262430906295776, 0.006412658374756575, 0.1575840264558792, -0.07221928238868713, -0.04858708009123802, -0.0020706183277070522, -0.022634578868746758, -0.005056939087808132, 0.06708059459924698, 0.10437332093715668, -0.13821543753147125, 0.18204782903194427, 0.21798604726791382, 0.03703448921442032, 0.17130611836910248, -0.03605227544903755, -0.049429163336753845, 0.06596335768699646, 0.030548300594091415, -0.0606444887816906, -0.0224105603992939, -0.2642643451690674, -0.033112429082393646, 0.07041537761688232, 0.06370636820793152, 0.12677060067653656, -0.12888126075267792, -0.058353882282972336, -0.010310319252312183, -0.04592818394303322, -0.08240234851837158, 0.06467947363853455, 0.058315861970186234, 0.09284047037363052, 0.020109934732317924, 0.019121259450912476, 0.10160421580076218, 0.011888816021382809, -0.0834352895617485, 0.20919658243656158, -0.10691818594932556, -0.33072149753570557, -0.11730197072029114, -0.11191093176603317, -0.018273120746016502, 0.035177819430828094, 0.10866014659404755, -0.09546976536512375, 0.0023446951527148485, 0.008298582397401333, 0.09128335118293762, -0.12794998288154602, 0.0025515230372548103, -0.0684722512960434, 0.03973132371902466, -0.08970900624990463, -0.08900129795074463, -0.06379032880067825, -0.04358667880296707, -0.05044618621468544, 0.10409896820783615, -0.11525647342205048, 0.07005775719881058, 0.1644221395254135, 0.047608498483896255, 0.08080147951841354, -0.03030022233724594, 0.18990203738212585, -0.09846929460763931, -0.0659480020403862, 0.2298540621995926, -0.028370128944516182, 0.08424650132656097, 0.0628245621919632, 0.01597674936056137, -0.07621397078037262, -0.030295180156826973, -0.0339762419462204, -0.09855901449918747, -0.2284165620803833, -0.08408627659082413, -0.14842261373996735, 0.07971551269292831, 0.0411498099565506, 0.062271494418382645, 0.1165519580245018, 0.06165260821580887, -0.002714910078793764, 0.000054978627304080874, 0.02230384759604931, 0.061018384993076324, 0.15415942668914795, -0.022541670128703117, 0.09027498215436935, -0.04255199804902077, -0.09858961403369904, 0.07433100789785385, 0.05764248967170715, 0.209857776761055, 0.04435478523373604, 0.07476995885372162, 0.03653637692332268, 0.10550344735383987, 0.11695322394371033, 0.12069892883300781, -0.02038560062646866, -0.012955543585121632, -0.031216325238347054, -0.01577240601181984, -0.05866384506225586, 0.020419230684638023, 0.10001645237207413, -0.12741778790950775, -0.08219089359045029, -0.15515148639678955, 0.11313740909099579, 0.0962664857506752, 0.04331975430250168, -0.20465125143527985, 0.004914415068924427, 0.08205442875623703, -0.012022766284644604, -0.10245295614004135, 0.08327359706163406, 0.005149856675416231, -0.14275036752223969, 0.030621670186519623, -0.060265444219112396, 0.13418631255626678, -0.057447563856840134, 0.06945997476577759, -0.05253184959292412, -0.09419374912977219, 0.035760682076215744, 0.11686872690916061, -0.21788617968559265, 0.21613872051239014, 0.0026431537698954344, -0.03310718387365341, -0.08006592094898224, 0.019969036802649498, 0.015163341537117958, 0.10334154963493347, 0.16158930957317352, 0.019047625362873077, -0.03775472193956375, -0.07836414128541946, 0.009233962744474411, 0.049238868057727814, 0.12409283220767975, -0.07148358970880508, -0.010493466630578041, -0.031920094043016434, 0.010391357354819775, -0.045084841549396515, 0.009252982214093208, 0.0597233772277832, -0.16483980417251587, 0.06186329945921898, -0.03629123792052269, 0.09790697693824768, 0.0032208876218646765, 0.014882716350257397, -0.03578269109129906, 0.2101571261882782, -0.09025534987449646, -0.10193339735269547, -0.10476431995630264, -0.04868541285395622, 0.07686401903629303, -0.06545232981443405, 0.05183243378996849, -0.058126915246248245, 0.005683800671249628, -0.056190673261880875, -0.21592795848846436, 0.12118171900510788, -0.08577093482017517, 0.01022536214441061, -0.011741469614207745, 0.19437716901302338, -0.07446233928203583, 0.004525590687990189, 0.034225184470415115, 0.019535740837454796, -0.11910305917263031, -0.11822032928466797, 0.019935302436351776, 0.019267160445451736, 0.06433448195457458, 0.08427267521619797, -0.05389643833041191, 0.03955468535423279, -0.02731584571301937, 0.042394526302814484, 0.3187265992164612, 0.11196407675743103, -0.0353592112660408, 0.16189156472682953, 0.09700864553451538, -0.06664200127124786, -0.28562334179878235, -0.05837123095989227, -0.10460895299911499, -0.05291508510708809, -0.04825713858008385, -0.1972295343875885, 0.07408171147108078, 0.05559791252017021, -0.003069472499191761, 0.16237546503543854, -0.2998795211315155, -0.045410264283418655, 0.09083554893732071, 0.0029976507648825645, 0.35047677159309387, -0.13662292063236237, -0.1086484044790268, -0.009997251443564892, -0.21793033182621002, 0.15688547492027283, -0.05111567676067352, 0.10258376598358154, -0.026647847145795822, 0.04984891042113304, 0.03732454776763916, -0.06094549968838692, 0.10685287415981293, 0.03344356268644333, 0.025576556101441383, -0.0670226588845253, -0.05422757565975189, 0.07657074183225632, 0.002487692516297102, 0.030322445556521416, -0.032831352204084396, 0.028334131464362144, -0.17057624459266663, -0.029128391295671463, -0.12150215357542038, 0.055270057171583176, 0.052710097283124924, -0.0523073710501194, -0.007498493883758783, -0.04918438941240311, 0.01702260784804821, 0.04285073280334473, 0.2606382668018341, -0.046974942088127136, 0.137732595205307, 0.02088603377342224, 0.05576815456151962, -0.14392180740833282, -0.13369505107402802, -0.0650082528591156, -0.030967850238084793, 0.10930955410003662, -0.16018564999103546, 0.06498073041439056, 0.10285113751888275, -0.02876986563205719, 0.07274043560028076, 0.13819840550422668, -0.00472244480624795, 0.01669573038816452, 0.112991563975811, -0.2267450988292694, -0.03186233714222908, -0.07737206667661667, -0.07555244117975235, 0.0703311413526535, 0.060993991792201996, 0.14077068865299225, 0.035168327391147614, -0.040421005338430405, -0.014719605445861816, 0.015234951861202717, -0.06634876877069473, 0.043525055050849915, 0.010127517394721508, 0.026140758767724037, -0.15715591609477997, 0.08541101217269897, -0.005174722988158464, -0.21036988496780396, -0.005740928929299116, 0.13913199305534363, -0.11823615431785583, -0.11555139720439911, -0.08236245065927505, 0.10451383888721466, -0.11297609657049179, -0.019400622695684433, -0.05483614280819893, -0.11052791029214859, 0.081906758248806, 0.12431976944208145, 0.06726083159446716, 0.10916067659854889, -0.03168467432260513, -0.026300154626369476, -0.015285271219909191, -0.03668741509318352, -0.013741668313741684, -0.008208153769373894, -0.07847334444522858, 0.014990213327109814, -0.008566166274249554, 0.16698555648326874, -0.07026736438274384, -0.0700295940041542, -0.141659677028656, 0.04910919442772865, -0.05881010368466377, -0.04814119637012482, -0.1198590025305748, -0.05525754392147064, -0.012653029523789883, 0.006583063397556543, -0.04662506654858589, -0.024548327550292015, -0.1374368518590927, 0.0030091346707195044, -0.052475202828645706, 0.008287256583571434, -0.0802515521645546, -0.004945927299559116, 0.0840594694018364, -0.05329854041337967, 0.13421107828617096, 0.1870245784521103, -0.06989633291959763, 0.14337709546089172, -0.1629752367734909, -0.1284065842628479, 0.11090626567602158, 0.013513484038412571, 0.022571967914700508, 0.08140571415424347, 0.04480253532528877, 0.0463559664785862, -0.022272175177931786, 0.03338497504591942, -0.05073343962430954, -0.13974528014659882, -0.004085231106728315, -0.029691126197576523, -0.1317378729581833, -0.052524253726005554, -0.029826022684574127, 0.07296694815158844, 0.04760735109448433, 0.10114012658596039, -0.013234374113380909, 0.11676392704248428, -0.062080830335617065, 0.015033978968858719, 0.015335427597165108, -0.16618193686008453, -0.006365602370351553, -0.08356084674596786, 0.022899894043803215, -0.007652601692825556, 0.2549842894077301, 0.038511525839567184, 0.01804349757730961, 0.004097143188118935, 0.057547327131032944, 0.081858329474926, 0.018365686759352684, 0.24671779572963715, 0.11142686009407043, -0.07029286026954651, -0.07353771477937698, 0.09077855199575424, 0.019628295674920082, 0.04568719491362572, 0.14286483824253082, 0.09640691429376602, 0.045025210827589035, 0.10824672132730484, 0.005120187532156706, 0.022424109280109406, -0.07746665179729462, -0.13389267027378082, 0.03348182886838913, 0.07298589497804642, 0.023791633546352386, 0.10110621899366379, 0.16689391434192657, -0.033899758011102676, 0.07309817522764206, 0.021548748016357422, -0.04892140254378319, -0.14492210745811462, -0.09998001903295517, -0.049641843885183334, -0.1533062905073166, 0.007883194833993912, -0.12904952466487885, 0.03898053616285324, 0.11353705823421478, 0.036048900336027145, -0.04310021549463272, 0.11286387592554092, 0.09136443585157394, -0.12094449251890182, 0.091287761926651, -0.0397527813911438, 0.04845031723380089, 0.03778262808918953, -0.002082721097394824, -0.0356530137360096, -0.0725937932729721, 0.010915938764810562, 0.0591718889772892, -0.052339401096105576, 0.03717206045985222, -0.16546553373336792, -0.11471116542816162, -0.045449063181877136, 0.07239927351474762, -0.07715584337711334, 0.13048553466796875, 0.01874645985662937, -0.0397508442401886, 0.039839860051870346, 0.22882109880447388, -0.06349016726016998, 0.013690697029232979, -0.037353772670030594, 0.19437791407108307, 0.09217066317796707, 0.08464698493480682, -0.006502367090433836, -0.011976183392107487, -0.03962603583931923, 0.302339106798172, 0.2769756615161896, -0.05413399264216423, 0.021783562377095222, 0.0516604445874691, 0.03920990973711014, 0.12926049530506134, 0.09020253270864487, 0.10022936761379242, 0.2921079397201538, -0.0817907303571701, -0.03348951041698456, -0.02699616551399231, -0.015302911400794983, -0.09093115478754044, 0.07280806452035904, 0.0739109143614769, -0.08109041303396225, -0.03497714549303055, 0.11526436358690262, -0.2400989979505539, 0.12282750755548477, -0.002933987881988287, -0.1795569211244583, -0.056720834225416183, -0.04313552752137184, 0.10610103607177734, 0.03206976503133774, 0.11494471877813339, -0.019204318523406982, -0.1244814544916153, 0.04311351478099823, 0.05702316388487816, -0.2793540060520172, -0.059641994535923004, 0.06888436526060104, -0.015986070036888123, 0.014617225155234337, -0.02941036783158779, 0.017946835607290268, 0.059734512120485306, 0.05357978865504265, -0.018864421173930168, 0.02963065542280674, 0.0022093323059380054, -0.03737632557749748, -0.02556825615465641, 0.054018568247556686, 0.008156261406838894, -0.12621402740478516, 0.0650884360074997, -0.12567831575870514, 0.025649594143033028, -0.03809667006134987, -0.035866763442754745, -0.011961621232330799, -0.0526297464966774, -0.06428948789834976, 0.03214455768465996, 0.09690435975790024, 0.0145519208163023, -0.016329284757375717, -0.0796203538775444, -0.005787264090031385, 0.01997840218245983, -0.05855453759431839, -0.1362132430076599, -0.08323870599269867, -0.10483372211456299, 0.10783778131008148, -0.03394462540745735, -0.14413024485111237, 0.010058521293103695, -0.058960650116205215, 0.06401345878839493, -0.1452757716178894, 0.06445631384849548, 0.057790156453847885, 0.025990890339016914, 0.005028141662478447, -0.04339994862675667, 0.06329231709241867, 0.09186097234487534, -0.10053910315036774, -0.0816805437207222 ]
null
null
null
https://dl.fbaipublicfiles.com/avhubert/model/lrs3_vox/vsr/base_vox_433h.pt
{}
null
g30rv17ys/avhubert
[ "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #region-us
URL
[]
[ "TAGS\n#region-us \n" ]
[ 6 ]
[ "passage: TAGS\n#region-us \n" ]
[ 0.024608636274933815, -0.026205500587821007, -0.009666500613093376, -0.10395516455173492, 0.08638657629489899, 0.059816278517246246, 0.01882290467619896, 0.020661840215325356, 0.23975107073783875, -0.005599027033895254, 0.1219947561621666, 0.0015615287702530622, -0.037353623658418655, 0.03733762726187706, -0.0035912662278860807, -0.17583473026752472, 0.03876631706953049, -0.018274923786520958, 0.01843859627842903, 0.026470553129911423, -0.07776834815740585, -0.07564429938793182, 0.015296397730708122, -0.10247814655303955, -0.083692267537117, 0.11002834886312485, 0.031466204673051834, -0.019670886918902397, 0.10779199749231339, -0.04243955761194229, 0.18699054419994354, -0.011512263678014278, -0.11213519424200058, -0.2536850869655609, 0.021806683391332626, -0.01765260472893715, -0.08747660368680954, 0.01506110467016697, 0.0665089413523674, -0.09014441072940826, -0.0588928684592247, 0.0795099288225174, -0.01132340170443058, 0.04246443510055542, -0.27593839168548584, -0.12684126198291779, -0.05297930911183357, -0.1421966552734375, 0.08651168644428253, 0.04035491496324539, 0.008764253929257393, 0.15506891906261444, -0.20897391438484192, 0.004104613792151213, 0.08255259692668915, -0.2538507878780365, 0.05591634660959244, 0.17671173810958862, 0.03623908758163452, 0.18037272989749908, 0.0060391901060938835, 0.11029672622680664, 0.0716743916273117, -0.024263937026262283, -0.17590197920799255, -0.08127854019403458, -0.04696211963891983, 0.16642488539218903, -0.06727185100317001, -0.14248386025428772, 0.34701237082481384, 0.00015008423360995948, 0.009657775051891804, 0.16921205818653107, -0.059524230659008026, -0.09972117841243744, 0.07259953022003174, 0.016484731808304787, 0.018492350354790688, 0.1471305936574936, 0.16307872533798218, -0.0458691343665123, -0.13837823271751404, -0.018630273640155792, -0.22798998653888702, 0.17510560154914856, -0.03248048573732376, 0.13137903809547424, -0.27447956800460815, 0.01684025302529335, -0.2570667266845703, 0.0032130838371813297, 0.04178816080093384, -0.06004921346902847, -0.0226522795855999, -0.013265985064208508, -0.08018817007541656, 0.004899587947875261, 0.06192673370242119, 0.1266920566558838, -0.06128726154565811, 0.06128238886594772, -0.09319206327199936, 0.141696035861969, 0.07166698575019836, 0.07868369668722153, 0.13037432730197906, 0.041205424815416336, -0.07187089323997498, -0.21872246265411377, -0.0026476888451725245, -0.06275863200426102, -0.09502086788415909, -0.0020165652967989445, -0.11606067419052124, 0.17244569957256317, -0.030802514404058456, -0.09825427830219269, -0.11208184063434601, 0.09148659557104111, -0.032992321997880936, -0.03437839448451996, -0.03552987426519394, -0.020977836102247238, 0.019381176680326462, 0.04704452306032181, -0.1548958420753479, -0.005131472367793322, 0.07039852440357208, 0.11502562463283539, -0.1346137970685959, -0.003783059772104025, -0.07908964157104492, 0.03039063885807991, 0.07654735445976257, -0.16510222852230072, 0.03158547356724739, -0.1124754324555397, -0.07531405985355377, 0.002912673633545637, -0.015710093080997467, -0.016202643513679504, 0.166526660323143, -0.0020451415330171585, 0.0714716836810112, -0.026345307007431984, -0.05890209600329399, -0.11243434250354767, -0.08489254862070084, 0.05390460044145584, 0.03670717030763626, 0.03266148269176483, -0.2193479984998703, 0.014805203303694725, -0.12762966752052307, 0.1360815018415451, -0.10566820204257965, -0.04705966264009476, -0.022842247039079666, 0.20562705397605896, 0.037286072969436646, 0.08762791007757187, -0.22171171009540558, 0.039756543934345245, -0.05404696613550186, 0.18480908870697021, -0.1502426266670227, -0.0799463614821434, 0.20813211798667908, -0.07964949309825897, -0.10115210711956024, 0.021235812455415726, 0.020391687750816345, 0.026287272572517395, 0.0766737088561058, 0.4564172327518463, -0.09766800701618195, -0.09146861732006073, 0.10178250074386597, 0.17055274546146393, -0.12427149713039398, -0.1827561855316162, 0.06446871906518936, -0.16666454076766968, -0.1973118633031845, 0.0018917324487119913, 0.09222044050693512, 0.038269978016614914, -0.07875611633062363, -0.020746968686580658, 0.06325206160545349, -0.0007678253459744155, 0.09095914661884308, 0.03755716234445572, 0.09034032374620438, -0.08716782182455063, 0.11115926504135132, -0.05017651244997978, 0.004037132486701012, 0.1343354731798172, 0.027325427159667015, -0.03223329409956932, 0.08694463223218918, -0.0485352948307991, 0.05295134335756302, -0.1662379503250122, -0.15068690478801727, 0.03398871049284935, 0.06283251196146011, 0.03186952322721481, 0.1280253529548645, 0.08141885697841644, -0.10732853412628174, 0.022690722718834877, -0.004228927195072174, 0.058398615568876266, 0.03891623765230179, 0.006107209715992212, 0.008764320984482765, 0.0961301177740097, -0.10607069730758667, -0.13589619100093842, -0.07336436957120895, -0.014715781435370445, 0.14371353387832642, -0.0302802175283432, 0.07690227776765823, -0.004240254405885935, 0.00013200697139836848, 0.06930823624134064, 0.08137880265712738, 0.016412746161222458, 0.08971183747053146, -0.05237193778157234, -0.05160155147314072, 0.10863113403320312, -0.13533565402030945, 0.17837053537368774, 0.14053137600421906, -0.20532016456127167, 0.029453208670020103, -0.06838275492191315, 0.03670361638069153, -0.008162540383636951, 0.0975119024515152, -0.08272241055965424, -0.02106042578816414, 0.013134466484189034, 0.0052274600602686405, -0.013007243163883686, 0.017682146281003952, -0.07295988500118256, -0.07787393033504486, -0.10233919322490692, 0.08436838537454605, 0.11562882363796234, -0.10282530635595322, 0.14214380085468292, 0.4384984076023102, 0.11495281755924225, 0.21582984924316406, -0.09581480920314789, -0.0412987545132637, 0.007486371789127588, 0.0001535322517156601, -0.04476691037416458, 0.08031861484050751, -0.15973517298698425, -0.038901735097169876, 0.027348900213837624, 0.07128690183162689, 0.11475157737731934, -0.14959022402763367, -0.09639324247837067, -0.00793045200407505, 0.0022841424215584993, -0.1249532699584961, 0.023905446752905846, -0.03974650055170059, 0.04015624523162842, 0.07232289016246796, -0.021535737439990044, 0.13939237594604492, -0.04166141897439957, -0.0639561116695404, 0.07585346698760986, -0.2017085999250412, -0.23179671168327332, -0.12309670448303223, -0.14680525660514832, 0.04366797208786011, 0.05154111236333847, 0.01726446859538555, -0.17635835707187653, -0.015074856579303741, 0.07706750929355621, 0.07820965349674225, -0.20886357128620148, -0.022814949974417686, -0.004290030337870121, 0.0895976573228836, -0.10227091610431671, -0.0017130117630586028, -0.04419664293527603, -0.10150232166051865, 0.0017003051470965147, 0.07279510796070099, -0.137485533952713, 0.13807645440101624, 0.21589438617229462, 0.07225540280342102, 0.07359948754310608, -0.019093448296189308, 0.09936179965734482, -0.10856141895055771, -0.16549113392829895, 0.08348225057125092, -0.06234746053814888, 0.047262318432331085, 0.17534415423870087, 0.03307317942380905, -0.13904969394207, -0.015682822093367577, -0.0402069091796875, -0.15603256225585938, -0.238995760679245, -0.09178274869918823, -0.1182505264878273, 0.16442428529262543, 0.0009358620154671371, 0.06651917099952698, 0.08258313685655594, -0.022042419761419296, 0.16447891294956207, -0.07379321753978729, -0.07578866183757782, -0.006978808436542749, 0.12375060468912125, -0.056660156697034836, -0.03080669604241848, -0.10566964000463486, -0.008295975625514984, 0.1151021271944046, 0.15304014086723328, 0.12214863300323486, 0.2957419455051422, 0.08268889784812927, 0.026645636186003685, 0.08958091586828232, 0.17622539401054382, 0.09495089203119278, 0.07838419824838638, -0.045413073152303696, -0.014814783819019794, 0.014317171648144722, -0.04022889584302902, 0.010141594335436821, 0.14683100581169128, -0.2679629921913147, -0.006678564939647913, -0.2710230350494385, 0.0965198427438736, -0.10913380235433578, 0.11837165057659149, -0.01015760749578476, 0.10194015502929688, 0.11082887649536133, 0.03233652561903, -0.03858073800802231, 0.16613617539405823, 0.08450309932231903, -0.11277695000171661, 0.001758623169735074, 0.03737903758883476, 0.09715615212917328, -0.02818971499800682, 0.12721189856529236, -0.11048974841833115, -0.1464834064245224, 0.013753619976341724, 0.07152791321277618, -0.15373679995536804, 0.3138748109340668, 0.012069208547472954, -0.13481520116329193, -0.01481647603213787, -0.09957809001207352, -0.006440147757530212, 0.1254177987575531, 0.09333524852991104, 0.07935678958892822, -0.2185502052307129, -0.13339371979236603, 0.05872276425361633, -0.00575496768578887, 0.22408108413219452, -0.034034017473459244, -0.11356475204229355, -0.027013886719942093, 0.04241163283586502, -0.06043251231312752, 0.08524788916110992, 0.023536119610071182, -0.08113526552915573, -0.032957352697849274, 0.05323701351881027, 0.012368366122245789, 0.00524376705288887, 0.09360801428556442, 0.020107939839363098, -0.0009265501867048442, 0.01785753294825554, 0.047885000705718994, -0.0675911232829094, -0.1984109878540039, 0.09357594698667526, -0.05215044692158699, 0.0015536568826064467, -0.08013670891523361, -0.15122665464878082, -0.08837161958217621, -0.16009655594825745, 0.12540200352668762, -0.034406669437885284, 0.12700119614601135, -0.06619787961244583, 0.17341409623622894, -0.07871770113706589, 0.04481020197272301, -0.047349292784929276, 0.050332702696323395, -0.007268077693879604, -0.07756082713603973, 0.16585899889469147, -0.15564003586769104, 0.01809087023139, 0.19572502374649048, -0.018915493041276932, 0.07177707552909851, 0.021322092041373253, -0.0636206790804863, 0.23147478699684143, 0.3014698624610901, 0.008138049393892288, 0.1665448248386383, 0.3018903136253357, -0.07466315478086472, -0.2642788887023926, -0.05505012720823288, -0.2841376066207886, -0.05371501296758652, 0.10716094076633453, -0.22523896396160126, 0.06986407935619354, 0.14383509755134583, -0.06471995264291763, 0.30228954553604126, -0.21825523674488068, 0.012589273042976856, 0.15434536337852478, -0.08868814259767532, 0.5515313148498535, -0.1133413165807724, -0.17677772045135498, -0.008122089318931103, -0.08741296827793121, 0.10602109134197235, -0.0340677872300148, 0.06877441704273224, 0.013465235009789467, 0.04797380417585373, 0.048932258039712906, -0.03111894056200981, 0.22701001167297363, 0.008710170164704323, 0.09015397727489471, -0.07378865778446198, -0.18624304234981537, 0.11639340221881866, -0.04359482601284981, -0.08891059458255768, 0.0849778801202774, -0.05942516401410103, -0.11078983545303345, 0.04663389176130295, -0.07950539886951447, -0.024862350896000862, 0.08423490077257156, -0.04678233340382576, -0.042606171220541, -0.008054176345467567, -0.1618063747882843, -0.0002289071271661669, 0.31360217928886414, -0.07096036523580551, 0.16695955395698547, 0.03677211329340935, 0.00038613268407061696, -0.11027684062719345, 0.030288029462099075, -0.05203165486454964, -0.021576624363660812, 0.09578979015350342, -0.11096979677677155, 0.03204701095819473, 0.14160704612731934, -0.04864364117383957, 0.05846960097551346, 0.09256096184253693, -0.0849417969584465, 0.007583672646433115, 0.17753590643405914, -0.17537221312522888, -0.1273445188999176, -0.006135711446404457, -0.09862716495990753, 0.14055661857128143, 0.04394126310944557, 0.05191568285226822, 0.16669964790344238, 0.03967129811644554, -0.029474308714270592, -0.02817419543862343, -0.1153380498290062, -0.0201893113553524, 0.040153320878744125, 0.00045633706031367183, -0.08791285753250122, 0.2262638509273529, 0.06409153342247009, -0.1328488290309906, -0.051157206296920776, 0.2161225974559784, -0.06805316358804703, -0.04911920800805092, -0.223562553524971, 0.10752306133508682, -0.07112517952919006, -0.0965060144662857, 0.05453834682703018, -0.02270081453025341, 0.005106312222778797, 0.181985542178154, 0.03941008821129799, 0.11070270836353302, 0.03738937899470329, -0.02448922023177147, 0.15798696875572205, -0.142850860953331, -0.14191335439682007, -0.025354057550430298, -0.08757315576076508, -0.13844476640224457, -0.026804137974977493, 0.1617041826248169, -0.09177309274673462, -0.14772607386112213, -0.2621181011199951, 0.10968475043773651, -0.16432365775108337, -0.10192688554525375, -0.03469514101743698, -0.08968492597341537, 0.0696166530251503, 0.030301768332719803, -0.03093348816037178, -0.06706760823726654, -0.18593791127204895, 0.0816768929362297, 0.06349513679742813, 0.045533183962106705, -0.017847947776317596, 0.0067379772663116455, 0.1720137596130371, 0.025955144315958023, 0.10040043294429779, 0.16762186586856842, 0.011397695168852806, 0.2246655523777008, -0.1671202927827835, -0.11496317386627197, 0.1336962729692459, -0.026543032377958298, 0.06762003898620605, 0.16792191565036774, -0.0772583931684494, 0.015526676550507545, -0.028136352077126503, 0.07066910713911057, -0.11003983020782471, -0.105624258518219, 0.007937257178127766, 0.02567129209637642, -0.2755882740020752, -0.005599735304713249, -0.19717298448085785, 0.14788752794265747, 0.02579621411859989, 0.03297143429517746, 0.10257530212402344, 0.10404334217309952, 0.08312062919139862, -0.0017710148822516203, 0.03226327523589134, -0.1176818460226059, 0.02753005363047123, -0.059239376336336136, -0.020663779228925705, 0.017624232918024063, 0.36952024698257446, -0.03603357449173927, -0.046802736818790436, 0.003710439894348383, 0.1307835876941681, -0.02139742486178875, 0.017395347356796265, 0.13209912180900574, 0.12607666850090027, -0.08595693111419678, -0.1504845917224884, 0.04888554662466049, -0.04565655067563057, -0.02836887165904045, 0.1464131623506546, 0.05905961990356445, 0.1050296202301979, 0.0908031314611435, -0.014463032595813274, -0.00318976235575974, 0.012856799177825451, -0.15486004948616028, 0.06223496049642563, -0.010558074340224266, 0.012565906159579754, 0.017934376373887062, 0.15238402783870697, -0.005540105979889631, 0.07739730179309845, -0.09889880567789078, 0.004208535887300968, -0.13498884439468384, -0.07913459837436676, 0.03617347031831741, -0.13393273949623108, 0.04141177982091904, -0.01871878281235695, 0.029611799865961075, 0.30386561155319214, 0.02558239921927452, -0.020639164373278618, 0.12512871623039246, -0.1214587539434433, -0.12050267308950424, -0.001594188273884356, -0.029960084706544876, 0.0791488066315651, -0.02633434161543846, -0.0997740775346756, -0.1001306027173996, -0.15166029334068298, -0.09759195148944855, 0.05182836204767227, -0.04993441700935364, -0.059362251311540604, -0.17634081840515137, -0.05707859992980957, -0.05147340148687363, 0.14025864005088806, -0.12263951450586319, 0.15159130096435547, -0.014490418136119843, 0.004084470681846142, 0.04405883327126503, 0.1950942426919937, -0.03644494712352753, 0.08714226633310318, 0.0154351145029068, 0.1522706001996994, -0.05119588226079941, 0.14720745384693146, -0.10931728035211563, -0.04014137014746666, -0.06710435450077057, 0.21513493359088898, 0.25630924105644226, -0.06136954948306084, -0.008937356993556023, -0.012760217301547527, 0.058654606342315674, 0.1073930487036705, 0.16049085557460785, 0.002326392102986574, 0.2802925705909729, -0.03133585304021835, 0.04815128445625305, 0.02901598811149597, 0.013607407920062542, -0.06336209923028946, 0.03397751972079277, 0.07539387792348862, -0.035039983689785004, -0.1412304788827896, 0.15837742388248444, -0.21980468928813934, 0.18157227337360382, 0.11640069633722305, -0.19996967911720276, -0.013728445395827293, -0.04882071167230606, 0.1689416468143463, -0.0856364443898201, 0.1637246012687683, -0.0903693437576294, -0.2108195722103119, -0.2056000679731369, 0.03867346793413162, -0.34623071551322937, -0.254462867975235, 0.10422009229660034, 0.1488201916217804, 0.04015883058309555, -0.018507536500692368, -0.019967829808592796, -0.018367022275924683, 0.04877542704343796, -0.0067357709631323814, 0.06014643982052803, 0.031397558748722076, -0.02988368645310402, -0.24127542972564697, -0.029804671183228493, 0.023964406922459602, -0.07093082368373871, 0.07464958727359772, -0.06874357163906097, -0.022495782002806664, 0.08059766888618469, -0.03066304884850979, 0.03298592567443848, -0.035373736172914505, -0.16326889395713806, 0.027529051527380943, 0.03900543600320816, 0.036012712866067886, 0.00634160777553916, 0.0008072225609794259, -0.03455270454287529, 0.0644603744149208, -0.16716794669628143, -0.16015739738941193, 0.14140215516090393, -0.06745140254497528, 0.2779497504234314, -0.05812826007604599, -0.0809100940823555, 0.04766704887151718, -0.03426874056458473, 0.1807648241519928, -0.07756473124027252, 0.047254521399736404, 0.12766779959201813, 0.011127962730824947, 0.03121316432952881, -0.3092964291572571, 0.11082969605922699, -0.000795336440205574, -0.006093299947679043, -0.07581598311662674 ]
null
null
transformers
# Please use 'Bert' related functions to load this model! ## Chinese BERT with Whole Word Masking Fix MLM Parameters Init parameters by https://huggingface.co/hfl/chinese-roberta-wwm-ext-large miss mlm parameters issue https://github.com/ymcui/Chinese-BERT-wwm/issues/98 Only train MLM parameters and freeze other parameters More info in github https://github.com/genggui001/chinese_roberta_wwm_large_ext_fix_mlm
{"language": ["zh"], "license": "apache-2.0", "tags": ["bert"]}
fill-mask
genggui001/chinese_roberta_wwm_large_ext_fix_mlm
[ "transformers", "pytorch", "tf", "jax", "safetensors", "bert", "fill-mask", "zh", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "zh" ]
TAGS #transformers #pytorch #tf #jax #safetensors #bert #fill-mask #zh #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
# Please use 'Bert' related functions to load this model! ## Chinese BERT with Whole Word Masking Fix MLM Parameters Init parameters by URL miss mlm parameters issue URL Only train MLM parameters and freeze other parameters More info in github URL
[ "# Please use 'Bert' related functions to load this model!", "## Chinese BERT with Whole Word Masking Fix MLM Parameters\n\nInit parameters by URL\n\nmiss mlm parameters issue URL\n\nOnly train MLM parameters and freeze other parameters\n\nMore info in github URL" ]
[ "TAGS\n#transformers #pytorch #tf #jax #safetensors #bert #fill-mask #zh #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "# Please use 'Bert' related functions to load this model!", "## Chinese BERT with Whole Word Masking Fix MLM Parameters\n\nInit parameters by URL\n\nmiss mlm parameters issue URL\n\nOnly train MLM parameters and freeze other parameters\n\nMore info in github URL" ]
[ 57, 15, 47 ]
[ "passage: TAGS\n#transformers #pytorch #tf #jax #safetensors #bert #fill-mask #zh #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n# Please use 'Bert' related functions to load this model!## Chinese BERT with Whole Word Masking Fix MLM Parameters\n\nInit parameters by URL\n\nmiss mlm parameters issue URL\n\nOnly train MLM parameters and freeze other parameters\n\nMore info in github URL" ]
[ -0.09657584130764008, 0.014937174506485462, -0.00013858656166121364, 0.08321996033191681, 0.15014703571796417, -0.0393122173845768, 0.08162843436002731, 0.054948292672634125, 0.06704584509134293, -0.027084313333034515, 0.11910072714090347, 0.10603979229927063, 0.03329062834382057, 0.10985727608203888, -0.026906006038188934, -0.21341829001903534, 0.05269964784383774, 0.018591051921248436, -0.06543781608343124, 0.07530587911605835, 0.07597199082374573, -0.05097714066505432, 0.16944816708564758, 0.05451894924044609, -0.040385652333498, 0.01364955399185419, 0.0013797236606478691, -0.10320337116718292, 0.0682741329073906, 0.05931353196501732, 0.005219019018113613, 0.014095436781644821, 0.0154954195022583, -0.06991001218557358, 0.043227534741163254, -0.008759918622672558, -0.02268681488931179, 0.05923936143517494, 0.09599623829126358, 0.045343391597270966, -0.04179689288139343, -0.05975354462862015, -0.04345576465129852, 0.05105319619178772, -0.02177104540169239, 0.06791005283594131, -0.09891175478696823, 0.04406121000647545, 0.1063317358493805, 0.0848664790391922, 0.02165343426167965, 0.24182720482349396, -0.06952402740716934, 0.08407330513000488, 0.23103687167167664, -0.3744494915008545, 0.010536257177591324, 0.1440165638923645, 0.03856809064745903, -0.13306476175785065, -0.012201428413391113, 0.10887439548969269, 0.04257219284772873, -0.0007271781214512885, 0.0792469009757042, -0.07259795814752579, 0.0717727467417717, -0.004769572056829929, -0.129052072763443, 0.027090078219771385, 0.11787810176610947, 0.007888921536505222, -0.05261492356657982, -0.03233960270881653, -0.016248973086476326, 0.11521845310926437, -0.04842352494597435, 0.03356530889868736, 0.006432632450014353, 0.03651784360408783, -0.0451216995716095, -0.06104887276887894, -0.05135304480791092, -0.01382110733538866, -0.10834715515375137, 0.1362115740776062, 0.04441653564572334, 0.024125637486577034, -0.14768296480178833, -0.0064612808637320995, -0.13584686815738678, -0.1342565268278122, -0.03144511207938194, -0.05624491348862648, 0.0484783910214901, -0.03476090729236603, -0.05885599926114082, -0.0820905789732933, 0.11320488154888153, 0.017868392169475555, -0.01351193618029356, 0.04466462880373001, 0.04596681892871857, 0.035261910408735275, 0.047691237181425095, 0.09518437087535858, -0.16620521247386932, -0.027252966538071632, 0.15670780837535858, -0.07818544656038284, 0.0343736857175827, -0.021738355979323387, -0.09869406372308731, -0.01179395243525505, 0.03278611600399017, 0.08385586738586426, 0.00047059825737960637, 0.132233127951622, -0.021631497889757156, -0.018599966540932655, 0.05459883064031601, -0.10020039975643158, -0.00593297416344285, -0.02454741671681404, -0.024639086797833443, -0.0346841886639595, 0.059278473258018494, 0.017467226833105087, -0.06811930239200592, 0.09916167706251144, -0.11322375386953354, -0.011369609273970127, -0.03289690613746643, -0.08260856568813324, 0.08294074982404709, -0.0881267860531807, 0.060903679579496384, -0.16503678262233734, -0.17898309230804443, 0.0895274356007576, 0.048101671040058136, -0.006561225280165672, 0.014372190460562706, 0.06977656483650208, -0.04978403076529503, -0.004421835765242577, -0.015038857236504555, 0.06074687838554382, -0.0529966838657856, 0.02100421115756035, 0.003520377678796649, 0.05934092402458191, -0.08611361682415009, 0.02704494260251522, -0.09592200070619583, 0.04376194626092911, -0.0912327989935875, 0.020364562049508095, -0.0290698129683733, 0.10608115792274475, -0.10675112903118134, -0.026729905977845192, 0.060970108956098557, 0.006562802940607071, 0.08219712972640991, 0.20662221312522888, -0.09835507720708847, -0.03967885673046112, 0.1260351538658142, -0.08784148097038269, -0.13953576982021332, 0.10648848861455917, -0.0013129723956808448, -0.05531037226319313, 0.08981325477361679, 0.11516550928354263, -0.08783110976219177, -0.178773894906044, -0.009696725755929947, 0.0651983916759491, -0.06539896875619888, -0.10450460761785507, 0.08717894554138184, 0.026711633428931236, -0.2348553091287613, 0.04726128280162811, 0.0034956110175698996, 0.07881040126085281, -0.053008005023002625, -0.06201741099357605, -0.04136822372674942, -0.07276356965303421, -0.003843032754957676, -0.05711536481976509, 0.07059638947248459, -0.029015861451625824, -0.004217176698148251, 0.04702858626842499, 0.04123968631029129, 0.04633979871869087, 0.002895824844017625, -0.11001784354448318, 0.044920001178979874, -0.09260254353284836, 0.07035883516073227, -0.10141842067241669, -0.09955228865146637, -0.004276891238987446, -0.025882236659526825, 0.06495313346385956, -0.0626540556550026, 0.0848526656627655, 0.06739258766174316, -0.03648288920521736, 0.012910221703350544, 0.11308980733156204, 0.03756696358323097, -0.09409507364034653, -0.17028458416461945, -0.019926967099308968, -0.039917293936014175, -0.015552055090665817, 0.02633637748658657, 0.0021314111072570086, 0.054443467408418655, 0.05815456062555313, -0.0024851092603057623, 0.004598981235176325, 0.10433535277843475, -0.0037253363989293575, -0.02199205383658409, -0.020817961543798447, 0.042670223861932755, 0.03093715012073517, -0.10916714370250702, 0.20050419867038727, -0.03485068306326866, 0.09129111468791962, 0.18241846561431885, 0.016789333894848824, -0.0065140267834067345, -0.003171975491568446, 0.007918808609247208, -0.013932783156633377, -0.014281253330409527, 0.0030459112022072077, 0.11647859215736389, -0.002153227338567376, 0.14734996855258942, -0.07776414602994919, -0.015068543143570423, 0.026773186400532722, -0.09358105808496475, -0.1281954050064087, 0.07532815635204315, 0.11339034140110016, -0.1538490653038025, 0.12571106851100922, 0.12266530096530914, -0.023012196645140648, 0.16680221259593964, 0.02258407138288021, -0.000331343908328563, -0.06264621019363403, -0.029975419864058495, 0.030422374606132507, 0.0438104085624218, -0.11906123906373978, -0.004533152095973492, 0.04591444879770279, -0.03269970789551735, 0.05462952330708504, -0.07720143347978592, -0.04159404709935188, 0.027881985530257225, 0.018351996317505836, -0.05052776634693146, 0.07543611526489258, -0.05312255024909973, 0.0569864921271801, 0.010376937687397003, -0.03330453857779503, 0.07029958814382553, 0.018408408388495445, -0.11016593873500824, 0.16448494791984558, -0.12186060845851898, -0.2916882634162903, -0.11853484064340591, -0.2282705008983612, -0.14647558331489563, -0.0024357924703508615, 0.05330474302172661, -0.12379321455955505, -0.11613146960735321, -0.04923342540860176, -0.011587300337851048, 0.009979442693293095, 0.07105941325426102, 0.041176605969667435, -0.010192700661718845, 0.013676798902451992, -0.09922710061073303, -0.04163896292448044, -0.0005062131094746292, -0.017578886821866035, 0.1013030931353569, -0.049197517335414886, 0.07584225386381149, 0.06461423635482788, 0.006407574284821749, 0.055948685854673386, -0.003946491051465273, 0.23323370516300201, 0.0164374690502882, 0.033615097403526306, 0.18185213208198547, -0.00605816813185811, 0.04988984018564224, 0.1058925986289978, 0.02615499496459961, -0.06285348534584045, 0.04732730612158775, -0.02244916372001171, -0.10698965936899185, -0.18591099977493286, -0.09866407513618469, -0.08991699665784836, -0.005281220655888319, 0.019757602363824844, 0.04585054889321327, 0.00826955121010542, 0.08201119303703308, 0.019646404311060905, 0.040956348180770874, -0.035128798335790634, 0.06984846293926239, -0.04187596216797829, 0.018057331442832947, 0.05624953657388687, -0.0009484196198172867, -0.028722604736685753, 0.11862750351428986, -0.015758488327264786, 0.11037003248929977, 0.02921174094080925, 0.03733447939157486, 0.07589203119277954, 0.11813602596521378, 0.0858585312962532, 0.1465580016374588, -0.08089591562747955, -0.040852807462215424, -0.03133681043982506, -0.12767134606838226, -0.03569617494940758, 0.03927375748753548, -0.012352222576737404, -0.07179244607686996, -0.07320445030927658, 0.07900427281856537, 0.034816939383745193, 0.1908089965581894, 0.021199822425842285, -0.20195169746875763, -0.027513660490512848, 0.022808300331234932, 0.014353970065712929, -0.004562463145703077, 0.02287190407514572, 0.00913733709603548, -0.09884940832853317, 0.11237946152687073, -0.013692251406610012, 0.1191372200846672, 0.06637269258499146, 0.03599855676293373, -0.08343961089849472, 0.09928236901760101, -0.03383052721619606, 0.08230041712522507, -0.25072821974754333, 0.20172743499279022, 0.057255376130342484, 0.014757406897842884, -0.10358022153377533, 0.01609918847680092, 0.09989552944898605, 0.1245117112994194, 0.11491654813289642, 0.039160702377557755, 0.04344695433974266, -0.14631804823875427, -0.1258472502231598, 0.023477155715227127, -0.014967991970479488, 0.058580897748470306, 0.013944987207651138, -0.009836441837251186, -0.06556038558483124, -0.0006956707802601159, 0.131492480635643, -0.1298029124736786, -0.07058214396238327, 0.01593460515141487, 0.08771531283855438, 0.014849203638732433, -0.06285537034273148, -0.06265737116336823, -0.06864885240793228, 0.22264865040779114, 0.10987504571676254, -0.06584649533033371, -0.14333780109882355, -0.04313330724835396, 0.052552610635757446, -0.1112402155995369, 0.033138468861579895, -0.07859606295824051, 0.11317916214466095, -0.07266855239868164, -0.17086774110794067, 0.11132838577032089, -0.15723413228988647, 0.01152857206761837, 0.0018006520112976432, 0.12783700227737427, -0.041395965963602066, 0.03526819869875908, 0.07885471731424332, -0.02445421740412712, -0.0010166834108531475, -0.10354658216238022, -0.04059736058115959, 0.021842731162905693, 0.11801981180906296, 0.08382220566272736, -0.156023308634758, -0.10229721665382385, 0.005449859891086817, -0.05099089816212654, 0.17416897416114807, 0.26149502396583557, -0.02886013686656952, 0.08149582147598267, 0.2593616247177124, 0.004925131797790527, -0.3048955798149109, -0.05537409335374832, -0.05234770476818085, -0.009685220196843147, 0.0034958638716489077, -0.0940445140004158, 0.1417676955461502, 0.00412795040756464, -0.021359462291002274, -0.0015660596545785666, -0.08627034723758698, -0.1308320164680481, 0.1403779834508896, 0.0812269076704979, 0.2960852384567261, -0.1123242899775505, -0.07330050319433212, -0.10911885648965836, -0.04832100495696068, 0.07413745671510696, -0.06982095539569855, 0.11196524649858475, 0.022999970242381096, 0.039407841861248016, 0.012253115884959698, -0.09796695411205292, 0.10493840277194977, -0.019965212792158127, 0.017240770161151886, -0.07372424751520157, -0.046471260488033295, 0.017387544736266136, -0.02774488739669323, 0.1640423685312271, -0.12152901291847229, 0.05658172070980072, -0.018506992608308792, -0.04794571176171303, -0.042601171880960464, 0.10532649606466293, 0.0175783671438694, -0.0894927904009819, -0.006873581558465958, 0.07142969965934753, 0.03279026970267296, -0.03056296892464161, 0.07901066541671753, -0.004251774400472641, -0.0847267359495163, 0.2349385768175125, 0.03640555217862129, -0.2572192847728729, 0.01168602891266346, -0.016326434910297394, -0.08541767299175262, 0.10859896242618561, -0.02724689058959484, 0.054566312581300735, 0.022108888253569603, 0.02374977432191372, 0.09641839563846588, 0.029175560921430588, -0.026904573664069176, -0.051015209406614304, 0.08247390389442444, -0.16598227620124817, -0.010299180634319782, -0.10366304218769073, 0.07919304072856903, 0.025448041036725044, 0.03611773997545242, 0.12689445912837982, -0.04997461661696434, -0.01596699096262455, -0.001270693144761026, 0.03035109117627144, -0.05651301518082619, 0.12488909810781479, -0.0038198502734303474, 0.03342735767364502, -0.1721128672361374, 0.04465767368674278, -0.01090244296938181, 0.05473979562520981, 0.06915812194347382, 0.07288806140422821, -0.13612310588359833, -0.0913078710436821, 0.03603778034448624, 0.1637980341911316, -0.03152499347925186, -0.03121103346347809, -0.029095593839883804, -0.07092340290546417, 0.03957090154290199, 0.13980638980865479, 0.09165248274803162, -0.015490551479160786, -0.004698721691966057, -0.10476242750883102, -0.06482146680355072, 0.02559036947786808, 0.055473826825618744, 0.019128357991576195, -0.12133771926164627, 0.07733040302991867, 0.0013535722391679883, 0.13479620218276978, -0.08664920181035995, -0.014718115329742432, -0.17296764254570007, -0.0128286462277174, -0.1515144407749176, 0.07329875230789185, -0.13061314821243286, -0.0387987457215786, -0.026943618431687355, -0.04101255536079407, -0.05122196674346924, 0.056255925446748734, -0.08133886754512787, -0.035547979176044464, -0.02608325704932213, 0.04917473718523979, -0.08315104246139526, -0.056970320641994476, 0.07124370336532593, -0.02393740601837635, 0.067350834608078, 0.07734814286231995, -0.05915144458413124, 0.059297315776348114, -0.0904000774025917, -0.13009750843048096, 0.08933408558368683, 0.023050377145409584, 0.07775334268808365, -0.09990835934877396, 0.01959593966603279, 0.030791396275162697, -0.007329442072659731, 0.009445780888199806, 0.18548732995986938, -0.12301038950681686, -0.08359726518392563, -0.008522910065948963, -0.038092754781246185, -0.0103214206174016, -0.01733418181538582, 0.14983491599559784, 0.011388805694878101, 0.177156001329422, -0.06402318179607391, 0.009229161776602268, -0.05379653349518776, 0.02822105586528778, -0.04767250269651413, -0.11633127182722092, -0.12318183481693268, -0.01706894487142563, 0.016438178718090057, -0.03632618114352226, 0.1504037231206894, 0.028964655473828316, -0.0931103453040123, 0.0346171110868454, 0.12326937168836594, 0.10302083194255829, -0.02432297356426716, 0.19437922537326813, -0.0008588695200160146, 0.04072872921824455, -0.025991644710302353, 0.08037369698286057, 0.08219127357006073, -0.05376812815666199, 0.10604795068502426, 0.007560450583696365, 0.029811566695570946, 0.08922675251960754, 0.05782898887991905, 0.022690357640385628, -0.059444673359394073, -0.14055681228637695, -0.06729429215192795, 0.08783508092164993, 0.0050935084000229836, 0.03039439767599106, 0.1699099838733673, -0.08946126699447632, 0.06534728407859802, 0.012898021377623081, -0.04701438918709755, -0.13914109766483307, -0.19439351558685303, -0.10204159468412399, -0.005798848811537027, 0.03935721889138222, -0.07807891070842743, -0.034895382821559906, 0.06288080662488937, 0.060827963054180145, 0.00026800172054208815, 0.17422939836978912, -0.16405637562274933, -0.03514893725514412, 0.001809591893106699, -0.01749492436647415, -0.07192688435316086, 0.06465321034193039, -0.03919408097863197, -0.035359758883714676, -0.03286362439393997, -0.030647993087768555, 0.029219146817922592, 0.005812290124595165, 0.08786036819219589, -0.0017884145490825176, -0.08054936677217484, -0.07115963101387024, -0.02124135196208954, 0.07487579435110092, 0.10423769801855087, 0.014879556372761726, -0.03143767639994621, 0.03084038943052292, 0.10778369009494781, -0.03472728282213211, -0.08230628818273544, -0.10087224841117859, 0.1544203907251358, 0.017579423263669014, 0.008485387079417706, 0.007880287244915962, -0.021380294114351273, -0.035867542028427124, 0.3025079071521759, 0.26873987913131714, -0.11048271507024765, 0.030512606725096703, -0.09478974342346191, 0.02677311934530735, 0.01710430160164833, 0.1357365846633911, 0.05251891538500786, 0.13625271618366241, -0.043837837874889374, 0.04702688008546829, -0.08059968799352646, -0.053277913480997086, -0.1602313369512558, 0.027389967814087868, 0.06925853341817856, -0.10281603038311005, -0.011795255355536938, 0.07309921085834503, -0.13590498268604279, -0.0755874291062355, -0.08936423808336258, -0.08412931114435196, -0.07175356894731522, -0.01608634926378727, -0.05779014900326729, 0.08181946724653244, 0.0844084769487381, -0.01912613958120346, 0.09721868485212326, -0.03515325486660004, 0.041738249361515045, -0.17492417991161346, -0.09655970335006714, 0.14622420072555542, 0.1488049477338791, 0.16527970135211945, 0.04288867861032486, -0.010215920396149158, 0.07120759040117264, 0.013690588064491749, -0.0830928236246109, 0.08852940797805786, -0.01734819822013378, -0.1502721607685089, 0.020574066787958145, -0.01996886171400547, -0.05628018453717232, -0.028867848217487335, -0.0547311007976532, -0.026304082944989204, -0.02084246091544628, 0.007071769330650568, 0.025512706488370895, -0.06048503518104553, 0.12298916280269623, -0.0952778309583664, 0.06709598004817963, 0.10640235245227814, -0.04179181531071663, -0.0313866063952446, -0.06937964260578156, 0.09332847595214844, 0.011254659853875637, -0.21634772419929504, -0.09950727224349976, -0.12192348390817642, 0.028006840497255325, -0.08000063896179199, 0.026129815727472305, -0.23037348687648773, -0.04637816920876503, -0.13177764415740967, -0.0011951631167903543, -0.15946990251541138, 0.06273354589939117, 0.1764431744813919, 0.002906900132074952, 0.010569503530859947, -0.10997109115123749, 0.04067154973745346, -0.007189431227743626, -0.14438821375370026, -0.1276816576719284 ]
null
null
transformers
# xls-asr-vi-40h-1B This model is a fine-tuned version of [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) on 40 hours of FPT Open Speech Dataset (FOSD) and Common Voice 7.0. ### Benchmark WER result: | | [VIVOS](https://huggingface.co/datasets/vivos) | [COMMON VOICE 7.0](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0) | [COMMON VOICE 8.0](https://huggingface.co/datasets/mozilla-foundation/common_voice_8_0) |---|---|---|---| |without LM| 25.93 | 34.21 | |with 4-grams LM| 24.11 | 25.84 | 31.158 | ### Benchmark CER result: | | [VIVOS](https://huggingface.co/datasets/vivos) | [COMMON VOICE 7.0](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0) | [COMMON VOICE 8.0](https://huggingface.co/datasets/mozilla-foundation/common_voice_8_0) |---|---|---|---| |without LM| 9.24 | 19.94 | |with 4-grams LM| 10.37 | 12.96 | 16.179 | ## Evaluation Please use the eval.py file to run the evaluation ```python python eval.py --model_id geninhu/xls-asr-vi-40h-1B --dataset mozilla-foundation/common_voice_7_0 --config vi --split test --log_outputs ``` ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1500 - num_epochs: 10.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 4.6222 | 1.85 | 1500 | 5.9479 | 0.5474 | | 1.1362 | 3.7 | 3000 | 7.9799 | 0.5094 | | 0.7814 | 5.56 | 4500 | 5.0330 | 0.4724 | | 0.6281 | 7.41 | 6000 | 2.3484 | 0.5020 | | 0.5472 | 9.26 | 7500 | 2.2495 | 0.4793 | | 0.4827 | 11.11 | 9000 | 1.1530 | 0.4768 | | 0.4327 | 12.96 | 10500 | 1.6160 | 0.4646 | | 0.3989 | 14.81 | 12000 | 3.2633 | 0.4703 | | 0.3522 | 16.67 | 13500 | 2.2337 | 0.4708 | | 0.3201 | 18.52 | 15000 | 3.6879 | 0.4565 | | 0.2899 | 20.37 | 16500 | 5.4389 | 0.4599 | | 0.2776 | 22.22 | 18000 | 3.5284 | 0.4537 | | 0.2574 | 24.07 | 19500 | 2.1759 | 0.4649 | | 0.2378 | 25.93 | 21000 | 3.3901 | 0.4448 | | 0.217 | 27.78 | 22500 | 1.1632 | 0.4565 | | 0.2115 | 29.63 | 24000 | 1.7441 | 0.4232 | | 0.1959 | 31.48 | 25500 | 3.4992 | 0.4304 | | 0.187 | 33.33 | 27000 | 3.6163 | 0.4369 | | 0.1748 | 35.19 | 28500 | 3.6038 | 0.4467 | | 0.17 | 37.04 | 30000 | 2.9708 | 0.4362 | | 0.159 | 38.89 | 31500 | 3.2045 | 0.4279 | | 0.153 | 40.74 | 33000 | 3.2427 | 0.4287 | | 0.1463 | 42.59 | 34500 | 3.5439 | 0.4270 | | 0.139 | 44.44 | 36000 | 3.9381 | 0.4150 | | 0.1352 | 46.3 | 37500 | 4.1744 | 0.4092 | | 0.1369 | 48.15 | 39000 | 4.2279 | 0.4154 | | 0.1273 | 50.0 | 40500 | 4.1691 | 0.4133 | ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.1+cu102 - Datasets 1.17.1.dev0 - Tokenizers 0.11.0
{"language": ["vi"], "license": "apache-2.0", "tags": ["automatic-speech-recognition", "common-voice", "hf-asr-leaderboard", "robust-speech-event"], "datasets": ["mozilla-foundation/common_voice_7_0"], "model-index": [{"name": "xls-asr-vi-40h-1B", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Speech Recognition"}, "dataset": {"name": "Common Voice 7.0", "type": "mozilla-foundation/common_voice_7_0", "args": "vi"}, "metrics": [{"type": "wer", "value": 25.846, "name": "Test WER (with LM)"}, {"type": "cer", "value": 12.961, "name": "Test CER (with LM)"}]}, {"task": {"type": "automatic-speech-recognition", "name": "Speech Recognition"}, "dataset": {"name": "Common Voice 8.0", "type": "mozilla-foundation/common_voice_8_0", "args": "vi"}, "metrics": [{"type": "wer", "value": 31.158, "name": "Test WER (with LM)"}, {"type": "cer", "value": 16.179, "name": "Test CER (with LM)"}]}]}]}
automatic-speech-recognition
geninhu/xls-asr-vi-40h-1B
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "common-voice", "hf-asr-leaderboard", "robust-speech-event", "vi", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "vi" ]
TAGS #transformers #pytorch #tensorboard #wav2vec2 #automatic-speech-recognition #common-voice #hf-asr-leaderboard #robust-speech-event #vi #dataset-mozilla-foundation/common_voice_7_0 #license-apache-2.0 #model-index #endpoints_compatible #region-us
xls-asr-vi-40h-1B ================= This model is a fine-tuned version of facebook/wav2vec2-xls-r-1b on 40 hours of FPT Open Speech Dataset (FOSD) and Common Voice 7.0. ### Benchmark WER result: ### Benchmark CER result: Evaluation ---------- Please use the URL file to run the evaluation Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 5e-05 * train\_batch\_size: 16 * eval\_batch\_size: 16 * seed: 42 * gradient\_accumulation\_steps: 2 * total\_train\_batch\_size: 32 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * lr\_scheduler\_warmup\_steps: 1500 * num\_epochs: 10.0 * mixed\_precision\_training: Native AMP ### Training results ### Framework versions * Transformers 4.16.0.dev0 * Pytorch 1.10.1+cu102 * Datasets 1.17.1.dev0 * Tokenizers 0.11.0
[ "### Benchmark WER result:", "### Benchmark CER result:\n\n\n\nEvaluation\n----------\n\n\nPlease use the URL file to run the evaluation\n\n\nTraining procedure\n------------------", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 5e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* gradient\\_accumulation\\_steps: 2\n* total\\_train\\_batch\\_size: 32\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 1500\n* num\\_epochs: 10.0\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.16.0.dev0\n* Pytorch 1.10.1+cu102\n* Datasets 1.17.1.dev0\n* Tokenizers 0.11.0" ]
[ "TAGS\n#transformers #pytorch #tensorboard #wav2vec2 #automatic-speech-recognition #common-voice #hf-asr-leaderboard #robust-speech-event #vi #dataset-mozilla-foundation/common_voice_7_0 #license-apache-2.0 #model-index #endpoints_compatible #region-us \n", "### Benchmark WER result:", "### Benchmark CER result:\n\n\n\nEvaluation\n----------\n\n\nPlease use the URL file to run the evaluation\n\n\nTraining procedure\n------------------", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 5e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* gradient\\_accumulation\\_steps: 2\n* total\\_train\\_batch\\_size: 32\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 1500\n* num\\_epochs: 10.0\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.16.0.dev0\n* Pytorch 1.10.1+cu102\n* Datasets 1.17.1.dev0\n* Tokenizers 0.11.0" ]
[ 98, 9, 25, 160, 4, 41 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #wav2vec2 #automatic-speech-recognition #common-voice #hf-asr-leaderboard #robust-speech-event #vi #dataset-mozilla-foundation/common_voice_7_0 #license-apache-2.0 #model-index #endpoints_compatible #region-us \n### Benchmark WER result:### Benchmark CER result:\n\n\n\nEvaluation\n----------\n\n\nPlease use the URL file to run the evaluation\n\n\nTraining procedure\n------------------### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 5e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* gradient\\_accumulation\\_steps: 2\n* total\\_train\\_batch\\_size: 32\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 1500\n* num\\_epochs: 10.0\n* mixed\\_precision\\_training: Native AMP### Training results### Framework versions\n\n\n* Transformers 4.16.0.dev0\n* Pytorch 1.10.1+cu102\n* Datasets 1.17.1.dev0\n* Tokenizers 0.11.0" ]
[ -0.08645769208669662, 0.11235358566045761, -0.003629423677921295, 0.05070352926850319, 0.1305888593196869, 0.023242780938744545, 0.108546681702137, 0.12181372195482254, -0.06051018089056015, 0.09309239685535431, 0.07602793723344803, 0.11011772602796555, 0.06748021394014359, 0.07952335476875305, -0.03547321632504463, -0.24307599663734436, 0.012254377827048302, -0.013110860250890255, -0.09246627986431122, 0.11242163926362991, 0.07265817373991013, -0.11109045892953873, 0.0364060215651989, 0.024927597492933273, -0.11268691718578339, 0.028092870488762856, -0.03647970035672188, -0.016231048852205276, 0.09720960259437561, 0.046008527278900146, 0.07455704361200333, 0.029322084039449692, 0.09958541393280029, -0.2977120578289032, 0.012829623185098171, 0.08299090713262558, 0.02178795263171196, 0.0467359721660614, 0.0830119252204895, 0.002957546152174473, 0.15435245633125305, -0.044664230197668076, 0.08047182112932205, 0.02882884442806244, -0.09989416599273682, -0.26471471786499023, -0.07725134491920471, 0.016470152884721756, 0.12808649241924286, 0.10266765207052231, -0.04035601764917374, 0.09893184155225754, -0.08220133930444717, 0.0903669148683548, 0.2042102813720703, -0.22890637814998627, -0.07141339778900146, -0.006671210750937462, 0.04039190337061882, 0.05782536417245865, -0.10385343432426453, -0.029949437826871872, 0.010995757766067982, 0.01889965869486332, 0.08748427778482437, 0.004427218344062567, -0.0032943447586148977, -0.006239715497940779, -0.13675859570503235, -0.051166608929634094, 0.08628330379724503, 0.08422962576150894, -0.006950353737920523, -0.062375880777835846, -0.029490439221262932, -0.16173525154590607, -0.03795299306511879, -0.007228440139442682, 0.05049052834510803, -0.02585887536406517, -0.05706518888473511, 0.04775754362344742, -0.06753891706466675, -0.05553145334124565, 0.047320686280727386, 0.12500926852226257, 0.04299309104681015, -0.030993400141596794, -0.014361471869051456, 0.07804066687822342, 0.00798949133604765, -0.1596687287092209, -0.005643187556415796, 0.051693204790353775, -0.10544989258050919, -0.03964998200535774, -0.028826281428337097, -0.06345747411251068, 0.03946658596396446, 0.1839977651834488, 0.0071895793080329895, 0.1222907304763794, -0.010693677701056004, 0.005139909218996763, -0.0812702402472496, 0.17305345833301544, -0.04951660335063934, -0.08749682456254959, -0.04205307364463806, 0.11462057381868362, 0.0054734330624341965, -0.006346965674310923, -0.05758374556899071, 0.07480885088443756, 0.0810118094086647, 0.03118734061717987, -0.026882313191890717, 0.026555446907877922, -0.06242721527814865, -0.01107538677752018, -0.003851977176964283, -0.10052124410867691, 0.0586983785033226, 0.04873456433415413, -0.043050818145275116, -0.0286333616822958, -0.0013965173857286572, 0.04505731537938118, -0.009714464657008648, 0.16853904724121094, -0.06509172171354294, 0.009222906082868576, -0.08999545127153397, -0.10838949680328369, 0.031029287725687027, -0.006744137965142727, 0.017277156934142113, -0.058707091957330704, -0.07229999452829361, -0.08039398491382599, 0.0840291902422905, -0.042690496891736984, -0.05078808590769768, -0.06704597920179367, -0.05799989774823189, 0.05458961799740791, -0.008972310461103916, 0.18260125815868378, -0.0720904991030693, 0.07420987635850906, 0.025558186694979668, 0.030303534120321274, 0.04432669281959534, 0.056148212403059006, -0.04748497158288956, 0.044074252247810364, -0.13132277131080627, 0.04475166276097298, -0.08725831657648087, 0.08124729245901108, -0.13028135895729065, -0.09477470815181732, -0.03906365856528282, -0.010605931282043457, 0.10740029066801071, 0.07688003033399582, -0.1776442676782608, -0.08382450044155121, 0.15732958912849426, -0.05159464478492737, -0.11714684218168259, 0.1351575404405594, -0.036658622324466705, -0.03450315445661545, 0.03654494881629944, 0.1697348803281784, 0.08354571461677551, -0.09568766504526138, -0.012503717094659805, -0.10439880937337875, 0.12592901289463043, 0.045035380870103836, 0.07751942425966263, -0.042186982929706573, 0.058944810181856155, -0.016150791198015213, -0.029010314494371414, 0.04551129788160324, -0.06827405840158463, -0.08115962147712708, -0.01256327424198389, -0.0745464563369751, -0.052289485931396484, 0.06760422885417938, 0.0072487820871174335, -0.08976341784000397, -0.13153578341007233, 0.03950927406549454, 0.08309699594974518, -0.10008278489112854, 0.03069784864783287, -0.07832734286785126, 0.043111804872751236, -0.023726116865873337, 0.0019772148225456476, -0.1652512103319168, -0.0050501395016908646, 0.02210124023258686, -0.07690034806728363, 0.03049813024699688, -0.03487991541624069, 0.07212304323911667, 0.03970123827457428, -0.041369058191776276, -0.029262786731123924, -0.046919241547584534, 0.01421736553311348, -0.08780694007873535, -0.23001134395599365, -0.05025957152247429, -0.01037481240928173, 0.18101269006729126, -0.244625061750412, -0.0031516319140791893, 0.012737766839563847, 0.10756083577871323, 0.009487568400800228, -0.06602262705564499, -0.04193110764026642, 0.06585667282342911, -0.023342354223132133, -0.06413295865058899, 0.0298543069511652, 0.004182328935712576, -0.09921203553676605, -0.05335570126771927, -0.17585299909114838, 0.0655449777841568, 0.10468672215938568, -0.02440214902162552, -0.06580469757318497, -0.0067061190493404865, -0.04442176967859268, -0.05809647589921951, -0.0304512120783329, 0.0035695102997124195, 0.205145001411438, 0.021967431530356407, 0.10387534648180008, -0.06250914931297302, -0.053655631840229034, 0.026680296286940575, 0.0261894129216671, 0.003464187728241086, 0.14100414514541626, 0.12631647288799286, -0.09033504128456116, 0.08027344197034836, 0.06427756696939468, -0.0788746029138565, 0.11732976138591766, -0.0440494567155838, -0.08257731050252914, -0.03621227666735649, 0.0021934208925813437, 0.03247962146997452, 0.09889095276594162, -0.17818227410316467, 0.01050016563385725, 0.012858239002525806, 0.009799198247492313, 0.013014651834964752, -0.1876262128353119, 0.0007399911992251873, 0.06161496788263321, -0.048548802733421326, -0.051379621028900146, -0.03775130212306976, -0.01412428729236126, 0.07923360913991928, 0.007868227548897266, -0.053253140300512314, -0.044932082295417786, -0.03654104843735695, -0.09225908666849136, 0.1773398369550705, -0.07374913990497589, -0.11049552261829376, -0.07716963440179825, -0.04730688035488129, -0.00891247671097517, -0.021623214706778526, 0.059971366077661514, -0.10111378878355026, -0.06904784590005875, -0.08136151731014252, -0.017933107912540436, -0.036164019256830215, 0.018185315653681755, 0.04882822558283806, -0.014158179983496666, 0.0726422592997551, -0.1004583016037941, -0.002125188009813428, -0.019382700324058533, -0.004783526994287968, 0.004017723724246025, 0.04412250965833664, 0.10768207907676697, 0.1471455693244934, 0.04196864366531372, 0.03207050636410713, -0.003989299759268761, 0.20557768642902374, -0.10981723666191101, -0.025744536891579628, 0.08912581950426102, -0.036351412534713745, 0.04409117251634598, 0.1546631008386612, 0.058121971786022186, -0.09522779285907745, 0.01875894144177437, 0.07159050554037094, -0.030948104336857796, -0.21436665952205658, -0.012599975802004337, -0.07109000533819199, -0.08874131739139557, 0.1121666207909584, 0.030140908434987068, -0.02808375656604767, 0.01312352903187275, -0.00225817016325891, 0.000003796966211666586, 0.030551666393876076, 0.06596727669239044, 0.0828235074877739, 0.07489735633134842, 0.12451804429292679, -0.014396119862794876, -0.03044809214770794, 0.024081604555249214, -0.03595452755689621, 0.2288791686296463, 0.0333523266017437, 0.15784361958503723, 0.06631722301244736, 0.11435027420520782, -0.017686305567622185, 0.04042719304561615, -0.0015160266775637865, -0.030968086794018745, 0.020929615944623947, -0.05424527823925018, -0.008823497220873833, 0.03609322011470795, 0.07139574736356735, 0.009628665633499622, -0.06990113854408264, -0.014443171210587025, 0.028155239298939705, 0.28654277324676514, 0.06586935371160507, -0.2885471284389496, -0.05220824107527733, 0.004781648516654968, -0.07078883796930313, -0.026860661804676056, 0.008675385266542435, 0.061659086495637894, -0.06935212016105652, 0.08559156209230423, -0.06260918080806732, 0.1042381003499031, -0.057855136692523956, 0.02152353711426258, 0.1057058647274971, 0.07617463171482086, -0.012641863897442818, 0.04787693917751312, -0.2694299817085266, 0.2525704801082611, -0.015072508715093136, 0.09313814342021942, -0.04818737506866455, 0.030265623703598976, 0.029710931703448296, -0.04315957799553871, 0.04038234055042267, -0.01030877884477377, -0.09364787489175797, -0.174949049949646, -0.07109890878200531, 0.044525809586048126, 0.10261572152376175, -0.053653158247470856, 0.13457228243350983, -0.03700914978981018, -0.029756661504507065, 0.059848248958587646, 0.005667181219905615, -0.1308118999004364, -0.12070105224847794, 0.03128715232014656, 0.033565420657396317, 0.03552282601594925, -0.06710421293973923, -0.09457240253686905, -0.07844773679971695, 0.1681121289730072, -0.03800816461443901, -0.013151765801012516, -0.1269448846578598, 0.07961656898260117, 0.1271532028913498, -0.06547901779413223, 0.031493380665779114, 0.021382570266723633, 0.09723855555057526, 0.041207049041986465, -0.023558566346764565, 0.1148933693766594, -0.07905364781618118, -0.17243357002735138, -0.059727977961301804, 0.13457432389259338, 0.045182306319475174, 0.06660586595535278, -0.015252656303346157, 0.057822734117507935, -0.023687178269028664, -0.08162704855203629, 0.04246104881167412, 0.01756388507783413, 0.04533650726079941, 0.018703460693359375, -0.016471700742840767, 0.018164075911045074, -0.07525631785392761, -0.06742050498723984, 0.10097856819629669, 0.2979944944381714, -0.06011170521378517, 0.01729699596762657, 0.012590309605002403, -0.07130108773708344, -0.10946524888277054, 0.0061233979649841785, 0.12312877178192139, 0.014474865980446339, 0.04573257267475128, -0.18144366145133972, 0.07052131742238998, 0.08163474500179291, -0.015231814235448837, 0.06711587309837341, -0.31057921051979065, -0.14783227443695068, 0.09732650965452194, 0.10388436168432236, -0.015210965648293495, -0.1710037738084793, -0.051442693918943405, -0.05319758504629135, -0.1492210328578949, 0.09989786893129349, -0.03192593529820442, 0.10492919385433197, 0.010302110575139523, 0.03224935010075569, 0.017007900401949883, -0.05458017438650131, 0.1427781581878662, 0.001735708094201982, 0.05163935199379921, -0.022248288616538048, 0.03184318169951439, -0.028282828629016876, -0.05235753580927849, -0.006513987667858601, -0.10343974828720093, 0.0057637752033770084, -0.11542434990406036, -0.034420520067214966, -0.07522237300872803, -0.008833901025354862, -0.050836581736803055, -0.016691816970705986, -0.016324197873473167, 0.021952873095870018, 0.11120045930147171, 0.007631569169461727, 0.11512088775634766, -0.05276695266366005, 0.1394202560186386, 0.07777825742959976, 0.10602203011512756, -0.01708674430847168, -0.09287694096565247, -0.00640451442450285, 0.009163384325802326, 0.027251653373241425, -0.09987995028495789, 0.05235596001148224, 0.15376058220863342, 0.03463244065642357, 0.16109143197536469, 0.058499835431575775, -0.07027368247509003, 0.00458771176636219, 0.06571908295154572, -0.08539655804634094, -0.13640141487121582, 0.01142388116568327, -0.0035124097485095263, -0.14246338605880737, -0.04737037420272827, 0.09846208989620209, -0.04801008105278015, -0.002685901941731572, 0.019841693341732025, 0.0417788065969944, -0.03908541798591614, 0.22328242659568787, 0.0006947101792320609, 0.06972423195838928, -0.09321939200162888, 0.05783641338348389, 0.05911965295672417, -0.11368166655302048, 0.02999759279191494, 0.07176419347524643, -0.041019588708877563, -0.012681744992733002, 0.04593035206198692, 0.1291704922914505, 0.013235724531114101, -0.044550660997629166, -0.13922147452831268, -0.11744027584791183, 0.07936743646860123, 0.07137662172317505, 0.03298443928360939, 0.006992476060986519, -0.023107068613171577, 0.04354085773229599, -0.11215771734714508, 0.10091108083724976, 0.07917647808790207, 0.07033255696296692, -0.10340077430009842, 0.08179660886526108, 0.015458845533430576, -0.047632161527872086, 0.013553254306316376, 0.020711779594421387, -0.11688670516014099, 0.02059420756995678, -0.12974022328853607, -0.025595344603061676, -0.025982236489653587, -0.000995655544102192, 0.01796763390302658, -0.058263953775167465, -0.0799124538898468, 0.01974605582654476, -0.1116270050406456, -0.06265082210302353, -0.004568329080939293, 0.06219283118844032, -0.1255750209093094, -0.004532551858574152, 0.05233706906437874, -0.11166564375162125, 0.0674942284822464, 0.03639284148812294, 0.021818583831191063, 0.02850891277194023, -0.13425162434577942, -0.006060142070055008, 0.029834436252713203, 0.011291993781924248, 0.0400066114962101, -0.17535556852817535, -0.01319765392690897, -0.006577851250767708, 0.025430336594581604, -0.001563221332617104, 0.047682516276836395, -0.11119644343852997, -0.02299782633781433, -0.042023301124572754, -0.08351080119609833, -0.014476542361080647, 0.024537386372685432, 0.048308320343494415, 0.0422864705324173, 0.1834123581647873, -0.07342590391635895, 0.04979640617966652, -0.2388366311788559, -0.008892285637557507, 0.007321381941437721, -0.05575892701745033, -0.0492374412715435, -0.03822389990091324, 0.09319020062685013, -0.06907172501087189, 0.08599528670310974, -0.021450206637382507, 0.07318488508462906, 0.046321380883455276, -0.05372147634625435, 0.011554201133549213, 0.03233237937092781, 0.17135705053806305, 0.05063323676586151, -0.027280904352664948, 0.08011668175458908, -0.013667894527316093, 0.06096554547548294, 0.10752598196268082, 0.18695108592510223, 0.1714790016412735, 0.056580789387226105, 0.05506456643342972, 0.0427444763481617, -0.12422103434801102, -0.13752025365829468, 0.12874042987823486, -0.07689075171947479, 0.1660289168357849, -0.015944620594382286, 0.23452670872211456, 0.08911749720573425, -0.19667170941829681, 0.050073087215423584, -0.07354553788900375, -0.08340149372816086, -0.10819793492555618, -0.06292968988418579, -0.09321624040603638, -0.15411971509456635, 0.023743508383631706, -0.1083420068025589, 0.07715234160423279, 0.08671709895133972, 0.03744203969836235, 0.026265127584338188, 0.11793401837348938, 0.04096323251724243, 0.002189264167100191, 0.07068528234958649, -0.0009594826842658222, -0.03915099799633026, -0.03970777988433838, -0.06955959647893906, 0.04447165131568909, -0.033065199851989746, 0.07240389287471771, -0.03218726068735123, -0.10524658858776093, 0.05726727098226547, 0.01777271367609501, -0.1106262058019638, 0.03216206654906273, -0.018951814621686935, 0.07885482907295227, 0.06795141100883484, 0.02191637083888054, 0.02818976156413555, -0.015952955931425095, 0.22398525476455688, -0.06797830015420914, -0.04107541963458061, -0.1131153479218483, 0.19150583446025848, 0.02012842893600464, -0.010647568851709366, 0.021293306723237038, -0.07696697860956192, 0.004920457024127245, 0.15875060856342316, 0.10522875189781189, -0.05240916460752487, -0.014210276305675507, 0.016474200412631035, -0.005816313438117504, -0.028837554156780243, 0.08647195994853973, 0.11810003966093063, 0.03302035853266716, -0.046603817492723465, -0.01830587349832058, -0.03871959447860718, -0.060488488525152206, -0.007504473906010389, 0.06365958601236343, 0.051299482583999634, -0.0059141297824680805, -0.015739163383841515, 0.1180272325873375, -0.0201724823564291, -0.15742872655391693, 0.024959133937954903, -0.18707922101020813, -0.197760671377182, -0.02240007556974888, 0.10319983959197998, 0.008299116045236588, 0.03880229592323303, -0.009204890578985214, -0.04581218212842941, 0.09719862043857574, -0.003262386890128255, -0.02142145112156868, -0.12912800908088684, 0.06974484771490097, -0.1042529046535492, 0.2098517268896103, -0.03767974302172661, 0.036533042788505554, 0.12838147580623627, 0.06470408290624619, -0.07186517119407654, 0.0530589297413826, 0.0758705660700798, -0.15314647555351257, 0.05303621292114258, 0.16189610958099365, -0.05833509936928749, 0.12033534049987793, 0.05262696370482445, -0.09658287465572357, 0.03302144631743431, -0.09505768120288849, -0.04583501070737839, -0.043754346668720245, -0.016794303432106972, -0.06653069704771042, 0.1418137401342392, 0.2163422852754593, -0.05623919889330864, 0.002153589390218258, -0.05268555507063866, 0.026285873726010323, 0.02888166531920433, 0.16653519868850708, -0.06360316276550293, -0.28604549169540405, 0.043678123503923416, 0.0015121691394597292, 0.011364252306520939, -0.2272232174873352, -0.08787646144628525, 0.033116698265075684, -0.06622794270515442, -0.06491579860448837, 0.11410225927829742, 0.08287786692380905, 0.03750669211149216, -0.07662533968687057, -0.15877464413642883, -0.03040402941405773, 0.18407166004180908, -0.1596408635377884, -0.06560196727514267 ]
null
null
transformers
# xls-asr-vi-40h This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common voice 7.0 vi & private dataset. It achieves the following results on the evaluation set (Without Language Model): - Loss: 1.1177 - Wer: 60.58 ## Evaluation Please run the eval.py file ```bash !python eval_custom.py --model_id geninhu/xls-asr-vi-40h --dataset mozilla-foundation/common_voice_7_0 --config vi --split test ``` ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1500 - num_epochs: 50.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 23.3878 | 0.93 | 1500 | 21.9179 | 1.0 | | 8.8862 | 1.85 | 3000 | 6.0599 | 1.0 | | 4.3701 | 2.78 | 4500 | 4.3837 | 1.0 | | 4.113 | 3.7 | 6000 | 4.2698 | 0.9982 | | 3.9666 | 4.63 | 7500 | 3.9726 | 0.9989 | | 3.5965 | 5.56 | 9000 | 3.7124 | 0.9975 | | 3.3944 | 6.48 | 10500 | 3.5005 | 1.0057 | | 3.304 | 7.41 | 12000 | 3.3710 | 1.0043 | | 3.2482 | 8.33 | 13500 | 3.4201 | 1.0155 | | 3.212 | 9.26 | 15000 | 3.3732 | 1.0151 | | 3.1778 | 10.19 | 16500 | 3.2763 | 1.0009 | | 3.1027 | 11.11 | 18000 | 3.1943 | 1.0025 | | 2.9905 | 12.04 | 19500 | 2.8082 | 0.9703 | | 2.7095 | 12.96 | 21000 | 2.4993 | 0.9302 | | 2.4862 | 13.89 | 22500 | 2.3072 | 0.9140 | | 2.3271 | 14.81 | 24000 | 2.1398 | 0.8949 | | 2.1968 | 15.74 | 25500 | 2.0594 | 0.8817 | | 2.111 | 16.67 | 27000 | 1.9404 | 0.8630 | | 2.0387 | 17.59 | 28500 | 1.8895 | 0.8497 | | 1.9504 | 18.52 | 30000 | 1.7961 | 0.8315 | | 1.9039 | 19.44 | 31500 | 1.7433 | 0.8213 | | 1.8342 | 20.37 | 33000 | 1.6790 | 0.7994 | | 1.7824 | 21.3 | 34500 | 1.6291 | 0.7825 | | 1.7359 | 22.22 | 36000 | 1.5783 | 0.7706 | | 1.7053 | 23.15 | 37500 | 1.5248 | 0.7492 | | 1.6504 | 24.07 | 39000 | 1.4930 | 0.7406 | | 1.6263 | 25.0 | 40500 | 1.4572 | 0.7348 | | 1.5893 | 25.93 | 42000 | 1.4202 | 0.7161 | | 1.5669 | 26.85 | 43500 | 1.3987 | 0.7143 | | 1.5277 | 27.78 | 45000 | 1.3512 | 0.6991 | | 1.501 | 28.7 | 46500 | 1.3320 | 0.6879 | | 1.4781 | 29.63 | 48000 | 1.3112 | 0.6788 | | 1.4477 | 30.56 | 49500 | 1.2850 | 0.6657 | | 1.4483 | 31.48 | 51000 | 1.2813 | 0.6633 | | 1.4065 | 32.41 | 52500 | 1.2475 | 0.6541 | | 1.3779 | 33.33 | 54000 | 1.2244 | 0.6503 | | 1.3788 | 34.26 | 55500 | 1.2116 | 0.6407 | | 1.3428 | 35.19 | 57000 | 1.1938 | 0.6352 | | 1.3453 | 36.11 | 58500 | 1.1927 | 0.6340 | | 1.3137 | 37.04 | 60000 | 1.1699 | 0.6252 | | 1.2984 | 37.96 | 61500 | 1.1666 | 0.6229 | | 1.2927 | 38.89 | 63000 | 1.1585 | 0.6188 | | 1.2919 | 39.81 | 64500 | 1.1618 | 0.6190 | | 1.293 | 40.74 | 66000 | 1.1479 | 0.6181 | | 1.2853 | 41.67 | 67500 | 1.1423 | 0.6202 | | 1.2687 | 42.59 | 69000 | 1.1315 | 0.6131 | | 1.2603 | 43.52 | 70500 | 1.1333 | 0.6128 | | 1.2577 | 44.44 | 72000 | 1.1191 | 0.6079 | | 1.2435 | 45.37 | 73500 | 1.1177 | 0.6079 | | 1.251 | 46.3 | 75000 | 1.1211 | 0.6092 | | 1.2482 | 47.22 | 76500 | 1.1177 | 0.6060 | | 1.2422 | 48.15 | 78000 | 1.1227 | 0.6097 | | 1.2485 | 49.07 | 79500 | 1.1187 | 0.6071 | | 1.2425 | 50.0 | 81000 | 1.1177 | 0.6058 | ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.1+cu102 - Datasets 1.17.1.dev0 - Tokenizers 0.11.0
{"language": ["vi"], "license": "apache-2.0", "tags": ["automatic-speech-recognition", "common-voice", "hf-asr-leaderboard", "robust-speech-event"], "datasets": ["mozilla-foundation/common_voice_7_0"], "model-index": [{"name": "xls-asr-vi-40h", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Speech Recognition"}, "dataset": {"name": "Common Voice 7.0", "type": "mozilla-foundation/common_voice_7_0", "args": "vi"}, "metrics": [{"type": "wer", "value": 56.57, "name": "Test WER (with Language model)"}]}]}]}
automatic-speech-recognition
geninhu/xls-asr-vi-40h
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "common-voice", "hf-asr-leaderboard", "robust-speech-event", "vi", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "vi" ]
TAGS #transformers #pytorch #tensorboard #wav2vec2 #automatic-speech-recognition #common-voice #hf-asr-leaderboard #robust-speech-event #vi #dataset-mozilla-foundation/common_voice_7_0 #license-apache-2.0 #model-index #endpoints_compatible #region-us
xls-asr-vi-40h ============== This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the common voice 7.0 vi & private dataset. It achieves the following results on the evaluation set (Without Language Model): * Loss: 1.1177 * Wer: 60.58 Evaluation ---------- Please run the URL file Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 5e-06 * train\_batch\_size: 16 * eval\_batch\_size: 8 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * lr\_scheduler\_warmup\_steps: 1500 * num\_epochs: 50.0 * mixed\_precision\_training: Native AMP ### Training results ### Framework versions * Transformers 4.16.0.dev0 * Pytorch 1.10.1+cu102 * Datasets 1.17.1.dev0 * Tokenizers 0.11.0
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 5e-06\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 1500\n* num\\_epochs: 50.0\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.16.0.dev0\n* Pytorch 1.10.1+cu102\n* Datasets 1.17.1.dev0\n* Tokenizers 0.11.0" ]
[ "TAGS\n#transformers #pytorch #tensorboard #wav2vec2 #automatic-speech-recognition #common-voice #hf-asr-leaderboard #robust-speech-event #vi #dataset-mozilla-foundation/common_voice_7_0 #license-apache-2.0 #model-index #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 5e-06\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 1500\n* num\\_epochs: 50.0\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.16.0.dev0\n* Pytorch 1.10.1+cu102\n* Datasets 1.17.1.dev0\n* Tokenizers 0.11.0" ]
[ 98, 132, 4, 41 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #wav2vec2 #automatic-speech-recognition #common-voice #hf-asr-leaderboard #robust-speech-event #vi #dataset-mozilla-foundation/common_voice_7_0 #license-apache-2.0 #model-index #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 5e-06\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 1500\n* num\\_epochs: 50.0\n* mixed\\_precision\\_training: Native AMP### Training results### Framework versions\n\n\n* Transformers 4.16.0.dev0\n* Pytorch 1.10.1+cu102\n* Datasets 1.17.1.dev0\n* Tokenizers 0.11.0" ]
[ -0.12921930849552155, 0.09582560509443283, -0.005140830297023058, 0.03635082766413689, 0.08545821160078049, 0.007314354181289673, 0.0993737280368805, 0.15782701969146729, -0.07599297165870667, 0.10504039376974106, 0.09170394390821457, 0.07240106165409088, 0.08512310683727264, 0.1305723488330841, -0.03631847724318504, -0.26266300678253174, 0.04102582111954689, 0.006078404374420643, -0.07277694344520569, 0.10571437329053879, 0.09994204342365265, -0.10214182734489441, 0.022685162723064423, 0.028025124222040176, -0.0907118171453476, 0.006293793674558401, -0.023827001452445984, -0.07070723176002502, 0.1030157282948494, 0.047349970787763596, 0.06639938801527023, 0.04097655415534973, 0.0654931291937828, -0.25281471014022827, 0.016612710431218147, 0.06959305703639984, 0.03459213674068451, 0.07193673402070999, 0.09586033225059509, -0.005584809463471174, 0.1050708070397377, -0.06745044887065887, 0.05480118468403816, 0.05087483301758766, -0.08389591425657272, -0.2768101096153259, -0.08299433439970016, 0.054892316460609436, 0.09915917366743088, 0.065074123442173, -0.028354397043585777, 0.07510611414909363, -0.05223170667886734, 0.10472702234983444, 0.2042669802904129, -0.2208995372056961, -0.06960584968328476, -0.04005465656518936, 0.05444422736763954, 0.04353923350572586, -0.09708338230848312, -0.012882975861430168, 0.012483219616115093, 0.03452666103839874, 0.0974368005990982, 0.006579717621207237, -0.02064603753387928, -0.015352151356637478, -0.13437482714653015, -0.063388392329216, 0.11888650059700012, 0.06874822825193405, -0.018405787646770477, -0.10624171793460846, -0.04847043752670288, -0.15850555896759033, -0.054252829402685165, -0.013904215767979622, 0.026951026171445847, -0.02494574896991253, -0.04623197391629219, 0.0007179887033998966, -0.07090982049703598, -0.0692066177725792, 0.0258487518876791, 0.1435794234275818, 0.048119474202394485, -0.023777589201927185, -0.01993919536471367, 0.08137115836143494, 0.024609973654150963, -0.1487445831298828, -0.024127425625920296, 0.04194743186235428, -0.08263900876045227, -0.012962279841303825, -0.017919324338436127, -0.051376823335886, 0.051635418087244034, 0.11034386605024338, -0.04619130864739418, 0.11397615075111389, -0.010841081850230694, 0.01833983324468136, -0.08307944238185883, 0.1567326784133911, -0.04061860218644142, -0.04655936360359192, -0.007979840971529484, 0.12015139311552048, 0.019247345626354218, -0.010128794237971306, -0.0603100061416626, 0.010419465601444244, 0.11941079050302505, 0.04757833480834961, -0.005689555313438177, 0.015895137563347816, -0.06632374227046967, -0.02564116008579731, 0.0002561075962148607, -0.12250064313411713, 0.03428452089428902, 0.05731828883290291, -0.05246197432279587, 0.019929591566324234, 0.01039100531488657, 0.003889190498739481, -0.05383020266890526, 0.06561343371868134, -0.04109078645706177, -0.004093020688742399, -0.06727022677659988, -0.0934988334774971, 0.04559021070599556, -0.04551389440894127, -0.018985463306307793, -0.07450687885284424, -0.09481441229581833, -0.05933082103729248, 0.05341033264994621, -0.04433325678110123, -0.06698959320783615, -0.07993996143341064, -0.07533705979585648, 0.059311430901288986, -0.02971329353749752, 0.1608654260635376, -0.05907350778579712, 0.096988245844841, 0.019909143447875977, 0.046519674360752106, 0.06126025691628456, 0.07157717645168304, -0.012966245412826538, 0.04621414095163345, -0.13871873915195465, 0.11023346334695816, -0.1035492792725563, 0.008775644935667515, -0.14198100566864014, -0.09637437760829926, -0.007703059818595648, 0.0005597439594566822, 0.11086972802877426, 0.11599578708410263, -0.16961419582366943, -0.09736768901348114, 0.16404710710048676, -0.07368874549865723, -0.06673435866832733, 0.13443201780319214, -0.016790492460131645, -0.03668556362390518, 0.048970215022563934, 0.19543857872486115, 0.11264784634113312, -0.10893294215202332, 0.0076538389548659325, -0.0481436587870121, 0.1004703938961029, 0.027389055117964745, 0.07640516012907028, -0.043761979788541794, 0.022920725867152214, 0.0017914874479174614, -0.02433609962463379, 0.05754814296960831, -0.0709652379155159, -0.07118892669677734, -0.03543304279446602, -0.06629087030887604, 0.009731595404446125, 0.046360839158296585, 0.013723723590373993, -0.0951918512582779, -0.1260402947664261, 0.018876081332564354, 0.11955444514751434, -0.11063499003648758, 0.038236502557992935, -0.09689544141292572, 0.06442918628454208, -0.01883476786315441, 0.0015901937149465084, -0.1647253781557083, 0.023408185690641403, 0.03940902650356293, -0.07214462757110596, 0.01845579408109188, -0.0070493039675056934, 0.07690697908401489, 0.02936316467821598, -0.037634529173374176, -0.06708075106143951, -0.04420303553342819, 0.0013167874421924353, -0.05842078849673271, -0.22391046583652496, -0.06207550689578056, -0.03267884626984596, 0.1501985490322113, -0.18184269964694977, 0.00949402991682291, 0.06451418250799179, 0.13479165732860565, 0.028963392600417137, -0.04374378174543381, 0.02311260998249054, 0.06475379317998886, -0.00818665698170662, -0.06922055035829544, 0.03418191522359848, 0.008262470364570618, -0.11543212831020355, 0.030756236985325813, -0.14489905536174774, 0.06835639476776123, 0.09228009730577469, 0.02124013938009739, -0.05950695648789406, -0.03230789676308632, -0.048192985355854034, -0.059304989874362946, -0.01924222707748413, 0.0009672157466411591, 0.18868966400623322, 0.029355114325881004, 0.11480159312486649, -0.07970767468214035, -0.03860078379511833, 0.033834390342235565, 0.021488193422555923, -0.01989220455288887, 0.14133162796497345, 0.03661681339144707, -0.05394434556365013, 0.08074156194925308, 0.05244322866201401, -0.06673219054937363, 0.15086236596107483, -0.08101557195186615, -0.08863827586174011, -0.024457041174173355, 0.027092959731817245, 0.01900477334856987, 0.09955613315105438, -0.17326588928699493, -0.006621692329645157, 0.027510397136211395, 0.02215612307190895, 0.022536233067512512, -0.19166533648967743, 0.022813279181718826, 0.03593282774090767, -0.09739789366722107, -0.007747363299131393, 0.012856206856667995, 0.007249746005982161, 0.0803348645567894, -0.004504700656980276, -0.076241634786129, -0.01063124742358923, -0.0343964658677578, -0.0942002609372139, 0.16180458664894104, -0.11059083044528961, -0.17120787501335144, -0.11406541615724564, -0.019018379971385002, -0.021891525015234947, -0.022146686911582947, 0.060113199055194855, -0.09930378943681717, -0.04464387148618698, -0.06242380291223526, 0.025731591507792473, -0.03433602675795555, 0.018125610426068306, 0.02712017297744751, -0.015147852711379528, 0.08563809841871262, -0.11947425454854965, 0.008540390990674496, -0.011400454677641392, -0.00841277465224266, 0.011984463781118393, 0.02909025177359581, 0.06332641839981079, 0.1567821502685547, 0.03940818831324577, 0.031922321766614914, -0.041972432285547256, 0.174235001206398, -0.11034466326236725, 0.001668052515015006, 0.13403207063674927, -0.008023533970117569, 0.04867953807115555, 0.131742924451828, 0.03647204861044884, -0.06952349841594696, -0.006001651752740145, 0.014717658050358295, -0.00785854272544384, -0.2428174614906311, -0.034916751086711884, -0.06795517355203629, -0.04259743168950081, 0.08835143595933914, 0.038177601993083954, -0.005137791391462088, 0.014214372262358665, -0.032901715487241745, -0.009100011549890041, 0.039328187704086304, 0.052046455442905426, 0.14707715809345245, 0.03454501926898956, 0.10808394849300385, -0.021844398230314255, -0.018336093053221703, 0.03440335765480995, 0.00257870857603848, 0.20798668265342712, 0.009215275757014751, 0.18855232000350952, 0.04121636971831322, 0.14536282420158386, 0.015990229323506355, 0.03741816058754921, 0.005638800095766783, 0.011670581996440887, 0.019053025171160698, -0.05452755466103554, -0.05134586617350578, 0.014452609233558178, 0.1125936508178711, 0.025800613686442375, -0.09308072179555893, 0.002358578145503998, 0.012025394476950169, 0.3595947027206421, 0.06167171522974968, -0.2742220461368561, -0.08723434805870056, 0.006266193930059671, -0.09158821403980255, -0.053618431091308594, 0.025337256491184235, 0.12834419310092926, -0.08342844247817993, 0.08540914207696915, -0.05962800979614258, 0.09282765537500381, -0.06934083998203278, 0.007574557326734066, 0.03231736645102501, 0.12176435440778732, 0.011225070804357529, 0.047678519040346146, -0.2709769308567047, 0.26561808586120605, -0.0007416065782308578, 0.09745465964078903, -0.04166797921061516, 0.044219665229320526, 0.04654628038406372, -0.016059963032603264, 0.05588279664516449, -0.014890288934111595, -0.11114299297332764, -0.12676209211349487, -0.112175852060318, 0.02598528377711773, 0.09072136878967285, -0.018239831551909447, 0.09541697055101395, -0.02980082482099533, -0.0344371534883976, 0.04222419857978821, -0.07136692106723785, -0.13131214678287506, -0.09361666440963745, 0.031159797683358192, 0.07503556460142136, 0.07308486104011536, -0.09048595279455185, -0.10551334917545319, -0.05969042703509331, 0.12144220620393753, -0.11233042180538177, -0.028929024934768677, -0.12157563120126724, 0.05158839002251625, 0.14661632478237152, -0.07028575241565704, 0.0402592271566391, 0.008736890740692616, 0.13711166381835938, 0.011766849085688591, -0.02837684005498886, 0.09137089550495148, -0.07790470123291016, -0.19104914367198944, -0.04012249782681465, 0.1801808625459671, 0.031056761741638184, 0.06841646879911423, -0.015583249740302563, 0.032633472234010696, -0.011195892468094826, -0.05476181581616402, 0.07105939835309982, 0.07855876535177231, -0.009677937254309654, 0.04250074923038483, -0.011904249899089336, -0.06329316645860672, -0.07116740196943283, -0.05861533060669899, 0.13905209302902222, 0.2548410892486572, -0.07126061618328094, 0.07679283618927002, 0.06021152064204216, -0.06802839785814285, -0.1472318470478058, -0.00682780472561717, 0.12963518500328064, 0.04774974659085274, -0.016930045560002327, -0.20962083339691162, -0.0011507287854328752, 0.060515958815813065, -0.02168053202331066, 0.07729532569646835, -0.3129158616065979, -0.1385566145181656, 0.11282259970903397, 0.07176773995161057, 0.00927567295730114, -0.1326429545879364, -0.0641416534781456, -0.011409426108002663, -0.08221668750047684, 0.046322356909513474, -0.0247177891433239, 0.1246228814125061, -0.005264870822429657, 0.05765097588300705, 0.018450023606419563, -0.03966255858540535, 0.1337670534849167, -0.022233324125409126, 0.0355469174683094, -0.009259209968149662, 0.05620884150266647, -0.01632501184940338, -0.07103443890810013, 0.022387854754924774, -0.08875420689582825, 0.02215263806283474, -0.1265544444322586, -0.021333441138267517, -0.08435571193695068, 0.032819028943777084, -0.033871766179800034, -0.002936192089691758, -0.017921781167387962, 0.01617381162941456, 0.07392831891775131, 0.005409633740782738, 0.12182993441820145, -0.061321698129177094, 0.12230566889047623, 0.1340378373861313, 0.12776991724967957, -0.022142115980386734, -0.10153466463088989, -0.014526383019983768, -0.015126723796129227, 0.056091491132974625, -0.11454766243696213, 0.03776746243238449, 0.12972813844680786, 0.02774711698293686, 0.1475890576839447, 0.037460267543792725, -0.09715639054775238, 0.020625941455364227, 0.044870197772979736, -0.08860673010349274, -0.16336576640605927, -0.01464766450226307, 0.05379033833742142, -0.11614669114351273, -0.005002709571272135, 0.128911554813385, -0.05064086243510246, -0.010895886458456516, 0.013690243475139141, 0.03825618699193001, -0.03596037998795509, 0.2146073281764984, 0.029222870245575905, 0.07728971540927887, -0.10006430000066757, 0.07999877631664276, 0.05190572887659073, -0.15050120651721954, 0.06167528033256531, 0.09678681939840317, -0.04390646889805794, -0.020281504839658737, 0.03615576773881912, 0.1099342331290245, 0.054886288940906525, -0.0745840072631836, -0.11120680719614029, -0.14350879192352295, 0.09630316495895386, 0.12597313523292542, 0.02204110659658909, 0.03177318349480629, -0.037117816507816315, 0.032196301966905594, -0.08597030490636826, 0.10327745974063873, 0.09310555458068848, 0.05797259509563446, -0.12143532186746597, 0.11751432716846466, 0.019612153992056847, -0.0001290283544221893, -0.002213866449892521, -0.02522185631096363, -0.08326780796051025, 0.021046075969934464, -0.1440035104751587, 0.015816202387213707, -0.04547019675374031, 0.0055748834274709225, 0.013030605390667915, -0.06312267482280731, -0.05144547298550606, 0.042092014104127884, -0.10987138748168945, -0.03331806883215904, -0.027887562289834023, 0.06623007357120514, -0.10966457426548004, -0.013413612730801105, 0.02750532142817974, -0.11843030899763107, 0.0958719253540039, 0.058466386049985886, -0.010657471604645252, 0.028841372579336166, -0.10670790076255798, -0.02474972791969776, 0.03322326019406319, 0.012634510174393654, 0.01893361657857895, -0.18135912716388702, -0.0016162380343303084, -0.005169184412807226, 0.01297331228852272, -0.012083995155990124, 0.05915585160255432, -0.10593343526124954, -0.02753313072025776, -0.04075270891189575, -0.04541069641709328, -0.05236072093248367, 0.06408382952213287, 0.07670531421899796, 0.037723835557699203, 0.16017256677150726, -0.09584778547286987, 0.052539825439453125, -0.214065283536911, 0.015373238362371922, -0.020989984273910522, -0.07464155554771423, -0.07556121796369553, -0.019441818818449974, 0.10258057713508606, -0.05949237197637558, 0.04979550838470459, -0.03960627689957619, 0.033205412328243256, 0.03452586755156517, -0.11885502189397812, -0.027013838291168213, 0.04062090069055557, 0.1635345220565796, 0.03936326131224632, -0.013255071826279163, 0.08294682204723358, -0.03389635309576988, 0.06289716064929962, 0.13752686977386475, 0.13507220149040222, 0.1641046106815338, 0.05621650815010071, 0.10723114013671875, 0.07359906286001205, -0.0947713553905487, -0.11851027607917786, 0.13729643821716309, -0.05491563305258751, 0.14798474311828613, -0.017200203612446785, 0.22104744613170624, 0.08627039194107056, -0.17849132418632507, 0.06623644381761551, -0.04197041317820549, -0.07614050060510635, -0.1100221574306488, -0.07656578719615936, -0.08795180916786194, -0.17408870160579681, 0.008478846400976181, -0.10244033485651016, 0.07002852857112885, 0.027731111273169518, 0.04836354777216911, 0.01777523197233677, 0.09471315145492554, 0.0462234765291214, -0.01355016604065895, 0.12385562062263489, 0.008232451044023037, -0.020231755450367928, -0.05866916850209236, -0.10390511155128479, 0.07275921106338501, -0.012409222312271595, 0.06825020164251328, -0.01723938249051571, -0.07302656024694443, 0.05502147600054741, -0.000656501273624599, -0.10558518767356873, 0.0328686349093914, -0.012886861339211464, 0.06622941046953201, 0.09775371104478836, 0.04594484716653824, -0.0102658960968256, -0.007214676588773727, 0.19471074640750885, -0.07820000499486923, -0.06477836519479752, -0.12870506942272186, 0.1843818873167038, -0.000208022422157228, -0.015210597775876522, 0.03235707804560661, -0.06387028098106384, -0.0220834631472826, 0.15915097296237946, 0.11959078907966614, -0.003539466764777899, -0.014228113926947117, 0.0015629807021468878, -0.012551993131637573, -0.034921251237392426, 0.07804851233959198, 0.12137160450220108, 0.04094824194908142, -0.04419289901852608, -0.01930605247616768, -0.032177411019802094, -0.051522232592105865, -0.03275608643889427, 0.06320884823799133, -0.011609723791480064, -0.026334097608923912, -0.012386542744934559, 0.09380096942186356, -0.04502009227871895, -0.15922312438488007, 0.010673745535314083, -0.1762053519487381, -0.17697879672050476, -0.03341049700975418, 0.09040577709674835, 0.04525652155280113, 0.029402878135442734, -0.004053321201354265, -0.013657920062541962, 0.1338253617286682, -0.008677374571561813, -0.038360413163900375, -0.10840950161218643, 0.07945915311574936, -0.12443725764751434, 0.15505348145961761, -0.031051356345415115, 0.05018695071339607, 0.10592906922101974, 0.07195962220430374, -0.08211217820644379, 0.03830019012093544, 0.06692869961261749, -0.12216033786535263, 0.03995834290981293, 0.19260963797569275, -0.03626728057861328, 0.14172735810279846, 0.040342509746551514, -0.09136060625314713, 0.004331603180617094, -0.071822389960289, -0.05617082491517067, -0.0438409149646759, 0.002587549854069948, -0.04538764804601669, 0.12515898048877716, 0.17968346178531647, -0.059171684086322784, -0.024069173261523247, -0.06139843910932541, 0.014312204904854298, 0.03485066816210747, 0.10913939774036407, -0.03552111238241196, -0.2674100995063782, 0.017558535560965538, -0.015917997807264328, 0.026055876165628433, -0.20350854098796844, -0.09955164045095444, 0.007918242365121841, -0.04945630207657814, -0.06875605136156082, 0.11288122087717056, 0.05681051313877106, 0.04501071199774742, -0.051234643906354904, -0.0757930651307106, -0.020369242876768112, 0.179460808634758, -0.1637953519821167, -0.0455336757004261 ]
null
null
transformers
# MechDistilGPT2 ## Table of Contents - [Model Details](#model-details) - [Uses](#uses) - [Risks, Limitations and Biases](#risks-limitations-and-biases) - [Training](#training) - [Environmental Impact](#environmental-impact) - [How to Get Started With the Model](#how-to-get-started-with-the-model) ## Model Details - **Model Description:** This model is fine-tuned on text scraped from 100+ Mechanical/Automotive pdf books. - **Developed by:** [Ashwin](https://huggingface.co/geralt) - **Model Type:** Causal Language modeling - **Language(s):** English - **License:** [More Information Needed] - **Parent Model:** See the [DistilGPT2model](https://huggingface.co/distilgpt2) for more information about the Distilled-GPT2 base model. - **Resources for more information:** - [Research Paper](https://arxiv.org/abs/2105.09680) - [GitHub Repo](https://github.com/huggingface/notebooks/blob/master/examples/language_modeling.ipynb) ## Uses #### Direct Use The model can be used for tasks including topic classification, Causal Language modeling and text generation #### Misuse and Out-of-scope Use The model should not be used to intentionally create hostile or alienating environments for people. In addition, the model was not trained to be factual or true representations of people or events, and therefore using the model to generate such content is out-of-scope for the abilities of this model. ## Risks, Limitations and Biases **CONTENT WARNING: Readers should be aware this section contains content that is disturbing, offensive, and can propagate historical and current stereotypes.** Significant research has explored bias and fairness issues with language models (see, e.g., [Sheng et al. (2021)](https://aclanthology.org/2021.acl-long.330.pdf) and [Bender et al. (2021)](https://dl.acm.org/doi/pdf/10.1145/3442188.3445922)). ## Training #### Training Data This model is fine-tuned on text scraped from 100+ Mechanical/Automotive pdf books. #### Training Procedure ###### Fine-Tuning * Default Training Args * Epochs = 3 * Training set = 200k sentences * Validation set = 40k sentences ###### Framework versions * Transformers 4.7.0.dev0 * Pytorch 1.8.1+cu111 * Datasets 1.6.2 * Tokenizers 0.10.2 # Environmental Impact ​ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). ​ - **Hardware Type:** [More information needed] - **Hours used:** [More information needed] - **Cloud Provider:** [More information needed] - **Compute Region:** [More information needed"] - **Carbon Emitted:** [More information needed] ​ ## How to Get Started With the Model ```python from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("geralt/MechDistilGPT2") model = AutoModelForCausalLM.from_pretrained("geralt/MechDistilGPT2") ```
{"tags": ["Causal Language modeling", "text-generation", "CLM"], "model_index": [{"name": "MechDistilGPT2", "results": [{"task": {"name": "Causal Language modeling", "type": "Causal Language modeling"}}]}]}
text-generation
geralt/MechDistilGPT2
[ "transformers", "pytorch", "gpt2", "text-generation", "Causal Language modeling", "CLM", "arxiv:2105.09680", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[ "2105.09680", "1910.09700" ]
[]
TAGS #transformers #pytorch #gpt2 #text-generation #Causal Language modeling #CLM #arxiv-2105.09680 #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
# MechDistilGPT2 ## Table of Contents - Model Details - Uses - Risks, Limitations and Biases - Training - Environmental Impact - How to Get Started With the Model ## Model Details - Model Description: This model is fine-tuned on text scraped from 100+ Mechanical/Automotive pdf books. - Developed by: Ashwin - Model Type: Causal Language modeling - Language(s): English - License: - Parent Model: See the DistilGPT2model for more information about the Distilled-GPT2 base model. - Resources for more information: - Research Paper - GitHub Repo ## Uses #### Direct Use The model can be used for tasks including topic classification, Causal Language modeling and text generation #### Misuse and Out-of-scope Use The model should not be used to intentionally create hostile or alienating environments for people. In addition, the model was not trained to be factual or true representations of people or events, and therefore using the model to generate such content is out-of-scope for the abilities of this model. ## Risks, Limitations and Biases CONTENT WARNING: Readers should be aware this section contains content that is disturbing, offensive, and can propagate historical and current stereotypes. Significant research has explored bias and fairness issues with language models (see, e.g., Sheng et al. (2021) and Bender et al. (2021)). ## Training #### Training Data This model is fine-tuned on text scraped from 100+ Mechanical/Automotive pdf books. #### Training Procedure ###### Fine-Tuning * Default Training Args * Epochs = 3 * Training set = 200k sentences * Validation set = 40k sentences ###### Framework versions * Transformers 4.7.0.dev0 * Pytorch 1.8.1+cu111 * Datasets 1.6.2 * Tokenizers 0.10.2 # Environmental Impact ​ Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019). ​ - Hardware Type: [More information needed] - Hours used: [More information needed] - Cloud Provider: [More information needed] - Compute Region: [More information needed"] - Carbon Emitted: [More information needed] ​ ## How to Get Started With the Model
[ "# MechDistilGPT2", "## Table of Contents\n- Model Details \n- Uses\n- Risks, Limitations and Biases\n- Training\n- Environmental Impact\n- How to Get Started With the Model", "## Model Details\n- Model Description: \nThis model is fine-tuned on text scraped from 100+ Mechanical/Automotive pdf books.\n\n\n- Developed by: Ashwin\n\n- Model Type: Causal Language modeling\n- Language(s): English\n- License: \n- Parent Model: See the DistilGPT2model for more information about the Distilled-GPT2 base model.\n- Resources for more information:\n - Research Paper\n - GitHub Repo", "## Uses", "#### Direct Use\n\nThe model can be used for tasks including topic classification, Causal Language modeling and text generation", "#### Misuse and Out-of-scope Use\n\nThe model should not be used to intentionally create hostile or alienating environments for people. In addition, the model was not trained to be factual or true representations of people or events, and therefore using the model to generate such content is out-of-scope for the abilities of this model.", "## Risks, Limitations and Biases\n\nCONTENT WARNING: Readers should be aware this section contains content that is disturbing, offensive, and can propagate historical and current stereotypes.\n\nSignificant research has explored bias and fairness issues with language models (see, e.g., Sheng et al. (2021) and Bender et al. (2021)).", "## Training", "#### Training Data\n\nThis model is fine-tuned on text scraped from 100+ Mechanical/Automotive pdf books.", "#### Training Procedure", "###### Fine-Tuning\n\n* Default Training Args\n* Epochs = 3\n* Training set = 200k sentences\n* Validation set = 40k sentences", "###### Framework versions\n\n* Transformers 4.7.0.dev0\n* Pytorch 1.8.1+cu111\n* Datasets 1.6.2\n* Tokenizers 0.10.2", "# Environmental Impact\n\n​\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n​\n- Hardware Type: [More information needed]\n- Hours used: [More information needed]\n- Cloud Provider: [More information needed]\n- Compute Region: [More information needed\"]\n- Carbon Emitted: [More information needed]\n​", "## How to Get Started With the Model" ]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #Causal Language modeling #CLM #arxiv-2105.09680 #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "# MechDistilGPT2", "## Table of Contents\n- Model Details \n- Uses\n- Risks, Limitations and Biases\n- Training\n- Environmental Impact\n- How to Get Started With the Model", "## Model Details\n- Model Description: \nThis model is fine-tuned on text scraped from 100+ Mechanical/Automotive pdf books.\n\n\n- Developed by: Ashwin\n\n- Model Type: Causal Language modeling\n- Language(s): English\n- License: \n- Parent Model: See the DistilGPT2model for more information about the Distilled-GPT2 base model.\n- Resources for more information:\n - Research Paper\n - GitHub Repo", "## Uses", "#### Direct Use\n\nThe model can be used for tasks including topic classification, Causal Language modeling and text generation", "#### Misuse and Out-of-scope Use\n\nThe model should not be used to intentionally create hostile or alienating environments for people. In addition, the model was not trained to be factual or true representations of people or events, and therefore using the model to generate such content is out-of-scope for the abilities of this model.", "## Risks, Limitations and Biases\n\nCONTENT WARNING: Readers should be aware this section contains content that is disturbing, offensive, and can propagate historical and current stereotypes.\n\nSignificant research has explored bias and fairness issues with language models (see, e.g., Sheng et al. (2021) and Bender et al. (2021)).", "## Training", "#### Training Data\n\nThis model is fine-tuned on text scraped from 100+ Mechanical/Automotive pdf books.", "#### Training Procedure", "###### Fine-Tuning\n\n* Default Training Args\n* Epochs = 3\n* Training set = 200k sentences\n* Validation set = 40k sentences", "###### Framework versions\n\n* Transformers 4.7.0.dev0\n* Pytorch 1.8.1+cu111\n* Datasets 1.6.2\n* Tokenizers 0.10.2", "# Environmental Impact\n\n​\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n​\n- Hardware Type: [More information needed]\n- Hours used: [More information needed]\n- Cloud Provider: [More information needed]\n- Compute Region: [More information needed\"]\n- Carbon Emitted: [More information needed]\n​", "## How to Get Started With the Model" ]
[ 75, 8, 35, 98, 3, 25, 76, 85, 2, 27, 5, 38, 37, 79, 9 ]
[ "passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #Causal Language modeling #CLM #arxiv-2105.09680 #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n# MechDistilGPT2## Table of Contents\n- Model Details \n- Uses\n- Risks, Limitations and Biases\n- Training\n- Environmental Impact\n- How to Get Started With the Model## Model Details\n- Model Description: \nThis model is fine-tuned on text scraped from 100+ Mechanical/Automotive pdf books.\n\n\n- Developed by: Ashwin\n\n- Model Type: Causal Language modeling\n- Language(s): English\n- License: \n- Parent Model: See the DistilGPT2model for more information about the Distilled-GPT2 base model.\n- Resources for more information:\n - Research Paper\n - GitHub Repo## Uses#### Direct Use\n\nThe model can be used for tasks including topic classification, Causal Language modeling and text generation#### Misuse and Out-of-scope Use\n\nThe model should not be used to intentionally create hostile or alienating environments for people. In addition, the model was not trained to be factual or true representations of people or events, and therefore using the model to generate such content is out-of-scope for the abilities of this model.## Risks, Limitations and Biases\n\nCONTENT WARNING: Readers should be aware this section contains content that is disturbing, offensive, and can propagate historical and current stereotypes.\n\nSignificant research has explored bias and fairness issues with language models (see, e.g., Sheng et al. (2021) and Bender et al. (2021)).## Training#### Training Data\n\nThis model is fine-tuned on text scraped from 100+ Mechanical/Automotive pdf books.#### Training Procedure###### Fine-Tuning\n\n* Default Training Args\n* Epochs = 3\n* Training set = 200k sentences\n* Validation set = 40k sentences" ]
[ -0.04021003097295761, 0.056853581219911575, -0.0034831170924007893, 0.036520346999168396, 0.11358537524938583, -0.002769047161564231, 0.08211992681026459, 0.07953162491321564, -0.024698685854673386, 0.044010721147060394, -0.004428686574101448, 0.022166211158037186, 0.11463095992803574, 0.021637730300426483, 0.08870045840740204, -0.23361124098300934, 0.07317283004522324, -0.058575406670570374, 0.08635813742876053, 0.10549803823232651, 0.12726321816444397, -0.03095654398202896, 0.09422872960567474, 0.012892508879303932, -0.08082586526870728, -0.03636214882135391, -0.016533350571990013, -0.04981333017349243, 0.11044789850711823, 0.073710598051548, 0.08603641390800476, -0.034583985805511475, 0.07758603245019913, -0.18426856398582458, 0.006483540870249271, 0.09402696043252945, -0.024654125794768333, 0.06506643444299698, 0.07265398651361465, -0.01496586762368679, 0.14205652475357056, -0.07221589237451553, 0.0820116475224495, 0.07898098975419998, -0.13786691427230835, -0.1673230528831482, -0.09090597927570343, 0.09736036509275436, 0.11437103897333145, 0.14351129531860352, -0.06573238223791122, 0.04794418066740036, -0.02081737481057644, 0.03502709046006203, 0.1372065246105194, -0.09525734931230545, -0.042084112763404846, 0.08608623594045639, 0.04824269562959671, 0.08165552467107773, -0.0708656832575798, -0.013651207089424133, 0.004274445120245218, 0.058737386018037796, 0.05400235578417778, -0.014187787659466267, -0.026036789640784264, -0.01855994388461113, -0.0975637435913086, -0.02040216512978077, 0.11636944115161896, 0.004447640851140022, -0.08466051518917084, -0.18221351504325867, -0.026882704347372055, 0.0771314725279808, 0.042891137301921844, -0.0986250564455986, 0.018848147243261337, 0.018473336473107338, 0.0324837788939476, -0.09692367166280746, -0.10255902260541916, 0.0001081598165910691, -0.026199333369731903, 0.15378481149673462, 0.006119360215961933, 0.028849637135863304, -0.015036869794130325, 0.12545040249824524, -0.054936639964580536, -0.061877064406871796, -0.08078408986330032, -0.06670729070901871, -0.11136005818843842, -0.03891221806406975, -0.04572887346148491, -0.06442523002624512, -0.05018455162644386, 0.016862653195858, -0.1014518141746521, 0.04360930621623993, -0.0019356401171535254, 0.03357761353254318, 0.07254161685705185, 0.14029362797737122, -0.07172060012817383, 0.0030822311528027058, -0.017484821379184723, -0.005453433375805616, 0.008818604983389378, -0.00537698483094573, -0.06771504878997803, -0.04811381176114082, 0.034488189965486526, 0.05290743708610535, 0.0009437095141038299, 0.057250991463661194, -0.07165136188268661, -0.04252389818429947, 0.040219444781541824, -0.10260352492332458, 0.02077576145529747, 0.004684238228946924, -0.05059877783060074, 0.015538856387138367, 0.045114923268556595, 0.014431966468691826, -0.06600669771432877, 0.013093877583742142, -0.044306810945272446, 0.012585924938321114, -0.12403649836778641, -0.0981006845831871, 0.014390455558896065, 0.04592214524745941, -0.07263265550136566, -0.07784212380647659, -0.16940025985240936, -0.09901706874370575, 0.07373596727848053, -0.05517539754509926, -0.024134866893291473, -0.06335703283548355, -0.027911866083741188, -0.02079927548766136, 0.03674957901239395, -0.03889145329594612, 0.0036653855349868536, 0.03769891336560249, -0.0606955848634243, 0.04417891427874565, 0.06140120327472687, 0.05188450589776039, -0.06049574911594391, 0.0025680623948574066, -0.23669973015785217, 0.14528171718120575, -0.039610523730516434, -0.00523405522108078, -0.09678566455841064, -0.055742066353559494, 0.002073598327115178, 0.0712423324584961, 0.021929951384663582, 0.12253876030445099, -0.1698385775089264, -0.030308084562420845, 0.1849503368139267, -0.08492495864629745, -0.027966884896159172, 0.08978645503520966, -0.0711449533700943, 0.1642250418663025, 0.12941902875900269, -0.03897085413336754, -0.002792239421978593, -0.027819087728857994, 0.04167782887816429, -0.04780369997024536, -0.055475663393735886, 0.21407143771648407, 0.029940331354737282, -0.07870439440011978, -0.001271408167667687, 0.009028487838804722, -0.04519196227192879, -0.021085573360323906, 0.024089520797133446, -0.04698731377720833, 0.009078252129256725, 0.02706283889710903, 0.06055031344294548, -0.037718530744314194, -0.05581069737672806, -0.017381373792886734, -0.1354418247938156, -0.01829259842634201, 0.07542447000741959, -0.006675477139651775, 0.023809857666492462, -0.04607401415705681, -0.019543077796697617, 0.03505373373627663, 0.01332911103963852, -0.17249324917793274, -0.0730365663766861, 0.024419914931058884, -0.07888287305831909, 0.09347806125879288, 0.10085022449493408, 0.040142860263586044, 0.023547610267996788, -0.06976702064275742, -0.007742525078356266, -0.03268227353692055, -0.017544614151120186, -0.05148827284574509, -0.10600919276475906, 0.025056064128875732, -0.031461168080568314, 0.14217154681682587, -0.16119349002838135, 0.03717312216758728, 0.05972924828529358, 0.055059824138879776, 0.028014814481139183, -0.0509101003408432, 0.010870260186493397, -0.014257877133786678, 0.003347113961353898, -0.06259242445230484, 0.03637707233428955, 0.024528907611966133, -0.05523906648159027, 0.07482890039682388, -0.1896848976612091, -0.1220289021730423, 0.059603117406368256, 0.0473996102809906, -0.1980735808610916, -0.046519920229911804, 0.003208923852071166, 0.004536756314337254, -0.12502022087574005, -0.09302064031362534, 0.2654433846473694, 0.01682277023792267, 0.030088694766163826, -0.08020871877670288, -0.07277537882328033, -0.03054407425224781, -0.022973936051130295, -0.022187067195773125, 0.03931765258312225, -0.04813503846526146, -0.23628486692905426, 0.1097245067358017, 0.03224620595574379, -0.03002318926155567, 0.0798766165971756, 0.06534350663423538, -0.045611634850502014, -0.0492401197552681, 0.018231553956866264, -0.021692121401429176, 0.08331290632486343, -0.005199492443352938, -0.007548299618065357, 0.01948319748044014, 0.009761378169059753, -0.008152027614414692, -0.1221969798207283, 0.05699566379189491, 0.06694962084293365, -0.011928174644708633, 0.040632233023643494, -0.025620169937610626, 0.015242690220475197, 0.1056833490729332, 0.037519197911024094, 0.02683272957801819, 0.04831099510192871, -0.03308525308966637, -0.16843825578689575, 0.15789981186389923, -0.1109975129365921, -0.24462909996509552, -0.10142534971237183, 0.037814874202013016, -0.01310014445334673, 0.010415027849376202, 0.022094599902629852, -0.08182055503129959, -0.05317653343081474, -0.06547588855028152, 0.0853143185377121, -0.03264276683330536, -0.14226536452770233, -0.01650678925216198, -0.004537203814834356, 0.024176981300115585, -0.10775118321180344, -0.006206775549799204, 0.03571590036153793, -0.12330233305692673, 0.038467127829790115, 0.02003110945224762, 0.014397463761270046, 0.10088968276977539, 0.036985550075769424, -0.021046746522188187, -0.026252558454871178, 0.20706872642040253, -0.1262310892343521, 0.1002432331442833, 0.089960977435112, -0.06068702042102814, 0.08750615268945694, 0.1317475587129593, 0.03211789205670357, -0.029686739668250084, 0.03702884167432785, 0.034453801810741425, -0.03764946386218071, -0.22335897386074066, -0.06089932098984718, -0.019413575530052185, -0.09150070697069168, 0.03995111584663391, 0.0340774767100811, 0.1621207296848297, 0.09201010316610336, -0.08392928540706635, -0.023922843858599663, 0.12909522652626038, 0.10264214873313904, 0.036147553473711014, -0.029634157195687294, 0.06502646207809448, 0.0003961194306612015, -0.03314422816038132, 0.05427224934101105, -0.04061068221926689, 0.2600196897983551, 0.021233832463622093, 0.028458066284656525, 0.031269945204257965, -0.043794505298137665, 0.0058619678020477295, 0.04457348585128784, -0.03344176709651947, 0.016345679759979248, -0.054647669196128845, -0.04891043156385422, -0.015181849710643291, 0.11187869310379028, 0.09288030862808228, -0.025194518268108368, -0.01923956163227558, -0.08332783728837967, 0.08389033377170563, 0.13968124985694885, -0.033702924847602844, -0.14364634454250336, -0.056217972189188004, 0.06321431696414948, -0.012161624617874622, -0.12586642801761627, 0.0017107705352827907, 0.05526547133922577, -0.20721982419490814, 0.03542614355683327, -0.03640291094779968, 0.076665960252285, -0.07677492499351501, 0.002147952327504754, 0.008460533805191517, 0.11349538713693619, -0.03285268321633339, 0.08577676862478256, -0.18116043508052826, 0.12431453168392181, 0.003032323205843568, 0.04503920301795006, -0.08106869459152222, 0.03985583409667015, 0.028662681579589844, -0.006514126900583506, 0.1528593748807907, 0.054379209876060486, -0.12651318311691284, -0.05215327814221382, 0.0431407168507576, 0.0010493822628632188, 0.07858239859342575, -0.08230361342430115, 0.07526259869337082, -0.0006791189662180841, 0.02731599286198616, -0.010491321794688702, 0.06407583504915237, -0.12582412362098694, -0.15379959344863892, 0.05190280079841614, -0.07920219749212265, 0.1242293268442154, -0.08123506605625153, -0.033506687730550766, -0.09467688202857971, 0.19887153804302216, -0.08528012782335281, -0.12421026825904846, -0.11285664886236191, -0.06115369498729706, 0.06778405606746674, -0.07198683172464371, 0.016896046698093414, 0.008703019469976425, 0.13767656683921814, -0.05449330434203148, -0.034036409109830856, 0.07144421339035034, -0.04834986478090286, -0.12709292769432068, -0.051909465342760086, 0.10055897384881973, 0.16156317293643951, 0.062235645949840546, 0.004470381885766983, 0.03740028291940689, 0.01286284625530243, -0.10169762372970581, 0.022009631618857384, 0.22835397720336914, 0.0398360975086689, 0.07383216917514801, -0.10761801898479462, -0.08612826466560364, -0.13040503859519958, -0.07659229636192322, 0.14958412945270538, 0.09728787839412689, -0.053518977016210556, 0.11736764013767242, 0.20451441407203674, -0.10917633771896362, -0.17827758193016052, 0.0491790845990181, 0.047007087618112564, 0.04576478153467178, 0.011586934328079224, -0.25121942162513733, 0.00001678221087786369, 0.0576339028775692, 0.020100241526961327, 0.027793413028120995, -0.18595407903194427, -0.10991747677326202, 0.12687374651432037, 0.024767786264419556, -0.030351171270012856, -0.08241089433431625, -0.030817771330475807, -0.03256578743457794, -0.12116966396570206, 0.09884357452392578, -0.07674352824687958, 0.06952428817749023, 0.03359856829047203, 0.12600956857204437, 0.03657756745815277, -0.01430295780301094, 0.14673559367656708, -0.004027682822197676, 0.038459330797195435, -0.13113752007484436, -0.09272661060094833, 0.04486915469169617, -0.0585634745657444, 0.11534660309553146, 0.028382519260048866, -0.00206344248726964, -0.05777111276984215, -0.030377298593521118, -0.11947754770517349, 0.012067317962646484, -0.06811971962451935, -0.08553226292133331, -0.08934551477432251, 0.12394025176763535, 0.1017034649848938, -0.06441833823919296, -0.06308048218488693, -0.07202912867069244, 0.11980193108320236, 0.04619049280881882, 0.16674594581127167, 0.07470636069774628, -0.12516340613365173, -0.007643573917448521, -0.014650067314505577, 0.08244946599006653, -0.06974516063928604, 0.008849918842315674, 0.07816872000694275, -0.012512109242379665, 0.19494839012622833, 0.017885658890008926, -0.16294437646865845, -0.012911820784211159, 0.0016550053842365742, -0.04710175842046738, -0.16479472815990448, -0.052579134702682495, 0.1519542932510376, -0.13827446103096008, -0.08243530988693237, 0.10409299284219742, -0.05263899639248848, -0.050900962203741074, 0.017341524362564087, 0.09711884707212448, -0.03160468116402626, 0.062417980283498764, -0.021471630781888962, 0.04428251460194588, -0.05838324874639511, 0.08053255826234818, 0.06425007432699203, -0.03784165158867836, 0.05434828996658325, 0.10134361684322357, -0.08721616864204407, -0.0414278507232666, 0.011959431692957878, 0.0913979634642601, -0.09211646020412445, -0.03693461790680885, 0.0816669762134552, -0.18278944492340088, 0.01563618704676628, 0.06742684543132782, 0.016279054805636406, 0.02527819573879242, -0.007328606676310301, 0.04522152990102768, -0.014351880177855492, 0.03404100611805916, 0.03821560740470886, 0.012251059524714947, -0.0241936556994915, 0.11906544864177704, 0.02867496944963932, 0.008259712718427181, -0.007604176644235849, -0.06394419074058533, -0.14327172935009003, -0.0010419490281492472, -0.14265869557857513, -0.04529331624507904, -0.08700363337993622, -0.0009862114675343037, -0.011494084261357784, -0.0029247920028865337, 0.06395388394594193, 0.03508353605866432, -0.07603916525840759, -0.048013996332883835, -0.020757898688316345, 0.047067269682884216, -0.09007465839385986, -0.017814213410019875, 0.07780197262763977, -0.07337375730276108, 0.07860340923070908, 0.04460890218615532, -0.047882385551929474, -0.005353660322725773, -0.20272475481033325, 0.06553715467453003, -0.02587893046438694, -0.017756899818778038, 0.022006439045071602, -0.2655273973941803, -0.005942304152995348, -0.03522487357258797, -0.03143000602722168, 0.004092542454600334, 0.0002627215289976448, -0.045607876032590866, 0.05651487410068512, 0.0006891177035868168, -0.05039753019809723, -0.08147836476564407, 0.05349737033247948, 0.05782625079154968, 0.020000625401735306, 0.10344469547271729, -0.04154619202017784, 0.10027968138456345, -0.1222744956612587, 0.00941743515431881, 0.03123178333044052, 0.024769112467765808, 0.048376668244600296, -0.07999660819768906, 0.048012472689151764, -0.007708278018981218, 0.11546657234430313, -0.018352486193180084, -0.060516033321619034, 0.042160771787166595, 0.01992003060877323, -0.07329397648572922, -0.004676405806094408, -0.06033801659941673, -0.05537401884794235, -0.028525564819574356, -0.03727731108665466, -0.011601299047470093, -0.039248351007699966, -0.14482812583446503, 0.13477258384227753, 0.05395982414484024, 0.13781803846359253, -0.0016267284518107772, 0.068557508289814, -0.06031075865030289, -0.01763605698943138, 0.00037282274570316076, 0.010375384241342545, -0.050441544502973557, -0.07431185245513916, 0.11809670180082321, 0.11499667167663574, -0.13163334131240845, 0.15043190121650696, -0.06224016845226288, -0.05942843481898308, -0.050340283662080765, -0.1812853366136551, -0.02439139597117901, -0.00965964887291193, -0.02640860714018345, -0.09526079893112183, 0.04663621634244919, 0.009683202020823956, 0.004290648270398378, -0.03599705547094345, 0.14680792391300201, -0.0600169375538826, -0.15372267365455627, 0.07470608502626419, 0.026439769193530083, 0.05067269876599312, 0.012545451521873474, 0.030400175601243973, 0.011155635118484497, 0.08137309551239014, 0.07453823834657669, 0.06606844067573547, 0.01996871456503868, -0.02458568662405014, -0.023057419806718826, -0.009872527793049812, 0.01960107311606407, -0.0027913276571780443, -0.014736711978912354, 0.18872180581092834, 0.041007738560438156, -0.017608875408768654, 0.004950494971126318, 0.1329483836889267, -0.08248741924762726, -0.12448601424694061, -0.14497680962085724, 0.23802635073661804, -0.0149042047560215, -0.027146635577082634, 0.041964881122112274, -0.1004183292388916, 0.05985286831855774, 0.12784284353256226, 0.17968884110450745, -0.043795645236968994, 0.012068390846252441, -0.014919710345566273, 0.003849203698337078, 0.024412618950009346, 0.029840724542737007, 0.06564367562532425, 0.23671209812164307, -0.10139975696802139, 0.22125199437141418, -0.01719229854643345, -0.005267994478344917, -0.022204404696822166, 0.10958362370729446, -0.015192036516964436, 0.026087692007422447, -0.06885181367397308, 0.10675613582134247, -0.07663796097040176, -0.21587595343589783, -0.05476555973291397, -0.03109039179980755, -0.06666023284196854, 0.008182482793927193, 0.0010287076001986861, 0.029605289921164513, 0.10696499049663544, 0.045792803168296814, -0.017161713913083076, 0.17364662885665894, 0.026799188926815987, -0.04800315573811531, -0.04758671671152115, 0.08374399691820145, -0.06627806276082993, 0.17497198283672333, 0.02212666906416416, 0.06216522306203842, 0.09241059422492981, -0.007167183794081211, -0.06383069604635239, 0.07003746181726456, 0.0003556244191713631, -0.04866398125886917, -0.0021842012647539377, 0.15468183159828186, 0.0005348807899281383, 0.05226729065179825, 0.08591124415397644, -0.021922463551163673, 0.09756199270486832, 0.06037723645567894, -0.024342292919754982, -0.09739477187395096, 0.10978855937719345, -0.10497357696294785, 0.1309775561094284, 0.18918082118034363, -0.027434637770056725, -0.023563547059893608, -0.06449409574270248, -0.005842267069965601, 0.004462642595171928, 0.07985293865203857, -0.018102401867508888, -0.11002728343009949, 0.018056370317935944, 0.037664927542209625, 0.0931667611002922, -0.1872759610414505, -0.1044016182422638, 0.0454641655087471, -0.04321925342082977, -0.0009334649075753987, 0.06908278912305832, 0.037169259041547775, 0.024733396247029305, 0.0004384252242743969, -0.08004851639270782, -0.0015366500010713935, 0.14265114068984985, -0.07447333633899689, -0.0026267676148563623 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # biobert_v1.1_pubmed-finetuned-squad This model is a fine-tuned version of [gerardozq/biobert_v1.1_pubmed-finetuned-squad](https://huggingface.co/gerardozq/biobert_v1.1_pubmed-finetuned-squad) on the squad_v2 dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Framework versions - Transformers 4.12.3 - Pytorch 1.9.0+cu111 - Datasets 1.15.1 - Tokenizers 0.10.3
{"tags": ["generated_from_trainer"], "datasets": ["squad_v2"], "model-index": [{"name": "biobert_v1.1_pubmed-finetuned-squad", "results": []}]}
question-answering
gerardozq/biobert_v1.1_pubmed-finetuned-squad
[ "transformers", "pytorch", "tensorboard", "bert", "question-answering", "generated_from_trainer", "dataset:squad_v2", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #bert #question-answering #generated_from_trainer #dataset-squad_v2 #endpoints_compatible #region-us
# biobert_v1.1_pubmed-finetuned-squad This model is a fine-tuned version of gerardozq/biobert_v1.1_pubmed-finetuned-squad on the squad_v2 dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Framework versions - Transformers 4.12.3 - Pytorch 1.9.0+cu111 - Datasets 1.15.1 - Tokenizers 0.10.3
[ "# biobert_v1.1_pubmed-finetuned-squad\n\nThis model is a fine-tuned version of gerardozq/biobert_v1.1_pubmed-finetuned-squad on the squad_v2 dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 2e-05\n- train_batch_size: 16\n- eval_batch_size: 16\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 1", "### Framework versions\n\n- Transformers 4.12.3\n- Pytorch 1.9.0+cu111\n- Datasets 1.15.1\n- Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #bert #question-answering #generated_from_trainer #dataset-squad_v2 #endpoints_compatible #region-us \n", "# biobert_v1.1_pubmed-finetuned-squad\n\nThis model is a fine-tuned version of gerardozq/biobert_v1.1_pubmed-finetuned-squad on the squad_v2 dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 2e-05\n- train_batch_size: 16\n- eval_batch_size: 16\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 1", "### Framework versions\n\n- Transformers 4.12.3\n- Pytorch 1.9.0+cu111\n- Datasets 1.15.1\n- Tokenizers 0.10.3" ]
[ 49, 56, 6, 12, 8, 3, 90, 34 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #bert #question-answering #generated_from_trainer #dataset-squad_v2 #endpoints_compatible #region-us \n# biobert_v1.1_pubmed-finetuned-squad\n\nThis model is a fine-tuned version of gerardozq/biobert_v1.1_pubmed-finetuned-squad on the squad_v2 dataset.## Model description\n\nMore information needed## Intended uses & limitations\n\nMore information needed## Training and evaluation data\n\nMore information needed## Training procedure### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 2e-05\n- train_batch_size: 16\n- eval_batch_size: 16\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 1### Framework versions\n\n- Transformers 4.12.3\n- Pytorch 1.9.0+cu111\n- Datasets 1.15.1\n- Tokenizers 0.10.3" ]
[ -0.08447594195604324, 0.10482409596443176, -0.002368863672018051, 0.07820463925600052, 0.14654402434825897, 0.02948390506207943, 0.13207519054412842, 0.1037808209657669, -0.06803998351097107, 0.07994741201400757, 0.07733793556690216, 0.050932876765728, 0.037311896681785583, 0.08603612333536148, -0.022094137966632843, -0.25816187262535095, 0.0010628366144374013, 0.03722606226801872, -0.08427954465150833, 0.1011868417263031, 0.08447283506393433, -0.12127042561769485, 0.0649983212351799, 0.017991166561841965, -0.16659234464168549, 0.04367659613490105, -0.011777333915233612, -0.026127031072974205, 0.11425893753767014, 0.013944440521299839, 0.12076196819543839, 0.008621707558631897, 0.13595405220985413, -0.21114540100097656, 0.0074106911197304726, 0.07355096191167831, 0.026759563013911247, 0.074317067861557, 0.04163716360926628, 0.025787770748138428, 0.10751038044691086, -0.14002026617527008, 0.08676812052726746, 0.01651313342154026, -0.06710784882307053, -0.14715608954429626, -0.06391297280788422, 0.07720255106687546, 0.06789553910493851, 0.08794939517974854, -0.004442108329385519, 0.1405286341905594, -0.10002733021974564, 0.07436642795801163, 0.20135673880577087, -0.2661706507205963, -0.08334562182426453, 0.059913475066423416, 0.06505422294139862, 0.09004682302474976, -0.10684046149253845, -0.007945162244141102, 0.0461040697991848, 0.028535708785057068, 0.08653423935174942, -0.033371452242136, -0.0549672394990921, 0.009105253033339977, -0.15040455758571625, -0.010884715244174004, 0.14855621755123138, 0.03262089565396309, -0.018311290070414543, -0.07601296901702881, -0.07181999087333679, -0.054297178983688354, -0.015917818993330002, -0.07071057707071304, 0.03175247460603714, -0.06758566945791245, -0.07488318532705307, -0.04925943911075592, -0.07616816461086273, -0.06858149915933609, -0.014509719796478748, 0.11387010663747787, 0.055548492819070816, 0.0134284608066082, -0.05060514435172081, 0.0948064774274826, -0.01240076869726181, -0.1120428517460823, 0.005928013473749161, 0.00900530070066452, -0.08366253226995468, -0.062379900366067886, -0.04915270209312439, -0.026353415101766586, 0.003268286120146513, 0.15320897102355957, -0.047049712389707565, 0.05523373931646347, 0.05114753544330597, -0.0015743292169645429, -0.0008401550003327429, 0.13959112763404846, -0.0748107060790062, -0.046816136687994, -0.010828646831214428, 0.08494758605957031, -0.012867116369307041, -0.011978582479059696, -0.10135498642921448, -0.01658589579164982, 0.1033540889620781, 0.041191451251506805, -0.049661681056022644, 0.03080512210726738, -0.000567030452657491, -0.05442135035991669, -0.025862758979201317, -0.10873860120773315, 0.05317758768796921, 0.0027765880804508924, -0.07390104979276657, 0.01605178788304329, -0.010887045413255692, -0.010990828275680542, -0.0469011627137661, 0.11277155578136444, -0.11126705259084702, 0.011431384831666946, -0.08195369690656662, -0.09763538837432861, 0.016071468591690063, -0.09088432788848877, -0.0027431428898125887, -0.0677843987941742, -0.13661064207553864, -0.037492215633392334, 0.0395163856446743, -0.04174220934510231, -0.031768783926963806, -0.032365091145038605, -0.04660322517156601, -0.0021366304717957973, -0.00633727153763175, 0.1024107038974762, -0.04147524759173393, 0.07578261941671371, 0.0032786400988698006, 0.03283348307013512, 0.012243606150150299, 0.042052313685417175, -0.09051734954118729, 0.01987317204475403, -0.11237460374832153, 0.045260608196258545, -0.09472239017486572, -0.005901258904486895, -0.10871801525354385, -0.12458579987287521, 0.005054968409240246, -0.012595923617482185, 0.05998177453875542, 0.09221738576889038, -0.16292279958724976, -0.06269553303718567, 0.15646101534366608, -0.06220313906669617, -0.07019854336977005, 0.1179555356502533, -0.055579423904418945, 0.011188282631337643, 0.06483344733715057, 0.182540163397789, 0.12863971292972565, -0.15721331536769867, -0.014999614097177982, -0.004086455330252647, 0.08783091604709625, 0.004604021552950144, 0.04906763508915901, 0.005263046361505985, 0.0407073050737381, 0.007855160161852837, -0.09863243252038956, 0.0021945296321064234, -0.0992550477385521, -0.08215811848640442, -0.03843117132782936, -0.0805370956659317, 0.070171058177948, 0.058724865317344666, 0.054314617067575455, -0.05107734352350235, -0.09173484891653061, 0.1484292596578598, 0.10491763055324554, -0.08343362808227539, 0.00533662224188447, -0.06569365411996841, 0.0559205561876297, -0.0518890842795372, -0.017400454729795456, -0.1918143630027771, -0.13674166798591614, 0.036880649626255035, -0.07339518517255783, 0.05603545531630516, 0.07203590124845505, 0.06430090963840485, 0.07312050461769104, -0.05300386622548103, -0.0021982204634696245, -0.09752678871154785, -0.0024170696269720793, -0.10594537109136581, -0.18980687856674194, -0.06346108019351959, -0.01676693558692932, 0.1283496469259262, -0.23142258822917938, 0.015245589427649975, -0.030278615653514862, 0.12077899277210236, 0.002341712126508355, -0.05153669789433479, -0.037610895931720734, 0.07343332469463348, -0.01567590795457363, -0.06959281861782074, 0.05065134912729263, -0.02129075862467289, -0.062059272080659866, -0.10106341540813446, -0.1261368840932846, 0.07607811689376831, 0.07214665412902832, 0.014660889282822609, -0.07735481858253479, -0.030514439567923546, -0.06865094602108002, -0.04170112684369087, -0.08875259011983871, 0.001043166616000235, 0.19775225222110748, -0.005853098817169666, 0.11657889932394028, -0.06829890608787537, -0.06098224222660065, 0.012840470299124718, 0.0020865732803940773, 0.0042458800598979, 0.08669912815093994, 0.13881883025169373, -0.11544843763113022, 0.10589344054460526, 0.07274938374757767, -0.07825719565153122, 0.1560458242893219, -0.04003112390637398, -0.09090795367956161, -0.030975013971328735, -0.005408486817032099, -0.022647380828857422, 0.152577742934227, -0.14408868551254272, -0.006924184039235115, 0.021973542869091034, 0.008840457536280155, 0.03946339711546898, -0.17685523629188538, -0.007052593398839235, 0.0232821237295866, -0.02942730486392975, -0.02459150180220604, -0.025912616401910782, 0.033138155937194824, 0.10422439873218536, 0.013838812708854675, -0.0199649166315794, -0.005697478540241718, 0.0013295816024765372, -0.09040093421936035, 0.2006857544183731, -0.0832393541932106, -0.1367180198431015, -0.1003008484840393, 0.027394063770771027, -0.08085947483778, -0.02003464475274086, 0.013903920538723469, -0.09616827219724655, -0.03647523745894432, -0.05609548091888428, 0.024200160056352615, -0.03733973577618599, -0.0007827534573152661, 0.02668377198278904, -0.0031662925612181425, 0.06419511884450912, -0.12861785292625427, 0.011188148520886898, -0.05651901662349701, -0.08990021049976349, -0.007667290512472391, 0.05388380214571953, 0.1360607147216797, 0.1511487513780594, -0.023487411439418793, 0.018497560173273087, -0.033720746636390686, 0.24086569249629974, -0.0643104761838913, 0.002526992466300726, 0.10858122259378433, -0.0008857279899530113, 0.04423368722200394, 0.09900899231433868, 0.05720818042755127, -0.08671591430902481, 0.008206583559513092, 0.08372431993484497, -0.026353104040026665, -0.22100567817687988, -0.06721512973308563, -0.04573751613497734, -0.05656971037387848, 0.12215598672628403, 0.029870450496673584, 0.018738457933068275, 0.04890257120132446, -0.0025303035508841276, 0.0767493024468422, -0.034240614622831345, 0.07299356162548065, 0.1316107213497162, 0.02640235237777233, 0.1076449304819107, -0.014524267055094242, -0.07069237530231476, 0.0545618012547493, 0.016668619588017464, 0.27753570675849915, -0.004458397626876831, 0.10893065482378006, 0.04637841880321503, 0.14204484224319458, -0.019807644188404083, 0.049130331724882126, -0.00044437553151510656, -0.024928994476795197, 0.012078676372766495, -0.055283322930336, -0.015502803027629852, 0.011637079529464245, 0.019809069111943245, 0.02328646555542946, -0.09379613399505615, 0.014223498292267323, 0.027523240074515343, 0.20582315325737, 0.020989328622817993, -0.26135367155075073, -0.09036892652511597, 0.00022021585027687252, -0.026543384417891502, -0.043590646237134933, 0.009401388466358185, 0.16526208817958832, -0.11015978455543518, 0.02363225817680359, -0.06745300441980362, 0.09426779299974442, -0.03405284509062767, 0.011757497675716877, 0.051221564412117004, 0.12450307607650757, -0.0014169532805681229, 0.09921541810035706, -0.17273560166358948, 0.22588151693344116, 0.019224708899855614, 0.09520803391933441, -0.08010773360729218, 0.01732662133872509, -0.0033478226978331804, 0.07679958641529083, 0.09542295336723328, 0.01033795066177845, 0.0027459440752863884, -0.17354510724544525, -0.057448990643024445, 0.04769589751958847, 0.12796810269355774, -0.026527173817157745, 0.09595856070518494, -0.040878936648368835, 0.008040080778300762, 0.051376622170209885, -0.06472277641296387, -0.14370708167552948, -0.1337447613477707, 0.028185779228806496, -0.013764417730271816, -0.08566982299089432, -0.061130091547966, -0.11282303929328918, -0.055983543395996094, 0.18851496279239655, -0.018872810527682304, -0.026162777096033096, -0.1344117373228073, 0.11654984951019287, 0.11665941029787064, -0.08113787323236465, -0.0004973100149072707, 0.02484080195426941, 0.11940159648656845, 0.00890879612416029, -0.10072027891874313, 0.05058690160512924, -0.07078026235103607, -0.13400641083717346, -0.06390318274497986, 0.12435571849346161, 0.06851375102996826, 0.053297389298677444, 0.0018791506299749017, 0.012641850858926773, 0.005215424578636885, -0.11075885593891144, 0.010695049539208412, 0.04323355481028557, 0.05893001705408096, 0.036120470613241196, -0.10582306981086731, 0.029742663726210594, -0.0352194607257843, 0.022290799766778946, 0.13727477192878723, 0.17261303961277008, -0.09259150922298431, 0.03934052586555481, 0.08745395392179489, -0.08720460534095764, -0.19317805767059326, 0.0679933950304985, 0.10767194628715515, -0.0014389981515705585, 0.03111564740538597, -0.20255112648010254, 0.15665404498577118, 0.12292886525392532, -0.00009430837963009253, 0.07533136755228043, -0.3392775356769562, -0.1308862864971161, 0.07705748081207275, 0.12694115936756134, 0.04644518718123436, -0.14653229713439941, -0.03252242133021355, -0.0034149603452533484, -0.1348462849855423, 0.12948904931545258, -0.07831677794456482, 0.10968673974275589, -0.008889096789062023, 0.10660409182310104, 0.01839585229754448, -0.050398699939250946, 0.12625059485435486, 0.04937633499503136, 0.06551333516836166, -0.039086226373910904, -0.037614598870277405, 0.10769999772310257, -0.047671325504779816, 0.028002804145216942, -0.01372736319899559, 0.04683566838502884, -0.13981667160987854, -0.03882378712296486, -0.08037608861923218, 0.06645799428224564, -0.05346514657139778, -0.07044311612844467, -0.05901961028575897, 0.057019174098968506, 0.05386275053024292, -0.028645290061831474, 0.0710538923740387, 0.015962781384587288, 0.1184593141078949, 0.06165168434381485, 0.09182490408420563, -0.03205494582653046, -0.13217787444591522, -0.011285338550806046, -0.0006600287742912769, 0.07569685578346252, -0.08021130412817001, 0.02055499143898487, 0.1567383110523224, 0.06981690973043442, 0.12959979474544525, 0.05375586822628975, -0.034834425896406174, -0.005559925921261311, 0.016227317973971367, -0.1368044912815094, -0.19190064072608948, -0.0108585050329566, -0.09152137488126755, -0.14030449092388153, 0.04610290750861168, 0.09436267614364624, -0.05337804555892944, -0.016777008771896362, -0.016072629019618034, 0.0013272605137899518, -0.018250243738293648, 0.20594288408756256, 0.04705513268709183, 0.05861882120370865, -0.08823111653327942, 0.07154097408056259, 0.07096294313669205, -0.09415982663631439, 0.03146132454276085, 0.06464259326457977, -0.08038199692964554, -0.021307826042175293, 0.05623968690633774, 0.17768922448158264, -0.0769123062491417, -0.021333109587430954, -0.10444730520248413, -0.1021832749247551, 0.052133359014987946, 0.15447762608528137, 0.059277042746543884, -0.041176725178956985, -0.06537459790706635, 0.04540340229868889, -0.15275150537490845, 0.09285499155521393, 0.029874475672841072, 0.07881855219602585, -0.12388764321804047, 0.12442536652088165, 0.011415044777095318, 0.04648905247449875, -0.025344595313072205, 0.01672639138996601, -0.12437856197357178, -0.01842067949473858, -0.14339037239551544, -0.026534074917435646, -0.02353333681821823, 0.007354241795837879, -0.01618935726583004, -0.055881012231111526, -0.05103229731321335, 0.04393621161580086, -0.07544267922639847, -0.03592296689748764, 0.023665858432650566, 0.04746861383318901, -0.15811632573604584, 0.015442200005054474, 0.017787402495741844, -0.08263655006885529, 0.07321325689554214, 0.05259246751666069, 0.026496028527617455, 0.03980905935168266, -0.10529309511184692, -0.028989898040890694, 0.029148798435926437, 0.05397528037428856, 0.09009154886007309, -0.08152509480714798, 0.0026250071823596954, -0.009812122210860252, 0.07155301421880722, 0.02384539134800434, 0.05230860784649849, -0.10661089420318604, 0.0014073805650696158, -0.06507281213998795, -0.08239024132490158, -0.05979141965508461, 0.038242798298597336, 0.079190194606781, 0.03475331515073776, 0.15861555933952332, -0.07284825295209885, 0.062399208545684814, -0.21576516330242157, -0.0369584746658802, 0.022209811955690384, -0.04405311867594719, -0.03365738317370415, -0.04466237127780914, 0.0714247077703476, -0.04955756291747093, 0.13003423810005188, 0.00024255613971035928, 0.0966903567314148, 0.03162547945976257, -0.008671928197145462, -0.012784244492650032, 0.0030816004145890474, 0.1895562708377838, 0.05371074005961418, -0.029190726578235626, 0.05776407569646835, 0.010252953507006168, 0.0614224411547184, 0.08435530215501785, 0.2268494814634323, 0.12334297597408295, -0.04943384230136871, 0.03762770816683769, 0.07766035199165344, -0.10024408251047134, -0.1762067824602127, 0.0695793628692627, -0.02829216606914997, 0.10960428416728973, -0.029776334762573242, 0.1978502869606018, 0.1011655405163765, -0.18354175984859467, 0.054290786385536194, -0.045783720910549164, -0.1260918825864792, -0.10970587283372879, -0.06257735937833786, -0.07848825305700302, -0.1164521872997284, 0.02194168046116829, -0.14317113161087036, 0.018464913591742516, 0.05914923548698425, 0.02487368881702423, 0.00022359982540365309, 0.18229950964450836, -0.013461535796523094, 0.012555183842778206, 0.04005473479628563, 0.027516396716237068, -0.0028394130058586597, -0.06583155691623688, -0.036146122962236404, 0.03056950308382511, -0.01186904776841402, 0.0778684988617897, -0.06136588007211685, -0.007081089075654745, 0.021182840690016747, -0.01861601695418358, -0.0468924306333065, 0.009726906195282936, 0.009404847398400307, 0.0313684344291687, 0.054296962916851044, 0.03091995231807232, -0.008047446608543396, -0.050856661051511765, 0.22996410727500916, -0.05319256708025932, -0.08758916705846786, -0.12059076130390167, 0.23632138967514038, 0.02918066829442978, 0.0005218457663431764, 0.07021192461252213, -0.09119750559329987, 0.0006375906523317099, 0.21988770365715027, 0.1604371964931488, -0.0636284202337265, -0.015329070389270782, 0.008239940740168095, -0.008898471482098103, -0.02473573014140129, 0.11904282122850418, 0.09089525043964386, 0.11078386753797531, -0.051374856382608414, -0.03745817393064499, -0.02176491916179657, -0.023680826649069786, -0.0834459438920021, 0.07244499772787094, 0.07268588244915009, 0.005031130276620388, -0.05237995460629463, 0.06638562679290771, -0.016083501279354095, -0.16564302146434784, 0.07348982244729996, -0.16751186549663544, -0.16770778596401215, -0.028423430398106575, 0.10400690138339996, -0.04339003562927246, 0.05763501301407814, -0.023888645693659782, -0.013787313364446163, 0.11173176765441895, -0.007931682281196117, -0.07467229664325714, -0.10323810577392578, 0.10055510699748993, -0.08573336899280548, 0.2149142175912857, -0.017688976600766182, 0.07740425318479538, 0.11173797398805618, 0.03148217126727104, -0.09407132863998413, 0.02823707088828087, 0.07525713741779327, -0.1013101190328598, 0.005386603530496359, 0.14275166392326355, -0.040475163608789444, 0.08265707641839981, 0.03651842102408409, -0.13166511058807373, -0.00995270162820816, -0.026687055826187134, -0.014080625958740711, -0.07043496519327164, 0.011838269419968128, -0.07559840381145477, 0.14298740029335022, 0.20812460780143738, -0.016691027209162712, 0.0049669621512293816, -0.08828898519277573, 0.029913825914263725, 0.06807530671358109, 0.12567202746868134, -0.0432436540722847, -0.22360259294509888, 0.011851204559206963, -0.026399867609143257, 0.009221786633133888, -0.2433549463748932, -0.09184207767248154, 0.043387606739997864, -0.03583141043782234, -0.05099441856145859, 0.10025402903556824, 0.07456492632627487, 0.04706854373216629, -0.042354751378297806, -0.15373720228672028, -0.05869060754776001, 0.13890624046325684, -0.15635579824447632, -0.044388093054294586 ]
null
null
transformers
# German Electra Uncased <img width="300px" src="https://raw.githubusercontent.com/German-NLP-Group/german-transformer-training/master/model_cards/german-electra-logo.png"> [¹] ## Version 2 Release We released an improved version of this model. Version 1 was trained for 766,000 steps. For this new version we continued the training for an additional 734,000 steps. It therefore follows that version 2 was trained on a total of 1,500,000 steps. See "Evaluation of Version 2: GermEval18 Coarse" below for details. ## Model Info This Model is suitable for training on many downstream tasks in German (Q&A, Sentiment Analysis, etc.). It can be used as a drop-in replacement for **BERT** in most down-stream tasks (**ELECTRA** is even implemented as an extended **BERT** Class). At the time of release (August 2020) this model is the best performing publicly available German NLP model on various German evaluation metrics (CONLL03-DE, GermEval18 Coarse, GermEval18 Fine). For GermEval18 Coarse results see below. More will be published soon. ## Installation This model has the special feature that it is **uncased** but does **not strip accents**. This possibility was added by us with [PR #6280](https://github.com/huggingface/transformers/pull/6280). To use it you have to use Transformers version 3.1.0 or newer. ```bash pip install transformers -U ``` ## Uncase and Umlauts ('Ö', 'Ä', 'Ü') This model is uncased. This helps especially for domains where colloquial terms with uncorrect capitalization is often used. The special characters 'ö', 'ü', 'ä' are included through the `strip_accent=False` option, as this leads to an improved precision. ## Creators This model was trained and open sourced in conjunction with the [**German NLP Group**](https://github.com/German-NLP-Group) in equal parts by: - [**Philip May**](https://May.la) - [Deutsche Telekom](https://www.telekom.de/) - [**Philipp Reißel**](https://www.linkedin.com/in/philipp-reissel/) - [ambeRoad](https://amberoad.de/) ## Evaluation of Version 2: GermEval18 Coarse We evaluated all language models on GermEval18 with the F1 macro score. For each model we did an extensive automated hyperparameter search. With the best hyperparmeters we did fit the moodel multiple times on GermEval18. This is done to cancel random effects and get results of statistical relevance. ![GermEval18 Coarse Model Evaluation for Version 2](https://raw.githubusercontent.com/German-NLP-Group/german-transformer-training/master/model_cards/model-eval-v2.png) ## Checkpoint evaluation Since it it not guaranteed that the last checkpoint is the best, we evaluated the checkpoints on GermEval18. We found that the last checkpoint is indeed the best. The training was stable and did not overfit the text corpus. ## Pre-training details ### Data - Cleaned Common Crawl Corpus 2019-09 German: [CC_net](https://github.com/facebookresearch/cc_net) (Only head coprus and filtered for language_score > 0.98) - 62 GB - German Wikipedia Article Pages Dump (20200701) - 5.5 GB - German Wikipedia Talk Pages Dump (20200620) - 1.1 GB - Subtitles - 823 MB - News 2018 - 4.1 GB The sentences were split with [SojaMo](https://github.com/tsproisl/SoMaJo). We took the German Wikipedia Article Pages Dump 3x to oversample. This approach was also used in a similar way in GPT-3 (Table 2.2). More Details can be found here [Preperaing Datasets for German Electra Github](https://github.com/German-NLP-Group/german-transformer-training) ### Electra Branch no_strip_accents Because we do not want to stip accents in our training data we made a change to Electra and used this repo [Electra no_strip_accents](https://github.com/PhilipMay/electra/tree/no_strip_accents) (branch `no_strip_accents`). Then created the tf dataset with: ```bash python build_pretraining_dataset.py --corpus-dir <corpus_dir> --vocab-file <dir>/vocab.txt --output-dir ./tf_data --max-seq-length 512 --num-processes 8 --do-lower-case --no-strip-accents ``` ### The training The training itself can be performed with the Original Electra Repo (No special case for this needed). We run it with the following Config: <details> <summary>The exact Training Config</summary> <br/>debug False <br/>disallow_correct False <br/>disc_weight 50.0 <br/>do_eval False <br/>do_lower_case True <br/>do_train True <br/>electra_objective True <br/>embedding_size 768 <br/>eval_batch_size 128 <br/>gcp_project None <br/>gen_weight 1.0 <br/>generator_hidden_size 0.33333 <br/>generator_layers 1.0 <br/>iterations_per_loop 200 <br/>keep_checkpoint_max 0 <br/>learning_rate 0.0002 <br/>lr_decay_power 1.0 <br/>mask_prob 0.15 <br/>max_predictions_per_seq 79 <br/>max_seq_length 512 <br/>model_dir gs://XXX <br/>model_hparam_overrides {} <br/>model_name 02_Electra_Checkpoints_32k_766k_Combined <br/>model_size base <br/>num_eval_steps 100 <br/>num_tpu_cores 8 <br/>num_train_steps 766000 <br/>num_warmup_steps 10000 <br/>pretrain_tfrecords gs://XXX <br/>results_pkl gs://XXX <br/>results_txt gs://XXX <br/>save_checkpoints_steps 5000 <br/>temperature 1.0 <br/>tpu_job_name None <br/>tpu_name electrav5 <br/>tpu_zone None <br/>train_batch_size 256 <br/>uniform_generator False <br/>untied_generator True <br/>untied_generator_embeddings False <br/>use_tpu True <br/>vocab_file gs://XXX <br/>vocab_size 32767 <br/>weight_decay_rate 0.01 </details> ![Training Loss](https://raw.githubusercontent.com/German-NLP-Group/german-transformer-training/master/model_cards/loss.png) Please Note: *Due to the GAN like strucutre of Electra the loss is not that meaningful* It took about 7 Days on a preemtible TPU V3-8. In total, the Model went through approximately 10 Epochs. For an automatically recreation of a cancelled TPUs we used [tpunicorn](https://github.com/shawwn/tpunicorn). The total cost of training summed up to about 450 $ for one run. The Data-pre processing and Vocab Creation needed approximately 500-1000 CPU hours. Servers were fully provided by [T-Systems on site services GmbH](https://www.t-systems-onsite.de/), [ambeRoad](https://amberoad.de/). Special thanks to [Stefan Schweter](https://github.com/stefan-it) for your feedback and providing parts of the text corpus. [¹]: Source for the picture [Pinterest](https://www.pinterest.cl/pin/371828512984142193/) ### Negative Results We tried the following approaches which we found had no positive influence: - **Increased Vocab Size**: Leads to more parameters and thus reduced examples/sec while no visible Performance gains were measured - **Decreased Batch-Size**: The original Electra was trained with a Batch Size per TPU Core of 16 whereas this Model was trained with 32 BS / TPU Core. We found out that 32 BS leads to better results when you compare metrics over computation time ## License - The MIT License Copyright 2020-2021 Philip May<br> Copyright 2020-2021 Philipp Reissel Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
{"language": "de", "license": "mit", "tags": ["electra", "commoncrawl", "uncased", "umlaute", "umlauts", "german", "deutsch"], "thumbnail": "https://raw.githubusercontent.com/German-NLP-Group/german-transformer-training/master/model_cards/german-electra-logo.png"}
null
german-nlp-group/electra-base-german-uncased
[ "transformers", "pytorch", "electra", "pretraining", "commoncrawl", "uncased", "umlaute", "umlauts", "german", "deutsch", "de", "license:mit", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "de" ]
TAGS #transformers #pytorch #electra #pretraining #commoncrawl #uncased #umlaute #umlauts #german #deutsch #de #license-mit #endpoints_compatible #region-us
# German Electra Uncased <img width="300px" src="URL [¹] ## Version 2 Release We released an improved version of this model. Version 1 was trained for 766,000 steps. For this new version we continued the training for an additional 734,000 steps. It therefore follows that version 2 was trained on a total of 1,500,000 steps. See "Evaluation of Version 2: GermEval18 Coarse" below for details. ## Model Info This Model is suitable for training on many downstream tasks in German (Q&A, Sentiment Analysis, etc.). It can be used as a drop-in replacement for BERT in most down-stream tasks (ELECTRA is even implemented as an extended BERT Class). At the time of release (August 2020) this model is the best performing publicly available German NLP model on various German evaluation metrics (CONLL03-DE, GermEval18 Coarse, GermEval18 Fine). For GermEval18 Coarse results see below. More will be published soon. ## Installation This model has the special feature that it is uncased but does not strip accents. This possibility was added by us with PR #6280. To use it you have to use Transformers version 3.1.0 or newer. ## Uncase and Umlauts ('Ö', 'Ä', 'Ü') This model is uncased. This helps especially for domains where colloquial terms with uncorrect capitalization is often used. The special characters 'ö', 'ü', 'ä' are included through the 'strip_accent=False' option, as this leads to an improved precision. ## Creators This model was trained and open sourced in conjunction with the German NLP Group in equal parts by: - Philip May - Deutsche Telekom - Philipp Reißel - ambeRoad ## Evaluation of Version 2: GermEval18 Coarse We evaluated all language models on GermEval18 with the F1 macro score. For each model we did an extensive automated hyperparameter search. With the best hyperparmeters we did fit the moodel multiple times on GermEval18. This is done to cancel random effects and get results of statistical relevance. !GermEval18 Coarse Model Evaluation for Version 2 ## Checkpoint evaluation Since it it not guaranteed that the last checkpoint is the best, we evaluated the checkpoints on GermEval18. We found that the last checkpoint is indeed the best. The training was stable and did not overfit the text corpus. ## Pre-training details ### Data - Cleaned Common Crawl Corpus 2019-09 German: CC_net (Only head coprus and filtered for language_score > 0.98) - 62 GB - German Wikipedia Article Pages Dump (20200701) - 5.5 GB - German Wikipedia Talk Pages Dump (20200620) - 1.1 GB - Subtitles - 823 MB - News 2018 - 4.1 GB The sentences were split with SojaMo. We took the German Wikipedia Article Pages Dump 3x to oversample. This approach was also used in a similar way in GPT-3 (Table 2.2). More Details can be found here Preperaing Datasets for German Electra Github ### Electra Branch no_strip_accents Because we do not want to stip accents in our training data we made a change to Electra and used this repo Electra no_strip_accents (branch 'no_strip_accents'). Then created the tf dataset with: ### The training The training itself can be performed with the Original Electra Repo (No special case for this needed). We run it with the following Config: <details> <summary>The exact Training Config</summary> <br/>debug False <br/>disallow_correct False <br/>disc_weight 50.0 <br/>do_eval False <br/>do_lower_case True <br/>do_train True <br/>electra_objective True <br/>embedding_size 768 <br/>eval_batch_size 128 <br/>gcp_project None <br/>gen_weight 1.0 <br/>generator_hidden_size 0.33333 <br/>generator_layers 1.0 <br/>iterations_per_loop 200 <br/>keep_checkpoint_max 0 <br/>learning_rate 0.0002 <br/>lr_decay_power 1.0 <br/>mask_prob 0.15 <br/>max_predictions_per_seq 79 <br/>max_seq_length 512 <br/>model_dir gs://XXX <br/>model_hparam_overrides {} <br/>model_name 02_Electra_Checkpoints_32k_766k_Combined <br/>model_size base <br/>num_eval_steps 100 <br/>num_tpu_cores 8 <br/>num_train_steps 766000 <br/>num_warmup_steps 10000 <br/>pretrain_tfrecords gs://XXX <br/>results_pkl gs://XXX <br/>results_txt gs://XXX <br/>save_checkpoints_steps 5000 <br/>temperature 1.0 <br/>tpu_job_name None <br/>tpu_name electrav5 <br/>tpu_zone None <br/>train_batch_size 256 <br/>uniform_generator False <br/>untied_generator True <br/>untied_generator_embeddings False <br/>use_tpu True <br/>vocab_file gs://XXX <br/>vocab_size 32767 <br/>weight_decay_rate 0.01 </details> !Training Loss Please Note: *Due to the GAN like strucutre of Electra the loss is not that meaningful* It took about 7 Days on a preemtible TPU V3-8. In total, the Model went through approximately 10 Epochs. For an automatically recreation of a cancelled TPUs we used tpunicorn. The total cost of training summed up to about 450 $ for one run. The Data-pre processing and Vocab Creation needed approximately 500-1000 CPU hours. Servers were fully provided by T-Systems on site services GmbH, ambeRoad. Special thanks to Stefan Schweter for your feedback and providing parts of the text corpus. [¹]: Source for the picture Pinterest ### Negative Results We tried the following approaches which we found had no positive influence: - Increased Vocab Size: Leads to more parameters and thus reduced examples/sec while no visible Performance gains were measured - Decreased Batch-Size: The original Electra was trained with a Batch Size per TPU Core of 16 whereas this Model was trained with 32 BS / TPU Core. We found out that 32 BS leads to better results when you compare metrics over computation time ## License - The MIT License Copyright 2020-2021 Philip May<br> Copyright 2020-2021 Philipp Reissel Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
[ "# German Electra Uncased\n<img width=\"300px\" src=\"URL\n[¹]", "## Version 2 Release\nWe released an improved version of this model. Version 1 was trained for 766,000 steps. For this new version we continued the training for an additional 734,000 steps. It therefore follows that version 2 was trained on a total of 1,500,000 steps. See \"Evaluation of Version 2: GermEval18 Coarse\" below for details.", "## Model Info\nThis Model is suitable for training on many downstream tasks in German (Q&A, Sentiment Analysis, etc.).\n\nIt can be used as a drop-in replacement for BERT in most down-stream tasks (ELECTRA is even implemented as an extended BERT Class).\n\nAt the time of release (August 2020) this model is the best performing publicly available German NLP model on various German evaluation metrics (CONLL03-DE, GermEval18 Coarse, GermEval18 Fine). For GermEval18 Coarse results see below. More will be published soon.", "## Installation\nThis model has the special feature that it is uncased but does not strip accents.\nThis possibility was added by us with PR #6280.\nTo use it you have to use Transformers version 3.1.0 or newer.", "## Uncase and Umlauts ('Ö', 'Ä', 'Ü')\nThis model is uncased. This helps especially for domains where colloquial terms with uncorrect capitalization is often used.\n\nThe special characters 'ö', 'ü', 'ä' are included through the 'strip_accent=False' option, as this leads to an improved precision.", "## Creators\nThis model was trained and open sourced in conjunction with the German NLP Group in equal parts by:\n- Philip May - Deutsche Telekom\n- Philipp Reißel - ambeRoad", "## Evaluation of Version 2: GermEval18 Coarse\nWe evaluated all language models on GermEval18 with the F1 macro score. For each model we did an extensive automated hyperparameter search. With the best hyperparmeters we did fit the moodel multiple times on GermEval18. This is done to cancel random effects and get results of statistical relevance.\n\n!GermEval18 Coarse Model Evaluation for Version 2", "## Checkpoint evaluation\nSince it it not guaranteed that the last checkpoint is the best, we evaluated the checkpoints on GermEval18. We found that the last checkpoint is indeed the best. The training was stable and did not overfit the text corpus.", "## Pre-training details", "### Data\n- Cleaned Common Crawl Corpus 2019-09 German: CC_net (Only head coprus and filtered for language_score > 0.98) - 62 GB\n- German Wikipedia Article Pages Dump (20200701) - 5.5 GB\n- German Wikipedia Talk Pages Dump (20200620) - 1.1 GB\n- Subtitles - 823 MB\n- News 2018 - 4.1 GB\n\nThe sentences were split with SojaMo. We took the German Wikipedia Article Pages Dump 3x to oversample. This approach was also used in a similar way in GPT-3 (Table 2.2).\n\nMore Details can be found here Preperaing Datasets for German Electra Github", "### Electra Branch no_strip_accents\nBecause we do not want to stip accents in our training data we made a change to Electra and used this repo Electra no_strip_accents (branch 'no_strip_accents'). Then created the tf dataset with:", "### The training\nThe training itself can be performed with the Original Electra Repo (No special case for this needed).\nWe run it with the following Config:\n\n<details>\n<summary>The exact Training Config</summary>\n<br/>debug False\n<br/>disallow_correct False\n<br/>disc_weight 50.0\n<br/>do_eval False\n<br/>do_lower_case True\n<br/>do_train True\n<br/>electra_objective True\n<br/>embedding_size 768\n<br/>eval_batch_size 128\n<br/>gcp_project None\n<br/>gen_weight 1.0\n<br/>generator_hidden_size 0.33333\n<br/>generator_layers 1.0\n<br/>iterations_per_loop 200\n<br/>keep_checkpoint_max 0\n<br/>learning_rate 0.0002\n<br/>lr_decay_power 1.0\n<br/>mask_prob 0.15\n<br/>max_predictions_per_seq 79\n<br/>max_seq_length 512\n<br/>model_dir gs://XXX\n<br/>model_hparam_overrides {}\n<br/>model_name 02_Electra_Checkpoints_32k_766k_Combined\n<br/>model_size base\n<br/>num_eval_steps 100\n<br/>num_tpu_cores 8\n<br/>num_train_steps 766000\n<br/>num_warmup_steps 10000\n<br/>pretrain_tfrecords gs://XXX\n<br/>results_pkl gs://XXX\n<br/>results_txt gs://XXX\n<br/>save_checkpoints_steps 5000\n<br/>temperature 1.0\n<br/>tpu_job_name None\n<br/>tpu_name electrav5\n<br/>tpu_zone None\n<br/>train_batch_size 256\n<br/>uniform_generator False\n<br/>untied_generator True\n<br/>untied_generator_embeddings False\n<br/>use_tpu True\n<br/>vocab_file gs://XXX\n<br/>vocab_size 32767\n<br/>weight_decay_rate 0.01\n </details>\n\n!Training Loss\n\nPlease Note: *Due to the GAN like strucutre of Electra the loss is not that meaningful*\n\nIt took about 7 Days on a preemtible TPU V3-8. In total, the Model went through approximately 10 Epochs. For an automatically recreation of a cancelled TPUs we used tpunicorn. The total cost of training summed up to about 450 $ for one run. The Data-pre processing and Vocab Creation needed approximately 500-1000 CPU hours. Servers were fully provided by T-Systems on site services GmbH, ambeRoad.\nSpecial thanks to Stefan Schweter for your feedback and providing parts of the text corpus.\n\n[¹]: Source for the picture Pinterest", "### Negative Results\nWe tried the following approaches which we found had no positive influence:\n\n- Increased Vocab Size: Leads to more parameters and thus reduced examples/sec while no visible Performance gains were measured\n- Decreased Batch-Size: The original Electra was trained with a Batch Size per TPU Core of 16 whereas this Model was trained with 32 BS / TPU Core. We found out that 32 BS leads to better results when you compare metrics over computation time", "## License - The MIT License\nCopyright 2020-2021 Philip May<br>\nCopyright 2020-2021 Philipp Reissel\n\nPermission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the \"Software\"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:\n\nThe above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.\n\nTHE SOFTWARE IS PROVIDED \"AS IS\", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE." ]
[ "TAGS\n#transformers #pytorch #electra #pretraining #commoncrawl #uncased #umlaute #umlauts #german #deutsch #de #license-mit #endpoints_compatible #region-us \n", "# German Electra Uncased\n<img width=\"300px\" src=\"URL\n[¹]", "## Version 2 Release\nWe released an improved version of this model. Version 1 was trained for 766,000 steps. For this new version we continued the training for an additional 734,000 steps. It therefore follows that version 2 was trained on a total of 1,500,000 steps. See \"Evaluation of Version 2: GermEval18 Coarse\" below for details.", "## Model Info\nThis Model is suitable for training on many downstream tasks in German (Q&A, Sentiment Analysis, etc.).\n\nIt can be used as a drop-in replacement for BERT in most down-stream tasks (ELECTRA is even implemented as an extended BERT Class).\n\nAt the time of release (August 2020) this model is the best performing publicly available German NLP model on various German evaluation metrics (CONLL03-DE, GermEval18 Coarse, GermEval18 Fine). For GermEval18 Coarse results see below. More will be published soon.", "## Installation\nThis model has the special feature that it is uncased but does not strip accents.\nThis possibility was added by us with PR #6280.\nTo use it you have to use Transformers version 3.1.0 or newer.", "## Uncase and Umlauts ('Ö', 'Ä', 'Ü')\nThis model is uncased. This helps especially for domains where colloquial terms with uncorrect capitalization is often used.\n\nThe special characters 'ö', 'ü', 'ä' are included through the 'strip_accent=False' option, as this leads to an improved precision.", "## Creators\nThis model was trained and open sourced in conjunction with the German NLP Group in equal parts by:\n- Philip May - Deutsche Telekom\n- Philipp Reißel - ambeRoad", "## Evaluation of Version 2: GermEval18 Coarse\nWe evaluated all language models on GermEval18 with the F1 macro score. For each model we did an extensive automated hyperparameter search. With the best hyperparmeters we did fit the moodel multiple times on GermEval18. This is done to cancel random effects and get results of statistical relevance.\n\n!GermEval18 Coarse Model Evaluation for Version 2", "## Checkpoint evaluation\nSince it it not guaranteed that the last checkpoint is the best, we evaluated the checkpoints on GermEval18. We found that the last checkpoint is indeed the best. The training was stable and did not overfit the text corpus.", "## Pre-training details", "### Data\n- Cleaned Common Crawl Corpus 2019-09 German: CC_net (Only head coprus and filtered for language_score > 0.98) - 62 GB\n- German Wikipedia Article Pages Dump (20200701) - 5.5 GB\n- German Wikipedia Talk Pages Dump (20200620) - 1.1 GB\n- Subtitles - 823 MB\n- News 2018 - 4.1 GB\n\nThe sentences were split with SojaMo. We took the German Wikipedia Article Pages Dump 3x to oversample. This approach was also used in a similar way in GPT-3 (Table 2.2).\n\nMore Details can be found here Preperaing Datasets for German Electra Github", "### Electra Branch no_strip_accents\nBecause we do not want to stip accents in our training data we made a change to Electra and used this repo Electra no_strip_accents (branch 'no_strip_accents'). Then created the tf dataset with:", "### The training\nThe training itself can be performed with the Original Electra Repo (No special case for this needed).\nWe run it with the following Config:\n\n<details>\n<summary>The exact Training Config</summary>\n<br/>debug False\n<br/>disallow_correct False\n<br/>disc_weight 50.0\n<br/>do_eval False\n<br/>do_lower_case True\n<br/>do_train True\n<br/>electra_objective True\n<br/>embedding_size 768\n<br/>eval_batch_size 128\n<br/>gcp_project None\n<br/>gen_weight 1.0\n<br/>generator_hidden_size 0.33333\n<br/>generator_layers 1.0\n<br/>iterations_per_loop 200\n<br/>keep_checkpoint_max 0\n<br/>learning_rate 0.0002\n<br/>lr_decay_power 1.0\n<br/>mask_prob 0.15\n<br/>max_predictions_per_seq 79\n<br/>max_seq_length 512\n<br/>model_dir gs://XXX\n<br/>model_hparam_overrides {}\n<br/>model_name 02_Electra_Checkpoints_32k_766k_Combined\n<br/>model_size base\n<br/>num_eval_steps 100\n<br/>num_tpu_cores 8\n<br/>num_train_steps 766000\n<br/>num_warmup_steps 10000\n<br/>pretrain_tfrecords gs://XXX\n<br/>results_pkl gs://XXX\n<br/>results_txt gs://XXX\n<br/>save_checkpoints_steps 5000\n<br/>temperature 1.0\n<br/>tpu_job_name None\n<br/>tpu_name electrav5\n<br/>tpu_zone None\n<br/>train_batch_size 256\n<br/>uniform_generator False\n<br/>untied_generator True\n<br/>untied_generator_embeddings False\n<br/>use_tpu True\n<br/>vocab_file gs://XXX\n<br/>vocab_size 32767\n<br/>weight_decay_rate 0.01\n </details>\n\n!Training Loss\n\nPlease Note: *Due to the GAN like strucutre of Electra the loss is not that meaningful*\n\nIt took about 7 Days on a preemtible TPU V3-8. In total, the Model went through approximately 10 Epochs. For an automatically recreation of a cancelled TPUs we used tpunicorn. The total cost of training summed up to about 450 $ for one run. The Data-pre processing and Vocab Creation needed approximately 500-1000 CPU hours. Servers were fully provided by T-Systems on site services GmbH, ambeRoad.\nSpecial thanks to Stefan Schweter for your feedback and providing parts of the text corpus.\n\n[¹]: Source for the picture Pinterest", "### Negative Results\nWe tried the following approaches which we found had no positive influence:\n\n- Increased Vocab Size: Leads to more parameters and thus reduced examples/sec while no visible Performance gains were measured\n- Decreased Batch-Size: The original Electra was trained with a Batch Size per TPU Core of 16 whereas this Model was trained with 32 BS / TPU Core. We found out that 32 BS leads to better results when you compare metrics over computation time", "## License - The MIT License\nCopyright 2020-2021 Philip May<br>\nCopyright 2020-2021 Philipp Reissel\n\nPermission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the \"Software\"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:\n\nThe above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.\n\nTHE SOFTWARE IS PROVIDED \"AS IS\", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE." ]
[ 58, 21, 78, 136, 50, 88, 43, 100, 58, 5, 145, 68, 726, 114, 310 ]
[ "passage: TAGS\n#transformers #pytorch #electra #pretraining #commoncrawl #uncased #umlaute #umlauts #german #deutsch #de #license-mit #endpoints_compatible #region-us \n# German Electra Uncased\n<img width=\"300px\" src=\"URL\n[¹]## Version 2 Release\nWe released an improved version of this model. Version 1 was trained for 766,000 steps. For this new version we continued the training for an additional 734,000 steps. It therefore follows that version 2 was trained on a total of 1,500,000 steps. See \"Evaluation of Version 2: GermEval18 Coarse\" below for details.## Model Info\nThis Model is suitable for training on many downstream tasks in German (Q&A, Sentiment Analysis, etc.).\n\nIt can be used as a drop-in replacement for BERT in most down-stream tasks (ELECTRA is even implemented as an extended BERT Class).\n\nAt the time of release (August 2020) this model is the best performing publicly available German NLP model on various German evaluation metrics (CONLL03-DE, GermEval18 Coarse, GermEval18 Fine). For GermEval18 Coarse results see below. More will be published soon.## Installation\nThis model has the special feature that it is uncased but does not strip accents.\nThis possibility was added by us with PR #6280.\nTo use it you have to use Transformers version 3.1.0 or newer.## Uncase and Umlauts ('Ö', 'Ä', 'Ü')\nThis model is uncased. This helps especially for domains where colloquial terms with uncorrect capitalization is often used.\n\nThe special characters 'ö', 'ü', 'ä' are included through the 'strip_accent=False' option, as this leads to an improved precision.## Creators\nThis model was trained and open sourced in conjunction with the German NLP Group in equal parts by:\n- Philip May - Deutsche Telekom\n- Philipp Reißel - ambeRoad", "passage: ## Evaluation of Version 2: GermEval18 Coarse\nWe evaluated all language models on GermEval18 with the F1 macro score. For each model we did an extensive automated hyperparameter search. With the best hyperparmeters we did fit the moodel multiple times on GermEval18. This is done to cancel random effects and get results of statistical relevance.\n\n!GermEval18 Coarse Model Evaluation for Version 2## Checkpoint evaluation\nSince it it not guaranteed that the last checkpoint is the best, we evaluated the checkpoints on GermEval18. We found that the last checkpoint is indeed the best. The training was stable and did not overfit the text corpus.## Pre-training details### Data\n- Cleaned Common Crawl Corpus 2019-09 German: CC_net (Only head coprus and filtered for language_score > 0.98) - 62 GB\n- German Wikipedia Article Pages Dump (20200701) - 5.5 GB\n- German Wikipedia Talk Pages Dump (20200620) - 1.1 GB\n- Subtitles - 823 MB\n- News 2018 - 4.1 GB\n\nThe sentences were split with SojaMo. We took the German Wikipedia Article Pages Dump 3x to oversample. This approach was also used in a similar way in GPT-3 (Table 2.2).\n\nMore Details can be found here Preperaing Datasets for German Electra Github### Electra Branch no_strip_accents\nBecause we do not want to stip accents in our training data we made a change to Electra and used this repo Electra no_strip_accents (branch 'no_strip_accents'). Then created the tf dataset with:" ]
[ -0.08595561236143112, 0.07469285279512405, -0.002903687534853816, 0.026860006153583527, 0.08950883150100708, -0.014771746471524239, 0.10798262804746628, 0.06676065921783447, 0.02112850546836853, 0.09931674599647522, -0.005492813885211945, -0.07606561481952667, 0.03631618618965149, 0.0898762196302414, 0.07368408888578415, -0.22344285249710083, 0.053313277661800385, -0.09149042516946793, 0.03952084109187126, 0.050255682319402695, 0.11511009931564331, -0.09990297257900238, 0.0665723979473114, 0.0001806090585887432, -0.009363006800413132, 0.08243374526500702, -0.06644771993160248, -0.02369193732738495, 0.08203525096178055, 0.01214582845568657, 0.039598919451236725, -0.0045494865626096725, 0.03144540637731552, -0.1309434026479721, 0.0039701908826828, 0.06074938923120499, 0.0035197455435991287, 0.02301521599292755, 0.030972670763731003, -0.0339960977435112, 0.13745222985744476, -0.07263787090778351, -0.013073917478322983, 0.03421700745820999, -0.11213868856430054, -0.03264786675572395, -0.11902782320976257, 0.1347716748714447, 0.059789419174194336, 0.02983267977833748, -0.035915911197662354, 0.026114994660019875, 0.0006559030152857304, 0.0016607230063527822, 0.1432298868894577, -0.2713576853275299, -0.040137410163879395, 0.07146501541137695, 0.030356597155332565, 0.08359155803918839, -0.08716004341840744, 0.013299327343702316, 0.05606430396437645, 0.011268791742622852, -0.06206151470541954, -0.008411355316638947, 0.13246798515319824, -0.029630491510033607, -0.14645399153232574, -0.05706503987312317, 0.1023716926574707, 0.0318966768682003, -0.13350805640220642, -0.09670880436897278, -0.024678830057382584, -0.00819282978773117, 0.020399417728185654, -0.058040741831064224, 0.0278940312564373, 0.014141973108053207, 0.039560332894325256, -0.07867730408906937, -0.11119586229324341, 0.03929918631911278, -0.023812148720026016, 0.29959771037101746, 0.017768658697605133, 0.007571037858724594, 0.08107538521289825, 0.09031486511230469, -0.16306492686271667, -0.07719730585813522, -0.08313434571027756, -0.035999689251184464, -0.06778868287801743, -0.03657364100217819, -0.03959399461746216, -0.12010572850704193, 0.005510643124580383, 0.16764667630195618, -0.019827645272016525, 0.0239490307867527, 0.02479967474937439, 0.032656583935022354, 0.07912670075893402, 0.1235761046409607, -0.03055259771645069, -0.07532719522714615, -0.00450444221496582, -0.01434597559273243, 0.05947030708193779, 0.037132248282432556, -0.042120348662137985, 0.006163676735013723, 0.022064782679080963, 0.020225176587700844, -0.026030538603663445, -0.000624433159828186, -0.048020556569099426, -0.025173425674438477, 0.15672016143798828, -0.12514084577560425, -0.010297233238816261, -0.027201542630791664, -0.03846012055873871, 0.056468524038791656, 0.009405622258782387, -0.018809696659445763, -0.07690202444791794, 0.10006333887577057, -0.049986016005277634, -0.037893496453762054, -0.07793596386909485, -0.10417458415031433, 0.019080182537436485, -0.09735362231731415, -0.04145825654268265, -0.10423107445240021, -0.11060851812362671, -0.057352885603904724, 0.040639862418174744, 0.02666977234184742, -0.004452275112271309, -0.01615046337246895, -0.020454270765185356, -0.007265729364007711, -0.014321882277727127, -0.10741216689348221, -0.035991959273815155, -0.013048307970166206, -0.03562449291348457, 0.031522348523139954, -0.04939579591155052, 0.002986484207212925, -0.1059403121471405, -0.0009206330869346857, -0.24130073189735413, 0.03909793868660927, -0.11436110734939575, -0.02767937071621418, -0.09068645536899567, -0.04264641925692558, -0.027850046753883362, 0.040745727717876434, 0.05822787061333656, 0.10002367198467255, -0.1271941363811493, -0.041433434933423996, 0.10860106348991394, -0.14787228405475616, -0.003087778575718403, 0.1291218101978302, -0.0007918477058410645, -0.020348189398646355, 0.08253923803567886, 0.04845057800412178, 0.1137852668762207, -0.15238627791404724, -0.1249234601855278, -0.01998697593808174, 0.009260859340429306, 0.10244942456483841, 0.04905040189623833, -0.056596022099256516, 0.04465879499912262, 0.03554346412420273, -0.08439384400844574, -0.03398609533905983, -0.021098900586366653, -0.009890962392091751, -0.023287199437618256, -0.021091055124998093, 0.05748024582862854, 0.004293318837881088, -0.06308180093765259, -0.06680866330862045, -0.11539120972156525, 0.10377003997564316, 0.10206690430641174, -0.028119515627622604, -0.00663406727835536, -0.046442821621894836, 0.04741594195365906, -0.05399366468191147, -0.02634469047188759, -0.13595972955226898, -0.10427005589008331, 0.04204174131155014, -0.08914786577224731, 0.10410749912261963, 0.13401161134243011, 0.062074076384305954, 0.05338037759065628, -0.0622064545750618, -0.03759681433439255, -0.1229865700006485, -0.03298023343086243, 0.017192240804433823, -0.08309097588062286, -0.007890603505074978, -0.04762250930070877, 0.042201172560453415, -0.0947214663028717, -0.026420455425977707, 0.041579749435186386, 0.14199298620224, 0.0022435314022004604, -0.0899759829044342, -0.022085942327976227, 0.017672238871455193, -0.055861227214336395, -0.053471069782972336, -0.005206424742937088, 0.04099017009139061, 0.011052479036152363, 0.039661720395088196, -0.09212858974933624, -0.1381070911884308, 0.049833185970783234, 0.10044659674167633, -0.08550579845905304, -0.005600287578999996, -0.09401482343673706, -0.00506682600826025, -0.10209627449512482, -0.08245711028575897, 0.25849103927612305, 0.008529947139322758, 0.05681629851460457, -0.06415468454360962, -0.04732053354382515, 0.03247787430882454, -0.011093948036432266, -0.05214191600680351, 0.057557106018066406, 0.00557342916727066, -0.09073415398597717, 0.050609417259693146, 0.02274469844996929, -0.010706139728426933, 0.16980528831481934, 0.008443426340818405, -0.09521251171827316, -0.011191315948963165, 0.08476655930280685, 0.019852224737405777, 0.1154189258813858, -0.031091518700122833, -0.023534750565886497, 0.012723172083497047, 0.02380632981657982, 0.054691314697265625, -0.052224740386009216, 0.06795775890350342, -0.013349778950214386, -0.027771547436714172, 0.06457257270812988, 0.02245856449007988, -0.04781968519091606, 0.06839818507432938, 0.022928090766072273, 0.01467902772128582, -0.039024196565151215, -0.006535657681524754, -0.05425579845905304, 0.14056044816970825, -0.08948849141597748, -0.22669871151447296, -0.1624770164489746, 0.04868499934673309, -0.13888941705226898, 0.026678822934627533, 0.03121526725590229, -0.07414790242910385, -0.11124755442142487, -0.05364230275154114, 0.06313236057758331, -0.0024140095338225365, -0.013468766584992409, -0.070134237408638, 0.0027499007992446423, 0.07732873409986496, -0.1296454519033432, -0.03519715368747711, -0.0067892055958509445, -0.08992615342140198, -0.01103256642818451, 0.07346828281879425, 0.0624222531914711, 0.04231049865484238, -0.05307000130414963, -0.03132753074169159, 0.024113252758979797, 0.12157934904098511, -0.09892815351486206, 0.04004910960793495, 0.10261649638414383, -0.049681760370731354, 0.05110631883144379, 0.02434084191918373, 0.003397295717149973, -0.0758104994893074, 0.04659580811858177, 0.07150442153215408, -0.052437201142311096, -0.2218627631664276, -0.11439289897680283, -0.05672891438007355, -0.017463181167840958, 0.07331405580043793, 0.06376732140779495, -0.06195393204689026, 0.016524603590369225, -0.10116153210401535, 0.003819776698946953, -0.030188530683517456, 0.07456488162279129, 0.046220093965530396, 0.013528792187571526, 0.03361499309539795, -0.04747376963496208, -0.05366633087396622, 0.13296857476234436, -0.03921873867511749, 0.14767363667488098, 0.006796377710998058, 0.032543133944272995, 0.07775354385375977, -0.02198236994445324, 0.014708095230162144, 0.07582944631576538, 0.010807719081640244, -0.02928834781050682, -0.019883494824171066, -0.06850619614124298, -0.023872848600149155, 0.09553500264883041, 0.023626744747161865, -0.0028853658586740494, -0.04768064618110657, 0.01891578733921051, 0.07646584510803223, 0.1681859791278839, 0.07310298085212708, -0.12136019766330719, -0.12047085911035538, -0.00612702127546072, -0.07913365960121155, -0.07303009927272797, -0.00383273814804852, 0.09510786831378937, -0.0806337296962738, 0.09200036525726318, 0.0035349950194358826, 0.05606580525636673, -0.10890771448612213, -0.00952136144042015, -0.06420337408781052, 0.12879256904125214, -0.02028561569750309, 0.07473689317703247, -0.12115731835365295, 0.11234749108552933, 0.0037284353747963905, 0.10252775251865387, -0.028200697153806686, 0.027731552720069885, 0.027341635897755623, -0.043126173317432404, 0.11583150923252106, 0.045250438153743744, -0.017905864864587784, 0.042856357991695404, -0.11491172015666962, 0.030194271355867386, 0.12707364559173584, -0.0834536924958229, 0.0919574648141861, 0.006762316916137934, 0.018050534650683403, -0.054286837577819824, -0.010105044580996037, -0.17376413941383362, -0.07786600291728973, 0.05117305368185043, -0.07483276724815369, 0.01055285707116127, -0.036783043295145035, -0.051956743001937866, -0.09207050502300262, 0.31268972158432007, -0.05796920508146286, -0.041988443583250046, -0.10654814541339874, 0.07156850397586823, 0.11835138499736786, -0.05186722055077553, 0.038700394332408905, 0.028216958045959473, 0.18027564883232117, -0.04907665401697159, -0.05323943868279457, -0.005075731780380011, -0.09991440176963806, -0.125100240111351, -0.01156368013471365, 0.09671525657176971, 0.10712234675884247, 0.017679762095212936, 0.018126750364899635, 0.04716979339718819, 0.027446914464235306, -0.11906561255455017, 0.043790511786937714, 0.06339920312166214, 0.0008811289444565773, 0.09780523180961609, -0.07169800996780396, -0.017823029309511185, -0.015278542414307594, -0.024991584941744804, 0.046695780009031296, 0.23072679340839386, -0.024753253906965256, 0.08012567460536957, 0.1419839859008789, -0.0803956463932991, -0.2333107888698578, -0.015852423384785652, 0.10470838844776154, 0.0745122954249382, -0.03082427568733692, -0.17188146710395813, 0.13666144013404846, 0.10215001553297043, -0.014167249202728271, 0.030765417963266373, -0.1275288164615631, -0.11087428033351898, 0.06880339980125427, -0.03243902325630188, 0.11652319878339767, -0.05743817985057831, -0.03470804542303085, -0.04030868411064148, 0.020801959559321404, 0.02192366123199463, -0.05298047512769699, 0.07192311435937881, 0.020382212474942207, 0.00951533392071724, 0.06199388951063156, -0.017236020416021347, 0.13755440711975098, 0.06229657679796219, 0.006135052535682917, -0.04451431706547737, 0.06030331552028656, 0.050822485238313675, -0.03793470934033394, 0.13802701234817505, 0.00848142709583044, 0.04307475686073303, -0.11787382513284683, -0.03191147744655609, -0.03234660252928734, 0.12797680497169495, -0.012137778103351593, -0.06163977086544037, -0.0673021450638771, 0.08019360899925232, 0.02343793213367462, 0.036515627056360245, 0.07416859269142151, -0.02897951565682888, 0.006178785115480423, 0.06741553544998169, 0.13079440593719482, 0.019358262419700623, -0.10078996419906616, 0.000029348768293857574, -0.014687641523778439, 0.040278948843479156, -0.08056948333978653, 0.03469568118453026, 0.1081504225730896, 0.031231839209794998, 0.1042255312204361, -0.006568351294845343, -0.1328132301568985, 0.018590761348605156, 0.11512023210525513, -0.16869650781154633, -0.1030079573392868, -0.031364865601062775, 0.023678801953792572, -0.04126827418804169, 0.04759863018989563, 0.2049683928489685, -0.08673106878995895, -0.006963728927075863, -0.001856176182627678, 0.015390729531645775, -0.041505225002765656, 0.09679290652275085, 0.006407718174159527, 0.033704593777656555, -0.043047502636909485, 0.15243443846702576, 0.04412315785884857, -0.11537715047597885, 0.013336645439267159, 0.0068171219900250435, -0.07240979373455048, -0.03139437362551689, -0.04186388850212097, 0.008705474436283112, -0.08689916133880615, -0.05281594395637512, -0.08584518730640411, -0.007673334330320358, 0.00923958234488964, 0.015939831733703613, 0.05558036267757416, 0.006037143990397453, 0.001839539036154747, 0.05157475918531418, -0.04654574394226074, 0.029481124132871628, 0.09822682291269302, 0.07066550850868225, -0.043932221829891205, 0.094144806265831, -0.025429029017686844, -0.011919129639863968, -0.021018140017986298, -0.014093512669205666, -0.059207331389188766, -0.0552077442407608, -0.09376615285873413, -0.02531331777572632, 0.0008721756748855114, -0.03934268653392792, 0.020140554755926132, -0.03244384378194809, -0.024381456896662712, 0.0439249686896801, -0.07060623168945312, -0.029473688453435898, -0.012806031852960587, 0.07263720035552979, -0.08103759586811066, 0.021063871681690216, 0.05803728848695755, -0.07856631278991699, 0.09447550773620605, 0.03356737643480301, 0.020522691309452057, 0.041328731924295425, -0.046009767800569534, -0.004804752767086029, 0.04801950603723526, 0.043021854013204575, 0.005557895638048649, -0.03953060507774353, 0.04352133721113205, 0.03007386438548565, 0.011413684114813805, -0.01605120301246643, -0.004031152464449406, -0.07794763147830963, 0.020699791610240936, 0.038670409470796585, -0.021515285596251488, -0.07725328952074051, 0.028018604964017868, 0.05503012612462044, 0.12118975818157196, 0.12077115476131439, -0.08799467980861664, -0.0341251865029335, -0.08582354336977005, 0.013820512220263481, 0.012988988310098648, -0.03154943510890007, 0.007508700247853994, 0.006408079527318478, 0.030843660235404968, 0.00112257176078856, 0.13059410452842712, 0.00478958897292614, 0.04924274981021881, 0.05556001886725426, -0.03855838626623154, -0.101503387093544, 0.013971487991511822, 0.06971115618944168, 0.02045491896569729, 0.01154027134180069, -0.12581636011600494, -0.016619082540273666, -0.004144613165408373, -0.05381403863430023, 0.1314477026462555, 0.08185571432113647, 0.01029128022491932, 0.06373307853937149, 0.03300384059548378, -0.05793038010597229, -0.0980672687292099, 0.03193594887852669, -0.043028246611356735, 0.11733707040548325, -0.010374406352639198, 0.07315413653850555, 0.13942694664001465, -0.12574051320552826, 0.08972062170505524, 0.001513608731329441, -0.01312121469527483, -0.053949013352394104, -0.05773674696683884, -0.037588439881801605, -0.09032069146633148, 0.05652506649494171, -0.13117694854736328, 0.053689099848270416, 0.03944728150963783, 0.049734704196453094, -0.016873663291335106, 0.10446593910455704, -0.12874989211559296, -0.10244202613830566, 0.10954529047012329, -0.01308516226708889, 0.06149034574627876, 0.05557984858751297, -0.034874897450208664, -0.015934433788061142, 0.059857744723558426, 0.07716426253318787, 0.04006313160061836, 0.08870893716812134, -0.00970035046339035, -0.010762657970190048, -0.04584715515375137, -0.010628089308738708, -0.040183812379837036, 0.004381924401968718, 0.09108957648277283, 0.04607119411230087, -0.02502090111374855, -0.005001685582101345, 0.1501373052597046, -0.03842545300722122, -0.08553194999694824, -0.13050079345703125, 0.1556014120578766, 0.07542534172534943, 0.07744529843330383, -0.013039134442806244, -0.1171640083193779, -0.010483612306416035, 0.0703660324215889, 0.04199924319982529, 0.06970766931772232, 0.0016195607604458928, 0.002260626293718815, -0.0025091846473515034, 0.029802944511175156, 0.0418388769030571, -0.032140716910362244, 0.26950448751449585, -0.009495972655713558, 0.029661353677511215, -0.03109898790717125, 0.00961016584187746, -0.02747281640768051, 0.10512091219425201, -0.04703667014837265, -0.017358146607875824, -0.09631867706775665, 0.09286293387413025, -0.004198204725980759, -0.25592759251594543, -0.04381842166185379, -0.03947816789150238, -0.12005649507045746, -0.027655743062496185, -0.014310749247670174, 0.05947306379675865, 0.10617363452911377, 0.001531657762825489, -0.039246637374162674, 0.1369447112083435, -0.021505186334252357, -0.04607342183589935, -0.05843012034893036, 0.037284836173057556, 0.0057195378467440605, 0.17401328682899475, 0.011267703026533127, 0.05302081257104874, 0.06792332231998444, -0.012140672653913498, -0.09262712299823761, -0.027965443208813667, -0.009210830554366112, -0.13685867190361023, 0.0346224308013916, 0.138689786195755, -0.05492733418941498, -0.010577536188066006, 0.058487020432949066, -0.015300355851650238, 0.009705622680485249, 0.10730038583278656, -0.01204790361225605, -0.07780135422945023, 0.12121523916721344, -0.08179985731840134, 0.13773652911186218, 0.13989168405532837, 0.00036689918488264084, -0.012426063418388367, -0.07989732921123505, 0.08631502091884613, 0.02796735055744648, 0.11014322191476822, 0.02970055118203163, -0.1859557032585144, 0.001222985447384417, 0.000454634428024292, -0.007643251214176416, -0.18377158045768738, -0.04261075332760811, 0.06641294062137604, 0.02680695615708828, -0.03292322903871536, 0.1044023260474205, 0.033128589391708374, -0.015433150343596935, -0.02457171492278576, -0.007172204554080963, -0.001197297591716051, 0.049598708748817444, -0.05678121745586395, -0.07914681732654572 ]
null
null
transformers
# SlovakBERT (base-sized model) SlovakBERT pretrained model on Slovak language using a masked language modeling (MLM) objective. This model is case-sensitive: it makes a difference between slovensko and Slovensko. ## Intended uses & limitations You can use the raw model for masked language modeling, but it's mostly intended to be fine-tuned on a downstream task. **IMPORTANT**: The model was not trained on the “ and ” (direct quote) character -> so before tokenizing the text, it is advised to replace all “ and ” (direct quote marks) with a single "(double quote marks). ### How to use You can use this model directly with a pipeline for masked language modeling: ```python from transformers import pipeline unmasker = pipeline('fill-mask', model='gerulata/slovakbert') unmasker("Deti sa <mask> na ihrisku.") [{'sequence': 'Deti sa hrali na ihrisku.', 'score': 0.6355380415916443, 'token': 5949, 'token_str': ' hrali'}, {'sequence': 'Deti sa hrajú na ihrisku.', 'score': 0.14731724560260773, 'token': 9081, 'token_str': ' hrajú'}, {'sequence': 'Deti sa zahrali na ihrisku.', 'score': 0.05016357824206352, 'token': 32553, 'token_str': ' zahrali'}, {'sequence': 'Deti sa stretli na ihrisku.', 'score': 0.041727423667907715, 'token': 5964, 'token_str': ' stretli'}, {'sequence': 'Deti sa učia na ihrisku.', 'score': 0.01886524073779583, 'token': 18099, 'token_str': ' učia'}] ``` Here is how to use this model to get the features of a given text in PyTorch: ```python from transformers import RobertaTokenizer, RobertaModel tokenizer = RobertaTokenizer.from_pretrained('gerulata/slovakbert') model = RobertaModel.from_pretrained('gerulata/slovakbert') text = "Text ktorý sa má embedovať." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` and in TensorFlow: ```python from transformers import RobertaTokenizer, TFRobertaModel tokenizer = RobertaTokenizer.from_pretrained('gerulata/slovakbert') model = TFRobertaModel.from_pretrained('gerulata/slovakbert') text = "Text ktorý sa má embedovať." encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` Or extract information from the model like this: ```python from transformers import pipeline unmasker = pipeline('fill-mask', model='gerulata/slovakbert') unmasker("Slovenské národne povstanie sa uskutočnilo v roku <mask>.") [{'sequence': 'Slovenske narodne povstanie sa uskutočnilo v roku 1944.', 'score': 0.7383289933204651, 'token': 16621, 'token_str': ' 1944'},...] ``` # Training data The SlovakBERT model was pretrained on these datasets: - Wikipedia (326MB of text), - OpenSubtitles (415MB of text), - Oscar (4.6GB of text), - Gerulata WebCrawl (12.7GB of text) , - Gerulata Monitoring (214 MB of text), - blbec.online (4.5GB of text) The text was then processed with the following steps: - URL and email addresses were replaced with special tokens ("url", "email"). - Elongated interpunction was reduced (e.g. -- to -). - Markdown syntax was deleted. - All text content in braces f.g was eliminated to reduce the amount of markup and programming language text. We segmented the resulting corpus into sentences and removed duplicates to get 181.6M unique sentences. In total, the final corpus has 19.35GB of text. # Pretraining The model was trained in **fairseq** on 4 x Nvidia A100 GPUs for 300K steps with a batch size of 512 and a sequence length of 512. The optimizer used is Adam with a learning rate of 5e-4, \\(\beta_{1} = 0.9\\), \\(\beta_{2} = 0.98\\) and \\(\epsilon = 1e-6\\), a weight decay of 0.01, dropout rate 0.1, learning rate warmup for 10k steps and linear decay of the learning rate after. We used 16-bit float precision. ## About us <a href="https://www.gerulata.com/"> <img width="300px" src="https://www.gerulata.com/assets/images/Logo_Blue.svg"> </a> Gerulata Technologies is a tech company on a mission to provide tools for fighting disinformation and hostile propaganda. At Gerulata, we focus on providing state-of-the-art AI-powered tools that empower human analysts and provide them with the ability to make informed decisions. Our tools allow for the monitoring and analysis of online activity, as well as the detection and tracking of disinformation and hostile propaganda campaigns. With our products, our clients are better equipped to identify and respond to threats in real-time. ### BibTeX entry and citation info If you find our resource or paper is useful, please consider including the following citation in your paper. - https://arxiv.org/abs/2109.15254 ``` @misc{pikuliak2021slovakbert, title={SlovakBERT: Slovak Masked Language Model}, author={Matúš Pikuliak and Štefan Grivalský and Martin Konôpka and Miroslav Blšták and Martin Tamajka and Viktor Bachratý and Marián Šimko and Pavol Balážik and Michal Trnka and Filip Uhlárik}, year={2021}, eprint={2109.15254}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
{"language": "sk", "license": "mit", "tags": ["SlovakBERT"], "datasets": ["wikipedia", "opensubtitles", "oscar", "gerulatawebcrawl", "gerulatamonitoring", "blbec.online"]}
fill-mask
gerulata/slovakbert
[ "transformers", "pytorch", "tf", "safetensors", "roberta", "fill-mask", "SlovakBERT", "sk", "dataset:wikipedia", "dataset:opensubtitles", "dataset:oscar", "dataset:gerulatawebcrawl", "dataset:gerulatamonitoring", "dataset:blbec.online", "arxiv:2109.15254", "license:mit", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
2022-03-02T23:29:05+00:00
[ "2109.15254" ]
[ "sk" ]
TAGS #transformers #pytorch #tf #safetensors #roberta #fill-mask #SlovakBERT #sk #dataset-wikipedia #dataset-opensubtitles #dataset-oscar #dataset-gerulatawebcrawl #dataset-gerulatamonitoring #dataset-blbec.online #arxiv-2109.15254 #license-mit #autotrain_compatible #endpoints_compatible #has_space #region-us
# SlovakBERT (base-sized model) SlovakBERT pretrained model on Slovak language using a masked language modeling (MLM) objective. This model is case-sensitive: it makes a difference between slovensko and Slovensko. ## Intended uses & limitations You can use the raw model for masked language modeling, but it's mostly intended to be fine-tuned on a downstream task. IMPORTANT: The model was not trained on the “ and ” (direct quote) character -> so before tokenizing the text, it is advised to replace all “ and ” (direct quote marks) with a single "(double quote marks). ### How to use You can use this model directly with a pipeline for masked language modeling: Here is how to use this model to get the features of a given text in PyTorch: and in TensorFlow: Or extract information from the model like this: # Training data The SlovakBERT model was pretrained on these datasets: - Wikipedia (326MB of text), - OpenSubtitles (415MB of text), - Oscar (4.6GB of text), - Gerulata WebCrawl (12.7GB of text) , - Gerulata Monitoring (214 MB of text), - URL (4.5GB of text) The text was then processed with the following steps: - URL and email addresses were replaced with special tokens ("url", "email"). - Elongated interpunction was reduced (e.g. -- to -). - Markdown syntax was deleted. - All text content in braces f.g was eliminated to reduce the amount of markup and programming language text. We segmented the resulting corpus into sentences and removed duplicates to get 181.6M unique sentences. In total, the final corpus has 19.35GB of text. # Pretraining The model was trained in fairseq on 4 x Nvidia A100 GPUs for 300K steps with a batch size of 512 and a sequence length of 512. The optimizer used is Adam with a learning rate of 5e-4, \\(\beta_{1} = 0.9\\), \\(\beta_{2} = 0.98\\) and \\(\epsilon = 1e-6\\), a weight decay of 0.01, dropout rate 0.1, learning rate warmup for 10k steps and linear decay of the learning rate after. We used 16-bit float precision. ## About us <a href="URL <img width="300px" src="URL </a> Gerulata Technologies is a tech company on a mission to provide tools for fighting disinformation and hostile propaganda. At Gerulata, we focus on providing state-of-the-art AI-powered tools that empower human analysts and provide them with the ability to make informed decisions. Our tools allow for the monitoring and analysis of online activity, as well as the detection and tracking of disinformation and hostile propaganda campaigns. With our products, our clients are better equipped to identify and respond to threats in real-time. ### BibTeX entry and citation info If you find our resource or paper is useful, please consider including the following citation in your paper. - URL
[ "# SlovakBERT (base-sized model)\nSlovakBERT pretrained model on Slovak language using a masked language modeling (MLM) objective. This model is case-sensitive: it makes a difference between slovensko and Slovensko.", "## Intended uses & limitations\nYou can use the raw model for masked language modeling, but it's mostly intended to be fine-tuned on a downstream task.\nIMPORTANT: The model was not trained on the “ and ” (direct quote) character -> so before tokenizing the text, it is advised to replace all “ and ” (direct quote marks) with a single \"(double quote marks).", "### How to use\nYou can use this model directly with a pipeline for masked language modeling:\n\n\n\nHere is how to use this model to get the features of a given text in PyTorch:\n\nand in TensorFlow:\n\nOr extract information from the model like this:", "# Training data\nThe SlovakBERT model was pretrained on these datasets:\n\n- Wikipedia (326MB of text),\n- OpenSubtitles (415MB of text),\n- Oscar (4.6GB of text),\n- Gerulata WebCrawl (12.7GB of text) ,\n- Gerulata Monitoring (214 MB of text),\n- URL (4.5GB of text)\n\nThe text was then processed with the following steps:\n- URL and email addresses were replaced with special tokens (\"url\", \"email\").\n- Elongated interpunction was reduced (e.g. -- to -).\n- Markdown syntax was deleted.\n- All text content in braces f.g was eliminated to reduce the amount of markup and programming language text.\n\nWe segmented the resulting corpus into sentences and removed duplicates to get 181.6M unique sentences. In total, the final corpus has 19.35GB of text.", "# Pretraining\nThe model was trained in fairseq on 4 x Nvidia A100 GPUs for 300K steps with a batch size of 512 and a sequence length of 512. The optimizer used is Adam with a learning rate of 5e-4, \\\\(\\beta_{1} = 0.9\\\\), \\\\(\\beta_{2} = 0.98\\\\) and \\\\(\\epsilon = 1e-6\\\\), a weight decay of 0.01, dropout rate 0.1, learning rate warmup for 10k steps and linear decay of the learning rate after. We used 16-bit float precision.", "## About us\n<a href=\"URL\n\t<img width=\"300px\" src=\"URL\n</a>\n\nGerulata Technologies is a tech company on a mission to provide tools for fighting disinformation and hostile propaganda.\n\nAt Gerulata, we focus on providing state-of-the-art AI-powered tools that empower human analysts and provide them with the ability to make informed decisions. \n\nOur tools allow for the monitoring and analysis of online activity, as well as the detection and tracking of disinformation and hostile propaganda campaigns. With our products, our clients are better equipped to identify and respond to threats in real-time.", "### BibTeX entry and citation info\nIf you find our resource or paper is useful, please consider including the following citation in your paper.\n- URL" ]
[ "TAGS\n#transformers #pytorch #tf #safetensors #roberta #fill-mask #SlovakBERT #sk #dataset-wikipedia #dataset-opensubtitles #dataset-oscar #dataset-gerulatawebcrawl #dataset-gerulatamonitoring #dataset-blbec.online #arxiv-2109.15254 #license-mit #autotrain_compatible #endpoints_compatible #has_space #region-us \n", "# SlovakBERT (base-sized model)\nSlovakBERT pretrained model on Slovak language using a masked language modeling (MLM) objective. This model is case-sensitive: it makes a difference between slovensko and Slovensko.", "## Intended uses & limitations\nYou can use the raw model for masked language modeling, but it's mostly intended to be fine-tuned on a downstream task.\nIMPORTANT: The model was not trained on the “ and ” (direct quote) character -> so before tokenizing the text, it is advised to replace all “ and ” (direct quote marks) with a single \"(double quote marks).", "### How to use\nYou can use this model directly with a pipeline for masked language modeling:\n\n\n\nHere is how to use this model to get the features of a given text in PyTorch:\n\nand in TensorFlow:\n\nOr extract information from the model like this:", "# Training data\nThe SlovakBERT model was pretrained on these datasets:\n\n- Wikipedia (326MB of text),\n- OpenSubtitles (415MB of text),\n- Oscar (4.6GB of text),\n- Gerulata WebCrawl (12.7GB of text) ,\n- Gerulata Monitoring (214 MB of text),\n- URL (4.5GB of text)\n\nThe text was then processed with the following steps:\n- URL and email addresses were replaced with special tokens (\"url\", \"email\").\n- Elongated interpunction was reduced (e.g. -- to -).\n- Markdown syntax was deleted.\n- All text content in braces f.g was eliminated to reduce the amount of markup and programming language text.\n\nWe segmented the resulting corpus into sentences and removed duplicates to get 181.6M unique sentences. In total, the final corpus has 19.35GB of text.", "# Pretraining\nThe model was trained in fairseq on 4 x Nvidia A100 GPUs for 300K steps with a batch size of 512 and a sequence length of 512. The optimizer used is Adam with a learning rate of 5e-4, \\\\(\\beta_{1} = 0.9\\\\), \\\\(\\beta_{2} = 0.98\\\\) and \\\\(\\epsilon = 1e-6\\\\), a weight decay of 0.01, dropout rate 0.1, learning rate warmup for 10k steps and linear decay of the learning rate after. We used 16-bit float precision.", "## About us\n<a href=\"URL\n\t<img width=\"300px\" src=\"URL\n</a>\n\nGerulata Technologies is a tech company on a mission to provide tools for fighting disinformation and hostile propaganda.\n\nAt Gerulata, we focus on providing state-of-the-art AI-powered tools that empower human analysts and provide them with the ability to make informed decisions. \n\nOur tools allow for the monitoring and analysis of online activity, as well as the detection and tracking of disinformation and hostile propaganda campaigns. With our products, our clients are better equipped to identify and respond to threats in real-time.", "### BibTeX entry and citation info\nIf you find our resource or paper is useful, please consider including the following citation in your paper.\n- URL" ]
[ 116, 51, 95, 58, 202, 137, 142, 34 ]
[ "passage: TAGS\n#transformers #pytorch #tf #safetensors #roberta #fill-mask #SlovakBERT #sk #dataset-wikipedia #dataset-opensubtitles #dataset-oscar #dataset-gerulatawebcrawl #dataset-gerulatamonitoring #dataset-blbec.online #arxiv-2109.15254 #license-mit #autotrain_compatible #endpoints_compatible #has_space #region-us \n# SlovakBERT (base-sized model)\nSlovakBERT pretrained model on Slovak language using a masked language modeling (MLM) objective. This model is case-sensitive: it makes a difference between slovensko and Slovensko.## Intended uses & limitations\nYou can use the raw model for masked language modeling, but it's mostly intended to be fine-tuned on a downstream task.\nIMPORTANT: The model was not trained on the “ and ” (direct quote) character -> so before tokenizing the text, it is advised to replace all “ and ” (direct quote marks) with a single \"(double quote marks).### How to use\nYou can use this model directly with a pipeline for masked language modeling:\n\n\n\nHere is how to use this model to get the features of a given text in PyTorch:\n\nand in TensorFlow:\n\nOr extract information from the model like this:" ]
[ -0.08059541136026382, 0.03810124471783638, -0.006586214527487755, 0.05819258093833923, 0.09734372049570084, -0.02424590103328228, 0.1656661033630371, 0.045161403715610504, 0.055447567254304886, 0.07215909659862518, 0.07268457859754562, 0.058423418551683426, 0.02449628710746765, 0.15844720602035522, 0.04232151806354523, -0.288804829120636, 0.06261594593524933, -0.11372952163219452, 0.07137145102024078, 0.10616446286439896, 0.14667728543281555, -0.07984370738267899, 0.021960049867630005, 0.028870131820440292, 0.04287939518690109, 0.022132588550448418, 0.019669508561491966, -0.04506106674671173, 0.06853210180997849, 0.02932654693722725, 0.07170386612415314, -0.014110676944255829, 0.07448258250951767, -0.12495197355747223, 0.027907121926546097, 0.05233050510287285, -0.014721190556883812, 0.052051424980163574, 0.07752873003482819, -0.07370712608098984, 0.1274581253528595, -0.15979337692260742, 0.06779004633426666, 0.009217264130711555, -0.09004047513008118, -0.1480550616979599, -0.043218038976192474, 0.09467199444770813, 0.0602395199239254, 0.09865579754114151, -0.05513768270611763, 0.15521620213985443, -0.0162961408495903, 0.12066499888896942, 0.0556827075779438, -0.20104068517684937, -0.03400851786136627, 0.01756775751709938, -0.015224349685013294, 0.053403571248054504, -0.03449108079075813, 0.05290887877345085, -0.07176251709461212, 0.008220269344747066, 0.12181006371974945, -0.024328643456101418, -0.05739700794219971, -0.028312966227531433, -0.17020902037620544, -0.06740278005599976, 0.0956411212682724, -0.02301030606031418, -0.038493987172842026, -0.19416481256484985, -0.07758231461048126, 0.0836726725101471, -0.005229754373431206, -0.00026939422241412103, -0.02667984925210476, -0.01400759443640709, 0.051551688462495804, -0.1263924390077591, -0.0817461833357811, -0.016119787469506264, -0.010244686156511307, 0.15780030190944672, 0.036945659667253494, 0.0671444907784462, -0.04113489389419556, 0.07439682632684708, -0.10939186066389084, -0.1330682933330536, 0.012581114657223225, -0.05713250860571861, -0.1247798427939415, 0.00590341305360198, -0.028523191809654236, -0.14373621344566345, 0.010330329649150372, 0.14600490033626556, 0.011493873782455921, 0.008203500881791115, 0.00042600836604833603, 0.04406072571873665, 0.04492412507534027, 0.13803036510944366, -0.17236369848251343, 0.051932841539382935, 0.045242246240377426, -0.02304231747984886, 0.06813711673021317, -0.058795079588890076, -0.08794987946748734, -0.06642533838748932, -0.0035862219519913197, 0.10185319185256958, 0.06055862084031105, 0.08133687824010849, 0.018766403198242188, -0.06101277470588684, 0.04916154965758324, -0.1542958915233612, -0.0033686922397464514, 0.012796238996088505, -0.03767576813697815, 0.006008950527757406, 0.007991369813680649, 0.018716871738433838, -0.14128521084785461, 0.08104328066110611, -0.024285776540637016, 0.018782321363687515, -0.09262256324291229, -0.18507328629493713, 0.031381234526634216, 0.0021222590003162622, -0.044638317078351974, -0.1048147901892662, -0.1688883751630783, -0.007228083908557892, 0.04063841328024864, -0.03143196180462837, 0.06126277893781662, -0.01694590598344803, -0.018690595403313637, 0.018051620572805405, 0.016142982989549637, -0.018179360777139664, -0.023428110405802727, 0.013229207135736942, -0.10619670152664185, 0.04334428906440735, 0.04303080961108208, -0.014262174256145954, -0.09770353138446808, -0.041337937116622925, -0.27920374274253845, 0.14357484877109528, -0.06868948042392731, -0.03953021019697189, -0.05960310995578766, -0.029360167682170868, -0.012364785186946392, -0.003932672087103128, 0.06567490100860596, 0.16582287847995758, -0.1960768699645996, 0.022897178307175636, 0.22136247158050537, -0.13692139089107513, 0.02789011411368847, 0.15305224061012268, -0.0577569305896759, -0.0031049689278006554, 0.10757209360599518, 0.134440615773201, 0.1600179523229599, -0.19904981553554535, 0.05366640165448189, 0.053967393934726715, -0.06997069716453552, 0.08776798099279404, 0.12182088196277618, -0.06331804394721985, 0.023099251091480255, 0.018715795129537582, -0.15397144854068756, 0.02231683023273945, -0.026979470625519753, -0.035389985889196396, 0.0058503649197518826, 0.011819478124380112, 0.10137724876403809, -0.029801027849316597, -0.03333992511034012, -0.026564713567495346, -0.1187615916132927, 0.00008465698920190334, 0.08887200802564621, -0.038681428879499435, 0.028754569590091705, -0.07386309653520584, 0.08973447978496552, -0.043367113918066025, -0.009190409444272518, -0.1925686001777649, -0.11741647869348526, 0.01439583022147417, -0.06969955563545227, 0.06806281208992004, -0.03036130592226982, 0.03964444249868393, 0.08641093969345093, -0.02516753599047661, 0.0026341378688812256, -0.009734940715134144, -0.011364500969648361, -0.0329907163977623, -0.139298215508461, -0.04073174670338631, -0.0429074652493, 0.09087476879358292, -0.012824064120650291, 0.03136714547872543, -0.020929614081978798, 0.08349248021841049, 0.0023676517885178328, -0.01985444314777851, 0.007062112912535667, 0.004104048945009708, 0.04686754196882248, -0.04330965876579285, 0.015393959358334541, 0.021449580788612366, -0.06614011526107788, 0.1397167444229126, -0.15432994067668915, -0.07465603947639465, 0.07322525978088379, 0.003230948466807604, -0.059238556772470474, -0.009659336879849434, -0.01794772781431675, 0.03557261824607849, -0.05741642042994499, -0.065296970307827, 0.1330052763223648, 0.07216927409172058, 0.08896992355585098, -0.10907997190952301, -0.05050235241651535, -0.008036538027226925, -0.09915745258331299, -0.025404730811715126, 0.08897143602371216, -0.0034096234012395144, -0.13789963722229004, 0.05016738548874855, -0.043617766350507736, 0.0271840151399374, 0.24995940923690796, 0.02322845719754696, -0.10388058423995972, -0.06729188561439514, 0.04010118544101715, -0.019915571436285973, 0.07025738060474396, -0.010885700583457947, 0.033774103969335556, 0.07904370874166489, -0.018549315631389618, 0.029133634641766548, -0.055056266486644745, 0.019718749448657036, 0.03068087436258793, -0.07803121209144592, -0.0991864949464798, 0.06287892907857895, 0.015447033569216728, 0.11477809399366379, -0.0018783446867018938, 0.06593119353055954, -0.024438751861453056, -0.05354855954647064, -0.13644880056381226, 0.11736750602722168, -0.15301640331745148, -0.29789307713508606, -0.19790491461753845, 0.047159481793642044, -0.0798734501004219, 0.016480427235364914, 0.013923929072916508, -0.0355236753821373, -0.08656639605760574, -0.05945542827248573, 0.07408735156059265, 0.02721647545695305, -0.08893454819917679, -0.08798723667860031, 0.001902637304738164, -0.007037597708404064, -0.10380852222442627, -0.03414776176214218, -0.032241083681583405, -0.015927910804748535, 0.030489236116409302, 0.053545739501714706, 0.08639921993017197, 0.08500871807336807, -0.020304517820477486, 0.02873324230313301, -0.034363631159067154, 0.20003542304039001, -0.07411699742078781, 0.10274267941713333, 0.21039505302906036, -0.05085424706339836, 0.07483205199241638, 0.11911548674106598, 0.027973858639597893, 0.014429881237447262, 0.024851128458976746, 0.028959186747670174, -0.06181292608380318, -0.19758549332618713, -0.15454824268817902, -0.07848544418811798, -0.09330252557992935, 0.0032704847399145365, 0.0012129596434533596, 0.028422394767403603, 0.01844177395105362, -0.11832882463932037, -0.11195885390043259, 0.11375173181295395, 0.08039604872465134, 0.12253981828689575, -0.026148363947868347, 0.09996140748262405, -0.03144579753279686, -0.04832626134157181, 0.08249946683645248, -0.08207142353057861, 0.14683055877685547, -0.05276087671518326, 0.09239047020673752, 0.06637835502624512, 0.09555291384458542, 0.00765996053814888, 0.1167696863412857, 0.003269738517701626, 0.060151249170303345, -0.001234313938766718, -0.1350451111793518, -0.009513523429632187, 0.005799334961920977, 0.007667378056794405, -0.03513874113559723, -0.056788668036460876, 0.10858647525310516, 0.09638507664203644, 0.19902770221233368, -0.009509887546300888, -0.1465878188610077, -0.06024258956313133, -0.01238277554512024, 0.018611032515764236, -0.0682271346449852, -0.059676364064216614, 0.13397885859012604, -0.1604991853237152, 0.06517565995454788, -0.009319842793047428, 0.07184876501560211, 0.008975332602858543, 0.0222625769674778, -0.04431901499629021, 0.13199231028556824, -0.030895298346877098, 0.13573801517486572, -0.1990133672952652, 0.19554752111434937, 0.03603315353393555, 0.08588845282793045, -0.11671704053878784, 0.0187237411737442, 0.03899259865283966, 0.03876391425728798, 0.1895553022623062, 0.04885024204850197, -0.007382184732705355, -0.06797314435243607, -0.12454339116811752, -0.014779745601117611, 0.0867745578289032, -0.046190667897462845, 0.04399830475449562, -0.028244145214557648, -0.03722327575087547, -0.024567654356360435, 0.003978235647082329, -0.09499279409646988, -0.12372511625289917, 0.05050342530012131, -0.0002490127517376095, -0.13788539171218872, -0.043965894728899, -0.057181112468242645, 0.005655347369611263, 0.04788948968052864, -0.02354135550558567, -0.13883906602859497, -0.15069065988063812, 0.018866492435336113, 0.15965688228607178, -0.1345447301864624, 0.03779999539256096, -0.03631243482232094, 0.18840153515338898, -0.057577792555093765, -0.10281006246805191, 0.016125814989209175, -0.09232620894908905, -0.07254450768232346, 0.021687284111976624, 0.15959642827510834, 0.09558272361755371, -0.0036806161515414715, 0.012229586951434612, 0.0545077845454216, 0.008238105103373528, -0.13270732760429382, -0.053735826164484024, 0.11918681114912033, -0.003940561320632696, 0.12415173649787903, -0.1147456020116806, -0.1400318145751953, -0.09283499419689178, 0.047145672142505646, 0.16494044661521912, 0.12159623950719833, -0.09318189322948456, 0.1545848399400711, 0.2050151526927948, -0.07990800589323044, -0.24982808530330658, -0.03584602475166321, 0.07771310955286026, 0.04743780940771103, 0.040574055165052414, -0.1358329951763153, 0.027908695861697197, -0.01423538476228714, 0.0051782806403934956, -0.06619609147310257, -0.2312329113483429, -0.15420660376548767, 0.13308623433113098, -0.0024429578334093094, -0.016591280698776245, -0.006308765150606632, -0.04059759899973869, -0.018863296136260033, -0.008059816434979439, 0.04522676765918732, -0.1235414445400238, 0.04071170091629028, 0.09107957035303116, 0.04608432576060295, 0.07972227782011032, -0.053221091628074646, 0.09993108361959457, 0.014820844866335392, 0.04971925541758537, -0.0864696279168129, 0.007732441183179617, 0.13003358244895935, -0.04903806373476982, 0.1824886053800583, 0.052240028977394104, 0.06253375858068466, -0.10526324808597565, -0.0539042167365551, -0.0825311616063118, 0.09208019822835922, -0.04965982213616371, -0.07423567771911621, -0.021940110251307487, 0.06679099053144455, 0.09456494450569153, -0.0365091897547245, -0.10217631608247757, -0.08484740555286407, -0.029041361063718796, 0.09877979755401611, 0.09306182712316513, 0.01670823059976101, -0.07032216340303421, 0.02267238311469555, -0.015132802538573742, 0.04308578372001648, 0.05185545235872269, 0.05866782367229462, 0.051171738654375076, 0.013397013768553734, 0.07995917648077011, -0.021832112222909927, -0.10883201658725739, -0.07627762109041214, -0.0007472544093616307, -0.18187397718429565, -0.10432402044534683, -0.049771662801504135, -0.01029118336737156, -0.01233588345348835, -0.09905228763818741, 0.15374833345413208, -0.017553523182868958, -0.007142192218452692, -0.03640138730406761, 0.0244279932230711, -0.00263784546405077, 0.07767923176288605, 0.0749916359782219, 0.05732961371541023, -0.07810699194669724, 0.04745937138795853, 0.04383133724331856, 0.030692942440509796, 0.05994619429111481, 0.058275140821933746, -0.12347371876239777, -0.07466848194599152, -0.03600822389125824, 0.16115042567253113, -0.027648698538541794, -0.06729073822498322, -0.017782246693968773, -0.04896865785121918, 0.01037014089524746, 0.13494230806827545, 0.02800661511719227, -0.03251216933131218, -0.06761137396097183, -0.030911069363355637, -0.0677936002612114, 0.13201318681240082, 0.09837193787097931, -0.07880041003227234, -0.03334669768810272, 0.20221450924873352, 0.012127933092415333, 0.013614051043987274, -0.045086584985256195, -0.033304933458566666, -0.04964343458414078, 0.007709507364779711, -0.013823688961565495, 0.021929962560534477, -0.02318708412349224, -0.0035475697368383408, -0.021323032677173615, -0.04359040409326553, 0.025904593989253044, 0.040573809295892715, -0.04394742101430893, -0.014950752258300781, -0.04043849930167198, -0.00461324630305171, -0.17007824778556824, -0.04330640286207199, 0.01582960970699787, -0.04025460407137871, 0.09870094060897827, 0.09930972009897232, -0.03385261073708534, 0.04663071036338806, -0.16543766856193542, -0.0005533488001674414, -0.04297315329313278, 0.05467195436358452, 0.01626605913043022, -0.11264953762292862, 0.04675713926553726, -0.0011367074912413955, -0.015615587122738361, 0.002223028801381588, 0.0461505651473999, -0.08436015993356705, 0.07059045135974884, 0.09744765609502792, -0.03144824132323265, -0.06344939768314362, 0.12967626750469208, -0.003750324947759509, 0.05715453252196312, 0.10166046023368835, -0.07902586460113525, 0.10192953795194626, -0.11745120584964752, 0.0032922110985964537, -0.003516922704875469, 0.024944715201854706, -0.04441746324300766, -0.05336763337254524, 0.07603225857019424, -0.0509696789085865, 0.1267746537923813, 0.1396355926990509, 0.06835967302322388, 0.03572724759578705, 0.09209338575601578, 0.02625296451151371, 0.008786357939243317, -0.004053747747093439, -0.04846802353858948, 0.007821324281394482, -0.0396839901804924, -0.011130684986710548, -0.016735658049583435, -0.08161560446023941, 0.12411093711853027, 0.11816449463367462, 0.19154837727546692, -0.018812449648976326, 0.1307239532470703, 0.0007347033824771643, -0.0684603676199913, -0.1719072312116623, -0.01022987999022007, 0.002424754435196519, -0.06761830300092697, 0.06097297742962837, 0.13205429911613464, -0.18798208236694336, 0.14741341769695282, 0.06648004800081253, -0.08597397059202194, -0.14525949954986572, -0.26716533303260803, -0.01872164011001587, 0.04348340630531311, -0.009869467467069626, -0.13022582232952118, 0.040288399904966354, -0.013480138964951038, 0.03347693383693695, -0.033896494656801224, 0.13941234350204468, -0.12697996199131012, -0.08420394361019135, 0.10592938959598541, 0.02428426779806614, 0.09026411175727844, 0.052868571132421494, -0.015928391367197037, 0.047451019287109375, 0.07449928671121597, 0.03324000537395477, 0.031149236485362053, 0.07745889574289322, -0.007216159719973803, -0.08518572151660919, -0.060203369706869125, -0.005976493936032057, -0.025057468563318253, 0.056164782494306564, 0.17660272121429443, 0.06784895062446594, -0.05630448833107948, -0.05316867306828499, 0.21854712069034576, -0.010683462023735046, -0.19906888902187347, -0.16101127862930298, 0.12473088502883911, 0.011976349167525768, 0.02890586294233799, -0.007827438414096832, -0.09791719168424606, -0.009690008126199245, 0.19250202178955078, 0.2632492482662201, -0.007152682635933161, 0.02043803595006466, -0.04244085028767586, 0.014226890169084072, 0.06538593769073486, 0.13193731009960175, 0.0038074487820267677, 0.26397112011909485, -0.04463070258498192, 0.1519574671983719, -0.07033167034387589, -0.01007002405822277, -0.10297334939241409, 0.08917348086833954, -0.021406592801213264, -0.04731663689017296, -0.023212451487779617, 0.1284061223268509, -0.07056102156639099, -0.15080507099628448, -0.08067453652620316, -0.02556862309575081, -0.08146180957555771, -0.016251899302005768, 0.016432665288448334, 0.06532527506351471, 0.07862955331802368, -0.013329826295375824, -0.010661343112587929, 0.12422021478414536, 0.05445946007966995, -0.017076030373573303, -0.10060760378837585, 0.07462741434574127, -0.03119281493127346, 0.13918355107307434, 0.02403857372701168, 0.11745389550924301, 0.108676016330719, -0.004748095292598009, -0.0644744262099266, 0.08653824031352997, 0.009725014679133892, -0.02181374840438366, 0.035512275993824005, 0.09389873594045639, -0.016861924901604652, -0.03243738412857056, 0.024957865476608276, -0.09998960793018341, 0.04477723315358162, -0.05339866131544113, -0.013200603425502777, -0.05035431683063507, 0.1752002090215683, -0.10668835788965225, 0.07051892578601837, 0.17343416810035706, -0.021808486431837082, 0.020264767110347748, -0.09479854255914688, 0.0078991474583745, -0.010569654405117035, -0.04045476019382477, 0.007442878559231758, -0.08940534293651581, 0.029727470129728317, -0.02718343213200569, 0.033182110637426376, -0.21690933406352997, -0.03461021929979324, -0.017063118517398834, -0.038390446454286575, 0.007770803291350603, 0.08061080425977707, 0.017873430624604225, 0.022515857592225075, 0.014961742796003819, 0.01596059650182724, 0.02660326100885868, 0.07666446268558502, -0.11266695708036423, -0.005201475229114294 ]
null
null
transformers
{"language": ["ar"], "widget": [{"text": "\u0623\u064a\u0646 \u064a\u0639\u064a\u0634 \u0645\u062d\u0645\u062f \u061f", "context": "\u0627\u0633\u0645\u064a \u0645\u062d\u0645\u062f \u0648\u0623\u0646\u0627 \u0623\u0639\u064a\u0634 \u0641\u064a \u0633\u0648\u0631\u064a\u0627"}, {"text": "\u0645\u0627 \u0627\u0644\u0639\u062f\u062f \u0627\u0644\u0630\u0631\u064a \u0644\u0644\u0647\u064a\u062f\u0631\u0648\u062c\u064a\u0646 \u061f", "context": "\u0627\u0644\u0647\u064a\u062f\u0631\u0648\u062c\u064a\u0646 \u0647\u0648 \u0639\u0646\u0635\u0631 \u0643\u064a\u0645\u064a\u0627\u0626\u064a \u0639\u062f\u062f\u0647 \u0627\u0644\u0630\u0631\u064a 1 \u060c \u0648\u0647\u0648 \u063a\u0627\u0632 \u0639\u062f\u064a\u0645 \u0627\u0644\u0631\u0627\u0626\u062d\u0629 \u0648\u0627\u0644\u0644\u0648\u0646 \u0648\u0647\u0648 \u0633\u0631\u064a\u0639 \u0627\u0644\u0627\u0634\u062a\u0639\u0627\u0644"}, {"text": "\u0645\u0627 \u062e\u0648\u0627\u0635 \u0627\u0644\u0647\u064a\u062f\u0631\u0648\u062c\u064a\u0646 \u061f", "context": "\u0627\u0644\u0647\u064a\u062f\u0631\u0648\u062c\u064a\u0646 \u0647\u0648 \u0639\u0646\u0635\u0631 \u0643\u064a\u0645\u064a\u0627\u0626\u064a \u0639\u062f\u062f\u0647 \u0627\u0644\u0630\u0631\u064a 1 \u060c \u0648\u0647\u0648 \u063a\u0627\u0632 \u0639\u062f\u064a\u0645 \u0627\u0644\u0631\u0627\u0626\u062d\u0629 \u0648\u0627\u0644\u0644\u0648\u0646 \u0648\u0647\u0648 \u0633\u0631\u064a\u0639 \u0627\u0644\u0627\u0634\u062a\u0639\u0627\u0644"}]}
question-answering
gfdgdfgdg/arap_qa_bert
[ "transformers", "pytorch", "bert", "question-answering", "ar", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "ar" ]
TAGS #transformers #pytorch #bert #question-answering #ar #endpoints_compatible #region-us
[]
[ "TAGS\n#transformers #pytorch #bert #question-answering #ar #endpoints_compatible #region-us \n" ]
[ 31 ]
[ "passage: TAGS\n#transformers #pytorch #bert #question-answering #ar #endpoints_compatible #region-us \n" ]
[ -0.030265754088759422, 0.010732460767030716, -0.010878984816372395, -0.01969131827354431, 0.0892331451177597, 0.032318416982889175, 0.012980960309505463, 0.08407673984766006, 0.1387159675359726, 0.013008029200136662, 0.1812669038772583, 0.20441022515296936, -0.06402835994958878, -0.08011873066425323, -0.10048899054527283, -0.1932181864976883, 0.029427656903862953, 0.10281810164451599, -0.028551265597343445, 0.13183332979679108, 0.0389116145670414, -0.12724198400974274, 0.04960298910737038, -0.028499040752649307, -0.062056902796030045, 0.061686426401138306, 0.005677097011357546, -0.056691691279411316, 0.13800804316997528, 0.02670894004404545, 0.15701253712177277, 0.030516501516103745, -0.12119986861944199, -0.18748502433300018, 0.042833056300878525, -0.027449192479252815, -0.04960258677601814, 0.033378105610609055, 0.04434696584939957, -0.10011923313140869, -0.021879475563764572, 0.08011641353368759, -0.00028929157997481525, 0.06914238631725311, -0.19499856233596802, -0.16757184267044067, -0.047578115016222, 0.012724582105875015, 0.06665462255477905, 0.09286129474639893, -0.027939865365624428, 0.16851480305194855, -0.1722615361213684, 0.08321268856525421, 0.17974163591861725, -0.3041142523288727, -0.010806231759488583, 0.07720574736595154, 0.08940701931715012, 0.058668408542871475, -0.02991115301847458, 0.06976067274808884, 0.04453708603978157, 0.0258489940315485, -0.10262240469455719, -0.1082506775856018, -0.008059707470238209, 0.10159242153167725, -0.09026801586151123, -0.10005219280719757, 0.2247323840856552, 0.0084203677251935, 0.04348478838801384, 0.054726287722587585, -0.08744226396083832, 0.010493670590221882, 0.020544784143567085, -0.04128469154238701, -0.033998239785432816, 0.05069558694958687, 0.021028617396950722, -0.0256302859634161, -0.11751638352870941, 0.03720642626285553, -0.24307237565517426, 0.23985505104064941, 0.028229495510458946, 0.08392640203237534, -0.23795446753501892, 0.059965867549180984, -0.06380350142717361, -0.07125363498926163, 0.008054880425333977, -0.07462143898010254, 0.012861871160566807, -0.001266319421119988, -0.06310902535915375, 0.06942304968833923, 0.046488206833601, 0.192921981215477, -0.003347711404785514, 0.03481476753950119, 0.0008074123761616647, 0.09339588135480881, 0.045605480670928955, 0.11364837735891342, -0.013303167186677456, -0.019460508599877357, -0.034760136157274246, -0.13471150398254395, -0.0321790985763073, -0.025169333443045616, -0.0936557874083519, -0.06840261816978455, -0.006717304699122906, 0.12153033912181854, 0.07511895149946213, 0.0005968245095573366, -0.07402099668979645, 0.00801662728190422, -0.023770062252879143, -0.018389031291007996, -0.020558642223477364, -0.0033211736008524895, 0.025318915024399757, 0.19010931253433228, -0.0671735629439354, 0.029874242842197418, -0.024445287883281708, 0.09927012771368027, -0.07421550899744034, -0.02471090294420719, -0.015379722230136395, -0.0050741517916321754, 0.06770367175340652, -0.11090958118438721, 0.08569681644439697, -0.11784841120243073, -0.02240363508462906, 0.011676348745822906, 0.03997310996055603, -0.013029403053224087, 0.02146671526134014, 0.001328363548964262, -0.030731718987226486, -0.04105048254132271, -0.05054766312241554, -0.037550780922174454, -0.05831539258360863, 0.11694476008415222, 0.036061134189367294, 0.038852185010910034, -0.0684204250574112, 0.05764057859778404, -0.07521387189626694, 0.05522884801030159, -0.08510951697826385, -0.056194230914115906, 0.0028085452504456043, 0.13906797766685486, -0.020038018003106117, -0.0832495242357254, -0.12110785394906998, 0.029999716207385063, -0.051538191735744476, 0.18802857398986816, 0.003924766089767218, -0.06971246004104614, 0.18785996735095978, -0.04053725674748421, -0.22029899060726166, 0.08567017316818237, 0.008354786783456802, 0.0005871721659786999, 0.07001455128192902, 0.17452120780944824, -0.029814448207616806, -0.10119838267564774, 0.05573189631104469, 0.12360470741987228, -0.12179794162511826, -0.07209634780883789, 0.051772087812423706, -0.058425575494766235, -0.10922392457723618, 0.03244556486606598, 0.020402152091264725, 0.04946776106953621, -0.09689421206712723, -0.03142759948968887, -0.0068218884989619255, 0.00690420949831605, 0.08172112703323364, 0.07183089852333069, 0.04813087359070778, -0.07750872522592545, 0.0037955744192004204, -0.044070176780223846, -0.029598873108625412, 0.0642772763967514, 0.030829934403300285, -0.0721491351723671, 0.13091625273227692, -0.1329406201839447, 0.006097256205976009, -0.20129512250423431, -0.08477997779846191, -0.038295671343803406, 0.11289667338132858, -0.012009034864604473, 0.24311073124408722, 0.09922986477613449, -0.14922268688678741, -0.03667789697647095, -0.038272079080343246, 0.10901355743408203, 0.005331917200237513, -0.03828008845448494, -0.04990466684103012, 0.05190521478652954, -0.06672319024801254, -0.0844746083021164, -0.03996526077389717, -0.02694571390748024, 0.09659332782030106, 0.1119917705655098, -0.01383917685598135, 0.05886911600828171, -0.01905723288655281, 0.043708667159080505, 0.006494789384305477, 0.047644320875406265, 0.10189919918775558, -0.03992561623454094, -0.08954176306724548, 0.11731910705566406, -0.07435615360736847, 0.31246182322502136, 0.1785772293806076, -0.33505767583847046, 0.015226609073579311, -0.04747354984283447, -0.05273459479212761, 0.019254783168435097, 0.08647263050079346, -0.0036065008025616407, 0.1307036429643631, 0.043047063052654266, 0.08051610738039017, -0.03981323540210724, -0.0700676366686821, -0.01668151654303074, -0.06182865425944328, -0.04725900664925575, 0.11798643320798874, 0.059151582419872284, -0.1825719028711319, 0.15313096344470978, 0.32999593019485474, 0.06057567521929741, 0.060813236981630325, -0.05443698167800903, -0.04604943096637726, 0.003255011746659875, 0.03838532045483589, -0.05943135544657707, 0.05712651461362839, -0.25977805256843567, 0.00199604663066566, 0.079053595662117, 0.003387246746569872, 0.07156749814748764, -0.14018185436725616, -0.08185525238513947, 0.010541915893554688, 0.028614411130547523, -0.08474498242139816, 0.11002561450004578, 0.040432024747133255, 0.09784051030874252, 0.03605939447879791, -0.02555099129676819, 0.10211538523435593, -0.0012189013650640845, -0.06049465388059616, 0.14874647557735443, -0.09618823230266571, -0.23242782056331635, -0.04348939657211304, -0.10533711314201355, 0.022405356168746948, -0.0008505629375576973, 0.07280859351158142, -0.09476308524608612, -0.014932564459741116, 0.11795134097337723, 0.043607406318187714, -0.1988878697156906, 0.006222560536116362, -0.04245009645819664, 0.039354581385850906, -0.08971885591745377, -0.043918512761592865, -0.06771079450845718, -0.07232888042926788, -0.05938318744301796, 0.1161995604634285, -0.11918485164642334, 0.0884602963924408, 0.11298263072967529, 0.05316503718495369, 0.06366011500358582, -0.013537326827645302, 0.24501754343509674, -0.13081596791744232, -0.040086545050144196, 0.16313444077968597, -0.05059009790420532, 0.1016722172498703, 0.14952105283737183, 0.02085714600980282, -0.08078570663928986, -0.003992443438619375, -0.021557290107011795, -0.0643337145447731, -0.24765609204769135, -0.05081895738840103, -0.11993961036205292, 0.0471675731241703, -0.013001360930502415, 0.030360974371433258, 0.08781139552593231, 0.07060801982879639, 0.026467688381671906, -0.14536064863204956, -0.05239599943161011, 0.049909621477127075, 0.2786836624145508, -0.07072225958108902, 0.08587388694286346, -0.0438765250146389, -0.10832285135984421, 0.05285220965743065, 0.0957045927643776, 0.11414915323257446, 0.1329757422208786, -0.021830666810274124, 0.08565659075975418, 0.14968682825565338, 0.13031035661697388, 0.07662323862314224, -0.01995965652167797, -0.06898587197065353, -0.03205852955579758, 0.009874308481812477, -0.06099778041243553, 0.03136274591088295, 0.16889850795269012, -0.12477268278598785, -0.02496335841715336, -0.21889051795005798, 0.07434073835611343, 0.02787007763981819, 0.06832938641309738, -0.07119375467300415, 0.021200718358159065, 0.07554805278778076, -0.020424995571374893, -0.04775257036089897, 0.09369093924760818, 0.011561849154531956, -0.14056237041950226, 0.013665963895618916, -0.03898501768708229, 0.13399246335029602, 0.036430858075618744, 0.09336203336715698, -0.07486281543970108, -0.16501735150814056, 0.05680273100733757, 0.09690701961517334, -0.30149340629577637, 0.31059515476226807, 0.010359536856412888, -0.10792414844036102, -0.050884634256362915, -0.05949290841817856, -0.04284629970788956, 0.1563260555267334, 0.17583787441253662, 0.026117892935872078, -0.02630811743438244, -0.09380687773227692, 0.0894705280661583, 0.05128825828433037, 0.14872227609157562, -0.023881735280156136, -0.02145054005086422, -0.01351048331707716, 0.022435387596488, -0.028839649632573128, 0.08170489221811295, 0.0747084692120552, -0.10587116330862045, 0.048416491597890854, -0.03761989623308182, 0.028032803907990456, 0.0028034464921802282, 0.002952303271740675, -0.06911856681108475, 0.08715836703777313, -0.059216439723968506, -0.04882529005408287, -0.0803910493850708, -0.1335350126028061, 0.1364559680223465, -0.09649715572595596, 0.018383320420980453, -0.0817805603146553, -0.08808505535125732, -0.06784391403198242, -0.1107705757021904, 0.1353137493133545, -0.09360960125923157, -0.0017965197330340743, -0.03612210601568222, 0.2080349326133728, -0.06337655335664749, 0.030915113165974617, -0.003014738205820322, 0.04298429563641548, -0.1528601497411728, -0.09310269355773926, 0.03213275969028473, -0.10572486370801926, 0.08215171843767166, 0.04411076009273529, -0.009832284413278103, 0.1230672150850296, -0.010973644442856312, 0.013838304206728935, 0.20028087496757507, 0.2247980833053589, -0.030844518914818764, 0.07532121241092682, 0.18322503566741943, -0.012447801418602467, -0.2534584701061249, -0.05671033263206482, -0.15976691246032715, -0.06693962216377258, -0.014061039313673973, -0.08541005104780197, 0.12311645597219467, 0.015095772221684456, -0.04032308608293533, 0.07873523235321045, -0.23544128239154816, -0.024537639692425728, 0.16659867763519287, -0.014834189787507057, 0.5124616622924805, -0.11620271950960159, -0.08623047918081284, 0.040959589183330536, -0.2624102830886841, 0.07377736270427704, 0.0574566088616848, 0.04131927713751793, -0.031763602048158646, 0.11859012395143509, 0.03444729372859001, -0.08403995633125305, 0.15117354691028595, 0.014555267058312893, 0.005763213150203228, -0.06881403923034668, -0.14858004450798035, 0.018048277124762535, 0.01751030422747135, -0.034176334738731384, 0.05365443229675293, 0.03415665403008461, -0.17050142586231232, -0.01851031184196472, -0.14233016967773438, 0.05533198267221451, 0.019037511199712753, -0.05058813467621803, -0.035286203026771545, -0.028022490441799164, -0.01725861057639122, -0.003228020155802369, 0.26492834091186523, -0.0802217572927475, 0.1827199012041092, -0.033101264387369156, 0.142618790268898, -0.19127565622329712, -0.1142696812748909, -0.056411053985357285, -0.048513513058423996, 0.07785539329051971, -0.04622156545519829, 0.0506584532558918, 0.20002079010009766, -0.014251184649765491, 0.025091378018260002, 0.10018302500247955, 0.026631217449903488, -0.0319981649518013, 0.08859943598508835, -0.2098599076271057, -0.14504097402095795, -0.02262922376394272, -0.03181775286793709, 0.0582452230155468, 0.06958203762769699, 0.06298734992742538, 0.10702449083328247, -0.022869767621159554, 0.01834976114332676, -0.04628573730587959, -0.06269356608390808, 0.007382103241980076, 0.08452063798904419, 0.027878178283572197, -0.09490314871072769, 0.04618149995803833, -0.03250468522310257, -0.26947301626205444, -0.04107532277703285, 0.08344358950853348, -0.09972304105758667, -0.10146597772836685, -0.12019510567188263, 0.04567532613873482, -0.1723606139421463, -0.019924147054553032, -0.021154038608074188, -0.10181645303964615, 0.06532518565654755, 0.22689121961593628, 0.09274356812238693, 0.0689229965209961, 0.0004695336683653295, -0.03965720906853676, 0.059291329234838486, -0.029259633272886276, -0.03530724346637726, -0.01613655872642994, -0.04773028939962387, -0.07621629536151886, -0.014741151593625546, 0.1933479905128479, -0.07654083520174026, -0.0811837688088417, -0.1704702228307724, 0.10004814714193344, -0.16692093014717102, -0.11141669750213623, -0.11019419878721237, -0.07831767201423645, 0.006717555224895477, -0.14663997292518616, -0.036034610122442245, -0.04661248251795769, -0.13421940803527832, 0.08983024954795837, 0.07421892136335373, 0.020829932764172554, -0.065399169921875, -0.0458947978913784, 0.18170221149921417, -0.021341336891055107, 0.08964542299509048, 0.1595243513584137, -0.10885878652334213, 0.1033012866973877, -0.11332205682992935, -0.14760173857212067, 0.06454158574342728, 0.01300297025591135, 0.06275387108325958, 0.04252802953124046, -0.010916190221905708, 0.06779312342405319, 0.04814781993627548, 0.08210750669240952, -0.04528769850730896, -0.10657082498073578, 0.02162722498178482, 0.0434713177382946, -0.19633866846561432, -0.03430144861340523, -0.11527635157108307, 0.1037411317229271, 0.0106779420748353, 0.08625813573598862, 0.02620532549917698, 0.12127649784088135, -0.04906841740012169, 0.02246888540685177, 0.008049334399402142, -0.15457327663898468, 0.04367813840508461, -0.07016537338495255, 0.014598114416003227, -0.020548447966575623, 0.24391618371009827, -0.1158909797668457, 0.07687786966562271, 0.058750227093696594, 0.06640176475048065, 0.01483873836696148, -0.010553347878158092, 0.19246207177639008, 0.09140567481517792, -0.06447454541921616, -0.08982618153095245, 0.08748381584882736, -0.06168447062373161, -0.07038632035255432, 0.13330231606960297, 0.15470999479293823, 0.09257658571004868, 0.062301941215991974, -0.01946127414703369, 0.04995448514819145, -0.04456133395433426, -0.21884062886238098, 0.021623777225613594, 0.007748940959572792, 0.0031051281839609146, 0.1434488296508789, 0.16489888727664948, -0.027313347905874252, 0.06134350597858429, -0.06184956058859825, -0.0040591005235910416, -0.1437203586101532, -0.06324648857116699, -0.04883081093430519, -0.07922633737325668, 0.051256198436021805, -0.0900496169924736, -0.007307039108127356, 0.1351541131734848, 0.0708327442407608, -0.049850042909383774, 0.12652824819087982, 0.05687190964818001, -0.07399445027112961, 0.0010629907483235002, 0.007077677641063929, 0.09778353571891785, 0.017508378252387047, 0.03194469213485718, -0.12061523646116257, -0.08668981492519379, -0.05092676728963852, 0.034665994346141815, -0.12251299619674683, -0.06595161557197571, -0.1435909867286682, -0.09698748588562012, -0.07396063208580017, 0.1164068877696991, -0.04321637004613876, 0.15064182877540588, -0.0428534671664238, 0.054437894374132156, 0.014613623730838299, 0.2298712283372879, -0.08081936836242676, -0.02636583335697651, -0.02387198992073536, 0.20214638113975525, 0.019979367032647133, 0.10043425112962723, -0.00577952666208148, 0.036350950598716736, -0.04365318641066551, 0.3350553512573242, 0.20362575352191925, -0.07507914304733276, 0.04003889486193657, 0.0717930942773819, 0.05460251495242119, 0.10835328698158264, 0.0038374466821551323, 0.10475356131792068, 0.2864741086959839, -0.11600275337696075, -0.02457473613321781, -0.025194454938173294, 0.021124206483364105, -0.014410230331122875, 0.06044585257768631, 0.06162530928850174, -0.06241542100906372, -0.07224934548139572, 0.11333917826414108, -0.13848650455474854, 0.09355495870113373, 0.024487515911459923, -0.20427294075489044, -0.05166297405958176, -0.03373146057128906, 0.16232433915138245, -0.008052556775510311, 0.12163666635751724, -0.029620882123708725, -0.13144369423389435, 0.0346735417842865, 0.05105208605527878, -0.22049202024936676, -0.07538262754678726, 0.1501069813966751, 0.036995936185121536, -0.010494294576346874, 0.0047204759903252125, 0.02235400676727295, 0.07767398655414581, 0.033771127462387085, -0.027106307446956635, 0.0066222320310771465, 0.09390122443437576, -0.10556098818778992, -0.13232000172138214, -0.022669216617941856, 0.07356417179107666, -0.0794840157032013, 0.08360085636377335, -0.17585806548595428, 0.056181181222200394, -0.004916847217828035, -0.03512437641620636, -0.04042528569698334, 0.07331156730651855, -0.06618745625019073, 0.014749105088412762, 0.06511851400136948, 0.009534141048789024, -0.03747636079788208, -0.03270456939935684, -0.006050091236829758, 0.0430016852915287, -0.06620367616415024, -0.13295622169971466, 0.013161790557205677, -0.06198456510901451, 0.09554710984230042, -0.048341210931539536, -0.08726024627685547, -0.034863412380218506, 0.01272062212228775, 0.06732165813446045, -0.071968674659729, 0.0029681145679205656, 0.028408054262399673, 0.05282159149646759, 0.022289037704467773, -0.10096997767686844, 0.042800936847925186, 0.061436355113983154, -0.11402799189090729, -0.04492253065109253 ]
null
null
transformers
# Family Guy (Peter) DialoGPT Model
{"tags": ["conversational"]}
text-generation
gfdream/dialogpt-small-familyguy
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
# Family Guy (Peter) DialoGPT Model
[ "# Family Guy (Peter) DialoGPT Model" ]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "# Family Guy (Peter) DialoGPT Model" ]
[ 51, 11 ]
[ "passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n# Family Guy (Peter) DialoGPT Model" ]
[ -0.04568241909146309, 0.07128068059682846, -0.006813106592744589, 0.02643396519124508, 0.14928379654884338, 0.011868867091834545, 0.18032290041446686, 0.11895003914833069, -0.0066024139523506165, -0.051358092576265335, 0.12811177968978882, 0.11248081177473068, 0.011692131869494915, 0.0660632848739624, -0.06125461682677269, -0.3329894542694092, 0.02110934630036354, 0.040993936359882355, 0.07302292436361313, 0.12429198622703552, 0.09556686878204346, -0.025390395894646645, 0.08594679087400436, 0.016628975048661232, -0.11253298074007034, 0.007848263718187809, 0.03832469508051872, -0.0588536337018013, 0.14825396239757538, 0.05663406848907471, 0.04524945467710495, 0.06840270012617111, -0.08160147070884705, -0.09542624652385712, 0.03792042285203934, -0.0075119598768651485, -0.019114123657345772, 0.032106682658195496, 0.061321921646595, -0.0402284637093544, 0.1646377444267273, 0.12034070491790771, -0.01274141389876604, 0.05330919101834297, -0.13959749042987823, -0.010968983173370361, -0.0026278160512447357, 0.06178499013185501, 0.03158025071024895, 0.09870732575654984, -0.03739625960588455, 0.09427470713853836, -0.03560812026262283, 0.10828626155853271, 0.12307155132293701, -0.29711902141571045, -0.04735712334513664, 0.14622271060943604, 0.07535107433795929, 0.06878192722797394, -0.03239232301712036, 0.054440222680568695, -0.02418561838567257, 0.018462367355823517, -0.010026355274021626, -0.09892996400594711, -0.0021431983914226294, 0.013373373076319695, -0.08214796334505081, -0.0034656880889087915, 0.3055632710456848, -0.015924111008644104, 0.06947623193264008, -0.1252264529466629, -0.081929512321949, 0.029604502022266388, -0.038045015186071396, -0.029293356463313103, -0.08833248913288116, 0.055971287190914154, -0.04107125848531723, -0.1602044552564621, -0.13733193278312683, -0.014939903281629086, -0.1313846856355667, 0.1288081407546997, 0.015942225232720375, 0.023381052538752556, -0.21469323337078094, 0.0643974244594574, -0.007613647263497114, -0.09597019106149673, 0.033531803637742996, -0.12175610661506653, 0.07289239764213562, 0.01325462106615305, -0.007079008035361767, -0.018987856805324554, 0.10094892978668213, 0.07404790073633194, -0.009516260586678982, 0.03550117462873459, -0.04696119204163551, 0.04473862051963806, 0.10374480485916138, 0.09310968220233917, 0.02142959088087082, -0.10510145872831345, 0.024613363668322563, -0.06035633757710457, -0.042016685009002686, -0.021362334489822388, -0.1937330812215805, 0.010125335305929184, 0.056333042681217194, 0.04743250459432602, 0.06963606178760529, 0.15722613036632538, 0.021864265203475952, -0.0550459660589695, 0.04212075099349022, 0.005849251989275217, -0.021566784009337425, 0.01927463337779045, -0.024757126346230507, 0.15432798862457275, -0.08565818518400192, 0.0258162971585989, -0.11589077860116959, 0.04841206222772598, -0.007059062831103802, -0.05463903024792671, -0.005546971689909697, -0.04138420894742012, -0.006850733421742916, -0.07391106337308884, 0.009221414104104042, -0.13529494404792786, -0.1323157548904419, -0.042918331921100616, -0.03777977451682091, -0.03179891034960747, -0.12571364641189575, -0.11215784400701523, -0.015189851634204388, 0.007180531043559313, -0.06760305166244507, -0.04263610765337944, -0.032199110835790634, 0.062290992587804794, -0.00008627580245956779, 0.05508219823241234, -0.06679905205965042, 0.075970858335495, -0.07390332967042923, -0.0285191610455513, -0.10617103427648544, 0.1151367798447609, 0.03948310762643814, -0.009089023806154728, 0.01967182569205761, 0.008967559784650803, -0.09982326626777649, 0.08486450463533401, -0.07732079923152924, 0.2332923710346222, -0.032535966485738754, -0.11155488342046738, 0.2568138837814331, -0.03361502289772034, -0.122763492166996, 0.09157317876815796, 0.013610190711915493, 0.15593256056308746, 0.14760953187942505, 0.17090381681919098, -0.037693772464990616, 0.02440481074154377, 0.07452176511287689, 0.12246181070804596, -0.12759089469909668, 0.042205650359392166, 0.03515153005719185, -0.015264422632753849, -0.05409688130021095, 0.025555042549967766, 0.03319159895181656, 0.020736655220389366, -0.046424731612205505, -0.005689752288162708, 0.02813495323061943, 0.006824085023254156, 0.0660351812839508, -0.04099167510867119, 0.09957035630941391, -0.01921195164322853, -0.02477431669831276, 0.02190077304840088, 0.00030851628980599344, -0.031976137310266495, 0.016485022380948067, -0.08979526907205582, 0.08617597818374634, 0.035845477133989334, 0.06859473884105682, -0.12903612852096558, -0.08129563182592392, -0.049504805356264114, 0.2414541095495224, 0.004637350793927908, 0.08699628710746765, 0.07700935751199722, -0.05701446905732155, -0.04337095841765404, -0.0049639479257166386, 0.18227604031562805, 0.007909785024821758, -0.046491801738739014, -0.10331512242555618, 0.071206234395504, -0.024246254935860634, 0.12905067205429077, -0.007513077929615974, 0.016498636454343796, 0.006739082746207714, 0.09537026286125183, -0.003613489679992199, 0.04318523034453392, 0.005855530966073275, -0.032385073602199554, -0.02715635858476162, -0.02754676714539528, 0.1309245526790619, 0.020329726859927177, -0.03626583144068718, 0.23013146221637726, -0.1493167281150818, 0.11805067211389542, 0.17000873386859894, -0.25411468744277954, 0.0034833319950848818, -0.12066271156072617, -0.01655472256243229, 0.006272046826779842, 0.004744839388877153, -0.06711757928133011, 0.22346988320350647, 0.02026444487273693, 0.15603701770305634, -0.022577036172151566, -0.0591680109500885, -0.0014700685860589147, -0.0031210784800350666, 0.003885905956849456, 0.07820097357034683, 0.05941187962889671, -0.1843324452638626, 0.18787044286727905, 0.05252690985798836, 0.14413677155971527, 0.12503717839717865, 0.030394116416573524, 0.026773298159241676, 0.03921189904212952, 0.04572540521621704, -0.07605739682912827, -0.0449545755982399, -0.298798143863678, -0.03031616099178791, 0.047926899045705795, 0.025598006322979927, 0.09724307805299759, -0.08573754876852036, -0.04096454009413719, 0.00728962616994977, -0.006225539371371269, 0.02265842817723751, 0.09586380422115326, 0.02364206127822399, 0.13118253648281097, 0.012172043323516846, -0.050731562077999115, 0.08989502489566803, -0.0038078906945884228, -0.09075714647769928, 0.14540082216262817, -0.12564347684383392, -0.36607688665390015, -0.05471867322921753, -0.21597307920455933, -0.10074432939291, 0.03470230847597122, 0.08786141872406006, -0.08374461531639099, 0.02756822295486927, 0.001248796354047954, 0.1319686323404312, -0.11804929375648499, -0.04418554902076721, -0.11960363388061523, -0.0074213421903550625, -0.15487775206565857, -0.06502296775579453, -0.05152492970228195, -0.020515557378530502, -0.06262077391147614, 0.16421794891357422, -0.1438201665878296, -0.04616941884160042, 0.15045931935310364, 0.06769891083240509, 0.04598670080304146, -0.06382480263710022, 0.20673318207263947, -0.07898607850074768, 0.04017949849367142, 0.20356032252311707, -0.06755922734737396, 0.034657783806324005, 0.12760674953460693, -0.00784143153578043, -0.03714874014258385, -0.0016361991874873638, -0.018086479976773262, -0.06651477515697479, -0.1858845353126526, -0.10852321237325668, -0.1155439242720604, 0.14379489421844482, 0.02487352304160595, 0.07032874971628189, 0.1454961895942688, 0.05406079441308975, -0.07041411101818085, -0.026425771415233612, 0.068032406270504, 0.09348857402801514, 0.33077073097229004, -0.13364246487617493, 0.10399708896875381, 0.010237005539238453, -0.16451767086982727, 0.07318684458732605, 0.08328574895858765, 0.007769986521452665, 0.09470118582248688, 0.06323472410440445, -0.010014249943196774, 0.02126879245042801, 0.07145637273788452, 0.07114461064338684, -0.011608528904616833, -0.0324813649058342, -0.048183027654886246, -0.06548638641834259, -0.006001563277095556, 0.04757522791624069, 0.028076373040676117, -0.19716498255729675, -0.016175778582692146, -0.07900100201368332, 0.03961117938160896, 0.11817455291748047, 0.06892511248588562, -0.11850398778915405, -0.01876681111752987, 0.04139894247055054, 0.0037639879155904055, -0.14254151284694672, 0.06806641072034836, 0.08362583070993423, -0.13418172299861908, 0.04237022250890732, 0.011473354883491993, 0.11654452234506607, -0.07376348972320557, 0.0862775668501854, -0.12145931273698807, -0.06307044625282288, -0.011010999791324139, 0.07074051350355148, -0.28445982933044434, 0.13066887855529785, 0.007658238522708416, -0.07483909279108047, -0.09725124388933182, -0.034506142139434814, 0.004641855135560036, 0.10886816680431366, 0.08475523442029953, 0.004518753848969936, -0.024495543912053108, -0.021372659131884575, -0.02033262327313423, 0.03027799353003502, 0.08096153289079666, -0.060335129499435425, -0.014824442565441132, -0.0411258190870285, -0.0037531491834670305, -0.011784324422478676, -0.07324215024709702, 0.000874541699886322, -0.13653841614723206, 0.06026044860482216, 0.0586770623922348, 0.0724010169506073, 0.019301626831293106, -0.014358638785779476, -0.09548383951187134, 0.2493322193622589, -0.031638819724321365, -0.1297009289264679, -0.09617186337709427, 0.00303706806153059, -0.02832738496363163, -0.026582567021250725, -0.03299374878406525, -0.03043762408196926, 0.06686577200889587, -0.06293074786663055, -0.15658056735992432, 0.11377441883087158, -0.06130264699459076, -0.07123830914497375, -0.04019678384065628, 0.28166019916534424, -0.0032263651955872774, 0.0340765081346035, 0.013651642017066479, -0.025258364155888557, -0.07745428383350372, -0.04873654246330261, 0.014514094218611717, 0.05993873253464699, -0.01877259463071823, 0.0034677390940487385, -0.013478604145348072, -0.00201582838781178, -0.07969941198825836, -0.025199174880981445, 0.3593950867652893, 0.12268884479999542, -0.027077769860625267, 0.11137715727090836, 0.09674451500177383, -0.04542447626590729, -0.2241845279932022, -0.08366023749113083, -0.09511856734752655, -0.06389313191175461, -0.02989656664431095, -0.20473088324069977, 0.07486551254987717, -0.029849737882614136, 0.008225379511713982, 0.11578071117401123, -0.27621325850486755, -0.06104455515742302, 0.13281282782554626, -0.028735311701893806, 0.38852357864379883, -0.06762492656707764, -0.07757965475320816, -0.0342140793800354, -0.13420066237449646, 0.15801909565925598, -0.021190520375967026, 0.09043892472982407, -0.0037430047523230314, 0.1998313069343567, 0.05228489637374878, 0.02843249775469303, 0.02482479065656662, -0.002936151111498475, -0.11819259822368622, -0.07510039210319519, -0.14630888402462006, 0.013978456147015095, 0.011970101855695248, -0.01669669710099697, -0.07310786098241806, 0.004078243859112263, -0.15783581137657166, -0.06840484589338303, -0.09236074984073639, 0.038110487163066864, 0.0033405409194529057, -0.08332239836454391, 0.013717873953282833, -0.035287752747535706, -0.02468314953148365, 0.004911189898848534, 0.05467446893453598, -0.1631103903055191, 0.13121379911899567, 0.08453860133886337, 0.13154301047325134, -0.10655669122934341, -0.05916270613670349, -0.08168588578701019, -0.06129181757569313, 0.048283424228429794, -0.07350043207406998, 0.01753799431025982, 0.10574937611818314, -0.03499109670519829, 0.10514356195926666, 0.08629204332828522, -0.020805813372135162, -0.009389268234372139, 0.05566616356372833, -0.19699180126190186, -0.06207571551203728, -0.11287859827280045, -0.0020245974883437157, 0.046720921993255615, 0.05955228582024574, 0.20710791647434235, 0.009292356669902802, -0.0435279905796051, 0.008647297509014606, 0.006211298517882824, -0.02770519256591797, 0.06266981363296509, -0.05266141518950462, 0.009996828623116016, -0.13415288925170898, 0.03021223470568657, -0.029111823067069054, -0.11157765984535217, 0.0004921008949168026, 0.1737080067396164, -0.09376511722803116, -0.11220841109752655, -0.037217963486909866, 0.08285726606845856, -0.06250970810651779, -0.00243506976403296, -0.010147497057914734, -0.1697997748851776, 0.07395805418491364, 0.03258882462978363, 0.01261994894593954, 0.07675550878047943, -0.06267207115888596, 0.005815907847136259, -0.009756513871252537, -0.0032381676137447357, -0.034458428621292114, -0.0077727059833705425, -0.06755335628986359, -0.0007080707582645118, -0.01978767290711403, 0.1078522726893425, -0.08256278187036514, -0.13458453118801117, -0.1651090681552887, 0.019122648984193802, -0.06229422986507416, -0.05957866087555885, -0.0927964448928833, -0.039588212966918945, 0.004338713362812996, -0.012655277736485004, -0.04281305521726608, -0.0480627715587616, -0.1093241274356842, 0.03132299706339836, -0.018494172021746635, 0.023533422499895096, -0.05016437545418739, 0.04537111520767212, 0.006609226576983929, -0.031378306448459625, 0.17972144484519958, 0.13157150149345398, -0.11301665008068085, 0.08040721714496613, -0.10629932582378387, -0.09723147749900818, 0.0723191648721695, 0.01696585863828659, 0.06557149440050125, 0.0685267522931099, 0.03448520228266716, 0.053533922880887985, 0.026578396558761597, 0.06084837391972542, 0.11769381910562515, -0.08307404071092606, 0.03918959200382233, -0.06643007695674896, -0.10264945030212402, -0.04061007499694824, -0.0760655477643013, 0.019911136478185654, 0.027217477560043335, 0.134402334690094, -0.04682677984237671, 0.10068463534116745, -0.1059931069612503, 0.05684969201683998, 0.032625891268253326, -0.18841783702373505, 0.056159403175115585, -0.06950455904006958, 0.060006722807884216, 0.000987678300589323, 0.21895559132099152, 0.040600210428237915, 0.022666143253445625, 0.03710576891899109, 0.07068520039319992, 0.03600240871310234, -0.02058577910065651, 0.17230874300003052, 0.1208457499742508, -0.07654649764299393, -0.1268928050994873, 0.09409017860889435, -0.0026196956168860197, 0.029086310416460037, 0.16900068521499634, -0.04603046178817749, -0.005313795525580645, 0.04804443195462227, 0.09104093164205551, 0.04822062328457832, -0.11009079217910767, -0.16510643064975739, -0.003144441870972514, 0.06172431632876396, -0.089575856924057, 0.17919082939624786, 0.12148972600698471, 0.0026340417098253965, 0.04664146900177002, -0.054324615746736526, -0.023227766156196594, -0.15472181141376495, -0.2055574655532837, -0.062334299087524414, -0.14859288930892944, -0.03047705441713333, -0.1203370913863182, 0.004558430518954992, -0.018898993730545044, 0.08228039741516113, -0.07814856618642807, 0.030067896470427513, 0.05051160603761673, -0.14114612340927124, 0.09025101363658905, -0.007891073822975159, 0.0788787230849266, -0.057171422988176346, -0.016977448016405106, -0.03423185274004936, 0.078585684299469, 0.03551948815584183, 0.013171409256756306, -0.015726227313280106, -0.025639845058321953, -0.15487195551395416, -0.08271637558937073, -0.056325674057006836, 0.06768203526735306, -0.02496480382978916, 0.13989678025245667, -0.0009532095864415169, -0.024050438776612282, 0.029726406559348106, 0.2065732479095459, -0.036570075899362564, -0.0915936604142189, -0.044179003685712814, 0.21854016184806824, -0.035210054367780685, 0.045180365443229675, -0.02177785336971283, 0.027932971715927124, -0.09362096339464188, 0.3342740833759308, 0.3995961546897888, -0.04277603328227997, 0.0006326051079668105, -0.015691205859184265, 0.04498426988720894, 0.09539860486984253, 0.1577805131673813, 0.07891067862510681, 0.2724004089832306, -0.011473314836621284, 0.033670369535684586, -0.0007881458732299507, -0.004554320592433214, 0.009181192144751549, 0.02333390712738037, 0.1509162187576294, -0.06347271054983139, -0.020302575081586838, 0.11864937841892242, -0.23282307386398315, 0.07781732082366943, -0.1634245067834854, -0.1465187668800354, -0.07056880742311478, -0.0026944628916680813, 0.12076111882925034, 0.056526102125644684, 0.09027507156133652, 0.018917618319392204, -0.03223288431763649, 0.040956947952508926, 0.00037560812779702246, -0.20102453231811523, 0.0037184949032962322, 0.09275401383638382, -0.16350044310092926, -0.04025238752365112, -0.037946637719869614, 0.07643736153841019, 0.07727792114019394, 0.05529318377375603, -0.02089175581932068, 0.04069335386157036, -0.018187548965215683, -0.10326635092496872, 0.03260327875614166, 0.05258208140730858, 0.009844050742685795, -0.06683570146560669, 0.08634356409311295, -0.1034168004989624, 0.06374965608119965, 0.04720254987478256, -0.01597464084625244, -0.040641169995069504, 0.09491080045700073, -0.06184399500489235, 0.045183099806308746, 0.09200790524482727, -0.02251311205327511, -0.03767947107553482, -0.06334494799375534, -0.029574209824204445, -0.01481111440807581, -0.00316880876198411, -0.0802488848567009, -0.1716025173664093, -0.11649645864963531, 0.05180656537413597, -0.022560160607099533, -0.18045249581336975, 0.01610768586397171, -0.12828007340431213, 0.048580560833215714, -0.09808717668056488, 0.0731147825717926, 0.031803030520677567, 0.05440966784954071, 0.004146524704992771, -0.023666972294449806, 0.022669052705168724, 0.11111140996217728, -0.11568079143762589, -0.05699663981795311 ]
null
null
transformers
# Harry Potter DialoGPT Model
{"tags": ["conversational"]}
text-generation
gfdream/dialogpt-small-harrypotter
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
# Harry Potter DialoGPT Model
[ "# Harry Potter DialoGPT Model" ]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "# Harry Potter DialoGPT Model" ]
[ 51, 8 ]
[ "passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n# Harry Potter DialoGPT Model" ]
[ -0.0009023238671943545, 0.07815738022327423, -0.006546166725456715, 0.07792752981185913, 0.10655936598777771, 0.048972971737384796, 0.17639793455600739, 0.12185695022344589, 0.016568755730986595, -0.04774167761206627, 0.11647630482912064, 0.2130284160375595, -0.002118367003276944, 0.024608047679066658, -0.05022026598453522, -0.3065771162509918, 0.0474756620824337, 0.014356585219502449, -0.07174845039844513, 0.11724270135164261, 0.09064973145723343, -0.046179238706827164, 0.08330509811639786, -0.009135239757597446, -0.13198648393154144, -0.039482954889535904, 0.019292812794446945, -0.11745545268058777, 0.1662212759256363, 0.05298272892832756, 0.02469746209681034, -0.008447164669632912, -0.06598151475191116, -0.15036040544509888, 0.037190426141023636, -0.027472136542201042, -0.01080626156181097, 0.05462246760725975, 0.023526115342974663, -0.07521048933267593, 0.170567125082016, 0.17678891122341156, 0.0833497866988182, 0.0349111407995224, -0.14917024970054626, -0.045548245310783386, 0.008950977586209774, 0.05421316996216774, -0.017893504351377487, 0.09349167346954346, -0.019903047010302544, 0.11801653355360031, -0.04491448402404785, 0.09210366010665894, 0.15255063772201538, -0.4016275703907013, -0.027563704177737236, 0.08920855820178986, 0.05989706888794899, 0.12076901644468307, -0.10560955852270126, 0.03972794860601425, -0.0039703017100691795, 0.01236654631793499, -0.014540530741214752, -0.08304883539676666, -0.07308239489793777, 0.032504837960004807, -0.1272556483745575, 0.008525865152478218, 0.23756256699562073, -0.10643257945775986, 0.037069112062454224, -0.09791990369558334, -0.07414398342370987, 0.048336777836084366, -0.053761593997478485, -0.081727035343647, -0.054839808493852615, 0.06347949057817459, 0.004366500303149223, -0.06301609426736832, -0.08326146006584167, -0.0006536149303428829, -0.12781435251235962, 0.17595994472503662, 0.061243366450071335, 0.041611745953559875, -0.21322020888328552, 0.08940251916646957, 0.04477722570300102, -0.04711297154426575, 0.007116159424185753, -0.11796226352453232, 0.04023287072777748, 0.005483259446918964, -0.03256071358919144, -0.021854614838957787, 0.0393419973552227, 0.13909944891929626, -0.01777748204767704, 0.03252175822854042, 0.006831915583461523, 0.05811219662427902, 0.08162496984004974, 0.02222144603729248, 0.019291909411549568, -0.0818009302020073, 0.019385190680623055, -0.08128736168146133, -0.0030400939285755157, -0.048940129578113556, -0.17071883380413055, -0.07477642595767975, 0.052610911428928375, 0.020047198981046677, 0.03746970370411873, 0.08054786175489426, -0.0017944995779544115, -0.05560554191470146, 0.03284840285778046, 0.01671096310019493, -0.020622212439775467, -0.010361049324274063, -0.02412462793290615, 0.19123271107673645, 0.019619356840848923, 0.014111656695604324, -0.12379156798124313, 0.10023640841245651, -0.08179095387458801, 0.0037731381598860025, 0.02743307314813137, -0.04204464703798294, -0.004716555587947369, 0.02917117439210415, 0.023101668804883957, -0.1252521574497223, -0.1099385917186737, -0.0030569476075470448, -0.012054097838699818, -0.036421261727809906, -0.10490952432155609, -0.08483029156923294, -0.012153145857155323, 0.0449371263384819, -0.013397793285548687, 0.007936403155326843, -0.05143149942159653, 0.0985720232129097, -0.0514979362487793, 0.09873400628566742, -0.08342572301626205, 0.06359215080738068, -0.09124887734651566, -0.061886150389909744, -0.11452563107013702, 0.05216052383184433, 0.012905281968414783, 0.066250741481781, 0.016998225823044777, -0.044836658984422684, -0.014836243353784084, 0.05253177136182785, -0.07656687498092651, 0.1940697431564331, -0.041674621403217316, -0.12459053844213486, 0.24146439135074615, -0.09138800948858261, -0.1802034229040146, 0.12973085045814514, -0.022254703566432, 0.08523941785097122, 0.12802475690841675, 0.20380465686321259, -0.00019822151807602495, -0.01302915159612894, 0.07281201332807541, 0.07031642645597458, -0.09803894907236099, 0.06239739805459976, 0.029653839766979218, -0.008071083575487137, -0.08906278014183044, 0.05762826278805733, 0.046033453196287155, -0.010650773532688618, -0.035073768347501755, -0.001896020956337452, -0.012895751744508743, -0.022185025736689568, 0.14126582443714142, -0.02006692811846733, 0.1300428807735443, -0.06926563382148743, -0.03515486419200897, -0.009500149637460709, 0.03533667325973511, -0.04091939330101013, 0.08151165395975113, -0.0436173714697361, 0.10586477071046829, 0.09034156054258347, 0.053724925965070724, -0.13120363652706146, 0.00466286763548851, -0.015246815048158169, 0.17014820873737335, 0.08964069187641144, 0.05222717300057411, 0.06265474855899811, -0.0020888058934360743, -0.06708643585443497, 0.045407816767692566, 0.13778303563594818, -0.037020038813352585, -0.12218865007162094, -0.1755627691745758, 0.051157694309949875, -0.045444171875715256, 0.10855234414339066, -0.10010123997926712, 0.022670533508062363, -0.055906031280756, 0.07772238552570343, -0.024998966604471207, 0.020512236282229424, -0.0013405600329861045, -0.021700702607631683, -0.08356887847185135, -0.002377772703766823, 0.08597290515899658, -0.02048647589981556, -0.06707409024238586, 0.16556480526924133, -0.16400809586048126, 0.1631954461336136, 0.2116095870733261, -0.28542569279670715, -0.005696662236005068, -0.15163889527320862, -0.0208092350512743, 0.019645055755972862, 0.07834604382514954, 0.026225795969367027, 0.2044338881969452, -0.012928472831845284, 0.16565458476543427, -0.05699567869305611, -0.07730039209127426, -0.06881127506494522, -0.048101142048835754, 0.013522743247449398, 0.09095205366611481, 0.04542696103453636, -0.11962861567735672, 0.13119758665561676, 0.1054433062672615, 0.06484298408031464, 0.12711186707019806, 0.1030748188495636, -0.008113685995340347, 0.07252490520477295, -0.03624548763036728, -0.03462279960513115, -0.09254947304725647, -0.30446043610572815, -0.04840317741036415, 0.0939924493432045, 0.007963384501636028, 0.09285714477300644, -0.0919896736741066, -0.03311870992183685, 0.006042704917490482, 0.009473444893956184, 0.028337622061371803, 0.09653715789318085, 0.013490920886397362, 0.15320514142513275, -0.008011690340936184, -0.03430786728858948, 0.05891305208206177, 0.017982570454478264, -0.09147711098194122, 0.17280617356300354, -0.17050009965896606, -0.27190929651260376, -0.06990014761686325, -0.21745692193508148, -0.013139115646481514, 0.05258983001112938, 0.0786920040845871, -0.11818131804466248, -0.018352627754211426, -0.006239492911845446, 0.05685517191886902, -0.2425733357667923, 0.0004911290016025305, -0.1354890614748001, 0.0501418262720108, -0.1974833607673645, -0.09718500077724457, -0.02271542325615883, -0.013450481928884983, -0.0464281290769577, 0.13365240395069122, -0.1448695808649063, -0.011572926305234432, 0.2329535037279129, 0.032479673624038696, 0.027794739231467247, -0.05020907148718834, 0.19788463413715363, -0.0958966314792633, -0.023973820731043816, 0.11024576425552368, -0.05038975924253464, 0.04834126681089401, 0.06649978458881378, -0.012981836684048176, -0.08557141572237015, 0.023789849132299423, -0.068336620926857, -0.03150583803653717, -0.27926525473594666, -0.0930178239941597, -0.09319330751895905, 0.11305391043424606, 0.04079577326774597, 0.06421639025211334, 0.16545771062374115, 0.05191578343510628, -0.024325082078576088, -0.03006586618721485, 0.11609793454408646, 0.12905290722846985, 0.2277202159166336, -0.06067761778831482, 0.10221996158361435, 0.009445492178201675, -0.08203992247581482, 0.06062209978699684, 0.056782789528369904, 0.06324724853038788, 0.02584579586982727, 0.03694582358002663, -0.030939655378460884, 0.1121687963604927, 0.12571842968463898, 0.05258069559931755, 0.0481170229613781, 0.0002127334737451747, -0.0561506561934948, -0.008168719708919525, -0.05726633965969086, 0.06774696707725525, 0.061340972781181335, -0.12918008863925934, -0.08061543852090836, 0.0011613310780376196, 0.06660808622837067, -0.016230419278144836, 0.06823775917291641, -0.13560809195041656, -0.03582429885864258, 0.0790911465883255, -0.07693151384592056, -0.14156894385814667, 0.11972879618406296, -0.026570770889520645, -0.19904157519340515, 0.05265914276242256, 0.007704653777182102, 0.0908159390091896, -0.06360849738121033, 0.05343840271234512, -0.13023801147937775, -0.12935101985931396, -0.018437571823596954, 0.07945099472999573, -0.3450873792171478, 0.13536721467971802, -0.013286802917718887, -0.02876877970993519, -0.06474969536066055, -0.02640824392437935, 0.013905409723520279, 0.12719078361988068, 0.08667250722646713, 0.0008821099763736129, 0.0991629809141159, 0.03823768347501755, 0.04188435152173042, -0.002011700300499797, 0.10950417071580887, 0.0050011589191854, 0.004797275178134441, -0.04982118681073189, 0.007274609990417957, -0.05164213851094246, -0.07472953200340271, 0.08393982797861099, -0.20678792893886566, 0.09087453782558441, -0.03378438204526901, 0.08427679538726807, 0.04304937273263931, -0.018965769559144974, -0.1001204177737236, 0.19745583832263947, -0.012206900864839554, -0.11405988782644272, -0.07517550885677338, -0.02810264565050602, 0.09103139489889145, -0.013817726634442806, 0.012886416167020798, -0.045470476150512695, 0.032183047384023666, -0.1263762265443802, -0.1597503274679184, 0.08734500408172607, -0.04441224783658981, -0.10894393920898438, -0.025462759658694267, 0.20382575690746307, -0.007266622502356768, 0.08242089301347733, 0.01605331338942051, 0.010653935372829437, -0.18066231906414032, -0.04018142446875572, 0.02645772136747837, -0.0016437612939625978, 0.005979063920676708, 0.047698814421892166, 0.019091911613941193, 0.06207629665732384, -0.1069745197892189, -0.013920160941779613, 0.3158324360847473, 0.15978319942951202, -0.00912671908736229, 0.14943915605545044, 0.1093616932630539, -0.08669080585241318, -0.17238758504390717, -0.1171615794301033, -0.1210922971367836, -0.08425768464803696, -0.10681738704442978, -0.1525043100118637, 0.09535340964794159, -0.03392014652490616, 0.03498011827468872, 0.14615866541862488, -0.280263751745224, -0.10949636250734329, 0.13820378482341766, 0.010744688101112843, 0.3510635495185852, -0.12303631007671356, -0.044944874942302704, -0.06214528530836105, -0.16933435201644897, 0.08021392673254013, -0.031203703954815865, 0.11581093072891235, -0.0744495838880539, 0.19395925104618073, 0.01719796098768711, 0.014287159778177738, 0.0916559100151062, 0.05038322135806084, -0.05808406323194504, -0.07368700206279755, -0.10248131304979324, 0.010812131687998772, 0.03546109423041344, 0.010252019390463829, -0.008802837692201138, 0.0211968794465065, -0.11341743916273117, -0.050869911909103394, -0.06302189081907272, 0.0072614275850355625, -0.01001308299601078, -0.042155615985393524, -0.05533592775464058, -0.022557416930794716, -0.020093943923711777, 0.02266426384449005, 0.14185629785060883, -0.07527699321508408, 0.18586260080337524, 0.02357078716158867, 0.1586609035730362, -0.11956068128347397, -0.06724818795919418, -0.029193658381700516, -0.05280323326587677, 0.06468886137008667, -0.08884575963020325, -0.027708567678928375, 0.1332162618637085, -0.01903904788196087, 0.04655366763472557, 0.12936700880527496, 0.02046884410083294, 0.015383756719529629, 0.034968774765729904, -0.2578005790710449, -0.07463036477565765, -0.03505445644259453, -0.012416874058544636, 0.05272092670202255, 0.05525677278637886, 0.19735674560070038, -0.03551921248435974, -0.08521962910890579, 0.020131373777985573, 0.02735883742570877, -0.02776256389915943, 0.10749414563179016, 0.019579345360398293, -0.004837906453758478, -0.16151933372020721, 0.08257976174354553, -0.005964108742773533, -0.08297000825405121, 0.028665626421570778, 0.2024049311876297, -0.12141239643096924, -0.10309756547212601, -0.06804922968149185, 0.07315051555633545, -0.09220825880765915, 0.016043387353420258, -0.005091092549264431, -0.1521538347005844, 0.06916408240795135, 0.07598215341567993, 0.04075418785214424, 0.06513199955224991, -0.11743064224720001, -0.015730571001768112, -0.04170290008187294, -0.002195435343310237, 0.03521120920777321, 0.01863143965601921, -0.057492829859256744, 0.15846455097198486, -0.0676199421286583, 0.08538917452096939, -0.0744810476899147, -0.1058846190571785, -0.1395980566740036, 0.04660497233271599, -0.08038312196731567, -0.07247276604175568, -0.12832807004451752, -0.052204377949237823, -0.0067099276930093765, -0.03388519585132599, 0.006552806124091148, -0.06627799570560455, -0.10922821611166, 0.01822470687329769, -0.00743203004822135, -0.009385870769619942, -0.06096754968166351, 0.026706209406256676, 0.06246216222643852, -0.039788868278265, 0.15730851888656616, 0.22509248554706573, -0.13591648638248444, 0.11564400047063828, -0.09797432273626328, -0.105463907122612, 0.046008042991161346, 0.009427277371287346, 0.03594303876161575, 0.0503489226102829, -0.03594081476330757, 0.0044484552927315235, 0.03905477747321129, 0.08074651658535004, 0.08456914126873016, -0.06776505708694458, 0.020801106467843056, -0.05122765153646469, -0.14904099702835083, -0.016655439510941505, -0.0464773029088974, 0.06876829266548157, -0.006725262850522995, 0.11020535975694656, -0.0515950471162796, 0.07739507406949997, -0.07558431476354599, 0.050614211708307266, 0.021146971732378006, -0.14688286185264587, -0.006612539757043123, -0.07093682140111923, 0.042144812643527985, -0.008834975771605968, 0.20241086184978485, -0.03228091076016426, 0.010342049412429333, 0.033811055123806, 0.06203942745923996, -0.01957780309021473, 0.009357001632452011, 0.2014283686876297, 0.12640917301177979, -0.08496357500553131, -0.02679651789367199, 0.06793134659528732, 0.07248228788375854, 0.07093550264835358, 0.10807815194129944, -0.015352966263890266, 0.028434239327907562, 0.07829629629850388, -0.060215238481760025, 0.07576877623796463, -0.08603982627391815, -0.11668483167886734, 0.05793621391057968, 0.012955795042216778, -0.055695828050374985, 0.20305177569389343, 0.19142870604991913, -0.026278704404830933, 0.018410727381706238, -0.0029499190859496593, -0.10117456316947937, -0.15619947016239166, -0.05423750728368759, -0.07170962542295456, -0.1319410353899002, -0.004549739416688681, -0.16646917164325714, 0.022016216069459915, -0.01132756657898426, 0.09506805986166, -0.06855440139770508, -0.01345991250127554, 0.1364889293909073, -0.1055467277765274, 0.0847758799791336, -0.024517204612493515, 0.07877567410469055, -0.03746940940618515, -0.018209461122751236, -0.10342709720134735, 0.007514837197959423, 0.01131442841142416, 0.06840907037258148, -0.10897937417030334, 0.02432350255548954, -0.12208317965269089, -0.08617185056209564, -0.026142612099647522, 0.09279687702655792, -0.0403008833527565, 0.15116846561431885, 0.02645145356655121, -0.06710928678512573, -0.004313822835683823, 0.2646709978580475, -0.08046227693557739, -0.08319197595119476, -0.030799202620983124, 0.2152107208967209, 0.04053696244955063, 0.06396269053220749, 0.019140036776661873, 0.038027774542570114, -0.07184682041406631, 0.2957373559474945, 0.34401440620422363, -0.1318037211894989, -0.007773484103381634, 0.04225075617432594, 0.04406323283910751, 0.14687567949295044, 0.07998795062303543, 0.11360671371221542, 0.2849363386631012, -0.09197647124528885, 0.016657205298542976, -0.04230864346027374, -0.01424806285649538, -0.06908884644508362, 0.045314885675907135, 0.08216670155525208, -0.09241747111082077, -0.022950593382120132, 0.08125471323728561, -0.29741767048835754, 0.10791494697332382, -0.15600289404392242, -0.14948409795761108, -0.05027429759502411, -0.008771711029112339, 0.014683255925774574, 0.019041186198592186, 0.09663030505180359, 0.025651484727859497, -0.07275258749723434, 0.07816889137029648, 0.024486342445015907, -0.23020237684249878, -0.01345184724777937, 0.1456068754196167, -0.06789913028478622, -0.025938833132386208, -0.021313713863492012, 0.051610056310892105, 0.05763651058077812, 0.09027529507875443, -0.03809558227658272, -0.0746568813920021, -0.007141788024455309, -0.022818787023425102, 0.01914946548640728, 0.0597183033823967, 0.06841408461332321, -0.0920223817229271, 0.1167774423956871, -0.07350476831197739, 0.0650370642542839, 0.037623800337314606, -0.022277191281318665, 0.0018526542698964477, 0.013183658011257648, -0.06512464582920074, 0.05533479526638985, 0.1295643299818039, -0.025459708645939827, -0.002524374984204769, -0.028180841356515884, -0.0767761766910553, -0.024015206843614578, -0.04643676429986954, -0.09101243317127228, -0.18130090832710266, -0.12738600373268127, 0.041754670441150665, -0.03240608796477318, -0.2046082615852356, 0.0060346988029778, -0.1128578633069992, 0.03700976446270943, -0.14154092967510223, 0.10004086047410965, 0.07216610759496689, 0.004716616589576006, 0.006774604320526123, 0.0675399899482727, 0.045677728950977325, 0.14796748757362366, -0.16543124616146088, -0.04919974133372307 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-herblabels This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.4823 - Rouge1: 3.0759 - Rouge2: 1.0495 - Rougel: 3.0758 - Rougelsum: 3.0431 - Gen Len: 18.9716 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:| | No log | 1.0 | 264 | 1.6010 | 2.4276 | 0.5658 | 2.3546 | 2.3099 | 18.9091 | | 2.5052 | 2.0 | 528 | 1.0237 | 2.9016 | 0.3395 | 2.8221 | 2.783 | 18.9673 | | 2.5052 | 3.0 | 792 | 0.7793 | 2.962 | 0.3091 | 2.9375 | 2.8786 | 18.9588 | | 1.1552 | 4.0 | 1056 | 0.6530 | 2.98 | 0.4375 | 2.9584 | 2.8711 | 18.9588 | | 1.1552 | 5.0 | 1320 | 0.5863 | 3.0023 | 0.5882 | 2.987 | 2.9155 | 18.9588 | | 0.8659 | 6.0 | 1584 | 0.5428 | 3.0576 | 0.8019 | 3.0494 | 2.9989 | 18.9716 | | 0.8659 | 7.0 | 1848 | 0.5145 | 3.0808 | 0.9476 | 3.0719 | 3.0237 | 18.9716 | | 0.747 | 8.0 | 2112 | 0.4962 | 3.0748 | 1.0032 | 3.0683 | 3.0359 | 18.9716 | | 0.747 | 9.0 | 2376 | 0.4856 | 3.0702 | 1.0196 | 3.0665 | 3.0328 | 18.9716 | | 0.6987 | 10.0 | 2640 | 0.4823 | 3.0759 | 1.0495 | 3.0758 | 3.0431 | 18.9716 | ### Framework versions - Transformers 4.12.5 - Pytorch 1.10.0 - Datasets 1.16.1 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["rouge"], "model-index": [{"name": "t5-small-herblabels", "results": []}]}
text2text-generation
ggosline/t5-small-herblabels
[ "transformers", "pytorch", "t5", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #t5 #text2text-generation #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
t5-small-herblabels =================== This model is a fine-tuned version of t5-small on an unknown dataset. It achieves the following results on the evaluation set: * Loss: 0.4823 * Rouge1: 3.0759 * Rouge2: 1.0495 * Rougel: 3.0758 * Rougelsum: 3.0431 * Gen Len: 18.9716 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 8 * eval\_batch\_size: 8 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 10 * mixed\_precision\_training: Native AMP ### Training results ### Framework versions * Transformers 4.12.5 * Pytorch 1.10.0 * Datasets 1.16.1 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 10\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.12.5\n* Pytorch 1.10.0\n* Datasets 1.16.1\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #t5 #text2text-generation #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 10\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.12.5\n* Pytorch 1.10.0\n* Datasets 1.16.1\n* Tokenizers 0.10.3" ]
[ 63, 113, 4, 30 ]
[ "passage: TAGS\n#transformers #pytorch #t5 #text2text-generation #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 10\n* mixed\\_precision\\_training: Native AMP### Training results### Framework versions\n\n\n* Transformers 4.12.5\n* Pytorch 1.10.0\n* Datasets 1.16.1\n* Tokenizers 0.10.3" ]
[ -0.068316750228405, 0.036866139620542526, -0.0023741440381854773, 0.10314052551984787, 0.15732356905937195, 0.01711984910070896, 0.12500165402889252, 0.1333978772163391, -0.12591764330863953, 0.012641599401831627, 0.12266108393669128, 0.1498635709285736, 0.02379315346479416, 0.12083284556865692, -0.051797375082969666, -0.28156164288520813, 0.008380892686545849, 0.03186379373073578, -0.06026096269488335, 0.14316794276237488, 0.1046648919582367, -0.10579856485128403, 0.090302973985672, -0.0018888229969888926, -0.17933706939220428, 0.03278373181819916, 0.009834537282586098, -0.06278075277805328, 0.15121443569660187, 0.04684649407863617, 0.09638538956642151, 0.005005626939237118, 0.07766216993331909, -0.2173743098974228, 0.007767168805003166, 0.0653935894370079, 0.005415632389485836, 0.07981478422880173, 0.07680195569992065, 0.003149508498609066, 0.17182405292987823, -0.0729377418756485, 0.0477585606276989, 0.030970631167292595, -0.1269911378622055, -0.2170386165380478, -0.07846983522176743, 0.023129824548959732, 0.0846480056643486, 0.12257606536149979, -0.018642812967300415, 0.11476688832044601, -0.08554435521364212, 0.10574869811534882, 0.23365841805934906, -0.28379756212234497, -0.058942507952451706, -0.0034703656565397978, 0.035407960414886475, 0.08807476609945297, -0.08335114270448685, -0.024912798777222633, 0.047421980649232864, 0.05255784094333649, 0.1268702745437622, -0.03227611258625984, -0.12170634418725967, 0.013370285741984844, -0.14066579937934875, -0.04238172620534897, 0.16744354367256165, 0.04345584288239479, -0.026006972417235374, -0.044607751071453094, -0.0725088119506836, -0.15214857459068298, -0.030052995309233665, -0.011055952869355679, 0.0465635247528553, -0.008711609058082104, -0.0660848468542099, -0.017056304961442947, -0.10351221263408661, -0.06295539438724518, -0.06721502542495728, 0.1127055287361145, 0.040705494582653046, -0.0037027124781161547, -0.042786773294210434, 0.10371556133031845, -0.01016214955598116, -0.12647539377212524, 0.009630464017391205, 0.03032574988901615, 0.0007271835347637534, -0.03838340565562248, -0.07658299803733826, -0.06186530739068985, 0.011617383919656277, 0.1447540521621704, -0.05855102092027664, 0.055843330919742584, 0.0018141636392101645, 0.033848464488983154, -0.09879909455776215, 0.17506720125675201, -0.03918711468577385, -0.027735887095332146, 0.006895946338772774, 0.034907035529613495, 0.02254570834338665, -0.0146830715239048, -0.11199118196964264, -0.0036511486396193504, 0.11316092312335968, 0.02583734504878521, -0.06208706647157669, 0.07487967610359192, -0.04060745984315872, -0.019947540014982224, -0.020989863201975822, -0.0985463410615921, 0.02220267616212368, -0.013649904169142246, -0.07904116809368134, 0.004683977458626032, 0.029943076893687248, 0.020378775894641876, -0.049237512052059174, 0.10127885639667511, -0.07969756424427032, 0.03046436607837677, -0.09512832015752792, -0.11750296503305435, 0.023964667692780495, -0.03861052542924881, 0.01872732676565647, -0.10576947033405304, -0.19547690451145172, -0.01639525778591633, 0.05423520505428314, -0.03227287530899048, -0.0595494769513607, -0.06360136717557907, -0.07278469204902649, 0.025281371548771858, -0.03334656357765198, 0.15414272248744965, -0.06999005377292633, 0.10102871060371399, 0.03658011555671692, 0.05076555907726288, -0.053993239998817444, 0.06594225019216537, -0.10742467641830444, 0.007080479990690947, -0.15538200736045837, 0.060148611664772034, -0.023040488362312317, 0.07142344862222672, -0.10583318024873734, -0.10820576548576355, 0.0038107018917798996, 0.00909456517547369, 0.08310435712337494, 0.10019732266664505, -0.1570938378572464, -0.07976414263248444, 0.1713338941335678, -0.06862694770097733, -0.13502712547779083, 0.12238100916147232, -0.055447064340114594, 0.05759327858686447, 0.07378512620925903, 0.1721983253955841, 0.049052994698286057, -0.06720253825187683, 0.03217598795890808, -0.009405745193362236, 0.05421306565403938, -0.035595618188381195, 0.07096225768327713, -0.0005649121012538671, -0.011635320261120796, 0.024413693696260452, -0.010198093950748444, 0.07526212185621262, -0.09069357067346573, -0.08089101314544678, -0.05234038084745407, -0.0775722861289978, 0.014580721966922283, 0.049343954771757126, 0.07613932341337204, -0.11165710538625717, -0.09266914427280426, 0.06577353924512863, 0.08003823459148407, -0.07674482464790344, 0.04893646016716957, -0.0547000952064991, 0.04292643815279007, -0.01719985529780388, 0.00040246229036711156, -0.18517981469631195, -0.017147723585367203, 0.009867270477116108, 0.0018371858168393373, 0.03936924412846565, -0.0035376008599996567, 0.06602221727371216, 0.051397114992141724, -0.06297373026609421, -0.027047306299209595, -0.026486419141292572, -0.005074294749647379, -0.12048648297786713, -0.19349487125873566, -0.017314152792096138, -0.0033647511154413223, 0.13823185861110687, -0.21445639431476593, 0.033938102424144745, -0.021923137828707695, 0.08132350444793701, 0.008440306410193443, 0.0042942906729876995, -0.05075521022081375, 0.08184785395860672, -0.05475978925824165, -0.049287475645542145, 0.07003067433834076, 0.007641898933798075, -0.10096537321805954, -0.011816218495368958, -0.13372136652469635, 0.1440088450908661, 0.13655820488929749, -0.13903185725212097, -0.077353835105896, -0.0029588432516902685, -0.05135149881243706, -0.040294915437698364, -0.03809163346886635, 0.007420740090310574, 0.17948824167251587, -0.010194484144449234, 0.16448624432086945, -0.07554460316896439, -0.04282403737306595, 0.015498630702495575, -0.030884992331266403, 0.036809686571359634, 0.12743952870368958, 0.10065554827451706, -0.0908644050359726, 0.13875330984592438, 0.16757945716381073, -0.08286155015230179, 0.12620878219604492, -0.043161530047655106, -0.08959498256444931, -0.006792307365685701, -0.01597452536225319, -0.006731878034770489, 0.04616299644112587, -0.14333383738994598, 0.0057508512400090694, 0.02057884819805622, 0.041700270026922226, 0.03048502467572689, -0.21388858556747437, -0.024239467456936836, 0.03716770559549332, -0.05614430457353592, -0.024152720347046852, -0.014681614935398102, 0.008483919315040112, 0.11161094158887863, 0.009395388886332512, -0.08165767043828964, 0.03860536962747574, 0.0023225529585033655, -0.09323320537805557, 0.20786625146865845, -0.09987387806177139, -0.177507683634758, -0.12724216282367706, -0.0869174599647522, -0.04942665994167328, 0.005800409242510796, 0.08140908181667328, -0.08998867124319077, -0.035632047802209854, -0.08714983612298965, 0.05361071228981018, -0.026478897780179977, 0.020485734567046165, -0.00931477453559637, 0.005467129871249199, 0.07148782163858414, -0.1068321093916893, -0.010550742037594318, -0.028594978153705597, -0.06952670961618423, 0.04909682646393776, 0.01371026411652565, 0.10764691233634949, 0.16021870076656342, -0.010702939704060555, 0.010088269598782063, -0.038711413741111755, 0.22551923990249634, -0.0664982944726944, -0.02170829474925995, 0.15463389456272125, 0.006073412951081991, 0.050446417182683945, 0.11986939609050751, 0.04899908974766731, -0.09485725313425064, 0.03240671381354332, 0.03648306429386139, -0.027474531903862953, -0.24047426879405975, -0.04461692273616791, -0.05867767333984375, -0.0011098815593868494, 0.10082673281431198, 0.027390575036406517, 0.05665978416800499, 0.04924740269780159, 0.026050029322504997, 0.07746230065822601, -0.008228834718465805, 0.07430441677570343, 0.1577109396457672, 0.043075282126665115, 0.13313554227352142, -0.04669973999261856, -0.06352947652339935, 0.053436361253261566, -0.022719237953424454, 0.21555668115615845, 0.011074520647525787, 0.13983386754989624, 0.04556947946548462, 0.14611370861530304, -0.005476788152009249, 0.08137420564889908, 0.011759309098124504, -0.030006015673279762, -0.01917077600955963, -0.04732236638665199, -0.0360223725438118, 0.03698455169796944, -0.07986430078744888, 0.03275256231427193, -0.1303204745054245, -0.01997787319123745, 0.053116753697395325, 0.26607730984687805, 0.04714173823595047, -0.32252994179725647, -0.08779674768447876, 0.01117012556642294, -0.07186419516801834, -0.030356787145137787, 0.040847521275281906, 0.07305844873189926, -0.09125890582799911, 0.05374128744006157, -0.06312165409326553, 0.11815904080867767, -0.025520769879221916, 0.056115929037332535, 0.06458058208227158, 0.09541480988264084, 0.0059763588942587376, 0.08937517553567886, -0.3341118097305298, 0.273664653301239, -0.002059556543827057, 0.05819923058152199, -0.07319056987762451, 0.008068498224020004, 0.03131259232759476, 0.06438291072845459, 0.0473862960934639, -0.015865620225667953, -0.07743662595748901, -0.1667374074459076, -0.04434594884514809, 0.036269959062337875, 0.1093597337603569, -0.02137850970029831, 0.10802803933620453, -0.0531647652387619, 0.011460083536803722, 0.08188074827194214, -0.012651425786316395, -0.08912403136491776, -0.09804235398769379, -0.00008229886589106172, 0.038700103759765625, 0.021456072106957436, -0.06571077555418015, -0.0960598737001419, -0.0919710174202919, 0.1602945327758789, -0.00317521789111197, -0.02770010009407997, -0.11307530105113983, 0.08602918684482574, 0.08251000940799713, -0.0873035341501236, 0.035519685596227646, 0.013751784339547157, 0.06414133310317993, 0.04660523310303688, -0.08562692254781723, 0.12735971808433533, -0.05776212364435196, -0.16125915944576263, -0.048476021736860275, 0.11126150190830231, 0.013526054099202156, 0.06218378618359566, -0.013566842302680016, 0.013206427916884422, -0.050451453775167465, -0.08511343598365784, -0.0025194110348820686, -0.013302044942975044, 0.05148681625723839, 0.04128497466444969, -0.06243640556931496, 0.0253794826567173, -0.06823963671922684, -0.06534317880868912, 0.20025265216827393, 0.23577773571014404, -0.07808200269937515, 0.02140640839934349, 0.03552298992872238, -0.07630413770675659, -0.18455879390239716, 0.019420742988586426, 0.05136707425117493, -0.004348257556557655, 0.03566844388842583, -0.19599425792694092, 0.09696584939956665, 0.11131404340267181, -0.000749334052670747, 0.0903192088007927, -0.34434571862220764, -0.13848331570625305, 0.10997503250837326, 0.12451346963644028, 0.1082644909620285, -0.15503425896167755, -0.020216111093759537, -0.05611126497387886, -0.11465075612068176, 0.12161717563867569, -0.10112239420413971, 0.1280665099620819, -0.023819230496883392, 0.10466403514146805, 0.005752596538513899, -0.04308310151100159, 0.11633948236703873, 0.0022965925745666027, 0.0909128189086914, -0.07054311037063599, 0.026317235082387924, 0.02992827445268631, -0.03968048095703125, 0.028131308034062386, -0.10599690675735474, 0.031078996136784554, -0.09278024733066559, -0.026227504014968872, -0.06989551335573196, 0.029126297682523727, -0.03018386848270893, -0.06478054821491241, -0.03552638366818428, 0.004873595200479031, 0.06745726615190506, -0.017035964876413345, 0.14920450747013092, -0.009661974385380745, 0.14607232809066772, 0.10453540831804276, 0.08204793930053711, -0.07185349613428116, -0.03644445538520813, -0.013581020757555962, -0.019546067342162132, 0.04936903342604637, -0.16253416240215302, 0.03704000264406204, 0.1437760442495346, 0.0012874468229711056, 0.15832872688770294, 0.08158743381500244, -0.025418447330594063, 0.006464207544922829, 0.06567545235157013, -0.15474767982959747, -0.09919749200344086, -0.025584664195775986, -0.030459990724921227, -0.10145127028226852, 0.02880363166332245, 0.12071569263935089, -0.07731739431619644, -0.00457289582118392, -0.00466422364115715, 0.016519008204340935, -0.07103114575147629, 0.18885476887226105, 0.028432408347725868, 0.03745521232485771, -0.1000598594546318, 0.09011165052652359, 0.053153086453676224, -0.0949028730392456, 0.019422877579927444, 0.120579294860363, -0.07216095179319382, -0.04699169471859932, 0.07859079539775848, 0.16298529505729675, -0.09694436192512512, -0.06200016662478447, -0.13076600432395935, -0.1347338855266571, 0.09569250047206879, 0.14829637110233307, 0.08834630995988846, 0.019988354295492172, -0.049096424132585526, 0.007069761864840984, -0.11363082379102707, 0.07610374689102173, 0.05014042556285858, 0.061561308801174164, -0.12678302824497223, 0.1645205318927765, 0.010190208442509174, 0.0339370034635067, -0.02313281036913395, 0.018940340727567673, -0.09660719335079193, 0.017805349081754684, -0.15983060002326965, -0.030873343348503113, -0.0215214304625988, 0.004096013028174639, 0.0011668180814012885, -0.04462883621454239, -0.06410996615886688, 0.010450375266373158, -0.11772267520427704, -0.038320064544677734, 0.008581223897635937, 0.061565857380628586, -0.11213947087526321, -0.036194104701280594, 0.02679331786930561, -0.06921803951263428, 0.07866770029067993, 0.051685016602277756, -0.0007509013521485031, 0.07202283293008804, -0.1627136766910553, 0.008575732819736004, 0.06014764681458473, 0.020757367834448814, 0.04654374718666077, -0.08864358812570572, -0.007287897169589996, 0.011488242074847221, 0.06057080999016762, 0.017396723851561546, 0.0535585917532444, -0.13332447409629822, -0.01919073611497879, -0.02738765999674797, -0.08717304468154907, -0.06617236882448196, 0.03235457092523575, 0.05311610922217369, 0.021383948624134064, 0.19159749150276184, -0.09121115505695343, 0.04094282537698746, -0.21207036077976227, 0.01269689854234457, -0.010683136992156506, -0.1179363951086998, -0.11079097539186478, -0.0833214819431305, 0.0646381825208664, -0.049526147544384, 0.13835695385932922, 0.013938539661467075, 0.06606125086545944, 0.0392594188451767, -0.026813587173819542, 0.014149357564747334, 0.01851864717900753, 0.24294514954090118, 0.0436602346599102, -0.03769408166408539, 0.04317165166139603, 0.045611195266246796, 0.11182313412427902, 0.13243086636066437, 0.20265541970729828, 0.15106981992721558, -0.004482790362089872, 0.1037033423781395, 0.022146547213196754, -0.0647464171051979, -0.13838274776935577, 0.0370110459625721, -0.02339814230799675, 0.12412501871585846, -0.03279644995927811, 0.22508494555950165, 0.08305475115776062, -0.15965776145458221, 0.04369501397013664, -0.06297244131565094, -0.07636372745037079, -0.11856593936681747, -0.037846438586711884, -0.09124957025051117, -0.17627376317977905, -0.011859985068440437, -0.12314631789922714, 0.052735067903995514, 0.09377046674489975, 0.02014187164604664, -0.024943307042121887, 0.13014143705368042, 0.019813893362879753, -0.012680722400546074, 0.06503768265247345, -0.010475666262209415, -0.012401197105646133, -0.09394138306379318, -0.07807081192731857, 0.0013531779404729605, -0.01499014999717474, 0.03318779543042183, -0.03274443745613098, -0.06292393803596497, 0.04029087722301483, -0.04703700914978981, -0.09434250742197037, 0.015373723581433296, 0.028347419574856758, 0.059499386698007584, 0.06756792962551117, 0.012361211702227592, -0.006211829837411642, -0.0036378372460603714, 0.26039794087409973, -0.09298641234636307, -0.10012805461883545, -0.09866759181022644, 0.2829018235206604, 0.04436508193612099, -0.006435185205191374, 0.025082211941480637, -0.063088059425354, -0.016117123886942863, 0.25059816241264343, 0.18613237142562866, -0.08334466069936752, -0.01813662424683571, -0.0021689317654818296, -0.004873001482337713, -0.017317188903689384, 0.11898332834243774, 0.1444884091615677, 0.03782745078206062, -0.08692510426044464, -0.020117919892072678, -0.04387323930859566, -0.008751405403017998, -0.047108352184295654, 0.07702042907476425, 0.03232971951365471, -0.009958634153008461, -0.018635371699929237, 0.07245351374149323, -0.07212771475315094, -0.06719949841499329, 0.00533032463863492, -0.1896340548992157, -0.15188008546829224, -0.01604846492409706, 0.10683780163526535, 0.012235104106366634, 0.059257932007312775, -0.023661550134420395, 0.0052063483744859695, 0.07294463366270065, -0.01678588055074215, -0.08447858691215515, -0.08891741186380386, 0.09599345922470093, -0.1209564059972763, 0.1755521148443222, -0.03431534394621849, 0.046576038002967834, 0.12998707592487335, 0.06450233608484268, -0.07641046494245529, 0.08845254778862, 0.0422452948987484, -0.05578634887933731, 0.04683919623494148, 0.09512516111135483, -0.04010392725467682, 0.06347641348838806, 0.045892540365457535, -0.13775339722633362, 0.02199295163154602, -0.049498945474624634, -0.05838437378406525, -0.030103838071227074, -0.054119061678647995, -0.05798845365643501, 0.12465329468250275, 0.22525480389595032, -0.04534515365958214, 0.012444237247109413, -0.08544706553220749, 0.0004443636571522802, 0.04243725538253784, 0.034183092415332794, -0.05125967785716057, -0.22695904970169067, -0.0030376070644706488, 0.08125648647546768, -0.009769286960363388, -0.2559731602668762, -0.08034367859363556, -0.002208450110629201, -0.06215199455618858, -0.11707119643688202, 0.11131292581558228, 0.09212030470371246, 0.03748684003949165, -0.046463411301374435, -0.10093389451503754, -0.06480686366558075, 0.17370504140853882, -0.1351722627878189, -0.0873090922832489 ]
null
null
adapter-transformers
# Adapter `ghadeermobasher/BC5CDR-Chemical-Disease-balanced-SapBERT-UMLS-2020AB-all-lang-from-XLMR` for ghadeermobasher/BC5CDR-Chemical-Disease-balanced-SapBERT-UMLS-2020AB-all-lang-from-XLMR An [adapter](https://adapterhub.ml) for the `ghadeermobasher/BC5CDR-Chemical-Disease-balanced-SapBERT-UMLS-2020AB-all-lang-from-XLMR` model that was trained on the [other](https://adapterhub.ml/explore/other/) dataset. This adapter was created for usage with the **[adapter-transformers](https://github.com/Adapter-Hub/adapter-transformers)** library. ## Usage First, install `adapter-transformers`: ``` pip install -U adapter-transformers ``` _Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. [More](https://docs.adapterhub.ml/installation.html)_ Now, the adapter can be loaded and activated like this: ```python from transformers import AutoModelWithHeads model = AutoModelWithHeads.from_pretrained("ghadeermobasher/BC5CDR-Chemical-Disease-balanced-SapBERT-UMLS-2020AB-all-lang-from-XLMR") adapter_name = model.load_adapter("ghadeermobasher/BC5CDR-Chemical-Disease-balanced-SapBERT-UMLS-2020AB-all-lang-from-XLMR", source="hf", set_active=True) ``` ## Architecture & Training <!-- Add some description here --> ## Evaluation results <!-- Add some description here --> ## Citation <!-- Add some description here -->
{"tags": ["adapter-transformers", "adapterhub:other", "xlm-roberta"], "datasets": ["ghadeermobasher/BC5CDR-Chemical-Disease"]}
null
ghadeermobasher/BC5CDR-Chemical-Disease-balanced-SapBERT-UMLS-2020AB-all-lang-from-XLMR
[ "adapter-transformers", "pytorch", "xlm-roberta", "adapterhub:other", "dataset:ghadeermobasher/BC5CDR-Chemical-Disease", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #adapter-transformers #pytorch #xlm-roberta #adapterhub-other #dataset-ghadeermobasher/BC5CDR-Chemical-Disease #region-us
# Adapter 'ghadeermobasher/BC5CDR-Chemical-Disease-balanced-SapBERT-UMLS-2020AB-all-lang-from-XLMR' for ghadeermobasher/BC5CDR-Chemical-Disease-balanced-SapBERT-UMLS-2020AB-all-lang-from-XLMR An adapter for the 'ghadeermobasher/BC5CDR-Chemical-Disease-balanced-SapBERT-UMLS-2020AB-all-lang-from-XLMR' model that was trained on the other dataset. This adapter was created for usage with the adapter-transformers library. ## Usage First, install 'adapter-transformers': _Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. More_ Now, the adapter can be loaded and activated like this: ## Architecture & Training ## Evaluation results
[ "# Adapter 'ghadeermobasher/BC5CDR-Chemical-Disease-balanced-SapBERT-UMLS-2020AB-all-lang-from-XLMR' for ghadeermobasher/BC5CDR-Chemical-Disease-balanced-SapBERT-UMLS-2020AB-all-lang-from-XLMR\n\nAn adapter for the 'ghadeermobasher/BC5CDR-Chemical-Disease-balanced-SapBERT-UMLS-2020AB-all-lang-from-XLMR' model that was trained on the other dataset.\n\nThis adapter was created for usage with the adapter-transformers library.", "## Usage\n\nFirst, install 'adapter-transformers':\n\n\n_Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. More_\n\nNow, the adapter can be loaded and activated like this:", "## Architecture & Training", "## Evaluation results" ]
[ "TAGS\n#adapter-transformers #pytorch #xlm-roberta #adapterhub-other #dataset-ghadeermobasher/BC5CDR-Chemical-Disease #region-us \n", "# Adapter 'ghadeermobasher/BC5CDR-Chemical-Disease-balanced-SapBERT-UMLS-2020AB-all-lang-from-XLMR' for ghadeermobasher/BC5CDR-Chemical-Disease-balanced-SapBERT-UMLS-2020AB-all-lang-from-XLMR\n\nAn adapter for the 'ghadeermobasher/BC5CDR-Chemical-Disease-balanced-SapBERT-UMLS-2020AB-all-lang-from-XLMR' model that was trained on the other dataset.\n\nThis adapter was created for usage with the adapter-transformers library.", "## Usage\n\nFirst, install 'adapter-transformers':\n\n\n_Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. More_\n\nNow, the adapter can be loaded and activated like this:", "## Architecture & Training", "## Evaluation results" ]
[ 49, 161, 57, 5, 4 ]
[ "passage: TAGS\n#adapter-transformers #pytorch #xlm-roberta #adapterhub-other #dataset-ghadeermobasher/BC5CDR-Chemical-Disease #region-us \n# Adapter 'ghadeermobasher/BC5CDR-Chemical-Disease-balanced-SapBERT-UMLS-2020AB-all-lang-from-XLMR' for ghadeermobasher/BC5CDR-Chemical-Disease-balanced-SapBERT-UMLS-2020AB-all-lang-from-XLMR\n\nAn adapter for the 'ghadeermobasher/BC5CDR-Chemical-Disease-balanced-SapBERT-UMLS-2020AB-all-lang-from-XLMR' model that was trained on the other dataset.\n\nThis adapter was created for usage with the adapter-transformers library.## Usage\n\nFirst, install 'adapter-transformers':\n\n\n_Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. More_\n\nNow, the adapter can be loaded and activated like this:## Architecture & Training## Evaluation results" ]
[ -0.05709964409470558, -0.0017240591114386916, -0.006760421674698591, 0.008356505073606968, 0.10799406468868256, 0.043266769498586655, 0.14967617392539978, 0.061734121292829514, 0.13831986486911774, 0.01907431147992611, -0.01386991236358881, 0.09408372640609741, 0.009312759153544903, 0.07551690191030502, 0.001164184883236885, -0.07480562478303909, -0.014049272052943707, 0.04428000748157501, -0.08170022815465927, 0.08024639636278152, 0.12844596803188324, -0.06314460188150406, 0.06478525698184967, 0.06786873191595078, -0.12304917722940445, 0.03076131083071232, 0.023263080045580864, -0.06066260486841202, 0.09096033126115799, 0.03185920789837837, 0.1590920239686966, 0.06510787457227707, 0.01164168119430542, -0.1911822259426117, 0.005900914315134287, 0.06958823651075363, 0.0046449098736047745, 0.07008875161409378, 0.022471128031611443, -0.0779334008693695, 0.05908868461847305, -0.04715314134955406, 0.06553570926189423, 0.057786740362644196, -0.0823666900396347, -0.2350168377161026, -0.0596514455974102, 0.09018561244010925, 0.03110966458916664, 0.044943876564502716, 0.024941645562648773, -0.005534284748136997, -0.02648947387933731, 0.046386536210775375, 0.17862944304943085, -0.22071579098701477, 0.011354767717421055, 0.04285541921854019, 0.08656762540340424, 0.05685196816921234, -0.054267141968011856, -0.009114481508731842, -0.05626348778605461, 0.04284479096531868, 0.1142992451786995, -0.03658808395266533, 0.14463545382022858, 0.034029364585876465, -0.15113656222820282, -0.01721028983592987, 0.1854104846715927, -0.045566484332084656, -0.0442182682454586, -0.10983221232891083, -0.05355263501405716, 0.013491871766746044, 0.021457994356751442, -0.08698607236146927, -0.012050758115947247, -0.0008625355549156666, 0.032733023166656494, -0.09486038982868195, -0.1048964262008667, -0.043901924043893814, -0.13203692436218262, 0.25478821992874146, -0.02068820223212242, 0.010879998095333576, -0.01467041578143835, 0.13741448521614075, 0.06712709367275238, -0.11380945891141891, -0.07877431809902191, -0.031375471502542496, -0.1126226857304573, -0.053357142955064774, -0.016649283468723297, -0.10410774499177933, 0.017373280599713326, 0.17163611948490143, 0.009276271797716618, 0.04057725518941879, -0.023578789085149765, 0.024306900799274445, -0.0023447342682629824, 0.2038232535123825, -0.02737458422780037, 0.03726521506905556, -0.015576192177832127, 0.05824155732989311, -0.026537783443927765, -0.0139476228505373, -0.040410663932561874, -0.07505372166633606, 0.012085657566785812, 0.04942755028605461, 0.017028074711561203, 0.064653679728508, -0.07214336097240448, -0.0781976729631424, 0.13436689972877502, -0.1468387246131897, 0.002865258837118745, 0.027141695842146873, -0.0025996046606451273, 0.04701186716556549, 0.1520286500453949, -0.01540757529437542, -0.006377785000950098, 0.09257762134075165, -0.05854155123233795, -0.008753887377679348, -0.05709126964211464, -0.07974333316087723, 0.016612648963928223, -0.009681458584964275, -0.04977015033364296, -0.12172457575798035, -0.09319902211427689, 0.04127223417162895, 0.08129684627056122, 0.00028678489616140723, 0.07217130064964294, 0.061358045786619186, 0.04459797963500023, 0.044347893446683884, -0.02299201488494873, -0.025649404153227806, -0.015678538009524345, 0.05539458617568016, 0.07391729950904846, 0.04578321427106857, -0.012092492543160915, 0.06342588365077972, -0.052202243357896805, 0.06737751513719559, -0.20962685346603394, 0.10195686668157578, -0.10686783492565155, -0.07348531484603882, -0.11968554556369781, 0.013918986544013023, 0.001707615563645959, 0.019920561462640762, 0.017466500401496887, 0.04325185343623161, -0.09510835260152817, -0.08266168087720871, 0.07016650587320328, -0.1234365701675415, -0.0891324058175087, 0.01090590562671423, -0.00642053596675396, 0.10970287770032883, 0.02470785565674305, 0.05189013481140137, 0.11615575104951859, -0.14032712578773499, -0.10742680728435516, 0.060236625373363495, -0.05679216980934143, 0.02939257211983204, 0.04378844425082207, 0.010932082310318947, -0.018348461017012596, 0.024221451953053474, -0.15506674349308014, 0.08535376936197281, -0.0011579323327168822, -0.042226750403642654, -0.05697983130812645, -0.016576720401644707, 0.10252827405929565, -0.021961933001875877, -0.03760688379406929, 0.06231432780623436, -0.13588044047355652, 0.20437021553516388, 0.09740708768367767, -0.062365252524614334, 0.011478505097329617, -0.11740295588970184, 0.006312580779194832, -0.10686513036489487, 0.0037303632125258446, -0.1819395273923874, -0.07199093699455261, 0.03160508722066879, -0.12101995199918747, -0.0009192457655444741, 0.04045594483613968, 0.09882789105176926, 0.022964641451835632, -0.007751759607344866, -0.056590527296066284, -0.035769958049058914, 0.023029210045933723, -0.00855492427945137, -0.1256348192691803, -0.06223846971988678, -0.045260220766067505, 0.1655627340078354, -0.11613096296787262, 0.034355856478214264, 0.05685390532016754, 0.12163355201482773, 0.00717266695573926, -0.026466574519872665, -0.04607119783759117, -0.02092740125954151, -0.02495906502008438, -0.022973613813519478, 0.009319830685853958, 0.0038650655187666416, -0.11111853271722794, 0.12293390184640884, -0.15055148303508759, -0.03375210240483284, 0.07749418169260025, 0.06724816560745239, -0.044215645641088486, -0.06743904203176498, -0.02587064728140831, -0.061129841953516006, 0.049850404262542725, -0.0664065033197403, 0.16718553006649017, 0.046820610761642456, 0.09369127452373505, -0.01656935177743435, -0.077617347240448, -0.003730570897459984, -0.025530381128191948, -0.033740464597940445, 0.0216528307646513, -0.035268962383270264, -0.09687391668558121, 0.03625786677002907, 0.2206438034772873, -0.043537043035030365, 0.1018221452832222, -0.021670421585440636, -0.05947065353393555, -0.10196211189031601, -0.005652726162225008, 0.021708814427256584, 0.09656113386154175, -0.06989774107933044, 0.030865831300616264, 0.043969277292490005, -0.014505036175251007, 0.026172848418354988, -0.0952637791633606, 0.06969095766544342, 0.05002271756529808, -0.04822589457035065, 0.010157238692045212, 0.02684757299721241, 0.026822451502084732, 0.04950118437409401, -0.01214676070958376, 0.10150459408760071, 0.050711341202259064, -0.007188811432570219, -0.06642104685306549, 0.15481165051460266, -0.10913941264152527, -0.2302769422531128, -0.17858366668224335, -0.1267516016960144, -0.029290461912751198, 0.005004344508051872, 0.00516625726595521, -0.08545161783695221, -0.06542248278856277, 0.006065279711037874, 0.14006073772907257, -0.03779356926679611, -0.0005765205714851618, 0.03148951381444931, -0.019538873806595802, 0.1030297800898552, -0.14522866904735565, -0.023896241560578346, 0.03515845909714699, -0.07647915184497833, 0.025629229843616486, 0.08420481532812119, 0.030449729412794113, 0.12681615352630615, -0.013573513366281986, 0.01709633506834507, 0.02303382195532322, 0.07214632630348206, -0.06393051147460938, 0.025027912110090256, 0.1836332529783249, -0.10670789331197739, 0.04350137710571289, 0.05976986885070801, 0.050211649388074875, 0.012067115865647793, -0.0007435676525346935, 0.03109160251915455, -0.0169590525329113, -0.22325895726680756, -0.03829333558678627, -0.0139057207852602, -0.06476624310016632, 0.0780143067240715, 0.05244678631424904, 0.04552707448601723, 0.039960622787475586, -0.02268536388874054, -0.04279790818691254, 0.013502098619937897, 0.05344688519835472, 0.20220769941806793, -0.014500278048217297, 0.10928518325090408, -0.046565305441617966, -0.012083534151315689, 0.041770823299884796, 0.03520786389708519, 0.14506028592586517, -0.008807497099041939, 0.14113575220108032, 0.08485502004623413, -0.026485268026590347, 0.05664629861712456, 0.07219752669334412, -0.01723446510732174, -0.016607919707894325, 0.04806051775813103, -0.07827520370483398, -0.02806648053228855, 0.03268294036388397, 0.011981348507106304, -0.008647921495139599, -0.0034056641161441803, 0.0057151117362082005, 0.06036325916647911, 0.1161174327135086, -0.05469143018126488, -0.17302517592906952, -0.08486633002758026, -0.004362167790532112, -0.010480117052793503, -0.04681940749287605, -0.06017689034342766, -0.014531156048178673, -0.051087167114019394, 0.036149606108665466, -0.04707486927509308, 0.030603554099798203, -0.11743368953466415, -0.012367632240056992, 0.12510815262794495, 0.12190711498260498, 0.025470511987805367, 0.05345860868692398, -0.3130275011062622, 0.059545159339904785, 0.0534854456782341, 0.02130848541855812, -0.05363589897751808, 0.08790386468172073, 0.0026803952641785145, 0.026623912155628204, 0.05729222297668457, 0.018278196454048157, -0.0003511336981318891, -0.13300520181655884, -0.05586713179945946, 0.01074141263961792, 0.07664834707975388, -0.10221323370933533, 0.09386249631643295, -0.05577435716986656, 0.012504368089139462, 0.07117850333452225, -0.040200091898441315, -0.1449933499097824, -0.1897374838590622, 0.1302804797887802, -0.0022950212005525827, -0.018455026671290398, -0.10448332875967026, -0.057837292551994324, 0.0215375404804945, 0.20631015300750732, -0.15853120386600494, -0.06534317880868912, -0.1021728515625, -0.03583507239818573, 0.1148051992058754, -0.08363540470600128, 0.06112320348620415, -0.027709510177373886, 0.06642226129770279, -0.027891801670193672, -0.15951478481292725, 0.050051458179950714, -0.06906282156705856, -0.03158097714185715, -0.03027595393359661, 0.0966886579990387, 0.08145933598279953, 0.016095688566565514, -0.003180866129696369, 0.0029856604523956776, -0.011057551950216293, -0.049771398305892944, 0.02281847409904003, 0.10712436586618423, -0.04892587661743164, 0.08120790123939514, -0.12437774240970612, -0.038372065871953964, -0.003754157805815339, -0.02935185097157955, 0.07578206062316895, 0.1557493656873703, -0.06573351472616196, 0.1066567450761795, 0.0815383791923523, -0.0860152468085289, -0.17533260583877563, -0.044107548892498016, 0.08456140756607056, 0.027930017560720444, 0.023939024657011032, -0.254520982503891, 0.17634405195713043, 0.06010700389742851, -0.025740299373865128, 0.0609460212290287, -0.18944917619228363, -0.08437541872262955, 0.16278934478759766, 0.00968673825263977, -0.003468963783234358, -0.07306920737028122, -0.05818839371204376, -0.012912816368043423, -0.18422892689704895, 0.12099847942590714, 0.009002272970974445, 0.0826205313205719, -0.0623636357486248, 0.044672418385744095, 0.04467853158712387, -0.042611900717020035, 0.12827646732330322, 0.008807007223367691, 0.023433014750480652, -0.04332061856985092, -0.0015393644571304321, 0.14500491321086884, -0.04579970985651016, 0.05394785851240158, -0.06990916281938553, 0.015164408832788467, -0.02814149297773838, -0.06694187968969345, -0.04202376678586006, 0.12017202377319336, -0.03716062009334564, -0.05206964910030365, 0.005696606822311878, 0.009613942354917526, -0.013594004325568676, -0.05519993230700493, -0.03361310437321663, -0.03614416718482971, 0.02213764563202858, 0.15303942561149597, 0.09578659385442734, 0.02877753973007202, -0.15383701026439667, -0.0033987907227128744, 0.009871378540992737, 0.06494702398777008, -0.06492000073194504, 0.09326338768005371, 0.07166661322116852, 0.02129712514579296, 0.11932138353586197, 0.05963783711194992, -0.09539692848920822, -0.049812860786914825, 0.09501342475414276, -0.09025858342647552, -0.09349989145994186, -0.02184258960187435, -0.006516164634376764, -0.09925244748592377, 0.015493247658014297, 0.1721349060535431, 0.04473906755447388, -0.009133691899478436, 0.03017597086727619, -0.0046708472073078156, -0.0822063609957695, 0.10721447318792343, -0.0022733460646122694, 0.058255065232515335, -0.046078942716121674, 0.0574236698448658, 0.10268542915582657, -0.07356244325637817, -0.017196862027049065, -0.023744070902466774, -0.06776352226734161, -0.03449787572026253, -0.10637293756008148, 0.08239268511533737, -0.12052294611930847, -0.017748557031154633, -0.03733768314123154, -0.11210981756448746, -0.005520608276128769, 0.1222788542509079, 0.04938198998570442, 0.0749531164765358, -0.020442882552742958, 0.05522744730114937, -0.0502079576253891, 0.11780241131782532, -0.014607321470975876, 0.08432989567518234, -0.11639691144227982, 0.0517314188182354, -0.008305180817842484, 0.05766671150922775, -0.033070143312215805, -0.0011547390604391694, -0.08022720366716385, -0.046315353363752365, -0.1946379840373993, -0.03672740235924721, -0.03790511190891266, -0.03312128037214279, 0.03806869685649872, -0.012806053273379803, -0.00012092581891920418, 0.04475787281990051, -0.025770939886569977, -0.038262512534856796, 0.024173282086849213, 0.08947764337062836, -0.14068837463855743, -0.05847575142979622, 0.041432105004787445, -0.08508659154176712, 0.1103091835975647, 0.12885500490665436, -0.004080594051629305, 0.016847161576151848, -0.019562246277928352, -0.010758144780993462, 0.010049542412161827, 0.05806145817041397, -0.0029169837944209576, -0.15687395632266998, 0.04949779063463211, -0.010300405323505402, -0.0340895913541317, -0.0024966371711343527, 0.18418920040130615, -0.09478477388620377, -0.04005303233861923, -0.056629057973623276, 0.024586185812950134, -0.08789627999067307, 0.04808858409523964, 0.11161445081233978, 0.12730900943279266, 0.10943781584501266, -0.0656861960887909, 0.014930450357496738, -0.1711852252483368, 0.006890491116791964, 0.009357541799545288, -0.026992134749889374, 0.04355745017528534, -0.10294245183467865, -0.0055838702246546745, -0.04203152656555176, 0.20317594707012177, -0.05324769392609596, -0.03788493946194649, 0.04965736344456673, -0.052367888391017914, -0.0061729527078568935, -0.01602005399763584, 0.18461576104164124, -0.007811895105987787, 0.012520985677838326, 0.053980715572834015, 0.0370059534907341, -0.035633329302072525, -0.0249389186501503, 0.0596623569726944, 0.1586551070213318, -0.0596914179623127, -0.01663229987025261, 0.0977889895439148, -0.12335249781608582, -0.06080348417162895, 0.04443170502781868, -0.11613602191209793, 0.04222957417368889, -0.03375420719385147, 0.16319863498210907, 0.08640579134225845, -0.07632464170455933, 0.08815552294254303, 0.010834944434463978, -0.05932902917265892, -0.08021816611289978, -0.06487874686717987, -0.039730384945869446, -0.1058647409081459, -0.02896341308951378, -0.06857127696275711, 0.009163114242255688, 0.04339155554771423, 0.006427539046853781, 0.010510138235986233, 0.197688028216362, 0.007405879441648722, -0.049495499581098557, 0.009052286855876446, -0.019339127466082573, -0.01325658243149519, -0.027189087122678757, 0.05681247636675835, 0.05334121361374855, 0.06986162066459656, 0.03515038266777992, 0.010313848964869976, 0.0014142256695777178, 0.052600063383579254, -0.021905794739723206, -0.1021217331290245, -0.028870586305856705, 0.015075872652232647, -0.05386678874492645, 0.10741426795721054, 0.00617431104183197, -0.014996849000453949, -0.04373196139931679, 0.13760322332382202, -0.040442269295454025, -0.11926679313182831, -0.08978541195392609, 0.2027815729379654, -0.007147061172872782, 0.019381754100322723, -0.0000315379656967707, -0.05313480645418167, -0.03927988559007645, 0.05101759359240532, 0.08686158806085587, -0.02249406836926937, 0.04073944687843323, 0.023158561438322067, 0.0032851274590939283, -0.019729234278202057, 0.034285563975572586, 0.07259528338909149, 0.13552601635456085, -0.006932777352631092, -0.028045613318681717, -0.039125047624111176, 0.0026102217379957438, 0.007887715473771095, 0.12975487112998962, -0.009401117451488972, 0.002437206218019128, -0.03021126613020897, -0.006995628122240305, 0.045906055718660355, -0.1288379579782486, -0.035848282277584076, -0.05758027359843254, -0.06577452272176743, -0.06441434472799301, 0.09906353056430817, -0.1057644933462143, -0.005475426092743874, -0.01098344475030899, -0.06708341091871262, 0.17835944890975952, 0.01496396865695715, -0.10894446074962616, 0.04583858326077461, 0.09540308266878128, -0.06580455601215363, 0.10099142044782639, -0.0032412465661764145, 0.0865158885717392, 0.08822203427553177, 0.05722292512655258, -0.10151024162769318, 0.026951106265187263, -0.004044315777719021, -0.16808772087097168, 0.007003387436270714, 0.1181681752204895, -0.016862710937857628, 0.04661501199007034, 0.04532921686768532, -0.11525308340787888, 0.041340749710798264, 0.020584261044859886, -0.10942662507295609, -0.06104186922311783, -0.0443393774330616, -0.012919400818645954, 0.11899132281541824, 0.16281884908676147, 0.01129991840571165, -0.01497175358235836, -0.1031784638762474, 0.029014721512794495, 0.06966707855463028, 0.14561381936073303, -0.042712852358818054, -0.12210328131914139, 0.041014865040779114, 0.0364338681101799, 0.042186036705970764, -0.21799324452877045, -0.09984489530324936, 0.040422383695840836, -0.051370903849601746, -0.006789256352931261, 0.09687883406877518, 0.10169710963964462, 0.12999139726161957, -0.02094840258359909, -0.02835661917924881, 0.0026732077822089195, 0.08398845791816711, -0.21550266444683075, -0.03167225047945976 ]
null
null
transformers
A fake news detector using RoBERTa. Dataset: https://www.kaggle.com/clmentbisaillon/fake-and-real-news-dataset Training involved using hyperparameter search with 10 trials.
{}
text-classification
ghanashyamvtatti/roberta-fake-news
[ "transformers", "pytorch", "tf", "jax", "roberta", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tf #jax #roberta #text-classification #autotrain_compatible #endpoints_compatible #region-us
A fake news detector using RoBERTa. Dataset: URL Training involved using hyperparameter search with 10 trials.
[]
[ "TAGS\n#transformers #pytorch #tf #jax #roberta #text-classification #autotrain_compatible #endpoints_compatible #region-us \n" ]
[ 43 ]
[ "passage: TAGS\n#transformers #pytorch #tf #jax #roberta #text-classification #autotrain_compatible #endpoints_compatible #region-us \n" ]
[ -0.009321261197328568, 0.03833454102277756, -0.007458383683115244, 0.04509740695357323, 0.19073563814163208, 0.044316064566373825, 0.058454908430576324, 0.1287291944026947, 0.022551734000444412, -0.051579687744379044, 0.10078538954257965, 0.24138477444648743, -0.027322381734848022, 0.13276614248752594, -0.10855449736118317, -0.2971561849117279, 0.04076668992638588, 0.051133155822753906, -0.021313859149813652, 0.11753110587596893, 0.10417038202285767, -0.05905111879110336, 0.07596512883901596, -0.046419013291597366, -0.15378999710083008, 0.048159681260585785, 0.06594772636890411, -0.13833029568195343, 0.10127073526382446, 0.07382937520742416, 0.12588348984718323, 0.04158720746636391, -0.06650744378566742, -0.11784545332193375, 0.0489172525703907, 0.011088315397500992, -0.1050376296043396, 0.041167519986629486, 0.06748871505260468, -0.11690855771303177, 0.07884424179792404, 0.055323585867881775, 0.027410900220274925, 0.06450454145669937, -0.16225191950798035, -0.10423062741756439, -0.016300354152917862, 0.05403559282422066, 0.041660375893116, 0.054933350533246994, 0.002406331244856119, 0.165925994515419, -0.11779409646987915, 0.14394643902778625, 0.10201145708560944, -0.2930733859539032, -0.03548481687903404, 0.08707228302955627, 0.023323284462094307, 0.06098324805498123, -0.04945063963532448, 0.048939675092697144, 0.029580453410744667, 0.010480081662535667, 0.018018465489149094, -0.09019327163696289, -0.17499925196170807, 0.024893369525671005, -0.07776133716106415, -0.03775801882147789, 0.22313113510608673, -0.04041024297475815, 0.05340717360377312, -0.0007737316773273051, -0.09091417491436005, -0.030990980565547943, -0.02418326400220394, -0.002275970298796892, -0.049730271100997925, 0.06232700124382973, 0.026058444753289223, -0.013186926953494549, -0.09809423238039017, 0.023618433624505997, -0.21575523912906647, 0.20315684378147125, 0.011073125526309013, 0.046705398708581924, -0.18286055326461792, 0.0459989495575428, 0.014395499601960182, -0.10498945415019989, 0.04919755086302757, -0.10466555505990982, -0.0019425388891249895, -0.043636951595544815, -0.04863319173455238, -0.06329197436571121, 0.09377274662256241, 0.1529233455657959, 0.03608943521976471, 0.05445031076669693, -0.045937035232782364, 0.07743069529533386, 0.02620675228536129, 0.10140315443277359, 0.009603774175047874, -0.037173379212617874, 0.07036366313695908, -0.1295900046825409, -0.02339029870927334, -0.07223007827997208, -0.1485622376203537, -0.02866498939692974, 0.07995997369289398, 0.08356259763240814, 0.02166367881000042, 0.10404128581285477, -0.0419488288462162, -0.03934840112924576, 0.04686550423502922, -0.07738121598958969, -0.005868424661457539, -0.0012271626619622111, 0.03016207553446293, 0.08848854154348373, -0.002339733298867941, -0.008075385354459286, -0.07455407083034515, 0.09171751886606216, -0.06258238852024078, -0.01459585502743721, -0.014811906032264233, -0.07497330754995346, 0.037943750619888306, -0.12400772422552109, 0.039442531764507294, -0.19917459785938263, -0.09627019613981247, 0.012180755846202374, 0.017002997919917107, -0.009292177855968475, -0.052401572465896606, -0.009447808377444744, -0.012960529886186123, 0.04553200304508209, -0.034451503306627274, -0.03935784101486206, -0.07009398192167282, 0.10774018615484238, -0.036607593297958374, 0.08322080969810486, -0.1176370233297348, 0.06356711685657501, -0.08634956181049347, -0.039686016738414764, -0.14588141441345215, 0.040148086845874786, -0.04176180064678192, 0.18446800112724304, 0.007176793646067381, -0.034750938415527344, -0.06632345169782639, 0.054496005177497864, -0.08303962647914886, 0.16552738845348358, -0.09155189990997314, -0.1015721783041954, 0.23152711987495422, -0.08864890784025192, -0.1539284735918045, 0.0929335504770279, -0.008485768921673298, 0.04341743513941765, 0.09651672095060349, 0.19637277722358704, 0.11013047397136688, 0.0019564928952604532, 0.11539260298013687, 0.11205906420946121, -0.10410775244235992, -0.07545039057731628, -0.0041510057635605335, 0.00875872652977705, -0.1460372507572174, 0.048308901488780975, 0.08407088369131088, 0.09102927148342133, -0.05070752277970314, -0.0368100069463253, -0.016935158520936966, -0.013283477164804935, 0.09212461113929749, 0.05224981531500816, 0.10786306113004684, -0.09071997553110123, -0.003641280811280012, -0.040592778474092484, -0.0010869416873902082, 0.037917427718639374, 0.014790180139243603, -0.07004217803478241, 0.10545012354850769, 0.039877865463495255, 0.03945983201265335, -0.21580500900745392, -0.10288207978010178, -0.015250361524522305, 0.16243277490139008, 0.004942703060805798, 0.11983106285333633, 0.04601852968335152, -0.06990334391593933, -0.028971347957849503, -0.006388726178556681, 0.16697250306606293, 0.022194530814886093, -0.028899136930704117, -0.09790395945310593, 0.08510036021471024, -0.06988522410392761, 0.019481709226965904, -0.07692243903875351, 0.015266002155840397, 0.0883803740143776, 0.11349862813949585, 0.031224610283970833, 0.07150533050298691, -0.008004596456885338, 0.0458093099296093, -0.06443936377763748, 0.00450447853654623, 0.0957048088312149, 0.00033932068618014455, -0.06369208544492722, 0.17560070753097534, -0.13162904977798462, 0.32559719681739807, 0.19696497917175293, -0.26217126846313477, -0.051548831164836884, 0.010724123567342758, -0.008646144531667233, 0.025664126500487328, 0.05032195523381233, 0.004741590935736895, 0.06533849239349365, -0.030018649995326996, 0.19591739773750305, -0.04492192715406418, -0.055207397788763046, 0.004895183723419905, -0.036748845130205154, -0.025998972356319427, 0.0950174331665039, 0.059740208089351654, -0.2587147653102875, 0.1858753114938736, 0.21288014948368073, 0.028769975528120995, 0.19745883345603943, -0.01727685146033764, 0.0362655408680439, 0.0803036317229271, -0.03968440368771553, -0.014263233169913292, -0.06441580504179001, -0.161104217171669, -0.03264031931757927, 0.06877408176660538, 0.01929817534983158, 0.047901153564453125, -0.0910627692937851, -0.05571477860212326, -0.0020206233020871878, 0.01679692231118679, -0.013326429761946201, 0.11468371748924255, 0.06406453251838684, 0.13502994179725647, -0.0016402006149291992, -0.07701896876096725, 0.10393793135881424, 0.008926604874432087, -0.09246701747179031, 0.18543438613414764, -0.1490211933851242, -0.34924226999282837, -0.11350839585065842, -0.16895651817321777, -0.008474688977003098, 0.03288592770695686, 0.10130787640810013, -0.1030014231801033, -0.03007487766444683, 0.0308525487780571, -0.010349035263061523, -0.07138746231794357, 0.04646311327815056, -0.07447469979524612, 0.08255894482135773, -0.04587502032518387, -0.06014982610940933, -0.07149641215801239, -0.021236412227153778, -0.02701779641211033, 0.15794764459133148, -0.1391502469778061, 0.08623568713665009, 0.16595755517482758, -0.020067209377884865, 0.06996379792690277, -0.05299761891365051, 0.18056757748126984, -0.1120925024151802, 0.007414393126964569, 0.17841097712516785, -0.06571152061223984, 0.061808329075574875, 0.14389599859714508, 0.017920805141329765, -0.06319127976894379, 0.03352314978837967, -0.02789968065917492, -0.09262390434741974, -0.22048231959342957, -0.1109093502163887, -0.1310063898563385, 0.06482371687889099, 0.04772242531180382, 0.07774230092763901, 0.16355474293231964, 0.05206412076950073, 0.011895610950887203, 0.007102332077920437, 0.019119808450341225, 0.07621041685342789, 0.2204350233078003, 0.012580770067870617, 0.13032104074954987, -0.06767912209033966, -0.12088239938020706, 0.10234188288450241, -0.004204527009278536, 0.08419796079397202, 0.07917173206806183, 0.005538177210837603, 0.01378991361707449, 0.07539360225200653, 0.14305070042610168, 0.10576064884662628, 0.026446959003806114, -0.03137886896729469, -0.0356302447617054, -0.010866614989936352, -0.04261491820216179, 0.007755958009511232, 0.0462922677397728, -0.13628387451171875, -0.0749204233288765, -0.12924832105636597, 0.09153498709201813, 0.09460277110338211, 0.04153214395046234, -0.19113317131996155, 0.008756885305047035, 0.07322221994400024, -0.035650670528411865, -0.0991269052028656, 0.07300576567649841, -0.043313167989254, -0.1552319973707199, 0.11367128044366837, -0.024095997214317322, 0.12887953221797943, -0.049325887113809586, 0.07350627332925797, -0.030443841591477394, -0.10093050450086594, 0.011503707617521286, 0.09925934672355652, -0.29933327436447144, 0.22340725362300873, 0.015824979171156883, -0.07107891142368317, -0.0699729472398758, -0.03219805285334587, 0.05306370556354523, 0.20534342527389526, 0.08746523410081863, 0.0022704557050019503, -0.06334558129310608, -0.13034701347351074, 0.016016768291592598, 0.007824087515473366, 0.11142180114984512, -0.0351637564599514, -0.018165161833167076, -0.05461844429373741, -0.028345316648483276, -0.020483968779444695, -0.02581126056611538, 0.01464915368705988, -0.15178021788597107, 0.06377823650836945, 0.015195479616522789, 0.037542786449193954, 0.01475437916815281, -0.042067740112543106, -0.09104583412408829, 0.18582181632518768, -0.046456169337034225, -0.07273619621992111, -0.13419097661972046, -0.06647150218486786, 0.0190085731446743, -0.08803398162126541, 0.0577816367149353, -0.0850016176700592, 0.008287896402180195, -0.05328083038330078, -0.22105200588703156, 0.136966273188591, -0.10764653980731964, -0.03392641618847847, -0.05488676577806473, 0.1371820569038391, -0.0902433767914772, 0.020884796977043152, 0.03147709742188454, 0.008263466879725456, -0.06647293269634247, -0.06925084441900253, 0.002256006235256791, -0.033020611852407455, 0.0188447255641222, 0.04305266961455345, -0.09435202926397324, -0.06753315776586533, -0.03547960892319679, -0.006159116514027119, 0.28110551834106445, 0.16856764256954193, -0.06638824939727783, 0.1532687097787857, 0.09365438669919968, -0.060475338250398636, -0.3188568949699402, -0.07566292583942413, -0.1023324504494667, -0.051819462329149246, -0.02177719958126545, -0.14433974027633667, 0.0836372897028923, -0.015517358668148518, -0.003576214425265789, 0.10677479952573776, -0.1557193398475647, -0.08037810772657394, 0.17019356787204742, -0.012521365657448769, 0.36895620822906494, -0.12660299241542816, -0.0813005194067955, -0.032633934170007706, -0.12180130183696747, 0.13972099125385284, -0.03457560017704964, 0.07809701561927795, -0.00970024149864912, 0.022823013365268707, 0.04347782954573631, -0.015697721391916275, 0.06755752861499786, -0.015534134581685066, 0.021747516468167305, -0.12256232649087906, -0.09800358861684799, 0.050938498228788376, -0.0012164103100076318, -0.014525603502988815, -0.010069524869322777, 0.01889680325984955, -0.15399169921875, -0.029489589855074883, -0.09314239770174026, 0.05357936769723892, 0.02643832191824913, -0.045520585030317307, 0.0042415643110871315, 0.002437808783724904, -0.0034311413764953613, -0.02365579456090927, 0.23234309256076813, -0.0613761804997921, 0.20948292315006256, 0.08876118808984756, 0.1404688060283661, -0.136032372713089, 0.033540934324264526, -0.06812077760696411, -0.06497341394424438, 0.053064778447151184, -0.10509978234767914, 0.0677591860294342, 0.10358286648988724, -0.04510800912976265, 0.06881155073642731, 0.10522960871458054, 0.034270647913217545, -0.03468047454953194, 0.17221061885356903, -0.23245227336883545, 0.023621613159775734, -0.07834894210100174, -0.058216724544763565, 0.07705168426036835, 0.03639107942581177, 0.1447460949420929, 0.04016062244772911, -0.05073674023151398, 0.010490224696695805, -0.015589777380228043, -0.009692923165857792, 0.04736130312085152, 0.09083392471075058, 0.0294950008392334, -0.12706077098846436, 0.04262249544262886, 0.05070679262280464, -0.14541703462600708, -0.005537425167858601, 0.1815081387758255, -0.15697652101516724, -0.1299753189086914, 0.0037433821707963943, 0.12616120278835297, -0.12407790124416351, -0.026786144822835922, -0.07814116030931473, -0.12194111943244934, 0.0694480761885643, 0.2583850920200348, 0.09926041215658188, 0.08048375695943832, -0.024284666404128075, -0.05153515934944153, 0.01066920068114996, 0.01013757660984993, 0.0006234251195564866, 0.019149107858538628, -0.12915752828121185, 0.04823042079806328, -0.020864631980657578, 0.1746288686990738, -0.09802678972482681, -0.06294061988592148, -0.1864650994539261, 0.03237463906407356, -0.053476810455322266, -0.036729440093040466, -0.05430159717798233, -0.016365505754947662, 0.00541598629206419, -0.057709649205207825, -0.04378709942102432, -0.058432240039110184, -0.12446195632219315, 0.03069818764925003, -0.005234524141997099, 0.04515013471245766, -0.050289690494537354, -0.05494287237524986, 0.08799003064632416, -0.027647079899907112, 0.11279013752937317, 0.09474439918994904, -0.08407987654209137, 0.11205213516950607, -0.1418243944644928, -0.10161864757537842, 0.11592499911785126, 0.020127184689044952, 0.07100807130336761, 0.06749971956014633, 0.04911384359002113, 0.04418381303548813, 0.006045393645763397, 0.07308679074048996, 0.04334741458296776, -0.12134910374879837, 0.049183059483766556, -0.02765093371272087, -0.17561137676239014, -0.04460466653108597, -0.02754919044673443, 0.09643793851137161, -0.010431152768433094, 0.12309997528791428, -0.06451715528964996, 0.08575484156608582, -0.05909856781363487, 0.004743561614304781, -0.023746976628899574, -0.20988520979881287, -0.06822951883077621, -0.07612072676420212, 0.026603244245052338, -0.006439046002924442, 0.1916307955980301, 0.07230682671070099, 0.03344825655221939, 0.05904145911335945, 0.04383727163076401, 0.013986093923449516, 0.0170248094946146, 0.15913496911525726, 0.07887425273656845, -0.05814015492796898, -0.07122661918401718, 0.06160949543118477, 0.010819459334015846, -0.013046654872596264, 0.14506031572818756, 0.06500440090894699, -0.03205122798681259, 0.05159856379032135, -0.005223423708230257, 0.04337305203080177, -0.05414113774895668, -0.16707244515419006, -0.01842368394136429, 0.07157707214355469, 0.011008630506694317, 0.01351366750895977, 0.14977091550827026, -0.020792176946997643, 0.04620819538831711, -0.051317762583494186, -0.03894871845841408, -0.1834738552570343, -0.08593132346868515, -0.10249766707420349, -0.0940849557518959, 0.006609790492802858, -0.08558192849159241, 0.0015269372379407287, 0.042883072048425674, 0.05846875160932541, -0.05476118251681328, 0.05724756792187691, 0.035331420600414276, -0.08263092488050461, 0.1021917536854744, -0.028148632496595383, 0.027034642174839973, -0.011987937614321709, -0.010573923587799072, -0.1295742243528366, -0.022367345169186592, -0.06645791232585907, 0.03137175738811493, -0.054285693913698196, 0.010825966484844685, -0.16240820288658142, -0.12045063823461533, -0.015026298351585865, 0.04872824251651764, -0.04438084363937378, 0.10731632262468338, 0.018155314028263092, 0.0012577339075505733, 0.05467524379491806, 0.2205696851015091, -0.043988604098558426, -0.06197338551282883, -0.06621558964252472, 0.24015583097934723, 0.06498633325099945, 0.09725312888622284, -0.007792160380631685, -0.00826571136713028, -0.06392902135848999, 0.31719911098480225, 0.2990921139717102, -0.05951068922877312, 0.05765257403254509, 0.014131797477602959, 0.03515201807022095, 0.14858707785606384, 0.15556403994560242, 0.08631066977977753, 0.22001273930072784, -0.05610945448279381, -0.0323924645781517, -0.03244649991393089, -0.00011717861343640834, -0.10615155845880508, 0.08834095299243927, 0.08061715215444565, -0.046249665319919586, -0.038747143000364304, 0.11574290692806244, -0.18907932937145233, 0.11950955539941788, -0.00375749752856791, -0.21530038118362427, -0.08457891643047333, -0.05569221079349518, 0.07448866218328476, 0.00903343502432108, 0.07589029520750046, -0.009611186571419239, -0.10277153551578522, 0.007392990868538618, 0.03433285653591156, -0.21637725830078125, -0.045405976474285126, 0.07789403200149536, -0.05879265069961548, 0.000526217685546726, -0.042464446276426315, 0.020487124100327492, 0.08371546864509583, 0.04306786507368088, -0.010364369489252567, 0.047011617571115494, 0.006061826832592487, -0.006725840270519257, 0.013983911834657192, 0.031955450773239136, 0.010460343211889267, -0.0943627655506134, 0.0788504108786583, -0.13313212990760803, 0.043683238327503204, -0.08427242189645767, -0.048453301191329956, -0.01001046597957611, 0.07200850546360016, -0.062395378947257996, 0.0614827498793602, 0.12546974420547485, -0.002076550154015422, -0.014398833736777306, -0.0724807158112526, -0.039408233016729355, 0.029062144458293915, -0.1274152547121048, -0.14411133527755737, -0.064139224588871, -0.09697576612234116, 0.06718652695417404, -0.005783849395811558, -0.1647292673587799, -0.000674006761983037, -0.12190773338079453, 0.04701998829841614, -0.1751846969127655, 0.11614945530891418, 0.051899779587984085, 0.016969917342066765, -0.0007698916597291827, -0.028184883296489716, 0.050279732793569565, 0.07457059621810913, -0.1374601572751999, -0.06961626559495926 ]
null
null
transformers
This repository belongs to TransportersBERT from ActTrans publication. Taju, Semmy Wellem, Syed Muazzam Ali Shah, and Yu-Yen Ou. “ActTRANS: Functional Classification in Active Transport Proteins Based on Transfer Learning and Contextual Representations.” Computational Biology and Chemistry 93 (August 1, 2021): 107537. https://doi.org/10.1016/j.compbiolchem.2021.107537.
{}
null
ghazikhanihamed/TransportersBERT
[ "transformers", "pytorch", "bert", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #bert #endpoints_compatible #region-us
This repository belongs to TransportersBERT from ActTrans publication. Taju, Semmy Wellem, Syed Muazzam Ali Shah, and Yu-Yen Ou. “ActTRANS: Functional Classification in Active Transport Proteins Based on Transfer Learning and Contextual Representations.” Computational Biology and Chemistry 93 (August 1, 2021): 107537. URL
[]
[ "TAGS\n#transformers #pytorch #bert #endpoints_compatible #region-us \n" ]
[ 23 ]
[ "passage: TAGS\n#transformers #pytorch #bert #endpoints_compatible #region-us \n" ]
[ -0.05582514405250549, -0.0059938449412584305, -0.0106970788910985, -0.029046038165688515, 0.12276504933834076, 0.03318239748477936, 0.02372138574719429, 0.05814843624830246, 0.1283326894044876, -0.008450702764093876, 0.13131918013095856, 0.20412099361419678, -0.05518573895096779, -0.0014659949811175466, -0.060662250965833664, -0.2503744065761566, 0.07448812574148178, 0.10944642126560211, -0.05779325217008591, 0.09946653246879578, 0.033594902604818344, -0.1090199276804924, 0.06034360080957413, -0.031356219202280045, -0.10178717225790024, 0.05382249876856804, 0.022958533838391304, -0.07516350597143173, 0.12614554166793823, 0.017229093238711357, 0.18774759769439697, 0.02010849304497242, -0.12349475175142288, -0.16799280047416687, 0.028976095840334892, 0.0017078231321647763, -0.06416994333267212, 0.029829638078808784, 0.067641980946064, -0.0958416610956192, 0.011812526732683182, 0.04986337199807167, 0.005196088925004005, 0.029664115980267525, -0.16331109404563904, -0.1660199761390686, -0.040016546845436096, 0.03566199541091919, 0.02647480182349682, 0.07168487459421158, 0.023379387333989143, 0.1733984798192978, -0.15529543161392212, 0.08478239923715591, 0.18858951330184937, -0.3070982098579407, 0.008051520213484764, 0.08039850741624832, 0.06561373919248581, 0.05102481693029404, -0.0034548938274383545, 0.0508800707757473, 0.001212250324897468, 0.02218480594456196, -0.026412250474095345, -0.08552643656730652, -0.013642089441418648, 0.08882433921098709, -0.0965084433555603, -0.09593788534402847, 0.201665997505188, -0.035358089953660965, 0.051234010607004166, 0.048935793340206146, -0.10587480664253235, -0.04507492482662201, -0.00264694239012897, -0.006025178357958794, -0.0201078150421381, 0.06390652805566788, 0.011368521489202976, -0.024782819673419, -0.11910133063793182, 0.039458055049180984, -0.22834016382694244, 0.2708556354045868, 0.02697429433465004, 0.09296334534883499, -0.22665227949619293, 0.06216507405042648, -0.053294818848371506, -0.07662333548069, 0.029203347861766815, -0.09727942198514938, 0.0473918691277504, 0.005940338596701622, -0.0753636509180069, 0.05180890113115311, 0.051905784755945206, 0.13826292753219604, 0.016379985958337784, 0.03267199918627739, 0.0194330383092165, 0.10806956142187119, 0.01739308051764965, 0.10608944296836853, 0.01434782799333334, -0.0010544572724029422, 0.022262273356318474, -0.16448475420475006, -0.004203388001769781, -0.04162668436765671, -0.09218078851699829, -0.0717039629817009, 0.031197229400277138, 0.09885258227586746, 0.010065644048154354, 0.0125453881919384, -0.0785975456237793, -0.002858554245904088, 0.0459388829767704, -0.05210942402482033, -0.005135030020028353, 0.013749269768595695, 0.03504934534430504, 0.21628758311271667, -0.030476583167910576, -0.027280736714601517, -0.03371305391192436, 0.12695543467998505, -0.07887829095125198, -0.008509011007845402, -0.04094306752085686, -0.027221381664276123, 0.05422108992934227, -0.14036667346954346, 0.07319435477256775, -0.14634281396865845, -0.0619744248688221, 0.04048692435026169, 0.04245685040950775, 0.017060942947864532, 0.031087180599570274, 0.014675622805953026, -0.005929364822804928, -0.019680023193359375, -0.07101673632860184, -0.06312412023544312, -0.05892617255449295, 0.10866933315992355, -0.0038128141313791275, 0.04870020970702171, -0.11713949590921402, 0.06124676764011383, -0.08538630604743958, 0.03670010715723038, -0.13224002718925476, -0.038841135799884796, -0.027744892984628677, 0.1672174632549286, 0.006601573899388313, -0.06774948537349701, -0.1257120668888092, 0.047252584248781204, -0.038980625569820404, 0.1608281284570694, -0.026440229266881943, -0.12333235889673233, 0.24205224215984344, -0.09686779230833054, -0.17037728428840637, 0.05819088593125343, 0.007297846022993326, -0.0187822412699461, 0.08241696655750275, 0.17078529298305511, 0.03631723299622536, -0.08738293498754501, 0.08095592260360718, 0.14191113412380219, -0.13318699598312378, -0.16365906596183777, 0.028528474271297455, -0.0334528423845768, -0.11907413601875305, 0.041265517473220825, 0.0034436413552612066, 0.08533528447151184, -0.0921982154250145, -0.004812197759747505, -0.01293246354907751, -0.015628160908818245, 0.0729161873459816, 0.058011963963508606, 0.09166673570871353, -0.0677810087800026, 0.00991390272974968, 0.0398266464471817, -0.011255721561610699, 0.03168392553925514, 0.058278635144233704, -0.043341703712940216, 0.1279294639825821, -0.06011424958705902, 0.0025730268098413944, -0.2085462361574173, -0.08715872466564178, -0.011371874250471592, 0.09177418053150177, -0.0393996424973011, 0.16790297627449036, 0.11040320247411728, -0.0925755500793457, 0.00358761684037745, -0.03143608197569847, 0.11512381583452225, 0.01712878979742527, -0.030011799186468124, -0.03772463649511337, 0.012738056480884552, -0.07095976918935776, -0.09710898995399475, -0.02491631917655468, -0.00627898471429944, 0.12167930603027344, 0.1264781653881073, 0.002507270546630025, 0.03385916352272034, -0.04122108966112137, 0.059168342500925064, -0.012312098406255245, 0.02199527993798256, 0.10435131192207336, -0.017714541405439377, -0.08321622759103775, 0.15026481449604034, -0.08384737372398376, 0.36931121349334717, 0.2024332880973816, -0.32852646708488464, 0.03981154039502144, -0.02746942825615406, -0.01390197966247797, 0.024579064920544624, 0.1122342124581337, -0.02590859867632389, 0.0881802886724472, 0.04394598677754402, 0.11318054795265198, -0.024956289678812027, -0.04454986751079559, 0.0007368221413344145, -0.047743842005729675, -0.049511488527059555, 0.09542335569858551, 0.06248341128230095, -0.13251787424087524, 0.1600245237350464, 0.28373822569847107, 0.04560614377260208, 0.09792512655258179, -0.06133773550391197, -0.022757407277822495, 0.039699189364910126, 0.015039279125630856, -0.04576999694108963, 0.03373005613684654, -0.26591286063194275, -0.047633323818445206, 0.07407993823289871, 0.02055620402097702, 0.09061875939369202, -0.1459200233221054, -0.05993150174617767, 0.030102252960205078, 0.02484927326440811, -0.07744612544775009, 0.09087593108415604, 0.04228215664625168, 0.07148098945617676, 0.012928525917232037, -0.04512014612555504, 0.10244821012020111, 0.005629644729197025, -0.04586281627416611, 0.16416428983211517, -0.11823447793722153, -0.2552604377269745, -0.1193137839436531, -0.15801620483398438, 0.02478799968957901, 0.012210648506879807, 0.074419766664505, -0.09139055013656616, -0.026302505284547806, 0.10130403935909271, 0.061081867665052414, -0.15493257343769073, 0.044168904423713684, -0.04580516368150711, 0.03345111384987831, -0.08739827573299408, -0.07113046199083328, -0.07068533450365067, -0.06981467455625534, -0.04961463436484337, 0.10121359676122665, -0.1246945932507515, 0.08166283369064331, 0.12132786959409714, 0.05094803124666214, 0.07646921277046204, -0.0020916727371513844, 0.17505085468292236, -0.06357396394014359, -0.05962150916457176, 0.18625718355178833, -0.039154816418886185, 0.10033397376537323, 0.09657420217990875, 0.044079359620809555, -0.06951406598091125, -0.033484332263469696, -0.060933757573366165, -0.10718005150556564, -0.20763958990573883, -0.10036817938089371, -0.13023525476455688, 0.004751497879624367, -0.000670114066451788, 0.042121771723032, 0.0700206607580185, 0.06631368398666382, 0.053532831370830536, -0.0864759013056755, -0.050034765154123306, 0.04923805594444275, 0.22149646282196045, -0.035591885447502136, 0.07959269732236862, -0.05890441685914993, -0.08794771879911423, 0.08127860724925995, 0.060010988265275955, 0.1817447543144226, 0.10210268944501877, 0.022593215107917786, 0.06595935672521591, 0.16745993494987488, 0.15201883018016815, 0.1540367156267166, -0.02193843014538288, -0.03577892482280731, -0.01526061724871397, -0.00010030799603555351, -0.06889137625694275, 0.0004913448356091976, 0.11326914280653, -0.13479973375797272, -0.0604836605489254, -0.24327106773853302, 0.07084902375936508, 0.04919629916548729, 0.032679811120033264, -0.15196309983730316, -0.00040421399171464145, 0.07282399386167526, -0.00041144643910229206, -0.044284626841545105, 0.09084761887788773, -0.0016829834785312414, -0.11569281667470932, 0.050119396299123764, -0.04132482036948204, 0.10694653540849686, -0.02481699176132679, 0.08771265298128128, -0.0358782634139061, -0.12598921358585358, 0.0662776455283165, 0.06900722533464432, -0.23785486817359924, 0.28764957189559937, -0.015047562308609486, -0.08228088170289993, -0.048801977187395096, -0.04197835922241211, -0.003781283274292946, 0.1852884590625763, 0.1024385541677475, 0.04168209061026573, -0.03920183330774307, -0.15113374590873718, 0.043328672647476196, 0.033142901957035065, 0.1328010857105255, -0.03353354334831238, -0.04113762453198433, 0.0004659405385609716, -0.012823380529880524, -0.026963958516716957, 0.03337518498301506, 0.0776907280087471, -0.1309017539024353, 0.04395826533436775, -0.0019880991894751787, 0.028880812227725983, -0.0074317543767392635, -0.01322081871330738, -0.06172190606594086, 0.11954687535762787, -0.06683460623025894, -0.05747222900390625, -0.0848630890250206, -0.1599932312965393, 0.1275681108236313, -0.10324639081954956, 0.072115458548069, -0.08794764429330826, -0.06709247827529907, -0.07358412444591522, -0.1814906895160675, 0.12599299848079681, -0.0998830795288086, 0.028712023049592972, -0.036930546164512634, 0.2198343575000763, -0.04788460582494736, 0.00006587969255633652, -0.008528475649654865, 0.013039504177868366, -0.11477264016866684, -0.08884283155202866, 0.01379021629691124, -0.015655362978577614, 0.05710950493812561, 0.041695158928632736, -0.03288666531443596, 0.06880264729261398, 0.015344602055847645, 0.034568872302770615, 0.21396347880363464, 0.186134472489357, -0.033745236694812775, 0.11985735595226288, 0.18027181923389435, -0.033794477581977844, -0.26661917567253113, -0.0846354141831398, -0.17172688245773315, -0.047513436526060104, -0.02810327708721161, -0.14752227067947388, 0.142644464969635, 0.0381203256547451, -0.020230794325470924, 0.12928421795368195, -0.2486487627029419, -0.049123749136924744, 0.1653672605752945, 0.0083856750279665, 0.5381866097450256, -0.10660535097122192, -0.09454790502786636, 0.02489558421075344, -0.25975850224494934, 0.10427799820899963, 0.02520833909511566, 0.051780153065919876, -0.021174505352973938, 0.09585968405008316, 0.036323096603155136, -0.08304581791162491, 0.11906874924898148, 0.028275268152356148, 0.02357698790729046, -0.06498955935239792, -0.13870584964752197, 0.037250224500894547, -0.013110331259667873, -0.03493497520685196, 0.06826557219028473, 0.017235321924090385, -0.14760255813598633, -0.02404404617846012, -0.13333261013031006, 0.05567457154393196, 0.036672841757535934, -0.031218502670526505, 0.005919408518821001, -0.03673669323325157, -0.025360016152262688, 0.013563361018896103, 0.2656884491443634, -0.02885071188211441, 0.13380834460258484, 0.004754696507006884, 0.06820327788591385, -0.2138592153787613, -0.11385384202003479, -0.07559774816036224, -0.052582528442144394, 0.08766578137874603, -0.04031619429588318, 0.04227626696228981, 0.15855242311954498, -0.016625750809907913, -0.009202802553772926, 0.1196829304099083, 0.0072800288908183575, -0.03377111256122589, 0.11844226717948914, -0.22603391110897064, -0.05008016526699066, -0.02580120787024498, -0.03263162076473236, 0.12460703402757645, 0.12217804044485092, 0.09506645798683167, 0.0754433125257492, -0.022474301978945732, -0.024322625249624252, -0.03513093665242195, -0.07823941111564636, 0.013863112777471542, 0.04773413762450218, 0.034937534481287, -0.11898844689130783, 0.047177523374557495, -0.02152738906443119, -0.266872763633728, -0.056712910532951355, 0.10026243329048157, -0.13707385957241058, -0.0934320017695427, -0.07949313521385193, 0.07076770067214966, -0.15040098130702972, -0.04215400665998459, -0.01284860447049141, -0.11120935529470444, 0.07076677680015564, 0.250417560338974, 0.1062779352068901, 0.10727981477975845, -0.032035890966653824, -0.005367985460907221, 0.042143698781728745, -0.07543303072452545, -0.013991466723382473, 0.0121172945946455, -0.08700574934482574, -0.010479255579411983, -0.013696597889065742, 0.15301570296287537, -0.08327650278806686, -0.07890510559082031, -0.171699658036232, 0.08268199115991592, -0.10711699724197388, -0.10958558320999146, -0.11338668316602707, -0.06782516837120056, 0.011405235156416893, -0.09893908351659775, -0.03024802915751934, -0.0328654907643795, -0.13816463947296143, 0.07684630155563354, 0.03262607753276825, 0.005515735596418381, -0.06403716653585434, -0.035874143242836, 0.1498086303472519, -0.05030526593327522, 0.09152921289205551, 0.18889226019382477, -0.08515924215316772, 0.13183313608169556, -0.10378775745630264, -0.14850100874900818, 0.10374602675437927, 0.012674182653427124, 0.08053745329380035, 0.08146080374717712, 0.015140734612941742, 0.07422392815351486, 0.028560757637023926, 0.05162277817726135, 0.003286920255050063, -0.1188889890909195, 0.016973691061139107, 0.04206009581685066, -0.17900550365447998, -0.02852419763803482, -0.09733768552541733, 0.15730208158493042, 0.03292210027575493, 0.08486420661211014, 0.020920267328619957, 0.1054333969950676, -0.023887382820248604, 0.009118972346186638, 0.011180376634001732, -0.19744594395160675, 0.027193883433938026, -0.05555891990661621, 0.006399804726243019, 0.0009134450228884816, 0.2835138142108917, -0.07805345952510834, 0.031515587121248245, 0.03223814070224762, 0.053333036601543427, -0.0018267212435603142, 0.019711701199412346, 0.23368167877197266, 0.1001359298825264, -0.04224341735243797, -0.09082697331905365, 0.08135782182216644, -0.009332779794931412, -0.035943757742643356, 0.1321525275707245, 0.12974345684051514, 0.06283511221408844, 0.0970291718840599, -0.0061447578482329845, 0.06124432384967804, -0.11149083077907562, -0.2839953899383545, 0.005014513153582811, 0.04187164828181267, 0.007620683405548334, 0.13637039065361023, 0.11712085455656052, -0.013480436988174915, 0.07515306025743484, -0.01791444607079029, -0.010756190866231918, -0.1442539393901825, -0.0785292312502861, -0.036694128066301346, -0.10411686450242996, 0.016604600474238396, -0.05977771431207657, -0.006930612958967686, 0.16422225534915924, 0.04799465835094452, -0.02543029561638832, 0.11942467838525772, 0.060724616050720215, -0.05485526844859123, 0.032888129353523254, -0.004953940864652395, 0.02457866445183754, 0.03158317878842354, -0.021798279136419296, -0.1477023959159851, -0.07525672018527985, -0.06770733743906021, 0.031246397644281387, -0.09311450272798538, -0.024162618443369865, -0.1108081042766571, -0.10779142379760742, -0.06457403302192688, 0.07176531851291656, -0.06568951159715652, 0.1171649917960167, -0.032683372497558594, 0.016234206035733223, 0.007168353535234928, 0.172343447804451, -0.07198196649551392, -0.024842115119099617, 0.017614079639315605, 0.2056950181722641, 0.049104735255241394, 0.1042415201663971, 0.0006923355394974351, 0.03809111937880516, -0.08218837529420853, 0.3366861045360565, 0.24629603326320648, -0.03666435182094574, 0.042452335357666016, 0.064607635140419, 0.050530221313238144, 0.11894407868385315, 0.10735389590263367, 0.10173739492893219, 0.3289482593536377, -0.09050356596708298, -0.03519318625330925, -0.025250563398003578, 0.009432761929929256, -0.09690305590629578, 0.0489007793366909, 0.039478812366724014, -0.06709855049848557, -0.08793099969625473, 0.10046962648630142, -0.17121359705924988, 0.10175119340419769, 0.06997337937355042, -0.2198277860879898, -0.03783851116895676, -0.060111887753009796, 0.181540384888649, -0.012015782296657562, 0.129024475812912, -0.03838730603456497, -0.1459164023399353, 0.06123366579413414, 0.050386372953653336, -0.27638113498687744, -0.08839067071676254, 0.1257728487253189, 0.042554836720228195, -0.00688927061855793, -0.016768725588917732, 0.013223016634583473, 0.060327593237161636, 0.07101310789585114, -0.025480445474386215, -0.0019402769394218922, 0.04185595363378525, -0.10931044816970825, -0.12752482295036316, -0.0229122806340456, 0.011525065638124943, -0.09778720140457153, 0.027700234204530716, -0.1871083378791809, 0.03940398618578911, 0.00809240061789751, -0.03241167217493057, -0.0014000540832057595, 0.0010574592743068933, -0.057058386504650116, 0.013885253109037876, 0.04856681451201439, 0.014625655487179756, -0.04175407066941261, -0.04523738846182823, -0.017677124589681625, 0.06060760095715523, -0.08221389353275299, -0.15152835845947266, -0.019660353660583496, -0.08916762471199036, 0.11470503360033035, -0.03491480275988579, -0.06863245368003845, -0.022439386695623398, -0.02936902828514576, 0.07283741235733032, -0.12221226841211319, 0.023255428299307823, 0.016710588708519936, 0.04700179398059845, 0.0185729768127203, -0.03645060583949089, 0.05477501451969147, 0.05671923607587814, -0.11537165194749832, -0.07711852341890335 ]
null
null
transformers
# Connor
{"tags": ["conversational"]}
text-generation
ghhostboy/DialoGPT-medium-connorDBH3-1
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
# Connor
[ "# Connor" ]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "# Connor" ]
[ 51, 3 ]
[ "passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n# Connor" ]
[ -0.02925184741616249, 0.05394621565937996, -0.007346093188971281, 0.018662704154849052, 0.1354130506515503, 0.0011122088180854917, 0.0965338721871376, 0.13358888030052185, 0.0066132009960711, -0.030047448351979256, 0.1957976222038269, 0.18953122198581696, -0.028730075806379318, -0.00020101357949897647, -0.07705681025981903, -0.24681657552719116, 0.052927784621715546, 0.04203924909234047, -0.0069792806170880795, 0.1323334276676178, 0.06496594846248627, -0.10170730948448181, 0.07417894899845123, 0.014766890555620193, -0.18092578649520874, 0.004835694562643766, 0.03368838131427765, -0.10148485749959946, 0.11837714910507202, 0.05181579291820526, 0.07185623049736023, 0.03968442231416702, -0.0590103417634964, -0.1718032956123352, 0.0378260463476181, 0.003725616494193673, -0.045444898307323456, 0.04131190851330757, 0.055930279195308685, -0.07218889892101288, 0.06813380122184753, 0.0985194742679596, 0.012346921488642693, 0.05202097073197365, -0.13377007842063904, -0.05445164814591408, -0.015775445848703384, 0.00477970065549016, 0.051107440143823624, 0.10512708872556686, -0.03996889665722847, 0.058458659797906876, -0.10048452019691467, 0.09470035135746002, 0.0878966823220253, -0.3642279803752899, -0.014858249574899673, 0.060671690851449966, 0.053683433681726456, 0.028430063277482986, -0.04060983285307884, 0.07492391765117645, -0.011408698745071888, 0.0041669453494250774, 0.01961233839392662, -0.06842498481273651, -0.09562181681394577, 0.05102641507983208, -0.06840752065181732, -0.07275954633951187, 0.23701967298984528, -0.0411129966378212, 0.08811333775520325, -0.057200636714696884, -0.08560889214277267, 0.006761489436030388, -0.028157033026218414, -0.021867457777261734, -0.07773901522159576, 0.08344189077615738, -0.05920545756816864, -0.1176028922200203, -0.1734667420387268, -0.007984761148691177, -0.1778126358985901, 0.13832898437976837, 0.0320969820022583, 0.05517163127660751, -0.19260957837104797, 0.07919147610664368, 0.016488784924149513, -0.0861700028181076, 0.0037327716127038, -0.0633641928434372, 0.03372429683804512, 0.01996453106403351, -0.06334789097309113, -0.10411565005779266, 0.1054673120379448, 0.09487809985876083, 0.01767733506858349, 0.0021578283049166203, -0.06312471628189087, 0.07998111844062805, 0.04181459918618202, 0.15595614910125732, 0.0031191317830234766, -0.03598559647798538, 0.04100242629647255, -0.1252720057964325, 0.00036424913560040295, -0.061184242367744446, -0.19767357409000397, -0.011346372775733471, 0.09601219743490219, 0.06185605749487877, 0.049581047147512436, 0.11046309024095535, -0.010031310841441154, -0.049231257289648056, 0.010036534629762173, -0.025234196335077286, -0.006252532359212637, 0.02294621616601944, 0.004628372378647327, 0.14127634465694427, -0.011905285529792309, 0.062359776347875595, -0.140914186835289, 0.09742679446935654, -0.051546014845371246, -0.01248314417898655, -0.013144419528543949, -0.04174954816699028, 0.003785834414884448, 0.023977981880307198, -0.0001645632873987779, -0.10523349791765213, -0.17493905127048492, 0.005424353759735823, 0.005040725693106651, -0.0273689404129982, -0.06790044158697128, -0.09073055535554886, -0.010336840525269508, 0.036975227296352386, -0.03890056908130646, -0.06945078074932098, -0.045190975069999695, 0.11755256354808807, -0.042167194187641144, 0.042104799300432205, -0.11105046421289444, 0.07916320115327835, -0.11077804863452911, -0.04744410142302513, -0.10197347402572632, 0.0980762392282486, 0.00718857254832983, 0.13121473789215088, -0.01728755421936512, -0.017116080969572067, -0.09815175086259842, 0.05661775916814804, -0.0483304001390934, 0.18905037641525269, -0.08971841633319855, -0.11480304598808289, 0.23990611732006073, -0.030095553025603294, -0.13967178761959076, 0.14997372031211853, 0.0016244726721197367, 0.01759430021047592, 0.10524740070104599, 0.22605174779891968, -0.014883499592542648, -0.010476954281330109, 0.11382004618644714, 0.07884949445724487, -0.08619476109743118, -0.036369845271110535, 0.02140865847468376, -0.061507076025009155, -0.010726026259362698, 0.05706731230020523, 0.11435557901859283, 0.009444364346563816, -0.03720390051603317, -0.04272313043475151, -0.03357268124818802, 0.0012569663813337684, 0.052476849406957626, 0.01237579993903637, 0.1141212210059166, -0.05483352020382881, -0.06145123019814491, -0.037660107016563416, -0.027675192803144455, -0.06503517925739288, 0.04087546095252037, -0.06467100977897644, 0.14506307244300842, -0.0013940678909420967, 0.06594178825616837, -0.12138308584690094, -0.09115113317966461, -0.02046472206711769, 0.24025379121303558, 0.028638137504458427, 0.06147945299744606, 0.05269705876708031, -0.041196905076503754, 0.012030383571982384, 0.01953684724867344, 0.15377284586429596, -0.023100776597857475, -0.06244855746626854, -0.06345859169960022, 0.10359788686037064, -0.04177824780344963, 0.07620002329349518, -0.12415637820959091, 0.006968116853386164, 0.11460010707378387, 0.06582167744636536, 0.009664244949817657, 0.01680014841258526, -0.02746749483048916, -0.021077269688248634, -0.08522540330886841, 0.00495782820507884, 0.10600091516971588, -0.007186750415712595, -0.060660794377326965, 0.18891876935958862, -0.12747310101985931, 0.21995873749256134, 0.19535614550113678, -0.32847464084625244, 0.03309515863656998, -0.12449122220277786, -0.05018541216850281, 0.019545070827007294, 0.051728181540966034, -0.050629425793886185, 0.15073467791080475, 0.02067919820547104, 0.18692433834075928, -0.043979134410619736, -0.04404625669121742, -0.02415771782398224, -0.003789240960031748, -0.006700950674712658, 0.07037521153688431, 0.09694147109985352, -0.12172182649374008, 0.1580640971660614, 0.20468899607658386, 0.0679987370967865, 0.16063782572746277, 0.01437209639698267, -0.0073439921252429485, 0.06535328179597855, -0.0007422196213155985, -0.04035529866814613, -0.053615786135196686, -0.2567192018032074, -0.03348274156451225, 0.06302867829799652, 0.0036448733881115913, 0.09699583053588867, -0.1298881620168686, -0.036478329449892044, 0.008474661037325859, -0.017181789502501488, 0.01482146605849266, 0.06206975877285004, 0.05965055525302887, 0.10083626210689545, 0.006409200839698315, -0.018204452469944954, 0.09128560870885849, 0.015156551264226437, -0.07827339321374893, 0.20302309095859528, -0.1133514940738678, -0.3264577090740204, -0.11229793727397919, -0.10049223899841309, -0.05149480327963829, 0.044781286269426346, 0.11583702266216278, -0.07116156816482544, -0.013666602782905102, -0.00012099794548703358, 0.08007866889238358, -0.1435246765613556, -0.0060938140377402306, -0.07178319990634918, 0.012652627192437649, -0.1434086710214615, -0.08146951347589493, -0.058304451406002045, -0.035322412848472595, -0.11820250749588013, 0.13414062559604645, -0.11009538918733597, 0.055668674409389496, 0.2082853615283966, 0.026049841195344925, 0.07032635062932968, -0.04794178158044815, 0.18897143006324768, -0.10888353735208511, -0.005476977676153183, 0.11953116953372955, -0.07212688773870468, 0.07971642166376114, 0.09387548267841339, 0.01311377715319395, -0.08847784996032715, 0.009223191998898983, -0.024561917409300804, -0.06821213662624359, -0.2246413677930832, -0.12730298936367035, -0.11128836870193481, 0.10052230209112167, 0.049173880368471146, 0.053642403334379196, 0.1727563887834549, 0.0530095212161541, -0.030952993780374527, -0.0047622015699744225, 0.0319613479077816, 0.08462076634168625, 0.3333025276660919, -0.05017906054854393, 0.14549614489078522, -0.00036478505353443325, -0.12129691243171692, 0.07011137157678604, 0.06197326257824898, 0.12701977789402008, 0.07242222130298615, 0.1320236176252365, 0.010376046411693096, 0.11551918834447861, 0.09322155267000198, 0.04498298466205597, -0.0011454194318503141, -0.029153570532798767, -0.02955644205212593, -0.042252399027347565, -0.01946003921329975, 0.02731548249721527, 0.08646757155656815, -0.17463566362857819, -0.012395774945616722, -0.07677937299013138, 0.08058426529169083, 0.17890849709510803, 0.04724331572651863, -0.14464187622070312, -0.02763214148581028, 0.06071821600198746, -0.03439399600028992, -0.09548717737197876, 0.10307709872722626, 0.010424081236124039, -0.11046235263347626, -0.000881882559042424, -0.03702011704444885, 0.11439632624387741, -0.12734322249889374, 0.1037118211388588, -0.09629391133785248, -0.09961969405412674, 0.023403676226735115, 0.1161087155342102, -0.2543545663356781, 0.2005613148212433, 0.014315655454993248, -0.05915552005171776, -0.12335977703332901, -0.02583943121135235, -0.022067811340093613, 0.10082397609949112, 0.10635748505592346, -0.015414229594171047, -0.01193956471979618, -0.03909774497151375, -0.03216499835252762, 0.03125924617052078, 0.1270037293434143, -0.049203384667634964, -0.011188369244337082, -0.07417355477809906, -0.0016169337322935462, -0.005096765235066414, 0.0032697771675884724, -0.005393367260694504, -0.22330342233181, 0.0886646956205368, 0.04297109693288803, 0.05749543756246567, 0.030012011528015137, -0.011055294424295425, -0.04832468181848526, 0.2742316424846649, -0.09723491966724396, -0.06184287369251251, -0.09418249130249023, -0.05288313701748848, 0.01004297100007534, -0.05761445686221123, 0.026147663593292236, -0.08054821938276291, 0.044170305132865906, -0.07633932679891586, -0.16519498825073242, 0.13780638575553894, -0.07908501476049423, -0.03868110850453377, -0.04351727291941643, 0.21240517497062683, -0.0666743591427803, -0.00240578455850482, 0.06577730178833008, 0.040171876549720764, -0.1326344758272171, -0.08853650838136673, 0.027201393619179726, -0.010402924381196499, 0.004504109267145395, -0.01046372763812542, -0.025708355009555817, -0.012467986904084682, -0.03303941711783409, -0.03683174401521683, 0.3667992651462555, 0.1363682895898819, -0.06361039727926254, 0.14458955824375153, 0.12633748352527618, -0.061410870403051376, -0.3078187108039856, -0.06858920305967331, -0.1277894824743271, -0.07910357415676117, -0.07385775446891785, -0.17497405409812927, 0.10165239125490189, 0.03927032649517059, -0.020674241706728935, 0.15778371691703796, -0.2751116156578064, -0.1221558079123497, 0.16328765451908112, 0.0009125191136263311, 0.4068010151386261, -0.14288648962974548, -0.10437782108783722, -0.038204457610845566, -0.12281082570552826, 0.21138393878936768, -0.0294773131608963, 0.11215157806873322, -0.016649100929498672, 0.149748757481575, 0.05510520562529564, -0.03112068958580494, 0.039921391755342484, -0.00009811078780330718, -0.05917102470993996, -0.10312094539403915, -0.08654168248176575, 0.04907678812742233, 0.02403629571199417, -0.023335743695497513, -0.05818193405866623, 0.029476376250386238, -0.14560848474502563, -0.04242371767759323, -0.08341463655233383, 0.03625420853495598, 0.008478580974042416, -0.06227307766675949, -0.023048527538776398, -0.07072912156581879, -0.012144756503403187, 0.02379419468343258, 0.2039346843957901, -0.07569921761751175, 0.1190752312541008, 0.15772877633571625, 0.0968879833817482, -0.15422430634498596, 0.026693927124142647, -0.07108532637357712, -0.060782063752412796, 0.07174588739871979, -0.1244666650891304, 0.05647420138120651, 0.1431879699230194, -0.019048668444156647, 0.062306709587574005, 0.093423992395401, 0.005013942718505859, -0.0010188198648393154, 0.09075768291950226, -0.29018914699554443, -0.1541135460138321, -0.07211020588874817, -0.015148764476180077, 0.08962874859571457, 0.0719262957572937, 0.18547621369361877, 0.01603105664253235, -0.03809863701462746, 0.021393537521362305, -0.006730877794325352, 0.0089988699182868, 0.07432221621274948, -0.01425810344517231, 0.004281471483409405, -0.12848517298698425, 0.05764727666974068, 0.03379267081618309, -0.11735671013593674, 0.016241099685430527, 0.1614680141210556, -0.09257188439369202, -0.12941859662532806, -0.09788809716701508, 0.0918416976928711, -0.14377926290035248, 0.00361635722219944, -0.03291473537683487, -0.11598578840494156, 0.08148009330034256, 0.15115420520305634, 0.042730964720249176, 0.07979434728622437, -0.059073556214571, -0.020935699343681335, -0.011706070974469185, 0.03482424095273018, -0.015706820413470268, -0.027747195214033127, -0.029748758301138878, 0.032130006700754166, -0.04720143601298332, 0.11525800079107285, -0.07434550672769547, -0.12564405798912048, -0.1393452286720276, 0.025784002617001534, -0.12588649988174438, -0.07320915907621384, -0.052705831825733185, -0.03848135843873024, 0.014455427415668964, -0.047794610261917114, -0.03060125559568405, -0.05646202340722084, -0.11300956457853317, 0.02727883867919445, -0.02042435109615326, 0.010491162538528442, -0.12235856801271439, 0.009645631536841393, 0.07233042269945145, -0.01381764467805624, 0.15597043931484222, 0.11984588950872421, -0.10167893767356873, 0.09639330208301544, -0.16445839405059814, -0.09953459352254868, 0.07818103581666946, 0.01575256884098053, 0.06717244535684586, 0.1466037929058075, -0.011582564562559128, 0.07672522217035294, 0.05115162953734398, 0.05542599782347679, 0.07179354131221771, -0.11460574716329575, 0.02389528788626194, -0.011403894051909447, -0.17975419759750366, -0.03826102986931801, -0.04418688267469406, 0.013445000164210796, 0.0025697837118059397, 0.15301178395748138, -0.05622294545173645, 0.0963088721036911, -0.06635666638612747, 0.04486967623233795, 0.0411275252699852, -0.18070755898952484, -0.03604935482144356, -0.07195618748664856, 0.02261582389473915, 0.0025793369859457016, 0.19810304045677185, -0.01746758073568344, 0.08771996945142746, 0.05208727717399597, 0.0901220440864563, -0.02807123027741909, -0.0016879624454304576, 0.1545127034187317, 0.11606251448392868, -0.07729587703943253, -0.13520658016204834, 0.0698671042919159, 0.03262162208557129, 0.06130353733897209, 0.13942363858222961, -0.011711389757692814, 0.004401880316436291, 0.07048087567090988, 0.017136942595243454, 0.0806276798248291, -0.12662982940673828, -0.08344478905200958, -0.024274703115224838, 0.08810848742723465, -0.036155663430690765, 0.14447735249996185, 0.18316078186035156, -0.024356747046113014, 0.011877927929162979, -0.04304046556353569, -0.05369251221418381, -0.16152824461460114, -0.19328774511814117, -0.09191878139972687, -0.13428109884262085, 0.02256055921316147, -0.12149618566036224, 0.07231094688177109, -0.002630371367558837, 0.0971016213297844, -0.08431866019964218, 0.09223153442144394, 0.12150278687477112, -0.0661185011267662, 0.08507523685693741, -0.03560033440589905, 0.06632541865110397, -0.021175172179937363, -0.009392407722771168, -0.1039053425192833, 0.023766355589032173, 0.021474409848451614, 0.06330981105566025, -0.05498984456062317, -0.014108160510659218, -0.15965639054775238, -0.09022944420576096, -0.05521683022379875, 0.07664664089679718, -0.030568020418286324, 0.07676540315151215, 0.010228199884295464, -0.017517900094389915, 0.048373181372880936, 0.2539057433605194, -0.06987801939249039, -0.07953987270593643, -0.004763890989124775, 0.14693714678287506, 0.036458730697631836, 0.10921000689268112, -0.016933122649788857, 0.00758946780115366, -0.0609518401324749, 0.39958909153938293, 0.28481969237327576, -0.09782253205776215, 0.01356764230877161, 0.019335096701979637, 0.03878680244088173, 0.11455408483743668, 0.07693379372358322, 0.09613210707902908, 0.28509002923965454, -0.05150345340371132, -0.05799813196063042, -0.012410702183842659, -0.014153141528367996, -0.11986690759658813, 0.08600786328315735, 0.06672467291355133, -0.048113152384757996, -0.04451439529657364, 0.09715087711811066, -0.2242901623249054, 0.07662616670131683, -0.12378726899623871, -0.20510637760162354, -0.06453341245651245, -0.01306221168488264, 0.14139007031917572, -0.0030332899186760187, 0.10171270370483398, -0.0035608005709946156, -0.08835478127002716, -0.01295030489563942, 0.01667134091258049, -0.2220873236656189, 0.02820418030023575, 0.07438264042139053, -0.11552060395479202, 0.043498605489730835, -0.029434632509946823, 0.03576662391424179, 0.07828012108802795, 0.07148585468530655, -0.01457840483635664, 0.0008470552274957299, 0.0072289337404072285, -0.040996063500642776, 0.010761539451777935, 0.05810254439711571, 0.010656234808266163, -0.055849794298410416, 0.10991960018873215, -0.1354595273733139, 0.07819081097841263, -0.030561506748199463, -0.021595491096377373, 0.006426818203181028, 0.025492971763014793, -0.04118790850043297, 0.03240106999874115, 0.07756144553422928, 0.0008272333652712405, -0.0011678365990519524, -0.05477802827954292, -0.04978339746594429, -0.03672594949603081, -0.03046082705259323, -0.1137775257229805, -0.11467036604881287, -0.09677951782941818, 0.10845700651407242, -0.01653127931058407, -0.19124320149421692, 0.0020816053729504347, -0.06622135639190674, 0.08284913748502731, -0.15111427009105682, 0.12025394290685654, 0.12695342302322388, 0.0027502349112182856, -0.017331790179014206, -0.01502646692097187, 0.03998102247714996, 0.07273806631565094, -0.10284501314163208, -0.05015341192483902 ]
null
null
transformers
# Connor
{"tags": ["conversational"]}
text-generation
ghhostboy/DialoGPT-medium-connorDBH3-21
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
# Connor
[ "# Connor" ]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "# Connor" ]
[ 51, 3 ]
[ "passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n# Connor" ]
[ -0.02925184741616249, 0.05394621565937996, -0.007346093188971281, 0.018662704154849052, 0.1354130506515503, 0.0011122088180854917, 0.0965338721871376, 0.13358888030052185, 0.0066132009960711, -0.030047448351979256, 0.1957976222038269, 0.18953122198581696, -0.028730075806379318, -0.00020101357949897647, -0.07705681025981903, -0.24681657552719116, 0.052927784621715546, 0.04203924909234047, -0.0069792806170880795, 0.1323334276676178, 0.06496594846248627, -0.10170730948448181, 0.07417894899845123, 0.014766890555620193, -0.18092578649520874, 0.004835694562643766, 0.03368838131427765, -0.10148485749959946, 0.11837714910507202, 0.05181579291820526, 0.07185623049736023, 0.03968442231416702, -0.0590103417634964, -0.1718032956123352, 0.0378260463476181, 0.003725616494193673, -0.045444898307323456, 0.04131190851330757, 0.055930279195308685, -0.07218889892101288, 0.06813380122184753, 0.0985194742679596, 0.012346921488642693, 0.05202097073197365, -0.13377007842063904, -0.05445164814591408, -0.015775445848703384, 0.00477970065549016, 0.051107440143823624, 0.10512708872556686, -0.03996889665722847, 0.058458659797906876, -0.10048452019691467, 0.09470035135746002, 0.0878966823220253, -0.3642279803752899, -0.014858249574899673, 0.060671690851449966, 0.053683433681726456, 0.028430063277482986, -0.04060983285307884, 0.07492391765117645, -0.011408698745071888, 0.0041669453494250774, 0.01961233839392662, -0.06842498481273651, -0.09562181681394577, 0.05102641507983208, -0.06840752065181732, -0.07275954633951187, 0.23701967298984528, -0.0411129966378212, 0.08811333775520325, -0.057200636714696884, -0.08560889214277267, 0.006761489436030388, -0.028157033026218414, -0.021867457777261734, -0.07773901522159576, 0.08344189077615738, -0.05920545756816864, -0.1176028922200203, -0.1734667420387268, -0.007984761148691177, -0.1778126358985901, 0.13832898437976837, 0.0320969820022583, 0.05517163127660751, -0.19260957837104797, 0.07919147610664368, 0.016488784924149513, -0.0861700028181076, 0.0037327716127038, -0.0633641928434372, 0.03372429683804512, 0.01996453106403351, -0.06334789097309113, -0.10411565005779266, 0.1054673120379448, 0.09487809985876083, 0.01767733506858349, 0.0021578283049166203, -0.06312471628189087, 0.07998111844062805, 0.04181459918618202, 0.15595614910125732, 0.0031191317830234766, -0.03598559647798538, 0.04100242629647255, -0.1252720057964325, 0.00036424913560040295, -0.061184242367744446, -0.19767357409000397, -0.011346372775733471, 0.09601219743490219, 0.06185605749487877, 0.049581047147512436, 0.11046309024095535, -0.010031310841441154, -0.049231257289648056, 0.010036534629762173, -0.025234196335077286, -0.006252532359212637, 0.02294621616601944, 0.004628372378647327, 0.14127634465694427, -0.011905285529792309, 0.062359776347875595, -0.140914186835289, 0.09742679446935654, -0.051546014845371246, -0.01248314417898655, -0.013144419528543949, -0.04174954816699028, 0.003785834414884448, 0.023977981880307198, -0.0001645632873987779, -0.10523349791765213, -0.17493905127048492, 0.005424353759735823, 0.005040725693106651, -0.0273689404129982, -0.06790044158697128, -0.09073055535554886, -0.010336840525269508, 0.036975227296352386, -0.03890056908130646, -0.06945078074932098, -0.045190975069999695, 0.11755256354808807, -0.042167194187641144, 0.042104799300432205, -0.11105046421289444, 0.07916320115327835, -0.11077804863452911, -0.04744410142302513, -0.10197347402572632, 0.0980762392282486, 0.00718857254832983, 0.13121473789215088, -0.01728755421936512, -0.017116080969572067, -0.09815175086259842, 0.05661775916814804, -0.0483304001390934, 0.18905037641525269, -0.08971841633319855, -0.11480304598808289, 0.23990611732006073, -0.030095553025603294, -0.13967178761959076, 0.14997372031211853, 0.0016244726721197367, 0.01759430021047592, 0.10524740070104599, 0.22605174779891968, -0.014883499592542648, -0.010476954281330109, 0.11382004618644714, 0.07884949445724487, -0.08619476109743118, -0.036369845271110535, 0.02140865847468376, -0.061507076025009155, -0.010726026259362698, 0.05706731230020523, 0.11435557901859283, 0.009444364346563816, -0.03720390051603317, -0.04272313043475151, -0.03357268124818802, 0.0012569663813337684, 0.052476849406957626, 0.01237579993903637, 0.1141212210059166, -0.05483352020382881, -0.06145123019814491, -0.037660107016563416, -0.027675192803144455, -0.06503517925739288, 0.04087546095252037, -0.06467100977897644, 0.14506307244300842, -0.0013940678909420967, 0.06594178825616837, -0.12138308584690094, -0.09115113317966461, -0.02046472206711769, 0.24025379121303558, 0.028638137504458427, 0.06147945299744606, 0.05269705876708031, -0.041196905076503754, 0.012030383571982384, 0.01953684724867344, 0.15377284586429596, -0.023100776597857475, -0.06244855746626854, -0.06345859169960022, 0.10359788686037064, -0.04177824780344963, 0.07620002329349518, -0.12415637820959091, 0.006968116853386164, 0.11460010707378387, 0.06582167744636536, 0.009664244949817657, 0.01680014841258526, -0.02746749483048916, -0.021077269688248634, -0.08522540330886841, 0.00495782820507884, 0.10600091516971588, -0.007186750415712595, -0.060660794377326965, 0.18891876935958862, -0.12747310101985931, 0.21995873749256134, 0.19535614550113678, -0.32847464084625244, 0.03309515863656998, -0.12449122220277786, -0.05018541216850281, 0.019545070827007294, 0.051728181540966034, -0.050629425793886185, 0.15073467791080475, 0.02067919820547104, 0.18692433834075928, -0.043979134410619736, -0.04404625669121742, -0.02415771782398224, -0.003789240960031748, -0.006700950674712658, 0.07037521153688431, 0.09694147109985352, -0.12172182649374008, 0.1580640971660614, 0.20468899607658386, 0.0679987370967865, 0.16063782572746277, 0.01437209639698267, -0.0073439921252429485, 0.06535328179597855, -0.0007422196213155985, -0.04035529866814613, -0.053615786135196686, -0.2567192018032074, -0.03348274156451225, 0.06302867829799652, 0.0036448733881115913, 0.09699583053588867, -0.1298881620168686, -0.036478329449892044, 0.008474661037325859, -0.017181789502501488, 0.01482146605849266, 0.06206975877285004, 0.05965055525302887, 0.10083626210689545, 0.006409200839698315, -0.018204452469944954, 0.09128560870885849, 0.015156551264226437, -0.07827339321374893, 0.20302309095859528, -0.1133514940738678, -0.3264577090740204, -0.11229793727397919, -0.10049223899841309, -0.05149480327963829, 0.044781286269426346, 0.11583702266216278, -0.07116156816482544, -0.013666602782905102, -0.00012099794548703358, 0.08007866889238358, -0.1435246765613556, -0.0060938140377402306, -0.07178319990634918, 0.012652627192437649, -0.1434086710214615, -0.08146951347589493, -0.058304451406002045, -0.035322412848472595, -0.11820250749588013, 0.13414062559604645, -0.11009538918733597, 0.055668674409389496, 0.2082853615283966, 0.026049841195344925, 0.07032635062932968, -0.04794178158044815, 0.18897143006324768, -0.10888353735208511, -0.005476977676153183, 0.11953116953372955, -0.07212688773870468, 0.07971642166376114, 0.09387548267841339, 0.01311377715319395, -0.08847784996032715, 0.009223191998898983, -0.024561917409300804, -0.06821213662624359, -0.2246413677930832, -0.12730298936367035, -0.11128836870193481, 0.10052230209112167, 0.049173880368471146, 0.053642403334379196, 0.1727563887834549, 0.0530095212161541, -0.030952993780374527, -0.0047622015699744225, 0.0319613479077816, 0.08462076634168625, 0.3333025276660919, -0.05017906054854393, 0.14549614489078522, -0.00036478505353443325, -0.12129691243171692, 0.07011137157678604, 0.06197326257824898, 0.12701977789402008, 0.07242222130298615, 0.1320236176252365, 0.010376046411693096, 0.11551918834447861, 0.09322155267000198, 0.04498298466205597, -0.0011454194318503141, -0.029153570532798767, -0.02955644205212593, -0.042252399027347565, -0.01946003921329975, 0.02731548249721527, 0.08646757155656815, -0.17463566362857819, -0.012395774945616722, -0.07677937299013138, 0.08058426529169083, 0.17890849709510803, 0.04724331572651863, -0.14464187622070312, -0.02763214148581028, 0.06071821600198746, -0.03439399600028992, -0.09548717737197876, 0.10307709872722626, 0.010424081236124039, -0.11046235263347626, -0.000881882559042424, -0.03702011704444885, 0.11439632624387741, -0.12734322249889374, 0.1037118211388588, -0.09629391133785248, -0.09961969405412674, 0.023403676226735115, 0.1161087155342102, -0.2543545663356781, 0.2005613148212433, 0.014315655454993248, -0.05915552005171776, -0.12335977703332901, -0.02583943121135235, -0.022067811340093613, 0.10082397609949112, 0.10635748505592346, -0.015414229594171047, -0.01193956471979618, -0.03909774497151375, -0.03216499835252762, 0.03125924617052078, 0.1270037293434143, -0.049203384667634964, -0.011188369244337082, -0.07417355477809906, -0.0016169337322935462, -0.005096765235066414, 0.0032697771675884724, -0.005393367260694504, -0.22330342233181, 0.0886646956205368, 0.04297109693288803, 0.05749543756246567, 0.030012011528015137, -0.011055294424295425, -0.04832468181848526, 0.2742316424846649, -0.09723491966724396, -0.06184287369251251, -0.09418249130249023, -0.05288313701748848, 0.01004297100007534, -0.05761445686221123, 0.026147663593292236, -0.08054821938276291, 0.044170305132865906, -0.07633932679891586, -0.16519498825073242, 0.13780638575553894, -0.07908501476049423, -0.03868110850453377, -0.04351727291941643, 0.21240517497062683, -0.0666743591427803, -0.00240578455850482, 0.06577730178833008, 0.040171876549720764, -0.1326344758272171, -0.08853650838136673, 0.027201393619179726, -0.010402924381196499, 0.004504109267145395, -0.01046372763812542, -0.025708355009555817, -0.012467986904084682, -0.03303941711783409, -0.03683174401521683, 0.3667992651462555, 0.1363682895898819, -0.06361039727926254, 0.14458955824375153, 0.12633748352527618, -0.061410870403051376, -0.3078187108039856, -0.06858920305967331, -0.1277894824743271, -0.07910357415676117, -0.07385775446891785, -0.17497405409812927, 0.10165239125490189, 0.03927032649517059, -0.020674241706728935, 0.15778371691703796, -0.2751116156578064, -0.1221558079123497, 0.16328765451908112, 0.0009125191136263311, 0.4068010151386261, -0.14288648962974548, -0.10437782108783722, -0.038204457610845566, -0.12281082570552826, 0.21138393878936768, -0.0294773131608963, 0.11215157806873322, -0.016649100929498672, 0.149748757481575, 0.05510520562529564, -0.03112068958580494, 0.039921391755342484, -0.00009811078780330718, -0.05917102470993996, -0.10312094539403915, -0.08654168248176575, 0.04907678812742233, 0.02403629571199417, -0.023335743695497513, -0.05818193405866623, 0.029476376250386238, -0.14560848474502563, -0.04242371767759323, -0.08341463655233383, 0.03625420853495598, 0.008478580974042416, -0.06227307766675949, -0.023048527538776398, -0.07072912156581879, -0.012144756503403187, 0.02379419468343258, 0.2039346843957901, -0.07569921761751175, 0.1190752312541008, 0.15772877633571625, 0.0968879833817482, -0.15422430634498596, 0.026693927124142647, -0.07108532637357712, -0.060782063752412796, 0.07174588739871979, -0.1244666650891304, 0.05647420138120651, 0.1431879699230194, -0.019048668444156647, 0.062306709587574005, 0.093423992395401, 0.005013942718505859, -0.0010188198648393154, 0.09075768291950226, -0.29018914699554443, -0.1541135460138321, -0.07211020588874817, -0.015148764476180077, 0.08962874859571457, 0.0719262957572937, 0.18547621369361877, 0.01603105664253235, -0.03809863701462746, 0.021393537521362305, -0.006730877794325352, 0.0089988699182868, 0.07432221621274948, -0.01425810344517231, 0.004281471483409405, -0.12848517298698425, 0.05764727666974068, 0.03379267081618309, -0.11735671013593674, 0.016241099685430527, 0.1614680141210556, -0.09257188439369202, -0.12941859662532806, -0.09788809716701508, 0.0918416976928711, -0.14377926290035248, 0.00361635722219944, -0.03291473537683487, -0.11598578840494156, 0.08148009330034256, 0.15115420520305634, 0.042730964720249176, 0.07979434728622437, -0.059073556214571, -0.020935699343681335, -0.011706070974469185, 0.03482424095273018, -0.015706820413470268, -0.027747195214033127, -0.029748758301138878, 0.032130006700754166, -0.04720143601298332, 0.11525800079107285, -0.07434550672769547, -0.12564405798912048, -0.1393452286720276, 0.025784002617001534, -0.12588649988174438, -0.07320915907621384, -0.052705831825733185, -0.03848135843873024, 0.014455427415668964, -0.047794610261917114, -0.03060125559568405, -0.05646202340722084, -0.11300956457853317, 0.02727883867919445, -0.02042435109615326, 0.010491162538528442, -0.12235856801271439, 0.009645631536841393, 0.07233042269945145, -0.01381764467805624, 0.15597043931484222, 0.11984588950872421, -0.10167893767356873, 0.09639330208301544, -0.16445839405059814, -0.09953459352254868, 0.07818103581666946, 0.01575256884098053, 0.06717244535684586, 0.1466037929058075, -0.011582564562559128, 0.07672522217035294, 0.05115162953734398, 0.05542599782347679, 0.07179354131221771, -0.11460574716329575, 0.02389528788626194, -0.011403894051909447, -0.17975419759750366, -0.03826102986931801, -0.04418688267469406, 0.013445000164210796, 0.0025697837118059397, 0.15301178395748138, -0.05622294545173645, 0.0963088721036911, -0.06635666638612747, 0.04486967623233795, 0.0411275252699852, -0.18070755898952484, -0.03604935482144356, -0.07195618748664856, 0.02261582389473915, 0.0025793369859457016, 0.19810304045677185, -0.01746758073568344, 0.08771996945142746, 0.05208727717399597, 0.0901220440864563, -0.02807123027741909, -0.0016879624454304576, 0.1545127034187317, 0.11606251448392868, -0.07729587703943253, -0.13520658016204834, 0.0698671042919159, 0.03262162208557129, 0.06130353733897209, 0.13942363858222961, -0.011711389757692814, 0.004401880316436291, 0.07048087567090988, 0.017136942595243454, 0.0806276798248291, -0.12662982940673828, -0.08344478905200958, -0.024274703115224838, 0.08810848742723465, -0.036155663430690765, 0.14447735249996185, 0.18316078186035156, -0.024356747046113014, 0.011877927929162979, -0.04304046556353569, -0.05369251221418381, -0.16152824461460114, -0.19328774511814117, -0.09191878139972687, -0.13428109884262085, 0.02256055921316147, -0.12149618566036224, 0.07231094688177109, -0.002630371367558837, 0.0971016213297844, -0.08431866019964218, 0.09223153442144394, 0.12150278687477112, -0.0661185011267662, 0.08507523685693741, -0.03560033440589905, 0.06632541865110397, -0.021175172179937363, -0.009392407722771168, -0.1039053425192833, 0.023766355589032173, 0.021474409848451614, 0.06330981105566025, -0.05498984456062317, -0.014108160510659218, -0.15965639054775238, -0.09022944420576096, -0.05521683022379875, 0.07664664089679718, -0.030568020418286324, 0.07676540315151215, 0.010228199884295464, -0.017517900094389915, 0.048373181372880936, 0.2539057433605194, -0.06987801939249039, -0.07953987270593643, -0.004763890989124775, 0.14693714678287506, 0.036458730697631836, 0.10921000689268112, -0.016933122649788857, 0.00758946780115366, -0.0609518401324749, 0.39958909153938293, 0.28481969237327576, -0.09782253205776215, 0.01356764230877161, 0.019335096701979637, 0.03878680244088173, 0.11455408483743668, 0.07693379372358322, 0.09613210707902908, 0.28509002923965454, -0.05150345340371132, -0.05799813196063042, -0.012410702183842659, -0.014153141528367996, -0.11986690759658813, 0.08600786328315735, 0.06672467291355133, -0.048113152384757996, -0.04451439529657364, 0.09715087711811066, -0.2242901623249054, 0.07662616670131683, -0.12378726899623871, -0.20510637760162354, -0.06453341245651245, -0.01306221168488264, 0.14139007031917572, -0.0030332899186760187, 0.10171270370483398, -0.0035608005709946156, -0.08835478127002716, -0.01295030489563942, 0.01667134091258049, -0.2220873236656189, 0.02820418030023575, 0.07438264042139053, -0.11552060395479202, 0.043498605489730835, -0.029434632509946823, 0.03576662391424179, 0.07828012108802795, 0.07148585468530655, -0.01457840483635664, 0.0008470552274957299, 0.0072289337404072285, -0.040996063500642776, 0.010761539451777935, 0.05810254439711571, 0.010656234808266163, -0.055849794298410416, 0.10991960018873215, -0.1354595273733139, 0.07819081097841263, -0.030561506748199463, -0.021595491096377373, 0.006426818203181028, 0.025492971763014793, -0.04118790850043297, 0.03240106999874115, 0.07756144553422928, 0.0008272333652712405, -0.0011678365990519524, -0.05477802827954292, -0.04978339746594429, -0.03672594949603081, -0.03046082705259323, -0.1137775257229805, -0.11467036604881287, -0.09677951782941818, 0.10845700651407242, -0.01653127931058407, -0.19124320149421692, 0.0020816053729504347, -0.06622135639190674, 0.08284913748502731, -0.15111427009105682, 0.12025394290685654, 0.12695342302322388, 0.0027502349112182856, -0.017331790179014206, -0.01502646692097187, 0.03998102247714996, 0.07273806631565094, -0.10284501314163208, -0.05015341192483902 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # common6 This model is a fine-tuned version of [common6/checkpoint-3500](https://huggingface.co/common6/checkpoint-3500) on the COMMON_VOICE - FA dataset. It achieves the following results on the evaluation set: - Loss: 0.3706 - Wer: 0.3421 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 6e-05 - train_batch_size: 32 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 256 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - num_epochs: 200.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 1.0344 | 10.0 | 500 | 0.4043 | 0.4511 | | 0.9651 | 20.0 | 1000 | 0.3793 | 0.4159 | | 0.9125 | 30.0 | 1500 | 0.3756 | 0.4046 | | 0.8831 | 40.0 | 2000 | 0.3650 | 0.3876 | | 0.8399 | 50.0 | 2500 | 0.3605 | 0.3772 | | 0.819 | 60.0 | 3000 | 0.3622 | 0.3714 | | 0.8029 | 70.0 | 3500 | 0.3561 | 0.3664 | | 0.8104 | 80.0 | 4000 | 0.3595 | 0.3660 | | 0.8118 | 90.0 | 4500 | 0.3460 | 0.3592 | | 0.7831 | 100.0 | 5000 | 0.3566 | 0.3593 | | 0.744 | 110.0 | 5500 | 0.3578 | 0.3535 | | 0.7388 | 120.0 | 6000 | 0.3538 | 0.3520 | | 0.714 | 130.0 | 6500 | 0.3682 | 0.3506 | | 0.7291 | 140.0 | 7000 | 0.3625 | 0.3505 | | 0.697 | 150.0 | 7500 | 0.3619 | 0.3479 | | 0.6811 | 160.0 | 8000 | 0.3631 | 0.3440 | | 0.6841 | 170.0 | 8500 | 0.3672 | 0.3460 | | 0.6616 | 180.0 | 9000 | 0.3677 | 0.3410 | | 0.6471 | 190.0 | 9500 | 0.3707 | 0.3420 | | 0.6759 | 200.0 | 10000 | 0.3706 | 0.3421 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2 - Datasets 1.18.3.dev0 - Tokenizers 0.10.3
{"language": ["fa"], "tags": ["automatic-speech-recognition", "common_voice", "generated_from_trainer"], "datasets": ["common_voice"], "model-index": [{"name": "common6", "results": []}]}
automatic-speech-recognition
ghofrani/common6
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "common_voice", "generated_from_trainer", "fa", "dataset:common_voice", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "fa" ]
TAGS #transformers #pytorch #wav2vec2 #automatic-speech-recognition #common_voice #generated_from_trainer #fa #dataset-common_voice #endpoints_compatible #region-us
common6 ======= This model is a fine-tuned version of common6/checkpoint-3500 on the COMMON\_VOICE - FA dataset. It achieves the following results on the evaluation set: * Loss: 0.3706 * Wer: 0.3421 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 6e-05 * train\_batch\_size: 32 * eval\_batch\_size: 16 * seed: 42 * gradient\_accumulation\_steps: 8 * total\_train\_batch\_size: 256 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * lr\_scheduler\_warmup\_steps: 100 * num\_epochs: 200.0 * mixed\_precision\_training: Native AMP ### Training results ### Framework versions * Transformers 4.17.0.dev0 * Pytorch 1.10.2 * Datasets 1.18.3.dev0 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 6e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 16\n* seed: 42\n* gradient\\_accumulation\\_steps: 8\n* total\\_train\\_batch\\_size: 256\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 100\n* num\\_epochs: 200.0\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.17.0.dev0\n* Pytorch 1.10.2\n* Datasets 1.18.3.dev0\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #wav2vec2 #automatic-speech-recognition #common_voice #generated_from_trainer #fa #dataset-common_voice #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 6e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 16\n* seed: 42\n* gradient\\_accumulation\\_steps: 8\n* total\\_train\\_batch\\_size: 256\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 100\n* num\\_epochs: 200.0\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.17.0.dev0\n* Pytorch 1.10.2\n* Datasets 1.18.3.dev0\n* Tokenizers 0.10.3" ]
[ 61, 160, 4, 36 ]
[ "passage: TAGS\n#transformers #pytorch #wav2vec2 #automatic-speech-recognition #common_voice #generated_from_trainer #fa #dataset-common_voice #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 6e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 16\n* seed: 42\n* gradient\\_accumulation\\_steps: 8\n* total\\_train\\_batch\\_size: 256\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 100\n* num\\_epochs: 200.0\n* mixed\\_precision\\_training: Native AMP### Training results### Framework versions\n\n\n* Transformers 4.17.0.dev0\n* Pytorch 1.10.2\n* Datasets 1.18.3.dev0\n* Tokenizers 0.10.3" ]
[ -0.13553977012634277, 0.0657314658164978, -0.002648151246830821, 0.039307136088609695, 0.14089421927928925, 0.0014919538516551256, 0.08693157881498337, 0.14648954570293427, -0.10292138159275055, 0.08878582715988159, 0.08613797277212143, 0.07693296670913696, 0.07253614813089371, 0.10049618035554886, -0.02541545405983925, -0.33333614468574524, 0.0199380312114954, 0.02572035603225231, -0.11258042603731155, 0.10825756192207336, 0.11200502514839172, -0.11091233044862747, 0.011477576568722725, 0.032519109547138214, -0.1330472081899643, 0.021482406184077263, -0.012258491478860378, -0.07051002234220505, 0.11857634037733078, 0.039386529475450516, 0.09274652600288391, 0.016122041270136833, 0.08409222960472107, -0.26859304308891296, 0.014626238495111465, 0.060278233140707016, 0.06013225018978119, 0.06551355868577957, 0.10750869661569595, -0.01878250576555729, 0.14538738131523132, -0.07166951894760132, 0.05720868334174156, 0.055091388523578644, -0.11322735995054245, -0.3399525284767151, -0.07358866184949875, 0.013114331290125847, 0.10950548201799393, 0.10811059176921844, -0.04073416814208031, 0.06754757463932037, -0.06821510195732117, 0.09388948231935501, 0.21367239952087402, -0.22770710289478302, -0.07812804728746414, -0.04573792591691017, 0.039798229932785034, 0.035928696393966675, -0.12485425919294357, -0.030554361641407013, 0.036797504872083664, 0.048193614929914474, 0.07330254465341568, 0.013290979899466038, -0.02934081107378006, 0.006531869061291218, -0.1286003738641739, -0.050428420305252075, 0.1480991393327713, 0.07999039441347122, -0.03939521312713623, -0.08520548790693283, -0.005596770439296961, -0.202241912484169, -0.04471273720264435, 0.0067951069213449955, 0.016415515914559364, -0.03634430840611458, -0.11050080507993698, 0.017826318740844727, -0.08905403316020966, -0.1008266806602478, 0.020267672836780548, 0.17094624042510986, 0.049494970589876175, -0.03637518733739853, 0.00864329282194376, 0.08926735818386078, 0.02246984653174877, -0.13971534371376038, -0.0017091543413698673, 0.05310216546058655, -0.08528852462768555, -0.01595863327383995, -0.055562376976013184, -0.04726288840174675, 0.0039276801981031895, 0.09015177935361862, -0.035753022879362106, 0.08727860450744629, -0.002109265187755227, 0.016568299382925034, -0.0847269743680954, 0.17643387615680695, -0.060846373438835144, -0.002945849671959877, -0.05037040635943413, 0.08822798728942871, -0.03761652484536171, -0.016531862318515778, -0.04744764044880867, 0.008078210055828094, 0.12409024685621262, 0.03920438140630722, -0.045111872255802155, 0.014289462938904762, -0.06282547861337662, -0.02155500277876854, -0.04752146452665329, -0.11237046122550964, 0.027010370045900345, 0.029782135039567947, -0.07822666317224503, 0.02208702825009823, -0.0027894258964806795, 0.023958874866366386, -0.035520631819963455, 0.10110203176736832, -0.061821505427360535, -0.00009992322156904265, -0.07805538177490234, -0.10859336704015732, 0.029199885204434395, -0.032968342304229736, 0.015945710241794586, -0.05535898730158806, -0.09231507778167725, -0.06228742003440857, 0.04069330170750618, -0.044259943068027496, -0.07684799283742905, -0.07844782620668411, -0.0736638680100441, 0.04372347146272659, -0.03291528671979904, 0.16961820423603058, -0.05776038020849228, 0.12060768902301788, 0.05208859220147133, 0.03254152834415436, 0.026409359648823738, 0.0865219235420227, -0.042381491512060165, 0.027259504422545433, -0.11891458928585052, 0.08778900653123856, -0.08449628204107285, 0.03770098090171814, -0.13071709871292114, -0.13804037868976593, -0.030498968437314034, 0.012239491567015648, 0.1099928766489029, 0.0892641544342041, -0.18088792264461517, -0.10263686627149582, 0.18084771931171417, -0.0799163356423378, -0.08886119723320007, 0.14028042554855347, -0.019751880317926407, 0.0038209958001971245, 0.058766692876815796, 0.1927611082792282, 0.08769779652357101, -0.07905358076095581, 0.017309244722127914, -0.06228657439351082, 0.13736042380332947, 0.036789704114198685, 0.10120023041963577, -0.053529441356658936, 0.009656493552029133, -0.002534023951739073, -0.009717435576021671, 0.06610766053199768, -0.10351897776126862, -0.07578741759061813, -0.01849810965359211, -0.08496169000864029, -0.005201178137212992, 0.07181006669998169, 0.03421556204557419, -0.11329120397567749, -0.11553038656711578, 0.028054581955075264, 0.10552109032869339, -0.12163352966308594, 0.03004889376461506, -0.08058056235313416, 0.027946196496486664, -0.020535394549369812, -0.02094239741563797, -0.16763608157634735, 0.0060011474415659904, 0.03143149986863136, -0.016649682074785233, 0.03199904039502144, -0.01084356289356947, 0.07953382283449173, 0.03850039839744568, -0.052764903753995895, -0.0738896057009697, -0.06955960392951965, -0.007695764768868685, -0.0758822038769722, -0.21031884849071503, -0.07068677991628647, -0.023295802995562553, 0.14267395436763763, -0.22285841405391693, 0.0014156431425362825, 0.0339881032705307, 0.10722679644823074, 0.028190359473228455, -0.053821224719285965, -0.0019313020166009665, 0.08846915513277054, -0.01016214955598116, -0.055612243711948395, 0.03143937513232231, 0.006379708647727966, -0.11716353893280029, 0.028890028595924377, -0.13304004073143005, 0.0915326178073883, 0.10255623608827591, -0.04227989539504051, -0.07342109084129333, -0.0549507811665535, -0.06470756977796555, -0.061666857451200485, -0.02423807606101036, -0.012165915220975876, 0.21362639963626862, 0.02070864476263523, 0.11775971949100494, -0.08177902549505234, -0.02984427660703659, 0.03331439942121506, 0.001620367169380188, -0.00517930556088686, 0.13657917082309723, 0.03090650960803032, -0.0320528969168663, 0.09350792318582535, 0.038514476269483566, -0.07688819617033005, 0.16389861702919006, -0.08137121051549911, -0.13227270543575287, -0.007366003002971411, 0.023718426004052162, 0.03131374344229698, 0.104747474193573, -0.18184716999530792, -0.005770870950073004, 0.01895575039088726, 0.043069884181022644, 0.03987773880362511, -0.22045426070690155, -0.012611844576895237, 0.04566902667284012, -0.0767534002661705, -0.061205316334962845, 0.0015740945236757398, 0.0007933495217002928, 0.08637447655200958, -0.00040052979602478445, -0.05103594437241554, -0.014875567518174648, -0.03536726161837578, -0.09224776923656464, 0.18361034989356995, -0.10463328659534454, -0.15458156168460846, -0.1376299262046814, -0.03280620649456978, -0.002364299027249217, -0.0031614392064511776, 0.0540052205324173, -0.12687928974628448, -0.035625800490379333, -0.04817039892077446, 0.07060996443033218, -0.08123201131820679, 0.0318048931658268, -0.005073624663054943, 0.007268640212714672, 0.09630522131919861, -0.10940925776958466, 0.015241599641740322, -0.019922353327274323, -0.0537545345723629, 0.020882437005639076, 0.016309134662151337, 0.09328938275575638, 0.16095614433288574, 0.037579916417598724, 0.025361936539411545, -0.037610240280628204, 0.17330195009708405, -0.11093386262655258, -0.05271866172552109, 0.12125761061906815, -0.0021586085204035044, 0.028739212080836296, 0.11032387614250183, 0.04817987233400345, -0.09251458197832108, 0.02922639064490795, 0.05377665162086487, -0.016068553552031517, -0.24873462319374084, -0.03138657659292221, -0.07237769663333893, -0.03873956948518753, 0.1020231693983078, 0.027513647451996803, -0.004800252616405487, 0.023234166204929352, -0.018452312797307968, -0.010598254390060902, 0.007918931543827057, 0.05592093989253044, 0.09907416999340057, 0.03280215337872505, 0.11343280971050262, -0.012156659737229347, -0.04703841730952263, 0.01983305811882019, 0.0009946743957698345, 0.2533171772956848, 0.01570017635822296, 0.16186852753162384, 0.05432736501097679, 0.15303248167037964, 0.01009477861225605, 0.08922525495290756, 0.009919656440615654, -0.025819852948188782, 0.025304364040493965, -0.04795762524008751, -0.04395408183336258, 0.028922609984874725, 0.09760923683643341, 0.03772294521331787, -0.1504519283771515, -0.03025048039853573, 0.007838639430701733, 0.36083540320396423, 0.0780099406838417, -0.2916276156902313, -0.09996049106121063, -0.006186333019286394, -0.10030299425125122, -0.060720622539520264, 0.03331955894827843, 0.11365770548582077, -0.09823262691497803, 0.05128561705350876, -0.06052793189883232, 0.1024286076426506, -0.05868220329284668, 0.009551393799483776, 0.058814726769924164, 0.07257962226867676, -0.004422713536769152, 0.07606874406337738, -0.2881627082824707, 0.31432613730430603, -0.01678607612848282, 0.09000423550605774, -0.03678661212325096, 0.028084659948945045, 0.028093937784433365, -0.05246666073799133, 0.05362870171666145, -0.011915168724954128, -0.09384941309690475, -0.20602144300937653, -0.059672605246305466, 0.04221491888165474, 0.14386487007141113, -0.04256744310259819, 0.12129142135381699, -0.028266873210668564, 0.007396037224680185, 0.06907106190919876, -0.0863923579454422, -0.10857759416103363, -0.09740135073661804, 0.014438272453844547, 0.04355732351541519, 0.105716273188591, -0.10111863166093826, -0.11109364032745361, -0.0650474950671196, 0.13411076366901398, -0.05232863128185272, -0.010990147478878498, -0.12594817578792572, 0.10040292888879776, 0.17583085596561432, -0.06656042486429214, 0.044812027364969254, 0.0314149484038353, 0.12301380187273026, 0.037806812673807144, 0.010439880192279816, 0.10311123728752136, -0.07351077347993851, -0.19191259145736694, -0.037170324474573135, 0.18621422350406647, 0.050918251276016235, 0.07299238443374634, -0.019439317286014557, 0.02621452324092388, -0.02294779196381569, -0.06438671797513962, 0.062469106167554855, -0.007145493291318417, 0.003713887883350253, 0.07438816875219345, -0.03338323533535004, 0.018782922998070717, -0.09182854741811752, -0.06486144661903381, 0.17064622044563293, 0.27101126313209534, -0.05501798912882805, 0.007156741805374622, 0.029911456629633904, -0.04762980341911316, -0.13604208827018738, 0.03856409713625908, 0.15216168761253357, 0.05522570759057999, -0.00812531728297472, -0.2464035600423813, 0.05850879102945328, 0.09020980447530746, -0.0132901044562459, 0.06664010137319565, -0.2845851182937622, -0.13041254878044128, 0.12261746823787689, 0.09233123064041138, -0.026507338508963585, -0.1425192952156067, -0.05778083577752113, -0.02450604736804962, -0.09117545187473297, 0.05617315694689751, -0.004605036228895187, 0.13311274349689484, 0.007473645266145468, 0.0827847495675087, 0.036420539021492004, -0.04161073639988899, 0.14617842435836792, -0.00540919229388237, 0.04919099807739258, 0.0015243086963891983, 0.0668235495686531, -0.025046762079000473, -0.031246935948729515, 0.013547468930482864, -0.07367206364870071, 0.013577720150351524, -0.14362400770187378, -0.043388571590185165, -0.09805481135845184, 0.024486323818564415, -0.025713643059134483, -0.038126442581415176, -0.0034670191816985607, 0.03353709727525711, 0.060943663120269775, 0.013456125743687153, 0.11185935139656067, -0.07725599408149719, 0.16906960308551788, 0.058834392577409744, 0.11952508240938187, -0.01837136037647724, -0.07122516632080078, -0.00650485884398222, -0.006387483794242144, 0.04719795659184456, -0.10772743076086044, 0.03798839449882507, 0.1516989767551422, 0.045517995953559875, 0.16777276992797852, 0.06244311481714249, -0.08439984172582626, 0.023068983107805252, 0.07045019418001175, -0.0663178414106369, -0.12731856107711792, -0.029657024890184402, 0.04707108810544014, -0.1397480070590973, 0.010545918717980385, 0.09314504265785217, -0.0526592992246151, -0.011475838720798492, -0.0019976284820586443, 0.013399478048086166, -0.07752548158168793, 0.2413642406463623, 0.029455190524458885, 0.08246822655200958, -0.09823693335056305, 0.07328102737665176, 0.042106494307518005, -0.1644841581583023, 0.03310086205601692, 0.0705803781747818, -0.027173461392521858, -0.010404163040220737, 0.010669323615729809, 0.07280541211366653, 0.016686471179127693, -0.0679410845041275, -0.11497505009174347, -0.15556120872497559, 0.08256196230649948, 0.09916188567876816, 0.03182290121912956, 0.029947001487016678, -0.04812125861644745, 0.050375796854496, -0.13116925954818726, 0.08009093254804611, 0.10703539848327637, 0.06547610461711884, -0.1352807581424713, 0.17892006039619446, 0.012157534249126911, 0.007865272462368011, 0.00929370429366827, -0.01975766010582447, -0.08166297525167465, 0.046930719166994095, -0.11451483517885208, -0.03907005116343498, -0.0457586832344532, -0.009281530044972897, 0.016874007880687714, -0.07107304781675339, -0.060181669890880585, 0.030627138912677765, -0.12904804944992065, -0.04449041932821274, -0.005287733394652605, 0.063664510846138, -0.09029395878314972, -0.018057221546769142, 0.055853504687547684, -0.10905464738607407, 0.09075653553009033, 0.07570522278547287, 0.004516200162470341, 0.06305529177188873, -0.11811074614524841, 0.0038417885079979897, 0.05662042275071144, 0.0010796295246109366, 0.021332023665308952, -0.16002000868320465, -0.0033636002335697412, -0.001026846352033317, 0.050027236342430115, 0.00005457473889691755, 0.03509730473160744, -0.12747052311897278, -0.055926449596881866, -0.032202258706092834, -0.058450862765312195, -0.055546924471855164, 0.04306173324584961, 0.06343685835599899, 0.06343203783035278, 0.15926453471183777, -0.0918985903263092, 0.055933885276317596, -0.22053398191928864, 0.018071824684739113, -0.04644002020359039, -0.07581916451454163, -0.057614583522081375, -0.02896791696548462, 0.0956663265824318, -0.06707283854484558, 0.08261314779520035, -0.05177270248532295, 0.05871386453509331, 0.027184579521417618, -0.12670890986919403, 0.03320367634296417, 0.03943658620119095, 0.2664569318294525, 0.059515729546546936, -0.030172783881425858, 0.08177655935287476, 0.007533184252679348, 0.05426613241434097, 0.19892878830432892, 0.14025992155075073, 0.17831790447235107, 0.02866549603641033, 0.08895015716552734, 0.08317294716835022, -0.11024614423513412, -0.10767930001020432, 0.09542115032672882, -0.01982322707772255, 0.11757610738277435, -0.0023482516407966614, 0.2517177164554596, 0.10109812021255493, -0.19463446736335754, 0.06557601690292358, -0.043746668845415115, -0.0974569097161293, -0.10232096910476685, -0.03997344151139259, -0.07432476431131363, -0.1849585473537445, 0.020896971225738525, -0.12922777235507965, 0.06371006369590759, 0.06456612050533295, 0.0392574779689312, 0.010169080458581448, 0.15180455148220062, 0.03369864448904991, -0.013278241269290447, 0.12863236665725708, 0.0023702767211943865, -0.006786432582885027, -0.05732544884085655, -0.10142926126718521, 0.061310864984989166, -0.02407875843346119, 0.05915144830942154, -0.05416199937462807, -0.114464171230793, 0.05226323381066322, -0.011302812956273556, -0.11097660660743713, 0.01752549037337303, -0.014021257869899273, 0.07784043252468109, 0.10148848593235016, 0.034904949367046356, -0.009720790199935436, -0.01877143792808056, 0.2457960844039917, -0.10632336139678955, -0.05296357348561287, -0.13799883425235748, 0.24867784976959229, 0.029674092307686806, -0.012326259166002274, 0.018780630081892014, -0.07572752982378006, -0.003525230335071683, 0.15819795429706573, 0.12590523064136505, -0.0039710174314677715, -0.01654491014778614, 0.005037215538322926, -0.013221470639109612, -0.049364980310201645, 0.08056456595659256, 0.13981980085372925, 0.03833622857928276, -0.056878846138715744, -0.03939734026789665, -0.0641048327088356, -0.04617372527718544, -0.017439374700188637, 0.06927493214607239, 0.03832165524363518, -0.02217721939086914, -0.02220204845070839, 0.12856309115886688, -0.07528773695230484, -0.1138891875743866, -0.006603454705327749, -0.18034599721431732, -0.18062783777713776, -0.044933874160051346, 0.027093790471553802, 0.048587996512651443, 0.045325253158807755, -0.02235349453985691, -0.0077985855750739574, 0.0963025912642479, 0.012448643334209919, -0.0346270389854908, -0.11924595385789871, 0.09279539436101913, -0.09613491594791412, 0.16154249012470245, -0.03780408948659897, 0.038854025304317474, 0.10794651508331299, 0.08476781845092773, -0.054158687591552734, 0.07254218310117722, 0.06332787126302719, -0.13254490494728088, 0.04409285634756088, 0.2213340550661087, -0.04189535230398178, 0.13886073231697083, 0.03808748349547386, -0.1418074071407318, 0.01862414740025997, -0.10771942883729935, -0.05198758840560913, -0.0626760795712471, -0.016027936711907387, -0.05764923617243767, 0.12084244936704636, 0.22898150980472565, -0.0670253187417984, -0.02332405000925064, -0.06580395251512527, 0.00695943646132946, 0.050901759415864944, 0.13069209456443787, -0.05159921571612358, -0.30697736144065857, 0.008561113849282265, 0.013173466548323631, -0.005652649328112602, -0.25324124097824097, -0.07826028019189835, 0.03637303039431572, -0.07440268248319626, -0.040375176817178726, 0.11898031085729599, 0.06072871759533882, 0.04320725426077843, -0.056059934198856354, -0.08610133081674576, -0.02776486426591873, 0.20560652017593384, -0.17644527554512024, -0.06181729957461357 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # common7 This model is a fine-tuned version of [common7/checkpoint-18500](https://huggingface.co/common7/checkpoint-18500) on the MOZILLA-FOUNDATION/COMMON_VOICE_7_0 - FA dataset. It achieves the following results on the evaluation set: - Loss: 0.3448 - Wer: 0.3478 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 6e-05 - train_batch_size: 32 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - num_epochs: 150.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:-----:|:---------------:|:------:| | 2.957 | 3.29 | 500 | 2.9503 | 1.0 | | 1.7225 | 6.58 | 1000 | 0.8860 | 0.7703 | | 1.4907 | 9.86 | 1500 | 0.6555 | 0.6673 | | 1.4177 | 13.16 | 2000 | 0.5784 | 0.6076 | | 1.3425 | 16.45 | 2500 | 0.5379 | 0.5718 | | 1.33 | 19.73 | 3000 | 0.4962 | 0.5245 | | 1.4378 | 23.03 | 3500 | 0.4699 | 0.5098 | | 1.1894 | 26.31 | 4000 | 0.4527 | 0.4848 | | 1.1844 | 29.6 | 4500 | 0.4309 | 0.4651 | | 1.1795 | 32.89 | 5000 | 0.4131 | 0.4524 | | 1.1471 | 36.18 | 5500 | 0.4052 | 0.4435 | | 1.1337 | 39.47 | 6000 | 0.3927 | 0.4363 | | 1.1896 | 42.76 | 6500 | 0.3811 | 0.4254 | | 1.1847 | 46.05 | 7000 | 0.3855 | 0.4129 | | 0.9954 | 49.34 | 7500 | 0.3729 | 0.3981 | | 1.0293 | 52.63 | 8000 | 0.3637 | 0.4014 | | 1.0224 | 55.92 | 8500 | 0.3578 | 0.3885 | | 1.012 | 59.21 | 9000 | 0.3629 | 0.3930 | | 1.0772 | 62.5 | 9500 | 0.3635 | 0.3906 | | 1.0344 | 65.79 | 10000 | 0.3469 | 0.3771 | | 0.9457 | 69.08 | 10500 | 0.3435 | 0.3735 | | 0.9307 | 72.37 | 11000 | 0.3519 | 0.3762 | | 0.9523 | 75.65 | 11500 | 0.3443 | 0.3666 | | 0.9523 | 78.94 | 12000 | 0.3502 | 0.3757 | | 0.9475 | 82.24 | 12500 | 0.3509 | 0.3643 | | 0.9971 | 85.52 | 13000 | 0.3502 | 0.3626 | | 0.9058 | 88.81 | 13500 | 0.3472 | 0.3605 | | 0.8922 | 92.1 | 14000 | 0.3530 | 0.3618 | | 0.9 | 95.39 | 14500 | 0.3500 | 0.3574 | | 0.9051 | 98.68 | 15000 | 0.3456 | 0.3535 | | 0.9304 | 101.97 | 15500 | 0.3438 | 0.3578 | | 0.9433 | 105.26 | 16000 | 0.3396 | 0.3530 | | 0.8988 | 108.55 | 16500 | 0.3436 | 0.3539 | | 0.8789 | 111.84 | 17000 | 0.3426 | 0.3516 | | 0.8667 | 115.13 | 17500 | 0.3438 | 0.3506 | | 0.8895 | 118.42 | 18000 | 0.3434 | 0.3503 | | 0.8888 | 121.71 | 18500 | 0.3425 | 0.3494 | | 0.9453 | 125.0 | 19000 | 0.3415 | 0.3480 | | 0.9267 | 128.29 | 19500 | 0.3477 | 0.3503 | | 0.8315 | 131.58 | 20000 | 0.3476 | 0.3505 | | 0.8542 | 134.86 | 20500 | 0.3475 | 0.3506 | | 0.8478 | 138.16 | 21000 | 0.3430 | 0.3481 | | 0.8643 | 141.45 | 21500 | 0.3451 | 0.3485 | | 0.8705 | 144.73 | 22000 | 0.3444 | 0.3474 | | 0.9869 | 148.03 | 22500 | 0.3441 | 0.3493 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2 - Datasets 1.18.3.dev0 - Tokenizers 0.10.3
{"language": ["fa"], "tags": ["automatic-speech-recognition", "mozilla-foundation/common_voice_7_0", "generated_from_trainer"], "datasets": ["common_voice"], "model-index": [{"name": "common7", "results": []}]}
automatic-speech-recognition
ghofrani/common7
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "mozilla-foundation/common_voice_7_0", "generated_from_trainer", "fa", "dataset:common_voice", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "fa" ]
TAGS #transformers #pytorch #wav2vec2 #automatic-speech-recognition #mozilla-foundation/common_voice_7_0 #generated_from_trainer #fa #dataset-common_voice #endpoints_compatible #region-us
common7 ======= This model is a fine-tuned version of common7/checkpoint-18500 on the MOZILLA-FOUNDATION/COMMON\_VOICE\_7\_0 - FA dataset. It achieves the following results on the evaluation set: * Loss: 0.3448 * Wer: 0.3478 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 6e-05 * train\_batch\_size: 32 * eval\_batch\_size: 16 * seed: 42 * gradient\_accumulation\_steps: 4 * total\_train\_batch\_size: 128 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * lr\_scheduler\_warmup\_steps: 100 * num\_epochs: 150.0 * mixed\_precision\_training: Native AMP ### Training results ### Framework versions * Transformers 4.17.0.dev0 * Pytorch 1.10.2 * Datasets 1.18.3.dev0 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 6e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 16\n* seed: 42\n* gradient\\_accumulation\\_steps: 4\n* total\\_train\\_batch\\_size: 128\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 100\n* num\\_epochs: 150.0\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.17.0.dev0\n* Pytorch 1.10.2\n* Datasets 1.18.3.dev0\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #wav2vec2 #automatic-speech-recognition #mozilla-foundation/common_voice_7_0 #generated_from_trainer #fa #dataset-common_voice #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 6e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 16\n* seed: 42\n* gradient\\_accumulation\\_steps: 4\n* total\\_train\\_batch\\_size: 128\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 100\n* num\\_epochs: 150.0\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.17.0.dev0\n* Pytorch 1.10.2\n* Datasets 1.18.3.dev0\n* Tokenizers 0.10.3" ]
[ 71, 160, 4, 36 ]
[ "passage: TAGS\n#transformers #pytorch #wav2vec2 #automatic-speech-recognition #mozilla-foundation/common_voice_7_0 #generated_from_trainer #fa #dataset-common_voice #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 6e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 16\n* seed: 42\n* gradient\\_accumulation\\_steps: 4\n* total\\_train\\_batch\\_size: 128\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 100\n* num\\_epochs: 150.0\n* mixed\\_precision\\_training: Native AMP### Training results### Framework versions\n\n\n* Transformers 4.17.0.dev0\n* Pytorch 1.10.2\n* Datasets 1.18.3.dev0\n* Tokenizers 0.10.3" ]
[ -0.12231084704399109, 0.06722528487443924, -0.003954681567847729, 0.040873412042856216, 0.12504468858242035, 0.014249385334551334, 0.08379577100276947, 0.14482538402080536, -0.10104702413082123, 0.08925904333591461, 0.08855915069580078, 0.08122069388628006, 0.07269507646560669, 0.1178816631436348, -0.028818953782320023, -0.28921687602996826, 0.01534270215779543, -0.0132745997980237, -0.09669046103954315, 0.10680289566516876, 0.09624464064836502, -0.10853200405836105, 0.021447328850626945, 0.012018844485282898, -0.10603878647089005, 0.006541518494486809, -0.02628401480615139, -0.04679182544350624, 0.11873960494995117, 0.056875526905059814, 0.06249355152249336, 0.0338020995259285, 0.06902096420526505, -0.2708577513694763, 0.01480994001030922, 0.05527586117386818, 0.04379193112254143, 0.05180583894252777, 0.09991487115621567, -0.013006175868213177, 0.1340353637933731, -0.07747090607881546, 0.04100412875413895, 0.05439592897891998, -0.10189551115036011, -0.3123217821121216, -0.08896283060312271, -0.004374621901661158, 0.11685293167829514, 0.09230305254459381, -0.04335099458694458, 0.055364832282066345, -0.07956359535455704, 0.10218798369169235, 0.23248158395290375, -0.23495697975158691, -0.06967388093471527, -0.017813414335250854, 0.050906404852867126, 0.040194034576416016, -0.10865006595849991, 0.001843124977312982, 0.027267416939139366, 0.03576447442173958, 0.0788801833987236, 0.0034355854149907827, 0.0006131313857622445, -0.0005975045496597886, -0.13405202329158783, -0.02950325608253479, 0.11303751170635223, 0.08243448287248611, -0.02409549243748188, -0.10956268012523651, -0.01841225102543831, -0.1874275505542755, -0.0500546433031559, -0.004864685703068972, 0.02988256700336933, -0.028665989637374878, -0.08480851352214813, 0.008499485440552235, -0.06254354864358902, -0.08183053135871887, 0.015825055539608, 0.15436871349811554, 0.0387006551027298, -0.04235854372382164, 0.011134401895105839, 0.08641472458839417, 0.034125737845897675, -0.14131714403629303, -0.003470245748758316, 0.04486581310629845, -0.09996035695075989, -0.017254197970032692, -0.04621012881398201, -0.034923601895570755, 0.03365053981542587, 0.11721271276473999, -0.0344175361096859, 0.09569910168647766, -0.006497770082205534, 0.010947812348604202, -0.07529313117265701, 0.1473502814769745, -0.06156627833843231, -0.0937647894024849, -0.04592718929052353, 0.09252173453569412, -0.002130951266735792, -0.017416944727301598, -0.07666172087192535, 0.010376479476690292, 0.0963345319032669, 0.04904765635728836, -0.024140717461705208, 0.023719632998108864, -0.06989589333534241, -0.02204854041337967, -0.010060258209705353, -0.10973644256591797, 0.046826209872961044, 0.0434332937002182, -0.05841522663831711, 0.013109494000673294, -0.01459265872836113, 0.029418369755148888, -0.014422175474464893, 0.1074753850698471, -0.04355079308152199, 0.004019786603748798, -0.06400854140520096, -0.11354563385248184, 0.03186865895986557, -0.04370734840631485, 0.00490913912653923, -0.06219891831278801, -0.08436618000268936, -0.06427332758903503, 0.04352233186364174, -0.06453545391559601, -0.04993317648768425, -0.087461456656456, -0.06654547154903412, 0.051953062415122986, -0.02383446879684925, 0.19066199660301208, -0.06486926227807999, 0.10305177420377731, 0.03421080857515335, 0.04933132603764534, 0.04761410132050514, 0.07695186883211136, -0.02516394481062889, 0.03273826092481613, -0.1503686159849167, 0.11047620326280594, -0.08651821315288544, 0.026562144979834557, -0.13354194164276123, -0.10482816398143768, -0.022175364196300507, 0.00722513860091567, 0.10638318955898285, 0.11992347985506058, -0.18596810102462769, -0.10949478298425674, 0.16361697018146515, -0.06472428888082504, -0.06738383322954178, 0.15357846021652222, -0.0247043389827013, -0.02515045367181301, 0.05510453134775162, 0.18266910314559937, 0.10084045678377151, -0.09510289132595062, 0.02033335529267788, -0.06271311640739441, 0.11919369548559189, 0.059415627270936966, 0.08976934850215912, -0.053132615983486176, 0.021621670573949814, -0.0036461432464420795, 0.0031220538076013327, 0.08157513290643692, -0.09503164887428284, -0.07162487506866455, -0.01193025428801775, -0.080750472843647, 0.030921921133995056, 0.05046666041016579, 0.020550617948174477, -0.10929272323846817, -0.11249805241823196, 0.004097133409231901, 0.1041325181722641, -0.10309265553951263, 0.04007059708237648, -0.07780425995588303, 0.04539043828845024, -0.014980729669332504, -0.004951137118041515, -0.16713187098503113, 0.0299440398812294, 0.0349377803504467, -0.01909434050321579, 0.0260019451379776, -0.006366932298988104, 0.08063411712646484, 0.04379884898662567, -0.0658649355173111, -0.051489029079675674, -0.03695746511220932, -0.0023094965144991875, -0.07887393981218338, -0.250311940908432, -0.05871548503637314, -0.03260842338204384, 0.16381846368312836, -0.19844557344913483, -0.0013350622029975057, 0.04148424416780472, 0.1307249218225479, 0.034926917403936386, -0.04742912948131561, 0.007598405238240957, 0.08690787851810455, -0.01618819870054722, -0.0585455521941185, 0.037430085241794586, -0.0013802676694467664, -0.13856960833072662, 0.008164060302078724, -0.12485022097826004, 0.0630405843257904, 0.09785176068544388, -0.018340865150094032, -0.08622818440198898, -0.06372523307800293, -0.052839573472738266, -0.05364595726132393, -0.016583941876888275, -0.007105445489287376, 0.19188319146633148, 0.01568613573908806, 0.10999692976474762, -0.07007617503404617, -0.02929549477994442, 0.03840070590376854, 0.021645698696374893, -0.012322723865509033, 0.14183621108531952, 0.05087583512067795, -0.06437543779611588, 0.08833453804254532, 0.0672587975859642, -0.04655890539288521, 0.17037084698677063, -0.061666686087846756, -0.09293641149997711, -0.03319892659783363, 0.02065495029091835, 0.011320151388645172, 0.08818349987268448, -0.1976977437734604, -0.01661393605172634, 0.019135745242238045, 0.036341018974781036, 0.02487807162106037, -0.18765634298324585, -0.0004632451164070517, 0.05328385904431343, -0.08029439300298691, -0.0003632933658082038, 0.005862795747816563, -0.004365680273622274, 0.0904616042971611, 0.01392301544547081, -0.07396996766328812, -0.017194820567965508, -0.03686712682247162, -0.08611471951007843, 0.16123442351818085, -0.11226068437099457, -0.14542146027088165, -0.10111870616674423, -0.06294092535972595, -0.024156365543603897, -0.0045998552814126015, 0.06418784707784653, -0.11740712821483612, -0.022200923413038254, -0.05441737547516823, 0.050901055335998535, -0.06688523292541504, 0.039743706583976746, 0.00864473171532154, -0.004850070457905531, 0.057216767221689224, -0.10322310030460358, 0.014203235507011414, -0.023026667535305023, -0.01822585240006447, 0.003575799521058798, 0.02315150946378708, 0.09068428725004196, 0.16580632328987122, 0.05075168237090111, 0.023259345442056656, -0.05294664204120636, 0.1851721554994583, -0.12862269580364227, -0.015089090913534164, 0.12040109932422638, 0.004341243766248226, 0.026405833661556244, 0.14938955008983612, 0.04662841185927391, -0.09345124661922455, 0.01492023840546608, 0.03990167751908302, -0.017577089369297028, -0.235308438539505, -0.0377943255007267, -0.08110436052083969, -0.028639689087867737, 0.07049266993999481, 0.026728184893727303, -0.0053286380134522915, 0.010276908054947853, -0.029761003330349922, -0.003815140575170517, 0.02105199545621872, 0.044978901743888855, 0.09774212539196014, 0.030528223142027855, 0.12263073772192001, -0.011902929283678532, -0.026298683136701584, 0.03739704564213753, -0.017990412190556526, 0.2285546213388443, 0.027430053800344467, 0.167916938662529, 0.05240432173013687, 0.14543238282203674, -0.0058723376132547855, 0.02950531430542469, 0.013486048206686974, -0.020505713298916817, 0.006104703992605209, -0.05354242026805878, -0.0349479615688324, 0.028971565887331963, 0.12394315004348755, 0.024329328909516335, -0.13066846132278442, -0.02011735737323761, 0.025204481557011604, 0.34772002696990967, 0.08218780159950256, -0.25735676288604736, -0.0870581790804863, 0.009188775904476643, -0.07564723491668701, -0.03180612623691559, 0.02290239743888378, 0.12408167868852615, -0.08550512790679932, 0.0840369388461113, -0.04647452011704445, 0.08785570412874222, -0.06102341040968895, 0.014902627095580101, 0.05298076197504997, 0.08521498739719391, -0.003763847751542926, 0.050155602395534515, -0.2761286795139313, 0.284695565700531, 0.001627917168661952, 0.08174204081296921, -0.04705635830760002, 0.0378674641251564, 0.038392312824726105, -0.01698433794081211, 0.05913503095507622, -0.012640432454645634, -0.1103331670165062, -0.16693712770938873, -0.06820200383663177, 0.01679662987589836, 0.13905522227287292, -0.05589526519179344, 0.10994001477956772, -0.027290672063827515, -0.018933141604065895, 0.05246307700872421, -0.032339997589588165, -0.12215476483106613, -0.10207466781139374, 0.019408825784921646, 0.06795377284288406, 0.07059526443481445, -0.07371668517589569, -0.10307731479406357, -0.09426164627075195, 0.17839255928993225, -0.07675646990537643, -0.012613227590918541, -0.12307040393352509, 0.08925648778676987, 0.1480846107006073, -0.06442554295063019, 0.03986690565943718, 0.020281990990042686, 0.10514739155769348, 0.015197315253317356, -0.005810457281768322, 0.1214047372341156, -0.07532194256782532, -0.20333260297775269, -0.062301237136125565, 0.1863252967596054, 0.04739303141832352, 0.07768009603023529, -0.026210393756628036, 0.02521066926419735, 0.0025744109880179167, -0.06212397292256355, 0.08623342216014862, 0.03912390395998955, 0.017149947583675385, 0.07422670722007751, -0.024909021332859993, -0.021688219159841537, -0.08228476345539093, -0.08644194155931473, 0.15023992955684662, 0.29704633355140686, -0.08008100092411041, 0.05513822287321091, 0.05152638629078865, -0.050695840269327164, -0.1371372640132904, 0.020175723358988762, 0.1310257613658905, 0.0532655194401741, 0.015428716316819191, -0.2202633023262024, -0.0006281771929934621, 0.07927859574556351, -0.016143783926963806, 0.0856163427233696, -0.3313637673854828, -0.1365160048007965, 0.08917698264122009, 0.07112272083759308, 0.01080815214663744, -0.1514974683523178, -0.06052108108997345, -0.02176538296043873, -0.08944164216518402, 0.020829683169722557, -0.02888265810906887, 0.14642196893692017, 0.016598209738731384, 0.034004807472229004, 0.026515407487750053, -0.03587106615304947, 0.1449110358953476, -0.010243241675198078, 0.048351798206567764, -0.011851359158754349, 0.03275280445814133, -0.04588624835014343, -0.04384421557188034, -0.017582884058356285, -0.08594672381877899, 0.014049570076167583, -0.11799723654985428, -0.038650788366794586, -0.09071113914251328, 0.019675420597195625, -0.03132108598947525, -0.04143364727497101, -0.0345611497759819, 0.037585895508527756, 0.06870512664318085, 0.009355244226753712, 0.10498152673244476, -0.08938435465097427, 0.1586010903120041, 0.10883913189172745, 0.11591164022684097, -0.017778225243091583, -0.06691602617502213, -0.008133525028824806, -0.018588058650493622, 0.04679974913597107, -0.09624743461608887, 0.03475494310259819, 0.13466116786003113, 0.03804294764995575, 0.15786656737327576, 0.04809607192873955, -0.07988070696592331, 0.029593372717499733, 0.05764436721801758, -0.07092656195163727, -0.14873234927654266, -0.020952124148607254, -0.004342762753367424, -0.12152409553527832, 0.008927988819777966, 0.12761268019676208, -0.02548777312040329, -0.00846001598984003, 0.0077257356606423855, 0.02601812779903412, -0.05283784866333008, 0.2353011816740036, 0.0016565026016905904, 0.06987437605857849, -0.10312703251838684, 0.0628579631447792, 0.04570866376161575, -0.14324112236499786, 0.04382628574967384, 0.07890422642230988, -0.04351087659597397, -0.0165335014462471, 0.018203480169177055, 0.10184505581855774, 0.046981051564216614, -0.050227921456098557, -0.10343073308467865, -0.15217408537864685, 0.0946420356631279, 0.08448606729507446, 0.029050437733530998, 0.023906931281089783, -0.03476373106241226, 0.04135162755846977, -0.09546542167663574, 0.08941837400197983, 0.0862571969628334, 0.04775913432240486, -0.1212851032614708, 0.1573667973279953, 0.01179102249443531, 0.004295989405363798, -0.0018132033292204142, -0.011672786436975002, -0.08608977496623993, 0.03121870756149292, -0.14051346480846405, -0.03752869367599487, -0.04971080645918846, -0.005908761639147997, 0.011563612148165703, -0.06624756753444672, -0.05478903278708458, 0.020515426993370056, -0.11609987914562225, -0.042740851640701294, -0.020058445632457733, 0.06676679849624634, -0.08872486650943756, -0.028668740764260292, 0.02624090574681759, -0.10760301351547241, 0.09298332035541534, 0.06230948120355606, 0.015223664231598377, 0.02210862934589386, -0.12029071897268295, -0.011729448102414608, 0.04273577034473419, -0.009615108370780945, 0.022023633122444153, -0.17627958953380585, -0.01766185648739338, -0.017727622762322426, 0.030694367364048958, -0.0012236658949404955, 0.033188596367836, -0.11822492629289627, -0.021075792610645294, -0.04498228058218956, -0.06149621680378914, -0.04346834495663643, 0.04505547881126404, 0.07589282095432281, 0.03919651731848717, 0.14751258492469788, -0.09515972435474396, 0.06792070716619492, -0.22151845693588257, 0.006238051224499941, -0.04017645865678787, -0.06712911278009415, -0.07250039279460907, -0.038241103291511536, 0.10126789659261703, -0.05438155308365822, 0.08218267560005188, -0.04947631061077118, 0.06598960608243942, 0.023838529363274574, -0.13179156184196472, 0.02689480222761631, 0.03641168400645256, 0.18471473455429077, 0.06068339943885803, -0.03439436852931976, 0.07640185952186584, 0.013292646035552025, 0.07633385062217712, 0.19021843373775482, 0.14650112390518188, 0.15242540836334229, 0.06917832046747208, 0.09551161527633667, 0.06675165891647339, -0.12728118896484375, -0.1318455934524536, 0.1206170916557312, -0.03986235707998276, 0.1338636577129364, -0.025289423763751984, 0.21899130940437317, 0.09803251177072525, -0.19499871134757996, 0.07343067973852158, -0.04027433693408966, -0.07795204967260361, -0.10346952080726624, -0.04870836064219475, -0.08471447229385376, -0.18484732508659363, 0.006968486122786999, -0.10171770304441452, 0.06594903022050858, 0.02452097274363041, 0.04741509631276131, 0.024558749049901962, 0.10922810435295105, 0.03122139349579811, -0.010792337357997894, 0.12285935133695602, 0.00486400444060564, -0.014173826202750206, -0.05884919315576553, -0.1137654110789299, 0.07122594863176346, -0.03627604618668556, 0.06020195782184601, -0.037498969584703445, -0.11551578342914581, 0.05311301350593567, 0.006165919825434685, -0.11491803079843521, 0.021774306893348694, -0.007707853335887194, 0.08333424478769302, 0.12094274163246155, 0.03450171276926994, -0.0073342653922736645, -0.011658400297164917, 0.21311050653457642, -0.09366334229707718, -0.05393609404563904, -0.12553063035011292, 0.22054336965084076, 0.010853726416826248, 0.008517286740243435, 0.01060679741203785, -0.07820378243923187, -0.012671809643507004, 0.17041228711605072, 0.16148768365383148, -0.022540275007486343, -0.013880337588489056, 0.02589646726846695, -0.010096109472215176, -0.02612379752099514, 0.06362353265285492, 0.11795751005411148, 0.041631121188402176, -0.046342652291059494, -0.01777222752571106, -0.04481128603219986, -0.05339173227548599, -0.012591873295605183, 0.08329319953918457, 0.02901768498122692, -0.011650203727185726, -0.00884155835956335, 0.11808149516582489, -0.04418246075510979, -0.16336408257484436, 0.03760332986712456, -0.1905783861875534, -0.17559660971164703, -0.030537476763129234, 0.05380353331565857, 0.06251997500658035, 0.05851789936423302, -0.012973204255104065, -0.018265200778841972, 0.10669700056314468, -0.00414351187646389, -0.030534984543919563, -0.1217971220612526, 0.08297962695360184, -0.09878598898649216, 0.145777627825737, -0.04219397157430649, 0.03812727332115173, 0.11752622574567795, 0.08761733025312424, -0.05806521698832512, 0.053116630762815475, 0.0732305496931076, -0.1268877238035202, 0.05323648080229759, 0.19376353919506073, -0.04794982075691223, 0.14755725860595703, 0.05415281653404236, -0.1066582053899765, 0.04220764338970184, -0.09003274887800217, -0.06857478618621826, -0.0526590496301651, 0.008361940272152424, -0.05130001902580261, 0.13117094337940216, 0.20469707250595093, -0.05777629464864731, -0.015401056036353111, -0.04907190054655075, 0.0023475869093090296, 0.042847178876399994, 0.1336035579442978, -0.0569467656314373, -0.29294654726982117, 0.02402801439166069, 0.04036745801568031, 0.020479559898376465, -0.2252899408340454, -0.09532944858074188, 0.029191728681325912, -0.055303312838077545, -0.059936027973890305, 0.1124541386961937, 0.044511131942272186, 0.03480009734630585, -0.054918862879276276, -0.1502867043018341, -0.013655440881848335, 0.18558946251869202, -0.1747869998216629, -0.05478211119771004 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # common8 This model is a fine-tuned version of [wghts/checkpoint-20000](https://huggingface.co/wghts/checkpoint-20000) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - FA dataset. It achieves the following results on the evaluation set: - Loss: 0.3174 - Wer: 0.3022 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-06 - train_batch_size: 32 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 6 - total_train_batch_size: 192 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - num_epochs: 250.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:-----:|:---------------:|:------:| | 3.5847 | 1.93 | 500 | 3.5104 | 1.0 | | 2.7858 | 3.86 | 1000 | 2.9601 | 1.0001 | | 1.6827 | 5.79 | 1500 | 0.7853 | 0.7030 | | 1.4656 | 7.72 | 2000 | 0.6076 | 0.6014 | | 1.3693 | 9.65 | 2500 | 0.5114 | 0.5307 | | 1.379 | 11.58 | 3000 | 0.4666 | 0.4940 | | 1.2832 | 13.51 | 3500 | 0.4257 | 0.4593 | | 1.1931 | 15.44 | 4000 | 0.4039 | 0.4427 | | 1.2911 | 17.37 | 4500 | 0.3956 | 0.4295 | | 1.1577 | 19.3 | 5000 | 0.3705 | 0.4114 | | 1.1135 | 21.24 | 5500 | 0.3740 | 0.4010 | | 1.19 | 23.17 | 6000 | 0.3611 | 0.3935 | | 1.1008 | 25.1 | 6500 | 0.3503 | 0.3880 | | 1.0805 | 27.03 | 7000 | 0.3427 | 0.3781 | | 1.1556 | 28.96 | 7500 | 0.3442 | 0.3727 | | 1.0596 | 30.89 | 8000 | 0.3398 | 0.3646 | | 1.0219 | 32.82 | 8500 | 0.3312 | 0.3660 | | 1.1042 | 34.75 | 9000 | 0.3287 | 0.3612 | | 1.0273 | 36.68 | 9500 | 0.3236 | 0.3556 | | 1.0383 | 38.61 | 10000 | 0.3217 | 0.3558 | | 1.0498 | 40.54 | 10500 | 0.3205 | 0.3520 | | 0.9969 | 42.47 | 11000 | 0.3125 | 0.3504 | | 1.0658 | 44.4 | 11500 | 0.3120 | 0.3493 | | 0.992 | 46.33 | 12000 | 0.3137 | 0.3476 | | 0.9737 | 48.26 | 12500 | 0.3085 | 0.3413 | | 1.0817 | 50.19 | 13000 | 0.3091 | 0.3418 | | 0.9414 | 52.12 | 13500 | 0.3072 | 0.3344 | | 0.9295 | 54.05 | 14000 | 0.3039 | 0.3322 | | 1.0248 | 55.98 | 14500 | 0.2991 | 0.3325 | | 0.9474 | 57.91 | 15000 | 0.3032 | 0.3348 | | 0.928 | 59.85 | 15500 | 0.2999 | 0.3285 | | 1.0321 | 61.78 | 16000 | 0.2982 | 0.3253 | | 0.9255 | 63.71 | 16500 | 0.2970 | 0.3231 | | 0.8928 | 65.64 | 17000 | 0.2993 | 0.3250 | | 1.008 | 67.57 | 17500 | 0.2985 | 0.3222 | | 0.9371 | 69.5 | 18000 | 0.2968 | 0.3216 | | 0.9077 | 71.43 | 18500 | 0.3011 | 0.3299 | | 1.0044 | 73.36 | 19000 | 0.3053 | 0.3306 | | 0.9625 | 75.29 | 19500 | 0.3159 | 0.3295 | | 0.9816 | 77.22 | 20000 | 0.3080 | 0.3304 | | 0.9587 | 119.19 | 20500 | 0.3088 | 0.3284 | | 0.9178 | 122.09 | 21000 | 0.3132 | 0.3320 | | 1.0282 | 125.0 | 21500 | 0.3099 | 0.3266 | | 0.9337 | 127.9 | 22000 | 0.3110 | 0.3317 | | 0.8822 | 130.81 | 22500 | 0.3037 | 0.3247 | | 0.9644 | 133.72 | 23000 | 0.3037 | 0.3238 | | 0.9214 | 136.62 | 23500 | 0.3040 | 0.3234 | | 0.9167 | 139.53 | 24000 | 0.3079 | 0.3203 | | 0.9047 | 142.44 | 24500 | 0.3018 | 0.3177 | | 0.8909 | 145.35 | 25000 | 0.3053 | 0.3181 | | 0.9646 | 148.25 | 25500 | 0.3095 | 0.3229 | | 0.8802 | 151.16 | 26000 | 0.3111 | 0.3192 | | 0.8411 | 154.07 | 26500 | 0.3068 | 0.3123 | | 0.9235 | 156.97 | 27000 | 0.3090 | 0.3177 | | 0.8943 | 159.88 | 27500 | 0.3115 | 0.3179 | | 0.8854 | 162.79 | 28000 | 0.3052 | 0.3157 | | 0.8734 | 165.69 | 28500 | 0.3077 | 0.3124 | | 0.8515 | 168.6 | 29000 | 0.3117 | 0.3128 | | 0.912 | 171.51 | 29500 | 0.3039 | 0.3121 | | 0.8669 | 174.42 | 30000 | 0.3120 | 0.3123 | | 0.823 | 177.32 | 30500 | 0.3148 | 0.3118 | | 0.9129 | 180.23 | 31000 | 0.3179 | 0.3101 | | 0.8255 | 183.14 | 31500 | 0.3164 | 0.3114 | | 0.8948 | 186.05 | 32000 | 0.3128 | 0.3101 | | 0.8397 | 188.95 | 32500 | 0.3143 | 0.3068 | | 0.8341 | 191.86 | 33000 | 0.3127 | 0.3136 | | 0.873 | 194.76 | 33500 | 0.3149 | 0.3124 | | 0.8232 | 197.67 | 34000 | 0.3166 | 0.3086 | | 0.8002 | 200.58 | 34500 | 0.3149 | 0.3061 | | 0.8621 | 203.49 | 35000 | 0.3160 | 0.3093 | | 0.8123 | 206.39 | 35500 | 0.3141 | 0.3063 | | 0.7995 | 209.3 | 36000 | 0.3174 | 0.3075 | | 0.8271 | 212.21 | 36500 | 0.3173 | 0.3043 | | 0.8059 | 215.12 | 37000 | 0.3176 | 0.3079 | | 0.8835 | 218.02 | 37500 | 0.3169 | 0.3062 | | 0.8027 | 220.93 | 38000 | 0.3203 | 0.3098 | | 0.775 | 223.83 | 38500 | 0.3159 | 0.3068 | | 0.8487 | 226.74 | 39000 | 0.3161 | 0.3072 | | 0.7929 | 229.65 | 39500 | 0.3143 | 0.3037 | | 0.7653 | 232.56 | 40000 | 0.3160 | 0.3048 | | 0.8211 | 235.46 | 40500 | 0.3173 | 0.3031 | | 0.7761 | 238.37 | 41000 | 0.3176 | 0.3025 | | 0.7761 | 241.28 | 41500 | 0.3179 | 0.3027 | | 0.7903 | 244.19 | 42000 | 0.3181 | 0.3016 | | 0.7807 | 247.09 | 42500 | 0.3170 | 0.3027 | | 0.8406 | 250.0 | 43000 | 0.3174 | 0.3022 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2 - Datasets 1.18.3.dev0 - Tokenizers 0.10.3
{"language": ["fa"], "tags": ["automatic-speech-recognition", "mozilla-foundation/common_voice_8_0", "generated_from_trainer"], "datasets": ["common_voice"], "model-index": [{"name": "common8", "results": []}]}
automatic-speech-recognition
ghofrani/xls-r-1b-fa-cv8
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "mozilla-foundation/common_voice_8_0", "generated_from_trainer", "fa", "dataset:common_voice", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "fa" ]
TAGS #transformers #pytorch #wav2vec2 #automatic-speech-recognition #mozilla-foundation/common_voice_8_0 #generated_from_trainer #fa #dataset-common_voice #endpoints_compatible #region-us
common8 ======= This model is a fine-tuned version of wghts/checkpoint-20000 on the MOZILLA-FOUNDATION/COMMON\_VOICE\_8\_0 - FA dataset. It achieves the following results on the evaluation set: * Loss: 0.3174 * Wer: 0.3022 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 1e-06 * train\_batch\_size: 32 * eval\_batch\_size: 16 * seed: 42 * gradient\_accumulation\_steps: 6 * total\_train\_batch\_size: 192 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * lr\_scheduler\_warmup\_steps: 100 * num\_epochs: 250.0 * mixed\_precision\_training: Native AMP ### Training results ### Framework versions * Transformers 4.17.0.dev0 * Pytorch 1.10.2 * Datasets 1.18.3.dev0 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 1e-06\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 16\n* seed: 42\n* gradient\\_accumulation\\_steps: 6\n* total\\_train\\_batch\\_size: 192\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 100\n* num\\_epochs: 250.0\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.17.0.dev0\n* Pytorch 1.10.2\n* Datasets 1.18.3.dev0\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #wav2vec2 #automatic-speech-recognition #mozilla-foundation/common_voice_8_0 #generated_from_trainer #fa #dataset-common_voice #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 1e-06\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 16\n* seed: 42\n* gradient\\_accumulation\\_steps: 6\n* total\\_train\\_batch\\_size: 192\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 100\n* num\\_epochs: 250.0\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.17.0.dev0\n* Pytorch 1.10.2\n* Datasets 1.18.3.dev0\n* Tokenizers 0.10.3" ]
[ 71, 160, 4, 36 ]
[ "passage: TAGS\n#transformers #pytorch #wav2vec2 #automatic-speech-recognition #mozilla-foundation/common_voice_8_0 #generated_from_trainer #fa #dataset-common_voice #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 1e-06\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 16\n* seed: 42\n* gradient\\_accumulation\\_steps: 6\n* total\\_train\\_batch\\_size: 192\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 100\n* num\\_epochs: 250.0\n* mixed\\_precision\\_training: Native AMP### Training results### Framework versions\n\n\n* Transformers 4.17.0.dev0\n* Pytorch 1.10.2\n* Datasets 1.18.3.dev0\n* Tokenizers 0.10.3" ]
[ -0.12006473541259766, 0.07056140899658203, -0.0038534009363502264, 0.03960047662258148, 0.12477318942546844, 0.012470915913581848, 0.08343128859996796, 0.14479820430278778, -0.09896792471408844, 0.09203992038965225, 0.08775370568037033, 0.08357212692499161, 0.07362598925828934, 0.11699023097753525, -0.027621079236268997, -0.29001712799072266, 0.015283568762242794, -0.012999586760997772, -0.09530405700206757, 0.10911772400140762, 0.09487499296665192, -0.10868284851312637, 0.019441621378064156, 0.009200136177241802, -0.11007357388734818, 0.007731481455266476, -0.025550801306962967, -0.04494044929742813, 0.11854290217161179, 0.054965849965810776, 0.063275046646595, 0.033440910279750824, 0.07066306471824646, -0.27136608958244324, 0.013572520576417446, 0.05625856667757034, 0.045189425349235535, 0.051064178347587585, 0.09882767498493195, -0.012690425850450993, 0.14064040780067444, -0.07863011956214905, 0.03981243446469307, 0.05469493940472603, -0.1017066091299057, -0.3055418133735657, -0.0872272402048111, -0.007719102781265974, 0.11927584558725357, 0.09638264030218124, -0.04426214098930359, 0.057049766182899475, -0.08078523725271225, 0.09950006753206253, 0.2334243506193161, -0.2317659705877304, -0.07128329575061798, -0.021019240841269493, 0.049299031496047974, 0.04017923027276993, -0.11055795103311539, -0.002529742429032922, 0.02798398770391941, 0.035572510212659836, 0.07606668770313263, 0.0037437842693179846, -0.0037162124644964933, -0.002261071465909481, -0.1355675458908081, -0.030854186043143272, 0.11295270174741745, 0.08317650109529495, -0.02209904044866562, -0.10702624171972275, -0.02105632983148098, -0.18922671675682068, -0.048967063426971436, -0.004957636818289757, 0.02968239039182663, -0.02815680019557476, -0.0874699279665947, 0.011404392309486866, -0.06383045762777328, -0.08540582656860352, 0.012333035469055176, 0.15482880175113678, 0.03798256814479828, -0.04294559732079506, 0.011656945571303368, 0.08599834144115448, 0.03966158628463745, -0.1399974822998047, -0.003939364571124315, 0.04754491150379181, -0.1003282368183136, -0.015758512541651726, -0.044862352311611176, -0.03699108958244324, 0.031647440046072006, 0.10985144972801208, -0.03097846917808056, 0.09632143378257751, -0.0074366177432239056, 0.011984593234956264, -0.07681175321340561, 0.14842762053012848, -0.06031869351863861, -0.08555325865745544, -0.0499727800488472, 0.09345600008964539, -0.0024353356566280127, -0.016480058431625366, -0.07440607249736786, 0.011445821262896061, 0.0979471281170845, 0.04810002073645592, -0.02503073588013649, 0.020414073020219803, -0.07170642912387848, -0.022259047254920006, -0.013291486538946629, -0.10875947773456573, 0.04583924263715744, 0.043032143265008926, -0.06011337414383888, 0.012462214566767216, -0.01690700836479664, 0.02870727702975273, -0.0138391749933362, 0.10697333514690399, -0.04514927417039871, 0.0050108530558645725, -0.06501396745443344, -0.11096765100955963, 0.03204929828643799, -0.045938629657030106, 0.0035625325981527567, -0.05868706852197647, -0.08039285987615585, -0.0653546154499054, 0.04271230846643448, -0.0641215369105339, -0.04999283701181412, -0.09173405915498734, -0.06519021093845367, 0.0515599250793457, -0.023276016116142273, 0.19130003452301025, -0.06401631981134415, 0.10461646318435669, 0.03156917914748192, 0.04907671734690666, 0.04760333150625229, 0.07821982353925705, -0.029747696593403816, 0.03271010145545006, -0.14512334764003754, 0.11032790690660477, -0.08678560703992844, 0.023378800600767136, -0.13668999075889587, -0.1031852588057518, -0.026337450370192528, 0.005719286389648914, 0.10606582462787628, 0.11997216939926147, -0.19044499099254608, -0.10975681245326996, 0.16685831546783447, -0.0643257275223732, -0.06491414457559586, 0.15104366838932037, -0.0239366814494133, -0.02526864968240261, 0.05227109417319298, 0.18383708596229553, 0.09530223160982132, -0.08792981505393982, 0.016916846856474876, -0.06519918143749237, 0.11916791647672653, 0.057720039039850235, 0.08881731331348419, -0.054072305560112, 0.022273756563663483, -0.004760148003697395, 0.0019163729157298803, 0.07897277176380157, -0.09509417414665222, -0.07158538699150085, -0.013499380089342594, -0.07894747704267502, 0.029773296788334846, 0.053422506898641586, 0.0180581696331501, -0.11006269603967667, -0.11129558086395264, -0.0011761776404455304, 0.1022455021739006, -0.1018572673201561, 0.039363760501146317, -0.07490461319684982, 0.03701217472553253, -0.015115524642169476, -0.005382100120186806, -0.16693049669265747, 0.026959557086229324, 0.03690914809703827, -0.0182639230042696, 0.028592564165592194, -0.004630097653716803, 0.07863937318325043, 0.03984113782644272, -0.06433167308568954, -0.0519668273627758, -0.03903863579034805, -0.003760438645258546, -0.07936235517263412, -0.24834735691547394, -0.05845560505986214, -0.03251652419567108, 0.16368398070335388, -0.1974801868200302, -0.0037297408562153578, 0.041158318519592285, 0.13098984956741333, 0.03299087658524513, -0.049056846648454666, 0.007664903998374939, 0.0861053615808487, -0.01573054865002632, -0.05907135456800461, 0.03708508610725403, -0.0034455894492566586, -0.13984020054340363, 0.007335000205785036, -0.12609541416168213, 0.0570790097117424, 0.09720224142074585, -0.015584919601678848, -0.08680860698223114, -0.06442908197641373, -0.05435949191451073, -0.054606031626462936, -0.020469708368182182, -0.00300832511857152, 0.19556386768817902, 0.017943453043699265, 0.10697107017040253, -0.0687992125749588, -0.027188725769519806, 0.039815254509449005, 0.021137414500117302, -0.013510946184396744, 0.1458357870578766, 0.05532947927713394, -0.07023567706346512, 0.08886528760194778, 0.06886391341686249, -0.046959031373262405, 0.16864840686321259, -0.061415981501340866, -0.09470058977603912, -0.03131260722875595, 0.02307223342359066, 0.010882883332669735, 0.0879100039601326, -0.19511336088180542, -0.016751211136579514, 0.017367461696267128, 0.03636618331074715, 0.02364734746515751, -0.19176355004310608, -0.0020570619963109493, 0.05248798802495003, -0.08131010830402374, -0.0008038489613682032, 0.0046918559819459915, -0.003911178093403578, 0.09051775187253952, 0.014829198829829693, -0.07507289946079254, -0.01705022156238556, -0.03676927462220192, -0.0862576961517334, 0.16315661370754242, -0.10854694992303848, -0.14383669197559357, -0.09937898814678192, -0.05613631010055542, -0.024012146517634392, -0.0056496611796319485, 0.06271553039550781, -0.11928050965070724, -0.020384952425956726, -0.05447722598910332, 0.05108954384922981, -0.06912275403738022, 0.03707606717944145, 0.006962013430893421, -0.003792030503973365, 0.056148964911699295, -0.1025114357471466, 0.014602766372263432, -0.024642331525683403, -0.0233151875436306, 0.0035187238827347755, 0.020909661427140236, 0.09046574681997299, 0.1687418818473816, 0.04972140118479729, 0.023674586787819862, -0.05080713331699371, 0.1778106689453125, -0.12901073694229126, -0.018812259659171104, 0.11601696163415909, 0.007753911893814802, 0.02716987207531929, 0.15055975317955017, 0.04585178568959236, -0.0922093540430069, 0.017944445833563805, 0.04254227876663208, -0.01886052079498768, -0.23646433651447296, -0.039553627371788025, -0.07936298102140427, -0.030661379918456078, 0.07342544943094254, 0.028623221442103386, -0.008473342284560204, 0.010997493751347065, -0.02942565642297268, -0.00858265906572342, 0.015657708048820496, 0.04523675516247749, 0.09152092784643173, 0.033154167234897614, 0.1213579848408699, -0.01172990445047617, -0.027378246188163757, 0.03626733645796776, -0.017386026680469513, 0.2330707162618637, 0.02814418263733387, 0.16788624227046967, 0.05288761854171753, 0.14710888266563416, -0.007708702236413956, 0.028701310977339745, 0.017063241451978683, -0.020285191014409065, 0.0052397847175598145, -0.051952846348285675, -0.03818679228425026, 0.0308306273072958, 0.12313014268875122, 0.02721923403441906, -0.1317773163318634, -0.020456664264202118, 0.02367423288524151, 0.3519138693809509, 0.08419457823038101, -0.2569446563720703, -0.08382326364517212, 0.009805076755583286, -0.07705672830343246, -0.031852178275585175, 0.02444290742278099, 0.12315518409013748, -0.0851343423128128, 0.08046074956655502, -0.04664324223995209, 0.08851803839206696, -0.06319728493690491, 0.013368559069931507, 0.051748666912317276, 0.08483105897903442, -0.0021792377810925245, 0.05264542996883392, -0.27606120705604553, 0.29088926315307617, 0.0002981515135616064, 0.07989509403705597, -0.04849947243928909, 0.03482111915946007, 0.034889861941337585, -0.02399480529129505, 0.06166214123368263, -0.012367293238639832, -0.11445540934801102, -0.16634966433048248, -0.06750112771987915, 0.018380438908934593, 0.14268210530281067, -0.05780661106109619, 0.10922561585903168, -0.026970289647579193, -0.017406385391950607, 0.054873108863830566, -0.03071870282292366, -0.12024790793657303, -0.10099202394485474, 0.02025654725730419, 0.06929348409175873, 0.06822708994150162, -0.07381870597600937, -0.10252302139997482, -0.08380940556526184, 0.17956414818763733, -0.07715887576341629, -0.009849268943071365, -0.12033586949110031, 0.08976416289806366, 0.1500752568244934, -0.06547069549560547, 0.03832665830850601, 0.020216049626469612, 0.10359630733728409, 0.016535773873329163, -0.005750719923526049, 0.12408263981342316, -0.07356077432632446, -0.20205767452716827, -0.0633913055062294, 0.18603608012199402, 0.04943238943815231, 0.07906892150640488, -0.02720792591571808, 0.026466693729162216, 0.0016775024123489857, -0.06229306384921074, 0.08786889910697937, 0.03837188333272934, 0.014916042797267437, 0.074225515127182, -0.024334294721484184, -0.019447794184088707, -0.08506456762552261, -0.08762358874082565, 0.15028664469718933, 0.29457584023475647, -0.08023828268051147, 0.052322011440992355, 0.051595281809568405, -0.05031578615307808, -0.13727828860282898, 0.02087368629872799, 0.130527526140213, 0.05364363268017769, 0.012324660085141659, -0.22104273736476898, 0.00024093379033729434, 0.08306723833084106, -0.01662611775100231, 0.084629125893116, -0.3390688896179199, -0.13452553749084473, 0.09005841612815857, 0.07043693959712982, 0.008802632801234722, -0.15141379833221436, -0.06180040165781975, -0.021348655223846436, -0.0829727053642273, 0.025189323350787163, -0.027990249916911125, 0.1482209414243698, 0.016064686700701714, 0.037370748817920685, 0.026178553700447083, -0.03636348992586136, 0.14091487228870392, -0.008178718388080597, 0.047000452876091, -0.010877327062189579, 0.029483256861567497, -0.0496826209127903, -0.04310355708003044, -0.01649751514196396, -0.08705122768878937, 0.014660000801086426, -0.11429178714752197, -0.03821989521384239, -0.09315429627895355, 0.020436957478523254, -0.03049909509718418, -0.04117295518517494, -0.034269507974386215, 0.03785539045929909, 0.06908826529979706, 0.00933715607970953, 0.10401929914951324, -0.08864572644233704, 0.1610548496246338, 0.11014547944068909, 0.11576009541749954, -0.016861384734511375, -0.06557168811559677, -0.008497538045048714, -0.01602909527719021, 0.04657069221138954, -0.09754401445388794, 0.03267662972211838, 0.13741344213485718, 0.041456438601017, 0.15774723887443542, 0.049748703837394714, -0.08003216981887817, 0.03135570138692856, 0.05535150691866875, -0.06888642907142639, -0.1533454954624176, -0.01997956819832325, 0.007475937716662884, -0.12398126721382141, 0.010503076948225498, 0.12378209084272385, -0.02832649275660515, -0.008351561613380909, 0.008031509816646576, 0.025322888046503067, -0.05231500416994095, 0.23516613245010376, 0.0012950361706316471, 0.07020226866006851, -0.10209985077381134, 0.0636623203754425, 0.04604122042655945, -0.146060049533844, 0.044491495937108994, 0.08155469596385956, -0.041281234472990036, -0.01593473181128502, 0.01984294503927231, 0.0961473360657692, 0.04556736722588539, -0.045991212129592896, -0.10106395184993744, -0.15288765728473663, 0.09398139268159866, 0.08555400371551514, 0.027941690757870674, 0.026002557948231697, -0.035765405744314194, 0.04110823944211006, -0.09795835614204407, 0.08647090196609497, 0.08703751116991043, 0.04939589649438858, -0.11866690218448639, 0.1563095897436142, 0.01139732263982296, 0.0050835381262004375, -0.0007233110954985023, -0.012524559162557125, -0.08368029445409775, 0.032676782459020615, -0.13283321261405945, -0.03859003260731697, -0.05026169866323471, -0.008760461583733559, 0.01166914589703083, -0.0655902549624443, -0.05435369908809662, 0.01962653361260891, -0.11596829444169998, -0.04485228657722473, -0.02191060222685337, 0.06591824442148209, -0.08884410560131073, -0.028745178133249283, 0.027712687849998474, -0.10582539439201355, 0.08961578458547592, 0.06212739646434784, 0.016444338485598564, 0.02240704745054245, -0.1225365698337555, -0.010053513571619987, 0.04338424280285835, -0.009847728535532951, 0.023136937990784645, -0.17472702264785767, -0.019299481064081192, -0.01797613315284252, 0.032687388360500336, -0.002833697712048888, 0.03012724220752716, -0.1194516271352768, -0.024844441562891006, -0.0478891022503376, -0.06588637828826904, -0.043088678270578384, 0.045437417924404144, 0.07838110625743866, 0.03901040181517601, 0.14750349521636963, -0.09480989724397659, 0.07013945281505585, -0.22055983543395996, 0.006794282700866461, -0.03952232003211975, -0.06602496653795242, -0.07325677573680878, -0.03672272711992264, 0.10079400986433029, -0.05477820336818695, 0.0775018036365509, -0.04976936802268028, 0.06523238122463226, 0.02426920458674431, -0.1326419711112976, 0.027565620839595795, 0.037068337202072144, 0.18566371500492096, 0.06314399093389511, -0.035117775201797485, 0.07852967083454132, 0.012126846238970757, 0.07313340157270432, 0.19182653725147247, 0.1492755264043808, 0.15574008226394653, 0.06951360404491425, 0.09628041088581085, 0.06705790758132935, -0.1284315437078476, -0.13250310719013214, 0.12356072664260864, -0.038657136261463165, 0.13290594518184662, -0.022886918857693672, 0.2242698073387146, 0.0951906219124794, -0.19361895322799683, 0.07330478727817535, -0.041060324758291245, -0.07884014397859573, -0.10254529118537903, -0.046890292316675186, -0.08586923032999039, -0.18454506993293762, 0.0068768952041864395, -0.10062503814697266, 0.0678332969546318, 0.027499627321958542, 0.0464823953807354, 0.02476361021399498, 0.11092115193605423, 0.036966439336538315, -0.011025712825357914, 0.12589164078235626, 0.006269009318202734, -0.014331384561955929, -0.06129312887787819, -0.11206666380167007, 0.07269969582557678, -0.03675748035311699, 0.060482632368803024, -0.03752083703875542, -0.11448163539171219, 0.05190768837928772, 0.004391441587358713, -0.11509230732917786, 0.0212495606392622, -0.008184878155589104, 0.08319389075040817, 0.11821375042200089, 0.03550901263952255, -0.007194915320724249, -0.01119480561465025, 0.21271836757659912, -0.09592965245246887, -0.0504767931997776, -0.12126629054546356, 0.22698873281478882, 0.009783372282981873, 0.009019899182021618, 0.009774073958396912, -0.07898728549480438, -0.01292935386300087, 0.16486278176307678, 0.15534710884094238, -0.02292823977768421, -0.014497801661491394, 0.024668801575899124, -0.009831984527409077, -0.027849014848470688, 0.06307557970285416, 0.11873625218868256, 0.043255992233753204, -0.048715777695178986, -0.018796540796756744, -0.04588627442717552, -0.0531371645629406, -0.012051603756844997, 0.08169089257717133, 0.030306214466691017, -0.010350493714213371, -0.01215851865708828, 0.11812851577997208, -0.04467497766017914, -0.15530997514724731, 0.03660974279046059, -0.19206666946411133, -0.1756841093301773, -0.030660530552268028, 0.05161780118942261, 0.06218264624476433, 0.05988757684826851, -0.01391562633216381, -0.016815869137644768, 0.10370044410228729, -0.003068826859816909, -0.033847056329250336, -0.12185702472925186, 0.08106908202171326, -0.09966089576482773, 0.1490669846534729, -0.04242503643035889, 0.03673400729894638, 0.1162695586681366, 0.08884644508361816, -0.059201277792453766, 0.055672600865364075, 0.07361588627099991, -0.1254614293575287, 0.05336354300379753, 0.1950218379497528, -0.046990759670734406, 0.1498953402042389, 0.055233024060726166, -0.11012991517782211, 0.043201617896556854, -0.09117972105741501, -0.06542044878005981, -0.05543564260005951, 0.009942117147147655, -0.05119280889630318, 0.13244253396987915, 0.20773516595363617, -0.057282548397779465, -0.01534624770283699, -0.04967222362756729, -0.00025618026847951114, 0.03996579349040985, 0.13934864103794098, -0.05527901649475098, -0.29071947932243347, 0.02304496243596077, 0.04370146244764328, 0.019042976200580597, -0.22983261942863464, -0.09561406075954437, 0.030265944078564644, -0.058651503175497055, -0.055989522486925125, 0.11082734912633896, 0.041166823357343674, 0.03486429527401924, -0.056324269622564316, -0.15256355702877045, -0.011474045924842358, 0.18677105009555817, -0.17279940843582153, -0.0552871972322464 ]
null
null
transformers
# Bangla-GPT2 ### A GPT-2 Model for the Bengali Language * Dataset- mc4 Bengali * Training time- ~40 hours * Written in- JAX If you use this model, please cite: ``` @misc{bangla-gpt2, author = {Ritobrata Ghosh}, year = {2016}, title = {Bangla GPT-2}, publisher = {Hugging Face} } ```
{"language": "bn", "tags": ["text-generation"], "widget": [{"text": "\u0986\u099c \u098f\u0995\u099f\u09bf \u09b8\u09c1\u09a8\u09cd\u09a6\u09b0 \u09a6\u09bf\u09a8 \u098f\u09ac\u0982 \u0986\u09ae\u09bf"}]}
text-generation
ritog/bangla-gpt2
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "bn", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "bn" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #bn #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
# Bangla-GPT2 ### A GPT-2 Model for the Bengali Language * Dataset- mc4 Bengali * Training time- ~40 hours * Written in- JAX If you use this model, please cite:
[ "# Bangla-GPT2", "### A GPT-2 Model for the Bengali Language\n\n* Dataset- mc4 Bengali\n* Training time- ~40 hours\n* Written in- JAX\n\nIf you use this model, please cite:" ]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #bn #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "# Bangla-GPT2", "### A GPT-2 Model for the Bengali Language\n\n* Dataset- mc4 Bengali\n* Training time- ~40 hours\n* Written in- JAX\n\nIf you use this model, please cite:" ]
[ 52, 6, 41 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #bn #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n# Bangla-GPT2### A GPT-2 Model for the Bengali Language\n\n* Dataset- mc4 Bengali\n* Training time- ~40 hours\n* Written in- JAX\n\nIf you use this model, please cite:" ]
[ -0.10073775053024292, 0.04975242167711258, -0.00014848654973320663, 0.03923024982213974, 0.06200550124049187, 0.006918168626725674, 0.06193838268518448, 0.08054690062999725, -0.05107059329748154, -0.014580450020730495, 0.18984077870845795, 0.06912580877542496, 0.01407772209495306, 0.151948943734169, -0.010158717632293701, -0.32482367753982544, 0.030398622155189514, 0.07938738167285919, -0.09295716136693954, 0.18987210094928741, 0.1366792619228363, -0.02539004385471344, 0.046305250376462936, -0.006090396549552679, -0.20005300641059875, -0.014443032443523407, -0.0006154652801342309, -0.1238866075873375, 0.06217285618185997, 0.03019462339580059, 0.06153552606701851, 0.049861010164022446, 0.02242949604988098, -0.0444195456802845, 0.022130317986011505, -0.021482190117239952, 0.014803588390350342, 0.03638169914484024, -0.024788638576865196, 0.037062712013721466, 0.14612317085266113, 0.026651481166481972, -0.005098577588796616, 0.019709883257746696, -0.1533438265323639, -0.09350045770406723, 0.005690908990800381, 0.03414740785956383, 0.13237391412258148, 0.062146734446287155, -0.05223502963781357, 0.012242870405316353, -0.2020883411169052, 0.047070592641830444, 0.11269056051969528, -0.24664074182510376, -0.07115743309259415, 0.10065330564975739, 0.13369391858577728, 0.11596217751502991, -0.07618789374828339, 0.03194967284798622, 0.09125089645385742, 0.002775067463517189, 0.12554898858070374, -0.09336652606725693, 0.026395507156848907, 0.09368442744016647, -0.11440537869930267, 0.03396350145339966, 0.19316716492176056, -0.04912307858467102, 0.0010134951444342732, -0.06291770190000534, -0.019724687561392784, -0.16871421039104462, -0.060865096747875214, -0.04995401203632355, -0.04971962794661522, 0.05034752935171127, 0.004388665780425072, -0.03607894852757454, -0.07828201353549957, -0.11237041652202606, -0.027689732611179352, 0.045419495552778244, 0.03599049523472786, -0.009396105073392391, -0.1319132149219513, 0.10544139891862869, -0.03429045528173447, -0.009199156425893307, -0.00010376350837759674, -0.03757133334875107, -0.012546549551188946, 0.05007801204919815, -0.007813491858541965, 0.03678206354379654, -0.07192594558000565, 0.09537824988365173, -0.06142390891909599, 0.009416087530553341, 0.11757554113864899, 0.0335497185587883, -0.003505768720060587, 0.031001603230834007, -0.11776785552501678, -0.11572640389204025, -0.004400172270834446, 0.0018637259490787983, -0.07670240104198456, -0.04125184938311577, -0.0718395933508873, -0.06552485376596451, 0.05464595556259155, 0.03608715161681175, -0.16598933935165405, 0.05896082893013954, -0.003627385478466749, -0.032079391181468964, 0.07833144068717957, -0.0792861059308052, -0.05272410437464714, -0.047656185925006866, -0.08721405267715454, -0.09711885452270508, 0.01857224479317665, -0.004099578596651554, -0.07511977106332779, -0.12473989278078079, -0.08663763105869293, -0.04539039731025696, -0.12812288105487823, -0.06201641261577606, -0.047207336872816086, -0.03833114728331566, -0.025022165849804878, -0.03928745537996292, -0.22310499846935272, 0.042447496205568314, 0.06993051618337631, -0.1288364678621292, -0.10499301552772522, -0.12800012528896332, -0.017620015889406204, 0.06690498441457748, -0.11520927399396896, 0.1784089356660843, -0.04226380214095116, 0.09204369783401489, 0.05981707200407982, 0.15995949506759644, 0.017797384411096573, 0.07281741499900818, 0.012297012843191624, 0.03575548529624939, -0.05475655570626259, 0.12226568162441254, -0.032076649367809296, -0.019127145409584045, -0.07845772057771683, -0.08185218274593353, -0.05402212589979172, 0.11468162387609482, 0.019371049478650093, 0.10802662372589111, -0.06721734255552292, -0.05674039572477341, 0.30659475922584534, 0.021866239607334137, -0.11064685881137848, 0.10316401720046997, -0.041440777480602264, 0.2594709098339081, 0.07027704268693924, 0.13776592910289764, -0.006387222092598677, 0.018426205962896347, 0.16275787353515625, 0.0667203813791275, -0.02283034846186638, -0.09029126912355423, 0.058682385832071304, 0.05237621068954468, -0.06267596036195755, 0.05249127373099327, 0.056122418493032455, 0.07300777733325958, -0.09406683593988419, -0.0403832271695137, 0.04316513612866402, -0.05082414671778679, 0.051853615790605545, -0.025464210659265518, 0.13043048977851868, -0.08976489305496216, -0.0837169662117958, 0.09279783070087433, 0.08415486663579941, -0.041145630180835724, 0.02355462685227394, -0.08943313360214233, -0.060649316757917404, -0.07530749589204788, 0.01190632302314043, -0.09008954465389252, 0.08161871880292892, -0.014114195480942726, 0.16203323006629944, 0.030820904299616814, 0.1542241871356964, 0.06989647448062897, -0.014847032725811005, -0.04590069502592087, 0.06123645603656769, 0.11560198664665222, -0.054391492158174515, -0.16054658591747284, -0.032820284366607666, 0.05126390606164932, -0.037322964519262314, 0.12955516576766968, -0.2143242061138153, 0.06920105963945389, -0.02113272249698639, -0.001322101685218513, -0.02909674122929573, 0.014896301552653313, 0.04705419763922691, -0.007300036959350109, -0.0024899214040488005, -0.030258361250162125, 0.05026761814951897, -0.009700574912130833, -0.034128397703170776, 0.2875348925590515, -0.09374349564313889, 0.14760172367095947, 0.07498905807733536, -0.03637756407260895, -0.014559510163962841, -0.03971530497074127, 0.0053086127154529095, -0.07898804545402527, -0.017429452389478683, 0.048547182232141495, 0.19338932633399963, 0.028928298503160477, 0.20405380427837372, -0.10651689767837524, -0.03955867886543274, 0.009419001638889313, -0.08386220037937164, 0.07920902967453003, 0.09888973087072372, 0.0663718655705452, -0.17134959995746613, 0.12417235225439072, -0.014235316775739193, 0.051287271082401276, 0.23255987465381622, 0.07388757914304733, -0.07870800048112869, -0.06105223670601845, -0.00031733812647871673, -0.09687662869691849, 0.06068176403641701, -0.18202774226665497, -0.07022684812545776, 0.0559815987944603, 0.04776822030544281, 0.06460978835821152, -0.14663411676883698, -0.08903335779905319, -0.02076607570052147, -0.06312578916549683, -0.0023912766482681036, 0.12505510449409485, -0.08252351731061935, 0.07435564696788788, 0.011187007650732994, -0.02538801170885563, 0.037078529596328735, 0.031811341643333435, -0.08921562135219574, 0.19811585545539856, -0.06929830461740494, -0.2691003382205963, -0.05463424324989319, -0.10765060037374496, 0.07009550929069519, -0.005785337649285793, 0.04265303164720535, -0.18133847415447235, -0.024193018674850464, 0.0033463495783507824, 0.069574274122715, -0.058600738644599915, 0.000124047786812298, -0.12040779739618301, -0.023876624181866646, -0.10863114148378372, -0.08899372071027756, -0.011488193646073341, -0.027537450194358826, -0.04104658216238022, 0.08263552188873291, -0.2093115597963333, -0.07922474294900894, 0.18490703403949738, -0.026786135509610176, 0.054222285747528076, -0.007703444454818964, 0.14792418479919434, -0.09250086545944214, 0.05934828892350197, 0.0506017804145813, 0.1243087649345398, 0.019334925338625908, 0.06462389975786209, -0.01688523218035698, -0.10752560198307037, 0.0036909026093780994, 0.06289631128311157, -0.04159212484955788, -0.21450960636138916, -0.04257231578230858, -0.07633208483457565, 0.04504053667187691, 0.07872479408979416, 0.008558705449104309, 0.029720637947320938, 0.07720836997032166, 0.018869200721383095, 0.12098947912454605, 0.06026232987642288, 0.022018183022737503, -0.0450800396502018, -0.0755455419421196, 0.10602705180644989, -0.027526825666427612, -0.024388276040554047, 0.07624053210020065, 0.09462012350559235, 0.19445201754570007, 0.009885871782898903, 0.0722401812672615, 0.06307198107242584, 0.1302708238363266, 0.09403684735298157, -0.005352560896426439, -0.06564002484083176, -0.05667591094970703, -0.048624925315380096, 0.019462771713733673, -0.09070315957069397, 0.08085989207029343, 0.016058314591646194, -0.08748979866504669, -0.041034795343875885, -0.015586597844958305, 0.008725116960704327, 0.10196351259946823, 0.10427683591842651, -0.2087884396314621, -0.09927959740161896, 0.0379309244453907, -0.05222048982977867, -0.1322728544473648, 0.1285720020532608, 0.05468462035059929, -0.05905153602361679, -0.06494878232479095, -0.07525113224983215, 0.12142100185155869, 0.00006537343870149925, -0.005711930803954601, -0.08540774136781693, -0.02004851959645748, -0.04284392669796944, 0.10954533517360687, -0.24355001747608185, 0.2718430757522583, 0.016451602801680565, 0.012687698006629944, -0.040287408977746964, -0.050459619611501694, -0.023551419377326965, 0.08406605571508408, 0.04588378593325615, 0.017206497490406036, -0.009336805902421474, -0.05705360695719719, -0.09129168093204498, -0.010548164136707783, 0.012329166755080223, 0.016521673649549484, 0.031715113669633865, 0.005849805660545826, 0.07266438752412796, 0.011983868665993214, -0.1372549831867218, -0.0554497092962265, -0.05301152542233467, 0.04298791289329529, -0.005551962181925774, -0.006867206655442715, -0.07604551315307617, -0.04894494637846947, 0.04493439570069313, 0.22577007114887238, -0.00009195535676553845, -0.09963245689868927, -0.042170070111751556, 0.0412151925265789, 0.07700781524181366, -0.06100902333855629, 0.04802186042070389, 0.04196738079190254, 0.00781523808836937, 0.01551219541579485, 0.060014884918928146, 0.1322796642780304, 0.00119979795999825, 0.007155663333833218, -0.03733168542385101, 0.1018449068069458, 0.08269763737916946, 0.019478535279631615, -0.012423822656273842, -0.05036089941859245, -0.09105385839939117, -0.05993231013417244, -0.04126076027750969, -0.06922922283411026, 0.03585856407880783, -0.02525201253592968, -0.1266656070947647, 0.11168135702610016, 0.010003456845879555, -0.15312717854976654, 0.1829691082239151, 0.15643636882305145, -0.008521669544279575, 0.1809668093919754, 0.18353065848350525, -0.02049851603806019, -0.22004397213459015, -0.06546668708324432, -0.0005959677509963512, 0.11680259555578232, -0.10506143420934677, -0.16064804792404175, -0.05245586484670639, 0.06738182157278061, -0.0017777412431314588, -0.05103236064314842, -0.2871567904949188, -0.11645694822072983, 0.11616776883602142, 0.052064571529626846, 0.25908470153808594, -0.10850778967142105, -0.008155356161296368, -0.03785914182662964, -0.08197836577892303, 0.08291619271039963, -0.16557782888412476, 0.10122603178024292, -0.047002241015434265, 0.19613616168498993, 0.0059779053553938866, -0.05820342153310776, 0.11388304829597473, 0.002799707930535078, -0.013190566562116146, -0.08977613598108292, -0.07895467430353165, 0.11856191605329514, -0.03252342715859413, 0.07910247892141342, -0.0950683057308197, 0.012604836374521255, -0.24504244327545166, -0.07302124053239822, -0.041761673986911774, -0.0981738492846489, -0.015345870517194271, -0.08684264868497849, -0.03600100055336952, 0.09645118564367294, 0.008307491429150105, -0.01833241805434227, -0.036096155643463135, -0.07971741259098053, -0.00880725309252739, 0.020632708445191383, 0.13195039331912994, -0.10327766090631485, 0.029512133449316025, -0.06015396490693092, 0.02410268224775791, 0.08706508576869965, -0.3469185531139374, -0.040140047669410706, 0.011445019394159317, -0.02752845734357834, 0.14426735043525696, -0.004529304336756468, 0.009981906972825527, 0.0559764988720417, 0.1032174602150917, -0.0004971915623173118, 0.0052138566970825195, -0.0254853293299675, -0.07042764872312546, 0.010634143836796284, -0.0449480302631855, 0.06050390750169754, -0.07629089057445526, -0.04706982150673866, -0.01603367179632187, 0.0474366620182991, -0.13108156621456146, 0.19875791668891907, 0.05913424864411354, 0.06999366730451584, -0.053641919046640396, 0.04483022913336754, 0.03520209342241287, -0.025448178872466087, 0.04054795950651169, 0.1717255562543869, -0.15534865856170654, -0.09174463152885437, 0.015057869255542755, 0.04906146600842476, -0.0750478208065033, 0.033597346395254135, -0.0024454735685139894, -0.04975711926817894, 0.09007028490304947, -0.016093173995614052, -0.015313875861465931, -0.0005513638607226312, -0.06249307096004486, 0.01381170004606247, -0.05810363218188286, 0.051700640469789505, 0.11677522212266922, -0.013666564598679543, 0.029023408889770508, 0.12300138920545578, 0.06756224483251572, 0.10475088655948639, -0.07302838563919067, -0.025294682011008263, -0.12827226519584656, 0.08699001371860504, -0.19012276828289032, -0.03647838532924652, -0.03920132294297218, -0.041847798973321915, -0.07832969725131989, -0.01287052407860756, -0.09355849772691727, -0.04863710328936577, -0.09043393284082413, 0.041318025439977646, -0.045041684061288834, 0.060521200299263, 0.049591097980737686, -0.0679263323545456, 0.07896220684051514, 0.0025883777998387814, 0.025571877136826515, 0.07170884311199188, -0.049469005316495895, 0.07335647195577621, 0.07115073502063751, 0.0619850680232048, -0.01871771737933159, 0.001569158397614956, 0.04526251554489136, -0.06593257933855057, 0.01755853369832039, 0.01647358387708664, 0.11862028390169144, 0.0561436265707016, 0.028118252754211426, -0.05386174097657204, -0.0499182865023613, -0.16201196610927582, -0.0226543340831995, -0.09312509745359421, 0.09440528601408005, -0.04882286116480827, 0.0725497230887413, 0.020270997658371925, -0.05670006945729256, -0.02119111269712448, -0.11037750542163849, 0.0037363674491643906, -0.01374129205942154, -0.10397384315729141, 0.040579210966825485, -0.10815102607011795, 0.04275216907262802, -0.07473917305469513, 0.29495471715927124, 0.026719138026237488, -0.136147141456604, 0.001939041307196021, -0.16427209973335266, 0.017303895205259323, -0.02142929844558239, 0.286801815032959, 0.10896877944469452, 0.0238180048763752, -0.04037622734904289, 0.1254802644252777, 0.006397258024662733, 0.15697525441646576, -0.01509840041399002, 0.04858890548348427, 0.06491660326719284, 0.11842360347509384, -0.12403451651334763, -0.0860031321644783, -0.023158028721809387, 0.13157600164413452, -0.09019671380519867, 0.003990123979747295, -0.03822580352425575, 0.1733875721693039, 0.2823697030544281, -0.13332499563694, 0.05111463740468025, 0.020740969106554985, -0.11493929475545883, -0.11599413305521011, -0.09257451444864273, -0.07592997699975967, -0.11219087243080139, 0.012370256707072258, -0.13631701469421387, 0.030243031680583954, 0.006207731552422047, 0.10225830972194672, 0.00013955931353848428, 0.15471890568733215, 0.08767180144786835, -0.10494302213191986, 0.08222305029630661, -0.01881672628223896, 0.05474419519305229, -0.13327454030513763, -0.01092476211488247, -0.01822555623948574, -0.00549166789278388, 0.04642424359917641, -0.019001955166459084, -0.0662909597158432, 0.02040962688624859, -0.006862854119390249, -0.03328361362218857, -0.08426622301340103, 0.07020029425621033, 0.0791010856628418, 0.04298460856080055, 0.041926223784685135, -0.08825989067554474, -0.0008145496249198914, 0.138058602809906, -0.014451667666435242, -0.1176970973610878, -0.08980906009674072, 0.20532386004924774, 0.07471127808094025, 0.06285454332828522, -0.0012754613999277353, 0.07603326439857483, -0.050936922430992126, 0.2553631365299225, 0.23367975652217865, -0.12553657591342926, -0.02801644057035446, 0.021187204867601395, -0.0021515407133847475, -0.05029302090406418, 0.17166563868522644, 0.041465744376182556, 0.16389715671539307, -0.07755663245916367, -0.11032544076442719, -0.013005395419895649, -0.06768495589494705, -0.09368947148323059, 0.1420275866985321, 0.05943204462528229, -0.0012475252151489258, -0.0164327509701252, 0.06857772916555405, -0.04186025261878967, 0.04581533744931221, -0.13145829737186432, -0.004034670069813728, -0.12677167356014252, 0.0013359019067138433, -0.08428236097097397, -0.009409102611243725, 0.0560990609228611, 0.0003224446263629943, 0.017360711470246315, 0.057935021817684174, 0.02879485674202442, -0.12968093156814575, -0.035525839775800705, 0.15407367050647736, 0.14628514647483826, 0.08359582722187042, -0.03965899348258972, 0.10161168873310089, 0.08310001343488693, -0.006930455099791288, 0.03564847260713577, 0.1031232550740242, 0.005372201558202505, 0.10675041377544403, -0.006755469832569361, 0.06401588767766953, -0.03338472917675972, -0.08792112022638321, 0.08167070150375366, -0.010323048569262028, 0.020250296220183372, -0.10378792881965637, -0.028970465064048767, -0.0880887359380722, 0.013742578215897083, -0.02203640714287758, 0.09625642746686935, 0.10721126198768616, -0.034965552389621735, -0.04313969239592552, -0.11734211444854736, 0.05343310907483101, -0.024245336651802063, 0.04737602919340134, -0.03793395310640335, -0.2024908810853958, -0.07856030762195587, 0.1080411747097969, 0.020871317014098167, -0.3299965560436249, 0.01941400021314621, -0.05248206853866577, 0.009955449029803276, -0.006396995857357979, 0.21720491349697113, 0.031946711242198944, 0.07878469675779343, -0.025556553155183792, -0.13269753754138947, -0.053418878465890884, 0.0876322090625763, -0.17126847803592682, -0.1080494225025177 ]
null
null
transformers
# Robi Kobi ### Created by [Ritobrata Ghosh](https://ghosh-r.github.io) A model that writes Bengali poems in the style of Nobel Laureate poet Rabindranath Tagore. This model is fine-tuned on 1,400+ poems written by Rabindranath Tagore. This model leverages the [Bangla GPT-2](https://huggingface.co/ghosh-r/bangla-gpt2) pretrained model, trained on mc4-Bengali dataset.
{"language": "bn", "tags": ["text-generation"], "widget": [{"text": "\u09a4\u09cb\u09ae\u09be\u0995\u09c7 \u09a6\u09c7\u0996\u09c7\u099b\u09bf \u0986\u09ae\u09be\u09b0 \u09b9\u09c3\u09a6\u09df \u09ae\u09be\u099d\u09c7"}]}
text-generation
ritog/robi-kobi
[ "transformers", "pytorch", "gpt2", "text-generation", "bn", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "bn" ]
TAGS #transformers #pytorch #gpt2 #text-generation #bn #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
# Robi Kobi ### Created by Ritobrata Ghosh A model that writes Bengali poems in the style of Nobel Laureate poet Rabindranath Tagore. This model is fine-tuned on 1,400+ poems written by Rabindranath Tagore. This model leverages the Bangla GPT-2 pretrained model, trained on mc4-Bengali dataset.
[ "# Robi Kobi", "### Created by Ritobrata Ghosh\n\nA model that writes Bengali poems in the style of Nobel Laureate poet Rabindranath Tagore.\n\nThis model is fine-tuned on 1,400+ poems written by Rabindranath Tagore. This model leverages the Bangla GPT-2 pretrained model, trained on mc4-Bengali dataset." ]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #bn #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "# Robi Kobi", "### Created by Ritobrata Ghosh\n\nA model that writes Bengali poems in the style of Nobel Laureate poet Rabindranath Tagore.\n\nThis model is fine-tuned on 1,400+ poems written by Rabindranath Tagore. This model leverages the Bangla GPT-2 pretrained model, trained on mc4-Bengali dataset." ]
[ 49, 5, 81 ]
[ "passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #bn #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n# Robi Kobi### Created by Ritobrata Ghosh\n\nA model that writes Bengali poems in the style of Nobel Laureate poet Rabindranath Tagore.\n\nThis model is fine-tuned on 1,400+ poems written by Rabindranath Tagore. This model leverages the Bangla GPT-2 pretrained model, trained on mc4-Bengali dataset." ]
[ 0.02369925193488598, -0.06570658832788467, -0.003306929487735033, 0.09003010392189026, 0.058827802538871765, 0.007076971232891083, 0.07811751216650009, 0.07028292864561081, 0.023796692490577698, -0.030551251024007797, 0.17501036822795868, 0.13769496977329254, -0.02044961042702198, 0.09588848054409027, 0.05548254773020744, -0.36768391728401184, 0.023822464048862457, 0.0699542909860611, 0.010038996115326881, 0.16874849796295166, 0.10039923340082169, -0.0017523629358038306, 0.06594393402338028, 0.0464944951236248, -0.12191077321767807, -0.01443539373576641, -0.036835599690675735, -0.04779065400362015, 0.05371243134140968, 0.028391381725668907, 0.007682671770453453, 0.08619170635938644, 0.00912315584719181, -0.05642879009246826, 0.03517568111419678, -0.08078740537166595, -0.06689231097698212, 0.0121125103905797, 0.020933926105499268, -0.13874152302742004, 0.21199363470077515, 0.10109125822782516, -0.01908092387020588, -0.003897272050380707, -0.13247522711753845, -0.020805293694138527, 0.017475690692663193, 0.13858292996883392, 0.07986688613891602, 0.05464434251189232, -0.051628850400447845, -0.00771729601547122, -0.07492310553789139, 0.05914401262998581, 0.12502971291542053, -0.2932250499725342, -0.04923912510275841, 0.1888953149318695, 0.11154109984636307, 0.0748688280582428, -0.09857987612485886, 0.0500996969640255, 0.01511694397777319, 0.03016633912920952, 0.08341419696807861, -0.1284913867712021, 0.07073231041431427, 0.045503243803977966, -0.0982508659362793, 0.0895446240901947, 0.13785934448242188, -0.08756579458713531, 0.0033274937886744738, -0.03840385377407074, -0.08838874846696854, -0.07189815491437912, -0.011334880255162716, -0.04792378842830658, -0.08305378258228302, 0.0628071203827858, 0.01943519525229931, -0.044767193496227264, -0.09752365946769714, -0.05599888786673546, -0.04863818362355232, 0.07892381399869919, -0.00038069108268246055, -0.005305768921971321, -0.14444349706172943, 0.11728964000940323, -0.0937977135181427, -0.06256388872861862, -0.0093722864985466, -0.13445478677749634, 0.05453438311815262, 0.05293305590748787, -0.04321262985467911, -0.06906688213348389, -0.030348362401127815, 0.20290806889533997, 0.07271957397460938, 0.03342888504266739, 0.1298726201057434, 0.022685278207063675, 0.0661066398024559, 0.06203799322247505, -0.10027264058589935, -0.05009153485298157, 0.023142967373132706, -0.02841801941394806, 0.011689482256770134, -0.0505632720887661, -0.11037696897983551, -0.06218618527054787, 0.04218665137887001, -0.033158499747514725, -0.12466034293174744, 0.1144319400191307, -0.009910054504871368, -0.055577341467142105, -0.00033037428511306643, 0.004436551593244076, -0.032081156969070435, -0.024186182767152786, 0.013171170838177204, -0.04544539377093315, 0.062022458761930466, 0.017776107415556908, -0.03918778896331787, 0.025977768003940582, -0.1103760302066803, -0.05193771421909332, -0.022588558495044708, -0.027998125180602074, -0.03588675335049629, -0.12901954352855682, 0.05932636559009552, -0.1338852494955063, -0.1925283521413803, -0.0017954404465854168, 0.058610618114471436, -0.12871643900871277, -0.046097155660390854, -0.0659923255443573, 0.021530896425247192, 0.05857614055275917, -0.05911537632346153, 0.02468482218682766, -0.0402420274913311, 0.0709245428442955, -0.037483613938093185, 0.11920227855443954, -0.06479965150356293, 0.06686673313379288, -0.07371820509433746, 0.02870023064315319, -0.052414774894714355, 0.04482683539390564, 0.028038114309310913, -0.014429713599383831, -0.04015015438199043, -0.024782242253422737, -0.03193582221865654, 0.02836553193628788, 0.01379292644560337, 0.16407351195812225, -0.002017347374930978, -0.056131672114133835, 0.23033377528190613, -0.03926756978034973, -0.10612323880195618, 0.06340000778436661, -0.03850515931844711, 0.2653556764125824, 0.06465502083301544, 0.19937337934970856, 0.01846606656908989, 0.1298602968454361, 0.09421546012163162, 0.023261889815330505, 0.046747926622629166, 0.01250249519944191, 0.08553776890039444, 0.06694130599498749, -0.0658593401312828, 0.04561338201165199, 0.06686591356992722, 0.0009377573733218014, -0.0532572977244854, -0.019826460629701614, 0.01000805664807558, -0.006622300948947668, 0.11609815806150436, -0.0668438971042633, 0.09112391620874405, -0.055056240409612656, -0.0894661396741867, -0.03997514396905899, 0.05608354136347771, -0.04714300483465195, 0.04657982289791107, -0.1002054363489151, 0.07217767834663391, -0.0314045213162899, 0.05327295884490013, -0.0903707817196846, 0.1423802524805069, -0.030904075130820274, 0.07321151345968246, 0.025889523327350616, 0.06641344726085663, 0.05936442315578461, -0.0097156697884202, -0.035504549741744995, 0.09102229028940201, 0.10212012380361557, -0.007822382263839245, -0.06617964804172516, -0.07185940444469452, 0.04030127078294754, -0.04204598441720009, 0.1335306018590927, -0.13897040486335754, 0.023226389661431313, 0.044440481811761856, 0.02845456637442112, -0.02065262943506241, 0.016905535012483597, 0.08094563335180283, -0.025898845866322517, -0.06132825091481209, 0.04113351181149483, 0.0748697891831398, 0.008687957189977169, -0.13618572056293488, 0.22702746093273163, -0.12066327035427094, 0.06824206560850143, 0.07253360748291016, -0.1424819827079773, 0.0012055617989972234, 0.002140467520803213, -0.02969975769519806, -0.031179213896393776, 0.06950078904628754, 0.04190518707036972, 0.094529889523983, -0.020720452070236206, 0.1489764153957367, -0.07480726391077042, -0.011438162066042423, 0.028877275064587593, -0.09517200291156769, 0.06964481621980667, 0.1469455510377884, 0.047863107174634933, -0.10182373970746994, 0.1363261640071869, 0.10775411128997803, 0.039474017918109894, 0.18629150092601776, 0.08964220434427261, 0.006666847039014101, -0.05099262669682503, -0.06849931925535202, -0.06732065975666046, -0.019373398274183273, -0.25548338890075684, -0.0475127175450325, 0.05968857556581497, -0.014461282640695572, 0.05044833570718765, -0.08011370152235031, -0.09436384588479996, -0.0031364234164357185, 0.02839691750705242, -0.016180066391825676, 0.17748777568340302, -0.0900304988026619, 0.061487771570682526, -0.004098031669855118, -0.014698273502290249, 0.0492401160299778, 0.053357478231191635, -0.09066332876682281, 0.20165753364562988, -0.0396554134786129, -0.2403952032327652, -0.08141570538282394, -0.19461160898208618, -0.0203968845307827, 0.043497808277606964, 0.090812548995018, -0.11535420268774033, -0.025386616587638855, -0.03776905685663223, 0.12544606626033783, -0.05553865805268288, -0.01217226404696703, -0.11949530988931656, -0.052112579345703125, -0.1418878734111786, -0.07098407298326492, -0.04788494110107422, -0.01888289488852024, -0.06115829199552536, 0.1666172444820404, -0.18911464512348175, 0.018601737916469574, 0.18225044012069702, 0.03213411197066307, 0.006555231288075447, 0.02364703267812729, 0.20361515879631042, -0.07959787547588348, 0.08615192025899887, 0.09480681270360947, -0.013017614372074604, 0.06029171869158745, 0.11674124747514725, -0.011385517194867134, -0.06022646650671959, 0.0458345003426075, -0.019092800095677376, -0.09459679573774338, -0.1704247146844864, -0.03630119562149048, -0.05869262292981148, 0.1106073409318924, 0.04511983320116997, 0.037038303911685944, 0.08597874641418457, 0.20664727687835693, 0.008200405165553093, 0.046831369400024414, 0.03475821018218994, 0.08673249930143356, 0.10559789836406708, -0.03213518112897873, 0.14575839042663574, -0.0007931568543426692, -0.07897283881902695, 0.05979347229003906, 0.010501863434910774, 0.1318395733833313, 0.052952807396650314, 0.10831649601459503, 0.09562251716852188, 0.09300559014081955, 0.11647510528564453, 0.07432684302330017, -0.05987068638205528, -0.02314208447933197, -0.07003340870141983, -0.04993884637951851, -0.05205858126282692, 0.11466103047132492, -0.15137404203414917, -0.06521394848823547, 0.022197416052222252, -0.07233032584190369, 0.011519533582031727, 0.03210275620222092, 0.11122800409793854, -0.14926433563232422, -0.04463252052664757, 0.07709159702062607, -0.007794912438839674, -0.07745519280433655, 0.10061511397361755, -0.04177580028772354, -0.1189361959695816, 0.014210419729351997, -0.046506259590387344, 0.09571283310651779, -0.04678618162870407, 0.0554790273308754, -0.1278582066297531, -0.17303122580051422, -0.012100878171622753, 0.10080787539482117, -0.18334920704364777, 0.17874681949615479, -0.015530913136899471, -0.07425423711538315, -0.050934236496686935, -0.07416197657585144, 0.0017223755130544305, 0.13966885209083557, 0.0984252318739891, 0.008559400215744972, 0.14310522377490997, -0.015519091859459877, -0.04550128057599068, 0.02136101946234703, 0.0657249242067337, -0.1355801224708557, 0.05809146910905838, -0.01147623360157013, 0.032641079276800156, -0.0455651693046093, 0.05110665783286095, -0.021123630926012993, -0.1021142527461052, 0.09557200223207474, -0.021196775138378143, 0.08804240822792053, 0.0019038028549402952, -0.07967040687799454, 0.11319432407617569, 0.10359612107276917, -0.006541618146002293, -0.16068944334983826, -0.03128726780414581, -0.028864752501249313, 0.061573851853609085, -0.05957464501261711, 0.024258382618427277, -0.07517523318529129, -0.04018627107143402, 0.003677167696878314, -0.06407598406076431, 0.07277917861938477, -0.011151080019772053, -0.07286762446165085, -0.03683768957853317, 0.10755298286676407, 0.09265544265508652, 0.002568653551861644, 0.03305699676275253, 0.0093366215005517, -0.1374790519475937, -0.10325878858566284, -0.05118301510810852, -0.040990713983774185, -0.05848553031682968, -0.05095754191279411, -0.0883740782737732, 0.08009789884090424, -0.026830347254872322, -0.11519013345241547, 0.11577405780553818, 0.10184338688850403, -0.014177853241562843, 0.15298035740852356, 0.21904253959655762, -0.07544714212417603, -0.23482997715473175, -0.1870395839214325, -0.0954015925526619, 0.031291794031858444, -0.041702501475811005, -0.1738215833902359, 0.06763904541730881, -0.007508223410695791, 0.010987414047122002, 0.042918018996715546, -0.2589181959629059, -0.11893653869628906, 0.13095378875732422, 0.025390639901161194, 0.4631965160369873, -0.14501596987247467, -0.06272494047880173, -0.04232387989759445, -0.2193911224603653, 0.07258371263742447, -0.10288495570421219, 0.1523628979921341, -0.09639143943786621, 0.14773370325565338, -0.013497545383870602, 0.023680297657847404, 0.08120933920145035, 0.06489752978086472, -0.047274019569158554, -0.1405453383922577, -0.09307199716567993, 0.09940381348133087, 0.02612898126244545, 0.02117876149713993, -0.04918627813458443, 0.004817818757146597, -0.2155531942844391, -0.10879849642515182, -0.07993309199810028, -0.06454359740018845, -0.015528388321399689, -0.12583006918430328, -0.04690789431333542, 0.10134148597717285, -0.009853041730821133, -0.02399759739637375, 0.025860819965600967, -0.10611481219530106, 0.08496903628110886, 0.034105706959962845, 0.06863082945346832, -0.11313816905021667, 0.02342129871249199, -0.045715223997831345, -0.0556473582983017, 0.04413093253970146, -0.21147799491882324, -0.03451485559344292, 0.08103271573781967, 0.013556212186813354, 0.047839175909757614, 0.06557412445545197, -0.05917961150407791, 0.04612206295132637, 0.1237260028719902, -0.1786240190267563, -0.06123547628521919, -0.035567644983530045, -0.10320816934108734, 0.09675514698028564, 0.03693534806370735, 0.16878022253513336, -0.06732252985239029, -0.073743537068367, 0.025190703570842743, -0.0044601005502045155, -0.06983275711536407, 0.05566070228815079, 0.017950480803847313, 0.0068177832290530205, -0.054298367351293564, 0.0027649118565022945, 0.027923623099923134, 0.015889156609773636, -0.007920436561107635, 0.1825331598520279, -0.1673397570848465, -0.08559238910675049, -0.14863504469394684, 0.012494731694459915, -0.20664605498313904, 0.06848911941051483, 0.0047361948527395725, -0.09220504015684128, 0.057098034769296646, 0.16687782108783722, 0.06987728178501129, 0.044122934341430664, -0.05358235910534859, -0.0037843843456357718, 0.009142893366515636, 0.019634846597909927, 0.1294184774160385, -0.02407083846628666, -0.003185020061209798, -0.08800248056650162, -0.007124795578420162, 0.1401083916425705, -0.09249330312013626, -0.07297990471124649, -0.11790242046117783, 0.039243828505277634, -0.2727368474006653, -0.019955575466156006, -0.11519671231508255, -0.08096829056739807, -0.0829610675573349, -0.027324888855218887, -0.0728357806801796, -0.0522814579308033, -0.06537853926420212, 0.010604176670312881, -0.07656063884496689, 0.032745469361543655, -0.013438018038868904, -0.027575364336371422, 0.07787349820137024, -0.02305312640964985, 0.08734014630317688, 0.07482731342315674, -0.07003846019506454, 0.05380392074584961, -0.05928609520196915, 0.07585294544696808, -0.05581493675708771, -0.032779477536678314, -0.0062063904479146, -0.052042730152606964, -0.021267596632242203, -0.015727728605270386, 0.08340498059988022, 0.07296712696552277, 0.07534188032150269, -0.07761812955141068, -0.0069385068491101265, -0.06069059669971466, -0.04021801799535751, -0.0694100633263588, 0.023426001891493797, -0.018912391737103462, 0.08395811915397644, 0.07744444906711578, -0.03284776210784912, 0.021310696378350258, -0.04076134413480759, 0.06237475946545601, 0.0035849434789270163, -0.1053411141037941, -0.027756687253713608, -0.12380275130271912, -0.062169525772333145, -0.03518364578485489, 0.20819616317749023, -0.0303928405046463, -0.13803358376026154, 0.010291769169270992, 0.020898055285215378, 0.06843316555023193, -0.03486119210720062, 0.18060263991355896, 0.13519887626171112, -0.051409490406513214, -0.09965495020151138, 0.12556104362010956, 0.004404447972774506, 0.15934953093528748, 0.023683106526732445, -0.023942993953824043, 0.11407521367073059, 0.08364357799291611, -0.0935535877943039, 0.07357227057218552, 0.001009885803796351, -0.05737578496336937, -0.022061586380004883, 0.045271459966897964, -0.055662598460912704, 0.18300263583660126, 0.24397610127925873, 0.0032604567240923643, 0.03432105854153633, -0.000054659834859194234, -0.09516582638025284, -0.11900267750024796, -0.21026849746704102, -0.08442816883325577, -0.08672550320625305, 0.011752691119909286, -0.09600972384214401, -0.020967597141861916, 0.13396571576595306, 0.09969013184309006, -0.03654376417398453, 0.1130046546459198, 0.08278170228004456, -0.11320041865110397, 0.11443504691123962, -0.02320808358490467, 0.0334930419921875, 0.025208257138729095, 0.04061093181371689, -0.08077435195446014, 0.010265265591442585, -0.00753646669909358, 0.0533149279654026, -0.015682125464081764, -0.05511636659502983, -0.05853559076786041, -0.0685126781463623, -0.10542143881320953, 0.09075946360826492, 0.05274847149848938, 0.12456297129392624, -0.04483402520418167, -0.06217559054493904, 0.001016362220980227, 0.1856347620487213, 0.05032983049750328, -0.008616524748504162, -0.03803727775812149, 0.1341652125120163, 0.04150846228003502, 0.07513027638196945, 0.011592067778110504, 0.025281578302383423, -0.06397734582424164, 0.2868947684764862, 0.25234225392341614, -0.0855894535779953, 0.0040474445559084415, 0.06903700530529022, 0.046185728162527084, 0.06488817185163498, 0.10701403766870499, 0.03621228411793709, 0.1995561122894287, -0.12015746533870697, -0.009895842522382736, -0.07162361592054367, -0.052173979580402374, -0.013616049662232399, 0.09749041497707367, 0.11009382456541061, 0.0079879155382514, -0.08834758400917053, 0.08686134964227676, -0.24260783195495605, 0.05843370035290718, -0.10463930666446686, -0.11398083716630936, -0.09453266859054565, -0.02022322453558445, -0.1422724723815918, -0.0037621152587234974, 0.12262582033872604, 0.0045987400226294994, -0.0006054672412574291, 0.026827000081539154, 0.05804683268070221, -0.14187955856323242, 0.028913704678416252, 0.15658807754516602, 0.08086401224136353, 0.06664227694272995, -0.04225529730319977, 0.018128223717212677, 0.09307762235403061, 0.006316042505204678, -0.006163651589304209, 0.07639560103416443, 0.01112733967602253, 0.10946977138519287, -0.03729129955172539, 0.05216794088482857, 0.02090531215071678, -0.12265900522470474, 0.0624367892742157, -0.01483123004436493, 0.05244855210185051, 0.06401512771844864, -0.004447635728865862, -0.08746646344661713, 0.055468518286943436, -0.10035731643438339, 0.1019255593419075, 0.11698572337627411, -0.04441468045115471, -0.04755851998925209, -0.057672057300806046, 0.03133508563041687, -0.058620743453502655, -0.035506971180438995, -0.0068591986782848835, -0.12217343598604202, -0.04725135490298271, 0.10641264170408249, 0.04868600144982338, -0.3727516829967499, -0.0032617172691971064, -0.10793273150920868, 0.06640876084566116, -0.050234463065862656, 0.14754627645015717, -0.015298902057111263, 0.058646462857723236, 0.010945189744234085, -0.07661017775535583, -0.01400529034435749, 0.017592761665582657, -0.14361825585365295, -0.16502641141414642 ]
null
null
transformers
You can test this model online with the [**Space for Romanian Speech Recognition**](https://huggingface.co/spaces/gigant/romanian-speech-recognition) The model ranked **TOP-1** on Romanian Speech Recognition during HuggingFace's Robust Speech Challenge : * [**The 🤗 Speech Bench**](https://huggingface.co/spaces/huggingface/hf-speech-bench) * [**Speech Challenge Leaderboard**](https://huggingface.co/spaces/speech-recognition-community-v2/FinalLeaderboard) # Romanian Wav2Vec2 This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the [Common Voice 8.0 - Romanian subset](https://huggingface.co/datasets/mozilla-foundation/common_voice_8_0) dataset, with extra training data from [Romanian Speech Synthesis](https://huggingface.co/datasets/gigant/romanian_speech_synthesis_0_8_1) dataset. Without the 5-gram Language Model optimization, it achieves the following results on the evaluation set (Common Voice 8.0, Romanian subset, test split): - Loss: 0.1553 - Wer: 0.1174 - Cer: 0.0294 ## Model description The architecture is based on [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) with a speech recognition CTC head and an added 5-gram language model (using [pyctcdecode](https://github.com/kensho-technologies/pyctcdecode) and [kenlm](https://github.com/kpu/kenlm)) trained on the [Romanian Corpora Parliament](gigant/ro_corpora_parliament_processed) dataset. Those libraries are needed in order for the language model-boosted decoder to work. ## Intended uses & limitations The model is made for speech recognition in Romanian from audio clips sampled at **16kHz**. The predicted text is lowercased and does not contain any punctuation. ## How to use Make sure you have installed the correct dependencies for the language model-boosted version to work. You can just run this command to install the `kenlm` and `pyctcdecode` libraries : ```pip install https://github.com/kpu/kenlm/archive/master.zip pyctcdecode``` With the framework `transformers` you can load the model with the following code : ``` from transformers import AutoProcessor, AutoModelForCTC processor = AutoProcessor.from_pretrained("gigant/romanian-wav2vec2") model = AutoModelForCTC.from_pretrained("gigant/romanian-wav2vec2") ``` Or, if you want to test the model, you can load the automatic speech recognition pipeline from `transformers` with : ``` from transformers import pipeline asr = pipeline("automatic-speech-recognition", model="gigant/romanian-wav2vec2") ``` ## Example use with the `datasets` library First, you need to load your data We will use the [Romanian Speech Synthesis](https://huggingface.co/datasets/gigant/romanian_speech_synthesis_0_8_1) dataset in this example. ``` from datasets import load_dataset dataset = load_dataset("gigant/romanian_speech_synthesis_0_8_1") ``` You can listen to the samples with the `IPython.display` library : ``` from IPython.display import Audio i = 0 sample = dataset["train"][i] Audio(sample["audio"]["array"], rate = sample["audio"]["sampling_rate"]) ``` The model is trained to work with audio sampled at 16kHz, so if the sampling rate of the audio in the dataset is different, we will have to resample it. In the example, the audio is sampled at 48kHz. We can see this by checking `dataset["train"][0]["audio"]["sampling_rate"]` The following code resample the audio using the `torchaudio` library : ``` import torchaudio import torch i = 0 audio = sample["audio"]["array"] rate = sample["audio"]["sampling_rate"] resampler = torchaudio.transforms.Resample(rate, 16_000) audio_16 = resampler(torch.Tensor(audio)).numpy() ``` To listen to the resampled sample : ``` Audio(audio_16, rate=16000) ``` Know you can get the model prediction by running ``` predicted_text = asr(audio_16) ground_truth = dataset["train"][i]["sentence"] print(f"Predicted text : {predicted_text}") print(f"Ground truth : {ground_truth}") ``` ## Training and evaluation data Training data : - [Common Voice 8.0 - Romanian subset](https://huggingface.co/datasets/mozilla-foundation/common_voice_8_0) : train + validation + other splits - [Romanian Speech Synthesis](https://huggingface.co/datasets/gigant/romanian_speech_synthesis_0_8_1) : train + test splits Evaluation data : - [Common Voice 8.0 - Romanian subset](https://huggingface.co/datasets/mozilla-foundation/common_voice_8_0) : test split ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 3 - total_train_batch_size: 48 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 50.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |:-------------:|:-----:|:-----:|:---------------:|:------:|:------:| | 2.9272 | 0.78 | 500 | 0.7603 | 0.7734 | 0.2355 | | 0.6157 | 1.55 | 1000 | 0.4003 | 0.4866 | 0.1247 | | 0.4452 | 2.33 | 1500 | 0.2960 | 0.3689 | 0.0910 | | 0.3631 | 3.11 | 2000 | 0.2580 | 0.3205 | 0.0796 | | 0.3153 | 3.88 | 2500 | 0.2465 | 0.2977 | 0.0747 | | 0.2795 | 4.66 | 3000 | 0.2274 | 0.2789 | 0.0694 | | 0.2615 | 5.43 | 3500 | 0.2277 | 0.2685 | 0.0675 | | 0.2389 | 6.21 | 4000 | 0.2135 | 0.2518 | 0.0627 | | 0.2229 | 6.99 | 4500 | 0.2054 | 0.2449 | 0.0614 | | 0.2067 | 7.76 | 5000 | 0.2096 | 0.2378 | 0.0597 | | 0.1977 | 8.54 | 5500 | 0.2042 | 0.2387 | 0.0600 | | 0.1896 | 9.32 | 6000 | 0.2110 | 0.2383 | 0.0595 | | 0.1801 | 10.09 | 6500 | 0.1909 | 0.2165 | 0.0548 | | 0.174 | 10.87 | 7000 | 0.1883 | 0.2206 | 0.0559 | | 0.1685 | 11.65 | 7500 | 0.1848 | 0.2097 | 0.0528 | | 0.1591 | 12.42 | 8000 | 0.1851 | 0.2039 | 0.0514 | | 0.1537 | 13.2 | 8500 | 0.1881 | 0.2065 | 0.0518 | | 0.1504 | 13.97 | 9000 | 0.1840 | 0.1972 | 0.0499 | | 0.145 | 14.75 | 9500 | 0.1845 | 0.2029 | 0.0517 | | 0.1417 | 15.53 | 10000 | 0.1884 | 0.2003 | 0.0507 | | 0.1364 | 16.3 | 10500 | 0.2010 | 0.2037 | 0.0517 | | 0.1331 | 17.08 | 11000 | 0.1838 | 0.1923 | 0.0483 | | 0.129 | 17.86 | 11500 | 0.1818 | 0.1922 | 0.0489 | | 0.1198 | 18.63 | 12000 | 0.1760 | 0.1861 | 0.0465 | | 0.1203 | 19.41 | 12500 | 0.1686 | 0.1839 | 0.0465 | | 0.1225 | 20.19 | 13000 | 0.1828 | 0.1920 | 0.0479 | | 0.1145 | 20.96 | 13500 | 0.1673 | 0.1784 | 0.0446 | | 0.1053 | 21.74 | 14000 | 0.1802 | 0.1810 | 0.0456 | | 0.1071 | 22.51 | 14500 | 0.1769 | 0.1775 | 0.0444 | | 0.1053 | 23.29 | 15000 | 0.1920 | 0.1783 | 0.0457 | | 0.1024 | 24.07 | 15500 | 0.1904 | 0.1775 | 0.0446 | | 0.0987 | 24.84 | 16000 | 0.1793 | 0.1762 | 0.0446 | | 0.0949 | 25.62 | 16500 | 0.1801 | 0.1766 | 0.0443 | | 0.0942 | 26.4 | 17000 | 0.1731 | 0.1659 | 0.0423 | | 0.0906 | 27.17 | 17500 | 0.1776 | 0.1698 | 0.0424 | | 0.0861 | 27.95 | 18000 | 0.1716 | 0.1600 | 0.0406 | | 0.0851 | 28.73 | 18500 | 0.1662 | 0.1630 | 0.0410 | | 0.0844 | 29.5 | 19000 | 0.1671 | 0.1572 | 0.0393 | | 0.0792 | 30.28 | 19500 | 0.1768 | 0.1599 | 0.0407 | | 0.0798 | 31.06 | 20000 | 0.1732 | 0.1558 | 0.0394 | | 0.0779 | 31.83 | 20500 | 0.1694 | 0.1544 | 0.0388 | | 0.0718 | 32.61 | 21000 | 0.1709 | 0.1578 | 0.0399 | | 0.0732 | 33.38 | 21500 | 0.1697 | 0.1523 | 0.0391 | | 0.0708 | 34.16 | 22000 | 0.1616 | 0.1474 | 0.0375 | | 0.0678 | 34.94 | 22500 | 0.1698 | 0.1474 | 0.0375 | | 0.0642 | 35.71 | 23000 | 0.1681 | 0.1459 | 0.0369 | | 0.0661 | 36.49 | 23500 | 0.1612 | 0.1411 | 0.0357 | | 0.0629 | 37.27 | 24000 | 0.1662 | 0.1414 | 0.0355 | | 0.0587 | 38.04 | 24500 | 0.1659 | 0.1408 | 0.0351 | | 0.0581 | 38.82 | 25000 | 0.1612 | 0.1382 | 0.0352 | | 0.0556 | 39.6 | 25500 | 0.1647 | 0.1376 | 0.0345 | | 0.0543 | 40.37 | 26000 | 0.1658 | 0.1335 | 0.0337 | | 0.052 | 41.15 | 26500 | 0.1716 | 0.1369 | 0.0343 | | 0.0513 | 41.92 | 27000 | 0.1600 | 0.1317 | 0.0330 | | 0.0491 | 42.7 | 27500 | 0.1671 | 0.1311 | 0.0328 | | 0.0463 | 43.48 | 28000 | 0.1613 | 0.1289 | 0.0324 | | 0.0468 | 44.25 | 28500 | 0.1599 | 0.1260 | 0.0315 | | 0.0435 | 45.03 | 29000 | 0.1556 | 0.1232 | 0.0308 | | 0.043 | 45.81 | 29500 | 0.1588 | 0.1240 | 0.0309 | | 0.0421 | 46.58 | 30000 | 0.1567 | 0.1217 | 0.0308 | | 0.04 | 47.36 | 30500 | 0.1533 | 0.1198 | 0.0302 | | 0.0389 | 48.14 | 31000 | 0.1582 | 0.1185 | 0.0297 | | 0.0387 | 48.91 | 31500 | 0.1576 | 0.1187 | 0.0297 | | 0.0376 | 49.69 | 32000 | 0.1560 | 0.1182 | 0.0295 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0+cu111 - Tokenizers 0.11.0 - pyctcdecode 0.3.0 - kenlm
{"language": ["ro"], "license": "apache-2.0", "tags": ["automatic-speech-recognition", "hf-asr-leaderboard", "robust-speech-event"], "datasets": ["mozilla-foundation/common_voice_8_0", "gigant/romanian_speech_synthesis_0_8_1"], "base_model": "facebook/wav2vec2-xls-r-300m", "model-index": [{"name": "wav2vec2-ro-300m_01", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Automatic Speech Recognition"}, "dataset": {"name": "Robust Speech Event", "type": "speech-recognition-community-v2/dev_data", "args": "ro"}, "metrics": [{"type": "wer", "value": 46.99, "name": "Dev WER (without LM)"}, {"type": "cer", "value": 16.04, "name": "Dev CER (without LM)"}, {"type": "wer", "value": 38.63, "name": "Dev WER (with LM)"}, {"type": "cer", "value": 14.52, "name": "Dev CER (with LM)"}]}, {"task": {"type": "automatic-speech-recognition", "name": "Automatic Speech Recognition"}, "dataset": {"name": "Common Voice", "type": "mozilla-foundation/common_voice_8_0", "args": "ro"}, "metrics": [{"type": "wer", "value": 11.73, "name": "Test WER (without LM)"}, {"type": "cer", "value": 2.93, "name": "Test CER (without LM)"}, {"type": "wer", "value": 7.31, "name": "Test WER (with LM)"}, {"type": "cer", "value": 2.17, "name": "Test CER (with LM)"}]}, {"task": {"type": "automatic-speech-recognition", "name": "Automatic Speech Recognition"}, "dataset": {"name": "Robust Speech Event - Test Data", "type": "speech-recognition-community-v2/eval_data", "args": "ro"}, "metrics": [{"type": "wer", "value": 43.23, "name": "Test WER"}]}]}]}
automatic-speech-recognition
gigant/romanian-wav2vec2
[ "transformers", "pytorch", "safetensors", "wav2vec2", "automatic-speech-recognition", "hf-asr-leaderboard", "robust-speech-event", "ro", "dataset:mozilla-foundation/common_voice_8_0", "dataset:gigant/romanian_speech_synthesis_0_8_1", "base_model:facebook/wav2vec2-xls-r-300m", "license:apache-2.0", "model-index", "endpoints_compatible", "has_space", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "ro" ]
TAGS #transformers #pytorch #safetensors #wav2vec2 #automatic-speech-recognition #hf-asr-leaderboard #robust-speech-event #ro #dataset-mozilla-foundation/common_voice_8_0 #dataset-gigant/romanian_speech_synthesis_0_8_1 #base_model-facebook/wav2vec2-xls-r-300m #license-apache-2.0 #model-index #endpoints_compatible #has_space #region-us
You can test this model online with the Space for Romanian Speech Recognition The model ranked TOP-1 on Romanian Speech Recognition during HuggingFace's Robust Speech Challenge : * The Speech Bench * Speech Challenge Leaderboard Romanian Wav2Vec2 ================= This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the Common Voice 8.0 - Romanian subset dataset, with extra training data from Romanian Speech Synthesis dataset. Without the 5-gram Language Model optimization, it achieves the following results on the evaluation set (Common Voice 8.0, Romanian subset, test split): * Loss: 0.1553 * Wer: 0.1174 * Cer: 0.0294 Model description ----------------- The architecture is based on facebook/wav2vec2-xls-r-300m with a speech recognition CTC head and an added 5-gram language model (using pyctcdecode and kenlm) trained on the Romanian Corpora Parliament dataset. Those libraries are needed in order for the language model-boosted decoder to work. Intended uses & limitations --------------------------- The model is made for speech recognition in Romanian from audio clips sampled at 16kHz. The predicted text is lowercased and does not contain any punctuation. How to use ---------- Make sure you have installed the correct dependencies for the language model-boosted version to work. You can just run this command to install the 'kenlm' and 'pyctcdecode' libraries : With the framework 'transformers' you can load the model with the following code : Or, if you want to test the model, you can load the automatic speech recognition pipeline from 'transformers' with : Example use with the 'datasets' library --------------------------------------- First, you need to load your data We will use the Romanian Speech Synthesis dataset in this example. You can listen to the samples with the 'IPython.display' library : The model is trained to work with audio sampled at 16kHz, so if the sampling rate of the audio in the dataset is different, we will have to resample it. In the example, the audio is sampled at 48kHz. We can see this by checking 'dataset["train"][0]["audio"]["sampling\_rate"]' The following code resample the audio using the 'torchaudio' library : To listen to the resampled sample : Know you can get the model prediction by running Training and evaluation data ---------------------------- Training data : * Common Voice 8.0 - Romanian subset : train + validation + other splits * Romanian Speech Synthesis : train + test splits Evaluation data : * Common Voice 8.0 - Romanian subset : test split Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 0.003 * train\_batch\_size: 16 * eval\_batch\_size: 8 * seed: 42 * gradient\_accumulation\_steps: 3 * total\_train\_batch\_size: 48 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * lr\_scheduler\_warmup\_steps: 500 * num\_epochs: 50.0 * mixed\_precision\_training: Native AMP ### Training results ### Framework versions * Transformers 4.16.2 * Pytorch 1.10.0+cu111 * Tokenizers 0.11.0 * pyctcdecode 0.3.0 * kenlm
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.003\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 8\n* seed: 42\n* gradient\\_accumulation\\_steps: 3\n* total\\_train\\_batch\\_size: 48\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 500\n* num\\_epochs: 50.0\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.16.2\n* Pytorch 1.10.0+cu111\n* Tokenizers 0.11.0\n* pyctcdecode 0.3.0\n* kenlm" ]
[ "TAGS\n#transformers #pytorch #safetensors #wav2vec2 #automatic-speech-recognition #hf-asr-leaderboard #robust-speech-event #ro #dataset-mozilla-foundation/common_voice_8_0 #dataset-gigant/romanian_speech_synthesis_0_8_1 #base_model-facebook/wav2vec2-xls-r-300m #license-apache-2.0 #model-index #endpoints_compatible #has_space #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.003\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 8\n* seed: 42\n* gradient\\_accumulation\\_steps: 3\n* total\\_train\\_batch\\_size: 48\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 500\n* num\\_epochs: 50.0\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.16.2\n* Pytorch 1.10.0+cu111\n* Tokenizers 0.11.0\n* pyctcdecode 0.3.0\n* kenlm" ]
[ 136, 159, 4, 39 ]
[ "passage: TAGS\n#transformers #pytorch #safetensors #wav2vec2 #automatic-speech-recognition #hf-asr-leaderboard #robust-speech-event #ro #dataset-mozilla-foundation/common_voice_8_0 #dataset-gigant/romanian_speech_synthesis_0_8_1 #base_model-facebook/wav2vec2-xls-r-300m #license-apache-2.0 #model-index #endpoints_compatible #has_space #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.003\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 8\n* seed: 42\n* gradient\\_accumulation\\_steps: 3\n* total\\_train\\_batch\\_size: 48\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 500\n* num\\_epochs: 50.0\n* mixed\\_precision\\_training: Native AMP### Training results### Framework versions\n\n\n* Transformers 4.16.2\n* Pytorch 1.10.0+cu111\n* Tokenizers 0.11.0\n* pyctcdecode 0.3.0\n* kenlm" ]
[ -0.08998565375804901, 0.10385368764400482, -0.0038046150002628565, 0.0593067891895771, 0.1219780445098877, 0.02218812145292759, 0.1303509920835495, 0.11532796919345856, -0.07923534512519836, 0.09462378174066544, 0.0891098901629448, 0.07306123524904251, 0.06547548621892929, 0.08896151930093765, -0.011814907193183899, -0.26663511991500854, 0.0320824570953846, -0.026463357731699944, -0.11757393181324005, 0.10233865678310394, 0.06958502531051636, -0.1210399866104126, 0.024873556569218636, 0.011726442724466324, -0.09611770510673523, 0.017110159620642662, -0.043672703206539154, -0.027463359758257866, 0.11448343098163605, 0.03650720790028572, 0.0625312551856041, 0.03910793364048004, 0.10793018341064453, -0.29040274024009705, 0.007417554501444101, 0.06046077609062195, 0.022083157673478127, 0.04058550298213959, 0.09793782234191895, 0.01134246401488781, 0.14354164898395538, -0.08949442952871323, 0.07417719066143036, 0.019259728491306305, -0.10897299647331238, -0.24391582608222961, -0.06526295095682144, 0.03483022749423981, 0.12007158994674683, 0.12394007295370102, -0.04973869398236275, 0.11717663705348969, -0.10853450745344162, 0.08122765272855759, 0.1690405160188675, -0.23865091800689697, -0.07537688314914703, -0.025538034737110138, 0.031034240499138832, 0.0642528384923935, -0.1061546579003334, -0.016816051676869392, 0.0028393594548106194, 0.021434849128127098, 0.0972588062286377, 0.01800922118127346, 0.03926282376050949, -0.01586730033159256, -0.14149752259254456, -0.062121570110321045, 0.08908580988645554, 0.10950308293104172, 0.0021752133034169674, -0.1016853079199791, -0.020748406648635864, -0.146214097738266, -0.04944228008389473, -0.00998188741505146, 0.02406565472483635, -0.040721595287323, -0.06565867364406586, 0.046777915209531784, -0.05890049785375595, -0.044142916798591614, 0.06530870497226715, 0.15347683429718018, 0.04974592849612236, -0.04802119359374046, 0.013127725571393967, 0.07956327497959137, 0.06845425069332123, -0.16924743354320526, 0.0195707269012928, 0.05301915481686592, -0.09282730519771576, -0.04507513344287872, -0.012804944068193436, -0.01792803592979908, 0.03729667142033577, 0.12846910953521729, -0.021922755986452103, 0.0893385261297226, 0.03054763935506344, -0.0006192059954628348, -0.08727297186851501, 0.15863728523254395, -0.07012961059808731, -0.09257780760526657, -0.05287926644086838, 0.15191172063350677, -0.0012078714789822698, -0.005022367928177118, -0.06440354883670807, 0.039987485855817795, 0.09513325244188309, 0.041439685970544815, -0.01910584419965744, 0.03679965063929558, -0.05105310305953026, -0.01863156072795391, 0.019736917689442635, -0.1010298877954483, 0.04680461436510086, 0.04226408153772354, -0.053917232900857925, -0.0349612720310688, -0.02955976128578186, 0.037022609263658524, -0.028854336589574814, 0.13716168701648712, -0.05756070837378502, 0.0003679863584693521, -0.06891972571611404, -0.11446770280599594, 0.01739196851849556, -0.0029815800953656435, 0.014221373945474625, -0.0637257993221283, -0.05080077797174454, -0.05781048536300659, 0.06501440703868866, -0.04087439179420471, -0.05960618332028389, -0.08594976365566254, -0.06453055143356323, 0.03852389380335808, -0.0061539844609797, 0.13463231921195984, -0.07132767140865326, 0.07839018106460571, 0.012560226954519749, 0.031218428164720535, 0.06961686909198761, 0.05385182425379753, -0.06414677947759628, 0.040784917771816254, -0.11835358291864395, 0.07245181500911713, -0.07947748154401779, 0.06522469222545624, -0.1224147379398346, -0.11132806539535522, -0.04112378880381584, -0.004768698010593653, 0.09503315389156342, 0.11503969877958298, -0.16374002397060394, -0.10259794443845749, 0.18328115344047546, -0.06086117774248123, -0.10422952473163605, 0.15605683624744415, -0.023043248802423477, -0.041751161217689514, 0.04388764128088951, 0.17030547559261322, 0.10824023932218552, -0.09469575434923172, -0.021197807043790817, -0.09450282156467438, 0.11681942641735077, 0.06936853379011154, 0.08249985426664352, -0.036843523383140564, 0.06801248341798782, -0.010262605734169483, -0.0451086089015007, 0.0882788747549057, -0.0696190670132637, -0.09260791540145874, -0.012991057708859444, -0.08224207162857056, 0.008064961060881615, 0.07514509558677673, 0.017866067588329315, -0.09181267023086548, -0.13924595713615417, 0.02655158005654812, 0.08842117339372635, -0.11146849393844604, 0.00867529958486557, -0.08021042495965958, 0.04692817106842995, -0.008899467997252941, -0.0011826659319922328, -0.14140290021896362, -0.031764425337314606, 0.028709793463349342, -0.056398116052150726, 0.02463362365961075, -0.02491382136940956, 0.08600159734487534, 0.07557127624750137, -0.0609506219625473, -0.06671341508626938, -0.06906096637248993, 0.028268281370401382, -0.06429698318243027, -0.2329917699098587, -0.04798451438546181, -0.01396613847464323, 0.22261522710323334, -0.23846280574798584, 0.0029114673379808664, 0.008191116154193878, 0.12807317078113556, 0.007389704696834087, -0.04835199937224388, -0.03334198147058487, 0.07013387978076935, -0.012287814170122147, -0.07718441635370255, 0.028511645272374153, -0.013657689094543457, -0.09985668957233429, -0.04500385373830795, -0.16512364149093628, 0.10811875015497208, 0.10757207125425339, -0.005192826967686415, -0.08313555270433426, -0.0017551153432577848, -0.05459590256214142, -0.051813334226608276, -0.0264324638992548, 0.022932125255465508, 0.19684834778308868, 0.013085572980344296, 0.10235094279050827, -0.04993155971169472, -0.028438854962587357, 0.034956157207489014, 0.02514546923339367, -0.02260035090148449, 0.1598108857870102, 0.09198591858148575, -0.13704460859298706, 0.098692387342453, 0.08829004317522049, -0.062297895550727844, 0.14975382387638092, -0.050734687596559525, -0.08617847412824631, -0.0346437506377697, 0.019812017679214478, 0.029818566516041756, 0.11451779305934906, -0.15124140679836273, 0.007445861119776964, -0.0021292532328516245, 0.008369619958102703, 0.011389690451323986, -0.17720633745193481, -0.022977164015173912, 0.05483856052160263, -0.062692791223526, -0.026590658351778984, -0.03517220541834831, -0.008914800360798836, 0.08860106021165848, 0.014057700522243977, -0.08311059325933456, -0.03524718061089516, -0.024411551654338837, -0.09034305065870285, 0.16789743304252625, -0.07467112690210342, -0.1361931562423706, -0.07411490380764008, 0.0009429440833628178, -0.023701732978224754, -0.02183908224105835, 0.03761522099375725, -0.1280239373445511, -0.05125315114855766, -0.09009300172328949, -0.00583515502512455, -0.0342179536819458, 0.011875052005052567, 0.028115639463067055, 0.005230388138443232, 0.06563322246074677, -0.07364746183156967, 0.00459224684163928, -0.019595423713326454, -0.008072848431766033, 0.012873639352619648, 0.02188056707382202, 0.10637159645557404, 0.1528702676296234, 0.028552304953336716, 0.033747509121894836, -0.008704678155481815, 0.22699493169784546, -0.12748484313488007, -0.01608092151582241, 0.08897513896226883, -0.01626051776111126, 0.031156757846474648, 0.1787858009338379, 0.05979360640048981, -0.0763121098279953, 0.0202801413834095, 0.046839334070682526, -0.00894066970795393, -0.17562992870807648, -0.04779199883341789, -0.06475462019443512, -0.07908516377210617, 0.12545564770698547, 0.028884628787636757, -0.02069309540092945, 0.013117484748363495, -0.025737397372722626, -0.031020473688840866, 0.04776895046234131, 0.05273307487368584, 0.08140334486961365, 0.06730563193559647, 0.10607311129570007, -0.009743810631334782, -0.07410869747400284, 0.012633917853236198, -0.034850113093853, 0.20800679922103882, 0.018846232444047928, 0.13231374323368073, 0.03724969923496246, 0.16200734674930573, -0.008221282623708248, 0.030448470264673233, 0.029170019552111626, -0.042527783662080765, 0.027352437376976013, -0.05768744647502899, 0.00282535282894969, 0.02949584275484085, 0.1129378229379654, 0.01319499034434557, -0.08734774589538574, -0.001788396737538278, 0.041899923235177994, 0.29531022906303406, 0.08926807343959808, -0.3080447316169739, -0.0748719573020935, -0.0037140154745429754, -0.05283980071544647, -0.015085372142493725, -0.0030940985307097435, 0.09849780797958374, -0.07842657715082169, 0.08357367664575577, -0.0583660788834095, 0.07241899520158768, -0.0506431870162487, 0.028925612568855286, 0.09183903783559799, 0.07472044229507446, -0.005729102995246649, 0.05746391415596008, -0.23471662402153015, 0.280979186296463, -0.012483252212405205, 0.09136659651994705, -0.050038158893585205, 0.02052290365099907, 0.03557609021663666, -0.013833901844918728, 0.06280559301376343, -0.0041779931634664536, -0.07945995032787323, -0.2010873407125473, -0.08406894654035568, 0.037961699068546295, 0.11304159462451935, -0.05017559975385666, 0.13082356750965118, -0.03422039747238159, -0.03568049520254135, 0.05777061730623245, -0.022822396829724312, -0.1377459317445755, -0.1307242065668106, 0.03237919136881828, 0.01600290834903717, 0.038886766880750656, -0.07862193137407303, -0.11594530940055847, -0.09961680322885513, 0.1878078430891037, -0.019412118941545486, 0.0008228867081925273, -0.12310824543237686, 0.08134224265813828, 0.14306017756462097, -0.07082436233758926, 0.034935787320137024, 0.028301388025283813, 0.10057134926319122, 0.014870790764689445, -0.011930529959499836, 0.10351241379976273, -0.07711236923933029, -0.17736110091209412, -0.042192403227090836, 0.15664628148078918, 0.05823548138141632, 0.0718681737780571, 0.004110563546419144, 0.05226244032382965, -0.0012296310160309076, -0.07587487995624542, 0.06081019714474678, -0.012222531251609325, 0.01652596890926361, 0.02841545082628727, -0.013607071712613106, -0.03443969041109085, -0.10034911334514618, -0.05321841686964035, 0.12652726471424103, 0.3273453414440155, -0.08063904196023941, 0.010271002538502216, 0.02172224596142769, -0.047899287194013596, -0.1239984855055809, 0.005175544880330563, 0.11603955924510956, 0.029522303491830826, 0.05982240289449692, -0.1702813059091568, 0.03895995393395424, 0.06830407679080963, -0.012765721417963505, 0.04576215147972107, -0.3227475881576538, -0.13851530849933624, 0.10687080770730972, 0.11529011279344559, -0.04593481868505478, -0.13408581912517548, -0.030902262777090073, -0.03562845289707184, -0.09232612699270248, 0.07559961825609207, -0.0075213233940303326, 0.10742177069187164, 0.017094671726226807, 0.0067451512441039085, 0.03127693012356758, -0.05779515951871872, 0.15352723002433777, -0.027796510607004166, 0.041362129151821136, -0.020516768097877502, 0.020776525139808655, -0.0054862345568835735, -0.055104974657297134, -0.0074340784922242165, -0.09545798599720001, 0.004848139360547066, -0.08554357290267944, -0.04178799316287041, -0.09077107161283493, -0.00043093098793178797, -0.05031060054898262, -0.027855761349201202, -0.014424138702452183, 0.057300254702568054, 0.1082964763045311, 0.0136245246976614, 0.08362530171871185, -0.047059401869773865, 0.13487155735492706, 0.06529877334833145, 0.11368751525878906, 0.0064156390726566315, -0.06481079012155533, -0.003560116747394204, 0.005180191248655319, 0.020136484876275063, -0.04825420305132866, 0.04511412978172302, 0.15648077428340912, 0.027622703462839127, 0.1583653837442398, 0.047098059207201004, -0.07583330571651459, -0.008591130375862122, 0.06662110984325409, -0.09754269570112228, -0.16828520596027374, -0.011564548127353191, -0.03244587406516075, -0.13127343356609344, -0.04791455715894699, 0.10398875921964645, -0.07174180448055267, 0.001677963649854064, 0.01120974961668253, 0.032117810100317, -0.04321761056780815, 0.2156023532152176, 0.006915046833455563, 0.07606387883424759, -0.07459787279367447, 0.05256170406937599, 0.06312327831983566, -0.13653329014778137, 0.033959124237298965, 0.07578912377357483, -0.06000247970223427, -0.02775842696428299, 0.04521401971578598, 0.0868271067738533, 0.04086954891681671, -0.039064209908246994, -0.14015614986419678, -0.14751967787742615, 0.06907166540622711, 0.04837360233068466, 0.025385262444615364, -0.0030458492692559958, -0.03648443892598152, 0.03853502869606018, -0.11672686040401459, 0.10764281451702118, 0.08325950056314468, 0.04933503270149231, -0.11471088975667953, 0.12029818445444107, 0.020125525072216988, -0.03599041327834129, 0.007146481890231371, 0.010423075407743454, -0.113575778901577, 0.026386577636003494, -0.09842471033334732, -0.045849986374378204, -0.04667579382658005, 0.0025930784177035093, -0.00877288542687893, -0.059742894023656845, -0.061935581266880035, 0.003648187732324004, -0.10712778568267822, -0.059475358575582504, 0.0007452919380739331, 0.05853595212101936, -0.11140439659357071, -0.01293029822409153, 0.042173199355602264, -0.12299437820911407, 0.08023323863744736, 0.02931324951350689, 0.020619504153728485, 0.037283483892679214, -0.12854807078838348, -0.014397814869880676, 0.03121829591691494, 0.008538506925106049, 0.039445359259843826, -0.17023757100105286, -0.008763874880969524, -0.010933995246887207, 0.019949916750192642, 0.013873199932277203, 0.029935311526060104, -0.09128488600254059, -0.003978223539888859, -0.04397144913673401, -0.08689984679222107, -0.033459920436143875, 0.05454032123088837, 0.04936918988823891, 7.891041491348005e-7, 0.17982180416584015, -0.0920754075050354, 0.05868195369839668, -0.2432553917169571, -0.02081788331270218, -0.013157747685909271, -0.07052358239889145, -0.05751451477408409, -0.028509318828582764, 0.09976436197757721, -0.05935871973633766, 0.07706762105226517, -0.022277045994997025, 0.06656515598297119, 0.043522704392671585, -0.08781535178422928, 0.019993534311652184, 0.051752720028162, 0.18464817106723785, 0.05841849744319916, -0.03100300393998623, 0.06668954342603683, -0.015876848250627518, 0.04933285340666771, 0.13901984691619873, 0.16548216342926025, 0.1757226139307022, 0.04732748493552208, 0.055157873779535294, 0.06558272242546082, -0.13111503422260284, -0.12692385911941528, 0.1141713559627533, -0.0701935738325119, 0.15710517764091492, -0.01745179481804371, 0.21388261020183563, 0.09826744347810745, -0.1954547017812729, 0.04386206716299057, -0.0757773220539093, -0.09448899328708649, -0.08498457819223404, -0.0725867971777916, -0.08420863747596741, -0.15591713786125183, 0.025685787200927734, -0.09593617916107178, 0.04535418003797531, 0.07040737569332123, 0.04595965892076492, 0.016565779224038124, 0.13215185701847076, 0.06999985128641129, 0.010571605525910854, 0.09215576201677322, 0.005539516918361187, -0.025923719629645348, -0.04671670123934746, -0.07304687798023224, 0.031158607453107834, -0.031084686517715454, 0.060487378388643265, -0.0528721809387207, -0.12474548071622849, 0.0634632334113121, 0.017683781683444977, -0.10519225150346756, 0.03765286132693291, -0.024328188970685005, 0.07100342959165573, 0.06843820214271545, 0.030553678050637245, 0.000009600993507774547, -0.02554664947092533, 0.20735709369182587, -0.05707995966076851, -0.07703935354948044, -0.10387041419744492, 0.1949327141046524, 0.01047338917851448, 0.0041468278504908085, 0.02739594876766205, -0.06943564862012863, 0.015994898974895477, 0.14624148607254028, 0.15970250964164734, -0.05457377806305885, -0.009131032973527908, 0.003496985649690032, -0.013114995323121548, -0.024315590038895607, 0.0750979334115982, 0.11333594471216202, 0.027510885149240494, -0.06460072845220566, -0.006239502690732479, -0.057472195476293564, -0.05755609646439552, -0.020290562883019447, 0.04823661223053932, 0.06390851736068726, 0.012195387855172157, -0.03694244846701622, 0.1212608814239502, -0.031868986785411835, -0.12570007145404816, 0.032481323927640915, -0.20921877026557922, -0.20173247158527374, -0.0280933640897274, 0.07030922919511795, 0.018991898745298386, 0.05127968639135361, -0.012373463250696659, -0.03713444247841835, 0.0614030547440052, 0.0036495118401944637, -0.013291014358401299, -0.11687397956848145, 0.07357286661863327, -0.09740246087312698, 0.20231840014457703, -0.04167217016220093, 0.03771810233592987, 0.12451831251382828, 0.05860866233706474, -0.07268931716680527, 0.055953167378902435, 0.0813177078962326, -0.12468872219324112, 0.053800806403160095, 0.15266656875610352, -0.050235141068696976, 0.13189636170864105, 0.06538160890340805, -0.1075911596417427, 0.04865960404276848, -0.11329113692045212, -0.046349555253982544, -0.031901318579912186, 0.011711143888533115, -0.03770000860095024, 0.14746958017349243, 0.22929736971855164, -0.05840502306818962, 0.004742311779409647, -0.05369993671774864, 0.01398913748562336, 0.03935907408595085, 0.16680951416492462, -0.06283482164144516, -0.2837347686290741, 0.02921247109770775, -0.01645324006676674, 0.008478682488203049, -0.21621300280094147, -0.11070211976766586, 0.024705560877919197, -0.05948380380868912, -0.06086082383990288, 0.12109380960464478, 0.08807199448347092, 0.04943902790546417, -0.07378589361906052, -0.13025450706481934, -0.03721686080098152, 0.17735238373279572, -0.1563905030488968, -0.05740373209118843 ]
null
null
transformers
# StackOBERTflow-comments-small StackOBERTflow is a RoBERTa model trained on StackOverflow comments. A Byte-level BPE tokenizer with dropout was used (using the `tokenizers` package). The model is *small*, i.e. has only 6-layers and the maximum sequence length was restricted to 256 tokens. The model was trained for 6 epochs on several GBs of comments from the StackOverflow corpus. ## Quick start: masked language modeling prediction ```python from transformers import pipeline from pprint import pprint COMMENT = "You really should not do it this way, I would use <mask> instead." fill_mask = pipeline( "fill-mask", model="giganticode/StackOBERTflow-comments-small-v1", tokenizer="giganticode/StackOBERTflow-comments-small-v1" ) pprint(fill_mask(COMMENT)) # [{'score': 0.019997311756014824, # 'sequence': '<s> You really should not do it this way, I would use jQuery instead.</s>', # 'token': 1738}, # {'score': 0.01693696901202202, # 'sequence': '<s> You really should not do it this way, I would use arrays instead.</s>', # 'token': 2844}, # {'score': 0.013411642983555794, # 'sequence': '<s> You really should not do it this way, I would use CSS instead.</s>', # 'token': 2254}, # {'score': 0.013224546797573566, # 'sequence': '<s> You really should not do it this way, I would use it instead.</s>', # 'token': 300}, # {'score': 0.011984303593635559, # 'sequence': '<s> You really should not do it this way, I would use classes instead.</s>', # 'token': 1779}] ```
{}
fill-mask
giganticode/StackOBERTflow-comments-small-v1
[ "transformers", "pytorch", "jax", "roberta", "fill-mask", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #jax #roberta #fill-mask #autotrain_compatible #endpoints_compatible #region-us
# StackOBERTflow-comments-small StackOBERTflow is a RoBERTa model trained on StackOverflow comments. A Byte-level BPE tokenizer with dropout was used (using the 'tokenizers' package). The model is *small*, i.e. has only 6-layers and the maximum sequence length was restricted to 256 tokens. The model was trained for 6 epochs on several GBs of comments from the StackOverflow corpus. ## Quick start: masked language modeling prediction
[ "# StackOBERTflow-comments-small\n\nStackOBERTflow is a RoBERTa model trained on StackOverflow comments.\nA Byte-level BPE tokenizer with dropout was used (using the 'tokenizers' package).\n\nThe model is *small*, i.e. has only 6-layers and the maximum sequence length was restricted to 256 tokens. \nThe model was trained for 6 epochs on several GBs of comments from the StackOverflow corpus.", "## Quick start: masked language modeling prediction" ]
[ "TAGS\n#transformers #pytorch #jax #roberta #fill-mask #autotrain_compatible #endpoints_compatible #region-us \n", "# StackOBERTflow-comments-small\n\nStackOBERTflow is a RoBERTa model trained on StackOverflow comments.\nA Byte-level BPE tokenizer with dropout was used (using the 'tokenizers' package).\n\nThe model is *small*, i.e. has only 6-layers and the maximum sequence length was restricted to 256 tokens. \nThe model was trained for 6 epochs on several GBs of comments from the StackOverflow corpus.", "## Quick start: masked language modeling prediction" ]
[ 40, 116, 11 ]
[ "passage: TAGS\n#transformers #pytorch #jax #roberta #fill-mask #autotrain_compatible #endpoints_compatible #region-us \n# StackOBERTflow-comments-small\n\nStackOBERTflow is a RoBERTa model trained on StackOverflow comments.\nA Byte-level BPE tokenizer with dropout was used (using the 'tokenizers' package).\n\nThe model is *small*, i.e. has only 6-layers and the maximum sequence length was restricted to 256 tokens. \nThe model was trained for 6 epochs on several GBs of comments from the StackOverflow corpus.## Quick start: masked language modeling prediction" ]
[ -0.06955541670322418, -0.09903471916913986, -0.003654233878478408, 0.07267274707555771, 0.09424722194671631, -0.04576202854514122, 0.09613797068595886, 0.09959447383880615, 0.025114858523011208, 0.06762509793043137, 0.18578603863716125, 0.004256033338606358, -0.010015827603638172, 0.29722148180007935, -0.06725448369979858, -0.24375338852405548, 0.07863219082355499, 0.042223114520311356, 0.10103970766067505, 0.07253453135490417, 0.1147482693195343, -0.12535004317760468, 0.07315658777952194, -0.039175551384687424, -0.09940898418426514, 0.014375082217156887, -0.02191472053527832, -0.058370091021060944, 0.02048303931951523, 0.024013781920075417, 0.0006469847867265344, 0.009586538188159466, -0.055634792894124985, 0.007449616678059101, 0.04688232019543648, 0.06526681780815125, 0.026947777718305588, 0.07039245218038559, -0.016746442764997482, 0.03141552209854126, 0.06745435297489166, -0.09565592557191849, -0.011638947762548923, -0.0038282324094325304, -0.01345770712941885, -0.15292370319366455, 0.010598571039736271, 0.03887125477194786, 0.09689167886972427, 0.022380031645298004, -0.002600292908027768, 0.2633189558982849, -0.07843434810638428, 0.09778862446546555, 0.19527441263198853, -0.26120346784591675, -0.04529312625527382, 0.02795797772705555, 0.09221602976322174, 0.053314995020627975, -0.04691781476140022, -0.037531252950429916, 0.03166595846414566, 0.05591665208339691, 0.07918521016836166, -0.06595373153686523, 0.012084460817277431, -0.0692269504070282, -0.09349654614925385, -0.03991212695837021, 0.19426009058952332, 0.0031443736515939236, -0.04822298139333725, -0.15306760370731354, -0.09071571379899979, -0.0587618313729763, -0.04249117523431778, 0.0011442428221926093, -0.004831716418266296, -0.020027292892336845, -0.013614263385534286, 0.012907955795526505, -0.050847601145505905, -0.04064479470252991, -0.07722076773643494, 0.16208647191524506, 0.012073579244315624, 0.07210728526115417, -0.18611107766628265, 0.02259180136024952, -0.023229137063026428, -0.09754572063684464, -0.017710646614432335, -0.08049226552248001, 0.03786115348339081, 0.05643029510974884, -0.009016970172524452, -0.07699667662382126, 0.07384490221738815, 0.06449595838785172, 0.061120420694351196, 0.05466992408037186, 0.10390938073396683, 0.06822165846824646, 0.06703144311904907, 0.04084569960832596, -0.01704513654112816, -0.10592715442180634, 0.12380045652389526, 0.0008228073129430413, 0.052804019302129745, -0.026851598173379898, -0.1326943039894104, 0.02018432505428791, 0.07452575862407684, 0.050467751920223236, -0.013922548852860928, 0.033982716500759125, 0.021703992038965225, -0.0348292700946331, 0.13880302011966705, -0.11202632635831833, -0.008173328824341297, 0.01202545315027237, -0.04827077314257622, 0.10507810860872269, -0.06588321179151535, -0.09855248034000397, -0.10188756883144379, -0.004497011192142963, -0.09992498904466629, -0.0881858840584755, -0.10386403650045395, -0.1585572510957718, -0.01616763509809971, -0.15174302458763123, 0.04128586873412132, -0.159486785531044, -0.22930677235126495, 0.006245845928788185, -0.002893694443628192, -0.03997195512056351, -0.06566416472196579, -0.025377683341503143, -0.10100419074296951, 0.038088321685791016, -0.031376879662275314, 0.1685047149658203, -0.06315016001462936, 0.022603336721658707, -0.026968149468302727, 0.12403549998998642, -0.13690456748008728, 0.004993854556232691, -0.10692337155342102, 0.010135600343346596, -0.17608410120010376, 0.05759686231613159, -0.0013879424659535289, 0.05228293314576149, -0.062341030687093735, -0.0647321492433548, -0.019223330542445183, 0.020249467343091965, 0.023460371419787407, 0.10461851954460144, -0.26381513476371765, -0.061429060995578766, 0.14408712089061737, -0.10851947963237762, -0.0758003368973732, 0.14358820021152496, -0.045034609735012054, 0.03790167719125748, 0.07366937398910522, 0.13460728526115417, 0.06477215886116028, 0.034571241587400436, -0.004715389106422663, 0.09326618909835815, -0.026241125538945198, -0.14228662848472595, 0.022871289402246475, 0.08605151623487473, 0.023072272539138794, 0.033428166061639786, 0.04812173545360565, 0.017777545377612114, -0.06039407104253769, 0.05358516424894333, -0.0012124758213758469, -0.013921800069510937, -0.08732439577579498, -0.028870118781924248, 0.07283003628253937, -0.1283947080373764, -0.07345227897167206, -0.0006284392438828945, 0.08630701154470444, -0.0393010713160038, 0.009044320322573185, -0.07316091656684875, 0.11971262097358704, -0.09807043522596359, -0.0016411702381446958, -0.1438230276107788, -0.002277885563671589, 0.058162588626146317, 0.06471819430589676, -0.06394459307193756, 0.16100598871707916, 0.05843910947442055, -0.03168652951717377, 0.05213480070233345, 0.037732433527708054, 0.08649969846010208, -0.022505227476358414, -0.14606890082359314, -0.08973579853773117, -0.056989286094903946, -0.11228620260953903, -0.13910417258739471, -0.016887737438082695, -0.025153761729598045, 0.027196349576115608, 0.03177883103489876, 0.060239408165216446, -0.00515162805095315, 0.031301308423280716, -0.012711544521152973, -0.05017678812146187, -0.05799650028347969, 0.042826175689697266, 0.055254898965358734, -0.004912438802421093, 0.08750366419553757, -0.1694241315126419, 0.1031387448310852, 0.11987587809562683, 0.15214595198631287, 0.01772594265639782, -0.03415140509605408, -0.05838596075773239, -0.01563890650868416, 0.0180854182690382, -0.009297642856836319, 0.22130955755710602, -0.011154673993587494, 0.13833209872245789, -0.11715246737003326, -0.04603990912437439, 0.053225744515657425, -0.01671494171023369, 0.006283137481659651, 0.12455599009990692, -0.05857676640152931, -0.058861665427684784, 0.06701142340898514, -0.02006364054977894, 0.0033101721201092005, 0.16541138291358948, 0.002499991562217474, -0.06840405613183975, 0.05808693915605545, -0.041140202432870865, -0.006784411147236824, 0.05218914896249771, -0.16706699132919312, -0.06438811123371124, 0.09142503142356873, 0.04646420478820801, 0.07538864016532898, -0.02441275306046009, 0.05760324373841286, -0.05623267963528633, -0.007962440140545368, 0.08716340363025665, 0.05503586307168007, 0.005286663770675659, 0.08540929108858109, 0.019422084093093872, -0.13754020631313324, 0.04363987222313881, -0.01569521240890026, -0.022663837298750877, 0.16305647790431976, -0.014197818003594875, -0.29961347579956055, -0.06455739587545395, -0.085563525557518, 0.015565917827188969, 0.012502997182309628, 0.06718264520168304, 0.009629927575588226, -0.07662954181432724, -0.10826004296541214, 0.0018292984459549189, 0.002867708448320627, 0.08783603459596634, 0.0651126578450203, -0.035764213651418686, -0.010323663242161274, -0.1114177405834198, -0.031249340623617172, -0.06195387616753578, 0.05071212351322174, 0.08096906542778015, -0.018292739987373352, -0.004187839571386576, 0.10786758363246918, -0.044571686536073685, 0.04409267380833626, -0.036159172654151917, 0.16581116616725922, 0.030970608815550804, 0.08027258515357971, 0.20332959294319153, -0.002804514253512025, 0.023659927770495415, 0.02101915329694748, -0.05220479890704155, -0.07261641323566437, 0.07220626622438431, -0.04987923428416252, -0.1052444726228714, -0.09929367899894714, -0.07322733104228973, -0.09706313163042068, 0.009455360472202301, 0.054721128195524216, 0.06220770254731178, -0.15375299751758575, 0.07670991867780685, 0.0023771633859723806, 0.10002787411212921, -0.0963304340839386, 0.09231780469417572, -0.060434553772211075, 0.01172710582613945, 0.11974665522575378, -0.034650906920433044, -0.00932846125215292, 0.12553338706493378, -0.06246001645922661, 0.14035794138908386, -0.08727903664112091, 0.1494196355342865, 0.019001569598913193, -0.04381745681166649, 0.12884284555912018, 0.1594037264585495, -0.08782527595758438, -0.007038358133286238, -0.09732956439256668, -0.02753702737390995, -0.08253400027751923, 0.010553611442446709, -0.07376907765865326, 0.06100517511367798, -0.12661105394363403, 0.18693189322948456, 0.04495229572057724, 0.2568187713623047, 0.10699939727783203, -0.2688659429550171, -0.12697307765483856, 0.057069048285484314, -0.07559753209352493, -0.09543082863092422, 0.08315405994653702, 0.18424543738365173, -0.037390679121017456, -0.10545437037944794, 0.0023423696402460337, 0.09725561738014221, -0.06891892105340958, 0.0690382644534111, -0.09686259180307388, 0.1543688178062439, 0.0019312138902023435, 0.07535608857870102, -0.20828206837177277, 0.0842844620347023, -0.040209803730249405, 0.04404410719871521, -0.14780519902706146, 0.002737092785537243, -0.020190918818116188, -0.09665635228157043, 0.08080646395683289, -0.0006057063583284616, -0.07216205447912216, 0.09284395724534988, -0.19188636541366577, 0.05675188824534416, 0.007097750436514616, 0.040344297885894775, 0.03631560876965523, -0.02390304021537304, 0.017179129645228386, 0.012852370738983154, -0.004845777060836554, 0.07996482402086258, -0.06671839207410812, -0.015662802383303642, 0.12479697912931442, -0.15709953010082245, -0.0628676638007164, -0.06089863181114197, 0.06352793425321579, 0.2263583093881607, 0.017123006284236908, -0.10990770161151886, -0.07293803989887238, -0.0030708680860698223, 0.09361231327056885, -0.07918071746826172, 0.02085138112306595, -0.048781782388687134, 0.12986686825752258, -0.004580232780426741, -0.09564326703548431, 0.13615091145038605, -0.14799489080905914, -0.1129782497882843, -0.037095822393894196, 0.0967632532119751, 0.0021291770972311497, 0.006665454246103764, 0.04091882333159447, -0.05382484570145607, -0.11284057796001434, -0.07887224853038788, -0.04222702980041504, 0.015813738107681274, 0.07346684485673904, 0.030235381796956062, 0.018590888008475304, -0.05362769216299057, 0.0632060319185257, 0.08587324619293213, 0.14631561934947968, 0.2011236846446991, -0.055857133120298386, 0.10063997656106949, 0.1969137340784073, 0.007620951626449823, -0.2202179878950119, -0.04662657901644707, 0.0013115168549120426, 0.05435468256473541, -0.17621512711048126, -0.0316113717854023, 0.1262570172548294, 0.028071898967027664, 0.008596559055149555, 0.15809573233127594, -0.2347550243139267, -0.06212978437542915, 0.21430398523807526, 0.005750727374106646, 0.45257803797721863, -0.1158437728881836, -0.008808627724647522, -0.053557634353637695, 0.035466644912958145, 0.08295034617185593, -0.08395352214574814, 0.11131796985864639, -0.08667290955781937, -0.014635392464697361, -0.004055149853229523, -0.09788219630718231, 0.04874832555651665, 0.02898668684065342, 0.07191977649927139, -0.04678932577371597, -0.015180777758359909, 0.04753118380904198, -0.06572069972753525, 0.11316462606191635, -0.0915084183216095, 0.08001423627138138, -0.1814086139202118, -0.03033515438437462, -0.06874096393585205, 0.046178270131349564, 0.04146377742290497, -0.07273706048727036, -0.025467276573181152, -0.0016859783791005611, -0.02869650349020958, 0.0336553156375885, 0.092989981174469, -0.0178131852298975, -0.0020571467466652393, 0.18136997520923615, 0.06913706660270691, -0.2528837025165558, -0.05648506060242653, 0.030818307772278786, -0.00956786796450615, 0.07945826649665833, -0.07118392735719681, 0.02075691893696785, 0.054382048547267914, -0.0010813252301886678, 0.04582929238677025, 0.06580702215433121, -0.04706774279475212, 0.05584035441279411, 0.03701948747038841, -0.1880902647972107, 0.05056888610124588, 0.031011898070573807, 0.061900924891233444, -0.09360519796609879, 0.010588550940155983, 0.12419681996107101, -0.05755459889769554, -0.025914140045642853, -0.047366004437208176, 0.043136242777109146, 0.02235223352909088, 0.10937407612800598, 0.023185675963759422, 0.07505516707897186, -0.12674234807491302, 0.04947696253657341, -0.02659570425748825, -0.033849846571683884, 0.05312870442867279, 0.13450029492378235, -0.13014551997184753, -0.06439320743083954, 0.018205972388386726, 0.08671288937330246, 0.15088072419166565, -0.02074653096497059, -0.09146260470151901, -0.12074602395296097, 0.09363728761672974, 0.09782171994447708, 0.09488659352064133, 0.029478449374437332, -0.051834091544151306, -0.02518138848245144, -0.11006961762905121, 0.046759165823459625, 0.06370522081851959, 0.0356253907084465, -0.06270312517881393, 0.11077738553285599, -0.03284277021884918, 0.060185082256793976, -0.07436125725507736, -0.013117160648107529, -0.1679186224937439, -0.0031866778153926134, -0.15803270041942596, 0.11044295877218246, -0.04831993207335472, -0.033014364540576935, -0.01720486767590046, 0.05463415011763573, -0.06793367862701416, 0.023490969091653824, -0.05766009911894798, 0.030067814514040947, 0.0027171296533197165, 0.011824549175798893, 0.03536885976791382, -0.012476911768317223, -0.017177456989884377, -0.06539987772703171, 0.14133816957473755, 0.07894908636808395, -0.0738542303442955, -0.015744639560580254, -0.02802187018096447, -0.04156956449151039, 0.11096656322479248, 0.0327778235077858, 0.09429711848497391, -0.02287992276251316, 0.022041432559490204, 0.07165573537349701, 0.07449840754270554, -0.016301661729812622, 0.05640501156449318, -0.09903908520936966, 0.06047253683209419, 0.01713787205517292, 0.0033888535108417273, -0.030069805681705475, -0.03481471166014671, 0.06572414189577103, 0.1307985633611679, 0.1131797507405281, -0.05394948273897171, 0.021809406578540802, -0.09847207367420197, 0.002655657473951578, -0.0064911385998129845, -0.11050735414028168, 0.036361999809741974, 0.034966468811035156, 0.07414234429597855, -0.029239626601338387, 0.21568629145622253, 0.06986469030380249, -0.0747101679444313, 0.008311259560286999, -0.06025530397891998, -0.016476450487971306, 0.020020082592964172, 0.1348227858543396, 0.015062653459608555, -0.02323140576481819, 0.0041349357925355434, 0.045905839651823044, 0.12803404033184052, 0.13863115012645721, 0.2310764640569687, 0.07461751252412796, 0.06639517098665237, 0.17578670382499695, -0.08704807609319687, 0.003712730947881937, -0.03294313699007034, 0.03396950662136078, 0.00713792908936739, 0.11926417052745819, 0.0009144468349404633, 0.024399716407060623, 0.16217203438282013, -0.015540390275418758, -0.0027798337396234274, 0.009685331955552101, -0.03614398092031479, -0.12169713526964188, -0.10306628793478012, -0.09964071214199066, -0.012903989292681217, -0.04718755558133125, -0.1264396458864212, -0.0678851455450058, 0.07120085507631302, 0.03461240977048874, -0.0015480418223887682, 0.020594432950019836, -0.04427804797887802, -0.006098687648773193, 0.09795716404914856, -0.01842295005917549, -0.023762822151184082, 0.030651483684778214, -0.021990980952978134, -0.02186775952577591, -0.014067226089537144, 0.03504158556461334, 0.038976188749074936, 0.07250010222196579, 0.026780683547258377, -0.04645702242851257, -0.09004416316747665, -0.06531225144863129, 0.024590598419308662, -0.010924679227173328, 0.12503118813037872, 0.06584176421165466, -0.06123805418610573, -0.010955522768199444, 0.14238213002681732, -0.06407143175601959, -0.07609006762504578, -0.029608387500047684, 0.15073508024215698, -0.011472498066723347, 0.03819285333156586, -0.011142638511955738, -0.03624391928315163, -0.10096483677625656, 0.2209794521331787, 0.2558881938457489, -0.05479234829545021, 0.004349493887275457, 0.013013766147196293, -0.001546503510326147, -0.04594900831580162, 0.16333168745040894, 0.13126179575920105, 0.23365084826946259, -0.006175222806632519, 0.014041897840797901, -0.06013263761997223, -0.004251919221132994, -0.131792351603508, 0.008098505437374115, 0.027327626943588257, -0.025142384693026543, -0.027624480426311493, -0.051236141473054886, -0.14451012015342712, -0.12004407495260239, -0.08897923678159714, -0.06705625355243683, -0.08207214623689651, 0.008409890346229076, -0.04933077096939087, 0.06394502520561218, 0.12400265783071518, -0.04860201105475426, 0.0368044339120388, 0.029821760952472687, -0.038930073380470276, -0.13442406058311462, -0.04340016469359398, 0.09137725830078125, -0.09284258633852005, 0.058197494596242905, -0.0072789802215993404, 0.08717896789312363, 0.062131937593221664, -0.015284964814782143, -0.16412390768527985, 0.05908769741654396, -0.05008212849497795, 0.014720343053340912, 0.07312572747468948, 0.09687194973230362, -0.03753778338432312, -0.014058969914913177, 0.006804355885833502, -0.06509822607040405, -0.08072707056999207, -0.05947594717144966, -0.007047218736261129, -0.0537303201854229, 0.0028081927448511124, -0.025204544886946678, 0.08578445762395859, 0.07910408824682236, -0.04170670732855797, -0.04816853255033493, -0.020224561914801598, 0.07379033416509628, -0.017067432403564453, -0.06978580355644226, -0.05466345325112343, -0.1374368667602539, -0.04378151893615723, 0.053570035845041275, 0.00025872921105474234, -0.33624178171157837, 0.043271660804748535, -0.17665116488933563, -0.044062063097953796, -0.07840894162654877, 0.053505171090364456, -0.021801216527819633, 0.04686747491359711, -0.06335388123989105, 0.13530822098255157, -0.0029794673901051283, 0.06281593441963196, -0.116858571767807, -0.12451725453138351 ]
null
null
transformers
## About The *french-camembert-postag-model* is a part of speech tagging model for French that was trained on the *free-french-treebank* dataset available on [github](https://github.com/nicolashernandez/free-french-treebank). The base tokenizer and model used for training is *'camembert-base'*. ## Supported Tags It uses the following tags: | Tag | Category | Extra Info | |----------|:------------------------------:|------------:| | ADJ | adjectif | | | ADJWH | adjectif | | | ADV | adverbe | | | ADVWH | adverbe | | | CC | conjonction de coordination | | | CLO | pronom | obj | | CLR | pronom | refl | | CLS | pronom | suj | | CS | conjonction de subordination | | | DET | déterminant | | | DETWH | déterminant | | | ET | mot étranger | | | I | interjection | | | NC | nom commun | | | NPP | nom propre | | | P | préposition | | | P+D | préposition + déterminant | | | PONCT | signe de ponctuation | | | PREF | préfixe | | | PRO | autres pronoms | | | PROREL | autres pronoms | rel | | PROWH | autres pronoms | int | | U | ? | | | V | verbe | | | VIMP | verbe imperatif | | | VINF | verbe infinitif | | | VPP | participe passé | | | VPR | participe présent | | | VS | subjonctif | | More information on the tags can be found here: http://alpage.inria.fr/statgram/frdep/Publications/crabbecandi-taln2008-final.pdf ## Usage The usage of this model follows the common transformers patterns. Here is a short example of its usage: ```python from transformers import AutoTokenizer, AutoModelForTokenClassification tokenizer = AutoTokenizer.from_pretrained("gilf/french-camembert-postag-model") model = AutoModelForTokenClassification.from_pretrained("gilf/french-camembert-postag-model") from transformers import pipeline nlp_token_class = pipeline('ner', model=model, tokenizer=tokenizer, grouped_entities=True) nlp_token_class('Face à un choc inédit, les mesures mises en place par le gouvernement ont permis une protection forte et efficace des ménages') ``` The lines above would display something like this on a Jupyter notebook: ``` [{'entity_group': 'NC', 'score': 0.5760144591331482, 'word': '<s>'}, {'entity_group': 'U', 'score': 0.9946700930595398, 'word': 'Face'}, {'entity_group': 'P', 'score': 0.999615490436554, 'word': 'à'}, {'entity_group': 'DET', 'score': 0.9995906352996826, 'word': 'un'}, {'entity_group': 'NC', 'score': 0.9995531439781189, 'word': 'choc'}, {'entity_group': 'ADJ', 'score': 0.999183714389801, 'word': 'inédit'}, {'entity_group': 'P', 'score': 0.3710663616657257, 'word': ','}, {'entity_group': 'DET', 'score': 0.9995903968811035, 'word': 'les'}, {'entity_group': 'NC', 'score': 0.9995649456977844, 'word': 'mesures'}, {'entity_group': 'VPP', 'score': 0.9988670349121094, 'word': 'mises'}, {'entity_group': 'P', 'score': 0.9996246099472046, 'word': 'en'}, {'entity_group': 'NC', 'score': 0.9995329976081848, 'word': 'place'}, {'entity_group': 'P', 'score': 0.9996233582496643, 'word': 'par'}, {'entity_group': 'DET', 'score': 0.9995935559272766, 'word': 'le'}, {'entity_group': 'NC', 'score': 0.9995369911193848, 'word': 'gouvernement'}, {'entity_group': 'V', 'score': 0.9993771314620972, 'word': 'ont'}, {'entity_group': 'VPP', 'score': 0.9991101026535034, 'word': 'permis'}, {'entity_group': 'DET', 'score': 0.9995885491371155, 'word': 'une'}, {'entity_group': 'NC', 'score': 0.9995636343955994, 'word': 'protection'}, {'entity_group': 'ADJ', 'score': 0.9991781711578369, 'word': 'forte'}, {'entity_group': 'CC', 'score': 0.9991298317909241, 'word': 'et'}, {'entity_group': 'ADJ', 'score': 0.9992275238037109, 'word': 'efficace'}, {'entity_group': 'P+D', 'score': 0.9993300437927246, 'word': 'des'}, {'entity_group': 'NC', 'score': 0.8353511393070221, 'word': 'ménages</s>'}] ```
{"language": "fr", "widget": [{"text": "Face \u00e0 un choc in\u00e9dit, les mesures mises en place par le gouvernement ont permis une protection forte et efficace des m\u00e9nages"}]}
token-classification
gilf/french-camembert-postag-model
[ "transformers", "pytorch", "tf", "safetensors", "camembert", "token-classification", "fr", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "fr" ]
TAGS #transformers #pytorch #tf #safetensors #camembert #token-classification #fr #autotrain_compatible #endpoints_compatible #region-us
About ----- The *french-camembert-postag-model* is a part of speech tagging model for French that was trained on the *free-french-treebank* dataset available on github. The base tokenizer and model used for training is *'camembert-base'*. Supported Tags -------------- It uses the following tags: More information on the tags can be found here: URL Usage ----- The usage of this model follows the common transformers patterns. Here is a short example of its usage: The lines above would display something like this on a Jupyter notebook:
[]
[ "TAGS\n#transformers #pytorch #tf #safetensors #camembert #token-classification #fr #autotrain_compatible #endpoints_compatible #region-us \n" ]
[ 49 ]
[ "passage: TAGS\n#transformers #pytorch #tf #safetensors #camembert #token-classification #fr #autotrain_compatible #endpoints_compatible #region-us \n" ]
[ -0.06362611055374146, 0.017571667209267616, -0.008775456808507442, 0.044385481625795364, 0.13044190406799316, -0.005548839457333088, 0.058732934296131134, 0.06576350331306458, 0.044709462672472, -0.01122544426470995, 0.12484294921159744, 0.23053795099258423, -0.04802464693784714, 0.13453654944896698, -0.11860436946153641, -0.24532055854797363, 0.07648459076881409, 0.04886955767869949, -0.05062747746706009, 0.10868494212627411, 0.1077319011092186, -0.08753231167793274, 0.07557471096515656, -0.036467667669057846, -0.1327032893896103, 0.03908145800232887, 0.07124987989664078, -0.13520337641239166, 0.12623044848442078, 0.05194937437772751, 0.1782873421907425, 0.0648605152964592, -0.04502337425947189, -0.10747303813695908, 0.03917361795902252, 0.025270886719226837, -0.08239241689443588, 0.04371584951877594, 0.08058780431747437, -0.08707211166620255, 0.017797866836190224, 0.03523222729563713, 0.029220178723335266, 0.0592363104224205, -0.13288132846355438, -0.14433936774730682, -0.027117643505334854, 0.06048049405217171, 0.04599378630518913, 0.046373382210731506, 0.027667567133903503, 0.2379784882068634, -0.14043934643268585, 0.13634280860424042, 0.08096113801002502, -0.28545746207237244, -0.024439703673124313, 0.08886418491601944, 0.0033411860931664705, -0.0033185025677084923, -0.04421962797641754, 0.031128408387303352, 0.049758538603782654, 0.017063727602362633, 0.05368990823626518, -0.07248639315366745, -0.13108934462070465, 0.00014538921823259443, -0.10803396999835968, -0.015472949482500553, 0.18655210733413696, -0.020932655781507492, 0.021348008885979652, 0.006353069096803665, -0.11169777065515518, -0.01713487319648266, -0.006882222834974527, -0.03790057823061943, -0.036383289843797684, 0.028389932587742805, 0.04484459012746811, 0.034683823585510254, -0.11349282413721085, 0.021704377606511116, -0.2234712839126587, 0.2581542432308197, 0.0289055984467268, 0.05174393206834793, -0.16077615320682526, 0.06350181996822357, -0.019716113805770874, -0.09698061645030975, 0.03315819799900055, -0.10010304301977158, 0.001259566517546773, -0.06301672756671906, -0.003998854663223028, 0.010588731616735458, 0.10824159532785416, 0.17600110173225403, -0.022786486893892288, 0.032942138612270355, -0.033168449997901917, 0.06473629176616669, 0.01635872945189476, 0.04799843579530716, -0.0043364050798118114, -0.005311891902238131, 0.08357718586921692, -0.10523129999637604, -0.014215037226676941, -0.03031819500029087, -0.088377445936203, -0.023907750844955444, 0.10454508662223816, 0.10371917486190796, -0.004985200706869364, 0.08127591013908386, -0.05000363290309906, -0.005505007226020098, 0.13659267127513885, -0.07741303741931915, -0.0034233112819492817, 0.009004971012473106, 0.03824647516012192, 0.06303376704454422, -0.013285377062857151, -0.002466742182150483, -0.030185632407665253, 0.11738552153110504, -0.06401678919792175, -0.03474444895982742, 0.0074622975662350655, -0.07271981984376907, 0.04645046591758728, -0.11943280696868896, 0.05987009033560753, -0.2139594405889511, -0.07788790762424469, 0.036877959966659546, 0.016375241801142693, 0.013991148211061954, -0.025336792692542076, 0.026373757049441338, -0.032286349684000015, -0.014570512808859348, -0.03881838545203209, -0.0669349804520607, -0.06626876443624496, 0.09210781753063202, -0.019814157858490944, 0.03876524046063423, -0.10543444752693176, 0.02778630517423153, -0.11877791583538055, 0.012833540327847004, -0.1338779777288437, -0.02785111777484417, -0.06862340867519379, 0.16314776241779327, -0.012353102676570415, -0.059757299721241, -0.08521275222301483, 0.025701427832245827, -0.050976622849702835, 0.15661896765232086, -0.06949539482593536, -0.07790570706129074, 0.21057936549186707, -0.15459378063678741, -0.15674221515655518, 0.11065514385700226, 0.008300314657390118, -0.007796959951519966, 0.0734487995505333, 0.11681900173425674, 0.12409395724534988, -0.07276250422000885, 0.0678459033370018, 0.10501983761787415, -0.14594224095344543, -0.08798482269048691, -0.003828526707366109, 0.012875513173639774, -0.16650502383708954, 0.04221365228295326, 0.04350397363305092, 0.08865422755479813, -0.08078011870384216, -0.02733822725713253, -0.04257694259285927, -0.033963121473789215, 0.09337983280420303, 0.04985472932457924, 0.08020349591970444, -0.09032513201236725, 0.01306381355971098, -0.02955065295100212, 0.010299992747604847, 0.048672109842300415, -0.011090838350355625, -0.09355004131793976, 0.1349453330039978, -0.007746487390249968, 0.005087637808173895, -0.1731983721256256, -0.14354446530342102, 0.010853303596377373, 0.09148823469877243, -0.03878884017467499, 0.11572195589542389, 0.08874624222517014, -0.0016634021885693073, -0.02155441604554653, -0.050347950309515, 0.1774778962135315, 0.04652408882975578, -0.03212452679872513, -0.11252973973751068, 0.06146645545959473, -0.08716700226068497, 0.0339762344956398, -0.09626006335020065, 0.014548670500516891, 0.14016549289226532, 0.17459595203399658, 0.03234758973121643, 0.08248124271631241, -0.03169989585876465, 0.03329230099916458, -0.06904169172048569, -0.0036224154755473137, 0.07662565261125565, 0.001920092268846929, -0.055797647684812546, 0.12336210906505585, -0.1308339536190033, 0.42115142941474915, 0.1882210373878479, -0.23610979318618774, -0.05315368250012398, -0.029352428391575813, -0.027437597513198853, 0.02330762706696987, 0.03539859503507614, 0.018274541944265366, -0.007211614865809679, -0.016584428027272224, 0.15760670602321625, -0.04687974974513054, -0.06599652022123337, 0.05276944860816002, -0.04947197064757347, -0.05830793082714081, 0.07824619859457016, 0.04506825655698776, -0.2357206642627716, 0.17318516969680786, 0.2396758645772934, 0.049372751265764236, 0.11955386400222778, -0.04306212440133095, 0.0284004844725132, 0.04900685325264931, 0.03483401983976364, -0.0043789781630039215, 0.02069486305117607, -0.12350314855575562, -0.009912177920341492, 0.06489381939172745, 0.01727832667529583, 0.02184484526515007, -0.13396862149238586, -0.04072260484099388, 0.01449321024119854, 0.03483045846223831, 0.0171182993799448, 0.11147673428058624, 0.03539341315627098, 0.12828777730464935, -0.03206009417772293, -0.1474633663892746, 0.10891765356063843, 0.014123176224529743, -0.09011702984571457, 0.18626506626605988, -0.12344850599765778, -0.2885480523109436, -0.07381875813007355, -0.11170990020036697, -0.023467136546969414, 0.03274833410978317, 0.062413301318883896, -0.09381658583879471, -0.05994898080825806, 0.025798019021749496, -0.02636171691119671, -0.030858570709824562, 0.08374885469675064, -0.0736420527100563, 0.05585607513785362, -0.005386417265981436, -0.056374091655015945, -0.07024627923965454, -0.03996686637401581, -0.046041056513786316, 0.15044008195400238, -0.07692181318998337, 0.081666499376297, 0.13767413794994354, -0.026153048500418663, 0.04207201302051544, -0.0393269881606102, 0.19469459354877472, -0.06966350972652435, 0.037614159286022186, 0.17907845973968506, -0.05586590990424156, 0.07537535578012466, 0.15753693878650665, 0.03363710641860962, -0.06792543083429337, 0.0305104348808527, -0.022926155477762222, -0.09813860803842545, -0.1655048280954361, -0.1238204762339592, -0.09427798539400101, 0.04111691564321518, 0.035287145525217056, 0.08115915954113007, 0.15110450983047485, 0.09744445979595184, 0.023119071498513222, -0.035312503576278687, 0.001090019359253347, 0.05339618772268295, 0.17319734394550323, 0.010082503780722618, 0.12359004467725754, -0.05949683487415314, -0.14725539088249207, 0.09687511622905731, 0.020753294229507446, 0.09140942245721817, 0.07521158456802368, -0.07694052904844284, 0.040683288127183914, 0.1665838062763214, 0.1470160186290741, 0.15261128544807434, 0.008908716030418873, -0.061327408999204636, -0.001456002821214497, -0.019539689645171165, -0.0304744653403759, -0.0023602228611707687, 0.026874879375100136, -0.08254483342170715, -0.0734720304608345, -0.09985854476690292, 0.09541124850511551, 0.08074279129505157, 0.04152373597025871, -0.21349109709262848, 0.0003014895773958415, 0.0515163317322731, 0.0013974702451378107, -0.05941559746861458, 0.07869803160429001, 0.00509015703573823, -0.1145319938659668, 0.09328965097665787, -0.04906829446554184, 0.07401658594608307, 0.005168515723198652, 0.06438866257667542, -0.00803909357637167, -0.06686127930879593, 0.006463971920311451, 0.05577360466122627, -0.24972257018089294, 0.24902553856372833, 0.004147936124354601, -0.05075225606560707, -0.07520050555467606, -0.011801284737884998, 0.04930296912789345, 0.2438141107559204, 0.13980385661125183, 0.0175368320196867, -0.08793454617261887, -0.17087790369987488, -0.001985176233574748, 0.019173666834831238, 0.09053071588277817, -0.003165102330967784, -0.015773627907037735, -0.039796337485313416, -0.033235762268304825, 0.0006942369509488344, -0.05662950128316879, -0.03386712446808815, -0.09772781282663345, 0.04536934196949005, 0.032140400260686874, 0.01760030724108219, -0.03267177939414978, -0.047861550003290176, -0.15123365819454193, 0.15827718377113342, -0.07979631423950195, -0.05661589279770851, -0.1370471864938736, -0.10881778597831726, 0.04865336790680885, -0.09151102602481842, 0.08980585634708405, -0.08919209986925125, 0.013164508156478405, -0.04448120668530464, -0.17750880122184753, 0.14000709354877472, -0.1499246507883072, -0.06243366003036499, -0.0514833927154541, 0.158713698387146, -0.07083042711019516, -0.010560143738985062, 0.024124082177877426, 0.006491024978458881, -0.031133973971009254, -0.08328402787446976, -0.0005458438536152244, -0.0843631848692894, 0.020234836265444756, 0.03488759696483612, -0.07110310345888138, -0.10681699961423874, 0.0013486683601513505, 0.022902794182300568, 0.1910865306854248, 0.2345390021800995, -0.0657861977815628, 0.08175484836101532, 0.14781905710697174, 0.007399903144687414, -0.3182850480079651, -0.0458061508834362, -0.13546989858150482, -0.06183964014053345, -0.01627604104578495, -0.06445872783660889, 0.13508924841880798, 0.03237666189670563, -0.045135557651519775, 0.11732257902622223, -0.1282711625099182, -0.07741162180900574, 0.22133734822273254, 0.04877074435353279, 0.36577391624450684, -0.10941223800182343, -0.06403657793998718, 0.01973677985370159, -0.12740929424762726, 0.12705132365226746, -0.06460548937320709, 0.021793313324451447, -0.0023258260916918516, -0.030414285138249397, 0.044756751507520676, -0.05969903990626335, 0.08464384824037552, -0.0038035495672374964, 0.07639104127883911, -0.1036725863814354, -0.07763747125864029, 0.0321875736117363, -0.00579633004963398, 0.017545081675052643, 0.03483330458402634, 0.04426487907767296, -0.05791143700480461, -0.021858863532543182, -0.0815676897764206, 0.1192932203412056, 0.016041090711951256, -0.0799533948302269, 0.0088246650993824, 0.0018267794512212276, -0.010613977909088135, -0.029338225722312927, 0.20453664660453796, -0.005377247463911772, 0.17697672545909882, 0.14254577457904816, 0.1231478601694107, -0.15352007746696472, 0.03818294405937195, -0.04890616610646248, -0.07298649847507477, 0.07269102334976196, -0.02452518790960312, 0.0798354297876358, 0.11919349431991577, -0.024416081607341766, 0.04665978625416756, 0.10114160925149918, 0.03718268498778343, -0.06703893095254898, 0.1586289256811142, -0.24095484614372253, -0.015497246757149696, -0.04486919194459915, -0.04750111699104309, 0.08920010924339294, 0.13354404270648956, 0.11590586602687836, 0.020822012796998024, -0.01404210738837719, -0.01543489284813404, -0.0267338789999485, -0.03889964520931244, 0.0698942244052887, 0.093405582010746, 0.03330349549651146, -0.11815018951892853, 0.021587014198303223, 0.012433941476047039, -0.15932588279247284, -0.05058617517352104, 0.08509630709886551, -0.16866841912269592, -0.12933950126171112, -0.0036125709302723408, 0.07657663524150848, -0.13174991309642792, -0.06295182555913925, -0.057678982615470886, -0.16052846610546112, 0.0593118853867054, 0.27465322613716125, 0.10858530551195145, 0.1005033552646637, 0.011488920077681541, -0.029233889654278755, -0.03762945532798767, 0.016207963228225708, 0.006170108448714018, 0.0571235753595829, -0.18923386931419373, 0.051336269825696945, -0.017991557717323303, 0.14401519298553467, -0.10265479981899261, -0.034076761454343796, -0.15923838317394257, 0.02146093174815178, -0.06445380300283432, -0.06015285477042198, -0.06782566010951996, -0.011602172628045082, 0.015605621039867401, -0.09364782273769379, -0.019780248403549194, -0.01913166046142578, -0.1005064845085144, 0.07489077001810074, 0.0519588403403759, 0.028141887858510017, -0.060724757611751556, -0.06720086932182312, 0.08750220388174057, -0.04155813530087471, 0.11711414158344269, 0.09567010402679443, -0.08224315196275711, 0.09077088534832001, -0.1538355052471161, -0.09616224467754364, 0.1397123634815216, 0.01336797047406435, 0.09342852234840393, 0.04918834567070007, 0.05104673281311989, 0.07282060384750366, -0.0004341922758612782, 0.0621119849383831, 0.04728604853153229, -0.10533513873815536, 0.04833422228693962, -0.00475988769903779, -0.1625155657529831, -0.022172700613737106, -0.079313263297081, 0.10790874063968658, -0.046323470771312714, 0.1372978240251541, -0.045963846147060394, 0.05477793142199516, -0.0675814226269722, -0.004709541331976652, -0.01772671565413475, -0.21037805080413818, -0.08497191965579987, -0.013681448064744473, 0.019956158474087715, -0.0016390858218073845, 0.197564959526062, 0.01739293709397316, 0.02115379273891449, 0.05813971534371376, 0.019686467945575714, 0.01622564159333706, 0.03468502312898636, 0.15163284540176392, 0.054752472788095474, -0.03780737891793251, -0.10320065915584564, 0.04032575339078903, 0.007085768505930901, -0.13370642066001892, 0.11364053189754486, 0.07774275541305542, -0.08780261874198914, 0.0329740047454834, 0.026070045307278633, 0.015049188397824764, -0.08411488682031631, -0.20277762413024902, -0.07684078812599182, 0.03461848944425583, 0.026881540194153786, 0.016895772889256477, 0.15439073741436005, -0.017750389873981476, 0.019505031406879425, -0.03341611474752426, -0.01808570697903633, -0.17990383505821228, -0.10265718400478363, -0.09757491201162338, -0.06579285115003586, 0.014457541517913342, -0.05150701478123665, -0.041278522461652756, 0.04191206395626068, 0.07774403691291809, -0.02980354055762291, 0.14119620621204376, -0.0005553988739848137, -0.007219096180051565, 0.0593140609562397, 0.011575963348150253, 0.001954448176547885, 0.0009636966278776526, -0.03966442123055458, -0.1535157412290573, -0.029552804306149483, -0.08393102139234543, -0.011872309260070324, -0.05140329897403717, 0.01685631461441517, -0.10909996926784515, -0.0888524204492569, -0.029074776917696, 0.03791678696870804, -0.06445673853158951, 0.0648188516497612, 0.00334253185428679, 0.024707363918423653, 0.04022468999028206, 0.14982646703720093, -0.04226738214492798, -0.10951677709817886, -0.058270473033189774, 0.2594740688800812, 0.043440233916044235, 0.1226142942905426, 0.01966838724911213, 0.00033090810757130384, -0.031258609145879745, 0.27506235241889954, 0.25854161381721497, -0.041662298142910004, 0.08791874349117279, 0.009601621888577938, 0.019951362162828445, 0.07718589156866074, 0.11852579563856125, 0.08794962614774704, 0.2456551343202591, -0.06175344064831734, -0.03404027968645096, -0.042526718229055405, 0.012015506625175476, -0.10463365167379379, 0.06119754910469055, 0.04802814871072769, -0.014150919392704964, -0.0629909560084343, 0.08278125524520874, -0.12229456007480621, 0.11215483397245407, 0.04271338880062103, -0.160873144865036, -0.06382962316274643, -0.04099976271390915, 0.07382738590240479, 0.003865262260660529, 0.05617637559771538, -0.048500318080186844, -0.09419935941696167, 0.016513288021087646, 0.023922564461827278, -0.17542129755020142, -0.04648509621620178, 0.05407487973570824, 0.008295729756355286, 0.10427757352590561, -0.016654277220368385, 0.03753582760691643, 0.09054578840732574, 0.01797448843717575, -0.056239642202854156, 0.060847096145153046, 0.030549487099051476, -0.0555538646876812, -0.032358258962631226, -0.023292163386940956, 0.025042418390512466, -0.04911443963646889, 0.0288339015096426, -0.18800301849842072, 0.041167598217725754, -0.041145045310258865, -0.055113982409238815, -0.029605787247419357, 0.08379548788070679, -0.0314759835600853, 0.05376433953642845, 0.06847701221704483, 0.006316922605037689, -0.003839668817818165, -0.07452759146690369, 0.008773808367550373, 0.05546528473496437, -0.10795840620994568, -0.08448527753353119, -0.09221731871366501, -0.017298612743616104, 0.0733518972992897, -0.017985308542847633, -0.10327960550785065, -0.051263924688100815, -0.11127585172653198, 0.035334400832653046, -0.1617182046175003, 0.059149350970983505, 0.06659113615751266, 0.051998239010572433, 0.005091524217277765, 0.005646153353154659, 0.003239832352846861, 0.060818783938884735, -0.09704240411520004, -0.06998232752084732 ]
null
null
transformers
# GPT-J 6B ## Model Description GPT-J 6B is a transformer model trained using Ben Wang's [Mesh Transformer JAX](https://github.com/kingoflolz/mesh-transformer-jax/). "GPT-J" refers to the class of model, while "6B" represents the number of trainable parameters. <figure> | Hyperparameter | Value | |----------------------|------------| | \\(n_{parameters}\\) | 6053381344 | | \\(n_{layers}\\) | 28&ast; | | \\(d_{model}\\) | 4096 | | \\(d_{ff}\\) | 16384 | | \\(n_{heads}\\) | 16 | | \\(d_{head}\\) | 256 | | \\(n_{ctx}\\) | 2048 | | \\(n_{vocab}\\) | 50257/50400&dagger; (same tokenizer as GPT-2/3) | | Positional Encoding | [Rotary Position Embedding (RoPE)](https://arxiv.org/abs/2104.09864) | | RoPE Dimensions | [64](https://github.com/kingoflolz/mesh-transformer-jax/blob/f2aa66e0925de6593dcbb70e72399b97b4130482/mesh_transformer/layers.py#L223) | <figcaption><p><strong>&ast;</strong> Each layer consists of one feedforward block and one self attention block.</p> <p><strong>&dagger;</strong> Although the embedding matrix has a size of 50400, only 50257 entries are used by the GPT-2 tokenizer.</p></figcaption></figure> The model consists of 28 layers with a model dimension of 4096, and a feedforward dimension of 16384. The model dimension is split into 16 heads, each with a dimension of 256. Rotary Position Embedding (RoPE) is applied to 64 dimensions of each head. The model is trained with a tokenization vocabulary of 50257, using the same set of BPEs as GPT-2/GPT-3. ## Training data GPT-J 6B was trained on [the Pile](https://pile.eleuther.ai), a large-scale curated dataset created by [EleutherAI](https://www.eleuther.ai). ## Training procedure This model was trained for 402 billion tokens over 383,500 steps on TPU v3-256 pod. It was trained as an autoregressive language model, using cross-entropy loss to maximize the likelihood of predicting the next token correctly. ## Intended Use and Limitations GPT-J learns an inner representation of the English language that can be used to extract features useful for downstream tasks. The model is best at what it was pretrained for however, which is generating text from a prompt. ### How to use This model can be easily loaded using the `AutoModelForCausalLM` functionality: ```python from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("EleutherAI/gpt-j-6B") model = AutoModelForCausalLM.from_pretrained("EleutherAI/gpt-j-6B") ``` ### Limitations and Biases The core functionality of GPT-J is taking a string of text and predicting the next token. While language models are widely used for tasks other than this, there are a lot of unknowns with this work. When prompting GPT-J it is important to remember that the statistically most likely next token is often not the token that produces the most "accurate" text. Never depend upon GPT-J to produce factually accurate output. GPT-J was trained on the Pile, a dataset known to contain profanity, lewd, and otherwise abrasive language. Depending upon use case GPT-J may produce socially unacceptable text. See [Sections 5 and 6 of the Pile paper](https://arxiv.org/abs/2101.00027) for a more detailed analysis of the biases in the Pile. As with all language models, it is hard to predict in advance how GPT-J will respond to particular prompts and offensive content may occur without warning. We recommend having a human curate or filter the outputs before releasing them, both to censor undesirable content and to improve the quality of the results. ## Evaluation results <figure> | Model | Public | Training FLOPs | LAMBADA PPL ↓ | LAMBADA Acc ↑ | Winogrande ↑ | Hellaswag ↑ | PIQA ↑ | Dataset Size (GB) | |--------------------------|-------------|----------------|--- |--- |--- |--- |--- |-------------------| | Random Chance | &check; | 0 | ~a lot | ~0% | 50% | 25% | 25% | 0 | | GPT-3 Ada&ddagger; | &cross; | ----- | 9.95 | 51.6% | 52.9% | 43.4% | 70.5% | ----- | | GPT-2 1.5B | &check; | ----- | 10.63 | 51.21% | 59.4% | 50.9% | 70.8% | 40 | | GPT-Neo 1.3B&ddagger; | &check; | 3.0e21 | 7.50 | 57.2% | 55.0% | 48.9% | 71.1% | 825 | | Megatron-2.5B&ast; | &cross; | 2.4e21 | ----- | 61.7% | ----- | ----- | ----- | 174 | | GPT-Neo 2.7B&ddagger; | &check; | 6.8e21 | 5.63 | 62.2% | 56.5% | 55.8% | 73.0% | 825 | | GPT-3 1.3B&ast;&ddagger; | &cross; | 2.4e21 | 5.44 | 63.6% | 58.7% | 54.7% | 75.1% | ~800 | | GPT-3 Babbage&ddagger; | &cross; | ----- | 5.58 | 62.4% | 59.0% | 54.5% | 75.5% | ----- | | Megatron-8.3B&ast; | &cross; | 7.8e21 | ----- | 66.5% | ----- | ----- | ----- | 174 | | GPT-3 2.7B&ast;&ddagger; | &cross; | 4.8e21 | 4.60 | 67.1% | 62.3% | 62.8% | 75.6% | ~800 | | Megatron-11B&dagger; | &check; | 1.0e22 | ----- | ----- | ----- | ----- | ----- | 161 | | **GPT-J 6B&ddagger;** | **&check;** | **1.5e22** | **3.99** | **69.7%** | **65.3%** | **66.1%** | **76.5%** | **825** | | GPT-3 6.7B&ast;&ddagger; | &cross; | 1.2e22 | 4.00 | 70.3% | 64.5% | 67.4% | 78.0% | ~800 | | GPT-3 Curie&ddagger; | &cross; | ----- | 4.00 | 69.3% | 65.6% | 68.5% | 77.9% | ----- | | GPT-3 13B&ast;&ddagger; | &cross; | 2.3e22 | 3.56 | 72.5% | 67.9% | 70.9% | 78.5% | ~800 | | GPT-3 175B&ast;&ddagger; | &cross; | 3.1e23 | 3.00 | 76.2% | 70.2% | 78.9% | 81.0% | ~800 | | GPT-3 Davinci&ddagger; | &cross; | ----- | 3.0 | 75% | 72% | 78% | 80% | ----- | <figcaption><p>Models roughly sorted by performance, or by FLOPs if not available.</p> <p><strong>&ast;</strong> Evaluation numbers reported by their respective authors. All other numbers are provided by running <a href="https://github.com/EleutherAI/lm-evaluation-harness/"><code>lm-evaluation-harness</code></a> either with released weights or with API access. Due to subtle implementation differences as well as different zero shot task framing, these might not be directly comparable. See <a href="https://blog.eleuther.ai/gpt3-model-sizes/">this blog post</a> for more details.</p> <p><strong>†</strong> Megatron-11B provides no comparable metrics, and several implementations using the released weights do not reproduce the generation quality and evaluations. (see <a href="https://github.com/huggingface/transformers/pull/10301">1</a> <a href="https://github.com/pytorch/fairseq/issues/2358">2</a> <a href="https://github.com/pytorch/fairseq/issues/2719">3</a>) Thus, evaluation was not attempted.</p> <p><strong>‡</strong> These models have been trained with data which contains possible test set contamination. The OpenAI GPT-3 models failed to deduplicate training data for certain test sets, while the GPT-Neo models as well as this one is trained on the Pile, which has not been deduplicated against any test sets.</p></figcaption></figure> ## Citation and Related Information ### BibTeX entry To cite this model: ```bibtex @misc{gpt-j, author = {Wang, Ben and Komatsuzaki, Aran}, title = {{GPT-J-6B: A 6 Billion Parameter Autoregressive Language Model}}, howpublished = {\url{https://github.com/kingoflolz/mesh-transformer-jax}}, year = 2021, month = May } ``` To cite the codebase that trained this model: ```bibtex @misc{mesh-transformer-jax, author = {Wang, Ben}, title = {{Mesh-Transformer-JAX: Model-Parallel Implementation of Transformer Language Model with JAX}}, howpublished = {\url{https://github.com/kingoflolz/mesh-transformer-jax}}, year = 2021, month = May } ``` If you use this model, we would love to hear about it! Reach out on [GitHub](https://github.com/kingoflolz/mesh-transformer-jax), Discord, or shoot Ben an email. ## Acknowledgements This project would not have been possible without compute generously provided by Google through the [TPU Research Cloud](https://sites.research.google/trc/), as well as the Cloud TPU team for providing early access to the [Cloud TPU VM](https://cloud.google.com/blog/products/compute/introducing-cloud-tpu-vms) Alpha. Thanks to everyone who have helped out one way or another (listed alphabetically): - [James Bradbury](https://twitter.com/jekbradbury) for valuable assistance with debugging JAX issues. - [Stella Biderman](https://www.stellabiderman.com), [Eric Hallahan](https://twitter.com/erichallahan), [Kurumuz](https://github.com/kurumuz/), and [Finetune](https://github.com/finetuneanon/) for converting the model to be compatible with the `transformers` package. - [Leo Gao](https://twitter.com/nabla_theta) for running zero shot evaluations for the baseline models for the table. - [Laurence Golding](https://github.com/researcher2/) for adding some features to the web demo. - [Aran Komatsuzaki](https://twitter.com/arankomatsuzaki) for advice with experiment design and writing the blog posts. - [Janko Prester](https://github.com/jprester/) for creating the web demo frontend.
{"language": ["en"], "license": "apache-2.0", "tags": ["pytorch", "causal-lm"], "datasets": ["The Pile"]}
text-generation
gilparmentier/pokemon_gptj_model
[ "transformers", "pytorch", "gptj", "text-generation", "causal-lm", "en", "arxiv:2104.09864", "arxiv:2101.00027", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[ "2104.09864", "2101.00027" ]
[ "en" ]
TAGS #transformers #pytorch #gptj #text-generation #causal-lm #en #arxiv-2104.09864 #arxiv-2101.00027 #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
GPT-J 6B ======== Model Description ----------------- GPT-J 6B is a transformer model trained using Ben Wang's Mesh Transformer JAX. "GPT-J" refers to the class of model, while "6B" represents the number of trainable parameters. **\*** Each layer consists of one feedforward block and one self attention block. **†** Although the embedding matrix has a size of 50400, only 50257 entries are used by the GPT-2 tokenizer. The model consists of 28 layers with a model dimension of 4096, and a feedforward dimension of 16384. The model dimension is split into 16 heads, each with a dimension of 256. Rotary Position Embedding (RoPE) is applied to 64 dimensions of each head. The model is trained with a tokenization vocabulary of 50257, using the same set of BPEs as GPT-2/GPT-3. Training data ------------- GPT-J 6B was trained on the Pile, a large-scale curated dataset created by EleutherAI. Training procedure ------------------ This model was trained for 402 billion tokens over 383,500 steps on TPU v3-256 pod. It was trained as an autoregressive language model, using cross-entropy loss to maximize the likelihood of predicting the next token correctly. Intended Use and Limitations ---------------------------- GPT-J learns an inner representation of the English language that can be used to extract features useful for downstream tasks. The model is best at what it was pretrained for however, which is generating text from a prompt. ### How to use This model can be easily loaded using the 'AutoModelForCausalLM' functionality: ### Limitations and Biases The core functionality of GPT-J is taking a string of text and predicting the next token. While language models are widely used for tasks other than this, there are a lot of unknowns with this work. When prompting GPT-J it is important to remember that the statistically most likely next token is often not the token that produces the most "accurate" text. Never depend upon GPT-J to produce factually accurate output. GPT-J was trained on the Pile, a dataset known to contain profanity, lewd, and otherwise abrasive language. Depending upon use case GPT-J may produce socially unacceptable text. See Sections 5 and 6 of the Pile paper for a more detailed analysis of the biases in the Pile. As with all language models, it is hard to predict in advance how GPT-J will respond to particular prompts and offensive content may occur without warning. We recommend having a human curate or filter the outputs before releasing them, both to censor undesirable content and to improve the quality of the results. Evaluation results ------------------ Models roughly sorted by performance, or by FLOPs if not available. **\*** Evaluation numbers reported by their respective authors. All other numbers are provided by running [for more details.](URL either with released weights or with API access. Due to subtle implementation differences as well as different zero shot task framing, these might not be directly comparable. See <a href=) **†** Megatron-11B provides no comparable metrics, and several implementations using the released weights do not reproduce the generation quality and evaluations. (see <a href="URL <a href="URL <a href="URL Thus, evaluation was not attempted.</p> **‡** These models have been trained with data which contains possible test set contamination. The OpenAI GPT-3 models failed to deduplicate training data for certain test sets, while the GPT-Neo models as well as this one is trained on the Pile, which has not been deduplicated against any test sets. and Related Information ### BibTeX entry To cite this model: To cite the codebase that trained this model: If you use this model, we would love to hear about it! Reach out on GitHub, Discord, or shoot Ben an email. Acknowledgements ---------------- This project would not have been possible without compute generously provided by Google through the TPU Research Cloud, as well as the Cloud TPU team for providing early access to the Cloud TPU VM Alpha. Thanks to everyone who have helped out one way or another (listed alphabetically): * James Bradbury for valuable assistance with debugging JAX issues. * Stella Biderman, Eric Hallahan, Kurumuz, and Finetune for converting the model to be compatible with the 'transformers' package. * Leo Gao for running zero shot evaluations for the baseline models for the table. * Laurence Golding for adding some features to the web demo. * Aran Komatsuzaki for advice with experiment design and writing the blog posts. * Janko Prester for creating the web demo frontend.
[ "### How to use\n\n\nThis model can be easily loaded using the 'AutoModelForCausalLM' functionality:", "### Limitations and Biases\n\n\nThe core functionality of GPT-J is taking a string of text and predicting the next token. While language models are widely used for tasks other than this, there are a lot of unknowns with this work. When prompting GPT-J it is important to remember that the statistically most likely next token is often not the token that produces the most \"accurate\" text. Never depend upon GPT-J to produce factually accurate output.\n\n\nGPT-J was trained on the Pile, a dataset known to contain profanity, lewd, and otherwise abrasive language. Depending upon use case GPT-J may produce socially unacceptable text. See Sections 5 and 6 of the Pile paper for a more detailed analysis of the biases in the Pile.\n\n\nAs with all language models, it is hard to predict in advance how GPT-J will respond to particular prompts and offensive content may occur without warning. We recommend having a human curate or filter the outputs before releasing them, both to censor undesirable content and to improve the quality of the results.\n\n\nEvaluation results\n------------------\n\n\n\n\nModels roughly sorted by performance, or by FLOPs if not available.\n\n\n**\\*** Evaluation numbers reported by their respective authors. All other numbers are provided by\nrunning [for more\ndetails.](URL either with released\nweights or with API access. Due to subtle implementation differences as well as different zero shot task framing, these\nmight not be directly comparable. See <a href=)\n\n\n**†** Megatron-11B provides no comparable metrics, and several implementations using the released weights do not\nreproduce the generation quality and evaluations. (see <a href=\"URL\n<a href=\"URL <a href=\"URL\nThus, evaluation was not attempted.</p>\n**‡** These models have been trained with data which contains possible test set contamination. The OpenAI GPT-3 models\nfailed to deduplicate training data for certain test sets, while the GPT-Neo models as well as this one is\ntrained on the Pile, which has not been deduplicated against any test sets.\n\n\n\n\nand Related Information", "### BibTeX entry\n\n\nTo cite this model:\n\n\nTo cite the codebase that trained this model:\n\n\nIf you use this model, we would love to hear about it! Reach out on GitHub, Discord, or shoot Ben an email.\n\n\nAcknowledgements\n----------------\n\n\nThis project would not have been possible without compute generously provided by Google through the\nTPU Research Cloud, as well as the Cloud TPU team for providing early access to the Cloud TPU VM Alpha.\n\n\nThanks to everyone who have helped out one way or another (listed alphabetically):\n\n\n* James Bradbury for valuable assistance with debugging JAX issues.\n* Stella Biderman, Eric Hallahan, Kurumuz, and Finetune for converting the model to be compatible with the 'transformers' package.\n* Leo Gao for running zero shot evaluations for the baseline models for the table.\n* Laurence Golding for adding some features to the web demo.\n* Aran Komatsuzaki for advice with experiment design and writing the blog posts.\n* Janko Prester for creating the web demo frontend." ]
[ "TAGS\n#transformers #pytorch #gptj #text-generation #causal-lm #en #arxiv-2104.09864 #arxiv-2101.00027 #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "### How to use\n\n\nThis model can be easily loaded using the 'AutoModelForCausalLM' functionality:", "### Limitations and Biases\n\n\nThe core functionality of GPT-J is taking a string of text and predicting the next token. While language models are widely used for tasks other than this, there are a lot of unknowns with this work. When prompting GPT-J it is important to remember that the statistically most likely next token is often not the token that produces the most \"accurate\" text. Never depend upon GPT-J to produce factually accurate output.\n\n\nGPT-J was trained on the Pile, a dataset known to contain profanity, lewd, and otherwise abrasive language. Depending upon use case GPT-J may produce socially unacceptable text. See Sections 5 and 6 of the Pile paper for a more detailed analysis of the biases in the Pile.\n\n\nAs with all language models, it is hard to predict in advance how GPT-J will respond to particular prompts and offensive content may occur without warning. We recommend having a human curate or filter the outputs before releasing them, both to censor undesirable content and to improve the quality of the results.\n\n\nEvaluation results\n------------------\n\n\n\n\nModels roughly sorted by performance, or by FLOPs if not available.\n\n\n**\\*** Evaluation numbers reported by their respective authors. All other numbers are provided by\nrunning [for more\ndetails.](URL either with released\nweights or with API access. Due to subtle implementation differences as well as different zero shot task framing, these\nmight not be directly comparable. See <a href=)\n\n\n**†** Megatron-11B provides no comparable metrics, and several implementations using the released weights do not\nreproduce the generation quality and evaluations. (see <a href=\"URL\n<a href=\"URL <a href=\"URL\nThus, evaluation was not attempted.</p>\n**‡** These models have been trained with data which contains possible test set contamination. The OpenAI GPT-3 models\nfailed to deduplicate training data for certain test sets, while the GPT-Neo models as well as this one is\ntrained on the Pile, which has not been deduplicated against any test sets.\n\n\n\n\nand Related Information", "### BibTeX entry\n\n\nTo cite this model:\n\n\nTo cite the codebase that trained this model:\n\n\nIf you use this model, we would love to hear about it! Reach out on GitHub, Discord, or shoot Ben an email.\n\n\nAcknowledgements\n----------------\n\n\nThis project would not have been possible without compute generously provided by Google through the\nTPU Research Cloud, as well as the Cloud TPU team for providing early access to the Cloud TPU VM Alpha.\n\n\nThanks to everyone who have helped out one way or another (listed alphabetically):\n\n\n* James Bradbury for valuable assistance with debugging JAX issues.\n* Stella Biderman, Eric Hallahan, Kurumuz, and Finetune for converting the model to be compatible with the 'transformers' package.\n* Leo Gao for running zero shot evaluations for the baseline models for the table.\n* Laurence Golding for adding some features to the web demo.\n* Aran Komatsuzaki for advice with experiment design and writing the blog posts.\n* Janko Prester for creating the web demo frontend." ]
[ 70, 26, 493, 228 ]
[ "passage: TAGS\n#transformers #pytorch #gptj #text-generation #causal-lm #en #arxiv-2104.09864 #arxiv-2101.00027 #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### How to use\n\n\nThis model can be easily loaded using the 'AutoModelForCausalLM' functionality:" ]
[ -0.11835873872041702, 0.10682331770658493, -0.002850749995559454, 0.0836348608136177, 0.13448700308799744, 0.028397077694535255, 0.15984046459197998, 0.10086438059806824, -0.011290029622614384, -0.08193451166152954, 0.20230264961719513, 0.28165391087532043, -0.011612282134592533, 0.09340041875839233, -0.012473366223275661, -0.19713658094406128, 0.05119870603084564, 0.04272010922431946, -0.03725983202457428, 0.09632375836372375, 0.13327711820602417, -0.011265184730291367, 0.10425441712141037, 0.03767145797610283, -0.12012605369091034, 0.010106545872986317, 0.021287601441144943, -0.0874677300453186, 0.10230248421430588, 0.08665767312049866, -0.02956571616232395, 0.043498191982507706, 0.05928967893123627, -0.10378353297710419, 0.009349149651825428, -0.013429262675344944, -0.037673868238925934, 0.0837622731924057, 0.054932624101638794, 0.012084399349987507, 0.13566942512989044, 0.08808135241270065, -0.0510878711938858, 0.019306516274809837, -0.05980720371007919, -0.10482432693243027, -0.05062931030988693, 0.058460310101509094, 0.09009743481874466, 0.12306709587574005, 0.04757358133792877, 0.13410405814647675, -0.0833914652466774, 0.08680199831724167, 0.13640230894088745, -0.3141954839229584, -0.003997656051069498, 0.11832042783498764, -0.003575138049200177, -0.05605553463101387, 0.05621238052845001, 0.031382862478494644, 0.043645571917295456, 0.007847163826227188, 0.03406132012605667, -0.08968830108642578, -0.11450250446796417, 0.02947785146534443, -0.08225185424089432, -0.061980415135622025, 0.30745092034339905, -0.029569676145911217, -0.00229020812548697, -0.015236634761095047, -0.0552775003015995, 0.09682611376047134, -0.03586442396044731, 0.032630644738674164, -0.002951181260868907, 0.09009866416454315, 0.08637088537216187, -0.07008059322834015, -0.11605420708656311, -0.04641002044081688, -0.12012705951929092, 0.08143306523561478, 0.010695001110434532, 0.08760976791381836, -0.11561694741249084, 0.10924571752548218, -0.05945725366473198, -0.0904734879732132, 0.002234636340290308, -0.06876397877931595, 0.11888940632343292, 0.025633802637457848, -0.0296354740858078, -0.019222524017095566, 0.08651165664196014, 0.15797367691993713, 0.07556028664112091, -0.007997654378414154, 0.06364557147026062, 0.0888042002916336, -0.01286181341856718, 0.0948450118303299, -0.07841207832098007, -0.049545157700777054, 0.1274704486131668, -0.04393985867500305, 0.06365209072828293, -0.01164208073168993, -0.18908560276031494, -0.08246148377656937, -0.032088976353406906, 0.1014685332775116, 0.045517295598983765, 0.07589909434318542, -0.019949225708842278, -0.05217723548412323, 0.17971749603748322, -0.06954476982355118, -0.003114549443125725, -0.03785672038793564, -0.021435683593153954, 0.03244129195809364, 0.12556830048561096, 0.017678873613476753, -0.07500908523797989, 0.01685035042464733, -0.047459717839956284, -0.004671772010624409, -0.06864766031503677, -0.03374146297574043, 0.025388021022081375, -0.007510778959840536, 0.05986914783716202, -0.1559217870235443, -0.28077271580696106, 0.01802590675652027, 0.09678936749696732, -0.01044422946870327, -0.14900153875350952, -0.007508326321840286, 0.011196098290383816, -0.0005853918264620006, -0.07010101526975632, 0.09489157795906067, -0.060935962945222855, 0.041502561420202255, -0.04118747636675835, 0.05819639563560486, -0.16054292023181915, 0.06134941056370735, -0.10865064710378647, -0.004395339637994766, -0.06387557834386826, 0.023234419524669647, -0.03184925392270088, 0.11828028410673141, -0.05580819025635719, -0.021432414650917053, 0.03460480272769928, 0.010349159128963947, 0.049788907170295715, 0.13563328981399536, -0.0817376971244812, -0.05694979056715965, 0.10571709275245667, -0.09541473537683487, -0.20292095839977264, 0.03995085507631302, 0.014953340403735638, 0.14357629418373108, 0.07002599537372589, 0.05749589577317238, 0.07195813208818436, -0.03199270740151405, 0.10966325551271439, 0.10059921443462372, -0.11673727631568909, -0.1809401661157608, 0.023227455094456673, -0.013881220482289791, -0.20181411504745483, 0.0835387110710144, -0.046522434800863266, 0.1570766717195511, -0.002333533251658082, -0.05855325609445572, -0.07635900378227234, -0.11534475535154343, -0.050044622272253036, 0.006329620257019997, 0.06626953184604645, 0.015472369268536568, 0.010291563346982002, -0.03197691962122917, 0.08744675666093826, 0.000043915806600125507, -0.0020959689281880856, -0.047529447823762894, 0.05123915523290634, -0.09155258536338806, 0.07183276861906052, -0.13838623464107513, 0.01595098339021206, -0.01334976777434349, 0.013705804012715816, 0.046685799956321716, 0.014006557874381542, 0.05436720699071884, 0.0077024661004543304, 0.0111601697281003, -0.0022086615208536386, 0.163035050034523, 0.022295966744422913, -0.0648278146982193, -0.1155245378613472, 0.025833118706941605, -0.022698314860463142, 0.08287644386291504, -0.04961337894201279, 0.02744140475988388, -0.11361584067344666, 0.025957413017749786, -0.07488079369068146, 0.09124189615249634, 0.02439967356622219, -0.01574082113802433, -0.047163695096969604, -0.016758739948272705, 0.09950657188892365, 0.05258376523852348, -0.04831130430102348, 0.19953054189682007, -0.09059736877679825, 0.21359895169734955, 0.15641409158706665, -0.13210533559322357, 0.018574977293610573, -0.015762021765112877, -0.0399041585624218, -0.017312534153461456, 0.007690963335335255, 0.04366595670580864, 0.05681294575333595, 0.011373949237167835, 0.15829071402549744, -0.05593090131878853, 0.0014234264381229877, -0.0036131320521235466, -0.09101514518260956, 0.03607670217752457, 0.06650220602750778, 0.2123294323682785, -0.13489913940429688, 0.12130627781152725, 0.2484579235315323, -0.06043547764420509, 0.049009598791599274, 0.0027243089862167835, -0.024316415190696716, 0.006885624025017023, -0.05409153550863266, -0.0200066976249218, 0.02430313266813755, -0.11545982211828232, 0.016731806099414825, 0.10298565030097961, -0.03627552092075348, 0.08884487301111221, -0.11466098576784134, -0.037384748458862305, 0.020630503073334694, -0.0178759153932333, 0.005668579135090113, 0.08324778825044632, -0.03078623116016388, 0.09670968353748322, -0.059507403522729874, -0.1030869111418724, 0.09694425761699677, 0.04626161977648735, -0.11283320188522339, 0.159587562084198, -0.12092845141887665, -0.23976749181747437, -0.14214445650577545, -0.10718092322349548, -0.10188575834035873, 0.020424582064151764, 0.09745137393474579, -0.06579265743494034, -0.0947728380560875, -0.019124969840049744, -0.08501385897397995, 0.056319475173950195, -0.01754310540854931, 0.010758140124380589, 0.01809859462082386, 0.009857462719082832, -0.12291926145553589, -0.05812862887978554, 0.014903758652508259, -0.03443613275885582, 0.08775810897350311, -0.09653301537036896, 0.08126289397478104, 0.15094853937625885, 0.03254055231809616, 0.05032864212989807, 0.04178256168961525, 0.2093724012374878, -0.017856251448392868, 0.02065540850162506, 0.2526920437812805, -0.004977460950613022, 0.05720337852835655, 0.11793810874223709, 0.020048337057232857, -0.06976567953824997, 0.006676976103335619, -0.0768413320183754, -0.07622537761926651, -0.20154701173305511, -0.13741549849510193, -0.08946818113327026, 0.02741018682718277, 0.08551978319883347, 0.07542990148067474, 0.14345061779022217, 0.14909572899341583, 0.020657625049352646, 0.08234953135251999, -0.0014710775576531887, 0.0817771703004837, 0.20636120438575745, -0.018925456330180168, 0.12330307811498642, -0.09944140166044235, -0.0676172599196434, 0.12154202163219452, 0.022042563185095787, 0.12749886512756348, 0.04940702021121979, 0.010724437423050404, 0.06198258325457573, 0.12133312225341797, 0.030521290376782417, 0.17402487993240356, -0.02283463254570961, -0.031975895166397095, -0.03552378714084625, -0.043876633048057556, -0.062474340200424194, 0.07161210477352142, -0.09431403130292892, -0.11632230132818222, -0.031330354511737823, 0.02380961738526821, 0.02005777135491371, 0.12436690181493759, 0.02210994064807892, -0.247830331325531, 0.000569407653529197, 0.02855983003973961, 0.028108572587370872, -0.06435885280370712, 0.030588803812861443, -0.11063193529844284, -0.12692253291606903, 0.054222822189331055, -0.0052392794750630856, 0.14365626871585846, -0.010262765921652317, 0.03318396955728531, -0.03145672008395195, 0.0033542511519044638, 0.0323827788233757, 0.17205417156219482, -0.31065890192985535, 0.19913417100906372, 0.00691926758736372, -0.009138659574091434, -0.12348304688930511, 0.03239567577838898, 0.08884251862764359, 0.20299845933914185, 0.10024507343769073, 0.009542117826640606, -0.04246971011161804, -0.05535571277141571, -0.07558462768793106, 0.06408477574586868, -0.0720568522810936, 0.007336003240197897, -0.04207362234592438, -0.04470352828502655, -0.032048389315605164, 0.0050720893777906895, 0.030695589259266853, -0.11696676164865494, -0.15783727169036865, 0.06556129455566406, 0.12504759430885315, 0.013680360279977322, -0.028739523142576218, -0.012501337565481663, -0.07349526137113571, 0.23065412044525146, 0.09453345090150833, -0.11466635763645172, -0.09196051955223083, -0.06916172802448273, 0.07038997858762741, -0.08995500206947327, 0.03511793911457062, -0.06459477543830872, 0.012525217607617378, -0.039455629885196686, -0.18003584444522858, 0.0758054181933403, -0.14668630063533783, -0.007165929768234491, -0.009118587709963322, 0.046278610825538635, -0.07488738745450974, -0.010796661488711834, 0.076527900993824, -0.008374682627618313, -0.12489169090986252, -0.1418396532535553, -0.06075673922896385, 0.07001575082540512, 0.029091689735651016, -0.04462655633687973, -0.0822787657380104, -0.012349444441497326, 0.020159399136900902, -0.059341296553611755, 0.19430553913116455, 0.15278850495815277, -0.06487846374511719, 0.12926052510738373, 0.18112295866012573, -0.07050243020057678, -0.2807278037071228, -0.17191287875175476, -0.07466720789670944, -0.04100330173969269, -0.0368259996175766, -0.14640718698501587, 0.15224817395210266, 0.033833060413599014, -0.06752205640077591, 0.0832279622554779, -0.21519148349761963, -0.11041643470525742, 0.26542168855667114, 0.020405102521181107, 0.27844318747520447, -0.09329714626073837, -0.04938202351331711, -0.11739158630371094, -0.13531538844108582, 0.13611994683742523, -0.07300425320863724, 0.06027743220329285, -0.04600420594215393, 0.09538818150758743, 0.011015405878424644, -0.07362135499715805, 0.10541506111621857, 0.014041684567928314, -0.009698761627078056, -0.12456508725881577, 0.014416780322790146, 0.0426209419965744, -0.022423304617404938, 0.188200905919075, -0.11607349663972855, 0.05236593633890152, -0.123783178627491, -0.04232111945748329, -0.07239893823862076, 0.05035290867090225, 0.024010010063648224, -0.0777537152171135, -0.00351125281304121, -0.05689099803566933, -0.00426630862057209, 0.0004845744406338781, 0.03133980929851532, 0.02029711753129959, -0.02236969955265522, 0.16510894894599915, 0.08644789457321167, -0.2392311990261078, -0.012032603845000267, -0.05035020038485527, -0.053963351994752884, 0.07539908587932587, -0.1566033512353897, 0.03974944353103638, 0.06743326783180237, -0.05252176150679588, 0.080450639128685, 0.04580400139093399, 0.02705203928053379, -0.05129208415746689, 0.09457193315029144, -0.1957828849554062, 0.10711243003606796, -0.05738357454538345, 0.09276438504457474, 0.06441765278577805, 0.013017704710364342, 0.11743146926164627, -0.021473534405231476, -0.04014861583709717, 0.024639200419187546, 0.029611272737383842, -0.06623830646276474, 0.09086316078901291, 0.06850374490022659, -0.011529327370226383, -0.1417563557624817, 0.06279643625020981, 0.007636889815330505, -0.044160228222608566, -0.023751232773065567, 0.08374578505754471, -0.14406614005565643, -0.1302536576986313, -0.0026062042452394962, 0.13903599977493286, -0.24718278646469116, -0.11024577915668488, -0.04342033714056015, -0.07454583048820496, 0.05965345725417137, -0.04785352572798729, 0.08787690103054047, 0.010528718121349812, -0.06072181835770607, -0.07980933785438538, -0.048180919140577316, 0.02314828895032406, 0.048316992819309235, 0.030480505898594856, -0.07226230949163437, -0.029440665617585182, 0.013904592953622341, 0.1329117864370346, -0.04828597232699394, -0.00807257555425167, -0.08271477371454239, 0.029766034334897995, -0.16761066019535065, -0.023535309359431267, -0.12756094336509705, -0.0150812529027462, 0.025612760335206985, -0.03350968286395073, -0.018890822306275368, 0.024868983775377274, -0.11208935081958771, -0.024407921358942986, -0.01844775304198265, 0.03590868413448334, -0.08358070254325867, -0.06496430188417435, 0.04953592270612717, -0.013043106533586979, 0.08951489627361298, 0.09472812712192535, -0.05593834072351456, 0.02708231285214424, -0.12185696512460709, -0.07212118059396744, 0.06572095304727554, 0.05886046960949898, 0.04261736571788788, -0.061406105756759644, 0.026333265006542206, 0.11311865597963333, -0.012504043988883495, -0.006429455243051052, 0.050850048661231995, -0.10111143440008163, 0.02226421982049942, 0.012216605246067047, -0.09868647903203964, -0.015458312816917896, -0.03997707739472389, 0.04747634381055832, 0.051812540739774704, 0.1357453465461731, -0.057187799364328384, 0.04793868958950043, -0.06617368012666702, 0.023314323276281357, -0.0361735001206398, -0.11126599460840225, -0.13999749720096588, -0.09292580932378769, -0.009191961027681828, -0.004646399524062872, 0.22873593866825104, 0.033503320068120956, 0.008869375102221966, -0.005420810077339411, 0.1427110880613327, 0.11693001538515091, -0.04112594574689865, 0.18099132180213928, 0.04600955918431282, 0.061402853578329086, -0.08316465467214584, 0.10501789301633835, 0.04501139000058174, -0.06293465942144394, 0.028455136343836784, -0.06004321575164795, 0.028391685336828232, 0.08122903853654861, 0.00943363830447197, -0.033641085028648376, -0.062150925397872925, -0.11473415046930313, -0.0131229218095541, 0.06800209730863571, -0.014901057817041874, 0.09957042336463928, 0.12549613416194916, -0.0021193521097302437, 0.010260011069476604, 0.01859048195183277, -0.034479912370443344, -0.17148441076278687, -0.17841364443302155, -0.08173108845949173, -0.1414320468902588, -0.017958423122763634, -0.07251622527837753, 0.0029927457217127085, -0.011325445957481861, 0.029194923117756844, -0.04649269953370094, 0.031235070899128914, -0.009949462488293648, -0.03468402475118637, -0.021171187981963158, -0.045998912304639816, -0.007825812324881554, -0.044333502650260925, 0.03130536526441574, -0.09602458029985428, 0.001322574564255774, 0.012322711758315563, 0.04412032291293144, 0.012963107787072659, 0.042330071330070496, -0.025860754773020744, -0.03152494505047798, -0.09026238322257996, 0.026062877848744392, 0.01571333222091198, 0.13054946064949036, -0.004396302159875631, 0.036535926163196564, 0.05172736942768097, 0.1272173523902893, -0.05428940802812576, -0.16425970196723938, -0.08541563898324966, 0.22104328870773315, -0.0070645688101649284, 0.03734443336725235, -0.002494765678420663, 0.05903562158346176, -0.028064550831913948, 0.35606080293655396, 0.26519984006881714, -0.10708588361740112, 0.009933151304721832, -0.020694999024271965, 0.012573782354593277, 0.026057712733745575, 0.1263994574546814, 0.10741213709115982, 0.19151313602924347, -0.07764769345521927, -0.0027661507483571768, -0.09065965563058853, -0.00531063973903656, -0.11743412911891937, 0.06011126562952995, 0.015140819363296032, -0.09023639559745789, 0.03230658918619156, 0.09655725210905075, -0.09822908043861389, 0.2171778678894043, -0.09816792607307434, -0.020814169198274612, -0.07511711865663528, 0.007831359282135963, 0.05871791020035744, 0.009503476321697235, 0.04433993995189667, -0.06351764500141144, 0.012472722679376602, 0.14563710987567902, -0.03400716558098793, -0.23424436151981354, -0.06246502324938774, 0.08082758635282516, 0.016200978308916092, 0.1618577241897583, 0.01157606951892376, 0.07869075238704681, 0.05903826653957367, 0.03491009399294853, -0.15434134006500244, 0.057226285338401794, -0.012193533591926098, -0.07758592069149017, 0.07802433520555496, -0.1229323223233223, -0.018228359520435333, -0.11137751489877701, -0.009394247084856033, -0.10622391849756241, 0.03639669716358185, 0.06685368716716766, -0.02426503598690033, -0.031965214759111404, 0.04192904010415077, -0.07224708795547485, 0.07812051475048065, 0.037035197019577026, -0.03214224800467491, -0.061660222709178925, -0.09519797563552856, 0.05621429532766342, 0.009681515395641327, -0.16568028926849365, -0.06144437938928604, -0.02056412398815155, -0.022068476304411888, 0.012720883823931217, 0.02561783604323864, -0.09361434727907181, -0.039356593042612076, -0.08416986465454102, -0.046693433076143265, -0.10256350785493851, 0.05820683017373085, 0.0708848312497139, 0.024358833208680153, 0.012446936219930649, -0.026178710162639618, 0.006826853379607201, 0.019999846816062927, -0.10606800764799118, -0.1372128129005432 ]
null
null
transformers
# Jake Peralta DialoGPT model
{"tags": ["conversational"]}
text-generation
gizmo-dev/DialoGPT-small-jake
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
# Jake Peralta DialoGPT model
[ "# Jake Peralta DialoGPT model" ]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "# Jake Peralta DialoGPT model" ]
[ 51, 10 ]
[ "passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n# Jake Peralta DialoGPT model" ]
[ -0.04298555478453636, 0.10136187821626663, -0.0059355478733778, 0.023458806797862053, 0.15050049126148224, -0.012076964601874352, 0.13418863713741302, 0.11065901815891266, -0.02886582538485527, -0.016496188938617706, 0.11545886844396591, 0.15222607553005219, -0.01042808499187231, 0.12121753394603729, -0.03615272417664528, -0.3176003694534302, 0.04649190977215767, 0.04038818180561066, 0.05800745263695717, 0.13377194106578827, 0.10655084252357483, -0.04757174849510193, 0.08119609951972961, 0.005306106526404619, -0.14459668099880219, 0.00021302691311575472, -0.002311790594831109, -0.12315580248832703, 0.11502323299646378, 0.03613676875829697, 0.039236389100551605, 0.017177585512399673, -0.04857926815748215, -0.09423349797725677, 0.041340071707963943, 0.01417496707290411, -0.018345097079873085, 0.04379844665527344, 0.04751023277640343, -0.11250323057174683, 0.12239930778741837, 0.13572491705417633, 0.011679002083837986, 0.03646298870444298, -0.16470831632614136, -0.012030010111629963, 0.03701389953494072, 0.08190467953681946, 0.036379944533109665, 0.11535214632749557, -0.049459535628557205, 0.08788086473941803, -0.05926137790083885, 0.10433950275182724, 0.07203782349824905, -0.32745158672332764, -0.024406375363469124, 0.06856773793697357, 0.04922378435730934, 0.07733584195375443, -0.04231633245944977, 0.047220926731824875, 0.042312171310186386, -0.006838374305516481, -0.03365560993552208, -0.06040613725781441, -0.035531025379896164, -0.01498014759272337, -0.09120869636535645, -0.007918739691376686, 0.2704625427722931, -0.043231721967458725, 0.05625517666339874, -0.0637894868850708, -0.10434090346097946, -0.05414203926920891, -0.026351310312747955, -0.035444021224975586, -0.07682150602340698, 0.06908891350030899, 0.011877971701323986, -0.09419941157102585, -0.1168891191482544, -0.03763599693775177, -0.20703841745853424, 0.1266908049583435, 0.03871186450123787, 0.014183767139911652, -0.20632688701152802, 0.10555464029312134, -0.015528964810073376, -0.10615944117307663, 0.03611199930310249, -0.10834860801696777, 0.0024248294066637754, 0.013001171872019768, -0.03140657767653465, -0.038464270532131195, 0.05692864954471588, 0.11675795167684555, 0.058157071471214294, 0.012764752842485905, -0.02586057037115097, 0.07299600541591644, 0.06369738280773163, 0.0796733871102333, -0.02442863956093788, -0.023842208087444305, 0.03684912249445915, -0.07972120493650436, -0.018039384856820107, -0.06940211355686188, -0.1557547152042389, 0.00020576291717588902, 0.10621248185634613, 0.05211644992232323, 0.05099749192595482, 0.10729647427797318, -0.0018645593663677573, -0.06019258871674538, -0.015660684555768967, -0.04065718501806259, -0.025270026177167892, 0.0008854937041178346, -0.005240560509264469, 0.2015400230884552, 0.0025314604863524437, 0.04578527808189392, -0.11599339544773102, 0.023895036429166794, -0.059931330382823944, -0.011453675106167793, -0.03543579578399658, -0.057603269815444946, 0.000707716797478497, -0.02786852791905403, 0.01731291599571705, -0.16229133307933807, -0.16213026642799377, -0.021443229168653488, -0.003970601130276918, -0.05356654152274132, -0.13206684589385986, -0.10672669857740402, 0.018326902762055397, 0.02358097769320011, -0.08935379981994629, -0.05402921885251999, -0.062318816781044006, 0.08433587849140167, -0.04471837729215622, 0.08305468410253525, -0.05780473351478577, 0.08399676531553268, -0.10273100435733795, -0.015822727233171463, -0.07156233489513397, 0.1076432392001152, 0.01901988871395588, 0.08409704267978668, -0.04133138060569763, -0.017937755212187767, -0.11310657858848572, 0.07265522330999374, -0.06029794365167618, 0.22498933970928192, -0.10714884847402573, -0.11964939534664154, 0.29229506850242615, -0.08742759376764297, -0.10811799019575119, 0.11763471364974976, 0.000504947267472744, 0.13927243649959564, 0.14044052362442017, 0.22320836782455444, 0.01970018446445465, 0.02038135565817356, 0.09181592613458633, 0.08886236697435379, -0.0604044608771801, 0.013005975633859634, 0.02323850430548191, -0.039083026349544525, -0.07103490829467773, 0.0248895063996315, 0.08090338855981827, 0.059127893298864365, -0.05959499627351761, -0.016550494357943535, 0.013802150264382362, -0.013789743185043335, 0.06377117335796356, -0.03374120220541954, 0.12979340553283691, -0.04039977490901947, -0.0628625676035881, -0.028993653133511543, 0.012980425730347633, -0.06764044612646103, 0.04407095909118652, -0.08874497562646866, 0.06840088218450546, 0.004255861043930054, 0.06218740716576576, -0.1445692479610443, -0.04169581085443497, -0.04430694133043289, 0.15570352971553802, 0.040736354887485504, 0.14102549850940704, 0.057793837040662766, -0.030721962451934814, 0.008579961955547333, 0.02429434098303318, 0.1480230689048767, -0.007897470146417618, -0.05249695107340813, -0.10888484865427017, 0.10073034465312958, -0.06753899157047272, 0.11547072976827621, -0.01808004081249237, 0.006116639357060194, 0.004359913989901543, 0.10444151610136032, -0.02401440218091011, 0.011231614276766777, 0.0013697913382202387, -0.005007575731724501, -0.048000410199165344, -0.003879216033965349, 0.10700073093175888, -0.008069772273302078, -0.04925675690174103, 0.2323746234178543, -0.19553478062152863, 0.1379278004169464, 0.20838254690170288, -0.1873226761817932, 0.00014174649550113827, -0.09831655770540237, -0.017487086355686188, 0.011394851841032505, 0.09616435319185257, -0.03253386542201042, 0.2933792173862457, 0.010606176219880581, 0.17740510404109955, -0.03658280521631241, -0.012515072710812092, -0.03076929599046707, -0.056973494589328766, 0.017125669866800308, 0.11544191837310791, 0.09075169265270233, -0.1223994717001915, 0.1784558743238449, 0.09783636778593063, 0.04978015273809433, 0.1655757576227188, 0.022342287003993988, -0.0001255945535376668, 0.08100220561027527, 0.019341597333550453, -0.031859152019023895, -0.08460375666618347, -0.29854291677474976, -0.04637927561998367, 0.07266711443662643, 0.05201587453484535, 0.11484210193157196, -0.08767686784267426, -0.025714801624417305, 0.011682303622364998, 0.0005547069013118744, 0.050322070717811584, 0.11674252152442932, 0.01409465167671442, 0.1129889190196991, -0.014444384723901749, -0.08608895540237427, 0.052790261805057526, 0.02764224447309971, -0.08267755806446075, 0.17723257839679718, -0.11451929062604904, -0.34306615591049194, -0.09597818553447723, -0.18327631056308746, -0.0632653459906578, 0.05701104551553726, 0.09422004967927933, -0.10822878777980804, -0.018752971664071083, -0.00459743058308959, 0.11481987684965134, -0.11764571070671082, -0.01092474814504385, 0.0030823852866888046, 0.0015623720828443766, -0.11020367592573166, -0.08932386338710785, -0.0414172001183033, -0.016147851943969727, -0.10817214101552963, 0.10642547905445099, -0.14566680788993835, 0.03641396015882492, 0.2273082584142685, 0.06182233989238739, 0.05769471824169159, -0.028427939862012863, 0.2154439091682434, -0.09658383578062057, -0.028462212532758713, 0.2129596620798111, -0.02782726287841797, 0.05223267897963524, 0.12596875429153442, -0.028133993968367577, -0.05689653009176254, 0.018969114869832993, -0.010980543680489063, -0.06420417129993439, -0.1957860141992569, -0.14652499556541443, -0.09200355410575867, 0.10240968316793442, 0.07168005406856537, 0.06493470072746277, 0.0982135459780693, 0.0677933469414711, -0.04303708299994469, -0.011768086813390255, 0.05243032053112984, 0.09135662019252777, 0.21906068921089172, -0.09437450021505356, 0.1459643840789795, 0.002515166997909546, -0.14404381811618805, 0.07712176442146301, 0.06640412658452988, 0.05988049879670143, 0.0782441571354866, 0.05473780632019043, 0.012849845923483372, 0.03798648342490196, 0.13499543070793152, 0.09236475825309753, -0.00006350681360345334, -0.030936384573578835, -0.03131432458758354, -0.04215286672115326, -0.0485277958214283, 0.04422425478696823, 0.016436150297522545, -0.16151629388332367, -0.040141746401786804, -0.03202308714389801, 0.06537789851427078, 0.034132156521081924, 0.07160568237304688, -0.17389163374900818, -0.008952504955232143, 0.0681418851017952, -0.038871221244335175, -0.13627927005290985, 0.0976172387599945, -0.007473828736692667, -0.13583654165267944, 0.03855730593204498, -0.01598576083779335, 0.12999674677848816, -0.14567551016807556, 0.08463962376117706, -0.14408986270427704, -0.06333359330892563, 0.004345767665654421, 0.13252176344394684, -0.2701348662376404, 0.18757066130638123, -0.0259280763566494, -0.06633701920509338, -0.09552262723445892, -0.017303185537457466, -0.011172408238053322, 0.12647779285907745, 0.14174313843250275, -0.015334956347942352, 0.05461454391479492, -0.023142173886299133, -0.09067906439304352, 0.027273274958133698, 0.0961102694272995, -0.06298995018005371, -0.01071979384869337, -0.02472156472504139, 0.015339194796979427, -0.04069121181964874, -0.045300569385290146, 0.006166903302073479, -0.19576182961463928, 0.07888612896203995, 0.02570422552525997, 0.16136501729488373, 0.02773236483335495, -0.051257167011499405, -0.13009771704673767, 0.24302102625370026, -0.05234315246343613, -0.09879991412162781, -0.06961113959550858, -0.061220064759254456, 0.056872230023145676, -0.05514857918024063, 0.02385316602885723, -0.06978898495435715, 0.04673522710800171, -0.09689215570688248, -0.16765481233596802, 0.10708780586719513, -0.08701242506504059, -0.023731788620352745, -0.017185598611831665, 0.21056239306926727, -0.017566530033946037, 0.026773013174533844, 0.045224860310554504, -0.007009509950876236, -0.15445853769779205, -0.10031703114509583, -0.03052590601146221, 0.042931340634822845, -0.004213985055685043, -0.009488278068602085, -0.034200962632894516, -0.012482467107474804, -0.04363726079463959, -0.007416378706693649, 0.3374677300453186, 0.12776389718055725, -0.01714642159640789, 0.17501339316368103, 0.10850531607866287, -0.07182787358760834, -0.270145446062088, -0.11297690868377686, -0.07059212774038315, -0.022598035633563995, -0.09243924170732498, -0.18873578310012817, 0.046854548156261444, 0.01673508621752262, -0.0009790643816813827, 0.08417532593011856, -0.28937429189682007, -0.10994640737771988, 0.16469727456569672, -0.043347373604774475, 0.37803080677986145, -0.085748091340065, -0.07005402445793152, -0.07872563600540161, -0.11863084882497787, 0.10962467640638351, -0.01795024983584881, 0.11963141709566116, 0.01194681879132986, 0.15320554375648499, 0.05504359304904938, 0.0016752600204199553, 0.09616317600011826, 0.013392186723649502, -0.07240988314151764, -0.09868193417787552, -0.036838430911302567, -0.0000555229744350072, 0.033912062644958496, 0.030293675139546394, -0.06350743770599365, 0.010422603227198124, -0.15361998975276947, -0.07770480960607529, -0.08079030364751816, 0.021308360621333122, 0.0325959175825119, -0.06575367599725723, 0.01277843676507473, -0.03586854413151741, 0.0038361772894859314, 0.010189864784479141, 0.11925610154867172, -0.12590886652469635, 0.16082888841629028, 0.07796818763017654, 0.11964641511440277, -0.16079014539718628, -0.09413345158100128, -0.05771692842245102, -0.04406038299202919, 0.06816589087247849, -0.09047164767980576, 0.018626367673277855, 0.11708964407444, -0.049103476107120514, 0.07125426083803177, 0.08000694960355759, -0.03629165142774582, 0.03242313489317894, 0.0964825451374054, -0.2659086287021637, -0.03945146128535271, -0.07030265033245087, 0.04127972200512886, 0.09565998613834381, 0.0934172198176384, 0.21081681549549103, -0.017709437757730484, -0.028094608336687088, 0.006644100416451693, 0.012357911095023155, -0.02002890780568123, 0.07658807188272476, -0.005862075369805098, 0.01815185695886612, -0.1500067412853241, 0.055046096444129944, 0.03159039840102196, -0.09102480113506317, 0.028038030490279198, 0.12953828275203705, -0.09342025220394135, -0.11645249277353287, -0.05724100023508072, 0.13420434296131134, -0.0808262750506401, -0.014078031294047832, -0.04964044690132141, -0.12842270731925964, 0.05175043269991875, 0.08789782226085663, 0.044769302010536194, 0.05655958503484726, -0.09887681156396866, -0.05021028593182564, -0.027794139459729195, -0.018336471170186996, 0.06741218268871307, -0.026502318680286407, -0.06965794414281845, 0.08734434098005295, -0.02197287417948246, 0.10307284444570541, -0.0902688279747963, -0.11802049726247787, -0.1404213160276413, 0.053427554666996, -0.05773510783910751, -0.09120766818523407, -0.11197657883167267, -0.04515399411320686, -0.007064747624099255, -0.007365409750491381, -0.03382188826799393, -0.0480884313583374, -0.11302013695240021, 0.027023863047361374, -0.058709997683763504, 0.008021862246096134, -0.0653262510895729, 0.04620363190770149, 0.053436726331710815, -0.024691905826330185, 0.1534554362297058, 0.09938084334135056, -0.1099901869893074, 0.0790710523724556, -0.1476789265871048, -0.06811176985502243, 0.10477735102176666, 0.021971046924591064, 0.042481619864702225, 0.05674881115555763, 0.0028871376998722553, 0.05247633531689644, 0.02656870149075985, 0.05235745385289192, 0.05147046595811844, -0.09193599224090576, 0.025591321289539337, 0.03143569827079773, -0.12016918510198593, -0.026749873533844948, -0.027056841179728508, 0.03155351057648659, 0.03978392109274864, 0.0699949860572815, -0.05855286121368408, 0.11416959762573242, -0.046032071113586426, 0.028902515769004822, 0.02444262057542801, -0.1588214486837387, 0.04831129312515259, -0.10079718381166458, 0.05167007818818092, 0.026098651811480522, 0.2125881463289261, 0.03747474402189255, 0.04187583178281784, 0.023669356480240822, 0.04882977902889252, 0.05638265237212181, 0.013804948888719082, 0.20969635248184204, 0.12828609347343445, -0.019505493342876434, -0.08289473503828049, 0.10052309930324554, 0.03700946643948555, 0.053163252770900726, 0.09138767421245575, -0.03774378448724747, -0.030227595940232277, 0.0735379084944725, 0.0018057164270430803, 0.028857162222266197, -0.10959534347057343, -0.14462608098983765, 0.0031894289422780275, 0.0501292459666729, -0.06252359598875046, 0.09640925377607346, 0.14252717792987823, -0.012359819374978542, 0.015925036743283272, -0.008760950528085232, -0.07717199623584747, -0.17519237101078033, -0.2237674593925476, -0.08096376806497574, -0.15752992033958435, 0.011378414928913116, -0.1300436407327652, 0.028347710147500038, 0.02768571861088276, 0.09589783102273941, -0.07580002397298813, 0.08168912678956985, 0.05094415321946144, -0.14814186096191406, 0.08356133848428726, -0.025978663936257362, 0.11067341268062592, -0.0762229636311531, -0.013888069428503513, -0.07835094630718231, 0.04728304594755173, 0.011031595058739185, 0.05859309807419777, -0.024886479601264, 0.005192297510802746, -0.11082372814416885, -0.08537255227565765, -0.05255952849984169, 0.05614812299609184, -0.0011008076835423708, 0.16385237872600555, -0.0007164362468756735, -0.043932586908340454, 0.005456744693219662, 0.2288503795862198, -0.05030667781829834, -0.07703901827335358, -0.05407256633043289, 0.20164062082767487, 0.017152128741145134, 0.11403018981218338, -0.03116634115576744, -0.003331640735268593, -0.10160746425390244, 0.3422560393810272, 0.27626749873161316, -0.11239590495824814, 0.011485264636576176, -0.005517974030226469, 0.04401830583810806, 0.11053254455327988, 0.08832605928182602, 0.10112814605236053, 0.26328057050704956, -0.06973886489868164, -0.004847546573728323, -0.011276003904640675, -0.03444656729698181, -0.09446536749601364, 0.05891617387533188, 0.0624508336186409, -0.047208331525325775, -0.0406012125313282, 0.12276442348957062, -0.2386368066072464, 0.08585779368877411, -0.130695641040802, -0.1796683520078659, -0.10788998007774353, -0.007359078619629145, 0.15563462674617767, 0.02953183650970459, 0.09284640848636627, 0.002662714570760727, -0.06708259880542755, 0.04082586243748665, 0.035365570336580276, -0.17093530297279358, -0.05727734789252281, 0.06767185777425766, -0.033330146223306656, -0.05492117255926132, -0.02317197620868683, 0.05504558980464935, 0.05634692683815956, 0.04076957702636719, -0.016943255439400673, 0.04953419417142868, -0.008836316876113415, -0.08413103967905045, 0.030350711196660995, 0.03887832909822464, 0.0090929064899683, -0.05926625058054924, 0.08317606151103973, -0.11831685900688171, 0.02901342697441578, -0.013459569774568081, -0.015143530443310738, -0.019046759232878685, 0.04105420038104057, -0.07692514359951019, 0.07424003630876541, 0.080938920378685, -0.01700298860669136, -0.03445584326982498, -0.033149249851703644, 0.0013260202249512076, -0.03870074823498726, -0.08583427965641022, -0.08492524921894073, -0.1866115778684616, -0.14090462028980255, 0.06289097666740417, 0.020488150417804718, -0.17580290138721466, 0.01997317560017109, -0.11532745510339737, 0.06300507485866547, -0.12899820506572723, 0.10224342346191406, 0.04036674275994301, 0.014883968979120255, -0.005052756518125534, 0.0411711186170578, 0.05212133377790451, 0.07168097048997879, -0.15087392926216125, -0.08272240310907364 ]
null
null
transformers
# cse_resnet50 Implementation of ResNet proposed in [Deep Residual Learning for Image Recognition](https://arxiv.org/abs/1512.03385) ``` python ResNet.resnet18() ResNet.resnet26() ResNet.resnet34() ResNet.resnet50() ResNet.resnet101() ResNet.resnet152() ResNet.resnet200() Variants (d) proposed in `Bag of Tricks for Image Classification with Convolutional Neural Networks <https://arxiv.org/pdf/1812.01187.pdf`_ ResNet.resnet26d() ResNet.resnet34d() ResNet.resnet50d() # You can construct your own one by chaning `stem` and `block` resnet101d = ResNet.resnet101(stem=ResNetStemC, block=partial(ResNetBottleneckBlock, shortcut=ResNetShorcutD)) ``` Examples: ``` python # change activation ResNet.resnet18(activation = nn.SELU) # change number of classes (default is 1000 ) ResNet.resnet18(n_classes=100) # pass a different block ResNet.resnet18(block=SENetBasicBlock) # change the steam model = ResNet.resnet18(stem=ResNetStemC) change shortcut model = ResNet.resnet18(block=partial(ResNetBasicBlock, shortcut=ResNetShorcutD)) # store each feature x = torch.rand((1, 3, 224, 224)) # get features model = ResNet.resnet18() # first call .features, this will activate the forward hooks and tells the model you'll like to get the features model.encoder.features model(torch.randn((1,3,224,224))) # get the features from the encoder features = model.encoder.features print([x.shape for x in features]) #[torch.Size([1, 64, 112, 112]), torch.Size([1, 64, 56, 56]), torch.Size([1, 128, 28, 28]), torch.Size([1, 256, 14, 14])] ```
{}
null
glasses/cse_resnet50
[ "transformers", "pytorch", "arxiv:1512.03385", "arxiv:1812.01187", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[ "1512.03385", "1812.01187" ]
[]
TAGS #transformers #pytorch #arxiv-1512.03385 #arxiv-1812.01187 #endpoints_compatible #region-us
# cse_resnet50 Implementation of ResNet proposed in Deep Residual Learning for Image Recognition Examples:
[ "# cse_resnet50\nImplementation of ResNet proposed in Deep Residual Learning for Image\nRecognition\n\n \n\n Examples:" ]
[ "TAGS\n#transformers #pytorch #arxiv-1512.03385 #arxiv-1812.01187 #endpoints_compatible #region-us \n", "# cse_resnet50\nImplementation of ResNet proposed in Deep Residual Learning for Image\nRecognition\n\n \n\n Examples:" ]
[ 39, 28 ]
[ "passage: TAGS\n#transformers #pytorch #arxiv-1512.03385 #arxiv-1812.01187 #endpoints_compatible #region-us \n# cse_resnet50\nImplementation of ResNet proposed in Deep Residual Learning for Image\nRecognition\n\n \n\n Examples:" ]
[ -0.11671743541955948, -0.07224924117326736, -0.002923419466242194, 0.04775555804371834, 0.1061449721455574, 0.03161287307739258, 0.006508366204798222, 0.07830515503883362, -0.034622110426425934, 0.0600566603243351, 0.10713458806276321, 0.08553630858659744, -0.005569808650761843, -0.022290239110589027, -0.054616235196590424, -0.2171955108642578, 0.07250174880027771, 0.08523590862751007, -0.02888445369899273, 0.05571615323424339, 0.06939952075481415, -0.09663551300764084, 0.11436215043067932, -0.031165042892098427, -0.24744680523872375, 0.007854493334889412, -0.01830313913524151, -0.06547056138515472, 0.11804676055908203, 0.023281773552298546, 0.13777489960193634, 0.025338292121887207, 0.0967516303062439, -0.08614437282085419, 0.03310109302401543, 0.03294374793767929, -0.07622126489877701, 0.04446740821003914, 0.06627369672060013, -0.03673022612929344, 0.018158474937081337, 0.06480909138917923, -0.04351063817739487, -0.06007540971040726, -0.046091847121715546, -0.0032399648334831, 0.02077482081949711, 0.1562979519367218, 0.08435889333486557, 0.10030460357666016, 0.024024659767746925, 0.08272861689329147, -0.08724045753479004, 0.11517077684402466, 0.2291535586118698, -0.2656135857105255, -0.03798180818557739, 0.12098422646522522, -0.01750573143362999, -0.03616400063037872, -0.05467449501156807, 0.04203284904360771, 0.04129340127110481, 0.028294844552874565, -0.16152046620845795, -0.008779204450547695, -0.026909010484814644, -0.011892491020262241, -0.11125387251377106, -0.017602141946554184, 0.07493098080158234, 0.06724189221858978, 0.07098416984081268, 0.006836908869445324, -0.1904238760471344, -0.03650074452161789, -0.08783867210149765, -0.02302725240588188, 0.0027183254715055227, 0.026370670646429062, -0.13755062222480774, -0.037633128464221954, -0.06111176684498787, -0.05797041580080986, -0.13687562942504883, -0.007849173620343208, 0.05356280133128166, 0.11462176591157913, -0.12243182212114334, 0.018084103241562843, 0.005933395586907864, -0.018282068893313408, -0.016385413706302643, -0.08644970506429672, -0.03985542804002762, 0.020498743280768394, -0.07691279798746109, -0.07673075795173645, 0.04497700184583664, 0.2041085809469223, -0.0379660502076149, 0.028682060539722443, 0.014205838553607464, 0.12810148298740387, -0.08394258469343185, 0.06316433101892471, -0.22126504778862, 0.12101737409830093, 0.010330193676054478, -0.09284014254808426, 0.010784076526761055, -0.04335587099194527, -0.09835037589073181, -0.03305057808756828, 0.13657796382904053, -0.03976091742515564, -0.0741451308131218, 0.057339709252119064, -0.003497085766866803, -0.03602275624871254, 0.10455133020877838, -0.020209014415740967, -0.04381773993372917, 0.0055071027018129826, -0.0866495743393898, 0.11414171755313873, 0.07365677505731583, -0.025224464014172554, -0.08004996925592422, 0.030139341950416565, -0.022458326071500778, -0.019366323947906494, 0.005865828134119511, -0.07248146086931229, 0.0011731742415577173, -0.03209388628602028, 0.06990223377943039, -0.24529868364334106, -0.11170309036970139, -0.006822667084634304, 0.04644008353352547, -0.04029015451669693, 0.05530998855829239, -0.057811785489320755, -0.13847418129444122, 0.0006604110822081566, 0.027842139825224876, -0.03653907775878906, -0.03973860293626785, 0.014091700315475464, -0.06097264215350151, 0.15916351974010468, -0.09302321076393127, 0.007686692290008068, -0.05278400331735611, -0.04050155729055405, -0.10899543762207031, 0.10303018242120743, -0.047532618045806885, 0.07173486799001694, -0.09628938138484955, -0.057907070964574814, -0.11995891481637955, 0.008870759047567844, 0.018435418605804443, 0.0862850770354271, -0.11179176717996597, -0.043939121067523956, 0.1788327395915985, -0.11836601048707962, -0.1127571165561676, 0.09188976138830185, -0.019526230171322823, -0.11507312208414078, 0.0070680975914001465, 0.17960599064826965, -0.07327162474393845, -0.02080865018069744, -0.042596254497766495, 0.00956873781979084, -0.14710654318332672, -0.0885012224316597, -0.054498929530382156, 0.14681033790111542, 0.05450328812003136, -0.04389643669128418, -0.03966941684484482, 0.06252540647983551, -0.1264733523130417, -0.08491695672273636, -0.025232501327991486, -0.09857103228569031, -0.01411901693791151, 0.02353017032146454, 0.12894923985004425, 0.041209205985069275, -0.04855605959892273, -0.19617825746536255, 0.052390795201063156, -0.07456106692552567, 0.11148732900619507, -0.10877552628517151, 0.1816457360982895, -0.028637295588850975, 0.01894483156502247, -0.2478276640176773, -0.04508059099316597, 0.02127993479371071, 0.05218604579567909, -0.026098480448126793, 0.01136371586471796, 0.04878561943769455, -0.028158439323306084, -0.01932677812874317, -0.0852743461728096, 0.04030952975153923, -0.022779494524002075, -0.022092388942837715, -0.07482267916202545, 0.009920968674123287, -0.06899696588516235, -0.009668929502367973, -0.12648190557956696, -0.046818941831588745, 0.044492460787296295, 0.13847431540489197, -0.008820795454084873, 0.07727651298046112, -0.053232718259096146, -0.0319257527589798, -0.02628244459629059, -0.06844153255224228, 0.062294356524944305, -0.013676563277840614, -0.013225726783275604, 0.05002041161060333, 0.01794941909611225, 0.1585245281457901, 0.12957927584648132, -0.30922091007232666, -0.1186433732509613, 0.1157943531870842, -0.004195664077997208, 0.016632962971925735, 0.013599625788629055, 0.09028278291225433, 0.13640393316745758, -0.0330137275159359, 0.06589744240045547, -0.0498710572719574, 0.09384869039058685, 0.02194295823574066, -0.032644737511873245, -0.00424147117882967, 0.0503157377243042, 0.06291114538908005, -0.2631867229938507, 0.05822287127375603, 0.024707119911909103, -0.1399221122264862, -0.0573592334985733, 0.005513948388397694, -0.06960081309080124, 0.08435452729463577, 0.08132755011320114, -0.007657270412892103, 0.08431340754032135, 0.024392513558268547, -0.0698455199599266, 0.02235451154410839, -0.10720311105251312, 0.04205543175339699, -0.1169767677783966, 0.03648541122674942, -0.03738843649625778, 0.010502953082323074, 0.004847381263971329, 0.037082232534885406, -0.0019375098636373878, 0.08445966988801956, -0.0012906873598694801, -0.2044844627380371, 0.024270951747894287, -0.06036413088440895, -0.0188509002327919, 0.21771454811096191, -0.009399136528372765, -0.22208110988140106, -0.008439804427325726, -0.018647871911525726, -0.02529187686741352, 0.04778967797756195, 0.03287692740559578, -0.14311933517456055, -0.03995339944958687, 0.002509992802515626, -0.010817908681929111, 0.07358676940202713, 0.04322363808751106, 0.023657212033867836, -0.01156447734683752, -0.0283186137676239, -0.029910722747445107, 0.0023906517308205366, -0.19722507894039154, -0.09986717253923416, 0.12528403103351593, -0.12321344763040543, 0.10191801935434341, 0.12154669314622879, -0.028471244499087334, 0.021362056955695152, 0.003672252641990781, 0.17113547027111053, -0.08313175290822983, -0.006799616850912571, 0.0700654610991478, -0.008755047805607319, 0.05233920365571976, 0.07125909626483917, -0.0009561172919347882, -0.10879486799240112, -0.004319529514759779, 0.011976917274296284, -0.05065061151981354, -0.08901501446962357, -0.10317841172218323, -0.03134981170296669, -0.03401833772659302, 0.12282589077949524, 0.08362627029418945, 0.07821290194988251, 0.10649636387825012, 0.030675126239657402, -0.035146694630384445, 0.042906928807497025, 0.07917089760303497, 0.09346083551645279, 0.03528374806046486, 0.10651273280382156, -0.05657673627138138, -0.08979460597038269, 0.025582486763596535, 0.07760591059923172, 0.23786716163158417, -0.02521541900932789, -0.078270323574543, 0.02350645139813423, 0.18635183572769165, 0.13146010041236877, 0.10584758967161179, -0.05040685087442398, -0.04223918169736862, 0.001965864794328809, 0.034750357270240784, -0.0009433948434889317, 0.05441097915172577, 0.07460836321115494, -0.06862262636423111, -0.002511583501473069, 0.05351011082530022, 0.017813611775636673, 0.2331715226173401, 0.11663294583559036, -0.36262625455856323, -0.01670795865356922, -0.055107466876506805, 0.030751889571547508, -0.027576522901654243, 0.12427186220884323, 0.035244379192590714, -0.044639043509960175, 0.03127152472734451, -0.08519517630338669, 0.09030163288116455, -0.09785974770784378, 0.02551247924566269, 0.011232515797019005, -0.09472115337848663, 0.06461017578840256, -0.0010088516864925623, -0.11900458484888077, 0.19260647892951965, -0.045904889702796936, -0.05537596717476845, -0.03586945682764053, -0.060601428151130676, 0.0706196054816246, 0.11964552104473114, 0.227604940533638, -0.0024324082769453526, -0.06002349406480789, 0.006386005785316229, 0.02242608740925789, 0.024171311408281326, 0.1508193016052246, 0.02887647971510887, -0.035526398569345474, 0.04346024617552757, -0.05382206663489342, 0.03511113300919533, 0.10397019237279892, 0.013506315648555756, -0.09060618281364441, -0.045608196407556534, 0.0386112816631794, -0.04135853052139282, -0.00444114301353693, -0.04477629438042641, -0.04417053982615471, 0.09399674832820892, -0.0018146629445254803, 0.007274610921740532, -0.08865799009799957, 0.05378597602248192, 0.07576747983694077, -0.08220742642879486, 0.10658002644777298, -0.03138027340173721, 0.05213407799601555, -0.009726746007800102, -0.20399142801761627, 0.19601820409297943, -0.11184133589267731, -0.01542846579104662, 0.02786162868142128, -0.02101806178689003, -0.006413742899894714, -0.04696982353925705, 0.044564224779605865, 0.037160322070121765, -0.1342335194349289, -0.0036468899343162775, 0.07449190318584442, -0.05371587350964546, -0.034111399203538895, 0.1269778460264206, -0.03644615039229393, 0.00024495157413184643, -0.07810617238283157, 0.17775766551494598, 0.1438712328672409, 0.016508623957633972, -0.07561929523944855, -0.02069135010242462, 0.12921951711177826, 0.053645867854356766, -0.354499489068985, -0.06372980773448944, -0.03266192227602005, -0.011246387846767902, -0.11323754489421844, -0.1058097705245018, 0.16399754583835602, -0.039167631417512894, -0.017676640301942825, 0.009122644551098347, -0.14347641170024872, -0.05785539001226425, 0.2359093725681305, 0.06325361132621765, 0.30119094252586365, -0.07140636444091797, 0.007207872811704874, -0.05145907774567604, 0.03842170163989067, 0.02632036618888378, 0.04768792539834976, 0.10201138257980347, -0.005270012654364109, 0.0931551456451416, -0.021584073081612587, -0.010068226605653763, -0.032740406692028046, 0.11682416498661041, 0.08362198621034622, -0.07827430218458176, 0.020171957090497017, 0.05282754451036453, -0.013833136297762394, 0.002681259997189045, 0.20378176867961884, 0.1275443136692047, 0.029142815619707108, 0.013168970122933388, -0.08485131710767746, 0.028695804998278618, 0.11697258800268173, 0.007086579222232103, -0.1186995878815651, 0.020301004871726036, 0.0870499387383461, 0.07545028626918793, 0.2682226002216339, 0.08911025524139404, 0.08083191514015198, 0.031516872346401215, -0.01054648868739605, -0.08589226007461548, -0.10366667807102203, -0.067633256316185, -0.03788101673126221, 0.14039048552513123, -0.06987996399402618, 0.054135244339704514, 0.11038970947265625, 0.01086876168847084, 0.013825560919940472, 0.13954591751098633, -0.002653364557772875, 0.014361724257469177, 0.0865606889128685, -0.08425068855285645, -0.027649780735373497, 0.011949603445827961, 0.004119546618312597, 0.13810692727565765, 0.17111703753471375, 0.14017978310585022, -0.07220929861068726, 0.00957756768912077, -0.009318350814282894, 0.04694434255361557, -0.04099071025848389, 0.07498549669981003, 0.13975226879119873, 0.001494784140959382, -0.13480740785598755, 0.17680296301841736, -0.01797109842300415, -0.1590055674314499, -0.01882239617407322, -0.05251779034733772, -0.13579344749450684, -0.09756974130868912, -0.05157800018787384, 0.04239857941865921, -0.2757738530635834, -0.05544183775782585, -0.03214123845100403, -0.06440611928701401, 0.09703031927347183, 0.13031445443630219, 0.1278102844953537, -0.007908554747700691, -0.049747537821531296, -0.008406093344092369, -0.07933265715837479, -0.019500648602843285, 0.030111869797110558, 0.09678846597671509, -0.1566939651966095, -0.1738075166940689, 0.006142682861536741, 0.1698809415102005, -0.10098189115524292, -0.007414892315864563, -0.11763413995504379, 0.08206504583358765, -0.06546837836503983, 0.05738480016589165, -0.014813314191997051, -0.011943328194320202, -0.03623935580253601, -0.035122085362672806, -0.08856068551540375, 0.034219495952129364, -0.09203845262527466, -0.0029526713769882917, 0.016830390319228172, -0.057783160358667374, -0.10373998433351517, -0.015201984904706478, -0.0226436760276556, -0.009135318920016289, 0.13365967571735382, 0.12030459195375443, -0.09088876843452454, 0.10786110907793045, -0.14492745697498322, -0.25520849227905273, 0.15851791203022003, 0.031241459771990776, -0.008856200613081455, 0.09181299060583115, 0.04287320747971535, 0.028564322739839554, -0.023638218641281128, -0.024330351501703262, 0.02306695096194744, 0.00195683422498405, 0.023538440465927124, -0.24989952147006989, -0.009236740879714489, -0.04016896337270737, 0.01980225369334221, 0.07189016044139862, 0.14241549372673035, 0.05438948795199394, -0.07742530107498169, 0.0013173818588256836, 0.004239555448293686, 0.008386380039155483, 0.01867441087961197, -0.08579982072114944, 0.0326632522046566, -0.0623113214969635, 0.05295486003160477, -0.09629970788955688, 0.1755431741476059, -0.10495399683713913, -0.031233131885528564, 0.02192283794283867, 0.20452219247817993, -0.14065247774124146, 0.08856566995382309, 0.13264349102973938, 0.10607113689184189, -0.023962056264281273, 0.03829170763492584, 0.09062269330024719, 0.09928122907876968, 0.17844997346401215, 0.03964074328541756, 0.19191139936447144, -0.00042410718742758036, 0.15107393264770508, 0.06644359230995178, -0.012293105944991112, 0.06680402159690857, 0.026290075853466988, -0.10322221368551254, 0.04279026389122009, 0.02821396477520466, 0.008411443792283535, 0.14889942109584808, 0.07190428674221039, -0.0017907274886965752, 0.016319526359438896, -0.02516101859509945, -0.08891741186380386, -0.11217759549617767, -0.11525620520114899, -0.14147210121154785, 0.04913537576794624, -0.035215701907873154, -0.07797708362340927, 0.22844046354293823, 0.0906866192817688, -0.006468570791184902, 0.10693205147981644, -0.0654025450348854, -0.049122460186481476, 0.14905814826488495, -0.00614152429625392, -0.09115828573703766, 0.13961189985275269, -0.06398580968379974, 0.05281522497534752, 0.046684734523296356, -0.012487527914345264, -0.020465219393372536, 0.03828316181898117, 0.1184300035238266, -0.03651869297027588, -0.05574316531419754, -0.022718898952007294, 0.04923868179321289, -0.08237836509943008, -0.08030852675437927, -0.01371938269585371, -0.015811951830983162, 0.025778474286198616, 0.2408771514892578, -0.10518161207437515, -0.02583884820342064, -0.09536394476890564, -0.06004277616739273, 0.02517552115023136, 0.12189114093780518, -0.07512117922306061, -0.04470853880047798, -0.06387996673583984, 0.17906291782855988, 0.20673015713691711, -0.21035294234752655, 0.0035184978041797876, 0.10376141965389252, 0.02511218562722206, -0.031808044761419296, -0.004650143440812826, 0.13882911205291748, 0.13327014446258545, -0.04662788286805153, -0.129582479596138, -0.02490535005927086, -0.03355642035603523, -0.07772064954042435, 0.009281202219426632, 0.07626063376665115, -0.04284089431166649, -0.1555171012878418, 0.10882078856229782, -0.17905882000923157, -0.032602593302726746, 0.11222188174724579, -0.14307087659835815, -0.11268967390060425, -0.02294328063726425, 0.03523719310760498, 0.08151373267173767, 0.08115548640489578, -0.07233346998691559, -0.021127883344888687, 0.018312258645892143, 0.05120223015546799, -0.1732940673828125, -0.02744406834244728, -0.07952781766653061, -0.035132598131895065, 0.08684533834457397, -0.003905318910256028, 0.005475407000631094, 0.042610615491867065, 0.02997417189180851, -0.0007925948593765497, 0.013250380754470825, -0.03596324473619461, -0.15253087878227234, 0.028622496873140335, 0.14100927114486694, -0.04068303480744362, -0.0006043020985089242, 0.06420563906431198, -0.25943824648857117, -0.017550209537148476, 0.029937200248241425, 0.025251343846321106, -0.09614688903093338, -0.023595787584781647, -0.06745176017284393, 0.07009837031364441, 0.02364671416580677, 0.01735982485115528, 0.01679307222366333, -0.013046149164438248, -0.03344890847802162, 0.05138327553868294, -0.04654255136847496, -0.002374047879129648, -0.0929240807890892, -0.04895054176449776, -0.2071797102689743, 0.03307916224002838, -0.003203711938112974, -0.03869887813925743, -0.04159720987081528, -0.007809944450855255, -0.05939047038555145, 0.09693777561187744, 0.08320595324039459, -0.01892685331404209, 0.005040781572461128, 0.019797472283244133, 0.06583653390407562, 0.053126685321331024, -0.05776207149028778, -0.1451440006494522 ]
null
null
transformers
# deit_base_patch16_224 Implementation of DeiT proposed in [Training data-efficient image transformers & distillation through attention](https://arxiv.org/pdf/2010.11929.pdf) An attention based distillation is proposed where a new token is added to the model, the [dist]{.title-ref} token. ![image](https://github.com/FrancescoSaverioZuppichini/glasses/blob/develop/docs/_static/images/DeiT.png?raw=true) ``` {.sourceCode .} DeiT.deit_tiny_patch16_224() DeiT.deit_small_patch16_224() DeiT.deit_base_patch16_224() DeiT.deit_base_patch16_384() ```
{}
null
glasses/deit_base_patch16_224
[ "transformers", "pytorch", "arxiv:2010.11929", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[ "2010.11929" ]
[]
TAGS #transformers #pytorch #arxiv-2010.11929 #endpoints_compatible #region-us
# deit_base_patch16_224 Implementation of DeiT proposed in Training data-efficient image transformers & distillation through attention An attention based distillation is proposed where a new token is added to the model, the [dist]{.title-ref} token. !image
[ "# deit_base_patch16_224\n Implementation of DeiT proposed in Training data-efficient image\n transformers & distillation through\n attention\n\n An attention based distillation is proposed where a new token is added\n to the model, the [dist]{.title-ref} token.\n\n !image" ]
[ "TAGS\n#transformers #pytorch #arxiv-2010.11929 #endpoints_compatible #region-us \n", "# deit_base_patch16_224\n Implementation of DeiT proposed in Training data-efficient image\n transformers & distillation through\n attention\n\n An attention based distillation is proposed where a new token is added\n to the model, the [dist]{.title-ref} token.\n\n !image" ]
[ 29, 70 ]
[ "passage: TAGS\n#transformers #pytorch #arxiv-2010.11929 #endpoints_compatible #region-us \n# deit_base_patch16_224\n Implementation of DeiT proposed in Training data-efficient image\n transformers & distillation through\n attention\n\n An attention based distillation is proposed where a new token is added\n to the model, the [dist]{.title-ref} token.\n\n !image" ]
[ -0.12342353165149689, -0.08591429889202118, -0.0034440243616700172, 0.13312678039073944, 0.10027851164340973, 0.011092718690633774, 0.08120020478963852, 0.03620004653930664, -0.14579744637012482, -0.008183698169887066, 0.08923672139644623, 0.21285752952098846, -0.027985408902168274, 0.13373324275016785, -0.07885447144508362, -0.3215305805206299, 0.008859465830028057, 0.16150683164596558, -0.02202194184064865, 0.04431256651878357, 0.13697214424610138, -0.1479857712984085, 0.10307334363460541, -0.026726366952061653, -0.1936018317937851, 0.016450194641947746, -0.07253602147102356, -0.05990986153483391, 0.15063250064849854, 0.025264790281653404, 0.14658194780349731, 0.1072106584906578, 0.07748456299304962, 0.08158237487077713, 0.04147285223007202, -0.007013957481831312, -0.012301282957196236, 0.0506487712264061, -0.03986598551273346, 0.04881737381219864, 0.08735924959182739, -0.05209902301430702, 0.05386033654212952, -0.0611894391477108, -0.15902426838874817, 0.006226659752428532, -0.04855508729815483, 0.059125881642103195, 0.07672000676393509, 0.08086574077606201, 0.0366898849606514, 0.050204914063215256, -0.03721309453248978, 0.11457241326570511, 0.07224663347005844, -0.07750970125198364, -0.07067618519067764, 0.006843685172498226, 0.007893607951700687, -0.03951289504766464, 0.0313299223780632, 0.016861770302057266, 0.0793120339512825, 0.08896815776824951, -0.018932554870843887, -0.0042191483080387115, 0.015478740446269512, 0.022795969620347023, -0.10489532351493835, -0.047328606247901917, 0.26727086305618286, 0.01742561347782612, -0.025116119533777237, 0.018267877399921417, -0.07398860156536102, -0.11992660164833069, -0.10970290005207062, -0.1090971902012825, 0.002202762058004737, -0.007101341150701046, -0.04065826162695885, -0.04205150529742241, -0.1342567503452301, 0.005422834772616625, -0.19715715944766998, 0.12711825966835022, 0.05335254594683647, 0.006023502442985773, -0.13657993078231812, 0.11120389401912689, -0.031291309744119644, -0.08699971437454224, -0.06671103835105896, -0.11431242525577545, 0.03372655063867569, -0.11411873996257782, -0.034587886184453964, -0.19019654393196106, -0.029868027195334435, 0.14071235060691833, -0.04655721038579941, -0.01610425114631653, -0.026329128071665764, 0.034710951149463654, 0.051851898431777954, 0.1393771767616272, -0.04064922779798508, 0.03260469809174538, 0.05627932772040367, 0.007407806348055601, 0.04333646968007088, 0.027260683476924896, -0.11518746614456177, -0.03594993054866791, 0.05804210528731346, -0.02905092015862465, -0.051356639713048935, 0.1410021185874939, -0.05855896696448326, -0.05528271943330765, 0.2075372338294983, -0.040323805063962936, -0.06307811290025711, -0.06637408584356308, -0.01421173382550478, 0.21542908251285553, 0.07152441889047623, -0.022325098514556885, 0.020448239520192146, 0.060458600521087646, -0.05211356654763222, -0.01712440326809883, -0.07204744964838028, -0.10788293182849884, -0.0010706378379836679, -0.11364974826574326, 0.08348396420478821, -0.20988225936889648, -0.23541763424873352, 0.0747143104672432, 0.031576018780469894, -0.01240762323141098, 0.03691261634230614, -0.07389754056930542, -0.0942593514919281, -0.021182553842663765, 0.029266249388456345, -0.08703874051570892, -0.010516656562685966, 0.06357750296592712, 0.0591285265982151, 0.16074348986148834, -0.2180948406457901, 0.0519883893430233, -0.045643195509910583, 0.014102568849921227, -0.251139372587204, 0.1319318264722824, 0.051540348678827286, 0.15367549657821655, -0.0436411127448082, -0.14556720852851868, -0.15458013117313385, 0.016238128766417503, 0.05876331031322479, 0.191110298037529, -0.2813400626182556, -0.049187883734703064, -0.09720511734485626, -0.15812264382839203, -0.06914129108190536, 0.0953606367111206, -0.07833291590213776, 0.13981878757476807, 0.11964572966098785, 0.05150926485657692, -0.018425585702061653, -0.14489974081516266, -0.009469214826822281, -0.007761143147945404, -0.2592669427394867, 0.016547411680221558, -0.07815009355545044, 0.20119552314281464, 0.04435413330793381, 0.015972083434462547, 0.07021868973970413, 0.008330553770065308, -0.1364692598581314, -0.0676768347620964, -0.006385451182723045, -0.017650630325078964, 0.0486934632062912, 0.059100259095430374, 0.0694207102060318, -0.03115750662982464, 0.031448084861040115, 0.1861775666475296, 0.07248274236917496, -0.03214825317263603, 0.000089325949375052, -0.15746985375881195, 0.06700778752565384, -0.06797397136688232, 0.02016771212220192, -0.1368660032749176, -0.01122943963855505, -0.05939878895878792, 0.17288339138031006, 0.03573174774646759, 0.07010171562433243, 0.08299539983272552, 0.025504503399133682, -0.025537602603435516, -0.05217752978205681, -0.0511644147336483, 0.05706062167882919, -0.03681720048189163, -0.1051049530506134, 0.006422974169254303, -0.06421597301959991, -0.035106997936964035, -0.03631225973367691, 0.011373351328074932, 0.14238765835762024, 0.08668682724237442, 0.046488724648952484, 0.06864041835069656, -0.0279970932751894, 0.05445850268006325, -0.1005994901061058, -0.08157288283109665, 0.02633765898644924, -0.028927113860845566, 0.02817450650036335, -0.04732678085565567, 0.05278580263257027, 0.15909890830516815, 0.1633012890815735, -0.29312047362327576, -0.11254949122667313, 0.056498296558856964, -0.029315078631043434, 0.02340998873114586, 0.08599524199962616, -0.06938831508159637, 0.05464198440313339, -0.06007944047451019, 0.08551010489463806, -0.007666027173399925, 0.027421627193689346, 0.045137036591768265, 0.04169740155339241, -0.08944724500179291, 0.036805231124162674, 0.06475690752267838, -0.22078178822994232, 0.07560990005731583, 0.09155138581991196, 0.009870821610093117, 0.007856105454266071, 0.01326390728354454, -0.04325799271464348, 0.006835542619228363, 0.002003607340157032, 0.02119947224855423, 0.13521219789981842, -0.13822831213474274, -0.039245590567588806, 0.01018157321959734, -0.03838924691081047, 0.03652583435177803, -0.11191560328006744, -0.0014197794953361154, 0.03683468699455261, -0.01551495585590601, -0.0984988659620285, 0.053899504244327545, -0.014941288158297539, 0.06751372665166855, 0.046545445919036865, -0.06204887479543686, 0.09053675085306168, 0.06531534343957901, 0.011822296306490898, 0.09953541308641434, -0.058914389461278915, -0.22912055253982544, -0.0706525519490242, -0.07195918262004852, 0.03441063314676285, 0.11404632031917572, 0.07649990171194077, -0.09103912115097046, -0.049284130334854126, -0.01176645327359438, 0.03624693676829338, -0.05989343672990799, 0.052547913044691086, 0.024971481412649155, 0.020001642405986786, -0.052415795624256134, -0.07900132238864899, -0.027576245367527008, -0.09130924195051193, 0.012336627580225468, 0.17827634513378143, -0.14009423553943634, 0.12911149859428406, 0.0445101223886013, -0.06843177229166031, 0.039743803441524506, -0.06821513175964355, 0.2217537760734558, -0.09076466411352158, 0.09096602350473404, 0.21416595578193665, 0.016230011358857155, 0.013034280389547348, 0.08356918394565582, -0.021645033732056618, -0.13561125099658966, 0.01917935535311699, -0.031298983842134476, -0.1200120821595192, -0.06332790851593018, -0.058972589671611786, -0.1076386347413063, -0.03690463304519653, 0.07229725271463394, 0.04739811271429062, 0.1672179251909256, 0.06702359020709991, 0.05273452401161194, 0.13768377900123596, 0.00816874299198389, 0.10315709561109543, 0.29745620489120483, -0.04475241154432297, 0.09366744756698608, -0.0879337266087532, -0.1223098635673523, 0.07992637902498245, 0.04685129597783089, 0.25126928091049194, 0.0013117932248860598, -0.08217225223779678, 0.05997703969478607, -0.0005106512107886374, 0.0556691475212574, 0.16427366435527802, -0.02458055131137371, -0.037525199353694916, -0.0633782148361206, -0.01613505184650421, -0.006993110757321119, 0.048900604248046875, -0.036438822746276855, -0.05401095747947693, -0.01977749913930893, 0.05957586690783501, 0.06504851579666138, 0.1586771458387375, 0.07511229813098907, -0.4433477818965912, -0.10949768126010895, -0.023841332644224167, 0.05967161804437637, -0.029846811667084694, -0.02924543060362339, -0.035974595695734024, 0.06158025190234184, 0.05109642073512077, 0.00019541078654583544, 0.05748947709798813, -0.10236970335245132, 0.05118783563375473, 0.04094152897596359, 0.026117414236068726, 0.012144390493631363, -0.05577825382351875, -0.2914184331893921, 0.16704531013965607, -0.007774484343826771, 0.09253084659576416, 0.005178641527891159, -0.020099036395549774, 0.0394265241920948, 0.26569581031799316, 0.08539249747991562, -0.026995407417416573, 0.06164413318037987, -0.19853371381759644, 0.01539107970893383, -0.01900823973119259, 0.05265732482075691, 0.087620809674263, 0.017418310046195984, 0.04957742244005203, 0.014396118931472301, 0.04771070182323456, 0.10307063162326813, -0.10293269157409668, -0.1107247844338417, 0.014077971689403057, -0.057964522391557693, 0.06829553842544556, 0.018817530944943428, -0.08122234046459198, -0.15137693285942078, 0.03295593708753586, 0.03112560510635376, -0.07011111825704575, -0.13337190449237823, 0.08407406508922577, -0.0014345800736919045, -0.012049130164086819, 0.09456721693277359, 0.0005526996683329344, 0.008419003337621689, -0.018748125061392784, -0.14218126237392426, 0.08805976063013077, -0.10045207291841507, 0.02070612646639347, -0.019693972542881966, 0.0063121323473751545, 0.022795172408223152, -0.03767223656177521, 0.041348230093717575, -0.005239290650933981, -0.009278600104153156, -0.009730176068842411, 0.02081475220620632, -0.017481224611401558, 0.11230786889791489, -0.01753312721848488, -0.09491461515426636, -0.010190887376666069, -0.044224224984645844, 0.0684228464961052, 0.01757139153778553, 0.0640067458152771, -0.013716695830225945, 0.01248864084482193, -0.047788046300411224, 0.01638863794505596, -0.22309526801109314, 0.08722443878650665, -0.016950244084000587, 0.04062001034617424, -0.0625469982624054, -0.15254522860050201, 0.015114394947886467, 0.07512001693248749, 0.05282406136393547, 0.10277396440505981, -0.16115280985832214, -0.05488256737589836, 0.07855655997991562, 0.05023927986621857, 0.26532331109046936, -0.05446435883641243, 0.04917009547352791, -0.07014373689889908, -0.1730954945087433, 0.0013394643319770694, 0.06010182574391365, 0.07519067823886871, -0.01640944927930832, 0.057263970375061035, 0.012833395041525364, -0.016319915652275085, 0.032563790678977966, 0.07496679574251175, 0.12877847254276276, -0.060784049332141876, -0.15974344313144684, 0.14903505146503448, -0.027273360639810562, 0.04935205727815628, 0.22269515693187714, 0.09440196305513382, 0.0135395098477602, -0.042488906532526016, -0.023744020611047745, 0.04364914447069168, 0.048535190522670746, -0.07779867947101593, -0.11225390434265137, 0.012520593591034412, 0.003319096751511097, -0.004972248338162899, 0.07093495875597, 0.0007273433147929609, -0.1514410674571991, -0.07632237672805786, 0.08975747227668762, -0.14457565546035767, 0.00351794995367527, 0.001225203275680542, -0.053485408425331116, 0.08165021240711212, -0.14859133958816528, 0.06292594224214554, 0.1307668685913086, -0.01178604643791914, 0.09015393257141113, 0.1346309781074524, 0.05496928468346596, 0.0952630564570427, 0.11845984309911728, -0.06575224548578262, -0.03361502289772034, -0.007355326786637306, -0.12153743952512741, 0.1536807119846344, 0.20114950835704803, 0.10757021605968475, -0.03815584257245064, 0.03793705627322197, -0.015194051899015903, -0.026812994852662086, -0.05615483969449997, 0.06755673140287399, -0.04374537989497185, -0.039093974977731705, -0.0749802514910698, -0.005148585420101881, -0.035733629018068314, -0.1532185673713684, -0.019824830815196037, -0.06220695376396179, -0.1337994486093521, -0.06328825652599335, -0.13598141074180603, 0.0478551872074604, -0.12719856202602386, -0.024995919317007065, -0.08235861361026764, -0.09933043271303177, 0.10606903582811356, 0.10759620368480682, 0.08017732203006744, 0.07627004384994507, -0.09164737164974213, 0.11845791339874268, -0.14897538721561432, -0.02856496535241604, -0.020135516300797462, 0.13786254823207855, -0.1583883911371231, 0.07153748720884323, -0.07345273345708847, 0.09233231097459793, -0.10854184627532959, -0.03161969035863876, -0.004735720809549093, 0.046321045607328415, -0.03388240188360214, -0.026739148423075676, -0.0659029632806778, -0.02096276357769966, 0.035490985959768295, -0.02988746389746666, -0.041348718106746674, 0.018420811742544174, -0.036358628422021866, 0.06392934173345566, 0.07235155999660492, 0.007481675129383802, 0.00470487866550684, -0.05935288965702057, -0.043224483728408813, -0.06784362345933914, 0.11223605275154114, 0.08305241167545319, -0.06463363021612167, -0.004188328515738249, 0.002918022917583585, -0.10013160854578018, 0.17984376847743988, 0.058892033994197845, 0.059509314596652985, 0.07503898441791534, 0.0036213563289493322, 0.06737212091684341, -0.036139219999313354, -0.01366454642266035, 0.016372688114643097, -0.016139300540089607, 0.10710098594427109, -0.0562061108648777, -0.07991441339254379, -0.05312976613640785, 0.019654283300042152, 0.11367686837911606, 0.08990586549043655, 0.1447848230600357, -0.056248486042022705, -0.04912887141108513, -0.05924677103757858, -0.030024925246834755, 0.026950204744935036, -0.11173655837774277, -0.04797804355621338, -0.09314491599798203, 0.04495731368660927, -0.0138503797352314, 0.11304974555969238, -0.012605269439518452, -0.023091057315468788, 0.014037376269698143, 0.01811360940337181, -0.12881262600421906, 0.019443223252892494, 0.24454262852668762, 0.053888481110334396, -0.03145113214850426, -0.11275109648704529, 0.10330848395824432, 0.09371470659971237, 0.08638632297515869, 0.04617825895547867, 0.1630534827709198, -0.08903458714485168, 0.0932757556438446, 0.05356655269861221, 0.1325431913137436, -0.21243609488010406, -0.01744948886334896, -0.04137628152966499, 0.012253962457180023, 0.061424821615219116, -0.03686363250017166, 0.15622903406620026, -0.01855085976421833, 0.03515499830245972, 0.029114654287695885, -0.037396982312202454, 0.022750457748770714, -0.059345945715904236, -0.08464325964450836, -0.1281631588935852, 0.011683412827551365, -0.08581570535898209, -0.03231261670589447, 0.001135483500547707, 0.09928616136312485, -0.050317466259002686, 0.12442130595445633, 0.021528132259845734, 0.020001886412501335, 0.06188354641199112, -0.03585994243621826, -0.10467901825904846, -0.007700147107243538, -0.07253842800855637, -0.024642765522003174, 0.037051886320114136, -0.01913515478372574, -0.03606318309903145, 0.06040418893098831, -0.04794944450259209, -0.024527480825781822, -0.01309669204056263, -0.019102714955806732, 0.08482466638088226, -0.08439711481332779, -0.057473938912153244, 0.0003438266576267779, -0.08291798084974289, 0.05488068237900734, -0.0595569983124733, 0.007313325069844723, -0.20756301283836365, -0.12967362999916077, 0.253250390291214, 0.059846267104148865, 0.1011817678809166, -0.012083693407475948, -0.04878555238246918, -0.013621934689581394, 0.1309088170528412, 0.18278121948242188, -0.11115918308496475, -0.04638355225324631, -0.018635710701346397, 0.019006570801138878, -0.06590352207422256, -0.008272015489637852, 0.08969224244356155, 0.10012229532003403, 0.02568092942237854, -0.10590853542089462, -0.0972958654165268, 0.06971258670091629, 0.0068965177051723, -0.028009023517370224, 0.06301788985729218, -0.031918350607156754, -0.10082290321588516, 0.07356667518615723, -0.032907288521528244, -0.05851791426539421, 0.21185804903507233, -0.06365012377500534, -0.04721059277653694, 0.033546920865774155, -0.03307529166340828, -0.0128640066832304, 0.0747053474187851, -0.09955506026744843, -0.038429874926805496, 0.04625985398888588, 0.0015153138665482402, -0.0946233719587326, 0.07827582210302353, 0.11081670224666595, 0.03960550203919411, -0.003951604478061199, -0.06605078279972076, 0.05864938348531723, 0.05966371297836304, 0.08953003585338593, -0.046895042061805725, 0.09167485684156418, -0.08056221157312393, -0.020433146506547928, 0.013344647362828255, 0.028342319652438164, -0.020089657977223396, -0.06943738460540771, -0.0014440665254369378, -0.2258237600326538, -0.006016506813466549, 0.07378267496824265, -0.08793183416128159, -0.07779357582330704, 0.02593042142689228, -0.03558870032429695, 0.045281488448381424, 0.012967719696462154, 0.050295256078243256, 0.06179950386285782, -0.06904362887144089, 0.03790484741330147, 0.10444819182157516, -0.04191597178578377, -0.08308325707912445, -0.07956112921237946, -0.03699001669883728, -0.11986613273620605, -0.04012438282370567, 0.005253848619759083, -0.10867656022310257, -0.056690726429224014, -0.01689564809203148, -0.042155686765909195, 0.07761947810649872, 0.13991740345954895, 0.03793599456548691, -0.015706341713666916, 0.11850710958242416, -0.016732191666960716, 0.11764074862003326, -0.05687762796878815, -0.048059917986392975 ]
null
null
transformers
# deit_base_patch16_384 Implementation of DeiT proposed in [Training data-efficient image transformers & distillation through attention](https://arxiv.org/pdf/2010.11929.pdf) An attention based distillation is proposed where a new token is added to the model, the [dist]{.title-ref} token. ![image](https://github.com/FrancescoSaverioZuppichini/glasses/blob/develop/docs/_static/images/DeiT.png?raw=true) ``` {.sourceCode .} DeiT.deit_tiny_patch16_224() DeiT.deit_small_patch16_224() DeiT.deit_base_patch16_224() DeiT.deit_base_patch16_384() ```
{}
null
glasses/deit_base_patch16_384
[ "transformers", "pytorch", "arxiv:2010.11929", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[ "2010.11929" ]
[]
TAGS #transformers #pytorch #arxiv-2010.11929 #endpoints_compatible #region-us
# deit_base_patch16_384 Implementation of DeiT proposed in Training data-efficient image transformers & distillation through attention An attention based distillation is proposed where a new token is added to the model, the [dist]{.title-ref} token. !image
[ "# deit_base_patch16_384\n Implementation of DeiT proposed in Training data-efficient image\n transformers & distillation through\n attention\n\n An attention based distillation is proposed where a new token is added\n to the model, the [dist]{.title-ref} token.\n\n !image" ]
[ "TAGS\n#transformers #pytorch #arxiv-2010.11929 #endpoints_compatible #region-us \n", "# deit_base_patch16_384\n Implementation of DeiT proposed in Training data-efficient image\n transformers & distillation through\n attention\n\n An attention based distillation is proposed where a new token is added\n to the model, the [dist]{.title-ref} token.\n\n !image" ]
[ 29, 69 ]
[ "passage: TAGS\n#transformers #pytorch #arxiv-2010.11929 #endpoints_compatible #region-us \n# deit_base_patch16_384\n Implementation of DeiT proposed in Training data-efficient image\n transformers & distillation through\n attention\n\n An attention based distillation is proposed where a new token is added\n to the model, the [dist]{.title-ref} token.\n\n !image" ]
[ -0.1216820478439331, -0.08668020367622375, -0.0034311162307858467, 0.13173946738243103, 0.09654231369495392, 0.01010139100253582, 0.08760848641395569, 0.03689934313297272, -0.13984088599681854, -0.005575902294367552, 0.08697396516799927, 0.21406501531600952, -0.025734730064868927, 0.13777782022953033, -0.08141122758388519, -0.3243806064128876, 0.005486351437866688, 0.16266964375972748, -0.01636776328086853, 0.04547693207859993, 0.13865824043750763, -0.14949257671833038, 0.10135046392679214, -0.02717607095837593, -0.19679321348667145, 0.01526726596057415, -0.06902948766946793, -0.06106666848063469, 0.14701001346111298, 0.022661203518509865, 0.14972813427448273, 0.11275959759950638, 0.07709944248199463, 0.0874713808298111, 0.04139070585370064, -0.006349703762680292, -0.007922820746898651, 0.05226872116327286, -0.03809911012649536, 0.05453263968229294, 0.08928805589675903, -0.05953408405184746, 0.05206172913312912, -0.05939468741416931, -0.15810056030750275, 0.012416052632033825, -0.05374579876661301, 0.062241487205028534, 0.08290460705757141, 0.07505029439926147, 0.03439199551939964, 0.0521848201751709, -0.03800917789340019, 0.11700119823217392, 0.06590006500482559, -0.08345098048448563, -0.06807874888181686, 0.0175975039601326, 0.003156443126499653, -0.03938686475157738, 0.0327407531440258, 0.019048361107707024, 0.08024822175502777, 0.0832405835390091, -0.02149185724556446, -0.006049121264368296, 0.025348937138915062, 0.018246455118060112, -0.10764337331056595, -0.050412267446517944, 0.2718082666397095, 0.020616887137293816, -0.027171600610017776, 0.011015850119292736, -0.07614173740148544, -0.11734765022993088, -0.11045970767736435, -0.10609748214483261, 0.0021613615099340677, -0.0068366979248821735, -0.04050355404615402, -0.042017169296741486, -0.13733014464378357, 0.008333759382367134, -0.1952890306711197, 0.12002930045127869, 0.05363365262746811, 0.0064865052700042725, -0.14142963290214539, 0.11234150826931, -0.03272245079278946, -0.08911225199699402, -0.06069693714380264, -0.11580407619476318, 0.03762750327587128, -0.11585191637277603, -0.03708774596452713, -0.2014506459236145, -0.0306865181773901, 0.14289900660514832, -0.04833275079727173, -0.016829445958137512, -0.03058636374771595, 0.03743154555559158, 0.05298281088471413, 0.14150650799274445, -0.039263803511857986, 0.03432663902640343, 0.05896656587719917, 0.005296903662383556, 0.048197824507951736, 0.026798952370882034, -0.11418941617012024, -0.038174960762262344, 0.05648983269929886, -0.029231034219264984, -0.04922754690051079, 0.14475500583648682, -0.05851750820875168, -0.05601485073566437, 0.2123500108718872, -0.042848359793424606, -0.0624379999935627, -0.06549040973186493, -0.014637707732617855, 0.2233763337135315, 0.07406076788902283, -0.019407158717513084, 0.019091404974460602, 0.0587230883538723, -0.04840405657887459, -0.01776058040559292, -0.07260539382696152, -0.10403928905725479, 0.00019872802658937871, -0.11488218605518341, 0.08395228534936905, -0.20746967196464539, -0.23376253247261047, 0.07533124089241028, 0.03032865561544895, -0.008590273559093475, 0.03477037325501442, -0.07114046066999435, -0.09213525801897049, -0.020379377529025078, 0.029633665457367897, -0.08332798629999161, -0.007097494788467884, 0.06678768992424011, 0.05840980261564255, 0.16095104813575745, -0.21748262643814087, 0.052245087921619415, -0.0438443161547184, 0.012694990262389183, -0.2595226764678955, 0.1374056339263916, 0.05040259286761284, 0.15243680775165558, -0.045257534831762314, -0.1489778459072113, -0.1481141895055771, 0.016537627205252647, 0.059507135301828384, 0.19366446137428284, -0.27594858407974243, -0.0496964231133461, -0.10164690017700195, -0.15687134861946106, -0.0662381500005722, 0.09664881229400635, -0.07904182374477386, 0.1383499652147293, 0.11970287561416626, 0.06254013627767563, -0.01337435096502304, -0.1416528970003128, -0.010402070358395576, -0.004503499250859022, -0.25605064630508423, 0.010615664534270763, -0.07940517365932465, 0.20062409341335297, 0.0497758686542511, 0.01656428910791874, 0.07364168763160706, 0.007149938493967056, -0.13553492724895477, -0.06940347701311111, -0.009700230322778225, -0.016474144533276558, 0.04571349173784256, 0.060930561274290085, 0.0736248642206192, -0.03241461515426636, 0.03251853585243225, 0.18230997025966644, 0.07365044206380844, -0.03095880150794983, 0.0007719223503954709, -0.16064107418060303, 0.06744658201932907, -0.06602830439805984, 0.018964577466249466, -0.13937628269195557, -0.007526135537773371, -0.05703746899962425, 0.1716517210006714, 0.03615817055106163, 0.06783974170684814, 0.08292601257562637, 0.023346994072198868, -0.023025041446089745, -0.05369191989302635, -0.04666104167699814, 0.05578991770744324, -0.04030374065041542, -0.09989576786756516, 0.0015785744180902839, -0.0639134868979454, -0.03480805456638336, -0.024755118414759636, 0.013337395153939724, 0.14845579862594604, 0.090212382376194, 0.04672927409410477, 0.06703481823205948, -0.021755358204245567, 0.054186854511499405, -0.09703034907579422, -0.08080070465803146, 0.02938821353018284, -0.029667062684893608, 0.02443883754312992, -0.050820186734199524, 0.05622514709830284, 0.145776629447937, 0.16338810324668884, -0.29869458079338074, -0.11103741079568863, 0.05837295204401016, -0.030472641810774803, 0.025139806792140007, 0.08776428550481796, -0.06747955083847046, 0.054691292345523834, -0.06224576756358147, 0.08594454824924469, -0.0074699013493955135, 0.02743127942085266, 0.04555979743599892, 0.04025675356388092, -0.0903191938996315, 0.036304838955402374, 0.0625736340880394, -0.22131386399269104, 0.07340673357248306, 0.09416653960943222, 0.0136810801923275, 0.006120902020484209, 0.0033342635724693537, -0.041891127824783325, 0.007706103380769491, 0.0016796037089079618, 0.021000951528549194, 0.12654592096805573, -0.14001573622226715, -0.03961413353681564, 0.012099241837859154, -0.037044327706098557, 0.03541570156812668, -0.1144525483250618, 0.001987183466553688, 0.03376813605427742, -0.01628081314265728, -0.09778664261102676, 0.057097841054201126, -0.013855990022420883, 0.06977476924657822, 0.04352105036377907, -0.06281305104494095, 0.09053579717874527, 0.062088653445243835, 0.00944282952696085, 0.098436139523983, -0.05689422786235809, -0.2212027907371521, -0.07481728494167328, -0.0711602121591568, 0.03151201829314232, 0.11132034659385681, 0.07654719054698944, -0.0895218551158905, -0.04764441028237343, -0.012991821393370628, 0.028703194111585617, -0.056604061275720596, 0.05480042099952698, 0.029047416523098946, 0.014938442036509514, -0.05271606892347336, -0.08078604936599731, -0.0312491487711668, -0.09343599528074265, 0.009828724898397923, 0.1821947693824768, -0.1407618224620819, 0.12583379447460175, 0.04937155172228813, -0.06971040368080139, 0.039904192090034485, -0.06913914531469345, 0.22432541847229004, -0.0911492332816124, 0.10180139541625977, 0.21873122453689575, 0.018897591158747673, 0.01583736017346382, 0.08203580230474472, -0.01942852884531021, -0.13819994032382965, 0.01964297518134117, -0.034870781004428864, -0.12009799480438232, -0.06557981669902802, -0.05961128696799278, -0.10857071727514267, -0.03551872447133064, 0.07079137116670609, 0.04351181536912918, 0.16616812348365784, 0.06925052404403687, 0.053094614297151566, 0.14326028525829315, 0.011572537012398243, 0.10288403928279877, 0.2981162965297699, -0.0457213819026947, 0.09430423378944397, -0.09210281074047089, -0.11884574592113495, 0.07869133353233337, 0.04481949657201767, 0.24309562146663666, -0.0023307218216359615, -0.07693378627300262, 0.06045283377170563, 0.003967632073909044, 0.05843765661120415, 0.1634977161884308, -0.02727382630109787, -0.034888315945863724, -0.06325605511665344, -0.018179941922426224, -0.010846991091966629, 0.04688932001590729, -0.03167129307985306, -0.055556152015924454, -0.024940717965364456, 0.05761506408452988, 0.06465496867895126, 0.17145971953868866, 0.07574062049388885, -0.4385678470134735, -0.10969173163175583, -0.01804168149828911, 0.06440842151641846, -0.02586038038134575, -0.02578135021030903, -0.03861786052584648, 0.0616716630756855, 0.055656030774116516, -0.002968337619677186, 0.05720307305455208, -0.10403329133987427, 0.05056864768266678, 0.03657938539981842, 0.025183076038956642, 0.012990226037800312, -0.05509524419903755, -0.2990990877151489, 0.1645917147397995, -0.0050272708758711815, 0.09421338886022568, 0.006636031903326511, -0.014816390350461006, 0.03776320442557335, 0.2698597013950348, 0.08606081455945969, -0.02754274569451809, 0.059676919132471085, -0.20130643248558044, 0.011296670883893967, -0.02349310740828514, 0.05089781433343887, 0.08969391137361526, 0.01605340652167797, 0.05001645162701607, 0.012347588315606117, 0.044755805283784866, 0.09832695126533508, -0.10243609547615051, -0.11046236753463745, 0.015077958814799786, -0.05510875582695007, 0.06048054248094559, 0.017383532598614693, -0.0779014453291893, -0.15640868246555328, 0.037573110312223434, 0.03028314746916294, -0.07634104043245316, -0.1334877461194992, 0.08365932106971741, -0.0042656585574150085, -0.013379870913922787, 0.09065122902393341, -0.0008057297673076391, 0.00696431752294302, -0.02187538892030716, -0.1443559229373932, 0.08624692261219025, -0.09867440164089203, 0.020071417093276978, -0.01769024133682251, 0.012223524041473866, 0.0162127073854208, -0.03826802968978882, 0.042878657579422, -0.004637328442186117, -0.006629432551562786, -0.008978867903351784, 0.0252592284232378, -0.013028392568230629, 0.11947258561849594, -0.015248900279402733, -0.09418857842683792, -0.015229997225105762, -0.04365220665931702, 0.0736108273267746, 0.018652699887752533, 0.06977320462465286, -0.013240735046565533, 0.014412366785109043, -0.04310562089085579, 0.015761665999889374, -0.2209467589855194, 0.09090358763933182, -0.020319046452641487, 0.03849276900291443, -0.06284531205892563, -0.15137648582458496, 0.011098022572696209, 0.06796012818813324, 0.051881302148103714, 0.09176811575889587, -0.16541524231433868, -0.05559588596224785, 0.07494745403528214, 0.05327026918530464, 0.2581307590007782, -0.057110048830509186, 0.04846663400530815, -0.06325630098581314, -0.17962788045406342, -0.004954305477440357, 0.06266055256128311, 0.07407145202159882, -0.01391194574534893, 0.06080053001642227, 0.015100553631782532, -0.02187221497297287, 0.029897689819335938, 0.0753425881266594, 0.1286320835351944, -0.06084033474326134, -0.16226641833782196, 0.1458069086074829, -0.02956424281001091, 0.05127638578414917, 0.22882196307182312, 0.09536948800086975, 0.002714781556278467, -0.0386759415268898, -0.021087557077407837, 0.04392301291227341, 0.045745231211185455, -0.0789259672164917, -0.11502109467983246, 0.011111914180219173, 0.004031797405332327, -0.005619541276246309, 0.07071997970342636, -0.00014559603005181998, -0.14724722504615784, -0.0672626793384552, 0.09240861237049103, -0.14510208368301392, 0.002630597911775112, -0.003819923847913742, -0.053812045603990555, 0.08026764541864395, -0.15470877289772034, 0.06048600748181343, 0.13115926086902618, -0.011553012765944004, 0.09214407205581665, 0.1310434490442276, 0.05379410460591316, 0.0982566550374031, 0.1164773479104042, -0.06788498163223267, -0.029436998069286346, -0.009133681654930115, -0.12070303410291672, 0.1544875204563141, 0.20135238766670227, 0.10746229439973831, -0.03841094300150871, 0.03804668411612511, -0.01410333625972271, -0.024660222232341766, -0.05512756481766701, 0.06332693994045258, -0.04178250581026077, -0.03601707145571709, -0.0766269862651825, -0.004325288813561201, -0.033804651349782944, -0.15413163602352142, -0.018802804872393608, -0.06147937849164009, -0.13600000739097595, -0.062837153673172, -0.13503234088420868, 0.04676419124007225, -0.12565787136554718, -0.019619565457105637, -0.08258313685655594, -0.10047628730535507, 0.10360080003738403, 0.09920471161603928, 0.08133701235055923, 0.07463576644659042, -0.09396225214004517, 0.11740289628505707, -0.15139812231063843, -0.030788946896791458, -0.023067429661750793, 0.1359705626964569, -0.1559755802154541, 0.07896801084280014, -0.07270418107509613, 0.0941973328590393, -0.10787511616945267, -0.033199068158864975, -0.005975019186735153, 0.04827112704515457, -0.026663200929760933, -0.026125799864530563, -0.06616082787513733, -0.020571285858750343, 0.033713411539793015, -0.030721202492713928, -0.03993199020624161, 0.0196650680154562, -0.03714826703071594, 0.06528580188751221, 0.0704033300280571, 0.009434503503143787, 0.0021789041347801685, -0.05811513960361481, -0.045224323868751526, -0.06755917519330978, 0.11079344898462296, 0.07935130596160889, -0.06689285486936569, -0.006354701239615679, 0.0036575286649167538, -0.10055093467235565, 0.17911455035209656, 0.05744646489620209, 0.058653056621551514, 0.07870282232761383, 0.005092554725706577, 0.06837684661149979, -0.03718520328402519, -0.015126311220228672, 0.014513978734612465, -0.015983231365680695, 0.11136282980442047, -0.05606405436992645, -0.07535546272993088, -0.06028926745057106, 0.022035589441657066, 0.11863309890031815, 0.09095551818609238, 0.14569218456745148, -0.05954679474234581, -0.048313599079847336, -0.061062686145305634, -0.03171415254473686, 0.02786017209291458, -0.1147635281085968, -0.047843802720308304, -0.09695394337177277, 0.044372864067554474, -0.014502439647912979, 0.10805383324623108, -0.010345828719437122, -0.026071954518556595, 0.016230149194598198, 0.012647723779082298, -0.12567336857318878, 0.020970283076167107, 0.24802187085151672, 0.050926513969898224, -0.028735361993312836, -0.10914794355630875, 0.1037290170788765, 0.09200812131166458, 0.08984040468931198, 0.047397881746292114, 0.15909379720687866, -0.09301617741584778, 0.09405980259180069, 0.05049574747681618, 0.13948214054107666, -0.2150818258523941, -0.01967703551054001, -0.0422971211373806, 0.017776785418391228, 0.05959977209568024, -0.042191315442323685, 0.15022966265678406, -0.024295596405863762, 0.03529033064842224, 0.030098704621195793, -0.0378984734416008, 0.020721785724163055, -0.05483999848365784, -0.08378946781158447, -0.12307892739772797, 0.012800662778317928, -0.08557405322790146, -0.028459038585424423, -0.004314325284212828, 0.09866803884506226, -0.05442605912685394, 0.11973287910223007, 0.014312018640339375, 0.02741711027920246, 0.06542432308197021, -0.035533420741558075, -0.10812204331159592, -0.007849159650504589, -0.0772530734539032, -0.02540181204676628, 0.03694755956530571, -0.016949256882071495, -0.034015219658613205, 0.06259548664093018, -0.04730667173862457, -0.023548971861600876, -0.015465278178453445, -0.018397971987724304, 0.08192998170852661, -0.07661380618810654, -0.058808472007513046, 0.00039303835364989936, -0.0842084065079689, 0.05156547948718071, -0.06288004666566849, 0.008501065894961357, -0.20324580371379852, -0.1305951178073883, 0.2554410696029663, 0.055301010608673096, 0.09742273390293121, -0.010190829634666443, -0.05107896775007248, -0.01334945484995842, 0.13280199468135834, 0.18304800987243652, -0.10532945394515991, -0.04396335780620575, -0.01985890418291092, 0.018326273187994957, -0.06476356834173203, 0.0014825118705630302, 0.086652010679245, 0.09223967045545578, 0.027626443654298782, -0.09599748998880386, -0.09794165939092636, 0.0633435994386673, 0.0045919218100607395, -0.021647868677973747, 0.06334938108921051, -0.03499718755483627, -0.09829308092594147, 0.07421427965164185, -0.03225494548678398, -0.06299201399087906, 0.21547062695026398, -0.06798209995031357, -0.04383837804198265, 0.03455084562301636, -0.03324022889137268, -0.010708102956414223, 0.0745142474770546, -0.10018520057201385, -0.034002020955085754, 0.04461606219410896, 0.0016106239054352045, -0.0922653079032898, 0.08397090435028076, 0.10755598545074463, 0.036654066294431686, -0.007845702581107616, -0.06318783015012741, 0.06357603520154953, 0.05741296708583832, 0.08709001541137695, -0.0470576174557209, 0.0913042351603508, -0.08079572021961212, -0.0196192879229784, 0.014171140268445015, 0.029078885912895203, -0.021610116586089134, -0.07135048508644104, -0.0031737973913550377, -0.2315816432237625, -0.005697313696146011, 0.06526821106672287, -0.08595051616430283, -0.0788470059633255, 0.024912964552640915, -0.0366542749106884, 0.04669281840324402, 0.01142018660902977, 0.05196122080087662, 0.05997330695390701, -0.06765811890363693, 0.03933468833565712, 0.10055587440729141, -0.04345432296395302, -0.0848245620727539, -0.08038033545017242, -0.03900504484772682, -0.12445364892482758, -0.03372836485505104, 0.006875959224998951, -0.10614568740129471, -0.058060403913259506, -0.016094336286187172, -0.050652723759412766, 0.08014657348394394, 0.14203014969825745, 0.03551705181598663, -0.015613583847880363, 0.11844470351934433, -0.01592005044221878, 0.11757391691207886, -0.05814701318740845, -0.046954795718193054 ]
null
null
transformers
# deit_small_patch16_224 Implementation of DeiT proposed in [Training data-efficient image transformers & distillation through attention](https://arxiv.org/pdf/2010.11929.pdf) An attention based distillation is proposed where a new token is added to the model, the [dist]{.title-ref} token. ![image](https://github.com/FrancescoSaverioZuppichini/glasses/blob/develop/docs/_static/images/DeiT.png?raw=true) ``` {.sourceCode .} DeiT.deit_tiny_patch16_224() DeiT.deit_small_patch16_224() DeiT.deit_base_patch16_224() DeiT.deit_base_patch16_384() ```
{}
null
glasses/deit_small_patch16_224
[ "transformers", "pytorch", "arxiv:2010.11929", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[ "2010.11929" ]
[]
TAGS #transformers #pytorch #arxiv-2010.11929 #endpoints_compatible #region-us
# deit_small_patch16_224 Implementation of DeiT proposed in Training data-efficient image transformers & distillation through attention An attention based distillation is proposed where a new token is added to the model, the [dist]{.title-ref} token. !image
[ "# deit_small_patch16_224\n Implementation of DeiT proposed in Training data-efficient image\n transformers & distillation through\n attention\n\n An attention based distillation is proposed where a new token is added\n to the model, the [dist]{.title-ref} token.\n\n !image" ]
[ "TAGS\n#transformers #pytorch #arxiv-2010.11929 #endpoints_compatible #region-us \n", "# deit_small_patch16_224\n Implementation of DeiT proposed in Training data-efficient image\n transformers & distillation through\n attention\n\n An attention based distillation is proposed where a new token is added\n to the model, the [dist]{.title-ref} token.\n\n !image" ]
[ 29, 71 ]
[ "passage: TAGS\n#transformers #pytorch #arxiv-2010.11929 #endpoints_compatible #region-us \n# deit_small_patch16_224\n Implementation of DeiT proposed in Training data-efficient image\n transformers & distillation through\n attention\n\n An attention based distillation is proposed where a new token is added\n to the model, the [dist]{.title-ref} token.\n\n !image" ]
[ -0.1222398579120636, -0.10376303642988205, -0.003458722261711955, 0.13944292068481445, 0.09439133107662201, 0.0017437327187508345, 0.08597845584154129, 0.03708392009139061, -0.13609038293361664, 0.0012937354622408748, 0.09011849761009216, 0.20906271040439606, -0.028399072587490082, 0.12452343851327896, -0.08295151591300964, -0.31520402431488037, -0.0005036798538640141, 0.1621406227350235, -0.021265503019094467, 0.041383273899555206, 0.14029695093631744, -0.1596992015838623, 0.10745816677808762, -0.01612440124154091, -0.1844092160463333, 0.0061318702064454556, -0.06863225996494293, -0.0653790757060051, 0.14341123402118683, 0.02303651161491871, 0.1302797496318817, 0.11136127263307571, 0.0705312192440033, 0.09978613257408142, 0.03815587982535362, -0.02277609519660473, 0.0019757437985390425, 0.0431215763092041, -0.03353438153862953, 0.06541020423173904, 0.08673644065856934, -0.07111743092536926, 0.045195989310741425, -0.05611567199230194, -0.1438620239496231, 0.004536976106464863, -0.055518738925457, 0.04670727252960205, 0.05921902135014534, 0.08078428357839584, 0.04105941951274872, 0.07193008065223694, -0.06888750195503235, 0.10879742354154587, 0.09160386770963669, -0.06716662645339966, -0.06567354500293732, -0.004364247899502516, 0.018790876492857933, -0.04105491191148758, 0.03519786521792412, 0.018963821232318878, 0.07625404745340347, 0.09190324693918228, -0.024980364367365837, -0.0028552510775625706, 0.012294190004467964, 0.019441276788711548, -0.0984012708067894, -0.05153188481926918, 0.277652770280838, 0.0025516008026897907, -0.031089911237359047, -0.0005361076910048723, -0.061608247458934784, -0.1275489181280136, -0.11715490370988846, -0.12006071209907532, 0.008844053372740746, -0.012830942869186401, -0.038220249116420746, -0.0325516015291214, -0.14067432284355164, 0.011060877703130245, -0.20019973814487457, 0.14438727498054504, 0.048158980906009674, 0.0016600628150627017, -0.16788765788078308, 0.08309190720319748, -0.027600808069109917, -0.07581961154937744, -0.07890050858259201, -0.11221173405647278, 0.06544514745473862, -0.11589927971363068, -0.038976117968559265, -0.18067361414432526, -0.017633670940995216, 0.13845524191856384, -0.05810760706663132, -0.029581615701317787, -0.005444598849862814, 0.027101149782538414, 0.04527729004621506, 0.13672830164432526, -0.022752251476049423, 0.043621063232421875, 0.05600990727543831, 0.008733494207262993, 0.04491638392210007, 0.029398223385214806, -0.12359624356031418, -0.0452292300760746, 0.04579120874404907, -0.0173749141395092, -0.052657924592494965, 0.1309898942708969, -0.0581800751388073, -0.04971058666706085, 0.21654126048088074, -0.039512667804956436, -0.05011463537812233, -0.05074941739439964, -0.013681085780262947, 0.23938648402690887, 0.047001734375953674, -0.03563004732131958, 0.01637778803706169, 0.07077345252037048, -0.048584792762994766, -0.017893541604280472, -0.0659218579530716, -0.10784221440553665, 0.005462201777845621, -0.10910752415657043, 0.08244280517101288, -0.21314574778079987, -0.21191945672035217, 0.08632855862379074, 0.006930522620677948, -0.012888246215879917, 0.04010945186018944, -0.0664231926202774, -0.09996672719717026, -0.01817195862531662, 0.03765486925840378, -0.09726974368095398, -0.008775812573730946, 0.06229488179087639, 0.06125815957784653, 0.1644936352968216, -0.221111461520195, 0.05126861482858658, -0.04957123100757599, 0.007188684772700071, -0.23212429881095886, 0.12212371081113815, 0.06906931847333908, 0.14974543452262878, -0.04057995229959488, -0.15633493661880493, -0.16143035888671875, 0.014052538201212883, 0.05715031921863556, 0.19764210283756256, -0.29996350407600403, -0.05652565136551857, -0.09508193284273148, -0.1586357206106186, -0.0712561160326004, 0.10658025741577148, -0.06441553682088852, 0.13915576040744781, 0.12192948162555695, 0.04900301247835159, -0.009005432017147541, -0.13678334653377533, -0.03148695454001427, -0.0011172982631251216, -0.2586049437522888, 0.00007246427412610501, -0.06984651833772659, 0.19843874871730804, 0.0697413757443428, 0.01422867365181446, 0.0890389159321785, 0.002093781717121601, -0.13644737005233765, -0.06320413947105408, -0.008627550676465034, -0.013783389702439308, 0.04775018244981766, 0.05593494325876236, 0.07786023616790771, -0.04217628762125969, 0.04431195557117462, 0.18299716711044312, 0.06772833317518234, -0.02195790782570839, -0.004902162589132786, -0.17406758666038513, 0.08588584512472153, -0.06203235685825348, 0.017229070886969566, -0.12868335843086243, 0.012891147285699844, -0.048116229474544525, 0.16502824425697327, 0.021389884874224663, 0.07717776298522949, 0.08998605608940125, 0.016308380290865898, -0.010367557406425476, -0.030337423086166382, -0.04719763621687889, 0.05101499333977699, -0.044328510761260986, -0.09205758571624756, 0.01072495337575674, -0.06157975643873215, -0.04149645194411278, -0.03879403695464134, 0.005476113874465227, 0.16857792437076569, 0.06970687210559845, 0.04366243630647659, 0.07379481196403503, -0.03506482020020485, 0.05376521125435829, -0.10271774977445602, -0.07646457850933075, 0.028787575662136078, -0.029443057253956795, 0.029527124017477036, -0.05117086321115494, 0.04451567679643631, 0.14988189935684204, 0.16079291701316833, -0.27254390716552734, -0.10116870701313019, 0.04557943716645241, -0.03053564764559269, 0.03219814971089363, 0.08641599863767624, -0.06748911738395691, 0.04302923381328583, -0.06466227024793625, 0.08642448484897614, -0.014061586931347847, 0.024914097040891647, 0.05527004972100258, 0.040803439915180206, -0.08539076894521713, 0.05029846727848053, 0.06463518738746643, -0.21526266634464264, 0.07345134764909744, 0.0994667187333107, 0.02440141886472702, 0.006049774121493101, 0.011250494047999382, -0.047190241515636444, 0.008466814644634724, 0.0013091558357700706, 0.03480467200279236, 0.12159229815006256, -0.12694227695465088, -0.03251305967569351, 0.021398097276687622, -0.039958398789167404, 0.026662172749638557, -0.10848517715930939, -0.0005779392668046057, 0.04426465556025505, -0.015529279597103596, -0.08948151022195816, 0.0640292838215828, -0.005032526794821024, 0.07520726323127747, 0.04981808364391327, -0.05617690086364746, 0.09359025210142136, 0.07238055765628815, 0.014565277844667435, 0.10176938027143478, -0.04888547956943512, -0.24415446817874908, -0.07157926261425018, -0.05666767805814743, 0.050431087613105774, 0.11227162927389145, 0.08356499671936035, -0.1005246713757515, -0.049317143857479095, -0.016281500458717346, 0.040204208344221115, -0.06824787706136703, 0.056055109947919846, 0.025026632472872734, 0.024323884397745132, -0.06150776520371437, -0.08224881440401077, -0.031307823956012726, -0.08987187594175339, 0.014414936304092407, 0.1827620416879654, -0.1385498195886612, 0.11614859104156494, 0.036694418638944626, -0.07773143798112869, 0.0395362563431263, -0.06782321631908417, 0.21590474247932434, -0.08431515097618103, 0.08883205056190491, 0.2304966300725937, 0.028397444635629654, 0.009808208793401718, 0.06783763319253922, -0.019186245277523994, -0.13773058354854584, 0.012388702481985092, -0.04204096645116806, -0.12332026660442352, -0.06435234099626541, -0.06666439026594162, -0.10893303900957108, -0.019397152587771416, 0.07002153992652893, 0.052389904856681824, 0.154684916138649, 0.06533209979534149, 0.051946673542261124, 0.14211130142211914, -0.009976946748793125, 0.09952814131975174, 0.30733269453048706, -0.03386798873543739, 0.09092772752046585, -0.09738540649414062, -0.11950647085905075, 0.09036571532487869, 0.01445011142641306, 0.23768125474452972, 0.002873534569516778, -0.05808073282241821, 0.05842342600226402, -0.016693513840436935, 0.06688933819532394, 0.17217110097408295, -0.02459411509335041, -0.0425746813416481, -0.06860367953777313, -0.02760259062051773, -0.009579090401530266, 0.0409964993596077, -0.03327096626162529, -0.04992715269327164, -0.03575066104531288, 0.08640507608652115, 0.061298660933971405, 0.1687793880701065, 0.07153194397687912, -0.44467273354530334, -0.12679551541805267, -0.029667804017663002, 0.06417284160852432, -0.017461910843849182, -0.02574039436876774, -0.014029262587428093, 0.06757642328739166, 0.03611011058092117, 0.006117742974311113, 0.05097814276814461, -0.08885432034730911, 0.06340506672859192, 0.03460610285401344, 0.029364973306655884, 0.024966828525066376, -0.05305657163262367, -0.30793964862823486, 0.15242670476436615, -0.0037590281572192907, 0.09742455929517746, -0.012433753348886967, -0.017858773469924927, 0.03360825404524803, 0.24834531545639038, 0.09212668985128403, -0.022652165964245796, 0.06976482272148132, -0.19894792139530182, 0.0015406855382025242, -0.019199073314666748, 0.05690249428153038, 0.09538348019123077, 0.013339285738766193, 0.03677092865109444, 0.01873752288520336, 0.04115808382630348, 0.09450100362300873, -0.09047988057136536, -0.1145685613155365, 0.017889168113470078, -0.04131115972995758, 0.030668066814541817, 0.0207594633102417, -0.08399371057748795, -0.1586371511220932, 0.028191814199090004, 0.03305554762482643, -0.06554694473743439, -0.12619416415691376, 0.08037851750850677, -0.0021886026952415705, -0.01596585288643837, 0.09319107234477997, 0.0028327899053692818, 0.012227571569383144, -0.02569517306983471, -0.1343594342470169, 0.08308596163988113, -0.10685303807258606, 0.0007958924979902804, -0.010757852345705032, 0.007209784351289272, 0.019337553530931473, -0.028671184554696083, 0.04642269387841225, -0.005619833245873451, -0.00944742001593113, -0.009911512024700642, 0.007137186359614134, 0.0024958262220025063, 0.1094050481915474, -0.022733798250555992, -0.09070448577404022, -0.009029656648635864, -0.03159268572926521, 0.06252376735210419, 0.029501406475901604, 0.08648523688316345, -0.02418331429362297, 0.021105904132127762, -0.05447978153824806, 0.022132745012640953, -0.22850339114665985, 0.08562227338552475, -0.03798038512468338, 0.03899623453617096, -0.052863363176584244, -0.13154944777488708, 0.0213253665715456, 0.08236459642648697, 0.05550144612789154, 0.09718865901231766, -0.18938319385051727, -0.0494140163064003, 0.06126590073108673, 0.04104715213179588, 0.2724871337413788, -0.057379111647605896, 0.04767454043030739, -0.06493561714887619, -0.16004160046577454, 0.007677375338971615, 0.07294122874736786, 0.07391594350337982, -0.02949993871152401, 0.05198519676923752, 0.017509080469608307, -0.019788283854722977, 0.03289121389389038, 0.061925433576107025, 0.11395271867513657, -0.063756562769413, -0.17404738068580627, 0.1464676707983017, -0.02443818561732769, 0.04099015146493912, 0.2047680765390396, 0.08635400235652924, 0.017724381759762764, -0.04484944045543671, -0.022990265861153603, 0.05384064465761185, 0.04074528440833092, -0.0728338286280632, -0.12900519371032715, 0.007296636234968901, -0.00021799324895255268, -0.005946462973952293, 0.04813871532678604, -0.0019607690628618, -0.15811635553836823, -0.09645720571279526, 0.11810705065727234, -0.15284503996372223, 0.004353522788733244, 0.007868909277021885, -0.04639902338385582, 0.07452493160963058, -0.1364794820547104, 0.06405637413263321, 0.13277336955070496, -0.005204484798014164, 0.07884252071380615, 0.1351950764656067, 0.06759956479072571, 0.09342917054891586, 0.11596013605594635, -0.05402975529432297, -0.05071123689413071, -0.0019065935630351305, -0.09771238267421722, 0.14749515056610107, 0.18972881138324738, 0.09985686093568802, -0.03781973943114281, 0.03085308149456978, -0.021909892559051514, -0.022695817053318024, -0.04667244851589203, 0.06358390301465988, -0.059646666049957275, -0.031884800642728806, -0.07751620560884476, -0.01760418713092804, -0.033240772783756256, -0.17978069186210632, -0.01819775253534317, -0.04954485595226288, -0.1302284151315689, -0.0652536004781723, -0.1117904856801033, 0.03464193269610405, -0.11844974011182785, -0.02665332704782486, -0.08630374819040298, -0.11050310730934143, 0.11223049461841583, 0.09166885167360306, 0.07781160622835159, 0.0746496245265007, -0.089942567050457, 0.1162579134106636, -0.1604137122631073, -0.0280957892537117, -0.029216885566711426, 0.12878994643688202, -0.1543925404548645, 0.08356860280036926, -0.08784171938896179, 0.09471023082733154, -0.09996449947357178, -0.02288081869482994, -0.0029552211053669453, 0.041271086782217026, -0.032866187393665314, -0.001351493177935481, -0.07252472639083862, -0.023964570835232735, 0.028844472020864487, -0.01357865147292614, -0.040417417883872986, 0.015600938349962234, -0.03850068524479866, 0.06505594402551651, 0.07261722534894943, 0.02496895007789135, 0.01936371996998787, -0.051534123718738556, -0.046993475407361984, -0.06865797936916351, 0.11720170080661774, 0.07676719129085541, -0.07530303299427032, -0.01829463429749012, 0.01716059260070324, -0.10502990335226059, 0.18172940611839294, 0.06357800960540771, 0.0674876719713211, 0.08281280100345612, 0.005794237367808819, 0.0831882432103157, -0.03227248042821884, -0.008353670127689838, 0.013573935255408287, -0.013001829385757446, 0.12429940700531006, -0.05429615080356598, -0.0808933898806572, -0.05539550259709358, 0.006818411406129599, 0.11193379014730453, 0.0777943804860115, 0.14353184401988983, -0.057684045284986496, -0.047291968017816544, -0.05562862381339073, -0.03232854604721069, 0.019219838082790375, -0.10761647671461105, -0.057056132704019547, -0.08282934874296188, 0.04885715991258621, -0.005743100773543119, 0.1093539372086525, -0.005055271554738283, -0.03207411989569664, 0.02017253264784813, 0.011717204935848713, -0.13282383978366852, 0.014124459587037563, 0.24852308630943298, 0.05606758967041969, -0.0357857272028923, -0.1085687130689621, 0.0910239964723587, 0.09871017187833786, 0.11580785363912582, 0.08113320171833038, 0.1828540712594986, -0.09199674427509308, 0.10191135108470917, 0.04551687464118004, 0.12864527106285095, -0.22745968401432037, -0.026436420157551765, -0.03791221231222153, 0.016745230183005333, 0.05555523931980133, -0.044545359909534454, 0.15622536838054657, -0.012474813498556614, 0.03445342928171158, 0.008826195262372494, -0.029690193012356758, 0.015704207122325897, -0.053012534976005554, -0.0926591008901596, -0.10539357364177704, 0.003993397578597069, -0.08300106227397919, -0.02890476956963539, -0.009094768203794956, 0.0993543490767479, -0.0575551837682724, 0.11810359358787537, 0.0025456564035266638, 0.03088691458106041, 0.05550975352525711, -0.04432305321097374, -0.10159973800182343, -0.012783011421561241, -0.07865143567323685, -0.03471161425113678, 0.03533262386918068, -0.009757758118212223, -0.02803735062479973, 0.0670977383852005, -0.06045793741941452, -0.031081702560186386, -0.012950081378221512, -0.018467135727405548, 0.07798554003238678, -0.07903769612312317, -0.062357500195503235, 0.0052008056081831455, -0.08962304890155792, 0.05221003666520119, -0.07745791226625443, 0.009869282133877277, -0.22132395207881927, -0.10759655386209488, 0.25650888681411743, 0.05245985463261604, 0.09794756770133972, -0.007804423570632935, -0.04292749986052513, -0.025627560913562775, 0.14516378939151764, 0.18727585673332214, -0.09907244145870209, -0.03848765417933464, -0.025253288447856903, 0.017364637926220894, -0.07853592932224274, -0.002823988674208522, 0.08820580691099167, 0.11661910265684128, 0.031716424971818924, -0.09882725030183792, -0.1020195335149765, 0.08151187002658844, -0.010459975339472294, -0.01655205339193344, 0.06166675314307213, -0.02399819903075695, -0.0911092609167099, 0.0623958557844162, -0.025791741907596588, -0.04512853920459747, 0.21654771268367767, -0.06969161331653595, -0.04162305220961571, 0.03785215690732002, -0.032494667917490005, -0.010496041737496853, 0.08376969397068024, -0.10252024233341217, -0.05013372004032135, 0.011833579279482365, -0.0042646173387765884, -0.1108691543340683, 0.10966483503580093, 0.12200407683849335, 0.02765372022986412, 0.0028871612157672644, -0.05797024816274643, 0.06327588111162186, 0.0676569864153862, 0.0944027230143547, -0.06336752325296402, 0.08090761303901672, -0.07987722009420395, -0.014630637131631374, 0.022702716290950775, 0.028189711272716522, -0.02278577908873558, -0.07646400481462479, 0.0014714475255459547, -0.24219489097595215, -0.0025000388268381357, 0.09628894925117493, -0.07797165215015411, -0.07958691567182541, 0.023869475349783897, -0.033088941127061844, 0.0393093004822731, 0.012681607156991959, 0.05276584252715111, 0.05049549788236618, -0.06349742412567139, 0.04698079824447632, 0.10047277063131332, -0.044721364974975586, -0.09102246165275574, -0.08505817502737045, -0.03744500130414963, -0.12813213467597961, -0.02688119001686573, -0.0030052789952605963, -0.10159934312105179, -0.06060868874192238, -0.018191006034612656, -0.05078570172190666, 0.06716248393058777, 0.144122913479805, 0.036490608006715775, -0.01490633562207222, 0.12266317754983902, -0.02068234793841839, 0.11901240795850754, -0.05248161405324936, -0.04388391599059105 ]
null
null
transformers
# deit_tiny_patch16_224 Implementation of DeiT proposed in [Training data-efficient image transformers & distillation through attention](https://arxiv.org/pdf/2010.11929.pdf) An attention based distillation is proposed where a new token is added to the model, the [dist]{.title-ref} token. ![image](https://github.com/FrancescoSaverioZuppichini/glasses/blob/develop/docs/_static/images/DeiT.png?raw=true) ``` {.sourceCode .} DeiT.deit_tiny_patch16_224() DeiT.deit_small_patch16_224() DeiT.deit_base_patch16_224() DeiT.deit_base_patch16_384() ```
{}
null
glasses/deit_tiny_patch16_224
[ "transformers", "pytorch", "arxiv:2010.11929", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[ "2010.11929" ]
[]
TAGS #transformers #pytorch #arxiv-2010.11929 #endpoints_compatible #region-us
# deit_tiny_patch16_224 Implementation of DeiT proposed in Training data-efficient image transformers & distillation through attention An attention based distillation is proposed where a new token is added to the model, the [dist]{.title-ref} token. !image
[ "# deit_tiny_patch16_224\n Implementation of DeiT proposed in Training data-efficient image\n transformers & distillation through\n attention\n\n An attention based distillation is proposed where a new token is added\n to the model, the [dist]{.title-ref} token.\n\n !image" ]
[ "TAGS\n#transformers #pytorch #arxiv-2010.11929 #endpoints_compatible #region-us \n", "# deit_tiny_patch16_224\n Implementation of DeiT proposed in Training data-efficient image\n transformers & distillation through\n attention\n\n An attention based distillation is proposed where a new token is added\n to the model, the [dist]{.title-ref} token.\n\n !image" ]
[ 29, 70 ]
[ "passage: TAGS\n#transformers #pytorch #arxiv-2010.11929 #endpoints_compatible #region-us \n# deit_tiny_patch16_224\n Implementation of DeiT proposed in Training data-efficient image\n transformers & distillation through\n attention\n\n An attention based distillation is proposed where a new token is added\n to the model, the [dist]{.title-ref} token.\n\n !image" ]
[ -0.11589144915342331, -0.10813921689987183, -0.003708689473569393, 0.13982471823692322, 0.0997592881321907, 0.00037805692409165204, 0.08144062012434006, 0.042086776345968246, -0.14986005425453186, -0.003908088896423578, 0.08992928266525269, 0.2146308273077011, -0.030866870656609535, 0.12440994381904602, -0.07834052294492722, -0.3212360739707947, 0.001848822459578514, 0.1630052775144577, -0.019970715045928955, 0.04201038181781769, 0.1378871351480484, -0.1572769433259964, 0.10400235652923584, -0.017212219536304474, -0.1906479150056839, 0.006262168753892183, -0.06729866564273834, -0.06511929631233215, 0.14626294374465942, 0.02382776141166687, 0.1398942619562149, 0.10217934101819992, 0.07257837802171707, 0.09027216583490372, 0.039393264800310135, -0.008205835707485676, 0.00200918922200799, 0.04758399352431297, -0.026458732783794403, 0.06307173520326614, 0.0834902822971344, -0.06553570181131363, 0.046318087726831436, -0.060491569340229034, -0.1469941884279251, 0.002134612062945962, -0.046608179807662964, 0.0503377839922905, 0.058954909443855286, 0.08345356583595276, 0.03922923654317856, 0.076247937977314, -0.0527026429772377, 0.11234580725431442, 0.08924531191587448, -0.06437020748853683, -0.07205874472856522, 0.0026557277888059616, 0.013245168142020702, -0.045608941465616226, 0.030048303306102753, 0.020799914374947548, 0.07631058990955353, 0.09278056025505066, -0.01844683662056923, -0.005600973032414913, 0.0058507672511041164, 0.01883171685039997, -0.10217886418104172, -0.05270897224545479, 0.2597223222255707, 0.008835043758153915, -0.025771597400307655, 0.0003008292696904391, -0.06694458425045013, -0.12725523114204407, -0.1169099509716034, -0.10995867848396301, 0.00716003030538559, -0.013869981281459332, -0.048945724964141846, -0.033355895429849625, -0.1427525132894516, 0.008159085176885128, -0.1982831358909607, 0.13318079710006714, 0.0492933914065361, -0.0006486058700829744, -0.1638941764831543, 0.09483566135168076, -0.028118353337049484, -0.0738835334777832, -0.06982047855854034, -0.11353377997875214, 0.058712296187877655, -0.11112333834171295, -0.038266539573669434, -0.1936798393726349, -0.021891053766012192, 0.12985631823539734, -0.04797946661710739, -0.024570796638727188, -0.011873449198901653, 0.03277192637324333, 0.0496659092605114, 0.13348419964313507, -0.03317869454622269, 0.050909943878650665, 0.05461268126964569, 0.009374476969242096, 0.048494648188352585, 0.02624896727502346, -0.11246646195650101, -0.03455464169383049, 0.0546550378203392, -0.020942039787769318, -0.04119221493601799, 0.1392579823732376, -0.05213773995637894, -0.05235940217971802, 0.1954568475484848, -0.038732487708330154, -0.061368897557258606, -0.06371349841356277, -0.00999089889228344, 0.23131322860717773, 0.05391887202858925, -0.03245064988732338, 0.01270047016441822, 0.07811222225427628, -0.05364150553941727, -0.01913273148238659, -0.0647675171494484, -0.10779907554388046, -0.00021934523829258978, -0.10410594195127487, 0.08631283789873123, -0.22036850452423096, -0.20572488009929657, 0.0824815034866333, 0.016557004302740097, -0.0075941807590425014, 0.03324899077415466, -0.06405242532491684, -0.10687638819217682, -0.014161494560539722, 0.033893782645463943, -0.08779594302177429, -0.007912516593933105, 0.06465219706296921, 0.058469634503126144, 0.16255372762680054, -0.21078111231327057, 0.04818597435951233, -0.0470597967505455, 0.00915374606847763, -0.23398156464099884, 0.12543515861034393, 0.061877597123384476, 0.145265132188797, -0.042465247213840485, -0.14819404482841492, -0.15291030704975128, 0.01881852000951767, 0.053433023393154144, 0.18883013725280762, -0.28481149673461914, -0.05460966378450394, -0.08622494339942932, -0.1527443528175354, -0.06532422453165054, 0.09757663309574127, -0.06808827817440033, 0.13381871581077576, 0.12144394218921661, 0.06663905084133148, -0.010185626335442066, -0.13845594227313995, -0.025892674922943115, -0.00157643121201545, -0.2604275643825531, 0.008123244158923626, -0.07337185740470886, 0.20415155589580536, 0.05756635591387749, 0.013559217564761639, 0.06889565289020538, 0.006891047116369009, -0.13649344444274902, -0.06354726105928421, -0.007544438820332289, -0.014334483072161674, 0.043295323848724365, 0.06210080534219742, 0.07399248331785202, -0.03956757113337517, 0.03851037472486496, 0.17849993705749512, 0.07462508231401443, -0.02716529555618763, -0.0010585981654003263, -0.16865988075733185, 0.06654507666826248, -0.066282257437706, 0.021276473999023438, -0.13075552880764008, -0.0031325698364526033, -0.05144893750548363, 0.1497718095779419, 0.028808584436774254, 0.0832885280251503, 0.08776985853910446, 0.01665288768708706, -0.017655624076724052, -0.039851266890764236, -0.0553242564201355, 0.05596906691789627, -0.041565701365470886, -0.09624991565942764, 0.01086685061454773, -0.06369662284851074, -0.04432479664683342, -0.0357208251953125, 0.00218275748193264, 0.15602463483810425, 0.0708024725317955, 0.049421679228544235, 0.06926319003105164, -0.030348319560289383, 0.050647299736738205, -0.10409535467624664, -0.081447072327137, 0.03415185585618019, -0.02555428259074688, 0.041419826447963715, -0.048112545162439346, 0.05080866068601608, 0.14894530177116394, 0.16550157964229584, -0.28791898488998413, -0.10853119194507599, 0.0587557852268219, -0.031685955822467804, 0.030309021472930908, 0.08016625046730042, -0.07264453172683716, 0.04542352631688118, -0.06000128015875816, 0.08448605984449387, -0.012078973464667797, 0.024181870743632317, 0.05637625977396965, 0.04039327800273895, -0.08772322535514832, 0.04756908118724823, 0.06710110604763031, -0.20578226447105408, 0.07332053035497665, 0.08728920668363571, 0.018219854682683945, -0.0008347647963091731, 0.014827649109065533, -0.041985418647527695, 0.013111534528434277, -0.0008406483102589846, 0.035179827362298965, 0.11857906728982925, -0.12598572671413422, -0.035260844975709915, 0.018612157553434372, -0.03556456044316292, 0.032807525247335434, -0.1108204647898674, -0.004197924397885799, 0.04432548210024834, -0.01181891467422247, -0.09024655818939209, 0.05796445533633232, -0.014109853655099869, 0.07254951447248459, 0.0503990538418293, -0.05737529322504997, 0.08838405460119247, 0.0701792761683464, 0.01976851560175419, 0.09565041959285736, -0.04759180545806885, -0.2520410418510437, -0.06976143270730972, -0.06136589124798775, 0.0444391667842865, 0.11697202175855637, 0.08596928417682648, -0.10103999823331833, -0.04937218129634857, -0.013030962087213993, 0.039026256650686264, -0.06237455829977989, 0.05598059296607971, 0.02350894920527935, 0.02872408926486969, -0.0581662617623806, -0.08132018148899078, -0.02804056741297245, -0.08935102075338364, 0.01639801822602749, 0.18284811079502106, -0.13309121131896973, 0.12578728795051575, 0.04415557533502579, -0.06679251044988632, 0.03639629855751991, -0.06770825386047363, 0.21579985320568085, -0.09247452765703201, 0.08856560289859772, 0.22718878090381622, 0.0311923585832119, 0.013348287902772427, 0.06990136206150055, -0.021676689386367798, -0.13647183775901794, 0.018089473247528076, -0.030030062422156334, -0.12372241914272308, -0.06317449361085892, -0.06582475453615189, -0.10501143336296082, -0.015478825196623802, 0.07490688562393188, 0.0513920821249485, 0.15912850201129913, 0.07099169492721558, 0.053466323763132095, 0.14323414862155914, -0.00656535429880023, 0.10173901170492172, 0.30132609605789185, -0.03706337511539459, 0.09452296793460846, -0.09177426248788834, -0.129999041557312, 0.08760799467563629, 0.022629793733358383, 0.23577848076820374, -0.001463812543079257, -0.06700661778450012, 0.05627915635704994, -0.01871873065829277, 0.06202700361609459, 0.1705843061208725, -0.021794021129608154, -0.04206959530711174, -0.0695931687951088, -0.021427946165204048, -0.008036991581320763, 0.03937236964702606, -0.0302573274821043, -0.054827068001031876, -0.036091528832912445, 0.0810302272439003, 0.0646691843867302, 0.16616524755954742, 0.07617905735969543, -0.4369320869445801, -0.1174546480178833, -0.028631512075662613, 0.059545230120420456, -0.022815801203250885, -0.02236974984407425, -0.014369288459420204, 0.057565174996852875, 0.036271121352910995, 0.0007453642319887877, 0.053676530718803406, -0.10699132084846497, 0.06442566961050034, 0.03474430367350578, 0.02648330107331276, 0.02186504192650318, -0.05126103013753891, -0.2928902804851532, 0.14788515865802765, -0.006869623437523842, 0.09640677273273468, -0.005888563115149736, -0.021937968209385872, 0.03495686873793602, 0.2434244304895401, 0.09388287365436554, -0.024750595912337303, 0.07546529173851013, -0.2043873369693756, 0.0158231258392334, -0.01701386645436287, 0.06218850985169411, 0.09629110991954803, 0.018192585557699203, 0.031403157860040665, 0.016791731119155884, 0.04718073457479477, 0.092553049325943, -0.08880739659070969, -0.10986336320638657, 0.020702648907899857, -0.03554895892739296, 0.034008074551820755, 0.01879046857357025, -0.08022909611463547, -0.15252162516117096, 0.02552737295627594, 0.03133256360888481, -0.06370218843221664, -0.12765023112297058, 0.08086879551410675, -0.004030528943985701, -0.01665867492556572, 0.0945390984416008, -0.0028282369021326303, 0.01703920029103756, -0.02009120024740696, -0.1378328949213028, 0.08065127581357956, -0.10842310637235641, 0.00699215941131115, -0.012396707199513912, 0.004463499411940575, 0.013512481935322285, -0.03605538606643677, 0.0413009449839592, -0.006821606773883104, -0.01033035572618246, -0.012009819969534874, 0.020917370915412903, -0.00841610785573721, 0.09873706847429276, -0.021084681153297424, -0.08724162727594376, -0.004515373148024082, -0.0413794070482254, 0.06043799966573715, 0.02991962805390358, 0.07283288240432739, -0.018564719706773758, 0.01276132557541132, -0.04387405142188072, 0.025924069806933403, -0.23904761672019958, 0.08369183540344238, -0.026002295315265656, 0.028574161231517792, -0.05577540025115013, -0.13969843089580536, 0.026818284764885902, 0.07605873048305511, 0.05715123936533928, 0.1088324710726738, -0.19147370755672455, -0.0497673824429512, 0.06644366681575775, 0.045079685747623444, 0.2569742798805237, -0.05675216391682625, 0.046699777245521545, -0.06991824507713318, -0.16694097220897675, 0.014287286438047886, 0.05843620002269745, 0.08193749934434891, -0.023269589990377426, 0.05308135226368904, 0.01894248276948929, -0.019424401223659515, 0.030273277312517166, 0.06656094640493393, 0.11946634948253632, -0.06323035806417465, -0.18158820271492004, 0.1474035084247589, -0.023024193942546844, 0.038573261350393295, 0.21691550314426422, 0.0913098156452179, 0.024030284956097603, -0.04246191680431366, -0.028001701459288597, 0.0511869378387928, 0.0503125824034214, -0.08359984308481216, -0.13145995140075684, 0.007941685616970062, 0.00547201419249177, -0.004037837963551283, 0.0605296827852726, 0.004275979474186897, -0.1648891270160675, -0.08696091920137405, 0.09301386773586273, -0.15271039307117462, -0.012471942231059074, -0.0006925171473994851, -0.04867833852767944, 0.07507656514644623, -0.13799960911273956, 0.061860401183366776, 0.1300382912158966, -0.007279777899384499, 0.07584408670663834, 0.13487593829631805, 0.05963991582393646, 0.09058552235364914, 0.11157623678445816, -0.05888980254530907, -0.04311208426952362, -0.005290601402521133, -0.09439777582883835, 0.15839652717113495, 0.19454346597194672, 0.10496753454208374, -0.04020139202475548, 0.03582081198692322, -0.019222157076001167, -0.024121105670928955, -0.04704318940639496, 0.07283367216587067, -0.049660809338092804, -0.035019125789403915, -0.07720267027616501, -0.007234130520373583, -0.03222915902733803, -0.17691534757614136, -0.02019105851650238, -0.051212895661592484, -0.13129089772701263, -0.0659501776099205, -0.10757523030042648, 0.03517794609069824, -0.127529114484787, -0.0237442459911108, -0.07496456056833267, -0.10618903487920761, 0.10899196565151215, 0.08525664359331131, 0.08014152944087982, 0.07317400723695755, -0.09246348589658737, 0.1178886666893959, -0.16280128061771393, -0.02873801812529564, -0.028806418180465698, 0.1366414874792099, -0.164671391248703, 0.08765389770269394, -0.0777725949883461, 0.09593181312084198, -0.1035136729478836, -0.0264230165630579, -0.006255935877561569, 0.04455608129501343, -0.01600070297718048, -0.0037985884118825197, -0.06667499989271164, -0.02396748773753643, 0.033451396971940994, -0.01524821575731039, -0.04438231140375137, 0.013725768774747849, -0.036690276116132736, 0.058249231427907944, 0.06946767866611481, 0.017448455095291138, 0.0141024524345994, -0.0539969876408577, -0.04492828994989395, -0.06637353450059891, 0.11116479337215424, 0.07343723624944687, -0.07005182653665543, -0.009768606163561344, 0.014054832980036736, -0.10835234820842743, 0.17948904633522034, 0.06098904833197594, 0.0634898990392685, 0.07871068269014359, 0.00506808003410697, 0.07001767307519913, -0.031196027994155884, -0.010734092444181442, 0.026028957217931747, -0.019387712702155113, 0.11264457553625107, -0.0553877092897892, -0.08193386346101761, -0.05724191293120384, 0.011742300353944302, 0.11032082885503769, 0.08471556752920151, 0.1458740532398224, -0.05514585226774216, -0.045860227197408676, -0.05569181218743324, -0.028593722730875015, 0.01912214793264866, -0.11769398301839828, -0.03944147750735283, -0.07898364961147308, 0.04898057505488396, -0.015941904857754707, 0.10051623731851578, -0.0012874086387455463, -0.03151993826031685, 0.018325086683034897, 0.003563829930499196, -0.14256024360656738, 0.016641411930322647, 0.2447020262479782, 0.060632701963186264, -0.04016725718975067, -0.11401131749153137, 0.09214047342538834, 0.10280203819274902, 0.10865934938192368, 0.07196123898029327, 0.17706778645515442, -0.08880417793989182, 0.10063610970973969, 0.04328373074531555, 0.12712609767913818, -0.23223747313022614, -0.02428412437438965, -0.03982416167855263, 0.017615078017115593, 0.05403991416096687, -0.03532600775361061, 0.15325061976909637, -0.009785466827452183, 0.03314082697033882, 0.010743741877377033, -0.02891010418534279, 0.022276239469647408, -0.05457357317209244, -0.08918096125125885, -0.10848240554332733, 0.000006071717052691383, -0.08084289729595184, -0.03375612944364548, -0.0009857510449364781, 0.097493015229702, -0.055284593254327774, 0.1315024346113205, -0.0032978744711726904, 0.02417120710015297, 0.0615246444940567, -0.03944611921906471, -0.1097927838563919, -0.008101152256131172, -0.07401371747255325, -0.036375343799591064, 0.04495399072766304, -0.013950162567198277, -0.029971323907375336, 0.05894427001476288, -0.05227481201291084, -0.02829415164887905, -0.016301752999424934, -0.016422633081674576, 0.08121201395988464, -0.08141907304525375, -0.074678435921669, 0.0015651594148948789, -0.08780959993600845, 0.0512993223965168, -0.0631963312625885, 0.008748620748519897, -0.21077531576156616, -0.11207274347543716, 0.256430983543396, 0.04980924353003502, 0.10243487358093262, -0.011109285987913609, -0.048937875777482986, -0.031082313507795334, 0.15727598965168, 0.18823517858982086, -0.10694368928670883, -0.04375646635890007, -0.018548252061009407, 0.01857234723865986, -0.07595670968294144, 0.00836965162307024, 0.08292939513921738, 0.1124713271856308, 0.030333472415804863, -0.09419180452823639, -0.09995151311159134, 0.07663135975599289, 0.000026197398256044835, -0.02058526687324047, 0.06686022877693176, -0.022879086434841156, -0.09833738952875137, 0.06716623157262802, -0.030102450400590897, -0.045938365161418915, 0.21436651051044464, -0.05987019091844559, -0.040264714509248734, 0.03993682190775871, -0.03153518587350845, -0.013724857941269875, 0.08770759403705597, -0.10245780646800995, -0.04398130252957344, 0.011878944002091885, 0.0016702382126823068, -0.10372178256511688, 0.09874871373176575, 0.11591923981904984, 0.034941524267196655, 0.010075648315250874, -0.06381775438785553, 0.055529505014419556, 0.0637948140501976, 0.09104236960411072, -0.06433258950710297, 0.08645481616258621, -0.07511161267757416, -0.01653285324573517, 0.021715030074119568, 0.03512311726808548, -0.028375770896673203, -0.08079314976930618, -0.002502215327695012, -0.23932801187038422, -0.00628427742049098, 0.0973895713686943, -0.0672004446387291, -0.07786140590906143, 0.020360685884952545, -0.035562340170145035, 0.03752104192972183, 0.009679844602942467, 0.05353953689336777, 0.05025935918092728, -0.06784408539533615, 0.0418231263756752, 0.10104800760746002, -0.045746348798274994, -0.08903439342975616, -0.07977809756994247, -0.03862356022000313, -0.1284945160150528, -0.029460981488227844, -0.0014784669037908316, -0.10045922547578812, -0.055755965411663055, -0.02030390501022339, -0.047110479325056076, 0.07092005014419556, 0.13793541491031647, 0.03386253863573074, -0.016622774302959442, 0.1363619714975357, -0.022038601338863373, 0.1221260130405426, -0.05531223118305206, -0.05086033418774605 ]
null
null
transformers
# densenet161 Implementation of DenseNet proposed in [Densely Connected Convolutional Networks](https://arxiv.org/abs/1608.06993) Create a default models ``` {.sourceCode .} DenseNet.densenet121() DenseNet.densenet161() DenseNet.densenet169() DenseNet.densenet201() ``` Examples: ``` {.sourceCode .} # change activation DenseNet.densenet121(activation = nn.SELU) # change number of classes (default is 1000 ) DenseNet.densenet121(n_classes=100) # pass a different block DenseNet.densenet121(block=...) # change the initial convolution model = DenseNet.densenet121() model.encoder.gate.conv1 = nn.Conv2d(3, 64, kernel_size=3) # store each feature x = torch.rand((1, 3, 224, 224)) model = DenseNet.densenet121() # first call .features, this will activate the forward hooks and tells the model you'll like to get the features model.encoder.features model(torch.randn((1,3,224,224))) # get the features from the encoder features = model.encoder.features print([x.shape for x in features]) # [torch.Size([1, 128, 28, 28]), torch.Size([1, 256, 14, 14]), torch.Size([1, 512, 7, 7]), torch.Size([1, 1024, 7, 7])] ```
{}
null
glasses/densenet161
[ "transformers", "pytorch", "arxiv:1608.06993", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[ "1608.06993" ]
[]
TAGS #transformers #pytorch #arxiv-1608.06993 #endpoints_compatible #region-us
# densenet161 Implementation of DenseNet proposed in Densely Connected Convolutional Networks Create a default models Examples:
[ "# densenet161\nImplementation of DenseNet proposed in Densely Connected Convolutional\nNetworks\n\n Create a default models\n\n \n\n Examples:" ]
[ "TAGS\n#transformers #pytorch #arxiv-1608.06993 #endpoints_compatible #region-us \n", "# densenet161\nImplementation of DenseNet proposed in Densely Connected Convolutional\nNetworks\n\n Create a default models\n\n \n\n Examples:" ]
[ 30, 31 ]
[ "passage: TAGS\n#transformers #pytorch #arxiv-1608.06993 #endpoints_compatible #region-us \n# densenet161\nImplementation of DenseNet proposed in Densely Connected Convolutional\nNetworks\n\n Create a default models\n\n \n\n Examples:" ]
[ -0.05057618021965027, -0.11846312880516052, -0.004925112705677748, 0.002082043094560504, -0.01579143851995468, -0.0007243842119351029, 0.04471753537654877, 0.015644708648324013, -0.05735547095537186, 0.0002974487142637372, 0.2252035290002823, 0.07805570214986801, -0.06303419917821884, 0.15211114287376404, -0.052574507892131805, -0.18264073133468628, 0.04891694709658623, 0.1209125816822052, -0.07366309314966202, 0.03274248540401459, 0.10870599001646042, -0.04991098865866661, 0.0828256756067276, 0.0196157805621624, -0.15472614765167236, -0.007544635329395533, -0.04010042920708656, -0.0014409578870981932, 0.08647903800010681, 0.06328343600034714, 0.20979733765125275, 0.006009800359606743, -0.008094890043139458, -0.2145550400018692, 0.021462544798851013, 0.021637635305523872, -0.05546581372618675, 0.1322299838066101, 0.0819864496588707, 0.061935264617204666, -0.0597061887383461, -0.010368661023676395, -0.05054517462849617, -0.012813822366297245, -0.01690366119146347, -0.07133892178535461, 0.00019564077956601977, 0.10741458833217621, -0.033790428191423416, 0.023831987753510475, 0.03287529572844505, 0.1561007797718048, -0.07605324685573578, 0.04579860717058182, -0.0331634059548378, -0.2813641130924225, -0.02460404857993126, 0.30239495635032654, -0.06966517120599747, -0.03151361271739006, 0.026880299672484398, -0.013980935327708721, 0.08104220777750015, 0.014925417490303516, 0.11834494769573212, -0.021585650742053986, -0.05922843888401985, 0.019801253452897072, -0.15385285019874573, 0.07424264401197433, 0.011139542795717716, 0.02488298900425434, 0.11880407482385635, -0.02133253403007984, -0.21231858432292938, 0.0016807102365419269, 0.006706350017338991, -0.09848320484161377, -0.03219689428806305, 0.06270821392536163, 0.04560312256217003, -0.017531743273139, -0.0689253956079483, 0.06292930990457535, -0.15881747007369995, 0.07738598436117172, 0.07446824014186859, 0.0424477756023407, -0.11402473598718643, 0.089473195374012, -0.15009191632270813, -0.10522298514842987, 0.13148894906044006, -0.1371433585882187, -0.04158533737063408, -0.004916079342365265, -0.004571869969367981, 0.017182350158691406, 0.10239121317863464, 0.0535840168595314, 0.10949695855379105, -0.047713398933410645, 0.10040898621082306, 0.10890229791402817, -0.03662629798054695, -0.08891015499830246, -0.19579331576824188, -0.03467117249965668, 0.018311815336346626, -0.04534470662474632, 0.0975525826215744, -0.0013855698052793741, -0.07939103245735168, -0.037979479879140854, -0.007445794064551592, 0.019881799817085266, -0.018275322392582893, 0.09424248337745667, -0.060672082006931305, -0.02559969387948513, 0.0392778106033802, 0.016310883685946465, 0.013449993915855885, -0.057077571749687195, -0.03199350833892822, 0.12482355535030365, 0.04629006236791611, 0.06674284487962723, -0.015472901985049248, 0.12818370759487152, -0.10409170389175415, -0.04223557934165001, -0.044619638472795486, -0.07574489712715149, 0.05471707507967949, -0.01604650355875492, 0.01062074489891529, -0.18114601075649261, 0.004806450568139553, 0.039746806025505066, 0.09617946296930313, -0.03201596438884735, -0.006368755828589201, -0.06619994342327118, -0.13357847929000854, -0.030256764963269234, -0.04237766191363335, 0.08593513816595078, -0.05198585242033005, -0.03968009352684021, -0.010812337510287762, -0.004506805445998907, -0.143694669008255, -0.0022623336408287287, -0.003447603201493621, 0.0020882997196167707, -0.02243952639400959, 0.028012018650770187, -0.13109691441059113, 0.02889140322804451, -0.11065668612718582, -0.05384218692779541, -0.05075300112366676, 0.005319651216268539, 0.10421330481767654, 0.07529529184103012, -0.13457247614860535, -0.019238999113440514, 0.04714873805642128, -0.08595212548971176, -0.16540071368217468, 0.14770381152629852, -0.03933043032884598, 0.021873638033866882, 0.021653972566127777, 0.09521181881427765, 0.16168160736560822, -0.1464354395866394, 0.03408103808760643, 0.0757966935634613, -0.09272097051143646, -0.13221867382526398, -0.02438553236424923, 0.10607333481311798, -0.135728120803833, 0.002350150840356946, 0.00992114283144474, 0.155152827501297, -0.08788810670375824, -0.047146882861852646, -0.025536559522151947, -0.08187371492385864, 0.09332454949617386, 0.012021200731396675, 0.062389638274908066, 0.03905903175473213, -0.04809016361832619, -0.0806138888001442, 0.043035391718149185, -0.019932635128498077, 0.021063148975372314, -0.025206120684742928, 0.05664334446191788, -0.14302068948745728, -0.015199831686913967, -0.08342909812927246, -0.19220979511737823, 0.03444404900074005, 0.13947804272174835, -0.03615842014551163, 0.23627842962741852, 0.05695531144738197, -0.03909868001937866, -0.08878292143344879, -0.015533885918557644, 0.19404096901416779, 0.041112013161182404, -0.14787672460079193, -0.10809866338968277, -0.06238673999905586, -0.08112609386444092, -0.034986063838005066, -0.13975511491298676, -0.010390623472630978, -0.04127257317304611, 0.19033518433570862, -0.031176745891571045, 0.07817406952381134, 0.021171510219573975, 0.02571256086230278, -0.03459874540567398, -0.012246239930391312, 0.05733611807227135, -0.04586309567093849, -0.161333367228508, 0.08944342285394669, -0.025363026186823845, 0.26431795954704285, 0.05947713181376457, -0.11515643447637558, 0.01028931699693203, -0.09312659502029419, -0.05933689326047897, -0.021727673709392548, 0.038264818489551544, 0.015805304050445557, 0.18282221257686615, -0.007745148614048958, 0.07613483816385269, -0.03925199434161186, -0.031024396419525146, -0.0043122549541294575, -0.016850179061293602, 0.00700426148250699, 0.05364337936043739, 0.06039350852370262, -0.16285577416419983, 0.11251884698867798, 0.007056633476167917, -0.055190641433000565, -0.05553503707051277, 0.013178146444261074, 0.032650724053382874, -0.012615125626325607, 0.1128816232085228, -0.006738101597875357, 0.03812478482723236, -0.03253042325377464, 0.025367703288793564, 0.06368440389633179, -0.043256860226392746, 0.08487191051244736, -0.08362088352441788, 0.011219851672649384, -0.0054185353219509125, 0.00940198265016079, 0.08517871052026749, 0.09457836300134659, -0.028437085449695587, 0.044176697731018066, -0.045277878642082214, -0.22598695755004883, 0.058721769601106644, -0.026077639311552048, -0.033505260944366455, 0.14389322698116302, -0.1251579076051712, -0.1055726706981659, -0.04669537767767906, -0.10792511701583862, -0.03383457660675049, -0.027862049639225006, -0.02214958146214485, -0.0736827701330185, -0.06661742180585861, 0.014722839929163456, 0.05722982436418533, 0.06419093906879425, 0.07777073979377747, -0.025830822065472603, -0.01074570044875145, -0.014447164721786976, -0.10711421817541122, 0.004956697579473257, -0.12839019298553467, 0.050415296107530594, 0.01693596877157688, -0.11440754681825638, 0.02712143585085869, 0.15201154351234436, 0.04319028928875923, -0.020292654633522034, 0.0004124585830140859, 0.09907977283000946, 0.03441077098250389, 0.10084128379821777, 0.05970558896660805, -0.04392878711223602, 0.08384080976247787, 0.21636708080768585, 0.08047603070735931, -0.013496831059455872, 0.01147717610001564, -0.021868914365768433, -0.027960583567619324, -0.19690941274166107, -0.2033262699842453, -0.0864848792552948, -0.03419077768921852, 0.053355343639850616, 0.02493000030517578, 0.03240499272942543, 0.14488738775253296, 0.0026961378753185272, -0.0133353965356946, 0.024559279903769493, 0.05596039816737175, 0.18052995204925537, -0.017063893377780914, 0.07211804389953613, -0.04212596267461777, -0.13311199843883514, 0.04535578191280365, 0.07758667320013046, 0.14388114213943481, -0.060577817261219025, -0.02605801820755005, 0.07590591907501221, 0.25813692808151245, 0.09009714424610138, 0.11258824914693832, -0.0539020337164402, -0.026070337742567062, -0.02078610472381115, -0.05184267461299896, 0.0806560292840004, 0.09746872633695602, 0.03961766138672829, -0.0887848287820816, 0.05756058171391487, 0.0661102831363678, 0.04354170709848404, -0.10603800415992737, 0.12346135824918747, -0.30480289459228516, 0.056820232421159744, -0.030865071341395378, -0.025283319875597954, -0.030656058341264725, 0.051674094051122665, 0.2393878698348999, 0.022017264738678932, 0.1219884604215622, -0.06542614847421646, 0.059016596525907516, -0.016223257407546043, 0.022936195135116577, 0.024233011528849602, 0.12922173738479614, 0.04208134859800339, 0.04850667342543602, -0.17163819074630737, 0.2887764871120453, -0.006057982798665762, -0.05196801945567131, -0.061203908175230026, 0.017528606578707695, 0.02002551220357418, 0.01722261868417263, 0.0684068351984024, 0.006199648603796959, 0.21501384675502777, 0.1265418380498886, -0.10542137175798416, 0.017824508249759674, 0.01833091862499714, 0.081072598695755, -0.07172930985689163, 0.07511751353740692, -0.08039020001888275, 0.08860541135072708, 0.020674671977758408, -0.07124240696430206, -0.09946998208761215, 0.03513047471642494, 0.26304924488067627, -0.11116889864206314, -0.045372672379016876, -0.08301423490047455, -0.02625642530620098, 0.23272322118282318, 0.029069185256958008, -0.0802290290594101, -0.05205041542649269, 0.033202558755874634, 0.23263660073280334, -0.055534545332193375, 0.06307640671730042, -0.058700527995824814, 0.055763598531484604, -0.09372636675834656, -0.1511671096086502, 0.1319442242383957, -0.10044750571250916, 0.013883310370147228, -0.0882648229598999, 0.1695970743894577, 0.0071052671410143375, -0.020709000527858734, -0.002975588198751211, -0.0278631579130888, -0.0901644229888916, -0.10230876505374908, -0.11923836916685104, 0.0781332328915596, -0.04917395859956741, 0.030938655138015747, -0.024405280128121376, -0.028019487857818604, 0.022183338180184364, 0.09651339054107666, 0.19860608875751495, 0.05340343713760376, -0.0955481231212616, -0.002124606166034937, 0.1309170126914978, -0.015067091211676598, -0.20073087513446808, -0.08879394829273224, 0.07289756089448929, -0.0417269803583622, -0.12480973452329636, -0.05483943223953247, 0.18673066794872284, 0.0517304427921772, 0.007503360044211149, -0.016861705109477043, -0.13767679035663605, -0.09387270361185074, 0.11140661686658859, -0.010350140742957592, 0.3022499084472656, 0.04375335946679115, -0.04291042685508728, 0.003110026940703392, -0.052954502403736115, 0.06844959408044815, 0.042983781546354294, 0.03211868181824684, 0.013336826115846634, 0.03769320994615555, 0.010875320993363857, -0.052522238343954086, 0.07109498977661133, 0.16794876754283905, 0.017294391989707947, -0.025688428431749344, -0.12034278362989426, -0.04682664945721626, -0.028993012383580208, 0.05928696691989899, 0.06279631704092026, 0.012999087572097778, -0.0835757702589035, -0.008728651329874992, -0.07629323750734329, 0.04469624534249306, 0.027751479297876358, -0.05372823774814606, -0.12943194806575775, 0.004266391042619944, 0.14491921663284302, 0.012107537128031254, 0.23568499088287354, 0.10441917181015015, 0.14621372520923615, 0.11445140093564987, 0.07851474732160568, -0.17453794181346893, -0.02945873513817787, 0.00911610946059227, -0.04052137956023216, 0.062356919050216675, -0.10391955077648163, -0.027943653985857964, 0.20474183559417725, -0.05637393519282341, -0.09491123259067535, 0.09298533201217651, -0.04218930006027222, -0.10203433781862259, 0.07669475674629211, -0.15249373018741608, -0.03983067721128464, -0.011270096525549889, 0.05267797410488129, 0.032660309225320816, 0.16291221976280212, 0.13792110979557037, -0.09051307290792465, 0.00038678129203617573, 0.06791975349187851, 0.023167118430137634, -0.134429931640625, 0.09055477380752563, 0.09739648550748825, 0.07372485846281052, -0.09558668732643127, 0.13359738886356354, -0.009610255248844624, -0.03676033020019531, -0.09757733345031738, 0.021945895627141, -0.13424398005008698, -0.05962112545967102, 0.06572446972131729, 0.08126702159643173, -0.07220949977636337, -0.05799398571252823, 0.04336226359009743, -0.0902998074889183, 0.023818498477339745, 0.2547541856765747, 0.10411261767148972, 0.09438983350992203, -0.05371304973959923, -0.06742407381534576, -0.06186243146657944, 0.0017165298340842128, 0.09029904007911682, 0.08294327557086945, -0.12144652754068375, -0.04303198307752609, -0.021985575556755066, 0.061294980347156525, -0.08941181749105453, 0.024427028372883797, -0.0805203914642334, 0.04802830517292023, -0.07521290332078934, -0.02284657023847103, -0.11443375051021576, -0.033334389328956604, -0.004719281103461981, -0.09865948557853699, -0.01203291304409504, 0.03491951525211334, -0.06384336948394775, 0.0853034257888794, 0.051510877907276154, -0.011575824581086636, -0.048028118908405304, -0.07472679764032364, -0.054556429386138916, -0.012935423292219639, 0.125412255525589, -0.016736162826418877, -0.1114797294139862, -0.004863066133111715, -0.22356918454170227, -0.14899267256259918, 0.13891765475273132, 0.08045520633459091, 0.09964010119438171, -0.08943331986665726, 0.048596810549497604, 0.027934832498431206, 0.026938045397400856, -0.017478760331869125, 0.1527434140443802, -0.01538399700075388, 0.010837895795702934, -0.1016564816236496, -0.01342164445668459, -0.05689119175076485, -0.05569011718034744, 0.004499434493482113, 0.10482002794742584, 0.06512602418661118, -0.03070855140686035, 0.04341750591993332, 0.020966552197933197, 0.05141911655664444, -0.028271934017539024, -0.14741277694702148, 0.10109322518110275, -0.03360062837600708, 0.009814650751650333, -0.040059905499219894, 0.20882666110992432, -0.12740527093410492, -0.12099853903055191, -0.02919022925198078, -0.07032357901334763, -0.058662593364715576, 0.0329151377081871, 0.10947012901306152, 0.027621669694781303, -0.005711515434086323, -0.05234634876251221, 0.056527379900217056, 0.08616899698972702, 0.026995977386832237, 0.05147312954068184, -0.015494810417294502, 0.09374760091304779, 0.10373345017433167, 0.0613195039331913, -0.08480573445558548, 0.02031085453927517, -0.11553042382001877, -0.08283640444278717, 0.02221124991774559, -0.024033568799495697, 0.0590229406952858, -0.02345210872590542, 0.02382708340883255, -0.04021090269088745, 0.053614307194948196, -0.06510871648788452, -0.06274697184562683, -0.15003982186317444, -0.005432097241282463, -0.13911201059818268, -0.02301924303174019, -0.08269312232732773, -0.18447478115558624, 0.10041748732328415, 0.09794821590185165, 0.019888348877429962, 0.12048261612653732, -0.02431098185479641, -0.020913757383823395, 0.06664684414863586, 0.054853107780218124, 0.04088890925049782, -0.002732908120378852, -0.06918551027774811, -0.15916544198989868, 0.08155439049005508, -0.10041765868663788, 0.04364747554063797, 0.0824035257101059, 0.08303459733724594, 0.04022052884101868, -0.03729299083352089, -0.06978017091751099, 0.00630961125716567, 0.021942343562841415, 0.12445393949747086, -0.003142214845865965, -0.057510312646627426, 0.006866013165563345, 0.04420076683163643, -0.06507112085819244, -0.1286843717098236, -0.08970846235752106, 0.17714014649391174, -0.06555572897195816, 0.08973390609025955, -0.036957692354917526, 0.056108489632606506, -0.1265283077955246, 0.24812904000282288, 0.3426513373851776, -0.08138038218021393, 0.009257208555936813, 0.07792814075946808, 0.013500389643013477, 0.01268591359257698, 0.0598713681101799, 0.07969939708709717, 0.2839573323726654, -0.08968456089496613, -0.12098294496536255, -0.01650654710829258, 0.015537621453404427, -0.04671049490571022, -0.10630365461111069, -0.0030388657469302416, -0.0959940031170845, -0.0651170164346695, 0.09859216958284378, -0.23084120452404022, 0.010988056659698486, 0.018370693549513817, -0.14912982285022736, -0.06576903909444809, -0.08386145532131195, 0.11997393518686295, -0.0308395866304636, 0.09688711166381836, -0.06734858453273773, -0.006016111467033625, 0.0578765831887722, 0.013958713971078396, -0.10973385721445084, -0.0230063796043396, -0.017639480531215668, 0.08289236575365067, 0.03515308350324631, 0.013295409269630909, 0.13698048889636993, 0.14016863703727722, -0.04371058940887451, -0.09000620990991592, -0.00795576348900795, 0.0712314322590828, -0.12107443809509277, -0.09176245331764221, -0.164673313498497, 0.003001587698236108, 0.11637479811906815, 0.027867581695318222, -0.15618550777435303, 0.0052528977394104, 0.11549731343984604, 0.018803250044584274, -0.06391898542642593, -0.03690292313694954, -0.047153621912002563, 0.07141900807619095, 0.01286186184734106, -0.042861953377723694, -0.03370532765984535, -0.024805555120110512, 0.030265428125858307, -0.007362759672105312, 0.01793620176613331, 0.012244198471307755, -0.1322701871395111, -0.010874060913920403, -0.019594844430685043, 0.027994057163596153, 0.07760568708181381, -0.01833030767738819, -0.12925060093402863, 0.02143157832324505, -0.07132463157176971, 0.0506715252995491, 0.09427622705698013, -0.006608251016587019, 0.00974259153008461, -0.05032770335674286, -0.029190145432949066, -0.030761433765292168, -0.13552214205265045, -0.1140001118183136 ]
null
null
transformers
# densenet169 Implementation of DenseNet proposed in [Densely Connected Convolutional Networks](https://arxiv.org/abs/1608.06993) Create a default models ``` {.sourceCode .} DenseNet.densenet121() DenseNet.densenet161() DenseNet.densenet169() DenseNet.densenet201() ``` Examples: ``` {.sourceCode .} # change activation DenseNet.densenet121(activation = nn.SELU) # change number of classes (default is 1000 ) DenseNet.densenet121(n_classes=100) # pass a different block DenseNet.densenet121(block=...) # change the initial convolution model = DenseNet.densenet121() model.encoder.gate.conv1 = nn.Conv2d(3, 64, kernel_size=3) # store each feature x = torch.rand((1, 3, 224, 224)) model = DenseNet.densenet121() # first call .features, this will activate the forward hooks and tells the model you'll like to get the features model.encoder.features model(torch.randn((1,3,224,224))) # get the features from the encoder features = model.encoder.features print([x.shape for x in features]) # [torch.Size([1, 128, 28, 28]), torch.Size([1, 256, 14, 14]), torch.Size([1, 512, 7, 7]), torch.Size([1, 1024, 7, 7])] ```
{}
null
glasses/densenet169
[ "transformers", "pytorch", "arxiv:1608.06993", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[ "1608.06993" ]
[]
TAGS #transformers #pytorch #arxiv-1608.06993 #endpoints_compatible #region-us
# densenet169 Implementation of DenseNet proposed in Densely Connected Convolutional Networks Create a default models Examples:
[ "# densenet169\nImplementation of DenseNet proposed in Densely Connected Convolutional\nNetworks\n\n Create a default models\n\n \n\n Examples:" ]
[ "TAGS\n#transformers #pytorch #arxiv-1608.06993 #endpoints_compatible #region-us \n", "# densenet169\nImplementation of DenseNet proposed in Densely Connected Convolutional\nNetworks\n\n Create a default models\n\n \n\n Examples:" ]
[ 30, 31 ]
[ "passage: TAGS\n#transformers #pytorch #arxiv-1608.06993 #endpoints_compatible #region-us \n# densenet169\nImplementation of DenseNet proposed in Densely Connected Convolutional\nNetworks\n\n Create a default models\n\n \n\n Examples:" ]
[ -0.051083873957395554, -0.1171654611825943, -0.004883099347352982, 0.0028192538302391768, -0.016958655789494514, -0.0019582463428378105, 0.043211430311203, 0.017064420506358147, -0.0570816695690155, 0.001964234048500657, 0.22589632868766785, 0.07909025996923447, -0.062122881412506104, 0.15192224085330963, -0.05313350632786751, -0.18126103281974792, 0.04823744297027588, 0.12158722430467606, -0.0719999372959137, 0.03239964321255684, 0.10714936256408691, -0.05046714097261429, 0.08277498185634613, 0.018256589770317078, -0.15370027720928192, -0.005430193152278662, -0.0390695221722126, -0.0020168025512248278, 0.08655572682619095, 0.06405532360076904, 0.20974361896514893, 0.0050114830955863, -0.008101153187453747, -0.21192464232444763, 0.021191179752349854, 0.022240832448005676, -0.056247077882289886, 0.13187256455421448, 0.08139359205961227, 0.06471437960863113, -0.05579826980829239, -0.01182129979133606, -0.05047333240509033, -0.014323055744171143, -0.016664115712046623, -0.06972210109233856, -0.0016834426205605268, 0.10818220674991608, -0.031172223389148712, 0.024601882323622704, 0.032750312238931656, 0.15797695517539978, -0.07646986842155457, 0.045518938452005386, -0.03540181741118431, -0.27882468700408936, -0.025784894824028015, 0.30224066972732544, -0.07094012200832367, -0.028748080134391785, 0.028094302862882614, -0.012672233395278454, 0.08065236359834671, 0.014850519597530365, 0.11560375988483429, -0.021340887993574142, -0.06366118043661118, 0.02027815394103527, -0.15414923429489136, 0.0742446556687355, 0.011784352362155914, 0.027463527396321297, 0.11950661987066269, -0.021016115322709084, -0.21193115413188934, 0.003798782592639327, 0.005903507117182016, -0.1000877171754837, -0.03174333646893501, 0.061968378722667694, 0.04641234874725342, -0.017124628648161888, -0.06876121461391449, 0.0629282221198082, -0.15838520228862762, 0.07681407779455185, 0.07286309450864792, 0.04313499853014946, -0.11338751018047333, 0.08789418637752533, -0.1526629626750946, -0.10494104772806168, 0.13222487270832062, -0.13690614700317383, -0.042368125170469284, -0.004085187800228596, -0.0042150914669036865, 0.015856530517339706, 0.10101325809955597, 0.051257845014333725, 0.11145324259996414, -0.04584477096796036, 0.0992559865117073, 0.10851571708917618, -0.03818288445472717, -0.08754211664199829, -0.19471202790737152, -0.035250432789325714, 0.018594132736325264, -0.04398462921380997, 0.09874764829874039, -0.003236549673601985, -0.07931014895439148, -0.03756043687462807, -0.01006498746573925, 0.02097967639565468, -0.017903029918670654, 0.0934172049164772, -0.05995725467801094, -0.024772698059678078, 0.04170078784227371, 0.01699252985417843, 0.013975092209875584, -0.05793115869164467, -0.0315621979534626, 0.12584151327610016, 0.04629470407962799, 0.06701915711164474, -0.014334606006741524, 0.12732499837875366, -0.10326491296291351, -0.04460262879729271, -0.045856501907110214, -0.07632327079772949, 0.056202858686447144, -0.015202301554381847, 0.011341637000441551, -0.18105769157409668, 0.005771066527813673, 0.03958272561430931, 0.09468892216682434, -0.03166695684194565, -0.006671321578323841, -0.06512656807899475, -0.13345444202423096, -0.029446152970194817, -0.04249078035354614, 0.08727458119392395, -0.05158703029155731, -0.0406000055372715, -0.010668213479220867, -0.004088547546416521, -0.14357179403305054, -0.002259916625916958, -0.0033508590422570705, 0.0019455953733995557, -0.029208403080701828, 0.027091966941952705, -0.13213308155536652, 0.03034650906920433, -0.10887432098388672, -0.05309982970356941, -0.051914509385824203, 0.005168765317648649, 0.10514485090970993, 0.07582465559244156, -0.13679170608520508, -0.018333863466978073, 0.04386242479085922, -0.08512050658464432, -0.16595539450645447, 0.14790946245193481, -0.03954668715596199, 0.020152047276496887, 0.02276989445090294, 0.0969659760594368, 0.16065439581871033, -0.14484229683876038, 0.03287477791309357, 0.07769954949617386, -0.09334312379360199, -0.1341760754585266, -0.026037707924842834, 0.10515531152486801, -0.13924738764762878, 0.0024063815362751484, 0.006249226629734039, 0.1561523675918579, -0.08717085421085358, -0.04629548266530037, -0.02387925051152706, -0.08108633756637573, 0.09398660063743591, 0.012559154070913792, 0.06135118752717972, 0.03620486333966255, -0.04753103479743004, -0.08323664963245392, 0.04180451110005379, -0.020349062979221344, 0.02151692844927311, -0.024459725245833397, 0.05696234107017517, -0.14162969589233398, -0.01567472703754902, -0.08112826943397522, -0.19392099976539612, 0.03530256450176239, 0.1395336538553238, -0.034909963607788086, 0.2322665899991989, 0.05769844725728035, -0.039846066385507584, -0.08875589817762375, -0.016838276758790016, 0.1923963576555252, 0.04110480844974518, -0.14969530701637268, -0.10925859957933426, -0.06207733228802681, -0.08049999177455902, -0.03930716961622238, -0.14054171741008759, -0.011224298737943172, -0.041375089436769485, 0.19025468826293945, -0.031556032598018646, 0.07847493886947632, 0.020860841497778893, 0.025552691891789436, -0.032917559146881104, -0.012164095416665077, 0.057758525013923645, -0.04707251861691475, -0.1623128205537796, 0.0885726809501648, -0.024862676858901978, 0.26270315051078796, 0.06089303642511368, -0.11411731690168381, 0.01093846932053566, -0.09010046720504761, -0.05789022892713547, -0.022403068840503693, 0.03809940069913864, 0.01658632420003414, 0.1838892102241516, -0.008285733871161938, 0.07440895587205887, -0.04094387963414192, -0.032674163579940796, -0.004167700652033091, -0.014926843345165253, 0.007009767461568117, 0.05456792190670967, 0.062208499759435654, -0.16366714239120483, 0.11192784458398819, 0.011660462245345116, -0.05423348397016525, -0.05713028088212013, 0.014315544627606869, 0.03190518543124199, -0.01212052721530199, 0.11220168322324753, -0.007294013164937496, 0.037342168390750885, -0.033843185752630234, 0.025941811501979828, 0.06253505498170853, -0.04401512071490288, 0.08475711941719055, -0.08385786414146423, 0.011913823895156384, -0.004972721915692091, 0.010293773375451565, 0.08671208471059799, 0.09443381428718567, -0.029134489595890045, 0.04411882162094116, -0.043555617332458496, -0.22781431674957275, 0.060309384018182755, -0.026471225544810295, -0.03337513655424118, 0.14310577511787415, -0.12488899379968643, -0.10838104039430618, -0.04626697301864624, -0.10496767610311508, -0.0347675085067749, -0.02829892560839653, -0.022999556735157967, -0.07455704361200333, -0.06764771789312363, 0.014552383683621883, 0.055023062974214554, 0.061422914266586304, 0.07848239690065384, -0.02594011463224888, -0.011146151460707188, -0.015401559881865978, -0.10504739731550217, 0.005451960023492575, -0.12866716086864471, 0.053231436759233475, 0.014493615366518497, -0.11238992214202881, 0.028623241931200027, 0.1511281430721283, 0.042237766087055206, -0.02061823569238186, 0.0008524511940777302, 0.0985495075583458, 0.033300865441560745, 0.10134612023830414, 0.05901964008808136, -0.04361957684159279, 0.08429518342018127, 0.21574978530406952, 0.08062393963336945, -0.01420009508728981, 0.012005751952528954, -0.020960267633199692, -0.028073739260435104, -0.1975681185722351, -0.20292779803276062, -0.08683682978153229, -0.03439704328775406, 0.05172932893037796, 0.024289418011903763, 0.03109588660299778, 0.14511780440807343, 0.00330866570584476, -0.011697972193360329, 0.021521087735891342, 0.0552830770611763, 0.1808544099330902, -0.018835769966244698, 0.07143596559762955, -0.04291698336601257, -0.13400326669216156, 0.04656919464468956, 0.0768166109919548, 0.14040477573871613, -0.05924064293503761, -0.028839973732829094, 0.07402627915143967, 0.2619035243988037, 0.09004925936460495, 0.11267538368701935, -0.054076846688985825, -0.027414213865995407, -0.02101396769285202, -0.05146486684679985, 0.07970584183931351, 0.09914197772741318, 0.04115980863571167, -0.0913587436079979, 0.05719808116555214, 0.06375366449356079, 0.04308202490210533, -0.10741057246923447, 0.12068607658147812, -0.30458298325538635, 0.057322777807712555, -0.030032500624656677, -0.0257281344383955, -0.03189348056912422, 0.05277042090892792, 0.2389964908361435, 0.02302209660410881, 0.12299856543540955, -0.06381367146968842, 0.05912134051322937, -0.016385624185204506, 0.02179292030632496, 0.021102245897054672, 0.12839443981647491, 0.042467210441827774, 0.04943641275167465, -0.16774322092533112, 0.2884182631969452, -0.006310444790869951, -0.05272405967116356, -0.06100350245833397, 0.018306046724319458, 0.0202487763017416, 0.01564490981400013, 0.069648876786232, 0.007225946057587862, 0.20590896904468536, 0.1254589855670929, -0.10347732156515121, 0.01800706796348095, 0.018001161515712738, 0.08239682763814926, -0.0726851224899292, 0.07719587534666061, -0.08101651072502136, 0.08865177631378174, 0.019194023683667183, -0.07244770973920822, -0.09870414435863495, 0.034588105976581573, 0.2634010910987854, -0.1116192638874054, -0.04452861100435257, -0.08328772336244583, -0.027737775817513466, 0.23500502109527588, 0.030813371762633324, -0.07926643639802933, -0.05170309543609619, 0.030782578513026237, 0.23367151618003845, -0.05543986335396767, 0.062010280787944794, -0.05722929537296295, 0.055892135947942734, -0.09348811209201813, -0.15246741473674774, 0.13398608565330505, -0.10081785917282104, 0.015194752253592014, -0.08724090456962585, 0.17068739235401154, 0.008256270550191402, -0.020256834104657173, -0.004480038303881884, -0.02874397486448288, -0.08881030231714249, -0.10309843719005585, -0.11657635122537613, 0.07825465500354767, -0.04849488288164139, 0.03181935101747513, -0.020279088988900185, -0.025616955012083054, 0.022382210940122604, 0.09642338752746582, 0.19716159999370575, 0.05153430998325348, -0.09581376612186432, -0.00284791411831975, 0.13257063925266266, -0.014999094419181347, -0.20011286437511444, -0.08861418068408966, 0.07124360650777817, -0.040916942059993744, -0.1257234364748001, -0.053219158202409744, 0.18671004474163055, 0.052768077701330185, 0.007331536151468754, -0.01967284083366394, -0.13834141194820404, -0.09330587089061737, 0.11304090172052383, -0.010212347842752934, 0.3001573979854584, 0.04595998302102089, -0.044117238372564316, 0.0033759637735784054, -0.04646514728665352, 0.06952967494726181, 0.04012801870703697, 0.030653003603219986, 0.01272581610828638, 0.03781869262456894, 0.010989737696945667, -0.05293240398168564, 0.07102111726999283, 0.1673894226551056, 0.018296338617801666, -0.025219375267624855, -0.11971054971218109, -0.04688074812293053, -0.029435589909553528, 0.05964646860957146, 0.06459305435419083, 0.014340398833155632, -0.0847979485988617, -0.008424809202551842, -0.07733664661645889, 0.04479021579027176, 0.02771284244954586, -0.05365254357457161, -0.13056680560112, 0.002920867409557104, 0.143461212515831, 0.012773752212524414, 0.23454424738883972, 0.10574419796466827, 0.14746695756912231, 0.11491106450557709, 0.07804152369499207, -0.1750195175409317, -0.029101505875587463, 0.008996007032692432, -0.04071745276451111, 0.06310908496379852, -0.103036068379879, -0.02919757179915905, 0.2059553861618042, -0.05677179619669914, -0.09674062579870224, 0.09242352098226547, -0.04327617213129997, -0.10331696271896362, 0.07748310267925262, -0.1541985422372818, -0.03799953684210777, -0.012858748435974121, 0.05045796185731888, 0.03226304426789284, 0.1622498780488968, 0.1378069370985031, -0.09052351862192154, 0.0012216151226311922, 0.06649572402238846, 0.022407347336411476, -0.13488459587097168, 0.09022222459316254, 0.09810461103916168, 0.07269849628210068, -0.09681755304336548, 0.13284669816493988, -0.010027964599430561, -0.041938360780477524, -0.09769029170274734, 0.026350252330303192, -0.13401490449905396, -0.05847091227769852, 0.0662921592593193, 0.0830128937959671, -0.07495355606079102, -0.05961211398243904, 0.04394865408539772, -0.0901079773902893, 0.02447916939854622, 0.25560396909713745, 0.10311629623174667, 0.09307026118040085, -0.05386892333626747, -0.06794144213199615, -0.06087028980255127, 0.0005908205057494342, 0.08869802206754684, 0.08384563028812408, -0.12273714691400528, -0.04472390562295914, -0.020970571786165237, 0.061368975788354874, -0.08919525891542435, 0.026490185409784317, -0.08006613701581955, 0.04852837696671486, -0.07290063053369522, -0.023617302998900414, -0.11316157877445221, -0.03307684510946274, -0.004788889549672604, -0.09785827994346619, -0.012572893872857094, 0.034043729305267334, -0.06403220444917679, 0.08574245870113373, 0.051413342356681824, -0.011300170794129372, -0.047760214656591415, -0.07609089463949203, -0.05388578772544861, -0.011551864445209503, 0.12542475759983063, -0.015745194628834724, -0.10941854119300842, -0.004316227976232767, -0.22300685942173004, -0.14916646480560303, 0.13923349976539612, 0.08203796297311783, 0.10008644312620163, -0.08799910545349121, 0.04829929769039154, 0.028651786968111992, 0.02650747448205948, -0.01738491840660572, 0.1507861316204071, -0.017155097797513008, 0.00836626160889864, -0.10065793991088867, -0.01455788966268301, -0.057402729988098145, -0.05604490637779236, 0.005235620308667421, 0.10506424307823181, 0.062210120260715485, -0.03181673586368561, 0.04381705820560455, 0.020674366503953934, 0.05136297270655632, -0.027248632162809372, -0.14730122685432434, 0.10115348547697067, -0.03266279026865959, 0.011071635410189629, -0.04124835506081581, 0.21025580167770386, -0.1284930557012558, -0.11801077425479889, -0.028684355318546295, -0.07284609973430634, -0.05615434795618057, 0.03247782960534096, 0.10975764691829681, 0.026902129873633385, -0.007510928902775049, -0.05065445229411125, 0.05702681839466095, 0.08562713116407394, 0.02476849965751171, 0.051577627658843994, -0.01851515844464302, 0.09761353582143784, 0.10419220477342606, 0.06282580643892288, -0.08353552222251892, 0.01853867806494236, -0.11409652233123779, -0.0835939422249794, 0.022393029183149338, -0.02412492036819458, 0.05758567899465561, -0.02256820537149906, 0.02280341647565365, -0.039483584463596344, 0.05395357310771942, -0.06604418158531189, -0.06164749711751938, -0.15096943080425262, -0.0063660419546067715, -0.14063908159732819, -0.02228795364499092, -0.0832560807466507, -0.18398894369602203, 0.09919340908527374, 0.09730255603790283, 0.018223358318209648, 0.12156189233064651, -0.02229086495935917, -0.020723732188344002, 0.06732163578271866, 0.0550273098051548, 0.04089624434709549, -0.0012375483056530356, -0.06967329233884811, -0.1592216044664383, 0.08030441403388977, -0.10132133215665817, 0.04377821832895279, 0.08101925998926163, 0.08408631384372711, 0.043471626937389374, -0.03700685873627663, -0.07057934254407883, 0.0053520044311881065, 0.024432839825749397, 0.1252973973751068, -0.0021280760411173105, -0.05781247839331627, 0.006918200757354498, 0.04320133477449417, -0.06699938327074051, -0.12430262565612793, -0.08680014312267303, 0.177957221865654, -0.06628087908029556, 0.08975827693939209, -0.036442793905735016, 0.056581854820251465, -0.12689967453479767, 0.24891328811645508, 0.34035614132881165, -0.07998647540807724, 0.008401920087635517, 0.0755169466137886, 0.013445617631077766, 0.011015735566616058, 0.060315318405628204, 0.08051963150501251, 0.2839759886264801, -0.09039661288261414, -0.12204872816801071, -0.01681922934949398, 0.015013270080089569, -0.04712633788585663, -0.1046154648065567, -0.0014945176662877202, -0.09709304571151733, -0.0637606680393219, 0.1012498065829277, -0.22951053082942963, 0.007103622425347567, 0.01937747560441494, -0.1492585390806198, -0.06548802554607391, -0.08326906710863113, 0.11947015672922134, -0.02986045554280281, 0.09634695947170258, -0.06751915067434311, -0.005898284260183573, 0.05624845251441002, 0.015206007286906242, -0.11280696839094162, -0.024848880246281624, -0.01901102252304554, 0.08444453775882721, 0.03515336290001869, 0.014265300706028938, 0.1377224177122116, 0.13984215259552002, -0.043122656643390656, -0.08943586051464081, -0.006536906585097313, 0.07154531031847, -0.12144621461629868, -0.09071791172027588, -0.16348294913768768, 0.0035574862267822027, 0.1194772869348526, 0.02770514227449894, -0.15730394423007965, 0.004956254735589027, 0.11585759371519089, 0.01972423493862152, -0.06539636105298996, -0.0359199084341526, -0.04861189424991608, 0.07243914902210236, 0.014029423706233501, -0.042097121477127075, -0.03451986983418465, -0.02387428469955921, 0.029120666906237602, -0.007969356141984463, 0.01815187744796276, 0.013195683248341084, -0.12936580181121826, -0.009860847145318985, -0.016903921961784363, 0.028001874685287476, 0.07697505503892899, -0.016982804983854294, -0.12870831787586212, 0.02154056914150715, -0.07173708826303482, 0.05011717602610588, 0.09136907011270523, -0.008398232981562614, 0.010148261673748493, -0.05055761709809303, -0.02930246666073799, -0.03210942819714546, -0.13571874797344208, -0.1135156899690628 ]
null
null
transformers
# densenet201 Implementation of DenseNet proposed in [Densely Connected Convolutional Networks](https://arxiv.org/abs/1608.06993) Create a default models ``` {.sourceCode .} DenseNet.densenet121() DenseNet.densenet161() DenseNet.densenet169() DenseNet.densenet201() ``` Examples: ``` {.sourceCode .} # change activation DenseNet.densenet121(activation = nn.SELU) # change number of classes (default is 1000 ) DenseNet.densenet121(n_classes=100) # pass a different block DenseNet.densenet121(block=...) # change the initial convolution model = DenseNet.densenet121() model.encoder.gate.conv1 = nn.Conv2d(3, 64, kernel_size=3) # store each feature x = torch.rand((1, 3, 224, 224)) model = DenseNet.densenet121() # first call .features, this will activate the forward hooks and tells the model you'll like to get the features model.encoder.features model(torch.randn((1,3,224,224))) # get the features from the encoder features = model.encoder.features print([x.shape for x in features]) # [torch.Size([1, 128, 28, 28]), torch.Size([1, 256, 14, 14]), torch.Size([1, 512, 7, 7]), torch.Size([1, 1024, 7, 7])] ```
{}
null
glasses/densenet201
[ "transformers", "pytorch", "arxiv:1608.06993", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[ "1608.06993" ]
[]
TAGS #transformers #pytorch #arxiv-1608.06993 #endpoints_compatible #region-us
# densenet201 Implementation of DenseNet proposed in Densely Connected Convolutional Networks Create a default models Examples:
[ "# densenet201\nImplementation of DenseNet proposed in Densely Connected Convolutional\nNetworks\n\n Create a default models\n\n \n\n Examples:" ]
[ "TAGS\n#transformers #pytorch #arxiv-1608.06993 #endpoints_compatible #region-us \n", "# densenet201\nImplementation of DenseNet proposed in Densely Connected Convolutional\nNetworks\n\n Create a default models\n\n \n\n Examples:" ]
[ 30, 31 ]
[ "passage: TAGS\n#transformers #pytorch #arxiv-1608.06993 #endpoints_compatible #region-us \n# densenet201\nImplementation of DenseNet proposed in Densely Connected Convolutional\nNetworks\n\n Create a default models\n\n \n\n Examples:" ]
[ -0.0470874086022377, -0.11464595049619675, -0.0049463543109595776, 0.0009678402566350996, -0.018274566158652306, -0.0009933023247867823, 0.0480819009244442, 0.015345470048487186, -0.061478570103645325, 0.0013068460393697023, 0.2265351116657257, 0.07671534270048141, -0.06389712542295456, 0.15719923377037048, -0.05238110572099686, -0.1818779557943344, 0.04865610599517822, 0.12107113003730774, -0.07069545239210129, 0.033223118633031845, 0.10858332365751266, -0.050635598599910736, 0.08395592868328094, 0.017825555056333542, -0.15547765791416168, -0.005186522379517555, -0.04098088666796684, -0.0033910823985934258, 0.08697398751974106, 0.06245413422584534, 0.21438229084014893, 0.005046308506280184, -0.003939866088330746, -0.21391528844833374, 0.020648254081606865, 0.021451154723763466, -0.05646665766835213, 0.13188646733760834, 0.07879118621349335, 0.06438907235860825, -0.060619793832302094, -0.013120187446475029, -0.04950721934437752, -0.014659001491963863, -0.01558657269924879, -0.06753885746002197, -0.0003701042733155191, 0.108774833381176, -0.03424658998847008, 0.02368675358593464, 0.03293905779719353, 0.1580003947019577, -0.07257353514432907, 0.043769627809524536, -0.03065650910139084, -0.28096240758895874, -0.025275317952036858, 0.3013519048690796, -0.06943009048700333, -0.025468837469816208, 0.02895475924015045, -0.012757392600178719, 0.08329307287931442, 0.01581501215696335, 0.12011697143316269, -0.02146574854850769, -0.056431856006383896, 0.02119155041873455, -0.15382032096385956, 0.07433958351612091, 0.01536079216748476, 0.02740134485065937, 0.1181396096944809, -0.021288694813847542, -0.2133614420890808, -0.004899380262941122, 0.008635691367089748, -0.1028149351477623, -0.030520718544721603, 0.06102997437119484, 0.04388460889458656, -0.01847180165350437, -0.07113581895828247, 0.06317973136901855, -0.15823881328105927, 0.08079545199871063, 0.07399573177099228, 0.04241490364074707, -0.11540205031633377, 0.08891342580318451, -0.14903563261032104, -0.1038082018494606, 0.1326327621936798, -0.138407364487648, -0.04317191615700722, -0.005093062296509743, -0.002864245558157563, 0.014046527445316315, 0.10151928663253784, 0.050476543605327606, 0.11289197206497192, -0.04571361839771271, 0.10027241706848145, 0.10826694220304489, -0.0334601029753685, -0.0870351642370224, -0.1922573447227478, -0.03791246935725212, 0.015741320326924324, -0.044633783400058746, 0.10024122893810272, -0.0005786540568806231, -0.0795777216553688, -0.03643372282385826, -0.006468814332038164, 0.019343195483088493, -0.01951371133327484, 0.09307543933391571, -0.05966181308031082, -0.024771392345428467, 0.035989824682474136, 0.015423010103404522, 0.013230158016085625, -0.06031505763530731, -0.03131144121289253, 0.12981361150741577, 0.043856535106897354, 0.0673026293516159, -0.012740569189190865, 0.12841100990772247, -0.10445046424865723, -0.04320020601153374, -0.044613517820835114, -0.07563506811857224, 0.05405630171298981, -0.01605524867773056, 0.009132171049714088, -0.1809682548046112, 0.008114244788885117, 0.039791569113731384, 0.09867174923419952, -0.03048737719655037, -0.008638781495392323, -0.06893279403448105, -0.13328014314174652, -0.030390292406082153, -0.04278198629617691, 0.08369899541139603, -0.05072491988539696, -0.04085804149508476, -0.012184186838567257, -0.003938933834433556, -0.14810481667518616, -0.003342399140819907, -0.002680133329704404, 0.003479469334706664, -0.02185720205307007, 0.026893340051174164, -0.12902097404003143, 0.02748984284698963, -0.11004576086997986, -0.052934423089027405, -0.05394845828413963, 0.005265362560749054, 0.10395096987485886, 0.07422216236591339, -0.14347821474075317, -0.019055722281336784, 0.050160035490989685, -0.0865754783153534, -0.16457632184028625, 0.1456407904624939, -0.03975047171115875, 0.022494884207844734, 0.02406623214483261, 0.09492486715316772, 0.15262751281261444, -0.1491153985261917, 0.03361155837774277, 0.07302849739789963, -0.09663473069667816, -0.13263659179210663, -0.0248173289000988, 0.10467441380023956, -0.13856203854084015, 0.0010299774585291743, 0.010200144723057747, 0.15444344282150269, -0.086815245449543, -0.04696738347411156, -0.02422490157186985, -0.08121080696582794, 0.09184671938419342, 0.009775949642062187, 0.061245668679475784, 0.03507457301020622, -0.048690833151340485, -0.07838758826255798, 0.04103885963559151, -0.022170700132846832, 0.022270163521170616, -0.02405393309891224, 0.05191332846879959, -0.14289580285549164, -0.016106314957141876, -0.07991351187229156, -0.1962282806634903, 0.035507895052433014, 0.1350753903388977, -0.03493834286928177, 0.23635074496269226, 0.056996144354343414, -0.039619576185941696, -0.08988822251558304, -0.01701582409441471, 0.19076719880104065, 0.041328538209199905, -0.1480039358139038, -0.10600682348012924, -0.060837242752313614, -0.08239003270864487, -0.03784680739045143, -0.13773220777511597, -0.011176333762705326, -0.04339862987399101, 0.18872623145580292, -0.02974158152937889, 0.07730020582675934, 0.01977895013988018, 0.024480968713760376, -0.034140173345804214, -0.011641950346529484, 0.0548161156475544, -0.04782775789499283, -0.1632927805185318, 0.086207315325737, -0.02311388961970806, 0.2604653537273407, 0.05967223644256592, -0.10799462348222733, 0.009581604972481728, -0.09581732749938965, -0.05958923324942589, -0.020154686644673347, 0.035102907568216324, 0.01600050739943981, 0.1843990534543991, -0.006223603151738644, 0.07325727492570877, -0.039148442447185516, -0.030212875455617905, -0.005103721283376217, -0.014190223067998886, 0.004444492980837822, 0.0508125014603138, 0.06213431805372238, -0.165399968624115, 0.11091551929712296, 0.012625172734260559, -0.055059920996427536, -0.05877535045146942, 0.014385678805410862, 0.031079908832907677, -0.014014274813234806, 0.11074592918157578, -0.008767195977270603, 0.03907192125916481, -0.026304613798856735, 0.024961253628134727, 0.06178102642297745, -0.044392794370651245, 0.08313728868961334, -0.08358879387378693, 0.010890631936490536, -0.006017039529979229, 0.009668976068496704, 0.08764474093914032, 0.0937655046582222, -0.0302499420940876, 0.04306509718298912, -0.044088974595069885, -0.2254735678434372, 0.05978096276521683, -0.025649504736065865, -0.03362658992409706, 0.1408269703388214, -0.12518614530563354, -0.10592850297689438, -0.042441532015800476, -0.09948717802762985, -0.031499508768320084, -0.027685467153787613, -0.0222441628575325, -0.07368364185094833, -0.06596090644598007, 0.013332247734069824, 0.0541643425822258, 0.06337403506040573, 0.08005524426698685, -0.024515269324183464, -0.01162633579224348, -0.01801617257297039, -0.10672410577535629, 0.0036321424413472414, -0.12913300096988678, 0.05127513036131859, 0.01587665267288685, -0.11465120315551758, 0.025971494615077972, 0.15134112536907196, 0.04231918975710869, -0.017124509438872337, -0.0003257284697610885, 0.09408575296401978, 0.03455740585923195, 0.10042949765920639, 0.05195879936218262, -0.0417686328291893, 0.08497995138168335, 0.21986141800880432, 0.07984306663274765, -0.013043520972132683, 0.014256389811635017, -0.020526345819234848, -0.02792871929705143, -0.1974949836730957, -0.202129527926445, -0.08336273580789566, -0.03681737184524536, 0.05397209897637367, 0.024925345554947853, 0.03419937565922737, 0.1449751853942871, 0.005224461667239666, -0.013306205160915852, 0.023067215457558632, 0.05673317238688469, 0.17593729496002197, -0.017504440620541573, 0.06975378096103668, -0.04266338795423508, -0.1357891857624054, 0.04579276591539383, 0.07740825414657593, 0.14685948193073273, -0.05630188807845116, -0.03044426441192627, 0.07547570765018463, 0.2545319199562073, 0.08967535197734833, 0.1122390478849411, -0.04772220551967621, -0.026375707238912582, -0.022193629294633865, -0.05240041762590408, 0.08052133768796921, 0.10120780020952225, 0.0433950237929821, -0.0909103974699974, 0.060336288064718246, 0.06847812980413437, 0.04448239877820015, -0.10558880865573883, 0.12171433120965958, -0.30510738492012024, 0.06075147166848183, -0.029595518484711647, -0.025376906618475914, -0.030541522428393364, 0.05400902032852173, 0.24012044072151184, 0.023557770997285843, 0.12204473465681076, -0.06456726789474487, 0.057049524039030075, -0.018590856343507767, 0.02129330299794674, 0.02420472726225853, 0.1273224949836731, 0.04195941239595413, 0.045521512627601624, -0.16969798505306244, 0.29255411028862, -0.007467694114893675, -0.053474895656108856, -0.060129888355731964, 0.01717119663953781, 0.01815815083682537, 0.014005552977323532, 0.07190109044313431, 0.006053337827324867, 0.20903940498828888, 0.13135360181331635, -0.10594836622476578, 0.020653577521443367, 0.01933637447655201, 0.08282304555177689, -0.07289611548185349, 0.07601523399353027, -0.08065112680196762, 0.08927322924137115, 0.022760365158319473, -0.07685300707817078, -0.0971648097038269, 0.03446279093623161, 0.2661586105823517, -0.10879349708557129, -0.04649600386619568, -0.0860903263092041, -0.02503802254796028, 0.2331925332546234, 0.034375548362731934, -0.07832638919353485, -0.05145720764994621, 0.03174690157175064, 0.23342850804328918, -0.055375754833221436, 0.06168026477098465, -0.05724690854549408, 0.055571261793375015, -0.09366626292467117, -0.14990472793579102, 0.13222378492355347, -0.09631425887346268, 0.01772383227944374, -0.08842423558235168, 0.17179173231124878, 0.010335924103856087, -0.020312810316681862, -0.003387525910511613, -0.02707212045788765, -0.08530505001544952, -0.10172546654939651, -0.11605236679315567, 0.08222926408052444, -0.0485907606780529, 0.028989681974053383, -0.023091556504368782, -0.03019162267446518, 0.023804891854524612, 0.09604176878929138, 0.20082660019397736, 0.053260840475559235, -0.09567105770111084, -0.0007669178303331137, 0.12761487066745758, -0.01481065433472395, -0.19694189727306366, -0.08815258741378784, 0.0742776095867157, -0.04128449410200119, -0.1275128871202469, -0.05564279481768608, 0.18665838241577148, 0.05405619367957115, 0.008221217431128025, -0.022795647382736206, -0.13948439061641693, -0.09432478994131088, 0.11040449887514114, -0.009390008635818958, 0.2977595329284668, 0.04616585373878479, -0.04392899200320244, 0.00045186179340817034, -0.04968104884028435, 0.07253201305866241, 0.042894382029771805, 0.031301744282245636, 0.014765972271561623, 0.0403665192425251, 0.010581010021269321, -0.052665725350379944, 0.06921329349279404, 0.1683369278907776, 0.01673811674118042, -0.023968415334820747, -0.1264626383781433, -0.047509241849184036, -0.02983408235013485, 0.06082035228610039, 0.06404286623001099, 0.01206466555595398, -0.07631348818540573, -0.008721277117729187, -0.07618460059165955, 0.04461349546909332, 0.02913021296262741, -0.05557838827371597, -0.1307074874639511, 0.0032499125227332115, 0.14642265439033508, 0.012969755567610264, 0.23903532326221466, 0.10585165023803711, 0.14125393331050873, 0.10701953619718552, 0.07718686759471893, -0.17324231564998627, -0.027750568464398384, 0.008423062972724438, -0.04186411201953888, 0.0607471764087677, -0.10403547435998917, -0.027728337794542313, 0.20681145787239075, -0.05792514234781265, -0.0935969203710556, 0.09345096349716187, -0.0407809242606163, -0.10214321315288544, 0.07818271219730377, -0.15425977110862732, -0.039150603115558624, -0.012615671381354332, 0.051586173474788666, 0.0330178402364254, 0.16633303463459015, 0.13677968084812164, -0.08990973979234695, 0.0004025954403914511, 0.06548852473497391, 0.022080345079302788, -0.1364208608865738, 0.08716077357530594, 0.09564922004938126, 0.0711677074432373, -0.09372199326753616, 0.13424894213676453, -0.009909815154969692, -0.03826380893588066, -0.09579542279243469, 0.024132873862981796, -0.13269273936748505, -0.0565330870449543, 0.06699047982692719, 0.08244545757770538, -0.07399642467498779, -0.0571829229593277, 0.04528040066361427, -0.08741780370473862, 0.02158423140645027, 0.2531949281692505, 0.10386418551206589, 0.09338094294071198, -0.05479515343904495, -0.06814838945865631, -0.06046215817332268, 0.000790567952208221, 0.08889075368642807, 0.08546924591064453, -0.12240723520517349, -0.042004942893981934, -0.023332009091973305, 0.058751098811626434, -0.08967277407646179, 0.024386558681726456, -0.07814406603574753, 0.04748750105500221, -0.07563655823469162, -0.023872071877121925, -0.11445794999599457, -0.035079117864370346, -0.003039949107915163, -0.09700994193553925, -0.014217287302017212, 0.033230483531951904, -0.06382618099451065, 0.08451850712299347, 0.052202824503183365, -0.010555914603173733, -0.04708953574299812, -0.07567748427391052, -0.056098733097314835, -0.011255782097578049, 0.12470421195030212, -0.016743507236242294, -0.10913458466529846, -0.006156028248369694, -0.22184798121452332, -0.14879585802555084, 0.14091730117797852, 0.08096959441900253, 0.09969613701105118, -0.0898820236325264, 0.047517042607069016, 0.030234243720769882, 0.0289465319365263, -0.017490725964307785, 0.1527855545282364, -0.015501103363931179, 0.009346450679004192, -0.1020638644695282, -0.017199242487549782, -0.05920931696891785, -0.05741327628493309, 0.005065435077995062, 0.10356246680021286, 0.06331170350313187, -0.030956445261836052, 0.04405596852302551, 0.02284112013876438, 0.052496008574962616, -0.025874238461256027, -0.14406347274780273, 0.10040785372257233, -0.03467215225100517, 0.008047844283282757, -0.04275871440768242, 0.21074163913726807, -0.129108726978302, -0.12454923242330551, -0.02745666727423668, -0.07465507835149765, -0.05874834954738617, 0.032914452254772186, 0.1143726035952568, 0.027539074420928955, -0.010131632909178734, -0.05224253982305527, 0.055335793644189835, 0.08486893773078918, 0.024866953492164612, 0.05453355982899666, -0.01700311154127121, 0.09336215257644653, 0.10511288791894913, 0.060258202254772186, -0.08627530187368393, 0.020582333207130432, -0.11298918724060059, -0.08204828947782516, 0.020625626668334007, -0.021309567615389824, 0.06679654866456985, -0.02628643810749054, 0.022755693644285202, -0.0439639687538147, 0.053783025592565536, -0.065984345972538, -0.0617622509598732, -0.15433824062347412, -0.007027088664472103, -0.1386563628911972, -0.021868471056222916, -0.08366230130195618, -0.18451470136642456, 0.09731291979551315, 0.09865617752075195, 0.019803892821073532, 0.12014967948198318, -0.025232186540961266, -0.021677091717720032, 0.06580150127410889, 0.05689578130841255, 0.042821161448955536, -0.004602111876010895, -0.06758330017328262, -0.1613268256187439, 0.08160919696092606, -0.10164748877286911, 0.04307917505502701, 0.08236601203680038, 0.08175242692232132, 0.042971670627593994, -0.03482072427868843, -0.07175208628177643, 0.004778709728270769, 0.023053189739584923, 0.12088236957788467, -0.00204848637804389, -0.059944428503513336, 0.008187229745090008, 0.040991634130477905, -0.06730148941278458, -0.1296594887971878, -0.08861268311738968, 0.17679764330387115, -0.065322145819664, 0.092467300593853, -0.036571938544511795, 0.05700301751494408, -0.1277029663324356, 0.2432902455329895, 0.3439669609069824, -0.07765056192874908, 0.007067115046083927, 0.07724768668413162, 0.013217806816101074, 0.008901994675397873, 0.05618220567703247, 0.07834111899137497, 0.28251907229423523, -0.09046147018671036, -0.11881799250841141, -0.017456863075494766, 0.017114760354161263, -0.04587884619832039, -0.10496131330728531, -0.004203777760267258, -0.09631497412919998, -0.06549064069986343, 0.09975255280733109, -0.2271147519350052, 0.010794511996209621, 0.018438145518302917, -0.14686837792396545, -0.06585990637540817, -0.08018650114536285, 0.12119605392217636, -0.031081706285476685, 0.09717513620853424, -0.06676801294088364, -0.006625534500926733, 0.06265702843666077, 0.014625261537730694, -0.1137002632021904, -0.022139109671115875, -0.01710370182991028, 0.07575101405382156, 0.03664644807577133, 0.015026143752038479, 0.14202630519866943, 0.1396878957748413, -0.04411909729242325, -0.08772756159305573, -0.004888077266514301, 0.07166331261396408, -0.12188906222581863, -0.09245290607213974, -0.16551539301872253, 0.0024041482247412205, 0.12011047452688217, 0.0285163763910532, -0.1500069797039032, 0.0042870319448411465, 0.12105989456176758, 0.019703732803463936, -0.06527198851108551, -0.03707519918680191, -0.0488547645509243, 0.07384125888347626, 0.010267925448715687, -0.041600301861763, -0.03165303170681, -0.025065036490559578, 0.030537258833646774, -0.004108354914933443, 0.015827052295207977, 0.013599734753370285, -0.130062997341156, -0.010604399256408215, -0.01773163676261902, 0.026606343686580658, 0.08084801584482193, -0.017415175214409828, -0.13176237046718597, 0.02216910570859909, -0.07060734182596207, 0.048549942672252655, 0.09312566369771957, -0.005605952348560095, 0.009614210575819016, -0.0508231446146965, -0.02860700897872448, -0.03253823518753052, -0.13695374131202698, -0.11439339071512222 ]
null
null
transformers
# ResNet Implementation of ResNet proposed in [Deep Residual Learning for Image Recognition](https://arxiv.org/abs/1512.03385) ``` python ResNet.resnet18() ResNet.resnet26() ResNet.resnet34() ResNet.resnet50() ResNet.resnet101() ResNet.resnet152() ResNet.resnet200() Variants (d) proposed in `Bag of Tricks for Image Classification with Convolutional Neural Networks <https://arxiv.org/pdf/1812.01187.pdf`_ ResNet.resnet26d() ResNet.resnet34d() ResNet.resnet50d() # You can construct your own one by chaning `stem` and `block` resnet101d = ResNet.resnet101(stem=ResNetStemC, block=partial(ResNetBottleneckBlock, shortcut=ResNetShorcutD)) ``` Examples: ``` python # change activation ResNet.resnet18(activation = nn.SELU) # change number of classes (default is 1000 ) ResNet.resnet18(n_classes=100) # pass a different block ResNet.resnet18(block=SENetBasicBlock) # change the steam model = ResNet.resnet18(stem=ResNetStemC) change shortcut model = ResNet.resnet18(block=partial(ResNetBasicBlock, shortcut=ResNetShorcutD)) # store each feature x = torch.rand((1, 3, 224, 224)) # get features model = ResNet.resnet18() # first call .features, this will activate the forward hooks and tells the model you'll like to get the features model.encoder.features model(torch.randn((1,3,224,224))) # get the features from the encoder features = model.encoder.features print([x.shape for x in features]) #[torch.Size([1, 64, 112, 112]), torch.Size([1, 64, 56, 56]), torch.Size([1, 128, 28, 28]), torch.Size([1, 256, 14, 14])] ```
{}
null
glasses/dummy
[ "transformers", "pytorch", "arxiv:1512.03385", "arxiv:1812.01187", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[ "1512.03385", "1812.01187" ]
[]
TAGS #transformers #pytorch #arxiv-1512.03385 #arxiv-1812.01187 #endpoints_compatible #region-us
# ResNet Implementation of ResNet proposed in Deep Residual Learning for Image Recognition Examples:
[ "# ResNet\nImplementation of ResNet proposed in Deep Residual Learning for Image\nRecognition\n\n \n\n Examples:" ]
[ "TAGS\n#transformers #pytorch #arxiv-1512.03385 #arxiv-1812.01187 #endpoints_compatible #region-us \n", "# ResNet\nImplementation of ResNet proposed in Deep Residual Learning for Image\nRecognition\n\n \n\n Examples:" ]
[ 39, 24 ]
[ "passage: TAGS\n#transformers #pytorch #arxiv-1512.03385 #arxiv-1812.01187 #endpoints_compatible #region-us \n# ResNet\nImplementation of ResNet proposed in Deep Residual Learning for Image\nRecognition\n\n \n\n Examples:" ]
[ -0.09616639465093613, -0.06366479396820068, -0.0037322191055864096, 0.05138205736875534, 0.10659891366958618, 0.021586144343018532, -0.009634475223720074, 0.07054006308317184, -0.053948886692523956, 0.04731278866529465, 0.1037297248840332, 0.08295340090990067, -0.0058242822997272015, -0.04304485023021698, -0.05572299286723137, -0.23913611471652985, 0.06364098936319351, 0.08260917663574219, -0.0041536977514624596, 0.06929973512887955, 0.05711069330573082, -0.08343339711427689, 0.10536167025566101, -0.01534983143210411, -0.23553140461444855, -0.0008716770098544657, -0.0015674196183681488, -0.06291821599006653, 0.11587695777416229, 0.02531363256275654, 0.1433437615633011, -0.005697180982679129, 0.08062248677015305, -0.09028321504592896, 0.032286085188388824, 0.05324514955282211, -0.055810634046792984, 0.05216443911194801, 0.08513733744621277, -0.024412643164396286, 0.03505827113986015, 0.06152614206075668, -0.04949970915913582, -0.04106217250227928, -0.051160868257284164, -0.022320285439491272, 0.003970127087086439, 0.1425614356994629, 0.0618370957672596, 0.09957648068666458, 0.011353893205523491, 0.10124125331640244, -0.09590128809213638, 0.11621695011854172, 0.22650742530822754, -0.2877153754234314, -0.05333174392580986, 0.12962009012699127, -0.018461626023054123, -0.05911590903997421, -0.07185162603855133, 0.04889311268925667, 0.025916794314980507, 0.04601820930838585, -0.17162609100341797, -0.005087184254080057, -0.012779563665390015, -0.02003314718604088, -0.12083566188812256, -0.004452147986739874, 0.042793259024620056, 0.049353163689374924, 0.07589907199144363, 0.007548857014626265, -0.18082308769226074, -0.02956576645374298, -0.09480594098567963, -0.008974917232990265, -0.008822361007332802, 0.04200572893023491, -0.12411284446716309, -0.035819657146930695, -0.0542692169547081, -0.03718498349189758, -0.14949841797351837, 0.00035568850580602884, 0.04786805063486099, 0.11708948016166687, -0.12814345955848694, 0.019677553325891495, 0.009213728830218315, -0.01861814223229885, 0.0032554352656006813, -0.1049971953034401, -0.015009131282567978, 0.02546936646103859, -0.0866856798529625, -0.08173765242099762, 0.04706958681344986, 0.169330433011055, -0.06645245850086212, 0.021708253771066666, -0.014596919529139996, 0.1354973167181015, -0.092161625623703, 0.06524650007486343, -0.22519497573375702, 0.13533498346805573, 0.0030418639071285725, -0.10303604602813721, 0.00828594621270895, -0.02859899215400219, -0.07747437059879303, -0.03164482116699219, 0.13175752758979797, -0.035118017345666885, -0.049196142703294754, 0.06387704610824585, -0.008523649536073208, -0.04166751354932785, 0.036404117941856384, -0.03709346801042557, -0.035524070262908936, -0.0036350248847156763, -0.08825824409723282, 0.11459409445524216, 0.08952172100543976, -0.020030781626701355, -0.09247057884931564, 0.027215268462896347, -0.021534817293286324, -0.0005505894660018384, 0.009312539361417294, -0.06682882457971573, 0.005303868558257818, -0.011325676925480366, 0.06586373597383499, -0.23614996671676636, -0.08204628527164459, 0.0000747989397495985, 0.07170955091714859, -0.05585205927491188, 0.05664948374032974, -0.032947998493909836, -0.12499848753213882, 0.005688948556780815, 0.02867663837969303, 0.002569950418546796, -0.029144879430532455, 0.03157763555645943, -0.06381957232952118, 0.15274909138679504, -0.07331380993127823, 0.01883196085691452, -0.06868655234575272, -0.03596195951104164, -0.09619539231061935, 0.10507222265005112, -0.06251030415296555, 0.09574922919273376, -0.11913549154996872, -0.06121145933866501, -0.0973372533917427, 0.0018160815816372633, 0.029805617406964302, 0.09138412028551102, -0.08663304895162582, -0.044879984110593796, 0.19928184151649475, -0.11909475177526474, -0.08380326628684998, 0.09367016702890396, -0.01744966208934784, -0.10007224977016449, 0.010876941494643688, 0.17531220614910126, -0.0244562029838562, -0.03576638177037239, -0.04192519560456276, 0.003198040649294853, -0.15272191166877747, -0.06346306949853897, -0.06974166631698608, 0.15619108080863953, 0.030275864526629448, -0.03408117592334747, -0.028254369273781776, 0.08099199831485748, -0.12453390657901764, -0.10478387773036957, -0.04384445771574974, -0.09010497480630875, 0.019377050921320915, 0.04687240719795227, 0.12048951536417007, 0.04958990216255188, -0.05682099610567093, -0.18854448199272156, 0.03711370378732681, -0.040553152561187744, 0.10992804914712906, -0.1016993448138237, 0.16345857083797455, -0.0324053131043911, 0.023020165041089058, -0.24396753311157227, -0.036164067685604095, 0.001099988236092031, 0.033006057143211365, -0.02438049018383026, 0.031112706288695335, 0.06862418353557587, -0.03928405046463013, -0.0370740108191967, -0.06982580572366714, 0.0579024963080883, -0.023036137223243713, -0.01346115954220295, -0.07706062495708466, 0.015331270173192024, -0.06971108168363571, -0.025232503190636635, -0.14091938734054565, -0.05557587742805481, 0.03171567618846893, 0.136163592338562, -0.013488548807799816, 0.07727973163127899, -0.04401315003633499, -0.03547320142388344, -0.012745033018290997, -0.0703873485326767, 0.07882826030254364, -0.01460378710180521, -0.011510140262544155, 0.053760867565870285, 0.043415460735559464, 0.15966254472732544, 0.1359671652317047, -0.29837125539779663, -0.10110662877559662, 0.10063248872756958, -0.029598083347082138, 0.0075759282335639, 0.009420227259397507, 0.11691375076770782, 0.14380717277526855, -0.01608603075146675, 0.04739191383123398, -0.026110723614692688, 0.10502426326274872, 0.022296136245131493, -0.04719935730099678, -0.022579681128263474, 0.06073072925209999, 0.03806349262595177, -0.27490732073783875, 0.05868559330701828, 0.03820537403225899, -0.1381387710571289, -0.022569075226783752, -0.01115906611084938, -0.055527035146951675, 0.07982605695724487, 0.08695974200963974, -0.0029335685539990664, 0.054909348487854004, 0.030321035534143448, -0.056420356035232544, 0.024967951700091362, -0.11099997907876968, 0.03611764684319496, -0.11957498639822006, 0.01978095807135105, -0.05205049738287926, 0.0224534310400486, 0.020146183669567108, 0.04041709750890732, 0.01003020629286766, 0.08644474297761917, 0.011071660555899143, -0.19169823825359344, 0.02648504637181759, -0.05994715541601181, -0.006003072019666433, 0.20096056163311005, -0.014781941659748554, -0.2528081238269806, -0.013159460388123989, -0.06434469670057297, -0.04610476642847061, 0.014993774704635143, 0.02400091663002968, -0.1690298616886139, -0.04073570296168327, 0.02738729678094387, 0.028085622936487198, 0.06585867702960968, 0.03221980109810829, 0.008873585611581802, 0.008155830204486847, -0.005330168176442385, -0.03792063519358635, 0.005196568556129932, -0.19364729523658752, -0.11086932569742203, 0.12803220748901367, -0.10683499276638031, 0.0727882981300354, 0.10985487699508667, -0.011087493039667606, 0.027579177170991898, 0.021416692063212395, 0.1650094985961914, -0.08658349514007568, 0.001803247956559062, 0.06770754605531693, 0.008463691920042038, 0.060786325484514236, 0.087828129529953, 0.011576122604310513, -0.10527554154396057, -0.0023850491270422935, 0.025533633306622505, -0.0471671000123024, -0.0932692214846611, -0.12378356605768204, -0.03554900363087654, -0.020865077152848244, 0.1392531394958496, 0.07811623066663742, 0.04299869015812874, 0.09809346497058868, 0.03773089125752449, -0.03198246657848358, 0.04472929984331131, 0.06039099767804146, 0.11695236712694168, 0.021177023649215698, 0.11293401569128036, -0.06092534959316254, -0.09304522722959518, 0.02215699665248394, 0.06662129610776901, 0.2503420114517212, -0.03325411677360535, -0.12929852306842804, 0.034634701907634735, 0.20973743498325348, 0.14032338559627533, 0.11195618659257889, -0.053508032113313675, -0.0446770116686821, 0.015411756001412868, 0.023029012605547905, -0.013527204282581806, 0.04641374945640564, 0.07235120236873627, -0.07753536105155945, 0.018948160111904144, 0.039883971214294434, 0.006641671061515808, 0.23265179991722107, 0.13058383762836456, -0.3275323808193207, -0.026314686983823776, -0.04888926073908806, 0.009060313925147057, -0.046013087034225464, 0.12998785078525543, 0.01667068339884281, -0.04744471237063408, 0.05186162143945694, -0.13498079776763916, 0.08925706893205643, -0.08000063896179199, 0.027066657319664955, 0.0007050245185382664, -0.07834101468324661, 0.06579329818487167, 0.01880345121026039, -0.15778401494026184, 0.19509968161582947, -0.041605036705732346, -0.06095254421234131, -0.03143259137868881, -0.05542684718966484, 0.08103534579277039, 0.11073995381593704, 0.2163456678390503, 0.015206702053546906, -0.023822758346796036, 0.02683872915804386, 0.012682470493018627, 0.02246783673763275, 0.12912426888942719, 0.05702856183052063, -0.03565071150660515, 0.02266528643667698, -0.05012273043394089, 0.027500445023179054, 0.11448082327842712, 0.02174338325858116, -0.08640487492084503, -0.03521240875124931, 0.02685510739684105, -0.03928445652127266, -0.00970480591058731, -0.053410209715366364, -0.0196926798671484, 0.11782960593700409, 0.03888550400733948, 0.000791321275755763, -0.08791199326515198, 0.0704430341720581, 0.09081615507602692, -0.07240357249975204, 0.09658049046993256, -0.04402809217572212, 0.04021677374839783, -0.02433166466653347, -0.22330059111118317, 0.19713091850280762, -0.10196847468614578, -0.010259950533509254, 0.026182159781455994, -0.018575577065348625, -0.007777910679578781, -0.04176381230354309, 0.03852911666035652, 0.03962760046124458, -0.154759019613266, -0.0038064068648964167, 0.07512474060058594, -0.05109056457877159, -0.05209963023662567, 0.11168338358402252, -0.03765421360731125, -0.005651270970702171, -0.07825334370136261, 0.1671111285686493, 0.15769889950752258, -0.02511957287788391, -0.07747594267129898, -0.005477683153003454, 0.10828018188476562, 0.054838068783283234, -0.3625635802745819, -0.071600541472435, -0.032428231090307236, -0.030581897124648094, -0.09672317653894424, -0.11674997210502625, 0.17704439163208008, -0.057948943227529526, -0.026801254600286484, 0.047275360673666, -0.11357663571834564, -0.03833182528614998, 0.25215184688568115, 0.0690564289689064, 0.3235005736351013, -0.07480263710021973, 0.006578272674232721, -0.03670022636651993, 0.0511147640645504, 0.02499515935778618, 0.023564422503113747, 0.10711825639009476, -0.0005448069423437119, 0.1309168040752411, -0.012865539640188217, -0.021053098142147064, -0.03511054813861847, 0.08789539337158203, 0.06238444894552231, -0.10399191081523895, 0.030277999117970467, 0.03433924913406372, -0.01336060743778944, 0.0037412536330521107, 0.20008961856365204, 0.11669732630252838, 0.012370551005005836, 0.014542870223522186, -0.10157157480716705, 0.05524391680955887, 0.104908786714077, 0.0012534648412838578, -0.10693530738353729, 0.05290684849023819, 0.0868673324584961, 0.07412654906511307, 0.2506482005119324, 0.09582418203353882, 0.10936985164880753, 0.07545501738786697, -0.020809166133403778, -0.07045572996139526, -0.09366432577371597, -0.08007951825857162, -0.03247310221195221, 0.13897334039211273, -0.0851539894938469, 0.044494710862636566, 0.10430929064750671, 0.011564386077225208, -0.011123903095722198, 0.1253771185874939, -0.013523777946829796, 0.00007070678839227185, 0.08741416037082672, -0.08468732982873917, -0.054008934646844864, 0.0024577388539910316, 0.023133397102355957, 0.1214664950966835, 0.15753883123397827, 0.13810713589191437, -0.08928141742944717, 0.01581190526485443, 0.005592189729213715, 0.06723731011152267, -0.060160957276821136, 0.07067473232746124, 0.13102371990680695, 0.007646622136235237, -0.14499303698539734, 0.17384225130081177, -0.009134200401604176, -0.15489234030246735, -0.019230904057621956, -0.0430375337600708, -0.1217782199382782, -0.1061612069606781, -0.049318306148052216, 0.009697653353214264, -0.23965798318386078, -0.04195836931467056, -0.00257253460586071, -0.09004853665828705, 0.09919212013483047, 0.09002063423395157, 0.11944286525249481, -0.0013454792788252234, -0.06208103895187378, -0.03452495485544205, -0.07308915257453918, -0.011999952606856823, 0.040148455649614334, 0.07525607943534851, -0.16470380127429962, -0.17379215359687805, 0.011770646087825298, 0.1832388937473297, -0.10081958770751953, -0.01901462860405445, -0.12386397272348404, 0.08843978494405746, -0.08819127082824707, 0.03508936986327171, -0.013828903436660767, 0.010643631219863892, -0.05563155189156532, -0.04750439152121544, -0.0838933140039444, 0.026323050260543823, -0.09638624638319016, 0.007307535968720913, 0.0025148573331534863, -0.07064785808324814, -0.10205885767936707, -0.0036746980622410774, 0.0004545443516690284, -0.0033063979353755713, 0.12240234762430191, 0.11536829173564911, -0.09778837114572525, 0.12104161083698273, -0.12688417732715607, -0.2539132535457611, 0.14661380648612976, 0.011033882386982441, -0.009231960400938988, 0.07249196618795395, 0.026276908814907074, 0.017272265627980232, -0.001079774578101933, -0.010369636118412018, 0.025508636608719826, -0.01764269731938839, 0.016553910449147224, -0.22716856002807617, -0.005806738045066595, -0.036009471863508224, 0.02123752050101757, 0.06139025837182999, 0.1250770539045334, 0.06566081196069717, -0.08076547831296921, 0.012497694231569767, -0.004178235772997141, 0.01405277755111456, 0.004700651858001947, -0.10142960399389267, 0.09955787658691406, -0.059505969285964966, 0.039005961269140244, -0.08107014745473862, 0.16751740872859955, -0.07013847678899765, -0.04317577928304672, 0.022722819820046425, 0.19938738644123077, -0.18842896819114685, 0.08512367308139801, 0.12884214520454407, 0.1152644008398056, -0.021650347858667374, 0.03236263990402222, 0.07901591062545776, 0.08805978298187256, 0.2019713670015335, 0.03225326910614967, 0.21013660728931427, -0.008131392300128937, 0.12226073443889618, 0.07050228118896484, -0.0023360522463917732, 0.052982766181230545, 0.05396782234311104, -0.10959552973508835, 0.06313527375459671, 0.003909396007657051, 0.0034602144733071327, 0.13745799660682678, 0.0735032856464386, 0.018869882449507713, 0.002401195000857115, -0.020885029807686806, -0.08683834969997406, -0.11803468316793442, -0.10098493099212646, -0.14222751557826996, 0.05021996051073074, -0.015355239622294903, -0.05628221109509468, 0.2072771042585373, 0.09360400587320328, -0.02101852558553219, 0.12540660798549652, -0.04815549775958061, -0.06232065334916115, 0.17239010334014893, -0.005154091399163008, -0.10518171638250351, 0.13748005032539368, -0.05297958850860596, 0.03314472734928131, 0.057131268084049225, -0.011303236708045006, 0.001412559999153018, 0.006177163682878017, 0.1295699030160904, -0.038002315908670425, -0.06904566287994385, -0.03361576050519943, 0.05422547459602356, -0.07377170026302338, -0.08924497663974762, -0.02439011074602604, -0.004112503491342068, 0.015669450163841248, 0.26361364126205444, -0.11519166082143784, -0.03956569358706474, -0.09168118983507156, -0.03702652454376221, -0.008218398317694664, 0.10316119343042374, -0.0893259197473526, -0.03464678302407265, -0.05597321689128876, 0.2172318547964096, 0.21798594295978546, -0.18943066895008087, 0.0030119726434350014, 0.10964611917734146, 0.021330608054995537, -0.036226436495780945, 0.014681376516819, 0.14544600248336792, 0.13675609230995178, -0.06903103739023209, -0.12196600437164307, -0.028807656839489937, -0.05713662877678871, -0.07782092690467834, 0.008308938704431057, 0.08386057615280151, -0.02823054790496826, -0.17064912617206573, 0.12138491868972778, -0.21265347301959991, -0.02967873215675354, 0.09312994033098221, -0.1480749398469925, -0.11778515577316284, -0.04605138674378395, 0.06611345708370209, 0.0844729021191597, 0.09218201786279678, -0.06134823337197304, -0.009951614774763584, 0.015241128392517567, 0.049815237522125244, -0.16508835554122925, -0.04498249292373657, -0.06281755864620209, -0.0078077069483697414, 0.07460979372262955, 0.0035026620607823133, -0.04684630036354065, 0.04779211804270744, 0.01854811981320381, -0.012193878181278706, -0.002248608274385333, -0.03543119505047798, -0.16973876953125, 0.01616964116692543, 0.1358521431684494, -0.031988248229026794, -0.00933578610420227, 0.06028946861624718, -0.24986061453819275, -0.02156110480427742, 0.04570363834500313, 0.03851936012506485, -0.09015276283025742, -0.004490310791879892, -0.06526032090187073, 0.06967474520206451, 0.06411376595497131, 0.018326347693800926, 0.021268298849463463, -0.049520451575517654, -0.026317117735743523, 0.029106764122843742, -0.04576254263520241, -0.00640319986268878, -0.08154943585395813, -0.06505836546421051, -0.19577236473560333, 0.02853178232908249, -0.04132523760199547, -0.038306526839733124, -0.020721210166811943, -0.007531433831900358, -0.06790506094694138, 0.09864114224910736, 0.09792070090770721, -0.025514377281069756, 0.013281364925205708, -0.01059822365641594, 0.07926242053508759, 0.04989178478717804, -0.051241371780633926, -0.11247623711824417 ]
null
null
transformers
# eca_resnet26t Implementation of ResNet proposed in [Deep Residual Learning for Image Recognition](https://arxiv.org/abs/1512.03385) ``` python ResNet.resnet18() ResNet.resnet26() ResNet.resnet34() ResNet.resnet50() ResNet.resnet101() ResNet.resnet152() ResNet.resnet200() Variants (d) proposed in `Bag of Tricks for Image Classification with Convolutional Neural Networks <https://arxiv.org/pdf/1812.01187.pdf`_ ResNet.resnet26d() ResNet.resnet34d() ResNet.resnet50d() # You can construct your own one by chaning `stem` and `block` resnet101d = ResNet.resnet101(stem=ResNetStemC, block=partial(ResNetBottleneckBlock, shortcut=ResNetShorcutD)) ``` Examples: ``` python # change activation ResNet.resnet18(activation = nn.SELU) # change number of classes (default is 1000 ) ResNet.resnet18(n_classes=100) # pass a different block ResNet.resnet18(block=SENetBasicBlock) # change the steam model = ResNet.resnet18(stem=ResNetStemC) change shortcut model = ResNet.resnet18(block=partial(ResNetBasicBlock, shortcut=ResNetShorcutD)) # store each feature x = torch.rand((1, 3, 224, 224)) # get features model = ResNet.resnet18() # first call .features, this will activate the forward hooks and tells the model you'll like to get the features model.encoder.features model(torch.randn((1,3,224,224))) # get the features from the encoder features = model.encoder.features print([x.shape for x in features]) #[torch.Size([1, 64, 112, 112]), torch.Size([1, 64, 56, 56]), torch.Size([1, 128, 28, 28]), torch.Size([1, 256, 14, 14])] ```
{"license": "apache-2.0", "tags": ["image-classification"], "datasets": ["imagenet"]}
image-classification
glasses/eca_resnet26t
[ "transformers", "pytorch", "image-classification", "dataset:imagenet", "arxiv:1512.03385", "arxiv:1812.01187", "license:apache-2.0", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[ "1512.03385", "1812.01187" ]
[]
TAGS #transformers #pytorch #image-classification #dataset-imagenet #arxiv-1512.03385 #arxiv-1812.01187 #license-apache-2.0 #endpoints_compatible #region-us
# eca_resnet26t Implementation of ResNet proposed in Deep Residual Learning for Image Recognition Examples:
[ "# eca_resnet26t\nImplementation of ResNet proposed in Deep Residual Learning for Image\nRecognition\n\n \n\n Examples:" ]
[ "TAGS\n#transformers #pytorch #image-classification #dataset-imagenet #arxiv-1512.03385 #arxiv-1812.01187 #license-apache-2.0 #endpoints_compatible #region-us \n", "# eca_resnet26t\nImplementation of ResNet proposed in Deep Residual Learning for Image\nRecognition\n\n \n\n Examples:" ]
[ 58, 29 ]
[ "passage: TAGS\n#transformers #pytorch #image-classification #dataset-imagenet #arxiv-1512.03385 #arxiv-1812.01187 #license-apache-2.0 #endpoints_compatible #region-us \n# eca_resnet26t\nImplementation of ResNet proposed in Deep Residual Learning for Image\nRecognition\n\n \n\n Examples:" ]
[ -0.10457070171833038, 0.029430776834487915, -0.0028053056448698044, 0.0883975401520729, 0.09627515822649002, 0.010581794194877148, -0.03246023505926132, 0.07576985657215118, -0.07312431931495667, -0.007466910406947136, 0.1127457320690155, 0.10824551433324814, -0.0015766889555379748, -0.03975651413202286, -0.06539358198642731, -0.23350664973258972, 0.08232293277978897, 0.07957950979471207, -0.006315643899142742, 0.055250659584999084, 0.08797156065702438, -0.08669257164001465, 0.10958514362573624, 0.0033926276955753565, -0.15765498578548431, 0.0198005773127079, -0.026967667043209076, -0.07477791607379913, 0.08713716268539429, 0.025719720870256424, 0.09796079993247986, 0.0057305581867694855, 0.10381416976451874, -0.11277484893798828, 0.028886448591947556, 0.04709121212363243, -0.08338604122400284, 0.050263967365026474, 0.08722009509801865, -0.03043767437338829, 0.0214325450360775, 0.04535980895161629, -0.05569998919963837, -0.0597236342728138, 0.003433309495449066, -0.04899241775274277, 0.012037662789225578, 0.14421863853931427, 0.11517725139856339, 0.09471197426319122, 0.027831804007291794, 0.08146046847105026, -0.11967800557613373, 0.08371871709823608, 0.1772053837776184, -0.2727671265602112, -0.048440415412187576, 0.07380592823028564, -0.040088869631290436, -0.06352916359901428, -0.06611426919698715, 0.019990652799606323, 0.04217151552438736, 0.04622535780072212, -0.10745038092136383, 0.002187055768445134, -0.08758925646543503, -0.008185510523617268, -0.08717206120491028, -0.028870854526758194, 0.09009508043527603, 0.10181812942028046, 0.056959863752126694, 0.024573829025030136, -0.16058863699436188, 0.01169031485915184, -0.0886860117316246, 0.03547212481498718, 0.03480205312371254, 0.04947671294212341, -0.08556729555130005, 0.007858311757445335, -0.07632704824209213, -0.03464769199490547, -0.1524270623922348, -0.02521669492125511, 0.06053881719708443, 0.13010405004024506, -0.12110460549592972, 0.031748633831739426, 0.05024104192852974, -0.04559389501810074, -0.01639491692185402, -0.07195907086133957, 0.032818011939525604, 0.04831250011920929, -0.06571341305971146, 0.008120262995362282, 0.07817667722702026, 0.2526457905769348, -0.0575823113322258, -0.002964134095236659, -0.01771547459065914, 0.1365654617547989, -0.0856563001871109, 0.004541204310953617, -0.22927223145961761, 0.11358312517404556, 0.04729635640978813, -0.08047395944595337, 0.02857809327542782, -0.019755570217967033, -0.08688779920339584, -0.022706281393766403, 0.10747348517179489, -0.04046187922358513, -0.030273480340838432, 0.05635569617152214, -0.019806750118732452, -0.040838923305273056, 0.1368095874786377, -0.037845827639102936, -0.027822604402899742, -0.004454907961189747, -0.10842697322368622, 0.07999575138092041, 0.10854221135377884, 0.0034855669364333153, -0.08773790299892426, 0.02774592861533165, -0.018220284953713417, -0.015618713572621346, 0.0022512031719088554, -0.03964855149388313, 0.05051446706056595, -0.015237882733345032, 0.07583023607730865, -0.22873710095882416, -0.14876236021518707, 0.010053515434265137, 0.10532962530851364, -0.03579511493444443, -0.00034523208159953356, -0.020880211144685745, -0.11840302497148514, 0.006858814973384142, 0.0011768124531954527, 0.025146862491965294, -0.07647869735956192, 0.001849617576226592, -0.13248597085475922, 0.13305416703224182, -0.11580085009336472, 0.03617505729198456, -0.09066014736890793, -0.04479385167360306, -0.06548610329627991, 0.07006150484085083, -0.07390766590833664, 0.0789070650935173, -0.13009744882583618, -0.06891889125108719, -0.0576421394944191, -0.017078323289752007, 0.008213132619857788, 0.06020146608352661, -0.08191998302936554, -0.010296535678207874, 0.11628740280866623, -0.1067388579249382, -0.10213591903448105, 0.08431457728147507, -0.031345002353191376, -0.10997148603200912, -0.0005601410521194339, 0.1355292648077011, -0.03824728727340698, -0.0030447551980614662, -0.05583719164133072, 0.02083570696413517, -0.10949753224849701, -0.12532126903533936, -0.018056022003293037, 0.13789260387420654, 0.020674938336014748, -0.014277772977948189, -0.09317674487829208, 0.0913732573390007, -0.08602529764175415, -0.10950642079114914, -0.02769794873893261, -0.08837490528821945, -0.0285960603505373, 0.02525912970304489, 0.0957668200135231, 0.04942753165960312, -0.04809383302927017, -0.15647992491722107, 0.06732172518968582, -0.05722498521208763, 0.11709029972553253, -0.09335478395223618, 0.14666414260864258, -0.0380595363676548, 0.030975593253970146, -0.21820701658725739, 0.01888270489871502, 0.005664709489792585, 0.030677655711770058, -0.034861817955970764, -0.0671318769454956, 0.024201566353440285, -0.04996408149600029, -0.03019092045724392, -0.0752854272723198, 0.043826811015605927, -0.01642325334250927, -0.006099840626120567, -0.13043108582496643, -0.0063094752840697765, -0.044324152171611786, 0.017197469249367714, -0.1283702254295349, -0.05731325224041939, 0.03813593089580536, 0.1305987536907196, -0.026584530249238014, 0.1040419489145279, -0.05139511078596115, -0.061856891959905624, -0.0455857515335083, -0.04801085591316223, 0.06979761272668839, 0.005226305220276117, -0.016011742874979973, 0.06904126703739166, 0.08983705192804337, 0.1467168927192688, 0.15552067756652832, -0.2856258451938629, -0.03142703324556351, 0.08633608371019363, -0.03319796174764633, -0.01054908987134695, -0.021794607862830162, 0.12157154828310013, 0.09129570424556732, -0.03231040760874748, 0.0805860161781311, -0.06813284754753113, 0.0933227613568306, 0.009376841597259045, -0.03323158994317055, 0.001171683892607689, 0.050243064761161804, 0.11695694178342819, -0.24835355579853058, 0.08833204954862595, 0.1352226585149765, -0.17683689296245575, -0.05140363425016403, -0.02466019243001938, -0.06721216440200806, 0.10367460548877716, 0.042836744338274, -0.019531067460775375, 0.07351680845022202, 0.0391564667224884, -0.01697111874818802, 0.06548447906970978, -0.08711355179548264, 0.030585184693336487, -0.13522614538669586, 0.02671266347169876, -0.0419432707130909, 0.012189288623631, 0.01025563944131136, -0.0033599103335291147, -0.01447366364300251, 0.10743555426597595, -0.024038121104240417, -0.24757079780101776, 0.049230873584747314, -0.05712820589542389, -0.03109735995531082, 0.22394415736198425, -0.03619995340704918, -0.21742035448551178, -0.005949896760284901, -0.026296067982912064, -0.07578127831220627, -0.00185601064004004, 0.045828089118003845, -0.12033922225236893, -0.07450010627508163, -0.02378353662788868, -0.08940302580595016, 0.10885141044855118, 0.03472479432821274, 0.029108749702572823, 0.015306978486478329, 0.01941242627799511, -0.05990567058324814, 0.010394112206995487, -0.13793595135211945, -0.09376603364944458, 0.14455145597457886, -0.08850719034671783, 0.0995735228061676, 0.08648181706666946, -0.01976657100021839, 0.0041780024766922, 0.02271971106529236, 0.14126670360565186, -0.050004199147224426, 0.028275707736611366, 0.08235486596822739, -0.021385880187153816, 0.053285326808691025, 0.08978604525327682, 0.007095993962138891, -0.08023771643638611, 0.00003416787149035372, 0.02806701324880123, -0.037734296172857285, -0.12196870148181915, -0.12557218968868256, -0.030596895143389702, -0.021292926743626595, 0.16456906497478485, 0.10443305224180222, 0.04723380133509636, 0.10535255819559097, 0.0013704816810786724, -0.01015821285545826, 0.04798338562250137, 0.0648968443274498, 0.10371963679790497, 0.03896481543779373, 0.1100812554359436, -0.06828468292951584, -0.07430411130189896, 0.04265784099698067, 0.13340266048908234, 0.26095739006996155, -0.010688716545701027, -0.11630053073167801, 0.05544956400990486, 0.21271255612373352, 0.09507223963737488, 0.12078836560249329, -0.0660683736205101, -0.009563466534018517, -0.01509803719818592, 0.002113629598170519, 0.029767317697405815, 0.06064654886722565, -0.02653304487466812, -0.05503535643219948, 0.013664690777659416, 0.032739683985710144, 0.03958241641521454, 0.23120231926441193, 0.08552104979753494, -0.3428786098957062, 0.02961129881441593, -0.028803909197449684, 0.008071774616837502, -0.014067359268665314, 0.1406853049993515, -0.01543740089982748, -0.03036135621368885, 0.093637615442276, -0.10464349389076233, 0.11331968754529953, -0.05618251487612724, 0.00517159653827548, 0.048443395644426346, -0.10908731818199158, 0.07845279574394226, 0.04390314966440201, -0.13541501760482788, 0.1875445544719696, -0.049991365522146225, -0.06497108191251755, -0.06937754154205322, -0.046824485063552856, 0.10710783302783966, 0.15229766070842743, 0.24434426426887512, 0.012219798751175404, -0.05026889592409134, 0.07720808684825897, -0.018420040607452393, 0.05069682002067566, 0.04817299172282219, 0.04525842145085335, -0.05143751576542854, 0.0456346832215786, -0.04930970072746277, 0.046536635607481, 0.11984080821275711, -0.04144466668367386, -0.09795152395963669, -0.07020790874958038, 0.0877707377076149, -0.05602454021573067, -0.025529325008392334, -0.07375231385231018, -0.07092810422182083, 0.0787568986415863, 0.01122068427503109, -0.02777463011443615, -0.07742757350206375, 0.0731123834848404, 0.060010962188243866, -0.071244016289711, 0.10479087382555008, -0.027384720742702484, 0.04363591969013214, -0.01865950971841812, -0.22222693264484406, 0.17793434858322144, -0.12702549993991852, -0.008026357740163803, 0.022578489035367966, -0.072667695581913, -0.004252216778695583, -0.0317828506231308, 0.05817944556474686, 0.03592277318239212, -0.1358446180820465, -0.026796765625476837, 0.02869626134634018, -0.03773656114935875, 0.020007450133562088, 0.09535008668899536, -0.0646081268787384, -0.08395344018936157, -0.03908449411392212, 0.14122474193572998, 0.14151176810264587, -0.00029248982900753617, -0.09162415564060211, -0.015167584642767906, 0.1457478404045105, 0.02605263702571392, -0.3775632977485657, -0.09773769229650497, -0.028999974951148033, -0.05632798746228218, -0.09354251623153687, -0.1293414980173111, 0.2309338003396988, 0.010213150642812252, -0.06122275069355965, 0.007254638709127903, -0.12365885078907013, -0.047853272408246994, 0.26369282603263855, 0.05950915068387985, 0.2765624523162842, -0.0780777558684349, 0.03604063019156456, -0.08038333058357239, 0.012374652549624443, 0.10077693313360214, -0.023006621748209, 0.06472385674715042, -0.012132911942899227, 0.04949255287647247, -0.053913358598947525, -0.0080203702673316, -0.002294649835675955, 0.13434219360351562, 0.09755348414182663, -0.08129727095365524, 0.07604892551898956, 0.05843017250299454, -0.015297151170670986, 0.057777199894189835, 0.07407542318105698, 0.09594760835170746, -0.032530464231967926, 0.020492935553193092, -0.08481311053037643, 0.058975011110305786, 0.10097707808017731, -0.004027234856039286, -0.11328849196434021, 0.03809956833720207, 0.10636353492736816, 0.08290805667638779, 0.28482335805892944, 0.13836351037025452, 0.01267250720411539, 0.0698290467262268, 0.005068878177553415, -0.1114509254693985, -0.08333971351385117, -0.09004037827253342, -0.04133410379290581, 0.15851417183876038, -0.14942103624343872, 0.05667712539434433, 0.10516682267189026, -0.013689064420759678, 0.005632312037050724, 0.11222158372402191, 0.010802607983350754, -0.02422284334897995, 0.10987148433923721, -0.056878555566072464, 0.008481521159410477, 0.013690236955881119, 0.07450971752405167, 0.11215405911207199, 0.14556534588336945, 0.11217106878757477, -0.10375448316335678, -0.005804500076919794, 0.01657351478934288, 0.07976828515529633, -0.04446546360850334, 0.06714416295289993, 0.15743322670459747, -0.03215787559747696, -0.138727605342865, 0.21057170629501343, 0.011249064467847347, -0.1731969118118286, -0.028499605134129524, -0.06403861194849014, -0.13248763978481293, -0.1288985162973404, -0.01897459290921688, 0.00023963424609974027, -0.2679016888141632, -0.09749604016542435, -0.006916843354701996, -0.07611414045095444, 0.11934066563844681, 0.010567253455519676, 0.1412506252527237, -0.029690079391002655, -0.022911760956048965, -0.06061264127492905, -0.030850745737552643, 0.020336559042334557, 0.02369382046163082, 0.08355164527893066, -0.16720479726791382, -0.23564881086349487, 0.021508201956748962, 0.15193556249141693, -0.07209276407957077, 0.022415734827518463, -0.07476162165403366, 0.08940091729164124, -0.11445934325456619, 0.07631979137659073, -0.036056410521268845, 0.020703887566924095, -0.04431981220841408, -0.02259823866188526, -0.08163444697856903, 0.05632396414875984, -0.09769795835018158, -0.026146383956074715, 0.006624156143516302, -0.012985645793378353, -0.11256127804517746, -0.037635426968336105, -0.006668888032436371, -0.007200654596090317, 0.1301761269569397, 0.07529646158218384, -0.10662037879228592, 0.08529918640851974, -0.1470099687576294, -0.25830286741256714, 0.16286489367485046, 0.045059215277433395, -0.008547664619982243, 0.06266174465417862, 0.05212802812457085, 0.07052534073591232, -0.04234246164560318, -0.032808639109134674, 0.0019850055687129498, -0.04780755564570427, -0.02682577818632126, -0.22721166908740997, -0.00502537377178669, -0.025266043841838837, -0.003250321140512824, 0.07485883682966232, 0.10751103609800339, 0.1212277039885521, -0.044386837631464005, -0.014337152242660522, -0.0418364517390728, 0.004997629206627607, -0.0036349156871438026, -0.11485478281974792, -0.020791243761777878, -0.035530105233192444, 0.017166854813694954, -0.09280504286289215, 0.17131182551383972, -0.018595563247799873, -0.08511806279420853, 0.021905088797211647, 0.21004226803779602, -0.13717569410800934, 0.08264046162366867, 0.18533748388290405, 0.0659904032945633, -0.00015308109868783504, 0.016691768541932106, 0.028482861816883087, 0.11761131137609482, 0.17468033730983734, 0.0025782035663723946, 0.2188120037317276, 0.059162601828575134, 0.13565868139266968, 0.08518169075250626, -0.021879635751247406, 0.021210359409451485, 0.053378764539957047, -0.06488477438688278, 0.10345219820737839, 0.0351238027215004, 0.0062081641517579556, 0.1512349545955658, 0.028957610949873924, -0.00942903570830822, 0.008763180114328861, -0.0034260598476976156, -0.09734269231557846, -0.17360679805278778, -0.10990148782730103, -0.1542084515094757, 0.0503755658864975, -0.04864387586712837, -0.07913187891244888, 0.22693583369255066, 0.07701683789491653, -0.03346841782331467, 0.04382824897766113, -0.08328352123498917, -0.057806167751550674, 0.14913900196552277, -0.004003296606242657, -0.10124521702528, 0.139497309923172, -0.049460045993328094, 0.067264124751091, 0.04849392920732498, -0.021852903068065643, -0.012594071216881275, 0.06799886375665665, 0.167276993393898, -0.03427550941705704, -0.027929022908210754, -0.03472483903169632, 0.018589945510029793, -0.04289715737104416, -0.01754000410437584, -0.02083701081573963, 0.02715718373656273, 0.05858466774225235, 0.21915245056152344, -0.10494092106819153, -0.0668976828455925, -0.1100371778011322, -0.0402563102543354, 0.03155387192964554, 0.08063114434480667, -0.03843359276652336, -0.043459702283144, -0.0375259667634964, 0.18253526091575623, 0.21079492568969727, -0.17206116020679474, -0.00497428746894002, 0.07085427641868591, 0.011233996599912643, -0.039125148206949234, 0.02116912417113781, 0.17907239496707916, 0.11309102922677994, -0.05918646231293678, -0.12954950332641602, -0.05631009861826897, -0.03742195665836334, -0.11555642634630203, 0.017056144773960114, 0.05465805158019066, -0.08390240371227264, -0.12759387493133545, 0.10684279352426529, -0.1427055448293686, -0.01776047796010971, 0.07276035845279694, -0.07831970602273941, -0.11626562476158142, -0.038331929594278336, 0.08591422438621521, 0.09776626527309418, 0.018956027925014496, -0.08941759169101715, 0.02279064618051052, 0.03539672866463661, 0.030613506212830544, -0.16037501394748688, -0.030044864863157272, -0.04863125458359718, -0.015129721723496914, 0.14977023005485535, 0.03496572747826576, 0.020254887640476227, 0.03933752328157425, 0.03579875826835632, -0.0588880255818367, 0.015069598332047462, -0.04581454396247864, -0.08605387806892395, 0.046730171889066696, 0.060006532818078995, -0.03790431097149849, -0.02698800526559353, 0.05817560479044914, -0.17499452829360962, -0.0263885036110878, 0.07927028089761734, 0.0021388763561844826, -0.11210069805383682, 0.01410139910876751, -0.07243452221155167, 0.0479755625128746, 0.019084768369793892, 0.0005086975870653987, -0.011444268748164177, -0.04439272731542587, -0.024083541706204414, 0.016945796087384224, -0.1152496263384819, 0.026762492954730988, -0.022127095609903336, -0.029971862211823463, -0.22055502235889435, 0.06124623119831085, 0.01929929479956627, -0.016657106578350067, -0.04010902717709541, -0.045878756791353226, -0.09173838794231415, 0.07076196372509003, 0.11392749845981598, -0.04051242396235466, 0.0013557482743635774, 0.019910195842385292, 0.059265587478876114, -0.0027651707641780376, -0.02537750080227852, -0.12470041960477829 ]
null
null
transformers
# efficientnet_b0 Implementation of EfficientNet proposed in [EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks](https://arxiv.org/abs/1905.11946) ![image](https://github.com/FrancescoSaverioZuppichini/glasses/blob/develop/docs/_static/images/EfficientNet.png?raw=true) The basic architecture is similar to MobileNetV2 as was computed by using [Progressive Neural Architecture Search](https://arxiv.org/abs/1905.11946) . The following table shows the basic architecture (EfficientNet-efficientnet\_b0): ![image](https://github.com/FrancescoSaverioZuppichini/glasses/blob/develop/docs/_static/images/EfficientNetModelsTable.jpeg?raw=true) Then, the architecture is scaled up from [-efficientnet\_b0]{.title-ref} to [-efficientnet\_b7]{.title-ref} using compound scaling. ![image](https://github.com/FrancescoSaverioZuppichini/glasses/blob/develop/docs/_static/images/EfficientNetScaling.jpg?raw=true) ``` python EfficientNet.efficientnet_b0() EfficientNet.efficientnet_b1() EfficientNet.efficientnet_b2() EfficientNet.efficientnet_b3() EfficientNet.efficientnet_b4() EfficientNet.efficientnet_b5() EfficientNet.efficientnet_b6() EfficientNet.efficientnet_b7() EfficientNet.efficientnet_b8() EfficientNet.efficientnet_l2() ``` Examples: ``` python EfficientNet.efficientnet_b0(activation = nn.SELU) # change number of classes (default is 1000 ) EfficientNet.efficientnet_b0(n_classes=100) # pass a different block EfficientNet.efficientnet_b0(block=...) # store each feature x = torch.rand((1, 3, 224, 224)) model = EfficientNet.efficientnet_b0() # first call .features, this will activate the forward hooks and tells the model you'll like to get the features model.encoder.features model(torch.randn((1,3,224,224))) # get the features from the encoder features = model.encoder.features print([x.shape for x in features]) # [torch.Size([1, 32, 112, 112]), torch.Size([1, 24, 56, 56]), torch.Size([1, 40, 28, 28]), torch.Size([1, 80, 14, 14])] ```
{}
null
glasses/efficientnet_b0
[ "transformers", "pytorch", "arxiv:1905.11946", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[ "1905.11946" ]
[]
TAGS #transformers #pytorch #arxiv-1905.11946 #endpoints_compatible #region-us
# efficientnet_b0 Implementation of EfficientNet proposed in EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks !image The basic architecture is similar to MobileNetV2 as was computed by using Progressive Neural Architecture Search . The following table shows the basic architecture (EfficientNet-efficientnet\_b0): !image Then, the architecture is scaled up from [-efficientnet\_b0]{.title-ref} to [-efficientnet\_b7]{.title-ref} using compound scaling. !image Examples:
[ "# efficientnet_b0\nImplementation of EfficientNet proposed in EfficientNet: Rethinking\nModel Scaling for Convolutional Neural\nNetworks\n\n !image\n\n The basic architecture is similar to MobileNetV2 as was computed by\n using Progressive Neural Architecture\n Search .\n\n The following table shows the basic architecture\n (EfficientNet-efficientnet\\_b0):\n\n !image\n\n Then, the architecture is scaled up from\n [-efficientnet\\_b0]{.title-ref} to [-efficientnet\\_b7]{.title-ref}\n using compound scaling.\n\n !image\n\n \n\n Examples:" ]
[ "TAGS\n#transformers #pytorch #arxiv-1905.11946 #endpoints_compatible #region-us \n", "# efficientnet_b0\nImplementation of EfficientNet proposed in EfficientNet: Rethinking\nModel Scaling for Convolutional Neural\nNetworks\n\n !image\n\n The basic architecture is similar to MobileNetV2 as was computed by\n using Progressive Neural Architecture\n Search .\n\n The following table shows the basic architecture\n (EfficientNet-efficientnet\\_b0):\n\n !image\n\n Then, the architecture is scaled up from\n [-efficientnet\\_b0]{.title-ref} to [-efficientnet\\_b7]{.title-ref}\n using compound scaling.\n\n !image\n\n \n\n Examples:" ]
[ 29, 144 ]
[ "passage: TAGS\n#transformers #pytorch #arxiv-1905.11946 #endpoints_compatible #region-us \n# efficientnet_b0\nImplementation of EfficientNet proposed in EfficientNet: Rethinking\nModel Scaling for Convolutional Neural\nNetworks\n\n !image\n\n The basic architecture is similar to MobileNetV2 as was computed by\n using Progressive Neural Architecture\n Search .\n\n The following table shows the basic architecture\n (EfficientNet-efficientnet\\_b0):\n\n !image\n\n Then, the architecture is scaled up from\n [-efficientnet\\_b0]{.title-ref} to [-efficientnet\\_b7]{.title-ref}\n using compound scaling.\n\n !image\n\n \n\n Examples:" ]
[ -0.033114928752183914, -0.015605971217155457, -0.0025784901808947325, 0.0167230274528265, 0.038678426295518875, -0.03705884888768196, -0.03407173976302147, 0.033724259585142136, -0.15034173429012299, 0.014691023156046867, 0.08621065318584442, 0.10710324347019196, -0.03293218836188316, 0.11030368506908417, 0.015585108660161495, -0.16462908685207367, -0.0055694784969091415, 0.11996421217918396, -0.07353699207305908, 0.047367170453071594, 0.12548476457595825, -0.07966729253530502, 0.096774622797966, 0.06877121329307556, -0.10949564725160599, 0.05781679227948189, -0.08478505164384842, -0.01980690099298954, 0.13614532351493835, -0.028826482594013214, 0.09736792743206024, -0.03548577055335045, -0.033734261989593506, -0.16243121027946472, 0.0010332274250686169, 0.06682725995779037, -0.026355864480137825, 0.09936267137527466, 0.06075192987918854, 0.11851672828197479, 0.21016310155391693, -0.009989170357584953, -0.0905037447810173, -0.058579061180353165, -0.010708516463637352, -0.09465588629245758, 0.018997637555003166, 0.060661450028419495, 0.031583111733198166, 0.04092903062701225, 0.026422077789902687, 0.1648302972316742, -0.10567606985569, 0.09552905708551407, -0.017865417525172234, -0.32407474517822266, -0.04601066932082176, 0.0720648244023323, -0.05026005208492279, 0.01579955592751503, 0.023633962497115135, 0.032677292823791504, 0.061271484941244125, 0.057541098445653915, 0.1451970636844635, -0.00928537454456091, -0.1222924143075943, 0.01518709771335125, -0.10833941400051117, 0.004563125316053629, 0.18194817006587982, 0.05378270521759987, 0.08254684507846832, -0.07025115936994553, -0.2151416838169098, -0.029453380033373833, 0.015146644786000252, -0.1991647481918335, -0.011727317236363888, 0.0022259855177253485, -0.06018131971359253, -0.08121877163648605, -0.08128146827220917, 0.00500861182808876, -0.13220220804214478, 0.09326446801424026, 0.03119853138923645, -0.010173231363296509, -0.04739690199494362, 0.133416548371315, -0.03147970139980316, -0.07905956357717514, 0.07588917016983032, -0.061542510986328125, -0.0053123608231544495, 0.02974277175962925, 0.02288929373025894, -0.15342585742473602, 0.05021413788199425, 0.03706803172826767, 0.08852452039718628, -0.06075452268123627, 0.10110388696193695, 0.07749147713184357, -0.030683819204568863, 0.12723655998706818, -0.16806872189044952, -0.19827552139759064, 0.011442835442721844, 0.01186542771756649, 0.05304498225450516, 0.018914008513092995, -0.07511559128761292, -0.04684469848871231, 0.11181239038705826, -0.017270132899284363, -0.011559338308870792, 0.09445574134588242, -0.04692371189594269, -0.11263994872570038, 0.23762260377407074, -0.022010331973433495, 0.019352681934833527, -0.030779603868722916, -0.030563198029994965, 0.0054665603674948215, 0.029138540849089622, 0.0003806450986303389, -0.1052904725074768, 0.01691949926316738, -0.08107415586709976, -0.1450764238834381, -0.06080010533332825, -0.0767533928155899, -0.005827188491821289, -0.0061124819330871105, 0.003986813127994537, -0.2116316705942154, -0.10727058351039886, 0.09453237801790237, 0.0958646759390831, -0.01468111202120781, -0.028312675654888153, -0.036633651703596115, -0.10997803509235382, -0.10422706604003906, -0.0276934877038002, 0.12609036266803741, -0.042918719351291656, 0.0015480504371225834, -0.01556325051933527, 0.03099721670150757, -0.1438286304473877, 0.015909815207123756, -0.10946222394704819, 0.018430765718221664, -0.1518549919128418, 0.05069585144519806, -0.04685074836015701, -0.007943247444927692, -0.067202128469944, -0.023909980431199074, -0.19656576216220856, -0.00875874049961567, 0.11821568757295609, 0.08329213410615921, -0.02899158000946045, -0.08786704391241074, -0.022733338177204132, -0.07625807821750641, -0.17689761519432068, 0.1554359346628189, 0.008278349414467812, 0.11292339861392975, 0.05868687480688095, 0.19805285334587097, 0.12527517974376678, -0.03877939283847809, -0.06523573398590088, 0.025869645178318024, -0.11233310401439667, -0.12108258903026581, -0.07746228575706482, 0.1115993782877922, 0.048072416335344315, 0.042154230177402496, -0.0025487886741757393, 0.08143147081136703, -0.05903429538011551, -0.0680423378944397, -0.021983450278639793, -0.06080261617898941, -0.01320107001811266, 0.012011220678687096, 0.07125309109687805, 0.045437268912792206, -0.05005975067615509, -0.18043343722820282, 0.0670291855931282, -0.0801236554980278, 0.02672315388917923, -0.0758417546749115, 0.0144143495708704, -0.09230908751487732, 0.03349047899246216, -0.07245729863643646, -0.02776610106229782, 0.11053695529699326, 0.013240672647953033, -0.0329243540763855, 0.1506654918193817, 0.02563576214015484, -0.05060221254825592, -0.10076849162578583, -0.02102508768439293, 0.018862001597881317, 0.04266824573278427, -0.10479412972927094, -0.12487394362688065, -0.04696483537554741, -0.023478610441088676, 0.0483156256377697, -0.11321309953927994, -0.03263833746314049, 0.0566302090883255, 0.24286139011383057, 0.018837902694940567, 0.03410619497299194, -0.0771624967455864, -0.020633982494473457, -0.09754202514886856, -0.018192512914538383, 0.0202122051268816, -0.002929715206846595, -0.04633043706417084, 0.054171815514564514, 0.07966536283493042, 0.1258450597524643, 0.05643188953399658, -0.14869779348373413, 0.05201684683561325, 0.04089997336268425, -0.05267580598592758, -0.0865587368607521, 0.03445517644286156, -0.10368268191814423, 0.0857609361410141, -0.03565013408660889, 0.121464304625988, -0.07457109540700912, -0.047613393515348434, 0.02257954142987728, 0.026533398777246475, 0.047572411596775055, 0.03473825380206108, 0.116939015686512, -0.2993123233318329, 0.037243641912937164, 0.09073645621538162, -0.09850745648145676, 0.09604647010564804, 0.05317971482872963, -0.021584121510386467, 0.0007880981429480016, 0.030045686289668083, -0.01453369576483965, 0.17263180017471313, -0.1568029522895813, -0.01061142049729824, 0.040741216391325, -0.0003407634503673762, 0.1928202509880066, -0.07993479073047638, 0.0904134139418602, 0.002701449440792203, 0.022823527455329895, 0.2804569602012634, -0.002027164213359356, -0.031618643552064896, 0.06323924660682678, -0.05278777703642845, -0.26955434679985046, 0.004788790829479694, -0.038732774555683136, -0.027357039973139763, 0.14557264745235443, -0.009075818583369255, -0.17830690741539001, -0.07822293043136597, -0.0027503948658704758, -0.04519969969987869, -0.0010580861708149314, -0.041816841810941696, 0.010494726710021496, -0.070726677775383, -0.03676937520503998, -0.07983054965734482, 0.059767045080661774, 0.05960698798298836, -0.00514968391507864, 0.05325149744749069, 0.04444460943341255, -0.10456157475709915, 0.01004305575042963, -0.1029888316988945, 0.013497188687324524, 0.026341328397393227, -0.11937889456748962, 0.12819282710552216, 0.15446442365646362, -0.03205982223153114, -0.01264783926308155, 0.02909422665834427, 0.10766752064228058, -0.05184168741106987, 0.07643505930900574, -0.07792072743177414, 0.054873935878276825, 0.02201557345688343, 0.13043783605098724, 0.004414720926433802, -0.01561746746301651, 0.032962772995233536, -0.013499148190021515, -0.00039514453965239227, -0.14181770384311676, -0.18201954662799835, -0.04680820554494858, 0.020140428096055984, 0.07969145476818085, 0.0622875839471817, 0.09797274321317673, 0.06536036729812622, -0.008826770819723606, 0.03156285732984543, 0.009273547679185867, 0.055019836872816086, 0.23107479512691498, 0.026164494454860687, 0.07096380740404129, -0.04127541929483414, -0.21140283346176147, 0.04752111807465553, 0.09750450402498245, 0.19653360545635223, -0.05039512366056442, 0.09611399471759796, 0.02601883001625538, 0.11207819730043411, 0.012082039378583431, 0.11071927100419998, -0.06635630130767822, -0.006296850740909576, -0.06546121090650558, -0.03729432448744774, 0.060707125812768936, 0.07429510354995728, -0.011734669096767902, -0.05014875903725624, 0.07619477808475494, 0.08587384223937988, 0.11276070773601532, 0.09524977207183838, 0.10729004442691803, -0.24882228672504425, 0.05798177048563957, -0.04422324523329735, -0.09204041212797165, -0.05240987241268158, 0.052157726138830185, 0.22196269035339355, 0.006701950915157795, 0.04439517855644226, -0.04272977262735367, 0.05668448284268379, -0.08439407497644424, 0.03872521594166756, 0.024524128064513206, 0.08562886714935303, 0.059812095016241074, 0.09365866333246231, -0.08871760964393616, 0.19558030366897583, 0.004320588894188404, 0.0248879287391901, -0.07406161725521088, -0.04018109664320946, -0.023409921675920486, 0.046584323048591614, 0.02786824479699135, -0.00948400516062975, 0.256071001291275, 0.12863928079605103, -0.12244390696287155, 0.0497807115316391, 0.031074268743395805, 0.0518224723637104, 0.07137195765972137, 0.024655383080244064, -0.07438527047634125, 0.01682325452566147, 0.12391653656959534, 0.023380540311336517, -0.10108665376901627, 0.007358978036791086, 0.17417123913764954, -0.12085605412721634, -0.0567757785320282, -0.028399758040905, -0.05956631526350975, 0.26631104946136475, 0.01158389262855053, -0.0015359226381406188, -0.008736173622310162, 0.016253702342510223, 0.11870244145393372, -0.0370144322514534, 0.03772200644016266, -0.03677321597933769, 0.03955046460032463, 0.009800208732485771, -0.08473781496286392, 0.08379273861646652, -0.08969604223966599, 0.003269163193181157, -0.06840591877698898, 0.03967013210058212, 0.01724393106997013, -0.013932842761278152, 0.06973428279161453, -0.018539687618613243, -0.13989953696727753, -0.08429951965808868, -0.11846999078989029, 0.004814630374312401, -0.13248464465141296, 0.08159264922142029, -0.059579573571681976, -0.004786017816513777, -0.02779233455657959, 0.04872587323188782, 0.1014314740896225, 0.08718013763427734, -0.07604068517684937, -0.1052510216832161, 0.11710543185472488, -0.0026279017329216003, -0.25137224793434143, -0.13984648883342743, 0.043041475117206573, 0.03614658862352371, 0.04571503400802612, -0.01654299721121788, 0.20697782933712006, 0.06595230847597122, -0.03536354750394821, -0.010296495631337166, -0.10151198506355286, -0.060980796813964844, 0.09683284908533096, -0.00969575997442007, 0.11750518530607224, -0.009600861929357052, 0.004844961687922478, 0.02443770319223404, 0.02536303550004959, 0.08067121356725693, -0.09258367121219635, 0.10746221989393234, -0.00641079805791378, -0.05824325978755951, 0.00427553616464138, -0.03277471661567688, 0.033662017434835434, 0.061620794236660004, 0.026716405525803566, 0.08673124015331268, -0.062084704637527466, 0.1426752358675003, 0.007814265787601471, 0.054585471749305725, 0.1195843368768692, 0.0471511073410511, -0.1226804256439209, -0.027257362380623817, -0.11647898703813553, 0.07620260119438171, 0.05067383870482445, -0.07764048129320145, -0.15905602276325226, 0.02343679778277874, 0.13529638946056366, 0.08805946260690689, 0.2189757525920868, 0.12442117929458618, -0.010370190255343914, 0.27132296562194824, 0.085035040974617, -0.1928206831216812, 0.06132735684514046, -0.023790692910552025, 0.006801766809076071, 0.04628249257802963, 0.024077612906694412, 0.038342732936143875, 0.13892434537410736, -0.015002097003161907, -0.034107234328985214, 0.023044677451252937, -0.08950801193714142, -0.11776699870824814, 0.15087580680847168, -0.15203596651554108, -0.06873906403779984, -0.06893397867679596, 0.054339539259672165, 0.0049551487900316715, 0.21969158947467804, 0.10378344357013702, -0.11124810576438904, 0.019261687994003296, 0.04751341789960861, -0.06982219964265823, -0.09548920392990112, 0.11372727900743484, 0.12204564362764359, 0.03860562667250633, -0.03333348035812378, 0.13008993864059448, 0.08069876581430435, -0.034413665533065796, -0.07851383835077286, -0.0386241152882576, -0.118890181183815, 0.00485576968640089, -0.0901493951678276, 0.021897118538618088, -0.014108968898653984, -0.10988210886716843, -0.08048678189516068, 0.008324540220201015, 0.03606366738677025, -0.06267095357179642, 0.12453233450651169, 0.1017729789018631, -0.08460699021816254, 0.050628941506147385, -0.09022840857505798, 0.11371805518865585, 0.029824964702129364, 0.10607393085956573, -0.16444529592990875, -0.06360837072134018, 0.0002735448069870472, 0.0737866535782814, -0.079881951212883, 0.009898077696561813, 0.038750629872083664, 0.03348493576049805, -0.02260650135576725, -0.09390248358249664, -0.03709886968135834, -0.07711176574230194, 0.004343750420957804, -0.06442852318286896, -0.13363800942897797, 0.023105459287762642, -0.037001047283411026, 0.04762816056609154, 0.04176878184080124, -0.02069397270679474, -0.03335310146212578, -0.0020209942013025284, -0.0222619716078043, -0.06887131184339523, 0.10023137181997299, -0.04833393916487694, -0.020402858033776283, 0.022293973714113235, -0.0015392819186672568, -0.0960811898112297, 0.11422748863697052, 0.1364356428384781, 0.08066684007644653, -0.006526406854391098, -0.008176454342901707, 0.08050021529197693, 0.025133078917860985, -0.06142016127705574, -0.0522615946829319, -0.05828116461634636, -0.010179318487644196, -0.10848104953765869, -0.032990697771310806, -0.051951345056295395, 0.02275938168168068, -0.03744424879550934, 0.07913335412740707, 0.100137859582901, 0.004662823863327503, -0.12633724510669708, -0.10150419920682907, 0.0597863495349884, 0.002717657247558236, -0.12301918119192123, 0.032483842223882675, 0.017619948834180832, -0.018193062394857407, -0.03846907988190651, 0.23697854578495026, -0.046711526811122894, -0.14907270669937134, -0.02875014953315258, -0.08112820982933044, -0.14100484549999237, -0.0032876331824809313, 0.09556323289871216, 0.048505786806344986, 0.0020398558117449284, 0.003549930639564991, 0.0009912055684253573, 0.07005295902490616, 0.2613040506839752, 0.06536678224802017, 0.0030139980372041464, -0.004705286119133234, 0.12002360075712204, 0.0383150577545166, -0.01986546255648136, -0.10133861750364304, 0.06257620453834534, -0.04769804701209068, 0.0901271402835846, 0.014844100922346115, 0.02068507671356201, 0.15948358178138733, -0.03951392322778702, 0.0036708153784275055, 0.0765436515212059, -0.03558872640132904, -0.033625781536102295, -0.107340969145298, -0.07893886417150497, -0.12993454933166504, -0.038435615599155426, -0.13257382810115814, -0.12115027010440826, 0.05880945175886154, 0.04930572584271431, -0.10371775180101395, 0.2278100848197937, 0.07309484481811523, -0.05150908604264259, 0.1065991073846817, -0.013857400044798851, 0.025880051776766777, -0.02766229957342148, -0.014345310628414154, -0.1409282088279724, 0.15269896388053894, 0.02683030068874359, -0.004684626590460539, -0.00901646725833416, 0.031167905777692795, 0.03836088255047798, -0.013567151501774788, -0.07740870118141174, -0.06296800822019577, -0.022943805903196335, -0.08295492827892303, -0.014313692227005959, -0.0877251848578453, 0.02177421934902668, 0.15648214519023895, -0.06754137575626373, -0.14919881522655487, -0.08222787827253342, 0.16760684549808502, 0.022709356620907784, 0.09025710821151733, 0.02384452149271965, -0.04299303889274597, -0.13350509107112885, 0.21767018735408783, 0.2237902134656906, -0.1524917036294937, -0.026538962498307228, 0.10314448177814484, -0.0009644318488426507, -0.027111656963825226, -0.039854105561971664, 0.04276939854025841, 0.3001727759838104, -0.017231449484825134, -0.034774377942085266, -0.0785990059375763, 0.007817374542355537, -0.026656921952962875, -0.06437461078166962, 0.1224995106458664, -0.02345106191933155, -0.11476876586675644, 0.02337360568344593, -0.08313577622175217, -0.06145745515823364, -0.11234568804502487, -0.17254792153835297, -0.10972029715776443, -0.027539633214473724, 0.02601981908082962, -0.05999530479311943, 0.06999412178993225, -0.08600182831287384, 0.03746529296040535, -0.06381938606500626, -0.016906794160604477, -0.0550396591424942, 0.08640894293785095, 0.021732421591877937, -0.06831161677837372, 0.12761473655700684, -0.03290596604347229, 0.04660294950008392, 0.12949997186660767, -0.04627841338515282, -0.06164192408323288, 0.03270069882273674, 0.03525794297456741, -0.044986993074417114, 0.016306553035974503, -0.09410686790943146, 0.016947178170084953, 0.05380811169743538, 0.024987002834677696, -0.05244230106472969, -0.011415394954383373, 0.19651520252227783, 0.052310530096292496, -0.08463437855243683, -0.05099029839038849, -0.04303795471787453, 0.08537645637989044, 0.0958903580904007, -0.03433205559849739, 0.016659660264849663, -0.08769945800304413, 0.01938549056649208, 0.08282705396413803, 0.13770872354507446, 0.03175007551908493, -0.1894073337316513, -0.041935186833143234, -0.03042370267212391, -0.030146606266498566, -0.003196135861799121, -0.014655740931630135, -0.05703458935022354, -0.028561724349856377, -0.08137288689613342, 0.054748088121414185, 0.10284264385700226, -0.005564292427152395, -0.0020160803105682135, 0.0984329953789711, -0.13434985280036926, -0.011027191765606403, -0.19990964233875275, -0.12925319373607635 ]
null
null
transformers
# efficientnet_b2 Implementation of EfficientNet proposed in [EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks](https://arxiv.org/abs/1905.11946) ![image](https://github.com/FrancescoSaverioZuppichini/glasses/blob/develop/docs/_static/images/EfficientNet.png?raw=true) The basic architecture is similar to MobileNetV2 as was computed by using [Progressive Neural Architecture Search](https://arxiv.org/abs/1905.11946) . The following table shows the basic architecture (EfficientNet-efficientnet\_b0): ![image](https://github.com/FrancescoSaverioZuppichini/glasses/blob/develop/docs/_static/images/EfficientNetModelsTable.jpeg?raw=true) Then, the architecture is scaled up from [-efficientnet\_b0]{.title-ref} to [-efficientnet\_b7]{.title-ref} using compound scaling. ![image](https://github.com/FrancescoSaverioZuppichini/glasses/blob/develop/docs/_static/images/EfficientNetScaling.jpg?raw=true) ``` python EfficientNet.efficientnet_b0() EfficientNet.efficientnet_b1() EfficientNet.efficientnet_b2() EfficientNet.efficientnet_b3() EfficientNet.efficientnet_b4() EfficientNet.efficientnet_b5() EfficientNet.efficientnet_b6() EfficientNet.efficientnet_b7() EfficientNet.efficientnet_b8() EfficientNet.efficientnet_l2() ``` Examples: ``` python EfficientNet.efficientnet_b0(activation = nn.SELU) # change number of classes (default is 1000 ) EfficientNet.efficientnet_b0(n_classes=100) # pass a different block EfficientNet.efficientnet_b0(block=...) # store each feature x = torch.rand((1, 3, 224, 224)) model = EfficientNet.efficientnet_b0() # first call .features, this will activate the forward hooks and tells the model you'll like to get the features model.encoder.features model(torch.randn((1,3,224,224))) # get the features from the encoder features = model.encoder.features print([x.shape for x in features]) # [torch.Size([1, 32, 112, 112]), torch.Size([1, 24, 56, 56]), torch.Size([1, 40, 28, 28]), torch.Size([1, 80, 14, 14])] ```
{}
null
glasses/efficientnet_b2
[ "transformers", "pytorch", "arxiv:1905.11946", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[ "1905.11946" ]
[]
TAGS #transformers #pytorch #arxiv-1905.11946 #endpoints_compatible #region-us
# efficientnet_b2 Implementation of EfficientNet proposed in EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks !image The basic architecture is similar to MobileNetV2 as was computed by using Progressive Neural Architecture Search . The following table shows the basic architecture (EfficientNet-efficientnet\_b0): !image Then, the architecture is scaled up from [-efficientnet\_b0]{.title-ref} to [-efficientnet\_b7]{.title-ref} using compound scaling. !image Examples:
[ "# efficientnet_b2\nImplementation of EfficientNet proposed in EfficientNet: Rethinking\nModel Scaling for Convolutional Neural\nNetworks\n\n !image\n\n The basic architecture is similar to MobileNetV2 as was computed by\n using Progressive Neural Architecture\n Search .\n\n The following table shows the basic architecture\n (EfficientNet-efficientnet\\_b0):\n\n !image\n\n Then, the architecture is scaled up from\n [-efficientnet\\_b0]{.title-ref} to [-efficientnet\\_b7]{.title-ref}\n using compound scaling.\n\n !image\n\n \n\n Examples:" ]
[ "TAGS\n#transformers #pytorch #arxiv-1905.11946 #endpoints_compatible #region-us \n", "# efficientnet_b2\nImplementation of EfficientNet proposed in EfficientNet: Rethinking\nModel Scaling for Convolutional Neural\nNetworks\n\n !image\n\n The basic architecture is similar to MobileNetV2 as was computed by\n using Progressive Neural Architecture\n Search .\n\n The following table shows the basic architecture\n (EfficientNet-efficientnet\\_b0):\n\n !image\n\n Then, the architecture is scaled up from\n [-efficientnet\\_b0]{.title-ref} to [-efficientnet\\_b7]{.title-ref}\n using compound scaling.\n\n !image\n\n \n\n Examples:" ]
[ 29, 144 ]
[ "passage: TAGS\n#transformers #pytorch #arxiv-1905.11946 #endpoints_compatible #region-us \n# efficientnet_b2\nImplementation of EfficientNet proposed in EfficientNet: Rethinking\nModel Scaling for Convolutional Neural\nNetworks\n\n !image\n\n The basic architecture is similar to MobileNetV2 as was computed by\n using Progressive Neural Architecture\n Search .\n\n The following table shows the basic architecture\n (EfficientNet-efficientnet\\_b0):\n\n !image\n\n Then, the architecture is scaled up from\n [-efficientnet\\_b0]{.title-ref} to [-efficientnet\\_b7]{.title-ref}\n using compound scaling.\n\n !image\n\n \n\n Examples:" ]
[ -0.030356522649526596, -0.011883880943059921, -0.0028559232596307993, 0.01743420399725437, 0.03268202766776085, -0.038581717759370804, -0.03107329085469246, 0.03603076934814453, -0.1457444727420807, 0.0117693692445755, 0.08181089907884598, 0.09996844083070755, -0.030948830768465996, 0.1168336346745491, 0.016107730567455292, -0.16504402458667755, -0.00827665813267231, 0.11964063346385956, -0.07405880838632584, 0.051999349147081375, 0.12559853494167328, -0.07758817076683044, 0.09076133370399475, 0.06831773370504379, -0.11337140947580338, 0.05960022658109665, -0.0779588371515274, -0.017915643751621246, 0.13814514875411987, -0.027944931760430336, 0.09941732883453369, -0.030776681378483772, -0.030736269429326057, -0.16496220231056213, 0.0011644602054730058, 0.06139256805181503, -0.025858934968709946, 0.0997505858540535, 0.06006806716322899, 0.1180356964468956, 0.20964869856834412, -0.00805944949388504, -0.09127306193113327, -0.05933545157313347, -0.010699410922825336, -0.09754736721515656, 0.021310754120349884, 0.06998425722122192, 0.03240848332643509, 0.030560167506337166, 0.026921754702925682, 0.16086094081401825, -0.10764230787754059, 0.094302237033844, -0.013844339177012444, -0.3254677653312683, -0.04189930111169815, 0.06466668099164963, -0.04576537385582924, 0.019318094477057457, 0.02732512354850769, 0.031496867537498474, 0.058583974838256836, 0.055003561079502106, 0.14280343055725098, -0.009888426400721073, -0.1258101761341095, 0.017489440739154816, -0.10650325566530228, 0.00048222101759165525, 0.1771809458732605, 0.05150952190160751, 0.08155333250761032, -0.06840589642524719, -0.2165403813123703, -0.02387377992272377, 0.0169240552932024, -0.19757379591464996, -0.010737019591033459, 0.002488392638042569, -0.06154170632362366, -0.0858808383345604, -0.0828656405210495, -0.0015756383072584867, -0.12971185147762299, 0.09515747427940369, 0.02839025668799877, -0.007655273657292128, -0.05304902791976929, 0.13745814561843872, -0.02666563168168068, -0.07766817510128021, 0.07590018212795258, -0.06265142560005188, -0.004025714006274939, 0.0342458076775074, 0.021511834114789963, -0.14758668839931488, 0.04912370443344116, 0.035478346049785614, 0.09169361740350723, -0.06431222707033157, 0.09521481394767761, 0.07964584976434708, -0.02873747982084751, 0.12510496377944946, -0.162913516163826, -0.19849662482738495, 0.01689774915575981, 0.012837051413953304, 0.05597546324133873, 0.018985500559210777, -0.07979989796876907, -0.051868364214897156, 0.11675168573856354, -0.014688887633383274, -0.010929140262305737, 0.08835293352603912, -0.05380687490105629, -0.11445258557796478, 0.23300929367542267, -0.02405662275850773, 0.022202815860509872, -0.026564201340079308, -0.03327871114015579, -0.0047469427809119225, 0.03590675815939903, -0.0009697076166048646, -0.10450618714094162, 0.013336531817913055, -0.07855252176523209, -0.14565150439739227, -0.05914859473705292, -0.0770338922739029, -0.0050061228685081005, -0.003454937832430005, 0.006124301813542843, -0.20973224937915802, -0.10885356366634369, 0.10039684176445007, 0.09299078583717346, -0.01292756199836731, -0.031172512099146843, -0.03470616042613983, -0.1052832081913948, -0.10569951683282852, -0.03170508146286011, 0.1262444704771042, -0.03984398394823074, 0.005249409005045891, -0.015454140491783619, 0.03208233043551445, -0.14845679700374603, 0.011990093626081944, -0.10941483825445175, 0.025165967643260956, -0.14839644730091095, 0.05017447471618652, -0.04279983788728714, -0.015975195914506912, -0.06469572335481644, -0.02114771492779255, -0.19121764600276947, -0.00869724340736866, 0.11872825771570206, 0.08015060424804688, -0.031433433294296265, -0.09041143208742142, -0.014070793986320496, -0.07842423766851425, -0.1749250739812851, 0.1515386402606964, 0.0065184179693460464, 0.11422719061374664, 0.060662489384412766, 0.19955192506313324, 0.12133946269750595, -0.03499465063214302, -0.06365256011486053, 0.02558092027902603, -0.11096953600645065, -0.12069433927536011, -0.07503696531057358, 0.11695010215044022, 0.050794731825590134, 0.04018131271004677, -0.004417395684868097, 0.08248166739940643, -0.05725714564323425, -0.06867750734090805, -0.022913841530680656, -0.059930846095085144, -0.006113532464951277, 0.00980265624821186, 0.06972425431013107, 0.04449684917926788, -0.05053042247891426, -0.16640014946460724, 0.0678630918264389, -0.08039650321006775, 0.027691641822457314, -0.07775701582431793, 0.015549158677458763, -0.09385082125663757, 0.033733077347278595, -0.07255247980356216, -0.02417292259633541, 0.11074857413768768, 0.009030237793922424, -0.032755449414253235, 0.15464061498641968, 0.02656911313533783, -0.048585399985313416, -0.10135217756032944, -0.01913478970527649, 0.011393887922167778, 0.04291088134050369, -0.10444281250238419, -0.12676569819450378, -0.05208868533372879, -0.024967215955257416, 0.05095226317644119, -0.11390036344528198, -0.03242397680878639, 0.06223497539758682, 0.24666179716587067, 0.02044614963233471, 0.03457092493772507, -0.07852771133184433, -0.026235731318593025, -0.09631600975990295, -0.017602138221263885, 0.021741265431046486, -0.002682541962713003, -0.04885413125157356, 0.05418585240840912, 0.0802631825208664, 0.12352238595485687, 0.05689385533332825, -0.13916538655757904, 0.05724717676639557, 0.03640325739979744, -0.05541129410266876, -0.08708477765321732, 0.03675055131316185, -0.10622227191925049, 0.08247271180152893, -0.03354000672698021, 0.1214979812502861, -0.08061721920967102, -0.04988156259059906, 0.022160859778523445, 0.024458911269903183, 0.048903800547122955, 0.030006902292370796, 0.11367039382457733, -0.30646634101867676, 0.0359482541680336, 0.09520845115184784, -0.09307315945625305, 0.10163872689008713, 0.05406726151704788, -0.024391723796725273, -0.0036398381926119328, 0.03143889084458351, -0.016430508345365524, 0.1787189543247223, -0.15500693023204803, -0.009724941104650497, 0.04011589288711548, -0.005170516204088926, 0.19296570122241974, -0.08191896975040436, 0.09009344130754471, 0.001964408904314041, 0.018948916345834732, 0.2744787931442261, -0.009054679423570633, -0.030303483828902245, 0.06555269658565521, -0.04999924078583717, -0.2659338414669037, 0.004918653052300215, -0.04162134975194931, -0.03092065081000328, 0.14074012637138367, -0.007528022397309542, -0.17889444530010223, -0.07793979346752167, -0.0006111115217208862, -0.04259489104151726, 0.0014685139758512378, -0.04389510303735733, 0.01759733445942402, -0.06370315700769424, -0.03529869392514229, -0.07577451318502426, 0.06295628845691681, 0.061175599694252014, -0.008737037889659405, 0.058984577655792236, 0.04758363962173462, -0.10517337173223495, 0.010652489960193634, -0.10298550128936768, 0.014761100523173809, 0.02374459058046341, -0.12084263563156128, 0.12242110073566437, 0.15379182994365692, -0.03416336327791214, -0.013667015358805656, 0.030078254640102386, 0.10437557101249695, -0.047417882829904556, 0.07581034302711487, -0.08028917014598846, 0.04572775214910507, 0.020718269050121307, 0.13291384279727936, 0.002594498684629798, -0.013027277775108814, 0.03311470150947571, -0.016980700194835663, 0.0004443640646059066, -0.14191488921642303, -0.17972125113010406, -0.04348956421017647, 0.02135579288005829, 0.07734797149896622, 0.06144067645072937, 0.08920438587665558, 0.06091037392616272, -0.009603569284081459, 0.031805966049432755, 0.012769936583936214, 0.0537092462182045, 0.22494345903396606, 0.023381100967526436, 0.07087250053882599, -0.038787394762039185, -0.20911206305027008, 0.04959946870803833, 0.10625030845403671, 0.19527573883533478, -0.05204209312796593, 0.09471588581800461, 0.024357393383979797, 0.1097380742430687, 0.016356388106942177, 0.10981277376413345, -0.06509711593389511, -0.003044690703973174, -0.06539253145456314, -0.0372665598988533, 0.05683211237192154, 0.07645288854837418, -0.007665828336030245, -0.044405315071344376, 0.07591143995523453, 0.08031459152698517, 0.11037129163742065, 0.09561333805322647, 0.11174819618463516, -0.24364742636680603, 0.05665550008416176, -0.035494886338710785, -0.09431073814630508, -0.05386152118444443, 0.048912521451711655, 0.22905774414539337, 0.004085693042725325, 0.04028337448835373, -0.039855893701314926, 0.05656895413994789, -0.08536084741353989, 0.03750711679458618, 0.016852138563990593, 0.0753951147198677, 0.061154887080192566, 0.09443136304616928, -0.08168123662471771, 0.1937013566493988, 0.006462146528065205, 0.022087184712290764, -0.0723419189453125, -0.0391976535320282, -0.02608802728354931, 0.043658506125211716, 0.028492281213402748, -0.008888693526387215, 0.25596699118614197, 0.12981964647769928, -0.12502239644527435, 0.05151553452014923, 0.02940468303859234, 0.048297397792339325, 0.0718582421541214, 0.02281046472489834, -0.07367830723524094, 0.016435915604233742, 0.11910299211740494, 0.025556957349181175, -0.09676869958639145, 0.007724291644990444, 0.1680733561515808, -0.1264902502298355, -0.06051339954137802, -0.027616344392299652, -0.04484299570322037, 0.2757539749145508, 0.005494779907166958, -0.005632334854453802, -0.005962992087006569, 0.024285661056637764, 0.11701292544603348, -0.03586756810545921, 0.03665807843208313, -0.03531908616423607, 0.04389868304133415, 0.009323449805378914, -0.08680833876132965, 0.08595948666334152, -0.08596309274435043, -0.0025013540871441364, -0.07097692787647247, 0.04724676162004471, 0.01730465702712536, -0.011672807857394218, 0.07113996148109436, -0.021714836359024048, -0.13359121978282928, -0.08102814853191376, -0.11938102543354034, 0.007544378284364939, -0.13468164205551147, 0.07806944102048874, -0.0624067448079586, -0.004067753441631794, -0.026000337675213814, 0.05027000606060028, 0.10568710416555405, 0.09490054100751877, -0.07892706990242004, -0.09457039833068848, 0.11524225026369095, -0.003735798643901944, -0.248570516705513, -0.14240683615207672, 0.0448007732629776, 0.04087447747588158, 0.04874980077147484, -0.015123155899345875, 0.20091941952705383, 0.06393144279718399, -0.038847606629133224, -0.012574155814945698, -0.10425759106874466, -0.06260982900857925, 0.09268227219581604, -0.006294553633779287, 0.11626040935516357, -0.006927702575922012, 0.0012198281474411488, 0.02158896066248417, 0.02383713237941265, 0.08436453342437744, -0.09726975858211517, 0.10402563959360123, -0.00897441990673542, -0.059075985103845596, 0.008010158315300941, -0.030123567208647728, 0.03441668301820755, 0.05409436300396919, 0.023606428876519203, 0.08403884619474411, -0.06547096371650696, 0.14867942035198212, 0.008321685716509819, 0.04878467693924904, 0.11752041429281235, 0.051375798881053925, -0.12533847987651825, -0.029120024293661118, -0.11701672524213791, 0.07298512011766434, 0.04879556968808174, -0.07915283739566803, -0.15696710348129272, 0.02294880710542202, 0.13260039687156677, 0.09039822965860367, 0.21176674962043762, 0.12379566580057144, -0.0171434935182333, 0.2791973948478699, 0.08677756041288376, -0.1838405579328537, 0.06816993653774261, -0.024320200085639954, 0.005945098120719194, 0.0449797697365284, 0.02246057614684105, 0.043027475476264954, 0.1383262276649475, -0.013024901039898396, -0.035331640392541885, 0.023369763046503067, -0.09288699179887772, -0.11593768745660782, 0.15279562771320343, -0.15488338470458984, -0.0714685469865799, -0.06971540302038193, 0.05614717677235603, 0.0008877470390871167, 0.2165355086326599, 0.10902195423841476, -0.1074385792016983, 0.014334173873066902, 0.047453977167606354, -0.06863155215978622, -0.10068979859352112, 0.1112200990319252, 0.12293928861618042, 0.038683775812387466, -0.03154537081718445, 0.12898428738117218, 0.08017788082361221, -0.027743760496377945, -0.08072145283222198, -0.039860982447862625, -0.11586620658636093, 0.00834218692034483, -0.08751004189252853, 0.020975319668650627, -0.009594838134944439, -0.10888509452342987, -0.0801469162106514, 0.007859445177018642, 0.03389245271682739, -0.05888564512133598, 0.12484166771173477, 0.10599662363529205, -0.08192501962184906, 0.0508703738451004, -0.08782977610826492, 0.11866197735071182, 0.030539700761437416, 0.10322172194719315, -0.16320458054542542, -0.06267301738262177, -0.001269293250516057, 0.07578157633543015, -0.08057604730129242, 0.01010422594845295, 0.03685001656413078, 0.0346548892557621, -0.0321878083050251, -0.09342597424983978, -0.034967679530382156, -0.07727459818124771, 0.002582829911261797, -0.06576385349035263, -0.13505810499191284, 0.020435888320207596, -0.03808324784040451, 0.04760217294096947, 0.03834734484553337, -0.024265803396701813, -0.03760111331939697, -0.004976390860974789, -0.01797300949692726, -0.07169631123542786, 0.1055474579334259, -0.045376986265182495, -0.014739573001861572, 0.02486172318458557, 0.0017052365001291037, -0.09733863919973373, 0.11429397761821747, 0.13570845127105713, 0.07913465797901154, -0.006936521735042334, -0.0056944070383906364, 0.08114105463027954, 0.02308621071279049, -0.06161271035671234, -0.04067578911781311, -0.05711161717772484, -0.01399512030184269, -0.1105322316288948, -0.03572007268667221, -0.05364613234996796, 0.022951651364564896, -0.040956273674964905, 0.08510489016771317, 0.09670307487249374, 0.006607700139284134, -0.126902773976326, -0.10251607745885849, 0.05852709338068962, 0.0010153576731681824, -0.1177097037434578, 0.0349399670958519, 0.0188419409096241, -0.02316364273428917, -0.03758930787444115, 0.24005135893821716, -0.049389634281396866, -0.1478940099477768, -0.028475550934672356, -0.08530326932668686, -0.13748276233673096, -0.0004683512379415333, 0.10111377388238907, 0.04518526419997215, 0.0024284319952130318, 0.0038248940836638212, -0.0009665657416917384, 0.06571513414382935, 0.2557680904865265, 0.06574059277772903, 0.004894030746072531, -0.0037493312265723944, 0.11976217478513718, 0.04393748193979263, -0.015049687586724758, -0.10605889558792114, 0.06386114656925201, -0.044716015458106995, 0.08452145010232925, 0.012837347574532032, 0.029812969267368317, 0.16248971223831177, -0.043161921203136444, 0.0003190379065927118, 0.08171543478965759, -0.036353446543216705, -0.03470270335674286, -0.10602273046970367, -0.07905223220586777, -0.1266753077507019, -0.03858460485935211, -0.13179409503936768, -0.12084770202636719, 0.05077815800905228, 0.04702889546751976, -0.10650651156902313, 0.21974453330039978, 0.0774649903178215, -0.0530662015080452, 0.10427156835794449, -0.0110723115503788, 0.02797785773873329, -0.02293044701218605, -0.010799550451338291, -0.13744406402111053, 0.15778270363807678, 0.02469821460545063, -0.003431378398090601, -0.0073865437880158424, 0.025914769619703293, 0.037550169974565506, -0.012218943797051907, -0.07923752069473267, -0.06510477513074875, -0.02128073386847973, -0.08398222178220749, -0.012715144082903862, -0.08922512084245682, 0.02236294187605381, 0.15908730030059814, -0.06726481765508652, -0.14909252524375916, -0.07919592410326004, 0.16619741916656494, 0.018025493249297142, 0.09204038977622986, 0.026613160967826843, -0.04486430808901787, -0.1358993649482727, 0.21016152203083038, 0.2217760533094406, -0.1552448868751526, -0.0246588122099638, 0.10431847721338272, 0.0005736567545682192, -0.026397405192255974, -0.03909281641244888, 0.03444381058216095, 0.30373817682266235, -0.015186778269708157, -0.036760419607162476, -0.07632558047771454, 0.007154602557420731, -0.022034531459212303, -0.05652327835559845, 0.1165848821401596, -0.024280240759253502, -0.11864273995161057, 0.02015461027622223, -0.07859363406896591, -0.06255298852920532, -0.11338881403207779, -0.1774911880493164, -0.10969878733158112, -0.023180123418569565, 0.028407355770468712, -0.06172093376517296, 0.06976920366287231, -0.08682851493358612, 0.03658680245280266, -0.060795024037361145, -0.015826987102627754, -0.058765411376953125, 0.09109330922365189, 0.024765480309724808, -0.07105489820241928, 0.1319429576396942, -0.033880192786455154, 0.05246169492602348, 0.12702815234661102, -0.04591568559408188, -0.0621798075735569, 0.02981833554804325, 0.03617759048938751, -0.04616836458444595, 0.015038508921861649, -0.08647071570158005, 0.016055133193731308, 0.053218480199575424, 0.026224328204989433, -0.04863149672746658, -0.013540768064558506, 0.19428065419197083, 0.04876350238919258, -0.08841057866811752, -0.05335327610373497, -0.043085888028144836, 0.0818098708987236, 0.09026041626930237, -0.0385100394487381, 0.01698075421154499, -0.08892146497964859, 0.01987304538488388, 0.08431880921125412, 0.14485090970993042, 0.03624160587787628, -0.18471050262451172, -0.04243452101945877, -0.027602003887295723, -0.028769154101610184, -0.003998524509370327, -0.01430937834084034, -0.057762403041124344, -0.030384402722120285, -0.08337121456861496, 0.060709014534950256, 0.10262216627597809, -0.004849528893828392, -0.0019356397679075599, 0.0911296010017395, -0.13479578495025635, -0.014323735609650612, -0.20119112730026245, -0.130545973777771 ]
null
null
transformers
# efficientnet_b3 Implementation of EfficientNet proposed in [EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks](https://arxiv.org/abs/1905.11946) ![image](https://github.com/FrancescoSaverioZuppichini/glasses/blob/develop/docs/_static/images/EfficientNet.png?raw=true) The basic architecture is similar to MobileNetV2 as was computed by using [Progressive Neural Architecture Search](https://arxiv.org/abs/1905.11946) . The following table shows the basic architecture (EfficientNet-efficientnet\_b0): ![image](https://github.com/FrancescoSaverioZuppichini/glasses/blob/develop/docs/_static/images/EfficientNetModelsTable.jpeg?raw=true) Then, the architecture is scaled up from [-efficientnet\_b0]{.title-ref} to [-efficientnet\_b7]{.title-ref} using compound scaling. ![image](https://github.com/FrancescoSaverioZuppichini/glasses/blob/develop/docs/_static/images/EfficientNetScaling.jpg?raw=true) ``` python EfficientNet.efficientnet_b0() EfficientNet.efficientnet_b1() EfficientNet.efficientnet_b2() EfficientNet.efficientnet_b3() EfficientNet.efficientnet_b4() EfficientNet.efficientnet_b5() EfficientNet.efficientnet_b6() EfficientNet.efficientnet_b7() EfficientNet.efficientnet_b8() EfficientNet.efficientnet_l2() ``` Examples: ``` python EfficientNet.efficientnet_b0(activation = nn.SELU) # change number of classes (default is 1000 ) EfficientNet.efficientnet_b0(n_classes=100) # pass a different block EfficientNet.efficientnet_b0(block=...) # store each feature x = torch.rand((1, 3, 224, 224)) model = EfficientNet.efficientnet_b0() # first call .features, this will activate the forward hooks and tells the model you'll like to get the features model.encoder.features model(torch.randn((1,3,224,224))) # get the features from the encoder features = model.encoder.features print([x.shape for x in features]) # [torch.Size([1, 32, 112, 112]), torch.Size([1, 24, 56, 56]), torch.Size([1, 40, 28, 28]), torch.Size([1, 80, 14, 14])] ```
{}
null
glasses/efficientnet_b3
[ "transformers", "pytorch", "arxiv:1905.11946", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[ "1905.11946" ]
[]
TAGS #transformers #pytorch #arxiv-1905.11946 #endpoints_compatible #region-us
# efficientnet_b3 Implementation of EfficientNet proposed in EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks !image The basic architecture is similar to MobileNetV2 as was computed by using Progressive Neural Architecture Search . The following table shows the basic architecture (EfficientNet-efficientnet\_b0): !image Then, the architecture is scaled up from [-efficientnet\_b0]{.title-ref} to [-efficientnet\_b7]{.title-ref} using compound scaling. !image Examples:
[ "# efficientnet_b3\nImplementation of EfficientNet proposed in EfficientNet: Rethinking\nModel Scaling for Convolutional Neural\nNetworks\n\n !image\n\n The basic architecture is similar to MobileNetV2 as was computed by\n using Progressive Neural Architecture\n Search .\n\n The following table shows the basic architecture\n (EfficientNet-efficientnet\\_b0):\n\n !image\n\n Then, the architecture is scaled up from\n [-efficientnet\\_b0]{.title-ref} to [-efficientnet\\_b7]{.title-ref}\n using compound scaling.\n\n !image\n\n \n\n Examples:" ]
[ "TAGS\n#transformers #pytorch #arxiv-1905.11946 #endpoints_compatible #region-us \n", "# efficientnet_b3\nImplementation of EfficientNet proposed in EfficientNet: Rethinking\nModel Scaling for Convolutional Neural\nNetworks\n\n !image\n\n The basic architecture is similar to MobileNetV2 as was computed by\n using Progressive Neural Architecture\n Search .\n\n The following table shows the basic architecture\n (EfficientNet-efficientnet\\_b0):\n\n !image\n\n Then, the architecture is scaled up from\n [-efficientnet\\_b0]{.title-ref} to [-efficientnet\\_b7]{.title-ref}\n using compound scaling.\n\n !image\n\n \n\n Examples:" ]
[ 29, 144 ]
[ "passage: TAGS\n#transformers #pytorch #arxiv-1905.11946 #endpoints_compatible #region-us \n# efficientnet_b3\nImplementation of EfficientNet proposed in EfficientNet: Rethinking\nModel Scaling for Convolutional Neural\nNetworks\n\n !image\n\n The basic architecture is similar to MobileNetV2 as was computed by\n using Progressive Neural Architecture\n Search .\n\n The following table shows the basic architecture\n (EfficientNet-efficientnet\\_b0):\n\n !image\n\n Then, the architecture is scaled up from\n [-efficientnet\\_b0]{.title-ref} to [-efficientnet\\_b7]{.title-ref}\n using compound scaling.\n\n !image\n\n \n\n Examples:" ]
[ -0.029966391623020172, -0.018517551943659782, -0.0026498865336179733, 0.017939981073141098, 0.03787081316113472, -0.03755519911646843, -0.031122809275984764, 0.03494604676961899, -0.15207627415657043, 0.011634355410933495, 0.08436252921819687, 0.10715970396995544, -0.032733067870140076, 0.11367399245500565, 0.016989905387163162, -0.16481377184391022, -0.003990046214312315, 0.11778246611356735, -0.07092837989330292, 0.050533756613731384, 0.1256229430437088, -0.0777399018406868, 0.09506425261497498, 0.0666697546839714, -0.10764522850513458, 0.06019316241145134, -0.0852309912443161, -0.019351862370967865, 0.13510476052761078, -0.029132883995771408, 0.09629585593938828, -0.032434266060590744, -0.03282742202281952, -0.16402573883533478, 0.0009890240617096424, 0.06331700086593628, -0.027291251346468925, 0.09778395295143127, 0.06283175200223923, 0.11745863407850266, 0.20813943445682526, -0.008245845325291157, -0.08778829127550125, -0.05843834578990936, -0.011466694064438343, -0.08918420970439911, 0.017476171255111694, 0.06530606746673584, 0.0346892774105072, 0.03876583278179169, 0.026911988854408264, 0.16476279497146606, -0.110178641974926, 0.09617576003074646, -0.010014200583100319, -0.324764609336853, -0.0456569641828537, 0.07486691325902939, -0.04680401831865311, 0.019009102135896683, 0.027272241190075874, 0.032722990959882736, 0.05976327136158943, 0.0599709190428257, 0.14550204575061798, -0.009805848821997643, -0.12051235139369965, 0.016035646200180054, -0.1101587787270546, 0.002588821342214942, 0.18287533521652222, 0.05348379164934158, 0.08176497370004654, -0.07295175641775131, -0.21141313016414642, -0.029995497316122055, 0.016905443742871284, -0.19927476346492767, -0.01208452694118023, -0.0002654205309227109, -0.062123917043209076, -0.08299281448125839, -0.08224813640117645, 0.003146543400362134, -0.12823611497879028, 0.09519322961568832, 0.031222214922308922, -0.009927564300596714, -0.0466756671667099, 0.13549599051475525, -0.025136301293969154, -0.07618148624897003, 0.07536409050226212, -0.0657186433672905, -0.00448062177747488, 0.029800154268741608, 0.02230590023100376, -0.1509290337562561, 0.048822127282619476, 0.037934910506010056, 0.08883354812860489, -0.059542953968048096, 0.10165125131607056, 0.07753200829029083, -0.02806886099278927, 0.12459851801395416, -0.16799437999725342, -0.19658297300338745, 0.012150597758591175, 0.01563986949622631, 0.05488401651382446, 0.019131142646074295, -0.07598841190338135, -0.04509097710251808, 0.11495102941989899, -0.012185247614979744, -0.013351204805076122, 0.0940210148692131, -0.04984401911497116, -0.11641738563776016, 0.23959940671920776, -0.023366425186395645, 0.017114218324422836, -0.029482057318091393, -0.031018933281302452, 0.00482453778386116, 0.031269896775484085, -0.0006476357812061906, -0.10432147234678268, 0.015362497419118881, -0.07876832783222198, -0.14491349458694458, -0.05884344130754471, -0.07582545280456543, -0.006434421055018902, -0.004810187965631485, 0.0036751641891896725, -0.21197059750556946, -0.10902737826108932, 0.09668558090925217, 0.09576427936553955, -0.015496009960770607, -0.029818739742040634, -0.03527936711907387, -0.10848736017942429, -0.10604380071163177, -0.02990005537867546, 0.12608784437179565, -0.04258698225021362, 0.0013218746753409505, -0.014206561259925365, 0.030387545004487038, -0.1454918384552002, 0.014116792008280754, -0.10838213562965393, 0.020571336150169373, -0.15297062695026398, 0.049359116703271866, -0.04745516926050186, -0.010132388211786747, -0.06659843027591705, -0.02562323585152626, -0.19155704975128174, -0.009100104682147503, 0.11745487153530121, 0.08086875081062317, -0.027419408783316612, -0.08680728822946548, -0.026196684688329697, -0.07658488303422928, -0.17722290754318237, 0.15346203744411469, 0.009272326715290546, 0.10947498679161072, 0.05895882472395897, 0.1964506357908249, 0.12185792624950409, -0.039372481405735016, -0.06512346863746643, 0.024809066206216812, -0.11097070574760437, -0.12172583490610123, -0.0757058635354042, 0.11393462121486664, 0.048774413764476776, 0.04293085262179375, -0.007227105088531971, 0.08194659650325775, -0.05800817906856537, -0.06815317273139954, -0.020046692341566086, -0.06043286621570587, -0.011509409174323082, 0.009737454354763031, 0.0703183189034462, 0.04261898621916771, -0.049492496997117996, -0.1773584634065628, 0.06698039919137955, -0.08220376074314117, 0.027467967942357063, -0.0763062834739685, 0.0182788223028183, -0.09308519959449768, 0.032762277871370316, -0.07119137793779373, -0.030955826863646507, 0.11050810664892197, 0.015683986246585846, -0.03427708148956299, 0.1511407196521759, 0.02585519105195999, -0.049428340047597885, -0.1028943806886673, -0.022325269877910614, 0.016033310443162918, 0.04316249489784241, -0.10213851183652878, -0.12442618608474731, -0.05154310166835785, -0.02546423301100731, 0.04449667036533356, -0.10814719647169113, -0.03341514989733696, 0.05708012357354164, 0.24286778271198273, 0.017990082502365112, 0.033609483391046524, -0.07524917274713516, -0.0223136804997921, -0.09694734215736389, -0.018089167773723602, 0.022217951714992523, -0.003481846069917083, -0.04600351303815842, 0.05400770157575607, 0.07836107909679413, 0.12694406509399414, 0.05614223703742027, -0.14383606612682343, 0.05224934220314026, 0.036145661026239395, -0.05493415147066116, -0.08610975742340088, 0.036630865186452866, -0.10612279921770096, 0.08432693034410477, -0.0343875028192997, 0.12036203593015671, -0.07723349332809448, -0.05010693892836571, 0.020996632054448128, 0.027365287765860558, 0.044711634516716, 0.030650410801172256, 0.11864541471004486, -0.30018851161003113, 0.03530287370085716, 0.0946282297372818, -0.09357425570487976, 0.09736029803752899, 0.055002499371767044, -0.021547770127654076, 0.0012258816277608275, 0.03222612291574478, -0.01600201055407524, 0.1737043559551239, -0.1524232178926468, -0.010600066743791103, 0.03847517818212509, 0.0011011537862941623, 0.1938924342393875, -0.07765444368124008, 0.08800305426120758, 0.0012847925536334515, 0.020491674542427063, 0.2831457257270813, -0.0033493938390165567, -0.03199033811688423, 0.06301338970661163, -0.05006088688969612, -0.27101877331733704, 0.006642778869718313, -0.040072619915008545, -0.02960123121738434, 0.14419913291931152, -0.00772837782278657, -0.1810794323682785, -0.07736292481422424, -0.007894898764789104, -0.04888765141367912, -0.0018602355848997831, -0.04249131307005882, 0.01171244028955698, -0.06997796893119812, -0.039761241525411606, -0.07813722640275955, 0.058688368648290634, 0.05905129760503769, -0.003932158928364515, 0.054316215217113495, 0.04533321410417557, -0.1050974428653717, 0.009416286833584309, -0.10356900840997696, 0.0115771209821105, 0.02565106935799122, -0.12203848361968994, 0.12645049393177032, 0.15185989439487457, -0.028583114966750145, -0.012441874481737614, 0.02722485549747944, 0.10897397994995117, -0.04722024127840996, 0.07335353642702103, -0.07830987870693207, 0.05342629924416542, 0.020902536809444427, 0.13185672461986542, 0.0034083120990544558, -0.016810551285743713, 0.03508708253502846, -0.013308740220963955, -0.00014972846838645637, -0.1423262059688568, -0.18175527453422546, -0.045402463525533676, 0.02060728333890438, 0.07718150317668915, 0.06388645619153976, 0.0944155752658844, 0.06348437815904617, -0.008228258229792118, 0.02665138430893421, 0.012738565914332867, 0.05562230572104454, 0.2288876622915268, 0.02463681995868683, 0.07229208201169968, -0.03911839425563812, -0.2096349000930786, 0.04867083951830864, 0.10395847260951996, 0.1955592930316925, -0.05132363364100456, 0.09077576547861099, 0.028728870674967766, 0.10962442308664322, 0.011516900733113289, 0.11233095824718475, -0.06553415209054947, -0.00686260312795639, -0.06647792458534241, -0.03726496174931526, 0.06181315332651138, 0.07168593257665634, -0.008545992895960808, -0.04749809950590134, 0.07470888644456863, 0.08422372490167618, 0.11323851346969604, 0.0988006666302681, 0.10690650343894958, -0.24773743748664856, 0.06126687675714493, -0.04007719084620476, -0.09320927411317825, -0.048097021877765656, 0.05186948552727699, 0.2192273586988449, 0.0022774741519242525, 0.04447481036186218, -0.041997164487838745, 0.05434529855847359, -0.08440600335597992, 0.03739994764328003, 0.024780485779047012, 0.08239179104566574, 0.060692645609378815, 0.09355608373880386, -0.08724667876958847, 0.19358481466770172, 0.004131191875785589, 0.024434903636574745, -0.07230975478887558, -0.03994116187095642, -0.024116480723023415, 0.04467420652508736, 0.029927460476756096, -0.010007169097661972, 0.26052871346473694, 0.12558095157146454, -0.12572580575942993, 0.05127599835395813, 0.030852824449539185, 0.05240532010793686, 0.0723380446434021, 0.0238622035831213, -0.07409534603357315, 0.015591656789183617, 0.1251676380634308, 0.02138013020157814, -0.10078278183937073, 0.008419947698712349, 0.16821838915348053, -0.12485858798027039, -0.05794638395309448, -0.030968226492404938, -0.06099396571516991, 0.27326205372810364, 0.01717350259423256, -0.004263146314769983, -0.008689912967383862, 0.01454838365316391, 0.11786523461341858, -0.035022079944610596, 0.03586754575371742, -0.03670081868767738, 0.03834608197212219, 0.010051388293504715, -0.08769015222787857, 0.08395440876483917, -0.09118855744600296, 0.0008632597746327519, -0.06765897572040558, 0.04434261843562126, 0.016954312101006508, -0.013113456778228283, 0.07000065594911575, -0.021024100482463837, -0.13387054204940796, -0.08441059291362762, -0.11887460947036743, 0.006091990042477846, -0.13297748565673828, 0.0813409686088562, -0.06140844523906708, -0.003169267438352108, -0.028466325253248215, 0.04934849217534065, 0.10444587469100952, 0.0907176062464714, -0.07512093335390091, -0.100400410592556, 0.11543462425470352, -0.0011295214062556624, -0.2492954283952713, -0.1419665366411209, 0.04394631087779999, 0.0357617624104023, 0.05009346082806587, -0.014179314486682415, 0.20418404042720795, 0.06680016964673996, -0.03649912774562836, -0.014475181698799133, -0.10402099788188934, -0.060405269265174866, 0.09343535453081131, -0.002820670371875167, 0.11294553428888321, -0.009887410327792168, 0.005168503616005182, 0.02522011660039425, 0.02332918345928192, 0.0815950483083725, -0.08936246484518051, 0.10887141525745392, -0.00862407311797142, -0.06287243962287903, 0.0038077582139521837, -0.032971713691949844, 0.032859593629837036, 0.05734149366617203, 0.024573149159550667, 0.08424020558595657, -0.0600527785718441, 0.1446198672056198, 0.007314704824239016, 0.05498187243938446, 0.11634648591279984, 0.04833703488111496, -0.12293869256973267, -0.02851969003677368, -0.11924757808446884, 0.07248678058385849, 0.04905788600444794, -0.07874254137277603, -0.1576012372970581, 0.025340918451547623, 0.13483932614326477, 0.0891219824552536, 0.21542224287986755, 0.12322002649307251, -0.013563957996666431, 0.27171656489372253, 0.08952386677265167, -0.19194145500659943, 0.05984865501523018, -0.0265438761562109, 0.00558775570243597, 0.04305262863636017, 0.029232801869511604, 0.0384424664080143, 0.1379697173833847, -0.018589608371257782, -0.03366994485259056, 0.024175986647605896, -0.09147366881370544, -0.11602013558149338, 0.15327899158000946, -0.15384994447231293, -0.0649794414639473, -0.06944704055786133, 0.05437749624252319, 0.0012117738369852304, 0.22136515378952026, 0.10608421266078949, -0.10720137506723404, 0.01612788997590542, 0.047874514013528824, -0.06774125248193741, -0.09700173139572144, 0.11367304623126984, 0.12127352505922318, 0.037827953696250916, -0.032549019902944565, 0.13063572347164154, 0.07716969400644302, -0.02764626406133175, -0.07838781923055649, -0.03430619463324547, -0.11910982429981232, 0.006258034612983465, -0.08961863070726395, 0.018246112391352654, -0.01279996894299984, -0.10723625868558884, -0.08308552205562592, 0.007003485225141048, 0.03658740222454071, -0.06360305100679398, 0.12594065070152283, 0.1013541966676712, -0.08380354940891266, 0.04981396719813347, -0.0874624103307724, 0.11340407282114029, 0.027817828580737114, 0.10537691414356232, -0.16620799899101257, -0.06881844997406006, 0.0012127859517931938, 0.07524862885475159, -0.07976013422012329, 0.009553061798214912, 0.0362391322851181, 0.034215591847896576, -0.026239408180117607, -0.0974334254860878, -0.03812703862786293, -0.07648146897554398, 0.002733765635639429, -0.06177273020148277, -0.13518022000789642, 0.02338862232863903, -0.0369720421731472, 0.04712939262390137, 0.04104461893439293, -0.022292425855994225, -0.03442632406949997, -0.002100025536492467, -0.02293497882783413, -0.07117632776498795, 0.10332592576742172, -0.04960126802325249, -0.01867341808974743, 0.024367181584239006, -0.0013203911948949099, -0.09865453839302063, 0.11490140855312347, 0.13411425054073334, 0.07904328405857086, -0.008173166774213314, -0.00887296348810196, 0.08315543085336685, 0.024768859148025513, -0.059497132897377014, -0.04997941106557846, -0.0578816793859005, -0.01103775855153799, -0.11006730049848557, -0.03319431096315384, -0.05145556107163429, 0.023435749113559723, -0.03759285435080528, 0.08202581107616425, 0.1008087769150734, 0.0037587403785437346, -0.12597985565662384, -0.10078350454568863, 0.058527737855911255, 0.0016311021754518151, -0.11985600739717484, 0.030511584132909775, 0.020324116572737694, -0.020289039239287376, -0.03839287534356117, 0.24020956456661224, -0.04899356886744499, -0.14857585728168488, -0.027854040265083313, -0.07980065792798996, -0.13417568802833557, -0.0028835588600486517, 0.09450183808803558, 0.04527958482503891, 0.0019210866885259748, 0.006148973945528269, -0.00012301304377615452, 0.0685151144862175, 0.2548173666000366, 0.0688302293419838, 0.0022807009518146515, -0.007155134342610836, 0.12050821632146835, 0.04213239997625351, -0.018121546134352684, -0.09909569472074509, 0.05861556529998779, -0.04374609515070915, 0.08832455426454544, 0.013615179806947708, 0.02055468037724495, 0.15976473689079285, -0.04130787029862404, 0.0008283894858323038, 0.07814821600914001, -0.03552143648266792, -0.032923322170972824, -0.10796109586954117, -0.07735425233840942, -0.12946517765522003, -0.037043068557977676, -0.13395346701145172, -0.12354418635368347, 0.05780278891324997, 0.05163034796714783, -0.10321836918592453, 0.22552746534347534, 0.07728411257266998, -0.050891585648059845, 0.10505253076553345, -0.015061930753290653, 0.026913221925497055, -0.023959219455718994, -0.011334666050970554, -0.1418486088514328, 0.15370512008666992, 0.026647314429283142, -0.0051162815652787685, -0.01123642735183239, 0.02853717841207981, 0.03698915243148804, -0.014529705047607422, -0.07817541807889938, -0.06355109810829163, -0.02356579154729843, -0.0771423950791359, -0.013330419547855854, -0.0888831838965416, 0.022932101041078568, 0.1545553207397461, -0.066379114985466, -0.14862006902694702, -0.08192913979291916, 0.16841678321361542, 0.020939605310559273, 0.09079746901988983, 0.025233086198568344, -0.04200680926442146, -0.13572748005390167, 0.2166474610567093, 0.2269304394721985, -0.1542128473520279, -0.025468355044722557, 0.10364893823862076, 0.00011117979738628492, -0.026944922283291817, -0.03778068721294403, 0.04045606777071953, 0.2999686002731323, -0.017578456550836563, -0.03426172211766243, -0.07715397328138351, 0.0075816004537045956, -0.022793849930167198, -0.06595467031002045, 0.1232529878616333, -0.021790001541376114, -0.11515691876411438, 0.023263365030288696, -0.08194756507873535, -0.05311277508735657, -0.11730700731277466, -0.1721322238445282, -0.10980654507875443, -0.027435701340436935, 0.024088412523269653, -0.061348721385002136, 0.07147856801748276, -0.08511550724506378, 0.03731899335980415, -0.06423049420118332, -0.017076538875699043, -0.05732958763837814, 0.08539456129074097, 0.026465825736522675, -0.06322766095399857, 0.1297496110200882, -0.032309092581272125, 0.049773361533880234, 0.12857069075107574, -0.0482034906744957, -0.06228337064385414, 0.03405341878533363, 0.03615075722336769, -0.04406554996967316, 0.016752133145928383, -0.09243129938840866, 0.017179148271679878, 0.05633174255490303, 0.023234179243445396, -0.048492707312107086, -0.010278327390551567, 0.19613154232501984, 0.05273323133587837, -0.08562851697206497, -0.04963144659996033, -0.04447149485349655, 0.08535847067832947, 0.09505713731050491, -0.036568090319633484, 0.01603204570710659, -0.08888866752386093, 0.02089628018438816, 0.08283327519893646, 0.13777311146259308, 0.033056292682886124, -0.1904941350221634, -0.04246451333165169, -0.03159359097480774, -0.030801041051745415, -0.006107655819505453, -0.015576153993606567, -0.05646464601159096, -0.028681105002760887, -0.08539919555187225, 0.05737270787358284, 0.10107872635126114, -0.003928616177290678, -0.0017726797377690673, 0.10446605831384659, -0.13698500394821167, -0.01335693709552288, -0.2032170295715332, -0.1284758746623993 ]
null
null
transformers
# efficientnet_b6 Implementation of EfficientNet proposed in [EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks](https://arxiv.org/abs/1905.11946) ![image](https://github.com/FrancescoSaverioZuppichini/glasses/blob/develop/docs/_static/images/EfficientNet.png?raw=true) The basic architecture is similar to MobileNetV2 as was computed by using [Progressive Neural Architecture Search](https://arxiv.org/abs/1905.11946) . The following table shows the basic architecture (EfficientNet-efficientnet\_b0): ![image](https://github.com/FrancescoSaverioZuppichini/glasses/blob/develop/docs/_static/images/EfficientNetModelsTable.jpeg?raw=true) Then, the architecture is scaled up from [-efficientnet\_b0]{.title-ref} to [-efficientnet\_b7]{.title-ref} using compound scaling. ![image](https://github.com/FrancescoSaverioZuppichini/glasses/blob/develop/docs/_static/images/EfficientNetScaling.jpg?raw=true) ``` python EfficientNet.efficientnet_b0() EfficientNet.efficientnet_b1() EfficientNet.efficientnet_b2() EfficientNet.efficientnet_b3() EfficientNet.efficientnet_b4() EfficientNet.efficientnet_b5() EfficientNet.efficientnet_b6() EfficientNet.efficientnet_b7() EfficientNet.efficientnet_b8() EfficientNet.efficientnet_l2() ``` Examples: ``` python EfficientNet.efficientnet_b0(activation = nn.SELU) # change number of classes (default is 1000 ) EfficientNet.efficientnet_b0(n_classes=100) # pass a different block EfficientNet.efficientnet_b0(block=...) # store each feature x = torch.rand((1, 3, 224, 224)) model = EfficientNet.efficientnet_b0() # first call .features, this will activate the forward hooks and tells the model you'll like to get the features model.encoder.features model(torch.randn((1,3,224,224))) # get the features from the encoder features = model.encoder.features print([x.shape for x in features]) # [torch.Size([1, 32, 112, 112]), torch.Size([1, 24, 56, 56]), torch.Size([1, 40, 28, 28]), torch.Size([1, 80, 14, 14])] ```
{}
null
glasses/efficientnet_b6
[ "transformers", "pytorch", "arxiv:1905.11946", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[ "1905.11946" ]
[]
TAGS #transformers #pytorch #arxiv-1905.11946 #endpoints_compatible #region-us
# efficientnet_b6 Implementation of EfficientNet proposed in EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks !image The basic architecture is similar to MobileNetV2 as was computed by using Progressive Neural Architecture Search . The following table shows the basic architecture (EfficientNet-efficientnet\_b0): !image Then, the architecture is scaled up from [-efficientnet\_b0]{.title-ref} to [-efficientnet\_b7]{.title-ref} using compound scaling. !image Examples:
[ "# efficientnet_b6\nImplementation of EfficientNet proposed in EfficientNet: Rethinking\nModel Scaling for Convolutional Neural\nNetworks\n\n !image\n\n The basic architecture is similar to MobileNetV2 as was computed by\n using Progressive Neural Architecture\n Search .\n\n The following table shows the basic architecture\n (EfficientNet-efficientnet\\_b0):\n\n !image\n\n Then, the architecture is scaled up from\n [-efficientnet\\_b0]{.title-ref} to [-efficientnet\\_b7]{.title-ref}\n using compound scaling.\n\n !image\n\n \n\n Examples:" ]
[ "TAGS\n#transformers #pytorch #arxiv-1905.11946 #endpoints_compatible #region-us \n", "# efficientnet_b6\nImplementation of EfficientNet proposed in EfficientNet: Rethinking\nModel Scaling for Convolutional Neural\nNetworks\n\n !image\n\n The basic architecture is similar to MobileNetV2 as was computed by\n using Progressive Neural Architecture\n Search .\n\n The following table shows the basic architecture\n (EfficientNet-efficientnet\\_b0):\n\n !image\n\n Then, the architecture is scaled up from\n [-efficientnet\\_b0]{.title-ref} to [-efficientnet\\_b7]{.title-ref}\n using compound scaling.\n\n !image\n\n \n\n Examples:" ]
[ 29, 144 ]
[ "passage: TAGS\n#transformers #pytorch #arxiv-1905.11946 #endpoints_compatible #region-us \n# efficientnet_b6\nImplementation of EfficientNet proposed in EfficientNet: Rethinking\nModel Scaling for Convolutional Neural\nNetworks\n\n !image\n\n The basic architecture is similar to MobileNetV2 as was computed by\n using Progressive Neural Architecture\n Search .\n\n The following table shows the basic architecture\n (EfficientNet-efficientnet\\_b0):\n\n !image\n\n Then, the architecture is scaled up from\n [-efficientnet\\_b0]{.title-ref} to [-efficientnet\\_b7]{.title-ref}\n using compound scaling.\n\n !image\n\n \n\n Examples:" ]
[ -0.03075200878083706, -0.016268230974674225, -0.002567846328020096, 0.01931995339691639, 0.03952009975910187, -0.03651915863156319, -0.030899669975042343, 0.034680042415857315, -0.143202006816864, 0.014398453757166862, 0.08386345952749252, 0.10860269516706467, -0.0323331356048584, 0.10617953538894653, 0.01689203269779682, -0.16353777050971985, -0.004095837473869324, 0.11903314292430878, -0.07355963438749313, 0.04868718236684799, 0.12311618775129318, -0.079684317111969, 0.09596332162618637, 0.06633547693490982, -0.11293445527553558, 0.060837723314762115, -0.08368240296840668, -0.01722564734518528, 0.13566458225250244, -0.030611345544457436, 0.09700468182563782, -0.03323153033852577, -0.03286941349506378, -0.15890595316886902, 0.0009613099391572177, 0.0664728507399559, -0.026904655620455742, 0.09953419864177704, 0.06339409947395325, 0.1211257204413414, 0.21145418286323547, -0.0055288150906562805, -0.09201423823833466, -0.05697617307305336, -0.011166860349476337, -0.0918976441025734, 0.017422396689653397, 0.05770162120461464, 0.03437945619225502, 0.0429423451423645, 0.025110255926847458, 0.16426913440227509, -0.10946662724018097, 0.09410940110683441, -0.018209367990493774, -0.3261893391609192, -0.04513992369174957, 0.07392995059490204, -0.050339121371507645, 0.015892455354332924, 0.02091604471206665, 0.030431494116783142, 0.06089070439338684, 0.05854809656739235, 0.13834527134895325, -0.008736166171729565, -0.12530459463596344, 0.013387596234679222, -0.10838677734136581, 0.0039039149414747953, 0.18137703835964203, 0.05595766380429268, 0.08315039426088333, -0.06810890883207321, -0.21512103080749512, -0.0241809394210577, 0.016487980261445045, -0.1986044943332672, -0.011673113331198692, 0.0013571236049756408, -0.061276666820049286, -0.07976429164409637, -0.08266211301088333, 0.001958887791261077, -0.13104428350925446, 0.09228824824094772, 0.03190264105796814, -0.009160840883851051, -0.04676768556237221, 0.13291719555854797, -0.028474656865000725, -0.07834398746490479, 0.07518038153648376, -0.06145813688635826, -0.005027241073548794, 0.03237561136484146, 0.023229707032442093, -0.15008169412612915, 0.050071824342012405, 0.030416464433073997, 0.08655218034982681, -0.057018935680389404, 0.10110323131084442, 0.07727242261171341, -0.033201657235622406, 0.12325583398342133, -0.1674189269542694, -0.191090926527977, 0.007827727124094963, 0.013307822868227959, 0.05156093090772629, 0.018774600699543953, -0.07598963379859924, -0.04627036675810814, 0.11200970411300659, -0.01849397085607052, -0.013060378842055798, 0.09514426440000534, -0.04871341586112976, -0.1128903403878212, 0.24033033847808838, -0.022157030180096626, 0.018763354048132896, -0.0287792831659317, -0.03165852651000023, 0.0024471175856888294, 0.028387993574142456, -0.0015052477829158306, -0.10600791871547699, 0.015695955604314804, -0.08232371509075165, -0.1460375338792801, -0.06078404188156128, -0.07584136724472046, -0.005499106366187334, -0.008358445949852467, 0.00468065170571208, -0.2091146558523178, -0.1058872640132904, 0.09423226863145828, 0.09407663345336914, -0.016409127041697502, -0.028610585257411003, -0.03702746704220772, -0.11255321651697159, -0.1036120057106018, -0.0268696416169405, 0.12872374057769775, -0.04225417971611023, 0.0014907498843967915, -0.012541447766125202, 0.03166969120502472, -0.14507852494716644, 0.01541832648217678, -0.11104625463485718, 0.016966868191957474, -0.1500684767961502, 0.04871424287557602, -0.049458153545856476, -0.010466129519045353, -0.06920745223760605, -0.024500971660017967, -0.19653542339801788, -0.009955210611224174, 0.11796733736991882, 0.08473338931798935, -0.025984955951571465, -0.08658984303474426, -0.0236013513058424, -0.07831387966871262, -0.17561079561710358, 0.15349499881267548, 0.00951063260436058, 0.10891113430261612, 0.0567229762673378, 0.20068615674972534, 0.12500889599323273, -0.03658106178045273, -0.07160377502441406, 0.02445637248456478, -0.11082412302494049, -0.12240047752857208, -0.07673074305057526, 0.11297928541898727, 0.05091819539666176, 0.042648423463106155, -0.0018170690163969994, 0.07896839082241058, -0.05959760397672653, -0.0655408650636673, -0.02120361663401127, -0.058429233729839325, -0.010510074906051159, 0.014244742691516876, 0.07061100006103516, 0.043455205857753754, -0.05011295527219772, -0.18571150302886963, 0.0666293054819107, -0.07927238196134567, 0.02487735077738762, -0.07788964360952377, 0.016760513186454773, -0.09671380370855331, 0.03434966132044792, -0.07245248556137085, -0.032651420682668686, 0.11164737492799759, 0.017251549288630486, -0.03193223103880882, 0.1543121635913849, 0.02748824842274189, -0.05286954343318939, -0.1019546389579773, -0.024295352399349213, 0.016792921349406242, 0.04086652398109436, -0.1051705926656723, -0.12642014026641846, -0.049157217144966125, -0.025546418502926826, 0.044452328234910965, -0.11189919710159302, -0.033976633101701736, 0.061004817485809326, 0.24265287816524506, 0.018131492659449577, 0.03323861584067345, -0.07597624510526657, -0.02288963831961155, -0.09743606299161911, -0.017323818057775497, 0.02139226533472538, -0.00474193599075079, -0.04362152889370918, 0.05516798049211502, 0.08030948042869568, 0.1257266402244568, 0.05695101246237755, -0.14295968413352966, 0.05327695235610008, 0.04188162460923195, -0.05340263620018959, -0.08641528338193893, 0.036189381033182144, -0.10193947702646255, 0.08788247406482697, -0.036057040095329285, 0.11831309646368027, -0.07500796020030975, -0.04666106402873993, 0.02473514713346958, 0.027713647112250328, 0.04736137390136719, 0.03579716384410858, 0.11884894222021103, -0.30257269740104675, 0.038130298256874084, 0.09543177485466003, -0.09318958222866058, 0.09443666785955429, 0.05336790531873703, -0.022819623351097107, 0.0030344293918460608, 0.03197367861866951, -0.016021491959691048, 0.1721828430891037, -0.15479417145252228, -0.008135205134749413, 0.039143145084381104, 0.0016447837697342038, 0.19233191013336182, -0.08050365746021271, 0.09011710435152054, -0.0005605294136330485, 0.02267099730670452, 0.27795758843421936, -0.0031534177251160145, -0.03276938199996948, 0.064254991710186, -0.05185341089963913, -0.2715589702129364, 0.004115331918001175, -0.04014435037970543, -0.02688644453883171, 0.1474073976278305, -0.006096323486417532, -0.1741296648979187, -0.07667258381843567, -0.004676239565014839, -0.04598447307944298, -0.0006343105924315751, -0.042183928191661835, 0.0050864978693425655, -0.07057487219572067, -0.036635737866163254, -0.08066082000732422, 0.05949411913752556, 0.05799689143896103, -0.004067194648087025, 0.05286349356174469, 0.04529130086302757, -0.10464571416378021, 0.010040603578090668, -0.1053728237748146, 0.008128917776048183, 0.027156811207532883, -0.11914891004562378, 0.12598466873168945, 0.1519782692193985, -0.030853331089019775, -0.013480276800692081, 0.029829340055584908, 0.10582457482814789, -0.0515705905854702, 0.07515168935060501, -0.07661419361829758, 0.05680442601442337, 0.021544724702835083, 0.13216575980186462, 0.0029211428482085466, -0.015671193599700928, 0.033053938299417496, -0.012159238569438457, 0.0004122159443795681, -0.1460714042186737, -0.18129393458366394, -0.04682056978344917, 0.01983504369854927, 0.079520583152771, 0.0636727511882782, 0.092635378241539, 0.06632699817419052, -0.008270302787423134, 0.026883432641625404, 0.00859636627137661, 0.05384628847241402, 0.23021383583545685, 0.026469582691788673, 0.07165256142616272, -0.04237162321805954, -0.20963674783706665, 0.04617661237716675, 0.10244028270244598, 0.1989038586616516, -0.050277967005968094, 0.09292856603860855, 0.02603476122021675, 0.11241372674703598, 0.011538270860910416, 0.11342811584472656, -0.06501355767250061, -0.008422568440437317, -0.06668821722269058, -0.035307787358760834, 0.06227073073387146, 0.07282739877700806, -0.013583862222731113, -0.05030471086502075, 0.07388094067573547, 0.0873972475528717, 0.11083899438381195, 0.09568364173173904, 0.11158344894647598, -0.25003454089164734, 0.057991039007902145, -0.04365823045372963, -0.09233134239912033, -0.05113724619150162, 0.05275167524814606, 0.2225513607263565, 0.006515482906252146, 0.04429253563284874, -0.04144793748855591, 0.05511404573917389, -0.08222442865371704, 0.038270995020866394, 0.023058444261550903, 0.08253493905067444, 0.06044120714068413, 0.09599658846855164, -0.08502335101366043, 0.19802352786064148, 0.004158782307058573, 0.023577332496643066, -0.07298117876052856, -0.040492285043001175, -0.02466178871691227, 0.043355364352464676, 0.03201354295015335, -0.009388820268213749, 0.25300076603889465, 0.1292107105255127, -0.12254276126623154, 0.05391806364059448, 0.032635487616062164, 0.05305709317326546, 0.07187116146087646, 0.024682842195034027, -0.07454051822423935, 0.017284687608480453, 0.12002784013748169, 0.024343516677618027, -0.10135812312364578, 0.006922198459506035, 0.17134930193424225, -0.12289571017026901, -0.055839233100414276, -0.029350202530622482, -0.05489111319184303, 0.2694244980812073, 0.014113106764853, -0.001003729528747499, -0.007928379811346531, 0.016879340633749962, 0.11883030086755753, -0.038156360387802124, 0.03439083322882652, -0.03800079599022865, 0.03781832754611969, 0.011996697634458542, -0.0860016793012619, 0.08702784031629562, -0.08984915167093277, 0.00021350837778300047, -0.06687624752521515, 0.04088640585541725, 0.015436033718287945, -0.013378054834902287, 0.06966301053762436, -0.01855394057929516, -0.1375717967748642, -0.08415593206882477, -0.11190392076969147, -0.0005230430397205055, -0.13176673650741577, 0.0814698338508606, -0.05894625559449196, -0.0037773814983665943, -0.02822571061551571, 0.04966692253947258, 0.09997230768203735, 0.08669394254684448, -0.07478120177984238, -0.10609287023544312, 0.11914686113595963, -0.002659411868080497, -0.25285130739212036, -0.14024406671524048, 0.04362526535987854, 0.034867968410253525, 0.04559621959924698, -0.017948193475604057, 0.20754778385162354, 0.06420484185218811, -0.03632780537009239, -0.009516763500869274, -0.10053443908691406, -0.05828089267015457, 0.09280921518802643, -0.006892838515341282, 0.1160707101225853, -0.007546895183622837, 0.004624119959771633, 0.02671694941818714, 0.024261245504021645, 0.07920272648334503, -0.09092710167169571, 0.10881487280130386, -0.008950243704020977, -0.057145338505506516, 0.003548022359609604, -0.03351741284132004, 0.030308157205581665, 0.06118977069854736, 0.026361459866166115, 0.0856795683503151, -0.06326370686292648, 0.14228256046772003, 0.009284356608986855, 0.053707703948020935, 0.11780751496553421, 0.0485430471599102, -0.12116070091724396, -0.026198718696832657, -0.11999065428972244, 0.0745052695274353, 0.050189871340990067, -0.07576306909322739, -0.1564672589302063, 0.023035036399960518, 0.133600652217865, 0.08823367208242416, 0.21726946532726288, 0.1250782608985901, -0.006740070879459381, 0.2732212543487549, 0.08710059523582458, -0.19115950167179108, 0.06269218772649765, -0.025476686656475067, 0.007547764573246241, 0.04643448442220688, 0.02167188562452793, 0.0376439169049263, 0.1398412138223648, -0.01627775840461254, -0.03483733907341957, 0.026169082149863243, -0.09099149703979492, -0.11477958410978317, 0.1516886204481125, -0.15294820070266724, -0.07387566566467285, -0.06791076809167862, 0.05648326873779297, 0.0021483113523572683, 0.22357690334320068, 0.10369143635034561, -0.11074794828891754, 0.01850889064371586, 0.04734766110777855, -0.06822258234024048, -0.0948486402630806, 0.11498255282640457, 0.12110147625207901, 0.03931519761681557, -0.033905744552612305, 0.13143125176429749, 0.07972612977027893, -0.03720955550670624, -0.07841873914003372, -0.03598332405090332, -0.11838509142398834, 0.004149405285716057, -0.08972124010324478, 0.01848699152469635, -0.010545571334660053, -0.10778108239173889, -0.08208153396844864, 0.007379238028079271, 0.03659382089972496, -0.06527698785066605, 0.12416776269674301, 0.1002250611782074, -0.08259204030036926, 0.04984133690595627, -0.09193265438079834, 0.11276588588953018, 0.024887440726161003, 0.10711459070444107, -0.1669798046350479, -0.07209490239620209, -0.00010680183186195791, 0.07535847276449203, -0.07939411699771881, 0.010082138702273369, 0.038563717156648636, 0.032069671899080276, -0.01860366202890873, -0.09548287838697433, -0.03574877232313156, -0.07778956741094589, 0.0027947823982685804, -0.06434529274702072, -0.13402435183525085, 0.024619929492473602, -0.03837171569466591, 0.04689006879925728, 0.04227829352021217, -0.019749250262975693, -0.03402552753686905, -0.0012740952661260962, -0.02206234261393547, -0.06855140626430511, 0.10136714577674866, -0.048009127378463745, -0.018740549683570862, 0.026007628068327904, -0.0036050511989742517, -0.0979178175330162, 0.11656147986650467, 0.13571608066558838, 0.08062809705734253, -0.00531139736995101, -0.008674932643771172, 0.08035094290971756, 0.02603941410779953, -0.0626710057258606, -0.050787318497896194, -0.05841071903705597, -0.009758886881172657, -0.11206777393817902, -0.03463362902402878, -0.05214926227927208, 0.024937231093645096, -0.03631969913840294, 0.0801575630903244, 0.10144215077161789, 0.003876553848385811, -0.1248532384634018, -0.10261352360248566, 0.06023748964071274, 0.0028853334952145815, -0.12274938076734543, 0.03116948902606964, 0.020138967782258987, -0.018438225612044334, -0.040070127695798874, 0.23114027082920074, -0.0492992028594017, -0.14985865354537964, -0.02854081057012081, -0.07923432439565659, -0.14190496504306793, -0.002535797655582428, 0.08964261412620544, 0.04770767688751221, 0.0002863180707208812, 0.007456029299646616, 0.0009484713664278388, 0.06812108308076859, 0.26167184114456177, 0.06636267900466919, 0.002794884145259857, -0.005817597731947899, 0.12054617702960968, 0.041477713733911514, -0.02014153264462948, -0.10183000564575195, 0.06358800083398819, -0.048702701926231384, 0.08939103037118912, 0.01433365885168314, 0.01911332458257675, 0.15974970161914825, -0.03628682345151901, 0.0027556137647479773, 0.07352066040039062, -0.03472968935966492, -0.031105700880289078, -0.1045321449637413, -0.0797165185213089, -0.1316741406917572, -0.0363289974629879, -0.13302893936634064, -0.12071575224399567, 0.06195826828479767, 0.049834199249744415, -0.10450505465269089, 0.22923140227794647, 0.07842246443033218, -0.049823008477687836, 0.10607309639453888, -0.015390358865261078, 0.02360551618039608, -0.02318417839705944, -0.010705321095883846, -0.1390915811061859, 0.15359705686569214, 0.02645980939269066, -0.0038812237326055765, -0.012863549403846264, 0.031047506257891655, 0.03755985572934151, -0.014122208580374718, -0.07784069329500198, -0.06116935983300209, -0.023306582123041153, -0.08157456666231155, -0.01529536023736, -0.08657234907150269, 0.02182702347636223, 0.15759295225143433, -0.06989660859107971, -0.14508476853370667, -0.07944592833518982, 0.17288169264793396, 0.02188272401690483, 0.08988777548074722, 0.024150166660547256, -0.0435253269970417, -0.13280823826789856, 0.21393606066703796, 0.22317230701446533, -0.1524299830198288, -0.026083270087838173, 0.10351154208183289, -0.00036249312688596547, -0.02513471432030201, -0.037129953503608704, 0.04112701863050461, 0.30088740587234497, -0.01922301948070526, -0.0349273718893528, -0.07722125947475433, 0.008163850754499435, -0.02279302105307579, -0.06293035298585892, 0.12345647811889648, -0.022897835820913315, -0.11576753854751587, 0.02305673062801361, -0.0808483213186264, -0.05791311338543892, -0.11489938199520111, -0.17337383329868317, -0.10905342549085617, -0.02849249355494976, 0.026419393718242645, -0.058700088411569595, 0.0732090100646019, -0.0874885767698288, 0.03671662136912346, -0.06844028830528259, -0.01623232662677765, -0.05844526365399361, 0.08634612709283829, 0.02089749649167061, -0.07225573062896729, 0.129091277718544, -0.03213150426745415, 0.04731948301196098, 0.12942703068256378, -0.04725639894604683, -0.06493879109621048, 0.03252934664487839, 0.034967221319675446, -0.0466739684343338, 0.016193190589547157, -0.09202015399932861, 0.018721429631114006, 0.05233195051550865, 0.02393754944205284, -0.05355163663625717, -0.010761870071291924, 0.19723065197467804, 0.053045064210891724, -0.08524347096681595, -0.04836190119385719, -0.043501850217580795, 0.08549731224775314, 0.09757054597139359, -0.03509347513318062, 0.015434316359460354, -0.08864304423332214, 0.018078969791531563, 0.08202855288982391, 0.13716621696949005, 0.03207720071077347, -0.18930834531784058, -0.040915001183748245, -0.029030557721853256, -0.029906727373600006, -0.0072624399326741695, -0.011953188106417656, -0.05680811032652855, -0.029593128710985184, -0.08294236660003662, 0.0550558939576149, 0.10222949087619781, -0.0058708940632641315, -0.0017081352416425943, 0.09660660475492477, -0.13375961780548096, -0.010829835198819637, -0.20057876408100128, -0.12962894141674042 ]
null
null
transformers
# regnetx_002 Implementation of RegNet proposed in [Designing Network Design Spaces](https://arxiv.org/abs/2003.13678) The main idea is to start with a high dimensional search space and iteratively reduce the search space by empirically apply constrains based on the best performing models sampled by the current search space. The resulting models are light, accurate, and faster than EfficientNets (up to 5x times!) For example, to go from $AnyNet_A$ to $AnyNet_B$ they fixed the bottleneck ratio $b_i$ for all stage $i$. The following table shows all the restrictions applied from one search space to the next one. ![image](https://github.com/FrancescoSaverioZuppichini/glasses/blob/develop/docs/_static/images/RegNetDesignSpaceTable.png?raw=true) The paper is really well written and very interesting, I highly recommended read it. ``` python ResNet.regnetx_002() ResNet.regnetx_004() ResNet.regnetx_006() ResNet.regnetx_008() ResNet.regnetx_016() ResNet.regnetx_040() ResNet.regnetx_064() ResNet.regnetx_080() ResNet.regnetx_120() ResNet.regnetx_160() ResNet.regnetx_320() # Y variants (with SE) ResNet.regnety_002() # ... ResNet.regnetx_320() You can easily customize your model ``` Examples: ``` python # change activation RegNet.regnetx_004(activation = nn.SELU) # change number of classes (default is 1000 ) RegNet.regnetx_004(n_classes=100) # pass a different block RegNet.regnetx_004(block=RegNetYBotteneckBlock) # change the steam model = RegNet.regnetx_004(stem=ResNetStemC) change shortcut model = RegNet.regnetx_004(block=partial(RegNetYBotteneckBlock, shortcut=ResNetShorcutD)) # store each feature x = torch.rand((1, 3, 224, 224)) # get features model = RegNet.regnetx_004() # first call .features, this will activate the forward hooks and tells the model you'll like to get the features model.encoder.features model(torch.randn((1,3,224,224))) # get the features from the encoder features = model.encoder.features print([x.shape for x in features]) #[torch.Size([1, 32, 112, 112]), torch.Size([1, 32, 56, 56]), torch.Size([1, 64, 28, 28]), torch.Size([1, 160, 14, 14])] ```
{}
null
glasses/regnetx_002
[ "transformers", "pytorch", "arxiv:2003.13678", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[ "2003.13678" ]
[]
TAGS #transformers #pytorch #arxiv-2003.13678 #endpoints_compatible #region-us
# regnetx_002 Implementation of RegNet proposed in Designing Network Design Spaces The main idea is to start with a high dimensional search space and iteratively reduce the search space by empirically apply constrains based on the best performing models sampled by the current search space. The resulting models are light, accurate, and faster than EfficientNets (up to 5x times!) For example, to go from $AnyNet_A$ to $AnyNet_B$ they fixed the bottleneck ratio $b_i$ for all stage $i$. The following table shows all the restrictions applied from one search space to the next one. !image The paper is really well written and very interesting, I highly recommended read it. Examples:
[ "# regnetx_002\nImplementation of RegNet proposed in Designing Network Design\nSpaces\n\n The main idea is to start with a high dimensional search space and\n iteratively reduce the search space by empirically apply constrains\n based on the best performing models sampled by the current search\n space.\n\n The resulting models are light, accurate, and faster than\n EfficientNets (up to 5x times!)\n\n For example, to go from $AnyNet_A$ to $AnyNet_B$ they fixed the\n bottleneck ratio $b_i$ for all stage $i$. The following table shows\n all the restrictions applied from one search space to the next one.\n\n !image\n\n The paper is really well written and very interesting, I highly\n recommended read it.\n\n \n\n Examples:" ]
[ "TAGS\n#transformers #pytorch #arxiv-2003.13678 #endpoints_compatible #region-us \n", "# regnetx_002\nImplementation of RegNet proposed in Designing Network Design\nSpaces\n\n The main idea is to start with a high dimensional search space and\n iteratively reduce the search space by empirically apply constrains\n based on the best performing models sampled by the current search\n space.\n\n The resulting models are light, accurate, and faster than\n EfficientNets (up to 5x times!)\n\n For example, to go from $AnyNet_A$ to $AnyNet_B$ they fixed the\n bottleneck ratio $b_i$ for all stage $i$. The following table shows\n all the restrictions applied from one search space to the next one.\n\n !image\n\n The paper is really well written and very interesting, I highly\n recommended read it.\n\n \n\n Examples:" ]
[ 30, 168 ]
[ "passage: TAGS\n#transformers #pytorch #arxiv-2003.13678 #endpoints_compatible #region-us \n# regnetx_002\nImplementation of RegNet proposed in Designing Network Design\nSpaces\n\n The main idea is to start with a high dimensional search space and\n iteratively reduce the search space by empirically apply constrains\n based on the best performing models sampled by the current search\n space.\n\n The resulting models are light, accurate, and faster than\n EfficientNets (up to 5x times!)\n\n For example, to go from $AnyNet_A$ to $AnyNet_B$ they fixed the\n bottleneck ratio $b_i$ for all stage $i$. The following table shows\n all the restrictions applied from one search space to the next one.\n\n !image\n\n The paper is really well written and very interesting, I highly\n recommended read it.\n\n \n\n Examples:" ]
[ 0.012046673335134983, 0.02213221788406372, -0.0025843351613730192, 0.01808190532028675, -0.035390883684158325, -0.13132107257843018, -0.011316115036606789, 0.03665684163570404, -0.14438119530677795, -0.05740875378251076, 0.11733265966176987, -0.026168769225478172, -0.11097024381160736, 0.13589711487293243, -0.08214926719665527, -0.20542269945144653, 0.043501678854227066, 0.07403137534856796, -0.05352909117937088, 0.11825255304574966, 0.1561916619539261, -0.06232955679297447, 0.028555281460285187, 0.11036462336778641, -0.07148232311010361, 0.021724214777350426, -0.06889130175113678, -0.03316297009587288, 0.022805238142609596, 0.008693167939782143, 0.1600242406129837, 0.04736216366291046, -0.0201747864484787, -0.09779926389455795, 0.00655911723151803, 0.07112523168325424, -0.013074657879769802, 0.07753697782754898, 0.07324721664190292, 0.10479635000228882, 0.10814180225133896, 0.01978525146842003, -0.09372067451477051, -0.006218660157173872, -0.06501209735870361, -0.030673395842313766, -0.0029129497706890106, 0.027661746367812157, 0.049218930304050446, 0.0662490651011467, -0.05057360231876373, 0.1631776988506317, -0.17973865568637848, 0.0776621624827385, 0.22397692501544952, -0.377212256193161, -0.0496583990752697, 0.07298526912927628, 0.16373282670974731, -0.041456058621406555, 0.006521204486489296, 0.05522385239601135, 0.005359126720577478, -0.03360976651310921, 0.17155681550502777, -0.06528056412935257, -0.1270943433046341, 0.00748354010283947, -0.2088090479373932, 0.008974466472864151, 0.12744632363319397, 0.0569755956530571, 0.023888176307082176, -0.05607401579618454, -0.20968055725097656, 0.028766514733433723, -0.02532060816884041, -0.10135336965322495, 0.008585597388446331, 0.058111630380153656, -0.0634048655629158, -0.13302628695964813, -0.10949064791202545, 0.041543539613485336, -0.11176498979330063, 0.18709436058998108, 0.04149313643574715, -0.013664960861206055, -0.027172738686203957, 0.08590517193078995, -0.07302963733673096, -0.016255155205726624, 0.027281278744339943, -0.134883850812912, -0.13633926212787628, -0.00004713023372460157, -0.03411354497075081, -0.08868903666734695, -0.0023720157332718372, 0.16942152380943298, 0.06666073203086853, -0.020846925675868988, 0.16220860183238983, 0.09823980182409286, -0.028224939480423927, 0.08378813415765762, -0.20287112891674042, -0.07072647660970688, 0.08298581093549728, -0.012858155183494091, 0.011423295363783836, 0.010246101766824722, -0.05397545173764229, -0.08276426792144775, 0.0925723984837532, 0.0015736967325210571, 0.038105811923742294, 0.08494600653648376, -0.04351196810603142, -0.03622066602110863, 0.07596960663795471, -0.003704693168401718, 0.022120699286460876, -0.037823665887117386, -0.06126674264669418, -0.08813715726137161, 0.050690971314907074, 0.03688737004995346, -0.0999874621629715, 0.05844910815358162, -0.0789058580994606, -0.021250044927001, -0.040451809763908386, -0.13817332684993744, -0.02944452501833439, -0.08487418293952942, -0.030289625748991966, -0.17890506982803345, -0.11840329319238663, 0.03263961896300316, 0.08987122774124146, -0.0018144063651561737, -0.00019397682626731694, 0.02136698178946972, -0.1277395486831665, -0.15011899173259735, -0.02749623917043209, 0.06920404732227325, -0.04210267588496208, -0.032666582614183426, 0.04003193974494934, 0.06587440520524979, -0.06796993315219879, 0.038424644619226456, -0.1130366399884224, 0.02617875672876835, -0.08458173274993896, 0.08909204602241516, -0.06658094376325607, 0.049589887261390686, -0.06718806177377701, -0.06534479558467865, -0.13083742558956146, 0.0014122631400823593, 0.09500133246183395, 0.08040560036897659, -0.07619887590408325, -0.011525949463248253, 0.033885013312101364, -0.015182294882833958, -0.054917264729738235, 0.1672392189502716, -0.05271453782916069, 0.09949581325054169, 0.0628395676612854, 0.14031477272510529, 0.12716694176197052, 0.00506596639752388, -0.018608806654810905, 0.03713348135352135, -0.18747426569461823, -0.15565072000026703, -0.008883384987711906, 0.1372583955526352, 0.04968476668000221, 0.0032882182858884335, -0.08773759007453918, 0.06664888560771942, -0.06068367883563042, -0.037696074694395065, -0.03638613224029541, -0.04689662903547287, -0.005202458705753088, 0.037751249969005585, 0.08304081112146378, 0.035592347383499146, -0.13079103827476501, -0.06284179538488388, 0.0026996827218681574, -0.032078683376312256, 0.06902159005403519, -0.08340819180011749, 0.09982776641845703, -0.09611213207244873, 0.010053631849586964, -0.21122722327709198, -0.024844609200954437, 0.022480303421616554, -0.003232409479096532, 0.046988099813461304, 0.18538914620876312, 0.04555876925587654, -0.07525800168514252, -0.04000956937670708, 0.025848010554909706, 0.10785326361656189, 0.03115575574338436, -0.09443282335996628, -0.040112074464559555, -0.0249593798071146, -0.04976571723818779, 0.040627844631671906, -0.06070313602685928, -0.022276462987065315, -0.03445480763912201, 0.13617967069149017, 0.01441704947501421, 0.036250412464141846, 0.04483022168278694, -0.02716454491019249, -0.05203399062156677, -0.047869786620140076, 0.033583760261535645, 0.007306050043553114, -0.06800168752670288, 0.07066776603460312, 0.01899201236665249, 0.17523743212223053, 0.018675629049539566, -0.19697833061218262, -0.014244061894714832, 0.1332191675901413, -0.08521292358636856, -0.00842661876231432, -0.04225054010748863, -0.006562882103025913, 0.10365864634513855, -0.007502840366214514, 0.09762240946292877, -0.12052606046199799, -0.06581300497055054, -0.0104013467207551, -0.03620403632521629, 0.07277926802635193, 0.04102358594536781, 0.09630532562732697, -0.3005679249763489, 0.04021183401346207, -0.024134885519742966, -0.10693471133708954, -0.0057031866163015366, 0.07141935080289841, -0.027159206569194794, 0.05190274119377136, 0.11762319505214691, -0.028815321624279022, 0.022296685725450516, -0.0002822339010890573, -0.033731378614902496, 0.037379611283540726, -0.0009907055646181107, 0.09805580228567123, -0.1062062680721283, 0.0252081286162138, 0.014142322354018688, -0.01608521305024624, -0.021781761199235916, -0.022435041144490242, -0.05577269569039345, 0.05364186689257622, 0.033240754157304764, -0.23738408088684082, -0.0026788068935275078, -0.0038140725810080767, -0.02678089402616024, 0.16209322214126587, 0.051295120269060135, -0.2273700088262558, -0.03046572022140026, 0.0067380620166659355, -0.0029717511497437954, 0.003742661327123642, 0.042266760021448135, -0.04177050665020943, -0.10338082909584045, -0.06512509286403656, -0.127190962433815, -0.029115481302142143, 0.026245348155498505, -0.01517247874289751, 0.051335737109184265, 0.05717017501592636, -0.08778239041566849, 0.03417811542749405, -0.14205437898635864, 0.1748162806034088, 0.06633619964122772, -0.09329760074615479, 0.16270680725574493, 0.09168906509876251, -0.07305917143821716, -0.023802215233445168, -0.012914755381643772, 0.2226857990026474, -0.01461954414844513, 0.07334612309932709, -0.06629512459039688, -0.03815844655036926, 0.0622921884059906, 0.11559351533651352, -0.0008759835036471486, -0.024998096749186516, 0.006535295397043228, 0.05230249837040901, -0.037479836493730545, -0.17526137828826904, -0.07319357246160507, -0.12543879449367523, -0.08856748044490814, 0.006131549831479788, 0.03793206810951233, -0.01064252108335495, 0.04735206440091133, -0.008530836552381516, 0.01378290168941021, 0.07193487882614136, 0.09135805070400238, 0.2022775560617447, 0.03222170099616051, 0.13673120737075806, -0.036935266107320786, -0.19776396453380585, 0.06530003249645233, -0.04281771183013916, 0.3430599570274353, -0.07411056756973267, 0.1359725296497345, 0.0413249209523201, 0.0337444543838501, 0.08392751216888428, 0.10357142984867096, -0.03669755160808563, -0.02616281248629093, -0.04880094900727272, -0.011461756192147732, 0.09455556422472, 0.021896766498684883, 0.0023559078108519316, -0.18449367582798004, 0.13619795441627502, 0.0776795744895935, 0.09521299600601196, 0.10586054623126984, 0.10740051418542862, -0.21587209403514862, 0.07767356187105179, -0.014304007403552532, -0.11618318408727646, -0.044560544192790985, 0.01631001941859722, 0.03276776894927025, 0.04769634082913399, 0.031500015407800674, -0.08588971942663193, 0.15012884140014648, -0.04741961508989334, 0.042126189917325974, -0.05668450519442558, 0.10645809769630432, 0.01840168796479702, 0.07912424206733704, -0.08004453033208847, 0.23416218161582947, -0.009457245469093323, 0.02780156023800373, -0.02778824232518673, -0.030143974348902702, -0.012599056586623192, 0.02998187206685543, 0.09702841192483902, 0.003756230929866433, 0.08019758015871048, 0.11049089580774307, -0.10176090896129608, 0.02309156022965908, 0.07092420011758804, 0.10063760727643967, 0.07537078112363815, -0.014279413037002087, -0.08551742881536484, 0.08693372458219528, -0.013246098533272743, -0.04219328239560127, -0.09309394657611847, 0.07164427638053894, 0.12171907722949982, -0.16446952521800995, -0.0191056989133358, -0.01306156162172556, -0.02668478898704052, 0.3340734839439392, 0.1300865113735199, -0.08504574000835419, -0.07686713337898254, 0.0358005054295063, 0.18246635794639587, -0.017546743154525757, 0.08496139198541641, -0.058763470500707626, -0.04167221486568451, -0.008518999442458153, -0.062039464712142944, 0.11966907232999802, -0.0965862050652504, 0.0347658209502697, -0.039297111332416534, 0.03276870772242546, 0.02473517693579197, 0.016632024198770523, 0.03337636962532997, -0.008445888757705688, -0.18252883851528168, -0.10435402393341064, -0.1338605433702469, -0.1749059408903122, -0.08751668781042099, 0.012393682263791561, -0.015707816928625107, 0.08465499430894852, -0.03198764845728874, 0.10532508790493011, 0.06407761573791504, 0.16728655993938446, -0.0983952134847641, -0.016682984307408333, 0.1546536386013031, 0.04617416858673096, -0.14829973876476288, -0.11509793251752853, -0.00013589209993369877, -0.03344929218292236, -0.03806028142571449, 0.008489105850458145, 0.08220026642084122, -0.022949067875742912, -0.02759653702378273, 0.03961220011115074, -0.05708692595362663, -0.054466813802719116, 0.14334015548229218, -0.062165647745132446, 0.35797956585884094, -0.034065332263708115, -0.014378203079104424, 0.0034520109184086323, -0.058567970991134644, 0.01730910688638687, -0.009752638638019562, 0.1001405119895935, 0.016894644126296043, -0.08967684954404831, -0.0072198593989014626, -0.10062475502490997, 0.012668694369494915, 0.03575146198272705, 0.038540951907634735, -0.01080339029431343, -0.009792139753699303, 0.12460190057754517, -0.03506750985980034, 0.12548001110553741, 0.10510776937007904, 0.024131350219249725, -0.0597175732254982, -0.07682356238365173, -0.046038489788770676, 0.013202323578298092, 0.0516340509057045, -0.0411057285964489, -0.1810375303030014, 0.00993830244988203, 0.07399576902389526, 0.05769627168774605, 0.18497224152088165, 0.07662437111139297, -0.02755160443484783, 0.13342918455600739, 0.13983844220638275, -0.14338929951190948, -0.04079548642039299, 0.03276639059185982, 0.02425193600356579, 0.03915946185588837, -0.08136937022209167, 0.03776540234684944, 0.12917540967464447, -0.04397895187139511, -0.030233314260840416, 0.05262019857764244, -0.11773806065320969, -0.06644590198993683, 0.09177535772323608, -0.13660100102424622, -0.08028504252433777, -0.008363968692719936, -0.13359753787517548, -0.03153142333030701, 0.09901826083660126, 0.04135705158114433, -0.12119130045175552, -0.013905083760619164, 0.09084025770425797, 0.004040263593196869, 0.008486430160701275, 0.12729068100452423, 0.10902117937803268, 0.016771579161286354, -0.06890679150819778, 0.06622564047574997, 0.037798769772052765, 0.08605804294347763, -0.08092379570007324, 0.026288030669093132, -0.17491094768047333, -0.05755145102739334, -0.011479869484901428, 0.02160419337451458, -0.10828156769275665, -0.06589119136333466, -0.14347407221794128, -0.015383701771497726, 0.11479159444570541, 0.04054547846317291, 0.12208206206560135, 0.015610766597092152, -0.03967602550983429, 0.043042656034231186, -0.04121596738696098, 0.07796835899353027, 0.14383642375469208, 0.07181445509195328, -0.14418703317642212, -0.09382402151823044, 0.00876176729798317, 0.04444962739944458, -0.09704304486513138, 0.050558071583509445, -0.07624762505292892, 0.03659989684820175, -0.12501583993434906, -0.03311203047633171, -0.0788053646683693, -0.009753105230629444, -0.05464648827910423, -0.07966987043619156, -0.10705167800188065, 0.03802696615457535, -0.05598529428243637, 0.0028117068577557802, 0.013958973810076714, -0.11828630417585373, -0.09164094179868698, -0.011034158058464527, 0.016181200742721558, -0.04018769785761833, 0.08076067268848419, -0.05351439118385315, -0.09328578412532806, -0.044502995908260345, -0.016122447326779366, -0.156439870595932, 0.11195135861635208, 0.03754133731126785, 0.048932358622550964, -0.06362783163785934, 0.0653216689825058, 0.07597200572490692, 0.10809309780597687, -0.042441461235284805, -0.052138447761535645, -0.02129237726330757, 0.021324867382645607, -0.11758694797754288, -0.04530191048979759, -0.018284397199749947, -0.005539644043892622, 0.07529933750629425, 0.12846839427947998, 0.1991482973098755, 0.05441128835082054, -0.05644865334033966, -0.04241260141134262, 0.024291733279824257, 0.00459941616281867, -0.19063512980937958, 0.08152056485414505, -0.060688264667987823, -0.029300538823008537, -0.024538861587643623, 0.25191739201545715, 0.0449938103556633, 0.0007014944567345083, 0.02000206522643566, 0.038910724222660065, -0.043522145599126816, -0.004300604574382305, 0.012142118066549301, 0.04483046010136604, -0.05623543635010719, 0.005671272054314613, 0.022740237414836884, 0.13646630942821503, -0.027286184951663017, 0.15020881593227386, 0.07242312282323837, -0.0068171327002346516, 0.139911487698555, -0.06031785160303116, -0.05209522321820259, -0.16958172619342804, 0.0610201470553875, -0.0561719611287117, 0.045460913330316544, -0.01902361959218979, -0.03364712744951248, 0.21101084351539612, 0.03110499680042267, 0.060437221080064774, 0.06204553693532944, -0.023149987682700157, -0.10652115941047668, -0.10107230395078659, -0.07111213356256485, -0.054475221782922745, -0.02311788871884346, -0.06244368106126785, -0.07152561843395233, 0.009976240806281567, 0.062098484486341476, -0.03473902493715286, 0.1090589091181755, 0.06651055812835693, -0.0967944785952568, 0.06925763934850693, -0.07781373709440231, -0.006441062781959772, 0.13602347671985626, -0.0012481288285925984, -0.045120853930711746, 0.07201330363750458, 0.01346746739000082, 0.01012282632291317, 0.013515332713723183, 0.06973236799240112, -0.030349981039762497, -0.04270952194929123, -0.10270506888628006, 0.055670544505119324, 0.018733829259872437, 0.025732966139912605, -0.010480477474629879, -0.05737805739045143, 0.04789174720644951, 0.19498561322689056, -0.030624045059084892, -0.12713293731212616, -0.09825953096151352, 0.11951983720064163, 0.06062629818916321, 0.042604874819517136, -0.05326911062002182, -0.06747359037399292, -0.03020888939499855, 0.3249301612377167, 0.2071998119354248, -0.061095964163541794, -0.014234203845262527, 0.06728456169366837, -0.015769444406032562, 0.07724044471979141, -0.028223110362887383, 0.0405096635222435, 0.3028632700443268, -0.03021424077451229, -0.10305032879114151, -0.03814050927758217, -0.024344688281416893, -0.07819832116365433, 0.01065039075911045, 0.1562744528055191, -0.005403525196015835, -0.12827090919017792, 0.08252792805433273, -0.11348441243171692, -0.10290807485580444, -0.13411635160446167, 0.0009041514131240547, -0.06446610391139984, 0.014876521192491055, 0.07979436218738556, -0.04684821143746376, 0.08297524601221085, -0.05489387735724449, -0.020925741642713547, -0.044520579278469086, 0.0256030410528183, -0.08989500999450684, 0.039321981370449066, 0.0666244700551033, 0.12412890791893005, 0.0023277944419533014, 0.0019094253657385707, 0.03998070955276489, 0.12370967864990234, -0.07451821863651276, -0.16805046796798706, 0.09168212115764618, 0.013242466375231743, -0.06128431856632233, 0.05080050230026245, -0.020146451890468597, -0.03550047054886818, -0.02255522459745407, 0.006792975123971701, 0.005935531575232744, 0.01251424290239811, 0.024920659139752388, 0.049377765506505966, -0.12454140186309814, -0.03356648236513138, -0.0626995861530304, 0.06434586644172668, 0.030096059665083885, -0.04030024632811546, 0.04060962796211243, -0.0917993038892746, -0.010596249252557755, 0.029319239780306816, 0.056214120239019394, -0.01942962408065796, -0.0845073014497757, -0.026134034618735313, 0.05182024836540222, 0.037945836782455444, -0.058634813874959946, 0.012689182534813881, -0.022684425115585327, -0.016759613528847694, -0.01952272094786167, 0.07225210219621658, 0.17331139743328094, 0.0008709684479981661, 0.007143740076571703, -0.022495217621326447, -0.04462408274412155, -0.017337126657366753, -0.13569758832454681, -0.014904281124472618 ]
null
null
transformers
# regnetx_006 Implementation of RegNet proposed in [Designing Network Design Spaces](https://arxiv.org/abs/2003.13678) The main idea is to start with a high dimensional search space and iteratively reduce the search space by empirically apply constrains based on the best performing models sampled by the current search space. The resulting models are light, accurate, and faster than EfficientNets (up to 5x times!) For example, to go from $AnyNet_A$ to $AnyNet_B$ they fixed the bottleneck ratio $b_i$ for all stage $i$. The following table shows all the restrictions applied from one search space to the next one. ![image](https://github.com/FrancescoSaverioZuppichini/glasses/blob/develop/docs/_static/images/RegNetDesignSpaceTable.png?raw=true) The paper is really well written and very interesting, I highly recommended read it. ``` python ResNet.regnetx_002() ResNet.regnetx_004() ResNet.regnetx_006() ResNet.regnetx_008() ResNet.regnetx_016() ResNet.regnetx_040() ResNet.regnetx_064() ResNet.regnetx_080() ResNet.regnetx_120() ResNet.regnetx_160() ResNet.regnetx_320() # Y variants (with SE) ResNet.regnety_002() # ... ResNet.regnetx_320() You can easily customize your model ``` Examples: ``` python # change activation RegNet.regnetx_004(activation = nn.SELU) # change number of classes (default is 1000 ) RegNet.regnetx_004(n_classes=100) # pass a different block RegNet.regnetx_004(block=RegNetYBotteneckBlock) # change the steam model = RegNet.regnetx_004(stem=ResNetStemC) change shortcut model = RegNet.regnetx_004(block=partial(RegNetYBotteneckBlock, shortcut=ResNetShorcutD)) # store each feature x = torch.rand((1, 3, 224, 224)) # get features model = RegNet.regnetx_004() # first call .features, this will activate the forward hooks and tells the model you'll like to get the features model.encoder.features model(torch.randn((1,3,224,224))) # get the features from the encoder features = model.encoder.features print([x.shape for x in features]) #[torch.Size([1, 32, 112, 112]), torch.Size([1, 32, 56, 56]), torch.Size([1, 64, 28, 28]), torch.Size([1, 160, 14, 14])] ```
{}
null
glasses/regnetx_006
[ "transformers", "pytorch", "arxiv:2003.13678", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[ "2003.13678" ]
[]
TAGS #transformers #pytorch #arxiv-2003.13678 #endpoints_compatible #region-us
# regnetx_006 Implementation of RegNet proposed in Designing Network Design Spaces The main idea is to start with a high dimensional search space and iteratively reduce the search space by empirically apply constrains based on the best performing models sampled by the current search space. The resulting models are light, accurate, and faster than EfficientNets (up to 5x times!) For example, to go from $AnyNet_A$ to $AnyNet_B$ they fixed the bottleneck ratio $b_i$ for all stage $i$. The following table shows all the restrictions applied from one search space to the next one. !image The paper is really well written and very interesting, I highly recommended read it. Examples:
[ "# regnetx_006\nImplementation of RegNet proposed in Designing Network Design\nSpaces\n\n The main idea is to start with a high dimensional search space and\n iteratively reduce the search space by empirically apply constrains\n based on the best performing models sampled by the current search\n space.\n\n The resulting models are light, accurate, and faster than\n EfficientNets (up to 5x times!)\n\n For example, to go from $AnyNet_A$ to $AnyNet_B$ they fixed the\n bottleneck ratio $b_i$ for all stage $i$. The following table shows\n all the restrictions applied from one search space to the next one.\n\n !image\n\n The paper is really well written and very interesting, I highly\n recommended read it.\n\n \n\n Examples:" ]
[ "TAGS\n#transformers #pytorch #arxiv-2003.13678 #endpoints_compatible #region-us \n", "# regnetx_006\nImplementation of RegNet proposed in Designing Network Design\nSpaces\n\n The main idea is to start with a high dimensional search space and\n iteratively reduce the search space by empirically apply constrains\n based on the best performing models sampled by the current search\n space.\n\n The resulting models are light, accurate, and faster than\n EfficientNets (up to 5x times!)\n\n For example, to go from $AnyNet_A$ to $AnyNet_B$ they fixed the\n bottleneck ratio $b_i$ for all stage $i$. The following table shows\n all the restrictions applied from one search space to the next one.\n\n !image\n\n The paper is really well written and very interesting, I highly\n recommended read it.\n\n \n\n Examples:" ]
[ 30, 168 ]
[ "passage: TAGS\n#transformers #pytorch #arxiv-2003.13678 #endpoints_compatible #region-us \n# regnetx_006\nImplementation of RegNet proposed in Designing Network Design\nSpaces\n\n The main idea is to start with a high dimensional search space and\n iteratively reduce the search space by empirically apply constrains\n based on the best performing models sampled by the current search\n space.\n\n The resulting models are light, accurate, and faster than\n EfficientNets (up to 5x times!)\n\n For example, to go from $AnyNet_A$ to $AnyNet_B$ they fixed the\n bottleneck ratio $b_i$ for all stage $i$. The following table shows\n all the restrictions applied from one search space to the next one.\n\n !image\n\n The paper is really well written and very interesting, I highly\n recommended read it.\n\n \n\n Examples:" ]
[ 0.011824029497802258, 0.02137240581214428, -0.002515623113140464, 0.01886272430419922, -0.03342592343688011, -0.1308571696281433, -0.011115770787000656, 0.03615366294980049, -0.14444755017757416, -0.05712372064590454, 0.11738130450248718, -0.02454124577343464, -0.11013580858707428, 0.13272157311439514, -0.08209332078695297, -0.2037246823310852, 0.0437607541680336, 0.07413300126791, -0.05258989334106445, 0.11876516044139862, 0.1558147519826889, -0.062249183654785156, 0.029316645115613937, 0.10934268683195114, -0.07238658517599106, 0.022302161902189255, -0.07009274512529373, -0.03299795091152191, 0.02202955074608326, 0.007165420334786177, 0.1600281149148941, 0.04758425056934357, -0.019725682213902473, -0.09465909749269485, 0.006665156222879887, 0.07181599736213684, -0.012823830358684063, 0.07752449810504913, 0.07298444211483002, 0.1061847135424614, 0.10972284525632858, 0.01983977109193802, -0.09369558095932007, -0.005794026888906956, -0.06558481603860855, -0.02896871045231819, -0.003275932278484106, 0.02464747242629528, 0.049706876277923584, 0.06917989999055862, -0.051161691546440125, 0.16399028897285461, -0.17956724762916565, 0.07824699580669403, 0.22355327010154724, -0.37640494108200073, -0.04985687509179115, 0.07585009187459946, 0.1623292714357376, -0.04094758257269859, 0.004826342687010765, 0.05339790880680084, 0.005483499262481928, -0.032932620495557785, 0.16975437104701996, -0.06462043523788452, -0.1287519484758377, 0.006679333280771971, -0.20869341492652893, 0.010170490480959415, 0.12993764877319336, 0.05798455327749252, 0.024241939187049866, -0.055481310933828354, -0.20868544280529022, 0.027425874024629593, -0.025483667850494385, -0.10041968524456024, 0.008615979924798012, 0.056864771991968155, -0.06473502516746521, -0.1304606944322586, -0.10920718312263489, 0.041748493909835815, -0.11216389387845993, 0.185014009475708, 0.041764628142118454, -0.014441967941820621, -0.02729562297463417, 0.08525050431489944, -0.07161373645067215, -0.016428187489509583, 0.02669130638241768, -0.13472339510917664, -0.13502384722232819, -0.0002673341950867325, -0.03401079773902893, -0.08940417319536209, -0.0023560356348752975, 0.16429467499256134, 0.0655398741364479, -0.0188168715685606, 0.16206371784210205, 0.09706838428974152, -0.028757954016327858, 0.0839560404419899, -0.201686292886734, -0.06862948089838028, 0.08159588277339935, -0.011733402498066425, 0.010144738480448723, 0.010284537449479103, -0.053328800946474075, -0.08133133500814438, 0.09320660680532455, 0.0009213521261699498, 0.03667667135596275, 0.08717723190784454, -0.04291915521025658, -0.03598064184188843, 0.07696250081062317, -0.0038664608728140593, 0.020824125036597252, -0.037930767983198166, -0.061355024576187134, -0.089020736515522, 0.05026593059301376, 0.03505679965019226, -0.10033784806728363, 0.058975111693143845, -0.0802181288599968, -0.022631196305155754, -0.041678622364997864, -0.13853076100349426, -0.030456535518169403, -0.0867181047797203, -0.030228180810809135, -0.17762896418571472, -0.11646029353141785, 0.031756896525621414, 0.09022475779056549, -0.0018284646794199944, 0.0008743337239138782, 0.019577134400606155, -0.1295004040002823, -0.1503283679485321, -0.026400290429592133, 0.07220745086669922, -0.041913628578186035, -0.032081007957458496, 0.04138118773698807, 0.06698030978441238, -0.0678456574678421, 0.03924129530787468, -0.11400699615478516, 0.024737676605582237, -0.08533333241939545, 0.08844701200723648, -0.06800965219736099, 0.049803879112005234, -0.06742893159389496, -0.06601417809724808, -0.13095702230930328, 0.0006163114449009299, 0.09521496295928955, 0.08106082677841187, -0.0734279528260231, -0.010436332784593105, 0.030081409960985184, -0.015055162832140923, -0.055377308279275894, 0.16525663435459137, -0.0524136908352375, 0.10020580142736435, 0.06107147037982941, 0.14072395861148834, 0.12754258513450623, 0.005549272522330284, -0.02142578922212124, 0.03731834143400192, -0.1868792474269867, -0.15569652616977692, -0.010711172595620155, 0.13733001053333282, 0.050769269466400146, 0.003946623299270868, -0.08747945725917816, 0.06537491828203201, -0.06101115792989731, -0.036639995872974396, -0.03620269522070885, -0.04637662321329117, -0.007177856285125017, 0.03889033943414688, 0.08309956640005112, 0.03536108881235123, -0.13001948595046997, -0.06881187856197357, 0.0020694835111498833, -0.030891742557287216, 0.06772495806217194, -0.0832805410027504, 0.09851188212633133, -0.0972847044467926, 0.010288482531905174, -0.21254651248455048, -0.027223648503422737, 0.022427964955568314, -0.0015762868570163846, 0.04829102382063866, 0.18483121693134308, 0.04553128778934479, -0.0766560509800911, -0.040053460747003555, 0.02570904791355133, 0.1086340993642807, 0.030704598873853683, -0.09325563907623291, -0.041553888469934464, -0.024523543193936348, -0.05017806962132454, 0.03851890191435814, -0.0584920309484005, -0.02275366149842739, -0.033645931631326675, 0.1342555731534958, 0.014126723632216454, 0.03572070598602295, 0.04537578672170639, -0.027292374521493912, -0.05204042047262192, -0.04836787283420563, 0.034246932715177536, 0.006750862114131451, -0.06653068959712982, 0.0685654878616333, 0.018139470368623734, 0.17286726832389832, 0.019373098388314247, -0.19515928626060486, -0.016293734312057495, 0.1346263736486435, -0.0848412737250328, -0.007987617515027523, -0.04056386277079582, -0.0047853365540504456, 0.10510949790477753, -0.008344960398972034, 0.09632434695959091, -0.11976680159568787, -0.06605950742959976, -0.008919432759284973, -0.03430643305182457, 0.07189769297838211, 0.042285386472940445, 0.09794861078262329, -0.3021990656852722, 0.04047157242894173, -0.0227328110486269, -0.10509755462408066, -0.006390825379639864, 0.07038147747516632, -0.027223875746130943, 0.05375600978732109, 0.11882956326007843, -0.028983980417251587, 0.023212671279907227, -0.002738590817898512, -0.03357917442917824, 0.03706467151641846, 0.00022467380040325224, 0.09764733910560608, -0.10580059140920639, 0.02584909461438656, 0.013043857179582119, -0.01476842351257801, -0.02321583963930607, -0.022108862176537514, -0.05573930963873863, 0.05353495106101036, 0.03391370177268982, -0.2390105426311493, -0.0028088868129998446, -0.004309598822146654, -0.02569514513015747, 0.16426387429237366, 0.05158768594264984, -0.22562900185585022, -0.029715070500969887, 0.0027466947212815285, -0.004450700245797634, 0.003157997503876686, 0.04223351553082466, -0.04539898782968521, -0.10416002571582794, -0.06482210010290146, -0.12586411833763123, -0.030240515246987343, 0.02466185763478279, -0.014111320488154888, 0.050907235592603683, 0.05657780542969704, -0.08886711299419403, 0.033898789435625076, -0.14299607276916504, 0.17339041829109192, 0.06705931574106216, -0.09281796962022781, 0.16270741820335388, 0.09029986709356308, -0.07323341816663742, -0.023263003677129745, -0.012692692689597607, 0.22375182807445526, -0.015196971595287323, 0.07281328737735748, -0.06764879077672958, -0.03677620366215706, 0.0617012120783329, 0.11564015597105026, -0.0008757326868362725, -0.025456774979829788, 0.007291235961019993, 0.05285001918673515, -0.03737008571624756, -0.17584574222564697, -0.07283974438905716, -0.12597976624965668, -0.08910828828811646, 0.006265209522098303, 0.03789965435862541, -0.012102370150387287, 0.04811498895287514, -0.007267700508236885, 0.012186110951006413, 0.07093609124422073, 0.09195086359977722, 0.20407240092754364, 0.03231070563197136, 0.13609878718852997, -0.03806142136454582, -0.1972007155418396, 0.06354586035013199, -0.042797189205884933, 0.34603074193000793, -0.07450396567583084, 0.13493561744689941, 0.041842684149742126, 0.03436052054166794, 0.08263906091451645, 0.1055392399430275, -0.037350453436374664, -0.027011767029762268, -0.04927092418074608, -0.011020001955330372, 0.09557200223207474, 0.019845496863126755, -0.0010172240436077118, -0.18441617488861084, 0.13507263362407684, 0.07831954210996628, 0.0930403470993042, 0.10635437071323395, 0.10768783837556839, -0.21783073246479034, 0.07747823745012283, -0.016328861936926842, -0.11514896899461746, -0.045467838644981384, 0.01657533086836338, 0.02976895123720169, 0.04839911311864853, 0.03137028217315674, -0.08554532378911972, 0.1495792120695114, -0.04697273671627045, 0.04237230122089386, -0.05620361119508743, 0.10782800614833832, 0.017604459077119827, 0.07903847098350525, -0.08084363490343094, 0.2356954962015152, -0.009527244605123997, 0.02807423658668995, -0.028297647833824158, -0.030575351789593697, -0.0125697311013937, 0.029005561023950577, 0.09786509722471237, 0.0033802909310907125, 0.08066520094871521, 0.11112064868211746, -0.10005723685026169, 0.024771548807621002, 0.07252906262874603, 0.10204000771045685, 0.07572226226329803, -0.013614177703857422, -0.0850604847073555, 0.08738891035318375, -0.013911882415413857, -0.041286956518888474, -0.09495474398136139, 0.07099009305238724, 0.12191374599933624, -0.16420039534568787, -0.017760159447789192, -0.012817409820854664, -0.027804607525467873, 0.3346538841724396, 0.13214658200740814, -0.08456292748451233, -0.0758366659283638, 0.03524387627840042, 0.18245930969715118, -0.017369309440255165, 0.08366285264492035, -0.06077420338988304, -0.043983813375234604, -0.007088000420480967, -0.06241718679666519, 0.12044752389192581, -0.09691005945205688, 0.0359349362552166, -0.03878185153007507, 0.03151988238096237, 0.024321844801306725, 0.015972113236784935, 0.032527681440114975, -0.008113127201795578, -0.1835576593875885, -0.10384305566549301, -0.13242198526859283, -0.17869101464748383, -0.08663715422153473, 0.01284658070653677, -0.017179884016513824, 0.08302288502454758, -0.0330919474363327, 0.10584232956171036, 0.06277289241552353, 0.16566191613674164, -0.09727602452039719, -0.01822931505739689, 0.15588364005088806, 0.04665446653962135, -0.14797639846801758, -0.11288738250732422, -0.0002763595839496702, -0.034322962164878845, -0.039376456290483475, 0.006978659890592098, 0.08352047204971313, -0.024483315646648407, -0.02705194056034088, 0.041901905089616776, -0.05450401082634926, -0.0528542585670948, 0.1436070203781128, -0.060791950672864914, 0.35776975750923157, -0.03371535986661911, -0.013127314858138561, 0.005534654948860407, -0.05990248918533325, 0.016427302733063698, -0.0069448924623429775, 0.10177382081747055, 0.016354849562048912, -0.08782421797513962, -0.007712803315371275, -0.10108831524848938, 0.010266988538205624, 0.03681750223040581, 0.038795795291662216, -0.010972142219543457, -0.010350709781050682, 0.12482544779777527, -0.034340012818574905, 0.1264340579509735, 0.10527440905570984, 0.025130050256848335, -0.05836499109864235, -0.07584846019744873, -0.047898586839437485, 0.012723922729492188, 0.050997260957956314, -0.04093869775533676, -0.18096646666526794, 0.01020398922264576, 0.07375306636095047, 0.056553516536951065, 0.18548943102359772, 0.07701269537210464, -0.024301694706082344, 0.1320459544658661, 0.14083479344844818, -0.14439372718334198, -0.04002228006720543, 0.03311850130558014, 0.024531304836273193, 0.039535075426101685, -0.08170084655284882, 0.03562289476394653, 0.1296588033437729, -0.0441063791513443, -0.030517518520355225, 0.05390240252017975, -0.11760945618152618, -0.06659901887178421, 0.09217756241559982, -0.13603277504444122, -0.08030839264392853, -0.0073829712346196175, -0.13389502465724945, -0.03274790197610855, 0.10137069970369339, 0.03988295793533325, -0.12057821452617645, -0.01308327354490757, 0.09081509709358215, 0.004091935697942972, 0.009731348603963852, 0.12695109844207764, 0.10792435705661774, 0.017502915114164352, -0.06999532878398895, 0.06694622337818146, 0.03800730034708977, 0.08299925923347473, -0.08070916682481766, 0.027230728417634964, -0.17594113945960999, -0.05747634172439575, -0.010817117989063263, 0.02288009226322174, -0.10723479092121124, -0.06416055560112, -0.14316335320472717, -0.01670069433748722, 0.11552026122808456, 0.04058467596769333, 0.12163907289505005, 0.014595715329051018, -0.03959665820002556, 0.043296463787555695, -0.043632663786411285, 0.07744289934635162, 0.14102965593338013, 0.07318462431430817, -0.14394749701023102, -0.09893497824668884, 0.00866604596376419, 0.044296134263277054, -0.09634029865264893, 0.04989204183220863, -0.07568558305501938, 0.03551236540079117, -0.12065054476261139, -0.03488926962018013, -0.07794025540351868, -0.009631195105612278, -0.0547286793589592, -0.07869565486907959, -0.10684382915496826, 0.039285946637392044, -0.05595364421606064, 0.0021734661422669888, 0.014977432787418365, -0.11786045134067535, -0.09077969193458557, -0.00991770625114441, 0.015055544674396515, -0.04075276106595993, 0.08063556253910065, -0.05400573089718819, -0.09385862201452255, -0.04447698965668678, -0.017720527946949005, -0.15652911365032196, 0.11201205104589462, 0.037336334586143494, 0.04950537532567978, -0.06373697519302368, 0.06506867706775665, 0.07557855546474457, 0.10892009735107422, -0.042775947600603104, -0.05217698961496353, -0.021604172885417938, 0.023293832316994667, -0.11856549978256226, -0.04420318827033043, -0.01842576079070568, -0.0044773174449801445, 0.07658415287733078, 0.12756019830703735, 0.1998482197523117, 0.05422455072402954, -0.05675429105758667, -0.04199462756514549, 0.024320822209119797, 0.004711237270385027, -0.1918688863515854, 0.07995136827230453, -0.06072474643588066, -0.02866452746093273, -0.025325966998934746, 0.2490665465593338, 0.04511602967977524, -0.00038676243275403976, 0.020164351910352707, 0.041584312915802, -0.04600903391838074, -0.005714841187000275, 0.010254020802676678, 0.04450967535376549, -0.057007256895303726, 0.007960748858749866, 0.023745866492390633, 0.13517484068870544, -0.026878708973526955, 0.15103106200695038, 0.07261048257350922, -0.008320605382323265, 0.13922636210918427, -0.059144552797079086, -0.05310589075088501, -0.16764822602272034, 0.06317979097366333, -0.0554521307349205, 0.0465548075735569, -0.018707938492298126, -0.03527485951781273, 0.2093847692012787, 0.033395037055015564, 0.06124311685562134, 0.059371065348386765, -0.02280881442129612, -0.10438510030508041, -0.0976887196302414, -0.07083015143871307, -0.05481505021452904, -0.022051308304071426, -0.06275434046983719, -0.07082129269838333, 0.011705315671861172, 0.06324117630720139, -0.03502452373504639, 0.1129188984632492, 0.06730010360479355, -0.09659957885742188, 0.07045188546180725, -0.07843709737062454, -0.008127358742058277, 0.13543258607387543, 0.00047452555736526847, -0.044425323605537415, 0.07139244675636292, 0.01359890028834343, 0.010343334637582302, 0.012379986234009266, 0.06943150609731674, -0.030339619144797325, -0.04287112504243851, -0.10261312872171402, 0.05652749538421631, 0.018246140331029892, 0.02907855436205864, -0.011960315518081188, -0.05690992996096611, 0.047314487397670746, 0.1957968771457672, -0.03113294579088688, -0.1263016015291214, -0.09723655134439468, 0.1220276728272438, 0.060192544013261795, 0.04085111990571022, -0.05360202118754387, -0.06780929118394852, -0.030065298080444336, 0.32475292682647705, 0.20722843706607819, -0.0604507140815258, -0.014899259433150291, 0.06764183938503265, -0.01558429654687643, 0.07676489651203156, -0.027272338047623634, 0.04211724177002907, 0.3024270534515381, -0.030735120177268982, -0.10213000327348709, -0.039195310324430466, -0.023570645600557327, -0.07708588987588882, 0.009418625384569168, 0.15867756307125092, -0.00581941707059741, -0.12824614346027374, 0.08216150104999542, -0.11301299184560776, -0.103510782122612, -0.1346026510000229, 0.000006834469331806758, -0.06447800248861313, 0.013423609547317028, 0.07925567775964737, -0.0466717928647995, 0.08368417620658875, -0.054530248045921326, -0.02066013775765896, -0.046842027455568314, 0.02511647716164589, -0.08947332948446274, 0.03798272833228111, 0.06609705090522766, 0.12076615542173386, 0.002601603278890252, 0.00212892540730536, 0.0385211780667305, 0.1240086629986763, -0.07513134181499481, -0.16894857585430145, 0.0929313451051712, 0.01270921528339386, -0.06129422411322594, 0.05159701034426689, -0.02024025470018387, -0.03477576747536659, -0.021846260875463486, 0.005332848057150841, 0.004877636209130287, 0.013454259373247623, 0.026599479839205742, 0.0497441329061985, -0.12404299527406693, -0.03253444656729698, -0.06258312612771988, 0.06468550860881805, 0.03224373981356621, -0.03927462548017502, 0.03991864621639252, -0.09281457960605621, -0.010958179831504822, 0.02931233122944832, 0.055189020931720734, -0.020097453147172928, -0.08495566248893738, -0.025767654180526733, 0.051576029509305954, 0.0369909442961216, -0.06325767189264297, 0.01379245426505804, -0.022082503885030746, -0.016930609941482544, -0.020087534561753273, 0.07120387256145477, 0.1733584702014923, 0.0014034982305020094, 0.006981231737881899, -0.01950785703957081, -0.044509585946798325, -0.016532059758901596, -0.13640369474887848, -0.014539728872478008 ]
null
null
transformers
# regnetx_016 Implementation of RegNet proposed in [Designing Network Design Spaces](https://arxiv.org/abs/2003.13678) The main idea is to start with a high dimensional search space and iteratively reduce the search space by empirically apply constrains based on the best performing models sampled by the current search space. The resulting models are light, accurate, and faster than EfficientNets (up to 5x times!) For example, to go from $AnyNet_A$ to $AnyNet_B$ they fixed the bottleneck ratio $b_i$ for all stage $i$. The following table shows all the restrictions applied from one search space to the next one. ![image](https://github.com/FrancescoSaverioZuppichini/glasses/blob/develop/docs/_static/images/RegNetDesignSpaceTable.png?raw=true) The paper is really well written and very interesting, I highly recommended read it. ``` python ResNet.regnetx_002() ResNet.regnetx_004() ResNet.regnetx_006() ResNet.regnetx_008() ResNet.regnetx_016() ResNet.regnetx_040() ResNet.regnetx_064() ResNet.regnetx_080() ResNet.regnetx_120() ResNet.regnetx_160() ResNet.regnetx_320() # Y variants (with SE) ResNet.regnety_002() # ... ResNet.regnetx_320() You can easily customize your model ``` Examples: ``` python # change activation RegNet.regnetx_004(activation = nn.SELU) # change number of classes (default is 1000 ) RegNet.regnetx_004(n_classes=100) # pass a different block RegNet.regnetx_004(block=RegNetYBotteneckBlock) # change the steam model = RegNet.regnetx_004(stem=ResNetStemC) change shortcut model = RegNet.regnetx_004(block=partial(RegNetYBotteneckBlock, shortcut=ResNetShorcutD)) # store each feature x = torch.rand((1, 3, 224, 224)) # get features model = RegNet.regnetx_004() # first call .features, this will activate the forward hooks and tells the model you'll like to get the features model.encoder.features model(torch.randn((1,3,224,224))) # get the features from the encoder features = model.encoder.features print([x.shape for x in features]) #[torch.Size([1, 32, 112, 112]), torch.Size([1, 32, 56, 56]), torch.Size([1, 64, 28, 28]), torch.Size([1, 160, 14, 14])] ```
{}
null
glasses/regnetx_016
[ "transformers", "pytorch", "arxiv:2003.13678", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[ "2003.13678" ]
[]
TAGS #transformers #pytorch #arxiv-2003.13678 #endpoints_compatible #region-us
# regnetx_016 Implementation of RegNet proposed in Designing Network Design Spaces The main idea is to start with a high dimensional search space and iteratively reduce the search space by empirically apply constrains based on the best performing models sampled by the current search space. The resulting models are light, accurate, and faster than EfficientNets (up to 5x times!) For example, to go from $AnyNet_A$ to $AnyNet_B$ they fixed the bottleneck ratio $b_i$ for all stage $i$. The following table shows all the restrictions applied from one search space to the next one. !image The paper is really well written and very interesting, I highly recommended read it. Examples:
[ "# regnetx_016\nImplementation of RegNet proposed in Designing Network Design\nSpaces\n\n The main idea is to start with a high dimensional search space and\n iteratively reduce the search space by empirically apply constrains\n based on the best performing models sampled by the current search\n space.\n\n The resulting models are light, accurate, and faster than\n EfficientNets (up to 5x times!)\n\n For example, to go from $AnyNet_A$ to $AnyNet_B$ they fixed the\n bottleneck ratio $b_i$ for all stage $i$. The following table shows\n all the restrictions applied from one search space to the next one.\n\n !image\n\n The paper is really well written and very interesting, I highly\n recommended read it.\n\n \n\n Examples:" ]
[ "TAGS\n#transformers #pytorch #arxiv-2003.13678 #endpoints_compatible #region-us \n", "# regnetx_016\nImplementation of RegNet proposed in Designing Network Design\nSpaces\n\n The main idea is to start with a high dimensional search space and\n iteratively reduce the search space by empirically apply constrains\n based on the best performing models sampled by the current search\n space.\n\n The resulting models are light, accurate, and faster than\n EfficientNets (up to 5x times!)\n\n For example, to go from $AnyNet_A$ to $AnyNet_B$ they fixed the\n bottleneck ratio $b_i$ for all stage $i$. The following table shows\n all the restrictions applied from one search space to the next one.\n\n !image\n\n The paper is really well written and very interesting, I highly\n recommended read it.\n\n \n\n Examples:" ]
[ 30, 168 ]
[ "passage: TAGS\n#transformers #pytorch #arxiv-2003.13678 #endpoints_compatible #region-us \n# regnetx_016\nImplementation of RegNet proposed in Designing Network Design\nSpaces\n\n The main idea is to start with a high dimensional search space and\n iteratively reduce the search space by empirically apply constrains\n based on the best performing models sampled by the current search\n space.\n\n The resulting models are light, accurate, and faster than\n EfficientNets (up to 5x times!)\n\n For example, to go from $AnyNet_A$ to $AnyNet_B$ they fixed the\n bottleneck ratio $b_i$ for all stage $i$. The following table shows\n all the restrictions applied from one search space to the next one.\n\n !image\n\n The paper is really well written and very interesting, I highly\n recommended read it.\n\n \n\n Examples:" ]
[ 0.011376204900443554, 0.020329561084508896, -0.0025353587698191404, 0.017878424376249313, -0.03341115266084671, -0.13093939423561096, -0.011152401566505432, 0.0362129881978035, -0.1436641365289688, -0.05714232847094536, 0.11730335652828217, -0.024493427947163582, -0.11062566190958023, 0.13353267312049866, -0.08217353373765945, -0.20389088988304138, 0.043317824602127075, 0.07439592480659485, -0.05381183326244354, 0.11872711777687073, 0.15630479156970978, -0.061978939920663834, 0.028926964849233627, 0.11089913547039032, -0.07123952358961105, 0.02210722491145134, -0.07028233259916306, -0.03356755152344704, 0.0217757411301136, 0.007847491651773453, 0.16054266691207886, 0.047769684344530106, -0.020304793491959572, -0.0963599681854248, 0.006663289852440357, 0.07210776954889297, -0.013025270774960518, 0.07745381444692612, 0.07325946539640427, 0.1038549542427063, 0.10786077380180359, 0.019165704026818275, -0.09365848451852798, -0.005296662915498018, -0.06560228019952774, -0.028364811092615128, -0.002320588566362858, 0.0254819318652153, 0.04895938187837601, 0.06831996887922287, -0.05081348493695259, 0.16263140738010406, -0.17952924966812134, 0.07814405113458633, 0.22170181572437286, -0.37554553151130676, -0.049601417034864426, 0.07442715018987656, 0.16103848814964294, -0.041444480419158936, 0.005219115410000086, 0.05370037630200386, 0.005842548329383135, -0.03265431895852089, 0.17030611634254456, -0.06433787941932678, -0.12753257155418396, 0.006630184594541788, -0.2084827870130539, 0.009519149549305439, 0.1299794763326645, 0.05727051571011543, 0.02433752827346325, -0.05610540136694908, -0.20917703211307526, 0.02684335969388485, -0.025709591805934906, -0.10022781044244766, 0.007961432449519634, 0.05742952600121498, -0.06505999714136124, -0.13073182106018066, -0.10967215895652771, 0.04261697083711624, -0.11203568428754807, 0.18505597114562988, 0.041544388979673386, -0.014291100203990936, -0.026978526264429092, 0.0854228213429451, -0.0719335749745369, -0.016316138207912445, 0.027365202084183693, -0.1345152109861374, -0.13459524512290955, -0.0008516763336956501, -0.03427406772971153, -0.08899343758821487, -0.002657651901245117, 0.16594557464122772, 0.06577029079198837, -0.019751332700252533, 0.16223888099193573, 0.09786316007375717, -0.027525415644049644, 0.08371064066886902, -0.2024424523115158, -0.06819376349449158, 0.08194397389888763, -0.012036813423037529, 0.010247603058815002, 0.010504390113055706, -0.05301517993211746, -0.08187758922576904, 0.09338168054819107, 0.0010059085907414556, 0.037248220294713974, 0.08649837225675583, -0.043751060962677, -0.03655259683728218, 0.07711710035800934, -0.003791946917772293, 0.020601147785782814, -0.03786742314696312, -0.06111522763967514, -0.08914672583341599, 0.050990235060453415, 0.03543882071971893, -0.10065522789955139, 0.05855223536491394, -0.08038181811571121, -0.02208494208753109, -0.04104417935013771, -0.13814550638198853, -0.03001554124057293, -0.08637858927249908, -0.029774248600006104, -0.17759796977043152, -0.11817307025194168, 0.03178471699357033, 0.09032076597213745, -0.0017355270683765411, 0.0003954653220716864, 0.020120877772569656, -0.12896783649921417, -0.15073665976524353, -0.02659037709236145, 0.07043630629777908, -0.042294979095458984, -0.032016146928071976, 0.04024730250239372, 0.06676769256591797, -0.06684444099664688, 0.039644915610551834, -0.11377302557229996, 0.02471374347805977, -0.0862419605255127, 0.08965747803449631, -0.067510224878788, 0.050242409110069275, -0.06723813712596893, -0.0662045031785965, -0.1313694715499878, 0.0007295876857824624, 0.09501870721578598, 0.08097054064273834, -0.073038250207901, -0.011255105026066303, 0.02858791872859001, -0.015280261635780334, -0.05459967255592346, 0.16609658300876617, -0.05240797623991966, 0.10125965625047684, 0.061175838112831116, 0.14087770879268646, 0.12914100289344788, 0.005621321499347687, -0.0211396012455225, 0.03797818720340729, -0.18738307058811188, -0.15588565170764923, -0.010563169606029987, 0.13771086931228638, 0.05005205422639847, 0.003475600155070424, -0.08715478330850601, 0.06565544754266739, -0.06152084469795227, -0.03719717264175415, -0.036696288734674454, -0.04678814113140106, -0.007478286512196064, 0.038813795894384384, 0.08328060060739517, 0.03612237796187401, -0.1306261271238327, -0.06737526506185532, 0.0024652162101119757, -0.0308742243796587, 0.06798966974020004, -0.08314507454633713, 0.09924691915512085, -0.09777633845806122, 0.00993363931775093, -0.21199968457221985, -0.02544933743774891, 0.021686695516109467, -0.00014741881750524044, 0.048083558678627014, 0.18548673391342163, 0.04534991830587387, -0.0767643079161644, -0.0398196317255497, 0.02579512447118759, 0.10918159037828445, 0.030639614909887314, -0.09310723096132278, -0.04131331667304039, -0.025165952742099762, -0.04964868724346161, 0.039983347058296204, -0.05826704204082489, -0.02248060330748558, -0.034515075385570526, 0.13508129119873047, 0.013837862759828568, 0.03624187037348747, 0.045459114015102386, -0.027615105733275414, -0.05201714113354683, -0.04785562679171562, 0.034156013280153275, 0.006996168289333582, -0.06656038761138916, 0.06902817636728287, 0.019402023404836655, 0.1750503033399582, 0.01904432103037834, -0.19743049144744873, -0.016058316454291344, 0.1348070651292801, -0.08516732603311539, -0.008016952313482761, -0.04223904386162758, -0.005080122966319323, 0.1054481640458107, -0.008316944353282452, 0.09682527184486389, -0.11958983540534973, -0.06524442136287689, -0.009282581508159637, -0.03480222821235657, 0.07219249755144119, 0.042210862040519714, 0.09631181508302689, -0.30006295442581177, 0.04047596454620361, -0.023970410227775574, -0.10480692237615585, -0.006189238745719194, 0.07054031640291214, -0.02770073339343071, 0.05355583876371384, 0.11905543506145477, -0.029115498065948486, 0.02285701222717762, -0.0026092238258570433, -0.03369588777422905, 0.03722133859992027, -0.0002681068435776979, 0.09777143597602844, -0.10643962770700455, 0.025704437866806984, 0.0137728126719594, -0.014993046410381794, -0.024260828271508217, -0.022721214219927788, -0.05534572899341583, 0.05323464423418045, 0.03315186873078346, -0.23811176419258118, -0.0029964435379952192, -0.004209545906633139, -0.025968771427869797, 0.1637752205133438, 0.05172071233391762, -0.22678057849407196, -0.030185269191861153, 0.004257482942193747, -0.0035295498091727495, 0.003240160411223769, 0.0418514646589756, -0.04497397318482399, -0.10434169322252274, -0.06384105235338211, -0.12387645989656448, -0.029651951044797897, 0.024161214008927345, -0.0137124452739954, 0.05087580531835556, 0.0568796768784523, -0.08864638954401016, 0.03402407839894295, -0.14231061935424805, 0.17355486750602722, 0.06714155524969101, -0.09307630360126495, 0.1621747463941574, 0.09082508087158203, -0.07315658032894135, -0.02332763373851776, -0.01313385646790266, 0.22458840906620026, -0.015398474410176277, 0.07276342064142227, -0.06795091927051544, -0.036916933953762054, 0.06155592203140259, 0.11542641371488571, -0.0003932490071747452, -0.024718020111322403, 0.006502365227788687, 0.05285298824310303, -0.037179067730903625, -0.17462828755378723, -0.07373004406690598, -0.12552249431610107, -0.08853687345981598, 0.007002068217843771, 0.03750937432050705, -0.011040317825973034, 0.04849691689014435, -0.008386853151023388, 0.013622717000544071, 0.0711233988404274, 0.09170938283205032, 0.2049834132194519, 0.03188268467783928, 0.1363217979669571, -0.0382237546145916, -0.19790560007095337, 0.06399524211883545, -0.0420939065515995, 0.34533050656318665, -0.07472842931747437, 0.13678330183029175, 0.041797373443841934, 0.03422581031918526, 0.0833343118429184, 0.10504768043756485, -0.03756576031446457, -0.026781708002090454, -0.048918694257736206, -0.010831059888005257, 0.09496103227138519, 0.020057113841176033, -0.0010439206380397081, -0.18433775007724762, 0.1352674961090088, 0.07787703722715378, 0.09348035603761673, 0.10702987015247345, 0.1082359254360199, -0.2175389975309372, 0.0773017406463623, -0.015977133065462112, -0.11574508994817734, -0.04549954831600189, 0.01676231063902378, 0.02869529277086258, 0.04848857969045639, 0.031574077904224396, -0.08592619746923447, 0.15023331344127655, -0.047435957938432693, 0.04226263612508774, -0.05652327463030815, 0.10724277049303055, 0.01716979406774044, 0.07907257229089737, -0.08009259402751923, 0.23457691073417664, -0.008973180316388607, 0.028271226212382317, -0.028928903862833977, -0.03137924522161484, -0.012237899005413055, 0.029803551733493805, 0.09725728631019592, 0.0031418476719409227, 0.08319077640771866, 0.11051022261381149, -0.10043564438819885, 0.024141117930412292, 0.07106123864650726, 0.10199812054634094, 0.07532139867544174, -0.013791610486805439, -0.0850372388958931, 0.08752159774303436, -0.014623104594647884, -0.040937528014183044, -0.09444180876016617, 0.07108619809150696, 0.12222681939601898, -0.164194256067276, -0.01775982417166233, -0.013169106096029282, -0.027149798348546028, 0.333575040102005, 0.13236498832702637, -0.0853438675403595, -0.07603207975625992, 0.03561662137508392, 0.18267926573753357, -0.01665271818637848, 0.08443200588226318, -0.060393039137125015, -0.04360181838274002, -0.007714010775089264, -0.06219012290239334, 0.11907447129487991, -0.09747693687677383, 0.03641905635595322, -0.03853517025709152, 0.03151790797710419, 0.024039437994360924, 0.016439126804471016, 0.032192163169384, -0.00847556721419096, -0.18429869413375854, -0.10342233628034592, -0.1333765983581543, -0.1796065866947174, -0.08720064908266068, 0.01390769425779581, -0.016595162451267242, 0.0832216888666153, -0.03329918161034584, 0.10652763396501541, 0.06226802244782448, 0.1647651344537735, -0.09741316735744476, -0.018178889527916908, 0.15496951341629028, 0.04684806987643242, -0.14815618097782135, -0.11351798474788666, -0.0002402725222054869, -0.03378457948565483, -0.03953520953655243, 0.0070411269553005695, 0.08424684405326843, -0.02442803792655468, -0.027179738506674767, 0.04380766302347183, -0.05518651381134987, -0.053567249327898026, 0.14490750432014465, -0.062153562903404236, 0.35901036858558655, -0.03365813568234444, -0.013242563232779503, 0.005264592822641134, -0.058837875723838806, 0.016386380419135094, -0.0072081726975739, 0.10131946206092834, 0.01648271456360817, -0.08737532049417496, -0.007247653789818287, -0.10066070407629013, 0.010443730279803276, 0.037299927324056625, 0.03855688497424126, -0.010444635525345802, -0.009152643382549286, 0.1246492862701416, -0.034274064004421234, 0.12647245824337006, 0.1060241088271141, 0.024926848709583282, -0.05853809043765068, -0.07622124254703522, -0.04738154634833336, 0.013012588955461979, 0.0513538122177124, -0.04090701788663864, -0.181285560131073, 0.009947971440851688, 0.07359547168016434, 0.05674247443675995, 0.18641991913318634, 0.0775294229388237, -0.024532774463295937, 0.13266576826572418, 0.14051616191864014, -0.14501379430294037, -0.04105961322784424, 0.0332278311252594, 0.0241161547601223, 0.03958071395754814, -0.08190787583589554, 0.03611376881599426, 0.1291905641555786, -0.04355607554316521, -0.030363496392965317, 0.05350058153271675, -0.11694376170635223, -0.0671137273311615, 0.0921599492430687, -0.13564801216125488, -0.08095657825469971, -0.008199336007237434, -0.1343308836221695, -0.0321308895945549, 0.10085578262805939, 0.04013071954250336, -0.12135165929794312, -0.013286443427205086, 0.09110282361507416, 0.00401950953528285, 0.009765052236616611, 0.12685175240039825, 0.10879410058259964, 0.017295178025960922, -0.07034226506948471, 0.06721676141023636, 0.03817828744649887, 0.08348134160041809, -0.08088821917772293, 0.02520189806818962, -0.17601387202739716, -0.05781202018260956, -0.0119786923751235, 0.022971516475081444, -0.10847160965204239, -0.0646699070930481, -0.14325225353240967, -0.016477417200803757, 0.11597628891468048, 0.041537344455718994, 0.12196469306945801, 0.014525802806019783, -0.03971382975578308, 0.043154630810022354, -0.04347682744264603, 0.07819031924009323, 0.14201536774635315, 0.07222041487693787, -0.1438683271408081, -0.09832026809453964, 0.009184601716697216, 0.04504244029521942, -0.09666801989078522, 0.049065012484788895, -0.07495974749326706, 0.036027781665325165, -0.12247519940137863, -0.03416711464524269, -0.07878372818231583, -0.009536286816000938, -0.0543154738843441, -0.07937205582857132, -0.10742031037807465, 0.03901456668972969, -0.05539179965853691, 0.0027149461675435305, 0.015151331201195717, -0.11779185384511948, -0.0908527597784996, -0.010157328099012375, 0.015240770764648914, -0.04057422652840614, 0.08016853779554367, -0.05405810847878456, -0.09433843940496445, -0.044975776225328445, -0.016501495614647865, -0.15619026124477386, 0.11187504231929779, 0.03657205402851105, 0.049561284482479095, -0.06437590718269348, 0.06540694832801819, 0.0753745585680008, 0.10865867137908936, -0.04280361160635948, -0.051994238048791885, -0.021111030131578445, 0.023518510162830353, -0.11818550527095795, -0.04393693059682846, -0.01888294704258442, -0.004776942078024149, 0.07545539736747742, 0.12721550464630127, 0.2002592235803604, 0.05427752062678337, -0.05667642131447792, -0.04238786920905113, 0.024417702108621597, 0.004355710931122303, -0.1914229691028595, 0.0804213136434555, -0.06040232628583908, -0.029138606041669846, -0.025304822251200676, 0.2510194182395935, 0.04510747268795967, 0.0000631351867923513, 0.0202658548951149, 0.042800042778253555, -0.04668281599879265, -0.005844170693308115, 0.010746821761131287, 0.0448087602853775, -0.056683775037527084, 0.006534208077937365, 0.023933570832014084, 0.13565242290496826, -0.027384785935282707, 0.14954601228237152, 0.07265272736549377, -0.009204406291246414, 0.13924795389175415, -0.06026076897978783, -0.053647398948669434, -0.16736219823360443, 0.06273762881755829, -0.055798497051000595, 0.0458071306347847, -0.01816137321293354, -0.03600960597395897, 0.21007171273231506, 0.03323175758123398, 0.06161061301827431, 0.06017046049237251, -0.022508539259433746, -0.10488009452819824, -0.09891404956579208, -0.07024963200092316, -0.05585446208715439, -0.022209426388144493, -0.06284981220960617, -0.07093256711959839, 0.012394213117659092, 0.0632876604795456, -0.035033900290727615, 0.11234503239393234, 0.06630833446979523, -0.09705698490142822, 0.07018329948186874, -0.07840335369110107, -0.006635178346186876, 0.13377727568149567, 0.00034113036235794425, -0.04459068179130554, 0.07153362035751343, 0.013541149906814098, 0.010003306902945042, 0.013564431108534336, 0.06959782540798187, -0.03064357489347458, -0.04317083954811096, -0.10290566086769104, 0.05631555989384651, 0.017726313322782516, 0.028711503371596336, -0.012382387183606625, -0.05642314627766609, 0.047301679849624634, 0.19531261920928955, -0.030206087976694107, -0.12688423693180084, -0.09816417098045349, 0.12089651823043823, 0.0604291632771492, 0.04042848199605942, -0.05311817303299904, -0.06835977733135223, -0.02993207797408104, 0.32548660039901733, 0.2078307867050171, -0.06031384319067001, -0.01525877695530653, 0.06745445728302002, -0.015648366883397102, 0.07786168158054352, -0.028816450387239456, 0.04156043753027916, 0.30319738388061523, -0.03162117302417755, -0.10307258367538452, -0.03937821090221405, -0.023898664861917496, -0.07723786681890488, 0.009314767085015774, 0.1578640639781952, -0.005829808302223682, -0.12818294763565063, 0.08242563903331757, -0.1140207052230835, -0.10319678485393524, -0.13370618224143982, 0.0003118762979283929, -0.06416071206331253, 0.013126179575920105, 0.07889190316200256, -0.04683292657136917, 0.08364557474851608, -0.054499946534633636, -0.02091837115585804, -0.04567023366689682, 0.024936223402619362, -0.08950101584196091, 0.03852565586566925, 0.06581886112689972, 0.12249957025051117, 0.0018860507989302278, 0.0017554936930537224, 0.038497813045978546, 0.12372932583093643, -0.07463334500789642, -0.16855083405971527, 0.09208987653255463, 0.012704634107649326, -0.06027046591043472, 0.05132194608449936, -0.02039763517677784, -0.034677132964134216, -0.021900704130530357, 0.005736273247748613, 0.0038214644882827997, 0.013158532790839672, 0.027316182851791382, 0.05000525340437889, -0.12399722635746002, -0.033752478659152985, -0.06202055513858795, 0.0641142725944519, 0.031709976494312286, -0.039126310497522354, 0.040145568549633026, -0.09298896044492722, -0.011117568239569664, 0.029885558411478996, 0.05555500462651253, -0.019930368289351463, -0.08543556183576584, -0.025661103427410126, 0.052198659628629684, 0.0366937629878521, -0.06280457973480225, 0.013489903882145882, -0.02187824249267578, -0.017595011740922928, -0.019586749374866486, 0.07151956111192703, 0.17340737581253052, 0.0022942651994526386, 0.007524291984736919, -0.01744915172457695, -0.044319119304418564, -0.01703096181154251, -0.1357831060886383, -0.014417571946978569 ]
null
null
transformers
# regnety_002 Implementation of RegNet proposed in [Designing Network Design Spaces](https://arxiv.org/abs/2003.13678) The main idea is to start with a high dimensional search space and iteratively reduce the search space by empirically apply constrains based on the best performing models sampled by the current search space. The resulting models are light, accurate, and faster than EfficientNets (up to 5x times!) For example, to go from $AnyNet_A$ to $AnyNet_B$ they fixed the bottleneck ratio $b_i$ for all stage $i$. The following table shows all the restrictions applied from one search space to the next one. ![image](https://github.com/FrancescoSaverioZuppichini/glasses/blob/develop/docs/_static/images/RegNetDesignSpaceTable.png?raw=true) The paper is really well written and very interesting, I highly recommended read it. ``` python ResNet.regnetx_002() ResNet.regnetx_004() ResNet.regnetx_006() ResNet.regnetx_008() ResNet.regnetx_016() ResNet.regnetx_040() ResNet.regnetx_064() ResNet.regnetx_080() ResNet.regnetx_120() ResNet.regnetx_160() ResNet.regnetx_320() # Y variants (with SE) ResNet.regnety_002() # ... ResNet.regnetx_320() You can easily customize your model ``` Examples: ``` python # change activation RegNet.regnetx_004(activation = nn.SELU) # change number of classes (default is 1000 ) RegNet.regnetx_004(n_classes=100) # pass a different block RegNet.regnetx_004(block=RegNetYBotteneckBlock) # change the steam model = RegNet.regnetx_004(stem=ResNetStemC) change shortcut model = RegNet.regnetx_004(block=partial(RegNetYBotteneckBlock, shortcut=ResNetShorcutD)) # store each feature x = torch.rand((1, 3, 224, 224)) # get features model = RegNet.regnetx_004() # first call .features, this will activate the forward hooks and tells the model you'll like to get the features model.encoder.features model(torch.randn((1,3,224,224))) # get the features from the encoder features = model.encoder.features print([x.shape for x in features]) #[torch.Size([1, 32, 112, 112]), torch.Size([1, 32, 56, 56]), torch.Size([1, 64, 28, 28]), torch.Size([1, 160, 14, 14])] ```
{}
null
glasses/regnety_002
[ "transformers", "pytorch", "arxiv:2003.13678", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[ "2003.13678" ]
[]
TAGS #transformers #pytorch #arxiv-2003.13678 #endpoints_compatible #region-us
# regnety_002 Implementation of RegNet proposed in Designing Network Design Spaces The main idea is to start with a high dimensional search space and iteratively reduce the search space by empirically apply constrains based on the best performing models sampled by the current search space. The resulting models are light, accurate, and faster than EfficientNets (up to 5x times!) For example, to go from $AnyNet_A$ to $AnyNet_B$ they fixed the bottleneck ratio $b_i$ for all stage $i$. The following table shows all the restrictions applied from one search space to the next one. !image The paper is really well written and very interesting, I highly recommended read it. Examples:
[ "# regnety_002\nImplementation of RegNet proposed in Designing Network Design\nSpaces\n\n The main idea is to start with a high dimensional search space and\n iteratively reduce the search space by empirically apply constrains\n based on the best performing models sampled by the current search\n space.\n\n The resulting models are light, accurate, and faster than\n EfficientNets (up to 5x times!)\n\n For example, to go from $AnyNet_A$ to $AnyNet_B$ they fixed the\n bottleneck ratio $b_i$ for all stage $i$. The following table shows\n all the restrictions applied from one search space to the next one.\n\n !image\n\n The paper is really well written and very interesting, I highly\n recommended read it.\n\n \n\n Examples:" ]
[ "TAGS\n#transformers #pytorch #arxiv-2003.13678 #endpoints_compatible #region-us \n", "# regnety_002\nImplementation of RegNet proposed in Designing Network Design\nSpaces\n\n The main idea is to start with a high dimensional search space and\n iteratively reduce the search space by empirically apply constrains\n based on the best performing models sampled by the current search\n space.\n\n The resulting models are light, accurate, and faster than\n EfficientNets (up to 5x times!)\n\n For example, to go from $AnyNet_A$ to $AnyNet_B$ they fixed the\n bottleneck ratio $b_i$ for all stage $i$. The following table shows\n all the restrictions applied from one search space to the next one.\n\n !image\n\n The paper is really well written and very interesting, I highly\n recommended read it.\n\n \n\n Examples:" ]
[ 30, 168 ]
[ "passage: TAGS\n#transformers #pytorch #arxiv-2003.13678 #endpoints_compatible #region-us \n# regnety_002\nImplementation of RegNet proposed in Designing Network Design\nSpaces\n\n The main idea is to start with a high dimensional search space and\n iteratively reduce the search space by empirically apply constrains\n based on the best performing models sampled by the current search\n space.\n\n The resulting models are light, accurate, and faster than\n EfficientNets (up to 5x times!)\n\n For example, to go from $AnyNet_A$ to $AnyNet_B$ they fixed the\n bottleneck ratio $b_i$ for all stage $i$. The following table shows\n all the restrictions applied from one search space to the next one.\n\n !image\n\n The paper is really well written and very interesting, I highly\n recommended read it.\n\n \n\n Examples:" ]
[ 0.014749549329280853, 0.026628712192177773, -0.0026284712366759777, 0.017091089859604836, -0.03499603644013405, -0.13327935338020325, -0.010177196003496647, 0.03754694014787674, -0.14391572773456573, -0.05763405188918114, 0.11726874113082886, -0.02673686295747757, -0.11292830854654312, 0.1342785358428955, -0.08281828463077545, -0.20773543417453766, 0.04582802578806877, 0.07467897981405258, -0.0540713407099247, 0.11975109577178955, 0.15643735229969025, -0.06145348772406578, 0.028121143579483032, 0.11137842386960983, -0.06924310326576233, 0.021076681092381477, -0.0715031623840332, -0.033736471086740494, 0.019962245598435402, 0.006434908136725426, 0.16038815677165985, 0.0475776307284832, -0.02057962864637375, -0.09824495017528534, 0.0062717655673623085, 0.07175564020872116, -0.012116524390876293, 0.07696937024593353, 0.07204046100378036, 0.10580462217330933, 0.11029968410730362, 0.01840497925877571, -0.0913110226392746, -0.008079038932919502, -0.06363227218389511, -0.024027708917856216, -0.002018829109147191, 0.026975922286510468, 0.05363548919558525, 0.06807924062013626, -0.05133069306612015, 0.16296163201332092, -0.18206855654716492, 0.07586579769849777, 0.22307531535625458, -0.3750515282154083, -0.04830913618206978, 0.07630082219839096, 0.1600673794746399, -0.04754059389233589, 0.008695508353412151, 0.054620224982500076, 0.003824701299890876, -0.03270747512578964, 0.16926079988479614, -0.0644475668668747, -0.12379872053861618, 0.008220929652452469, -0.20734894275665283, 0.005643145181238651, 0.12893830239772797, 0.05668942257761955, 0.026232270523905754, -0.05781994387507439, -0.21135582029819489, 0.03373447433114052, -0.026806877925992012, -0.10054761916399002, 0.00793396681547165, 0.06072409823536873, -0.06628954410552979, -0.13209405541419983, -0.1103421300649643, 0.04385186359286308, -0.11353058367967606, 0.18300795555114746, 0.04242585971951485, -0.01366126537322998, -0.02732817642390728, 0.08769986033439636, -0.07053562998771667, -0.01528283953666687, 0.02882133051753044, -0.13374118506908417, -0.13400553166866302, -0.0008711095433682203, -0.03593774512410164, -0.08462397754192352, -0.0013836555881425738, 0.1693989634513855, 0.0671212375164032, -0.021453114226460457, 0.16530998051166534, 0.09889542311429977, -0.027029134333133698, 0.08530041575431824, -0.20536455512046814, -0.06918957084417343, 0.08458179235458374, -0.011089930310845375, 0.011631276458501816, 0.00971196684986353, -0.05497140809893608, -0.08359219133853912, 0.0950808972120285, -0.0005729995900765061, 0.04174460470676422, 0.08637498319149017, -0.04405970126390457, -0.03806168958544731, 0.07735021412372589, -0.0036911282222718, 0.019672777503728867, -0.03784262016415596, -0.06349758058786392, -0.09258521348237991, 0.0510394424200058, 0.03816306218504906, -0.10116563737392426, 0.06018419191241264, -0.07918976992368698, -0.021799063310027122, -0.0401758998632431, -0.13510437309741974, -0.029641037806868553, -0.08204374462366104, -0.030038513243198395, -0.17806407809257507, -0.12241146713495255, 0.03272504732012749, 0.08927994966506958, -0.001418513129465282, -0.0014942217385396361, 0.019680967554450035, -0.13051995635032654, -0.15220226347446442, -0.027041561901569366, 0.06598495692014694, -0.04326914623379707, -0.03158242627978325, 0.036349911242723465, 0.06456057727336884, -0.06658830493688583, 0.03890496492385864, -0.11702736467123032, 0.02634376287460327, -0.08626068383455276, 0.09096399694681168, -0.06311117857694626, 0.05097685381770134, -0.06432860344648361, -0.06668390333652496, -0.13002845644950867, 0.001166664413176477, 0.09264200925827026, 0.08365676552057266, -0.07346952706575394, -0.011728133074939251, 0.027770210057497025, -0.0142567940056324, -0.05236341059207916, 0.16724057495594025, -0.05313678830862045, 0.09873795509338379, 0.06277532130479813, 0.14089561998844147, 0.129648819565773, 0.00693359924480319, -0.017955999821424484, 0.03663928806781769, -0.186164990067482, -0.1530018299818039, -0.009677466005086899, 0.13645662367343903, 0.05095386132597923, 0.004606286529451609, -0.08916014432907104, 0.06594192236661911, -0.0617133192718029, -0.038331594318151474, -0.03716760873794556, -0.04691710323095322, -0.007081606425344944, 0.04023781418800354, 0.08356378227472305, 0.03600841388106346, -0.1303105503320694, -0.06014459580183029, 0.0042911069467663765, -0.0320228673517704, 0.069316066801548, -0.08545617759227753, 0.10281305760145187, -0.09292157739400864, 0.008717182092368603, -0.21217411756515503, -0.02372443489730358, 0.020403187721967697, -0.0025614923797547817, 0.04839625582098961, 0.18425267934799194, 0.0457565039396286, -0.07555491477251053, -0.04075862839818001, 0.024661963805556297, 0.10906119644641876, 0.030873393639922142, -0.09434150159358978, -0.03989962488412857, -0.02529698982834816, -0.04894740879535675, 0.04456963390111923, -0.057435497641563416, -0.021255766972899437, -0.03309156745672226, 0.14022201299667358, 0.012756970711052418, 0.03614116832613945, 0.046482596546411514, -0.026114191859960556, -0.05178702622652054, -0.048470210283994675, 0.03495996445417404, 0.007725479081273079, -0.06686172634363174, 0.0661378875374794, 0.01547669805586338, 0.1758395880460739, 0.020120419561862946, -0.1983484923839569, -0.01182787586003542, 0.13574093580245972, -0.08533651381731033, -0.008832033723592758, -0.04308130219578743, -0.005408295430243015, 0.10148349404335022, -0.007472989149391651, 0.09766153991222382, -0.11840708553791046, -0.06491957604885101, -0.012437624856829643, -0.03786268085241318, 0.07117768377065659, 0.0409640371799469, 0.09116887301206589, -0.29753759503364563, 0.04203777387738228, -0.0245040412992239, -0.10611674189567566, -0.005676762200891972, 0.07101813703775406, -0.02876855805516243, 0.053863152861595154, 0.11612610518932343, -0.03183933347463608, 0.020761525258421898, -0.00005852792673977092, -0.03324451670050621, 0.037243928760290146, -0.0012423167936503887, 0.0983223170042038, -0.10666550695896149, 0.024874931201338768, 0.013785433024168015, -0.015679486095905304, -0.020919449627399445, -0.025600329041481018, -0.05315141752362251, 0.052686747163534164, 0.036368805915117264, -0.2371356338262558, -0.0028924611397087574, -0.005232538096606731, -0.02512277476489544, 0.16440872848033905, 0.05358618125319481, -0.2295752465724945, -0.03103199414908886, 0.00629393057897687, -0.0024943866301327944, 0.0052668810822069645, 0.0428408719599247, -0.044252410531044006, -0.10348248481750488, -0.06609442085027695, -0.12494324892759323, -0.02738994173705578, 0.026202041655778885, -0.015179735608398914, 0.05285497382283211, 0.05713484063744545, -0.08790765702724457, 0.03297245502471924, -0.14130361378192902, 0.1752299666404724, 0.06751831620931625, -0.09519936144351959, 0.16044364869594574, 0.09290865808725357, -0.07296746969223022, -0.022953087463974953, -0.012904707342386246, 0.22519634664058685, -0.012517676688730717, 0.07248782366514206, -0.06760545819997787, -0.037935320287942886, 0.06137803569436073, 0.11782412230968475, -0.0016355756670236588, -0.0250075776129961, 0.007432622369378805, 0.0541134737432003, -0.03658771514892578, -0.1717730015516281, -0.07851550728082657, -0.12269537150859833, -0.08751895278692245, 0.007875068113207817, 0.03678343445062637, -0.009463649243116379, 0.04687666520476341, -0.011584214866161346, 0.013819600455462933, 0.07315380126237869, 0.09222257137298584, 0.2054165154695511, 0.03187379240989685, 0.13728536665439606, -0.036318838596343994, -0.19972831010818481, 0.06460157781839371, -0.04557591676712036, 0.3405452370643616, -0.07516656816005707, 0.13266366720199585, 0.04016118496656418, 0.037357643246650696, 0.08408187329769135, 0.1013806015253067, -0.034406013786792755, -0.024153882637619972, -0.04781634733080864, -0.011806064285337925, 0.09444808214902878, 0.023406613618135452, 0.002947345143184066, -0.18683092296123505, 0.1360563188791275, 0.07598051428794861, 0.09523945301771164, 0.10806199908256531, 0.11063557863235474, -0.21708083152770996, 0.07755684107542038, -0.011830710805952549, -0.11651749908924103, -0.04385058581829071, 0.018487535417079926, 0.02898016758263111, 0.047949131578207016, 0.02970280312001705, -0.08454074710607529, 0.1518000215291977, -0.04980005696415901, 0.042482584714889526, -0.057474277913570404, 0.10542367398738861, 0.019755708053708076, 0.07938607037067413, -0.08012783527374268, 0.23402883112430573, -0.010279166512191296, 0.027983834967017174, -0.02836752124130726, -0.03186126425862312, -0.01137574203312397, 0.030665535479784012, 0.09457534551620483, 0.0043121883645653725, 0.08054882287979126, 0.10764294117689133, -0.1040685847401619, 0.022516464814543724, 0.0686318501830101, 0.09849141538143158, 0.07721303403377533, -0.015575258992612362, -0.08514348417520523, 0.08710366487503052, -0.015104921534657478, -0.038157690316438675, -0.09277252852916718, 0.07177035510540009, 0.12036065757274628, -0.15980206429958344, -0.020041722804307938, -0.013873337768018246, -0.02173949033021927, 0.3330283463001251, 0.13485810160636902, -0.08723986148834229, -0.07386726140975952, 0.03388960286974907, 0.1846686601638794, -0.01748599298298359, 0.08418779075145721, -0.057954322546720505, -0.043862540274858475, -0.005741976201534271, -0.06388074904680252, 0.11779344826936722, -0.09398870170116425, 0.03521501272916794, -0.036969028413295746, 0.034967053681612015, 0.026109715923666954, 0.016850637272000313, 0.03377268463373184, -0.0070596919395029545, -0.1844356805086136, -0.10318467020988464, -0.13638417422771454, -0.1712958812713623, -0.08267021924257278, 0.014688319526612759, -0.013942381367087364, 0.08620918542146683, -0.03579001501202583, 0.10781548172235489, 0.06104154512286186, 0.16756758093833923, -0.09758814424276352, -0.016763176769018173, 0.15414172410964966, 0.04822775349020958, -0.14768663048744202, -0.11556953191757202, -0.0037982433568686247, -0.034317586570978165, -0.041822753846645355, 0.00892091728746891, 0.08367784321308136, -0.023139744997024536, -0.029183607548475266, 0.03596312552690506, -0.05675671994686127, -0.05562782287597656, 0.14843177795410156, -0.06491117179393768, 0.36110618710517883, -0.035153716802597046, -0.014370022341609001, 0.0051835523918271065, -0.06103992462158203, 0.018741784617304802, -0.008908497169613838, 0.09955327957868576, 0.01677027717232704, -0.08562009036540985, -0.005073921289294958, -0.10055024921894073, 0.014164915308356285, 0.034517865628004074, 0.03656797856092453, -0.011517254635691643, -0.009497157298028469, 0.12528489530086517, -0.03568115830421448, 0.12535525858402252, 0.11010757088661194, 0.025558363646268845, -0.059648267924785614, -0.07736240327358246, -0.04817614704370499, 0.013177255168557167, 0.05209643393754959, -0.04333425685763359, -0.18138039112091064, 0.009168153628706932, 0.07362141460180283, 0.05700509250164032, 0.18681618571281433, 0.07809240370988846, -0.027889417484402657, 0.13086621463298798, 0.14060211181640625, -0.14578260481357574, -0.03836912661790848, 0.03366697579622269, 0.022886818274855614, 0.038910821080207825, -0.08351664990186691, 0.0361802764236927, 0.1290920525789261, -0.04451672360301018, -0.029988043010234833, 0.05199015885591507, -0.1157383844256401, -0.06683266162872314, 0.09260601550340652, -0.13994821906089783, -0.08077123016119003, -0.008944499306380749, -0.13494864106178284, -0.030784886330366135, 0.09571581333875656, 0.03981475159525871, -0.12206453084945679, -0.015254728496074677, 0.09235741943120956, 0.0033413313794881105, 0.007993821986019611, 0.12718993425369263, 0.10869372636079788, 0.017056114971637726, -0.06940693408250809, 0.06785110384225845, 0.03717350587248802, 0.08112829923629761, -0.08123371750116348, 0.026655109599232674, -0.17600186169147491, -0.057174813002347946, -0.01485341228544712, 0.020230215042829514, -0.10733092576265335, -0.06538756191730499, -0.14462479948997498, -0.014597443863749504, 0.11461328715085983, 0.04062458127737045, 0.12494852393865585, 0.019381247460842133, -0.040734995156526566, 0.04295855760574341, -0.04254986345767975, 0.07627087086439133, 0.14777140319347382, 0.06882182508707047, -0.14657078683376312, -0.09201253950595856, 0.008901463821530342, 0.044715896248817444, -0.0979815274477005, 0.04876513034105301, -0.07558796554803848, 0.03799400478601456, -0.1285657286643982, -0.03464201092720032, -0.08292727172374725, -0.009258167818188667, -0.05407729372382164, -0.08138620853424072, -0.10577517002820969, 0.037833940237760544, -0.05475962162017822, 0.0022240455728024244, 0.012417139485478401, -0.1193958967924118, -0.09170860052108765, -0.010989891365170479, 0.01785111427307129, -0.04121108725667, 0.07994705438613892, -0.05156933516263962, -0.09623216837644577, -0.045598581433296204, -0.012462465092539787, -0.15815065801143646, 0.11365829408168793, 0.0362873412668705, 0.049180205911397934, -0.06427057832479477, 0.06342228502035141, 0.07672584056854248, 0.10956671088933945, -0.04170345142483711, -0.04647894203662872, -0.020221499726176262, 0.020915985107421875, -0.116651751101017, -0.04517306759953499, -0.02074728161096573, -0.008279159665107727, 0.07799716293811798, 0.1289614588022232, 0.2012457400560379, 0.053934674710035324, -0.05620487034320831, -0.04188268631696701, 0.022711079567670822, 0.003834279952570796, -0.19054445624351501, 0.08149775117635727, -0.06070924177765846, -0.02878737263381481, -0.02536720037460327, 0.2522051930427551, 0.04202989488840103, -0.0008002888644114137, 0.021282415837049484, 0.043884195387363434, -0.03715701028704643, -0.003363383933901787, 0.013982892967760563, 0.04431944712996483, -0.05887417867779732, 0.0059201824478805065, 0.02274780161678791, 0.13662244379520416, -0.02712577022612095, 0.14495904743671417, 0.07320567220449448, -0.004892710130661726, 0.13817083835601807, -0.061061982065439224, -0.04839989170432091, -0.17395944893360138, 0.06255700439214706, -0.05344715341925621, 0.04382956773042679, -0.018789909780025482, -0.03335772827267647, 0.2123793363571167, 0.02989266626536846, 0.060951583087444305, 0.060350608080625534, -0.022051258012652397, -0.10567977279424667, -0.10129439830780029, -0.07215217500925064, -0.05570110306143761, -0.02155601605772972, -0.06314361095428467, -0.07317902892827988, 0.017728347331285477, 0.06009748578071594, -0.03547242656350136, 0.10995049774646759, 0.06676764041185379, -0.09702487289905548, 0.06802113354206085, -0.07835233956575394, -0.006883611902594566, 0.1358335167169571, -0.0017678852891549468, -0.04570680484175682, 0.06987367570400238, 0.012492740526795387, 0.010597982443869114, 0.013973328284919262, 0.06980808824300766, -0.03353742137551308, -0.04357549548149109, -0.10287945717573166, 0.055229853838682175, 0.01943396031856537, 0.025081243366003036, -0.011494354344904423, -0.058789752423763275, 0.04867449402809143, 0.20083987712860107, -0.03279688209295273, -0.1316072642803192, -0.09814755618572235, 0.12269315868616104, 0.05848907306790352, 0.04042321443557739, -0.05099937692284584, -0.0674552470445633, -0.030398553237318993, 0.3248636722564697, 0.2073773443698883, -0.05830894783139229, -0.014894777908921242, 0.06637739390134811, -0.01609799452126026, 0.07563360780477524, -0.02967010624706745, 0.042917873710393906, 0.30421119928359985, -0.032542966306209564, -0.10782576352357864, -0.03773955628275871, -0.025585131719708443, -0.08150696754455566, 0.00997842289507389, 0.1543944627046585, -0.0069344379007816315, -0.12926402688026428, 0.08259481191635132, -0.11746954172849655, -0.09988265484571457, -0.1328197419643402, -0.001865290803834796, -0.06347253173589706, 0.017096279188990593, 0.08034369349479675, -0.047560352832078934, 0.08386074751615524, -0.05564609542489052, -0.017829863354563713, -0.049277205020189285, 0.025631587952375412, -0.0929768830537796, 0.04231100156903267, 0.0670943558216095, 0.12725763022899628, 0.0017699551535770297, 0.0036565857008099556, 0.03968476876616478, 0.1234951987862587, -0.07275764644145966, -0.16784241795539856, 0.0910509005188942, 0.014792480506002903, -0.060669172555208206, 0.04899998754262924, -0.021186457946896553, -0.035200007259845734, -0.021604305133223534, 0.008906199596822262, 0.0031697219237685204, 0.011728017590939999, 0.024289045482873917, 0.05090978741645813, -0.12696626782417297, -0.03557369485497475, -0.06300537288188934, 0.0624786838889122, 0.02859751135110855, -0.040356919169425964, 0.04079199209809303, -0.09190019965171814, -0.012214843183755875, 0.029434124007821083, 0.051009226590394974, -0.020750150084495544, -0.08359696716070175, -0.026435382664203644, 0.052097391337156296, 0.03593093529343605, -0.05745232105255127, 0.011526044458150864, -0.02121553011238575, -0.01709897629916668, -0.01929357647895813, 0.0755009576678276, 0.17252430319786072, 0.0001194943324662745, 0.00788762979209423, -0.01961638033390045, -0.04470796510577202, -0.015769099816679955, -0.13795515894889832, -0.01685832068324089 ]
null
null
transformers
# regnety_004 Implementation of RegNet proposed in [Designing Network Design Spaces](https://arxiv.org/abs/2003.13678) The main idea is to start with a high dimensional search space and iteratively reduce the search space by empirically apply constrains based on the best performing models sampled by the current search space. The resulting models are light, accurate, and faster than EfficientNets (up to 5x times!) For example, to go from $AnyNet_A$ to $AnyNet_B$ they fixed the bottleneck ratio $b_i$ for all stage $i$. The following table shows all the restrictions applied from one search space to the next one. ![image](https://github.com/FrancescoSaverioZuppichini/glasses/blob/develop/docs/_static/images/RegNetDesignSpaceTable.png?raw=true) The paper is really well written and very interesting, I highly recommended read it. ``` python ResNet.regnetx_002() ResNet.regnetx_004() ResNet.regnetx_006() ResNet.regnetx_008() ResNet.regnetx_016() ResNet.regnetx_040() ResNet.regnetx_064() ResNet.regnetx_080() ResNet.regnetx_120() ResNet.regnetx_160() ResNet.regnetx_320() # Y variants (with SE) ResNet.regnety_002() # ... ResNet.regnetx_320() You can easily customize your model ``` Examples: ``` python # change activation RegNet.regnetx_004(activation = nn.SELU) # change number of classes (default is 1000 ) RegNet.regnetx_004(n_classes=100) # pass a different block RegNet.regnetx_004(block=RegNetYBotteneckBlock) # change the steam model = RegNet.regnetx_004(stem=ResNetStemC) change shortcut model = RegNet.regnetx_004(block=partial(RegNetYBotteneckBlock, shortcut=ResNetShorcutD)) # store each feature x = torch.rand((1, 3, 224, 224)) # get features model = RegNet.regnetx_004() # first call .features, this will activate the forward hooks and tells the model you'll like to get the features model.encoder.features model(torch.randn((1,3,224,224))) # get the features from the encoder features = model.encoder.features print([x.shape for x in features]) #[torch.Size([1, 32, 112, 112]), torch.Size([1, 32, 56, 56]), torch.Size([1, 64, 28, 28]), torch.Size([1, 160, 14, 14])] ```
{}
null
glasses/regnety_004
[ "transformers", "pytorch", "arxiv:2003.13678", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[ "2003.13678" ]
[]
TAGS #transformers #pytorch #arxiv-2003.13678 #endpoints_compatible #region-us
# regnety_004 Implementation of RegNet proposed in Designing Network Design Spaces The main idea is to start with a high dimensional search space and iteratively reduce the search space by empirically apply constrains based on the best performing models sampled by the current search space. The resulting models are light, accurate, and faster than EfficientNets (up to 5x times!) For example, to go from $AnyNet_A$ to $AnyNet_B$ they fixed the bottleneck ratio $b_i$ for all stage $i$. The following table shows all the restrictions applied from one search space to the next one. !image The paper is really well written and very interesting, I highly recommended read it. Examples:
[ "# regnety_004\nImplementation of RegNet proposed in Designing Network Design\nSpaces\n\n The main idea is to start with a high dimensional search space and\n iteratively reduce the search space by empirically apply constrains\n based on the best performing models sampled by the current search\n space.\n\n The resulting models are light, accurate, and faster than\n EfficientNets (up to 5x times!)\n\n For example, to go from $AnyNet_A$ to $AnyNet_B$ they fixed the\n bottleneck ratio $b_i$ for all stage $i$. The following table shows\n all the restrictions applied from one search space to the next one.\n\n !image\n\n The paper is really well written and very interesting, I highly\n recommended read it.\n\n \n\n Examples:" ]
[ "TAGS\n#transformers #pytorch #arxiv-2003.13678 #endpoints_compatible #region-us \n", "# regnety_004\nImplementation of RegNet proposed in Designing Network Design\nSpaces\n\n The main idea is to start with a high dimensional search space and\n iteratively reduce the search space by empirically apply constrains\n based on the best performing models sampled by the current search\n space.\n\n The resulting models are light, accurate, and faster than\n EfficientNets (up to 5x times!)\n\n For example, to go from $AnyNet_A$ to $AnyNet_B$ they fixed the\n bottleneck ratio $b_i$ for all stage $i$. The following table shows\n all the restrictions applied from one search space to the next one.\n\n !image\n\n The paper is really well written and very interesting, I highly\n recommended read it.\n\n \n\n Examples:" ]
[ 30, 168 ]
[ "passage: TAGS\n#transformers #pytorch #arxiv-2003.13678 #endpoints_compatible #region-us \n# regnety_004\nImplementation of RegNet proposed in Designing Network Design\nSpaces\n\n The main idea is to start with a high dimensional search space and\n iteratively reduce the search space by empirically apply constrains\n based on the best performing models sampled by the current search\n space.\n\n The resulting models are light, accurate, and faster than\n EfficientNets (up to 5x times!)\n\n For example, to go from $AnyNet_A$ to $AnyNet_B$ they fixed the\n bottleneck ratio $b_i$ for all stage $i$. The following table shows\n all the restrictions applied from one search space to the next one.\n\n !image\n\n The paper is really well written and very interesting, I highly\n recommended read it.\n\n \n\n Examples:" ]
[ 0.01351251546293497, 0.024365639314055443, -0.0025744701270014048, 0.017712295055389404, -0.03334663808345795, -0.1326739639043808, -0.011234686709940434, 0.036966584622859955, -0.146514430642128, -0.05724862962961197, 0.1176166906952858, -0.02518608048558235, -0.11321226507425308, 0.13214339315891266, -0.08249181509017944, -0.20696282386779785, 0.045084916055202484, 0.07595542818307877, -0.05235728994011879, 0.11974959075450897, 0.15649062395095825, -0.06204254925251007, 0.029487350955605507, 0.1112031564116478, -0.06798672676086426, 0.020828962326049805, -0.07255768775939941, -0.03466999903321266, 0.019978811964392662, 0.006391346920281649, 0.15987379848957062, 0.04635568708181381, -0.02100915089249611, -0.09578601270914078, 0.006403952371329069, 0.07239822298288345, -0.01239679753780365, 0.07720736414194107, 0.07142503559589386, 0.1055295392870903, 0.10922247171401978, 0.01697177067399025, -0.09029175341129303, -0.007678466383367777, -0.06465678662061691, -0.025013290345668793, -0.0021465725731104612, 0.024168331176042557, 0.05258398875594139, 0.07005748897790909, -0.051813844591379166, 0.16337715089321136, -0.180980384349823, 0.07727014273405075, 0.22254829108715057, -0.37718722224235535, -0.04901448264718056, 0.0779632031917572, 0.16044089198112488, -0.04676419496536255, 0.00747880432754755, 0.05499894917011261, 0.0038676420226693153, -0.031811803579330444, 0.1706119179725647, -0.06444648653268814, -0.12185527384281158, 0.008259931579232216, -0.20715513825416565, 0.007547444198280573, 0.13202303647994995, 0.05674521252512932, 0.026323745027184486, -0.05905016511678696, -0.21010638773441315, 0.03060411661863327, -0.027834607288241386, -0.09888016432523727, 0.00792712438851595, 0.059328436851501465, -0.06824573129415512, -0.12942713499069214, -0.1089353933930397, 0.04563141241669655, -0.11283358186483383, 0.18089696764945984, 0.04318613186478615, -0.015009078197181225, -0.025605764240026474, 0.0868600606918335, -0.07027237117290497, -0.01491759717464447, 0.029009031131863594, -0.13344180583953857, -0.13287466764450073, -0.0014971193158999085, -0.037059202790260315, -0.08398433029651642, -0.0013636213261634111, 0.16917625069618225, 0.06618135422468185, -0.020285077393054962, 0.16546931862831116, 0.09780583530664444, -0.02744586579501629, 0.08665578812360764, -0.20617760717868805, -0.07088647782802582, 0.08490345627069473, -0.011056440882384777, 0.011447064578533173, 0.009627273306250572, -0.05413518100976944, -0.08269300311803818, 0.09577560424804688, -0.00040135334711521864, 0.039930131286382675, 0.08885549008846283, -0.04250752925872803, -0.03783636540174484, 0.07794031500816345, -0.0040579973720014095, 0.018758755177259445, -0.03810764104127884, -0.06286413967609406, -0.092120461165905, 0.05045418068766594, 0.03672226890921593, -0.10153307765722275, 0.05997083708643913, -0.07977960258722305, -0.023252902552485466, -0.04098931699991226, -0.13614162802696228, -0.03151262551546097, -0.082528255879879, -0.02977648749947548, -0.17740370333194733, -0.1218760684132576, 0.03215480223298073, 0.08955036103725433, -0.0016851888503879309, -0.0010780594311654568, 0.019571347162127495, -0.13054150342941284, -0.15265235304832458, -0.025863848626613617, 0.06679030507802963, -0.043456416577100754, -0.03167590871453285, 0.037254806607961655, 0.06565196067094803, -0.06564591079950333, 0.039619430899620056, -0.11630259454250336, 0.025526443496346474, -0.09004148095846176, 0.09042946994304657, -0.06316150724887848, 0.05272899195551872, -0.06370846927165985, -0.06848587840795517, -0.12841586768627167, 0.0010235130321234465, 0.09230829030275345, 0.081975057721138, -0.07110262662172318, -0.011146347969770432, 0.023515911772847176, -0.012778683565557003, -0.052862633019685745, 0.16686256229877472, -0.05316264182329178, 0.09885251522064209, 0.0629129558801651, 0.14077693223953247, 0.12943004071712494, 0.007173089776188135, -0.019328314810991287, 0.036489613354206085, -0.18559695780277252, -0.1518452763557434, -0.011174468323588371, 0.1368040293455124, 0.04995303973555565, 0.00543223088607192, -0.0888356938958168, 0.06491243839263916, -0.06201888620853424, -0.03790951147675514, -0.036765649914741516, -0.04715364798903465, -0.008613169193267822, 0.040090031921863556, 0.08389119803905487, 0.035631950944662094, -0.13063377141952515, -0.0649452805519104, 0.00399225065484643, -0.03224857151508331, 0.06889455765485764, -0.08504509925842285, 0.10347211360931396, -0.09325367212295532, 0.008788754232227802, -0.21254560351371765, -0.024577433243393898, 0.019813943654298782, 0.00014706944057252258, 0.04874042794108391, 0.1826152205467224, 0.04563116654753685, -0.07555004954338074, -0.04102207347750664, 0.02528403140604496, 0.11079748719930649, 0.03062305971980095, -0.09345965832471848, -0.04103266820311546, -0.02498294785618782, -0.04812535271048546, 0.043198056519031525, -0.0573340579867363, -0.021807508543133736, -0.03325766324996948, 0.13818776607513428, 0.01215639803558588, 0.03636260703206062, 0.04679662361741066, -0.025278450921177864, -0.05166802182793617, -0.04852011054754257, 0.03549771010875702, 0.0074325622990727425, -0.06649511307477951, 0.0638565719127655, 0.014034289866685867, 0.1766996681690216, 0.020884141325950623, -0.20034155249595642, -0.014201764017343521, 0.1363697350025177, -0.0847366526722908, -0.008371485397219658, -0.040983766317367554, -0.005190794821828604, 0.10340781509876251, -0.008393564261496067, 0.09857680648565292, -0.1174183264374733, -0.06540493667125702, -0.01176695991307497, -0.03516373783349991, 0.07224522531032562, 0.041690632700920105, 0.09018117189407349, -0.29411834478378296, 0.04115555062890053, -0.02561614289879799, -0.10487775504589081, -0.0062460582703351974, 0.0704907476902008, -0.02817337028682232, 0.05473896861076355, 0.11605380475521088, -0.031266894191503525, 0.021582957357168198, -0.002272943500429392, -0.03406975418329239, 0.03727978095412254, -0.001459773862734437, 0.09741541743278503, -0.10493871569633484, 0.025307657197117805, 0.013601329177618027, -0.014974416233599186, -0.02126637101173401, -0.025046957656741142, -0.053315628319978714, 0.05186333879828453, 0.03692799434065819, -0.23811857402324677, -0.0029779337346553802, -0.0047074914909899235, -0.023735325783491135, 0.16575761139392853, 0.053153496235609055, -0.22965338826179504, -0.030707087367773056, 0.0018826484447345138, -0.003883597208186984, 0.004649795591831207, 0.042950477451086044, -0.04614678770303726, -0.10448548942804337, -0.06534047424793243, -0.12347768247127533, -0.028158031404018402, 0.025727123022079468, -0.014946775510907173, 0.051852885633707047, 0.057472653687000275, -0.0891045406460762, 0.033380068838596344, -0.14155834913253784, 0.17412254214286804, 0.06775210052728653, -0.09383473545312881, 0.1613466739654541, 0.09116873145103455, -0.07177158445119858, -0.022667178884148598, -0.013580510392785072, 0.22809596359729767, -0.013574883341789246, 0.07246897369623184, -0.06920135021209717, -0.03765895590186119, 0.060284651815891266, 0.11691532284021378, -0.00042025139555335045, -0.025682423263788223, 0.00688744755461812, 0.05476018041372299, -0.03629356250166893, -0.17090721428394318, -0.07852567732334137, -0.1231505423784256, -0.08732426166534424, 0.008447502739727497, 0.03642510250210762, -0.008477416820824146, 0.047130800783634186, -0.010747622698545456, 0.015505736693739891, 0.07264973223209381, 0.09277404844760895, 0.20998558402061462, 0.030852582305669785, 0.137603297829628, -0.03689904510974884, -0.20038358867168427, 0.0636100023984909, -0.045905906707048416, 0.34280693531036377, -0.07555820792913437, 0.13419575989246368, 0.04064953699707985, 0.037404611706733704, 0.08305744081735611, 0.10239051282405853, -0.03616403415799141, -0.02468068338930607, -0.04794212803244591, -0.012028277851641178, 0.09668314456939697, 0.02125624381005764, -0.00023109104949980974, -0.1867377907037735, 0.13559691607952118, 0.07427212595939636, 0.09503845870494843, 0.10833387821912766, 0.10916142165660858, -0.21960267424583435, 0.07733495533466339, -0.01411699689924717, -0.11605898290872574, -0.04421232268214226, 0.018768971785902977, 0.025032177567481995, 0.048191916197538376, 0.030288884416222572, -0.08450911194086075, 0.1516079604625702, -0.05093120038509369, 0.04348301514983177, -0.05615973100066185, 0.10725449025630951, 0.01856551691889763, 0.07882434874773026, -0.0802319198846817, 0.23302112519741058, -0.009951145388185978, 0.028978200629353523, -0.028522782027721405, -0.03269766643643379, -0.010970844887197018, 0.03275386244058609, 0.0942276269197464, 0.003481533844023943, 0.0831679180264473, 0.10633612424135208, -0.10276073217391968, 0.023380298167467117, 0.06856955587863922, 0.09903625398874283, 0.0778341293334961, -0.01519565749913454, -0.08552804589271545, 0.08701184391975403, -0.016697414219379425, -0.03741840645670891, -0.09372686594724655, 0.0713203102350235, 0.12179053574800491, -0.15847797691822052, -0.01887180469930172, -0.014074213802814484, -0.025843171402812004, 0.3331182897090912, 0.13676239550113678, -0.08722644299268723, -0.07363954186439514, 0.0322258323431015, 0.18503209948539734, -0.016608156263828278, 0.0852002277970314, -0.05845455080270767, -0.04543696716427803, -0.004487236496061087, -0.06350786983966827, 0.11765618622303009, -0.09458813816308975, 0.036565836519002914, -0.036333005875349045, 0.03384749963879585, 0.024812275543808937, 0.01595333218574524, 0.033509548753499985, -0.005969140212982893, -0.18650512397289276, -0.10293170064687729, -0.13723896443843842, -0.17493867874145508, -0.08164286613464355, 0.01439441554248333, -0.015922505408525467, 0.08724743127822876, -0.03608483448624611, 0.10850702226161957, 0.06047645956277847, 0.16442346572875977, -0.09709928184747696, -0.018210163339972496, 0.15407414734363556, 0.04877043142914772, -0.1463082879781723, -0.1143803820014, -0.004640643484890461, -0.03522396460175514, -0.042788662016391754, 0.006634848657995462, 0.08586367219686508, -0.024126609787344933, -0.027487915009260178, 0.03999067470431328, -0.0541289858520031, -0.05518259480595589, 0.14925631880760193, -0.06461963802576065, 0.3621748983860016, -0.03573114797472954, -0.013409058563411236, 0.006176817696541548, -0.05951038748025894, 0.015868820250034332, -0.009414419531822205, 0.10118799656629562, 0.016655389219522476, -0.08481843769550323, -0.00589995039626956, -0.10020913183689117, 0.012516038492321968, 0.03579996898770332, 0.03665066882967949, -0.011602948419749737, -0.008543282747268677, 0.12563201785087585, -0.035033125430345535, 0.12595191597938538, 0.10917390882968903, 0.02529185451567173, -0.060536276549100876, -0.0773022323846817, -0.04857577383518219, 0.012535272166132927, 0.0514460988342762, -0.043051473796367645, -0.18210281431674957, 0.009032455272972584, 0.0732128694653511, 0.05651094391942024, 0.18613852560520172, 0.07814642786979675, -0.02599312923848629, 0.12798534333705902, 0.14025869965553284, -0.14706295728683472, -0.041878700256347656, 0.03497576341032982, 0.022417156025767326, 0.039291150867938995, -0.08185911923646927, 0.03457491099834442, 0.12885096669197083, -0.04548380523920059, -0.030038535594940186, 0.05247246101498604, -0.11491608619689941, -0.06705005466938019, 0.09251922369003296, -0.13974227011203766, -0.07876154035329819, -0.00833185762166977, -0.1388145536184311, -0.030682316049933434, 0.09716171771287918, 0.03924047201871872, -0.12137985229492188, -0.014632400125265121, 0.09236712753772736, 0.002864937763661146, 0.009118168614804745, 0.12685567140579224, 0.10827305912971497, 0.017270242795348167, -0.07039152085781097, 0.06667662411928177, 0.03801223635673523, 0.08011840283870697, -0.08110792189836502, 0.02686334401369095, -0.17756244540214539, -0.05765136703848839, -0.016427306458353996, 0.022924918681383133, -0.10732600092887878, -0.0647188201546669, -0.14599700272083282, -0.01557191926985979, 0.11583928018808365, 0.040633607655763626, 0.12473924458026886, 0.018206577748060226, -0.0413394495844841, 0.04291630908846855, -0.04379136860370636, 0.07646282762289047, 0.1457045078277588, 0.06978921592235565, -0.1457216739654541, -0.09470812231302261, 0.009773178026080132, 0.04385024681687355, -0.09723588824272156, 0.04797698184847832, -0.07533030211925507, 0.03760015219449997, -0.12648530304431915, -0.035911448299884796, -0.08190286159515381, -0.008391490206122398, -0.05430760607123375, -0.07959319651126862, -0.10593869537115097, 0.038357678800821304, -0.05359766259789467, 0.0018792301416397095, 0.014536804519593716, -0.11912744492292404, -0.09099795669317245, -0.01018831878900528, 0.01622551493346691, -0.041913118213415146, 0.08019163459539413, -0.0531584732234478, -0.09691242128610611, -0.04678545892238617, -0.010792658664286137, -0.15776991844177246, 0.11224992573261261, 0.035451848059892654, 0.04923311620950699, -0.0651315450668335, 0.0638142079114914, 0.0760510042309761, 0.11014574766159058, -0.0409947969019413, -0.046467725187540054, -0.020759832113981247, 0.022528517991304398, -0.11549986153841019, -0.04339196905493736, -0.02039043977856636, -0.008108697831630707, 0.07693970203399658, 0.12803776562213898, 0.20130036771297455, 0.05353222414851189, -0.0569261759519577, -0.0417870432138443, 0.022614335641264915, 0.003105886746197939, -0.192461296916008, 0.08118697255849838, -0.06094204634428024, -0.0278973039239645, -0.02608749456703663, 0.25470906496047974, 0.042465690523386, -0.001038839342072606, 0.021334156394004822, 0.04631752148270607, -0.039500851184129715, -0.0044904532842338085, 0.013979027979075909, 0.04454859718680382, -0.059143632650375366, 0.005595607217401266, 0.024266038089990616, 0.13656826317310333, -0.02751660905778408, 0.1426595002412796, 0.07260245084762573, -0.004990208428353071, 0.13626644015312195, -0.060793839395046234, -0.04984277859330177, -0.17211325466632843, 0.06355437636375427, -0.05316878482699394, 0.04604261368513107, -0.018089534714818, -0.03548799827694893, 0.21177710592746735, 0.031340427696704865, 0.061834439635276794, 0.05915328115224838, -0.022133931517601013, -0.10352787375450134, -0.09785003215074539, -0.07188889384269714, -0.05625394359230995, -0.021218908950686455, -0.06376203894615173, -0.07366473972797394, 0.018734203651547432, 0.06135670095682144, -0.03517477959394455, 0.11368865519762039, 0.06715545803308487, -0.09610719233751297, 0.06921122223138809, -0.07809661328792572, -0.00778895104303956, 0.13565093278884888, -0.0010309407953172922, -0.04647982120513916, 0.06839270889759064, 0.012118563987314701, 0.010014473460614681, 0.014005793258547783, 0.0702422484755516, -0.03292175754904747, -0.043494079262018204, -0.10259042680263519, 0.05571437254548073, 0.019316576421260834, 0.027642443776130676, -0.012788278982043266, -0.05914211645722389, 0.04754314944148064, 0.20039203763008118, -0.031891923397779465, -0.130451500415802, -0.09843137115240097, 0.12229640781879425, 0.05884125828742981, 0.038078755140304565, -0.0522221215069294, -0.06685307621955872, -0.028663381934165955, 0.3283718526363373, 0.2096903771162033, -0.05738618224859238, -0.015819383785128593, 0.06681510806083679, -0.01619795337319374, 0.0764300599694252, -0.02923964522778988, 0.04455016553401947, 0.3033990263938904, -0.032746538519859314, -0.10775096714496613, -0.03938613831996918, -0.024748116731643677, -0.08267029374837875, 0.008546791039407253, 0.15668435394763947, -0.00697901239618659, -0.12849996984004974, 0.08263581991195679, -0.11642618477344513, -0.1002560630440712, -0.13197743892669678, -0.0017037406796589494, -0.06376451253890991, 0.014804989099502563, 0.0797463059425354, -0.04766983911395073, 0.08334759622812271, -0.054430607706308365, -0.01817007176578045, -0.04915674030780792, 0.02516317181289196, -0.09146104753017426, 0.04033558443188667, 0.0675559788942337, 0.12731069326400757, 0.0014567371690645814, 0.003076738677918911, 0.038612257689237595, 0.12392064929008484, -0.0731949433684349, -0.1676032692193985, 0.09180701524019241, 0.014373992569744587, -0.060307957231998444, 0.05009613558650017, -0.022204330191016197, -0.0345686674118042, -0.020980188623070717, 0.006992836017161608, 0.004372835624963045, 0.012597248889505863, 0.025798799470067024, 0.050551556050777435, -0.12585283815860748, -0.035918474197387695, -0.06283608824014664, 0.06284072250127792, 0.030591044574975967, -0.039676081389188766, 0.040587425231933594, -0.09262526780366898, -0.012750828638672829, 0.029586780816316605, 0.04792582988739014, -0.021694594994187355, -0.08491552621126175, -0.026166323572397232, 0.05243375152349472, 0.035113830119371414, -0.0616050660610199, 0.01151981484144926, -0.019986389204859734, -0.016831951215863228, -0.019816884770989418, 0.07429223507642746, 0.17277991771697998, 0.0005339612835086882, 0.007901989854872227, -0.013508138246834278, -0.04510049149394035, -0.016155395656824112, -0.13840284943580627, -0.016720077022910118 ]
null
null
transformers
# regnety_006 Implementation of RegNet proposed in [Designing Network Design Spaces](https://arxiv.org/abs/2003.13678) The main idea is to start with a high dimensional search space and iteratively reduce the search space by empirically apply constrains based on the best performing models sampled by the current search space. The resulting models are light, accurate, and faster than EfficientNets (up to 5x times!) For example, to go from $AnyNet_A$ to $AnyNet_B$ they fixed the bottleneck ratio $b_i$ for all stage $i$. The following table shows all the restrictions applied from one search space to the next one. ![image](https://github.com/FrancescoSaverioZuppichini/glasses/blob/develop/docs/_static/images/RegNetDesignSpaceTable.png?raw=true) The paper is really well written and very interesting, I highly recommended read it. ``` python ResNet.regnetx_002() ResNet.regnetx_004() ResNet.regnetx_006() ResNet.regnetx_008() ResNet.regnetx_016() ResNet.regnetx_040() ResNet.regnetx_064() ResNet.regnetx_080() ResNet.regnetx_120() ResNet.regnetx_160() ResNet.regnetx_320() # Y variants (with SE) ResNet.regnety_002() # ... ResNet.regnetx_320() You can easily customize your model ``` Examples: ``` python # change activation RegNet.regnetx_004(activation = nn.SELU) # change number of classes (default is 1000 ) RegNet.regnetx_004(n_classes=100) # pass a different block RegNet.regnetx_004(block=RegNetYBotteneckBlock) # change the steam model = RegNet.regnetx_004(stem=ResNetStemC) change shortcut model = RegNet.regnetx_004(block=partial(RegNetYBotteneckBlock, shortcut=ResNetShorcutD)) # store each feature x = torch.rand((1, 3, 224, 224)) # get features model = RegNet.regnetx_004() # first call .features, this will activate the forward hooks and tells the model you'll like to get the features model.encoder.features model(torch.randn((1,3,224,224))) # get the features from the encoder features = model.encoder.features print([x.shape for x in features]) #[torch.Size([1, 32, 112, 112]), torch.Size([1, 32, 56, 56]), torch.Size([1, 64, 28, 28]), torch.Size([1, 160, 14, 14])] ```
{}
null
glasses/regnety_006
[ "transformers", "pytorch", "arxiv:2003.13678", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[ "2003.13678" ]
[]
TAGS #transformers #pytorch #arxiv-2003.13678 #endpoints_compatible #region-us
# regnety_006 Implementation of RegNet proposed in Designing Network Design Spaces The main idea is to start with a high dimensional search space and iteratively reduce the search space by empirically apply constrains based on the best performing models sampled by the current search space. The resulting models are light, accurate, and faster than EfficientNets (up to 5x times!) For example, to go from $AnyNet_A$ to $AnyNet_B$ they fixed the bottleneck ratio $b_i$ for all stage $i$. The following table shows all the restrictions applied from one search space to the next one. !image The paper is really well written and very interesting, I highly recommended read it. Examples:
[ "# regnety_006\nImplementation of RegNet proposed in Designing Network Design\nSpaces\n\n The main idea is to start with a high dimensional search space and\n iteratively reduce the search space by empirically apply constrains\n based on the best performing models sampled by the current search\n space.\n\n The resulting models are light, accurate, and faster than\n EfficientNets (up to 5x times!)\n\n For example, to go from $AnyNet_A$ to $AnyNet_B$ they fixed the\n bottleneck ratio $b_i$ for all stage $i$. The following table shows\n all the restrictions applied from one search space to the next one.\n\n !image\n\n The paper is really well written and very interesting, I highly\n recommended read it.\n\n \n\n Examples:" ]
[ "TAGS\n#transformers #pytorch #arxiv-2003.13678 #endpoints_compatible #region-us \n", "# regnety_006\nImplementation of RegNet proposed in Designing Network Design\nSpaces\n\n The main idea is to start with a high dimensional search space and\n iteratively reduce the search space by empirically apply constrains\n based on the best performing models sampled by the current search\n space.\n\n The resulting models are light, accurate, and faster than\n EfficientNets (up to 5x times!)\n\n For example, to go from $AnyNet_A$ to $AnyNet_B$ they fixed the\n bottleneck ratio $b_i$ for all stage $i$. The following table shows\n all the restrictions applied from one search space to the next one.\n\n !image\n\n The paper is really well written and very interesting, I highly\n recommended read it.\n\n \n\n Examples:" ]
[ 30, 168 ]
[ "passage: TAGS\n#transformers #pytorch #arxiv-2003.13678 #endpoints_compatible #region-us \n# regnety_006\nImplementation of RegNet proposed in Designing Network Design\nSpaces\n\n The main idea is to start with a high dimensional search space and\n iteratively reduce the search space by empirically apply constrains\n based on the best performing models sampled by the current search\n space.\n\n The resulting models are light, accurate, and faster than\n EfficientNets (up to 5x times!)\n\n For example, to go from $AnyNet_A$ to $AnyNet_B$ they fixed the\n bottleneck ratio $b_i$ for all stage $i$. The following table shows\n all the restrictions applied from one search space to the next one.\n\n !image\n\n The paper is really well written and very interesting, I highly\n recommended read it.\n\n \n\n Examples:" ]
[ 0.014487121254205704, 0.02572806552052498, -0.002556465333327651, 0.017966587096452713, -0.03285202011466026, -0.1327628195285797, -0.010050980374217033, 0.03709428757429123, -0.1439252346754074, -0.057301610708236694, 0.11745420098304749, -0.0250018909573555, -0.11204412579536438, 0.13101275265216827, -0.08290412276983261, -0.20583476126194, 0.0459219254553318, 0.07479992508888245, -0.05318852514028549, 0.12020492553710938, 0.15610231459140778, -0.06152290850877762, 0.028991224244236946, 0.11021243035793304, -0.07023125141859055, 0.021691348403692245, -0.07251103967428207, -0.03351534530520439, 0.01931239292025566, 0.005136662162840366, 0.1603676676750183, 0.04788503423333168, -0.02020864188671112, -0.09486914426088333, 0.0064256698824465275, 0.0724458247423172, -0.011987443082034588, 0.07700920850038528, 0.07180190831422806, 0.10725993663072586, 0.11155380308628082, 0.018466074019670486, -0.0913868397474289, -0.007549724541604519, -0.0643966794013977, -0.02263643778860569, -0.0025771302171051502, 0.02368796244263649, 0.05401120334863663, 0.07099771499633789, -0.05190863460302353, 0.16384264826774597, -0.18179525434970856, 0.0765443667769432, 0.22279945015907288, -0.3742867708206177, -0.04858900606632233, 0.07918433099985123, 0.1590244621038437, -0.046745870262384415, 0.006898105144500732, 0.052861228585243225, 0.0040057054720819, -0.03210548684000969, 0.1672828048467636, -0.06388533860445023, -0.12555629014968872, 0.0074215419590473175, -0.20722395181655884, 0.007072348613291979, 0.1314484030008316, 0.05766885727643967, 0.026458648964762688, -0.057191330939531326, -0.2102120965719223, 0.032313358038663864, -0.026968052610754967, -0.09961521625518799, 0.007995791733264923, 0.059277404099702835, -0.0674857348203659, -0.12952390313148499, -0.10996560752391815, 0.04399760439991951, -0.11381007730960846, 0.18108190596103668, 0.042650435119867325, -0.014341759495437145, -0.027439134195446968, 0.08675029128789902, -0.06928718090057373, -0.015388992615044117, 0.028168993070721626, -0.13365089893341064, -0.13278453052043915, -0.0010423591593280435, -0.03580809012055397, -0.0856221616268158, -0.0013385788770392537, 0.16407950222492218, 0.06570395827293396, -0.019326819106936455, 0.16510836780071259, 0.09769798815250397, -0.02764013037085533, 0.08548867702484131, -0.2041185349225998, -0.06695441901683807, 0.08322346210479736, -0.010074925608932972, 0.010285777971148491, 0.009682434611022472, -0.05439413711428642, -0.08212060481309891, 0.09558572620153427, -0.0010491457069292665, 0.040109552443027496, 0.0885552316904068, -0.04342687129974365, -0.03774898499250412, 0.0785021036863327, -0.0038139442913234234, 0.018552085384726524, -0.03793862834572792, -0.06349378824234009, -0.09331350773572922, 0.05041080713272095, 0.03621623292565346, -0.1014539822936058, 0.06069405376911163, -0.08054249733686447, -0.0231829471886158, -0.04142513498663902, -0.13574829697608948, -0.03074100986123085, -0.08419319987297058, -0.029920659959316254, -0.17679926753044128, -0.12020990997552872, 0.03176494315266609, 0.08966068178415298, -0.001526877167634666, -0.00031187760760076344, 0.01792537420988083, -0.13220661878585815, -0.15231777727603912, -0.025829335674643517, 0.0693734809756279, -0.04295442998409271, -0.030954234302043915, 0.0379115529358387, 0.0658194050192833, -0.06658323109149933, 0.0396992564201355, -0.11783741414546967, 0.024848388507962227, -0.08706934750080109, 0.09023673832416534, -0.06470192223787308, 0.05108713358640671, -0.06467436999082565, -0.06735637784004211, -0.1298747956752777, 0.00035751634277403355, 0.09293951839208603, 0.08420483767986298, -0.07082825154066086, -0.010578314773738384, 0.024181483313441277, -0.014117816463112831, -0.05290555581450462, 0.16515026986598969, -0.05283049866557121, 0.09939306229352951, 0.06102917343378067, 0.14119629561901093, 0.12988467514514923, 0.007293728180229664, -0.020806875079870224, 0.03681119158864021, -0.18566901981830597, -0.15316778421401978, -0.011457223445177078, 0.13653340935707092, 0.05194314569234848, 0.005231440532952547, -0.08898304402828217, 0.06459053605794907, -0.06206861510872841, -0.037135619670152664, -0.036904335021972656, -0.04637797549366951, -0.008899248205125332, 0.04127758368849754, 0.08362086117267609, 0.035648684948682785, -0.12946677207946777, -0.06651948392391205, 0.0034814628306776285, -0.030850762501358986, 0.06799211353063583, -0.08530750125646591, 0.10146390646696091, -0.09429752826690674, 0.009020033292472363, -0.21352733671665192, -0.026216374710202217, 0.02051183208823204, -0.0007460396154783666, 0.0496317520737648, 0.18376225233078003, 0.045787252485752106, -0.07699327915906906, -0.04079125076532364, 0.024620847776532173, 0.1098732203245163, 0.030339179560542107, -0.0932406559586525, -0.041350822895765305, -0.024699006229639053, -0.049538176506757736, 0.04197797179222107, -0.05523284524679184, -0.021834779530763626, -0.03232529014348984, 0.13784804940223694, 0.01252822671085596, 0.03566157445311546, 0.046940822154283524, -0.026223119348287582, -0.051819588989019394, -0.04897444695234299, 0.035641975700855255, 0.007165545132011175, -0.06539151817560196, 0.06431476771831512, 0.014723190106451511, 0.17337076365947723, 0.020808057859539986, -0.1963147073984146, -0.014049464836716652, 0.13720452785491943, -0.08489906787872314, -0.008242187090218067, -0.04137484356760979, -0.0036247295793145895, 0.10332715511322021, -0.00829920545220375, 0.0964708998799324, -0.11776919662952423, -0.06516053527593613, -0.010750820860266685, -0.03582146018743515, 0.07032165676355362, 0.042373646050691605, 0.09316980838775635, -0.29930999875068665, 0.04227812960743904, -0.02311673015356064, -0.10407266765832901, -0.006551901809871197, 0.06997407972812653, -0.028680821880698204, 0.055657919496297836, 0.11730246245861053, -0.03179359808564186, 0.021696612238883972, -0.0024297316558659077, -0.03304600343108177, 0.03692764788866043, -0.00009314848284702748, 0.09781579673290253, -0.10623687505722046, 0.02545679174363613, 0.012660471722483635, -0.0143642732873559, -0.022411441430449486, -0.025075437501072884, -0.053248293697834015, 0.05268510431051254, 0.036907684057950974, -0.23884396255016327, -0.0029960775282233953, -0.005627746693789959, -0.02409668080508709, 0.16656626760959625, 0.053725529462099075, -0.22788985073566437, -0.03016112558543682, 0.0020949605386704206, -0.0039527881890535355, 0.0046295467764139175, 0.04281192272901535, -0.04798092693090439, -0.10431767255067825, -0.06573355942964554, -0.12379920482635498, -0.028852680698037148, 0.024676969274878502, -0.014171849004924297, 0.052325669676065445, 0.05645955726504326, -0.089040607213974, 0.03269287943840027, -0.1423209011554718, 0.1737082600593567, 0.06832653284072876, -0.09454479068517685, 0.16048561036586761, 0.09133903682231903, -0.07326973974704742, -0.02244090475142002, -0.012771488167345524, 0.2263079136610031, -0.013183262199163437, 0.07197058200836182, -0.06884275376796722, -0.03640693426132202, 0.060850076377391815, 0.11769445240497589, -0.0015923846513032913, -0.025504207238554955, 0.00809377059340477, 0.0545642115175724, -0.036486536264419556, -0.17270931601524353, -0.07787952572107315, -0.12337962538003922, -0.08813158422708511, 0.007998928427696228, 0.03680257871747017, -0.010917918756604195, 0.04762915521860123, -0.01004867348819971, 0.012251744978129864, 0.07206965237855911, 0.09277215600013733, 0.20711550116539001, 0.03192269057035446, 0.1366383284330368, -0.03749164938926697, -0.19902779161930084, 0.06283789873123169, -0.04554031044244766, 0.3438211679458618, -0.07533691078424454, 0.13172779977321625, 0.04065639153122902, 0.037593774497509, 0.08276714384555817, 0.10356242209672928, -0.0351463183760643, -0.025156037881970406, -0.04844612628221512, -0.01129491999745369, 0.09554389119148254, 0.021193325519561768, -0.0004270566569175571, -0.18677137792110443, 0.13486294448375702, 0.07665605843067169, 0.09300310909748077, 0.10834499448537827, 0.11067213118076324, -0.21886824071407318, 0.07741580903530121, -0.014048523269593716, -0.11543842405080795, -0.04469893127679825, 0.0186501182615757, 0.02615879848599434, 0.048657625913619995, 0.029596861451864243, -0.08426370471715927, 0.15125823020935059, -0.04911394789814949, 0.042697202414274216, -0.05708210542798042, 0.10679558664560318, 0.018923800438642502, 0.07924189418554306, -0.0811316967010498, 0.23563936352729797, -0.010271347127854824, 0.02823844738304615, -0.028786201030015945, -0.03220503777265549, -0.011455424129962921, 0.029682103544473648, 0.09559225291013718, 0.003917745314538479, 0.08071725815534592, 0.1083231270313263, -0.10221841931343079, 0.024261146783828735, 0.07038635015487671, 0.10008279979228973, 0.07746314257383347, -0.014929329976439476, -0.0847284123301506, 0.08752437680959702, -0.01591184176504612, -0.03732446953654289, -0.09477932006120682, 0.07103516906499863, 0.12051635980606079, -0.15977708995342255, -0.018619868904352188, -0.013614150695502758, -0.023165537044405937, 0.33349186182022095, 0.1368996500968933, -0.08665988594293594, -0.0729341059923172, 0.03341267630457878, 0.184651717543602, -0.017363568767905235, 0.08286212384700775, -0.06005392596125603, -0.046242855489254, -0.004440890625119209, -0.06412798166275024, 0.11871790885925293, -0.09440233558416367, 0.0363212451338768, -0.03661935776472092, 0.03364809975028038, 0.025550110265612602, 0.016145898029208183, 0.03294578567147255, -0.00668503250926733, -0.1854725033044815, -0.10275034606456757, -0.1346399486064911, -0.17544928193092346, -0.08183831721544266, 0.015014773234724998, -0.015414689667522907, 0.08467673510313034, -0.03684299439191818, 0.10814222693443298, 0.0599467009305954, 0.16586601734161377, -0.09658011794090271, -0.018280768766999245, 0.15528464317321777, 0.048642244189977646, -0.14740030467510223, -0.11328788101673126, -0.0036746272817254066, -0.035203397274017334, -0.04319861903786659, 0.007335766684263945, 0.08480213582515717, -0.024723175913095474, -0.02845717966556549, 0.03854641318321228, -0.05412259325385094, -0.05391255021095276, 0.14826489984989166, -0.06330724060535431, 0.361095666885376, -0.03479403629899025, -0.01305034477263689, 0.007363345939666033, -0.062088627368211746, 0.017883602529764175, -0.005849780514836311, 0.1012921929359436, 0.016209207475185394, -0.08393989503383636, -0.00571850873529911, -0.1010625883936882, 0.011651629582047462, 0.03554508090019226, 0.036978188902139664, -0.01154535636305809, -0.010397437028586864, 0.12564483284950256, -0.034804780036211014, 0.12618175148963928, 0.11001010984182358, 0.026538070291280746, -0.05830386281013489, -0.07633154094219208, -0.04996804520487785, 0.012607714161276817, 0.05143197998404503, -0.04301045835018158, -0.18133805692195892, 0.009454118087887764, 0.07333125174045563, 0.05584261566400528, 0.18722526729106903, 0.07838800549507141, -0.024566305801272392, 0.12949639558792114, 0.14156322181224823, -0.14678119122982025, -0.03782596066594124, 0.03407684713602066, 0.023180140182375908, 0.03929401561617851, -0.08383508026599884, 0.034041471779346466, 0.12963852286338806, -0.04468943178653717, -0.030176639556884766, 0.053370241075754166, -0.1155681386590004, -0.0669003501534462, 0.09288734942674637, -0.13922759890556335, -0.0810634046792984, -0.007936372421681881, -0.1352211833000183, -0.03207862377166748, 0.09812357276678085, 0.03829773887991905, -0.12128127366304398, -0.014444814994931221, 0.09221009910106659, 0.003497152589261532, 0.009351743385195732, 0.12692254781723022, 0.10757463425397873, 0.017822420224547386, -0.07053089886903763, 0.06829524040222168, 0.03750559687614441, 0.07816989719867706, -0.0809788927435875, 0.027686364948749542, -0.17690932750701904, -0.05717102438211441, -0.014029277488589287, 0.02171603962779045, -0.10629425197839737, -0.06356147676706314, -0.14429928362369537, -0.015999017283320427, 0.11541486531496048, 0.040799565613269806, 0.12432398647069931, 0.018192235380411148, -0.04058477655053139, 0.043029073625802994, -0.04505658522248268, 0.07579676061868668, 0.14455722272396088, 0.07027693092823029, -0.1461995244026184, -0.09733141213655472, 0.008845222182571888, 0.04454215615987778, -0.09722459316253662, 0.04821062460541725, -0.07511265575885773, 0.03676103428006172, -0.12375447899103165, -0.036278728395700455, -0.08168637007474899, -0.009174011647701263, -0.054198067635297775, -0.08033394813537598, -0.10553759336471558, 0.039151549339294434, -0.054792389273643494, 0.0015870695933699608, 0.013596246019005775, -0.11889331042766571, -0.09073377400636673, -0.010015425272285938, 0.0166460070759058, -0.04166746139526367, 0.07981101423501968, -0.05216951295733452, -0.09670098125934601, -0.045575372874736786, -0.01431460864841938, -0.158184215426445, 0.11357778310775757, 0.0361919105052948, 0.049800265580415726, -0.06456498056650162, 0.06334622949361801, 0.07630547136068344, 0.11034908145666122, -0.04204683005809784, -0.046862877905368805, -0.02061266265809536, 0.023067886009812355, -0.11772601306438446, -0.044119883328676224, -0.02076740376651287, -0.007087526377290487, 0.07921311259269714, 0.12820902466773987, 0.2018732875585556, 0.053724221885204315, -0.05627042055130005, -0.04144754633307457, 0.022857818752527237, 0.0038752066902816296, -0.19190765917301178, 0.07973507791757584, -0.060775309801101685, -0.02812862955033779, -0.026082515716552734, 0.24937672913074493, 0.042424991726875305, -0.0017220528097823262, 0.021394163370132446, 0.046380020678043365, -0.04000860080122948, -0.004857645835727453, 0.012026489712297916, 0.04395366460084915, -0.05956564471125603, 0.008299327455461025, 0.023904815316200256, 0.13534748554229736, -0.026782365515828133, 0.1460043042898178, 0.0732835903763771, -0.006415197160094976, 0.1374017745256424, -0.05992865934967995, -0.049649499356746674, -0.17174451053142548, 0.06474562734365463, -0.052827928215265274, 0.044871389865875244, -0.018545998260378838, -0.034927528351545334, 0.21065615117549896, 0.03231906518340111, 0.06187421455979347, 0.05769313499331474, -0.02171342633664608, -0.10356062650680542, -0.09754499793052673, -0.07194340229034424, -0.05593203008174896, -0.020529931411147118, -0.06350211054086685, -0.07244398444890976, 0.019062718376517296, 0.06126509979367256, -0.0357343927025795, 0.11353228241205215, 0.06775184720754623, -0.0967385545372963, 0.06929923593997955, -0.07893551141023636, -0.00855894386768341, 0.1353600174188614, 0.00009868729102890939, -0.04503566399216652, 0.06915553659200668, 0.012668746523559093, 0.01087400782853365, 0.012765642255544662, 0.06953849643468857, -0.03338140249252319, -0.0437593050301075, -0.10276912152767181, 0.05617193505167961, 0.018933983519673347, 0.02867693267762661, -0.012989208102226257, -0.05818936228752136, 0.04804350063204765, 0.20148681104183197, -0.03316113352775574, -0.13044358789920807, -0.09702950716018677, 0.1252167969942093, 0.058223657310009, 0.03877401724457741, -0.051402606070041656, -0.06770707666873932, -0.0302360150963068, 0.3247493803501129, 0.20745617151260376, -0.057727888226509094, -0.015522939153015614, 0.06672047078609467, -0.015893252566456795, 0.07535110414028168, -0.028581652790308, 0.044478803873062134, 0.30364659428596497, -0.03306381776928902, -0.10676554590463638, -0.038888465613126755, -0.0245667677372694, -0.08036614209413528, 0.008637904189527035, 0.1569235622882843, -0.00732534471899271, -0.12914927303791046, 0.08216334879398346, -0.1166616827249527, -0.10058149695396423, -0.1333170086145401, -0.0028691051993519068, -0.06343763321638107, 0.015500121749937534, 0.0796925276517868, -0.047334395349025726, 0.08465214818716049, -0.05519258975982666, -0.017619427293539047, -0.051456745713949203, 0.025135492905974388, -0.09258835017681122, 0.040923476219177246, 0.0665762647986412, 0.12363453954458237, 0.0019374858820810914, 0.0037511521950364113, 0.038287919014692307, 0.12387290596961975, -0.07340548932552338, -0.1687074601650238, 0.09238342195749283, 0.01411646418273449, -0.06056395173072815, 0.050015855580568314, -0.0213589109480381, -0.03438377007842064, -0.020962810143828392, 0.007254738826304674, 0.00213463231921196, 0.012830480933189392, 0.02595275640487671, 0.05113113671541214, -0.12629637122154236, -0.03431161493062973, -0.06297557801008224, 0.0628972128033638, 0.030837494879961014, -0.039290573447942734, 0.03998203203082085, -0.09288646280765533, -0.01260877214372158, 0.02938826195895672, 0.0501580610871315, -0.021534213796257973, -0.08410512655973434, -0.0260353721678257, 0.051856644451618195, 0.035093214362859726, -0.062258508056402206, 0.012845905497670174, -0.020732585340738297, -0.017250970005989075, -0.01987767405807972, 0.07426411658525467, 0.17248888313770294, 0.0006583144422620535, 0.007699982728809118, -0.016739580780267715, -0.044595517218112946, -0.015027862973511219, -0.1384694129228592, -0.01628931052982807 ]
null
null
transformers
# regnety_008 Implementation of RegNet proposed in [Designing Network Design Spaces](https://arxiv.org/abs/2003.13678) The main idea is to start with a high dimensional search space and iteratively reduce the search space by empirically apply constrains based on the best performing models sampled by the current search space. The resulting models are light, accurate, and faster than EfficientNets (up to 5x times!) For example, to go from $AnyNet_A$ to $AnyNet_B$ they fixed the bottleneck ratio $b_i$ for all stage $i$. The following table shows all the restrictions applied from one search space to the next one. ![image](https://github.com/FrancescoSaverioZuppichini/glasses/blob/develop/docs/_static/images/RegNetDesignSpaceTable.png?raw=true) The paper is really well written and very interesting, I highly recommended read it. ``` python ResNet.regnetx_002() ResNet.regnetx_004() ResNet.regnetx_006() ResNet.regnetx_008() ResNet.regnetx_016() ResNet.regnetx_040() ResNet.regnetx_064() ResNet.regnetx_080() ResNet.regnetx_120() ResNet.regnetx_160() ResNet.regnetx_320() # Y variants (with SE) ResNet.regnety_002() # ... ResNet.regnetx_320() You can easily customize your model ``` Examples: ``` python # change activation RegNet.regnetx_004(activation = nn.SELU) # change number of classes (default is 1000 ) RegNet.regnetx_004(n_classes=100) # pass a different block RegNet.regnetx_004(block=RegNetYBotteneckBlock) # change the steam model = RegNet.regnetx_004(stem=ResNetStemC) change shortcut model = RegNet.regnetx_004(block=partial(RegNetYBotteneckBlock, shortcut=ResNetShorcutD)) # store each feature x = torch.rand((1, 3, 224, 224)) # get features model = RegNet.regnetx_004() # first call .features, this will activate the forward hooks and tells the model you'll like to get the features model.encoder.features model(torch.randn((1,3,224,224))) # get the features from the encoder features = model.encoder.features print([x.shape for x in features]) #[torch.Size([1, 32, 112, 112]), torch.Size([1, 32, 56, 56]), torch.Size([1, 64, 28, 28]), torch.Size([1, 160, 14, 14])] ```
{}
null
glasses/regnety_008
[ "transformers", "pytorch", "arxiv:2003.13678", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[ "2003.13678" ]
[]
TAGS #transformers #pytorch #arxiv-2003.13678 #endpoints_compatible #region-us
# regnety_008 Implementation of RegNet proposed in Designing Network Design Spaces The main idea is to start with a high dimensional search space and iteratively reduce the search space by empirically apply constrains based on the best performing models sampled by the current search space. The resulting models are light, accurate, and faster than EfficientNets (up to 5x times!) For example, to go from $AnyNet_A$ to $AnyNet_B$ they fixed the bottleneck ratio $b_i$ for all stage $i$. The following table shows all the restrictions applied from one search space to the next one. !image The paper is really well written and very interesting, I highly recommended read it. Examples:
[ "# regnety_008\nImplementation of RegNet proposed in Designing Network Design\nSpaces\n\n The main idea is to start with a high dimensional search space and\n iteratively reduce the search space by empirically apply constrains\n based on the best performing models sampled by the current search\n space.\n\n The resulting models are light, accurate, and faster than\n EfficientNets (up to 5x times!)\n\n For example, to go from $AnyNet_A$ to $AnyNet_B$ they fixed the\n bottleneck ratio $b_i$ for all stage $i$. The following table shows\n all the restrictions applied from one search space to the next one.\n\n !image\n\n The paper is really well written and very interesting, I highly\n recommended read it.\n\n \n\n Examples:" ]
[ "TAGS\n#transformers #pytorch #arxiv-2003.13678 #endpoints_compatible #region-us \n", "# regnety_008\nImplementation of RegNet proposed in Designing Network Design\nSpaces\n\n The main idea is to start with a high dimensional search space and\n iteratively reduce the search space by empirically apply constrains\n based on the best performing models sampled by the current search\n space.\n\n The resulting models are light, accurate, and faster than\n EfficientNets (up to 5x times!)\n\n For example, to go from $AnyNet_A$ to $AnyNet_B$ they fixed the\n bottleneck ratio $b_i$ for all stage $i$. The following table shows\n all the restrictions applied from one search space to the next one.\n\n !image\n\n The paper is really well written and very interesting, I highly\n recommended read it.\n\n \n\n Examples:" ]
[ 30, 168 ]
[ "passage: TAGS\n#transformers #pytorch #arxiv-2003.13678 #endpoints_compatible #region-us \n# regnety_008\nImplementation of RegNet proposed in Designing Network Design\nSpaces\n\n The main idea is to start with a high dimensional search space and\n iteratively reduce the search space by empirically apply constrains\n based on the best performing models sampled by the current search\n space.\n\n The resulting models are light, accurate, and faster than\n EfficientNets (up to 5x times!)\n\n For example, to go from $AnyNet_A$ to $AnyNet_B$ they fixed the\n bottleneck ratio $b_i$ for all stage $i$. The following table shows\n all the restrictions applied from one search space to the next one.\n\n !image\n\n The paper is really well written and very interesting, I highly\n recommended read it.\n\n \n\n Examples:" ]
[ 0.013164542615413666, 0.026898430660367012, -0.002556412247940898, 0.01796565391123295, -0.032915957272052765, -0.13260714709758759, -0.009736540727317333, 0.03720356523990631, -0.1442309319972992, -0.05763379484415054, 0.11754785478115082, -0.025805748999118805, -0.1120627149939537, 0.12957783043384552, -0.08266472816467285, -0.20613083243370056, 0.04649335891008377, 0.07578179985284805, -0.04888502135872841, 0.1195661723613739, 0.15647485852241516, -0.062233537435531616, 0.029144015163183212, 0.11043868958950043, -0.06785251200199127, 0.02147364802658558, -0.07252320647239685, -0.03434203937649727, 0.01975448615849018, 0.006573630031198263, 0.1603347510099411, 0.047458913177251816, -0.02051622048020363, -0.0971161276102066, 0.005894701462239027, 0.07258398085832596, -0.012369124218821526, 0.07701205462217331, 0.07229156047105789, 0.10774350166320801, 0.11081741005182266, 0.01908656768500805, -0.09073618054389954, -0.007734519429504871, -0.06437905132770538, -0.022943692281842232, -0.002910125767812133, 0.02674034796655178, 0.05413567274808884, 0.07023269683122635, -0.05134942755103111, 0.16406764090061188, -0.180669367313385, 0.07757442444562912, 0.22393333911895752, -0.37517672777175903, -0.04789477959275246, 0.07766691595315933, 0.1604604572057724, -0.04545333608984947, 0.007826614193618298, 0.05280275270342827, 0.003817246062681079, -0.032052867114543915, 0.1676071137189865, -0.0641040951013565, -0.12477507442235947, 0.007688846904784441, -0.206816166639328, 0.006395699456334114, 0.13216765224933624, 0.058539554476737976, 0.026454804465174675, -0.05832085385918617, -0.21041671931743622, 0.027420157566666603, -0.027126150205731392, -0.099823497235775, 0.007703098934143782, 0.059450436383485794, -0.06548530608415604, -0.1292845606803894, -0.10999312996864319, 0.04484294727444649, -0.11333790421485901, 0.1806028187274933, 0.04292242228984833, -0.014682788401842117, -0.026606209576129913, 0.08667390048503876, -0.07196871936321259, -0.015657756477594376, 0.028225641697645187, -0.13223610818386078, -0.13259267807006836, -0.0018951408565044403, -0.03667580708861351, -0.08604638278484344, -0.0009570040856488049, 0.16937971115112305, 0.06571737676858902, -0.01874157413840294, 0.16488902270793915, 0.09803277254104614, -0.026939241215586662, 0.088042713701725, -0.2059987187385559, -0.06854887306690216, 0.08415082097053528, -0.009304962120950222, 0.011029529385268688, 0.008844858966767788, -0.05483592674136162, -0.08308713138103485, 0.0980541855096817, -0.0013867876259610057, 0.04033345356583595, 0.08738842606544495, -0.04309098422527313, -0.037623729556798935, 0.08084169030189514, -0.004215532913804054, 0.018871551379561424, -0.038072582334280014, -0.0630619153380394, -0.09199357777833939, 0.05110940337181091, 0.037957388907670975, -0.10170777142047882, 0.06060583144426346, -0.07999415695667267, -0.02289748750627041, -0.04137541353702545, -0.13560132682323456, -0.030419809743762016, -0.08460923284292221, -0.029583614319562912, -0.1774814873933792, -0.12141631543636322, 0.03090144321322441, 0.08893243968486786, -0.0005671670660376549, 0.00045504665467888117, 0.01874067261815071, -0.13087661564350128, -0.15305237472057343, -0.02685508131980896, 0.06514859199523926, -0.04368727281689644, -0.03107050433754921, 0.038055434823036194, 0.0652470514178276, -0.06897872686386108, 0.03962668403983116, -0.11719819158315659, 0.025158394128084183, -0.08649565279483795, 0.08937348425388336, -0.06357872486114502, 0.05336567759513855, -0.06267866492271423, -0.0673576146364212, -0.12833663821220398, 0.0012511956738308072, 0.09342370182275772, 0.08286183327436447, -0.07187981903553009, -0.009890553541481495, 0.023460131138563156, -0.013695579022169113, -0.05409581959247589, 0.16687998175621033, -0.05218231678009033, 0.09655271470546722, 0.06284474581480026, 0.140996515750885, 0.13060952723026276, 0.007943887263536453, -0.020278021693229675, 0.03639737516641617, -0.18489094078540802, -0.15444877743721008, -0.011427897959947586, 0.1354673057794571, 0.052188146859407425, 0.005508407950401306, -0.08809517323970795, 0.0647682175040245, -0.062061987817287445, -0.03767351433634758, -0.03719362989068031, -0.046828512102365494, -0.010255994275212288, 0.041381753981113434, 0.08314129710197449, 0.035022247582674026, -0.12988996505737305, -0.0641017034649849, 0.004042783286422491, -0.031214937567710876, 0.06860455125570297, -0.08560999482870102, 0.10330624133348465, -0.09317479282617569, 0.008079387247562408, -0.21267586946487427, -0.024125223979353905, 0.020024890080094337, 0.0007827988592907786, 0.047970402985811234, 0.18358498811721802, 0.04575493931770325, -0.07645754516124725, -0.040241580456495285, 0.024497823789715767, 0.11048291623592377, 0.03101504035294056, -0.09483765065670013, -0.039443012326955795, -0.025605926290154457, -0.048536721616983414, 0.03996347635984421, -0.05601778253912926, -0.02098403312265873, -0.032924093306064606, 0.13837532699108124, 0.012372820638120174, 0.035467714071273804, 0.04645159840583801, -0.025002120062708855, -0.05231700465083122, -0.04867890849709511, 0.035709839314222336, 0.006768562365323305, -0.06647792458534241, 0.06208081170916557, 0.013861807063221931, 0.17647318542003632, 0.020565813407301903, -0.1991814374923706, -0.012888194061815739, 0.13684126734733582, -0.08429763466119766, -0.00826850812882185, -0.04080468416213989, -0.004846363328397274, 0.10366545617580414, -0.007852202281355858, 0.09815569221973419, -0.11769548058509827, -0.06464210897684097, -0.011785528622567654, -0.03603995218873024, 0.07046531140804291, 0.04141150414943695, 0.09163223952054977, -0.29313719272613525, 0.041372161358594894, -0.02429702877998352, -0.10561587661504745, -0.007069853134453297, 0.0698876604437828, -0.028723448514938354, 0.055809371173381805, 0.1167031079530716, -0.0317959189414978, 0.02082941122353077, -0.005915501154959202, -0.03342986851930618, 0.03723587468266487, -0.0006209397688508034, 0.09868159145116806, -0.1062438040971756, 0.02541457861661911, 0.01355045661330223, -0.014550589956343174, -0.021230822429060936, -0.026304183527827263, -0.05362952873110771, 0.05228004232048988, 0.03627096861600876, -0.2389000803232193, -0.0018829877953976393, -0.005526042077690363, -0.02428528666496277, 0.16552741825580597, 0.053280048072338104, -0.22986704111099243, -0.03233083710074425, 0.0029449197463691235, -0.004950165748596191, 0.00523735024034977, 0.0430351160466671, -0.04583397135138512, -0.10457025468349457, -0.06652774661779404, -0.12538152933120728, -0.028437897562980652, 0.02556433342397213, -0.013731024228036404, 0.051616620272397995, 0.057702671736478806, -0.08918941020965576, 0.03251006454229355, -0.14110729098320007, 0.17452965676784515, 0.06791523844003677, -0.09421684592962265, 0.1612124890089035, 0.09233644604682922, -0.07334364205598831, -0.02228841371834278, -0.012327549047768116, 0.22620148956775665, -0.013034360483288765, 0.07242485880851746, -0.06831426173448563, -0.03810899704694748, 0.06098746880888939, 0.11691746860742569, -0.0014520243275910616, -0.025963809341192245, 0.007360450923442841, 0.05417686328291893, -0.03627266734838486, -0.17133013904094696, -0.07768178731203079, -0.12280896306037903, -0.08740799874067307, 0.0077474163845181465, 0.03724591061472893, -0.007780879270285368, 0.04749758914113045, -0.010619929060339928, 0.014351469464600086, 0.07130814343690872, 0.09220341593027115, 0.20782950520515442, 0.031089330092072487, 0.13674111664295197, -0.03728145360946655, -0.19868429005146027, 0.06321866810321808, -0.045856691896915436, 0.34022095799446106, -0.07398378849029541, 0.1335420459508896, 0.0405140221118927, 0.03793727979063988, 0.0830698236823082, 0.10348182171583176, -0.03556853160262108, -0.02556619793176651, -0.04756598919630051, -0.011285990476608276, 0.09418650716543198, 0.021612441167235374, -0.00021990160166751593, -0.18642066419124603, 0.13496704399585724, 0.07537313550710678, 0.09362299740314484, 0.1080654039978981, 0.10974200069904327, -0.21996858716011047, 0.07842779904603958, -0.01380324736237526, -0.11633431911468506, -0.045735400170087814, 0.019728489220142365, 0.025732384994626045, 0.04938671737909317, 0.029833519831299782, -0.08314958214759827, 0.15177451074123383, -0.052177850157022476, 0.042683906853199005, -0.057093337178230286, 0.10579357296228409, 0.01853492669761181, 0.07927467674016953, -0.08352267742156982, 0.232350692152977, -0.01057368703186512, 0.0287458598613739, -0.02890545316040516, -0.03228195011615753, -0.012304076924920082, 0.03251340985298157, 0.09406659752130508, 0.0036629876121878624, 0.08343623578548431, 0.10669732838869095, -0.10283208638429642, 0.023327860981225967, 0.0681244432926178, 0.1011609211564064, 0.07707337290048599, -0.014365977607667446, -0.08460469543933868, 0.08734185993671417, -0.016665298491716385, -0.03784995898604393, -0.09419279545545578, 0.07123734802007675, 0.12318053841590881, -0.15788811445236206, -0.019680587574839592, -0.013532723300158978, -0.02639324776828289, 0.3319265842437744, 0.13620401918888092, -0.0876350849866867, -0.07325220853090286, 0.0322464257478714, 0.1849382221698761, -0.016832133755087852, 0.08376628905534744, -0.05930197238922119, -0.04655316844582558, -0.0046549830585718155, -0.0629035085439682, 0.11821414530277252, -0.09437579661607742, 0.035623013973236084, -0.03641093522310257, 0.03456656262278557, 0.025518132373690605, 0.015697205439209938, 0.03278480842709541, -0.006773519795387983, -0.18537917733192444, -0.10280050337314606, -0.1366482824087143, -0.17265957593917847, -0.08329536765813828, 0.01497708447277546, -0.014266232028603554, 0.08465337008237839, -0.03647182881832123, 0.10811527073383331, 0.06024999916553497, 0.16558857262134552, -0.09601209312677383, -0.01891322247684002, 0.15595600008964539, 0.04842379689216614, -0.145868718624115, -0.11491890996694565, -0.004716337192803621, -0.03494619205594063, -0.04267989099025726, 0.008122548460960388, 0.08525989949703217, -0.02290552668273449, -0.02768971212208271, 0.04013640806078911, -0.055410273373126984, -0.05479150637984276, 0.15053211152553558, -0.06421833485364914, 0.36133873462677, -0.0363447330892086, -0.01401294581592083, 0.005588148720562458, -0.06287040561437607, 0.015979120507836342, -0.005499275401234627, 0.10086500644683838, 0.015771551057696342, -0.08550627529621124, -0.005239678081125021, -0.1013801321387291, 0.01252138614654541, 0.03774610906839371, 0.03745940327644348, -0.012430723756551743, -0.010926494374871254, 0.12498302012681961, -0.03512723371386528, 0.12688741087913513, 0.10966034978628159, 0.025752834975719452, -0.06193620711565018, -0.07702699303627014, -0.04892346262931824, 0.012593146413564682, 0.05124116316437721, -0.04257524758577347, -0.18128584325313568, 0.00802907720208168, 0.0725875049829483, 0.056615691632032394, 0.18898029625415802, 0.07771402597427368, -0.02617953158915043, 0.12948140501976013, 0.14066407084465027, -0.15028242766857147, -0.038525208830833435, 0.03320404887199402, 0.022790011018514633, 0.03955744206905365, -0.0817665085196495, 0.0349222794175148, 0.1300087422132492, -0.0451686792075634, -0.029147977009415627, 0.052244964987039566, -0.11519742757081985, -0.06699008494615555, 0.09337609261274338, -0.13970713317394257, -0.07807211577892303, -0.008762486279010773, -0.13649381697177887, -0.031793177127838135, 0.09851756691932678, 0.038371190428733826, -0.12125388532876968, -0.01402952428907156, 0.09187914431095123, 0.0029461176600307226, 0.008870881982147694, 0.1269216686487198, 0.109056755900383, 0.017665361985564232, -0.070406973361969, 0.0683087632060051, 0.0370139516890049, 0.07963148504495621, -0.08110231161117554, 0.027782388031482697, -0.17688216269016266, -0.0572955459356308, -0.01563822105526924, 0.022911859676241875, -0.10736840963363647, -0.0658508688211441, -0.14593447744846344, -0.014397228136658669, 0.11558503657579422, 0.040660612285137177, 0.12464205920696259, 0.01842587999999523, -0.04081796109676361, 0.04191748797893524, -0.04462084919214249, 0.07548981159925461, 0.14512112736701965, 0.07026010006666183, -0.14782297611236572, -0.09463327378034592, 0.009355121292173862, 0.043396469205617905, -0.09650767594575882, 0.048366792500019073, -0.07500213384628296, 0.03781505674123764, -0.12656566500663757, -0.03653522580862045, -0.08266672492027283, -0.008528671227395535, -0.05325398966670036, -0.07998046278953552, -0.10520216822624207, 0.038585115224123, -0.05380672961473465, 0.0013267642352730036, 0.01390023436397314, -0.11945564299821854, -0.0907793864607811, -0.010313179343938828, 0.015763062983751297, -0.041675008833408356, 0.08008074015378952, -0.05359598621726036, -0.09670765697956085, -0.04637105390429497, -0.013750014826655388, -0.15718546509742737, 0.11291053146123886, 0.03598238527774811, 0.04925793409347534, -0.06226735934615135, 0.06357043236494064, 0.07698540389537811, 0.1103447675704956, -0.04164860025048256, -0.04792282357811928, -0.02182801440358162, 0.02141786739230156, -0.11592276394367218, -0.04389025270938873, -0.021003028377890587, -0.008189278654754162, 0.07945268601179123, 0.12765920162200928, 0.2017996609210968, 0.053625885397195816, -0.05621781200170517, -0.041313592344522476, 0.023334523662924767, 0.004065985791385174, -0.19113178551197052, 0.08049886673688889, -0.061077017337083817, -0.028062526136636734, -0.02553226426243782, 0.25291892886161804, 0.041751690208911896, -0.001125828712247312, 0.02104249969124794, 0.04556291550397873, -0.03903058171272278, -0.004689711611717939, 0.015169138088822365, 0.04395957663655281, -0.05977196246385574, 0.006291558034718037, 0.024033010005950928, 0.1359071135520935, -0.02860148809850216, 0.143717959523201, 0.07288670539855957, -0.008380791172385216, 0.13811640441417694, -0.060474179685115814, -0.04942827299237251, -0.17095720767974854, 0.06282511353492737, -0.05344480648636818, 0.0453430600464344, -0.018315039575099945, -0.03348980471491814, 0.21069957315921783, 0.03203217312693596, 0.061016835272312164, 0.05934659391641617, -0.021911924704909325, -0.10300985723733902, -0.09722782671451569, -0.07219137251377106, -0.05620832368731499, -0.020809149369597435, -0.06356451660394669, -0.07260213792324066, 0.020891260355710983, 0.06115490198135376, -0.036546021699905396, 0.11345065385103226, 0.06711823493242264, -0.09578444063663483, 0.06957041472196579, -0.07877232134342194, -0.0074140457436442375, 0.13472528755664825, -0.001468569040298462, -0.04491717368364334, 0.06837675720453262, 0.012326187454164028, 0.010773371905088425, 0.014082781039178371, 0.06948388367891312, -0.03247324377298355, -0.04450361803174019, -0.10250627994537354, 0.054913390427827835, 0.019767077639698982, 0.027842789888381958, -0.012843738310039043, -0.05827082321047783, 0.04774181917309761, 0.19935861229896545, -0.032414600253105164, -0.13103502988815308, -0.09738422930240631, 0.1214028149843216, 0.06014220044016838, 0.038723014295101166, -0.051800694316625595, -0.06852097809314728, -0.02836228348314762, 0.3259834945201874, 0.20511727035045624, -0.056921038776636124, -0.015753021463751793, 0.06656324863433838, -0.01600617729127407, 0.07524293661117554, -0.02918655052781105, 0.04413502290844917, 0.3019333779811859, -0.031852252781391144, -0.10782606899738312, -0.039023976773023605, -0.024762509390711784, -0.08115679025650024, 0.007863438688218594, 0.15649732947349548, -0.007196896709501743, -0.12928663194179535, 0.08261436969041824, -0.11562781780958176, -0.10028532147407532, -0.1315745711326599, -0.0021657270845025778, -0.06347734481096268, 0.015982776880264282, 0.08155198395252228, -0.046936508268117905, 0.08337957412004471, -0.05431624501943588, -0.017532866448163986, -0.04879486560821533, 0.02464168891310692, -0.09343624860048294, 0.04128609970211983, 0.065590500831604, 0.12619413435459137, 0.002555854618549347, 0.003748243907466531, 0.03962276130914688, 0.12391489744186401, -0.07267938554286957, -0.16757723689079285, 0.09349701553583145, 0.013224910013377666, -0.059568487107753754, 0.049781836569309235, -0.022884035483002663, -0.033201612532138824, -0.02135188691318035, 0.007117062341421843, 0.002454001922160387, 0.012315955944359303, 0.02501041628420353, 0.050588276237249374, -0.12665195763111115, -0.03542329743504524, -0.062232859432697296, 0.0632576197385788, 0.029318975284695625, -0.03967124596238136, 0.03961552679538727, -0.09224165230989456, -0.012648234143853188, 0.029359349980950356, 0.04913642629981041, -0.021702593192458153, -0.08482346683740616, -0.025461526587605476, 0.05129721760749817, 0.034422315657138824, -0.061086300760507584, 0.013212737627327442, -0.02059774100780487, -0.01808343455195427, -0.020097766071558, 0.07380291819572449, 0.17260447144508362, 0.0009658150956965983, 0.008139032870531082, -0.013686338439583778, -0.044616322964429855, -0.01453987043350935, -0.13927757740020752, -0.016823792830109596 ]
null
null
transformers
# resnet152 Implementation of ResNet proposed in [Deep Residual Learning for Image Recognition](https://arxiv.org/abs/1512.03385) ``` python ResNet.resnet18() ResNet.resnet26() ResNet.resnet34() ResNet.resnet50() ResNet.resnet101() ResNet.resnet152() ResNet.resnet200() Variants (d) proposed in `Bag of Tricks for Image Classification with Convolutional Neural Networks <https://arxiv.org/pdf/1812.01187.pdf`_ ResNet.resnet26d() ResNet.resnet34d() ResNet.resnet50d() # You can construct your own one by chaning `stem` and `block` resnet101d = ResNet.resnet101(stem=ResNetStemC, block=partial(ResNetBottleneckBlock, shortcut=ResNetShorcutD)) ``` Examples: ``` python # change activation ResNet.resnet18(activation = nn.SELU) # change number of classes (default is 1000 ) ResNet.resnet18(n_classes=100) # pass a different block ResNet.resnet18(block=SENetBasicBlock) # change the steam model = ResNet.resnet18(stem=ResNetStemC) change shortcut model = ResNet.resnet18(block=partial(ResNetBasicBlock, shortcut=ResNetShorcutD)) # store each feature x = torch.rand((1, 3, 224, 224)) # get features model = ResNet.resnet18() # first call .features, this will activate the forward hooks and tells the model you'll like to get the features model.encoder.features model(torch.randn((1,3,224,224))) # get the features from the encoder features = model.encoder.features print([x.shape for x in features]) #[torch.Size([1, 64, 112, 112]), torch.Size([1, 64, 56, 56]), torch.Size([1, 128, 28, 28]), torch.Size([1, 256, 14, 14])] ```
{"license": "apache-2.0", "tags": ["image-classification"], "datasets": ["imagenet"]}
image-classification
glasses/resnet152
[ "transformers", "pytorch", "image-classification", "dataset:imagenet", "arxiv:1512.03385", "arxiv:1812.01187", "license:apache-2.0", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[ "1512.03385", "1812.01187" ]
[]
TAGS #transformers #pytorch #image-classification #dataset-imagenet #arxiv-1512.03385 #arxiv-1812.01187 #license-apache-2.0 #endpoints_compatible #region-us
# resnet152 Implementation of ResNet proposed in Deep Residual Learning for Image Recognition Examples:
[ "# resnet152\nImplementation of ResNet proposed in Deep Residual Learning for Image\nRecognition\n\n \n\n Examples:" ]
[ "TAGS\n#transformers #pytorch #image-classification #dataset-imagenet #arxiv-1512.03385 #arxiv-1812.01187 #license-apache-2.0 #endpoints_compatible #region-us \n", "# resnet152\nImplementation of ResNet proposed in Deep Residual Learning for Image\nRecognition\n\n \n\n Examples:" ]
[ 58, 25 ]
[ "passage: TAGS\n#transformers #pytorch #image-classification #dataset-imagenet #arxiv-1512.03385 #arxiv-1812.01187 #license-apache-2.0 #endpoints_compatible #region-us \n# resnet152\nImplementation of ResNet proposed in Deep Residual Learning for Image\nRecognition\n\n \n\n Examples:" ]
[ -0.10818974673748016, 0.06613535434007645, -0.0024012227077037096, 0.08432082831859589, 0.09452369064092636, 0.007899167947471142, -0.01924489066004753, 0.08886951953172684, -0.0934191420674324, -0.01676483452320099, 0.10410603880882263, 0.10288263857364655, 0.0018767660949379206, -0.05798373371362686, -0.05322994664311409, -0.23582100868225098, 0.08791632950305939, 0.06915178894996643, -0.010044611990451813, 0.05710233002901077, 0.07016177475452423, -0.08305878192186356, 0.09625174105167389, 0.002720733406022191, -0.1727951467037201, 0.0046561299823224545, -0.014967839233577251, -0.06821102648973465, 0.07885288447141647, 0.02480626292526722, 0.09655872732400894, 0.009024116210639477, 0.09739656746387482, -0.10998407006263733, 0.03232359141111374, 0.04782625287771225, -0.076600082218647, 0.05910027027130127, 0.10402549058198929, -0.030962692573666573, 0.02968779020011425, 0.04967635124921799, -0.07085110992193222, -0.04556448012590408, 0.0002646059147082269, -0.06924348324537277, 0.004084331449121237, 0.17049695551395416, 0.0832083597779274, 0.09114151448011398, 0.033138155937194824, 0.08168957382440567, -0.11110606044530869, 0.0935872495174408, 0.1698964536190033, -0.2841587960720062, -0.050824712961912155, 0.11339621990919113, -0.05733805522322655, -0.08100832253694534, -0.06992969661951065, 0.02873172238469124, 0.022912899032235146, 0.03527866676449776, -0.12728169560432434, 0.0016196734504774213, -0.08136111497879028, -0.007716609630733728, -0.08697943389415741, -0.029094597324728966, 0.05198640376329422, 0.09180288016796112, 0.061459776014089584, -0.0006724712438881397, -0.15120454132556915, 0.014595634303987026, -0.10414362698793411, 0.04383706673979759, 0.020500898361206055, 0.06109912320971489, -0.0853133574128151, -0.009397456422448158, -0.059814561158418655, -0.03859240189194679, -0.14552322030067444, -0.04052390158176422, 0.054574742913246155, 0.13129831850528717, -0.11410915851593018, 0.02524024061858654, 0.03334755077958107, -0.04146923869848251, -0.003025235142558813, -0.08030007034540176, 0.021225690841674805, 0.04696355387568474, -0.07503014802932739, -0.02937173657119274, 0.09247478097677231, 0.19497807323932648, -0.06321350485086441, -0.0027170295361429453, -0.024664489552378654, 0.14059801399707794, -0.0921318456530571, 0.009634926915168762, -0.24355673789978027, 0.1166038066148758, 0.05069781839847565, -0.09115725755691528, 0.019247399643063545, -0.014707835391163826, -0.08429466187953949, -0.02777137979865074, 0.1166374683380127, -0.03858016058802605, -0.015596740879118443, 0.06856352835893631, -0.011368952691555023, -0.046101465821266174, 0.12007394433021545, -0.03475494310259819, -0.03462931886315346, -0.003913551103323698, -0.10051364451646805, 0.07618312537670135, 0.10784577578306198, 0.001157456892542541, -0.0974477156996727, 0.005295210052281618, -0.009849916212260723, -0.00010044479131465778, 0.0039356062188744545, -0.03499307110905647, 0.04266725480556488, 0.009517185389995575, 0.05849288031458855, -0.215628519654274, -0.15194834768772125, 0.005491227377206087, 0.11430788785219193, -0.04044397920370102, 0.010132684372365475, -0.012793872505426407, -0.12587425112724304, -0.0032227779738605022, 0.014827076345682144, 0.02986285090446472, -0.071710966527462, 0.018216809257864952, -0.13453340530395508, 0.12598088383674622, -0.11149843037128448, 0.035101987421512604, -0.08733487874269485, -0.04117245599627495, -0.08304166793823242, 0.09841156005859375, -0.07604867964982986, 0.09721612185239792, -0.13378110527992249, -0.07959335297346115, -0.06696052849292755, -0.030269348993897438, 0.007139707449823618, 0.06924396008253098, -0.09067720919847488, -0.007013928145170212, 0.14957186579704285, -0.10826050490140915, -0.08683475852012634, 0.08240298926830292, -0.03370048478245735, -0.09868154674768448, 0.00013580590893980116, 0.15822412073612213, 0.021990181878209114, 0.0025826310738921165, -0.04933902621269226, 0.02423732914030552, -0.1329658180475235, -0.12740769982337952, -0.035159043967723846, 0.14381761848926544, 0.030383698642253876, -0.004868263378739357, -0.08881841599941254, 0.11255131661891937, -0.08245785534381866, -0.1206231415271759, -0.04123382642865181, -0.09995295852422714, -0.014404512010514736, 0.04617143049836159, 0.1081310585141182, 0.06704960763454437, -0.040828295052051544, -0.14951471984386444, 0.05740690231323242, -0.05289696156978607, 0.10893260687589645, -0.09421804547309875, 0.1601564586162567, -0.033528704196214676, 0.03380389139056206, -0.23330508172512054, 0.01621529646217823, 0.0031641556415706873, 0.018680457025766373, -0.03663589805364609, -0.0492018461227417, 0.040244076400995255, -0.05212138220667839, -0.036860886961221695, -0.07080142945051193, 0.07117331773042679, -0.01630302704870701, -0.006772866006940603, -0.123683862388134, -0.0027231285348534584, -0.041787270456552505, 0.016199029982089996, -0.12580405175685883, -0.055377282202243805, 0.023546254262328148, 0.12719590961933136, -0.02884654700756073, 0.08473373204469681, -0.028521737083792686, -0.058845046907663345, -0.019571680575609207, -0.05643630772829056, 0.09263110905885696, 0.01434566080570221, -0.016980033367872238, 0.0678691491484642, 0.0951327532529831, 0.15411317348480225, 0.15047958493232727, -0.28420814871788025, -0.03741157054901123, 0.0821373388171196, -0.030390610918402672, -0.005559566896408796, -0.007665461394935846, 0.15738451480865479, 0.10806018859148026, -0.027662841603159904, 0.07192050665616989, -0.05841565504670143, 0.09562568366527557, 0.012992111034691334, -0.027537096291780472, 0.0048354556784033775, 0.04627570882439613, 0.08041856437921524, -0.2708304822444916, 0.08712854981422424, 0.10492429882287979, -0.164970263838768, -0.04343029111623764, -0.04452931880950928, -0.06251415610313416, 0.10015841573476791, 0.07042593508958817, -0.009785419330000877, 0.06660879403352737, 0.0354318730533123, -0.023112017661333084, 0.06024568900465965, -0.09546910226345062, 0.023622022941708565, -0.1257723718881607, 0.02281082421541214, -0.05036706477403641, 0.0033125565387308598, 0.01939280703663826, -0.002633716445416212, -0.0011915462091565132, 0.10859545320272446, -0.011329010128974915, -0.2343520075082779, 0.05162671580910683, -0.06547699123620987, -0.0277421772480011, 0.20912975072860718, -0.025749923661351204, -0.2372901737689972, -0.007034441456198692, -0.016703490167856216, -0.07665075361728668, -0.014531492255628109, 0.026334458962082863, -0.11955146491527557, -0.06504231691360474, -0.02055683173239231, -0.10805032402276993, 0.11234232038259506, 0.030934670940041542, 0.017544982954859734, 0.028675194829702377, 0.038074836134910583, -0.05027708411216736, 0.014959021471440792, -0.14106500148773193, -0.08963130414485931, 0.13354797661304474, -0.08637920767068863, 0.08019542694091797, 0.0834202691912651, -0.016877876594662666, 0.019033264368772507, 0.02313399314880371, 0.1413944512605667, -0.051363710314035416, 0.022213265299797058, 0.09558479487895966, -0.011429932899773121, 0.05158742144703865, 0.08796259760856628, 0.008596833795309067, -0.07150301337242126, -0.009820508770644665, 0.027996599674224854, -0.042378995567560196, -0.09424053877592087, -0.1342313438653946, -0.03754584491252899, -0.011499670334160328, 0.15764322876930237, 0.10332594066858292, 0.053407054394483566, 0.10027205944061279, 0.012897802516818047, -0.0286250002682209, 0.06166284903883934, 0.06298922747373581, 0.10560159385204315, 0.037258341908454895, 0.1124640628695488, -0.07867543399333954, -0.06370984762907028, 0.03626532480120659, 0.10530783236026764, 0.25515568256378174, -0.033889200538396835, -0.12758585810661316, 0.045196857303380966, 0.2485973984003067, 0.10745706409215927, 0.1058669239282608, -0.06723836064338684, -0.014650007709860802, 0.002639430109411478, 0.00046689293230883777, 0.011366425082087517, 0.046682603657245636, -0.013278908096253872, -0.06882987171411514, 0.03682047873735428, 0.03606371954083443, 0.026798686012625694, 0.2447752207517624, 0.09385930001735687, -0.3182317614555359, 0.010721088387072086, -0.04229787364602089, -0.00241122511215508, -0.015864670276641846, 0.13384006917476654, -0.00546931941062212, -0.036874692887067795, 0.079063780605793, -0.1307005137205124, 0.10628242790699005, -0.057251859456300735, 0.009496713988482952, 0.045170966535806656, -0.11850789934396744, 0.08485100418329239, 0.04925025627017021, -0.1398787945508957, 0.1730283796787262, -0.04620257019996643, -0.06426499038934708, -0.06841189414262772, -0.04763828590512276, 0.10791481286287308, 0.1370832324028015, 0.24510100483894348, 0.016015078872442245, -0.0072020129300653934, 0.08321953564882278, -0.02675764076411724, 0.034245721995830536, 0.049749478697776794, 0.07697491347789764, -0.060930948704481125, 0.03552933409810066, -0.05349824205040932, 0.0392349548637867, 0.12831072509288788, -0.02178393490612507, -0.09988068044185638, -0.05873989686369896, 0.06737210601568222, -0.04521084949374199, -0.03481964021921158, -0.06525304168462753, -0.07587043941020966, 0.12755712866783142, 0.028327416628599167, -0.02749832719564438, -0.08541560173034668, 0.09470177441835403, 0.06516164541244507, -0.06197734922170639, 0.10710356384515762, -0.049017637968063354, 0.02611648291349411, -0.019811047241091728, -0.2453279197216034, 0.17172232270240784, -0.1161225289106369, -0.007411592174321413, 0.029308203607797623, -0.0642542913556099, -0.010075208730995655, -0.025685230270028114, 0.05770816653966904, 0.04079622030258179, -0.1229582130908966, -0.02413293346762657, 0.015345178544521332, -0.04105302691459656, 0.020856326445937157, 0.08882645517587662, -0.05565613880753517, -0.08317764848470688, -0.037159889936447144, 0.14998982846736908, 0.158731609582901, -0.03966809809207916, -0.10384392738342285, 0.008742857724428177, 0.11235277354717255, 0.031002579256892204, -0.3863310217857361, -0.08948057889938354, -0.01996181719005108, -0.0687824934720993, -0.09561841189861298, -0.12914659082889557, 0.23676630854606628, -0.0045560626313090324, -0.05980438366532326, 0.0021133110858500004, -0.13933031260967255, -0.04149642586708069, 0.25489744544029236, 0.07489411532878876, 0.28931447863578796, -0.08863574266433716, 0.025557780638337135, -0.058470796793699265, 0.018218612298369408, 0.09040924906730652, -0.0009777230443432927, 0.07157332450151443, -0.002067079534754157, 0.04593370482325554, -0.040685512125492096, -0.029225150123238564, -0.0241328626871109, 0.11328720301389694, 0.09607915580272675, -0.09926813840866089, 0.07219762355089188, 0.06050710752606392, -0.017970694229006767, 0.051080573350191116, 0.08728888630867004, 0.11057693511247635, -0.02037101238965988, 0.022898215800523758, -0.092969611287117, 0.0512564592063427, 0.10535518825054169, -0.0007568892324343324, -0.10641773045063019, 0.06242360919713974, 0.10803931951522827, 0.08525972068309784, 0.28091666102409363, 0.1269017606973648, 0.031226063147187233, 0.06829903274774551, 0.00836858432739973, -0.07850103080272675, -0.0838339701294899, -0.10201044380664825, -0.0368652381002903, 0.14440001547336578, -0.15058332681655884, 0.05898451432585716, 0.10098864883184433, -0.0021526131313294172, -0.0010125534608960152, 0.09998670220375061, 0.01962711103260517, -0.03192717581987381, 0.0993560254573822, -0.06458333134651184, -0.023302489891648293, 0.011656776070594788, 0.0746946856379509, 0.10584282130002975, 0.14105188846588135, 0.10602646321058273, -0.10345996916294098, -0.0020022732205688953, 0.0238160640001297, 0.0770404264330864, -0.0528142973780632, 0.06092532351613045, 0.14524300396442413, -0.023580165579915047, -0.14537359774112701, 0.1998865157365799, 0.007805156521499157, -0.15158411860466003, -0.024313589558005333, -0.05755370110273361, -0.1417725831270218, -0.12860316038131714, -0.012536868453025818, -0.0004498759808484465, -0.24187521636486053, -0.08528973907232285, -0.002678398508578539, -0.07146645337343216, 0.11632100492715836, 0.029513750225305557, 0.13984788954257965, -0.0206841379404068, -0.03466323763132095, -0.08050648123025894, -0.03757909685373306, 0.019611096009612083, 0.014926774427294731, 0.06595045328140259, -0.16212019324302673, -0.20859374105930328, 0.015697384253144264, 0.14990943670272827, -0.08144320547580719, 0.007223732303828001, -0.08340299874544144, 0.09018861502408981, -0.13027237355709076, 0.07061126828193665, -0.05964643508195877, 0.028524182736873627, -0.0596381276845932, -0.03165270760655403, -0.06237015128135681, 0.055145263671875, -0.0975603237748146, -0.024472668766975403, 0.0000973991263890639, -0.025078486651182175, -0.11482187360525131, -0.03204797953367233, -0.02030736766755581, 0.007104266434907913, 0.13337749242782593, 0.08333717286586761, -0.10519818961620331, 0.0930681899189949, -0.1417512595653534, -0.25758084654808044, 0.1559239774942398, 0.04006470367312431, -0.01916566677391529, 0.05874568596482277, 0.05538036674261093, 0.0746905580163002, -0.04538731649518013, -0.015559464693069458, 0.013894429430365562, -0.046416446566581726, -0.0177853275090456, -0.23662036657333374, 0.020456556230783463, -0.02946486882865429, 0.0033908223267644644, 0.08145192265510559, 0.10410173237323761, 0.11846307665109634, -0.05730803310871124, -0.0061925784684717655, -0.03935740888118744, -0.0037275943905115128, -0.009310013614594936, -0.11400236189365387, -0.012151382863521576, -0.036993879824876785, 0.022258765995502472, -0.07756419479846954, 0.1637030839920044, -0.018893970176577568, -0.0977492406964302, 0.025302095338702202, 0.21901284158229828, -0.1140279471874237, 0.07985396683216095, 0.18748795986175537, 0.0845615342259407, -0.005268813110888004, 0.0484919399023056, 0.053434114903211594, 0.09858933836221695, 0.1878422200679779, 0.0036670949775725603, 0.24711838364601135, 0.03357064723968506, 0.11431510001420975, 0.07642687857151031, -0.016985246911644936, 0.05105653405189514, 0.09098725020885468, -0.09445679187774658, 0.10408880561590195, 0.004391776397824287, 0.003539885627105832, 0.13518153131008148, 0.030458495020866394, 0.00707822572439909, 0.01631692424416542, -0.007168662268668413, -0.08502525836229324, -0.20598286390304565, -0.10031009465456009, -0.14422641694545746, 0.04845598340034485, -0.029854750260710716, -0.082390196621418, 0.21844008564949036, 0.08050581812858582, -0.04448872432112694, 0.04902830719947815, -0.08316866308450699, -0.05179456248879433, 0.16156016290187836, -0.008504977449774742, -0.1061779335141182, 0.1378166526556015, -0.049470867961645126, 0.06577543914318085, 0.0607542060315609, -0.016564615070819855, 0.0018816267838701606, 0.06584744155406952, 0.15710429847240448, -0.03821737319231033, -0.042191315442323685, -0.03174568712711334, 0.024217041209340096, -0.04374988004565239, 0.0006446139304898679, -0.01613815501332283, 0.030842142179608345, 0.046834949404001236, 0.23451964557170868, -0.10412292182445526, -0.07961664348840714, -0.11460436880588531, -0.04081594944000244, -0.00048394553596153855, 0.06064639613032341, -0.04795769602060318, -0.03841521218419075, -0.020583676174283028, 0.21316032111644745, 0.22996734082698822, -0.18117570877075195, 0.003915432374924421, 0.08396941423416138, 0.003316595684736967, -0.03594119846820831, 0.028861675411462784, 0.1695103645324707, 0.11042801290750504, -0.06575145572423935, -0.13252194225788116, -0.058973878622055054, -0.056658562272787094, -0.11974234879016876, 0.014788368716835976, 0.05539034307003021, -0.07537635415792465, -0.1320449709892273, 0.12162170559167862, -0.17802771925926208, -0.017103519290685654, 0.0797295793890953, -0.08653170615434647, -0.12181220948696136, -0.051482945680618286, 0.07502575218677521, 0.09923916310071945, 0.007804583758115768, -0.078059621155262, 0.0448879711329937, 0.017283247783780098, 0.028535842895507812, -0.15713687241077423, -0.04322453960776329, -0.06411543488502502, -0.02003789134323597, 0.12531369924545288, 0.037958189845085144, -0.005051938816905022, 0.0440249890089035, 0.02727152220904827, -0.06888920813798904, 0.009605171158909798, -0.050183750689029694, -0.12649187445640564, 0.025794275104999542, 0.06452889740467072, -0.030392931774258614, -0.006479048170149326, 0.05473869666457176, -0.16815094649791718, -0.0245952270925045, 0.04908130317926407, 0.011374694295227528, -0.11536586284637451, 0.01313723623752594, -0.06827271729707718, 0.05272507295012474, 0.04018601402640343, 0.004083958920091391, -0.002431678818538785, -0.05345117673277855, -0.029847800731658936, 0.007408834062516689, -0.12472425401210785, 0.008928775787353516, -0.02966778539121151, -0.03536927327513695, -0.24379460513591766, 0.05840245634317398, 0.0165408868342638, -0.01757870241999626, -0.03479206562042236, -0.04284033179283142, -0.08489808440208435, 0.07748420536518097, 0.11419587582349777, -0.0423598438501358, 0.011391589418053627, 0.01735433004796505, 0.07002576440572739, -0.0009129256359301507, -0.02345772460103035, -0.10941298305988312 ]
null
null
transformers
# resnet18 Implementation of ResNet proposed in [Deep Residual Learning for Image Recognition](https://arxiv.org/abs/1512.03385) ``` python ResNet.resnet18() ResNet.resnet26() ResNet.resnet34() ResNet.resnet50() ResNet.resnet101() ResNet.resnet152() ResNet.resnet200() Variants (d) proposed in `Bag of Tricks for Image Classification with Convolutional Neural Networks <https://arxiv.org/pdf/1812.01187.pdf`_ ResNet.resnet26d() ResNet.resnet34d() ResNet.resnet50d() # You can construct your own one by chaning `stem` and `block` resnet101d = ResNet.resnet101(stem=ResNetStemC, block=partial(ResNetBottleneckBlock, shortcut=ResNetShorcutD)) ``` Examples: ``` python # change activation ResNet.resnet18(activation = nn.SELU) # change number of classes (default is 1000 ) ResNet.resnet18(n_classes=100) # pass a different block ResNet.resnet18(block=SENetBasicBlock) # change the steam model = ResNet.resnet18(stem=ResNetStemC) change shortcut model = ResNet.resnet18(block=partial(ResNetBasicBlock, shortcut=ResNetShorcutD)) # store each feature x = torch.rand((1, 3, 224, 224)) # get features model = ResNet.resnet18() # first call .features, this will activate the forward hooks and tells the model you'll like to get the features model.encoder.features model(torch.randn((1,3,224,224))) # get the features from the encoder features = model.encoder.features print([x.shape for x in features]) #[torch.Size([1, 64, 112, 112]), torch.Size([1, 64, 56, 56]), torch.Size([1, 128, 28, 28]), torch.Size([1, 256, 14, 14])] ```
{"license": "apache-2.0", "tags": ["image-classification"], "datasets": ["imagenet"]}
image-classification
glasses/resnet18
[ "transformers", "pytorch", "image-classification", "dataset:imagenet", "arxiv:1512.03385", "arxiv:1812.01187", "license:apache-2.0", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[ "1512.03385", "1812.01187" ]
[]
TAGS #transformers #pytorch #image-classification #dataset-imagenet #arxiv-1512.03385 #arxiv-1812.01187 #license-apache-2.0 #endpoints_compatible #region-us
# resnet18 Implementation of ResNet proposed in Deep Residual Learning for Image Recognition Examples:
[ "# resnet18\nImplementation of ResNet proposed in Deep Residual Learning for Image\nRecognition\n\n \n\n Examples:" ]
[ "TAGS\n#transformers #pytorch #image-classification #dataset-imagenet #arxiv-1512.03385 #arxiv-1812.01187 #license-apache-2.0 #endpoints_compatible #region-us \n", "# resnet18\nImplementation of ResNet proposed in Deep Residual Learning for Image\nRecognition\n\n \n\n Examples:" ]
[ 58, 25 ]
[ "passage: TAGS\n#transformers #pytorch #image-classification #dataset-imagenet #arxiv-1512.03385 #arxiv-1812.01187 #license-apache-2.0 #endpoints_compatible #region-us \n# resnet18\nImplementation of ResNet proposed in Deep Residual Learning for Image\nRecognition\n\n \n\n Examples:" ]
[ -0.10833189636468887, 0.0590878501534462, -0.002427423605695367, 0.08445870131254196, 0.09392944723367691, 0.007413317449390888, -0.0171232707798481, 0.08950914442539215, -0.08780159801244736, -0.016066092997789383, 0.1032320111989975, 0.10085496306419373, 0.0009229255374521017, -0.059029292315244675, -0.05191517993807793, -0.23135946691036224, 0.08916395902633667, 0.06856659054756165, -0.005469571799039841, 0.0578107051551342, 0.07054551690816879, -0.08247371762990952, 0.09645633399486542, 0.0033164804335683584, -0.17098739743232727, 0.005296309012919664, -0.014952093362808228, -0.06864529848098755, 0.07969840615987778, 0.02389148436486721, 0.09683578461408615, 0.00769916083663702, 0.09658785164356232, -0.10618451237678528, 0.03260910138487816, 0.04935264587402344, -0.07694289833307266, 0.05746491625905037, 0.10131663829088211, -0.032483190298080444, 0.03564507141709328, 0.046368807554244995, -0.06957929581403732, -0.043972257524728775, -0.0005392665043473244, -0.06970439106225967, 0.00547011336311698, 0.1643662005662918, 0.08559306710958481, 0.0916973277926445, 0.030726874247193336, 0.08371113985776901, -0.11053753644227982, 0.09312813729047775, 0.16597796976566315, -0.28661108016967773, -0.052473682910203934, 0.1139921173453331, -0.05343339219689369, -0.07496042549610138, -0.06772594153881073, 0.02949168160557747, 0.023758063092827797, 0.03659816458821297, -0.12621085345745087, 0.001916407491080463, -0.07232581079006195, -0.008899198845028877, -0.08730331808328629, -0.02968299575150013, 0.05235586315393448, 0.09180663526058197, 0.06209952384233475, -0.005625143181532621, -0.15068045258522034, 0.014975675381720066, -0.10559726506471634, 0.043930307030677795, 0.021255962550640106, 0.0628235936164856, -0.08474858850240707, -0.010296249762177467, -0.059898413717746735, -0.03692224994301796, -0.14267943799495697, -0.04313983768224716, 0.05566835775971413, 0.1312689632177353, -0.11390481889247894, 0.02183084562420845, 0.03965736925601959, -0.040767353028059006, -0.0015747619327157736, -0.07946714013814926, 0.01996421255171299, 0.04809962585568428, -0.07551735639572144, -0.031132644042372704, 0.09288199990987778, 0.19344750046730042, -0.06570172309875488, -0.0028441851027309895, -0.028993619605898857, 0.1409275084733963, -0.09193103015422821, 0.00942207220941782, -0.24305357038974762, 0.11875134706497192, 0.049467433243989944, -0.09228796511888504, 0.020369917154312134, -0.015669453889131546, -0.08344244956970215, -0.024971358478069305, 0.11477012187242508, -0.03625126928091049, -0.015189433470368385, 0.06674495339393616, -0.010770091786980629, -0.044749073684215546, 0.12389436364173889, -0.033489253371953964, -0.035896047949790955, -0.00657764682546258, -0.09854351729154587, 0.07929868251085281, 0.10526572912931442, 0.0012755361385643482, -0.09800642728805542, 0.0034193561878055334, -0.010560546070337296, -0.0036228878889232874, 0.005274265538901091, -0.03249549865722656, 0.04283265024423599, 0.012202405370771885, 0.0595448799431324, -0.21419432759284973, -0.15069803595542908, 0.00431803846731782, 0.11501163989305496, -0.04075184836983681, 0.00973635446280241, -0.011270757764577866, -0.12403278052806854, -0.004796783439815044, 0.016150090843439102, 0.027198731899261475, -0.07216468453407288, 0.01644599251449108, -0.13762551546096802, 0.1250375211238861, -0.10867364704608917, 0.0360933281481266, -0.08979547768831253, -0.04112773761153221, -0.08124137669801712, 0.09899753332138062, -0.07651510834693909, 0.09696662425994873, -0.13317149877548218, -0.08054891973733902, -0.0646531954407692, -0.027736946940422058, 0.0069056604988873005, 0.06735993921756744, -0.09112463146448135, -0.009093542583286762, 0.1493605375289917, -0.10743250697851181, -0.08770588040351868, 0.08553639054298401, -0.032262999564409256, -0.1035945862531662, 0.0009690170409157872, 0.1585521697998047, 0.017314238473773003, 0.005002265330404043, -0.05080058053135872, 0.020609816536307335, -0.1314362734556198, -0.12891988456249237, -0.03663627803325653, 0.1461564004421234, 0.032823871821165085, -0.004933373536914587, -0.08650149405002594, 0.11223704367876053, -0.08244996517896652, -0.1204480230808258, -0.041097406297922134, -0.09912043809890747, -0.015759548172354698, 0.04567047581076622, 0.10486544668674469, 0.06364783644676208, -0.04372663423418999, -0.1582537740468979, 0.05668729916214943, -0.05147487670183182, 0.11091714352369308, -0.09483896195888519, 0.16122770309448242, -0.03104846179485321, 0.03536086902022362, -0.2314506471157074, 0.012313601560890675, 0.0047907112166285515, 0.01999795064330101, -0.03531622886657715, -0.05037637799978256, 0.03804197907447815, -0.05428389832377434, -0.03669145330786705, -0.07108452916145325, 0.07098864763975143, -0.018790896981954575, -0.006253357045352459, -0.12541241943836212, -0.0012494404800236225, -0.04111621528863907, 0.016542386263608932, -0.12517958879470825, -0.055252041667699814, 0.020757760852575302, 0.12409012764692307, -0.031119374558329582, 0.084125816822052, -0.03026021458208561, -0.05992048606276512, -0.019589349627494812, -0.05639069154858589, 0.09083510935306549, 0.013912148773670197, -0.018624868243932724, 0.06993715465068817, 0.09622195363044739, 0.15061788260936737, 0.15132898092269897, -0.28297311067581177, -0.03668709844350815, 0.08669000118970871, -0.03176882490515709, -0.004887137562036514, -0.005040653515607119, 0.1610235720872879, 0.11008157581090927, -0.025472084060311317, 0.07035542279481888, -0.05764060094952583, 0.09608543664216995, 0.014851157553493977, -0.025932660326361656, 0.003763519460335374, 0.044834837317466736, 0.07828744500875473, -0.26647183299064636, 0.085648313164711, 0.10978491604328156, -0.16185201704502106, -0.04569552466273308, -0.04433711618185043, -0.061537835747003555, 0.10207632184028625, 0.06804031133651733, -0.01086703035980463, 0.06372611969709396, 0.03649399057030678, -0.02516072429716587, 0.05940423533320427, -0.09650266915559769, 0.02410086803138256, -0.1223168671131134, 0.022248174995183945, -0.0508209653198719, 0.003459157655015588, 0.02529950812458992, -0.0004393239214550704, -0.0020973756909370422, 0.1092408150434494, -0.011615782044827938, -0.23616641759872437, 0.05089627206325531, -0.06614464521408081, -0.027042534202337265, 0.20877715945243835, -0.025178736075758934, -0.23632358014583588, -0.004667267668992281, -0.01592095196247101, -0.07873092591762543, -0.01529051922261715, 0.026378732174634933, -0.12199126929044724, -0.06417261064052582, -0.019817080348730087, -0.11190495640039444, 0.11099645495414734, 0.029630107805132866, 0.017574453726410866, 0.026799295097589493, 0.035299088805913925, -0.04965181276202202, 0.013094378635287285, -0.1421935111284256, -0.09351509809494019, 0.13315925002098083, -0.0839957445859909, 0.08017124980688095, 0.08365364372730255, -0.015476829372346401, 0.017895517870783806, 0.023032087832689285, 0.13760490715503693, -0.053963255137205124, 0.023264460265636444, 0.09633347392082214, -0.009464415721595287, 0.0496780127286911, 0.08546072244644165, 0.00848378799855709, -0.07320556789636612, -0.009381989948451519, 0.029002707451581955, -0.04497799277305603, -0.09821715205907822, -0.1386813372373581, -0.03768300637602806, -0.010416911914944649, 0.15562263131141663, 0.10418270528316498, 0.05133793130517006, 0.10034725815057755, 0.010731613263487816, -0.030047863721847534, 0.059260498732328415, 0.06293913722038269, 0.10753077268600464, 0.03656348958611488, 0.11301884800195694, -0.07726376503705978, -0.06335398554801941, 0.0378958024084568, 0.10415059328079224, 0.2513435482978821, -0.03183405473828316, -0.12555764615535736, 0.047476351261138916, 0.2454768717288971, 0.10551436990499496, 0.1027003675699234, -0.06409139931201935, -0.015165395103394985, 0.0015622162027284503, 0.0014131086645647883, 0.010319190099835396, 0.04585370793938637, -0.01470712386071682, -0.06956598907709122, 0.036445438861846924, 0.038348276168107986, 0.029329201206564903, 0.24631258845329285, 0.09106580913066864, -0.31850701570510864, 0.011334402486681938, -0.04185492545366287, -0.002004818757995963, -0.015409623272716999, 0.13675841689109802, -0.009044293314218521, -0.03672991693019867, 0.08003798127174377, -0.13059648871421814, 0.10560715198516846, -0.057317085564136505, 0.01160863321274519, 0.043867237865924835, -0.11890251189470291, 0.08424197882413864, 0.04854778200387955, -0.14104929566383362, 0.17326122522354126, -0.04735117405653, -0.0667208880186081, -0.068894162774086, -0.04777953773736954, 0.10700077563524246, 0.1382003277540207, 0.24900028109550476, 0.016232389956712723, -0.0118406368419528, 0.08786526322364807, -0.025836626067757607, 0.038212358951568604, 0.0462002269923687, 0.07736870646476746, -0.062021270394325256, 0.036441706120967865, -0.052437372505664825, 0.038745298981666565, 0.1318478137254715, -0.020500997081398964, -0.0989229828119278, -0.05979592353105545, 0.07146967202425003, -0.04932108148932457, -0.035673823207616806, -0.06532499194145203, -0.07584834843873978, 0.13405057787895203, 0.03344975784420967, -0.02903294749557972, -0.08568013459444046, 0.09125253558158875, 0.06544310599565506, -0.06245578080415726, 0.10484876483678818, -0.047806963324546814, 0.028552019968628883, -0.023515967652201653, -0.24604815244674683, 0.17254814505577087, -0.1172332763671875, -0.005401873029768467, 0.030582016333937645, -0.06329060345888138, -0.007151931989938021, -0.024588551372289658, 0.05641651153564453, 0.04117543250322342, -0.12492061406373978, -0.023003671318292618, 0.017656488344073296, -0.04419570788741112, 0.015150308609008789, 0.08753520250320435, -0.05172092467546463, -0.08218792825937271, -0.03647290915250778, 0.14887303113937378, 0.156918466091156, -0.04086429253220558, -0.10232173651456833, 0.007266228087246418, 0.11563953012228012, 0.032465800642967224, -0.3830968141555786, -0.09161095321178436, -0.024718239903450012, -0.07008667290210724, -0.09477666020393372, -0.1304376721382141, 0.23529493808746338, -0.004883686080574989, -0.060345638543367386, 0.0012904125032946467, -0.13738557696342468, -0.04018969461321831, 0.2581824064254761, 0.07182613015174866, 0.28992658853530884, -0.08808527141809464, 0.026932310312986374, -0.05820132791996002, 0.02780277468264103, 0.08846331387758255, -0.0007674670196138322, 0.07008310407400131, -0.0027043595910072327, 0.05101611837744713, -0.04134479537606239, -0.026947487145662308, -0.027438703924417496, 0.11467868089675903, 0.09526150673627853, -0.09775664657354355, 0.07779604941606522, 0.05637235566973686, -0.0183874499052763, 0.05111856386065483, 0.08338604867458344, 0.10868354141712189, -0.018460573628544807, 0.023192791268229485, -0.09187272936105728, 0.0522148534655571, 0.10550768673419952, -0.002729859435930848, -0.10765654593706131, 0.06323911249637604, 0.107317715883255, 0.08562743663787842, 0.2829594314098358, 0.12788648903369904, 0.03586834296584129, 0.06529750674962997, 0.00771061098203063, -0.0842113196849823, -0.0807250440120697, -0.10170657932758331, -0.03590451180934906, 0.14418736100196838, -0.15305107831954956, 0.056602802127599716, 0.10164200514554977, -0.005059631075710058, -0.00220761657692492, 0.09956888109445572, 0.015348609536886215, -0.032577645033597946, 0.09793657809495926, -0.06443679332733154, -0.02312101423740387, 0.010842598974704742, 0.07411061227321625, 0.10710951685905457, 0.13959762454032898, 0.10680116713047028, -0.10473377257585526, -0.0028924057260155678, 0.02328706532716751, 0.07809270918369293, -0.05178646743297577, 0.05769188702106476, 0.14465245604515076, -0.025304945185780525, -0.14614537358283997, 0.19747337698936462, 0.009037137031555176, -0.15308573842048645, -0.022248076274991035, -0.053982872515916824, -0.13858114182949066, -0.13009127974510193, -0.013510038144886494, -0.0019759985152632, -0.24294835329055786, -0.08486021310091019, -0.0019005379872396588, -0.07361559569835663, 0.1169290840625763, 0.02204442210495472, 0.13975074887275696, -0.02271650731563568, -0.03489846736192703, -0.0816081240773201, -0.03722835332155228, 0.019887149333953857, 0.01224428042769432, 0.06621038168668747, -0.15998315811157227, -0.21500861644744873, 0.01613551750779152, 0.1509610116481781, -0.0813034400343895, 0.007975853979587555, -0.08077580481767654, 0.09203259646892548, -0.13180257380008698, 0.06755657494068146, -0.06026376038789749, 0.0268597062677145, -0.060783691704273224, -0.030696716159582138, -0.06360463052988052, 0.05531303957104683, -0.09586887806653976, -0.024302000179886818, 0.0014838308561593294, -0.021138574928045273, -0.11767838895320892, -0.030417192727327347, -0.021801738068461418, 0.007080960087478161, 0.13326580822467804, 0.08111780881881714, -0.10484153777360916, 0.0931369736790657, -0.14354851841926575, -0.25595933198928833, 0.1556413173675537, 0.039455246180295944, -0.018500661477446556, 0.06184939295053482, 0.055820759385824203, 0.07424615323543549, -0.04877262935042381, -0.014555108733475208, 0.006969897076487541, -0.04714391008019447, -0.017124686390161514, -0.23401367664337158, 0.020489437505602837, -0.02585102804005146, 0.002247859025374055, 0.08081390708684921, 0.10528143495321274, 0.11591736972332001, -0.05825112760066986, -0.0049665383994579315, -0.04082168638706207, -0.004608532413840294, -0.009250106289982796, -0.11347143352031708, -0.008605066686868668, -0.03784414380788803, 0.020886993035674095, -0.0794011801481247, 0.16608694195747375, -0.014744565822184086, -0.09557057172060013, 0.02693353220820427, 0.22225771844387054, -0.11745105683803558, 0.07965832203626633, 0.17870362102985382, 0.08471299707889557, -0.005806950386613607, 0.05076675862073898, 0.04872910678386688, 0.09899885952472687, 0.18857689201831818, 0.001290513901039958, 0.24324975907802582, 0.0384662002325058, 0.11417335271835327, 0.07841764390468597, -0.015675028786063194, 0.04977463558316231, 0.08862914144992828, -0.09459378570318222, 0.10339350253343582, 0.008571579121053219, -0.00021850652410648763, 0.13538120687007904, 0.030605899170041084, 0.008464991115033627, 0.016463879495859146, -0.004822987597435713, -0.08440810441970825, -0.20424209535121918, -0.0994885191321373, -0.14376957714557648, 0.04786734655499458, -0.0315607525408268, -0.08413831889629364, 0.21669946610927582, 0.08164103329181671, -0.04624015465378761, 0.04981165751814842, -0.07826276868581772, -0.05024388059973717, 0.16272316873073578, -0.007684167940169573, -0.10622568428516388, 0.13857251405715942, -0.048904404044151306, 0.0640561580657959, 0.061720263212919235, -0.01725178398191929, 0.0019893755670636892, 0.06553024798631668, 0.16132068634033203, -0.038575779646635056, -0.04228678345680237, -0.032346222549676895, 0.02321389876306057, -0.04414878413081169, -0.0016500750789418817, -0.016019554808735847, 0.029759744182229042, 0.04754052311182022, 0.23248682916164398, -0.10221357643604279, -0.07475889474153519, -0.1126231849193573, -0.0381355956196785, -0.0016767211491242051, 0.05732806399464607, -0.04896414279937744, -0.036509208381175995, -0.022027568891644478, 0.21103036403656006, 0.23181891441345215, -0.1809857338666916, 0.0036115916445851326, 0.08237669616937637, 0.00295643275603652, -0.03881070390343666, 0.030071690678596497, 0.17068953812122345, 0.1082858145236969, -0.06575600057840347, -0.12914849817752838, -0.062089405953884125, -0.05849618837237358, -0.1210717260837555, 0.017142318189144135, 0.05896804481744766, -0.07356797903776169, -0.12840421497821808, 0.12274118512868881, -0.17734409868717194, -0.01671498641371727, 0.0787510797381401, -0.0853494331240654, -0.12138157337903976, -0.051406171172857285, 0.07329875230789185, 0.1018935814499855, 0.00903222244232893, -0.07785455882549286, 0.04318561777472496, 0.014073831960558891, 0.02787809818983078, -0.15368665754795074, -0.04248252883553505, -0.06426951289176941, -0.02106315642595291, 0.12896691262722015, 0.03828010335564613, -0.009185871109366417, 0.042606912553310394, 0.028342951089143753, -0.06875499337911606, 0.008978831581771374, -0.04940902814269066, -0.12226800620555878, 0.026106899604201317, 0.06378495693206787, -0.03047916851937771, -0.007524765562266111, 0.05869164317846298, -0.1668347418308258, -0.024590667337179184, 0.04501776769757271, 0.01154970470815897, -0.11275368183851242, 0.014814568683505058, -0.06845129281282425, 0.052471961826086044, 0.03971651941537857, 0.003817080520093441, -0.003207996254786849, -0.05252712592482567, -0.031295157968997955, 0.007487901486456394, -0.12097004801034927, 0.010698172263801098, -0.02833576127886772, -0.03477328643202782, -0.23887363076210022, 0.05871821939945221, 0.012754385359585285, -0.014852779917418957, -0.034231457859277725, -0.041603680700063705, -0.08650173246860504, 0.07724209129810333, 0.11301469057798386, -0.04449598863720894, 0.011380890384316444, 0.023147547617554665, 0.07211627066135406, -0.002987536136060953, -0.023065079003572464, -0.10727699100971222 ]
null
null
transformers
# resnet26 Implementation of ResNet proposed in [Deep Residual Learning for Image Recognition](https://arxiv.org/abs/1512.03385) ``` python ResNet.resnet18() ResNet.resnet26() ResNet.resnet34() ResNet.resnet50() ResNet.resnet101() ResNet.resnet152() ResNet.resnet200() Variants (d) proposed in `Bag of Tricks for Image Classification with Convolutional Neural Networks <https://arxiv.org/pdf/1812.01187.pdf`_ ResNet.resnet26d() ResNet.resnet34d() ResNet.resnet50d() # You can construct your own one by chaning `stem` and `block` resnet101d = ResNet.resnet101(stem=ResNetStemC, block=partial(ResNetBottleneckBlock, shortcut=ResNetShorcutD)) ``` Examples: ``` python # change activation ResNet.resnet18(activation = nn.SELU) # change number of classes (default is 1000 ) ResNet.resnet18(n_classes=100) # pass a different block ResNet.resnet18(block=SENetBasicBlock) # change the steam model = ResNet.resnet18(stem=ResNetStemC) change shortcut model = ResNet.resnet18(block=partial(ResNetBasicBlock, shortcut=ResNetShorcutD)) # store each feature x = torch.rand((1, 3, 224, 224)) # get features model = ResNet.resnet18() # first call .features, this will activate the forward hooks and tells the model you'll like to get the features model.encoder.features model(torch.randn((1,3,224,224))) # get the features from the encoder features = model.encoder.features print([x.shape for x in features]) #[torch.Size([1, 64, 112, 112]), torch.Size([1, 64, 56, 56]), torch.Size([1, 128, 28, 28]), torch.Size([1, 256, 14, 14])] ```
{"license": "apache-2.0", "tags": ["image-classification"], "datasets": ["imagenet"]}
image-classification
glasses/resnet26
[ "transformers", "pytorch", "image-classification", "dataset:imagenet", "arxiv:1512.03385", "arxiv:1812.01187", "license:apache-2.0", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[ "1512.03385", "1812.01187" ]
[]
TAGS #transformers #pytorch #image-classification #dataset-imagenet #arxiv-1512.03385 #arxiv-1812.01187 #license-apache-2.0 #endpoints_compatible #region-us
# resnet26 Implementation of ResNet proposed in Deep Residual Learning for Image Recognition Examples:
[ "# resnet26\nImplementation of ResNet proposed in Deep Residual Learning for Image\nRecognition\n\n \n\n Examples:" ]
[ "TAGS\n#transformers #pytorch #image-classification #dataset-imagenet #arxiv-1512.03385 #arxiv-1812.01187 #license-apache-2.0 #endpoints_compatible #region-us \n", "# resnet26\nImplementation of ResNet proposed in Deep Residual Learning for Image\nRecognition\n\n \n\n Examples:" ]
[ 58, 25 ]
[ "passage: TAGS\n#transformers #pytorch #image-classification #dataset-imagenet #arxiv-1512.03385 #arxiv-1812.01187 #license-apache-2.0 #endpoints_compatible #region-us \n# resnet26\nImplementation of ResNet proposed in Deep Residual Learning for Image\nRecognition\n\n \n\n Examples:" ]
[ -0.10744696855545044, 0.06904590129852295, -0.0022883068304508924, 0.08351658284664154, 0.09360119700431824, 0.0069902511313557625, -0.014396166428923607, 0.08862730860710144, -0.09012933820486069, -0.015143324621021748, 0.10387680679559708, 0.10111113637685776, 0.0007344374898821115, -0.056969840079545975, -0.051522914320230484, -0.2318657636642456, 0.08840201050043106, 0.06792847067117691, -0.009744362905621529, 0.05858120322227478, 0.06854964792728424, -0.08277694880962372, 0.0957566499710083, 0.00023002871603239328, -0.17394426465034485, 0.007484584115445614, -0.016370732337236404, -0.06604522466659546, 0.07782573997974396, 0.02265040948987007, 0.09632889926433563, 0.007235366851091385, 0.09808646887540817, -0.10887936502695084, 0.03212638571858406, 0.048604197800159454, -0.07610014826059341, 0.05720343440771103, 0.10132841020822525, -0.028057487681508064, 0.036999933421611786, 0.04587714746594429, -0.07245166599750519, -0.04545115679502487, -0.00021353363990783691, -0.06296145170927048, 0.005112644750624895, 0.16655375063419342, 0.08250875771045685, 0.09524770826101303, 0.030742289498448372, 0.08591732382774353, -0.11022476851940155, 0.09178781509399414, 0.16527795791625977, -0.28602585196495056, -0.05270390585064888, 0.11240458488464355, -0.056943606585264206, -0.07834335416555405, -0.07266394048929214, 0.026583556085824966, 0.021382464095950127, 0.036166898906230927, -0.13119496405124664, 0.0013039857149124146, -0.07745200395584106, -0.007613510359078646, -0.08729974925518036, -0.030024681240320206, 0.05443035438656807, 0.09366820007562637, 0.06380660086870193, -0.0017804482486099005, -0.15224559605121613, 0.017513427883386612, -0.10386259853839874, 0.04471311718225479, 0.021872693672776222, 0.062209226191043854, -0.08914440870285034, -0.008099004626274109, -0.05984089896082878, -0.0378132238984108, -0.1444302201271057, -0.040475524961948395, 0.05496782064437866, 0.13207276165485382, -0.11410070955753326, 0.022206895053386688, 0.0408388152718544, -0.04019246622920036, -0.002331341616809368, -0.07934761792421341, 0.022413698956370354, 0.04896184056997299, -0.07576388120651245, -0.027840984985232353, 0.09173272550106049, 0.19243481755256653, -0.06604618579149246, -0.0015798868844285607, -0.021848106756806374, 0.1393323838710785, -0.09315299987792969, 0.006743675097823143, -0.24165935814380646, 0.12031009048223495, 0.048291951417922974, -0.09013071656227112, 0.01992899551987648, -0.014381181448698044, -0.08291494846343994, -0.022517304867506027, 0.11266638338565826, -0.03898230940103531, -0.0168070700019598, 0.06804415583610535, -0.010426445864140987, -0.0456528477370739, 0.1213960126042366, -0.03535955026745796, -0.03547082841396332, -0.0031298042740672827, -0.09874029457569122, 0.07653598487377167, 0.10348480194807053, -0.00029961756081320345, -0.09876095503568649, -0.0002607134520076215, -0.010559090413153172, -0.0030155552085489035, 0.004730693995952606, -0.03206470236182213, 0.04297233372926712, 0.012655642814934254, 0.05729982256889343, -0.21344077587127686, -0.14794011414051056, 0.003643638687208295, 0.11540413647890091, -0.03873583301901817, 0.008473042398691177, -0.015034547075629234, -0.1252679079771042, -0.0024764654226601124, 0.01681266911327839, 0.02764737419784069, -0.07197141647338867, 0.01756354235112667, -0.135483980178833, 0.1246185377240181, -0.11149141192436218, 0.03555155172944069, -0.09124935418367386, -0.04369807615876198, -0.07687441259622574, 0.09644585847854614, -0.07589633762836456, 0.0930565595626831, -0.13411425054073334, -0.0790388360619545, -0.0666482225060463, -0.03044966794550419, 0.0061899651773273945, 0.06917499005794525, -0.08580426871776581, -0.008447648026049137, 0.14903303980827332, -0.10623884946107864, -0.08469248563051224, 0.07982068508863449, -0.03217468783259392, -0.1004142314195633, -0.001093198312446475, 0.1571812629699707, 0.01709531992673874, 0.006874193903058767, -0.05145940184593201, 0.02314300648868084, -0.1300475299358368, -0.12837378680706024, -0.036085695028305054, 0.14554448425769806, 0.03304373845458031, -0.0051946197636425495, -0.09025321900844574, 0.11243043094873428, -0.0817771852016449, -0.12052428722381592, -0.04144604131579399, -0.09867282211780548, -0.016080081462860107, 0.04802199453115463, 0.10555781424045563, 0.06542543321847916, -0.04202444478869438, -0.1580812633037567, 0.055452611297369, -0.053148303180933, 0.10828372091054916, -0.09242380410432816, 0.15706881880760193, -0.03418854996562004, 0.03510281816124916, -0.23253700137138367, 0.008906538598239422, 0.004650469403713942, 0.020859623327851295, -0.03446942940354347, -0.04851138964295387, 0.03774969279766083, -0.054576825350522995, -0.03631936013698578, -0.07042361050844193, 0.06736674159765244, -0.019812222570180893, -0.005021634977310896, -0.12454035878181458, -0.0018282649107277393, -0.0431230328977108, 0.016051525250077248, -0.1253124475479126, -0.057769209146499634, 0.024070654064416885, 0.1246233657002449, -0.031133711338043213, 0.08348829299211502, -0.029190734028816223, -0.05972059443593025, -0.019149374216794968, -0.05668909102678299, 0.09330214560031891, 0.015836184844374657, -0.015499871224164963, 0.06861531734466553, 0.09606349468231201, 0.14840663969516754, 0.1509447693824768, -0.2830372452735901, -0.03764178976416588, 0.08659368753433228, -0.032482609152793884, -0.006019480526447296, -0.007400063797831535, 0.1619768589735031, 0.10977166146039963, -0.02622511237859726, 0.06964018940925598, -0.05669981241226196, 0.09570147097110748, 0.013407323509454727, -0.025981616228818893, 0.004281977657228708, 0.04564238712191582, 0.0802447572350502, -0.27300018072128296, 0.08759628236293793, 0.1103631928563118, -0.16334377229213715, -0.04428181052207947, -0.04528682678937912, -0.06402572244405746, 0.10136551409959793, 0.07085718959569931, -0.012086225673556328, 0.06659276783466339, 0.03774789720773697, -0.024881774559617043, 0.05876437574625015, -0.09699558466672897, 0.023479735478758812, -0.12670519948005676, 0.023164289072155952, -0.05192742869257927, 0.003100428730249405, 0.018817467615008354, -0.0031259595416486263, -0.002380205551162362, 0.10675735026597977, -0.009700505062937737, -0.2360631823539734, 0.05095323547720909, -0.0675242617726326, -0.028724832460284233, 0.2089480757713318, -0.02361411415040493, -0.2356199324131012, -0.006665813736617565, -0.01582927443087101, -0.07913210988044739, -0.015069789253175259, 0.025666493922472, -0.12147388607263565, -0.0657106414437294, -0.019909126684069633, -0.11065506935119629, 0.11169010400772095, 0.027490125969052315, 0.017122318968176842, 0.027980919927358627, 0.035928208380937576, -0.048684779554605484, 0.014315933920443058, -0.14148923754692078, -0.09193039685487747, 0.13183189928531647, -0.08633673936128616, 0.08052439242601395, 0.08303699642419815, -0.015818491578102112, 0.019314415752887726, 0.024552753195166588, 0.13840456306934357, -0.05222611501812935, 0.021199727430939674, 0.09256977587938309, -0.00886098574846983, 0.050984937697649, 0.084734708070755, 0.009581604972481728, -0.07130718231201172, -0.008221063762903214, 0.02961954101920128, -0.04244043305516243, -0.09497544169425964, -0.13595224916934967, -0.0378279946744442, -0.014755284413695335, 0.158452570438385, 0.10475954413414001, 0.045887839049100876, 0.10088971257209778, 0.011394877918064594, -0.029560279101133347, 0.05715494602918625, 0.06390875577926636, 0.10593293607234955, 0.03748495504260063, 0.1108049526810646, -0.07953238487243652, -0.06634921580553055, 0.03679565340280533, 0.10595148801803589, 0.25231656432151794, -0.029667001217603683, -0.12466418743133545, 0.046352922916412354, 0.24848389625549316, 0.10443224757909775, 0.1033686026930809, -0.06325124949216843, -0.014705597423017025, 0.0018097955035045743, -0.00048177270218729973, 0.01196601428091526, 0.04671478271484375, -0.015327364206314087, -0.0677119642496109, 0.03558879718184471, 0.034862566739320755, 0.026499299332499504, 0.249240443110466, 0.09474293142557144, -0.32048845291137695, 0.010239296592772007, -0.042557425796985626, -0.0017028814181685448, -0.015002013184130192, 0.13692042231559753, -0.006435183342546225, -0.03655049577355385, 0.07834995537996292, -0.13128136098384857, 0.10561752319335938, -0.05795387923717499, 0.009822770021855831, 0.0473211333155632, -0.11966030299663544, 0.08795664459466934, 0.0498916357755661, -0.1347319334745407, 0.17479196190834045, -0.0478525385260582, -0.06816823035478592, -0.06855451315641403, -0.048118602484464645, 0.10839352756738663, 0.13539673388004303, 0.24696996808052063, 0.016690479591488838, -0.010850254446268082, 0.0879601463675499, -0.025232424959540367, 0.03934088349342346, 0.052689630538225174, 0.07649997621774673, -0.05899002403020859, 0.034481436014175415, -0.052866946905851364, 0.0398198664188385, 0.12960046529769897, -0.021983444690704346, -0.10171516239643097, -0.058700431138277054, 0.07292798161506653, -0.04926767200231552, -0.033569030463695526, -0.06584075093269348, -0.07397886365652084, 0.1355414092540741, 0.030192527920007706, -0.026211552321910858, -0.08368439972400665, 0.09423509985208511, 0.06502584367990494, -0.06135778874158859, 0.10413460433483124, -0.04917410761117935, 0.027732515707612038, -0.019386250525712967, -0.24595887959003448, 0.17228904366493225, -0.1154390200972557, -0.004731600638478994, 0.03013092279434204, -0.06586316227912903, -0.008661050349473953, -0.02702687494456768, 0.056064266711473465, 0.04279056191444397, -0.1271173506975174, -0.02423235960304737, 0.01709495671093464, -0.044232990592718124, 0.01935693994164467, 0.08883974701166153, -0.05527776852250099, -0.07682837545871735, -0.036980945616960526, 0.15122190117835999, 0.1576569378376007, -0.0433829165995121, -0.10309663414955139, 0.005824095103889704, 0.11374257504940033, 0.03207111358642578, -0.3869397044181824, -0.09171580523252487, -0.02505921758711338, -0.06744284182786942, -0.09879971295595169, -0.1307881474494934, 0.23615652322769165, -0.006959684193134308, -0.059930991381406784, 0.0008560330024920404, -0.1391560286283493, -0.03775596246123314, 0.25461772084236145, 0.07517210394144058, 0.2861258089542389, -0.08883396536111832, 0.025453275069594383, -0.05845293030142784, 0.025108199566602707, 0.09008731693029404, -0.004988688975572586, 0.07253002375364304, -0.0027146704960614443, 0.05161336809396744, -0.04242442548274994, -0.027906447649002075, -0.02695634216070175, 0.1131201684474945, 0.09467501938343048, -0.09696285426616669, 0.07672406733036041, 0.06674114614725113, -0.01797335222363472, 0.05126509070396423, 0.08429577946662903, 0.11133768409490585, -0.015543913468718529, 0.024260200560092926, -0.09401245415210724, 0.05124438554048538, 0.1055263876914978, 0.00027400118415243924, -0.10644172877073288, 0.06148465350270271, 0.10955177247524261, 0.0857534185051918, 0.2829989194869995, 0.12814262509346008, 0.03368355706334114, 0.06776335835456848, 0.006801007315516472, -0.0783596783876419, -0.08442137390375137, -0.10211344808340073, -0.03647009655833244, 0.1447150856256485, -0.15101009607315063, 0.05572216957807541, 0.10205931216478348, -0.0018157500308007002, -0.0035089857410639524, 0.1014065146446228, 0.019577283412218094, -0.03325967863202095, 0.09962768852710724, -0.06661970913410187, -0.025409581139683723, 0.010896540246903896, 0.0761917382478714, 0.10386428982019424, 0.1399383693933487, 0.10627073794603348, -0.10398247838020325, -0.0024618010502308607, 0.024485623463988304, 0.07517100125551224, -0.05314343422651291, 0.058177631348371506, 0.14485765993595123, -0.025867333635687828, -0.14577017724514008, 0.20106041431427002, 0.007860911078751087, -0.15634962916374207, -0.023160260170698166, -0.054417792707681656, -0.14167672395706177, -0.1291711926460266, -0.009703093208372593, -0.003332108026370406, -0.24244451522827148, -0.08363298326730728, -0.004693466238677502, -0.07164939492940903, 0.11733949929475784, 0.025166448205709457, 0.13861814141273499, -0.021031063050031662, -0.03661719337105751, -0.07945320010185242, -0.03846943378448486, 0.018913976848125458, 0.011723780073225498, 0.06660176068544388, -0.1616573929786682, -0.21363183856010437, 0.013958844356238842, 0.15110598504543304, -0.08089461177587509, 0.007071467582136393, -0.08162625879049301, 0.09072794020175934, -0.12389998883008957, 0.06894999742507935, -0.05862702429294586, 0.026637066155672073, -0.06158250942826271, -0.028145743533968925, -0.06308282911777496, 0.056371863931417465, -0.09653656929731369, -0.026269370689988136, -0.0005408708821050823, -0.023506058380007744, -0.117017962038517, -0.028689205646514893, -0.02015838585793972, 0.006523805670440197, 0.1316632181406021, 0.08282825350761414, -0.10578665137290955, 0.09355971217155457, -0.14170177280902863, -0.25698912143707275, 0.1556512713432312, 0.04048388823866844, -0.02051299437880516, 0.059178758412599564, 0.054800137877464294, 0.07536144554615021, -0.044986989349126816, -0.015637606382369995, 0.012717227451503277, -0.046334024518728256, -0.01953941397368908, -0.2365904599428177, 0.01918552815914154, -0.027041219174861908, 0.0038747910875827074, 0.08129977434873581, 0.10371624678373337, 0.11686643213033676, -0.05840156972408295, -0.0071630957536399364, -0.03923705220222473, -0.003741312539204955, -0.00687831686809659, -0.11360208690166473, -0.015308456495404243, -0.03750839829444885, 0.021657725796103477, -0.07844021916389465, 0.1644858717918396, -0.018295498564839363, -0.0964442640542984, 0.025700882077217102, 0.2193782478570938, -0.11253664642572403, 0.07985016703605652, 0.18610206246376038, 0.08595740050077438, -0.008152458816766739, 0.050747789442539215, 0.04977960139513016, 0.09601109474897385, 0.18952150642871857, 0.00418998533859849, 0.2471097707748413, 0.041306085884571075, 0.1159195825457573, 0.07817456871271133, -0.015268572606146336, 0.052771758288145065, 0.09242278337478638, -0.09134594351053238, 0.1051529049873352, 0.005593913607299328, 0.003514004871249199, 0.13294558227062225, 0.0322100967168808, 0.008134705945849419, 0.014656124636530876, -0.005593457259237766, -0.08462353050708771, -0.204203799366951, -0.10057121515274048, -0.14486679434776306, 0.04875024035573006, -0.031066104769706726, -0.08203542977571487, 0.21749520301818848, 0.08015964180231094, -0.045576464384794235, 0.05122554302215576, -0.08002632111310959, -0.052691567689180374, 0.16411224007606506, -0.008359287865459919, -0.10711362957954407, 0.1382613182067871, -0.047639813274145126, 0.066770039498806, 0.05856925994157791, -0.01557912491261959, 0.0019961437210440636, 0.06766504049301147, 0.15987497568130493, -0.039382100105285645, -0.04002955183386803, -0.032757628709077835, 0.025394592434167862, -0.044211652129888535, -0.003320094430819154, -0.01698356680572033, 0.029873918741941452, 0.04727846384048462, 0.2323896288871765, -0.10574555397033691, -0.07572998106479645, -0.1128677949309349, -0.03624029830098152, -0.002467453246936202, 0.05954906716942787, -0.04903950169682503, -0.03778450936079025, -0.021324504166841507, 0.20859652757644653, 0.22922465205192566, -0.18302331864833832, 0.004068491980433464, 0.0842617005109787, 0.003324494231492281, -0.037758708000183105, 0.029735304415225983, 0.17052409052848816, 0.10927384346723557, -0.06671486049890518, -0.13570381700992584, -0.06060635298490524, -0.05648837238550186, -0.11898429691791534, 0.013906740583479404, 0.058948274701833725, -0.07613780349493027, -0.13292452692985535, 0.11999525129795074, -0.17654283344745636, -0.011855706572532654, 0.07948452979326248, -0.08594264835119247, -0.12081120163202286, -0.051676828414201736, 0.07019615173339844, 0.09917984902858734, 0.009273936040699482, -0.07885241508483887, 0.04512840509414673, 0.018944580107927322, 0.027855481952428818, -0.15693163871765137, -0.04218674823641777, -0.06457831710577011, -0.02718990668654442, 0.12512196600437164, 0.038266900926828384, -0.0054649231024086475, 0.044002681970596313, 0.027317024767398834, -0.06928573548793793, 0.00972569826990366, -0.04889630898833275, -0.12530715763568878, 0.024429520592093468, 0.06483325362205505, -0.030790427699685097, -0.003481582272797823, 0.05575175583362579, -0.165300652384758, -0.023503165692090988, 0.05022266134619713, 0.013173170387744904, -0.11644019931554794, 0.01398411300033331, -0.0702197402715683, 0.05362347513437271, 0.04327251389622688, 0.00496812304481864, -0.0017478411318734288, -0.05221421644091606, -0.030633438378572464, 0.008551651611924171, -0.12219645828008652, 0.011811664327979088, -0.026807283982634544, -0.03588233143091202, -0.23979616165161133, 0.05944765731692314, 0.006935045123100281, -0.018006717786192894, -0.03428909182548523, -0.041990723460912704, -0.08273885399103165, 0.07876519858837128, 0.11251866072416306, -0.043642815202474594, 0.010340838693082333, 0.015536220744252205, 0.07201986759901047, -0.0016804981278255582, -0.02216409333050251, -0.1097506582736969 ]
null
null
transformers
# resnet26d Implementation of ResNet proposed in [Deep Residual Learning for Image Recognition](https://arxiv.org/abs/1512.03385) ``` python ResNet.resnet18() ResNet.resnet26() ResNet.resnet34() ResNet.resnet50() ResNet.resnet101() ResNet.resnet152() ResNet.resnet200() Variants (d) proposed in `Bag of Tricks for Image Classification with Convolutional Neural Networks <https://arxiv.org/pdf/1812.01187.pdf`_ ResNet.resnet26d() ResNet.resnet34d() ResNet.resnet50d() # You can construct your own one by chaning `stem` and `block` resnet101d = ResNet.resnet101(stem=ResNetStemC, block=partial(ResNetBottleneckBlock, shortcut=ResNetShorcutD)) ``` Examples: ``` python # change activation ResNet.resnet18(activation = nn.SELU) # change number of classes (default is 1000 ) ResNet.resnet18(n_classes=100) # pass a different block ResNet.resnet18(block=SENetBasicBlock) # change the steam model = ResNet.resnet18(stem=ResNetStemC) change shortcut model = ResNet.resnet18(block=partial(ResNetBasicBlock, shortcut=ResNetShorcutD)) # store each feature x = torch.rand((1, 3, 224, 224)) # get features model = ResNet.resnet18() # first call .features, this will activate the forward hooks and tells the model you'll like to get the features model.encoder.features model(torch.randn((1,3,224,224))) # get the features from the encoder features = model.encoder.features print([x.shape for x in features]) #[torch.Size([1, 64, 112, 112]), torch.Size([1, 64, 56, 56]), torch.Size([1, 128, 28, 28]), torch.Size([1, 256, 14, 14])] ```
{"license": "apache-2.0", "tags": ["image-classification"], "datasets": ["imagenet"]}
image-classification
glasses/resnet26d
[ "transformers", "pytorch", "image-classification", "dataset:imagenet", "arxiv:1512.03385", "arxiv:1812.01187", "license:apache-2.0", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[ "1512.03385", "1812.01187" ]
[]
TAGS #transformers #pytorch #image-classification #dataset-imagenet #arxiv-1512.03385 #arxiv-1812.01187 #license-apache-2.0 #endpoints_compatible #region-us
# resnet26d Implementation of ResNet proposed in Deep Residual Learning for Image Recognition Examples:
[ "# resnet26d\nImplementation of ResNet proposed in Deep Residual Learning for Image\nRecognition\n\n \n\n Examples:" ]
[ "TAGS\n#transformers #pytorch #image-classification #dataset-imagenet #arxiv-1512.03385 #arxiv-1812.01187 #license-apache-2.0 #endpoints_compatible #region-us \n", "# resnet26d\nImplementation of ResNet proposed in Deep Residual Learning for Image\nRecognition\n\n \n\n Examples:" ]
[ 58, 26 ]
[ "passage: TAGS\n#transformers #pytorch #image-classification #dataset-imagenet #arxiv-1512.03385 #arxiv-1812.01187 #license-apache-2.0 #endpoints_compatible #region-us \n# resnet26d\nImplementation of ResNet proposed in Deep Residual Learning for Image\nRecognition\n\n \n\n Examples:" ]
[ -0.10658662021160126, 0.06905526667833328, -0.0024896860122680664, 0.07957018911838531, 0.09052454680204391, 0.007605852093547583, -0.017499523237347603, 0.08282821625471115, -0.09666583687067032, -0.01545178797096014, 0.10364415496587753, 0.09498219937086105, 0.003624245524406433, -0.06289677321910858, -0.056367579847574234, -0.22660216689109802, 0.08879246562719345, 0.07104138284921646, -0.01033689547330141, 0.05763578414916992, 0.06925241649150848, -0.07539515197277069, 0.09433097392320633, 0.0020018117502331734, -0.17083758115768433, 0.008892307989299297, -0.014630982652306557, -0.0657598078250885, 0.07907469570636749, 0.02243478037416935, 0.1017458438873291, 0.012905209325253963, 0.09656047821044922, -0.1209040954709053, 0.032367054373025894, 0.053239766508340836, -0.07287812978029251, 0.058233652263879776, 0.10124292224645615, -0.022808628156781197, 0.04567496478557587, 0.04814198240637779, -0.07888012379407883, -0.04692472144961357, 0.002205328084528446, -0.0686926618218422, 0.0029725111089646816, 0.17442339658737183, 0.08222678303718567, 0.09386355429887772, 0.033619172871112823, 0.08351165801286697, -0.10985086113214493, 0.09197793155908585, 0.15531349182128906, -0.2883235812187195, -0.05168340355157852, 0.12475688010454178, -0.055335916578769684, -0.08116699755191803, -0.07614784687757492, 0.02528429590165615, 0.025595026090741158, 0.03798019513487816, -0.1320396363735199, 0.003016637871041894, -0.08507776260375977, -0.009083965793251991, -0.08740822225809097, -0.03191455826163292, 0.05292462930083275, 0.09613290429115295, 0.06336227059364319, 0.008202709257602692, -0.15647703409194946, 0.018130863085389137, -0.10307986289262772, 0.042441532015800476, 0.02149241790175438, 0.067275770008564, -0.08694674074649811, -0.004259787499904633, -0.06236248090863228, -0.03700657933950424, -0.14622560143470764, -0.03756994381546974, 0.05694316327571869, 0.13426083326339722, -0.11945349723100662, 0.02388521283864975, 0.042509231716394424, -0.04344010725617409, -0.0029546963050961494, -0.08078747242689133, 0.025518620386719704, 0.04997631162405014, -0.07385047525167465, -0.02502470649778843, 0.09559834003448486, 0.19096587598323822, -0.07777639478445053, 0.0001187514208140783, -0.0227400790899992, 0.1358853280544281, -0.09641478210687637, 0.004803012125194073, -0.24019241333007812, 0.12341000884771347, 0.047787975519895554, -0.08651825785636902, 0.01933131366968155, -0.01360990945249796, -0.08012346923351288, -0.02154277265071869, 0.11409839987754822, -0.03940955176949501, -0.014007954858243465, 0.06998706609010696, -0.0067107053473591805, -0.046809300780296326, 0.13260303437709808, -0.03522665798664093, -0.03602919355034828, -0.0014189488720148802, -0.09538114070892334, 0.0831647515296936, 0.10425679385662079, 0.00047915717004798353, -0.09727316349744797, 0.0012076866114512086, -0.009992875158786774, -0.0075620743446052074, 0.005454537458717823, -0.03442119061946869, 0.04684619978070259, 0.01312637235969305, 0.05511101707816124, -0.21489696204662323, -0.13794296979904175, 0.007008381653577089, 0.11774508655071259, -0.035103823989629745, 0.01038059126585722, -0.014313616789877415, -0.12717147171497345, 0.00088353524915874, 0.01826893724501133, 0.028877176344394684, -0.07084662467241287, 0.01536470279097557, -0.1302875131368637, 0.12408281117677689, -0.11534235626459122, 0.03467843681573868, -0.08917804807424545, -0.03949877247214317, -0.059021856635808945, 0.09360053390264511, -0.08204589039087296, 0.08323214203119278, -0.1347881704568863, -0.07478741556406021, -0.0721818134188652, -0.03319288790225983, 0.009800100699067116, 0.06552385538816452, -0.08868516236543655, -0.007069632411003113, 0.1506652683019638, -0.1080797016620636, -0.08787131309509277, 0.0787888765335083, -0.029739169403910637, -0.10636372119188309, -0.006061499938368797, 0.15861661732196808, 0.02009488083422184, -0.00044696067925542593, -0.057033244520425797, 0.03080037795007229, -0.1264285296201706, -0.12957990169525146, -0.042226240038871765, 0.14414264261722565, 0.036545708775520325, -0.003967799711972475, -0.09106321632862091, 0.11369103938341141, -0.08186923712491989, -0.1199839785695076, -0.04447270557284355, -0.09281761199235916, -0.017442218959331512, 0.046606648713350296, 0.10254108160734177, 0.06851201504468918, -0.03964976966381073, -0.16287793219089508, 0.05935221537947655, -0.053767941892147064, 0.11264509707689285, -0.09023580700159073, 0.14618809521198273, -0.03631880506873131, 0.03942039981484413, -0.2271261364221573, 0.0037451223470270634, 0.006692963652312756, 0.025654911994934082, -0.04002070799469948, -0.04804760590195656, 0.03472261503338814, -0.06124555692076683, -0.037881746888160706, -0.07099372893571854, 0.06919199973344803, -0.017336303368210793, -0.0056592850014567375, -0.12471749633550644, -0.004258090164512396, -0.04355792701244354, 0.009528310969471931, -0.1335577368736267, -0.0579373799264431, 0.026703525334596634, 0.1281375288963318, -0.032961782068014145, 0.0849442407488823, -0.02928367257118225, -0.05969499051570892, -0.02548728697001934, -0.05772417411208153, 0.08932307362556458, 0.018509529531002045, -0.019689591601490974, 0.06895270943641663, 0.09980149567127228, 0.1407838761806488, 0.14678868651390076, -0.2790777385234833, -0.0348324291408062, 0.08776640892028809, -0.03440511226654053, -0.011366543360054493, -0.0063262502662837505, 0.16145378351211548, 0.10420236736536026, -0.02123934030532837, 0.06882432103157043, -0.05622074753046036, 0.09977924823760986, 0.013354779221117496, -0.03261979669332504, 0.001565599930472672, 0.042327336966991425, 0.07457290589809418, -0.27553266286849976, 0.08473141491413116, 0.11178620159626007, -0.1633443832397461, -0.047081828117370605, -0.04709070920944214, -0.06573440879583359, 0.10275769233703613, 0.0746748223900795, -0.013180127367377281, 0.06280827522277832, 0.04453464224934578, -0.020761745050549507, 0.05871095880866051, -0.09012938290834427, 0.027295513078570366, -0.12838539481163025, 0.027575237676501274, -0.053989410400390625, 0.0013889839174225926, 0.014170208014547825, 0.0009559562313370407, -0.006106038112193346, 0.10322964936494827, -0.012323969975113869, -0.24336908757686615, 0.05388518422842026, -0.0692710131406784, -0.026610393077135086, 0.20889420807361603, -0.02321300096809864, -0.23199371993541718, -0.0055656167678534985, -0.019664252176880836, -0.08573207259178162, -0.01714733988046646, 0.023969881236553192, -0.12102287262678146, -0.06320902705192566, -0.018146121874451637, -0.11812791228294373, 0.10130295902490616, 0.026430504396557808, 0.018606381490826607, 0.028723251074552536, 0.03749115765094757, -0.05091865360736847, 0.019159525632858276, -0.1391773670911789, -0.09264305233955383, 0.1328350007534027, -0.09187841415405273, 0.08127465099096298, 0.0894044041633606, -0.015435841865837574, 0.018583057448267937, 0.02966197207570076, 0.1383998543024063, -0.04676185920834541, 0.02628416381776333, 0.08772417157888412, -0.007851332426071167, 0.05552775785326958, 0.08889970928430557, 0.010262190364301205, -0.0671021044254303, -0.007917865179479122, 0.029484594240784645, -0.04345069080591202, -0.10153865814208984, -0.13409581780433655, -0.03630233183503151, -0.019164355471730232, 0.15264610946178436, 0.10590662807226181, 0.046543776988983154, 0.09944257140159607, 0.007047552149742842, -0.02443081885576248, 0.049620579928159714, 0.06330501288175583, 0.10723187774419785, 0.04181775078177452, 0.10946711897850037, -0.08099622279405594, -0.06149454414844513, 0.03447727859020233, 0.1182028129696846, 0.2536126673221588, -0.027221105992794037, -0.11770214885473251, 0.051459718495607376, 0.2582510709762573, 0.10464436560869217, 0.09837324917316437, -0.061470821499824524, -0.0138448067009449, 0.0020618862472474575, 0.0018666799878701568, 0.017770258709788322, 0.0483766533434391, -0.020649533718824387, -0.07001943141222, 0.03887388855218887, 0.03695204481482506, 0.02390369586646557, 0.258247047662735, 0.09255616366863251, -0.31363338232040405, 0.011298607103526592, -0.04211970791220665, 0.0011315766023471951, -0.013224882073700428, 0.13608911633491516, -0.008856251835823059, -0.03034311532974243, 0.0808427631855011, -0.12929107248783112, 0.105548195540905, -0.0596928596496582, 0.00908302515745163, 0.04564570263028145, -0.11670666188001633, 0.08839692175388336, 0.05234584957361221, -0.13692234456539154, 0.17888860404491425, -0.04694308340549469, -0.06804317981004715, -0.0642307698726654, -0.046314917504787445, 0.1065632775425911, 0.13876701891422272, 0.24046020209789276, 0.018666589632630348, -0.020379992201924324, 0.09647641330957413, -0.02241791971027851, 0.04029789939522743, 0.05599869787693024, 0.08281910419464111, -0.05826065316796303, 0.03588256612420082, -0.05268377065658569, 0.04219059646129608, 0.13466566801071167, -0.028682613745331764, -0.09895479679107666, -0.05515173450112343, 0.09060158580541611, -0.06060768663883209, -0.03689161315560341, -0.06343993544578552, -0.07349005341529846, 0.1445467174053192, 0.02920627035200596, -0.030155770480632782, -0.0816371738910675, 0.08539882302284241, 0.06577175110578537, -0.06421241164207458, 0.09870188683271408, -0.05356317386031151, 0.03062264993786812, -0.02040497399866581, -0.2447350025177002, 0.17237316071987152, -0.11618134379386902, -0.002498186891898513, 0.02998235821723938, -0.06463093310594559, -0.010767578147351742, -0.03234918415546417, 0.057523321360349655, 0.03823699802160263, -0.12830853462219238, -0.02827286720275879, 0.014363748021423817, -0.043072547763586044, 0.007536548189818859, 0.08256740123033524, -0.055902767926454544, -0.07641460001468658, -0.03684517741203308, 0.14975322782993317, 0.1525842547416687, -0.03809528052806854, -0.10362689197063446, -0.0007729498320259154, 0.12559010088443756, 0.027014898136258125, -0.38367536664009094, -0.09660807251930237, -0.02532103843986988, -0.07208330184221268, -0.1023724302649498, -0.12772279977798462, 0.232082799077034, -0.010238884948194027, -0.06255071610212326, 0.009342599660158157, -0.13344381749629974, -0.03258803114295006, 0.2550565004348755, 0.07270651310682297, 0.2832612991333008, -0.08478701859712601, 0.021171892061829567, -0.0577959306538105, 0.02073069103062153, 0.08877568691968918, -0.010730192996561527, 0.07228962332010269, -0.005984586197882891, 0.05475492775440216, -0.044135212898254395, -0.02763454243540764, -0.02596324495971203, 0.12057945877313614, 0.0955696776509285, -0.0920691192150116, 0.0809861421585083, 0.06900393962860107, -0.02016534097492695, 0.05261588469147682, 0.08318708837032318, 0.1131911501288414, -0.0072629707865417, 0.02559034153819084, -0.09668603539466858, 0.05036020651459694, 0.10124357044696808, -0.0007186643779277802, -0.10830526798963547, 0.057724252343177795, 0.11235657334327698, 0.08556625247001648, 0.2851227819919586, 0.12998051941394806, 0.0344356931746006, 0.08323144167661667, -0.0005977783584967256, -0.07938606292009354, -0.08088691532611847, -0.10363292694091797, -0.03593085706233978, 0.14728516340255737, -0.15633894503116608, 0.05648471415042877, 0.10251164436340332, -0.0018438659608364105, -0.006929542403668165, 0.10181069374084473, 0.012489527463912964, -0.0388045497238636, 0.09822870045900345, -0.06143118068575859, -0.02728710137307644, 0.009140142239630222, 0.0771537721157074, 0.09767443686723709, 0.14628265798091888, 0.10874959826469421, -0.10395081341266632, 0.0015316439094021916, 0.024928158149123192, 0.07173808664083481, -0.05264761298894882, 0.057210348546504974, 0.1485542207956314, -0.024875974282622337, -0.14182400703430176, 0.2024713158607483, 0.007716131396591663, -0.1532416194677353, -0.02681300789117813, -0.05688345432281494, -0.14532528817653656, -0.12669965624809265, -0.019124627113342285, -0.014368802309036255, -0.24249330163002014, -0.08756792545318604, -0.0013886266387999058, -0.06896759569644928, 0.11139054596424103, 0.018829097971320152, 0.1348402053117752, -0.017084313556551933, -0.03691637143492699, -0.08343848586082458, -0.03974944353103638, 0.01640848070383072, 0.011089473031461239, 0.07234101742506027, -0.16317753493785858, -0.21914057433605194, 0.016441499814391136, 0.15094470977783203, -0.0770365372300148, 0.006736293900758028, -0.0789196789264679, 0.09099479019641876, -0.13514070212841034, 0.06894467025995255, -0.05451934412121773, 0.026459258049726486, -0.06115120276808739, -0.026064623147249222, -0.06154735013842583, 0.06033255159854889, -0.0943601205945015, -0.026242859661579132, -0.0015038367127999663, -0.02314211241900921, -0.1170811653137207, -0.028367381542921066, -0.022388439625501633, 0.006144732236862183, 0.12467288970947266, 0.07836145162582397, -0.10857654362916946, 0.09486746042966843, -0.14739204943180084, -0.2536733150482178, 0.15601123869419098, 0.04346269741654396, -0.017867498099803925, 0.06017952784895897, 0.05076020583510399, 0.0780133605003357, -0.04209841042757034, -0.01907995156943798, 0.007165964227169752, -0.04690227285027504, -0.0287084449082613, -0.24342355132102966, 0.019098417833447456, -0.023638533428311348, 0.002177300164476037, 0.08405354619026184, 0.11291868984699249, 0.11838517338037491, -0.056890975683927536, -0.010702491737902164, -0.03993707522749901, -0.005133545026183128, -0.005640697665512562, -0.11139405518770218, -0.009133181534707546, -0.03522372618317604, 0.018449895083904266, -0.07966573536396027, 0.16003455221652985, -0.029215194284915924, -0.09377360343933105, 0.021121300756931305, 0.20555411279201508, -0.11971604079008102, 0.07453149557113647, 0.18945564329624176, 0.08543279767036438, -0.010536270216107368, 0.05221593752503395, 0.042608872056007385, 0.09339313209056854, 0.19225643575191498, 0.006310656201094389, 0.24126020073890686, 0.04098702594637871, 0.12033035606145859, 0.07364070415496826, -0.01805208995938301, 0.05692019313573837, 0.08576041460037231, -0.09104881435632706, 0.10925757884979248, 0.010386821813881397, -0.00026791475829668343, 0.13661837577819824, 0.03388603404164314, 0.003228752873837948, 0.012962564826011658, -0.007726127281785011, -0.0847293958067894, -0.20259709656238556, -0.10213108360767365, -0.14240491390228271, 0.049576543271541595, -0.030573664233088493, -0.08014582842588425, 0.2144494503736496, 0.07954949885606766, -0.04536881297826767, 0.048803865909576416, -0.07060349732637405, -0.0540546178817749, 0.16457046568393707, -0.007596293464303017, -0.10938747227191925, 0.14583732187747955, -0.04033123701810837, 0.06775540113449097, 0.056563135236501694, -0.01761476881802082, 0.0011049993336200714, 0.07413921505212784, 0.16372694075107574, -0.037285007536411285, -0.03915184736251831, -0.03414053097367287, 0.027607912197709084, -0.039629168808460236, -0.00129211088642478, -0.013559923507273197, 0.030781634151935577, 0.04801228269934654, 0.22920255362987518, -0.10748083144426346, -0.07911211997270584, -0.11101612448692322, -0.027552444487810135, -0.0026486190035939217, 0.05918236821889877, -0.047884322702884674, -0.03441857546567917, -0.021118419244885445, 0.20806078612804413, 0.2245340794324875, -0.17976014316082, 0.003782497951760888, 0.07835979759693146, 0.004762518685311079, -0.03985817730426788, 0.030241185799241066, 0.17143115401268005, 0.10579080879688263, -0.06500456482172012, -0.14078858494758606, -0.06207782402634621, -0.0547403059899807, -0.11943667382001877, 0.017431167885661125, 0.05581012740731239, -0.0789310410618782, -0.1346222311258316, 0.11709317564964294, -0.17880751192569733, -0.013573181815445423, 0.07330986857414246, -0.0724058449268341, -0.11610129475593567, -0.052212413400411606, 0.06766258180141449, 0.0945345088839531, 0.007894919253885746, -0.0814443826675415, 0.04626024141907692, 0.025780200958251953, 0.023648468777537346, -0.15046773850917816, -0.03922741115093231, -0.06622949987649918, -0.02916972152888775, 0.12595254182815552, 0.04176109656691551, -0.003283771686255932, 0.04386168345808983, 0.030787037685513496, -0.06961338967084885, 0.01509823463857174, -0.04830000549554825, -0.11856786906719208, 0.0236346535384655, 0.05974964797496796, -0.03216352313756943, -0.006230559665709734, 0.05588853731751442, -0.1672637015581131, -0.023775266483426094, 0.061149027198553085, 0.013297474011778831, -0.12113084644079208, 0.010515404865145683, -0.06542761623859406, 0.0523252934217453, 0.042175039649009705, 0.0036929110065102577, -0.002187030855566263, -0.05263791233301163, -0.031131984665989876, 0.007241427432745695, -0.11730106174945831, 0.014715731143951416, -0.022439535707235336, -0.03526249900460243, -0.23237381875514984, 0.06083716079592705, 0.010530458763241768, -0.015237677842378616, -0.03212392330169678, -0.04222071170806885, -0.07960522919893265, 0.07889780402183533, 0.11215606331825256, -0.03934643417596817, 0.010694161057472229, 0.020177381113171577, 0.0675596222281456, -0.004270496778190136, -0.02292538806796074, -0.11381756514310837 ]
null
null
transformers
# resnet34 Implementation of ResNet proposed in [Deep Residual Learning for Image Recognition](https://arxiv.org/abs/1512.03385) ``` python ResNet.resnet18() ResNet.resnet26() ResNet.resnet34() ResNet.resnet50() ResNet.resnet101() ResNet.resnet152() ResNet.resnet200() Variants (d) proposed in `Bag of Tricks for Image Classification with Convolutional Neural Networks <https://arxiv.org/pdf/1812.01187.pdf`_ ResNet.resnet26d() ResNet.resnet34d() ResNet.resnet50d() # You can construct your own one by chaning `stem` and `block` resnet101d = ResNet.resnet101(stem=ResNetStemC, block=partial(ResNetBottleneckBlock, shortcut=ResNetShorcutD)) ``` Examples: ``` python # change activation ResNet.resnet18(activation = nn.SELU) # change number of classes (default is 1000 ) ResNet.resnet18(n_classes=100) # pass a different block ResNet.resnet18(block=SENetBasicBlock) # change the steam model = ResNet.resnet18(stem=ResNetStemC) change shortcut model = ResNet.resnet18(block=partial(ResNetBasicBlock, shortcut=ResNetShorcutD)) # store each feature x = torch.rand((1, 3, 224, 224)) # get features model = ResNet.resnet18() # first call .features, this will activate the forward hooks and tells the model you'll like to get the features model.encoder.features model(torch.randn((1,3,224,224))) # get the features from the encoder features = model.encoder.features print([x.shape for x in features]) #[torch.Size([1, 64, 112, 112]), torch.Size([1, 64, 56, 56]), torch.Size([1, 128, 28, 28]), torch.Size([1, 256, 14, 14])] ```
{"license": "apache-2.0", "tags": ["image-classification"], "datasets": ["imagenet"]}
image-classification
glasses/resnet34
[ "transformers", "pytorch", "image-classification", "dataset:imagenet", "arxiv:1512.03385", "arxiv:1812.01187", "license:apache-2.0", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[ "1512.03385", "1812.01187" ]
[]
TAGS #transformers #pytorch #image-classification #dataset-imagenet #arxiv-1512.03385 #arxiv-1812.01187 #license-apache-2.0 #endpoints_compatible #region-us
# resnet34 Implementation of ResNet proposed in Deep Residual Learning for Image Recognition Examples:
[ "# resnet34\nImplementation of ResNet proposed in Deep Residual Learning for Image\nRecognition\n\n \n\n Examples:" ]
[ "TAGS\n#transformers #pytorch #image-classification #dataset-imagenet #arxiv-1512.03385 #arxiv-1812.01187 #license-apache-2.0 #endpoints_compatible #region-us \n", "# resnet34\nImplementation of ResNet proposed in Deep Residual Learning for Image\nRecognition\n\n \n\n Examples:" ]
[ 58, 25 ]
[ "passage: TAGS\n#transformers #pytorch #image-classification #dataset-imagenet #arxiv-1512.03385 #arxiv-1812.01187 #license-apache-2.0 #endpoints_compatible #region-us \n# resnet34\nImplementation of ResNet proposed in Deep Residual Learning for Image\nRecognition\n\n \n\n Examples:" ]
[ -0.1078517958521843, 0.06416585296392441, -0.00234150025062263, 0.08502304553985596, 0.09366682171821594, 0.007787173613905907, -0.017818961292505264, 0.09075593203306198, -0.09371036291122437, -0.016322480514645576, 0.10387150943279266, 0.1036374643445015, -0.00033664805232547224, -0.05787540227174759, -0.051756322383880615, -0.23315881192684174, 0.08685462921857834, 0.06876730918884277, -0.00691399909555912, 0.05769328027963638, 0.0693548321723938, -0.08268929272890091, 0.09771660715341568, 0.0017359757330268621, -0.17023710906505585, 0.007424066308885813, -0.01630958914756775, -0.06746795028448105, 0.07904238253831863, 0.02260967716574669, 0.09542319178581238, 0.005540897604078054, 0.09836136549711227, -0.10961392521858215, 0.03222227096557617, 0.047420185059309006, -0.07690152525901794, 0.0564880333840847, 0.09822343289852142, -0.03226352855563164, 0.033462777733802795, 0.044883377850055695, -0.0702739730477333, -0.045364413410425186, -0.0008410612936131656, -0.07001597434282303, 0.004006607923656702, 0.16664491593837738, 0.08339382708072662, 0.0928485244512558, 0.032229233533144, 0.08709703385829926, -0.11129921674728394, 0.09464201331138611, 0.16512274742126465, -0.2876516878604889, -0.05067875236272812, 0.1167699471116066, -0.05501958727836609, -0.0779646709561348, -0.0709504708647728, 0.03014417365193367, 0.023071691393852234, 0.03564592823386192, -0.12899723649024963, -0.00025461631594225764, -0.07149730622768402, -0.006202190648764372, -0.08683089911937714, -0.028597233816981316, 0.053789082914590836, 0.09208669513463974, 0.06093524023890495, -0.003751296317204833, -0.150999054312706, 0.014971509575843811, -0.10535909980535507, 0.048673491925001144, 0.02277657389640808, 0.062340088188648224, -0.08853217959403992, -0.008906364440917969, -0.05859871953725815, -0.037132080644369125, -0.1429237574338913, -0.04098385199904442, 0.05493505671620369, 0.13181166350841522, -0.11309897899627686, 0.02358618564903736, 0.037360262125730515, -0.04164297133684158, -0.002624138258397579, -0.07902245223522186, 0.02414860762655735, 0.04797358810901642, -0.07634858787059784, -0.024975253269076347, 0.09329458326101303, 0.20097211003303528, -0.062374603003263474, -0.001741955173201859, -0.02523859404027462, 0.1389109343290329, -0.09384404122829437, 0.010668880306184292, -0.24026744067668915, 0.11297357827425003, 0.05136837810277939, -0.0911683440208435, 0.021786900237202644, -0.013482954353094101, -0.08391447365283966, -0.025641709566116333, 0.11054809391498566, -0.03649674355983734, -0.015742680057883263, 0.06972351670265198, -0.009649358689785004, -0.04314875230193138, 0.11967823654413223, -0.0361110121011734, -0.03316495940089226, -0.005663897842168808, -0.09895879030227661, 0.07731424272060394, 0.10561257600784302, 0.0003779275284614414, -0.0976417139172554, -0.0008241095929406583, -0.009768558666110039, -0.0010763156460598111, 0.004273626487702131, -0.033310502767562866, 0.0423954539000988, 0.010286402888596058, 0.05906542390584946, -0.2140941172838211, -0.1525944471359253, 0.004351734649389982, 0.11483287811279297, -0.04052777588367462, 0.010549039579927921, -0.013441065326333046, -0.12409289926290512, -0.0037781938444823027, 0.016294335946440697, 0.02688021771609783, -0.0729392021894455, 0.01777729019522667, -0.13296400010585785, 0.12725672125816345, -0.11230617761611938, 0.035007573664188385, -0.0898716002702713, -0.04185055196285248, -0.07998884469270706, 0.09806983917951584, -0.0749129131436348, 0.09593844413757324, -0.13247551023960114, -0.08018574863672256, -0.06373870372772217, -0.029111938551068306, 0.0064213452860713005, 0.06821128726005554, -0.08691052347421646, -0.007172157522290945, 0.14916929602622986, -0.1057942807674408, -0.08496440947055817, 0.08166230469942093, -0.03407201170921326, -0.10014966875314713, 0.001462846645154059, 0.15770110487937927, 0.017858140170574188, 0.003206998808309436, -0.04834890738129616, 0.02381957322359085, -0.1318516582250595, -0.12755846977233887, -0.036667753010988235, 0.14460664987564087, 0.029080575332045555, -0.004262408707290888, -0.08918670564889908, 0.11381614953279495, -0.08128838986158371, -0.12088748067617416, -0.04114444553852081, -0.09931882470846176, -0.01588146574795246, 0.04523458704352379, 0.10662057250738144, 0.06344133615493774, -0.041468679904937744, -0.156510591506958, 0.05725562572479248, -0.05345756560564041, 0.11024875938892365, -0.0930134654045105, 0.16201846301555634, -0.0323033444583416, 0.034158576279878616, -0.23148319125175476, 0.013428816571831703, 0.004283322487026453, 0.022709928452968597, -0.035179175436496735, -0.05085311457514763, 0.03927731141448021, -0.05182044953107834, -0.03743662312626839, -0.07073657214641571, 0.07058019936084747, -0.019099170342087746, -0.004565475974231958, -0.12370716780424118, -0.0016948806587606668, -0.04261615499854088, 0.01583726890385151, -0.12407778948545456, -0.05651893839240074, 0.02104995772242546, 0.12481289356946945, -0.03132827579975128, 0.08436566591262817, -0.028810959309339523, -0.05812137573957443, -0.018336106091737747, -0.05646185949444771, 0.0942455604672432, 0.014794635586440563, -0.016939962282776833, 0.06944122165441513, 0.09531162679195404, 0.15113858878612518, 0.1529388278722763, -0.2848644256591797, -0.03844517841935158, 0.08412814140319824, -0.0303720161318779, -0.00500837666913867, -0.005008958745747805, 0.15935750305652618, 0.11156634986400604, -0.028345957398414612, 0.0731881782412529, -0.05794014409184456, 0.09521468728780746, 0.011933470144867897, -0.02735542505979538, 0.005865208804607391, 0.04621107131242752, 0.07892981171607971, -0.26903679966926575, 0.0872034952044487, 0.10712949186563492, -0.16329942643642426, -0.04421592131257057, -0.04598335921764374, -0.06274720281362534, 0.10031771659851074, 0.06884995102882385, -0.011481831781566143, 0.06610095500946045, 0.03617393970489502, -0.02468104287981987, 0.05913214758038521, -0.09769948571920395, 0.022731216624379158, -0.1259291023015976, 0.023206664249300957, -0.050631195306777954, 0.0024609726388007402, 0.01851615123450756, -0.0011870256857946515, -0.002183160511776805, 0.10695970803499222, -0.010802571661770344, -0.23544320464134216, 0.05149246007204056, -0.06535456329584122, -0.027081314474344254, 0.20728640258312225, -0.025664271786808968, -0.23591814935207367, -0.008699852973222733, -0.0202044490724802, -0.07878505438566208, -0.014902805909514427, 0.025398731231689453, -0.11984258145093918, -0.06608543545007706, -0.019947988912463188, -0.10918786376714706, 0.11169357597827911, 0.029063450172543526, 0.01822505332529545, 0.02718714438378811, 0.03645120933651924, -0.050010472536087036, 0.013278418220579624, -0.1412339210510254, -0.09104181826114655, 0.1318555325269699, -0.08613263815641403, 0.08068094402551651, 0.07988331466913223, -0.015798751264810562, 0.019346358254551888, 0.023931991308927536, 0.14230050146579742, -0.05200604349374771, 0.022157609462738037, 0.09464943408966064, -0.009097786620259285, 0.05057407170534134, 0.08514080196619034, 0.008916812017560005, -0.07367321103811264, -0.009684515185654163, 0.02879285253584385, -0.04375317692756653, -0.09107618033885956, -0.13568799197673798, -0.03861597925424576, -0.012195101007819176, 0.15807025134563446, 0.10356388986110687, 0.049366939812898636, 0.09906798601150513, 0.013551903888583183, -0.026549244299530983, 0.05985688045620918, 0.06495383381843567, 0.11084293574094772, 0.03504382446408272, 0.11171076446771622, -0.0786479189991951, -0.06680470705032349, 0.03736544027924538, 0.10525161027908325, 0.24877765774726868, -0.031344056129455566, -0.12547142803668976, 0.04473013058304787, 0.24797303974628448, 0.10417084395885468, 0.10483837872743607, -0.06638702005147934, -0.014160490594804287, 0.002490339567884803, 0.00004925124812871218, 0.011409011669456959, 0.04546140506863594, -0.011215273290872574, -0.06968680024147034, 0.03705185279250145, 0.03230525553226471, 0.027809830382466316, 0.2434394806623459, 0.09378432482481003, -0.32230344414711, 0.012198571115732193, -0.042200516909360886, -0.0015604153741151094, -0.01487369928508997, 0.13633736968040466, -0.009923468343913555, -0.037534236907958984, 0.08092306554317474, -0.12983299791812897, 0.10552115738391876, -0.057495538145303726, 0.010228960774838924, 0.045186497271060944, -0.12084759026765823, 0.08535774052143097, 0.04803455248475075, -0.13493525981903076, 0.17135600745677948, -0.046638790518045425, -0.06685841828584671, -0.06721781939268112, -0.047734200954437256, 0.10890094935894012, 0.14026866853237152, 0.24706755578517914, 0.01635017991065979, -0.005117442458868027, 0.08296952396631241, -0.027923962101340294, 0.036792706698179245, 0.05086570605635643, 0.07688184827566147, -0.058215852826833725, 0.03493623808026314, -0.05415339395403862, 0.038201574236154556, 0.12668359279632568, -0.020488906651735306, -0.09994836896657944, -0.06112697720527649, 0.07279560714960098, -0.047729842364788055, -0.033726099878549576, -0.06523486226797104, -0.07675198465585709, 0.13231493532657623, 0.035135459154844284, -0.0273011215031147, -0.08591755479574203, 0.09314460307359695, 0.0670660138130188, -0.06067563220858574, 0.10685458034276962, -0.04926742985844612, 0.023610306903719902, -0.019824983552098274, -0.2458852082490921, 0.17003285884857178, -0.11489400267601013, -0.0041056424379348755, 0.03108295053243637, -0.06237322837114334, -0.010872450657188892, -0.027224112302064896, 0.05744864046573639, 0.042957909405231476, -0.12524113059043884, -0.024153342470526695, 0.016254808753728867, -0.04475977644324303, 0.022259991616010666, 0.09042064845561981, -0.05582931637763977, -0.0782679095864296, -0.0352356918156147, 0.15202446281909943, 0.15939359366893768, -0.039877232164144516, -0.1018470898270607, 0.008326358161866665, 0.11014033108949661, 0.031494684517383575, -0.38498184084892273, -0.09200738370418549, -0.02591560035943985, -0.0681241974234581, -0.0971449613571167, -0.13062684237957, 0.23503029346466064, -0.009496727958321571, -0.05807320773601532, 0.003252220805734396, -0.1382996141910553, -0.039965707808732986, 0.2539325952529907, 0.07455570250749588, 0.29065844416618347, -0.08797235786914825, 0.025546399876475334, -0.05702536553144455, 0.021143024787306786, 0.0860883966088295, -0.0017172540538012981, 0.07347901165485382, -0.0034125158563256264, 0.050988756120204926, -0.04149466007947922, -0.0288444384932518, -0.025301309302449226, 0.11303262412548065, 0.09659125655889511, -0.09955478459596634, 0.0749763622879982, 0.0611366331577301, -0.017158038914203644, 0.0533350370824337, 0.08276082575321198, 0.11059486120939255, -0.019377848133444786, 0.022276269271969795, -0.092162124812603, 0.05030854418873787, 0.10542643815279007, -0.00035592843778431416, -0.10677848756313324, 0.061950765550136566, 0.10850336402654648, 0.08454927057027817, 0.2808890640735626, 0.12792345881462097, 0.03086087293922901, 0.06480798870325089, 0.005679367110133171, -0.077435202896595, -0.08571431785821915, -0.10081524401903152, -0.03671952337026596, 0.14402027428150177, -0.1495334655046463, 0.057048145681619644, 0.10117295384407043, -0.0027724318206310272, -0.0019002350745722651, 0.10019248723983765, 0.02007550559937954, -0.033331338316202164, 0.1006491631269455, -0.06470560282468796, -0.02010725624859333, 0.011026601307094097, 0.06505969911813736, 0.10847407579421997, 0.13895247876644135, 0.10744685679674149, -0.10332892090082169, -0.0023942766711115837, 0.024128051474690437, 0.07618660479784012, -0.05322893336415291, 0.05764170363545418, 0.14432735741138458, -0.026609618216753006, -0.14650462567806244, 0.19945357739925385, 0.006920773535966873, -0.15114715695381165, -0.024085568264126778, -0.05378938093781471, -0.14225532114505768, -0.12879052758216858, -0.010297232307493687, 0.002540611196309328, -0.24350813031196594, -0.08308210223913193, -0.0055212895385921, -0.07110468298196793, 0.11667172610759735, 0.026235148310661316, 0.14029920101165771, -0.021981967613101006, -0.037032973021268845, -0.08070900291204453, -0.03730613365769386, 0.01867966540157795, 0.013353073969483376, 0.06495564430952072, -0.15921998023986816, -0.21225352585315704, 0.015131731517612934, 0.14910763502120972, -0.08114264160394669, 0.006523645482957363, -0.08282437175512314, 0.09121250361204147, -0.12807254493236542, 0.0683450773358345, -0.05915055423974991, 0.028551356866955757, -0.0609150268137455, -0.028936073184013367, -0.06301652640104294, 0.056733280420303345, -0.09662361443042755, -0.026949485763907433, 0.00022908428218215704, -0.023416142910718918, -0.1171523779630661, -0.031211167573928833, -0.020037878304719925, 0.006629975512623787, 0.13182432949543, 0.08306774497032166, -0.10507158190011978, 0.09268009662628174, -0.14096896350383759, -0.25741422176361084, 0.15605710446834564, 0.03999160975217819, -0.02073906734585762, 0.058503128588199615, 0.05654039978981018, 0.07451257854700089, -0.04594647139310837, -0.014607124961912632, 0.014894380234181881, -0.047207411378622055, -0.018830522894859314, -0.23502954840660095, 0.01915322244167328, -0.02731771022081375, 0.0025174652691930532, 0.08024532347917557, 0.1042420044541359, 0.11625420302152634, -0.058673519641160965, -0.006841644644737244, -0.039494045078754425, -0.0045454297214746475, -0.009046745486557484, -0.1156606674194336, -0.01345959771424532, -0.03883248195052147, 0.022059671580791473, -0.07743718475103378, 0.16718752682209015, -0.016274170950055122, -0.09989791363477707, 0.02539321407675743, 0.22099782526493073, -0.11076832562685013, 0.07880803197622299, 0.1880061775445938, 0.08407921344041824, -0.007453425321727991, 0.04956819862127304, 0.05298878252506256, 0.0999390035867691, 0.18572980165481567, -0.0009344131103716791, 0.24642902612686157, 0.041285861283540726, 0.11455964297056198, 0.07700397074222565, -0.017034299671649933, 0.05122702568769455, 0.08684340119361877, -0.09287778288125992, 0.1050441786646843, 0.0045053171925246716, 0.0033234895672649145, 0.13132096827030182, 0.030101316049695015, 0.00787555892020464, 0.01676560752093792, -0.006440748926252127, -0.084710031747818, -0.20542214810848236, -0.10008502006530762, -0.14449577033519745, 0.04941685497760773, -0.030844727531075478, -0.08182225376367569, 0.21365511417388916, 0.08004872500896454, -0.044611137360334396, 0.05065540224313736, -0.08524183928966522, -0.0521015040576458, 0.1618679016828537, -0.00746593251824379, -0.10709381848573685, 0.1411702036857605, -0.04840584471821785, 0.06319332122802734, 0.056392498314380646, -0.017261186614632607, 0.001796058495528996, 0.06663236767053604, 0.15990477800369263, -0.03958315774798393, -0.04014969244599342, -0.03309986740350723, 0.024831464514136314, -0.04205085337162018, 0.0010783624602481723, -0.015722930431365967, 0.029710881412029266, 0.046195127069950104, 0.23287121951580048, -0.10322661697864532, -0.07730865478515625, -0.11425979435443878, -0.038379210978746414, -0.000944469531532377, 0.05825576186180115, -0.04915105924010277, -0.03739920258522034, -0.019834578037261963, 0.21473003923892975, 0.23361168801784515, -0.1815827488899231, 0.003792667528614402, 0.08348725736141205, 0.0032148512545973063, -0.03477222099900246, 0.030058175325393677, 0.17133331298828125, 0.10702500492334366, -0.06601510941982269, -0.1339905858039856, -0.061861466616392136, -0.05891899764537811, -0.12068799138069153, 0.014891120605170727, 0.057775020599365234, -0.07664979994297028, -0.13206547498703003, 0.12080417573451996, -0.17646853625774384, -0.014058238826692104, 0.08517751842737198, -0.08706455677747726, -0.12048816680908203, -0.05168529972434044, 0.07121478766202927, 0.09925652295351028, 0.008151611313223839, -0.07808956503868103, 0.04450925067067146, 0.01953057013452053, 0.02768966183066368, -0.15836085379123688, -0.043381527066230774, -0.06387636810541153, -0.02257734350860119, 0.12505720555782318, 0.03794407099485397, -0.004796248860657215, 0.04436364024877548, 0.027754096314311028, -0.0671442523598671, 0.01218322105705738, -0.05020962655544281, -0.126357764005661, 0.02419084496796131, 0.06330031901597977, -0.03133649006485939, -0.004876499064266682, 0.05349989980459213, -0.1618708223104477, -0.02231539413332939, 0.05163424089550972, 0.010943755507469177, -0.115318164229393, 0.012001347728073597, -0.07097861915826797, 0.05372319743037224, 0.04271674528717995, 0.004605445545166731, -0.0020652723032981157, -0.05198301747441292, -0.03038272075355053, 0.009204634465277195, -0.13008476793766022, 0.008718626573681831, -0.027051802724599838, -0.036572184413671494, -0.23943059146404266, 0.05829143524169922, 0.012110799551010132, -0.019062599167227745, -0.035969313234090805, -0.040985655039548874, -0.08599618077278137, 0.07875609397888184, 0.11215661466121674, -0.04302123934030533, 0.012138733640313148, 0.014194143004715443, 0.07268233597278595, -0.0029958600644022226, -0.02326280251145363, -0.11015208810567856 ]
null
null
transformers
# resnet34d Implementation of ResNet proposed in [Deep Residual Learning for Image Recognition](https://arxiv.org/abs/1512.03385) ``` python ResNet.resnet18() ResNet.resnet26() ResNet.resnet34() ResNet.resnet50() ResNet.resnet101() ResNet.resnet152() ResNet.resnet200() Variants (d) proposed in `Bag of Tricks for Image Classification with Convolutional Neural Networks <https://arxiv.org/pdf/1812.01187.pdf`_ ResNet.resnet26d() ResNet.resnet34d() ResNet.resnet50d() # You can construct your own one by chaning `stem` and `block` resnet101d = ResNet.resnet101(stem=ResNetStemC, block=partial(ResNetBottleneckBlock, shortcut=ResNetShorcutD)) ``` Examples: ``` python # change activation ResNet.resnet18(activation = nn.SELU) # change number of classes (default is 1000 ) ResNet.resnet18(n_classes=100) # pass a different block ResNet.resnet18(block=SENetBasicBlock) # change the steam model = ResNet.resnet18(stem=ResNetStemC) change shortcut model = ResNet.resnet18(block=partial(ResNetBasicBlock, shortcut=ResNetShorcutD)) # store each feature x = torch.rand((1, 3, 224, 224)) # get features model = ResNet.resnet18() # first call .features, this will activate the forward hooks and tells the model you'll like to get the features model.encoder.features model(torch.randn((1,3,224,224))) # get the features from the encoder features = model.encoder.features print([x.shape for x in features]) #[torch.Size([1, 64, 112, 112]), torch.Size([1, 64, 56, 56]), torch.Size([1, 128, 28, 28]), torch.Size([1, 256, 14, 14])] ```
{"license": "apache-2.0", "tags": ["image-classification"], "datasets": ["imagenet"]}
image-classification
glasses/resnet34d
[ "transformers", "pytorch", "image-classification", "dataset:imagenet", "arxiv:1512.03385", "arxiv:1812.01187", "license:apache-2.0", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[ "1512.03385", "1812.01187" ]
[]
TAGS #transformers #pytorch #image-classification #dataset-imagenet #arxiv-1512.03385 #arxiv-1812.01187 #license-apache-2.0 #endpoints_compatible #region-us
# resnet34d Implementation of ResNet proposed in Deep Residual Learning for Image Recognition Examples:
[ "# resnet34d\nImplementation of ResNet proposed in Deep Residual Learning for Image\nRecognition\n\n \n\n Examples:" ]
[ "TAGS\n#transformers #pytorch #image-classification #dataset-imagenet #arxiv-1512.03385 #arxiv-1812.01187 #license-apache-2.0 #endpoints_compatible #region-us \n", "# resnet34d\nImplementation of ResNet proposed in Deep Residual Learning for Image\nRecognition\n\n \n\n Examples:" ]
[ 58, 26 ]
[ "passage: TAGS\n#transformers #pytorch #image-classification #dataset-imagenet #arxiv-1512.03385 #arxiv-1812.01187 #license-apache-2.0 #endpoints_compatible #region-us \n# resnet34d\nImplementation of ResNet proposed in Deep Residual Learning for Image\nRecognition\n\n \n\n Examples:" ]
[ -0.10663411766290665, 0.06266716867685318, -0.0025797979906201363, 0.08240601420402527, 0.09026387333869934, 0.00850965827703476, -0.020855458453297615, 0.08491533249616623, -0.10096833854913712, -0.017272258177399635, 0.10417962074279785, 0.09696290642023087, 0.0017954673385247588, -0.062395453453063965, -0.055916108191013336, -0.22810620069503784, 0.08666086196899414, 0.07146931439638138, -0.006728045642375946, 0.056231096386909485, 0.07008690387010574, -0.07531458884477615, 0.09665065258741379, 0.003381091170012951, -0.1654333472251892, 0.00833373423665762, -0.014870937913656235, -0.06686452031135559, 0.0804000273346901, 0.023197613656520844, 0.10051446408033371, 0.01065147202461958, 0.09701023250818253, -0.12178745865821838, 0.03247091546654701, 0.05163164436817169, -0.0743408277630806, 0.057653188705444336, 0.09775275737047195, -0.027548594400286674, 0.04142870008945465, 0.04701175540685654, -0.07663067430257797, -0.046808455139398575, 0.0012556869769468904, -0.07696612924337387, 0.0010126415872946382, 0.1750352531671524, 0.08178213238716125, 0.0901111364364624, 0.03508037328720093, 0.08421376347541809, -0.11072792857885361, 0.09576356410980225, 0.1555246114730835, -0.29127106070518494, -0.04993903636932373, 0.1294516623020172, -0.05343438312411308, -0.08012812584638596, -0.07362467795610428, 0.030125439167022705, 0.028052784502506256, 0.03764399141073227, -0.12889844179153442, 0.0008590296492911875, -0.07776016741991043, -0.007170213386416435, -0.08670881390571594, -0.029892368242144585, 0.052002862095832825, 0.09430528432130814, 0.05977023020386696, 0.0052799503318965435, -0.15408539772033691, 0.013986174017190933, -0.10496940463781357, 0.04786541312932968, 0.02293376997113228, 0.06675469130277634, -0.08637342602014542, -0.0061091287061572075, -0.06026177108287811, -0.03548738732933998, -0.1438739001750946, -0.03721560165286064, 0.05715852603316307, 0.13406632840633392, -0.1174483373761177, 0.024882560595870018, 0.03727061673998833, -0.04442346468567848, -0.003455567406490445, -0.08032555878162384, 0.028504706919193268, 0.04843803495168686, -0.07505153119564056, -0.020925166085362434, 0.09753691405057907, 0.20273371040821075, -0.07278715074062347, 7.704577598133255e-8, -0.026993894949555397, 0.1353864222764969, -0.09648687392473221, 0.008980742655694485, -0.23844987154006958, 0.11389152705669403, 0.05219205468893051, -0.0862988531589508, 0.02226787619292736, -0.013027098961174488, -0.08214025944471359, -0.024261659011244774, 0.11195523291826248, -0.0359184592962265, -0.013230246491730213, 0.07217402011156082, -0.006085786037147045, -0.043998654931783676, 0.12953919172286987, -0.03594839200377464, -0.033581748604774475, -0.004753801506012678, -0.09667541831731796, 0.08333476632833481, 0.10755088180303574, 0.0010759257711470127, -0.09605655819177628, -0.0004116283089388162, -0.009257188998162746, -0.0053159017115831375, 0.004602136090397835, -0.03556114435195923, 0.045996084809303284, 0.01055858377367258, 0.05736031383275986, -0.21638064086437225, -0.14485839009284973, 0.007649707607924938, 0.11772217601537704, -0.03726200386881828, 0.012168968096375465, -0.011894594877958298, -0.12519030272960663, -0.0013226880691945553, 0.017375288531184196, 0.027322815731167793, -0.07218582183122635, 0.01586104743182659, -0.12668797373771667, 0.12714655697345734, -0.1166638433933258, 0.03397528454661369, -0.08715125173330307, -0.03728339076042175, -0.06383568048477173, 0.0957135409116745, -0.0809738039970398, 0.08763927966356277, -0.13268719613552094, -0.07686236500740051, -0.06747809052467346, -0.03126152232289314, 0.010807090438902378, 0.06374724209308624, -0.09054949879646301, -0.0051462589763104916, 0.14961549639701843, -0.10661565512418747, -0.08835494518280029, 0.08193126320838928, -0.03220784664154053, -0.10583214461803436, -0.002788968151435256, 0.1592472344636917, 0.020567089319229126, -0.004025466740131378, -0.05268765613436699, 0.030382508412003517, -0.12738247215747833, -0.12824909389019012, -0.04337916523218155, 0.143508180975914, 0.030533170327544212, -0.0026114643551409245, -0.08929619193077087, 0.11506260186433792, -0.0814124271273613, -0.1207139790058136, -0.04357542097568512, -0.0946323424577713, -0.016963202506303787, 0.042996641248464584, 0.10384852439165115, 0.06595370173454285, -0.039194539189338684, -0.16014017164707184, 0.0617159865796566, -0.05405658483505249, 0.11470291763544083, -0.09165727347135544, 0.15302206575870514, -0.03298540413379669, 0.03860859200358391, -0.22628039121627808, 0.00868472084403038, 0.006272733677178621, 0.02761356718838215, -0.040086086839437485, -0.049960244446992874, 0.036576662212610245, -0.05768560245633125, -0.038899585604667664, -0.07108283042907715, 0.0717100203037262, -0.01707218959927559, -0.00555753568187356, -0.12403235584497452, -0.004687022417783737, -0.04278644174337387, 0.009836627170443535, -0.13318295776844025, -0.05629671737551689, 0.02176009677350521, 0.1282583326101303, -0.03271099179983139, 0.08575421571731567, -0.02887284941971302, -0.05761990323662758, -0.02405974455177784, -0.057441603392362595, 0.09048927575349808, 0.016810981556773186, -0.021294288337230682, 0.06767066568136215, 0.09864785522222519, 0.14430293440818787, 0.14876002073287964, -0.2814581096172333, -0.03539619594812393, 0.08491768687963486, -0.03195199742913246, -0.00977583322674036, -0.0031261579133570194, 0.15905755758285522, 0.10588086396455765, -0.02381320483982563, 0.07333049178123474, -0.058115795254707336, 0.09877080470323563, 0.011412372812628746, -0.03404882922768593, 0.003444389207288623, 0.04262740910053253, 0.07268993556499481, -0.26970207691192627, 0.08360566943883896, 0.10770080238580704, -0.1644284725189209, -0.04628980532288551, -0.04738771542906761, -0.06407830119132996, 0.1008235290646553, 0.07204553484916687, -0.012593165971338749, 0.06268662959337234, 0.04345965385437012, -0.02070915512740612, 0.0597408264875412, -0.09162929654121399, 0.026576917618513107, -0.12697312235832214, 0.027410538867115974, -0.05291253700852394, 0.0004550526791717857, 0.013954860158264637, 0.0028207916766405106, -0.00572828808799386, 0.10327432304620743, -0.013128659687936306, -0.2427389770746231, 0.05435066297650337, -0.06663716584444046, -0.02450689487159252, 0.20686839520931244, -0.026340432465076447, -0.2333219200372696, -0.00812257919460535, -0.025164658203721046, -0.08635555952787399, -0.016884643584489822, 0.023714249953627586, -0.11775031685829163, -0.06410988420248032, -0.01874004863202572, -0.11578202992677689, 0.10177434235811234, 0.028115814551711082, 0.020690031349658966, 0.027771467342972755, 0.03809254243969917, -0.052996937185525894, 0.01818116381764412, -0.13909178972244263, -0.0916367843747139, 0.1336081475019455, -0.09077799320220947, 0.08086255192756653, 0.08465695381164551, -0.01561637595295906, 0.018847214058041573, 0.02862333133816719, 0.1438281387090683, -0.046541567891836166, 0.02756035141646862, 0.09086232632398605, -0.008669505827128887, 0.05509725585579872, 0.08956002444028854, 0.009871375747025013, -0.07072296738624573, -0.009356296621263027, 0.02921168878674507, -0.04498228058218956, -0.09732070565223694, -0.13358880579471588, -0.03733151778578758, -0.01509855780750513, 0.15246844291687012, 0.10444171726703644, 0.05223323032259941, 0.09705822914838791, 0.009540400467813015, -0.01966770552098751, 0.052745915949344635, 0.06384242326021194, 0.11330311000347137, 0.03839455917477608, 0.11110398918390274, -0.07993345707654953, -0.06186263635754585, 0.035715650767087936, 0.11703848093748093, 0.24970203638076782, -0.029611803591251373, -0.11802702397108078, 0.050053562968969345, 0.25743335485458374, 0.10424941033124924, 0.10023844242095947, -0.06518525630235672, -0.013458236120641232, 0.0029295890126377344, 0.0020051314495503902, 0.016078416258096695, 0.04710938036441803, -0.0151828583329916, -0.07221406698226929, 0.041223157197237015, 0.03378244861960411, 0.025850730016827583, 0.25204360485076904, 0.09047306329011917, -0.31579843163490295, 0.013303140178322792, -0.041317168623209, 0.001115666818805039, -0.013518699444830418, 0.13549846410751343, -0.012810569256544113, -0.03157666698098183, 0.08437461405992508, -0.12704682350158691, 0.10585933178663254, -0.05950066074728966, 0.009131534025073051, 0.04352932423353195, -0.11675748974084854, 0.08536087721586227, 0.05010621249675751, -0.1381482183933258, 0.1738159954547882, -0.04538165032863617, -0.0661570131778717, -0.06299344450235367, -0.04515937343239784, 0.10717643052339554, 0.14459119737148285, 0.2393876016139984, 0.018568027764558792, -0.01238631084561348, 0.08987193554639816, -0.025097204372286797, 0.037073805928230286, 0.05352447181940079, 0.08328204602003098, -0.056895043700933456, 0.03599392995238304, -0.05419522523880005, 0.03950351104140282, 0.12978409230709076, -0.02754281833767891, -0.09699511528015137, -0.05752978473901749, 0.08927419781684875, -0.058573149144649506, -0.0379679836332798, -0.06317681819200516, -0.0774725005030632, 0.14059403538703918, 0.03678009659051895, -0.03207731619477272, -0.084086112678051, 0.08390861004590988, 0.06864505261182785, -0.06323539465665817, 0.10206756740808487, -0.053268566727638245, 0.02554726041853428, -0.021409323439002037, -0.2446519285440445, 0.1696479171514511, -0.11591935157775879, -0.0026274232659488916, 0.03209784999489784, -0.06033959239721298, -0.01362787839025259, -0.032423779368400574, 0.05861835181713104, 0.03785013034939766, -0.12621545791625977, -0.02840626984834671, 0.013129308819770813, -0.0437743216753006, 0.01028844341635704, 0.08428390324115753, -0.05634355545043945, -0.07730869948863983, -0.03448837250471115, 0.15064369142055511, 0.15419402718544006, -0.032993707805871964, -0.10190680623054504, 0.002215571003034711, 0.12198209762573242, 0.02699892967939377, -0.38117456436157227, -0.0972355306148529, -0.026425676420331, -0.07289024442434311, -0.10000443458557129, -0.12858203053474426, 0.23032833635807037, -0.01181001402437687, -0.06002086400985718, 0.0133829889819026, -0.13119107484817505, -0.03594842180609703, 0.2542762756347656, 0.0717364251613617, 0.28821590542793274, -0.08434607088565826, 0.021502502262592316, -0.05664222314953804, 0.017226360738277435, 0.08440021425485611, -0.006454742979258299, 0.07352755218744278, -0.006387354806065559, 0.05453796684741974, -0.04260491579771042, -0.02761930227279663, -0.02363644912838936, 0.1196756362915039, 0.09787290543317795, -0.09518947452306747, 0.07980943471193314, 0.06112094968557358, -0.019599972292780876, 0.0552191361784935, 0.08116167783737183, 0.1115986630320549, -0.013125208206474781, 0.023629004135727882, -0.09441519528627396, 0.049225639551877975, 0.10094085335731506, -0.0016560080694034696, -0.10889913886785507, 0.058693110942840576, 0.11041615158319473, 0.08473145216703415, 0.282647967338562, 0.12966403365135193, 0.030323507264256477, 0.08018336445093155, -0.0014775533927604556, -0.07936140149831772, -0.08195724338293076, -0.10190777480602264, -0.03652529790997505, 0.14625351130962372, -0.15476760268211365, 0.058046888560056686, 0.10142460465431213, -0.003515344811603427, -0.004511717241257429, 0.09963853657245636, 0.013201853260397911, -0.03938370570540428, 0.09975063800811768, -0.05949321761727333, -0.02159920334815979, 0.00933679100126028, 0.06390702724456787, 0.10265210270881653, 0.14505618810653687, 0.11073655635118484, -0.10330956429243088, 0.0013941333163529634, 0.02437627501785755, 0.07289507240056992, -0.05299433693289757, 0.056293610483407974, 0.14836385846138, -0.02558731473982334, -0.142761692404747, 0.2004031538963318, 0.007153174374252558, -0.14591045677661896, -0.02773299627006054, -0.05580175295472145, -0.14544843137264252, -0.12652911245822906, -0.02002773806452751, -0.0070371669717133045, -0.24284972250461578, -0.08725205063819885, -0.0026494869962334633, -0.06840402632951736, 0.11082568019628525, 0.020517803728580475, 0.13654565811157227, -0.018877241760492325, -0.03724747151136398, -0.08409211039543152, -0.03826636075973511, 0.016808979213237762, 0.012757709249854088, 0.07043676823377609, -0.15998119115829468, -0.21586491167545319, 0.01779991388320923, 0.1492941975593567, -0.07748519629240036, 0.0061237202025949955, -0.08046205341815948, 0.09135448187589645, -0.14075103402137756, 0.06808174401521683, -0.05579008162021637, 0.02959297224879265, -0.060313355177640915, -0.02738124690949917, -0.0622473806142807, 0.06036174297332764, -0.09471488744020462, -0.026415294036269188, 0.000012402507309161592, -0.02325165458023548, -0.11711729317903519, -0.03168699890375137, -0.02274339646100998, 0.006244945339858532, 0.12623895704746246, 0.07787534594535828, -0.10739535838365555, 0.0935598611831665, -0.14473195374011993, -0.25329819321632385, 0.15572145581245422, 0.043212950229644775, -0.01821015402674675, 0.05900263413786888, 0.05261820927262306, 0.07649558037519455, -0.043117620050907135, -0.0177951380610466, 0.009368974715471268, -0.04833832010626793, -0.02743338979780674, -0.24106992781162262, 0.01986059918999672, -0.024270744994282722, 0.0005723746144212782, 0.08145328611135483, 0.11357534676790237, 0.1178043782711029, -0.05676089599728584, -0.010694949887692928, -0.04015904292464256, -0.00628627510741353, -0.008014784194529057, -0.11335990577936172, -0.0074537936598062515, -0.03720979392528534, 0.019213996827602386, -0.07870681583881378, 0.16414302587509155, -0.026452939957380295, -0.09839363396167755, 0.02022711932659149, 0.20878969132900238, -0.1183675080537796, 0.0729454755783081, 0.19041520357131958, 0.08282139152288437, -0.008985204622149467, 0.04981527477502823, 0.04567864164710045, 0.09822385758161545, 0.18759122490882874, 0.0006843663286417723, 0.23957215249538422, 0.0419287346303463, 0.11846556514501572, 0.07206334173679352, -0.01989566534757614, 0.05501877889037132, 0.08052743971347809, -0.0924445390701294, 0.10888862609863281, 0.008880934678018093, -0.00016961923392955214, 0.13438661396503448, 0.03152930364012718, 0.0036826336290687323, 0.015770815312862396, -0.008549893274903297, -0.08409658074378967, -0.20381750166416168, -0.10121655464172363, -0.1419173628091812, 0.0499177947640419, -0.030972806736826897, -0.07978028059005737, 0.20989318192005157, 0.07996361702680588, -0.044545795768499374, 0.047311004251241684, -0.07971575856208801, -0.05293315649032593, 0.16194580495357513, -0.006579478271305561, -0.10842814296483994, 0.14905963838100433, -0.04262187331914902, 0.0630495548248291, 0.05411782115697861, -0.019507981836795807, 0.0010246996534988284, 0.07382596284151077, 0.16453810036182404, -0.03735506534576416, -0.039316773414611816, -0.034465041011571884, 0.026430999860167503, -0.03616274893283844, 0.0040198503993451595, -0.012813916429877281, 0.03054066374897957, 0.047079410403966904, 0.22940649092197418, -0.10418298095464706, -0.08116281777620316, -0.11339039355516434, -0.03233417123556137, -0.0016533068846911192, 0.057887014001607895, -0.04838891327381134, -0.03394397348165512, -0.019399255514144897, 0.2163688987493515, 0.23005901277065277, -0.1784253716468811, 0.003403998911380768, 0.07783377170562744, 0.00459303380921483, -0.03641972690820694, 0.030095838010311127, 0.1720006763935089, 0.10257065296173096, -0.06338154524564743, -0.139459028840065, -0.06337332725524902, -0.05682053416967392, -0.1219799742102623, 0.018620919436216354, 0.0543178953230381, -0.07939878851175308, -0.13332286477088928, 0.1173991933465004, -0.1793241649866104, -0.016505282372236252, 0.08038211613893509, -0.07392954081296921, -0.11640121787786484, -0.052594318985939026, 0.06999798119068146, 0.09480347484350204, 0.006487789563834667, -0.08023468405008316, 0.04480746015906334, 0.027089226990938187, 0.02295546606183052, -0.15180692076683044, -0.04127948731184006, -0.06449252367019653, -0.020337071269750595, 0.12539608776569366, 0.041229840368032455, -0.0020161771681159735, 0.0442793108522892, 0.030828215181827545, -0.06689956039190292, 0.01768985576927662, -0.04918045178055763, -0.11991960555315018, 0.023081546649336815, 0.057860855013132095, -0.03269415348768234, -0.006737724412232637, 0.053662609308958054, -0.16235144436359406, -0.023165393620729446, 0.0634247362613678, 0.01032467745244503, -0.11967051029205322, 0.008318452164530754, -0.06670427322387695, 0.05190761387348175, 0.04145975038409233, 0.0030990950763225555, -0.0029674030374735594, -0.05261784791946411, -0.030305378139019012, 0.008733028545975685, -0.12592953443527222, 0.011123795993626118, -0.022913217544555664, -0.036236509680747986, -0.2333022952079773, 0.059410080313682556, 0.01700194925069809, -0.015627853572368622, -0.03435743227601051, -0.040365856140851974, -0.08416574448347092, 0.07968061417341232, 0.11234153062105179, -0.039115626364946365, 0.013071536086499691, 0.01932278461754322, 0.06790951639413834, -0.00627303309738636, -0.024042915552854538, -0.11382149904966354 ]
null
null
transformers
# resnet50 Implementation of ResNet proposed in [Deep Residual Learning for Image Recognition](https://arxiv.org/abs/1512.03385) ``` python ResNet.resnet18() ResNet.resnet26() ResNet.resnet34() ResNet.resnet50() ResNet.resnet101() ResNet.resnet152() ResNet.resnet200() Variants (d) proposed in `Bag of Tricks for Image Classification with Convolutional Neural Networks <https://arxiv.org/pdf/1812.01187.pdf`_ ResNet.resnet26d() ResNet.resnet34d() ResNet.resnet50d() # You can construct your own one by chaning `stem` and `block` resnet101d = ResNet.resnet101(stem=ResNetStemC, block=partial(ResNetBottleneckBlock, shortcut=ResNetShorcutD)) ``` Examples: ``` python # change activation ResNet.resnet18(activation = nn.SELU) # change number of classes (default is 1000 ) ResNet.resnet18(n_classes=100) # pass a different block ResNet.resnet18(block=SENetBasicBlock) # change the steam model = ResNet.resnet18(stem=ResNetStemC) change shortcut model = ResNet.resnet18(block=partial(ResNetBasicBlock, shortcut=ResNetShorcutD)) # store each feature x = torch.rand((1, 3, 224, 224)) # get features model = ResNet.resnet18() # first call .features, this will activate the forward hooks and tells the model you'll like to get the features model.encoder.features model(torch.randn((1,3,224,224))) # get the features from the encoder features = model.encoder.features print([x.shape for x in features]) #[torch.Size([1, 64, 112, 112]), torch.Size([1, 64, 56, 56]), torch.Size([1, 128, 28, 28]), torch.Size([1, 256, 14, 14])] ```
{"license": "apache-2.0", "tags": ["image-classification"], "datasets": ["imagenet"]}
image-classification
glasses/resnet50
[ "transformers", "pytorch", "image-classification", "dataset:imagenet", "arxiv:1512.03385", "arxiv:1812.01187", "license:apache-2.0", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[ "1512.03385", "1812.01187" ]
[]
TAGS #transformers #pytorch #image-classification #dataset-imagenet #arxiv-1512.03385 #arxiv-1812.01187 #license-apache-2.0 #endpoints_compatible #region-us
# resnet50 Implementation of ResNet proposed in Deep Residual Learning for Image Recognition Examples:
[ "# resnet50\nImplementation of ResNet proposed in Deep Residual Learning for Image\nRecognition\n\n \n\n Examples:" ]
[ "TAGS\n#transformers #pytorch #image-classification #dataset-imagenet #arxiv-1512.03385 #arxiv-1812.01187 #license-apache-2.0 #endpoints_compatible #region-us \n", "# resnet50\nImplementation of ResNet proposed in Deep Residual Learning for Image\nRecognition\n\n \n\n Examples:" ]
[ 58, 25 ]
[ "passage: TAGS\n#transformers #pytorch #image-classification #dataset-imagenet #arxiv-1512.03385 #arxiv-1812.01187 #license-apache-2.0 #endpoints_compatible #region-us \n# resnet50\nImplementation of ResNet proposed in Deep Residual Learning for Image\nRecognition\n\n \n\n Examples:" ]
[ -0.11057435721158981, 0.06110876053571701, -0.002370847389101982, 0.08305384963750839, 0.09363015741109848, 0.008916938677430153, -0.016629531979560852, 0.08732534945011139, -0.09587264060974121, -0.01693911664187908, 0.10304729640483856, 0.10274473577737808, 0.0036121357697993517, -0.051843490451574326, -0.054280295968055725, -0.22855201363563538, 0.08617226034402847, 0.06894126534461975, -0.010205981321632862, 0.05874195694923401, 0.0672886073589325, -0.08398712426424026, 0.09836944192647934, 0.00044743288890458643, -0.17384620010852814, 0.00724453292787075, -0.015325023792684078, -0.06735949218273163, 0.07630950957536697, 0.02299652062356472, 0.09868544340133667, 0.007834143005311489, 0.0988115668296814, -0.10621637850999832, 0.033065564930438995, 0.04801742359995842, -0.0765245333313942, 0.058749862015247345, 0.09815714508295059, -0.02882036752998829, 0.03171780705451965, 0.047256942838430405, -0.07236875593662262, -0.045730866491794586, 0.0013588331639766693, -0.05981668457388878, 0.00579294515773654, 0.16765989363193512, 0.082844078540802, 0.09178705513477325, 0.03266944736242294, 0.08544698357582092, -0.10886497050523758, 0.09432120621204376, 0.16537348926067352, -0.285129189491272, -0.05067320913076401, 0.12002696841955185, -0.05803721398115158, -0.07528962939977646, -0.06937790662050247, 0.029848482459783554, 0.022322067990899086, 0.03399904444813728, -0.13022299110889435, 0.0015042201848700643, -0.0702357217669487, -0.00833648256957531, -0.08776015788316727, -0.026851428672671318, 0.05570752173662186, 0.09513194859027863, 0.06133588030934334, -0.002616697922348976, -0.15311218798160553, 0.01173115149140358, -0.10694798827171326, 0.04313192889094353, 0.021752221509814262, 0.060959819704294205, -0.09011740237474442, -0.007049486506730318, -0.057787977159023285, -0.03846004232764244, -0.14489339292049408, -0.04680173844099045, 0.055034950375556946, 0.13332298398017883, -0.11646410077810287, 0.02088809758424759, 0.032671138644218445, -0.039116423577070236, -0.0030598649755120277, -0.08007938414812088, 0.01888432726264, 0.045319706201553345, -0.07609034329652786, -0.03639479726552963, 0.09115209430456161, 0.19530048966407776, -0.06565526127815247, -0.0009217634215019643, -0.02265094593167305, 0.13964532315731049, -0.0934877097606659, 0.006057173479348421, -0.24335135519504547, 0.10937432199716568, 0.049754898995161057, -0.09103279560804367, 0.020357556641101837, -0.014348645694553852, -0.082007996737957, -0.02562868222594261, 0.11309292912483215, -0.03992823511362076, -0.018111873418092728, 0.06996358931064606, -0.007959662936627865, -0.04464735835790634, 0.11955094337463379, -0.034291934221982956, -0.03416840732097626, -0.006009568925946951, -0.09743790328502655, 0.08057480305433273, 0.10342540591955185, 0.00006920219311723486, -0.1001247838139534, 0.003007955849170685, -0.008349901996552944, -0.0038608969189226627, 0.0019904260989278555, -0.0345754474401474, 0.0407676063477993, 0.014529092237353325, 0.05739889293909073, -0.21220183372497559, -0.15208785235881805, 0.0027280135545879602, 0.11690965294837952, -0.038269106298685074, 0.009942564181983471, -0.014834990724921227, -0.12586872279644012, -0.003106295131146908, 0.01727442629635334, 0.030839279294013977, -0.07050121575593948, 0.015706386417150497, -0.1338430494070053, 0.12814727425575256, -0.11249783635139465, 0.035205163061618805, -0.0871734470129013, -0.045443568378686905, -0.08270318806171417, 0.10050103068351746, -0.07247528433799744, 0.0926034227013588, -0.13315513730049133, -0.07768500596284866, -0.07192523777484894, -0.03253323584794998, 0.007796092890202999, 0.0671079158782959, -0.09231191128492355, -0.009036104194819927, 0.1525260955095291, -0.10730720311403275, -0.08527527004480362, 0.07827960699796677, -0.03204121068120003, -0.10266973823308945, 0.0010178430238738656, 0.15438884496688843, 0.013830064795911312, 0.0027533448301255703, -0.049923546612262726, 0.020926086232066154, -0.13461770117282867, -0.13219477236270905, -0.039984334260225296, 0.14600475132465363, 0.03077097050845623, -0.006394379306584597, -0.08914828300476074, 0.11215228587388992, -0.08175133913755417, -0.121660515666008, -0.04223698750138283, -0.10066410899162292, -0.022084636613726616, 0.044506367295980453, 0.10724126547574997, 0.0687427818775177, -0.04016562178730965, -0.16074995696544647, 0.0543670617043972, -0.0526922270655632, 0.1114555150270462, -0.09438393265008926, 0.15735402703285217, -0.03233962133526802, 0.037544135004282, -0.2334451526403427, 0.015728242695331573, 0.004661776591092348, 0.014507968910038471, -0.036011070013046265, -0.051585789769887924, 0.039526134729385376, -0.052906617522239685, -0.03899231553077698, -0.07067462801933289, 0.06822367012500763, -0.018291527405381203, -0.005778072401881218, -0.12503734230995178, -0.0003210203431081027, -0.04061923921108246, 0.012453213334083557, -0.12312589585781097, -0.05498277768492699, 0.020486943423748016, 0.12299712747335434, -0.028654733672738075, 0.08201127499341965, -0.029794098809361458, -0.059644944965839386, -0.01948322169482708, -0.055188797414302826, 0.09185962378978729, 0.013748654164373875, -0.016932429745793343, 0.06189814209938049, 0.0983743965625763, 0.1490049958229065, 0.15145248174667358, -0.28209686279296875, -0.04134281724691391, 0.08477777987718582, -0.029015135020017624, -0.005880036391317844, -0.010171339847147465, 0.16262243688106537, 0.10398929566144943, -0.024999666959047318, 0.06953219324350357, -0.056375470012426376, 0.09743473678827286, 0.013290339149534702, -0.02277267724275589, 0.007546048145741224, 0.04406674578785896, 0.08469508588314056, -0.2696918547153473, 0.0843084454536438, 0.1098283901810646, -0.16608871519565582, -0.047581057995557785, -0.04376834258437157, -0.06434053927659988, 0.10042010992765427, 0.06813864409923553, -0.01042772177606821, 0.06705936044454575, 0.038402628153562546, -0.024169905111193657, 0.05960957333445549, -0.09907650202512741, 0.020625188946723938, -0.12341239303350449, 0.024997275322675705, -0.05218677595257759, 0.003924868535250425, 0.013652498833835125, -0.002571340184658766, -0.0026511100586503744, 0.1072186529636383, -0.011291561648249626, -0.2343510389328003, 0.05049818009138107, -0.06736823916435242, -0.02519099973142147, 0.20697946846485138, -0.021275101229548454, -0.23714233934879303, -0.0023459785152226686, -0.009875355288386345, -0.07865087687969208, -0.01601773500442505, 0.023276394233107567, -0.12206621468067169, -0.06595312058925629, -0.019387656822800636, -0.11033911257982254, 0.11346433311700821, 0.03152226284146309, 0.018982132896780968, 0.027705121785402298, 0.034335896372795105, -0.04713920131325722, 0.01565987803041935, -0.14429739117622375, -0.08958631753921509, 0.134237140417099, -0.08522836863994598, 0.08080718666315079, 0.08183486014604568, -0.018334748223423958, 0.022400202229619026, 0.025182364508509636, 0.14242598414421082, -0.053502555936574936, 0.024051502346992493, 0.08917859196662903, -0.00481907045468688, 0.05139172077178955, 0.08887139707803726, 0.010073483921587467, -0.0707792118191719, -0.009617376141250134, 0.029901789501309395, -0.04193395748734474, -0.09094997495412827, -0.13218720257282257, -0.03870818391442299, -0.014412220567464828, 0.15652693808078766, 0.10248380154371262, 0.0514657236635685, 0.1013571172952652, 0.012413885444402695, -0.029351573437452316, 0.06130119785666466, 0.06393162906169891, 0.10369168967008591, 0.03937603160738945, 0.11220325529575348, -0.07712441682815552, -0.06679026037454605, 0.03548608720302582, 0.10686542093753815, 0.2517772316932678, -0.02728000096976757, -0.12653231620788574, 0.04302870109677315, 0.24795417487621307, 0.1071787178516388, 0.10781723260879517, -0.06476612389087677, -0.015461957082152367, 0.004052072297781706, 0.0013169990852475166, 0.013685528188943863, 0.04467802867293358, -0.012220704928040504, -0.0680510401725769, 0.04191054031252861, 0.03975171595811844, 0.02737625502049923, 0.2476390153169632, 0.08967793732881546, -0.3178331255912781, 0.014077506959438324, -0.04563356935977936, -0.002170677063986659, -0.014764118008315563, 0.13490161299705505, -0.010480270721018314, -0.03679652884602547, 0.08400950580835342, -0.1325051486492157, 0.1075475811958313, -0.055267926305532455, 0.009510025382041931, 0.041340894997119904, -0.11724348366260529, 0.08430223166942596, 0.045858174562454224, -0.14139725267887115, 0.1684866100549698, -0.04650413617491722, -0.06590882688760757, -0.06678328663110733, -0.049304623156785965, 0.1067797988653183, 0.14076288044452667, 0.24722151458263397, 0.016175130382180214, -0.009463467635214329, 0.08937432616949081, -0.025469906628131866, 0.036327000707387924, 0.0512634739279747, 0.07979979366064072, -0.06066567823290825, 0.03714223951101303, -0.05466289073228836, 0.03902142122387886, 0.12906292080879211, -0.027726715430617332, -0.10135727375745773, -0.05970463156700134, 0.07754530757665634, -0.04856919124722481, -0.033487141132354736, -0.0663217231631279, -0.07374840974807739, 0.13085678219795227, 0.02321264147758484, -0.027138441801071167, -0.08656205981969833, 0.09874700009822845, 0.06365169584751129, -0.06104379519820213, 0.10412514209747314, -0.05067809298634529, 0.026727600023150444, -0.020741060376167297, -0.24518124759197235, 0.1710207164287567, -0.11496090143918991, -0.0017653867835178971, 0.029922939836978912, -0.06815991550683975, -0.00890851579606533, -0.025872904807329178, 0.05599632486701012, 0.042100559920072556, -0.1254725307226181, -0.02340213768184185, 0.016938190907239914, -0.046793170273303986, 0.018173007294535637, 0.09129753708839417, -0.05511399358510971, -0.0852094367146492, -0.03590357303619385, 0.15016694366931915, 0.15844173729419708, -0.04822835326194763, -0.10121719539165497, 0.005961747840046883, 0.11279258877038956, 0.03412611037492752, -0.38591763377189636, -0.09069553762674332, -0.020840244367718697, -0.06812196224927902, -0.09998053312301636, -0.13098767399787903, 0.23924846947193146, -0.00835910439491272, -0.05781365558505058, 0.0019008716335520148, -0.13649457693099976, -0.04049983248114586, 0.2547994554042816, 0.07443545013666153, 0.2898275554180145, -0.08661329746246338, 0.026200316846370697, -0.06025071069598198, 0.027319634333252907, 0.09145048260688782, -0.002183191478252411, 0.07218459248542786, -0.0035784519277513027, 0.05309772863984108, -0.043211501091718674, -0.02914038486778736, -0.03230411931872368, 0.11713922768831253, 0.0973319560289383, -0.09580893069505692, 0.07457905262708664, 0.06447568535804749, -0.01657583750784397, 0.05274677649140358, 0.08495622873306274, 0.1092836856842041, -0.006973343435674906, 0.023495592176914215, -0.09248892217874527, 0.05185490474104881, 0.10570494085550308, 0.00022536961478181183, -0.10676421970129013, 0.061611372977495193, 0.10957784950733185, 0.08455520123243332, 0.28612273931503296, 0.1288166642189026, 0.029437355697155, 0.06526925414800644, 0.006381248589605093, -0.08356381952762604, -0.08496030420064926, -0.09973497688770294, -0.03611249104142189, 0.14590692520141602, -0.14515668153762817, 0.0579538457095623, 0.10121101140975952, -0.0026939131785184145, -0.003979512490332127, 0.10081344842910767, 0.020701218396425247, -0.03697602450847626, 0.09985209256410599, -0.06267818063497543, -0.02369348518550396, 0.0135270394384861, 0.07148730754852295, 0.10466545075178146, 0.14458172023296356, 0.10450264811515808, -0.10384752601385117, -0.0006409338675439358, 0.023844962939620018, 0.07599367201328278, -0.04996068403124809, 0.06214142218232155, 0.1459653526544571, -0.025940045714378357, -0.14723718166351318, 0.19921383261680603, 0.007703766226768494, -0.15362991392612457, -0.024242429062724113, -0.05664427950978279, -0.1461056023836136, -0.12677431106567383, -0.00984749011695385, 0.0016829227097332478, -0.24825966358184814, -0.08354926109313965, -0.0028052590787410736, -0.06965681910514832, 0.11841939389705658, 0.023903874680399895, 0.13808134198188782, -0.02466263435781002, -0.036827269941568375, -0.08153674751520157, -0.03754005581140518, 0.020540280267596245, 0.009699733927845955, 0.06835024058818817, -0.15821076929569244, -0.21495775878429413, 0.016007686033844948, 0.1484939306974411, -0.0819639042019844, 0.008703581057488918, -0.08000131696462631, 0.09154799580574036, -0.1196097806096077, 0.06857402622699738, -0.05707267299294472, 0.026831451803445816, -0.061873659491539, -0.0303728599101305, -0.06414040923118591, 0.05668967217206955, -0.09561898559331894, -0.02640458382666111, -0.0007337297429330647, -0.026523329317569733, -0.11689674109220505, -0.027731267735362053, -0.022431163117289543, 0.008937041275203228, 0.12932416796684265, 0.08248884230852127, -0.1064169779419899, 0.09231410920619965, -0.1427963376045227, -0.25753989815711975, 0.15355323255062103, 0.04272597283124924, -0.020533937960863113, 0.061094287782907486, 0.05701110139489174, 0.07654395699501038, -0.04248789697885513, -0.015607049688696861, 0.01402067020535469, -0.04555386304855347, -0.01895076408982277, -0.24003657698631287, 0.020314885303378105, -0.028725331649184227, 0.004891878925263882, 0.0790984258055687, 0.1050933301448822, 0.11939425766468048, -0.05668111890554428, -0.009109794162213802, -0.03822692856192589, -0.0024180645123124123, -0.005507031921297312, -0.11255349963903427, -0.012921446934342384, -0.03792883828282356, 0.024611158296465874, -0.07815030962228775, 0.16761553287506104, -0.019275017082691193, -0.09771624207496643, 0.026384666562080383, 0.21998552978038788, -0.1159711629152298, 0.07594031095504761, 0.18753959238529205, 0.08964227885007858, -0.008613601326942444, 0.053309567272663116, 0.05202756077051163, 0.09845338761806488, 0.18747130036354065, 0.0046854265965521336, 0.24382343888282776, 0.033509768545627594, 0.11348364502191544, 0.07479789108037949, -0.016467107459902763, 0.05900097265839577, 0.0943262055516243, -0.09692385047674179, 0.10347729176282883, 0.0065419599413871765, 0.008635831996798515, 0.13484372198581696, 0.033782292157411575, 0.008241761475801468, 0.01788397692143917, -0.0075412024743855, -0.0863887146115303, -0.20913170278072357, -0.10135328024625778, -0.14526152610778809, 0.049039077013731, -0.030109738931059837, -0.08283232152462006, 0.21329014003276825, 0.08191082626581192, -0.0444047674536705, 0.05041904002428055, -0.08229702711105347, -0.05182911828160286, 0.16193436086177826, -0.00799791794270277, -0.10890422761440277, 0.14349503815174103, -0.04735071212053299, 0.06745811551809311, 0.05856436863541603, -0.015377763658761978, 0.0008887018193490803, 0.0649518296122551, 0.16105009615421295, -0.035814475268125534, -0.03949003294110298, -0.03376667574048042, 0.022412043064832687, -0.04488307982683182, -0.003723498433828354, -0.01734836772084236, 0.03213300555944443, 0.0457436628639698, 0.231280118227005, -0.10527919977903366, -0.0796126201748848, -0.11437960714101791, -0.04921618103981018, 0.003307838225737214, 0.060388050973415375, -0.04900201037526131, -0.03926939144730568, -0.02140144631266594, 0.21373619139194489, 0.23200015723705292, -0.18036162853240967, 0.0029470433946698904, 0.08515207469463348, 0.0037311429623514414, -0.0359521359205246, 0.025137610733509064, 0.17068380117416382, 0.10243489593267441, -0.0639943778514862, -0.12725548446178436, -0.06172699108719826, -0.059238553047180176, -0.11875715106725693, 0.01597895845770836, 0.05887097865343094, -0.07684276252985, -0.132748544216156, 0.12311342358589172, -0.17163318395614624, -0.020538272336125374, 0.08128272742033005, -0.08173912018537521, -0.1192740723490715, -0.052617188543081284, 0.07144375890493393, 0.10029935091733932, 0.004722044337540865, -0.0762564092874527, 0.04704541340470314, 0.017213396728038788, 0.028615260496735573, -0.1580985188484192, -0.04625185206532478, -0.06574802100658417, -0.03154773637652397, 0.12106268107891083, 0.03983557969331741, -0.007094154600054026, 0.0441833958029747, 0.026375316083431244, -0.06543345004320145, 0.014637075364589691, -0.052136585116386414, -0.12164755910634995, 0.026299603283405304, 0.06647562980651855, -0.03177488222718239, -0.0037715863436460495, 0.053026385605335236, -0.1625436246395111, -0.02627970091998577, 0.04895251244306564, 0.011873782612383366, -0.11632055789232254, 0.017472166568040848, -0.06673784554004669, 0.05301910266280174, 0.042184680700302124, 0.005609584040939808, 0.0014141976134851575, -0.05560048297047615, -0.0313647985458374, 0.010851002298295498, -0.12668976187705994, 0.009415562264621258, -0.027494745329022408, -0.03393568843603134, -0.2453015148639679, 0.060204971581697464, 0.016764119267463684, -0.014101377688348293, -0.0381845161318779, -0.04182219132781029, -0.08568400889635086, 0.07637161761522293, 0.11443252861499786, -0.04191189259290695, 0.01145494170486927, 0.01692335307598114, 0.07320648431777954, -0.0030721838120371103, -0.024510227143764496, -0.10847880691289902 ]
null
null
transformers
# resnet50d Implementation of ResNet proposed in [Deep Residual Learning for Image Recognition](https://arxiv.org/abs/1512.03385) ``` python ResNet.resnet18() ResNet.resnet26() ResNet.resnet34() ResNet.resnet50() ResNet.resnet101() ResNet.resnet152() ResNet.resnet200() Variants (d) proposed in `Bag of Tricks for Image Classification with Convolutional Neural Networks <https://arxiv.org/pdf/1812.01187.pdf`_ ResNet.resnet26d() ResNet.resnet34d() ResNet.resnet50d() # You can construct your own one by chaning `stem` and `block` resnet101d = ResNet.resnet101(stem=ResNetStemC, block=partial(ResNetBottleneckBlock, shortcut=ResNetShorcutD)) ``` Examples: ``` python # change activation ResNet.resnet18(activation = nn.SELU) # change number of classes (default is 1000 ) ResNet.resnet18(n_classes=100) # pass a different block ResNet.resnet18(block=SENetBasicBlock) # change the steam model = ResNet.resnet18(stem=ResNetStemC) change shortcut model = ResNet.resnet18(block=partial(ResNetBasicBlock, shortcut=ResNetShorcutD)) # store each feature x = torch.rand((1, 3, 224, 224)) # get features model = ResNet.resnet18() # first call .features, this will activate the forward hooks and tells the model you'll like to get the features model.encoder.features model(torch.randn((1,3,224,224))) # get the features from the encoder features = model.encoder.features print([x.shape for x in features]) #[torch.Size([1, 64, 112, 112]), torch.Size([1, 64, 56, 56]), torch.Size([1, 128, 28, 28]), torch.Size([1, 256, 14, 14])] ```
{"license": "apache-2.0", "tags": ["image-classification"], "datasets": ["imagenet"]}
image-classification
glasses/resnet50d
[ "transformers", "pytorch", "image-classification", "dataset:imagenet", "arxiv:1512.03385", "arxiv:1812.01187", "license:apache-2.0", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[ "1512.03385", "1812.01187" ]
[]
TAGS #transformers #pytorch #image-classification #dataset-imagenet #arxiv-1512.03385 #arxiv-1812.01187 #license-apache-2.0 #endpoints_compatible #region-us
# resnet50d Implementation of ResNet proposed in Deep Residual Learning for Image Recognition Examples:
[ "# resnet50d\nImplementation of ResNet proposed in Deep Residual Learning for Image\nRecognition\n\n \n\n Examples:" ]
[ "TAGS\n#transformers #pytorch #image-classification #dataset-imagenet #arxiv-1512.03385 #arxiv-1812.01187 #license-apache-2.0 #endpoints_compatible #region-us \n", "# resnet50d\nImplementation of ResNet proposed in Deep Residual Learning for Image\nRecognition\n\n \n\n Examples:" ]
[ 58, 26 ]
[ "passage: TAGS\n#transformers #pytorch #image-classification #dataset-imagenet #arxiv-1512.03385 #arxiv-1812.01187 #license-apache-2.0 #endpoints_compatible #region-us \n# resnet50d\nImplementation of ResNet proposed in Deep Residual Learning for Image\nRecognition\n\n \n\n Examples:" ]
[ -0.11013618111610413, 0.058866456151008606, -0.0025584178511053324, 0.08036098629236221, 0.09021938592195511, 0.008882137015461922, -0.018993953242897987, 0.08281222730875015, -0.10184378921985626, -0.016679344698786736, 0.1033768579363823, 0.09755716472864151, 0.006327469367533922, -0.05575801432132721, -0.058336492627859116, -0.2250393033027649, 0.08625666797161102, 0.07196581363677979, -0.010509785264730453, 0.057082805782556534, 0.06830887496471405, -0.07817383110523224, 0.09731023013591766, 0.002389611443504691, -0.16950513422489166, 0.007241262588649988, -0.014495478011667728, -0.0676562711596489, 0.07743435353040695, 0.024199604988098145, 0.10235138237476349, 0.01351426262408495, 0.09696593880653381, -0.11823657155036926, 0.033470526337623596, 0.05195653438568115, -0.074016273021698, 0.06008748710155487, 0.09926985949277878, -0.0230576042085886, 0.03793264180421829, 0.04832003265619278, -0.07760335505008698, -0.047311101108789444, 0.0032555111683905125, -0.06686419993638992, 0.003676336957141757, 0.17555294930934906, 0.08366633206605911, 0.08809398859739304, 0.03492303565144539, 0.08233031630516052, -0.10800287127494812, 0.09508511424064636, 0.15606121718883514, -0.2898436486721039, -0.050611063838005066, 0.1335255652666092, -0.05752557888627052, -0.07769700884819031, -0.07168760895729065, 0.03046269342303276, 0.027401315048336983, 0.035054221749305725, -0.12785126268863678, 0.003257647855207324, -0.07581596821546555, -0.009078777395188808, -0.08794311434030533, -0.028942346572875977, 0.05459093675017357, 0.09712275862693787, 0.060959719121456146, 0.003684513969346881, -0.15612851083278656, 0.010873609222471714, -0.10700933635234833, 0.041585274040699005, 0.02262459509074688, 0.06529225409030914, -0.08742669224739075, -0.004497324116528034, -0.0601780079305172, -0.03587799891829491, -0.14612101018428802, -0.04380853474140167, 0.05666597932577133, 0.13447429239749908, -0.1217445433139801, 0.02316221594810486, 0.030067777261137962, -0.042445775121450424, -0.003967743366956711, -0.08125124871730804, 0.023041995242238045, 0.04557614028453827, -0.07363557815551758, -0.03368255868554115, 0.09528405219316483, 0.1963794231414795, -0.0710662305355072, 0.0004003799695055932, -0.025756118819117546, 0.13649247586727142, -0.09514295309782028, 0.006305375602096319, -0.24239081144332886, 0.10964379459619522, 0.05108898878097534, -0.08454709500074387, 0.020605795085430145, -0.014334868639707565, -0.08126374334096909, -0.025987161323428154, 0.11578483134508133, -0.03884299099445343, -0.014141022227704525, 0.07240292429924011, -0.004668113309890032, -0.04589882120490074, 0.12776756286621094, -0.03351142629981041, -0.03488510474562645, -0.005172558594495058, -0.09489426016807556, 0.08544399589300156, 0.10440967231988907, 0.0016927301185205579, -0.0983976349234581, 0.005048348568379879, -0.007748846895992756, -0.007579405326396227, 0.0023074664641171694, -0.03655180707573891, 0.04429752007126808, 0.013749317266047001, 0.05501324310898781, -0.21427088975906372, -0.14422105252742767, 0.006564343348145485, 0.11890041083097458, -0.034929309040308, 0.011754854582250118, -0.014430826529860497, -0.12643522024154663, -0.000608885835390538, 0.018560107797384262, 0.03146406635642052, -0.0701201856136322, 0.01458902657032013, -0.12840873003005981, 0.12770336866378784, -0.115522600710392, 0.03404203802347183, -0.08508177846670151, -0.04043007642030716, -0.06621413677930832, 0.09802058339118958, -0.07778587937355042, 0.08447006344795227, -0.1335202306509018, -0.07505080103874207, -0.07675281167030334, -0.03508443757891655, 0.012239482253789902, 0.06402824074029922, -0.09779489040374756, -0.007530574221163988, 0.15127032995224, -0.10773646086454391, -0.08944281935691833, 0.07944732159376144, -0.03035222925245762, -0.10753653198480606, -0.003230958478525281, 0.1570502668619156, 0.015872638672590256, -0.004285202361643314, -0.053732022643089294, 0.02735043130815029, -0.12960079312324524, -0.13097955286502838, -0.045725252479314804, 0.14341136813163757, 0.03151419758796692, -0.003892164444550872, -0.09122609347105026, 0.11317813396453857, -0.08210745453834534, -0.12173013389110565, -0.045410238206386566, -0.09562284499406815, -0.02301075868308544, 0.042371716350317, 0.10466304421424866, 0.07088357955217361, -0.03689604252576828, -0.16397376358509064, 0.05920518934726715, -0.05301700904965401, 0.11498146504163742, -0.09293324500322342, 0.15073825418949127, -0.03421701490879059, 0.041589196771383286, -0.2277975231409073, 0.013343456201255322, 0.007432924117892981, 0.018651096150279045, -0.041149962693452835, -0.052725650370121, 0.03674997761845589, -0.05885487422347069, -0.03957076370716095, -0.07213937491178513, 0.06931445747613907, -0.01651032455265522, -0.008504834026098251, -0.12540017068386078, -0.0033968540374189615, -0.04043594375252724, 0.006499027833342552, -0.13137464225292206, -0.05442264303565025, 0.020468203350901604, 0.12664808332920074, -0.029959220439195633, 0.08318504691123962, -0.028783785179257393, -0.05961045250296593, -0.025445325300097466, -0.056147363036870956, 0.08873787522315979, 0.015451252460479736, -0.022647114470601082, 0.060279086232185364, 0.10016681998968124, 0.14417487382888794, 0.14785581827163696, -0.2791288197040558, -0.03610103204846382, 0.08318453282117844, -0.03046068362891674, -0.010360256768763065, -0.008590630255639553, 0.16227436065673828, 0.09728638827800751, -0.020843757316470146, 0.07029058784246445, -0.05733630433678627, 0.10052717477083206, 0.013293103314936161, -0.028557972982525826, 0.003230944275856018, 0.04051607474684715, 0.0790020301938057, -0.26994478702545166, 0.08154607564210892, 0.11348576843738556, -0.16502545773983002, -0.048949360847473145, -0.04436739906668663, -0.06611815840005875, 0.10097832977771759, 0.07151468098163605, -0.011682022362947464, 0.06450260430574417, 0.04288865625858307, -0.019747000187635422, 0.06063434109091759, -0.09298107028007507, 0.023934870958328247, -0.12490696460008621, 0.02889920026063919, -0.0533871091902256, 0.0025020132306963205, 0.01136727537959814, 0.001969820586964488, -0.005711964797228575, 0.10452274978160858, -0.01317919697612524, -0.24025116860866547, 0.053138259798288345, -0.06863868981599808, -0.023259669542312622, 0.20709538459777832, -0.02253665216267109, -0.23709897696971893, -0.0012773909838870168, -0.012632977217435837, -0.08661480247974396, -0.018623441457748413, 0.0218474343419075, -0.11934877187013626, -0.06403521448373795, -0.018411308526992798, -0.1164906769990921, 0.10261902213096619, 0.031293634325265884, 0.020940862596035004, 0.028116164728999138, 0.03565181791782379, -0.05050681531429291, 0.02004294842481613, -0.14157770574092865, -0.09024613350629807, 0.13590306043624878, -0.0887993723154068, 0.08146604895591736, 0.0866362452507019, -0.017376311123371124, 0.02198989875614643, 0.029252277687191963, 0.14430148899555206, -0.04864242300391197, 0.028499139472842216, 0.08507245779037476, -0.00464752409607172, 0.055156409740448, 0.09405902028083801, 0.01085165236145258, -0.06864354014396667, -0.009535660035908222, 0.029354404658079147, -0.0423581637442112, -0.09555590897798538, -0.13068416714668274, -0.03749823570251465, -0.015297556295990944, 0.15286245942115784, 0.10326950997114182, 0.05375361815094948, 0.09904046356678009, 0.007519393693655729, -0.023209331557154655, 0.05520624294877052, 0.06398613750934601, 0.10555625706911087, 0.0423981174826622, 0.11164025962352753, -0.07702305912971497, -0.061430152505636215, 0.03414154797792435, 0.11678522080183029, 0.25172874331474304, -0.025120822712779045, -0.12016415596008301, 0.04792468622326851, 0.2581348717212677, 0.10710182040929794, 0.10234980285167694, -0.06356934458017349, -0.01435105875134468, 0.003933298401534557, 0.001986251212656498, 0.018748808652162552, 0.04639533907175064, -0.01580573059618473, -0.0706828311085701, 0.044078171253204346, 0.04021504893898964, 0.026434557512402534, 0.25624334812164307, 0.08673045784235, -0.31039193272590637, 0.015224340371787548, -0.044764455407857895, 0.0006678320933133364, -0.014101340435445309, 0.1339186728000641, -0.013752535916864872, -0.03173369541764259, 0.08624032139778137, -0.13019046187400818, 0.10801737755537033, -0.056699372828006744, 0.008714049123227596, 0.03792354837059975, -0.11422809958457947, 0.0835791528224945, 0.04793596267700195, -0.147930309176445, 0.17103137075901031, -0.044564589858055115, -0.06464369595050812, -0.06333084404468536, -0.04731345549225807, 0.10526358336210251, 0.1459021419286728, 0.24016989767551422, 0.01786646991968155, -0.014611069113016129, 0.0960930660367012, -0.024293916299939156, 0.0364249087870121, 0.054115794599056244, 0.08450630307197571, -0.06003527715802193, 0.03821689635515213, -0.05449036508798599, 0.040679603815078735, 0.13269861042499542, -0.035664886236190796, -0.09789157658815384, -0.055079828947782516, 0.09145376831293106, -0.057638105005025864, -0.037867363542318344, -0.06448346376419067, -0.07537859678268433, 0.13796180486679077, 0.022556958720088005, -0.030754828825592995, -0.08463621884584427, 0.09157833456993103, 0.06431333720684052, -0.06333547085523605, 0.10108828544616699, -0.05473686754703522, 0.03030758537352085, -0.022672777995467186, -0.24506515264511108, 0.1706928163766861, -0.11656863987445831, -0.0014105222653597593, 0.030834907665848732, -0.06636442989110947, -0.012324702925980091, -0.030884921550750732, 0.05695987120270729, 0.03706052154302597, -0.12585461139678955, -0.02671845071017742, 0.014204328879714012, -0.0415431372821331, 0.005877264309674501, 0.08553599566221237, -0.055032823234796524, -0.08697111159563065, -0.03577720373868942, 0.14844463765621185, 0.15304940938949585, -0.038475945591926575, -0.1014939621090889, 0.000378021621145308, 0.12451021373271942, 0.02902880869805813, -0.38172057271003723, -0.09378284960985184, -0.021719126030802727, -0.07220946252346039, -0.1015581414103508, -0.12862223386764526, 0.23349285125732422, -0.00983565766364336, -0.06022379547357559, 0.011994882486760616, -0.13448329269886017, -0.037619028240442276, 0.25545212626457214, 0.0724317878484726, 0.28854745626449585, -0.08329257369041443, 0.022086165845394135, -0.05860389396548271, 0.022345468401908875, 0.0911136344075203, -0.005119471810758114, 0.07175254076719284, -0.007088341284543276, 0.05330482870340347, -0.04303666576743126, -0.028109300881624222, -0.029886234551668167, 0.12169938534498215, 0.09971115738153458, -0.09192460030317307, 0.07904079556465149, 0.06277627497911453, -0.019517283886671066, 0.054228488355875015, 0.08338416367769241, 0.11039991676807404, -0.0014956410741433501, 0.024954332038760185, -0.09468600153923035, 0.05186142772436142, 0.10096395760774612, -0.0021818203385919333, -0.1095815971493721, 0.05821122229099274, 0.11145371943712234, 0.08504587411880493, 0.2879163920879364, 0.13028526306152344, 0.027957553043961525, 0.07753931730985641, 0.0004324228793848306, -0.08470003306865692, -0.08146607130765915, -0.10148530453443527, -0.03578236326575279, 0.14923611283302307, -0.1508295238018036, 0.05878316983580589, 0.10200051963329315, -0.0031146055553108454, -0.0057748425751924515, 0.0999978706240654, 0.014677220024168491, -0.042934659868478775, 0.09871091693639755, -0.05848903954029083, -0.02681938372552395, 0.011312843300402164, 0.0729362964630127, 0.10012257844209671, 0.14911207556724548, 0.10658128559589386, -0.10447868704795837, 0.002205262193456292, 0.02471749298274517, 0.07277620583772659, -0.04833606630563736, 0.06058976426720619, 0.14834462106227875, -0.02520046941936016, -0.14313581585884094, 0.2019582837820053, 0.007632486056536436, -0.15103885531425476, -0.026815883815288544, -0.05893099308013916, -0.14938007295131683, -0.12462624907493591, -0.018598072230815887, -0.006014574784785509, -0.2470603585243225, -0.08669088780879974, 0.0006324631976895034, -0.06578341871500015, 0.112404465675354, 0.019119588658213615, 0.13490250706672668, -0.02176036313176155, -0.0366152785718441, -0.08418815582990646, -0.037311870604753494, 0.019594090059399605, 0.009333913214504719, 0.0739486888051033, -0.1583561897277832, -0.2176860272884369, 0.018937615677714348, 0.1481594741344452, -0.07823261618614197, 0.007707078941166401, -0.07716809213161469, 0.09082259237766266, -0.131085604429245, 0.06776636093854904, -0.05415451154112816, 0.027218900620937347, -0.060895659029483795, -0.028847239911556244, -0.06242755427956581, 0.0593748539686203, -0.09377464652061462, -0.026408923789858818, -0.0012886314652860165, -0.025648076087236404, -0.11600160598754883, -0.028948497027158737, -0.025015978142619133, 0.008327526040375233, 0.12505078315734863, 0.07746497541666031, -0.10801319777965546, 0.09220395237207413, -0.1475486159324646, -0.2531208395957947, 0.15262539684772491, 0.045347776263952255, -0.018229372799396515, 0.0615205317735672, 0.05348142609000206, 0.07800742238759995, -0.0409693568944931, -0.01861322671175003, 0.01024825219064951, -0.04761109501123428, -0.02891220524907112, -0.24515365064144135, 0.02249797247350216, -0.025752337649464607, 0.0032101362012326717, 0.07911625504493713, 0.11435563862323761, 0.12096795439720154, -0.05502966791391373, -0.013237512670457363, -0.0393531508743763, -0.004375155549496412, -0.005227414425462484, -0.11123646050691605, -0.008093427866697311, -0.03621121868491173, 0.02180069126188755, -0.0800333097577095, 0.16336625814437866, -0.028501184657216072, -0.09591451287269592, 0.021376390010118484, 0.20754417777061462, -0.12202168256044388, 0.07089513540267944, 0.19184008240699768, 0.08782284706830978, -0.009901578538119793, 0.05308016762137413, 0.046803805977106094, 0.09763600677251816, 0.19036492705345154, 0.005372023209929466, 0.23732484877109528, 0.0327802449464798, 0.11760777980089188, 0.0694991871714592, -0.02002793736755848, 0.0602288693189621, 0.08744221180677414, -0.09637675434350967, 0.10965149849653244, 0.010306998156011105, 0.005965168587863445, 0.13880231976509094, 0.03438246622681618, 0.003800951177254319, 0.017264699563384056, -0.008929767645895481, -0.08553645759820938, -0.21005688607692719, -0.10288126766681671, -0.14294451475143433, 0.04979744181036949, -0.030871408060193062, -0.08018810302019119, 0.20770083367824554, 0.08222769945859909, -0.045243918895721436, 0.047605887055397034, -0.07515936344861984, -0.05295809358358383, 0.16428275406360626, -0.006842600181698799, -0.11036784946918488, 0.14947271347045898, -0.042599666863679886, 0.06665370613336563, 0.05593976750969887, -0.017891237512230873, -0.00044942207750864327, 0.07199283689260483, 0.16404055058956146, -0.03301185742020607, -0.039323315024375916, -0.03438938036561012, 0.02285214513540268, -0.03997766971588135, 0.0005470202886499465, -0.013740196824073792, 0.032855257391929626, 0.04659022390842438, 0.22916188836097717, -0.10574419796466827, -0.08196371793746948, -0.11251561343669891, -0.043311476707458496, 0.0018124858615919948, 0.05931038782000542, -0.04786229506134987, -0.036041684448719025, -0.020729869604110718, 0.2163572460412979, 0.22642937302589417, -0.1771082729101181, 0.002580474130809307, 0.0789632648229599, 0.004705097060650587, -0.03799835965037346, 0.025455355644226074, 0.17103268206119537, 0.09758871048688889, -0.06240743026137352, -0.13137321174144745, -0.06352594494819641, -0.05739686265587807, -0.11966175585985184, 0.019985603168606758, 0.055891621857881546, -0.07979697734117508, -0.13418938219547272, 0.11916472762823105, -0.17306894063949585, -0.021495020017027855, 0.07615558803081512, -0.06930844485759735, -0.11549129337072372, -0.05371662229299545, 0.06984230875968933, 0.09532063454389572, 0.002539136214181781, -0.0790344700217247, 0.04748440906405449, 0.022474346682429314, 0.024047769606113434, -0.15056867897510529, -0.045357778668403625, -0.06652650982141495, -0.02909630350768566, 0.12221219390630722, 0.04384328052401543, -0.005198295693844557, 0.043683573603630066, 0.03050115704536438, -0.0656513050198555, 0.018895279616117477, -0.05026441812515259, -0.11305084079504013, 0.024537725374102592, 0.062247321009635925, -0.03220849111676216, -0.0050835381262004375, 0.054083872586488724, -0.16348256170749664, -0.02630307711660862, 0.059384264051914215, 0.01124292891472578, -0.12094633281230927, 0.014982982538640499, -0.062175750732421875, 0.0513276681303978, 0.040476202964782715, 0.0040135979652404785, -0.0007945335819385946, -0.05650101602077484, -0.031069207936525345, 0.009213238023221493, -0.12004505842924118, 0.011820893734693527, -0.02335837297141552, -0.03263574466109276, -0.23869328200817108, 0.06119728460907936, 0.022527044638991356, -0.011665504425764084, -0.03580925986170769, -0.041841309517621994, -0.08339565247297287, 0.07821428030729294, 0.11546347290277481, -0.03931960090994835, 0.012047328986227512, 0.021741287782788277, 0.06868306547403336, -0.005657196510583162, -0.0248735249042511, -0.1118214800953865 ]
null
null
transformers
# resnext101_32x8d Implementation of ResNetXt proposed in [\"Aggregated Residual Transformation for Deep Neural Networks\"](https://arxiv.org/pdf/1611.05431.pdf) Create a default model ``` python ResNetXt.resnext50_32x4d() ResNetXt.resnext101_32x8d() # create a resnetxt18_32x4d ResNetXt.resnet18(block=ResNetXtBottleNeckBlock, groups=32, base_width=4) ``` Examples: : ``` python # change activation ResNetXt.resnext50_32x4d(activation = nn.SELU) # change number of classes (default is 1000 ) ResNetXt.resnext50_32x4d(n_classes=100) # pass a different block ResNetXt.resnext50_32x4d(block=SENetBasicBlock) # change the initial convolution model = ResNetXt.resnext50_32x4d model.encoder.gate.conv1 = nn.Conv2d(3, 64, kernel_size=3) # store each feature x = torch.rand((1, 3, 224, 224)) model = ResNetXt.resnext50_32x4d() # first call .features, this will activate the forward hooks and tells the model you'll like to get the features model.encoder.features model(torch.randn((1,3,224,224))) # get the features from the encoder features = model.encoder.features print([x.shape for x in features]) #[torch.Size([1, 64, 112, 112]), torch.Size([1, 64, 56, 56]), torch.Size([1, 128, 28, 28]), torch.Size([1, 256, 14, 14])] ```
{}
null
glasses/resnext101_32x8d
[ "transformers", "pytorch", "arxiv:1611.05431", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[ "1611.05431" ]
[]
TAGS #transformers #pytorch #arxiv-1611.05431 #endpoints_compatible #region-us
# resnext101_32x8d Implementation of ResNetXt proposed in \"Aggregated Residual Transformation for Deep Neural Networks\" Create a default model Examples: :
[ "# resnext101_32x8d\nImplementation of ResNetXt proposed in \\\"Aggregated Residual\nTransformation for Deep Neural\nNetworks\\\"\n\n Create a default model\n\n \n\n Examples:\n\n :" ]
[ "TAGS\n#transformers #pytorch #arxiv-1611.05431 #endpoints_compatible #region-us \n", "# resnext101_32x8d\nImplementation of ResNetXt proposed in \\\"Aggregated Residual\nTransformation for Deep Neural\nNetworks\\\"\n\n Create a default model\n\n \n\n Examples:\n\n :" ]
[ 30, 47 ]
[ "passage: TAGS\n#transformers #pytorch #arxiv-1611.05431 #endpoints_compatible #region-us \n# resnext101_32x8d\nImplementation of ResNetXt proposed in \\\"Aggregated Residual\nTransformation for Deep Neural\nNetworks\\\"\n\n Create a default model\n\n \n\n Examples:\n\n :" ]
[ -0.07091588526964188, -0.021861789748072624, -0.0020389158744364977, 0.01925642415881157, 0.10363481193780899, 0.06276014447212219, 0.04625668004155159, 0.0510755218565464, -0.14151513576507568, -0.0033786362037062645, 0.14526627957820892, 0.1509125977754593, -0.026772107928991318, 0.019909432157874107, -0.03351235017180443, -0.2233579009771347, 0.08534117043018341, 0.0992112010717392, -0.10442908108234406, 0.062072623521089554, 0.07937769591808319, -0.07434696704149246, 0.07663077861070633, 0.02051587402820587, -0.187839537858963, -0.019752278923988342, 0.009136291220784187, -0.01643524132668972, 0.10128460079431534, 0.08737519383430481, 0.20991285145282745, -0.00743893114849925, 0.034441858530044556, -0.09595953673124313, 0.0413888543844223, 0.04434641823172569, -0.036468181759119034, 0.11022230982780457, 0.0758637934923172, 0.013909611850976944, 0.08723114430904388, 0.0420437827706337, -0.07304245233535767, -0.0012757788645103574, -0.09053950011730194, -0.07489115744829178, -0.030967438593506813, 0.14129167795181274, 0.015768425539135933, 0.10992246866226196, -0.02489747293293476, 0.16804605722427368, -0.09657386690378189, 0.09374203532934189, 0.14030736684799194, -0.31717777252197266, -0.024087004363536835, 0.0946715772151947, 0.0006429008208215237, -0.044258590787649155, 0.023903770372271538, 0.008986352942883968, 0.07507380843162537, 0.028062717989087105, -0.1045738160610199, -0.019105952233076096, 0.0001986958523048088, 0.007589605171233416, -0.1718405932188034, 0.0627962052822113, 0.015213213860988617, 0.03712356463074684, 0.05840024724602699, 0.0066185989417135715, -0.18297460675239563, -0.03797651082277298, -0.055998578667640686, -0.04335111007094383, -0.04164251685142517, 0.021852238103747368, 0.01768822781741619, -0.039194680750370026, -0.04900712892413139, -0.019824467599391937, -0.14411857724189758, 0.13970056176185608, 0.09759748727083206, 0.05510660633444786, -0.10425484925508499, 0.02129253000020981, -0.0034801894798874855, -0.0016689648618921638, 0.06760803610086441, -0.13997912406921387, -0.1294236183166504, -0.04561774432659149, -0.12433447688817978, -0.13223733007907867, 0.07452894002199173, 0.13104552030563354, -0.06905820965766907, -0.02736430987715721, 0.06845621764659882, 0.08115073293447495, -0.06499993056058884, -0.0265751201659441, -0.293055921792984, 0.10857681930065155, 0.027859261259436607, -0.09840775281190872, 0.005760591011494398, 0.01217885036021471, -0.11063116788864136, -0.0033679185435175896, 0.0433313213288784, 0.00636200699955225, -0.03239097073674202, 0.0806736871600151, -0.04286038503050804, -0.1166810393333435, 0.09595565497875214, -0.004434344824403524, -0.060238320380449295, -0.009674740023911, -0.032385941594839096, 0.12296376377344131, 0.005630023777484894, 0.011798858642578125, -0.07299452275037766, 0.010146232321858406, -0.07757004350423813, -0.04693109542131424, -0.06025707721710205, -0.1274963617324829, -0.00016553039313293993, 0.03357645124197006, 0.0848812386393547, -0.1949881613254547, -0.12484538555145264, 0.02542734518647194, 0.08315915614366531, -0.03333938121795654, -0.007622020319104195, -0.025673501193523407, -0.06626272946596146, -0.04306071251630783, 0.005612772423774004, 0.034726276993751526, -0.046233437955379486, 0.0011938302777707577, -0.025617899373173714, 0.06289131194353104, -0.09931842237710953, 0.011962383054196835, -0.05838480591773987, -0.03289753198623657, -0.06046181544661522, 0.0758851170539856, -0.02885361574590206, 0.09879173338413239, -0.13189548254013062, -0.0786481574177742, -0.07230061292648315, 0.01242954470217228, 0.06308992207050323, 0.0693306177854538, -0.10584709793329239, -0.06863832473754883, 0.19229823350906372, -0.09774142503738403, -0.1190061941742897, 0.1597042977809906, -0.027593672275543213, -0.06724949926137924, 0.04515111446380615, 0.12799891829490662, 0.06387143582105637, 0.01385509967803955, -0.017678391188383102, -0.039854299277067184, -0.15577030181884766, -0.11508117616176605, -0.06095156818628311, 0.17069754004478455, -0.04005389288067818, -0.04831021651625633, 0.04531223326921463, 0.11437059193849564, -0.1372361183166504, -0.05979624018073082, -0.03513631969690323, -0.13734856247901917, 0.08814339339733124, 0.019033290445804596, 0.1130029633641243, 0.07556534558534622, -0.06742272526025772, -0.10242721438407898, 0.06436055153608322, -0.044326942414045334, 0.0683840811252594, -0.12110000103712082, 0.08379809558391571, -0.1006120890378952, 0.04779423773288727, -0.24228793382644653, -0.11400459706783295, 0.01210560742765665, -0.002524559386074543, 0.03677605837583542, 0.22868521511554718, 0.03567693382501602, -0.0433400459587574, -0.05643059313297272, -0.034347329288721085, 0.1019544005393982, 0.004341010469943285, -0.049747731536626816, -0.13239526748657227, 0.01668541133403778, -0.09428401291370392, -0.08032651990652084, -0.17089806497097015, -0.03556564077734947, -0.0552070215344429, 0.15802761912345886, -0.018184378743171692, 0.06559212505817413, 0.031146053224802017, 0.030553340911865234, -0.04282749444246292, -0.024452319368720055, 0.040335506200790405, -0.0270315520465374, -0.14228205382823944, 0.0696725994348526, 0.009649425745010376, 0.16525040566921234, 0.09355815500020981, -0.15499475598335266, -0.08217929303646088, 0.11087506264448166, -0.0716577023267746, 0.027179600670933723, 0.044277872890233994, 0.09470731019973755, 0.19322341680526733, 0.015502563677728176, 0.0647260844707489, -0.02915874496102333, 0.07189812511205673, 0.004624912980943918, -0.03123195469379425, 0.05765216797590256, 0.07611978054046631, 0.07394247502088547, -0.33135294914245605, 0.05722084641456604, -0.02868383564054966, -0.0956726223230362, 0.01257767342031002, -0.02230004593729973, -0.054577574133872986, 0.02980816178023815, 0.04525025561451912, 0.016895931214094162, 0.004466908983886242, 0.08626929670572281, 0.02862529642879963, 0.05954597517848015, -0.08998528867959976, 0.0675845816731453, -0.07277734577655792, 0.002479143440723419, -0.01222055871039629, 0.011565342545509338, -0.02228648029267788, 0.09033093601465225, 0.008839395828545094, 0.06376849114894867, -0.023516574874520302, -0.15060096979141235, 0.02431020885705948, -0.004649006295949221, -0.0447155125439167, 0.18990696966648102, -0.07682838290929794, -0.19709686934947968, -0.06492920964956284, -0.05876634642481804, -0.016767382621765137, 0.004053697921335697, 0.00416930578649044, -0.13416838645935059, -0.06188959628343582, 0.05284923315048218, 0.10008519142866135, 0.06392291933298111, 0.08124114573001862, -0.02677847631275654, 0.022404415532946587, -0.0020467888098210096, -0.03186442330479622, 0.03293108940124512, -0.18656162917613983, -0.05069994553923607, 0.03788575157523155, -0.11433415114879608, 0.04742071032524109, 0.17142057418823242, 0.041573893278837204, -0.011885765008628368, -0.0033014435321092606, 0.1784237027168274, -0.0671287402510643, 0.04448891431093216, 0.09439071267843246, -0.01782459393143654, 0.04415198788046837, 0.13192549347877502, 0.0300005991011858, -0.0635460838675499, 0.028491126373410225, -0.004079279024153948, -0.014194388873875141, -0.23718991875648499, -0.16187182068824768, -0.09736859053373337, -0.05645633488893509, 0.06013726443052292, 0.03174980357289314, 0.014254874549806118, 0.122378870844841, 0.011655159294605255, -0.01905512809753418, -0.09396947175264359, 0.06000620126724243, 0.16694538295269012, 0.04382925108075142, 0.1141316294670105, -0.08453506231307983, -0.12601755559444427, 0.05115868151187897, 0.009807690978050232, 0.2712997496128082, -0.017640408128499985, 0.03693588823080063, 0.05918767303228378, 0.14921560883522034, 0.09865137189626694, 0.15946397185325623, -0.010113714262843132, -0.08086325228214264, -0.0412728413939476, 0.01651855558156967, -0.020080361515283585, 0.09757069498300552, 0.0734366923570633, -0.0852673277258873, 0.04777982831001282, 0.0752234160900116, 0.03189743310213089, 0.169599249958992, 0.14364571869373322, -0.34090790152549744, -0.08368270099163055, -0.08073180168867111, -0.042736537754535675, 0.014052211306989193, 0.06038450449705124, 0.03258105367422104, 0.00852136965841055, 0.07388432323932648, -0.0994773656129837, 0.10102195292711258, -0.03806227073073387, 0.05931030213832855, -0.026071202009916306, 0.06443502008914948, 0.026134466752409935, 0.04533466696739197, -0.18882633745670319, 0.2708919644355774, -0.010233364067971706, -0.050238825380802155, -0.006832757033407688, -0.018507448956370354, 0.02320803515613079, 0.1179761067032814, 0.13551156222820282, -0.0002972234506160021, -0.011367592960596085, 0.05819806456565857, -0.014799586497247219, 0.01921233907341957, 0.05759956315159798, 0.08522230386734009, 0.008496634662151337, 0.03760320320725441, -0.0571524016559124, 0.04573217034339905, 0.04954656586050987, -0.03213389590382576, -0.1029847115278244, 0.02595309540629387, 0.09856832772493362, -0.09030485153198242, -0.014804732985794544, -0.060319527983665466, -0.016610439866781235, 0.18272241950035095, 0.069498710334301, -0.031537823379039764, -0.0913858488202095, 0.0660247802734375, 0.19302691519260406, -0.09433207660913467, 0.07774672657251358, -0.03811906650662422, 0.006939969025552273, -0.024221453815698624, -0.16913814842700958, 0.16452965140342712, -0.15020698308944702, -0.01886151172220707, -0.024400917813181877, 0.007382584270089865, -0.003000493161380291, 0.024007849395275116, 0.020225703716278076, -0.009095742367208004, -0.14118455350399017, -0.06165558472275734, -0.06312257051467896, -0.03563974052667618, -0.052516743540763855, 0.08328662812709808, -0.10101054608821869, 0.06510807573795319, -0.05805647373199463, 0.06831087917089462, 0.16758914291858673, -0.03211486339569092, -0.06288154423236847, -0.012318122200667858, 0.12197959423065186, 0.012124376371502876, -0.23125097155570984, -0.09288844466209412, 0.033831074833869934, 0.0023447528947144747, -0.05304276943206787, -0.15765129029750824, 0.1775110960006714, -0.04347265139222145, 0.02434217557311058, -0.014707493595778942, -0.04523087292909622, -0.06340467929840088, 0.21590878069400787, 0.03079107403755188, 0.26966413855552673, -0.0283226165920496, 0.009640495292842388, -0.028412893414497375, 0.11146306246519089, 0.09864714741706848, 0.014668717980384827, 0.11599830538034439, 0.033636242151260376, 0.1347091645002365, 0.010326473042368889, -0.03764627128839493, -0.03446834161877632, 0.10673630237579346, 0.012507918290793896, -0.02923492155969143, 0.03873352333903313, 0.07023104280233383, 0.025871267542243004, -0.022344378754496574, 0.1632072776556015, 0.05794413387775421, -0.0037900309544056654, -0.03493442386388779, -0.08612418174743652, -0.0023618838749825954, 0.09151844680309296, -0.04571111872792244, -0.10063962638378143, 0.09736054390668869, 0.12299153953790665, 0.031034834682941437, 0.2071368396282196, 0.0485854372382164, 0.09092864394187927, 0.040344592183828354, 0.06868461519479752, -0.09461471438407898, -0.05041149631142616, -0.023133227601647377, -0.03086705319583416, 0.09019085019826889, -0.09796565026044846, 0.020103320479393005, 0.1549282968044281, -0.05697586014866829, -0.011304867453873158, 0.0962548777461052, -0.032567333430051804, -0.045148689299821854, 0.09624819457530975, -0.10519494116306305, -0.13995936512947083, 0.0013092657318338752, -0.003065998200327158, 0.011526450514793396, 0.18500258028507233, 0.1666557788848877, -0.06604103744029999, -0.009495622478425503, 0.03126389533281326, 0.01894795149564743, -0.0845988467335701, 0.11242838203907013, 0.10622421652078629, 0.04551191255450249, -0.1265576034784317, 0.04001181945204735, 0.009784710593521595, -0.10747067630290985, -0.03648357838392258, -0.044859517365694046, -0.11835463345050812, -0.09943939745426178, -0.015996865928173065, 0.016809845343232155, -0.19808988273143768, -0.057490620762109756, -0.11476226896047592, -0.062141213566064835, 0.08470125496387482, 0.08643700182437897, 0.10691922903060913, 0.02192274108529091, -0.09963209927082062, -0.05711769312620163, -0.09996558725833893, 0.0048740156926214695, 0.0748552456498146, 0.06664692610502243, -0.177016481757164, -0.060391321778297424, -0.03660980984568596, 0.11491978913545609, -0.09682505577802658, 0.05074463412165642, -0.10691322386264801, 0.06567665934562683, -0.07246532291173935, -0.031021762639284134, -0.091962531208992, -0.033659741282463074, -0.049504756927490234, -0.08170385658740997, -0.08085623383522034, 0.0376882441341877, -0.10169323533773422, 0.0584867037832737, 0.04741412028670311, -0.030011653900146484, -0.04404429718852043, -0.008273512125015259, -0.04119244962930679, 0.005890883971005678, 0.12241422384977341, 0.03691859915852547, -0.10242264717817307, 0.12241680175065994, -0.08709277957677841, -0.13185691833496094, 0.09963130950927734, 0.07456469535827637, 0.07841205596923828, -0.01740342192351818, 0.053659357130527496, 0.02808239683508873, 0.0344063900411129, -0.02158135175704956, -0.07751704752445221, -0.003284909762442112, 0.0442199744284153, -0.1027224138379097, 0.003279268043115735, -0.032099924981594086, -0.03748318925499916, -0.013465373776853085, 0.12397301197052002, 0.09340906143188477, -0.02728894352912903, 0.04723941162228584, 0.01852600835263729, 0.032511454075574875, -0.017377778887748718, -0.08354467898607254, 0.10014235973358154, -0.08967195451259613, 0.04094752296805382, -0.042805567383766174, 0.2264070361852646, -0.11562834680080414, -0.016945786774158478, 0.013185447081923485, 0.11559386551380157, -0.11007118225097656, 0.05571373179554939, 0.15142317116260529, 0.09731332212686539, -0.013889414258301258, -0.021628176793456078, 0.05696322023868561, 0.07332649827003479, 0.17244724929332733, 0.12916024029254913, 0.12741298973560333, 0.08399268984794617, 0.07210556417703629, 0.01239754818379879, -0.030327381566166878, 0.052839238196611404, 0.012650413438677788, -0.11267579346895218, 0.04242921620607376, 0.05191785469651222, 0.034530576318502426, 0.07469098269939423, 0.07824434340000153, 0.020412743091583252, 0.0541028156876564, -0.05076953023672104, -0.09938782453536987, -0.10026517510414124, -0.09108763188123703, -0.1459307223558426, -0.01862216740846634, -0.07759897410869598, -0.1299889087677002, 0.09741812944412231, 0.09885527938604355, -0.02277541533112526, 0.14686767756938934, 0.10247679054737091, -0.034990787506103516, 0.07541225105524063, -0.004382286686450243, -0.058363307267427444, 0.1463962346315384, -0.07290419191122055, -0.046681102365255356, 0.05648307502269745, -0.03405802324414253, -0.016676099970936775, -0.043243128806352615, 0.13291187584400177, -0.024150656536221504, -0.039259638637304306, -0.0327884815633297, 0.045538973063230515, -0.0325472429394722, -0.035857073962688446, -0.03502305597066879, -0.023462500423192978, -0.011175566352903843, 0.17079226672649384, -0.06343838572502136, -0.07330755889415741, -0.1614687144756317, 0.11910783499479294, 0.02389351651072502, 0.08255745470523834, -0.04403451830148697, 0.025520924478769302, -0.046634282916784286, 0.23666852712631226, 0.3082476556301117, -0.1707984358072281, -0.005569417495280504, 0.09733808040618896, 0.0037751176860183477, -0.031860318034887314, 0.05461672320961952, 0.10959798097610474, 0.12224546074867249, -0.02614760957658291, -0.1371787041425705, -0.05330216884613037, -0.011373928748071194, -0.06618504971265793, -0.046811457723379135, 0.12055567651987076, -0.02937839739024639, -0.05290904641151428, 0.14534342288970947, -0.2585947811603546, -0.04244862496852875, -0.0599602609872818, -0.12191285192966461, -0.12610140442848206, -0.11116103082895279, 0.07372806966304779, 0.05149540305137634, 0.12695513665676117, -0.06624762713909149, -0.06363704800605774, 0.08353608846664429, 0.01984443888068199, -0.1353655755519867, -0.056056421250104904, 0.034481510519981384, 0.03550935536623001, 0.01367043238133192, -0.0012013603700324893, -0.026965096592903137, 0.11634605377912521, -0.03123658150434494, -0.0561358667910099, 0.01819164678454399, -0.015079034492373466, -0.1632409542798996, 0.03966117650270462, 0.015912827104330063, -0.02174057811498642, 0.01624170131981373, 0.019473766908049583, -0.3014852702617645, 0.0027345134876668453, 0.012014655396342278, 0.011507445015013218, -0.0536024309694767, 0.02630520984530449, -0.08903083950281143, 0.08672542124986649, 0.10343264043331146, -0.030398786067962646, 0.03363719955086708, -0.027956334874033928, 0.015246868133544922, 0.06361550837755203, 0.07160511612892151, -0.035278648138046265, -0.17067617177963257, -0.043215446174144745, -0.12658771872520447, 0.0281120166182518, -0.0732063353061676, -0.013872319832444191, -0.04945453628897667, 0.015126500278711319, -0.08930530399084091, 0.0901174396276474, 0.06559940427541733, -0.016824059188365936, 0.017054947093129158, 0.025073489174246788, -0.026461925357580185, -0.03946845978498459, -0.1268736571073532, -0.12259917706251144 ]
null
null
transformers
# resnext50_32x4d Implementation of ResNetXt proposed in [\"Aggregated Residual Transformation for Deep Neural Networks\"](https://arxiv.org/pdf/1611.05431.pdf) Create a default model ``` python ResNetXt.resnext50_32x4d() ResNetXt.resnext101_32x8d() # create a resnetxt18_32x4d ResNetXt.resnet18(block=ResNetXtBottleNeckBlock, groups=32, base_width=4) ``` Examples: : ``` python # change activation ResNetXt.resnext50_32x4d(activation = nn.SELU) # change number of classes (default is 1000 ) ResNetXt.resnext50_32x4d(n_classes=100) # pass a different block ResNetXt.resnext50_32x4d(block=SENetBasicBlock) # change the initial convolution model = ResNetXt.resnext50_32x4d model.encoder.gate.conv1 = nn.Conv2d(3, 64, kernel_size=3) # store each feature x = torch.rand((1, 3, 224, 224)) model = ResNetXt.resnext50_32x4d() # first call .features, this will activate the forward hooks and tells the model you'll like to get the features model.encoder.features model(torch.randn((1,3,224,224))) # get the features from the encoder features = model.encoder.features print([x.shape for x in features]) #[torch.Size([1, 64, 112, 112]), torch.Size([1, 64, 56, 56]), torch.Size([1, 128, 28, 28]), torch.Size([1, 256, 14, 14])] ```
{}
null
glasses/resnext50_32x4d
[ "transformers", "pytorch", "arxiv:1611.05431", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[ "1611.05431" ]
[]
TAGS #transformers #pytorch #arxiv-1611.05431 #endpoints_compatible #region-us
# resnext50_32x4d Implementation of ResNetXt proposed in \"Aggregated Residual Transformation for Deep Neural Networks\" Create a default model Examples: :
[ "# resnext50_32x4d\nImplementation of ResNetXt proposed in \\\"Aggregated Residual\nTransformation for Deep Neural\nNetworks\\\"\n\n Create a default model\n\n \n\n Examples:\n\n :" ]
[ "TAGS\n#transformers #pytorch #arxiv-1611.05431 #endpoints_compatible #region-us \n", "# resnext50_32x4d\nImplementation of ResNetXt proposed in \\\"Aggregated Residual\nTransformation for Deep Neural\nNetworks\\\"\n\n Create a default model\n\n \n\n Examples:\n\n :" ]
[ 30, 47 ]
[ "passage: TAGS\n#transformers #pytorch #arxiv-1611.05431 #endpoints_compatible #region-us \n# resnext50_32x4d\nImplementation of ResNetXt proposed in \\\"Aggregated Residual\nTransformation for Deep Neural\nNetworks\\\"\n\n Create a default model\n\n \n\n Examples:\n\n :" ]
[ -0.07260572910308838, -0.020825961604714394, -0.002030271105468273, 0.01994342729449272, 0.10591845214366913, 0.06416765600442886, 0.04615098237991333, 0.05094854161143303, -0.14691892266273499, -0.0031327693723142147, 0.14592565596103668, 0.1509939730167389, -0.026742950081825256, 0.023458750918507576, -0.03246388956904411, -0.2219715118408203, 0.08047596365213394, 0.09917470812797546, -0.11186278611421585, 0.06214424967765808, 0.07668782770633698, -0.0752187967300415, 0.07947774231433868, 0.017584312707185745, -0.1945660263299942, -0.015225519426167011, 0.00989625882357359, -0.015958135947585106, 0.10095725953578949, 0.08975531905889511, 0.20776325464248657, -0.010514948517084122, 0.03467601537704468, -0.0921030342578888, 0.04267575591802597, 0.04340536892414093, -0.03732307627797127, 0.11098181456327438, 0.07514708489179611, 0.012824004516005516, 0.08572917431592941, 0.03681587055325508, -0.07750602066516876, -0.0022740315180271864, -0.08938111364841461, -0.07642094045877457, -0.029886240139603615, 0.13921596109867096, 0.01389920711517334, 0.11136376112699509, -0.024653330445289612, 0.16636794805526733, -0.09603547304868698, 0.09471316635608673, 0.1340147703886032, -0.3219648599624634, -0.02469811402261257, 0.09718810021877289, -0.002574996557086706, -0.03902371972799301, 0.0234526339918375, 0.013330773450434208, 0.0748634785413742, 0.030357837677001953, -0.10403497517108917, -0.0195327065885067, 0.007243954110890627, 0.010682694613933563, -0.16994287073612213, 0.06418415904045105, 0.019887372851371765, 0.03812575340270996, 0.058615218847990036, 0.006152060814201832, -0.18181559443473816, -0.03250798583030701, -0.05804220214486122, -0.03939088061451912, -0.040815677493810654, 0.022144095972180367, 0.008627273142337799, -0.038174550980329514, -0.048499904572963715, -0.01840924099087715, -0.14406627416610718, 0.1367584615945816, 0.0973123237490654, 0.057101283222436905, -0.10414774715900421, 0.018126240000128746, -0.003830785397440195, -0.00023956822406034917, 0.06917811930179596, -0.14336369931697845, -0.12968868017196655, -0.04385775327682495, -0.1268126368522644, -0.12507112324237823, 0.07512766122817993, 0.12757673859596252, -0.07272646576166153, -0.025889568030834198, 0.0686795711517334, 0.07991039007902145, -0.0684647336602211, -0.032562486827373505, -0.29471859335899353, 0.10212206095457077, 0.028164975345134735, -0.10125720500946045, 0.007036672905087471, 0.014105921611189842, -0.11054997146129608, -0.0018371546175330877, 0.03542502224445343, 0.007369684521108866, -0.033852893859148026, 0.08144792914390564, -0.04076038673520088, -0.11382463574409485, 0.09128803759813309, -0.0050963652320206165, -0.059991683810949326, -0.008435714058578014, -0.029398024082183838, 0.12208130955696106, 0.004733072593808174, 0.008949370123445988, -0.07290519028902054, 0.005513044539839029, -0.07516393810510635, -0.04813574254512787, -0.06067580357193947, -0.12816134095191956, -0.003244483843445778, 0.042238179594278336, 0.08634981513023376, -0.1951279640197754, -0.12226611375808716, 0.02669002115726471, 0.08332954347133636, -0.03401656076312065, -0.010237216018140316, -0.02367691695690155, -0.06798165291547775, -0.042519401758909225, 0.006615541409701109, 0.03623366355895996, -0.04563581198453903, -0.0003321183321531862, -0.020437192171812057, 0.06500936299562454, -0.09773880988359451, 0.010805688798427582, -0.05547179654240608, -0.03560706973075867, -0.06174825131893158, 0.08005352318286896, -0.02636301890015602, 0.09517434984445572, -0.13054217398166656, -0.08182616531848907, -0.0744333416223526, 0.012270130217075348, 0.06164262816309929, 0.07156367599964142, -0.1066286563873291, -0.07264658063650131, 0.19684772193431854, -0.09521797299385071, -0.11668038368225098, 0.15781843662261963, -0.027089575305581093, -0.07176098972558975, 0.04744725674390793, 0.12284448742866516, 0.059796061366796494, 0.011579057201743126, -0.016398269683122635, -0.0356745719909668, -0.1568428874015808, -0.11576785892248154, -0.06302903592586517, 0.17219990491867065, -0.0445929579436779, -0.04816571623086929, 0.043163005262613297, 0.1159096211194992, -0.13728517293930054, -0.05993641912937164, -0.03548432141542435, -0.13732632994651794, 0.08773494511842728, 0.017675355076789856, 0.11358301341533661, 0.07417435199022293, -0.06667649000883102, -0.10307329893112183, 0.06461212038993835, -0.04741307348012924, 0.06784749031066895, -0.12221533805131912, 0.0848604068160057, -0.10374151915311813, 0.04956576228141785, -0.24274559319019318, -0.11675915867090225, 0.011184423230588436, 0.003607151797041297, 0.03783605247735977, 0.2299167960882187, 0.0386819913983345, -0.039804257452487946, -0.05974241718649864, -0.03679424896836281, 0.10076940804719925, 0.002249735174700618, -0.049645110964775085, -0.1344616562128067, 0.01762486808001995, -0.0935489684343338, -0.07913265377283096, -0.17465835809707642, -0.03763924911618233, -0.052954960614442825, 0.16023534536361694, -0.017273372039198875, 0.06608381867408752, 0.031590744853019714, 0.030072195455431938, -0.0406646691262722, -0.024412186816334724, 0.04138913378119469, -0.027077380567789078, -0.14072762429714203, 0.06978095322847366, 0.011336230672895908, 0.16798241436481476, 0.09817293286323547, -0.15614007413387299, -0.08125731348991394, 0.11260856688022614, -0.07155639678239822, 0.02754090540111065, 0.04321180656552315, 0.09409023821353912, 0.19063542783260345, 0.013705732300877571, 0.06481553614139557, -0.027767004445195198, 0.07044675201177597, 0.0037662475369870663, -0.027729395776987076, 0.05936053395271301, 0.07580072432756424, 0.07260105013847351, -0.32895228266716003, 0.0587419830262661, -0.02620980143547058, -0.09487733244895935, 0.01308174803853035, -0.02117583528161049, -0.05619530752301216, 0.029738442972302437, 0.04314224049448967, 0.01585807092487812, 0.005368561949580908, 0.09206297993659973, 0.028626153245568275, 0.060121625661849976, -0.0925782099366188, 0.06590898334980011, -0.07113371044397354, 0.004450914449989796, -0.014117058366537094, 0.010541338473558426, -0.024999506771564484, 0.0908065065741539, 0.008447169326245785, 0.0630335658788681, -0.022404443472623825, -0.14816677570343018, 0.028093388304114342, -0.0046655163168907166, -0.043440740555524826, 0.18690668046474457, -0.07951762527227402, -0.20023606717586517, -0.06381484866142273, -0.058786146342754364, -0.01749478094279766, 0.004745653364807367, 0.002156079513952136, -0.14028789103031158, -0.06335638463497162, 0.056060485541820526, 0.09958673268556595, 0.06161215156316757, 0.08322608470916748, -0.026585102081298828, 0.023463664576411247, -0.00015828473260626197, -0.028363097459077835, 0.035592030733823776, -0.18555518984794617, -0.048842862248420715, 0.03912591189146042, -0.11361341178417206, 0.04693334922194481, 0.164808452129364, 0.04189655929803848, -0.009948564693331718, -0.0030518241692334414, 0.18676356971263885, -0.06777679920196533, 0.0423206090927124, 0.0939096137881279, -0.014189327135682106, 0.042696159332990646, 0.1306641697883606, 0.030745109543204308, -0.06446076184511185, 0.027210291475057602, -0.002433964516967535, -0.013016353361308575, -0.23463785648345947, -0.15985572338104248, -0.10020846873521805, -0.0594438873231411, 0.05965593084692955, 0.030118687078356743, 0.008076794445514679, 0.12071394175291061, 0.010861673392355442, -0.015252534300088882, -0.094261035323143, 0.06013265624642372, 0.1691080778837204, 0.04287894442677498, 0.11590413749217987, -0.08549248427152634, -0.12900413572788239, 0.05397505313158035, 0.010593467392027378, 0.2706092298030853, -0.014790870249271393, 0.03385322540998459, 0.05700051784515381, 0.1521918922662735, 0.0999840646982193, 0.15706303715705872, -0.0091696260496974, -0.08056902885437012, -0.039547670632600784, 0.01587439700961113, -0.016043925657868385, 0.0983642190694809, 0.0778690055012703, -0.08887418359518051, 0.05153348669409752, 0.07673265039920807, 0.03415428474545479, 0.17300643026828766, 0.1412305384874344, -0.3449978828430176, -0.08414757996797562, -0.07996176183223724, -0.04061700403690338, 0.015231434255838394, 0.05986076965928078, 0.035659320652484894, 0.008518151938915253, 0.07732975482940674, -0.1020016223192215, 0.09963914006948471, -0.035473283380270004, 0.05966084077954292, -0.02425338141620159, 0.06712332367897034, 0.02795756608247757, 0.04430687427520752, -0.18571045994758606, 0.2644634246826172, -0.007993035018444061, -0.051666758954524994, -0.004343315493315458, -0.018796376883983612, 0.02593761868774891, 0.12074754387140274, 0.13669829070568085, 0.0002671622787602246, -0.017707083374261856, 0.060521114617586136, -0.012476220726966858, 0.021275553852319717, 0.0604812316596508, 0.08591485023498535, 0.009340385906398296, 0.03821991756558418, -0.06146355718374252, 0.04373006895184517, 0.0417659617960453, -0.03598860651254654, -0.10575146973133087, 0.02320198528468609, 0.10183475911617279, -0.08663395792245865, -0.013947522267699242, -0.061652541160583496, -0.01622670888900757, 0.18901826441287994, 0.06446582823991776, -0.03258669376373291, -0.0936698392033577, 0.07119828462600708, 0.19117745757102966, -0.09274035692214966, 0.0780683159828186, -0.036531828343868256, 0.012627869844436646, -0.02070740796625614, -0.17264805734157562, 0.16249877214431763, -0.1531660407781601, -0.015245308168232441, -0.022096412256360054, 0.008156988769769669, -0.0039758882485330105, 0.0238489992916584, 0.019324662163853645, -0.010104457847774029, -0.1408817172050476, -0.06160365045070648, -0.060820095241069794, -0.04001378268003464, -0.04675198346376419, 0.084927037358284, -0.10332030057907104, 0.0672607347369194, -0.05475160852074623, 0.06973952054977417, 0.1674170047044754, -0.04020123556256294, -0.06315097212791443, -0.013480573892593384, 0.11696578562259674, 0.013866506516933441, -0.23282581567764282, -0.09295818209648132, 0.03410011902451515, 0.0048365285620093346, -0.054038673639297485, -0.1622428297996521, 0.17869657278060913, -0.05115045607089996, 0.02605963684618473, -0.016537101939320564, -0.03894202411174774, -0.060414981096982956, 0.21094998717308044, 0.03226156160235405, 0.26637980341911316, -0.024012310430407524, 0.00831790454685688, -0.030329857021570206, 0.1207890436053276, 0.09921562671661377, 0.003792051924392581, 0.1148860827088356, 0.03185392916202545, 0.13860464096069336, 0.00909498892724514, -0.03555000573396683, -0.035730648785829544, 0.10337278246879578, 0.013468950055539608, -0.027273593470454216, 0.047585465013980865, 0.06983822584152222, 0.02800089307129383, -0.025625422596931458, 0.1593237668275833, 0.0589875653386116, -0.0016162366373464465, -0.03260009363293648, -0.08514447510242462, -0.004566669464111328, 0.09116186201572418, -0.043289635330438614, -0.09833601862192154, 0.09628447145223618, 0.12137165665626526, 0.032474637031555176, 0.2036311775445938, 0.048500869423151016, 0.08770538121461868, 0.03685041517019272, 0.06973345577716827, -0.08693884313106537, -0.0574663020670414, -0.022227827459573746, -0.03067023679614067, 0.09079238772392273, -0.09730564802885056, 0.020751606673002243, 0.15296226739883423, -0.059436291456222534, -0.013643437065184116, 0.09656085819005966, -0.030748829245567322, -0.0467941015958786, 0.0989735797047615, -0.10759104043245316, -0.14176057279109955, -0.0003172509605064988, -0.01019226387143135, 0.012209024280309677, 0.18201494216918945, 0.1696370393037796, -0.061687588691711426, -0.01014741137623787, 0.03088875487446785, 0.018233956769108772, -0.08536612242460251, 0.1140773594379425, 0.10634322464466095, 0.04236050322651863, -0.12954698503017426, 0.03777090832591057, 0.006431268528103828, -0.10686898976564407, -0.03620798513293266, -0.04181169718503952, -0.12189944088459015, -0.09876842051744461, -0.012676553800702095, 0.01960783638060093, -0.19875535368919373, -0.060814645141363144, -0.11722280830144882, -0.06198559328913689, 0.08688322454690933, 0.07964202016592026, 0.10504059493541718, 0.0174998939037323, -0.099889375269413, -0.057161230593919754, -0.09837975353002548, 0.0075411368161439896, 0.07138480991125107, 0.0663578137755394, -0.17681090533733368, -0.06312621384859085, -0.03590996935963631, 0.1165655180811882, -0.09741276502609253, 0.05279875919222832, -0.10673137754201889, 0.06559302657842636, -0.07267073541879654, -0.03030378185212612, -0.08715086430311203, -0.03324269875884056, -0.052105892449617386, -0.07928420603275299, -0.08150212466716766, 0.03931548446416855, -0.10153967887163162, 0.05856931209564209, 0.049293890595436096, -0.028813378885388374, -0.04373414069414139, -0.006695738527923822, -0.04193056374788284, 0.00451883627101779, 0.12280037999153137, 0.04034319892525673, -0.10259883850812912, 0.12201467156410217, -0.07706672698259354, -0.13544723391532898, 0.10101929306983948, 0.07758533954620361, 0.07925500720739365, -0.019431540742516518, 0.056311290711164474, 0.029400916770100594, 0.03683114051818848, -0.021226301789283752, -0.07087624818086624, -0.0017071084585040808, 0.04544323682785034, -0.10714804381132126, 0.005710948258638382, -0.032339390367269516, -0.03573072701692581, -0.014300604350864887, 0.12596052885055542, 0.09276102483272552, -0.02925332449376583, 0.043530724942684174, 0.01826687715947628, 0.03213449940085411, -0.0182221420109272, -0.08525306731462479, 0.0969870388507843, -0.08868007361888885, 0.04393875226378441, -0.04391833767294884, 0.2257688045501709, -0.11687097698450089, -0.01613316871225834, 0.013679595664143562, 0.11540098488330841, -0.1079988032579422, 0.05428463593125343, 0.1482713520526886, 0.09813085198402405, -0.014482212252914906, -0.019752293825149536, 0.05781806632876396, 0.07449372857809067, 0.17125879228115082, 0.12618127465248108, 0.12405707687139511, 0.08756133913993835, 0.07160277664661407, 0.013894581235945225, -0.03182630613446236, 0.053285762667655945, 0.015714021399617195, -0.11461306363344193, 0.0446089543402195, 0.050604842603206635, 0.031968794763088226, 0.07720872759819031, 0.07816064357757568, 0.02075536735355854, 0.0524635836482048, -0.052498769015073776, -0.09992611408233643, -0.09781236201524734, -0.09271587431430817, -0.14799325168132782, -0.01770315133035183, -0.07907694578170776, -0.13143934309482574, 0.09465897083282471, 0.09750308841466904, -0.02254527062177658, 0.14788782596588135, 0.10545813292264938, -0.03637700155377388, 0.07300406694412231, -0.005811022128909826, -0.058404333889484406, 0.15364544093608856, -0.07265901565551758, -0.04599869251251221, 0.052897993475198746, -0.033651575446128845, -0.017446888610720634, -0.043537553399801254, 0.1358921080827713, -0.024463245645165443, -0.03639746829867363, -0.03452426195144653, 0.047660280019044876, -0.03285195305943489, -0.03161676600575447, -0.03551953658461571, -0.025588730350136757, -0.01107448898255825, 0.16743187606334686, -0.06757990270853043, -0.0717863067984581, -0.1633463203907013, 0.11850285530090332, 0.02262144908308983, 0.08223304897546768, -0.04377514496445656, 0.026734448969364166, -0.04893805459141731, 0.24295400083065033, 0.31121528148651123, -0.17127373814582825, -0.005892971996217966, 0.09687074273824692, 0.003934322856366634, -0.029678739607334137, 0.053360745310783386, 0.1123734787106514, 0.11947909742593765, -0.028343848884105682, -0.13818447291851044, -0.0539671815931797, -0.010405893437564373, -0.06684442609548569, -0.044226374477148056, 0.11859394609928131, -0.0318598710000515, -0.04926415905356407, 0.1456352174282074, -0.25633129477500916, -0.044711485505104065, -0.05663347244262695, -0.11759492754936218, -0.1251785308122635, -0.11124344915151596, 0.068759024143219, 0.05127257481217384, 0.12427090853452682, -0.06707732379436493, -0.06317984312772751, 0.08679450303316116, 0.018650416284799576, -0.13838109374046326, -0.05739876627922058, 0.03508300706744194, 0.02825208380818367, 0.006494459696114063, -0.001556978328153491, -0.022524956613779068, 0.1176689863204956, -0.03287724032998085, -0.055208031088113785, 0.01804315112531185, -0.016803879290819168, -0.16243954002857208, 0.03905623033642769, 0.019236700609326363, -0.02507712133228779, 0.017771372571587563, 0.017520342022180557, -0.29019641876220703, -0.0000883359243744053, 0.010502388700842857, 0.011580260470509529, -0.053922224789857864, 0.025673789903521538, -0.08987056463956833, 0.08597039431333542, 0.10384389013051987, -0.029986325651407242, 0.035623908042907715, -0.02829662337899208, 0.015736036002635956, 0.06704258918762207, 0.06726593524217606, -0.03483406826853752, -0.17101967334747314, -0.04515431076288223, -0.12272550165653229, 0.029654858633875847, -0.07586382329463959, -0.01377846859395504, -0.04978162422776222, 0.016969697549939156, -0.09059896320104599, 0.09111160039901733, 0.06632839888334274, -0.01881067454814911, 0.01679540053009987, 0.02719970978796482, -0.027414701879024506, -0.04435274377465248, -0.12733061611652374, -0.12281148135662079 ]
null
null
transformers
# vgg11 Implementation of VGG proposed in [Very Deep Convolutional Networks For Large-Scale Image Recognition](https://arxiv.org/pdf/1409.1556.pdf) ``` python VGG.vgg11() VGG.vgg13() VGG.vgg16() VGG.vgg19() VGG.vgg11_bn() VGG.vgg13_bn() VGG.vgg16_bn() VGG.vgg19_bn() ``` Please be aware that the [bn]{.title-ref} models uses BatchNorm but they are very old and people back then don\'t know the bias is superfluous in a conv followed by a batchnorm. Examples: ``` python # change activation VGG.vgg11(activation = nn.SELU) # change number of classes (default is 1000 ) VGG.vgg11(n_classes=100) # pass a different block from nn.models.classification.senet import SENetBasicBlock VGG.vgg11(block=SENetBasicBlock) # store the features tensor after every block ```
{}
null
glasses/vgg11
[ "transformers", "pytorch", "arxiv:1409.1556", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[ "1409.1556" ]
[]
TAGS #transformers #pytorch #arxiv-1409.1556 #endpoints_compatible #region-us
# vgg11 Implementation of VGG proposed in Very Deep Convolutional Networks For Large-Scale Image Recognition Please be aware that the [bn]{.title-ref} models uses BatchNorm but they are very old and people back then don\'t know the bias is superfluous in a conv followed by a batchnorm. Examples:
[ "# vgg11\nImplementation of VGG proposed in Very Deep Convolutional Networks For\nLarge-Scale Image Recognition\n\n \n\n Please be aware that the [bn]{.title-ref} models uses BatchNorm but\n they are very old and people back then don\\'t know the bias is\n superfluous in a conv followed by a batchnorm.\n\n Examples:" ]
[ "TAGS\n#transformers #pytorch #arxiv-1409.1556 #endpoints_compatible #region-us \n", "# vgg11\nImplementation of VGG proposed in Very Deep Convolutional Networks For\nLarge-Scale Image Recognition\n\n \n\n Please be aware that the [bn]{.title-ref} models uses BatchNorm but\n they are very old and people back then don\\'t know the bias is\n superfluous in a conv followed by a batchnorm.\n\n Examples:" ]
[ 29, 84 ]
[ "passage: TAGS\n#transformers #pytorch #arxiv-1409.1556 #endpoints_compatible #region-us \n# vgg11\nImplementation of VGG proposed in Very Deep Convolutional Networks For\nLarge-Scale Image Recognition\n\n \n\n Please be aware that the [bn]{.title-ref} models uses BatchNorm but\n they are very old and people back then don\\'t know the bias is\n superfluous in a conv followed by a batchnorm.\n\n Examples:" ]
[ -0.07242374122142792, -0.051995743066072464, -0.0020701121538877487, 0.03037923388183117, 0.014471183530986309, 0.055894412100315094, -0.007795250508934259, 0.08236072212457657, -0.02928370051085949, 0.016165338456630707, 0.189015194773674, 0.03912725672125816, 0.023759445175528526, 0.058047208935022354, -0.04890989512205124, -0.24301792681217194, 0.03725117817521095, 0.1285940259695053, 0.010763063095510006, 0.054072603583335876, 0.0701848641037941, -0.14111526310443878, 0.08110889047384262, 0.009036285802721977, -0.23582115769386292, -0.046762123703956604, 0.008548121899366379, -0.04108993709087372, 0.07011770457029343, 0.06341157853603363, 0.031773556023836136, 0.019243527203798294, 0.011183305643498898, -0.05092970281839371, 0.03300771117210388, -0.0020965661387890577, -0.01162309292703867, 0.07573717832565308, 0.050864920020103455, 0.08281856030225754, 0.04626160487532616, -0.045495301485061646, -0.07180067896842957, -0.013727382756769657, -0.06532251089811325, -0.13568422198295593, 0.009512419812381268, 0.09843257814645767, -0.03475496917963028, 0.0023442204110324383, 0.010056493803858757, 0.14985008537769318, -0.0729101300239563, 0.03071102499961853, 0.17124366760253906, -0.26358816027641296, -0.016553329303860664, 0.20679710805416107, -0.032985083758831024, -0.055512744933366776, -0.04341288283467293, 0.13850675523281097, 0.06883585453033447, -0.0011590830981731415, 0.014141554944217205, 0.006692953407764435, -0.06104186177253723, 0.007532164920121431, -0.12772484123706818, -0.0954325795173645, 0.10202853381633759, 0.04073220491409302, 0.022039050236344337, -0.1437889039516449, -0.13871853053569794, -0.0661822184920311, -0.08050178736448288, -0.038186609745025635, -0.05206238850951195, 0.010269297286868095, -0.03793451562523842, -0.07549820095300674, -0.06014899164438248, -0.0669664666056633, -0.11891444027423859, -0.017739107832312584, 0.058900706470012665, 0.07450668513774872, -0.11590474843978882, 0.16594372689723969, -0.13982433080673218, -0.06596572697162628, 0.019743744283914566, -0.17141900956630707, -0.037927012890577316, 0.04901818186044693, 0.00756053626537323, 0.08856982737779617, 0.048470962792634964, 0.0515822134912014, 0.06654592603445053, -0.06146664172410965, -0.032704729586839676, 0.06648624688386917, 0.004381558392196894, 0.0618625245988369, -0.20817887783050537, 0.05498679354786873, 0.10032246261835098, -0.11725030839443207, 0.028614763170480728, -0.004729405511170626, -0.06716947257518768, -0.20373697578907013, 0.10160113871097565, 0.04669244587421417, -0.055005088448524475, 0.1467490792274475, 0.0024757266510277987, -0.09559779614210129, 0.03581704944372177, 0.024405106902122498, -0.031235482543706894, 0.0049136304296553135, -0.049433980137109756, 0.09472740441560745, 0.01588073931634426, -0.012446370907127857, -0.05114506930112839, -0.027785904705524445, -0.08164971321821213, -0.0956227034330368, -0.021419553086161613, -0.12341193109750748, 0.003821672173216939, -0.13370032608509064, 0.0454808734357357, -0.1790473759174347, -0.11259131878614426, 0.10229754447937012, -0.035384401679039, -0.07290365546941757, 0.027097221463918686, -0.022143034264445305, -0.07834448665380478, -0.03091404214501381, 0.006435733754187822, 0.2101605087518692, -0.05596732720732689, 0.01996864750981331, -0.062145598232746124, 0.10260309278964996, -0.04772127419710159, 0.020107798278331757, -0.04805052652955055, 0.020225634798407555, -0.030361678451299667, 0.04208463430404663, -0.06134063005447388, 0.025088725611567497, -0.05944203957915306, -0.11049585789442062, -0.05223357304930687, -0.02079620584845543, -0.020732220262289047, 0.10658176243305206, -0.1204601600766182, -0.03720085695385933, 0.1275140941143036, -0.11346201598644257, -0.10927532613277435, 0.15787450969219208, -0.05162489041686058, -0.07993309944868088, 0.06150775030255318, 0.06317970901727676, 0.046577274799346924, -0.10082690417766571, -0.001159838167950511, 0.021893421187996864, -0.1478533297777176, 0.024272317066788673, -0.033124905079603195, 0.17172154784202576, -0.02316553331911564, 0.006810582242906094, -0.0414581261575222, 0.08771733939647675, -0.1264198124408722, -0.06714896857738495, -0.031097369268536568, -0.04763011261820793, 0.050120286643505096, 0.01700516976416111, 0.07162252813577652, 0.026621581986546516, -0.038837313652038574, -0.19637849926948547, 0.07535972446203232, -0.07155633717775345, 0.028648531064391136, -0.10039918124675751, 0.16553747653961182, -0.16083091497421265, 0.03635053709149361, -0.086056187748909, -0.014753527007997036, 0.08634752035140991, 0.10621895641088486, -0.04431463032960892, 0.22935473918914795, 0.025514710694551468, -0.02474081702530384, -0.017931638285517693, 0.005303896497935057, 0.11336645483970642, -0.01360916718840599, -0.025663983076810837, -0.07714954018592834, -0.0009972283151000738, -0.05223541706800461, 0.03825411573052406, -0.1492581069469452, -0.059492822736501694, 0.16260851919651031, 0.09267859905958176, -0.009054599329829216, 0.05339865759015083, 0.07660101354122162, -0.05530974641442299, -0.020751509815454483, -0.06472154706716537, 0.07657275348901749, -0.04047869145870209, -0.08319374918937683, 0.1084795743227005, -0.020666155964136124, 0.10794685781002045, 0.14785613119602203, -0.20411579310894012, -0.0031096013262867928, -0.08528294414281845, -0.03764544427394867, -0.003373831743374467, 0.007268223911523819, 0.01840963400900364, 0.09814872592687607, -0.06184763088822365, 0.07972173392772675, -0.07847502827644348, -0.008309426717460155, 0.08988048136234283, 0.0222210381180048, -0.05418863892555237, 0.010370185598731041, -0.022013120353221893, -0.16077739000320435, 0.03926724195480347, -0.01836780458688736, -0.015142163261771202, 0.11414528638124466, 0.0013673497596755624, -0.056207429617643356, 0.030397489666938782, -0.0074433558620512486, -0.00042529322672635317, 0.10839729011058807, -0.2641158699989319, -0.039235204458236694, 0.10104548931121826, -0.04618842899799347, 0.03891066089272499, -0.08482379466295242, -0.01398525107651949, -0.004754635039716959, -0.05077134817838669, 0.0869026705622673, 0.10909651219844818, 0.018503108993172646, 0.0968610942363739, -0.023785408586263657, -0.04572252929210663, 0.03289826586842537, -0.059589508920907974, -0.034700725227594376, 0.1259288787841797, -0.020495284348726273, -0.22344106435775757, -0.007121275644749403, -0.1280134916305542, -0.09926499426364899, 0.027906395494937897, -0.04285133257508278, -0.05931432172656059, -0.05541260167956352, 0.005650271661579609, 0.036122553050518036, 0.03804943338036537, 0.13519227504730225, -0.01453513652086258, -0.018012087792158127, -0.008666956797242165, -0.07394520938396454, -0.02876863442361355, -0.162337988615036, -0.07957042753696442, 0.11261358112096786, -0.06124712526798248, 0.10448170453310013, 0.13274064660072327, -0.033868562430143356, 0.06341160088777542, -0.021413762122392654, 0.22573716938495636, -0.03654579073190689, -0.006983226165175438, 0.12248019874095917, 0.0010679964907467365, -0.04357750341296196, 0.039757147431373596, -0.0034431261010468006, -0.12609244883060455, -0.02608206309378147, -0.023328591138124466, -0.08576534688472748, -0.0739629939198494, -0.14001117646694183, -0.05903467908501625, -0.07514379918575287, 0.10208814591169357, 0.05686574801802635, 0.06277810037136078, 0.1207723543047905, -0.07485604286193848, 0.08195865154266357, 0.009722908958792686, 0.07596872001886368, 0.20608992874622345, -0.030377652496099472, 0.05840229243040085, -0.002984562423080206, -0.06958874315023422, 0.07232320308685303, 0.005543147679418325, 0.20333760976791382, -0.08730467408895493, -0.005509349517524242, 0.11536703258752823, 0.10970404744148254, 0.15578831732273102, 0.05763896554708481, -0.10580061376094818, -0.05665118247270584, -0.0627797544002533, -0.06942791491746902, 0.03871903568506241, 0.045421432703733444, 0.045806415379047394, -0.018898980692029, -0.043052930384874344, -0.03292740508913994, 0.05942704901099205, 0.05626046657562256, 0.13573725521564484, -0.32073697447776794, -0.015043044462800026, 0.03289806842803955, 0.0616907998919487, -0.09898065030574799, 0.06935703754425049, 0.1364137977361679, -0.02166081964969635, 0.08330333232879639, -0.09417679905891418, 0.0782201737165451, -0.18041031062602997, 0.08053495734930038, -0.07031797617673874, 0.01416836865246296, 0.016828909516334534, 0.07696439325809479, -0.22777822613716125, 0.17627453804016113, 0.0005070228362455964, -0.0192719679325819, -0.11451490223407745, -0.044406794011592865, 0.0005207924987189472, 0.08649635314941406, 0.18510298430919647, -0.006482304539531469, 0.16065342724323273, 0.05701812356710434, -0.032872989773750305, 0.04544300585985184, 0.002506000455468893, 0.07564211636781693, -0.027364457026124, 0.016756828874349594, -0.03248539939522743, 0.0336124412715435, 0.10182499885559082, -0.1275635063648224, -0.045494262129068375, 0.010902803391218185, 0.09515585750341415, -0.001787392538972199, -0.015392757952213287, -0.014265242964029312, -0.09566639363765717, 0.14869925379753113, -0.06427641957998276, -0.042732276022434235, -0.05832817777991295, 0.2123604118824005, 0.06772954016923904, -0.022010378539562225, 0.11345092207193375, -0.04164571315050125, 0.13631436228752136, -0.03115086257457733, -0.13518764078617096, 0.08280070871114731, -0.07613187283277512, -0.14085815846920013, 0.01618492417037487, 0.05804147943854332, 0.018092695623636246, -0.014676141552627087, 0.0612126886844635, -0.010213094763457775, -0.05834520235657692, -0.08537979423999786, 0.07041715830564499, 0.21791093051433563, 0.02600608952343464, 0.03720488399267197, 0.02106400765478611, -0.06693989038467407, -0.038993533700704575, 0.09325557202100754, 0.2139364331960678, 0.19023367762565613, -0.11439737677574158, 0.025517312809824944, 0.10678166896104813, -0.0169996228069067, -0.24664044380187988, 0.00933153834193945, -0.05468671768903732, 0.04030753672122955, -0.1650274395942688, -0.007393892854452133, 0.046652112156152725, 0.023407211527228355, 0.011057191528379917, 0.06790324300527573, -0.24300889670848846, -0.09003505855798721, 0.2021598517894745, 0.03492818772792816, 0.2856009304523468, 0.005433788523077965, -0.007070551626384258, -0.030010225251317024, -0.08277010172605515, 0.12819793820381165, 0.14700362086296082, 0.1126389354467392, -0.07903492450714111, 0.012973230332136154, 0.03237465023994446, -0.06205090507864952, 0.08659645169973373, 0.06225722283124924, 0.13679486513137817, -0.05835702270269394, -0.1347428560256958, 0.10735709965229034, 0.015028329566121101, 0.02310342900454998, 0.1998075544834137, 0.06030069291591644, -0.011840383522212505, -0.04056882858276367, -0.11461315304040909, 0.08533251285552979, 0.05631903558969498, -0.1117786318063736, -0.1530759483575821, 0.015531918965280056, 0.039365824311971664, 0.031274762004613876, 0.10218748450279236, -0.011150049977004528, -0.011966532096266747, 0.03630025312304497, 0.043964095413684845, -0.130690336227417, -0.007556765805929899, -0.056075409054756165, 0.017307832837104797, 0.16591134667396545, -0.07389623671770096, 0.04101799055933952, 0.11435789614915848, 0.051736097782850266, 0.01932057924568653, 0.09331648796796799, -0.08041205257177353, 0.029948949813842773, 0.04101739451289177, -0.22079189121723175, -0.02682609111070633, -0.03327541425824165, -0.12009648978710175, 0.17714916169643402, 0.04008003696799278, 0.09721766412258148, -0.08740293234586716, -0.008616091683506966, 0.04603065922856331, 0.002977797295898199, -0.019332680851221085, 0.10432912409305573, 0.06857751309871674, 0.02161145582795143, -0.16091099381446838, 0.10462695360183716, -0.061813320964574814, -0.09876624494791031, -0.03206029534339905, -0.09669248759746552, -0.13714562356472015, -0.07101250439882278, -0.13872703909873962, 0.026778750121593475, -0.05797211825847626, -0.007210523821413517, 0.04436277225613594, -0.09747747331857681, 0.08641085773706436, 0.07382182776927948, 0.0901627391576767, 0.1270589381456375, -0.07732129096984863, -0.02712918259203434, -0.08334662020206451, 0.04476751759648323, 0.008446713909506798, 0.025079801678657532, -0.22106419503688812, -0.005946115590631962, 0.005608249455690384, 0.10453946143388748, -0.11570996791124344, -0.0375235453248024, -0.06114141643047333, 0.03718293085694313, -0.18860693275928497, 0.0249255932867527, -0.04805378615856171, -0.020092401653528214, -0.029813522472977638, -0.061713092029094696, -0.06363841891288757, 0.02094094455242157, -0.048210322856903076, 0.06415805220603943, 0.01049993745982647, -0.006137640681117773, -0.024417975917458534, -0.05174138769507408, -0.0302341990172863, -0.010391101241111755, 0.18925423920154572, 0.08191818743944168, -0.089573435485363, 0.013640016317367554, -0.20833103358745575, -0.15735135972499847, 0.1907903105020523, 0.030369648709893227, 0.059396758675575256, -0.00033497155527584255, 0.08001412451267242, -0.0051686144433915615, -0.09001734107732773, 0.021634146571159363, 0.10625813901424408, -0.040652796626091, -0.0064203087240457535, -0.055492158979177475, 0.09350594133138657, -0.061716657131910324, 0.029692772775888443, 0.11705353856086731, 0.1293054223060608, -0.018760455772280693, -0.016102219000458717, -0.019604645669460297, -0.040706682950258255, -0.009493966586887836, -0.05042477324604988, -0.1477942168712616, 0.06819267570972443, 0.03251254931092262, 0.0432819165289402, -0.036891039460897446, 0.3060649037361145, -0.03421727195382118, -0.1323079615831375, -0.02229645475745201, 0.15401144325733185, -0.04374758526682854, 0.0569310300052166, 0.21905553340911865, 0.04417065158486366, 0.027878412976861, 0.011673766188323498, 0.11018875986337662, 0.156285360455513, 0.18595260381698608, 0.06448360532522202, -0.026416311040520668, 0.028903720900416374, 0.055820364505052567, 0.08802986145019531, -0.04468150436878204, -0.030691714957356453, 0.11105471849441528, -0.015844149515032768, 0.14171893894672394, -0.06314460933208466, -0.07666324824094772, 0.15832866728305817, -0.0328083261847496, -0.024414220824837685, 0.07035689800977707, -0.06184689700603485, -0.06560396403074265, -0.3137845993041992, -0.06564616411924362, -0.09078629314899445, 0.04545881226658821, -0.09498894214630127, -0.0585310123860836, 0.10247653722763062, 0.10199961066246033, -0.07972846180200577, 0.11516982316970825, 0.03149612620472908, -0.06627387553453445, 0.14873887598514557, 0.04059123992919922, -0.11263515800237656, -0.01234475988894701, -0.03588670492172241, 0.03172707185149193, 0.037636347115039825, -0.06485991925001144, 0.01013823039829731, 0.07937533408403397, 0.006745419930666685, -0.011145489290356636, -0.03298649936914444, -0.0863366425037384, 0.009698424488306046, -0.013376276940107346, 0.043188996613025665, 0.035843271762132645, -0.06311643123626709, -0.006144015584141016, 0.15793472528457642, -0.018941545858979225, -0.03888615965843201, -0.04058576375246048, 0.07519656419754028, -0.07844286412000656, 0.08331044763326645, 0.013849414885044098, 0.02298707515001297, -0.01265877764672041, 0.2939732074737549, 0.30369633436203003, -0.07891657948493958, 0.03102247789502144, 0.03727787733078003, 0.010706215165555477, -0.049204062670469284, 0.1074795201420784, 0.02018892392516136, 0.19497041404247284, -0.019362768158316612, -0.03557594493031502, -0.04366940259933472, -0.00294656865298748, -0.02751994878053665, 0.0666118636727333, 0.09441806375980377, -0.03525007516145706, -0.07925564050674438, 0.046061743050813675, -0.12029556185007095, -0.005642615258693695, -0.017818834632635117, -0.09791024774312973, -0.07434578984975815, -0.021596908569335938, -0.11096543818712234, 0.02598736621439457, 0.054284192621707916, -0.13799116015434265, 0.031173743307590485, -0.036141734570264816, 0.05750779062509537, -0.13498690724372864, -0.01120428554713726, 0.05864863470196724, 0.13941922783851624, 0.1401350051164627, -0.03185936436057091, 0.047074440866708755, 0.05251162499189377, -0.020896196365356445, -0.09090092778205872, -0.014655626378953457, -0.009531490504741669, -0.08393649756908417, -0.043178606778383255, 0.08647944033145905, 0.008760981261730194, -0.009353501722216606, 0.05315711721777916, -0.12135462462902069, -0.006753644905984402, -0.06972174346446991, -0.02230856567621231, -0.06988496333360672, -0.00015304792032111436, -0.022677110508084297, 0.0879514068365097, 0.018239669501781464, -0.037648141384124756, -0.047527655959129333, -0.07638333737850189, 0.037636883556842804, 0.017059296369552612, 0.057653822004795074, 0.0392446331679821, -0.0986512079834938, -0.004057436715811491, 0.025268230587244034, 0.010749300010502338, 0.04575299099087715, -0.026681222021579742, -0.04186777397990227, -0.015072247013449669, 0.009444521740078926, 0.08609717339277267, 0.04370187968015671, -0.00768446596339345, -0.00941881351172924, -0.0006657906342297792, 0.009803582914173603, 0.012777270749211311, -0.13940927386283875, -0.08655759692192078 ]
null
null
transformers
# vgg11_bn Implementation of VGG proposed in [Very Deep Convolutional Networks For Large-Scale Image Recognition](https://arxiv.org/pdf/1409.1556.pdf) ``` python VGG.vgg11() VGG.vgg13() VGG.vgg16() VGG.vgg19() VGG.vgg11_bn() VGG.vgg13_bn() VGG.vgg16_bn() VGG.vgg19_bn() ``` Please be aware that the [bn]{.title-ref} models uses BatchNorm but they are very old and people back then don\'t know the bias is superfluous in a conv followed by a batchnorm. Examples: ``` python # change activation VGG.vgg11(activation = nn.SELU) # change number of classes (default is 1000 ) VGG.vgg11(n_classes=100) # pass a different block from nn.models.classification.senet import SENetBasicBlock VGG.vgg11(block=SENetBasicBlock) # store the features tensor after every block ```
{}
null
glasses/vgg11_bn
[ "transformers", "pytorch", "arxiv:1409.1556", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[ "1409.1556" ]
[]
TAGS #transformers #pytorch #arxiv-1409.1556 #endpoints_compatible #region-us
# vgg11_bn Implementation of VGG proposed in Very Deep Convolutional Networks For Large-Scale Image Recognition Please be aware that the [bn]{.title-ref} models uses BatchNorm but they are very old and people back then don\'t know the bias is superfluous in a conv followed by a batchnorm. Examples:
[ "# vgg11_bn\nImplementation of VGG proposed in Very Deep Convolutional Networks For\nLarge-Scale Image Recognition\n\n \n\n Please be aware that the [bn]{.title-ref} models uses BatchNorm but\n they are very old and people back then don\\'t know the bias is\n superfluous in a conv followed by a batchnorm.\n\n Examples:" ]
[ "TAGS\n#transformers #pytorch #arxiv-1409.1556 #endpoints_compatible #region-us \n", "# vgg11_bn\nImplementation of VGG proposed in Very Deep Convolutional Networks For\nLarge-Scale Image Recognition\n\n \n\n Please be aware that the [bn]{.title-ref} models uses BatchNorm but\n they are very old and people back then don\\'t know the bias is\n superfluous in a conv followed by a batchnorm.\n\n Examples:" ]
[ 29, 86 ]
[ "passage: TAGS\n#transformers #pytorch #arxiv-1409.1556 #endpoints_compatible #region-us \n# vgg11_bn\nImplementation of VGG proposed in Very Deep Convolutional Networks For\nLarge-Scale Image Recognition\n\n \n\n Please be aware that the [bn]{.title-ref} models uses BatchNorm but\n they are very old and people back then don\\'t know the bias is\n superfluous in a conv followed by a batchnorm.\n\n Examples:" ]
[ -0.06671226769685745, -0.04257591813802719, -0.002209985628724098, 0.03104591742157936, 0.011152108199894428, 0.05128471925854683, -0.010773885063827038, 0.08307888358831406, -0.0334492065012455, 0.01931970752775669, 0.18727269768714905, 0.038395799696445465, 0.028008054941892624, 0.06798691302537918, -0.055939681828022, -0.24226123094558716, 0.04100643843412399, 0.1339745670557022, 0.013219432905316353, 0.054280105978250504, 0.06868264824151993, -0.14327585697174072, 0.0754779800772667, 0.003913865424692631, -0.24402163922786713, -0.04792400076985359, 0.01053804624825716, -0.04163900390267372, 0.061293814331293106, 0.07662691175937653, 0.0331382155418396, 0.02503139153122902, 0.010447120293974876, -0.053021982312202454, 0.03309952840209007, -0.0011153302621096373, -0.013169677928090096, 0.08315623551607132, 0.048002708703279495, 0.08747512847185135, 0.04631964862346649, -0.04238833487033844, -0.07192131876945496, -0.015423271805047989, -0.06248144060373306, -0.12843011319637299, 0.01415067259222269, 0.10219836235046387, -0.04232462868094444, 0.004905268084257841, 0.005401026923209429, 0.14432111382484436, -0.07731365412473679, 0.03285570070147514, 0.16565273702144623, -0.2588576674461365, -0.0167669877409935, 0.1963481456041336, -0.038554199039936066, -0.05645156651735306, -0.043142177164554596, 0.12324881553649902, 0.07244222611188889, -0.004625716246664524, 0.018482476472854614, 0.005373685155063868, -0.0582038089632988, 0.004548158962279558, -0.1251324862241745, -0.08688399940729141, 0.10142362117767334, 0.04301011934876442, 0.01788032427430153, -0.1391681730747223, -0.1398666501045227, -0.07841552048921585, -0.08087349683046341, -0.03281151130795479, -0.050029363483190536, 0.013081520795822144, -0.04755450412631035, -0.06885547190904617, -0.05493619665503502, -0.054852358996868134, -0.12825199961662292, -0.020274296402931213, 0.055832017213106155, 0.07141965627670288, -0.11114601790904999, 0.15973879396915436, -0.13896895945072174, -0.07006248831748962, 0.023810353130102158, -0.1735348105430603, -0.0386853851377964, 0.05033264681696892, 0.0025187553837895393, 0.09158098697662354, 0.048293426632881165, 0.051870979368686676, 0.06302820891141891, -0.062056999653577805, -0.04989057406783104, 0.07180584967136383, 0.004131177440285683, 0.05719098448753357, -0.21682621538639069, 0.052312131971120834, 0.10336671024560928, -0.10921835899353027, 0.03436296060681343, -0.001915074186399579, -0.06354513019323349, -0.1949862837791443, 0.10772910714149475, 0.03343157097697258, -0.05069567263126373, 0.14719067513942719, -0.007172795012593269, -0.09336641430854797, 0.03580242022871971, 0.020214088261127472, -0.03599222004413605, 0.008961305022239685, -0.05774090811610222, 0.09828163683414459, 0.019187666475772858, -0.010370809584856033, -0.047994695603847504, -0.016126442700624466, -0.08550489693880081, -0.09384763985872269, -0.023313963785767555, -0.1278146207332611, 0.007805879693478346, -0.12063008546829224, 0.048124123364686966, -0.182392880320549, -0.10319117456674576, 0.10545344650745392, -0.03186051920056343, -0.08286784589290619, 0.028765182942152023, -0.017937446013092995, -0.08169630169868469, -0.03485354036092758, -0.002181513700634241, 0.2025739997625351, -0.06069057434797287, 0.025058921426534653, -0.05550198629498482, 0.10789656639099121, -0.062029894441366196, 0.016790851950645447, -0.055043257772922516, 0.01600266806781292, -0.039161328226327896, 0.046843912452459335, -0.05897221714258194, 0.01944148726761341, -0.0593847893178463, -0.11364024132490158, -0.06375830620527267, -0.018789883702993393, -0.018156247213482857, 0.10824260860681534, -0.12077763676643372, -0.040146250277757645, 0.13398756086826324, -0.10826142877340317, -0.1026059091091156, 0.16136784851551056, -0.05438670143485069, -0.078839510679245, 0.05759977176785469, 0.059069812297821045, 0.036355700343847275, -0.08574000746011734, -0.004840698558837175, 0.020653238520026207, -0.1353570520877838, 0.027637021616101265, -0.029763687402009964, 0.17581331729888916, -0.026089800521731377, 0.007215505000203848, -0.018154747784137726, 0.08556707948446274, -0.12391061335802078, -0.07121458649635315, -0.02715633064508438, -0.04690784588456154, 0.047937240451574326, 0.024279402568936348, 0.07154174894094467, 0.02159017324447632, -0.042509108781814575, -0.19361723959445953, 0.0745713859796524, -0.07585547119379044, 0.033028773963451385, -0.10324718058109283, 0.15314149856567383, -0.171730637550354, 0.0348488911986351, -0.09625273942947388, -0.013696679845452309, 0.08229954540729523, 0.09652430564165115, -0.03524424508213997, 0.23046615719795227, 0.020762275904417038, -0.0235153641551733, -0.02563856914639473, 0.007122252136468887, 0.12083598226308823, -0.012913577258586884, -0.027636321261525154, -0.08635241538286209, 0.0035512647591531277, -0.055082742124795914, 0.05413991957902908, -0.1518312394618988, -0.06448861211538315, 0.16233596205711365, 0.09584648907184601, -0.003513919422402978, 0.05414927378296852, 0.07608569413423538, -0.04689846560359001, -0.026052789762616158, -0.05700858682394028, 0.07716908305883408, -0.04094779118895531, -0.08334865421056747, 0.09776940941810608, -0.020029742270708084, 0.10907687991857529, 0.15437503159046173, -0.19497232139110565, -0.006404637359082699, -0.08160242438316345, -0.0411623939871788, -0.005168039817363024, 0.012450735084712505, 0.013921326026320457, 0.09367674589157104, -0.058086562901735306, 0.07767275720834732, -0.07990989089012146, -0.007191366050392389, 0.09208829700946808, 0.01931934431195259, -0.05258312076330185, 0.014040365815162659, -0.014247705228626728, -0.17193429172039032, 0.047911446541547775, -0.0262258630245924, -0.02670128084719181, 0.11586965620517731, 0.00007845423533581197, -0.055454641580581665, 0.03155643492937088, -0.0027824239805340767, -0.0008312980644404888, 0.10997223854064941, -0.25142067670822144, -0.034535378217697144, 0.10295703262090683, -0.05220814049243927, 0.040261123329401016, -0.08250468969345093, -0.01643470488488674, -0.009970963932573795, -0.04823640361428261, 0.09187542647123337, 0.10019419342279434, 0.023028606548905373, 0.10310190171003342, -0.019099799916148186, -0.0544210784137249, 0.03468315675854683, -0.06332828104496002, -0.03276040405035019, 0.12443429231643677, -0.02037878707051277, -0.22670917212963104, -0.010329759679734707, -0.12267027795314789, -0.10686878859996796, 0.027698049321770668, -0.045323602855205536, -0.053724680095911026, -0.057877395302057266, -0.001824894337914884, 0.025548599660396576, 0.06046121194958687, 0.13259479403495789, -0.013020436279475689, -0.015731988474726677, 0.0003405411262065172, -0.07408925145864487, -0.027079904451966286, -0.1585162878036499, -0.06949497014284134, 0.11511550843715668, -0.06701728701591492, 0.10657902806997299, 0.13462597131729126, -0.033136263489723206, 0.055377159267663956, -0.01955120824277401, 0.22408327460289001, -0.03871285542845726, -0.007504812907427549, 0.1149955540895462, -0.00277430796995759, -0.04633240029215813, 0.055758893489837646, -0.0024486323818564415, -0.12367261201143265, -0.017607882618904114, -0.02405916526913643, -0.0814751386642456, -0.06740208715200424, -0.1436948925256729, -0.06348532438278198, -0.07058858126401901, 0.10393006354570389, 0.053803861141204834, 0.050376057624816895, 0.12162493169307709, -0.07099897414445877, 0.07756780087947845, 0.01396020594984293, 0.07864218950271606, 0.2001616358757019, -0.027483241632580757, 0.071937195956707, -0.003433525562286377, -0.07744637131690979, 0.07785987108945847, 0.0036561593879014254, 0.1957891434431076, -0.0944264754652977, -0.010925919748842716, 0.1104651540517807, 0.11343732476234436, 0.15325374901294708, 0.06317868828773499, -0.1025017574429512, -0.053842589259147644, -0.0682816356420517, -0.07366474717855453, 0.027997972443699837, 0.04680997505784035, 0.04256686195731163, -0.013725138269364834, -0.03582058474421501, -0.04817815497517586, 0.06116481497883797, 0.05095639079809189, 0.14710451662540436, -0.32375502586364746, -0.01590830460190773, 0.03784898668527603, 0.06724050641059875, -0.09171736240386963, 0.07280699163675308, 0.13746511936187744, -0.016305940225720406, 0.07731778174638748, -0.0959644690155983, 0.07880806177854538, -0.17951835691928864, 0.08094010502099991, -0.07259444892406464, 0.01725406013429165, 0.01758768782019615, 0.07133503258228302, -0.23835109174251556, 0.16911207139492035, 0.0012479160213842988, -0.021392380818724632, -0.11262451112270355, -0.04633157327771187, -0.0014393709134310484, 0.06859473139047623, 0.1804300993680954, -0.012623609974980354, 0.15127645432949066, 0.04905962198972702, -0.033480312675237656, 0.049539174884557724, 0.004743674769997597, 0.08141372352838516, -0.019363099709153175, 0.01627309061586857, -0.03036346472799778, 0.04056968167424202, 0.1155431941151619, -0.12342916429042816, -0.05468396842479706, 0.008962482213973999, 0.0938323587179184, -0.00970400683581829, -0.010999361053109169, -0.017631053924560547, -0.08289269357919693, 0.1518341600894928, -0.0651254802942276, -0.04386472702026367, -0.056731563061475754, 0.21814477443695068, 0.06912100315093994, -0.02362009324133396, 0.1058485209941864, -0.04150914028286934, 0.13592970371246338, -0.02693130634725094, -0.14725086092948914, 0.08979278802871704, -0.0733928382396698, -0.14290232956409454, 0.015125725418329239, 0.05344567820429802, 0.01903669349849224, -0.009752935729920864, 0.05808134749531746, -0.009121548384428024, -0.05391140654683113, -0.08365028351545334, 0.05879496410489082, 0.20787523686885834, 0.0426800437271595, 0.04558611288666725, 0.009252921678125858, -0.07181859761476517, -0.04049725458025932, 0.09530876576900482, 0.2104986608028412, 0.19243204593658447, -0.11198991537094116, 0.014740685001015663, 0.1156618520617485, -0.009848332963883877, -0.24811823666095734, 0.017556507140398026, -0.053451057523489, 0.036332953721284866, -0.16758914291858673, -0.007926496677100658, 0.049072861671447754, 0.03012709692120552, 0.010720927268266678, 0.06746311485767365, -0.23276782035827637, -0.09003718197345734, 0.20104138553142548, 0.0378900021314621, 0.29255691170692444, -0.00434926338493824, 0.00023318652529269457, -0.03992844000458717, -0.09614408016204834, 0.13915641605854034, 0.14201276004314423, 0.11487174779176712, -0.06997323036193848, 0.008355415426194668, 0.03367175534367561, -0.0658058300614357, 0.08421595394611359, 0.05632702633738518, 0.13695843517780304, -0.05729701370000839, -0.1257450431585312, 0.09603458642959595, 0.023890037089586258, 0.02456710673868656, 0.197825625538826, 0.056157186627388, -0.0029006320983171463, -0.041976429522037506, -0.1180458515882492, 0.08093495666980743, 0.056412454694509506, -0.11376442015171051, -0.15975329279899597, 0.02806425467133522, 0.04994115233421326, 0.03173891082406044, 0.11223968863487244, -0.015816234052181244, -0.008949514478445053, 0.06473932415246964, 0.043101415038108826, -0.12260926514863968, 0.00003855093018501066, -0.0478915274143219, 0.013018770143389702, 0.16068409383296967, -0.07625658065080643, 0.04487127438187599, 0.1196865439414978, 0.0439654104411602, 0.027549516409635544, 0.09363047778606415, -0.07795388996601105, 0.031118890270590782, 0.04857863485813141, -0.2205805778503418, -0.030117562040686607, -0.026701902970671654, -0.1143084466457367, 0.17103835940361023, 0.031141381710767746, 0.09909985214471817, -0.09087353199720383, -0.005343601107597351, 0.04882163181900978, 0.010228712111711502, -0.02568952925503254, 0.1092120036482811, 0.07101928442716599, 0.019064193591475487, -0.16089054942131042, 0.10899622738361359, -0.0579642727971077, -0.10477715730667114, -0.03314938396215439, -0.10216228663921356, -0.13338246941566467, -0.06509534269571304, -0.14007414877414703, 0.020101463422179222, -0.05979097634553909, -0.004608015064150095, 0.039635613560676575, -0.09810823202133179, 0.07895441353321075, 0.07138384133577347, 0.09149431437253952, 0.12671509385108948, -0.07154395431280136, -0.026475269347429276, -0.0908731147646904, 0.0477762371301651, 0.018035540357232094, 0.028601717203855515, -0.20517891645431519, -0.008689504116773605, 0.0008658569422550499, 0.0998258888721466, -0.11887803673744202, -0.02639715187251568, -0.07176905125379562, 0.035773128271102905, -0.19764447212219238, 0.026253558695316315, -0.05157098174095154, -0.02112397365272045, -0.03161309286952019, -0.061824411153793335, -0.06439051032066345, 0.01332505140453577, -0.04967832192778587, 0.06464166939258575, 0.014276986010372639, -0.011457708664238453, -0.02584722265601158, -0.05131293088197708, -0.026338152587413788, -0.010712631978094578, 0.18385988473892212, 0.07970954477787018, -0.09421750158071518, 0.016672831028699875, -0.18760569393634796, -0.15840210020542145, 0.19305990636348724, 0.031243063509464264, 0.062132012099027634, -0.003568680491298437, 0.08134310692548752, -0.0014341986970975995, -0.08648546040058136, 0.02248586155474186, 0.11605896055698395, -0.04444373771548271, -0.001603697775863111, -0.06323643028736115, 0.09124796092510223, -0.06625024974346161, 0.031946372240781784, 0.11344743520021439, 0.1341562569141388, -0.012598819099366665, -0.02097618766129017, -0.02700512297451496, -0.03896445035934448, -0.012169239111244678, -0.0476670041680336, -0.15388686954975128, 0.08284958451986313, 0.03586924448609352, 0.043150197714567184, -0.036483198404312134, 0.30271098017692566, -0.038182344287633896, -0.1349017322063446, -0.02040836587548256, 0.13099436461925507, -0.042902279645204544, 0.06097203865647316, 0.22157803177833557, 0.04669235646724701, 0.020453903824090958, 0.004801352508366108, 0.11210814863443375, 0.15736956894397736, 0.19771580398082733, 0.07210298627614975, -0.010328847914934158, 0.02263786457479, 0.05871551111340523, 0.08374630659818649, -0.04222254827618599, -0.014477754011750221, 0.12470651417970657, -0.01783115789294243, 0.13757316768169403, -0.05984734743833542, -0.06564030051231384, 0.16039055585861206, -0.03514346480369568, -0.019482839852571487, 0.06321397423744202, -0.06422211974859238, -0.06712745875120163, -0.30973750352859497, -0.06930948793888092, -0.0837133601307869, 0.04306716099381447, -0.10335639864206314, -0.06399383395910263, 0.11595457047224045, 0.10339266061782837, -0.08517305552959442, 0.11591091752052307, 0.02628939412534237, -0.06685591489076614, 0.15243573486804962, 0.04525550827383995, -0.11479561775922775, -0.007489575073122978, -0.038005005568265915, 0.030405990779399872, 0.047050900757312775, -0.0583309531211853, 0.015236783772706985, 0.0786675363779068, 0.007481671404093504, -0.008275522850453854, -0.03674212843179703, -0.08737700432538986, 0.014793039299547672, -0.004175290931016207, 0.05299382284283638, 0.03157241269946098, -0.06091536208987236, -0.0059429737739264965, 0.16405387222766876, -0.02810860611498356, -0.03487637639045715, -0.04959568381309509, 0.08489644527435303, -0.07971721887588501, 0.08609160780906677, 0.011885033920407295, 0.013084099628031254, -0.02181520313024521, 0.2950965464115143, 0.30513668060302734, -0.09446188062429428, 0.032236501574516296, 0.041690900921821594, 0.012082001194357872, -0.051131874322891235, 0.1099165603518486, 0.02554938569664955, 0.20298711955547333, -0.018108075484633446, -0.03224192559719086, -0.039370328187942505, 0.00033285023528151214, -0.025297095999121666, 0.0655948594212532, 0.09542243927717209, -0.035739466547966, -0.09374639391899109, 0.03916458785533905, -0.12977980077266693, -0.018579255789518356, -0.022999698296189308, -0.10486336052417755, -0.08199120312929153, -0.024616146460175514, -0.11571544408798218, 0.023285340517759323, 0.054822634905576706, -0.14114485681056976, 0.03407776728272438, -0.04425080120563507, 0.05484022572636604, -0.1239151582121849, -0.0027589802630245686, 0.05152979865670204, 0.1473265290260315, 0.13015475869178772, -0.029215626418590546, 0.04786044731736183, 0.05704121291637421, -0.022939937189221382, -0.08877935260534286, -0.006390891503542662, -0.007068788167089224, -0.088588185608387, -0.044952861964702606, 0.09066318720579147, 0.00558328116312623, -0.002367852721363306, 0.06542950123548508, -0.12202136963605881, -0.012057955376803875, -0.08222788572311401, -0.022575730457901955, -0.07591059803962708, -0.0020740211475640535, -0.02883051335811615, 0.08950857818126678, 0.02644491195678711, -0.03795720636844635, -0.046601518988609314, -0.07351314276456833, 0.040315963327884674, 0.02005120739340782, 0.06560323387384415, 0.03861295431852341, -0.10092194378376007, -0.002821374451741576, 0.026102175936102867, 0.009845511987805367, 0.023627838119864464, -0.02013516053557396, -0.04062527418136597, -0.0142546147108078, 0.007165275979787111, 0.09404977411031723, 0.03604322299361229, -0.007487105671316385, -0.014484181068837643, -0.018073109909892082, 0.0035616036038845778, 0.010272789746522903, -0.1382446438074112, -0.09157375991344452 ]
null
null
transformers
# vgg13_bn Implementation of VGG proposed in [Very Deep Convolutional Networks For Large-Scale Image Recognition](https://arxiv.org/pdf/1409.1556.pdf) ``` python VGG.vgg11() VGG.vgg13() VGG.vgg16() VGG.vgg19() VGG.vgg11_bn() VGG.vgg13_bn() VGG.vgg16_bn() VGG.vgg19_bn() ``` Please be aware that the [bn]{.title-ref} models uses BatchNorm but they are very old and people back then don\'t know the bias is superfluous in a conv followed by a batchnorm. Examples: ``` python # change activation VGG.vgg11(activation = nn.SELU) # change number of classes (default is 1000 ) VGG.vgg11(n_classes=100) # pass a different block from nn.models.classification.senet import SENetBasicBlock VGG.vgg11(block=SENetBasicBlock) # store the features tensor after every block ```
{}
null
glasses/vgg13_bn
[ "transformers", "pytorch", "arxiv:1409.1556", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[ "1409.1556" ]
[]
TAGS #transformers #pytorch #arxiv-1409.1556 #endpoints_compatible #region-us
# vgg13_bn Implementation of VGG proposed in Very Deep Convolutional Networks For Large-Scale Image Recognition Please be aware that the [bn]{.title-ref} models uses BatchNorm but they are very old and people back then don\'t know the bias is superfluous in a conv followed by a batchnorm. Examples:
[ "# vgg13_bn\nImplementation of VGG proposed in Very Deep Convolutional Networks For\nLarge-Scale Image Recognition\n\n \n\n Please be aware that the [bn]{.title-ref} models uses BatchNorm but\n they are very old and people back then don\\'t know the bias is\n superfluous in a conv followed by a batchnorm.\n\n Examples:" ]
[ "TAGS\n#transformers #pytorch #arxiv-1409.1556 #endpoints_compatible #region-us \n", "# vgg13_bn\nImplementation of VGG proposed in Very Deep Convolutional Networks For\nLarge-Scale Image Recognition\n\n \n\n Please be aware that the [bn]{.title-ref} models uses BatchNorm but\n they are very old and people back then don\\'t know the bias is\n superfluous in a conv followed by a batchnorm.\n\n Examples:" ]
[ 29, 86 ]
[ "passage: TAGS\n#transformers #pytorch #arxiv-1409.1556 #endpoints_compatible #region-us \n# vgg13_bn\nImplementation of VGG proposed in Very Deep Convolutional Networks For\nLarge-Scale Image Recognition\n\n \n\n Please be aware that the [bn]{.title-ref} models uses BatchNorm but\n they are very old and people back then don\\'t know the bias is\n superfluous in a conv followed by a batchnorm.\n\n Examples:" ]
[ -0.06475048512220383, -0.039802584797143936, -0.0023066324647516012, 0.03094535320997238, 0.012478829361498356, 0.05105108395218849, -0.011551514267921448, 0.08346470445394516, -0.03602958098053932, 0.018178168684244156, 0.18572449684143066, 0.03881339728832245, 0.02816106751561165, 0.06492423266172409, -0.05377376824617386, -0.2428695261478424, 0.04239175468683243, 0.13234055042266846, 0.014463607221841812, 0.056565966457128525, 0.06972011923789978, -0.14198100566864014, 0.07519340515136719, 0.0026604807935655117, -0.24377559125423431, -0.04843262583017349, 0.012877154164016247, -0.041134484112262726, 0.0614258348941803, 0.07672403007745743, 0.033263400197029114, 0.025912635028362274, 0.008431079797446728, -0.05337705463171005, 0.03369387611746788, -0.0019151826854795218, -0.013335954397916794, 0.08296763151884079, 0.047423385083675385, 0.08921542763710022, 0.04692258685827255, -0.04210308566689491, -0.07037641853094101, -0.014712962321937084, -0.064165398478508, -0.11946055293083191, 0.013700645416975021, 0.10074427723884583, -0.04093467444181442, 0.0064729745499789715, 0.006056458223611116, 0.14602357149124146, -0.07847360521554947, 0.03415048494935036, 0.16794587671756744, -0.25389963388442993, -0.018845858052372932, 0.20759578049182892, -0.03528529405593872, -0.05399177223443985, -0.04098207876086235, 0.12529873847961426, 0.07021990418434143, -0.002478700364008546, 0.02160295657813549, 0.005447625648230314, -0.05338865518569946, 0.005755584686994553, -0.1265471875667572, -0.08880119025707245, 0.09606382250785828, 0.04328623786568642, 0.017946679145097733, -0.13985079526901245, -0.1398114562034607, -0.07881695032119751, -0.08345218747854233, -0.034489888697862625, -0.05003802105784416, 0.01244692225009203, -0.052255477756261826, -0.06939546018838882, -0.053661152720451355, -0.0549655519425869, -0.12842361629009247, -0.02240000292658806, 0.0547042042016983, 0.06956946849822998, -0.11018934845924377, 0.1581777185201645, -0.13965754210948944, -0.06629850715398788, 0.021931996569037437, -0.173984095454216, -0.04066750407218933, 0.04866249859333038, 0.0008343648514710367, 0.08922027796506882, 0.04940485581755638, 0.05180906131863594, 0.05437096953392029, -0.06148970127105713, -0.04569423198699951, 0.07118936628103256, 0.003273267997428775, 0.05485307052731514, -0.2190071940422058, 0.055793263018131256, 0.10263792425394058, -0.11092310398817062, 0.03571978956460953, -0.0034771044738590717, -0.06339030712842941, -0.1954057365655899, 0.10822942852973938, 0.03333356976509094, -0.04931768774986267, 0.14759637415409088, -0.006937472149729729, -0.09581304341554642, 0.0399513840675354, 0.021318722516298294, -0.037104737013578415, 0.007233615033328533, -0.05428745225071907, 0.09699346125125885, 0.017767421901226044, -0.008423461578786373, -0.047386251389980316, -0.015415837056934834, -0.08443933725357056, -0.09552183002233505, -0.022274363785982132, -0.12646935880184174, 0.008967184461653233, -0.1158219575881958, 0.04780179634690285, -0.18280519545078278, -0.10425304621458054, 0.10694056749343872, -0.03136955946683884, -0.08386562764644623, 0.024963470175862312, -0.015178252011537552, -0.08098044991493225, -0.034849002957344055, -0.0015447018668055534, 0.1971726268529892, -0.0607844777405262, 0.024180825799703598, -0.05505988746881485, 0.10640968382358551, -0.0607326366007328, 0.014974645338952541, -0.054009001702070236, 0.017954090610146523, -0.043633002787828445, 0.04753889888525009, -0.05750799551606178, 0.02108708582818508, -0.05885172262787819, -0.11553153395652771, -0.06513134390115738, -0.018055303022265434, -0.01925806514918804, 0.1090485006570816, -0.11923924088478088, -0.04118441790342331, 0.13317914307117462, -0.10852982103824615, -0.10442106425762177, 0.16092471778392792, -0.053541094064712524, -0.08092031627893448, 0.05639396235346794, 0.058014482259750366, 0.0376502200961113, -0.08652037382125854, -0.0005757255130447447, 0.022064846009016037, -0.1359739452600479, 0.02585669606924057, -0.029898231849074364, 0.17566344141960144, -0.028984731063246727, 0.007686179131269455, -0.019526546820998192, 0.08726036548614502, -0.12391339987516403, -0.0723874568939209, -0.027051914483308792, -0.04595262557268143, 0.04901084676384926, 0.023289833217859268, 0.0720345750451088, 0.022377653047442436, -0.039887357503175735, -0.18976885080337524, 0.07479696720838547, -0.07552235573530197, 0.034430552273988724, -0.10218755155801773, 0.15341909229755402, -0.17078803479671478, 0.03445987403392792, -0.09622740000486374, -0.017277156934142113, 0.08180267363786697, 0.08984339237213135, -0.03905322775244713, 0.2249123603105545, 0.021725108847022057, -0.024074029177427292, -0.027717718854546547, 0.010381147265434265, 0.12045399844646454, -0.012276503257453442, -0.026868458837270737, -0.08493546396493912, 0.0032392553985118866, -0.05347743630409241, 0.05237962678074837, -0.1499367505311966, -0.06331799924373627, 0.16111165285110474, 0.09547742456197739, -0.00567195750772953, 0.05136311799287796, 0.0774049162864685, -0.047272928059101105, -0.026031922549009323, -0.05603455379605293, 0.07760892063379288, -0.039627742022275925, -0.08298342674970627, 0.09651757776737213, -0.01867612823843956, 0.1102863997220993, 0.15389783680438995, -0.19519709050655365, -0.008077569305896759, -0.083369679749012, -0.041192714124917984, -0.005098224617540836, 0.012687845155596733, 0.014441810548305511, 0.08871937543153763, -0.05726160481572151, 0.07707379758358002, -0.0800648182630539, -0.007362411357462406, 0.0938967689871788, 0.019406598061323166, -0.05417582392692566, 0.011972960084676743, -0.008982229046523571, -0.16754063963890076, 0.04821678623557091, -0.02744865231215954, -0.026820441707968712, 0.11449062079191208, 0.0006824558950029314, -0.05343828722834587, 0.03265160322189331, -0.0026081257965415716, -0.00078637182014063, 0.10714279115200043, -0.25177428126335144, -0.03267432376742363, 0.101727195084095, -0.05040217190980911, 0.04036305844783783, -0.07911202311515808, -0.019153153523802757, -0.007421532180160284, -0.05035356059670448, 0.09237278252840042, 0.10027771443128586, 0.021350426599383354, 0.1021074652671814, -0.016417643055319786, -0.055345624685287476, 0.03719359636306763, -0.06382638216018677, -0.03489332273602486, 0.12532390654087067, -0.018543099984526634, -0.23297083377838135, -0.011442857794463634, -0.12642258405685425, -0.11025374382734299, 0.02740572765469551, -0.046099524945020676, -0.05330483242869377, -0.05593409016728401, -0.002817635191604495, 0.022643115371465683, 0.059819210320711136, 0.13287340104579926, -0.013325747102499008, -0.017002178356051445, 0.004835366737097502, -0.07261636108160019, -0.026257408782839775, -0.15825416147708893, -0.06885415315628052, 0.11487643420696259, -0.06938980519771576, 0.1099274531006813, 0.1358739286661148, -0.03259348124265671, 0.05443377420306206, -0.019574685022234917, 0.231483593583107, -0.039449531584978104, -0.009921938180923462, 0.11385989934206009, 0.00016180933744180948, -0.0471329391002655, 0.0562901645898819, -0.0014909275341778994, -0.12297207862138748, -0.017645198851823807, -0.023203684017062187, -0.0831347107887268, -0.06613349914550781, -0.14442196488380432, -0.06395819038152695, -0.07024212181568146, 0.10042357444763184, 0.05543515086174011, 0.055150315165519714, 0.1200893297791481, -0.06973063945770264, 0.07467308640480042, 0.016122758388519287, 0.08019014447927475, 0.20083829760551453, -0.02589774876832962, 0.07258359342813492, -0.0015421409625560045, -0.0751977413892746, 0.0793793797492981, 0.003497786819934845, 0.18988215923309326, -0.09229069948196411, -0.012054996564984322, 0.11143196374177933, 0.11478782445192337, 0.1548030525445938, 0.05906480550765991, -0.10139940679073334, -0.05559461563825607, -0.06785988807678223, -0.07388492673635483, 0.028594352304935455, 0.044563375413417816, 0.03825487941503525, -0.014894229359924793, -0.037427354604005814, -0.049724217504262924, 0.062391191720962524, 0.055130306631326675, 0.14469702541828156, -0.3239385783672333, -0.017926916480064392, 0.03591997176408768, 0.06787274032831192, -0.08924386650323868, 0.07298269122838974, 0.13447368144989014, -0.01830025017261505, 0.07739817351102829, -0.09753827005624771, 0.07913379371166229, -0.17876651883125305, 0.08317428082227707, -0.06799876689910889, 0.01808863878250122, 0.01718132197856903, 0.07088510692119598, -0.23890312016010284, 0.16982752084732056, 0.00006304092676145956, -0.023964913561940193, -0.10810483247041702, -0.047651201486587524, -0.003320915624499321, 0.07282129675149918, 0.18195189535617828, -0.010240517556667328, 0.15261685848236084, 0.04822088032960892, -0.032086197286844254, 0.04975206404924393, 0.0042793601751327515, 0.08113754540681839, -0.02124205231666565, 0.01674601621925831, -0.03125739470124245, 0.04155353456735611, 0.11563051491975784, -0.12163588404655457, -0.05411755293607712, 0.010496542789041996, 0.09243575483560562, -0.014256144873797894, -0.010664080269634724, -0.01758544333279133, -0.08643246442079544, 0.15994833409786224, -0.06433220207691193, -0.043542295694351196, -0.05770537257194519, 0.21489973366260529, 0.06749220937490463, -0.02382080815732479, 0.10766472667455673, -0.042362332344055176, 0.13806366920471191, -0.026400607079267502, -0.14970865845680237, 0.09112618863582611, -0.07481037080287933, -0.1403290331363678, 0.016523847356438637, 0.05155779421329498, 0.01934918761253357, -0.009612265974283218, 0.057284243404865265, -0.009938957169651985, -0.05045228451490402, -0.08445131033658981, 0.05773889645934105, 0.21170972287654877, 0.04092243313789368, 0.04301050305366516, 0.01300701405853033, -0.06665434688329697, -0.04010344669222832, 0.09546877443790436, 0.2102181315422058, 0.19333842396736145, -0.11310125887393951, 0.017283212393522263, 0.11744015663862228, -0.009416124783456326, -0.24691596627235413, 0.01740669086575508, -0.055152054876089096, 0.03406234830617905, -0.16437655687332153, -0.007083948235958815, 0.04579583555459976, 0.032233864068984985, 0.00978141650557518, 0.054874468594789505, -0.23670092225074768, -0.09018303453922272, 0.1963234841823578, 0.040778521448373795, 0.29196178913116455, -0.0036146859638392925, -0.001699870335869491, -0.03808607906103134, -0.0973598062992096, 0.13681769371032715, 0.14399848878383636, 0.11284623295068741, -0.06965707987546921, 0.007089295890182257, 0.03374244645237923, -0.06711127609014511, 0.08579816669225693, 0.054706595838069916, 0.1346544325351715, -0.05874773859977722, -0.12041670083999634, 0.09163043648004532, 0.023149624466896057, 0.022143134847283363, 0.20025469362735748, 0.0579935759305954, 0.0006566969095729291, -0.043448060750961304, -0.11980192363262177, 0.07955311983823776, 0.056009624153375626, -0.11500703543424606, -0.16059811413288116, 0.0304307471960783, 0.052092038094997406, 0.03181404247879982, 0.1134520173072815, -0.016995251178741455, -0.005055888555943966, 0.06669678539037704, 0.04457941651344299, -0.1248546615242958, -0.0032590848859399557, -0.047630202025175095, 0.01196033600717783, 0.15836374461650848, -0.07346588373184204, 0.045150674879550934, 0.11872734129428864, 0.04278937354683876, 0.026453088968992233, 0.09312835335731506, -0.07842613756656647, 0.028845522552728653, 0.04951168969273567, -0.22233812510967255, -0.029946651309728622, -0.028077619150280952, -0.1166563332080841, 0.16848507523536682, 0.03136889636516571, 0.09983839094638824, -0.09005235135555267, -0.004142816178500652, 0.050811685621738434, 0.011767726391553879, -0.025371907278895378, 0.10741780698299408, 0.06980251520872116, 0.018766600638628006, -0.16073381900787354, 0.10594356060028076, -0.05760950967669487, -0.10559582710266113, -0.034630585461854935, -0.10075990855693817, -0.13509343564510345, -0.06520146876573563, -0.14171810448169708, 0.011399054899811745, -0.06737492978572845, -0.00321971345692873, 0.039553090929985046, -0.09733401983976364, 0.07899165898561478, 0.07001348584890366, 0.09290000051259995, 0.1272715926170349, -0.06970275938510895, -0.026548605412244797, -0.09086649119853973, 0.04493962973356247, 0.017029862850904465, 0.02944036014378071, -0.20737622678279877, -0.011185486800968647, 0.00211714138276875, 0.10126332193613052, -0.11930497735738754, -0.026920394971966743, -0.07331257313489914, 0.03652884438633919, -0.20015601813793182, 0.023624787107110023, -0.054961420595645905, -0.02118428237736225, -0.03295646607875824, -0.06071485951542854, -0.06553923338651657, 0.012092093005776405, -0.049493208527565, 0.06350904703140259, 0.013155033811926842, -0.012251567095518112, -0.023808814585208893, -0.048885345458984375, -0.02489037998020649, -0.010744614526629448, 0.1844734400510788, 0.07849881052970886, -0.09340155869722366, 0.01713641546666622, -0.19015470147132874, -0.1569899320602417, 0.19283361732959747, 0.030026912689208984, 0.062126532196998596, -0.002393395872786641, 0.08066272735595703, 0.0008180539589375257, -0.08810564875602722, 0.024690860882401466, 0.11140844970941544, -0.045901354402303696, 0.0012841923162341118, -0.062441833317279816, 0.0909251794219017, -0.06604351848363876, 0.030631180852651596, 0.11438459157943726, 0.1357528418302536, -0.015605021268129349, -0.02256500907242298, -0.026210669428110123, -0.03833802044391632, -0.012684961780905724, -0.04833478853106499, -0.15220648050308228, 0.07971490919589996, 0.03685057535767555, 0.043472010642290115, -0.03580126166343689, 0.3057071566581726, -0.036740925163030624, -0.13199257850646973, -0.01926862634718418, 0.12760299444198608, -0.03432747721672058, 0.06000862643122673, 0.22075732052326202, 0.04851530119776726, 0.01939268782734871, 0.010570884682238102, 0.11470328271389008, 0.15585801005363464, 0.1956358253955841, 0.07186723500490189, -0.008989031426608562, 0.01790582202374935, 0.05746036022901535, 0.08406860381364822, -0.0389196053147316, -0.011781609617173672, 0.12388893216848373, -0.020590154454112053, 0.13799338042736053, -0.06041094660758972, -0.07031776756048203, 0.16381922364234924, -0.03758139908313751, -0.01850602775812149, 0.06260758638381958, -0.06540646404027939, -0.06939484924077988, -0.30991700291633606, -0.06942940503358841, -0.08556016534566879, 0.04253857582807541, -0.10355675965547562, -0.06699316948652267, 0.11773009598255157, 0.1039159744977951, -0.08486747741699219, 0.11418946832418442, 0.032590098679065704, -0.06428353488445282, 0.1501205861568451, 0.04471953213214874, -0.11297257989645004, -0.0067775375209748745, -0.03934360668063164, 0.030891984701156616, 0.05007172003388405, -0.058513302356004715, 0.014436803758144379, 0.0812935158610344, 0.008143989369273186, -0.008221752010285854, -0.03776220977306366, -0.08693533390760422, 0.01530708558857441, -0.005636405665427446, 0.05269663780927658, 0.03156154230237007, -0.06161423400044441, -0.0058387224562466145, 0.1682453751564026, -0.028051037341356277, -0.03144820034503937, -0.05145617201924324, 0.09156107157468796, -0.08008507639169693, 0.08653871715068817, 0.011399207636713982, 0.012865548953413963, -0.0247101578861475, 0.299393892288208, 0.30776816606521606, -0.09584233909845352, 0.03293117508292198, 0.041806433349847794, 0.012882137671113014, -0.048444148153066635, 0.11198551952838898, 0.02457832731306553, 0.20403873920440674, -0.0166087094694376, -0.03208063542842865, -0.03902795910835266, 0.00025260119582526386, -0.02457991987466812, 0.06474759429693222, 0.09747586399316788, -0.0342278853058815, -0.09449241310358047, 0.04200596362352371, -0.13149940967559814, -0.016633229330182076, -0.027515729889273643, -0.1029684767127037, -0.08033709228038788, -0.023183338344097137, -0.12040051817893982, 0.022941986098885536, 0.05459833890199661, -0.14063608646392822, 0.03397612273693085, -0.046845391392707825, 0.05564587190747261, -0.12406352162361145, -0.004370670299977064, 0.05517961457371712, 0.1574656218290329, 0.13168317079544067, -0.02836151048541069, 0.04697651043534279, 0.05658789351582527, -0.022861074656248093, -0.08917700499296188, -0.006649676710367203, -0.005760332103818655, -0.0891399085521698, -0.044846802949905396, 0.09207858890295029, 0.005831468850374222, -0.0025107599794864655, 0.06598135828971863, -0.12138950824737549, -0.013166735880076885, -0.08830345422029495, -0.021726150065660477, -0.07540002465248108, -0.0025363105814903975, -0.02796756476163864, 0.08806527405977249, 0.028292415663599968, -0.03764640912413597, -0.04544804245233536, -0.0730363205075264, 0.04107208922505379, 0.01796872727572918, 0.060826994478702545, 0.038493454456329346, -0.10257402062416077, -0.001982158748432994, 0.02026728168129921, 0.008460050448775291, 0.021410267800092697, -0.02188093587756157, -0.03730887174606323, -0.011599048040807247, 0.00789980310946703, 0.09593398869037628, 0.03344680368900299, -0.009511841461062431, -0.01438810769468546, -0.0069109550677239895, 0.0023234363179653883, 0.010762888006865978, -0.1381533294916153, -0.0915379673242569 ]
null
null
transformers
# vgg19_bn Implementation of VGG proposed in [Very Deep Convolutional Networks For Large-Scale Image Recognition](https://arxiv.org/pdf/1409.1556.pdf) ``` python VGG.vgg11() VGG.vgg13() VGG.vgg16() VGG.vgg19() VGG.vgg11_bn() VGG.vgg13_bn() VGG.vgg16_bn() VGG.vgg19_bn() ``` Please be aware that the [bn]{.title-ref} models uses BatchNorm but they are very old and people back then don\'t know the bias is superfluous in a conv followed by a batchnorm. Examples: ``` python # change activation VGG.vgg11(activation = nn.SELU) # change number of classes (default is 1000 ) VGG.vgg11(n_classes=100) # pass a different block from nn.models.classification.senet import SENetBasicBlock VGG.vgg11(block=SENetBasicBlock) # store the features tensor after every block ```
{}
null
glasses/vgg19_bn
[ "transformers", "pytorch", "arxiv:1409.1556", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[ "1409.1556" ]
[]
TAGS #transformers #pytorch #arxiv-1409.1556 #endpoints_compatible #region-us
# vgg19_bn Implementation of VGG proposed in Very Deep Convolutional Networks For Large-Scale Image Recognition Please be aware that the [bn]{.title-ref} models uses BatchNorm but they are very old and people back then don\'t know the bias is superfluous in a conv followed by a batchnorm. Examples:
[ "# vgg19_bn\nImplementation of VGG proposed in Very Deep Convolutional Networks For\nLarge-Scale Image Recognition\n\n \n\n Please be aware that the [bn]{.title-ref} models uses BatchNorm but\n they are very old and people back then don\\'t know the bias is\n superfluous in a conv followed by a batchnorm.\n\n Examples:" ]
[ "TAGS\n#transformers #pytorch #arxiv-1409.1556 #endpoints_compatible #region-us \n", "# vgg19_bn\nImplementation of VGG proposed in Very Deep Convolutional Networks For\nLarge-Scale Image Recognition\n\n \n\n Please be aware that the [bn]{.title-ref} models uses BatchNorm but\n they are very old and people back then don\\'t know the bias is\n superfluous in a conv followed by a batchnorm.\n\n Examples:" ]
[ 29, 86 ]
[ "passage: TAGS\n#transformers #pytorch #arxiv-1409.1556 #endpoints_compatible #region-us \n# vgg19_bn\nImplementation of VGG proposed in Very Deep Convolutional Networks For\nLarge-Scale Image Recognition\n\n \n\n Please be aware that the [bn]{.title-ref} models uses BatchNorm but\n they are very old and people back then don\\'t know the bias is\n superfluous in a conv followed by a batchnorm.\n\n Examples:" ]
[ -0.06699889898300171, -0.04339371994137764, -0.002331333002075553, 0.02883179858326912, 0.009498326107859612, 0.05005422607064247, -0.011239401064813137, 0.08377246558666229, -0.03345214203000069, 0.02169434353709221, 0.18783965706825256, 0.038818709552288055, 0.028740694746375084, 0.06772572547197342, -0.05537557229399681, -0.2393626868724823, 0.040014464408159256, 0.13525733351707458, 0.010775054804980755, 0.05595269054174423, 0.06999342888593674, -0.14465777575969696, 0.07583281397819519, 0.00268584955483675, -0.24797554314136505, -0.04862349480390549, 0.0124293752014637, -0.04247654974460602, 0.062111154198646545, 0.07781637459993362, 0.03393508866429329, 0.027179639786481857, 0.008380480110645294, -0.048961885273456573, 0.03415711224079132, 0.00040324320434592664, -0.013198529370129108, 0.08374616503715515, 0.04720187932252884, 0.08585882931947708, 0.04938983544707298, -0.042452868074178696, -0.07133854180574417, -0.014610923826694489, -0.06426183134317398, -0.12634146213531494, 0.014101164415478706, 0.09890340268611908, -0.044065073132514954, 0.0056449840776622295, 0.004223728086799383, 0.14589835703372955, -0.07862305641174316, 0.03411763906478882, 0.16239236295223236, -0.2577348053455353, -0.018282366916537285, 0.1985229253768921, -0.037531908601522446, -0.05373399332165718, -0.04188286140561104, 0.1266951709985733, 0.0711197480559349, -0.004315374884754419, 0.023188576102256775, 0.004519959911704063, -0.053294338285923004, 0.0036858683452010155, -0.12430400401353836, -0.08685902506113052, 0.10166221857070923, 0.042851753532886505, 0.01634763926267624, -0.14052045345306396, -0.13756753504276276, -0.07179659605026245, -0.0835178941488266, -0.03470265492796898, -0.05067398026585579, 0.013268149457871914, -0.051263585686683655, -0.06894227862358093, -0.05400807410478592, -0.05434427410364151, -0.1273207664489746, -0.020723002031445503, 0.05412709340453148, 0.07044483721256256, -0.11220891773700714, 0.15580885112285614, -0.13681551814079285, -0.07085337489843369, 0.024856548756361008, -0.17326894402503967, -0.038983359932899475, 0.05063098669052124, 0.0011956606758758426, 0.08422429114580154, 0.04883860424160957, 0.049074046313762665, 0.06095559522509575, -0.06155189126729965, -0.05319571867585182, 0.07195454835891724, 0.0037578188348561525, 0.05689352750778198, -0.2142358124256134, 0.05167426913976669, 0.1048666313290596, -0.1100701093673706, 0.03586150333285332, -0.003076142631471157, -0.0644291564822197, -0.19338074326515198, 0.10587257146835327, 0.03369913995265961, -0.04964791610836983, 0.1453339010477066, -0.006975908298045397, -0.0942690446972847, 0.035109687596559525, 0.022177794948220253, -0.03594309836626053, 0.00845869816839695, -0.05510158836841583, 0.09584543853998184, 0.016897527500987053, -0.010745309293270111, -0.04758273810148239, -0.013848969712853432, -0.08391273021697998, -0.09632477909326553, -0.02205994911491871, -0.12686331570148468, 0.007657536305487156, -0.12048665434122086, 0.04806997627019882, -0.1834229677915573, -0.10098669677972794, 0.10735641419887543, -0.033793769776821136, -0.0856454148888588, 0.027026323601603508, -0.015225360170006752, -0.07934334129095078, -0.03442433476448059, -0.001848467974923551, 0.1998852640390396, -0.06083709001541138, 0.026240931823849678, -0.05527614802122116, 0.10846901684999466, -0.059695880860090256, 0.017219573259353638, -0.054215945303440094, 0.01647392101585865, -0.0474759042263031, 0.04773644357919693, -0.05654025822877884, 0.018456827849149704, -0.05813664570450783, -0.11381173878908157, -0.06565435230731964, -0.01717340387403965, -0.018820639699697495, 0.10897601395845413, -0.12548381090164185, -0.04317063093185425, 0.13535837829113007, -0.1094643697142601, -0.10338234156370163, 0.16240929067134857, -0.054890137165784836, -0.07870016992092133, 0.05706587806344032, 0.06188344210386276, 0.030264168977737427, -0.08359245210886002, -0.002443675184622407, 0.02019861899316311, -0.13677901029586792, 0.02817465364933014, -0.031672339886426926, 0.1755400002002716, -0.0290481299161911, 0.0065818047150969505, -0.017042163759469986, 0.08684440702199936, -0.12339116632938385, -0.07108049094676971, -0.026815000921487808, -0.04622099921107292, 0.04836409538984299, 0.024325698614120483, 0.07225601375102997, 0.01887565106153488, -0.04048573598265648, -0.19805072247982025, 0.07566485553979874, -0.07484129816293716, 0.03285679221153259, -0.10425224900245667, 0.1542615443468094, -0.1698426455259323, 0.03619149327278137, -0.09743605554103851, -0.013906128704547882, 0.0834941640496254, 0.09393078833818436, -0.03418228402733803, 0.22590063512325287, 0.019826559349894524, -0.023801706731319427, -0.025616610422730446, 0.008759001269936562, 0.12054243683815002, -0.013122924603521824, -0.02738143503665924, -0.09004544466733932, 0.005201481748372316, -0.05316959694027901, 0.05403149873018265, -0.15255232155323029, -0.06517784297466278, 0.16245542466640472, 0.09846536815166473, -0.004274860955774784, 0.05351470038294792, 0.0756785124540329, -0.04607997462153435, -0.02544691413640976, -0.05565975606441498, 0.0766897201538086, -0.03994346782565117, -0.08368197828531265, 0.09772416949272156, -0.017453787848353386, 0.11017131805419922, 0.15632085502147675, -0.2000964730978012, -0.008540323935449123, -0.07630370557308197, -0.03881552815437317, -0.004764965269714594, 0.013316549360752106, 0.01687542162835598, 0.08949802815914154, -0.05672670528292656, 0.08023755997419357, -0.08136489242315292, -0.007321447599679232, 0.0946391150355339, 0.01944025233387947, -0.05344122275710106, 0.014163804240524769, -0.011640289798378944, -0.17343415319919586, 0.04809348285198212, -0.0226272139698267, -0.023524396121501923, 0.11608699709177017, 0.0004920618957839906, -0.053927965462207794, 0.03006746433675289, -0.0042349910363554955, -0.000484616553876549, 0.11218084394931793, -0.2511864900588989, -0.03566429018974304, 0.10253313928842545, -0.05435095727443695, 0.03912518918514252, -0.07941586524248123, -0.017246639356017113, -0.008251954801380634, -0.049366939812898636, 0.0956050455570221, 0.1005646288394928, 0.022621866315603256, 0.10393926501274109, -0.017016058787703514, -0.056024618446826935, 0.03615517169237137, -0.06346150487661362, -0.03327153995633125, 0.12354596704244614, -0.021463369950652122, -0.2358955442905426, -0.00934568326920271, -0.1205746978521347, -0.1105889156460762, 0.027983229607343674, -0.04736064374446869, -0.055889859795570374, -0.05743870139122009, -0.0012332607293501496, 0.022647874429821968, 0.058839261531829834, 0.13263548910617828, -0.015210812911391258, -0.015157248824834824, 0.003019419964402914, -0.07276348769664764, -0.027404919266700745, -0.15937796235084534, -0.06450977176427841, 0.11610699445009232, -0.06501074880361557, 0.11025814712047577, 0.13357026875019073, -0.03288177400827408, 0.05444813892245293, -0.018584102392196655, 0.22686225175857544, -0.04228775203227997, -0.009407165460288525, 0.11554289609193802, -0.0018149202223867178, -0.048322394490242004, 0.053524747490882874, -0.001221095328219235, -0.12483934313058853, -0.01896178163588047, -0.02324647642672062, -0.08169377595186234, -0.06549602746963501, -0.14594268798828125, -0.06365979462862015, -0.0729229524731636, 0.10219350457191467, 0.05348160117864609, 0.0562717504799366, 0.11970406025648117, -0.06991112977266312, 0.07473466545343399, 0.011529705487191677, 0.08015531301498413, 0.20279328525066376, -0.02883428893983364, 0.07481811940670013, -0.0032351533882319927, -0.07760927826166153, 0.07956361025571823, -0.001883858349174261, 0.1917598694562912, -0.09083133190870285, -0.007745965383946896, 0.11094219237565994, 0.11794829368591309, 0.15580934286117554, 0.05883035436272621, -0.10203812271356583, -0.055812738835811615, -0.06907524913549423, -0.07433298230171204, 0.02512647584080696, 0.04597098380327225, 0.041131313890218735, -0.01468720193952322, -0.037570349872112274, -0.0510537214577198, 0.06235423684120178, 0.05560838431119919, 0.14267848432064056, -0.3217885494232178, -0.017994070425629616, 0.0368124321103096, 0.06826672703027725, -0.09137426316738129, 0.0716416984796524, 0.13720792531967163, -0.017566757276654243, 0.0765606239438057, -0.09581983834505081, 0.07945529371500015, -0.17752477526664734, 0.08351342380046844, -0.07497572153806686, 0.018315095454454422, 0.01645839400589466, 0.07060399651527405, -0.2407732903957367, 0.16988307237625122, 0.0020132565405219793, -0.023365052416920662, -0.11160953342914581, -0.04784107208251953, -0.0034705528523772955, 0.07215911149978638, 0.1808333843946457, -0.011703843250870705, 0.1460440456867218, 0.04581775143742561, -0.029736988246440887, 0.04990703612565994, 0.0062843384221196175, 0.08109886199235916, -0.020383698865771294, 0.018291594460606575, -0.031036850064992905, 0.04126591607928276, 0.11359111219644547, -0.12070990353822708, -0.053750552237033844, 0.009853477589786053, 0.09258497506380081, -0.012414987199008465, -0.01147847156971693, -0.016456399112939835, -0.08072418719530106, 0.156271830201149, -0.06525497138500214, -0.04215727746486664, -0.0565846785902977, 0.21563443541526794, 0.06687074899673462, -0.02336782217025757, 0.10477200895547867, -0.04104376956820488, 0.13960005342960358, -0.027685005217790604, -0.1488802582025528, 0.08997626602649689, -0.07548747956752777, -0.14333945512771606, 0.01497205812484026, 0.054268963634967804, 0.020896723493933678, -0.010228361003100872, 0.05874219536781311, -0.00908742006868124, -0.05247275531291962, -0.08300582319498062, 0.06033496558666229, 0.20488984882831573, 0.044721491634845734, 0.04357883334159851, 0.014128774404525757, -0.06613686680793762, -0.040896303951740265, 0.09431411325931549, 0.2107713669538498, 0.1922711431980133, -0.11357996612787247, 0.018483193591237068, 0.11937572062015533, -0.009065764024853706, -0.2456858605146408, 0.018882660195231438, -0.056974396109580994, 0.035147774964571, -0.16853156685829163, -0.010983889922499657, 0.048142071813344955, 0.029320932924747467, 0.011455195024609566, 0.05934059992432594, -0.23285892605781555, -0.09058753401041031, 0.20143309235572815, 0.037700552493333817, 0.2937033772468567, -0.004248039331287146, -0.0011161498259752989, -0.03955213725566864, -0.08870367705821991, 0.14034400880336761, 0.14159375429153442, 0.11171315610408783, -0.06987452507019043, 0.0067124259658157825, 0.034925494343042374, -0.06427111476659775, 0.08457010239362717, 0.05327490344643593, 0.13640333712100983, -0.057722460478544235, -0.11986258625984192, 0.09359937906265259, 0.025747979059815407, 0.02129809558391571, 0.19602513313293457, 0.0555124506354332, -0.0021241307258605957, -0.04212693125009537, -0.11865958571434021, 0.08144663274288177, 0.05612345412373543, -0.11429423093795776, -0.16027258336544037, 0.0294945165514946, 0.04872749373316765, 0.031909018754959106, 0.11159060895442963, -0.01662278361618519, -0.005794001277536154, 0.06664512306451797, 0.044739361852407455, -0.127844899892807, -0.004002873785793781, -0.045485496520996094, 0.012437302619218826, 0.16123716533184052, -0.07288282364606857, 0.04392338544130325, 0.11748884618282318, 0.043565213680267334, 0.028609199449419975, 0.09180258214473724, -0.07972274720668793, 0.02872185967862606, 0.04833744093775749, -0.22320255637168884, -0.029260996729135513, -0.02689862810075283, -0.11658291518688202, 0.17349058389663696, 0.027373529970645905, 0.10013487935066223, -0.08929227292537689, -0.004611840937286615, 0.0483860969543457, 0.010789069347083569, -0.025602495297789574, 0.10656614601612091, 0.07027135789394379, 0.019322926178574562, -0.1617390513420105, 0.10640376061201096, -0.05451609194278717, -0.10619834065437317, -0.03127641975879669, -0.10042960941791534, -0.13394072651863098, -0.0658375471830368, -0.1425989419221878, 0.022292466834187508, -0.06238067150115967, -0.005339078139513731, 0.039155952632427216, -0.10032875090837479, 0.07873362302780151, 0.07242023199796677, 0.09181969612836838, 0.12613517045974731, -0.07248549163341522, -0.026825526729226112, -0.092234306037426, 0.046968862414360046, 0.018407262861728668, 0.028714893385767937, -0.20358522236347198, -0.006397643592208624, 0.0036798231303691864, 0.10222648084163666, -0.11941015720367432, -0.026645498350262642, -0.07275596261024475, 0.036484550684690475, -0.20224173367023468, 0.025244997814297676, -0.05190708115696907, -0.02257426083087921, -0.03314865380525589, -0.06107199937105179, -0.0636773556470871, 0.010806470178067684, -0.048975422978401184, 0.06489203870296478, 0.016579551622271538, -0.009767410345375538, -0.026179885491728783, -0.050626471638679504, -0.025062639266252518, -0.010697019286453724, 0.18375231325626373, 0.08111532032489777, -0.09152340888977051, 0.016728606075048447, -0.18170981109142303, -0.15772464871406555, 0.1911320984363556, 0.03245088458061218, 0.062349580228328705, -0.003052517306059599, 0.08160777390003204, -0.0013417727313935757, -0.09015023708343506, 0.024648791179060936, 0.11615381389856339, -0.04588936269283295, 0.002661414910107851, -0.059757158160209656, 0.0906260758638382, -0.06608881801366806, 0.03353109583258629, 0.11314160376787186, 0.13571099936962128, -0.015492650680243969, -0.022544268518686295, -0.026852121576666832, -0.039437659084796906, -0.013009889051318169, -0.049569807946681976, -0.1541811227798462, 0.08182220906019211, 0.03462080657482147, 0.043840792030096054, -0.0379314199090004, 0.30232325196266174, -0.03500954434275627, -0.13257579505443573, -0.019135765731334686, 0.12786483764648438, -0.0407489538192749, 0.06086345389485359, 0.21880659461021423, 0.04748757556080818, 0.02018093504011631, 0.006800795905292034, 0.1136607676744461, 0.15711776912212372, 0.19674599170684814, 0.07165101915597916, -0.006820590700954199, 0.023871656507253647, 0.05561400204896927, 0.08576468378305435, -0.04278567433357239, -0.014084018766880035, 0.12841704487800598, -0.019618572667241096, 0.13836313784122467, -0.0589866004884243, -0.06577873229980469, 0.16011159121990204, -0.036372534930706024, -0.017041366547346115, 0.06282718479633331, -0.06465468555688858, -0.06620752066373825, -0.3075419068336487, -0.06944993883371353, -0.08305606245994568, 0.04186125844717026, -0.10405083000659943, -0.06463052332401276, 0.11093798279762268, 0.10305359214544296, -0.08804876357316971, 0.11379142850637436, 0.0298820361495018, -0.06520301848649979, 0.15341505408287048, 0.04651226848363876, -0.11597341299057007, -0.00764275761321187, -0.03735004737973213, 0.029236136004328728, 0.0505845807492733, -0.059472404420375824, 0.015708092600107193, 0.08070237189531326, 0.0073173027485609055, -0.007657606154680252, -0.037775300443172455, -0.08558754622936249, 0.014037609100341797, -0.0015255087055265903, 0.052916739135980606, 0.03263265639543533, -0.06156408414244652, -0.006807822268456221, 0.1663178652524948, -0.02591836266219616, -0.030070019885897636, -0.04810183867812157, 0.08867104351520538, -0.08245667815208435, 0.08504866808652878, 0.011488172225654125, 0.014948549680411816, -0.02444199100136757, 0.2983493506908417, 0.3084549605846405, -0.09701506048440933, 0.032972194254398346, 0.03985755890607834, 0.012280411086976528, -0.05054135620594025, 0.11166886985301971, 0.02589818835258484, 0.205607607960701, -0.017619607970118523, -0.02932395413517952, -0.041711073368787766, -0.0009294543415307999, -0.02667420171201229, 0.06781909614801407, 0.09808412939310074, -0.03532833978533745, -0.09332113713026047, 0.03984733670949936, -0.1290520280599594, -0.021894700825214386, -0.02288922294974327, -0.10746206343173981, -0.08180881291627884, -0.02399003691971302, -0.12183584272861481, 0.021277012303471565, 0.05373145639896393, -0.14146898686885834, 0.03276275470852852, -0.04538761451840401, 0.05435332655906677, -0.12109731137752533, -0.004410903435200453, 0.055097416043281555, 0.14618970453739166, 0.12839697301387787, -0.030521037057042122, 0.04703034460544586, 0.05659982189536095, -0.020933877676725388, -0.08801217377185822, -0.007141385693103075, -0.007127393037080765, -0.0870153158903122, -0.04429374262690544, 0.09395462274551392, 0.006897284649312496, -0.001300387317314744, 0.06893806904554367, -0.12455474585294724, -0.013568058609962463, -0.09182919561862946, -0.024889642372727394, -0.07409346848726273, -0.0014442281099036336, -0.029058534651994705, 0.08788127452135086, 0.028239119797945023, -0.03818695619702339, -0.047969408333301544, -0.07311713695526123, 0.04058960825204849, 0.02094167098402977, 0.06590849161148071, 0.03824065625667572, -0.1016160100698471, -0.0012490319786593318, 0.026532521471381187, 0.00829207431524992, 0.019234901294112206, -0.02118629775941372, -0.037690941244363785, -0.011874678544700146, 0.01047132071107626, 0.09498051553964615, 0.03384483978152275, -0.008897360414266586, -0.015550892800092697, -0.011566080152988434, 0.0026810041163116693, 0.00986646767705679, -0.13610480725765228, -0.09014695882797241 ]
null
null
transformers
# vit_base_patch16_224 Implementation of Vision Transformer (ViT) proposed in [An Image Is Worth 16x16 Words: Transformers For Image Recognition At Scale](https://arxiv.org/pdf/2010.11929.pdf) The following image from the authors shows the architecture. ![image](https://github.com/FrancescoSaverioZuppichini/glasses/blob/develop/docs/_static/images/ViT.png?raw=true) ``` python ViT.vit_small_patch16_224() ViT.vit_base_patch16_224() ViT.vit_base_patch16_384() ViT.vit_base_patch32_384() ViT.vit_huge_patch16_224() ViT.vit_huge_patch32_384() ViT.vit_large_patch16_224() ViT.vit_large_patch16_384() ViT.vit_large_patch32_384() ``` Examples: ``` python # change activation ViT.vit_base_patch16_224(activation = nn.SELU) # change number of classes (default is 1000 ) ViT.vit_base_patch16_224(n_classes=100) # pass a different block, default is TransformerEncoderBlock ViT.vit_base_patch16_224(block=MyCoolTransformerBlock) # get features model = ViT.vit_base_patch16_224 # first call .features, this will activate the forward hooks and tells the model you'll like to get the features model.encoder.features model(torch.randn((1,3,224,224))) # get the features from the encoder features = model.encoder.features print([x.shape for x in features]) #[[torch.Size([1, 197, 768]), torch.Size([1, 197, 768]), ...] # change the tokens, you have to subclass ViTTokens class MyTokens(ViTTokens): def __init__(self, emb_size: int): super().__init__(emb_size) self.my_new_token = nn.Parameter(torch.randn(1, 1, emb_size)) ViT(tokens=MyTokens) ```
{}
null
glasses/vit_base_patch16_224
[ "transformers", "pytorch", "arxiv:2010.11929", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[ "2010.11929" ]
[]
TAGS #transformers #pytorch #arxiv-2010.11929 #endpoints_compatible #region-us
# vit_base_patch16_224 Implementation of Vision Transformer (ViT) proposed in An Image Is Worth 16x16 Words: Transformers For Image Recognition At Scale The following image from the authors shows the architecture. !image Examples:
[ "# vit_base_patch16_224\n Implementation of Vision Transformer (ViT) proposed in An Image Is\n Worth 16x16 Words: Transformers For Image Recognition At\n Scale\n\n The following image from the authors shows the architecture.\n\n !image\n\n \n\n Examples:" ]
[ "TAGS\n#transformers #pytorch #arxiv-2010.11929 #endpoints_compatible #region-us \n", "# vit_base_patch16_224\n Implementation of Vision Transformer (ViT) proposed in An Image Is\n Worth 16x16 Words: Transformers For Image Recognition At\n Scale\n\n The following image from the authors shows the architecture.\n\n !image\n\n \n\n Examples:" ]
[ 29, 63 ]
[ "passage: TAGS\n#transformers #pytorch #arxiv-2010.11929 #endpoints_compatible #region-us \n# vit_base_patch16_224\n Implementation of Vision Transformer (ViT) proposed in An Image Is\n Worth 16x16 Words: Transformers For Image Recognition At\n Scale\n\n The following image from the authors shows the architecture.\n\n !image\n\n \n\n Examples:" ]
[ -0.0865512266755104, -0.11963406205177307, -0.005585163831710815, 0.07755785435438156, 0.1628875881433487, 0.014639626257121563, 0.04754586145281792, 0.015792714431881905, -0.06016505882143974, 0.015386509709060192, 0.12802523374557495, 0.17432452738285065, -0.010545630939304829, -0.004989436827600002, 0.0042374394834041595, -0.30981969833374023, -0.029308637604117393, 0.1675168126821518, -0.1265561729669571, 0.08566603809595108, 0.08352851867675781, -0.1436561793088913, 0.1040310338139534, 0.037031132727861404, -0.2828957438468933, 0.037736326456069946, 0.018715353682637215, -0.08662837743759155, 0.1736387461423874, 0.057774435728788376, 0.10736828297376633, -0.0020750181283801794, -0.017332032322883606, 0.025729944929480553, 0.00951483752578497, 0.035358451306819916, -0.04745930805802345, 0.05888277664780617, 0.07263518124818802, 0.1186579093337059, 0.04750456288456917, -0.014937471598386765, -0.023187048733234406, -0.02506321482360363, -0.11245042830705643, -0.14178837835788727, 0.07319536060094833, 0.09087222814559937, -0.01937873102724552, 0.023226529359817505, 0.02833709307014942, 0.14979195594787598, 0.004266437143087387, 0.1222553625702858, 0.1405172348022461, -0.14189322292804718, -0.11375715583562851, -0.06709837913513184, -0.009072634391486645, 0.07457076758146286, -0.049612849950790405, 0.08273176848888397, 0.057603683322668076, 0.05360596254467964, 0.010093438439071178, -0.03555015102028847, -0.09334754198789597, 0.03410955145955086, -0.14373934268951416, -0.05249546095728874, 0.169727623462677, 0.026208022609353065, 0.0310536976903677, -0.008724481798708439, -0.16615746915340424, -0.005279111210256815, -0.06360743194818497, -0.04445092752575874, -0.018744831904768944, -0.07884534448385239, -0.13978876173496246, -0.03059426136314869, -0.13549810647964478, -0.03261387348175049, -0.10369929671287537, 0.1188318058848381, 0.02797693759202957, 0.08618137985467911, -0.12116757035255432, 0.05777360871434212, -0.04055928811430931, -0.11063030362129211, 0.0368322879076004, -0.1156642809510231, 0.010039753280580044, 0.02725675143301487, 0.01596125215291977, -0.11423861235380173, -0.042454689741134644, -0.04837578535079956, 0.1194353923201561, -0.0190789345651865, -0.02166789211332798, 0.07995736598968506, -0.08144627511501312, 0.24082623422145844, -0.12013298273086548, 0.12083324044942856, -0.06012234091758728, -0.049926888197660446, -0.0009539071470499039, 0.007848596200346947, -0.10703778266906738, -0.0781983807682991, 0.0014638180145993829, -0.007334367837756872, -0.03182487562298775, 0.09545937180519104, 0.047352906316518784, -0.04016833379864693, 0.06648225337266922, 0.011481702327728271, 0.025189826264977455, -0.014300440438091755, 0.0621708519756794, 0.16735446453094482, 0.08267147094011307, -0.10302633047103882, -0.07954918593168259, 0.03882785141468048, -0.09157689660787582, 0.011353177018463612, -0.027944667264819145, -0.11059900373220444, 0.03279375657439232, -0.021767310798168182, 0.0748458206653595, -0.27565714716911316, 0.08868517726659775, 0.1035834550857544, 0.036832116544246674, -0.0007496491889469326, 0.040740180760622025, 0.02217964641749859, -0.13149124383926392, 0.0019311830401420593, 0.02049854025244713, 0.0011447025462985039, 0.03833063319325447, 0.10611924529075623, 0.09610620886087418, 0.10757731646299362, -0.09659973531961441, 0.016676882281899452, -0.08961974829435349, -0.01176836621016264, -0.1448945254087448, -0.025826213881373405, 0.026605524122714996, 0.13128513097763062, -0.03964586183428764, -0.13605548441410065, -0.016291419044137, 0.02815917320549488, 0.03551110997796059, 0.13207823038101196, -0.07323919981718063, -0.06968065351247787, 0.020586978644132614, -0.15241049230098724, -0.19795449078083038, 0.11313460022211075, 0.04668409004807472, 0.028751788660883904, 0.08129055052995682, 0.11846175044775009, 0.06725414842367172, -0.1553696095943451, -0.01657184027135372, 0.016717053949832916, -0.13627104461193085, -0.08149192482233047, 0.0004933432792313397, 0.19606037437915802, -0.059690967202186584, 0.0005243849009275436, -0.09515645354986191, 0.06378202140331268, -0.13146959245204926, -0.044754598289728165, -0.07570337504148483, -0.005224451422691345, 0.05088891461491585, 0.0680762529373169, 0.04380635917186737, -0.04323996230959892, -0.02782941423356533, 0.14715392887592316, 0.04335109889507294, -0.05522496998310089, 0.029624203220009804, -0.09202394634485245, 0.034867461770772934, -0.16506808996200562, 0.045446380972862244, -0.07841549068689346, 0.07312136888504028, 0.0038295413833111525, 0.026600142940878868, 0.010905194096267223, 0.14286141097545624, 0.0870765969157219, 0.028465881943702698, -0.023647010326385498, -0.057223111391067505, -0.011948514729738235, 0.021790826693177223, -0.030457014217972755, -0.14145252108573914, -0.014107747934758663, -0.014295000582933426, -0.14804723858833313, -0.1079649105668068, -0.04034671187400818, 0.13640159368515015, 0.0985991582274437, -0.0048408289439976215, 0.045508384704589844, -0.06131180003285408, 0.025417065247893333, -0.00597389554604888, -0.03563570976257324, 0.04367603734135628, -0.028265267610549927, 0.057950783520936966, 0.14701777696609497, -0.020842596888542175, 0.23590393364429474, 0.18169502913951874, -0.36937442421913147, -0.0005247760564088821, 0.09291285276412964, -0.0022706117015331984, 0.02434314787387848, 0.02501792274415493, -0.09305595606565475, 0.03517097607254982, -0.06348317116498947, 0.1192331314086914, -0.02883685566484928, -0.009538362734019756, 0.10071256011724472, 0.006991034373641014, -0.09662840515375137, 0.09958279132843018, 0.09191593527793884, -0.23192991316318512, 0.07385553419589996, 0.17247183620929718, -0.0521995835006237, -0.000547973730135709, 0.029490211978554726, -0.03955154865980148, 0.013236608356237411, 0.011094181798398495, 0.021351486444473267, 0.19965429604053497, -0.3019413948059082, -0.10585557669401169, 0.020029110834002495, -0.08954864740371704, 0.00998604018241167, -0.15262345969676971, 0.03500375524163246, 0.044467221945524216, 0.08229760825634003, -0.03618619218468666, 0.037084225565195084, -0.013586719520390034, 0.08992411941289902, -0.014935196377336979, -0.07683748006820679, 0.027103811502456665, 0.01523579191416502, -0.03460260108113289, 0.14578945934772491, -0.032970231026411057, -0.3903217315673828, -0.13361625373363495, -0.07926733046770096, 0.05723874270915985, 0.02886442095041275, 0.05680593475699425, -0.16133542358875275, -0.07174216210842133, 0.07736466079950333, 0.1224096417427063, -0.0536315031349659, 0.07943746447563171, 0.0021375976502895355, 0.02938428521156311, 0.013763684779405594, -0.05983838438987732, -0.008363328874111176, -0.07941952347755432, 0.03450043126940727, 0.05035318806767464, -0.023896606639027596, 0.16054745018482208, 0.07045134902000427, -0.07328590005636215, 0.05434417724609375, -0.015385176055133343, 0.18853914737701416, -0.1250857710838318, -0.005968042183667421, 0.20560549199581146, 0.005718360189348459, 0.008920201100409031, 0.11543694883584976, 0.05739555135369301, -0.06807731091976166, -0.018741702660918236, -0.09945327043533325, -0.06573089212179184, -0.05290261283516884, -0.016593588516116142, -0.09915488213300705, 0.020995311439037323, 0.14304092526435852, 0.0370878130197525, 0.020173130556941032, 0.08192387968301773, 0.008586354553699493, 0.07798557728528976, -0.015631049871444702, 0.12458840757608414, 0.35686519742012024, -0.06705600768327713, 0.058593884110450745, -0.05633668974041939, -0.13365721702575684, 0.026323875412344933, -0.045899465680122375, 0.15833063423633575, -0.0019648971501737833, -0.01647619530558586, 0.03914817422628403, 0.011849291622638702, 0.10239625722169876, 0.1356629878282547, -0.03531400486826897, -0.037550825625658035, -0.014293302781879902, -0.06545861810445786, 0.02011430263519287, 0.03562057390809059, -0.009534506127238274, 0.015592356212437153, -0.060950975865125656, -0.09825137257575989, 0.07094094157218933, 0.025206314399838448, 0.14077192544937134, -0.31804919242858887, -0.04814401641488075, -0.034834738820791245, -0.05805264413356781, -0.1341630220413208, 0.019780507311224937, 0.10039069503545761, 0.0022765249013900757, -0.002875675680115819, -0.1142016053199768, 0.08159848302602768, -0.04743747040629387, 0.08656276017427444, 0.025102103129029274, -0.04654378071427345, 0.03638439252972603, 0.03201509267091751, -0.1968912035226822, 0.20562182366847992, -0.027103601023554802, -0.02036663331091404, -0.0071510751731693745, -0.06230548396706581, -0.025365009903907776, 0.24049769341945648, 0.044268589466810226, 0.008802169002592564, 0.2526678144931793, -0.09018368273973465, 0.09287186712026596, 0.041872356086969376, 0.0941595733165741, 0.06658021360635757, -0.02256842702627182, -0.018865706399083138, -0.051651597023010254, 0.021244382485747337, 0.04161995276808739, 0.025295989587903023, -0.07984425127506256, 0.02420821227133274, -0.04797444865107536, 0.12658090889453888, -0.014179225079715252, -0.06284205615520477, -0.017701447010040283, 0.016059646382927895, 0.018666543066501617, 0.017911763861775398, -0.07336882501840591, 0.12710930407047272, 0.10411018133163452, -0.07516094297170639, 0.15200109779834747, -0.07363846153020859, 0.054071877151727676, -0.012287824414670467, -0.11421868950128555, 0.0737617239356041, -0.10101234167814255, 0.008589384146034718, 0.009725364856421947, 0.048048704862594604, -0.06173728406429291, -0.036648940294981, 0.010401072911918163, 0.030163690447807312, -0.1046823039650917, -0.014222372323274612, 0.014859087765216827, -0.08500391989946365, -0.09533684700727463, -0.021384358406066895, 0.0927453264594078, 0.006677646189928055, -0.06574540585279465, 0.05331050977110863, 0.05413667857646942, 0.01990833692252636, -0.06482091546058655, -0.07075868546962738, 0.11238754540681839, 0.023106733337044716, -0.2632106840610504, 0.008727994747459888, -0.0033704128582030535, -0.011982566677033901, -0.09201271086931229, -0.0014865888515487313, 0.13790251314640045, -0.08870366960763931, 0.00291324220597744, 0.052081406116485596, -0.15582425892353058, -0.06668809801340103, 0.09863737225532532, 0.16781282424926758, 0.19400052726268768, -0.10197769850492477, 0.01538455206900835, 0.007302889600396156, -0.1279958039522171, 0.04516080021858215, 0.18285496532917023, 0.07481245696544647, -0.023834219202399254, 0.008261655457317829, 0.019623497501015663, -0.05074397101998329, 0.055981725454330444, -0.08129551261663437, 0.006191486492753029, -0.06179133057594299, -0.13130225241184235, 0.08741707354784012, 0.03701013699173927, -0.019494932144880295, 0.1895236372947693, 0.08216658234596252, 0.02631107158958912, -0.006332125049084425, -0.10733357816934586, 0.037955351173877716, 0.01279736403375864, -0.03582966700196266, -0.05896512046456337, -0.03661045804619789, -0.05647370219230652, -0.013242232613265514, 0.20380006730556488, 0.0258068535476923, -0.05299237743020058, -0.013896249234676361, 0.03689327463507652, -0.14838068187236786, -0.1952512413263321, 0.00022861485194880515, -0.046670008450746536, 0.1821841448545456, -0.15761320292949677, 0.047089651226997375, 0.10332828760147095, 0.07175082713365555, -0.014437705278396606, 0.11489695310592651, -0.00788824912160635, -0.0015684590907767415, 0.12505877017974854, -0.10553291440010071, -0.07694723457098007, -0.11594385653734207, 0.09393592923879623, 0.1096002459526062, 0.18905417621135712, 0.13157588243484497, -0.12623025476932526, -0.003094198415055871, 0.0015930653316900134, -0.0829746350646019, -0.040064990520477295, 0.08159182965755463, 0.09308081120252609, 0.04645519331097603, -0.09607317298650742, -0.034224845468997955, 0.0006705572013743222, -0.2712674140930176, -0.09816762059926987, 0.08237843960523605, -0.06594288349151611, -0.060154665261507034, 0.05304987356066704, -0.09563387185335159, -0.16823947429656982, -0.03688744083046913, -0.057223375886678696, -0.11927040666341782, 0.09713008999824524, 0.24802543222904205, 0.08631128817796707, 0.0495629757642746, -0.08841699361801147, 0.09158435463905334, -0.07526376843452454, 0.05734074115753174, -0.056158047169446945, 0.13607430458068848, -0.23367814719676971, -0.04080221801996231, 0.020731709897518158, 0.1567852646112442, -0.07416278123855591, -0.0027262859512120485, -0.11965028196573257, 0.044337254017591476, -0.049448732286691666, 0.0011833878234028816, 0.0061243269592523575, -0.040869154036045074, -0.006918671075254679, -0.14847634732723236, -0.07733827084302902, 0.03778684511780739, -0.06029719486832619, 0.002733719302341342, 0.043478623032569885, 0.002601365791633725, -0.024527883157134056, -0.011623322032392025, 0.04913649335503578, -0.07478072494268417, 0.06957220286130905, 0.0465446412563324, -0.09524810314178467, 0.10311716794967651, -0.058268215507268906, -0.16128402948379517, 0.14033986628055573, 0.05822603404521942, 0.02539105713367462, 0.062226030975580215, 0.10184583812952042, 0.00481073884293437, 0.04290550574660301, -0.014531251974403858, 0.10981477051973343, -0.04906778410077095, -0.00244286865927279, -0.06359482556581497, -0.05701753497123718, -0.040481578558683395, 0.06227920949459076, 0.02590242587029934, 0.04158462584018707, 0.01904827542603016, -0.021377189084887505, 0.005589830223470926, -0.09126418828964233, 0.01952001266181469, -0.031324468553066254, -0.17178846895694733, -0.014336004853248596, -0.0676756203174591, 0.027562400326132774, -0.030643180012702942, 0.06025378778576851, 0.010275793261826038, 0.023593492805957794, 0.04340748488903046, 0.18925321102142334, -0.13561972975730896, 0.049679357558488846, 0.18689368665218353, 0.03041676990687847, 0.02066098153591156, -0.036023691296577454, 0.08309945464134216, 0.08913391083478928, 0.10532168298959732, -0.07692158967256546, 0.09435378760099411, -0.10999289900064468, 0.08048996329307556, 0.12410151958465576, 0.11144527792930603, -0.14824967086315155, -0.1449112892150879, -0.039266061037778854, 0.08138454705476761, -0.058238495141267776, 0.03959687054157257, 0.20079825818538666, 0.07309737056493759, 0.04881620407104492, -0.00991613045334816, -0.04031236842274666, 0.030649125576019287, -0.1096365675330162, -0.0741196796298027, -0.16688276827335358, 0.0413590669631958, -0.03983164206147194, 0.007515369448810816, 0.045878682285547256, 0.051270436495542526, -0.049672093242406845, 0.21052968502044678, 0.19109995663166046, -0.08998314291238785, 0.1088838204741478, -0.0032592937350273132, 0.007237256970256567, 0.04796505346894264, 0.0762820914387703, -0.03779762610793114, 0.04127353057265282, -0.053602010011672974, 0.004898035898804665, -0.02103767730295658, -0.01793014071881771, 0.01192194502800703, -0.07348611950874329, -0.030386870726943016, 0.011784314177930355, -0.029424527660012245, -0.013268324546515942, -0.041811753064394, -0.029232608154416084, -0.00627682963386178, 0.18872737884521484, -0.0757070928812027, -0.12902875244617462, -0.04167109355330467, 0.1800389289855957, -0.04225505515933037, 0.07515785843133926, -0.03917669877409935, -0.03750251606106758, -0.09451636672019958, 0.32280561327934265, 0.16689689457416534, -0.004794361535459757, -0.01859363541007042, 0.07823163270950317, 0.021807944402098656, -0.0016316752880811691, 0.1260562390089035, 0.07493024319410324, 0.20483696460723877, -0.07844679057598114, -0.01639673113822937, -0.09268101304769516, 0.057015310972929, 0.006536492612212896, -0.026507647708058357, 0.14425577223300934, -0.02651367336511612, -0.10610321909189224, 0.10189417749643326, 0.05009336769580841, -0.011822284199297428, 0.07756441086530685, -0.1688603162765503, -0.016156794503331184, -0.05157199129462242, 0.17592298984527588, -0.0070473686791956425, 0.04891301691532135, -0.060162950307130814, -0.043441783636808395, 0.0061578708700835705, 0.039304282516241074, -0.18470512330532074, -0.022011421620845795, 0.06049402430653572, -0.2013952136039734, 0.01650405116379261, -0.08725589513778687, -0.0006266962736845016, 0.07321681827306747, 0.02260851114988327, -0.019135504961013794, -0.0375540517270565, -0.02886962890625, -0.14937655627727509, -0.00026523927226662636, 0.10203296691179276, 0.021182650700211525, -0.017957914620637894, -0.036744456738233566, -0.19373172521591187, -0.02069091610610485, 0.013536269776523113, 0.01390161830931902, -0.036066487431526184, 0.01107962429523468, -0.03741006180644035, 0.0259200781583786, 0.06484300643205643, -0.01119320373982191, -0.04756451025605202, -0.09208375215530396, -0.04256587103009224, 0.10877037793397903, -0.0021873824298381805, 0.0390862412750721, -0.08575441688299179, -0.090939961373806, -0.13117708265781403, -0.00023881687957327813, -0.03477345034480095, -0.08483544737100601, -0.01896015554666519, -0.01943679340183735, -0.05255847051739693, 0.04045439511537552, 0.09918605536222458, -0.029970968142151833, 0.0035643961746245623, -0.0295222420245409, -0.007092474494129419, 0.12505340576171875, -0.09030341356992722, -0.05248270556330681 ]
null
null
transformers
# vit_base_patch16_384 Implementation of Vision Transformer (ViT) proposed in [An Image Is Worth 16x16 Words: Transformers For Image Recognition At Scale](https://arxiv.org/pdf/2010.11929.pdf) The following image from the authors shows the architecture. ![image](https://github.com/FrancescoSaverioZuppichini/glasses/blob/develop/docs/_static/images/ViT.png?raw=true) ``` python ViT.vit_small_patch16_224() ViT.vit_base_patch16_224() ViT.vit_base_patch16_384() ViT.vit_base_patch32_384() ViT.vit_huge_patch16_224() ViT.vit_huge_patch32_384() ViT.vit_large_patch16_224() ViT.vit_large_patch16_384() ViT.vit_large_patch32_384() ``` Examples: ``` python # change activation ViT.vit_base_patch16_224(activation = nn.SELU) # change number of classes (default is 1000 ) ViT.vit_base_patch16_224(n_classes=100) # pass a different block, default is TransformerEncoderBlock ViT.vit_base_patch16_224(block=MyCoolTransformerBlock) # get features model = ViT.vit_base_patch16_224 # first call .features, this will activate the forward hooks and tells the model you'll like to get the features model.encoder.features model(torch.randn((1,3,224,224))) # get the features from the encoder features = model.encoder.features print([x.shape for x in features]) #[[torch.Size([1, 197, 768]), torch.Size([1, 197, 768]), ...] # change the tokens, you have to subclass ViTTokens class MyTokens(ViTTokens): def __init__(self, emb_size: int): super().__init__(emb_size) self.my_new_token = nn.Parameter(torch.randn(1, 1, emb_size)) ViT(tokens=MyTokens) ```
{}
null
glasses/vit_base_patch16_384
[ "transformers", "pytorch", "arxiv:2010.11929", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[ "2010.11929" ]
[]
TAGS #transformers #pytorch #arxiv-2010.11929 #endpoints_compatible #region-us
# vit_base_patch16_384 Implementation of Vision Transformer (ViT) proposed in An Image Is Worth 16x16 Words: Transformers For Image Recognition At Scale The following image from the authors shows the architecture. !image Examples:
[ "# vit_base_patch16_384\n Implementation of Vision Transformer (ViT) proposed in An Image Is\n Worth 16x16 Words: Transformers For Image Recognition At\n Scale\n\n The following image from the authors shows the architecture.\n\n !image\n\n \n\n Examples:" ]
[ "TAGS\n#transformers #pytorch #arxiv-2010.11929 #endpoints_compatible #region-us \n", "# vit_base_patch16_384\n Implementation of Vision Transformer (ViT) proposed in An Image Is\n Worth 16x16 Words: Transformers For Image Recognition At\n Scale\n\n The following image from the authors shows the architecture.\n\n !image\n\n \n\n Examples:" ]
[ 29, 62 ]
[ "passage: TAGS\n#transformers #pytorch #arxiv-2010.11929 #endpoints_compatible #region-us \n# vit_base_patch16_384\n Implementation of Vision Transformer (ViT) proposed in An Image Is\n Worth 16x16 Words: Transformers For Image Recognition At\n Scale\n\n The following image from the authors shows the architecture.\n\n !image\n\n \n\n Examples:" ]
[ -0.08170054852962494, -0.1267194002866745, -0.005548109300434589, 0.08406737446784973, 0.1522759050130844, 0.018372509628534317, 0.04906836897134781, 0.019201574847102165, -0.05949369817972183, 0.018078656867146492, 0.12393990904092789, 0.16962139308452606, -0.006644026376307011, -0.010209368541836739, 0.0027544680051505566, -0.31642118096351624, -0.03476104140281677, 0.16421380639076233, -0.11451398581266403, 0.08466704189777374, 0.08767242729663849, -0.13797423243522644, 0.1074213832616806, 0.037458740174770355, -0.2756783664226532, 0.037118393927812576, 0.019348254427313805, -0.08595983684062958, 0.17415253818035126, 0.05413509160280228, 0.10464566946029663, -0.0007025640807114542, -0.022256217896938324, 0.026998329907655716, 0.009801739826798439, 0.03455685079097748, -0.04793772101402283, 0.05626395344734192, 0.06992415338754654, 0.12367448955774307, 0.07053636014461517, -0.02085486426949501, -0.023104365915060043, -0.021351279690861702, -0.11310839653015137, -0.12824107706546783, 0.06799191236495972, 0.08977601677179337, -0.017423229292035103, 0.018524188548326492, 0.0240341629832983, 0.1516137421131134, 0.001578336930833757, 0.1231226846575737, 0.13903634250164032, -0.15564164519309998, -0.1142585277557373, -0.04915294796228409, -0.013061079196631908, 0.08142872154712677, -0.0493781603872776, 0.08924612402915955, 0.06458570808172226, 0.05133776366710663, 0.0025800378061830997, -0.036733075976371765, -0.08828338980674744, 0.02868751809000969, -0.14358288049697876, -0.05223126709461212, 0.1728803962469101, 0.032173652201890945, 0.028085079044103622, -0.017434891313314438, -0.1681196242570877, -0.005694412160664797, -0.06079839542508125, -0.04617905244231224, -0.01913057453930378, -0.07632419466972351, -0.1312820315361023, -0.03528750315308571, -0.14038489758968353, -0.028739066794514656, -0.10537688434123993, 0.09748202562332153, 0.027487656101584435, 0.08388727158308029, -0.11559578776359558, 0.06331970542669296, -0.05387992039322853, -0.11370878666639328, 0.029116390272974968, -0.12054397910833359, 0.01409556157886982, 0.021856317296624184, 0.01928595080971718, -0.12343554198741913, -0.0468171127140522, -0.055590249598026276, 0.12780655920505524, -0.01589307002723217, -0.03179676830768585, 0.08133441209793091, -0.08215783536434174, 0.2380831241607666, -0.11579793691635132, 0.11232656985521317, -0.057864345610141754, -0.052697181701660156, 0.00488639809191227, 0.007400521542876959, -0.10823438316583633, -0.08057630807161331, -0.005203209351748228, -0.007440291810780764, -0.03376496955752373, 0.09584944695234299, 0.04733498394489288, -0.03695053979754448, 0.06812532246112823, 0.015963295474648476, 0.021213356405496597, -0.017163321375846863, 0.06055348366498947, 0.17143115401268005, 0.08895830065011978, -0.1010841354727745, -0.07756432145833969, 0.03431371599435806, -0.09134373068809509, 0.01094971876591444, -0.023992493748664856, -0.1085536926984787, 0.03319163993000984, -0.020725294947624207, 0.0749492421746254, -0.27987924218177795, 0.08855631202459335, 0.10598606616258621, 0.03307950869202614, -0.0064547364600002766, 0.04160285368561745, 0.021023575216531754, -0.13002930581569672, 0.0021144640631973743, 0.024748312309384346, 0.002874556230381131, 0.03682743012905121, 0.10199014842510223, 0.08937544375658035, 0.1063520610332489, -0.08861971646547318, 0.012770409695804119, -0.08474093675613403, -0.01335929799824953, -0.15083883702754974, -0.018980324268341064, 0.02863421104848385, 0.13560491800308228, -0.042057085782289505, -0.1427963376045227, -0.01905164308845997, 0.024640927091240883, 0.029949117451906204, 0.1410588175058365, -0.08294088393449783, -0.06341125071048737, 0.021791644394397736, -0.1459175944328308, -0.19842469692230225, 0.11977482587099075, 0.042064424604177475, 0.03891652077436447, 0.08237277716398239, 0.12078577280044556, 0.07426360994577408, -0.162376269698143, -0.01579340174794197, 0.026029439643025398, -0.1311749815940857, -0.07544711977243423, -0.0031562328804284334, 0.18869048357009888, -0.0551561638712883, -0.003902031807228923, -0.0837021917104721, 0.0554375946521759, -0.12701629102230072, -0.042725980281829834, -0.07538986206054688, -0.005434600170701742, 0.05123045668005943, 0.06446796655654907, 0.04590623080730438, -0.04781360551714897, -0.031316451728343964, 0.12989281117916107, 0.04300835356116295, -0.049031008034944534, 0.033486172556877136, -0.08818908780813217, 0.033286966383457184, -0.16284975409507751, 0.041716575622558594, -0.07503461092710495, 0.07336314767599106, 0.00872568879276514, 0.023442961275577545, 0.014940578490495682, 0.15796631574630737, 0.08911430835723877, 0.028510194271802902, -0.030490752309560776, -0.05041947215795517, -0.011463731527328491, 0.02093685418367386, -0.028686661273241043, -0.13822446763515472, -0.010854212567210197, -0.011903983540832996, -0.14689235389232635, -0.10225141793489456, -0.04055524989962578, 0.14614617824554443, 0.09852159768342972, -0.003802200313657522, 0.042535826563835144, -0.05468617379665375, 0.01938779093325138, -0.008804443292319775, -0.040627650916576385, 0.037937287241220474, -0.026744667440652847, 0.05265352502465248, 0.13771522045135498, -0.01544562354683876, 0.21578460931777954, 0.1802423745393753, -0.36201950907707214, -0.00817095022648573, 0.09496379643678665, -0.0004150616587139666, 0.0255891066044569, 0.02461107447743416, -0.09224524348974228, 0.03731251880526543, -0.06517963111400604, 0.11692196875810623, -0.029405873268842697, -0.009601895697414875, 0.10153600573539734, 0.009891526773571968, -0.09809857606887817, 0.09728424996137619, 0.08704172074794769, -0.23664554953575134, 0.06886201351881027, 0.16644690930843353, -0.046787329018116, -0.004720371216535568, 0.03178934007883072, -0.04017830267548561, 0.013992523774504662, 0.016975877806544304, 0.02595970220863819, 0.19075413048267365, -0.30978038907051086, -0.10221435874700546, 0.020934460684657097, -0.08154111355543137, 0.007201838307082653, -0.1510920524597168, 0.034619081765413284, 0.0469118133187294, 0.08139421045780182, -0.03978220745921135, 0.04293489083647728, -0.015020925551652908, 0.0927731990814209, -0.0133305499330163, -0.07277409732341766, 0.025475777685642242, 0.013584147207438946, -0.03327731415629387, 0.14813430607318878, -0.030183566734194756, -0.378915011882782, -0.1368064284324646, -0.08889199048280716, 0.05505965277552605, 0.028635507449507713, 0.05881278216838837, -0.16393980383872986, -0.06894390285015106, 0.0722259134054184, 0.12682786583900452, -0.05118655785918236, 0.0832829549908638, -0.000768908066675067, 0.027742797508835793, 0.00951340701431036, -0.06284061074256897, -0.009979154914617538, -0.08135239779949188, 0.03124961443245411, 0.04530616104602814, -0.02923310175538063, 0.15861481428146362, 0.07591624557971954, -0.07061495631933212, 0.05304008349776268, -0.018714526668190956, 0.19247475266456604, -0.12603779137134552, 0.0033074950333684683, 0.20444218814373016, 0.008865410462021828, 0.008957931771874428, 0.12102697044610977, 0.056544285267591476, -0.07313785701990128, -0.013970404863357544, -0.09857052564620972, -0.06818043440580368, -0.06019454076886177, -0.01226338092237711, -0.10517142713069916, 0.02300993725657463, 0.1409502476453781, 0.03666268289089203, 0.021724626421928406, 0.08124648779630661, 0.008852074854075909, 0.08747109770774841, -0.008802606724202633, 0.1254989206790924, 0.3509695827960968, -0.07056792080402374, 0.053728681057691574, -0.06176326051354408, -0.1271413415670395, 0.03062979318201542, -0.05241939797997475, 0.1538362354040146, -0.009541514329612255, -0.012423846870660782, 0.04221397638320923, 0.014811909757554531, 0.09921146929264069, 0.13257235288619995, -0.03529473766684532, -0.03866015002131462, -0.013498580083251, -0.06553283333778381, 0.023849546909332275, 0.03909236565232277, -0.005327877122908831, 0.019729262217879295, -0.06038626283407211, -0.09312442690134048, 0.06840717792510986, 0.02768615260720253, 0.15338249504566193, -0.3107846677303314, -0.04609968885779381, -0.028162701055407524, -0.05186537280678749, -0.138665109872818, 0.02321316860616207, 0.09395474195480347, 0.0037965665105730295, 0.009760755114257336, -0.11108631640672684, 0.07901667058467865, -0.05114399641752243, 0.082942433655262, 0.022805919870734215, -0.051017094403505325, 0.03077368065714836, 0.0285838283598423, -0.2054302841424942, 0.20722271502017975, -0.027527011930942535, -0.020973410457372665, -0.010311026126146317, -0.058951202780008316, -0.024645861238241196, 0.24490153789520264, 0.049158137291669846, 0.008127374574542046, 0.2502955496311188, -0.08035772293806076, 0.0922771543264389, 0.034158457070589066, 0.09489496052265167, 0.065786212682724, -0.027760598808526993, -0.015450761653482914, -0.04782459884881973, 0.020013226196169853, 0.049171287566423416, 0.02419457770884037, -0.08014074712991714, 0.02477959543466568, -0.049406249076128006, 0.11919594556093216, -0.013528888113796711, -0.06264596432447433, -0.017812101170420647, 0.030397025868296623, 0.012513130903244019, 0.016528308391571045, -0.06942230463027954, 0.12661674618721008, 0.1043054461479187, -0.07588978111743927, 0.1535670906305313, -0.0755017027258873, 0.05442513898015022, -0.01532331295311451, -0.11056119948625565, 0.07193510979413986, -0.09725458920001984, 0.010608932003378868, 0.010641070082783699, 0.05316195636987686, -0.0673186182975769, -0.03132083639502525, 0.010706363245844841, 0.026189904659986496, -0.10089221596717834, -0.013114990666508675, 0.017011750489473343, -0.08687654137611389, -0.09923608601093292, -0.015789348632097244, 0.09797128289937973, 0.002697035437449813, -0.06776492297649384, 0.05174895003437996, 0.05168911814689636, 0.0313829705119133, -0.06362446397542953, -0.07454933226108551, 0.10505034774541855, 0.02306387387216091, -0.2540896236896515, 0.017348503693938255, -0.007765074726194143, -0.011699825525283813, -0.08834011852741241, 0.008487884886562824, 0.12817825376987457, -0.09374898672103882, 0.00394513551145792, 0.0501287616789341, -0.1614934653043747, -0.07299347221851349, 0.09573729336261749, 0.16229182481765747, 0.1984434574842453, -0.1012340560555458, 0.01427371334284544, 0.012020600028336048, -0.14171403646469116, 0.02765481360256672, 0.17991888523101807, 0.07570034265518188, -0.018705150112509727, 0.015350187197327614, 0.019789831712841988, -0.05137931928038597, 0.06219249591231346, -0.07645643502473831, 0.0036431581247597933, -0.06685829907655716, -0.12852559983730316, 0.08198472857475281, 0.035192523151636124, -0.019473576918244362, 0.19593757390975952, 0.07799189537763596, 0.028618140146136284, -0.003994110506027937, -0.10560183972120285, 0.034494347870349884, 0.0075278934091329575, -0.04180166870355606, -0.06676465272903442, -0.03455449640750885, -0.054039936512708664, -0.016514930874109268, 0.20484024286270142, 0.0236330758780241, -0.048272229731082916, -0.013933788053691387, 0.0378694124519825, -0.14906218647956848, -0.19611535966396332, 0.0005159855936653912, -0.04585888609290123, 0.17807909846305847, -0.16959206759929657, 0.0446903333067894, 0.09976805001497269, 0.0691310465335846, -0.010775626637041569, 0.11277667433023453, -0.015232856385409832, 0.008993140421807766, 0.1266239583492279, -0.09973372519016266, -0.0817885473370552, -0.11497240513563156, 0.08172274380922318, 0.10420848429203033, 0.18126221001148224, 0.13403303921222687, -0.13046124577522278, 0.002714060479775071, 0.0009367059683427215, -0.0824294313788414, -0.04564732685685158, 0.07847122102975845, 0.09188123792409897, 0.04537556320428848, -0.0941312313079834, -0.033317647874355316, 0.000872203556355089, -0.26951470971107483, -0.1005001962184906, 0.08055587857961655, -0.06798364967107773, -0.05894367769360542, 0.055821944028139114, -0.10575217008590698, -0.16080962121486664, -0.02782433107495308, -0.0538305789232254, -0.12175031006336212, 0.09298326820135117, 0.23802851140499115, 0.08631403744220734, 0.05347499996423721, -0.09417522698640823, 0.0896589457988739, -0.07575687021017075, 0.051989585161209106, -0.05461524799466133, 0.13526487350463867, -0.23524215817451477, -0.03930239379405975, 0.020257286727428436, 0.15500684082508087, -0.07344608008861542, 0.0008925840957090259, -0.11233504116535187, 0.04330301284790039, -0.047757674008607864, 0.0029001752845942974, 0.006750789005309343, -0.038874197751283646, -0.009240766987204552, -0.1482819765806198, -0.08055900782346725, 0.03977233171463013, -0.05757047235965729, 0.004160759504884481, 0.04360249638557434, 0.008139703422784805, -0.020803192630410194, -0.011614455841481686, 0.049575164914131165, -0.07613622397184372, 0.07024050503969193, 0.03373408690094948, -0.10215716809034348, 0.11056245863437653, -0.061019547283649445, -0.15455113351345062, 0.14690062403678894, 0.05811607837677002, 0.024362782016396523, 0.07273366302251816, 0.10091929137706757, -0.0002545184106566012, 0.04054797440767288, -0.014509143307805061, 0.09899193793535233, -0.04681380093097687, -0.0077391318045556545, -0.0633026733994484, -0.05441254749894142, -0.04005574434995651, 0.0641314685344696, 0.02382410131394863, 0.03727901726961136, 0.01656210608780384, -0.021852169185876846, 0.006546492222696543, -0.09166830778121948, 0.014617356471717358, -0.030920149758458138, -0.17033472657203674, -0.008764060214161873, -0.07462967187166214, 0.030104471370577812, -0.028182094916701317, 0.06014356017112732, 0.009707498364150524, 0.021659351885318756, 0.045701779425144196, 0.19338160753250122, -0.1305190622806549, 0.04657316207885742, 0.18629708886146545, 0.028605682775378227, 0.01623416878283024, -0.03912713751196861, 0.0845697671175003, 0.09005231410264969, 0.10553744435310364, -0.06435675173997879, 0.0920850932598114, -0.11151143163442612, 0.08096154779195786, 0.11466829478740692, 0.11342470347881317, -0.14776362478733063, -0.1431904435157776, -0.03630616143345833, 0.08476708084344864, -0.06002085655927658, 0.019385477527976036, 0.19877244532108307, 0.06701754033565521, 0.04742811247706413, -0.00596894696354866, -0.040002111345529556, 0.023032961413264275, -0.10489174723625183, -0.07463234663009644, -0.16339486837387085, 0.04485562443733215, -0.03599654883146286, 0.011688504368066788, 0.04258085414767265, 0.05541544407606125, -0.051639702171087265, 0.21450355648994446, 0.17768269777297974, -0.09160952270030975, 0.11504901945590973, -0.001737660146318376, 0.007304520346224308, 0.04435737431049347, 0.07319839298725128, -0.039456557482481, 0.03310583159327507, -0.05607840418815613, 0.0003705608251038939, -0.022310899570584297, -0.020990075543522835, 0.009090053848922253, -0.07150210440158844, -0.030252059921622276, 0.011771979741752148, -0.029540201649069786, -0.011314652860164642, -0.03805723041296005, -0.03156980499625206, -0.007497879676520824, 0.18522098660469055, -0.07334384322166443, -0.1280219852924347, -0.046253446489572525, 0.1796732097864151, -0.04008076339960098, 0.07475841045379639, -0.03755338862538338, -0.038040872663259506, -0.09138092398643494, 0.32296934723854065, 0.16931544244289398, -0.0012969647068530321, -0.019167093560099602, 0.08041433244943619, 0.023127835243940353, 0.0009153112187050283, 0.13013294339179993, 0.07421572506427765, 0.19963040947914124, -0.07483792304992676, -0.0077658602967858315, -0.08928410708904266, 0.053305190056562424, 0.005589186679571867, -0.023048365488648415, 0.145967036485672, -0.024775611236691475, -0.10186434537172318, 0.10736146569252014, 0.05436987057328224, -0.013292749412357807, 0.08462157100439072, -0.17380854487419128, -0.017723385244607925, -0.048745159059762955, 0.1768840253353119, -0.000461419636849314, 0.05011220648884773, -0.05980493128299713, -0.04773898050189018, 0.010267466306686401, 0.040366280823946, -0.18240724503993988, -0.025331152603030205, 0.05858362093567848, -0.19957901537418365, 0.018381236121058464, -0.08635364472866058, -0.005604221485555172, 0.07570090144872665, 0.02059720642864704, -0.014971363358199596, -0.037486813962459564, -0.023193353787064552, -0.14454522728919983, 0.0037710946053266525, 0.10342874377965927, 0.017019890248775482, -0.021123379468917847, -0.034336552023887634, -0.19603438675403595, -0.01784302294254303, 0.006956105586141348, 0.012677265331149101, -0.03996654972434044, 0.016185212880373, -0.03876912221312523, 0.02739311009645462, 0.07005469501018524, -0.01246192678809166, -0.045033443719148636, -0.08931431919336319, -0.04599737003445625, 0.10886498540639877, 0.0062482417561113834, 0.040710821747779846, -0.08122934401035309, -0.09322502464056015, -0.13285329937934875, 0.0022453467827290297, -0.042435530573129654, -0.08913646638393402, -0.018828459084033966, -0.015293077565729618, -0.062490519136190414, 0.04501169174909592, 0.10015180706977844, -0.03167208284139633, 0.005261406302452087, -0.034954749047756195, -0.010762232355773449, 0.12514449656009674, -0.0917164534330368, -0.05198075622320175 ]
null
null
transformers
# vit_huge_patch16_224 Implementation of Vision Transformer (ViT) proposed in [An Image Is Worth 16x16 Words: Transformers For Image Recognition At Scale](https://arxiv.org/pdf/2010.11929.pdf) The following image from the authors shows the architecture. ![image](https://github.com/FrancescoSaverioZuppichini/glasses/blob/develop/docs/_static/images/ViT.png?raw=true) ``` python ViT.vit_small_patch16_224() ViT.vit_base_patch16_224() ViT.vit_base_patch16_384() ViT.vit_base_patch32_384() ViT.vit_huge_patch16_224() ViT.vit_huge_patch32_384() ViT.vit_large_patch16_224() ViT.vit_large_patch16_384() ViT.vit_large_patch32_384() ``` Examples: ``` python # change activation ViT.vit_base_patch16_224(activation = nn.SELU) # change number of classes (default is 1000 ) ViT.vit_base_patch16_224(n_classes=100) # pass a different block, default is TransformerEncoderBlock ViT.vit_base_patch16_224(block=MyCoolTransformerBlock) # get features model = ViT.vit_base_patch16_224 # first call .features, this will activate the forward hooks and tells the model you'll like to get the features model.encoder.features model(torch.randn((1,3,224,224))) # get the features from the encoder features = model.encoder.features print([x.shape for x in features]) #[[torch.Size([1, 197, 768]), torch.Size([1, 197, 768]), ...] # change the tokens, you have to subclass ViTTokens class MyTokens(ViTTokens): def __init__(self, emb_size: int): super().__init__(emb_size) self.my_new_token = nn.Parameter(torch.randn(1, 1, emb_size)) ViT(tokens=MyTokens) ```
{}
null
glasses/vit_huge_patch16_224
[ "transformers", "pytorch", "arxiv:2010.11929", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[ "2010.11929" ]
[]
TAGS #transformers #pytorch #arxiv-2010.11929 #endpoints_compatible #region-us
# vit_huge_patch16_224 Implementation of Vision Transformer (ViT) proposed in An Image Is Worth 16x16 Words: Transformers For Image Recognition At Scale The following image from the authors shows the architecture. !image Examples:
[ "# vit_huge_patch16_224\n Implementation of Vision Transformer (ViT) proposed in An Image Is\n Worth 16x16 Words: Transformers For Image Recognition At\n Scale\n\n The following image from the authors shows the architecture.\n\n !image\n\n \n\n Examples:" ]
[ "TAGS\n#transformers #pytorch #arxiv-2010.11929 #endpoints_compatible #region-us \n", "# vit_huge_patch16_224\n Implementation of Vision Transformer (ViT) proposed in An Image Is\n Worth 16x16 Words: Transformers For Image Recognition At\n Scale\n\n The following image from the authors shows the architecture.\n\n !image\n\n \n\n Examples:" ]
[ 29, 64 ]
[ "passage: TAGS\n#transformers #pytorch #arxiv-2010.11929 #endpoints_compatible #region-us \n# vit_huge_patch16_224\n Implementation of Vision Transformer (ViT) proposed in An Image Is\n Worth 16x16 Words: Transformers For Image Recognition At\n Scale\n\n The following image from the authors shows the architecture.\n\n !image\n\n \n\n Examples:" ]
[ -0.07955396175384521, -0.12608379125595093, -0.006179355550557375, 0.08355163037776947, 0.16097573935985565, 0.010560628958046436, 0.047906551510095596, 0.010279656387865543, -0.05338799208402634, 0.01987811177968979, 0.13631419837474823, 0.17251065373420715, -0.013467931188642979, -0.006117361132055521, 0.005620485637336969, -0.31455105543136597, -0.03564884141087532, 0.16201376914978027, -0.15067049860954285, 0.08697585761547089, 0.08107032626867294, -0.15111008286476135, 0.10651998221874237, 0.034883640706539154, -0.2811044454574585, 0.027975313365459442, 0.017112400382757187, -0.08389671891927719, 0.16687478125095367, 0.05853681638836861, 0.10012619942426682, -0.0033625278156250715, -0.02721220627427101, 0.030375182628631592, 0.009341707453131676, 0.02867334894835949, -0.0357276126742363, 0.055984172970056534, 0.08559256792068481, 0.13643722236156464, 0.04855216294527054, -0.031654562801122665, -0.024378687143325806, -0.021529408171772957, -0.10671956837177277, -0.1425074338912964, 0.0652194544672966, 0.08310740441083908, -0.042322032153606415, 0.023916466161608696, 0.029281262308359146, 0.16340327262878418, -0.0032187392935156822, 0.11892296373844147, 0.14061903953552246, -0.13252466917037964, -0.11133793741464615, -0.06145115941762924, -0.0024399557150900364, 0.0744982361793518, -0.05028882622718811, 0.08569105714559555, 0.06109471246600151, 0.05516355112195015, 0.018309371545910835, -0.04280936345458031, -0.09711915254592896, 0.03193691000342369, -0.14484867453575134, -0.05625137314200401, 0.16022957861423492, 0.025714226067066193, 0.030905023217201233, -0.024125801399350166, -0.1614036113023758, 0.0009444552706554532, -0.05577393248677254, -0.043975379317998886, -0.008042078465223312, -0.08890560269355774, -0.1412419080734253, -0.03341096639633179, -0.14120395481586456, -0.026628319174051285, -0.11968354880809784, 0.12342219054698944, 0.02942562662065029, 0.08734969794750214, -0.1331489533185959, 0.045613765716552734, -0.030528640374541283, -0.10493103414773941, 0.03530639782547951, -0.1156710609793663, 0.00998042244464159, 0.02876114286482334, 0.017548711970448494, -0.11714225262403488, -0.03685225546360016, -0.06256311386823654, 0.10382994264364243, -0.024329762905836105, -0.018313724547624588, 0.08466774970293045, -0.07941120862960815, 0.24561156332492828, -0.12644171714782715, 0.13040852546691895, -0.0676848441362381, -0.049399785697460175, -0.001025065896101296, 0.006989007815718651, -0.10172053426504135, -0.08505554497241974, -0.014753314666450024, -0.00012030061043333262, -0.03302284702658653, 0.0965532511472702, 0.047564707696437836, -0.04173431545495987, 0.0494299978017807, 0.01453319564461708, 0.032146044075489044, -0.013450372032821178, 0.06239162012934685, 0.18766741454601288, 0.0678209438920021, -0.1122647300362587, -0.07749910652637482, 0.050369374454021454, -0.09195680916309357, 0.014357076026499271, -0.023302925750613213, -0.1060403361916542, 0.03925151005387306, -0.012947329320013523, 0.07140401005744934, -0.27496138215065, 0.10432077944278717, 0.10694781690835953, 0.025737619027495384, 0.003509087022393942, 0.0393291711807251, 0.03348444774746895, -0.13356606662273407, -0.007184829097241163, 0.02137945406138897, 0.016653884202241898, 0.03931235522031784, 0.11128818243741989, 0.09294191002845764, 0.11203363537788391, -0.100608229637146, 0.011975898407399654, -0.09014502912759781, -0.010065893642604351, -0.13025692105293274, -0.03049742616713047, 0.040322545915842056, 0.13255062699317932, -0.03506304696202278, -0.14537474513053894, -0.01333069521933794, 0.03045075014233589, 0.028453504666686058, 0.1259838044643402, -0.08150137215852737, -0.06977352499961853, 0.034261129796504974, -0.1438681185245514, -0.20305855572223663, 0.12380657345056534, 0.05136305093765259, 0.020912783220410347, 0.08074255287647247, 0.11099554598331451, 0.06195914000272751, -0.14846041798591614, -0.024428382515907288, 0.009857600554823875, -0.14126095175743103, -0.0850621908903122, 0.009155442006886005, 0.19394254684448242, -0.053768694400787354, 0.0012557327281683683, -0.083162821829319, 0.06583429127931595, -0.13034598529338837, -0.03767040744423866, -0.07507269829511642, -0.0043278643861413, 0.03791404142975807, 0.06454932689666748, 0.04183466359972954, -0.05156804621219635, -0.013752814382314682, 0.12344381213188171, 0.0397663339972496, -0.044171761721372604, 0.02947714738547802, -0.09373751282691956, 0.030563298612833023, -0.16312412917613983, 0.04894055053591728, -0.07453187555074692, 0.07835721224546432, 0.005415724124759436, 0.007377767004072666, 0.013468093238770962, 0.15638981759548187, 0.08515314012765884, 0.023188289254903793, -0.021932469680905342, -0.044838808476924896, -0.004485240206122398, 0.012235884554684162, -0.029903411865234375, -0.1255892515182495, 0.0018263726960867643, -0.011176355183124542, -0.1565721333026886, -0.11485395580530167, -0.04324359446763992, 0.14812149107456207, 0.08756188303232193, -0.001262782490812242, 0.04346537962555885, -0.05628828704357147, 0.020498961210250854, -0.005098231136798859, -0.03206482157111168, 0.03773920238018036, -0.03149095177650452, 0.049474287778139114, 0.14683380722999573, -0.02931460365653038, 0.25062185525894165, 0.18505650758743286, -0.3660176992416382, 0.005729358177632093, 0.0812121331691742, -0.005609369371086359, 0.030557353049516678, 0.023814894258975983, -0.08849333971738815, 0.02510880120098591, -0.062146544456481934, 0.12600672245025635, -0.028863899409770966, -0.014781489968299866, 0.10858302563428879, 0.012104125693440437, -0.09500665962696075, 0.10663150250911713, 0.10156474262475967, -0.22337056696414948, 0.07158008962869644, 0.1826847344636917, -0.043997302651405334, 0.007757813204079866, 0.02895997278392315, -0.04126335307955742, 0.010314402170479298, 0.008734675124287605, 0.02396063134074211, 0.18826822936534882, -0.2882034182548523, -0.09948446601629257, 0.029197117313742638, -0.0872022956609726, 0.002362901344895363, -0.146669402718544, 0.028010599315166473, 0.04645470157265663, 0.08527613431215286, -0.043914198875427246, 0.045723412185907364, -0.005271085537970066, 0.09437727183103561, -0.019938277080655098, -0.07441812753677368, 0.023788541555404663, 0.01348149124532938, -0.02581392042338848, 0.14350250363349915, -0.01635301671922207, -0.405844509601593, -0.13184955716133118, -0.07706118375062943, 0.051921673119068146, 0.025986995548009872, 0.053459908813238144, -0.16077680885791779, -0.06837843358516693, 0.07834891229867935, 0.1455368846654892, -0.05851886793971062, 0.08824566006660461, -0.005333306733518839, 0.03345159813761711, 0.01527715940028429, -0.057603418827056885, -0.012391332536935806, -0.07968710362911224, 0.022796060889959335, 0.05282629653811455, -0.015982504934072495, 0.16441713273525238, 0.061239276081323624, -0.07273582369089127, 0.05666643753647804, -0.01407099049538374, 0.17499041557312012, -0.13142098486423492, -0.013948329724371433, 0.21012374758720398, 0.010693289339542389, 0.00891102571040392, 0.11159413307905197, 0.06235435977578163, -0.07125835120677948, -0.020084498450160027, -0.09958720207214355, -0.06928981840610504, -0.05493229627609253, -0.01957024820148945, -0.09958882629871368, 0.04092114418745041, 0.14663274586200714, 0.034482020884752274, 0.007557959295809269, 0.08264268189668655, 0.00829155370593071, 0.0844094455242157, -0.022443385794758797, 0.12224825471639633, 0.34978175163269043, -0.06417907029390335, 0.0566900297999382, -0.059997960925102234, -0.14456087350845337, 0.03438127785921097, -0.05664856731891632, 0.16077592968940735, 0.00006930022937012836, -0.004416018724441528, 0.04271186143159866, -0.012555794790387154, 0.09696336835622787, 0.1438443809747696, -0.02785881794989109, -0.04272063821554184, -0.019828733056783676, -0.06482349336147308, 0.027874700725078583, 0.029800277203321457, 0.010272383689880371, 0.02149094082415104, -0.06809696555137634, -0.09566112607717514, 0.07214871793985367, 0.020925352349877357, 0.13591192662715912, -0.3153034448623657, -0.0393102653324604, -0.03771888092160225, -0.06034646928310394, -0.12529367208480835, 0.027311984449625015, 0.12452707439661026, 0.00048698531463742256, 0.004127867519855499, -0.11316327750682831, 0.07790927588939667, -0.049472931772470474, 0.09329758584499359, 0.01825413666665554, -0.04435500502586365, 0.03674251213669777, 0.03531300276517868, -0.2040579915046692, 0.20380663871765137, -0.028426198288798332, -0.029049379751086235, -0.016227001324295998, -0.06580033898353577, -0.020863864570856094, 0.22530677914619446, 0.05060205236077309, 0.009099654853343964, 0.272896409034729, -0.0878768339753151, 0.09376710653305054, 0.040805090218782425, 0.09752599895000458, 0.06521376222372055, -0.02096664533019066, -0.02532189153134823, -0.047449540346860886, 0.014688098803162575, 0.05256427079439163, 0.049246031790971756, -0.08303727954626083, 0.022105379030108452, -0.035130683332681656, 0.09639333188533783, -0.014615673571825027, -0.059957560151815414, -0.02755356766283512, 0.003943156450986862, 0.014843580313026905, 0.025985026732087135, -0.06376627087593079, 0.1341727375984192, 0.11002957820892334, -0.07986176013946533, 0.13633912801742554, -0.07551448047161102, 0.053035952150821686, -0.017252793535590172, -0.09860704094171524, 0.07206359505653381, -0.09713935106992722, -0.0009258367936126888, 0.009720864705741405, 0.052982572466135025, -0.07796906679868698, -0.03269972279667854, 0.003963158465921879, 0.029267488047480583, -0.10570845007896423, -0.019656138494610786, 0.017077483236789703, -0.08251839131116867, -0.0927107110619545, -0.013487393036484718, 0.10399044305086136, 0.014825845137238503, -0.05767635628581047, 0.04688384011387825, 0.06202453747391701, 0.030048180371522903, -0.06096198409795761, -0.0742645338177681, 0.10553797334432602, 0.034989144653081894, -0.26649901270866394, 0.01121255662292242, -0.012041407637298107, -0.017433540895581245, -0.08195821195840836, 0.01183802355080843, 0.14136622846126556, -0.07489430159330368, 0.00891997292637825, 0.0625074952840805, -0.16646182537078857, -0.06553252786397934, 0.07547743618488312, 0.15846146643161774, 0.2063213288784027, -0.10516616702079773, 0.016237184405326843, 0.006940824445337057, -0.11071790009737015, 0.06188841909170151, 0.18114595115184784, 0.07648883014917374, -0.028548026457428932, 0.01010046899318695, 0.02469428814947605, -0.05629151687026024, 0.058885447680950165, -0.09344055503606796, 0.002377850702032447, -0.06672567874193192, -0.14426881074905396, 0.0846240371465683, 0.03787994757294655, -0.017331410199403763, 0.16651533544063568, 0.07370076328516006, 0.03790559992194176, -0.012535206973552704, -0.1116604432463646, 0.04158993810415268, 0.011395975947380066, -0.032384179532527924, -0.0675906240940094, -0.03954156115651131, -0.0538051500916481, -0.012160911224782467, 0.19135713577270508, 0.02998417243361473, -0.07742448151111603, -0.033106330782175064, 0.046611227095127106, -0.1523084044456482, -0.21195945143699646, -0.006107176188379526, -0.04136497527360916, 0.17980390787124634, -0.15442241728305817, 0.04901190847158432, 0.10610048472881317, 0.07176442444324493, -0.019773190841078758, 0.11880508810281754, -0.00236140307970345, 0.0004822735209017992, 0.12349607795476913, -0.0969318151473999, -0.09894026070833206, -0.10658272355794907, 0.11290004849433899, 0.10733730345964432, 0.182835191488266, 0.12713328003883362, -0.11954003572463989, -0.0019897387828677893, 0.004315047990530729, -0.08020849525928497, -0.03256123512983322, 0.0857849046587944, 0.0831046849489212, 0.05111169442534447, -0.09962143003940582, -0.03939978778362274, 0.006071725394576788, -0.28378841280937195, -0.11022055149078369, 0.09069038927555084, -0.06038307398557663, -0.0556563101708889, 0.05364450812339783, -0.10994545370340347, -0.15848921239376068, -0.03485479578375816, -0.046262387186288834, -0.1234041228890419, 0.09605996310710907, 0.22785358130931854, 0.08738040924072266, 0.04717838019132614, -0.08572277426719666, 0.08355806022882462, -0.08240856975317001, 0.06008323282003403, -0.06722860783338547, 0.13575641810894012, -0.23511481285095215, -0.02797449566423893, 0.014696087688207626, 0.15795539319515228, -0.06980448961257935, 0.004128559958189726, -0.1126323789358139, 0.040019284933805466, -0.045332759618759155, 0.005153258331120014, 0.010968446731567383, -0.04499691724777222, -0.0086530651897192, -0.14508147537708282, -0.07367975264787674, 0.029780041426420212, -0.06235995888710022, -0.005622946657240391, 0.046048544347286224, 0.012462880462408066, -0.01805216073989868, -0.018832078203558922, 0.05085211247205734, -0.07346624881029129, 0.07490388303995132, 0.035466764122247696, -0.10064632445573807, 0.09596066921949387, -0.048466529697179794, -0.17119069397449493, 0.13947036862373352, 0.0646853968501091, 0.02935154177248478, 0.07188145071268082, 0.1037764698266983, 0.008798932656645775, 0.048841580748558044, -0.007285766769200563, 0.09118540585041046, -0.04928845167160034, 0.0030612030532211065, -0.05925274267792702, -0.06129559129476547, -0.037986189126968384, 0.051993273198604584, 0.003918042406439781, 0.042838409543037415, 0.024190904572606087, -0.01373154018074274, 0.01153172180056572, -0.09329783916473389, 0.023255962878465652, -0.0350654162466526, -0.17538543045520782, -0.008773475885391235, -0.056286197155714035, 0.0327274315059185, -0.03201696649193764, 0.06591285765171051, 0.009710068814456463, 0.015877975150942802, 0.043225210160017014, 0.19824549555778503, -0.14004261791706085, 0.04566430673003197, 0.18135303258895874, 0.03177402541041374, 0.014470785856246948, -0.035777341574430466, 0.07842817157506943, 0.09848733246326447, 0.11991537362337112, -0.06097032502293587, 0.1039585992693901, -0.11192744225263596, 0.07287023216485977, 0.12352778017520905, 0.11400522291660309, -0.15315857529640198, -0.14857831597328186, -0.037260252982378006, 0.08297406882047653, -0.05508068576455116, 0.04075615853071213, 0.18877319991588593, 0.07707077264785767, 0.04773992300033569, -0.015104464255273342, -0.030656883493065834, 0.04118405282497406, -0.10581738501787186, -0.0794559195637703, -0.1437682807445526, 0.0388273261487484, -0.03606976941227913, 0.004206150304526091, 0.05121256783604622, 0.05391639471054077, -0.05524301528930664, 0.2119317650794983, 0.17506594955921173, -0.08826007694005966, 0.11046160012483597, -0.0020008711144328117, 0.006216592621058226, 0.054930903017520905, 0.0796552523970604, -0.049529243260622025, 0.04303405061364174, -0.05266900733113289, 0.007168890908360481, -0.025478532537817955, -0.032527897506952286, 0.0032800694461911917, -0.0702894926071167, -0.03445614501833916, 0.005858574528247118, -0.02400391362607479, -0.030090995132923126, -0.04031932353973389, -0.02847316302359104, -0.010533883236348629, 0.17801442742347717, -0.07340508699417114, -0.13204742968082428, -0.028933102265000343, 0.17311091721057892, -0.04601876437664032, 0.07406216859817505, -0.040146347135305405, -0.034766290336847305, -0.11061462759971619, 0.3298923373222351, 0.176719531416893, -0.019876020029187202, -0.019315725192427635, 0.07995782792568207, 0.023039525374770164, -0.005707854870706797, 0.12838777899742126, 0.07492213696241379, 0.22578157484531403, -0.0660848543047905, -0.008429741486907005, -0.08954323083162308, 0.06386633962392807, 0.01239035464823246, -0.020376484841108322, 0.14278678596019745, -0.016841722652316093, -0.10507343709468842, 0.09777391701936722, 0.056886546313762665, -0.008282875642180443, 0.07700201123952866, -0.17840582132339478, -0.015565961599349976, -0.045291222631931305, 0.17167319357395172, -0.00594269810244441, 0.055819619446992874, -0.06307907402515411, -0.04892586171627045, -0.023567546159029007, 0.03591111674904823, -0.19653619825839996, -0.00881084892898798, 0.06485440582036972, -0.1909898966550827, 0.03480745479464531, -0.0818687155842781, 0.00920548103749752, 0.07414419203996658, 0.014450193382799625, -0.020203249529004097, -0.044778455048799515, -0.02480573207139969, -0.1401297152042389, -0.00019314885139465332, 0.10490583628416061, 0.01803305558860302, -0.039554789662361145, -0.026655368506908417, -0.19493848085403442, -0.026744842529296875, 0.028538713231682777, 0.016286766156554222, -0.03987088054418564, 0.015289044007658958, -0.03569589555263519, 0.016504770144820213, 0.07393176108598709, -0.010505986399948597, -0.04707378149032593, -0.08983311057090759, -0.036742985248565674, 0.10922107845544815, 0.0035143205896019936, 0.032313041388988495, -0.07623261958360672, -0.09784857928752899, -0.1464805006980896, 0.003289151471108198, -0.043528489768505096, -0.08042830228805542, -0.01944754831492901, -0.016256846487522125, -0.05438585206866264, 0.034539710730314255, 0.09292043000459671, -0.032553959637880325, 0.005435393191874027, -0.022259410470724106, -0.012784754857420921, 0.12011796236038208, -0.08818571269512177, -0.049038682132959366 ]
null
null
transformers
# vit_huge_patch32_384 Implementation of Vision Transformer (ViT) proposed in [An Image Is Worth 16x16 Words: Transformers For Image Recognition At Scale](https://arxiv.org/pdf/2010.11929.pdf) The following image from the authors shows the architecture. ![image](https://github.com/FrancescoSaverioZuppichini/glasses/blob/develop/docs/_static/images/ViT.png?raw=true) ``` python ViT.vit_small_patch16_224() ViT.vit_base_patch16_224() ViT.vit_base_patch16_384() ViT.vit_base_patch32_384() ViT.vit_huge_patch16_224() ViT.vit_huge_patch32_384() ViT.vit_large_patch16_224() ViT.vit_large_patch16_384() ViT.vit_large_patch32_384() ``` Examples: ``` python # change activation ViT.vit_base_patch16_224(activation = nn.SELU) # change number of classes (default is 1000 ) ViT.vit_base_patch16_224(n_classes=100) # pass a different block, default is TransformerEncoderBlock ViT.vit_base_patch16_224(block=MyCoolTransformerBlock) # get features model = ViT.vit_base_patch16_224 # first call .features, this will activate the forward hooks and tells the model you'll like to get the features model.encoder.features model(torch.randn((1,3,224,224))) # get the features from the encoder features = model.encoder.features print([x.shape for x in features]) #[[torch.Size([1, 197, 768]), torch.Size([1, 197, 768]), ...] # change the tokens, you have to subclass ViTTokens class MyTokens(ViTTokens): def __init__(self, emb_size: int): super().__init__(emb_size) self.my_new_token = nn.Parameter(torch.randn(1, 1, emb_size)) ViT(tokens=MyTokens) ```
{}
null
glasses/vit_huge_patch32_384
[ "transformers", "pytorch", "arxiv:2010.11929", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[ "2010.11929" ]
[]
TAGS #transformers #pytorch #arxiv-2010.11929 #endpoints_compatible #region-us
# vit_huge_patch32_384 Implementation of Vision Transformer (ViT) proposed in An Image Is Worth 16x16 Words: Transformers For Image Recognition At Scale The following image from the authors shows the architecture. !image Examples:
[ "# vit_huge_patch32_384\n Implementation of Vision Transformer (ViT) proposed in An Image Is\n Worth 16x16 Words: Transformers For Image Recognition At\n Scale\n\n The following image from the authors shows the architecture.\n\n !image\n\n \n\n Examples:" ]
[ "TAGS\n#transformers #pytorch #arxiv-2010.11929 #endpoints_compatible #region-us \n", "# vit_huge_patch32_384\n Implementation of Vision Transformer (ViT) proposed in An Image Is\n Worth 16x16 Words: Transformers For Image Recognition At\n Scale\n\n The following image from the authors shows the architecture.\n\n !image\n\n \n\n Examples:" ]
[ 29, 63 ]
[ "passage: TAGS\n#transformers #pytorch #arxiv-2010.11929 #endpoints_compatible #region-us \n# vit_huge_patch32_384\n Implementation of Vision Transformer (ViT) proposed in An Image Is\n Worth 16x16 Words: Transformers For Image Recognition At\n Scale\n\n The following image from the authors shows the architecture.\n\n !image\n\n \n\n Examples:" ]
[ -0.08256111294031143, -0.12424663454294205, -0.0056297145783901215, 0.08221103996038437, 0.16368825733661652, 0.009874277748167515, 0.0513765811920166, 0.01653192937374115, -0.05624595656991005, 0.020242741331458092, 0.12786118686199188, 0.17118079960346222, -0.010467668063938618, -0.0072916545905172825, 0.0037366419564932585, -0.31879734992980957, -0.03721362724900246, 0.16487424075603485, -0.14730559289455414, 0.08582797646522522, 0.08383343368768692, -0.14866788685321808, 0.10718229413032532, 0.03447748348116875, -0.2857658565044403, 0.031082456931471825, 0.01702834852039814, -0.08901476114988327, 0.16613760590553284, 0.06147913634777069, 0.10218920558691025, -0.005469390656799078, -0.018414206802845, 0.03091641701757908, 0.008478237316012383, 0.032870739698410034, -0.03588495030999184, 0.056113045662641525, 0.08618944883346558, 0.14229802787303925, 0.055778127163648605, -0.038017917424440384, -0.02815104089677334, -0.021869322285056114, -0.1013089120388031, -0.1383550763130188, 0.07050206512212753, 0.08640232682228088, -0.033848170191049576, 0.02700859308242798, 0.03207564726471901, 0.16113682091236115, -0.00008128133049467579, 0.12220301479101181, 0.14286138117313385, -0.13837307691574097, -0.11081317812204361, -0.052155788987874985, -0.00007035242015263066, 0.07686500251293182, -0.04839859902858734, 0.08254769444465637, 0.057695358991622925, 0.05703743174672127, 0.00933594349771738, -0.04306073114275932, -0.08748230338096619, 0.026553714647889137, -0.14515246450901031, -0.053930554538965225, 0.15705130994319916, 0.025216611102223396, 0.03116501122713089, -0.028915001079440117, -0.16607464849948883, 0.0102854548022151, -0.058021992444992065, -0.039547111839056015, -0.014034629799425602, -0.08674851059913635, -0.14817799627780914, -0.03518134728074074, -0.1381288319826126, -0.029000109061598778, -0.11864328384399414, 0.12007822841405869, 0.030917486175894737, 0.08818450570106506, -0.1375603973865509, 0.04514600709080696, -0.030560776591300964, -0.1019805446267128, 0.03995142877101898, -0.11570090055465698, 0.010505832731723785, 0.025953399017453194, 0.01567806489765644, -0.13035522401332855, -0.03538457676768303, -0.06686654686927795, 0.09934041649103165, -0.02459201216697693, -0.015504672192037106, 0.08512508869171143, -0.0794503390789032, 0.2511201798915863, -0.12691278755664825, 0.12262236326932907, -0.0709865391254425, -0.05181974172592163, -0.0021490033250302076, 0.00929348822683096, -0.10653013736009598, -0.09174197912216187, -0.015014861710369587, -0.005191952455788851, -0.031023109331727028, 0.09886311739683151, 0.05677640065550804, -0.04380430281162262, 0.06226992607116699, 0.016207190230488777, 0.030510349199175835, -0.014827236533164978, 0.06098450347781181, 0.1926063746213913, 0.0717499703168869, -0.10943174362182617, -0.07952740043401718, 0.04353538528084755, -0.08925318717956543, 0.011391684412956238, -0.02554231882095337, -0.11104139685630798, 0.037037286907434464, -0.013684425503015518, 0.07053873687982559, -0.2761780917644501, 0.10646525770425797, 0.1090613529086113, 0.0237625390291214, 0.0013499691849574447, 0.0393652580678463, 0.030714601278305054, -0.12815366685390472, -0.003307310165837407, 0.021579258143901825, 0.01341172307729721, 0.043388694524765015, 0.1129116341471672, 0.08857283741235733, 0.11921434849500656, -0.10899669677019119, 0.012591262347996235, -0.08367136120796204, -0.011892292648553848, -0.12659792602062225, -0.028195740655064583, 0.039058998227119446, 0.12267952412366867, -0.04349425807595253, -0.1466372013092041, 0.00017012532043736428, 0.03208016976714134, 0.028191320598125458, 0.1185164526104927, -0.07394115626811981, -0.06959005445241928, 0.04149485006928444, -0.1432429999113083, -0.19918017089366913, 0.12285705655813217, 0.0547846294939518, 0.026500605046749115, 0.08129850029945374, 0.10726785659790039, 0.0713699534535408, -0.14176973700523376, -0.023957395926117897, 0.020389927551150322, -0.14137102663516998, -0.09290266782045364, 0.004773580003529787, 0.19440798461437225, -0.054999109357595444, -0.0023771198466420174, -0.08070071786642075, 0.07148481160402298, -0.13112907111644745, -0.037537939846515656, -0.07552520185709, -0.009307844564318657, 0.035601768642663956, 0.0627988874912262, 0.04712490737438202, -0.048356298357248306, -0.01773850992321968, 0.12754274904727936, 0.04195202887058258, -0.04892479255795479, 0.030290767550468445, -0.0916563868522644, 0.022012881934642792, -0.1651369035243988, 0.047594666481018066, -0.08209110051393509, 0.0687624141573906, 0.00703054154291749, 0.00751061737537384, 0.011660140939056873, 0.1607593297958374, 0.08852905035018921, 0.026100704446434975, -0.023669408634305, -0.04675617441534996, -0.00025005266070365906, 0.01736871711909771, -0.0374150313436985, -0.1162453293800354, -0.004639091435819864, -0.010582181625068188, -0.1670716255903244, -0.09333240240812302, -0.043578922748565674, 0.1421680599451065, 0.08748773485422134, -0.0011082628043368459, 0.04610240459442139, -0.05883508548140526, 0.026844948530197144, -0.00714559992775321, -0.031140880659222603, 0.04360603168606758, -0.032800156623125076, 0.04963643476366997, 0.14454801380634308, -0.025553477928042412, 0.23164808750152588, 0.18217749893665314, -0.36116543412208557, 0.0024547160137444735, 0.08219436556100845, -0.005614956375211477, 0.027244070544838905, 0.0192719753831625, -0.09382916241884232, 0.02348492480814457, -0.06513296812772751, 0.12660011649131775, -0.027961470186710358, -0.006093829870223999, 0.10544756799936295, 0.011499359272420406, -0.09879449009895325, 0.10441136360168457, 0.10371831804513931, -0.22719162702560425, 0.07260221242904663, 0.18376435339450836, -0.04959849640727043, 0.007242144551128149, 0.029003186151385307, -0.04549683630466461, 0.017893744632601738, 0.005472222343087196, 0.02341501973569393, 0.17748458683490753, -0.27845731377601624, -0.09629734605550766, 0.030578216537833214, -0.0834202989935875, 0.003472505370154977, -0.14952202141284943, 0.03138690069317818, 0.0435054711997509, 0.08610013872385025, -0.04085557907819748, 0.04731757938861847, -0.007098039612174034, 0.09580346941947937, -0.01686122454702854, -0.08365917950868607, 0.02569693885743618, 0.013530545867979527, -0.023061478510499, 0.1384597271680832, -0.019350768998265266, -0.4044802188873291, -0.1372615098953247, -0.08419951051473618, 0.05181805416941643, 0.02667699009180069, 0.054789066314697266, -0.1636359542608261, -0.06935284286737442, 0.0747905746102333, 0.13539977371692657, -0.05034441128373146, 0.09017136693000793, 0.0020983151625841856, 0.034864675253629684, 0.012543848715722561, -0.054764796048402786, -0.013445989228785038, -0.07883429527282715, 0.030830278992652893, 0.05297686532139778, -0.02298257313668728, 0.16374395787715912, 0.06788651645183563, -0.07251935452222824, 0.0578470341861248, -0.015356726944446564, 0.17469441890716553, -0.12769317626953125, -0.006345946807414293, 0.21667815744876862, 0.007831870578229427, 0.010295352898538113, 0.10473266243934631, 0.061926525086164474, -0.06488285213708878, -0.017432348802685738, -0.10258457809686661, -0.07226564735174179, -0.04749812185764313, -0.019749190658330917, -0.10003557801246643, 0.04770048335194588, 0.15043878555297852, 0.03183269873261452, 0.007479330524802208, 0.08438379317522049, 0.015324662439525127, 0.08494678139686584, -0.022893721237778664, 0.11882293224334717, 0.34989142417907715, -0.06641936302185059, 0.05677196383476257, -0.06226992607116699, -0.14836440980434418, 0.03349917009472847, -0.05095924809575081, 0.14782579243183136, -0.0022035527508705854, -0.004736723378300667, 0.03202648088335991, -0.016413874924182892, 0.09536673873662949, 0.14459672570228577, -0.03079761564731598, -0.0385940819978714, -0.022219544276595116, -0.06507804244756699, 0.029019271954894066, 0.038115885108709335, 0.020207367837429047, 0.01637142337858677, -0.0674683228135109, -0.08704725652933121, 0.0676223561167717, 0.030518537387251854, 0.14101570844650269, -0.3166668117046356, -0.0427151620388031, -0.03555064648389816, -0.05510149523615837, -0.12538059055805206, 0.03154532611370087, 0.12456765025854111, 0.001003576093353331, -0.0005943775177001953, -0.11435946822166443, 0.07709404826164246, -0.04911595210433006, 0.0932391807436943, 0.027423657476902008, -0.03727346286177635, 0.038037098944187164, 0.033723700791597366, -0.20383328199386597, 0.18986539542675018, -0.02960965968668461, -0.03654201701283455, -0.02472924441099167, -0.06070332229137421, -0.024006055667996407, 0.2200193852186203, 0.05219539999961853, 0.0063353790901601315, 0.26423677802085876, -0.08848986029624939, 0.08709418773651123, 0.04029080644249916, 0.09955858439207077, 0.07343649119138718, -0.017976930364966393, -0.028779080137610435, -0.052417218685150146, 0.021137654781341553, 0.04387630149722099, 0.054560910910367966, -0.08331816643476486, 0.020731719210743904, -0.0231346245855093, 0.09054260700941086, -0.013749993406236172, -0.06162102892994881, -0.03109707124531269, 0.014341865666210651, 0.02746032364666462, 0.022547081112861633, -0.0666971504688263, 0.1325433999300003, 0.10592299699783325, -0.08091260492801666, 0.14006468653678894, -0.0741065964102745, 0.05045347288250923, -0.013587333261966705, -0.1091308668255806, 0.07968082278966904, -0.1009003296494484, 0.0024822137784212828, 0.009970121085643768, 0.048808157444000244, -0.0778636783361435, -0.03381796181201935, 0.002182823373004794, 0.0277409628033638, -0.10423064231872559, -0.017558740451931953, 0.017467746511101723, -0.07461699843406677, -0.09171856194734573, -0.004759954288601875, 0.09621313959360123, 0.009756078012287617, -0.05247404798865318, 0.04708912968635559, 0.07030956447124481, 0.02110453136265278, -0.06063389778137207, -0.07531534880399704, 0.10083786398172379, 0.04009230062365532, -0.272225946187973, 0.007019245997071266, -0.0078100175596773624, -0.01726479083299637, -0.0785377249121666, 0.01460836362093687, 0.13837891817092896, -0.08175169676542282, 0.01198283489793539, 0.05838781222701073, -0.1766785830259323, -0.0641363188624382, 0.08311139047145844, 0.163648322224617, 0.20233087241649628, -0.10414794832468033, 0.019768983125686646, 0.00723333889618516, -0.11639554053544998, 0.05490778759121895, 0.19035601615905762, 0.0801510363817215, -0.028074460104107857, 0.009826451539993286, 0.024183673784136772, -0.059947237372398376, 0.05125562846660614, -0.09009452909231186, -0.0033089451026171446, -0.06676686555147171, -0.141715407371521, 0.07737074047327042, 0.03924008458852768, -0.017035607248544693, 0.1719023585319519, 0.0760050043463707, 0.04264214262366295, -0.012655266560614109, -0.11683151125907898, 0.03519487753510475, 0.01503406185656786, -0.03633139654994011, -0.06724660843610764, -0.03659239411354065, -0.05320431664586067, -0.015471034683287144, 0.1975013017654419, 0.028116069734096527, -0.07401330024003983, -0.02028495818376541, 0.04024862125515938, -0.14093676209449768, -0.21498548984527588, -0.007494934368878603, -0.04624541103839874, 0.17776787281036377, -0.15148460865020752, 0.048631563782691956, 0.10711587220430374, 0.07081088423728943, -0.018427619710564613, 0.11834710091352463, 0.0014535110676661134, -0.0029276127461344004, 0.12164771556854248, -0.09441924840211868, -0.08609863370656967, -0.11183609813451767, 0.1090647354722023, 0.10926267504692078, 0.17616838216781616, 0.12996673583984375, -0.12099213153123856, 0.0019070807611569762, 0.0015865812310948968, -0.07922010868787766, -0.032593920826911926, 0.08300836384296417, 0.08740779012441635, 0.04668094217777252, -0.09506469964981079, -0.034794796258211136, 0.004828972276300192, -0.28125226497650146, -0.10387062281370163, 0.08831401914358139, -0.06317398697137833, -0.052506525069475174, 0.05483512952923775, -0.11600196361541748, -0.1743084043264389, -0.033251840621232986, -0.0490555576980114, -0.12145326286554337, 0.09891501069068909, 0.21852236986160278, 0.08813989907503128, 0.04334549978375435, -0.09291409701108932, 0.08716437220573425, -0.08707467466592789, 0.060934025794267654, -0.07228291779756546, 0.13695698976516724, -0.22984273731708527, -0.028052525594830513, 0.014054648578166962, 0.16208083927631378, -0.07043947279453278, 0.006425726693123579, -0.11765436083078384, 0.0418226383626461, -0.05923589691519737, -0.0004729079082608223, 0.0065067908726632595, -0.045314863324165344, -0.012617179192602634, -0.14357982575893402, -0.07023891061544418, 0.03422312065958977, -0.05844749137759209, -0.008984406478703022, 0.04295480623841286, 0.009591273963451385, -0.018549630418419838, -0.017138618975877762, 0.04543941095471382, -0.07063775509595871, 0.07099121063947678, 0.030583536252379417, -0.10097673535346985, 0.09272423386573792, -0.04005742445588112, -0.17209301888942719, 0.1414288729429245, 0.06453877687454224, 0.03295740485191345, 0.07100532203912735, 0.10424146056175232, 0.007969703525304794, 0.04401780292391777, -0.008692387491464615, 0.0911317691206932, -0.044795285910367966, 0.011248069815337658, -0.06476487219333649, -0.05587473884224892, -0.04342512786388397, 0.055426329374313354, 0.016258662566542625, 0.04349551722407341, 0.02125760354101658, -0.01752815581858158, 0.012143905274569988, -0.08597945421934128, 0.023354867473244667, -0.0366421602666378, -0.17629313468933105, -0.002120169810950756, -0.06432470679283142, 0.03375432640314102, -0.032879941165447235, 0.057685259729623795, 0.0098425829783082, 0.0184280164539814, 0.04570792242884636, 0.18556052446365356, -0.13601736724376678, 0.045973192900419235, 0.19446460902690887, 0.027896888554096222, 0.014840814284980297, -0.02874787151813507, 0.08182544261217117, 0.10328149050474167, 0.12317129969596863, -0.05869853496551514, 0.09247798472642899, -0.11746332794427872, 0.07658984512090683, 0.12473288923501968, 0.10995311290025711, -0.16006772220134735, -0.15226171910762787, -0.03697417676448822, 0.08485236018896103, -0.0588982068002224, 0.03693806752562523, 0.17879092693328857, 0.0767013430595398, 0.04254448413848877, -0.014314317144453526, -0.03224978595972061, 0.03897342085838318, -0.09233186393976212, -0.07926163822412491, -0.1434106081724167, 0.03532109782099724, -0.03699541464447975, 0.0049355714581906796, 0.04766437038779259, 0.049971356987953186, -0.05427996441721916, 0.22029893100261688, 0.16181784868240356, -0.09022734314203262, 0.10993912070989609, -0.003715943545103073, 0.00728007173165679, 0.06184348836541176, 0.07440216094255447, -0.04899470508098602, 0.047284845262765884, -0.0514516644179821, 0.006421130150556564, -0.02887227199971676, -0.029473736882209778, 0.007888369262218475, -0.07005123794078827, -0.03703654184937477, 0.0065984223037958145, -0.01876249723136425, -0.030054016038775444, -0.0369032546877861, -0.027500679716467857, -0.010983495973050594, 0.17092002928256989, -0.07938190549612045, -0.1312277764081955, -0.028556525707244873, 0.1872655153274536, -0.043199677020311356, 0.0734199807047844, -0.03817671164870262, -0.0394698791205883, -0.11459159106016159, 0.3248864710330963, 0.17461521923542023, -0.02907649427652359, -0.019009895622730255, 0.07862148433923721, 0.023322822526097298, -0.003290672553703189, 0.13744670152664185, 0.07855971902608871, 0.21697838604450226, -0.06562201678752899, -0.010713028721511364, -0.08781713247299194, 0.0609576441347599, 0.00887282658368349, -0.02411634661257267, 0.15001434087753296, -0.021059511229395866, -0.10428813844919205, 0.10183041542768478, 0.05306233838200569, -0.0038594973739236593, 0.07599744200706482, -0.17387233674526215, -0.018154766410589218, -0.03641364350914955, 0.17537827789783478, -0.005848724395036697, 0.05592062696814537, -0.06729765981435776, -0.04017512872815132, -0.016189366579055786, 0.03527052327990532, -0.19300512969493866, 0.0023640731815248728, 0.061114758253097534, -0.1999429315328598, 0.024136831983923912, -0.07952146977186203, 0.0104002570733428, 0.07351260632276535, 0.014627222903072834, -0.017005203291773796, -0.037264078855514526, -0.028258295729756355, -0.1473342925310135, -0.0007825910579413176, 0.10205131769180298, 0.009763508103787899, -0.03121921978890896, -0.030114946886897087, -0.2004416137933731, -0.0262447502464056, 0.03394359350204468, 0.019851479679346085, -0.0411764420568943, 0.01018823403865099, -0.03781993314623833, 0.02701849676668644, 0.07427841424942017, -0.009548968635499477, -0.0488070510327816, -0.08598709851503372, -0.03646814823150635, 0.10644664615392685, 0.003441767068579793, 0.022733302786946297, -0.07615324854850769, -0.09741831570863724, -0.15843141078948975, 0.010935087688267231, -0.03900708630681038, -0.08025866746902466, -0.023631049320101738, -0.016792934387922287, -0.058593571186065674, 0.035775378346443176, 0.09218757599592209, -0.03654836490750313, 0.006759442389011383, -0.01572415791451931, -0.013021968305110931, 0.12031052261590958, -0.09864562004804611, -0.053711723536252975 ]
null
null
transformers
# vit_large_patch16_224 Implementation of Vision Transformer (ViT) proposed in [An Image Is Worth 16x16 Words: Transformers For Image Recognition At Scale](https://arxiv.org/pdf/2010.11929.pdf) The following image from the authors shows the architecture. ![image](https://github.com/FrancescoSaverioZuppichini/glasses/blob/develop/docs/_static/images/ViT.png?raw=true) ``` python ViT.vit_small_patch16_224() ViT.vit_base_patch16_224() ViT.vit_base_patch16_384() ViT.vit_base_patch32_384() ViT.vit_huge_patch16_224() ViT.vit_huge_patch32_384() ViT.vit_large_patch16_224() ViT.vit_large_patch16_384() ViT.vit_large_patch32_384() ``` Examples: ``` python # change activation ViT.vit_base_patch16_224(activation = nn.SELU) # change number of classes (default is 1000 ) ViT.vit_base_patch16_224(n_classes=100) # pass a different block, default is TransformerEncoderBlock ViT.vit_base_patch16_224(block=MyCoolTransformerBlock) # get features model = ViT.vit_base_patch16_224 # first call .features, this will activate the forward hooks and tells the model you'll like to get the features model.encoder.features model(torch.randn((1,3,224,224))) # get the features from the encoder features = model.encoder.features print([x.shape for x in features]) #[[torch.Size([1, 197, 768]), torch.Size([1, 197, 768]), ...] # change the tokens, you have to subclass ViTTokens class MyTokens(ViTTokens): def __init__(self, emb_size: int): super().__init__(emb_size) self.my_new_token = nn.Parameter(torch.randn(1, 1, emb_size)) ViT(tokens=MyTokens) ```
{}
null
glasses/vit_large_patch16_224
[ "transformers", "pytorch", "arxiv:2010.11929", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[ "2010.11929" ]
[]
TAGS #transformers #pytorch #arxiv-2010.11929 #endpoints_compatible #region-us
# vit_large_patch16_224 Implementation of Vision Transformer (ViT) proposed in An Image Is Worth 16x16 Words: Transformers For Image Recognition At Scale The following image from the authors shows the architecture. !image Examples:
[ "# vit_large_patch16_224\n Implementation of Vision Transformer (ViT) proposed in An Image Is\n Worth 16x16 Words: Transformers For Image Recognition At\n Scale\n\n The following image from the authors shows the architecture.\n\n !image\n\n \n\n Examples:" ]
[ "TAGS\n#transformers #pytorch #arxiv-2010.11929 #endpoints_compatible #region-us \n", "# vit_large_patch16_224\n Implementation of Vision Transformer (ViT) proposed in An Image Is\n Worth 16x16 Words: Transformers For Image Recognition At\n Scale\n\n The following image from the authors shows the architecture.\n\n !image\n\n \n\n Examples:" ]
[ 29, 64 ]
[ "passage: TAGS\n#transformers #pytorch #arxiv-2010.11929 #endpoints_compatible #region-us \n# vit_large_patch16_224\n Implementation of Vision Transformer (ViT) proposed in An Image Is\n Worth 16x16 Words: Transformers For Image Recognition At\n Scale\n\n The following image from the authors shows the architecture.\n\n !image\n\n \n\n Examples:" ]
[ -0.08101126551628113, -0.1245104968547821, -0.006042378023266792, 0.0812443420290947, 0.16184081137180328, 0.011273846961557865, 0.04556046426296234, 0.01032885443419218, -0.053977079689502716, 0.017692456021904945, 0.1342523694038391, 0.17616531252861023, -0.013633537106215954, -0.011258551850914955, 0.005057038273662329, -0.3117009103298187, -0.03474315255880356, 0.16198140382766724, -0.140976682305336, 0.08673278242349625, 0.08325041830539703, -0.15022264420986176, 0.10522029548883438, 0.03656123951077461, -0.2741881012916565, 0.027049507945775986, 0.018003147095441818, -0.08701152354478836, 0.1676228642463684, 0.05773922801017761, 0.10035021603107452, -0.0012175764422863722, -0.02538999915122986, 0.028515011072158813, 0.008209939114749432, 0.027416357770562172, -0.03555489331483841, 0.0543815903365612, 0.08713878691196442, 0.1350107640028, 0.045569851994514465, -0.027954261749982834, -0.020829293876886368, -0.02218249812722206, -0.10686536878347397, -0.15000425279140472, 0.0661511942744255, 0.07780744880437851, -0.039411451667547226, 0.02884736657142639, 0.030019789934158325, 0.16159862279891968, -0.006059217266738415, 0.1203671395778656, 0.14405092597007751, -0.1352488100528717, -0.10802331566810608, -0.06574387103319168, -0.0035833686124533415, 0.07357785850763321, -0.052573200315237045, 0.08362852036952972, 0.061163995414972305, 0.05433595925569534, 0.020126909017562866, -0.040662847459316254, -0.10319641977548599, 0.0321987010538578, -0.1434430629014969, -0.0564495325088501, 0.16347625851631165, 0.025096649304032326, 0.03158576413989067, -0.023191828280687332, -0.15952812135219574, 0.004064743872731924, -0.05700911208987236, -0.04152044653892517, -0.010035752318799496, -0.08925747871398926, -0.13926833868026733, -0.032982416450977325, -0.14209109544754028, -0.027725733816623688, -0.1196550577878952, 0.12114907056093216, 0.02799821086227894, 0.08643778413534164, -0.13435852527618408, 0.04548460617661476, -0.03355933725833893, -0.10509122163057327, 0.03348080441355705, -0.11710382252931595, 0.009553713724017143, 0.028276728466153145, 0.01806037127971649, -0.1213453859090805, -0.038341835141181946, -0.061176102608442307, 0.11002012342214584, -0.024783650413155556, -0.019280102103948593, 0.08363243192434311, -0.08355863392353058, 0.24828854203224182, -0.127567857503891, 0.13059324026107788, -0.06739318370819092, -0.05202845111489296, -0.0016356499399989843, 0.008695337921380997, -0.10207158327102661, -0.08706896007061005, -0.011923497542738914, -0.0015240336069837213, -0.03422160446643829, 0.09377474337816238, 0.04818032309412956, -0.038489922881126404, 0.051845673471689224, 0.014354347251355648, 0.030532974749803543, -0.011912673711776733, 0.06127077713608742, 0.18300175666809082, 0.07238545268774033, -0.11299560964107513, -0.07559041678905487, 0.05318130552768707, -0.09055306762456894, 0.015914030373096466, -0.026048460975289345, -0.10792496055364609, 0.03924892097711563, -0.01394524797797203, 0.07178498059511185, -0.27805399894714355, 0.10154137015342712, 0.105037622153759, 0.025750981643795967, 0.0049969847314059734, 0.04199009761214256, 0.031109727919101715, -0.13165786862373352, -0.003305852646008134, 0.019468851387500763, 0.011629282496869564, 0.03853864595293999, 0.11267147958278656, 0.09404435008764267, 0.11267999559640884, -0.09995971620082855, 0.013080926612019539, -0.09228362888097763, -0.014377687126398087, -0.1288667917251587, -0.028805037960410118, 0.037206124514341354, 0.1336989551782608, -0.033538661897182465, -0.14878858625888824, -0.015308523550629616, 0.02696782350540161, 0.027786625549197197, 0.1257718801498413, -0.07922351360321045, -0.06773990392684937, 0.03805107995867729, -0.1457909792661667, -0.19954712688922882, 0.12566708028316498, 0.05016819015145302, 0.0208401158452034, 0.08077671378850937, 0.11157019436359406, 0.0666641965508461, -0.15415114164352417, -0.02337109111249447, 0.015329668298363686, -0.1413828581571579, -0.08600962162017822, 0.01066603884100914, 0.19211114943027496, -0.05036141723394394, -0.000013678612958756275, -0.08354011178016663, 0.06603238731622696, -0.13065995275974274, -0.041177183389663696, -0.07508333772420883, -0.005665823817253113, 0.04500149190425873, 0.0663432702422142, 0.04264483600854874, -0.049573011696338654, -0.012660816311836243, 0.12641176581382751, 0.04026850312948227, -0.04696814715862274, 0.030013544484972954, -0.09508154541254044, 0.03343495726585388, -0.1594444066286087, 0.04661291837692261, -0.07503784447908401, 0.07513067126274109, 0.0041227866895496845, 0.007223986554890871, 0.009691942483186722, 0.15608839690685272, 0.0863516628742218, 0.025124767795205116, -0.02268182672560215, -0.045603446662425995, -0.006026026327162981, 0.012233558110892773, -0.02689853310585022, -0.12562374770641327, 0.0023881318047642708, -0.012309967540204525, -0.15276527404785156, -0.1144467368721962, -0.04448143020272255, 0.14589805901050568, 0.08514850586652756, -0.0006523970514535904, 0.04527794569730759, -0.05396571755409241, 0.02080167457461357, -0.0048094242811203, -0.03213074058294296, 0.03759342059493065, -0.03145648539066315, 0.05006895214319229, 0.1468346118927002, -0.027340196073055267, 0.25372788310050964, 0.18031734228134155, -0.3629385530948639, 0.0035860876087099314, 0.08717263489961624, -0.003878980875015259, 0.030900996178388596, 0.020614834502339363, -0.088055819272995, 0.025330210104584694, -0.06426429003477097, 0.12390792369842529, -0.029282240197062492, -0.012396647594869137, 0.1081315353512764, 0.008242454379796982, -0.09211450070142746, 0.10696031898260117, 0.09259243309497833, -0.22716952860355377, 0.07261509448289871, 0.17691443860530853, -0.05209164693951607, 0.006584972608834505, 0.029219428077340126, -0.042602553963661194, 0.01344913337379694, 0.010385682806372643, 0.023804912343621254, 0.1891634464263916, -0.2890004515647888, -0.09963487833738327, 0.030437923967838287, -0.08744858205318451, 0.0032287007197737694, -0.1468707174062729, 0.029747724533081055, 0.046947527676820755, 0.08331308513879776, -0.04495491459965706, 0.04523584619164467, -0.0032913677860051394, 0.09382762759923935, -0.01864101178944111, -0.07592037320137024, 0.025657307356595993, 0.014639098197221756, -0.02829209342598915, 0.14575237035751343, -0.019763948395848274, -0.40679696202278137, -0.1379416584968567, -0.0735524594783783, 0.0566372275352478, 0.02499321475625038, 0.05507689714431763, -0.1628505140542984, -0.07015588879585266, 0.07781603932380676, 0.13842180371284485, -0.055746257305145264, 0.08438383787870407, -0.0034362671431154013, 0.03357483819127083, 0.014094206504523754, -0.05797627195715904, -0.012428228743374348, -0.07907196879386902, 0.02476249448955059, 0.051868464797735214, -0.015593579038977623, 0.16776488721370697, 0.060718949884176254, -0.0734032467007637, 0.05512360855937004, -0.014947671443223953, 0.1729213446378708, -0.13221095502376556, -0.017048517242074013, 0.2128666192293167, 0.01031230203807354, 0.008304264396429062, 0.11184550076723099, 0.06130241975188255, -0.07019468396902084, -0.020849261432886124, -0.10036542266607285, -0.06826915591955185, -0.0586077943444252, -0.020088128745555878, -0.10011559724807739, 0.036357250064611435, 0.14020763337612152, 0.03297693654894829, 0.009288582019507885, 0.08035445958375931, 0.009700238704681396, 0.07587834447622299, -0.019272862002253532, 0.12341497093439102, 0.352852463722229, -0.06269195675849915, 0.056314822286367416, -0.06184753403067589, -0.14143207669258118, 0.0347101092338562, -0.059399835765361786, 0.16536381840705872, -0.004199181217700243, -0.005063693039119244, 0.04334307834506035, -0.0049916524440050125, 0.09808850288391113, 0.14334991574287415, -0.029484758153557777, -0.04197467118501663, -0.017284933477640152, -0.0650055855512619, 0.024934109300374985, 0.028729328885674477, 0.005248756613582373, 0.017098451033234596, -0.06753119826316833, -0.09397242218255997, 0.07338188588619232, 0.018422579392790794, 0.1389870047569275, -0.31925076246261597, -0.04216694459319115, -0.03932035714387894, -0.0595519058406353, -0.1273939609527588, 0.026905829086899757, 0.12344316393136978, -0.003191871801391244, 0.005532095208764076, -0.11389262229204178, 0.07721477746963501, -0.054624300450086594, 0.09182989597320557, 0.018383968621492386, -0.04869333654642105, 0.038024693727493286, 0.038517992943525314, -0.20709651708602905, 0.2081533819437027, -0.028499603271484375, -0.026612402871251106, -0.015607037581503391, -0.06699677556753159, -0.0210011824965477, 0.22986219823360443, 0.05108126252889633, 0.008519026450812817, 0.27014487981796265, -0.0880444124341011, 0.09301508963108063, 0.038697946816682816, 0.09702394157648087, 0.06912431865930557, -0.02260943502187729, -0.024383211508393288, -0.04844030365347862, 0.012969732284545898, 0.049762267619371414, 0.04705944284796715, -0.08451265096664429, 0.02242565155029297, -0.03509235754609108, 0.10298043489456177, -0.01335968542844057, -0.06121581792831421, -0.025763986632227898, 0.0018552463734522462, 0.010015659965574741, 0.023562539368867874, -0.06391044706106186, 0.12956522405147552, 0.10956668108701706, -0.07985129952430725, 0.13895590603351593, -0.0751483216881752, 0.05253157764673233, -0.01609453745186329, -0.09814468026161194, 0.06901916116476059, -0.10013565421104431, 0.0034457347355782986, 0.012265785597264767, 0.04977915436029434, -0.07475721836090088, -0.03156943619251251, 0.006373627111315727, 0.026742329820990562, -0.10420498251914978, -0.018855631351470947, 0.012463971972465515, -0.07934894412755966, -0.0887526273727417, -0.012252169661223888, 0.10124760121107101, 0.007454235106706619, -0.060529518872499466, 0.047492995858192444, 0.06493089348077774, 0.02368205599486828, -0.06362363696098328, -0.07112857699394226, 0.10967463254928589, 0.03450119495391846, -0.2661631405353546, 0.012576631270349026, -0.011365015059709549, -0.01767503283917904, -0.08069618791341782, 0.00890372134745121, 0.1373613476753235, -0.07675711810588837, 0.006648852024227381, 0.05656673386693001, -0.16358506679534912, -0.06418191641569138, 0.08133430778980255, 0.15557339787483215, 0.202385812997818, -0.1044500395655632, 0.015101675875484943, 0.006461358163505793, -0.11822833120822906, 0.05542835220694542, 0.18525080382823944, 0.07789906114339828, -0.026843199506402016, 0.012452905997633934, 0.024467578157782555, -0.05809639021754265, 0.0590648353099823, -0.09406013786792755, 0.0038227832410484552, -0.06709415465593338, -0.13606257736682892, 0.08787926286458969, 0.03738958388566971, -0.010986794717609882, 0.17509286105632782, 0.0759161189198494, 0.035629115998744965, -0.014242337085306644, -0.11375514417886734, 0.04036318138241768, 0.013632921501994133, -0.0305562112480402, -0.06682883948087692, -0.03860364109277725, -0.05097347870469093, -0.012179427780210972, 0.19262942671775818, 0.031004104763269424, -0.07436566799879074, -0.03679979592561722, 0.05341442674398422, -0.1496790051460266, -0.2157377004623413, -0.006406290456652641, -0.04147772118449211, 0.1805328130722046, -0.15023872256278992, 0.049158159643411636, 0.1061495840549469, 0.07123710960149765, -0.018678879365324974, 0.11794894188642502, -0.002176848007366061, 0.0021777378860861063, 0.1251838505268097, -0.09756211936473846, -0.09640727192163467, -0.10569922626018524, 0.11332826316356659, 0.10796604305505753, 0.18335355818271637, 0.12822502851486206, -0.12009774893522263, -0.00120852782856673, 0.002731824293732643, -0.07859636843204498, -0.03184151649475098, 0.08757089823484421, 0.08303696662187576, 0.05135537311434746, -0.09977602958679199, -0.03930673375725746, 0.004268074873834848, -0.2842477560043335, -0.10956920683383942, 0.08827079832553864, -0.061273884028196335, -0.05648181959986687, 0.05454974249005318, -0.10639078915119171, -0.16323025524616241, -0.04048987478017807, -0.04780757427215576, -0.12049007415771484, 0.09571262449026108, 0.23338638246059418, 0.08725687116384506, 0.048118650913238525, -0.08318759500980377, 0.08348587900400162, -0.07982040196657181, 0.05869658291339874, -0.065052330493927, 0.13451221585273743, -0.23747362196445465, -0.028105435892939568, 0.01379734929651022, 0.15900246798992157, -0.07018724083900452, 0.0063284956850111485, -0.11153900623321533, 0.041416071355342865, -0.04525146260857582, 0.007880980148911476, 0.011046692728996277, -0.0423116497695446, -0.009132077917456627, -0.14278115332126617, -0.07119779288768768, 0.031210005283355713, -0.06264735758304596, -0.0016424627974629402, 0.045476626604795456, 0.012626610696315765, -0.020841743797063828, -0.021425848826766014, 0.049673110246658325, -0.0723959356546402, 0.07567284256219864, 0.039328619837760925, -0.10065869987010956, 0.09566338360309601, -0.05077982321381569, -0.17113256454467773, 0.1414506584405899, 0.06418273597955704, 0.025839662179350853, 0.0700995996594429, 0.10384903848171234, 0.008485603146255016, 0.0484066978096962, -0.006875478196889162, 0.09208451211452484, -0.04986941069364548, 0.005725406110286713, -0.05886177718639374, -0.060194045305252075, -0.03872007504105568, 0.05298677831888199, 0.005843641702085733, 0.039772264659404755, 0.024203471839427948, -0.016063891351222992, 0.011537943035364151, -0.0886044055223465, 0.022174496203660965, -0.03489477187395096, -0.1732986867427826, -0.012311574071645737, -0.056632149964571, 0.03418740630149841, -0.03111857734620571, 0.06495635211467743, 0.011748120188713074, 0.016495155170559883, 0.04111446812748909, 0.20008395612239838, -0.13465876877307892, 0.042755499482154846, 0.17446652054786682, 0.03133910149335861, 0.013033835217356682, -0.03298233076930046, 0.08027519285678864, 0.09509145468473434, 0.12480378150939941, -0.05637788400053978, 0.10715638101100922, -0.10824770480394363, 0.07464627176523209, 0.12021857500076294, 0.11260302364826202, -0.15548276901245117, -0.15188400447368622, -0.037513911724090576, 0.08419343829154968, -0.05595267564058304, 0.03655127063393593, 0.19314704835414886, 0.07754524052143097, 0.051167890429496765, -0.015393027104437351, -0.03229658305644989, 0.03649061918258667, -0.10504841804504395, -0.07965008169412613, -0.14401200413703918, 0.0408981516957283, -0.03786174952983856, 0.007777992635965347, 0.05167503282427788, 0.053533829748630524, -0.05483352392911911, 0.21398548781871796, 0.17615669965744019, -0.08989168703556061, 0.11066797375679016, -0.002157010603696108, 0.00816824845969677, 0.05464590713381767, 0.07899751514196396, -0.04587982967495918, 0.039883777499198914, -0.05028875172138214, 0.008313991129398346, -0.023405518382787704, -0.030784916132688522, 0.002981682773679495, -0.06956316530704498, -0.035280048847198486, 0.009351616725325584, -0.021135227754712105, -0.025506136938929558, -0.040940772742033005, -0.029179802164435387, -0.009915593080222607, 0.18265190720558167, -0.07543164491653442, -0.13258874416351318, -0.031878761947155, 0.17112970352172852, -0.04528256878256798, 0.07528826594352722, -0.041224028915166855, -0.033514026552438736, -0.10736083984375, 0.3312666118144989, 0.16816137731075287, -0.015280627645552158, -0.020888766273856163, 0.07880361378192902, 0.022789718583226204, -0.004310627933591604, 0.1268136203289032, 0.07499293982982635, 0.23315060138702393, -0.06964446604251862, -0.014168603345751762, -0.09043389558792114, 0.06589865684509277, 0.008922416716814041, -0.02002810686826706, 0.13772134482860565, -0.016873279586434364, -0.10568898171186447, 0.10038767009973526, 0.05579834058880806, -0.009058413095772266, 0.07771389186382294, -0.17647774517536163, -0.016238458454608917, -0.04474570229649544, 0.17727366089820862, -0.0060396017506718636, 0.053866077214479446, -0.06095186248421669, -0.050126925110816956, -0.02260439842939377, 0.03732847049832344, -0.19538277387619019, -0.010628534480929375, 0.06287173926830292, -0.1870807707309723, 0.033149681985378265, -0.08193343132734299, 0.011917044408619404, 0.07521091401576996, 0.013360770419239998, -0.021393921226263046, -0.04155054688453674, -0.024864673614501953, -0.14246311783790588, 0.0025924970395863056, 0.10588011145591736, 0.017509078606963158, -0.03604459390044212, -0.028252726420760155, -0.19977903366088867, -0.02571602538228035, 0.030885804444551468, 0.014164634980261326, -0.04003438726067543, 0.015848206356167793, -0.035832520574331284, 0.01770331896841526, 0.07294674962759018, -0.010359887965023518, -0.04864272475242615, -0.08975685387849808, -0.03669240325689316, 0.10863672941923141, -0.0015452788211405277, 0.03310078755021095, -0.07821287214756012, -0.09760797768831253, -0.14981362223625183, 0.0026758082676678896, -0.04273469001054764, -0.0820072814822197, -0.015730401501059532, -0.01615067385137081, -0.053454846143722534, 0.032381705939769745, 0.09134259074926376, -0.0325762964785099, 0.006672355812042952, -0.027540137991309166, -0.010851803235709667, 0.12010956555604935, -0.09207112342119217, -0.04813666641712189 ]
null
null
transformers
# vit_large_patch16_384 Implementation of Vision Transformer (ViT) proposed in [An Image Is Worth 16x16 Words: Transformers For Image Recognition At Scale](https://arxiv.org/pdf/2010.11929.pdf) The following image from the authors shows the architecture. ![image](https://github.com/FrancescoSaverioZuppichini/glasses/blob/develop/docs/_static/images/ViT.png?raw=true) ``` python ViT.vit_small_patch16_224() ViT.vit_base_patch16_224() ViT.vit_base_patch16_384() ViT.vit_base_patch32_384() ViT.vit_huge_patch16_224() ViT.vit_huge_patch32_384() ViT.vit_large_patch16_224() ViT.vit_large_patch16_384() ViT.vit_large_patch32_384() ``` Examples: ``` python # change activation ViT.vit_base_patch16_224(activation = nn.SELU) # change number of classes (default is 1000 ) ViT.vit_base_patch16_224(n_classes=100) # pass a different block, default is TransformerEncoderBlock ViT.vit_base_patch16_224(block=MyCoolTransformerBlock) # get features model = ViT.vit_base_patch16_224 # first call .features, this will activate the forward hooks and tells the model you'll like to get the features model.encoder.features model(torch.randn((1,3,224,224))) # get the features from the encoder features = model.encoder.features print([x.shape for x in features]) #[[torch.Size([1, 197, 768]), torch.Size([1, 197, 768]), ...] # change the tokens, you have to subclass ViTTokens class MyTokens(ViTTokens): def __init__(self, emb_size: int): super().__init__(emb_size) self.my_new_token = nn.Parameter(torch.randn(1, 1, emb_size)) ViT(tokens=MyTokens) ```
{}
null
glasses/vit_large_patch16_384
[ "transformers", "pytorch", "arxiv:2010.11929", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[ "2010.11929" ]
[]
TAGS #transformers #pytorch #arxiv-2010.11929 #endpoints_compatible #region-us
# vit_large_patch16_384 Implementation of Vision Transformer (ViT) proposed in An Image Is Worth 16x16 Words: Transformers For Image Recognition At Scale The following image from the authors shows the architecture. !image Examples:
[ "# vit_large_patch16_384\n Implementation of Vision Transformer (ViT) proposed in An Image Is\n Worth 16x16 Words: Transformers For Image Recognition At\n Scale\n\n The following image from the authors shows the architecture.\n\n !image\n\n \n\n Examples:" ]
[ "TAGS\n#transformers #pytorch #arxiv-2010.11929 #endpoints_compatible #region-us \n", "# vit_large_patch16_384\n Implementation of Vision Transformer (ViT) proposed in An Image Is\n Worth 16x16 Words: Transformers For Image Recognition At\n Scale\n\n The following image from the authors shows the architecture.\n\n !image\n\n \n\n Examples:" ]
[ 29, 63 ]
[ "passage: TAGS\n#transformers #pytorch #arxiv-2010.11929 #endpoints_compatible #region-us \n# vit_large_patch16_384\n Implementation of Vision Transformer (ViT) proposed in An Image Is\n Worth 16x16 Words: Transformers For Image Recognition At\n Scale\n\n The following image from the authors shows the architecture.\n\n !image\n\n \n\n Examples:" ]
[ -0.0825812891125679, -0.12653283774852753, -0.005577229429036379, 0.07951048016548157, 0.1649554818868637, 0.010088114999234676, 0.045649539679288864, 0.016682276502251625, -0.05395953357219696, 0.018850134685635567, 0.12577524781227112, 0.17578400671482086, -0.009808264672756195, -0.012767858803272247, 0.004180215764790773, -0.31502440571784973, -0.036379486322402954, 0.16549193859100342, -0.13746167719364166, 0.0856962725520134, 0.08700726181268692, -0.1480611115694046, 0.10610094666481018, 0.04003886133432388, -0.277543306350708, 0.027817323803901672, 0.018007000908255577, -0.09258905053138733, 0.16817675530910492, 0.0596289224922657, 0.10118314623832703, -0.0017560349078848958, -0.020747380331158638, 0.031202280893921852, 0.007426528725773096, 0.031502146273851395, -0.036128971725702286, 0.055710554122924805, 0.08943069726228714, 0.1367310881614685, 0.047057315707206726, -0.032694559544324875, -0.02417837642133236, -0.021540576592087746, -0.10536402463912964, -0.14926274120807648, 0.07161006331443787, 0.07715389877557755, -0.029866954311728477, 0.03148798644542694, 0.031042659655213356, 0.1573459655046463, -0.005527804140001535, 0.12225077301263809, 0.14615003764629364, -0.1400723159313202, -0.1083315834403038, -0.05883428454399109, -0.0017277064034715295, 0.07284022867679596, -0.052282270044088364, 0.0808817446231842, 0.05956965312361717, 0.0553995706140995, 0.013992201536893845, -0.040167927742004395, -0.09587588161230087, 0.02693128027021885, -0.14391379058361053, -0.05300454795360565, 0.16158531606197357, 0.025182800367474556, 0.03366953507065773, -0.02888045646250248, -0.1630299836397171, 0.008641097694635391, -0.05899418890476227, -0.040768373757600784, -0.014328894205391407, -0.08779186755418777, -0.1461225003004074, -0.03446344658732414, -0.1404617428779602, -0.027585698291659355, -0.1217140182852745, 0.11473429203033447, 0.027685025706887245, 0.08603324741125107, -0.13822002708911896, 0.046949755400419235, -0.03943419083952904, -0.10223635286092758, 0.03605562075972557, -0.11582297831773758, 0.008364107459783554, 0.024156855419278145, 0.01874583773314953, -0.1335046887397766, -0.038773417472839355, -0.061921942979097366, 0.10373900085687637, -0.026129649952054024, -0.017200930044054985, 0.08427780121564865, -0.08235488831996918, 0.2552954852581024, -0.1302167922258377, 0.12489274144172668, -0.07142599672079086, -0.055215876549482346, -0.0046212500892579556, 0.011834990233182907, -0.10622155666351318, -0.09420696645975113, -0.009892544709146023, -0.005509450566023588, -0.03170136734843254, 0.09782323986291885, 0.05520697310566902, -0.04006355628371239, 0.06527058780193329, 0.0174874197691679, 0.02772614359855652, -0.014135041274130344, 0.06067194417119026, 0.18663080036640167, 0.07450924068689346, -0.10863178968429565, -0.07691282033920288, 0.05043700337409973, -0.08874236792325974, 0.01239323616027832, -0.026540791615843773, -0.1112271323800087, 0.037362296134233475, -0.013947058469057083, 0.07228130847215652, -0.28037911653518677, 0.10568039864301682, 0.10673908144235611, 0.023125087842345238, 0.0021012721117585897, 0.042274147272109985, 0.029652738943696022, -0.12805742025375366, -0.0011578550329431891, 0.018996691331267357, 0.010607641190290451, 0.04128880053758621, 0.11372268944978714, 0.08911358565092087, 0.11806976795196533, -0.10392085462808609, 0.014737372286617756, -0.08761569112539291, -0.015941912308335304, -0.13225297629833221, -0.028160108253359795, 0.0381934829056263, 0.12809498608112335, -0.042295780032873154, -0.14963452517986298, -0.005949854850769043, 0.028229421004652977, 0.027598081156611443, 0.1220797523856163, -0.07004828006029129, -0.06774691492319107, 0.040246836841106415, -0.143173947930336, -0.1977715939283371, 0.1279493123292923, 0.054119404405355453, 0.028861328959465027, 0.08028747141361237, 0.11330128461122513, 0.07256851345300674, -0.15057261288166046, -0.02463006041944027, 0.024213450029492378, -0.1436193436384201, -0.09014294296503067, 0.008211134932935238, 0.19132012128829956, -0.047265227884054184, -0.001975015038624406, -0.07943133264780045, 0.06942731887102127, -0.13122163712978363, -0.04055454209446907, -0.07347407937049866, -0.01039296668022871, 0.04611191526055336, 0.06500773131847382, 0.0484449677169323, -0.046481817960739136, -0.01688246987760067, 0.12549667060375214, 0.04056132584810257, -0.04821944609284401, 0.03146795183420181, -0.09291645884513855, 0.028012985363602638, -0.1623104214668274, 0.044778645038604736, -0.08075287193059921, 0.06834064424037933, 0.0049112592823803425, 0.005744642112404108, 0.007300730794668198, 0.16142146289348602, 0.09016704559326172, 0.024475840851664543, -0.025647087022662163, -0.046823471784591675, -0.000545594550203532, 0.017477914690971375, -0.033733535557985306, -0.11701163649559021, -0.0007915748283267021, -0.01115945354104042, -0.15859192609786987, -0.09571642428636551, -0.044682130217552185, 0.14061056077480316, 0.08512604236602783, -0.0005998341366648674, 0.048486292362213135, -0.05739894509315491, 0.023939989507198334, -0.007000694517046213, -0.03024674952030182, 0.04230794683098793, -0.03219064325094223, 0.049997586756944656, 0.1475282609462738, -0.02493400312960148, 0.23872144520282745, 0.17806632816791534, -0.3612707853317261, -0.002496981294825673, 0.08885671943426132, -0.004233530722558498, 0.027624694630503654, 0.01642693392932415, -0.09518858045339584, 0.02757200039923191, -0.06619682163000107, 0.12462792545557022, -0.028044285252690315, -0.0066049168817698956, 0.10630696266889572, 0.0074822623282670975, -0.09613662958145142, 0.10680968314409256, 0.09112434834241867, -0.22779931128025055, 0.07416603714227676, 0.18080943822860718, -0.05633760616183281, 0.006106778979301453, 0.0306552667170763, -0.04462704062461853, 0.019406450912356377, 0.0076852706260979176, 0.02341235615313053, 0.17832408845424652, -0.2830401360988617, -0.0957663357257843, 0.03207864984869957, -0.083082415163517, 0.004482716787606478, -0.14844568073749542, 0.03213706985116005, 0.04444798827171326, 0.08438003063201904, -0.04040376469492912, 0.04935917630791664, -0.003882297547534108, 0.09690570831298828, -0.015574119985103607, -0.08261991292238235, 0.026990478858351707, 0.01419799868017435, -0.026225104928016663, 0.1423107385635376, -0.02207048237323761, -0.40596112608909607, -0.1409638673067093, -0.07877514511346817, 0.05781679227948189, 0.02498672716319561, 0.05743113160133362, -0.16673988103866577, -0.07044491171836853, 0.0755215585231781, 0.13059411942958832, -0.052750442177057266, 0.08440733700990677, 0.002319191349670291, 0.03474867343902588, 0.009854762814939022, -0.05534334480762482, -0.014146272093057632, -0.08041425049304962, 0.02765895612537861, 0.05271581932902336, -0.0216910932213068, 0.16865777969360352, 0.06762373447418213, -0.07258186489343643, 0.05480063334107399, -0.017619220539927483, 0.1740177422761917, -0.13155266642570496, -0.009366421960294247, 0.21889658272266388, 0.010164734907448292, 0.009126218035817146, 0.11035164445638657, 0.06046958640217781, -0.06499839574098587, -0.019497139379382133, -0.10379266738891602, -0.07037485390901566, -0.055017706006765366, -0.01985287107527256, -0.1011400818824768, 0.043194402009248734, 0.14219315350055695, 0.030462659895420074, 0.011698347516357899, 0.08111477643251419, 0.015095111913979053, 0.07315211743116379, -0.018442410975694656, 0.12077724188566208, 0.35587021708488464, -0.06538616865873337, 0.056645121425390244, -0.06250055879354477, -0.14534059166908264, 0.03386833891272545, -0.053747836500406265, 0.1521967500448227, -0.007432336453348398, -0.0037380356807261705, 0.03437674418091774, -0.009035966359078884, 0.09778835624456406, 0.14146189391613007, -0.03108314611017704, -0.04010791704058647, -0.020117251202464104, -0.0645034983754158, 0.027509793639183044, 0.03589797392487526, 0.017395852133631706, 0.012399394065141678, -0.06891167163848877, -0.09057485312223434, 0.07185929268598557, 0.024164631962776184, 0.14296665787696838, -0.31878456473350525, -0.045016247779130936, -0.03773709014058113, -0.054537441581487656, -0.1263989955186844, 0.02979232557117939, 0.11991850286722183, -0.005399101879447699, 0.001909302663989365, -0.11546465754508972, 0.07687542587518692, -0.05348965898156166, 0.09294122457504272, 0.02541363798081875, -0.04177800938487053, 0.03701544180512428, 0.0375637449324131, -0.21173614263534546, 0.1984223574399948, -0.02888467162847519, -0.03191277012228966, -0.021706009283661842, -0.06463373452425003, -0.0250630434602499, 0.22572757303714752, 0.05570535361766815, 0.005676083266735077, 0.2610977292060852, -0.08986537903547287, 0.08959948271512985, 0.03705020993947983, 0.09743682295084, 0.07369881123304367, -0.022462008520960808, -0.026075733825564384, -0.05305555835366249, 0.01875263638794422, 0.044446781277656555, 0.05356527492403984, -0.08317458629608154, 0.02258291281759739, -0.028179416432976723, 0.10025522857904434, -0.010844942182302475, -0.06134938821196556, -0.03444467857480049, 0.01062309741973877, 0.020893519744277, 0.021268442273139954, -0.06640368700027466, 0.1254240870475769, 0.10556132346391678, -0.0818546861410141, 0.14307677745819092, -0.0750938132405281, 0.050482261925935745, -0.015321210026741028, -0.10555467754602432, 0.07620735466480255, -0.1044585108757019, 0.00517382612451911, 0.011010629124939442, 0.045664023607969284, -0.07410180568695068, -0.032546401023864746, 0.004812074359506369, 0.025852831080555916, -0.10423164814710617, -0.01560601219534874, 0.01471151877194643, -0.07284148037433624, -0.08883881568908691, -0.005949394311755896, 0.09389642626047134, 0.002259831875562668, -0.05897359177470207, 0.04570072889328003, 0.07143314927816391, 0.021573275327682495, -0.06481539458036423, -0.07248859852552414, 0.10980086773633957, 0.04021477326750755, -0.27157676219940186, 0.010478775016963482, -0.007813162170350552, -0.018391618505120277, -0.07598166912794113, 0.014803401194512844, 0.13381710648536682, -0.08208080381155014, 0.007610179018229246, 0.05137952044606209, -0.17032372951507568, -0.06556591391563416, 0.08831038326025009, 0.15679290890693665, 0.20301617681980133, -0.10251422971487045, 0.02003343030810356, 0.00827688630670309, -0.12362932413816452, 0.047566886991262436, 0.19497926533222198, 0.08020145446062088, -0.02509281039237976, 0.012968485243618488, 0.02450598031282425, -0.06067478284239769, 0.051937285810709, -0.08735155314207077, -0.002014484954997897, -0.06697335094213486, -0.13650818169116974, 0.08180033415555954, 0.03828654810786247, -0.012362848035991192, 0.18688303232192993, 0.07613789290189743, 0.04014243558049202, -0.012802847661077976, -0.119366854429245, 0.03813835233449936, 0.01686525158584118, -0.03637135028839111, -0.06914608925580978, -0.03334960713982582, -0.050466138869524, -0.015375933609902859, 0.19692695140838623, 0.02780456840991974, -0.06731841713190079, -0.024073859676718712, 0.04910707101225853, -0.1423829197883606, -0.21706576645374298, -0.005251748487353325, -0.04646550118923187, 0.17880754172801971, -0.1446770280599594, 0.04909532144665718, 0.10705888271331787, 0.06980310380458832, -0.016832707449793816, 0.11793004721403122, -0.002449827268719673, 0.0000756081790314056, 0.12232571840286255, -0.09544777125120163, -0.08708170056343079, -0.1108088418841362, 0.1066369116306305, 0.10915417224168777, 0.1775810569524765, 0.12891064584255219, -0.12161958962678909, 0.0015536349965259433, 0.001542737241834402, -0.07687725871801376, -0.03090805746614933, 0.08477270603179932, 0.08590376377105713, 0.047275785356760025, -0.09555044025182724, -0.03529699146747589, 0.004751323256641626, -0.28513357043266296, -0.10439500957727432, 0.08341535180807114, -0.06375301629304886, -0.05546196177601814, 0.0528891496360302, -0.1139066219329834, -0.17588801681995392, -0.037435922771692276, -0.049430426210165024, -0.12049438804388046, 0.09802217036485672, 0.2227465659379959, 0.08826894313097, 0.04355412349104881, -0.08599549531936646, 0.08681914955377579, -0.08421286940574646, 0.060273487120866776, -0.06905568391084671, 0.13429559767246246, -0.23100584745407104, -0.029016545042395592, 0.013532753102481365, 0.16640795767307281, -0.0710008442401886, 0.008520376868546009, -0.11801543831825256, 0.0432400144636631, -0.04886884614825249, 0.001639755442738533, 0.006548414472490549, -0.04351267218589783, -0.013543404638767242, -0.1434888243675232, -0.07031495124101639, 0.03221976384520531, -0.060324814170598984, -0.0021632330026477575, 0.0433555506169796, 0.011321146972477436, -0.020407358184456825, -0.019866203889250755, 0.046655792742967606, -0.06965713202953339, 0.07398824393749237, 0.03318651020526886, -0.10124433040618896, 0.09415154904127121, -0.048976968973875046, -0.17310702800750732, 0.14076556265354156, 0.0617033876478672, 0.029334967955946922, 0.0695633515715599, 0.10208394378423691, 0.007702886592596769, 0.04401217773556709, -0.007551420945674181, 0.08522137999534607, -0.0472518689930439, 0.012634688057005405, -0.062114980071783066, -0.05489528179168701, -0.044369447976350784, 0.05638306960463524, 0.013443049043416977, 0.039326366037130356, 0.022632449865341187, -0.019192790612578392, 0.012639534659683704, -0.08365000039339066, 0.02223038114607334, -0.03620323911309242, -0.17534691095352173, -0.0025267251767218113, -0.0636458471417427, 0.034811168909072876, -0.032299865037202835, 0.059693869203329086, 0.014384661801159382, 0.018760621547698975, 0.04507763311266899, 0.1899816244840622, -0.13789844512939453, 0.04268373176455498, 0.1824616938829422, 0.02877623774111271, 0.014211823232471943, -0.029424399137496948, 0.08380111306905746, 0.0971258208155632, 0.13178570568561554, -0.05233527719974518, 0.09794104844331741, -0.11489742994308472, 0.07747335731983185, 0.11909333616495132, 0.10803327709436417, -0.15899577736854553, -0.15098954737186432, -0.03954216092824936, 0.0858004093170166, -0.057896003127098083, 0.030708463862538338, 0.1883396953344345, 0.07632031291723251, 0.04854102060198784, -0.015187802724540234, -0.032014522701501846, 0.03307104483246803, -0.09351250529289246, -0.07924134284257889, -0.14372985064983368, 0.03827804699540138, -0.03888818249106407, 0.010829555802047253, 0.049519240856170654, 0.05151372775435448, -0.05525815114378929, 0.21966230869293213, 0.16578638553619385, -0.0931231752038002, 0.11150693893432617, -0.004756070673465729, 0.011532649397850037, 0.05765022709965706, 0.07457908242940903, -0.045633938163518906, 0.04565351828932762, -0.048953983932733536, 0.0071238186210393906, -0.02858121134340763, -0.029826922342181206, 0.006178511772304773, -0.07080581784248352, -0.038013238459825516, 0.011868405155837536, -0.01819838397204876, -0.028437329456210136, -0.03776293620467186, -0.028235062956809998, -0.009494476020336151, 0.17983371019363403, -0.0793377086520195, -0.12883396446704865, -0.032816845923662186, 0.18506626784801483, -0.04236510396003723, 0.07333876192569733, -0.039763499051332474, -0.03741755336523056, -0.10889259725809097, 0.3317192792892456, 0.16967421770095825, -0.022890910506248474, -0.020232273265719414, 0.07706192880868912, 0.02390916831791401, -0.00119629071559757, 0.13478967547416687, 0.07681574672460556, 0.22440709173679352, -0.07081109285354614, -0.011717707850039005, -0.08773910254240036, 0.06338007003068924, 0.005860826000571251, -0.020982347428798676, 0.14540670812129974, -0.01964622549712658, -0.10383059829473495, 0.10407169908285141, 0.05078020319342613, -0.006658522877842188, 0.07167693227529526, -0.17450906336307526, -0.01849382556974888, -0.0375991091132164, 0.17963945865631104, -0.003446411108598113, 0.05529697611927986, -0.06496348977088928, -0.043635040521621704, -0.017783528193831444, 0.03577083721756935, -0.18902741372585297, -0.0004457533359527588, 0.05948367342352867, -0.19009517133235931, 0.02563883550465107, -0.08028781414031982, 0.008933980949223042, 0.07597177475690842, 0.013181962072849274, -0.017644615843892097, -0.035822805017232895, -0.02692984603345394, -0.14634475111961365, 0.005442032590508461, 0.1038220003247261, 0.011403866112232208, -0.032044488936662674, -0.029872411862015724, -0.20929376780986786, -0.022569755092263222, 0.03024226613342762, 0.01729353703558445, -0.04105808958411217, 0.014274891465902328, -0.036276400089263916, 0.026469213888049126, 0.07380200177431107, -0.00982057023793459, -0.05071067810058594, -0.08671978116035461, -0.03836369886994362, 0.10516506433486938, 0.000003830840341834119, 0.024954767897725105, -0.07812722027301788, -0.09634632617235184, -0.1588371992111206, 0.008651518262922764, -0.03811795637011528, -0.08148692548274994, -0.018792198970913887, -0.01786704547703266, -0.057692158967256546, 0.03343362733721733, 0.09156742691993713, -0.03591698780655861, 0.00827085692435503, -0.017342325299978256, -0.010290462523698807, 0.12048635631799698, -0.10130523890256882, -0.051722344011068344 ]
null
null
transformers
# wide_resnet101_2 Implementation of Wide ResNet proposed in [\"Wide Residual Networks\"](https://arxiv.org/pdf/1605.07146.pdf) Create a default model ``` python WideResNet.wide_resnet50_2() WideResNet.wide_resnet101_2() # create a wide_resnet18_4 WideResNet.resnet18(block=WideResNetBottleNeckBlock, width_factor=4) ``` Examples: ``` python # change activation WideResNet.resnext50_32x4d(activation = nn.SELU) # change number of classes (default is 1000 ) WideResNet.resnext50_32x4d(n_classes=100) # pass a different block WideResNet.resnext50_32x4d(block=SENetBasicBlock) # change the initial convolution model = WideResNet.resnext50_32x4d model.encoder.gate.conv1 = nn.Conv2d(3, 64, kernel_size=3) # store each feature x = torch.rand((1, 3, 224, 224)) model = WideResNet.wide_resnet50_2() features = [] x = model.encoder.gate(x) for block in model.encoder.layers: x = block(x) features.append(x) print([x.shape for x in features]) # [torch.Size([1, 64, 56, 56]), torch.Size([1, 128, 28, 28]), torch.Size([1, 256, 14, 14]), torch.Size([1, 512, 7, 7])] ```
{}
null
glasses/wide_resnet101_2
[ "transformers", "pytorch", "arxiv:1605.07146", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[ "1605.07146" ]
[]
TAGS #transformers #pytorch #arxiv-1605.07146 #endpoints_compatible #region-us
# wide_resnet101_2 Implementation of Wide ResNet proposed in \"Wide Residual Networks\" Create a default model Examples:
[ "# wide_resnet101_2\nImplementation of Wide ResNet proposed in \\\"Wide Residual\nNetworks\\\"\n\n Create a default model\n\n \n\n Examples:" ]
[ "TAGS\n#transformers #pytorch #arxiv-1605.07146 #endpoints_compatible #region-us \n", "# wide_resnet101_2\nImplementation of Wide ResNet proposed in \\\"Wide Residual\nNetworks\\\"\n\n Create a default model\n\n \n\n Examples:" ]
[ 30, 36 ]
[ "passage: TAGS\n#transformers #pytorch #arxiv-1605.07146 #endpoints_compatible #region-us \n# wide_resnet101_2\nImplementation of Wide ResNet proposed in \\\"Wide Residual\nNetworks\\\"\n\n Create a default model\n\n \n\n Examples:" ]
[ -0.07823602855205536, -0.18009544909000397, -0.005192617420107126, -0.00931302085518837, 0.023327266797423363, 0.012417958118021488, 0.058129098266363144, -0.01604258269071579, -0.07158584147691727, -0.05519130825996399, 0.17977310717105865, 0.02143724635243416, -0.05262915790081024, -0.005292552523314953, -0.04380550980567932, -0.22881758213043213, 0.055925820022821426, 0.0775391012430191, -0.1517472267150879, 0.10727115720510483, 0.13253886997699738, -0.020579885691404343, 0.06496556848287582, 0.056726954877376556, -0.12047939002513885, 0.019194047898054123, 0.015563823282718658, -0.008249351754784584, 0.10641878098249435, 0.0325126014649868, 0.22476328909397125, 0.01519556250423193, -0.00006843741721240804, -0.16831813752651215, 0.02398483082652092, 0.05194481462240219, -0.017189105972647667, 0.09715989977121353, 0.09827770292758942, 0.06121315807104111, 0.05483465641736984, 0.09017077833414078, -0.08340395241975784, 0.014403339475393295, -0.04505280405282974, -0.12084018439054489, -0.021895507350564003, 0.1320788562297821, -0.018533332273364067, 0.10583391040563583, 0.0137381162494421, 0.1135612204670906, -0.2020442634820938, 0.06608172506093979, 0.1584659367799759, -0.3387077748775482, 0.013787965290248394, 0.1981119066476822, 0.06875989586114883, -0.020322537049651146, 0.009282740764319897, -0.04391231760382652, 0.04866844415664673, 0.039103515446186066, -0.06672745198011398, -0.032899051904678345, -0.05877745524048805, 0.00504183117300272, -0.16375766694545746, 0.0406373105943203, 0.09093938767910004, 0.028514936566352844, 0.09674155712127686, -0.020851822569966316, -0.23812822997570038, 0.02813408337533474, -0.020508157089352608, -0.08082346618175507, -0.026086287572979927, 0.09673552960157394, 0.0315348245203495, -0.02829628624022007, -0.08897317945957184, -0.012403915636241436, -0.19487564265727997, 0.07608562707901001, 0.07823603600263596, 0.09146535396575928, -0.15717813372612, 0.04479599744081497, 0.0017697283765301108, -0.06527643650770187, 0.06803736090660095, -0.1798929125070572, -0.022490983828902245, 0.013123948127031326, -0.07867550849914551, -0.03611277788877487, 0.10465602576732635, 0.18425077199935913, -0.0869605615735054, -0.0317951962351799, 0.10228212922811508, 0.13057930767536163, -0.07203251123428345, -0.13771280646324158, -0.29045990109443665, 0.05141402408480644, 0.0010088209528476, -0.09556712955236435, 0.053332217037677765, -0.024391327053308487, -0.060097843408584595, -0.031209703534841537, 0.019718270748853683, 0.020052168518304825, -0.010271423496305943, 0.030726129189133644, -0.04220570623874664, -0.08405349403619766, 0.1520017683506012, -0.033708151429891586, -0.01101846992969513, 0.01627742499113083, -0.06148067116737366, 0.11274675279855728, 0.02452979050576687, 0.05931374803185463, -0.04538733512163162, 0.06647136062383652, -0.08752720803022385, -0.06949024647474289, -0.028094377368688583, -0.10193923115730286, 0.04084954783320427, 0.1262599676847458, 0.048014383763074875, -0.18295301496982574, -0.0203205905854702, 0.025791315361857414, 0.09621764719486237, -0.0034904172644019127, -0.04699571430683136, 0.01861158013343811, -0.1300971657037735, -0.044550616294145584, -0.03725794330239296, 0.10729051381349564, -0.04649427533149719, -0.01663270592689514, -0.025248536840081215, 0.020582327619194984, -0.11599400639533997, -0.01727105863392353, -0.07180484384298325, -0.01605970785021782, -0.0485742911696434, 0.006174745038151741, -0.1045193150639534, 0.011106993071734905, -0.1029745414853096, -0.06609498709440231, -0.06606180220842361, 0.025115223601460457, 0.06526347249746323, 0.07720978558063507, 0.00510804820805788, -0.06578461080789566, 0.24381375312805176, -0.11651062220335007, -0.14776186645030975, 0.12230389565229416, -0.011178908869624138, -0.07071756571531296, -0.010002539493143559, 0.12458352744579315, 0.13100846111774445, -0.0406307727098465, 0.03011789359152317, 0.06860919296741486, -0.11896513402462006, -0.14160007238388062, -0.03688972443342209, 0.1067391037940979, 0.05911008268594742, -0.05278676003217697, 0.07119230180978775, 0.10336094349622726, -0.11786026507616043, -0.0538170263171196, -0.05199024826288223, -0.10801989585161209, 0.07891727238893509, 0.044981107115745544, 0.09740312397480011, 0.08518079668283463, -0.060435350984334946, -0.10674029588699341, 0.06530357152223587, -0.011964944191277027, 0.09594909101724625, -0.10609599202871323, 0.04637588933110237, -0.035250473767519, 0.0105248698964715, -0.2193295955657959, -0.13083259761333466, -0.011956184171140194, 0.0339256152510643, -0.03000018186867237, 0.3203755021095276, 0.07201434671878815, -0.0773095116019249, -0.07083838433027267, 0.016958478838205338, 0.12687700986862183, 0.01571458950638771, -0.06881904602050781, -0.12739533185958862, -0.030072515830397606, -0.06133411452174187, -0.058278150856494904, -0.2341403365135193, -0.012390941381454468, 0.03190505504608154, 0.17368243634700775, -0.028960926458239555, 0.0660112202167511, -0.01713714934885502, 0.010131122544407845, -0.054437410086393356, -0.01951528526842594, -0.005946111865341663, -0.029332153499126434, -0.08437145501375198, 0.0636032447218895, -0.004540535155683756, 0.2691590189933777, 0.05313488095998764, -0.25150594115257263, -0.029519841074943542, 0.10339521616697311, -0.09004298597574234, -0.001116040162742138, 0.015053854323923588, 0.058698225766420364, 0.07380495220422745, 0.007936193607747555, 0.08301800489425659, -0.034830883145332336, 0.03238455206155777, -0.004307364579290152, -0.10907097905874252, 0.1389504373073578, 0.054900962859392166, 0.007398162502795458, -0.3000437319278717, 0.08623838424682617, 0.0044379099272191525, -0.11698247492313385, -0.013913028873503208, -0.027283713221549988, -0.013021462596952915, 0.04399560019373894, 0.1084524393081665, -0.03774836286902428, -0.004880160558968782, 0.015435879118740559, 0.031348731368780136, 0.06366409361362457, -0.014112130738794804, 0.09597230702638626, -0.08245658129453659, -0.01207039225846529, -0.0018008598126471043, 0.005512466188520193, -0.060643985867500305, 0.05771820992231369, 0.011887912638485432, 0.05627300590276718, -0.03148208186030388, -0.22676867246627808, 0.05211929604411125, -0.033515751361846924, -0.03448820486664772, 0.20236195623874664, -0.021304413676261902, -0.11642260104417801, -0.046911049634218216, -0.11314643919467926, -0.07489748299121857, -0.030416887253522873, -0.0018112274119630456, -0.10054752975702286, -0.04364174231886864, 0.04045317694544792, 0.04314357042312622, 0.010053267702460289, 0.026999803259968758, -0.0404011607170105, 0.05273504555225372, 0.03595723211765289, -0.09001129120588303, 0.05063166096806526, -0.14688585698604584, -0.05795498564839363, 0.016188131645321846, -0.11317416280508041, 0.03652586787939072, 0.16996344923973083, 0.07779382169246674, -0.02775857038795948, 0.052224740386009216, 0.14981821179389954, -0.016782104969024658, 0.05731431394815445, 0.13879342377185822, -0.04623844474554062, 0.1027204617857933, 0.15583139657974243, 0.10321065038442612, -0.013965143822133541, -0.02365782856941223, -0.00660302909091115, -0.013651331886649132, -0.22254513204097748, -0.14694741368293762, -0.11376215517520905, -0.05024117976427078, -0.0048359776847064495, 0.029569217935204506, 0.02509932778775692, 0.12957164645195007, -0.02248838171362877, -0.051000550389289856, 0.0029572248458862305, 0.02057809568941593, 0.19361376762390137, 0.01878354512155056, 0.1258714199066162, -0.10504023730754852, -0.12798649072647095, 0.03658904507756233, 0.05891341343522072, 0.2362135499715805, -0.02241467498242855, 0.0233161523938179, 0.11195787787437439, 0.2626307010650635, 0.12127479910850525, 0.16004745662212372, -0.022715579718351364, -0.07967498898506165, 0.019234728068113327, 0.02369149960577488, 0.045785706490278244, 0.07077444344758987, 0.0034763335715979338, -0.12710346281528473, 0.09153648465871811, 0.016335446387529373, -0.01991133764386177, 0.12852005660533905, 0.1480698436498642, -0.23476475477218628, 0.010526604019105434, -0.07533709704875946, -0.09270288795232773, -0.009559550322592258, 0.07743295282125473, 0.14292766153812408, -0.024088285863399506, 0.14947441220283508, -0.05918841436505318, 0.09894247353076935, -0.009375483728945255, 0.04593132063746452, -0.025495393201708794, 0.04599655419588089, 0.056614819914102554, 0.10391039401292801, -0.1721097081899643, 0.2866858243942261, -0.03762606531381607, -0.0935402438044548, -0.08759136497974396, -0.013582375831902027, 0.0011947264429181814, 0.09992889314889908, 0.08974651247262955, 0.014440183527767658, 0.07586255669593811, 0.14713425934314728, 0.00906283501535654, 0.01653897389769554, 0.10166831314563751, 0.05057818070054054, -0.023258855566382408, 0.03143037483096123, -0.04766121879220009, 0.07906285673379898, 0.06502065062522888, -0.031269293278455734, -0.11316102743148804, 0.022556131705641747, 0.16251924633979797, -0.16469642519950867, -0.044833600521087646, -0.011923493817448616, 0.024554219096899033, 0.25385627150535583, -0.054878119379282, -0.10055606812238693, -0.02301175892353058, -0.03537923842668533, 0.2028023898601532, -0.0783892497420311, 0.04611843451857567, -0.021617263555526733, 0.012700442224740982, -0.03719506785273552, -0.11835011094808578, 0.19813752174377441, -0.14298297464847565, -0.03695458173751831, -0.027441468089818954, 0.050344452261924744, 0.005012452602386475, -0.016017131507396698, 0.014252166263759136, -0.011214944534003735, -0.18451473116874695, -0.10819221287965775, -0.15300248563289642, -0.09400971978902817, -0.09819876402616501, 0.05801955610513687, -0.022365737706422806, 0.10301610827445984, 0.03626108914613724, 0.07340873032808304, 0.16501069068908691, 0.058171775192022324, -0.07287473231554031, 0.017666099593043327, 0.17566953599452972, 0.06951875984668732, -0.2552880644798279, -0.17761090397834778, 0.02073816955089569, -0.046708013862371445, 0.0018841034034267068, -0.13880686461925507, 0.18924587965011597, -0.010037158615887165, -0.04600892588496208, 0.04227107763290405, -0.057928964495658875, -0.028197159990668297, 0.18092648684978485, -0.06660514324903488, 0.30773505568504333, -0.019031399860978127, -0.024392232298851013, -0.03384057804942131, 0.041765935719013214, 0.04813973605632782, -0.06967576593160629, 0.07308825850486755, 0.02710181102156639, 0.13885369896888733, -0.011228115297853947, -0.06239555776119232, 0.03484882786870003, 0.07411321997642517, 0.013217168860137463, -0.0829026997089386, 0.0809359923005104, 0.20918847620487213, 0.03497226908802986, -0.01686062105000019, 0.03417005389928818, 0.02349807135760784, -0.07568708062171936, -0.05030827969312668, -0.13248243927955627, 0.006196406204253435, 0.020391086116433144, -0.018226690590381622, -0.12060894072055817, 0.008954827673733234, 0.10561605542898178, 0.03903989493846893, 0.24690739810466766, 0.06101302430033684, 0.15287162363529205, 0.2244686484336853, 0.14105455577373505, -0.14144182205200195, -0.07219133526086807, -0.029822999611496925, -0.03054504096508026, 0.0973769947886467, -0.10097360610961914, 0.009549329057335854, 0.12553678452968597, -0.031000832095742226, -0.13682979345321655, 0.12672868371009827, -0.0852157399058342, -0.07266370952129364, 0.10340874642133713, -0.0813332051038742, -0.16523322463035583, 0.025223957374691963, 0.10637146979570389, -0.07213333994150162, 0.17579297721385956, 0.1457885503768921, -0.04158194735646248, 0.00002320579187653493, 0.04306245595216751, 0.05378241464495659, -0.17214158177375793, 0.1232147365808487, 0.1460941731929779, 0.09440850466489792, -0.12834179401397705, 0.057621389627456665, -0.011409967206418514, -0.02031909115612507, -0.11385761946439743, 0.0006000778521411121, -0.121767058968544, -0.05905073881149292, -0.034555189311504364, -0.026061147451400757, -0.17510822415351868, -0.10146467387676239, -0.03483518958091736, -0.1233600378036499, 0.05304804816842079, 0.06706491857767105, 0.10383434593677521, 0.050402767956256866, -0.025956688448786736, -0.04619141295552254, -0.05637958273291588, -0.05875740572810173, 0.1109476089477539, 0.059256281703710556, -0.16997234523296356, -0.1349831521511078, -0.023725006729364395, 0.12347793579101562, -0.0885872095823288, 0.08185406029224396, -0.06850389391183853, 0.09100822359323502, -0.17649216949939728, -0.08652578294277191, -0.05551775544881821, -0.036687009036540985, -0.056307338178157806, -0.10846183449029922, -0.08582360297441483, 0.06546387821435928, -0.09505447000265121, 0.07807978987693787, 0.016349228098988533, -0.08655166625976562, -0.1114460751414299, 0.01787528581917286, 0.004372807685285807, -0.04017206281423569, 0.09391225874423981, 0.03172687813639641, -0.1420450508594513, 0.056003637611866, -0.09167379885911942, -0.15568757057189941, 0.07561973482370377, 0.10530690103769302, 0.04529278725385666, 0.044283900409936905, 0.008722410537302494, 0.06587396562099457, 0.074568971991539, -0.0055540031753480434, -0.03587009012699127, -0.011545914225280285, 0.05497970059514046, -0.11032123863697052, -0.022617390379309654, -0.025730876252055168, -0.0696277990937233, 0.024981915950775146, 0.13579775393009186, 0.11997175216674805, 0.01381664164364338, 0.047589629888534546, -0.010802584700286388, 0.042737264186143875, 0.002845226554200053, -0.07106789201498032, 0.21267567574977875, -0.04559614136815071, 0.009176217950880527, -0.034086596220731735, 0.29278838634490967, -0.18146923184394836, -0.07791438698768616, -0.0017547773895785213, 0.11976800858974457, -0.05662447586655617, 0.039820071309804916, 0.14689640700817108, 0.09894682466983795, -0.025827592238783836, -0.0380280576646328, 0.006046896334737539, 0.06365517526865005, 0.10653454810380936, 0.12889960408210754, 0.1316635012626648, -0.024209681898355484, 0.03216203302145004, 0.02908480539917946, -0.06511290371417999, 0.05243994668126106, -0.09066834300756454, -0.07079222053289413, -0.021043263375759125, 0.0007883144426159561, -0.03617771714925766, 0.11718446016311646, 0.09962832182645798, 0.014297847636044025, 0.04312099143862724, -0.0345507450401783, -0.13334055244922638, -0.09511943906545639, -0.04502270743250847, -0.13216465711593628, -0.022049224004149437, -0.05047837644815445, -0.09747013449668884, 0.19854821264743805, 0.08947861194610596, 0.0162523053586483, 0.14792926609516144, 0.04729638621211052, -0.045734863728284836, 0.019755445420742035, -0.025821058079600334, -0.033959973603487015, 0.17327693104743958, -0.06361901760101318, -0.060269974172115326, 0.06838730722665787, -0.03107149340212345, 0.026860862970352173, -0.0343039371073246, 0.10475511103868484, -0.022268272936344147, -0.029617914929986, -0.08797848224639893, 0.03639267757534981, 0.004332047421485186, 0.020701834931969643, -0.06276719272136688, 0.010504872538149357, -0.00025529638514854014, 0.22174683213233948, -0.11818815022706985, -0.22583162784576416, -0.07999125868082047, 0.10680224746465683, -0.004046958405524492, 0.09406977146863937, -0.08273739367723465, 0.003348891157656908, -0.09691762179136276, 0.2710506021976471, 0.31869032979011536, -0.16002583503723145, 0.03800198435783386, 0.10780995339155197, 0.02138461172580719, 0.016831332817673683, 0.017730101943016052, 0.0999615266919136, 0.3022504448890686, -0.07424390316009521, -0.11001237481832504, -0.008689653128385544, -0.009835029020905495, -0.12295371294021606, 0.03014025278389454, 0.05890323594212532, -0.07485178858041763, -0.08911703526973724, 0.13136321306228638, -0.2536464035511017, 0.07565850019454956, -0.0498691089451313, -0.11755440384149551, -0.08660778403282166, -0.08073237538337708, 0.17775504291057587, 0.013773138634860516, 0.12719658017158508, -0.03240525722503662, -0.03148460015654564, 0.03961591795086861, 0.030255991965532303, -0.13267633318901062, -0.025442562997341156, 0.029395785182714462, 0.0019718126859515905, 0.005558060947805643, 0.02590743452310562, 0.09805531054735184, 0.13393472135066986, -0.07006048411130905, -0.04852506145834923, -0.01852603629231453, 0.0333130806684494, -0.17798325419425964, -0.058438997715711594, -0.03940358757972717, -0.010762380436062813, -0.09124740213155746, -0.012535616755485535, -0.32937684655189514, -0.01378459483385086, 0.15389369428157806, 0.05444213002920151, -0.0646744966506958, -0.06181694567203522, -0.05164632201194763, 0.04350520670413971, 0.027399681508541107, -0.07400462031364441, 0.02182113192975521, -0.04885312542319298, 0.01715400256216526, 0.05218293145298958, 0.008833762258291245, -0.0024471976794302464, -0.21154733002185822, -0.0606483519077301, -0.060366541147232056, 0.06149572506546974, 0.031614840030670166, 0.013009509071707726, -0.004330472555011511, 0.026700293645262718, -0.06348709017038345, 0.05302625894546509, 0.09787731617689133, -0.0013748739147558808, 0.039161987602710724, 0.037430837750434875, -0.02018468640744686, -0.016829319298267365, -0.11597952246665955, -0.08465324342250824 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-spanish-custom This model was trained from scratch on the common_voice dataset. It achieves the following results on the evaluation set: - eval_loss: 0.2245 - eval_wer: 0.2082 - eval_runtime: 801.6784 - eval_samples_per_second: 18.822 - eval_steps_per_second: 2.354 - epoch: 0.76 - step: 8400 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 200 - num_epochs: 10 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.1+cu102 - Datasets 1.17.1.dev0 - Tokenizers 0.11.0
{"tags": ["generated_from_trainer"], "datasets": ["common_voice"], "model-index": [{"name": "wav2vec2-large-xls-r-300m-spanish-custom", "results": []}]}
automatic-speech-recognition
glob-asr/base-spanish-asr
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "dataset:common_voice", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #wav2vec2 #automatic-speech-recognition #generated_from_trainer #dataset-common_voice #endpoints_compatible #region-us
# wav2vec2-large-xls-r-300m-spanish-custom This model was trained from scratch on the common_voice dataset. It achieves the following results on the evaluation set: - eval_loss: 0.2245 - eval_wer: 0.2082 - eval_runtime: 801.6784 - eval_samples_per_second: 18.822 - eval_steps_per_second: 2.354 - epoch: 0.76 - step: 8400 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 200 - num_epochs: 10 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.1+cu102 - Datasets 1.17.1.dev0 - Tokenizers 0.11.0
[ "# wav2vec2-large-xls-r-300m-spanish-custom\n\nThis model was trained from scratch on the common_voice dataset.\nIt achieves the following results on the evaluation set:\n- eval_loss: 0.2245\n- eval_wer: 0.2082\n- eval_runtime: 801.6784\n- eval_samples_per_second: 18.822\n- eval_steps_per_second: 2.354\n- epoch: 0.76\n- step: 8400", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 0.0002\n- train_batch_size: 8\n- eval_batch_size: 8\n- seed: 42\n- gradient_accumulation_steps: 2\n- total_train_batch_size: 16\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_steps: 200\n- num_epochs: 10\n- mixed_precision_training: Native AMP", "### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.1+cu102\n- Datasets 1.17.1.dev0\n- Tokenizers 0.11.0" ]
[ "TAGS\n#transformers #pytorch #wav2vec2 #automatic-speech-recognition #generated_from_trainer #dataset-common_voice #endpoints_compatible #region-us \n", "# wav2vec2-large-xls-r-300m-spanish-custom\n\nThis model was trained from scratch on the common_voice dataset.\nIt achieves the following results on the evaluation set:\n- eval_loss: 0.2245\n- eval_wer: 0.2082\n- eval_runtime: 801.6784\n- eval_samples_per_second: 18.822\n- eval_steps_per_second: 2.354\n- epoch: 0.76\n- step: 8400", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 0.0002\n- train_batch_size: 8\n- eval_batch_size: 8\n- seed: 42\n- gradient_accumulation_steps: 2\n- total_train_batch_size: 16\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_steps: 200\n- num_epochs: 10\n- mixed_precision_training: Native AMP", "### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.1+cu102\n- Datasets 1.17.1.dev0\n- Tokenizers 0.11.0" ]
[ 53, 117, 6, 12, 8, 3, 140, 41 ]
[ "passage: TAGS\n#transformers #pytorch #wav2vec2 #automatic-speech-recognition #generated_from_trainer #dataset-common_voice #endpoints_compatible #region-us \n# wav2vec2-large-xls-r-300m-spanish-custom\n\nThis model was trained from scratch on the common_voice dataset.\nIt achieves the following results on the evaluation set:\n- eval_loss: 0.2245\n- eval_wer: 0.2082\n- eval_runtime: 801.6784\n- eval_samples_per_second: 18.822\n- eval_steps_per_second: 2.354\n- epoch: 0.76\n- step: 8400## Model description\n\nMore information needed## Intended uses & limitations\n\nMore information needed## Training and evaluation data\n\nMore information needed## Training procedure### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 0.0002\n- train_batch_size: 8\n- eval_batch_size: 8\n- seed: 42\n- gradient_accumulation_steps: 2\n- total_train_batch_size: 16\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_steps: 200\n- num_epochs: 10\n- mixed_precision_training: Native AMP### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.1+cu102\n- Datasets 1.17.1.dev0\n- Tokenizers 0.11.0" ]
[ -0.0907943919301033, 0.09070634841918945, -0.005313801113516092, 0.050080303102731705, 0.10855699330568314, 0.022230979055166245, 0.10773549973964691, 0.14047794044017792, -0.06046762689948082, 0.09586306661367416, 0.07014477252960205, 0.01263956818729639, 0.07043635845184326, 0.08171439170837402, -0.005397886969149113, -0.24029207229614258, 0.01979232393205166, -0.021629733964800835, -0.0872982069849968, 0.10185588896274567, 0.1037091463804245, -0.09616285562515259, 0.04140595346689224, 0.03356214985251427, -0.07393749058246613, 0.02475779317319393, -0.027561472728848457, -0.06696200370788574, 0.11207634210586548, 0.03828831762075424, 0.10164213180541992, -0.014087222516536713, 0.09747245162725449, -0.2802269458770752, -0.004102346953004599, 0.10871399194002151, 0.04141020402312279, 0.07380351424217224, 0.07657618075609207, -0.0013254923978820443, 0.11425387859344482, -0.08254719525575638, 0.12155573070049286, 0.03309699147939682, -0.11413925886154175, -0.25367847084999084, -0.08495385199785233, 0.02922177128493786, 0.11989166587591171, 0.0987640917301178, -0.02852482907474041, 0.05786668509244919, -0.09504002332687378, 0.06595157086849213, 0.19105730950832367, -0.24790646135807037, -0.05133162438869476, 0.012402670457959175, 0.033365122973918915, 0.03924516215920448, -0.09761585295200348, -0.029782429337501526, 0.03489435836672783, 0.016315482556819916, 0.10863113403320312, 0.020181214436888695, 0.012423662468791008, 0.030337605625391006, -0.11308960616588593, -0.10181841254234314, 0.11199992895126343, 0.05053327605128288, -0.03355863690376282, -0.1700311154127121, -0.04585129767656326, -0.16798725724220276, 0.0074079581536352634, -0.042497631162405014, 0.020802075043320656, -0.017399562522768974, -0.06876372545957565, -0.013261829502880573, -0.07566778361797333, -0.07078760862350464, 0.031057655811309814, 0.12793157994747162, 0.038370922207832336, 0.006053850054740906, -0.027426309883594513, 0.12835519015789032, 0.03461660444736481, -0.12223506718873978, -0.04394032061100006, 0.018996601924300194, -0.12301205843687057, -0.014942898415029049, -0.04927555099129677, -0.024774590507149696, -0.04183395206928253, 0.17085061967372894, -0.003984021954238415, 0.07909374684095383, 0.04568273574113846, 0.004416865762323141, -0.04422574117779732, 0.17755243182182312, -0.03842252120375633, -0.05899236723780632, -0.05710180848836899, 0.10969948768615723, -0.016613757237792015, -0.02685900218784809, -0.035477422177791595, 0.014452925883233547, 0.05106139928102493, 0.05045156553387642, -0.030336350202560425, 0.008148238062858582, -0.04534474387764931, -0.025028947740793228, -0.028075769543647766, -0.13374879956245422, 0.04127728193998337, 0.03188604488968849, -0.0802484005689621, -0.01356763020157814, 0.021570878103375435, 0.004100554157048464, -0.052757520228624344, 0.11128786206245422, -0.05002368986606598, -0.029473675414919853, -0.07873682677745819, -0.08461356908082962, 0.007930820807814598, -0.03823447972536087, -0.009101801551878452, -0.05169324949383736, -0.15030381083488464, -0.06297794729471207, 0.0720805823802948, -0.046139705926179886, -0.0457557812333107, -0.04949260875582695, -0.032431021332740784, 0.051359329372644424, -0.01583559811115265, 0.1152784526348114, -0.04466424509882927, 0.07122119516134262, -0.028655217960476875, 0.03145333006978035, 0.1324327439069748, 0.05421432852745056, -0.07307180017232895, 0.047829244285821915, -0.06830240786075592, 0.11109145730733871, -0.0495106503367424, -0.02829771116375923, -0.13553468883037567, -0.08933845907449722, -0.04680633917450905, 0.012115566059947014, 0.08820841461420059, 0.09371127188205719, -0.15937833487987518, -0.0717620775103569, 0.1636742353439331, -0.06070196256041527, -0.06509935110807419, 0.10570263117551804, -0.05335526540875435, 0.016052722930908203, 0.05153016746044159, 0.1456092745065689, 0.12379686534404755, -0.1261591762304306, -0.006490130443125963, -0.028667720034718513, 0.0889967679977417, 0.10601405054330826, 0.0773487463593483, -0.05162125825881958, 0.06353811174631119, -0.00867256335914135, -0.07602509111166, 0.026432940736413002, -0.04442202299833298, -0.0873667374253273, -0.023444723337888718, -0.042840808629989624, 0.01172382477670908, 0.020364975556731224, 0.011063688434660435, -0.05861315131187439, -0.14184248447418213, 0.05930040404200554, 0.1227191835641861, -0.10814578831195831, 0.03268599510192871, -0.08152756839990616, 0.0063882144168019295, 0.008491083979606628, -0.004759647883474827, -0.16878128051757812, -0.04881967604160309, 0.02355727180838585, -0.10535039752721786, -0.024229036644101143, 0.042387038469314575, 0.07739388942718506, 0.04910128936171532, -0.04843379929661751, -0.04850761219859123, -0.12075372785329819, -0.03748783469200134, -0.0720297247171402, -0.13908368349075317, -0.07044002413749695, -0.02692614682018757, 0.171256884932518, -0.21464617550373077, 0.006301353219896555, 0.03322746604681015, 0.11431370675563812, 0.054998550564050674, -0.08222191780805588, -0.03281557559967041, 0.036294639110565186, -0.010976545512676239, -0.09408800303936005, 0.017846757546067238, 0.0051464480347931385, -0.09558899700641632, 0.01842876337468624, -0.1793603003025055, 0.013683686964213848, 0.0725332647562027, 0.07020676881074905, -0.0689539760351181, -0.05431048572063446, -0.05545550584793091, -0.0359816774725914, -0.08420535922050476, -0.03843908756971359, 0.24316731095314026, 0.0435183048248291, 0.13041391968727112, -0.0694831907749176, -0.07689045369625092, 0.001476471428759396, 0.03298301249742508, -0.0022561950609087944, 0.12630809843540192, 0.0321345217525959, -0.029341747984290123, 0.056830279529094696, 0.0721750482916832, -0.009645511396229267, 0.1557222157716751, -0.05248340591788292, -0.10746516287326813, -0.03908577188849449, 0.014523002319037914, 0.01244335062801838, 0.09677795320749283, -0.09525937587022781, 0.007876341231167316, 0.04384605213999748, 0.04750102385878563, 0.008254926651716232, -0.18112847208976746, -0.0007160279783420265, 0.09271325916051865, -0.050661541521549225, -0.017642296850681305, -0.018846634775400162, 0.011073028668761253, 0.07119515538215637, 0.010434459894895554, -0.020214179530739784, -0.018460314720869064, -0.043117642402648926, -0.10578972846269608, 0.181865856051445, -0.07564681023359299, -0.1434425711631775, -0.13194508850574493, 0.0314909853041172, -0.0008451006142422557, -0.009365011006593704, 0.02582661435008049, -0.09431691467761993, -0.06121661514043808, -0.09518823772668839, 0.03852314129471779, -0.029275858774781227, -0.016442742198705673, 0.05032723769545555, 0.0114050367847085, 0.07790130376815796, -0.14092965424060822, 0.018399933353066444, -0.009533554315567017, -0.043364159762859344, -0.02006467618048191, 0.05018256977200508, 0.05687756463885307, 0.14953045547008514, 0.023951705545186996, 0.031024735420942307, -0.031834740191698074, 0.2049591988325119, -0.12432088702917099, -0.03590920940041542, 0.12197203934192657, 0.0010885787196457386, 0.049257777631282806, 0.08886613696813583, 0.03762292489409447, -0.07692696154117584, 0.02617022953927517, 0.07809006422758102, -0.04278666898608208, -0.24935175478458405, -0.013268820010125637, -0.03766067698597908, -0.03904491662979126, 0.16955646872520447, 0.024587959051132202, -0.03348532319068909, 0.0318196676671505, -0.04773244261741638, 0.032564159482717514, 0.05830880254507065, 0.07247712463140488, 0.0764889344573021, 0.03620073199272156, 0.10087218135595322, -0.0110199935734272, -0.024061741307377815, 0.04250703752040863, -0.007236554753035307, 0.25072669982910156, -0.013280163519084454, 0.14276207983493805, 0.02451791986823082, 0.09234020113945007, -0.021990440785884857, 0.0607001930475235, 0.004440542310476303, -0.0019639290403574705, 0.00726767024025321, -0.06276635825634003, -0.035702720284461975, 0.059228453785181046, 0.029226385056972504, 0.021601231768727303, -0.08007872849702835, 0.03609559312462807, 0.019224070012569427, 0.3308884799480438, 0.07138153165578842, -0.26171353459358215, -0.06471337378025055, 0.013201963156461716, -0.062398288398981094, -0.07163377851247787, 0.024468272924423218, 0.13649797439575195, -0.13589966297149658, 0.040015727281570435, -0.0760737955570221, 0.08546188473701477, -0.06674948334693909, -0.010886204428970814, 0.06423290073871613, 0.04638395830988884, -0.0010196845978498459, 0.06429926306009293, -0.1772657334804535, 0.2215256690979004, -0.009018863551318645, 0.08658107370138168, -0.0633627250790596, 0.05970415472984314, 0.004519400652498007, -0.045576125383377075, 0.09117306023836136, 0.007300651166588068, -0.09654632210731506, -0.1711118370294571, -0.07189126312732697, 0.023133128881454468, 0.10694608837366104, -0.11506718397140503, 0.10829973965883255, -0.04985426738858223, 0.011570355854928493, 0.026704462245106697, -0.02765694260597229, -0.071097731590271, -0.15807771682739258, 0.02125111036002636, 0.0024501518346369267, 0.031975146383047104, -0.09110325574874878, -0.08506304770708084, -0.033820655196905136, 0.1421298086643219, -0.07246426492929459, -0.03655168414115906, -0.12635576725006104, 0.03859404847025871, 0.1380767524242401, -0.05651981011033058, 0.04737474024295807, 0.054610755294561386, 0.13775812089443207, -0.0013813197147101164, -0.03159705922007561, 0.057917650789022446, -0.061387985944747925, -0.18251705169677734, -0.05205366015434265, 0.15559490025043488, 0.04516642913222313, 0.0550566129386425, -0.0029361359775066376, 0.041156165301799774, -0.0034041458275169134, -0.07891790568828583, 0.04113351181149483, 0.08494029939174652, 0.01492855791002512, 0.035638805478811264, -0.002806986914947629, 0.07130710780620575, -0.05130595713853836, -0.027546430006623268, 0.11210563778877258, 0.24024172127246857, -0.07381577044725418, 0.06911393254995346, 0.025647785514593124, -0.0762069895863533, -0.14118072390556335, -0.001681990223005414, 0.12213058024644852, 0.059236299246549606, 0.0583045557141304, -0.20412437617778778, 0.05012914538383484, 0.11071764677762985, -0.015215720981359482, 0.022166598588228226, -0.33892834186553955, -0.14685215055942535, 0.07737920433282852, 0.05537598952651024, -0.026337001472711563, -0.09508870542049408, -0.04323476180434227, -0.0404263436794281, -0.09898959845304489, 0.05662555992603302, -0.020013606175780296, 0.10305500775575638, 0.002053347881883383, 0.04978613927960396, 0.05455610901117325, -0.0394442155957222, 0.16780734062194824, -0.0028462312184274197, 0.06813139468431473, -0.025268299505114555, 0.04178230091929436, 0.010113539174199104, -0.08362328261137009, 0.03522752970457077, -0.0785461887717247, 0.04113385081291199, -0.18690644204616547, -0.04325537756085396, -0.04778176546096802, 0.005649383179843426, -0.03902376815676689, -0.05083543807268143, -0.06738431751728058, 0.02751985564827919, 0.0960763692855835, -0.006779715418815613, 0.08075345307588577, -0.009156130254268646, 0.07206738740205765, 0.09871643036603928, 0.062460821121931076, 0.04187982529401779, -0.16582927107810974, -0.013993842527270317, 0.018062865361571312, 0.08370109647512436, -0.17120859026908875, 0.05264512449502945, 0.12627080082893372, 0.048741456121206284, 0.1692986935377121, 0.032746195793151855, -0.08497708290815353, 0.019152222201228142, 0.03068951703608036, -0.06903351098299026, -0.1483229547739029, -0.025290952995419502, -0.0011660570744425058, -0.14498518407344818, -0.045088570564985275, 0.12777189910411835, -0.046681009232997894, -0.004163356032222509, -0.0012294932967051864, 0.030721792951226234, -0.017106587067246437, 0.2002180814743042, -0.014285234734416008, 0.09296132624149323, -0.0672258734703064, 0.11118049919605255, 0.0779813677072525, -0.10498631745576859, 0.051219966262578964, 0.016978127881884575, -0.04310154169797897, -0.00143936718814075, -0.023126043379306793, 0.055173736065626144, 0.01571253128349781, -0.040039293467998505, -0.08363735675811768, -0.12174911051988602, 0.07259329408407211, 0.013348285108804703, 0.019152307882905006, 0.022196277976036072, -0.05554991960525513, 0.018917905166745186, -0.1001288965344429, 0.09255263209342957, 0.07965261489152908, 0.03169229254126549, -0.09868402779102325, 0.14382658898830414, 0.02558285929262638, -0.014812353067100048, 0.01845325529575348, -0.01918347179889679, -0.0756760910153389, 0.02293442189693451, -0.09503436833620071, -0.004189712926745415, -0.008693956770002842, 0.005389200057834387, -0.0008333895239047706, -0.007108390796929598, -0.042359914630651474, 0.04255509376525879, -0.09365624189376831, -0.06278298050165176, -0.013522560708224773, 0.07044100761413574, -0.11861243098974228, -0.0028608141001313925, 0.05094561725854874, -0.13478092849254608, 0.08609005063772202, 0.04300963133573532, 0.025617266073822975, 0.021493682637810707, -0.05710049346089363, 0.016922615468502045, 0.030156385153532028, 0.024244684725999832, 0.009255870245397091, -0.14931480586528778, 0.00206449581310153, -0.043131712824106216, -0.009796923026442528, 0.00909886322915554, -0.023258330300450325, -0.12867970764636993, -0.021277733147144318, -0.02827555313706398, -0.05496194213628769, -0.04739305377006531, 0.04819618910551071, 0.04631854221224785, 0.05528970807790756, 0.1595342457294464, -0.054748717695474625, 0.06881695985794067, -0.24088099598884583, -0.021392589434981346, 0.01323732454329729, -0.0031598450150340796, -0.025080690160393715, -0.036914221942424774, 0.07254542410373688, -0.05534958839416504, 0.0892983078956604, -0.015742193907499313, 0.050612762570381165, 0.03767065331339836, -0.07082647830247879, 0.002031003125011921, 0.02007514238357544, 0.1708000898361206, 0.062318600714206696, -0.013037372380495071, 0.0663379579782486, -0.03639115020632744, 0.058053143322467804, 0.15784403681755066, 0.09998046606779099, 0.1795678436756134, 0.03165546804666519, 0.07581675052642822, 0.025520984083414078, -0.129344180226326, -0.13158650696277618, 0.10177473723888397, -0.054589662700891495, 0.12154245376586914, -0.031839754432439804, 0.18083159625530243, 0.12000883370637894, -0.21275269985198975, 0.06922361999750137, -0.03856601193547249, -0.07785316556692123, -0.12346187978982925, -0.09539748728275299, -0.07456404715776443, -0.1345362812280655, 0.03586820140480995, -0.10510804504156113, 0.06420586258172989, 0.10630116611719131, 0.02590298466384411, 0.028979890048503876, 0.11393387615680695, -0.050906650722026825, -0.02962501347064972, 0.09078928083181381, 0.02665916085243225, 0.016934068873524666, -0.055505234748125076, -0.06640625, 0.06804181635379791, -0.030220486223697662, 0.09051522612571716, -0.039002105593681335, -0.0036845284048467875, 0.04134722799062729, 0.01113983429968357, -0.060111407190561295, 0.013963711448013783, -0.012268752790987492, 0.05221652612090111, 0.06672350317239761, 0.06800315529108047, 0.021859221160411835, -0.04800814390182495, 0.25935858488082886, -0.07763863354921341, -0.032966498285532, -0.15806332230567932, 0.13091671466827393, 0.06141791120171547, 0.02339993789792061, 0.04901295527815819, -0.10011167079210281, -0.02026607096195221, 0.13388679921627045, 0.09929877519607544, -0.011504986323416233, -0.014393623918294907, -0.003545534098520875, -0.011013038456439972, -0.03888476639986038, 0.07102355360984802, 0.07782198488712311, 0.04138568416237831, -0.03340337052941322, 0.015668649226427078, -0.006908017676323652, -0.054152898490428925, -0.013869530521333218, 0.12484520673751831, -0.0074617923237383366, -0.00398440845310688, -0.03968921676278114, 0.06822360306978226, 0.029343845322728157, -0.1716303676366806, 0.0816032737493515, -0.17638356983661652, -0.1589345633983612, -0.010085531510412693, 0.04458615183830261, 0.004393469076603651, 0.07652714848518372, -0.006280762609094381, -0.03658205270767212, 0.1338438093662262, 0.00913894921541214, -0.04908449575304985, -0.1411067545413971, 0.07189346104860306, -0.06061861291527748, 0.23343834280967712, 0.000593575940001756, 0.04076436534523964, 0.09083303809165955, 0.043419525027275085, -0.09360134601593018, 0.018369490280747414, 0.08400800079107285, -0.09071214497089386, 0.005853387527167797, 0.15423054993152618, -0.049162544310092926, 0.1500038057565689, 0.06744302064180374, -0.11081207543611526, 0.014054196886718273, -0.012404510751366615, -0.016658462584018707, -0.0762336403131485, -0.02204335667192936, -0.03449143469333649, 0.12510530650615692, 0.22549398243427277, -0.03417380899190903, -0.012041274458169937, -0.038625314831733704, 0.032187994569540024, 0.027901409193873405, 0.09740931540727615, -0.006402093451470137, -0.1952965259552002, 0.03522305563092232, 0.015328248962759972, 0.007885458879172802, -0.21039065718650818, -0.12187894433736801, 0.08062320202589035, -0.08112655580043793, -0.021778907626867294, 0.1239355131983757, 0.057142700999975204, 0.020491579547524452, -0.04343920201063156, -0.14046292006969452, -0.01087791658937931, 0.15562817454338074, -0.12208327651023865, -0.05256786197423935 ]