sha
null
last_modified
null
library_name
stringclasses
154 values
text
stringlengths
1
900k
metadata
stringlengths
2
348k
pipeline_tag
stringclasses
45 values
id
stringlengths
5
122
tags
listlengths
1
1.84k
created_at
stringlengths
25
25
arxiv
listlengths
0
201
languages
listlengths
0
1.83k
tags_str
stringlengths
17
9.34k
text_str
stringlengths
0
389k
text_lists
listlengths
0
722
processed_texts
listlengths
1
723
tokens_length
listlengths
1
723
input_texts
listlengths
1
61
embeddings
listlengths
768
768
null
null
transformers
# T5 model for sentence splitting in English Sentence Split is the task of dividing a long sentence into multiple sentences. E.g.: ``` Mary likes to play football in her freetime whenever she meets with her friends that are very nice people. ``` could be split into ``` Mary likes to play football in her freetime whenever she meets with her friends. ``` ``` Her friends are very nice people. ``` ## How to use it in your code: ```python from transformers import AutoTokenizer, AutoModelForSeq2SeqLM tokenizer = AutoTokenizer.from_pretrained("flax-community/t5-v1_1-base-wikisplit") model = AutoModelForSeq2SeqLM.from_pretrained("flax-community/t5-v1_1-base-wikisplit") complex_sentence = "This comedy drama is produced by Tidy , the company she co-founded in 2008 with her husband David Peet , who is managing director ." sample_tokenized = tokenizer(complex_sentence, return_tensors="pt") answer = model.generate(sample_tokenized['input_ids'], attention_mask = sample_tokenized['attention_mask'], max_length=256, num_beams=5) gene_sentence = tokenizer.decode(answer[0], skip_special_tokens=True) gene_sentence """ Output: This comedy drama is produced by Tidy. She co-founded Tidy in 2008 with her husband David Peet, who is managing director. """ ``` ## Datasets: [Wiki_Split](https://research.google/tools/datasets/wiki-split/) ## Current Basline from [paper](https://arxiv.org/abs/1907.12461) ![baseline](./baseline.png) ## Our Results: | Model | Exact | SARI | BLEU | | --- | --- | --- | --- | | [t5-base-wikisplit](https://huggingface.co/flax-community/t5-base-wikisplit) | 17.93 | 67.5438 | 76.9 | | [t5-v1_1-base-wikisplit](https://huggingface.co/flax-community/t5-v1_1-base-wikisplit) | 18.1207 | 67.4873 | 76.9478 | | [byt5-base-wikisplit](https://huggingface.co/flax-community/byt5-base-wikisplit) | 11.3582 | 67.2685 | 73.1682 | | [t5-large-wikisplit](https://huggingface.co/flax-community/t5-large-wikisplit) | 18.6632 | 68.0501 | 77.1881 |
{"datasets": ["wiki_split"], "widget": [{"text": "Mary likes to play football in her freetime whenever she meets with her friends that are very nice people."}]}
text2text-generation
flax-community/t5-v1_1-base-wikisplit
[ "transformers", "pytorch", "tf", "jax", "tensorboard", "t5", "text2text-generation", "dataset:wiki_split", "arxiv:1907.12461", "autotrain_compatible", "endpoints_compatible", "has_space", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[ "1907.12461" ]
[]
TAGS #transformers #pytorch #tf #jax #tensorboard #t5 #text2text-generation #dataset-wiki_split #arxiv-1907.12461 #autotrain_compatible #endpoints_compatible #has_space #text-generation-inference #region-us
T5 model for sentence splitting in English ========================================== Sentence Split is the task of dividing a long sentence into multiple sentences. E.g.: could be split into How to use it in your code: --------------------------- Datasets: --------- Wiki\_Split Current Basline from paper -------------------------- !baseline Our Results: ------------
[]
[ "TAGS\n#transformers #pytorch #tf #jax #tensorboard #t5 #text2text-generation #dataset-wiki_split #arxiv-1907.12461 #autotrain_compatible #endpoints_compatible #has_space #text-generation-inference #region-us \n" ]
[ 78 ]
[ "passage: TAGS\n#transformers #pytorch #tf #jax #tensorboard #t5 #text2text-generation #dataset-wiki_split #arxiv-1907.12461 #autotrain_compatible #endpoints_compatible #has_space #text-generation-inference #region-us \n" ]
[ -0.054091524332761765, 0.0542466975748539, -0.003917199559509754, 0.07314296811819077, 0.12152725458145142, 0.020550377666950226, 0.10853024572134018, 0.1559319645166397, -0.03173980861902237, 0.012865097261965275, 0.1506926566362381, 0.2050236463546753, 0.021642426028847694, 0.07378768920898438, -0.09869818389415741, -0.2516929507255554, 0.007596876006573439, 0.08262121677398682, -0.05127881094813347, 0.1142696738243103, 0.09031347930431366, -0.09197524935007095, 0.09444545954465866, -0.023146994411945343, -0.2121983766555786, 0.04042460396885872, 0.062147729098796844, -0.12261903285980225, 0.12529130280017853, 0.08412886410951614, 0.12839040160179138, 0.04792720451951027, -0.04130849614739418, -0.06437116116285324, 0.04620690271258354, 0.06873558461666107, -0.06707559525966644, 0.11171973496675491, 0.09338714927434921, -0.055515091866254807, 0.062428515404462814, 0.02182653360068798, -0.009489152580499649, 0.03736306354403496, -0.13244841992855072, -0.049224477261304855, -0.05636393651366234, 0.04603753611445427, 0.02480015531182289, 0.08324939012527466, 0.006005041301250458, 0.15026472508907318, -0.04251919314265251, 0.13116170465946198, 0.16857308149337769, -0.33315810561180115, -0.031173473224043846, 0.05863296240568161, 0.06149054691195488, 0.053166646510362625, -0.05672023445367813, 0.05018463358283043, 0.0478191152215004, 0.03361127898097038, 0.07257293164730072, -0.06634916365146637, -0.23975525796413422, 0.06060967221856117, -0.09941611438989639, -0.004805934149771929, 0.2415175586938858, -0.04065817594528198, 0.0808558538556099, -0.021017998456954956, -0.13321453332901, -0.09684083610773087, 0.011794619262218475, -0.023575885221362114, -0.046481192111968994, 0.024218419566750526, -0.0011176153784617782, -0.07092445343732834, -0.14368489384651184, 0.015125391073524952, -0.21351732313632965, 0.11100820451974869, -0.01074826531112194, 0.06038156524300575, -0.2003597617149353, 0.07618185132741928, 0.02780172973871231, -0.1315949261188507, 0.07396715879440308, -0.06035524606704712, -0.017688099294900894, -0.021825416013598442, -0.04894294962286949, -0.20355544984340668, 0.037855133414268494, 0.05551072955131531, -0.009847280569374561, 0.014865336939692497, -0.06692354381084442, 0.08494123816490173, 0.028828153386712074, 0.0696452409029007, -0.09890166670084, -0.029596345499157906, 0.04729402810335159, -0.0706622451543808, -0.003954171668738127, -0.08072460442781448, -0.15297754108905792, -0.0711742639541626, 0.0691080316901207, 0.05250438302755356, 0.05499910190701485, 0.0927906408905983, -0.029643448069691658, -0.04352520406246185, 0.02981484867632389, -0.08237192034721375, 0.028231412172317505, -0.013645087368786335, -0.004464960657060146, 0.1051597148180008, 0.03829680383205414, 0.00719510717317462, -0.1012299433350563, 0.056216854602098465, -0.10645037144422531, -0.002641826868057251, -0.033779844641685486, -0.12765537202358246, 0.06086770072579384, -0.12501512467861176, 0.009416323155164719, -0.15577617287635803, -0.10178450495004654, 0.017330821603536606, 0.020625721663236618, -0.04939204826951027, -0.04253098741173744, 0.017453914508223534, -0.05908932164311409, 0.08964676409959793, -0.041779085993766785, 0.06623664498329163, -0.03520813584327698, 0.0719374492764473, -0.07711956650018692, 0.09267158806324005, -0.12970465421676636, 0.05734909325838089, -0.06759779155254364, -0.010214134119451046, -0.09488590061664581, 0.033024027943611145, -0.004749231040477753, 0.09074202179908752, -0.057653799653053284, -0.0032892960589379072, -0.10353036224842072, 0.019485142081975937, 0.02690202184021473, 0.14879123866558075, -0.1908351480960846, -0.060565464198589325, 0.16037528216838837, -0.05970688536763191, -0.15510524809360504, 0.10852904617786407, -0.01632392592728138, 0.031672339886426926, 0.034380942583084106, 0.20729683339595795, 0.059842534363269806, -0.04831957817077637, 0.01946238800883293, 0.11166657507419586, -0.07910478860139847, -0.0904320627450943, 0.012638706713914871, 0.016280798241496086, -0.02936547063291073, 0.02400064654648304, 0.13564303517341614, 0.07409612834453583, -0.05034414306282997, -0.03622829169034958, -0.062479641288518906, -0.03599068894982338, 0.09270497411489487, 0.029255492612719536, 0.12876936793327332, -0.055209893733263016, -0.035966191440820694, 0.03360329568386078, 0.004460329655557871, -0.010913772508502007, 0.043235018849372864, -0.034205760806798935, 0.12969772517681122, -0.09935666620731354, 0.020564135164022446, -0.20101788640022278, -0.10367655009031296, -0.020972713828086853, 0.1716228872537613, -0.005040242802351713, 0.13450407981872559, 0.07394368201494217, -0.038283102214336395, -0.02299177274107933, 0.006554566323757172, 0.15790924429893494, 0.024213453754782677, -0.1278318166732788, -0.12830302119255066, 0.04678022116422653, -0.08242470026016235, -0.04543207213282585, -0.11513121426105499, 0.018938392400741577, 0.055258139967918396, 0.14903278648853302, 0.03611363470554352, 0.05461227148771286, 0.004956717602908611, 0.010877309367060661, -0.11403125524520874, -0.0106528140604496, 0.06520667672157288, 0.002186574274674058, -0.03385019674897194, 0.2225428968667984, -0.15560142695903778, 0.264072060585022, 0.18908952176570892, -0.21588264405727386, -0.024519402533769608, -0.012474254705011845, -0.0268000066280365, -0.007076207548379898, 0.027341898530721664, -0.037182025611400604, 0.03366916626691818, -0.02463691495358944, 0.17605248093605042, -0.06185947358608246, -0.060714609920978546, 0.0233097355812788, -0.029996545985341072, -0.052237533032894135, 0.07901527732610703, 0.0415564700961113, -0.20885153114795685, 0.17956528067588806, 0.20831261575222015, -0.00019354945106897503, 0.19416001439094543, 0.008053299970924854, -0.03996630012989044, 0.01574731059372425, -0.032629311084747314, -0.01988411881029606, 0.00289511657319963, -0.15147297084331512, -0.01484331302344799, 0.0821484699845314, 0.014512495137751102, 0.05921853333711624, -0.11798300594091415, -0.030493957921862602, 0.009494836442172527, 0.03082062304019928, 0.021234553307294846, 0.11120659112930298, 0.05274521932005882, 0.15295445919036865, -0.015846576541662216, -0.025754794478416443, 0.08419202268123627, 0.029406173154711723, -0.09178223460912704, 0.18305206298828125, -0.13842575252056122, -0.2950862646102905, -0.11126967519521713, -0.1324317306280136, -0.04175080731511116, 0.005185818765312433, 0.07173512130975723, -0.0815841406583786, -0.016895247623324394, -0.03184857591986656, 0.0235027763992548, -0.10304247587919235, 0.048961102962493896, -0.056515634059906006, 0.01766899973154068, -0.04539283737540245, -0.09634710848331451, -0.018531208857893944, -0.007635773625224829, 0.021486371755599976, 0.11305253952741623, -0.04846429452300072, 0.08372193574905396, 0.18277081847190857, -0.02552066184580326, 0.04578663781285286, -0.03588191419839859, 0.1540408879518509, -0.06594735383987427, 0.06236090138554573, 0.17258916795253754, -0.05385587364435196, 0.06492358446121216, 0.1279502958059311, 0.007239476777613163, -0.03103998489677906, -0.0011397473281249404, -0.0019310822244733572, -0.07156974077224731, -0.2616536319255829, -0.07491833716630936, -0.13641253113746643, 0.07429588586091995, 0.05874287709593773, 0.06036551296710968, 0.11212068796157837, 0.07875613868236542, 0.01878046616911888, 0.058616168797016144, -0.049405813217163086, 0.04035713151097298, 0.1544860154390335, -0.02534695900976658, 0.14042562246322632, -0.06864281743764877, -0.08165214955806732, 0.09534048289060593, 0.07465358823537827, 0.09217369556427002, -0.0038158483803272247, 0.08155863732099533, 0.005149644799530506, 0.14129585027694702, 0.11080431193113327, 0.11493474990129471, 0.0005673647974617779, -0.04404551163315773, -0.001971018500626087, -0.02528292126953602, 0.03140036761760712, 0.03316730260848999, 0.02701352909207344, -0.08434956520795822, -0.0432971753180027, -0.06349622458219528, 0.06702439486980438, 0.10863126069307327, 0.09796968102455139, -0.25883573293685913, -0.009208711795508862, 0.04368530958890915, -0.026912014931440353, -0.10889310389757156, 0.041304588317871094, 0.09036613255739212, -0.06835026293992996, 0.04594910517334938, -0.06961318105459213, 0.1001378521323204, -0.008535493165254593, 0.042058032006025314, -0.030353976413607597, -0.03235561400651932, -0.02053607441484928, 0.07811267673969269, -0.2908307909965515, 0.2014446258544922, 0.021176494657993317, -0.0705946758389473, -0.10001597553491592, -0.007615803740918636, 0.011707446537911892, 0.11922676116228104, 0.10081683099269867, 0.0005430803867056966, -0.05546121299266815, -0.0302293598651886, -0.02517375722527504, -0.003961814101785421, 0.08987507224082947, 0.010007034055888653, 0.001080428366549313, -0.0265347920358181, -0.008666996844112873, 0.038247670978307724, 0.06953103095293045, -0.017439553514122963, -0.17779485881328583, 0.08586076647043228, 0.05779404938220978, -0.04271590709686279, 0.03209555521607399, -0.07382776588201523, -0.1336817443370819, 0.21953722834587097, -0.004649460315704346, -0.050924625247716904, -0.14625035226345062, 0.008644639514386654, 0.08405449986457825, -0.07572992891073227, 0.03246466815471649, -0.06211898475885391, 0.04434727877378464, -0.05932064354419708, -0.21609817445278168, 0.14458777010440826, -0.08856247365474701, -0.03401299938559532, -0.0763106495141983, 0.10288351029157639, -0.09060652554035187, 0.026217849925160408, -0.0013771641533821821, 0.020361294969916344, -0.09901085495948792, -0.049771495163440704, 0.030903389677405357, -0.026350416243076324, 0.08049477636814117, -0.011794251389801502, -0.06828172504901886, -0.06265829503536224, 0.011577934958040714, -0.004040571860969067, 0.2869510054588318, 0.10677577555179596, -0.10715001821517944, 0.12513746321201324, 0.07824663072824478, -0.05960369110107422, -0.3140694797039032, -0.01414004061371088, -0.07732377201318741, 0.007201776374131441, -0.0009391981293447316, -0.11788276582956314, 0.061914607882499695, -0.006313619669526815, -0.01863078400492668, 0.14577169716358185, -0.24852167069911957, -0.10386232286691666, 0.12913817167282104, 0.02433968521654606, 0.29068589210510254, -0.1390686333179474, -0.06322996318340302, -0.017277676612138748, -0.10000073909759521, 0.1862722486257553, -0.14250048995018005, 0.08389150351285934, -0.02733985148370266, 0.07659818232059479, 0.0454447865486145, -0.056824881583452225, 0.07027503848075867, -0.04210817068815231, 0.020061463117599487, -0.11806898564100266, -0.07848414778709412, 0.11247947812080383, -0.03622947633266449, 0.02969958633184433, -0.0619988776743412, 0.03674528747797012, -0.12183187156915665, -0.006179662887006998, -0.088393434882164, 0.066009521484375, 0.010616278275847435, -0.06702639162540436, -0.03312410041689873, -0.03479190915822983, 0.0136539526283741, -0.03453262522816658, 0.2290375828742981, -0.0007185599533841014, 0.16778632998466492, 0.19854803383350372, 0.1006682813167572, -0.08965437859296799, 0.009555666707456112, -0.02925935573875904, -0.06290508806705475, 0.0797010138630867, -0.18559284508228302, 0.0413036085665226, 0.11039074510335922, -0.01551123522222042, 0.05828157812356949, 0.09575796872377396, -0.02745962142944336, -0.014295919798314571, 0.12076889723539352, -0.2328796088695526, -0.03546580299735069, -0.05905376374721527, -0.05027206987142563, -0.009591135196387768, 0.06000497192144394, 0.17193086445331573, -0.0061661782674491405, -0.016712496057152748, 0.015401695854961872, 0.000517066684551537, -0.03148071840405464, 0.10267528891563416, 0.07334750890731812, 0.026570294052362442, -0.10685678571462631, 0.07709777355194092, 0.05316973850131035, -0.16103769838809967, 0.0355229526758194, 0.17030446231365204, -0.10547646880149841, -0.14222145080566406, 0.013206150382757187, 0.09807595610618591, -0.11280970275402069, -0.010329852811992168, -0.055497948080301285, -0.09105776995420456, 0.07874622195959091, 0.23001696169376373, 0.026759307831525803, 0.06342972069978714, -0.04674892500042915, -0.07641062140464783, -0.04528716579079628, 0.057864852249622345, 0.012015648186206818, 0.04700418934226036, -0.13249799609184265, 0.09081622958183289, -0.05579787865281105, 0.16141220927238464, -0.08440055698156357, 0.003097970737144351, -0.1431298851966858, -0.011925321072340012, -0.1425136923789978, -0.0412367545068264, -0.053913429379463196, -0.059111542999744415, -0.020800860598683357, -0.05195561796426773, -0.057161495089530945, -0.03312088921666145, -0.10377342253923416, 0.016095615923404694, -0.021204164251685143, 0.028383590281009674, -0.07142974436283112, -0.030955689027905464, 0.023945383727550507, -0.013524364680051804, 0.12722744047641754, 0.0809924453496933, -0.08344567567110062, 0.07967376708984375, -0.10112171620130539, -0.07686116546392441, 0.0726490318775177, 0.01809898018836975, 0.08856453746557236, 0.06361684203147888, 0.012787225656211376, 0.03876994177699089, 0.03189300000667572, 0.03893894702196121, 0.043305546045303345, -0.08859635889530182, 0.016252834349870682, -0.05185114964842796, -0.11355207860469818, -0.06583977490663528, 0.016292713582515717, 0.05119398608803749, 0.01587948575615883, 0.09134725481271744, -0.03688149154186249, 0.07390119135379791, -0.11871259659528732, 0.022003138437867165, -0.005280979909002781, -0.16984862089157104, 0.014799268916249275, -0.03063509799540043, 0.042306236922740936, -0.04092045873403549, 0.15113124251365662, 0.057214394211769104, -0.047679804265499115, 0.02865987829864025, 0.04853489249944687, -0.04349779710173607, 0.03225291892886162, 0.18173661828041077, 0.018298888579010963, -0.06456810235977173, -0.11278977990150452, 0.08425231277942657, 0.03909173607826233, 0.14213769137859344, 0.13424383103847504, 0.056157466024160385, -0.014209616929292679, 0.09504678100347519, 0.006435318849980831, -0.04645068570971489, -0.08901507407426834, -0.07856203615665436, -0.07743586599826813, 0.09934249520301819, -0.028963536024093628, 0.017084121704101562, 0.19509874284267426, -0.01293879933655262, 0.02593855746090412, -0.05109889805316925, -0.06425133347511292, -0.1427771896123886, -0.18648415803909302, -0.08367202430963516, -0.06961840391159058, -0.029833845794200897, -0.0944860577583313, 0.06604978442192078, 0.05062674731016159, 0.07435821741819382, -0.03845137730240822, 0.09867610037326813, 0.10887577384710312, -0.08609076589345932, 0.07412785291671753, 0.024308761581778526, 0.041390303522348404, -0.0482846200466156, 0.016754990443587303, -0.07713307440280914, -0.008183755911886692, -0.0505823977291584, 0.015799546614289284, -0.004712796304374933, 0.03665170073509216, -0.10916425287723541, -0.11298542469739914, -0.031590282917022705, 0.053133003413677216, 0.0007679650443606079, 0.10671335458755493, 0.029597407206892967, 0.006785859353840351, 0.008992406539618969, 0.21775200963020325, -0.08097578585147858, -0.01794593036174774, -0.07579086720943451, 0.1313355565071106, 0.0082362936809659, 0.05568346753716469, -0.016611427068710327, -0.023718055337667465, -0.05545951798558235, 0.3065294027328491, 0.31450149416923523, -0.09399987757205963, 0.03771369159221649, 0.03193311393260956, 0.01429405715316534, 0.05259588733315468, 0.1170811876654625, 0.07791467756032944, 0.21399876475334167, -0.07704032212495804, -0.03129518777132034, -0.029766026884317398, -0.0008117803954519331, -0.07084468752145767, 0.12977534532546997, 0.047447673976421356, -0.050803422927856445, -0.011947968043386936, 0.06082959473133087, -0.1570030301809311, 0.04963085800409317, -0.04518890008330345, -0.21882985532283783, -0.0931319147348404, -0.009278361685574055, 0.11734651774168015, -0.027453163638710976, 0.07317055016756058, -0.03708506375551224, -0.03579844534397125, 0.036574117839336395, -0.001423215726390481, -0.17687676846981049, 0.03402823209762573, 0.05932340398430824, -0.1384349763393402, 0.005762534681707621, -0.03319886699318886, 0.024423805996775627, 0.11788998544216156, 0.05980615317821503, -0.0791991725564003, -0.0024907109327614307, 0.004976906813681126, -0.016706649214029312, 0.01844685524702072, 0.04612421616911888, 0.022904209792613983, -0.07181128859519958, 0.06701023131608963, -0.11563875526189804, 0.03605322167277336, -0.07619356364011765, -0.010596762411296368, -0.015590619295835495, 0.01669064536690712, -0.021063946187496185, 0.10835874080657959, 0.11700756847858429, -0.01922539807856083, -0.0048932889476418495, -0.061394937336444855, -0.06418779492378235, 0.01601111888885498, -0.048868078738451004, -0.08777875453233719, -0.12741802632808685, -0.05819657817482948, 0.07367229461669922, 0.010093386285007, -0.21722428500652313, -0.009690569713711739, -0.07296476513147354, -0.010821342468261719, -0.1512511819601059, 0.06484867632389069, 0.140232115983963, 0.012737712822854519, -0.00892702117562294, 0.012986225076019764, 0.03401736170053482, 0.06699150800704956, -0.11706308275461197, -0.07094868272542953 ]
null
null
transformers
# T5-VAE-Python (flax) A Transformer-VAE made using flax. Try the [demo](https://huggingface.co/spaces/flax-community/t5-vae)! It has been trained to interpolate on lines of Python code from the [python-lines dataset](https://huggingface.co/datasets/Fraser/python-lines). Done as part of Huggingface community training ([see forum post](https://discuss.huggingface.co/t/train-a-vae-to-interpolate-on-english-sentences/7548)). Builds on T5, using an autoencoder to convert it into an MMD-VAE ([more info](http://fras.uk/ml/large%20prior-free%20models/transformer-vae/2020/08/13/Transformers-as-Variational-Autoencoders.html)). ## How to use from the 🤗/transformers library Add model repo as a submodule: ```bash git submodule add https://github.com/Fraser-Greenlee/t5-vae-flax.git t5_vae_flax ``` ```python from transformers import AutoTokenizer from t5_vae_flax.src.t5_vae import FlaxT5VaeForAutoencoding tokenizer = AutoTokenizer.from_pretrained("t5-base") model = FlaxT5VaeForAutoencoding.from_pretrained("flax-community/t5-vae-python") ``` ## Setup Run `setup_tpu_vm_venv.sh` to setup a virtual enviroment on a TPU VM for training.
{"language": "python", "license": "apache-2.0", "tags": "vae", "datasets": "Fraser/python-lines"}
null
flax-community/t5-vae-python
[ "transformers", "jax", "transformer_vae", "vae", "dataset:Fraser/python-lines", "license:apache-2.0", "endpoints_compatible", "has_space", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "python" ]
TAGS #transformers #jax #transformer_vae #vae #dataset-Fraser/python-lines #license-apache-2.0 #endpoints_compatible #has_space #region-us
# T5-VAE-Python (flax) A Transformer-VAE made using flax. Try the demo! It has been trained to interpolate on lines of Python code from the python-lines dataset. Done as part of Huggingface community training (see forum post). Builds on T5, using an autoencoder to convert it into an MMD-VAE (more info). ## How to use from the /transformers library Add model repo as a submodule: ## Setup Run 'setup_tpu_vm_venv.sh' to setup a virtual enviroment on a TPU VM for training.
[ "# T5-VAE-Python (flax)\n\nA Transformer-VAE made using flax.\n\nTry the demo!\n\nIt has been trained to interpolate on lines of Python code from the python-lines dataset.\n\nDone as part of Huggingface community training (see forum post).\n\nBuilds on T5, using an autoencoder to convert it into an MMD-VAE (more info).", "## How to use from the /transformers library\n\nAdd model repo as a submodule:", "## Setup\n\nRun 'setup_tpu_vm_venv.sh' to setup a virtual enviroment on a TPU VM for training." ]
[ "TAGS\n#transformers #jax #transformer_vae #vae #dataset-Fraser/python-lines #license-apache-2.0 #endpoints_compatible #has_space #region-us \n", "# T5-VAE-Python (flax)\n\nA Transformer-VAE made using flax.\n\nTry the demo!\n\nIt has been trained to interpolate on lines of Python code from the python-lines dataset.\n\nDone as part of Huggingface community training (see forum post).\n\nBuilds on T5, using an autoencoder to convert it into an MMD-VAE (more info).", "## How to use from the /transformers library\n\nAdd model repo as a submodule:", "## Setup\n\nRun 'setup_tpu_vm_venv.sh' to setup a virtual enviroment on a TPU VM for training." ]
[ 52, 92, 20, 35 ]
[ "passage: TAGS\n#transformers #jax #transformer_vae #vae #dataset-Fraser/python-lines #license-apache-2.0 #endpoints_compatible #has_space #region-us \n# T5-VAE-Python (flax)\n\nA Transformer-VAE made using flax.\n\nTry the demo!\n\nIt has been trained to interpolate on lines of Python code from the python-lines dataset.\n\nDone as part of Huggingface community training (see forum post).\n\nBuilds on T5, using an autoencoder to convert it into an MMD-VAE (more info).## How to use from the /transformers library\n\nAdd model repo as a submodule:## Setup\n\nRun 'setup_tpu_vm_venv.sh' to setup a virtual enviroment on a TPU VM for training." ]
[ -0.019734572619199753, -0.00190664641559124, -0.0034164106473326683, -0.011419243179261684, 0.23617728054523468, 0.06945762783288956, 0.03411084786057472, 0.0661015510559082, -0.17008823156356812, -0.07806133478879929, 0.10301721096038818, 0.07135345786809921, 0.024550532922148705, 0.1456521600484848, 0.0338379368185997, -0.2474297434091568, 0.004837867803871632, -0.006685897242277861, -0.1722220480442047, 0.05258301645517349, 0.14643311500549316, -0.04565250128507614, 0.07729175686836243, 0.004029036965221167, -0.1054515391588211, 0.05297613888978958, -0.015775145962834358, -0.07006591558456421, 0.1408088505268097, 0.08801083266735077, 0.09188877046108246, -0.04961741715669632, 0.10852610319852829, -0.0481363870203495, 0.03891201317310333, 0.12180190533399582, -0.07753199338912964, 0.05274420604109764, 0.03816411271691322, 0.022842425853013992, 0.18843671679496765, -0.13877038657665253, 0.039963867515325546, 0.07258594036102295, -0.06007501855492592, -0.33556804060935974, -0.026981977745890617, -0.09543933719396591, 0.13179224729537964, 0.09930819272994995, 0.015155716799199581, 0.19910909235477448, 0.01653468608856201, 0.08084747195243835, 0.13280421495437622, -0.1749866008758545, -0.03602152690291405, 0.1731383502483368, 0.0723034143447876, 0.035192977637052536, 0.028073644265532494, 0.00793388020247221, 0.03310665115714073, 0.06627412885427475, 0.20605534315109253, -0.004822729155421257, -0.124847412109375, 0.01814224012196064, -0.2006787359714508, -0.08439964056015015, 0.2621093988418579, -0.009286635555326939, -0.024894511327147484, 0.06352822482585907, -0.08578860014677048, 0.12470526248216629, -0.010332196950912476, -0.04912513494491577, -0.01893659681081772, -0.0016726056346669793, -0.029498981311917305, -0.133749321103096, -0.13591307401657104, -0.07017625123262405, 0.01273323968052864, 0.018533432856202126, 0.08041691035032272, 0.035137198865413666, -0.16759063303470612, 0.07841934263706207, 0.020791012793779373, 0.018068652600049973, 0.023791827261447906, -0.04581703618168831, -0.09081722050905228, -0.07851724326610565, -0.06731665879487991, -0.29644575715065, 0.04468265920877457, 0.06859404593706131, 0.11129264533519745, -0.023533998057246208, 0.06886168569326401, -0.026521431282162666, 0.012242409400641918, 0.07671688497066498, -0.20679229497909546, 0.16088508069515228, 0.08231855183839798, -0.16638429462909698, -0.05413350462913513, -0.0078099374659359455, -0.08973877131938934, -0.09150268137454987, 0.09330390393733978, 0.05928430333733559, 0.014681806787848473, 0.06272774189710617, 0.07291151583194733, -0.05495753884315491, -0.040431827306747437, -0.039471544325351715, -0.001864540739916265, -0.02394131012260914, -0.019807029515504837, 0.14686273038387299, 0.16737239062786102, -0.049506865441799164, -0.12328910827636719, 0.047404829412698746, -0.055558059364557266, -0.018633797764778137, -0.08469881862401962, -0.1793222576379776, 0.06174127385020256, -0.07591358572244644, 0.056498169898986816, -0.23706281185150146, -0.09683141857385635, 0.03128255158662796, 0.10343211144208908, 0.03223855048418045, 0.004139154218137264, -0.000456184585345909, -0.02067694254219532, -0.07011277228593826, 0.035638343542814255, 0.1856043040752411, -0.012998366728425026, -0.0008589734206907451, -0.06745374947786331, 0.1076945811510086, -0.048821110278367996, 0.055663928389549255, 0.02315901406109333, -0.012043395079672337, 0.10026554763317108, -0.0613587312400341, -0.04799514263868332, 0.11348803341388702, -0.18660400807857513, -0.06969073414802551, 0.13885906338691711, -0.03742296248674393, 0.07941731810569763, 0.03273019567131996, -0.1323205828666687, 0.02983645536005497, 0.0940898060798645, -0.07391925156116486, -0.15948162972927094, 0.10434913635253906, 0.017148755490779877, 0.19383276998996735, 0.04324256256222725, -0.11258641630411148, 0.20648276805877686, -0.2829434871673584, 0.0839461013674736, 0.10853061825037003, -0.14452078938484192, -0.14625027775764465, 0.07948228716850281, 0.1080564484000206, -0.10655880719423294, -0.002679149154573679, -0.04376838356256485, 0.15536658465862274, -0.06522826850414276, -0.021952729672193527, -0.039417847990989685, -0.06478966027498245, 0.03104488179087639, -0.04436324164271355, 0.07258237898349762, 0.086176298558712, -0.04759446159005165, 0.09214609861373901, 0.11532821506261826, -0.021364286541938782, 0.07755053043365479, -0.0647774413228035, 0.05147929862141609, -0.020889481529593468, 0.06697308272123337, -0.10422859340906143, -0.052204523235559464, -0.0728302001953125, -0.004132630303502083, 0.030467025935649872, 0.1426105946302414, 0.05862943083047867, -0.006661479827016592, 0.030382780358195305, 0.03271063417196274, -0.03273468092083931, 0.058623503893613815, 0.021127665415406227, -0.07914505153894424, -0.08667312562465668, -0.06824687868356705, 0.010474184527993202, 0.037764035165309906, 0.046481259167194366, 0.021257346495985985, 0.10910464823246002, 0.06269831210374832, 0.07206202298402786, 0.0562114492058754, 0.007049616426229477, -0.00685296393930912, -0.07098931074142456, 0.02383357472717762, 0.015689851716160774, -0.04720750078558922, -0.02410038933157921, 0.008371234871447086, 0.048169489949941635, 0.0849960595369339, -0.12473436444997787, -0.043351996690034866, 0.09224840253591537, -0.008955295197665691, 0.0404047928750515, -0.07613180577754974, -0.06611017137765884, -0.05523858591914177, 0.045941028743982315, 0.13726554811000824, -0.009949319995939732, -0.01346333883702755, 0.0471595823764801, -0.11209410429000854, -0.04455004259943962, -0.012413104996085167, 0.10251326113939285, -0.05547424033284187, -0.018698060885071754, 0.12273010611534119, -0.1336471140384674, 0.04051029682159424, 0.010607155039906502, -0.04423662647604942, -0.04817252606153488, -0.008572413586080074, 0.07928187400102615, -0.00136267498601228, -0.18206533789634705, 0.002845603274181485, 0.049608953297138214, 0.012738695368170738, 0.038444630801677704, -0.05913376063108444, -0.00436825305223465, 0.058176301419734955, 0.037802018225193024, -0.056130070239305496, 0.1349080502986908, -0.08872602880001068, 0.026101747527718544, 0.012945379130542278, 0.03608406335115433, 0.023743068799376488, 0.03195986524224281, -0.10218122601509094, 0.12952429056167603, -0.16512438654899597, -0.14136643707752228, -0.09591181576251984, -0.1410636156797409, 0.048620693385601044, -0.058520592749118805, 0.06964250653982162, -0.11907600611448288, -0.07401178777217865, 0.021255606785416603, 0.10102901607751846, -0.10259365290403366, 0.056113727390766144, -0.04027253016829491, 0.07854850590229034, 0.028573613613843918, -0.09779021888971329, 0.07318805903196335, 0.031057113781571388, -0.026822838932275772, 0.09461620450019836, -0.024533424526453018, 0.09644950181245804, 0.025795815512537956, -0.06741942465305328, 0.06706107407808304, -0.03280578553676605, 0.32590654492378235, 0.03041677176952362, 0.058171529322862625, 0.2899564504623413, 0.02280004322528839, -0.008816313929855824, 0.0086000245064497, 0.010701540857553482, -0.03568054735660553, 0.04510204866528511, -0.03767523169517517, -0.0954960510134697, -0.21456976234912872, -0.07269799709320068, -0.11840663105249405, 0.0016308811027556658, 0.08683375269174576, 0.003442463930696249, 0.009045363403856754, 0.07569008320569992, 0.023641390725970268, 0.131955087184906, -0.03925829753279686, 0.1129075214266777, 0.1379503309726715, -0.048530932515859604, -0.047179561108350754, -0.06663626432418823, 0.02783278562128544, 0.06452734023332596, 0.0774000883102417, 0.19573287665843964, -0.005273463204503059, 0.11123248934745789, 0.06361483037471771, 0.09596730768680573, -0.0407574400305748, 0.1664745956659317, -0.019331645220518112, 0.017900455743074417, -0.02211322821676731, -0.01570451632142067, 0.05488239973783493, 0.08274006098508835, -0.05927014723420143, -0.11189333349466324, -0.05463195964694023, 0.06017591059207916, 0.01582421362400055, 0.06230199337005615, 0.058195844292640686, -0.21212217211723328, -0.0681014284491539, -0.02476772665977478, 0.007931036874651909, -0.048959631472826004, -0.04987497627735138, 0.0263216570019722, -0.06631234288215637, 0.03648839145898819, -0.0715755820274353, 0.10399215668439865, 0.09519028663635254, 0.001231346046552062, 0.007393362000584602, 0.1584019958972931, 0.0055504655465483665, 0.1094009131193161, -0.30855438113212585, 0.17759990692138672, 0.0018516619456931949, 0.062377020716667175, -0.07526884973049164, 0.023755010217428207, -0.019134849309921265, 0.17173916101455688, 0.06800446659326553, 0.03532105311751366, 0.015053839422762394, 0.03694285824894905, 0.041191406548023224, 0.03656213358044624, -0.07253566384315491, 0.07370264828205109, 0.03380225971341133, -0.08081619441509247, -0.05360225960612297, 0.03088241256773472, 0.1793944388628006, -0.12382828444242477, -0.09593885391950607, 0.04583905264735222, 0.05772574245929718, 0.04483644291758537, -0.01941419020295143, -0.028316104784607887, 0.009424630552530289, -0.026071850210428238, 0.05798880755901337, -0.03737311810255051, -0.13745708763599396, 0.13842123746871948, 0.028825636953115463, -0.07760653644800186, 0.08491083234548569, -0.014401345513761044, 0.1061566174030304, -0.04014912620186806, -0.1053503006696701, 0.01150442473590374, -0.1157364547252655, 0.03383034095168114, 0.0260073971003294, -0.021120205521583557, -0.02917024865746498, -0.023346733301877975, 0.026279885321855545, -0.05276447534561157, -0.09613864868879318, -0.028378954157233238, 0.021200111135840416, 0.10632628202438354, -0.06422333419322968, -0.06254362314939499, -0.037580911070108414, -0.1500277817249298, 0.03273022547364235, -0.035140227526426315, 0.21116191148757935, 0.07329395413398743, -0.0648900493979454, 0.025369316339492798, 0.08712887763977051, -0.036360688507556915, -0.20191733539104462, -0.0564776174724102, 0.0009723510011099279, 0.03130361810326576, 0.01647239550948143, -0.15760697424411774, 0.024309556931257248, -0.07557085901498795, 0.04823394864797592, -0.15310534834861755, -0.22844764590263367, -0.11375640332698822, 0.10955529659986496, 0.15073329210281372, 0.13518743216991425, -0.0008494914509356022, 0.057710908353328705, -0.05960732325911522, -0.07165711373090744, 0.07241672277450562, -0.22319622337818146, 0.04668884724378586, 0.00047388221719302237, 0.08938980847597122, 0.012135278433561325, -0.02884581871330738, 0.09899520128965378, -0.0440889373421669, -0.00664485851302743, -0.043892256915569305, 0.03908700868487358, 0.09238652139902115, -0.03611132875084877, 0.11401844769716263, -0.034956175833940506, 0.04790307953953743, -0.04043876752257347, -0.016409143805503845, -0.04765511304140091, 0.03401586040854454, 0.0014579171547666192, -0.10663078725337982, -0.033904172480106354, 0.020167427137494087, 0.10667107999324799, -0.06519152224063873, 0.033617809414863586, 0.04659023880958557, 0.050000280141830444, 0.16573184728622437, 0.0010298490524291992, -0.0995887964963913, 0.0018415654776617885, 0.04101498797535896, -0.035986483097076416, 0.13148190081119537, -0.1814207136631012, 0.014244861900806427, 0.051534153521060944, 0.02602955512702465, 0.0621853806078434, 0.027574004605412483, -0.11809588968753815, 0.005125333555042744, 0.04982611909508705, -0.08137423545122147, -0.19090145826339722, -0.0644911453127861, 0.07302263379096985, -0.0584939680993557, 0.0642002671957016, 0.1758672147989273, -0.12436750531196594, -0.03235334903001785, -0.024552782997488976, -0.006562737748026848, -0.1127963438630104, 0.1019538938999176, 0.06044445559382439, 0.04084845632314682, -0.03883124515414238, -0.0344143882393837, 0.07962214946746826, -0.06385084241628647, 0.024569829925894737, 0.04532026872038841, -0.12137176841497421, -0.13418790698051453, 0.12687715888023376, 0.05539163574576378, -0.08196583390235901, -0.056133437901735306, -0.007849159650504589, -0.03380211442708969, 0.05803615599870682, 0.12634587287902832, 0.04604301601648331, -0.007725910283625126, -0.055974122136831284, -0.02620108611881733, -0.14366412162780762, 0.07060594111680984, 0.06339424103498459, 0.01491111796349287, -0.2191939353942871, 0.19713254272937775, -0.030189698562026024, 0.10675234347581863, -0.04288625344634056, -0.03349011763930321, -0.10076627880334854, 0.014536536298692226, -0.18462243676185608, -0.028657764196395874, -0.06166896969079971, 0.013559065759181976, 0.05841584503650665, -0.009981454350054264, -0.0007474423036910594, 0.10283242166042328, -0.05866632238030434, 0.00980264600366354, -0.01843464933335781, 0.03126310557126999, -0.036008071154356, -0.015666894614696503, -0.04249418154358864, -0.031307995319366455, 0.0501248724758625, -0.008508277125656605, -0.09094713628292084, 0.07362570613622665, -0.10354575514793396, -0.0540025569498539, 0.0819835290312767, 0.014495082199573517, 0.10163300484418869, -0.14398536086082458, 0.03374887630343437, -0.03977426141500473, -0.04380946233868599, -0.04101741313934326, 0.10363414138555527, -0.006464534904807806, 0.046164948493242264, -0.05521400645375252, 0.05479307100176811, -0.01819577068090439, 0.04508600011467934, 0.02911466918885708, 0.07168889045715332, 0.08767960965633392, -0.029478684067726135, 0.10103943198919296, -0.053142447024583817, 0.00369738950394094, -0.057954736053943634, -0.02201785519719124, -0.09253037720918655, -0.07838290929794312, 0.008435746654868126, -0.04957588016986847, -0.07291882485151291, 0.0831337422132492, 0.09951652586460114, 0.015402892604470253, 0.07079330086708069, -0.0814615786075592, -0.0020510645117610693, 0.06831523776054382, -0.07838216423988342, 0.04456694424152374, -0.09380590170621872, 0.029906295239925385, 0.045589789748191833, 0.08414142578840256, 0.005404274445027113, -0.06138910725712776, -0.09192899614572525, 0.047183603048324585, -0.013158043846487999, -0.03876917064189911, -0.09611896425485611, -0.03489392623305321, 0.037619899958372116, 0.17869652807712555, -0.11262958496809006, -0.15631739795207977, 0.14182791113853455, -0.04951286315917969, -0.0008971833740361035, 0.008030729368329048, -0.03635229915380478, -0.08435238152742386, -0.1375965029001236, -0.051538314670324326, -0.18798725306987762, -0.035094842314720154, -0.04886264353990555, -0.05782845616340637, -0.09330518543720245, 0.03430471941828728, 0.025608817115426064, 0.07634656131267548, 0.04850921034812927, -0.0790879875421524, -0.01671195589005947, -0.03375118970870972, -0.05148768052458763, -0.018651915714144707, 0.05789657309651375, 0.011700737290084362, -0.028788743540644646, -0.06841209530830383, -0.013125375844538212, 0.04284731671214104, 0.13212135434150696, -0.09499496966600418, -0.039177775382995605, -0.016265414655208588, 0.044090837240219116, -0.06720332056283951, 0.19536492228507996, 0.01654692552983761, -0.0698566883802414, 0.004032498225569725, 0.18030233681201935, -0.037212349474430084, -0.11911485344171524, -0.23408202826976776, 0.0877280980348587, 0.07478103041648865, -0.011119451373815536, 0.046084482222795486, 0.009750253520905972, -0.07555416971445084, 0.17702670395374298, 0.13541074097156525, 0.06803397834300995, 0.01043081097304821, -0.011462612077593803, 0.00884204264730215, -0.04293316230177879, 0.18255463242530823, 0.1042066216468811, 0.024445561692118645, -0.03702368959784508, 0.02492551878094673, -0.05987688899040222, -0.010048986412584782, -0.060579877346754074, -0.0615704245865345, 0.050829846411943436, -0.09088977426290512, 0.12254144251346588, 0.13702580332756042, -0.09548041224479675, -0.044333502650260925, -0.059401847422122955, 0.006042966619133949, -0.03705340251326561, -0.08172178268432617, 0.08129844069480896, 0.06132163479924202, 0.11221972107887268, -0.07330074906349182, 0.0326644703745842, 0.27457141876220703, 0.0410165973007679, -0.07330276817083359, -0.1089782640337944, 0.19659379124641418, -0.025622740387916565, 0.058067914098501205, -0.04735368862748146, 0.008822180330753326, 0.0721682757139206, -0.016729146242141724, -0.16460902988910675, 0.019892429932951927, -0.008601667359471321, 0.04737691208720207, 0.043140705674886703, 0.011082541197538376, -0.11891932040452957, 0.029262417927384377, -0.09306645393371582, -0.1815834641456604, -0.02533087320625782, 0.031218979507684708, 0.05361131951212883, 0.04031425714492798, 0.113523468375206, -0.08224678784608841, 0.07254626601934433, 0.11122188717126846, -0.08489646017551422, -0.014297966845333576, -0.11529514193534851, 0.07460277527570724, 0.03629119321703911, -0.0816650241613388, -0.046108994632959366, -0.03142085298895836, -0.05815533921122551, -0.17977066338062286, -0.014137974940240383, -0.0018684774404391646, -0.024883272126317024, -0.07087992876768112, -0.021190684288740158, -0.048373956233263016, 0.0904792845249176, 0.12239018827676773, -0.025034427642822266, -0.0012513739056885242, 0.15016327798366547, -0.06009221822023392, 0.05722896754741669, -0.10409149527549744, -0.08831290900707245 ]
null
null
transformers
# T5-VAE-Wiki (flax) A Transformer-VAE made using flax. It has been trained to interpolate on sentences form wikipedia. Done as part of Huggingface community training ([see forum post](https://discuss.huggingface.co/t/train-a-vae-to-interpolate-on-english-sentences/7548)). Builds on T5, using an autoencoder to convert it into an MMD-VAE ([more info](http://fras.uk/ml/large%20prior-free%20models/transformer-vae/2020/08/13/Transformers-as-Variational-Autoencoders.html)). ## How to use from the 🤗/transformers library Add model repo as a submodule: ```bash git submodule add https://github.com/Fraser-Greenlee/t5-vae-flax.git t5_vae_flax ``` ```python from transformers import AutoTokenizer from t5_vae_flax.src.t5_vae import FlaxT5VaeForAutoencoding tokenizer = AutoTokenizer.from_pretrained("t5-base") model = FlaxT5VaeForAutoencoding.from_pretrained("flax-community/t5-vae-wiki") ``` ## Setup Run `setup_tpu_vm_venv.sh` to setup a virtual enviroment on a TPU VM for training.
{"language": "en", "license": "apache-2.0", "tags": "vae"}
null
flax-community/t5-vae-wiki
[ "transformers", "jax", "transformer_vae", "vae", "en", "license:apache-2.0", "endpoints_compatible", "has_space", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #jax #transformer_vae #vae #en #license-apache-2.0 #endpoints_compatible #has_space #region-us
# T5-VAE-Wiki (flax) A Transformer-VAE made using flax. It has been trained to interpolate on sentences form wikipedia. Done as part of Huggingface community training (see forum post). Builds on T5, using an autoencoder to convert it into an MMD-VAE (more info). ## How to use from the /transformers library Add model repo as a submodule: ## Setup Run 'setup_tpu_vm_venv.sh' to setup a virtual enviroment on a TPU VM for training.
[ "# T5-VAE-Wiki (flax)\n\nA Transformer-VAE made using flax.\n\nIt has been trained to interpolate on sentences form wikipedia.\n\nDone as part of Huggingface community training (see forum post).\n\nBuilds on T5, using an autoencoder to convert it into an MMD-VAE (more info).", "## How to use from the /transformers library\n\nAdd model repo as a submodule:", "## Setup\n\nRun 'setup_tpu_vm_venv.sh' to setup a virtual enviroment on a TPU VM for training." ]
[ "TAGS\n#transformers #jax #transformer_vae #vae #en #license-apache-2.0 #endpoints_compatible #has_space #region-us \n", "# T5-VAE-Wiki (flax)\n\nA Transformer-VAE made using flax.\n\nIt has been trained to interpolate on sentences form wikipedia.\n\nDone as part of Huggingface community training (see forum post).\n\nBuilds on T5, using an autoencoder to convert it into an MMD-VAE (more info).", "## How to use from the /transformers library\n\nAdd model repo as a submodule:", "## Setup\n\nRun 'setup_tpu_vm_venv.sh' to setup a virtual enviroment on a TPU VM for training." ]
[ 43, 79, 20, 35 ]
[ "passage: TAGS\n#transformers #jax #transformer_vae #vae #en #license-apache-2.0 #endpoints_compatible #has_space #region-us \n# T5-VAE-Wiki (flax)\n\nA Transformer-VAE made using flax.\n\nIt has been trained to interpolate on sentences form wikipedia.\n\nDone as part of Huggingface community training (see forum post).\n\nBuilds on T5, using an autoencoder to convert it into an MMD-VAE (more info).## How to use from the /transformers library\n\nAdd model repo as a submodule:## Setup\n\nRun 'setup_tpu_vm_venv.sh' to setup a virtual enviroment on a TPU VM for training." ]
[ 0.00004084552710992284, -0.14228227734565735, -0.003291415749117732, -0.0035720737650990486, 0.19997891783714294, 0.08370589464902878, 0.07676045596599579, 0.0469200573861599, -0.14898818731307983, -0.10205108672380447, 0.11228436231613159, 0.06889654695987701, 0.022429827600717545, 0.12912984192371368, 0.04656825214624405, -0.2508796453475952, 0.06780067086219788, 0.017176132649183273, -0.20315973460674286, 0.02650943025946617, 0.14953693747520447, -0.03723665326833725, 0.08365614712238312, 0.0023752599954605103, -0.14755676686763763, 0.0384499691426754, 0.00902023445814848, -0.05310342460870743, 0.16191726922988892, 0.136233851313591, 0.08282540738582611, -0.02993842214345932, 0.08335673809051514, -0.060932185500860214, 0.05036652833223343, 0.11810093373060226, -0.08361964672803879, 0.04534408822655678, -0.0017736844019964337, 0.11477906256914139, 0.17886434495449066, -0.07657674700021744, -0.012779653072357178, 0.0614723339676857, -0.056952401995658875, -0.28962641954421997, 0.006909094285219908, -0.06264957785606384, 0.09418636560440063, 0.07086408138275146, 0.028753425925970078, 0.18168246746063232, -0.008728185668587685, 0.10175227373838425, 0.15165230631828308, -0.23558662831783295, -0.06286071985960007, 0.18230830132961273, 0.08410896360874176, 0.0585588701069355, 0.013271194882690907, 0.03449175879359245, 0.051074422895908356, 0.052611131221055984, 0.19113801419734955, -0.0048779817298054695, -0.08608532696962357, 0.014991792850196362, -0.15750211477279663, -0.07251174747943878, 0.31836268305778503, 0.008213411085307598, 0.0010736673139035702, 0.07183244824409485, -0.06494616717100143, 0.1410859078168869, 0.006475476548075676, -0.07598660886287689, -0.011620554141700268, 0.03315849229693413, 0.015963975340127945, -0.13429608941078186, -0.1539570391178131, -0.09337334334850311, -0.04190412908792496, 0.06747362017631531, 0.07060083746910095, 0.048132218420505524, -0.19095104932785034, 0.06065191328525543, 0.054221466183662415, -0.022944854572415352, 0.02904098480939865, -0.052216943353414536, -0.03353619575500488, -0.07155906409025192, -0.09063007682561874, -0.23076309263706207, 0.07225282490253448, 0.02859756536781788, 0.04910332337021828, -0.03645229712128639, 0.06721507757902145, 0.008324919268488884, -0.0030630696564912796, 0.040598493069410324, -0.20836658775806427, 0.1374828815460205, 0.08531447499990463, -0.15162160992622375, -0.05806887894868851, -0.003199970815330744, -0.11453605443239212, -0.07809139043092728, 0.07997927814722061, 0.04089903086423874, -0.015231880359351635, 0.09520375728607178, 0.08008484542369843, -0.03911660239100456, 0.02374299429357052, -0.030897341668605804, -0.02505606599152088, -0.03430993854999542, 0.001616925117559731, 0.15721015632152557, 0.16466793417930603, -0.03966868296265602, -0.09478466212749481, -0.006883934605866671, -0.04961414635181427, -0.03222901374101639, -0.0647745206952095, -0.1287217140197754, 0.052513934671878815, -0.07979249209165573, 0.07954218983650208, -0.24427413940429688, -0.03344615176320076, 0.017541341483592987, 0.10871244221925735, 0.02247273363173008, -0.037148427218198776, 0.02808796428143978, -0.012314790859818459, -0.056699663400650024, 0.021887291222810745, 0.21783584356307983, -0.007107192650437355, 0.006129425019025803, -0.08152599632740021, 0.12446536123752594, -0.12263572961091995, 0.04581596702337265, 0.021882016211748123, -0.01902429200708866, 0.06311079859733582, -0.09608874469995499, -0.03934779763221741, 0.14041395485401154, -0.14609314501285553, -0.019582675769925117, 0.04374140501022339, 0.00760610681027174, 0.05223175138235092, 0.0046792044304311275, -0.1134268119931221, 0.025107592344284058, 0.12200326472520828, -0.11501546949148178, -0.21125516295433044, 0.09406173229217529, 0.041563451290130615, 0.24661661684513092, 0.022912582382559776, -0.09748353809118271, 0.12711863219738007, -0.2388986051082611, 0.11368558555841446, 0.11941943317651749, -0.15950264036655426, -0.12996892631053925, 0.04102965444326401, 0.16307738423347473, -0.14070366322994232, 0.013506446033716202, -0.019971050322055817, 0.17359797656536102, -0.04230327531695366, -0.02672419510781765, -0.06272178888320923, -0.10029740631580353, -0.02703530341386795, -0.029484273865818977, 0.09464070945978165, 0.08471985906362534, -0.0289071686565876, 0.04958922043442726, 0.07864441722631454, -0.006990813184529543, 0.09342674165964127, -0.06740495562553406, 0.005227222573012114, 0.017523225396871567, 0.08857904374599457, -0.10725650936365128, -0.015386992134153843, -0.054499778896570206, 0.020106248557567596, 0.012908544391393661, 0.21287472546100616, 0.057666752487421036, -0.022546645253896713, 0.0033362992107868195, 0.048232145607471466, 0.000016123056411743164, 0.07594703882932663, 0.0038234861567616463, -0.13287554681301117, -0.056152548640966415, -0.06518255919218063, -0.06268484890460968, 0.04754437878727913, 0.03347430378198624, 0.04672294855117798, 0.12335238605737686, 0.0325797013938427, 0.0998321995139122, 0.012631325051188469, -0.009496139362454414, -0.022151194512844086, -0.045256923884153366, 0.054196905344724655, 0.039634767919778824, -0.06547989696264267, 0.05667565390467644, 0.02018473856151104, 0.12966100871562958, 0.10555840283632278, -0.15366211533546448, -0.03358897939324379, 0.07124873250722885, -0.03628440573811531, 0.002196568762883544, -0.03423613682389259, -0.08078830689191818, -0.041353464126586914, 0.013056558556854725, 0.11535340547561646, -0.025276493281126022, 0.0019766914192587137, 0.05537068098783493, -0.07939202338457108, -0.049682993441820145, -0.03316075727343559, 0.11198798567056656, -0.12712697684764862, -0.020329004153609276, 0.19405131042003632, -0.12753024697303772, 0.07797318696975708, -0.010307791642844677, -0.027980653569102287, -0.032369982451200485, -0.020730696618556976, 0.055801309645175934, 0.02426963299512863, -0.22684065997600555, -0.014180182479321957, 0.04186591878533363, 0.0018478749552741647, 0.06731200218200684, -0.06884779781103134, 0.008942360058426857, 0.04467959329485893, 0.033495109528303146, 0.015055044554173946, 0.14581522345542908, -0.1035848930478096, 0.05297680199146271, -0.0021592460107058287, -0.0029503172263503075, 0.04034056514501572, 0.02341325208544731, -0.08784285932779312, 0.10560328513383865, -0.13624367117881775, -0.1493867188692093, -0.11080360412597656, -0.08474009484052658, 0.021956730633974075, -0.04572015628218651, 0.10629650950431824, -0.12335464358329773, -0.06344117224216461, 0.011483514681458473, 0.08276569843292236, -0.03046395629644394, 0.06877097487449646, 0.012967312708497047, 0.11191204190254211, 0.023720746859908104, -0.10324114561080933, 0.05788734182715416, 0.03201854228973389, -0.036898158490657806, 0.06624562293291092, -0.0677085593342781, 0.08224505931138992, 0.005791324656456709, -0.0224924236536026, 0.06100219860672951, -0.03241388499736786, 0.29835376143455505, 0.01658587157726288, 0.12135706841945648, 0.2856263518333435, 0.0015436206012964249, -0.012441716156899929, 0.05182775855064392, 0.005323348566889763, -0.0415378212928772, 0.06131702661514282, -0.05471557751297951, -0.09077417105436325, -0.21169264614582062, -0.039511725306510925, -0.10592139512300491, -0.03956606611609459, 0.06447073072195053, 0.018753621727228165, 0.06994910538196564, 0.09213750809431076, 0.01029027160257101, 0.17387856543064117, -0.035993266850709915, 0.05910242348909378, 0.118570975959301, -0.06316328793764114, -0.01208500936627388, -0.08304820209741592, 0.026759350672364235, 0.06495528668165207, 0.09391823410987854, 0.18453393876552582, 0.022239338606595993, 0.11277514696121216, 0.0853307843208313, 0.08354996144771576, -0.02963738888502121, 0.19574607908725739, -0.012531095184385777, -0.006250702776014805, -0.04041879251599312, -0.017479587346315384, 0.042158324271440506, 0.11087159812450409, -0.09517177939414978, -0.11398531496524811, -0.03377251327037811, 0.07168475538492203, 0.019943466410040855, 0.1157895103096962, -0.011548921465873718, -0.15379886329174042, -0.08653829246759415, -0.0064476910047233105, -0.0008990539936348796, -0.04812411963939667, -0.002112808171659708, 0.07453001290559769, -0.024595364928245544, -0.0068503781221807, -0.01103995181620121, 0.10923830419778824, 0.09001283347606659, 0.03986264765262604, 0.02504485845565796, 0.13001690804958344, 0.038604021072387695, 0.10001234710216522, -0.34136009216308594, 0.20991063117980957, -0.013968376442790031, 0.04293327406048775, -0.09592218697071075, 0.020001305267214775, 0.009781760163605213, 0.24018102884292603, 0.06826743483543396, 0.03907458856701851, -0.06874356418848038, 0.03682563453912735, 0.05591040849685669, 0.04869778826832771, -0.0512298047542572, 0.0615064837038517, -0.006491030566394329, -0.09017307311296463, -0.03242727741599083, 0.04808904975652695, 0.22697673738002777, -0.18553631007671356, -0.0811028927564621, 0.047787200659513474, 0.14404062926769257, 0.04873408004641533, -0.03618136793375015, -0.030187267810106277, -0.042959440499544144, 0.011416928842663765, 0.05708346515893936, 0.0012637624749913812, -0.12455873191356659, 0.10349877923727036, 0.018144207075238228, -0.07325883209705353, 0.042515870183706284, -0.04355292394757271, 0.10485842823982239, -0.042286455631256104, -0.11889050155878067, 0.041913870722055435, -0.12536582350730896, 0.02817775122821331, 0.01673116162419319, -0.047154128551483154, -0.04464217275381088, -0.02233009599149227, 0.043229952454566956, -0.07924327254295349, -0.08497149497270584, -0.03662084415555, 0.02184676006436348, 0.06470183283090591, -0.09836068749427795, -0.13353273272514343, -0.10757940262556076, -0.08910255134105682, 0.043143030256032944, -0.08537542819976807, 0.1843806803226471, 0.036107730120420456, -0.05702240392565727, 0.024377020075917244, 0.13115642964839935, -0.04873008280992508, -0.2621617913246155, -0.11704675108194351, -0.006222493015229702, 0.02999083139002323, -0.007467255461961031, -0.1583854705095291, 0.09379409998655319, -0.07247161120176315, 0.028024522587656975, -0.1362324208021164, -0.08296583592891693, -0.1248268187046051, 0.12912161648273468, 0.152370885014534, 0.2649763524532318, -0.024146510288119316, 0.062909796833992, -0.08627904951572418, -0.07131783664226532, 0.049168024212121964, -0.23462939262390137, 0.05509382113814354, 0.00047230004565790296, 0.014343957416713238, -0.016387853771448135, -0.009015386924147606, 0.09866596013307571, -0.04048890620470047, -0.011758013628423214, -0.06346031278371811, 0.03476378321647644, 0.09847524017095566, -0.013329370878636837, 0.08869578689336777, -0.06286516785621643, 0.026839667931199074, 0.0034774295054376125, -0.004860139451920986, -0.06775736063718796, 0.018985167145729065, -0.016501247882843018, -0.0830179899930954, -0.006415837444365025, 0.04163341224193573, 0.06590498983860016, -0.046466801315546036, 0.10167602449655533, 0.0296295378357172, 0.057601820677518845, 0.20357613265514374, 0.02615364082157612, -0.19819553196430206, 0.07877398282289505, 0.04626457020640373, -0.049151863902807236, 0.1545463353395462, -0.1732224076986313, 0.035491280257701874, 0.025668757036328316, -0.04090012609958649, 0.031210174784064293, 0.05535180866718292, -0.09798519313335419, -0.04048033431172371, 0.09222126752138138, -0.08971213549375534, -0.14049381017684937, -0.08910474181175232, 0.08401390165090561, -0.01289668120443821, 0.07675904035568237, 0.1975487321615219, -0.11054921895265579, -0.009244258515536785, -0.023623911663889885, -0.007835149765014648, -0.12202105671167374, 0.07272402942180634, 0.056698501110076904, 0.03983202576637268, -0.03085562400519848, -0.028083782643079758, 0.06051890552043915, -0.08793462812900543, 0.022923646494746208, 0.033814460039138794, -0.13422349095344543, -0.15737619996070862, 0.10900624841451645, -0.012002729810774326, -0.0340694934129715, -0.11262083053588867, -0.025192540138959885, -0.09575974941253662, 0.03704046458005905, 0.1369161754846573, 0.06588864326477051, 0.021556435152888298, -0.04716286435723305, -0.024359097704291344, -0.08671341836452484, 0.05668521299958229, -0.014614888466894627, 0.01068723015487194, -0.1910732239484787, 0.12909728288650513, -0.0102493055164814, 0.11265552788972855, -0.06183861568570137, -0.012427535839378834, -0.12911614775657654, -0.003923860378563404, -0.1618727147579193, -0.03790055215358734, -0.05935109406709671, -0.005219115875661373, 0.07202263176441193, -0.04745148867368698, -0.010645429603755474, 0.1106102243065834, -0.060583073645830154, 0.024420367553830147, -0.020535282790660858, 0.05774896219372749, -0.005492512136697769, -0.018870150670409203, -0.014726701192557812, -0.03916027396917343, 0.05464785918593407, -0.0060560512356460094, -0.11156578361988068, 0.08343145251274109, -0.12672600150108337, -0.013589277863502502, 0.06378033012151718, 0.025143936276435852, 0.06453610211610794, -0.13997507095336914, 0.001306542893871665, -0.016501834616065025, -0.0016065873205661774, -0.03292451798915863, 0.10504840314388275, 0.0052641467191278934, 0.05646003782749176, -0.044981490820646286, 0.04666835442185402, 0.0024547898210585117, 0.0006979418103583157, 0.07791997492313385, 0.03579339757561684, 0.06214567646384239, -0.013237681239843369, 0.03905002772808075, -0.06607288867235184, 0.06007010117173195, -0.03032994456589222, -0.053962159901857376, -0.07267283648252487, -0.10496335476636887, -0.00947310496121645, -0.03074142523109913, -0.005593894515186548, 0.04400775954127312, 0.06101173534989357, 0.03274817392230034, 0.039431456476449966, -0.10694323480129242, 0.006865719798952341, 0.11080760508775711, -0.03145800530910492, 0.05423513427376747, -0.1243949830532074, -0.0006846153410151601, 0.029286246746778488, 0.06216234713792801, 0.021582746878266335, -0.065884530544281, -0.056031934916973114, 0.09753578156232834, 0.0070124114863574505, 0.008370904251933098, -0.021699201315641403, -0.00022809264191891998, 0.0010669820476323366, 0.13424935936927795, -0.11155859380960464, -0.16621629893779755, 0.1784733384847641, -0.03723302111029625, -0.015235655941069126, -0.005074076354503632, -0.021615982055664062, -0.10344066470861435, -0.13405343890190125, -0.06219260394573212, -0.19569654762744904, -0.032042697072029114, -0.055495552718639374, -0.08477215468883514, -0.1173568069934845, 0.03204726055264473, 0.03471546247601509, 0.08242390304803848, 0.05277557671070099, -0.031716473400592804, 0.019298087805509567, -0.04657374322414398, -0.05844352766871452, -0.027466075494885445, 0.03203314542770386, -0.0026917068753391504, -0.003466010093688965, -0.08216971158981323, 0.00037826289189979434, 0.011056216433644295, 0.10626860707998276, -0.056025430560112, -0.028458137065172195, -0.04829482361674309, -0.00804066937416792, -0.1072235032916069, 0.15398073196411133, -0.005609466694295406, -0.04725813865661621, 0.026087213307619095, 0.12525247037410736, -0.0356910303235054, -0.13823147118091583, -0.21917302906513214, -0.009903617203235626, 0.0700797438621521, 0.00540968170389533, 0.012119600549340248, 0.052091412246227264, -0.11192034184932709, 0.2732287049293518, 0.1395772099494934, 0.04276445135474205, 0.021916339173913002, 0.017325403168797493, 0.02499716356396675, -0.05209621414542198, 0.2033196985721588, 0.13170944154262543, -0.010088534094393253, -0.037339676171541214, -0.016181735321879387, -0.061577364802360535, -0.022303912788629532, -0.05257900431752205, -0.08905162662267685, 0.05015153810381889, -0.0961005911231041, 0.08972760289907455, 0.08917570859193802, -0.09567847847938538, -0.027730342000722885, -0.05063366889953613, 0.01710584945976734, -0.018306585028767586, -0.08779708296060562, 0.14647707343101501, 0.03615173324942589, 0.0876997634768486, -0.060127176344394684, 0.030679304152727127, 0.30046847462654114, 0.0339614637196064, -0.08557598292827606, -0.05888408049941063, 0.1688387095928192, -0.058545611798763275, 0.045957569032907486, -0.055378831923007965, 0.037305254489183426, 0.04824810475111008, -0.01190541498363018, -0.15638183057308197, 0.029729673638939857, -0.045962464064359665, -0.006797723472118378, 0.016327908262610435, -0.022129397839307785, -0.10712829232215881, 0.0022580537479370832, -0.07216066122055054, -0.17808367311954498, 0.0009468363714404404, 0.09262555092573166, 0.006155470851808786, 0.07239378988742828, 0.11424639075994492, -0.08225712180137634, 0.08944759517908096, 0.10667406022548676, -0.05934116616845131, -0.0427187979221344, -0.10976879298686981, 0.06330613791942596, 0.025250166654586792, -0.09646183252334595, -0.0762980729341507, -0.0438401959836483, -0.053670722991228104, -0.1855381578207016, -0.01515998225659132, 0.03800513967871666, -0.05642572045326233, -0.06929357349872589, -0.028751995414495468, -0.06802703440189362, 0.046958569437265396, 0.15646953880786896, -0.0047757066786289215, -0.0035311938263475895, 0.08022938668727875, -0.036398328840732574, 0.038686055690050125, -0.12874853610992432, -0.13246950507164001 ]
null
null
null
# Transformer-VAE (flax) (WIP) A Transformer-VAE made using flax. Done as part of Huggingface community training ([see forum post](https://discuss.huggingface.co/t/train-a-vae-to-interpolate-on-english-sentences/7548)). Builds on T5, using an autoencoder to convert it into an MMD-VAE. [See training logs.](https://wandb.ai/fraser/flax-vae) ## ToDo - [ ] Basic training script working. (Fraser + Theo) - [ ] Add MMD loss (Theo) - [ ] Save a wikipedia sentences dataset to Huggingface (see original https://github.com/ChunyuanLI/Optimus/blob/master/data/download_datasets.md) (Mina) - [ ] Make a tokenizer using the OPTIMUS tokenized dataset. - [ ] Train on the OPTIMUS wikipedia sentences dataset. - [ ] Make Huggingface widget interpolating sentences! (???) https://github.com/huggingface/transformers/tree/master/examples/research_projects/jax-projects#how-to-build-a-demo Optional ToDos: - [ ] Add Funnel transformer encoder to FLAX (don't need weights). - [ ] Train a Funnel-encoder + T5-decoder transformer VAE. - [ ] Additional datasets: - [ ] Poetry (https://www.gwern.net/GPT-2#data-the-project-gutenberg-poetry-corpus) - [ ] 8-bit music (https://github.com/chrisdonahue/LakhNES) ## Setup Follow all steps to install dependencies from https://cloud.google.com/tpu/docs/jax-quickstart-tpu-vm - [ ] Find dataset storage site. - [ ] Ask JAX team for dataset storage.
{}
null
flax-community/transformer-vae
[ "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #region-us
# Transformer-VAE (flax) (WIP) A Transformer-VAE made using flax. Done as part of Huggingface community training (see forum post). Builds on T5, using an autoencoder to convert it into an MMD-VAE. See training logs. ## ToDo - [ ] Basic training script working. (Fraser + Theo) - [ ] Add MMD loss (Theo) - [ ] Save a wikipedia sentences dataset to Huggingface (see original URL (Mina) - [ ] Make a tokenizer using the OPTIMUS tokenized dataset. - [ ] Train on the OPTIMUS wikipedia sentences dataset. - [ ] Make Huggingface widget interpolating sentences! (???) URL Optional ToDos: - [ ] Add Funnel transformer encoder to FLAX (don't need weights). - [ ] Train a Funnel-encoder + T5-decoder transformer VAE. - [ ] Additional datasets: - [ ] Poetry (URL - [ ] 8-bit music (URL ## Setup Follow all steps to install dependencies from URL - [ ] Find dataset storage site. - [ ] Ask JAX team for dataset storage.
[ "# Transformer-VAE (flax) (WIP)\n\nA Transformer-VAE made using flax.\n\nDone as part of Huggingface community training (see forum post).\n\nBuilds on T5, using an autoencoder to convert it into an MMD-VAE.\n\nSee training logs.", "## ToDo\n\n- [ ] Basic training script working. (Fraser + Theo)\n- [ ] Add MMD loss (Theo)\n\n- [ ] Save a wikipedia sentences dataset to Huggingface (see original URL (Mina)\n- [ ] Make a tokenizer using the OPTIMUS tokenized dataset.\n- [ ] Train on the OPTIMUS wikipedia sentences dataset.\n\n- [ ] Make Huggingface widget interpolating sentences! (???) URL\n\nOptional ToDos:\n\n- [ ] Add Funnel transformer encoder to FLAX (don't need weights).\n- [ ] Train a Funnel-encoder + T5-decoder transformer VAE.\n\n- [ ] Additional datasets:\n- [ ] Poetry (URL\n- [ ] 8-bit music (URL", "## Setup\n\nFollow all steps to install dependencies from URL\n\n- [ ] Find dataset storage site.\n- [ ] Ask JAX team for dataset storage." ]
[ "TAGS\n#region-us \n", "# Transformer-VAE (flax) (WIP)\n\nA Transformer-VAE made using flax.\n\nDone as part of Huggingface community training (see forum post).\n\nBuilds on T5, using an autoencoder to convert it into an MMD-VAE.\n\nSee training logs.", "## ToDo\n\n- [ ] Basic training script working. (Fraser + Theo)\n- [ ] Add MMD loss (Theo)\n\n- [ ] Save a wikipedia sentences dataset to Huggingface (see original URL (Mina)\n- [ ] Make a tokenizer using the OPTIMUS tokenized dataset.\n- [ ] Train on the OPTIMUS wikipedia sentences dataset.\n\n- [ ] Make Huggingface widget interpolating sentences! (???) URL\n\nOptional ToDos:\n\n- [ ] Add Funnel transformer encoder to FLAX (don't need weights).\n- [ ] Train a Funnel-encoder + T5-decoder transformer VAE.\n\n- [ ] Additional datasets:\n- [ ] Poetry (URL\n- [ ] 8-bit music (URL", "## Setup\n\nFollow all steps to install dependencies from URL\n\n- [ ] Find dataset storage site.\n- [ ] Ask JAX team for dataset storage." ]
[ 6, 68, 176, 33 ]
[ "passage: TAGS\n#region-us \n# Transformer-VAE (flax) (WIP)\n\nA Transformer-VAE made using flax.\n\nDone as part of Huggingface community training (see forum post).\n\nBuilds on T5, using an autoencoder to convert it into an MMD-VAE.\n\nSee training logs.## ToDo\n\n- [ ] Basic training script working. (Fraser + Theo)\n- [ ] Add MMD loss (Theo)\n\n- [ ] Save a wikipedia sentences dataset to Huggingface (see original URL (Mina)\n- [ ] Make a tokenizer using the OPTIMUS tokenized dataset.\n- [ ] Train on the OPTIMUS wikipedia sentences dataset.\n\n- [ ] Make Huggingface widget interpolating sentences! (???) URL\n\nOptional ToDos:\n\n- [ ] Add Funnel transformer encoder to FLAX (don't need weights).\n- [ ] Train a Funnel-encoder + T5-decoder transformer VAE.\n\n- [ ] Additional datasets:\n- [ ] Poetry (URL\n- [ ] 8-bit music (URL## Setup\n\nFollow all steps to install dependencies from URL\n\n- [ ] Find dataset storage site.\n- [ ] Ask JAX team for dataset storage." ]
[ -0.016701336950063705, 0.22425712645053864, -0.0065012481063604355, 0.05748822167515755, 0.17862568795681, 0.03690120950341225, 0.07260538637638092, 0.1339905709028244, -0.060147177428007126, 0.05910012871026993, -0.004571596160531044, 0.047937147319316864, 0.05445857718586922, 0.15888021886348724, -0.034176863729953766, -0.18455582857131958, -0.00866814237087965, -0.04068352282047272, -0.11558815091848373, 0.06096477434039116, 0.07497462630271912, -0.03279978409409523, 0.04258427768945694, -0.043813787400722504, -0.07448043674230576, 0.07907821238040924, -0.061814166605472565, -0.06848574429750443, 0.04328226298093796, 0.036465294659137726, 0.08649417012929916, 0.0265367329120636, -0.0008590896613895893, -0.14699944853782654, 0.03712204098701477, 0.12012127786874771, -0.07557886838912964, 0.017515089362859726, 0.13241824507713318, -0.09090912342071533, 0.034796103835105896, -0.17759832739830017, 0.02034548670053482, 0.036766622215509415, -0.05953853577375412, -0.19671779870986938, -0.03793342784047127, -0.0903484895825386, 0.07602136582136154, 0.08193781971931458, -0.02849772572517395, 0.1254967302083969, -0.030292131006717682, 0.09712997823953629, 0.12674035131931305, -0.1744813472032547, -0.05601271614432335, 0.00670532276853919, 0.03734075650572777, 0.10124819725751877, -0.09142126888036728, -0.007890068925917149, -0.04516458883881569, 0.03914831206202507, 0.13937996327877045, -0.03202696144580841, -0.11743558943271637, 0.014644281007349491, -0.0970110297203064, -0.04331555590033531, 0.3222060799598694, -0.01644972339272499, -0.04102103412151337, -0.06237136945128441, -0.04506061598658562, 0.12937676906585693, 0.03309228643774986, 0.033530112355947495, -0.003324271412566304, -0.003979824483394623, -0.07615983486175537, -0.08883026987314224, -0.09242840856313705, -0.03208411857485771, 0.004123372957110405, 0.04420769587159157, 0.03233331814408302, -0.0025962863583117723, -0.032686084508895874, 0.044321417808532715, 0.08033520728349686, -0.1182701513171196, 0.007334974128752947, -0.03255002573132515, -0.22061721980571747, -0.05151278153061867, -0.007873129099607468, -0.2464129477739334, 0.05292762443423271, 0.09045534580945969, 0.08522867411375046, 0.030754918232560158, -0.08039689064025879, -0.05307954549789429, 0.05016663670539856, 0.08543863147497177, -0.0658264011144638, -0.009179587475955486, 0.03752319887280464, -0.05675063654780388, -0.041919607669115067, -0.02904655784368515, -0.030077677220106125, -0.007778015919029713, 0.04705711081624031, 0.0437200590968132, 0.04416700080037117, 0.03014862909913063, -0.023866241797804832, -0.04853551834821701, 0.08431894332170486, -0.12441166490316391, 0.05416927859187126, 0.03206637501716614, 0.011114638298749924, 0.05637475848197937, 0.04770328104496002, -0.035334646701812744, -0.12578119337558746, 0.0906667709350586, -0.031867559999227524, -0.007914142683148384, 0.0015968719962984324, -0.11849454045295715, 0.055725567042827606, -0.09705202281475067, -0.017151756212115288, -0.13628211617469788, -0.14583155512809753, -0.007247718516737223, 0.05495996028184891, -0.05420401692390442, -0.012199311517179012, 0.018214739859104156, -0.061881616711616516, -0.00907590240240097, 0.006727807689458132, -0.008664533495903015, -0.04865461587905884, 0.0406920500099659, -0.08278372138738632, 0.06245982646942139, 0.0788879469037056, 0.08513332158327103, -0.035440657287836075, 0.0007535645272582769, -0.08967703580856323, 0.11700823903083801, -0.09981478005647659, 0.0754387155175209, -0.12708161771297455, 0.02260645665228367, 0.12962837517261505, -0.0376325324177742, 0.055620886385440826, 0.06302058696746826, -0.17008350789546967, -0.025918256491422653, 0.10473158210515976, -0.05299381911754608, -0.07603926956653595, 0.12562985718250275, -0.01609550230205059, 0.035451848059892654, 0.06811123341321945, 0.1147850975394249, 0.17512859404087067, -0.17427381873130798, -0.03335569426417351, 0.006406546104699373, -0.059764135628938675, -0.044219061732292175, 0.08972327411174774, 0.04950270056724548, 0.06032080948352814, -0.004531629383563995, 0.025453614071011543, 0.07595017552375793, 0.010542801581323147, -0.013556670397520065, 0.004219308029860258, -0.030293498188257217, -0.02372155897319317, -0.005068982020020485, 0.008964934386312962, -0.013247164897620678, -0.07296264171600342, 0.13037265837192535, 0.018877441063523293, -0.06508651375770569, 0.046676717698574066, -0.021054871380329132, 0.030985165387392044, -0.030751291662454605, 0.02183634787797928, -0.14784803986549377, -0.09948176890611649, 0.06356910616159439, -0.03422471135854721, 0.013470141217112541, -0.044107768684625626, 0.06303232163190842, 0.05117155611515045, -0.012421547435224056, -0.017676737159490585, 0.04962462559342384, 0.01749066822230816, 0.01608547382056713, -0.09021462500095367, -0.020072221755981445, -0.06151454150676727, 0.044761624187231064, -0.006974518299102783, 0.02107546478509903, 0.07024908065795898, 0.1613887995481491, 0.05780501291155815, -0.03291681408882141, 0.08205898851156235, -0.0045097689144313335, 0.0138526177033782, -0.08259542286396027, -0.01599411480128765, 0.08339638262987137, -0.07163235545158386, 0.09271612763404846, -0.028889471665024757, -0.030786676332354546, 0.0878758653998375, 0.06144584342837334, -0.03045959211885929, -0.023458484560251236, -0.017174767330288887, -0.04032757505774498, -0.13107705116271973, -0.08200642466545105, 0.05004981905221939, 0.04389563575387001, 0.1059270054101944, -0.07668180018663406, -0.04480987787246704, -0.005053990986198187, -0.005985362455248833, -0.04660942777991295, 0.0704764798283577, -0.05194895714521408, -0.07984227687120438, 0.06457681953907013, -0.002943849889561534, -0.10063111037015915, 0.18726865947246552, -0.057700470089912415, -0.056805599480867386, -0.011536000296473503, 0.05340241268277168, 0.07213018834590912, 0.01675458252429962, -0.006680990103632212, 0.05992642045021057, 0.060320500284433365, -0.027231603860855103, -0.024270454421639442, -0.0853051096200943, -0.01694597117602825, 0.0330391526222229, -0.025758475065231323, -0.03836679458618164, 0.03675086423754692, 0.022683432325720787, 0.019276561215519905, 0.002506689867004752, 0.07361025363206863, 0.018385039642453194, -0.032331857830286026, -0.05850733816623688, 0.08019255101680756, -0.17240847647190094, -0.2262001633644104, -0.12397395074367523, -0.03043535351753235, -0.023011589422822, -0.028817040845751762, 0.10351032763719559, -0.0714436024427414, -0.08087825775146484, -0.06859008222818375, 0.01247445959597826, 0.009830507449805737, -0.022243155166506767, -0.029218344017863274, 0.07003125548362732, 0.030918976292014122, -0.06756100803613663, 0.033112525939941406, 0.058152709156274796, 0.0356501042842865, 0.08029738068580627, -0.026461806148290634, 0.09690570831298828, -0.05195671319961548, 0.029676513746380806, 0.042203668504953384, -0.03837181627750397, 0.18088583648204803, -0.06462125480175018, 0.11978186666965485, 0.15669845044612885, -0.007188477087765932, 0.07821755111217499, 0.1274191290140152, 0.004153806250542402, 0.011590383015573025, 0.02878335863351822, 0.04792986810207367, -0.0533372238278389, -0.282937228679657, -0.036979787051677704, -0.11775903403759003, 0.026871398091316223, 0.09561499953269958, 0.05759884789586067, 0.007019986864179373, 0.03892507776618004, -0.040263038128614426, 0.09154811501502991, 0.07742384821176529, 0.1006038710474968, 0.05602742359042168, 0.056318916380405426, 0.01872953027486801, -0.03723078593611717, -0.02497778832912445, 0.10425100475549698, 0.05417519807815552, 0.22098562121391296, -0.06806239485740662, 0.2809254825115204, -0.0065062823705375195, 0.0067996615543961525, -0.013385510072112083, 0.10641776025295258, 0.015548299998044968, 0.0816202238202095, 0.001707936287857592, -0.09362781047821045, 0.06076016277074814, 0.050013698637485504, 0.07389650493860245, -0.08320385962724686, 0.017773644998669624, -0.035643137991428375, 0.08765371143817902, 0.12631624937057495, 0.016968993470072746, -0.1421162337064743, 0.014614787884056568, 0.03778398036956787, -0.027470042929053307, -0.09868884831666946, -0.024538755416870117, 0.10818572342395782, -0.08159380406141281, 0.05529534071683884, -0.06621971726417542, 0.10895703732967377, -0.04624849557876587, -0.06550462543964386, 0.09482518583536148, 0.1236778199672699, -0.04099801927804947, 0.07678266614675522, -0.235447496175766, 0.11216863989830017, 0.015606208704411983, 0.08543318510055542, -0.04293811693787575, 0.03867834433913231, 0.00632346048951149, -0.009217492304742336, 0.12024040520191193, -0.0013382266042754054, 0.01330212689936161, 0.012022650800645351, -0.10316141694784164, 0.010446783155202866, -0.020157886669039726, -0.040555622428655624, 0.0663931667804718, -0.011936509050428867, -0.06375943124294281, -0.03126174584031105, -0.05481892079114914, -0.1284574270248413, -0.15385641157627106, 0.020593369379639626, 0.07334014028310776, 0.061695799231529236, -0.009810078889131546, -0.04022453352808952, -0.03123769536614418, 0.08623787015676498, 0.060205552726984024, -0.10668689012527466, -0.17224083840847015, -0.018772494047880173, 0.1317887008190155, -0.04915217310190201, 0.010719649493694305, -0.026997419074177742, 0.10057166963815689, -0.05275309830904007, -0.11542019993066788, -0.009991130791604519, -0.06820860505104065, -0.041488781571388245, -0.04959537088871002, 0.09025547653436661, -0.0008664923370815814, 0.005488812457770109, -0.01932487078011036, 0.0397212877869606, -0.04611331969499588, -0.03188703954219818, 0.014721429906785488, 0.003539190161973238, 0.05107912793755531, 0.09453999251127243, -0.014992283657193184, -0.08721353113651276, -0.024571802467107773, -0.03482601046562195, 0.1329357773065567, 0.16753360629081726, -0.049238625913858414, 0.13981308043003082, 0.047235287725925446, -0.057321708649396896, -0.19450457394123077, -0.07844199240207672, 0.0962476059794426, 0.009282298386096954, 0.0004162551194895059, -0.2027488797903061, 0.05596959590911865, -0.01366728637367487, 0.037169404327869415, -0.07174108177423477, -0.17333263158798218, -0.10798514634370804, 0.027071325108408928, 0.06899677962064743, -0.0768662542104721, -0.1284932792186737, -0.043945200741291046, -0.0950961634516716, -0.11859243363142014, 0.16759896278381348, -0.16846135258674622, 0.09790673851966858, 0.01385260745882988, -0.033813923597335815, 0.020709235221147537, -0.03573556989431381, 0.09454266726970673, 0.07216507196426392, 0.028612565249204636, -0.022640131413936615, 0.07316569238901138, 0.12347870320081711, -0.055107079446315765, 0.07091892510652542, -0.09052250534296036, -0.013688362203538418, -0.125822514295578, -0.024508824571967125, -0.07027803361415863, 0.024447062984108925, 0.006058788858354092, -0.04174927622079849, -0.019992956891655922, 0.06376564502716064, 0.1296660155057907, -0.07490184903144836, 0.0730133205652237, 0.04314525052905083, -0.009472868405282497, 0.17843157052993774, 0.04399769380688667, 0.12814001739025116, -0.11338245123624802, 0.012491585686802864, -0.034317001700401306, 0.04324035346508026, -0.16808821260929108, 0.05260127782821655, 0.07737694680690765, 0.020272282883524895, 0.13015800714492798, 0.025210049003362656, -0.14699691534042358, -0.013957122340798378, 0.05223129317164421, -0.1265914887189865, -0.07341890037059784, -0.0863843709230423, -0.07674393802881241, -0.04149731621146202, -0.060899846255779266, 0.11917677521705627, -0.025445010513067245, -0.005665605887770653, 0.04666394740343094, 0.007551169488579035, 0.010318592190742493, 0.13475331664085388, 0.0007264370215125382, 0.02559187263250351, -0.08224533498287201, 0.06992548704147339, 0.09290310740470886, -0.07871918380260468, 0.0320923812687397, 0.16831247508525848, -0.10430442541837692, -0.05690518394112587, 0.13480551540851593, 0.06681589782238007, 0.045367904007434845, 0.004987647291272879, -0.034014999866485596, -0.06154055893421173, 0.046401944011449814, 0.09945918619632721, 0.03611254319548607, 0.01071762666106224, -0.023677486926317215, -0.022263284772634506, -0.11122355610132217, 0.17036207020282745, 0.08781446516513824, 0.030727608129382133, -0.14175987243652344, 0.030475089326500893, -0.029068373143672943, 0.04282398149371147, -0.020843442529439926, -0.047454867511987686, -0.14532768726348877, 0.008846700191497803, -0.13593818247318268, 0.04857959598302841, -0.10006493330001831, 0.00018628555699251592, 0.00409502862021327, 0.007803020067512989, 0.022631177678704262, 0.06252061575651169, -0.01341119222342968, -0.07526984065771103, -0.036563027650117874, 0.07462391257286072, -0.11302626878023148, -0.07529349625110626, 0.014271018095314503, -0.09448295086622238, 0.07658052444458008, 0.04485052078962326, -0.0740707591176033, -0.009466434828937054, -0.025287562981247902, -0.0543694794178009, 0.03254876658320427, 0.002815996063873172, 0.07641083747148514, -0.11309747397899628, 0.01915627531707287, -0.029695019125938416, -0.08531508594751358, 0.0023622866719961166, 0.08944625407457352, -0.059617459774017334, -0.01448896899819374, -0.046166207641363144, -0.032182879745960236, -0.06096498668193817, 0.04858066514134407, 0.14300943911075592, 0.056994255632162094, 0.08245273679494858, -0.03765936940908432, 0.09887602925300598, -0.119833804666996, -0.030666539445519447, 0.012675650417804718, -0.08039579540491104, -0.0922757238149643, -0.02618641033768654, 0.08192309737205505, -0.020691588521003723, 0.000055456657719332725, 0.047949519008398056, 0.055465131998062134, 0.026465320959687233, 0.055014435201883316, -0.05174670368432999, 0.04244005307555199, 0.050587717443704605, -0.019587552174925804, -0.06341511011123657, 0.005781527608633041, -0.07814180105924606, 0.021486131474375725, 0.08418223261833191, 0.026842467486858368, 0.07443558424711227, 0.036646079272031784, 0.015389474108815193, 0.03830648586153984, -0.04801228269934654, -0.09113552421331406, 0.03262463957071304, 0.00041183066787198186, 0.14255109429359436, -0.04687879979610443, -0.06658516079187393, 0.03698674589395523, -0.12910515069961548, 0.08974156528711319, 0.028469286859035492, -0.08489446341991425, -0.06174791604280472, -0.11406666785478592, -0.07341767102479935, -0.07088086009025574, 0.01558069046586752, -0.10202757269144058, 0.023017577826976776, -0.007696827407926321, 0.032151639461517334, 0.010589580051600933, 0.09579349309206009, 0.09946029633283615, -0.10516529530286789, 0.0972803458571434, -0.03131604567170143, 0.01933375746011734, 0.11508402973413467, 0.02161099947988987, 0.035715822130441666, 0.03334103897213936, -0.01824299804866314, 0.04741979390382767, 0.08150845021009445, 0.09502513706684113, -0.12410588562488556, -0.1120055690407753, 0.032316140830516815, 0.04411531984806061, -0.07710713893175125, 0.12759177386760712, 0.06845171004533768, -0.013660208322107792, 0.01614849455654621, 0.16625836491584778, -0.01773565635085106, -0.025860583409667015, -0.22519482672214508, 0.04697662219405174, 0.02278192527592182, -0.04832072928547859, 0.08625593781471252, -0.10584922879934311, -0.0679403617978096, 0.1679450422525406, 0.0897931456565857, -0.006719097029417753, 0.0019179889932274818, 0.02210199646651745, -0.00811530277132988, 0.024876397103071213, 0.1372363418340683, 0.047931570559740067, 0.07517237216234207, -0.04203719645738602, 0.021584568545222282, -0.053230106830596924, -0.11609333008527756, -0.08110341429710388, 0.09658399969339371, 0.04284510761499405, -0.04085870087146759, 0.042003341019153595, 0.11576468497514725, -0.09422682225704193, -0.08672981709241867, -0.011049613356590271, -0.03132857754826546, -0.09901353716850281, -0.06270190328359604, 0.07261085510253906, 0.02395782247185707, 0.002637603785842657, 0.02384522743523121, -0.021564984694123268, 0.21013334393501282, 0.02461887337267399, -0.07329168915748596, 0.02207033894956112, 0.08662426471710205, -0.18505719304084778, 0.0185085441917181, -0.03211353346705437, 0.06139058247208595, 0.08158276230096817, 0.01687305048108101, -0.12258101999759674, 0.015854336321353912, 0.05399489775300026, -0.08596284687519073, 0.032225802540779114, 0.18296180665493011, -0.09145818650722504, 0.0567430816590786, 0.007458657957613468, -0.03585938364267349, 0.01598135009407997, 0.05444962903857231, 0.024959223344922066, -0.07775874435901642, 0.05178649351000786, -0.10296376794576645, 0.07910797744989395, 0.1597687304019928, -0.016707317903637886, 0.04468003660440445, -0.053641460835933685, -0.025551380589604378, -0.002544357441365719, 0.02271408960223198, -0.00598977692425251, -0.0781916156411171, -0.0473145917057991, -0.03042180836200714, 0.1137353703379631, -0.13778658211231232, -0.030607569962739944, -0.05707312375307083, -0.06525558233261108, -0.07181471586227417, 0.10434085875749588, 0.05634479969739914, -0.008881762623786926, -0.016655737534165382, -0.008404171094298363, -0.006335684098303318, 0.05641916021704674, -0.12067142874002457, -0.026891209185123444 ]
null
null
null
# 🖼️ When ViT meets GPT-2 📝 An image captioning model [ViT-GPT2](https://huggingface.co/flax-community/vit-gpt2/tree/main) by combining the ViT model and a French GPT2 model. Part of the [Huggingface JAX/Flax event](https://discuss.huggingface.co/t/open-to-the-community-community-week-using-jax-flax-for-nlp-cv/). The GPT2 model source code is modified so it can accept an encoder's output. The pretained weights of both models are loaded, with a set of randomly initialized cross-attention weigths. The model is trained on 65000 images from the COCO dataset for about 1500 steps (batch\_size=256), with the original English cpationis being translated to French for training purpose. **Technical challenges** - The source code of Flax's version of GPT-2 is modified to be able to accept an encoder's outputs, so it can be used as a decoder in an encoder-decoder architecture. - Originally, we created [**FlaxViTGPT2ForConditionalGenerationModule**](https://huggingface.co/flax-community/vit-gpt2/blob/main/vit_gpt2/modeling_flax_vit_gpt2.py#L86), which is [**FlaxViTGPT2Module**](https://huggingface.co/flax-community/vit-gpt2/blob/main/vit_gpt2/modeling_flax_vit_gpt2.py#L28) (ViT + [GPT-2 without LM head]) with an extra LM head. However, when loading the pretrained French GPT-2 model, the LM head's weigths are not loaded. We therefore created [**FlaxViTGPT2LMForConditionalGenerationModule**](https://huggingface.co/flax-community/vit-gpt2/blob/main/vit_gpt2/modeling_flax_vit_gpt2_lm.py#L101) which is `ViT + [GPT-2 with LM head]`, and we no longer need to add a LM head over it. By doing so, the pretrained LM head's weights are also loaded, and the only randomly initialized weigths are the cross-attention weights. - The provided training script `run_summarization.py` is modified to send pixel values to the model instead of a sequence of input token ids, and a necessary change due to the ViT model not accepting an `attention_mask` argument. - We first tried to use [WIT : Wikipedia-based Image Text Dataset](https://github.com/google-research-datasets/wit), but found it is a very changeling task since, unlike traditional image captioning tasks, it requires the model to be able to generate different texts even if two images are similar (for example, two famous dogs might have completely different Wikipedia texts). - We finally decided to use [COCO image dataset](https://cocodataset.org/#home) at the final day of this Flax community event. We were able to translate only about 65000 examples to French for training, and the model is trained for only 5 epochs (beyond this, it started to overfit). This leads to the poor performance. A HuggingFace Spaces demo for this model: [🖼️ French Image Captioning Demo 📝](https://huggingface.co/spaces/flax-community/image-caption-french)
{}
null
flax-community/vit-gpt2
[ "tensorboard", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #tensorboard #region-us
# ️ When ViT meets GPT-2 An image captioning model ViT-GPT2 by combining the ViT model and a French GPT2 model. Part of the Huggingface JAX/Flax event. The GPT2 model source code is modified so it can accept an encoder's output. The pretained weights of both models are loaded, with a set of randomly initialized cross-attention weigths. The model is trained on 65000 images from the COCO dataset for about 1500 steps (batch\_size=256), with the original English cpationis being translated to French for training purpose. Technical challenges - The source code of Flax's version of GPT-2 is modified to be able to accept an encoder's outputs, so it can be used as a decoder in an encoder-decoder architecture. - Originally, we created FlaxViTGPT2ForConditionalGenerationModule, which is FlaxViTGPT2Module (ViT + [GPT-2 without LM head]) with an extra LM head. However, when loading the pretrained French GPT-2 model, the LM head's weigths are not loaded. We therefore created FlaxViTGPT2LMForConditionalGenerationModule which is 'ViT + [GPT-2 with LM head]', and we no longer need to add a LM head over it. By doing so, the pretrained LM head's weights are also loaded, and the only randomly initialized weigths are the cross-attention weights. - The provided training script 'run_summarization.py' is modified to send pixel values to the model instead of a sequence of input token ids, and a necessary change due to the ViT model not accepting an 'attention_mask' argument. - We first tried to use WIT : Wikipedia-based Image Text Dataset, but found it is a very changeling task since, unlike traditional image captioning tasks, it requires the model to be able to generate different texts even if two images are similar (for example, two famous dogs might have completely different Wikipedia texts). - We finally decided to use COCO image dataset at the final day of this Flax community event. We were able to translate only about 65000 examples to French for training, and the model is trained for only 5 epochs (beyond this, it started to overfit). This leads to the poor performance. A HuggingFace Spaces demo for this model: ️ French Image Captioning Demo
[ "# ️ When ViT meets GPT-2 \n\nAn image captioning model ViT-GPT2 by combining the ViT model and a French GPT2 model.\n\nPart of the Huggingface JAX/Flax event.\n\nThe GPT2 model source code is modified so it can accept an encoder's output.\nThe pretained weights of both models are loaded, with a set of randomly initialized cross-attention weigths.\nThe model is trained on 65000 images from the COCO dataset for about 1500 steps (batch\\_size=256), with the original English cpationis being translated to French for training purpose.\n\nTechnical challenges\n\n- The source code of Flax's version of GPT-2 is modified to be able to accept an encoder's outputs, so it can be used as a decoder in an encoder-decoder architecture.\n\n- Originally, we created FlaxViTGPT2ForConditionalGenerationModule, which is FlaxViTGPT2Module (ViT + [GPT-2 without LM head]) with an extra LM head. However, when loading the pretrained French GPT-2 model, the LM head's weigths are not loaded. We therefore created FlaxViTGPT2LMForConditionalGenerationModule which is 'ViT + [GPT-2 with LM head]', and we no longer need to add a LM head over it. By doing so, the pretrained LM head's weights are also loaded, and the only randomly initialized weigths are the cross-attention weights.\n\n- The provided training script 'run_summarization.py' is modified to send pixel values to the model instead of a sequence of input token ids, and a necessary change due to the ViT model not accepting an 'attention_mask' argument.\n\n- We first tried to use WIT : Wikipedia-based Image Text Dataset, but found it is a very changeling task since, unlike traditional image captioning tasks, it requires the model to be able to generate different texts even if two images are similar (for example, two famous dogs might have completely different Wikipedia texts).\n\n- We finally decided to use COCO image dataset at the final day of this Flax community event. We were able to translate only about 65000 examples to French for training, and the model is trained for only 5 epochs (beyond this, it started to overfit). This leads to the poor performance. \n\nA HuggingFace Spaces demo for this model: ️ French Image Captioning Demo" ]
[ "TAGS\n#tensorboard #region-us \n", "# ️ When ViT meets GPT-2 \n\nAn image captioning model ViT-GPT2 by combining the ViT model and a French GPT2 model.\n\nPart of the Huggingface JAX/Flax event.\n\nThe GPT2 model source code is modified so it can accept an encoder's output.\nThe pretained weights of both models are loaded, with a set of randomly initialized cross-attention weigths.\nThe model is trained on 65000 images from the COCO dataset for about 1500 steps (batch\\_size=256), with the original English cpationis being translated to French for training purpose.\n\nTechnical challenges\n\n- The source code of Flax's version of GPT-2 is modified to be able to accept an encoder's outputs, so it can be used as a decoder in an encoder-decoder architecture.\n\n- Originally, we created FlaxViTGPT2ForConditionalGenerationModule, which is FlaxViTGPT2Module (ViT + [GPT-2 without LM head]) with an extra LM head. However, when loading the pretrained French GPT-2 model, the LM head's weigths are not loaded. We therefore created FlaxViTGPT2LMForConditionalGenerationModule which is 'ViT + [GPT-2 with LM head]', and we no longer need to add a LM head over it. By doing so, the pretrained LM head's weights are also loaded, and the only randomly initialized weigths are the cross-attention weights.\n\n- The provided training script 'run_summarization.py' is modified to send pixel values to the model instead of a sequence of input token ids, and a necessary change due to the ViT model not accepting an 'attention_mask' argument.\n\n- We first tried to use WIT : Wikipedia-based Image Text Dataset, but found it is a very changeling task since, unlike traditional image captioning tasks, it requires the model to be able to generate different texts even if two images are similar (for example, two famous dogs might have completely different Wikipedia texts).\n\n- We finally decided to use COCO image dataset at the final day of this Flax community event. We were able to translate only about 65000 examples to French for training, and the model is trained for only 5 epochs (beyond this, it started to overfit). This leads to the poor performance. \n\nA HuggingFace Spaces demo for this model: ️ French Image Captioning Demo" ]
[ 10, 597 ]
[ "passage: TAGS\n#tensorboard #region-us \n" ]
[ 0.006534305866807699, 0.040082383900880814, -0.009093299508094788, -0.008539018221199512, 0.0775318369269371, 0.03559385612607002, 0.13800844550132751, 0.0633106678724289, 0.24619461596012115, 0.053988438099622726, 0.16592620313167572, 0.061295218765735626, -0.033082760870456696, -0.09275762736797333, 0.0019954948220402002, -0.24875524640083313, -0.017190655693411827, 0.0222176443785429, -0.08897604048252106, 0.03018813394010067, -0.09696152061223984, -0.11958344280719757, 0.0063727120868861675, -0.06779000908136368, -0.12876015901565552, 0.10196448862552643, 0.05243263393640518, -0.016738098114728928, 0.10779542475938797, 0.003737490391358733, 0.2274874895811081, 0.039320170879364014, -0.10886677354574203, -0.11122076958417892, 0.04605049639940262, 0.020880023017525673, -0.1199897974729538, 0.06093762442469597, 0.10028446465730667, -0.07296576350927353, -0.08250174671411514, 0.05501723289489746, 0.0024101075250655413, 0.01748649962246418, -0.20268984138965607, -0.04973244294524193, -0.06384602934122086, -0.10129387676715851, 0.03687706217169762, 0.002544021001085639, -0.006732790730893612, 0.16736938059329987, -0.13431771099567413, 0.03194912150502205, 0.12027584761381149, -0.3891479969024658, 0.004831512924283743, 0.25729992985725403, 0.062398020178079605, 0.16237030923366547, -0.06207888945937157, 0.11647333204746246, 0.06223743036389351, -0.0372677743434906, -0.010793986730277538, -0.0860324576497078, -0.0134416613727808, 0.13656353950500488, -0.0992596298456192, 0.010151981376111507, 0.16808846592903137, -0.007409875281155109, 0.08775166422128677, 0.10316295176744461, -0.09438575059175491, -0.09470876306295395, 0.05297732725739479, -0.028867973014712334, 0.010549216531217098, 0.10153214633464813, 0.07364087551832199, -0.15527833998203278, -0.16690029203891754, 0.017301948741078377, -0.2492087185382843, 0.16391491889953613, -0.029064442962408066, 0.09715521335601807, -0.2366093546152115, -0.004513080697506666, -0.17467094957828522, -0.02737189643085003, 0.11374334990978241, -0.039747267961502075, -0.0560590960085392, -0.009355051442980766, -0.023107007145881653, -0.2604934573173523, 0.09106821566820145, 0.006501164752990007, 0.017551714554429054, 0.0967627540230751, -0.058897826820611954, 0.17515255510807037, 0.01934587024152279, 0.10916710644960403, 0.042747627943754196, 0.06371613591909409, -0.01483276579529047, -0.11632966250181198, 0.04595458135008812, -0.10044647753238678, -0.1764654964208603, 0.00488180061802268, -0.03902721405029297, 0.07065213471651077, -0.011064891703426838, -0.06043834239244461, -0.05692503601312637, 0.038319941610097885, -0.03820028901100159, -0.029242465272545815, 0.03474550321698189, -0.01922685280442238, 0.03722156956791878, 0.09039126336574554, -0.09299355000257492, -0.023605596274137497, 0.09000182151794434, 0.0805899053812027, -0.13292676210403442, 0.005910138599574566, -0.09631680697202682, -0.020702853798866272, 0.08199933916330338, -0.2154531031847, 0.013668173924088478, -0.0901302918791771, -0.028829973191022873, 0.017273731529712677, 0.03700585290789604, -0.050351981073617935, 0.15120579302310944, 0.02488921582698822, 0.007136741187423468, 0.017314443364739418, -0.03396094590425491, -0.09684359282255173, -0.04611826688051224, 0.019119465723633766, -0.06857654452323914, 0.0940660685300827, -0.20151877403259277, 0.014020966365933418, -0.045337218791246414, 0.10880597680807114, -0.19163331389427185, -0.038327693939208984, -0.08018021285533905, 0.12477368116378784, 0.014924260787665844, 0.07737784087657928, -0.24104569852352142, 0.024682575836777687, 0.021142926067113876, 0.10906314849853516, -0.21569545567035675, -0.09515051543712616, 0.17103171348571777, -0.07748881727457047, -0.06575267761945724, 0.09529823064804077, -0.0071313041262328625, -0.0059824129566550255, 0.019351733848452568, 0.4640624523162842, -0.04613873362541199, -0.09412027150392532, 0.061130642890930176, 0.1470334678888321, -0.13006140291690826, -0.17436769604682922, 0.002574512967839837, -0.09879869967699051, -0.060220204293727875, -0.01074350904673338, 0.16528618335723877, 0.06612241268157959, -0.056118451058864594, 0.0036165399942547083, 0.035037774592638016, -0.006802915129810572, 0.1320066750049591, 0.09333138912916183, 0.16147242486476898, -0.08355621248483658, 0.03908928856253624, 0.09178625047206879, -0.0378684476017952, 0.04662730172276497, 0.02733496204018593, -0.036234620958566666, 0.1591699868440628, -0.14644141495227814, -0.014790006913244724, -0.17186471819877625, -0.24140551686286926, 0.026623079553246498, 0.004069615621119738, 0.07785973697900772, 0.2129012644290924, 0.144130676984787, -0.08816449344158173, -0.012039556168019772, 0.04673686623573303, 0.08228056132793427, 0.028907516971230507, -0.06073082610964775, -0.07915239781141281, 0.09059498459100723, -0.126937597990036, -0.11751066893339157, -0.17272667586803436, 0.02603067271411419, 0.1707337200641632, 0.0026946559082716703, 0.09990855306386948, -0.01345545332878828, 0.00767552712932229, 0.004900574684143066, 0.01618284359574318, -0.007279687561094761, 0.0670071691274643, -0.03823050856590271, -0.12483922392129898, 0.09316583722829819, -0.12221335619688034, 0.19972530007362366, 0.15858328342437744, -0.1818452626466751, 0.006076057441532612, -0.08268936723470688, 0.005037080030888319, -0.017202559858560562, 0.07732049375772476, -0.01259735506027937, 0.04409071430563927, 0.0076699513010680676, 0.027103567495942116, 0.005676160100847483, 0.0031201732344925404, -0.024541517719626427, -0.04467027261853218, -0.10407831519842148, 0.09488637000322342, 0.18285910785198212, -0.07667400687932968, 0.14565077424049377, 0.3194742202758789, -0.037658147513866425, 0.243926003575325, -0.044235710054636, -0.040325827896595, -0.0035806619562208652, 0.01663234643638134, 0.0030329942237585783, 0.1472717523574829, -0.21030889451503754, -0.04524451121687889, 0.006807155907154083, -0.02152351476252079, 0.10580825060606003, -0.1721770018339157, -0.07431776076555252, -0.04492230340838432, 0.027951331809163094, 0.019052904099225998, 0.06744155287742615, -0.03777891770005226, 0.03921189159154892, 0.04400498792529106, -0.0700550302863121, 0.0836176946759224, -0.019940676167607307, -0.030445000156760216, 0.11028234660625458, -0.10444431751966476, -0.14896880090236664, -0.14283819496631622, -0.006238630972802639, -0.020885249599814415, 0.01706763170659542, -0.027181608602404594, -0.13327232003211975, 0.029786938801407814, 0.04076489806175232, 0.07693277299404144, -0.12285503000020981, 0.05448165163397789, -0.0461324080824852, 0.028856927528977394, -0.12792721390724182, -0.03312709555029869, -0.035204388201236725, -0.13709917664527893, 0.0022407269570976496, 0.07620684057474136, -0.12048324197530746, 0.09188514947891235, 0.27380040287971497, 0.04448940232396126, 0.06134362891316414, -0.032678768038749695, 0.02956867590546608, -0.09890352934598923, -0.007705071475356817, 0.02162044867873192, -0.07093516737222672, 0.062233779579401016, 0.11935889720916748, 0.09269148856401443, -0.10527072846889496, -0.04987248033285141, 0.034401196986436844, -0.1883547604084015, -0.25223538279533386, -0.013318047858774662, -0.10664031654596329, 0.12765152752399445, -0.010244959965348244, 0.08595813065767288, 0.0968375951051712, 0.03425378352403641, 0.19851519167423248, -0.06700027734041214, -0.051622986793518066, -0.02809843420982361, 0.08555478602647781, -0.057794809341430664, 0.039914410561323166, -0.08637060225009918, -0.06656038016080856, 0.0951273962855339, 0.17627309262752533, 0.18293945491313934, 0.2262241542339325, 0.12174708396196365, 0.05237455293536186, 0.07176508009433746, 0.16263093054294586, 0.04854431748390198, 0.009847785346210003, -0.08180344849824905, 0.003412329126149416, -0.012104667723178864, 0.048380542546510696, 0.04426087811589241, 0.17464037239551544, -0.19392864406108856, 0.07483029365539551, -0.1622130125761032, 0.08953690528869629, -0.034756071865558624, 0.10043641179800034, -0.09362896531820297, 0.06334324181079865, 0.09393108636140823, 0.06349558383226395, 0.021082786843180656, 0.1126493290066719, 0.14653423428535461, 0.009260405786335468, -0.0002819515357259661, -0.04511117935180664, 0.04465794190764427, -0.06152704730629921, 0.04610077664256096, -0.08046658337116241, -0.09758474677801132, -0.014994517900049686, 0.006666599772870541, -0.10874383896589279, 0.2857326567173004, 0.02909725345671177, -0.10487885028123856, -0.007926207035779953, -0.0647149607539177, 0.03559763357043266, 0.12385048717260361, 0.12570184469223022, 0.026917073875665665, -0.12048140913248062, -0.02957685850560665, -0.04124798625707626, -0.002007595496252179, 0.1673530638217926, -0.035056523978710175, -0.12182541936635971, 0.04882395267486572, 0.025706930086016655, 0.005599671509116888, 0.05435368791222572, 0.044002898037433624, -0.090218186378479, -0.002929751295596361, 0.027573231607675552, -0.2637743651866913, 0.03755902871489525, -0.02500910870730877, -0.10820615291595459, 0.14254985749721527, -0.03448507562279701, 0.043258000165224075, -0.08007816225290298, -0.1022154912352562, 0.07443202286958694, -0.05512619763612747, 0.017121823504567146, -0.053266968578100204, -0.0823264792561531, -0.10395817458629608, -0.18965312838554382, 0.18064510822296143, -0.0017855956684798002, 0.11902352422475815, -0.10145214945077896, 0.14987261593341827, -0.038852643221616745, 0.06894510239362717, -0.04297667741775513, 0.035979658365249634, 0.017632311210036278, -0.07902280986309052, 0.16651985049247742, -0.07523375749588013, 0.004555414896458387, -0.011774768121540546, 0.0038204749580472708, 0.0699034109711647, 0.07120711356401443, 0.02326379157602787, 0.23549024760723114, 0.29437851905822754, -0.07385604828596115, 0.11396823823451996, 0.20734500885009766, -0.05291252210736275, -0.30148735642433167, 0.10052309185266495, -0.20030371844768524, -0.04426584765315056, 0.09160439670085907, -0.18596161901950836, 0.13254234194755554, 0.11458098888397217, -0.07521940022706985, 0.3238363265991211, -0.2565675675868988, -0.06857524812221527, 0.13920506834983826, 0.05302320793271065, 0.5374566912651062, -0.19167585670948029, -0.14127697050571442, 0.04441896080970764, 0.013318231329321861, 0.12890884280204773, -0.16842475533485413, 0.0728289932012558, 0.014546197839081287, 0.01566125638782978, 0.03629394993185997, -0.06888817250728607, 0.16679249703884125, -0.014936079271137714, 0.07837609946727753, -0.052132926881313324, -0.2210337370634079, 0.12277866899967194, -0.04610269144177437, -0.08079098165035248, 0.08026248216629028, -0.08035223186016083, -0.060518406331539154, 0.01706060767173767, -0.04668021202087402, 0.07656943798065186, 0.06021571159362793, -0.08627637475728989, -0.08714277297258377, 0.003907916601747274, -0.14477157592773438, 0.009725140407681465, 0.40106749534606934, -0.04313361644744873, 0.14455673098564148, 0.13014432787895203, -0.007941126823425293, -0.10473056882619858, 0.0027659651823341846, -0.02052965760231018, -0.047221653163433075, 0.10192827135324478, -0.16705648601055145, 0.014505027793347836, 0.14206208288669586, -0.006061878055334091, 0.03216275945305824, 0.09032479673624039, -0.0998530238866806, 0.04135839268565178, 0.13470561802387238, -0.2372065931558609, -0.2276301085948944, 0.019489768892526627, -0.1661357432603836, 0.14527848362922668, 0.13003119826316833, 0.10338665544986725, 0.10191649943590164, 0.05746182054281235, 0.05109937861561775, -0.0356719084084034, -0.03869183734059334, -0.025615138933062553, 0.1204795390367508, 0.00017679110169410706, -0.04285447672009468, 0.171995609998703, 0.08510071039199829, -0.21411463618278503, -0.02836952544748783, 0.16565562784671783, -0.0385296605527401, -0.10193949192762375, -0.11772961169481277, 0.17325401306152344, -0.011026784777641296, -0.037115562707185745, -0.02811659686267376, -0.007137268781661987, -0.01016274094581604, 0.2518148124217987, 0.0386812798678875, 0.038403142243623734, -0.0008132343064062297, 0.016317283734679222, 0.08361152559518814, -0.05280783772468567, -0.1497855931520462, 0.02281280979514122, -0.08427359908819199, -0.1410912722349167, -0.017312582582235336, 0.11129982769489288, -0.11773894727230072, -0.10161316394805908, -0.2491796314716339, 0.05327007547020912, -0.0910675898194313, -0.05487034097313881, -0.044580671936273575, -0.08928315341472626, 0.03381570056080818, -0.02812962420284748, -0.07149658352136612, -0.07236111164093018, -0.1551908254623413, 0.06809859722852707, 0.04554399102926254, 0.011201856657862663, -0.06434933096170425, -0.03963441029191017, 0.08687692135572433, 0.025220230221748352, 0.12771764397621155, 0.082013800740242, 0.04152253642678261, 0.18243716657161713, -0.1501743495464325, -0.01761900819838047, 0.10919995605945587, -0.01925143040716648, 0.09462504088878632, 0.19312314689159393, -0.06751598417758942, -0.03679061681032181, 0.0510183647274971, 0.07104808837175369, -0.059433627873659134, -0.060671303421258926, 0.03877999633550644, -0.06834893673658371, -0.2284054011106491, -0.009992959909141064, -0.06539954990148544, 0.09991227090358734, 0.058634016662836075, -0.00027098399004898965, 0.020929796621203423, 0.06235665827989578, -0.008794697932898998, 0.02410396933555603, 0.04511919245123863, -0.11267971992492676, 0.14046703279018402, 0.0027178891468793154, -0.0252967718988657, -0.0649188905954361, 0.27104905247688293, 0.005602406803518534, -0.07680805772542953, 0.01836322620511055, 0.05288991332054138, 0.004493705928325653, 0.0449032187461853, 0.11125405132770538, 0.06976531445980072, -0.09063713997602463, -0.13550062477588654, 0.10190224647521973, 0.022734636440873146, 0.07267526537179947, 0.1796099692583084, 0.0359480194747448, -0.12333399057388306, 0.1269669383764267, 0.05699457600712776, 0.03636976331472397, -0.046730343252420425, 0.03961396589875221, -0.03227224200963974, 0.05634014680981636, 0.01666443422436714, 0.05149773880839348, 0.19840560853481293, 0.0055618309415876865, 0.04533267021179199, -0.053552042692899704, -0.036609239876270294, -0.15399031341075897, -0.20292934775352478, -0.006851530633866787, -0.08021155744791031, 0.04627020284533501, 0.0034772257786244154, -0.0693468302488327, 0.1849307119846344, 0.07155299931764603, -0.011455461382865906, 0.173631951212883, 0.013396657072007656, -0.015936201438307762, 0.011102026328444481, 0.024454845115542412, -0.024571284651756287, -0.07362693548202515, -0.046804286539554596, -0.11532551050186157, -0.06637564301490784, -0.13220487534999847, 0.00648867804557085, 0.006814941763877869, -0.061106301844120026, -0.10313733667135239, -0.07081706076860428, -0.05106806755065918, 0.08828683197498322, -0.06221487745642662, 0.04690957069396973, 0.013155735097825527, -0.0325162373483181, 0.004265311639755964, 0.13354544341564178, -0.04418211802840233, 0.19520826637744904, 0.01733444817364216, 0.057325683534145355, -0.08655567467212677, 0.14671412110328674, -0.11510784924030304, -0.04702206328511238, -0.049668941646814346, 0.21314097940921783, 0.2697785198688507, -0.10950656235218048, 0.029643947258591652, 0.05186738818883896, 0.04509321227669716, 0.021570339798927307, 0.13584278523921967, -0.022682486101984978, 0.22315897047519684, -0.07343065738677979, -0.08755403012037277, 0.0019292806973680854, 0.000021470044885063544, -0.059498004615306854, 0.10911418497562408, 0.10399774461984634, 0.014686492271721363, -0.15425388514995575, 0.12033320963382721, -0.19316740334033966, 0.041566263884305954, 0.11095796525478363, -0.2682863473892212, -0.08381310850381851, -0.009971278719604015, 0.15978001058101654, -0.14378440380096436, 0.13917388021945953, -0.08626604080200195, -0.15523628890514374, -0.2506062388420105, 0.02322297915816307, -0.3218576908111572, -0.032319702208042145, 0.04714911803603172, 0.04720594361424446, 0.14400415122509003, -0.04924777150154114, -0.03366464748978615, 0.0530356727540493, 0.058395866304636, 0.020577644929289818, -0.0020431592129170895, 0.05586469918489456, -0.031111473217606544, -0.21589411795139313, 0.005784761626273394, 0.01558147557079792, -0.1156139224767685, 0.125509113073349, -0.010575098916888237, 0.010035510174930096, -0.09306186437606812, -0.08910681307315826, -0.00035987369483336806, 0.0038179580587893724, -0.1274755746126175, 0.043872538954019547, 0.0076584769412875175, 0.0704798549413681, -0.014906637370586395, -0.01729007065296173, -0.06253746151924133, 0.0846986249089241, -0.05800727754831314, -0.15307888388633728, 0.07692579180002213, -0.046785108745098114, 0.1000940129160881, -0.029083101078867912, -0.18937113881111145, -0.0031897935550659895, -0.049009356647729874, 0.11895490437746048, -0.11694790422916412, -0.011713004671037197, 0.14187675714492798, 0.016867628321051598, -0.016983844339847565, -0.24412201344966888, 0.06687481701374054, -0.03824077174067497, -0.08858684450387955, -0.06839192658662796 ]
null
null
transformers
## VQGAN-f16-16384 ### Model Description This is a Flax/JAX implementation of VQGAN, which learns a codebook of context-rich visual parts by leveraging both the use of convolutional methods and transformers. It was introduced in [Taming Transformers for High-Resolution Image Synthesis](https://compvis.github.io/taming-transformers/) ([CVPR paper](https://openaccess.thecvf.com/content/CVPR2021/html/Esser_Taming_Transformers_for_High-Resolution_Image_Synthesis_CVPR_2021_paper.html)). The model allows the encoding of images as a fixed-length sequence of tokens taken from the codebook. This version of the model uses a reduction factor `f=16` and a vocabulary of `13,384` tokens. As an example of how the reduction factor works, images of size `256x256` are encoded to sequences of `256` tokens: `256/16 * 256/16`. Images of `512x512` would result in sequences of `1024` tokens. ### Datasets Used for Training * ImageNet. We didn't train this model from scratch. Instead, we started from [a checkpoint pre-trained on ImageNet](https://heibox.uni-heidelberg.de/d/a7530b09fed84f80a887/). * [Conceptual Captions 3M](https://ai.google.com/research/ConceptualCaptions/) (CC3M). * [OpenAI subset of YFCC100M](https://github.com/openai/CLIP/blob/main/data/yfcc100m.md). We fine-tuned on CC3M and YFCC100M to improve the encoding quality of people and faces, which are not very well represented in ImageNet. We used a subset of 2,268,720 images from CC3M and YFCC100M for this purpose. ### Training Process Finetuning was performed in PyTorch using [taming-transformers](https://github.com/CompVis/taming-transformers). The full training process and model preparation includes these steps: * Pre-training on ImageNet. Previously performed. We used [this checkpoint](https://heibox.uni-heidelberg.de/d/a7530b09fed84f80a887). * Fine-tuning, [Part 1](https://wandb.ai/wandb/hf-flax-dalle-mini/runs/2021-07-09T15-33-11_dalle_vqgan?workspace=user-borisd13). * Fine-tuning, [Part 2](https://wandb.ai/wandb/hf-flax-dalle-mini/runs/2021-07-09T21-42-07_dalle_vqgan?workspace=user-borisd13) – continuation from Part 1. The final checkpoint was uploaded to [boris/vqgan_f16_16384](https://huggingface.co/boris/vqgan_f16_16384). * Conversion to JAX, which is the model described in this card. ### How to Use The checkpoint can be loaded using [Suraj Patil's implementation](https://github.com/patil-suraj/vqgan-jax) of `VQModel`. * Example notebook, heavily based in work by [Suraj](https://huggingface.co/valhalla): [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/borisdayma/dalle-mini/blob/main/dev/vqgan/JAX_VQGAN_f16_16384_Reconstruction.ipynb) * Batch encoding using JAX `pmap`, complete example including data loading with PyTorch: ```python # VQGAN-JAX - pmap encoding HowTo import numpy as np # For data loading import torch import torchvision.transforms.functional as TF from torch.utils.data import Dataset, DataLoader from torchvision.datasets.folder import default_loader from torchvision.transforms import InterpolationMode # For data saving from pathlib import Path import pandas as pd from tqdm import tqdm import jax from jax import pmap from vqgan_jax.modeling_flax_vqgan import VQModel ## Params and arguments # List of paths containing images to encode image_list = '/sddata/dalle-mini/CC12M/10k.tsv' output_tsv = 'output.tsv' # Encoded results batch_size = 64 num_workers = 4 # TPU v3-8s have 96 cores, so feel free to increase this number when necessary # Load model model = VQModel.from_pretrained("flax-community/vqgan_f16_16384") ## Data Loading. # Simple torch Dataset to load images from paths. # You can use your own pipeline instead. class ImageDataset(Dataset): def __init__(self, image_list_path: str, image_size: int, max_items=None): """ :param image_list_path: Path to a file containing a list of all images. We assume absolute paths for now. :param image_size: Image size. Source images will be resized and center-cropped. :max_items: Limit dataset size for debugging """ self.image_list = pd.read_csv(image_list_path, sep='\t', header=None) if max_items is not None: self.image_list = self.image_list[:max_items] self.image_size = image_size def __len__(self): return len(self.image_list) def _get_raw_image(self, i): image_path = Path(self.image_list.iloc[i][0]) return default_loader(image_path) def resize_image(self, image): s = min(image.size) r = self.image_size / s s = (round(r * image.size[1]), round(r * image.size[0])) image = TF.resize(image, s, interpolation=InterpolationMode.LANCZOS) image = TF.center_crop(image, output_size = 2 * [self.image_size]) image = np.expand_dims(np.array(image), axis=0) return image def __getitem__(self, i): image = self._get_raw_image(i) return self.resize_image(image) ## Encoding # Encoding function to be parallelized with `pmap` # Note: images have to be square def encode(model, batch): _, indices = model.encode(batch) return indices # Alternative: create a batch with num_tpus*batch_size and use `shard` to distribute. def superbatch_generator(dataloader, num_tpus): iter_loader = iter(dataloader) for batch in iter_loader: superbatch = [batch.squeeze(1)] try: for _ in range(num_tpus-1): batch = next(iter_loader) if batch is None: break # Skip incomplete last batch if batch.shape[0] == dataloader.batch_size: superbatch.append(batch.squeeze(1)) except StopIteration: pass superbatch = torch.stack(superbatch, axis=0) yield superbatch def encode_dataset(dataset, batch_size=32): dataloader = DataLoader(dataset, batch_size=batch_size, num_workers=num_workers) superbatches = superbatch_generator(dataloader, num_tpus=jax.device_count()) num_tpus = jax.device_count() dataloader = DataLoader(dataset, batch_size=batch_size, num_workers=num_workers) superbatches = superbatch_generator(dataloader, num_tpus=num_tpus) p_encoder = pmap(lambda batch: encode(model, batch)) # Save each superbatch to avoid reallocation of buffers as we process them. # Keep the file open to prevent excessive file seeks. with open(output_tsv, "w") as file: iterations = len(dataset) // (batch_size * num_tpus) for n in tqdm(range(iterations)): superbatch = next(superbatches) encoded = p_encoder(superbatch.numpy()) encoded = encoded.reshape(-1, encoded.shape[-1]) # Extract paths from the dataset, save paths and encodings (as string) start_index = n * batch_size * num_tpus end_index = (n+1) * batch_size * num_tpus paths = dataset.image_list[start_index:end_index][0].values encoded_as_string = list(map(lambda item: np.array2string(item, separator=',', max_line_width=50000, formatter={'int':lambda x: str(x)}), encoded)) batch_df = pd.DataFrame.from_dict({"image_file": paths, "encoding": encoded_as_string}) batch_df.to_csv(file, sep='\t', header=(n==0), index=None) dataset = ImageDataset(image_list, image_size=256) encoded_dataset = encode_dataset(dataset, batch_size=batch_size) ``` ### Related Models in the Hub * PyTorch version of VQGAN, trained on the same datasets described here: [boris/vqgan_f16_16384](https://huggingface.co/boris/vqgan_f16_16384). * [DALL·E mini](https://huggingface.co/flax-community/dalle-mini), a Flax/JAX simplified implementation of OpenAI's DALL·E. ### Other This model was successfully used as part of the implementation of [DALL·E mini](https://github.com/borisdayma/dalle-mini). Our [report](https://wandb.ai/dalle-mini/dalle-mini/reports/DALL-E-mini--Vmlldzo4NjIxODA) contains more details on how to leverage it in an image encoding / generation pipeline.
{}
null
flax-community/vqgan_f16_16384
[ "transformers", "jax", "endpoints_compatible", "has_space", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #jax #endpoints_compatible #has_space #region-us
## VQGAN-f16-16384 ### Model Description This is a Flax/JAX implementation of VQGAN, which learns a codebook of context-rich visual parts by leveraging both the use of convolutional methods and transformers. It was introduced in Taming Transformers for High-Resolution Image Synthesis (CVPR paper). The model allows the encoding of images as a fixed-length sequence of tokens taken from the codebook. This version of the model uses a reduction factor 'f=16' and a vocabulary of '13,384' tokens. As an example of how the reduction factor works, images of size '256x256' are encoded to sequences of '256' tokens: '256/16 * 256/16'. Images of '512x512' would result in sequences of '1024' tokens. ### Datasets Used for Training * ImageNet. We didn't train this model from scratch. Instead, we started from a checkpoint pre-trained on ImageNet. * Conceptual Captions 3M (CC3M). * OpenAI subset of YFCC100M. We fine-tuned on CC3M and YFCC100M to improve the encoding quality of people and faces, which are not very well represented in ImageNet. We used a subset of 2,268,720 images from CC3M and YFCC100M for this purpose. ### Training Process Finetuning was performed in PyTorch using taming-transformers. The full training process and model preparation includes these steps: * Pre-training on ImageNet. Previously performed. We used this checkpoint. * Fine-tuning, Part 1. * Fine-tuning, Part 2 – continuation from Part 1. The final checkpoint was uploaded to boris/vqgan_f16_16384. * Conversion to JAX, which is the model described in this card. ### How to Use The checkpoint can be loaded using Suraj Patil's implementation of 'VQModel'. * Example notebook, heavily based in work by Suraj: ![Open In Colab](URL * Batch encoding using JAX 'pmap', complete example including data loading with PyTorch: ### Related Models in the Hub * PyTorch version of VQGAN, trained on the same datasets described here: boris/vqgan_f16_16384. * DALL·E mini, a Flax/JAX simplified implementation of OpenAI's DALL·E. ### Other This model was successfully used as part of the implementation of DALL·E mini. Our report contains more details on how to leverage it in an image encoding / generation pipeline.
[ "## VQGAN-f16-16384", "### Model Description\n\nThis is a Flax/JAX implementation of VQGAN, which learns a codebook of context-rich visual parts by leveraging both the use of convolutional methods and transformers. It was introduced in Taming Transformers for High-Resolution Image Synthesis (CVPR paper).\n\nThe model allows the encoding of images as a fixed-length sequence of tokens taken from the codebook.\n\nThis version of the model uses a reduction factor 'f=16' and a vocabulary of '13,384' tokens.\n\nAs an example of how the reduction factor works, images of size '256x256' are encoded to sequences of '256' tokens: '256/16 * 256/16'. Images of '512x512' would result in sequences of '1024' tokens.", "### Datasets Used for Training\n\n* ImageNet. We didn't train this model from scratch. Instead, we started from a checkpoint pre-trained on ImageNet.\n* Conceptual Captions 3M (CC3M).\n* OpenAI subset of YFCC100M.\n\nWe fine-tuned on CC3M and YFCC100M to improve the encoding quality of people and faces, which are not very well represented in ImageNet. We used a subset of 2,268,720 images from CC3M and YFCC100M for this purpose.", "### Training Process\n\nFinetuning was performed in PyTorch using taming-transformers. The full training process and model preparation includes these steps:\n\n* Pre-training on ImageNet. Previously performed. We used this checkpoint.\n* Fine-tuning, Part 1.\n* Fine-tuning, Part 2 – continuation from Part 1. The final checkpoint was uploaded to boris/vqgan_f16_16384.\n* Conversion to JAX, which is the model described in this card.", "### How to Use\n\nThe checkpoint can be loaded using Suraj Patil's implementation of 'VQModel'.\n\n* Example notebook, heavily based in work by Suraj: ![Open In Colab](URL\n\n* Batch encoding using JAX 'pmap', complete example including data loading with PyTorch:", "### Related Models in the Hub\n\n* PyTorch version of VQGAN, trained on the same datasets described here: boris/vqgan_f16_16384.\n* DALL·E mini, a Flax/JAX simplified implementation of OpenAI's DALL·E.", "### Other\n\nThis model was successfully used as part of the implementation of DALL·E mini. Our report contains more details on how to leverage it in an image encoding / generation pipeline." ]
[ "TAGS\n#transformers #jax #endpoints_compatible #has_space #region-us \n", "## VQGAN-f16-16384", "### Model Description\n\nThis is a Flax/JAX implementation of VQGAN, which learns a codebook of context-rich visual parts by leveraging both the use of convolutional methods and transformers. It was introduced in Taming Transformers for High-Resolution Image Synthesis (CVPR paper).\n\nThe model allows the encoding of images as a fixed-length sequence of tokens taken from the codebook.\n\nThis version of the model uses a reduction factor 'f=16' and a vocabulary of '13,384' tokens.\n\nAs an example of how the reduction factor works, images of size '256x256' are encoded to sequences of '256' tokens: '256/16 * 256/16'. Images of '512x512' would result in sequences of '1024' tokens.", "### Datasets Used for Training\n\n* ImageNet. We didn't train this model from scratch. Instead, we started from a checkpoint pre-trained on ImageNet.\n* Conceptual Captions 3M (CC3M).\n* OpenAI subset of YFCC100M.\n\nWe fine-tuned on CC3M and YFCC100M to improve the encoding quality of people and faces, which are not very well represented in ImageNet. We used a subset of 2,268,720 images from CC3M and YFCC100M for this purpose.", "### Training Process\n\nFinetuning was performed in PyTorch using taming-transformers. The full training process and model preparation includes these steps:\n\n* Pre-training on ImageNet. Previously performed. We used this checkpoint.\n* Fine-tuning, Part 1.\n* Fine-tuning, Part 2 – continuation from Part 1. The final checkpoint was uploaded to boris/vqgan_f16_16384.\n* Conversion to JAX, which is the model described in this card.", "### How to Use\n\nThe checkpoint can be loaded using Suraj Patil's implementation of 'VQModel'.\n\n* Example notebook, heavily based in work by Suraj: ![Open In Colab](URL\n\n* Batch encoding using JAX 'pmap', complete example including data loading with PyTorch:", "### Related Models in the Hub\n\n* PyTorch version of VQGAN, trained on the same datasets described here: boris/vqgan_f16_16384.\n* DALL·E mini, a Flax/JAX simplified implementation of OpenAI's DALL·E.", "### Other\n\nThis model was successfully used as part of the implementation of DALL·E mini. Our report contains more details on how to leverage it in an image encoding / generation pipeline." ]
[ 24, 9, 190, 127, 110, 76, 69, 44 ]
[ "passage: TAGS\n#transformers #jax #endpoints_compatible #has_space #region-us \n## VQGAN-f16-16384### Model Description\n\nThis is a Flax/JAX implementation of VQGAN, which learns a codebook of context-rich visual parts by leveraging both the use of convolutional methods and transformers. It was introduced in Taming Transformers for High-Resolution Image Synthesis (CVPR paper).\n\nThe model allows the encoding of images as a fixed-length sequence of tokens taken from the codebook.\n\nThis version of the model uses a reduction factor 'f=16' and a vocabulary of '13,384' tokens.\n\nAs an example of how the reduction factor works, images of size '256x256' are encoded to sequences of '256' tokens: '256/16 * 256/16'. Images of '512x512' would result in sequences of '1024' tokens.### Datasets Used for Training\n\n* ImageNet. We didn't train this model from scratch. Instead, we started from a checkpoint pre-trained on ImageNet.\n* Conceptual Captions 3M (CC3M).\n* OpenAI subset of YFCC100M.\n\nWe fine-tuned on CC3M and YFCC100M to improve the encoding quality of people and faces, which are not very well represented in ImageNet. We used a subset of 2,268,720 images from CC3M and YFCC100M for this purpose.### Training Process\n\nFinetuning was performed in PyTorch using taming-transformers. The full training process and model preparation includes these steps:\n\n* Pre-training on ImageNet. Previously performed. We used this checkpoint.\n* Fine-tuning, Part 1.\n* Fine-tuning, Part 2 – continuation from Part 1. The final checkpoint was uploaded to boris/vqgan_f16_16384.\n* Conversion to JAX, which is the model described in this card." ]
[ -0.06291152536869049, 0.14953479170799255, -0.0036498429253697395, 0.0247719194740057, 0.11194438487291336, 0.025127725675702095, 0.01936020888388157, 0.139194056391716, -0.15437042713165283, 0.05460567772388458, 0.03162231668829918, -0.009030858986079693, 0.11848126351833344, 0.12062668055295944, 0.03183500096201897, -0.19576826691627502, 0.056669916957616806, -0.01944815367460251, -0.055979229509830475, 0.07243329286575317, 0.10188652575016022, -0.1144559308886528, 0.07483886927366257, -0.006228497251868248, -0.18586771190166473, -0.005639230832457542, -0.01558180246502161, -0.009334907867014408, 0.09201233834028244, 0.06870771944522858, 0.14474430680274963, -0.010950618423521519, 0.051431167870759964, -0.19361388683319092, 0.015082277357578278, 0.08577218651771545, 0.01122528687119484, 0.07285355031490326, 0.06638361513614655, 0.1376861035823822, 0.16609728336334229, -0.1069183498620987, -0.0015708333812654018, 0.0372345969080925, -0.08897402882575989, -0.08990006893873215, -0.1541433334350586, 0.06211894005537033, 0.08935826271772385, 0.053081411868333817, 0.0006314769270829856, 0.018295228481292725, 0.002497689565643668, 0.06901485472917557, 0.06098869442939758, -0.21164722740650177, -0.02662160061299801, 0.09610486775636673, 0.02219587378203869, 0.008830836042761803, -0.0721970871090889, -0.007856015115976334, 0.004926037508994341, 0.0029955513309687376, 0.0792001336812973, -0.029657570645213127, -0.0779028832912445, -0.037480678409338, -0.10489970445632935, -0.08144760876893997, 0.14003364741802216, 0.025876086205244064, -0.09593512117862701, -0.11771116405725479, -0.054890308529138565, -0.08725268393754959, 0.010565554723143578, -0.08972742408514023, -0.012105277739465237, 0.020517336204648018, 0.009416298009455204, -0.1482013761997223, -0.13567450642585754, -0.005930145271122456, -0.03811034932732582, 0.0413396917283535, 0.050416115671396255, 0.05967562645673752, -0.015710122883319855, 0.0915568619966507, -0.04783777520060539, -0.040175702422857285, -0.040146615356206894, -0.06141889467835426, -0.08895926177501678, -0.03589499369263649, -0.031362976878881454, -0.14827580749988556, -0.07032033056020737, 0.08600236475467682, -0.1272255927324295, 0.05355067551136017, 0.002256468404084444, 0.026113353669643402, -0.010969487018883228, 0.15118487179279327, -0.051034677773714066, 0.02730332314968109, 0.0373976044356823, 0.004293463192880154, 0.006958648096770048, -0.054819606244564056, -0.06968912482261658, -0.0368245504796505, 0.11145181953907013, 0.05179281532764435, -0.030051566660404205, 0.02898586168885231, -0.017882706597447395, -0.03398454934358597, 0.19665752351284027, -0.12091395258903503, 0.04816250503063202, 0.005722068715840578, -0.0692896842956543, 0.026143284514546394, 0.03927503153681755, -0.012378577142953873, -0.08429942280054092, 0.013741869479417801, -0.035584788769483566, -0.014929351396858692, -0.12100588530302048, -0.09308907389640808, 0.018089039251208305, -0.08724420517683029, -0.04304967820644379, -0.12175478786230087, -0.13480933010578156, -0.03273312747478485, 0.05126028135418892, -0.01313707884401083, 0.02370191365480423, 0.0017098664538934827, -0.10189023613929749, -0.013394908048212528, 0.03995205834507942, 0.03443920612335205, 0.012364261783659458, 0.051695097237825394, -0.06118205189704895, 0.039595965296030045, -0.09456980973482132, 0.007645837496966124, -0.03736409917473793, 0.02717428468167782, -0.121841661632061, 0.08586417138576508, 0.0016274349763989449, -0.05625605210661888, -0.06994731724262238, -0.040340907871723175, -0.0643601045012474, -0.018899867311120033, 0.057345591485500336, 0.10621785372495651, -0.18885809183120728, 0.023935459554195404, 0.10288842767477036, -0.1039748266339302, 0.005936334375292063, 0.07782940566539764, -0.04101506248116493, 0.01142981369048357, 0.05890324339270592, 0.0540178008377552, 0.10665023326873779, -0.11896289139986038, -0.07434888184070587, 0.004798749461770058, -0.035838183015584946, 0.028203997761011124, 0.020616138353943825, -0.0079843420535326, 0.04776030778884888, -0.01038330141454935, -0.05926781892776489, 0.0019814432598650455, -0.03658699989318848, -0.08178667724132538, -0.0027442160062491894, -0.044671911746263504, -0.0038099312223494053, 0.0233323872089386, -0.0017523873830214143, -0.0038055102340877056, -0.06820796430110931, -0.12399635463953018, 0.1080406904220581, -0.0990084633231163, 0.06760652363300323, -0.1022816002368927, 0.07598403096199036, -0.056522734463214874, -0.010890682227909565, -0.13524310290813446, -0.07609771937131882, 0.06979500502347946, -0.039652686566114426, -0.012521710246801376, 0.018656054511666298, 0.02437165006995201, 0.03572515770792961, -0.020068075507879257, -0.026665791869163513, -0.09764640033245087, -0.03479998931288719, -0.03090265579521656, -0.05191955342888832, -0.12536771595478058, -0.04650706797838211, 0.13839875161647797, -0.12547989189624786, 0.011257562786340714, 0.13267479836940765, 0.0905316025018692, 0.06684794276952744, -0.06867311894893646, 0.022563528269529343, 0.03193968906998634, 0.014634956605732441, -0.08762682974338531, 0.01794498786330223, 0.05487741529941559, -0.03235631808638573, 0.0256185382604599, -0.13197407126426697, -0.1214631050825119, 0.06357075273990631, -0.013238972052931786, -0.09059485048055649, 0.028860870748758316, -0.02803853340446949, -0.010326634161174297, -0.06650359183549881, -0.05102680251002312, 0.12135111540555954, 0.006402638275176287, 0.09695873409509659, -0.07301997393369675, -0.01918843202292919, 0.023839404806494713, -0.003081563161686063, -0.03963649272918701, -0.039713069796562195, 0.05832492187619209, -0.11984538286924362, 0.045688413083553314, 0.021355772390961647, -0.0036870406474918127, 0.1412314474582672, -0.009036647155880928, -0.08355090767145157, -0.03273234888911247, 0.056518975645303726, 0.00666413176804781, 0.1312911957502365, 0.03099897690117359, -0.02305990271270275, 0.007653853390365839, -0.00040840974543243647, 0.07393570244312286, -0.15389570593833923, 0.06568671017885208, 0.07390101253986359, -0.06190561130642891, 0.10459135472774506, -0.0067633772268891335, -0.0354570634663105, 0.05427919328212738, 0.039726708084344864, 0.03532342612743378, 0.0215434692800045, -0.04755660519003868, -0.1118362694978714, 0.15127326548099518, -0.12316600233316422, -0.23790574073791504, -0.14643892645835876, 0.019509626552462578, 0.014081855304539204, 0.000961005745921284, -0.04203275218605995, -0.041750844568014145, -0.06315452605485916, -0.08165597915649414, -0.061523664742708206, -0.050603266805410385, -0.018071817234158516, 0.01197260431945324, -0.038985006511211395, 0.041768379509449005, -0.09135476499795914, 0.030539067462086678, 0.011262890882790089, -0.10815813392400742, 0.0332677960395813, 0.005139834247529507, 0.1404881626367569, 0.10971277952194214, -0.0985923483967781, 0.013367265462875366, -0.029849456623196602, 0.24470344185829163, -0.09240338951349258, 0.10266727209091187, 0.09621237963438034, -0.04884994402527809, 0.06848789006471634, 0.08975878357887268, 0.019287681207060814, -0.03451792150735855, 0.0021630378905683756, 0.004100564867258072, -0.03849126771092415, -0.15996003150939941, -0.038746364414691925, -0.07227794826030731, -0.08016274869441986, 0.033985063433647156, 0.035602279007434845, 0.07916120439767838, 0.05172957107424736, -0.03795914351940155, 0.030800316482782364, 0.0063348859548568726, 0.06760706752538681, 0.04528765380382538, 0.02175399847328663, 0.028640668839216232, -0.052643071860075, 0.014454388990998268, 0.07500322163105011, 0.08874332904815674, 0.18396121263504028, -0.045324355363845825, 0.11937449872493744, 0.049904730170965195, 0.15490438044071198, 0.04516148939728737, 0.05633452162146568, -0.09365116059780121, 0.030787765979766846, -0.01740463823080063, -0.04999639838933945, -0.06332219392061234, 0.010975772514939308, 0.03396493196487427, -0.010945494286715984, -0.07125145941972733, 0.044072020798921585, 0.019127076491713524, 0.13171705603599548, 0.03642153739929199, -0.16541235148906708, -0.02018270082771778, 0.00382669223472476, 0.0009480720036663115, -0.08525227755308151, -0.02813686430454254, 0.22594864666461945, -0.10427436232566833, 0.0030450185295194387, -0.06671085208654404, 0.0637732669711113, -0.10838625580072403, -0.02815387211740017, 0.08148957788944244, 0.053296852856874466, 0.03184213116765022, 0.047011055052280426, -0.17705973982810974, 0.08629535883665085, 0.04595624655485153, 0.1450261026620865, -0.058976199477910995, 0.0702478215098381, 0.01850893162190914, 0.023485200479626656, 0.11985088884830475, 0.0029665559995919466, -0.14655449986457825, -0.11031536757946014, -0.01817634329199791, 0.030470043420791626, 0.13036604225635529, 0.047520559281110764, 0.11407817900180817, -0.024772044271230698, 0.004722347483038902, -0.012099700048565865, 0.057734500616788864, -0.12047325074672699, -0.19721008837223053, 0.039069853723049164, 0.02222583442926407, -0.00375732546672225, -0.05922522395849228, 0.021956635639071465, -0.035111717879772186, 0.1176576092839241, -0.10194522887468338, -0.04894966632127762, -0.11386967450380325, 0.04258768633008003, 0.10208254307508469, -0.05302680656313896, 0.0753316655755043, 0.0222487710416317, 0.13558471202850342, -0.04678789898753166, -0.0838090255856514, -0.045444414019584656, -0.0656537115573883, -0.1181487888097763, -0.005355047527700663, 0.07788741588592529, 0.040984880179166794, 0.028603382408618927, 0.03330555558204651, 0.015864524990320206, 0.01896824687719345, -0.07968522608280182, 0.013465767726302147, 0.10258841514587402, 0.04215235635638237, 0.05016890540719032, -0.055383555591106415, -0.08344396203756332, -0.0765727162361145, -0.010970041155815125, 0.11628755927085876, 0.13592921197414398, -0.10682232677936554, 0.05717189237475395, 0.12766239047050476, -0.09747710078954697, -0.18450959026813507, 0.00551104499027133, 0.02237676829099655, 0.07974482327699661, -0.0649125874042511, -0.2063983529806137, -0.02919098362326622, 0.0411020889878273, -0.016230149194598198, 0.02087010256946087, -0.2825373113155365, -0.0645308718085289, -0.0013140618102625012, 0.08813321590423584, 0.010546032339334488, -0.08736636489629745, -0.03276053071022034, 0.04331662505865097, -0.09570632129907608, 0.10767841339111328, -0.021951790899038315, 0.07025406509637833, 0.03106600232422352, -0.0021901908330619335, 0.03795615956187248, -0.03999350965023041, 0.10097971558570862, -0.03367596119642258, 0.07454361766576767, -0.03399011492729187, -0.021571103483438492, 0.08434697985649109, -0.04443524777889252, 0.08413238078355789, 0.06203775107860565, 0.07069530338048935, -0.1408979743719101, 0.016219932585954666, -0.06433466821908951, 0.014008251018822193, -0.04804648458957672, -0.03578510507941246, -0.12460938096046448, 0.07556532323360443, 0.11413692682981491, 0.011577080935239792, -0.06134020537137985, -0.012776505202054977, 0.05336567014455795, 0.19806930422782898, 0.07320135831832886, -0.022574856877326965, -0.00538001349195838, 0.023921314626932144, -0.005239811260253191, 0.11316659301519394, -0.04219580441713333, 0.0317922905087471, 0.08662749826908112, -0.017494702711701393, 0.12094121426343918, 0.029301706701517105, -0.1420992761850357, 0.00880223698914051, 0.05389915034174919, -0.13538971543312073, -0.06833261251449585, -0.017478005960583687, 0.07019855082035065, -0.057666704058647156, -0.010870923288166523, 0.09400837123394012, -0.06778572499752045, -0.01385247427970171, -0.009331434965133667, 0.04635528102517128, -0.01923069730401039, 0.09680640697479248, 0.1165841817855835, 0.019007407128810883, -0.044484782963991165, 0.10514838993549347, 0.09295810759067535, -0.14577525854110718, 0.03399554267525673, 0.08355032652616501, -0.08822545409202576, -0.03201901167631149, -0.018783094361424446, 0.07673940062522888, -0.013520484790205956, -0.10281097143888474, 0.025450339540839195, -0.061312485486269, 0.01972300559282303, 0.07183524966239929, 0.024364471435546875, 0.11363662034273148, -0.036194369196891785, 0.02010367065668106, -0.16458649933338165, 0.07156739383935928, -0.016405973583459854, 0.019586296752095222, -0.1289951205253601, 0.13397154211997986, -0.005358811002224684, 0.06101786345243454, -0.010625837370753288, -0.00717943673953414, -0.018278418108820915, -0.009551730938255787, 0.07182872295379639, 0.014287472702562809, -0.05137065052986145, -0.035392459481954575, 0.007683033589273691, 0.03298186510801315, -0.006454611662775278, 0.04169782996177673, -0.041368868201971054, -0.05122632160782814, -0.0529753603041172, -0.03864419087767601, -0.07359258830547333, -0.0006151742418296635, -0.004122508689761162, -0.07959523797035217, 0.0670563355088234, -0.047209326177835464, -0.011735456064343452, -0.0012190098641440272, -0.0438404306769371, -0.031344350427389145, 0.008140074089169502, 0.013824493624269962, -0.01654757186770439, -0.08698282390832901, 0.003100082278251648, 0.00964920874685049, -0.028162669390439987, -0.030391540378332138, 0.09074340760707855, -0.06223959103226662, 0.007178955711424351, -0.06275402009487152, 0.05069895088672638, -0.08977136760950089, 0.1284397542476654, 0.10315346717834473, 0.048372264951467514, 0.09812203794717789, -0.04062870144844055, 0.03716249018907547, -0.09844771772623062, -0.008598965592682362, 0.00901722814887762, 0.01158285140991211, -0.05870934948325157, -0.03365765139460564, 0.05571569874882698, -0.05780526250600815, 0.07675957679748535, -0.025603942573070526, -0.04482549428939819, 0.0012330624740570784, -0.10856006294488907, -0.10574517399072647, 0.018593264743685722, 0.17360998690128326, 0.005516421981155872, -0.059373024851083755, 0.0454847551882267, 0.002928772009909153, -0.042848896235227585, 0.09041443467140198, 0.16707482933998108, 0.09095165878534317, 0.0809287428855896, 0.11797056347131729, -0.00615268386900425, -0.0738605335354805, 0.008718376979231834, 0.07537347823381424, -0.09253519028425217, 0.042191121727228165, -0.056312426924705505, 0.033371202647686005, 0.15109024941921234, -0.18077538907527924, 0.10689360648393631, 0.04250794276595116, -0.08450496196746826, -0.081218421459198, -0.12987568974494934, -0.04854198917746544, -0.024798130616545677, -0.019216664135456085, -0.11594314873218536, 0.05021828040480614, 0.05865594744682312, -0.0038424686063081026, -0.038313355296850204, 0.14804179966449738, -0.07149101793766022, -0.06506622582674026, 0.08684036880731583, 0.029725786298513412, 0.04485239461064339, 0.0200238935649395, 0.007745608687400818, 0.05243588611483574, 0.04152332991361618, 0.12625521421432495, 0.029766473919153214, 0.11975111067295074, 0.06508824229240417, 0.004364234395325184, -0.05090504139661789, 0.005731892306357622, -0.024608632549643517, 0.08619941771030426, 0.0993988886475563, 0.005328602157533169, -0.014973648823797703, -0.016260413452982903, 0.12648168206214905, -0.06540923565626144, -0.05789501592516899, -0.15026332437992096, 0.05061401426792145, 0.030373627319931984, -0.003661729861050844, 0.027372367680072784, -0.11345604807138443, 0.03880763798952103, 0.18454919755458832, 0.14252522587776184, -0.03731580078601837, -0.009185602888464928, 0.032888371497392654, 0.0022483274806290865, -0.043053727596998215, 0.1510368138551712, 0.01567206159234047, 0.20123320817947388, -0.044568441808223724, 0.021402541548013687, -0.046301405876874924, -0.01310250535607338, -0.028908224776387215, 0.12248751521110535, -0.03849690034985542, -0.007222615648061037, -0.05761880800127983, 0.027976136654615402, 0.010844791308045387, -0.19656391441822052, 0.0954011082649231, -0.1019693911075592, -0.05998661741614342, 0.04161360487341881, 0.04023890197277069, 0.002008998766541481, 0.058585744351148605, -0.03969784826040268, 0.033671051263809204, 0.1976511925458908, 0.04007888212800026, -0.0648028627038002, -0.011503557674586773, 0.049604885280132294, -0.042266689240932465, 0.20270338654518127, 0.029632341116666794, 0.08586151897907257, 0.06481743603944778, -0.002644979627802968, -0.12836024165153503, 0.016766918823122978, 0.03541681542992592, 0.015315818600356579, -0.008352931588888168, 0.17990204691886902, 0.01782955601811409, 0.07874748110771179, 0.04031697288155556, -0.10307920724153519, 0.039951957762241364, -0.022074712440371513, -0.004083754029124975, -0.07173637300729752, 0.008346443995833397, -0.08973900228738785, 0.16796988248825073, 0.14294303953647614, 0.0037955476436764, 0.037590861320495605, -0.024295847862958908, -0.013682698830962181, 0.034960001707077026, 0.13981519639492035, -0.00686155678704381, -0.09918727725744247, 0.002764836885035038, -0.13653704524040222, 0.040285494178533554, -0.07382769137620926, -0.046529725193977356, 0.03721877932548523, -0.038418255746364594, -0.046625446528196335, 0.1253799945116043, 0.028919275850057602, 0.030369970947504044, -0.046953391283750534, 0.07065120339393616, -0.021350251510739326, 0.06835120916366577, -0.10316745936870575, -0.03871098533272743 ]
null
null
transformers
# Wav2Vec2 4 Persian > This is part of the [Flax/Jax Community Week](https://discuss.huggingface.co/t/pretrain-wav2vec2-in-persian/8180), organized by [HuggingFace](https://huggingface.co/) and TPU usage sponsored by Google. ## Team Members - Mehrdad Farahani ([m3hrdadfi](https://huggingface.co/m3hrdadfi)) ## Dataset TODO: Update ## How To Use TODO: Update ## Demo TODO: Update ## Evaluation TODO: Update
{"language": "fa", "license": "apache-2.0", "tags": ["speech"], "datasets": ["common_voice"]}
null
flax-community/wav2vec2-base-persian
[ "transformers", "pytorch", "jax", "tensorboard", "wav2vec2", "pretraining", "speech", "fa", "dataset:common_voice", "license:apache-2.0", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "fa" ]
TAGS #transformers #pytorch #jax #tensorboard #wav2vec2 #pretraining #speech #fa #dataset-common_voice #license-apache-2.0 #endpoints_compatible #region-us
# Wav2Vec2 4 Persian > This is part of the Flax/Jax Community Week, organized by HuggingFace and TPU usage sponsored by Google. ## Team Members - Mehrdad Farahani (m3hrdadfi) ## Dataset TODO: Update ## How To Use TODO: Update ## Demo TODO: Update ## Evaluation TODO: Update
[ "# Wav2Vec2 4 Persian\n> This is part of the\nFlax/Jax Community Week, organized by HuggingFace and TPU usage sponsored by Google.", "## Team Members\n- Mehrdad Farahani (m3hrdadfi)", "## Dataset TODO: Update", "## How To Use TODO: Update", "## Demo TODO: Update", "## Evaluation TODO: Update" ]
[ "TAGS\n#transformers #pytorch #jax #tensorboard #wav2vec2 #pretraining #speech #fa #dataset-common_voice #license-apache-2.0 #endpoints_compatible #region-us \n", "# Wav2Vec2 4 Persian\n> This is part of the\nFlax/Jax Community Week, organized by HuggingFace and TPU usage sponsored by Google.", "## Team Members\n- Mehrdad Farahani (m3hrdadfi)", "## Dataset TODO: Update", "## How To Use TODO: Update", "## Demo TODO: Update", "## Evaluation TODO: Update" ]
[ 59, 40, 16, 7, 8, 6, 7 ]
[ "passage: TAGS\n#transformers #pytorch #jax #tensorboard #wav2vec2 #pretraining #speech #fa #dataset-common_voice #license-apache-2.0 #endpoints_compatible #region-us \n# Wav2Vec2 4 Persian\n> This is part of the\nFlax/Jax Community Week, organized by HuggingFace and TPU usage sponsored by Google.## Team Members\n- Mehrdad Farahani (m3hrdadfi)## Dataset TODO: Update## How To Use TODO: Update## Demo TODO: Update## Evaluation TODO: Update" ]
[ -0.12116354703903198, 0.10602674633264542, -0.004115961957722902, 0.027142781764268875, 0.1443304568529129, 0.010173536837100983, 0.18175387382507324, 0.12288305908441544, 0.022922992706298828, -0.03040175698697567, 0.06237895414233208, 0.03647644817829132, 0.10134238004684448, 0.09759721159934998, 0.005769046954810619, -0.23895587027072906, -0.009043378755450249, -0.0068206568248569965, -0.08779595047235489, 0.11370882391929626, 0.12849333882331848, -0.0342547632753849, 0.06611122190952301, 0.05155832692980766, -0.07108005881309509, 0.009620444849133492, -0.00137792294844985, -0.16302208602428436, 0.13915692269802094, 0.0964563861489296, -0.006304534617811441, 0.07607026398181915, -0.02262156642973423, -0.12154246866703033, 0.06011541932821274, 0.021427199244499207, -0.05517620965838432, 0.04720902070403099, 0.0871691033244133, -0.016304899007081985, 0.1664886325597763, 0.019605182111263275, -0.08285512030124664, 0.09208182245492935, -0.12311610579490662, -0.25285500288009644, -0.08471712470054626, 0.07581871747970581, 0.046051736921072006, 0.13085947930812836, -0.00031033623963594437, 0.22844350337982178, -0.06218975409865379, 0.07813847810029984, 0.2653960883617401, -0.22409476339817047, -0.08145462721586227, 0.0533602349460125, 0.10288181155920029, 0.03631322458386421, -0.07104681432247162, -0.002621397841721773, 0.029861973598599434, 0.0006299848319031298, -0.040465813130140305, -0.08788823336362839, -0.07986296713352203, -0.014262077398598194, -0.0463993102312088, 0.007545827887952328, 0.3540535569190979, 0.0396411269903183, -0.017032979056239128, 0.012200665660202503, -0.03716163709759712, -0.006076260004192591, -0.04209223389625549, -0.07530517131090164, 0.05987868830561638, 0.055167023092508316, 0.006510724313557148, -0.07123198360204697, -0.14315113425254822, -0.019102321937680244, -0.07542041689157486, 0.08722438663244247, -0.008081724867224693, 0.03622141480445862, -0.1574951410293579, 0.027297010645270348, 0.046081818640232086, -0.08629432320594788, -0.04285821318626404, 0.0019576132763177156, 0.05235541984438896, -0.011375036090612411, 0.04212489351630211, -0.09966535866260529, 0.181086003780365, -0.012322048656642437, -0.027644330635666847, 0.07276695221662521, -0.05971593037247658, 0.0573149174451828, 0.03864484652876854, 0.05019012838602066, -0.02632494643330574, -0.0946156308054924, 0.09244287759065628, -0.02932152897119522, 0.026975590735673904, -0.0012997194426134229, -0.02111094258725643, 0.006691508460789919, 0.009846583940088749, 0.08696658909320831, 0.12607276439666748, 0.08454594761133194, -0.03328647091984749, -0.045865703374147415, 0.12056896835565567, -0.10085205733776093, 0.004326204769313335, 0.04560569301247597, -0.04156121239066124, 0.03775512054562569, 0.03921602666378021, 0.056208766996860504, -0.07542334496974945, -0.05791335180401802, -0.03520994633436203, 0.03818133473396301, -0.02248023822903633, 0.03370849788188934, 0.10111913830041885, -0.04548937454819679, 0.015846634283661842, -0.1385948359966278, -0.02781824767589569, -0.018030105158686638, 0.023196950554847717, 0.011729261837899685, -0.08563535660505295, -0.05032702907919884, 0.013020256534218788, -0.010742577724158764, -0.06401333957910538, 0.09395509213209152, -0.08556956797838211, 0.09260465204715729, 0.03589751943945885, 0.012700723484158516, -0.0800500363111496, 0.044800713658332825, -0.05272200331091881, 0.0472014881670475, 0.005195088684558868, -0.02706579491496086, -0.03453711420297623, 0.10389809310436249, -0.1156478151679039, -0.004168341867625713, -0.09963664412498474, 0.002225258154794574, 0.01138048805296421, 0.16683828830718994, -0.07424096018075943, -0.08326049894094467, 0.14024968445301056, -0.07897423952817917, -0.1466301679611206, 0.16254621744155884, 0.034762512892484665, 0.17587564885616302, 0.0497855618596077, 0.11862402409315109, 0.03950532525777817, -0.20846204459667206, -0.02140885591506958, 0.029141489416360855, -0.12290984392166138, -0.1354489028453827, 0.08372344821691513, -0.012724010273814201, 0.04597045108675957, 0.02525721676647663, 0.0807669535279274, 0.09095229208469391, -0.04402431845664978, -0.067464180290699, -0.03412275016307831, -0.04600125178694725, -0.02084670215845108, 0.01321589294821024, 0.027264082804322243, -0.0920153483748436, -0.011229720897972584, -0.0742621198296547, 0.07158931344747543, -0.004694145638495684, 0.05999637767672539, -0.17462925612926483, 0.07251565158367157, -0.06493611633777618, 0.03227400407195091, -0.06882204115390778, 0.04370024427771568, -0.025833096355199814, 0.1034381091594696, 0.009144006296992302, 0.1300264298915863, 0.05151249095797539, -0.11784113198518753, -0.04353635385632515, -0.00824768003076315, 0.018825843930244446, 0.018329815939068794, -0.013477341271936893, -0.14363041520118713, 0.07695669680833817, -0.029896438121795654, 0.032336700707674026, -0.09873044490814209, 0.011073361150920391, 0.16607478260993958, 0.07078446447849274, -0.00671727629378438, 0.04291163384914398, 0.022039368748664856, 0.0101426737383008, 0.003833965165540576, -0.05014636740088463, 0.10402945429086685, 0.049773555248975754, -0.0721716359257698, 0.16276627779006958, -0.1177498921751976, 0.15898211300373077, 0.19479359686374664, -0.09493344277143478, 0.05358594283461571, 0.07851748913526535, -0.06589826941490173, -0.07241036742925644, 0.0677679255604744, 0.06099670007824898, 0.09589023888111115, 0.0011655542766675353, 0.10018860548734665, -0.04800602048635483, 0.025464260950684547, 0.06423455476760864, -0.09531399607658386, -0.07704653590917587, 0.0766180008649826, 0.08724846690893173, -0.12687940895557404, 0.11214455962181091, 0.15896505117416382, 0.06888260692358017, 0.24322153627872467, -0.026034051552414894, -0.021740153431892395, -0.015631813555955887, 0.035742565989494324, -0.01854960434138775, 0.11366742849349976, -0.24645684659481049, -0.02932830899953842, 0.028246039524674416, 0.05155663564801216, 0.07035617530345917, -0.12165513634681702, -0.009599793702363968, -0.043512240052223206, -0.0667509138584137, -0.06976136565208435, 0.09498520195484161, -0.05112093687057495, 0.07075861096382141, -0.009093702770769596, -0.024615108966827393, 0.11223349720239639, -0.0008240985334850848, -0.10349560528993607, 0.07285716384649277, -0.07507163286209106, -0.3059155344963074, -0.08176452666521072, -0.13060185313224792, -0.042556941509246826, -0.008394570089876652, 0.10765846073627472, -0.02142227627336979, 0.00067045510513708, 0.009839609265327454, 0.09168637543916702, -0.021685754880309105, -0.019864534959197044, 0.04243486002087593, 0.05827721208333969, 0.06635521352291107, -0.1428455412387848, -0.030162733048200607, 0.03575083240866661, -0.12578919529914856, 0.07551037520170212, -0.08304449915885925, 0.08066583424806595, -0.03206560015678406, 0.0405203215777874, 0.01783721148967743, -0.03435817360877991, 0.14569859206676483, -0.15369993448257446, 0.02710845321416855, 0.2729373574256897, 0.0062300399877130985, -0.006873667240142822, 0.0558105893433094, 0.011903088539838791, -0.03820950910449028, 0.005487194750458002, -0.0059073553420603275, -0.08463183045387268, -0.2532854378223419, -0.03670141100883484, -0.14809666574001312, 0.14939279854297638, -0.06250094622373581, 0.10814914852380753, 0.029643947258591652, 0.027639681473374367, -0.03105035610496998, -0.06284702569246292, -0.05322836712002754, 0.025490904226899147, 0.12822799384593964, -0.022811079397797585, 0.011054856702685356, -0.1145424097776413, 0.007878587581217289, 0.10752124339342117, 0.13931304216384888, 0.08990970253944397, 0.12419775873422623, 0.14147447049617767, 0.07243363559246063, 0.21559007465839386, 0.042480599135160446, 0.0010605661664158106, 0.052706919610500336, -0.01813679188489914, -0.03727150708436966, -0.018469208851456642, -0.07939908653497696, 0.018508432433009148, 0.11625515669584274, -0.05766237527132034, -0.006689614150673151, -0.07577356696128845, 0.0831872746348381, 0.33330854773521423, -0.08634819835424423, -0.1463770866394043, -0.05744193121790886, 0.012124641798436642, -0.05585573986172676, -0.01417635753750801, 0.010754954069852829, 0.025985416024923325, -0.14271263778209686, 0.07890159636735916, -0.017302870750427246, 0.09241679310798645, -0.03137395903468132, 0.018795037642121315, -0.03987617418169975, -0.0376528762280941, -0.02028658054769039, 0.10322258621454239, -0.3412811756134033, 0.1910548359155655, 0.006703609135001898, 0.09812857210636139, -0.07309331744909286, 0.0036828392185270786, 0.04808349534869194, 0.14759738743305206, 0.08703456073999405, 0.0020732413977384567, 0.07470762729644775, 0.005939531605690718, -0.14394573867321014, 0.08406168222427368, -0.017780795693397522, 0.034728679805994034, -0.014326244592666626, 0.00690646143630147, 0.017619820311665535, 0.012055790983140469, 0.03322339057922363, -0.12444877624511719, -0.06720485538244247, 0.09336195141077042, 0.12127935141324997, 0.11440469324588776, -0.06289003044366837, -0.05640941485762596, -0.16061148047447205, 0.16261506080627441, -0.005467111710458994, -0.026751775294542313, -0.1127220168709755, -0.054498326033353806, -0.0006464598118327558, -0.05040735751390457, -0.04514982923865318, 0.02303658239543438, -0.042240142822265625, -0.016180794686079025, -0.07472264021635056, 0.14972002804279327, -0.1458553820848465, -0.14876729249954224, -0.012557961978018284, 0.2002597451210022, 0.016788151115179062, 0.023072874173521996, -0.03272460773587227, -0.0477738231420517, -0.013576406985521317, -0.0619477741420269, 0.05098162218928337, -0.010794565081596375, 0.035506803542375565, -0.15380282700061798, 0.07635205239057541, -0.1001807153224945, -0.06463953852653503, -0.13560932874679565, 0.0870000422000885, 0.1559888869524002, 0.016360392794013023, 0.16516192257404327, 0.11720991134643555, -0.051700204610824585, -0.18383143842220306, -0.07753202319145203, -0.027691448107361794, -0.012333220802247524, 0.05088801309466362, -0.1376548707485199, 0.024248776957392693, 0.04274045675992966, -0.06232267990708351, 0.15484774112701416, -0.19245722889900208, -0.06784035265445709, 0.059666842222213745, 0.022568190470337868, 0.28286394476890564, -0.17833873629570007, 0.0014836456393823028, 0.004079557489603758, -0.2284921407699585, 0.07174969464540482, -0.15171851217746735, 0.08470529317855835, 0.0265042781829834, 0.036925360560417175, -0.021173374727368355, -0.03562505170702934, 0.10745180398225784, -0.08314327895641327, -0.040310684591531754, -0.10500705987215042, -0.054027583450078964, 0.05588870123028755, 0.018078098073601723, -0.009024864062666893, -0.0632922574877739, -0.03188009560108185, -0.08378925919532776, -0.06067560240626335, -0.042488254606723785, 0.1577683538198471, -0.03126204013824463, -0.03823200985789299, 0.011733883991837502, 0.008475251495838165, -0.01747499220073223, 0.014625483192503452, 0.22510144114494324, -0.07928287237882614, 0.015931325033307076, 0.16702209413051605, 0.1676439344882965, -0.12768767774105072, -0.007465306203812361, -0.092390276491642, -0.051356345415115356, 0.07349635660648346, -0.11289829015731812, 0.03626122698187828, 0.01366101112216711, -0.03640584647655487, 0.077129065990448, 0.006209284067153931, -0.09188701957464218, 0.0707254633307457, 0.08727588504552841, -0.11407716572284698, -0.1625901460647583, -0.02225756272673607, -0.0206792950630188, -0.003756709862500429, 0.10157374292612076, 0.1814582347869873, -0.06300143152475357, -0.007368569262325764, -0.005451514385640621, 0.05661267414689064, -0.08882376551628113, 0.08064454793930054, 0.031881824135780334, -0.021363338455557823, -0.08695667237043381, 0.07108322530984879, 0.046253666281700134, -0.15073555707931519, -0.001038715592585504, 0.07207711040973663, -0.06936749815940857, -0.09085147827863693, -0.09016390889883041, 0.10931869596242905, 0.08826213330030441, -0.20201675593852997, -0.13008801639080048, -0.030476626008749008, 0.028552673757076263, -0.000728367012925446, 0.02064797282218933, 0.045279212296009064, 0.012071310542523861, 0.023600565269589424, -0.021684294566512108, 0.016379602253437042, 0.012298304587602615, -0.013397597707808018, -0.12848636507987976, 0.01849430426955223, 0.03461340069770813, 0.1527324765920639, -0.04383865371346474, -0.053767185658216476, -0.0654924139380455, 0.01407323032617569, 0.01114854495972395, -0.033393096178770065, -0.11269795149564743, 0.006940246559679508, 0.016049951314926147, -0.11829037219285965, -0.07138227671384811, 0.047833725810050964, -0.07445310056209564, 0.0069876001216471195, 0.015619747340679169, 0.1113659217953682, -0.04535897076129913, 0.0332808755338192, 0.0616467259824276, -0.014484643936157227, 0.1498972326517105, 0.12130697071552277, -0.08047737926244736, 0.04994278401136398, -0.19654932618141174, 0.044263940304517746, 0.041746366769075394, 0.01847284846007824, 0.020437894389033318, -0.02129136025905609, -0.025145148858428, 0.08305943012237549, 0.036469507962465286, -0.015559734776616096, 0.08446788787841797, -0.15026605129241943, 0.010347014293074608, -0.104997418820858, -0.10348306596279144, 0.0072137280367314816, -0.02527134120464325, 0.06166111305356026, 0.057122111320495605, 0.1284542977809906, -0.06262793391942978, 0.021419024094939232, -0.0958205834031105, 0.039816565811634064, -0.004902574699372053, -0.0730009600520134, -0.06844150274991989, -0.06210775300860405, 0.056546587496995926, -0.03908001258969307, 0.06636275351047516, 0.023917770013213158, -0.06072617694735527, 0.04278221353888512, -0.13773874938488007, -0.08404451608657837, -0.02572629600763321, 0.16807037591934204, 0.00663496321067214, 0.036171264946460724, 0.017883146181702614, 0.02375437133014202, 0.027575543150305748, -0.039496421813964844, 0.048820096999406815, 0.1334271878004074, 0.01261980552226305, 0.10374419391155243, 0.03046477399766445, -0.08225833624601364, -0.005411828868091106, 0.010766631923615932, -0.07609888911247253, 0.04297729954123497, -0.035896141082048416, 0.05249452963471413, 0.20339129865169525, -0.02204292267560959, 0.013936433009803295, -0.07538925111293793, 0.02160896174609661, -0.06982738524675369, -0.06363324820995331, -0.08303163200616837, -0.1896974742412567, -0.007734591141343117, -0.02272258698940277, 0.03745798021554947, 0.029048338532447815, 0.03794024512171745, -0.11436354368925095, 0.08429840207099915, 0.026156576350331306, -0.10033544898033142, 0.03818078339099884, -0.04478536918759346, -0.0009697691421024501, -0.15973208844661713, -0.05818874016404152, -0.0231216698884964, 0.038416989147663116, 0.0174186322838068, 0.028219589963555336, -0.022203130647540092, 0.05376829579472542, -0.12170815467834473, -0.08104286342859268, -0.006257848814129829, 0.023716531693935394, 0.016988128423690796, 0.11168094724416733, 0.04570787027478218, 0.014208566397428513, 0.059053853154182434, 0.17916469275951385, -0.021235382184386253, -0.0962800681591034, -0.1041630208492279, -0.020295556634664536, -0.03566838800907135, -0.03248909115791321, -0.030274773016572, -0.061993829905986786, -0.005016203038394451, 0.21580512821674347, 0.2677781581878662, -0.010436353273689747, 0.04118205979466438, -0.06439649313688278, 0.02530917152762413, 0.008285082876682281, 0.07878975570201874, 0.09696581214666367, 0.12172242254018784, -0.03220979496836662, -0.052122563123703, -0.07104954123497009, 0.0317811518907547, -0.09589847177267075, 0.1056412011384964, -0.033549126237630844, -0.01926494389772415, 0.022382648661732674, 0.10610255599021912, -0.024044329300522804, -0.2187127023935318, -0.028485504910349846, -0.10234643518924713, -0.09258751571178436, 0.005752669181674719, 0.0951705202460289, 0.11191993951797485, 0.0663820132613182, -0.015652721747756004, -0.011005398817360401, 0.11114031076431274, 0.03014974482357502, -0.13984251022338867, -0.0018468605121597648, 0.11758313328027725, -0.13058064877986908, 0.12460845708847046, -0.042837124317884445, 0.044824711978435516, 0.05629865825176239, 0.02467176504433155, -0.0832909643650055, 0.11639627814292908, 0.042130012065172195, -0.04451429471373558, 0.012738925404846668, -0.04940493777394295, 0.027822598814964294, -0.03743823245167732, 0.03909368813037872, 0.02199740521609783, 0.0121975839138031, -0.047761376947164536, 0.05835813656449318, -0.07832667976617813, 0.1274995505809784, -0.11371713131666183, 0.08569720387458801, 0.054508503526449203, -0.05164491385221481, -0.06148197874426842, -0.06915075331926346, 0.03842184692621231, 0.04863310977816582, -0.09183095395565033, -0.05328599363565445, -0.1782502979040146, -0.029163630679249763, -0.0917932391166687, 0.0011103845899924636, -0.03791308030486107, -0.017160998657345772, -0.08251165598630905, -0.03280801326036453, -0.02228221669793129, -0.0233193077147007, 0.023071113973855972, -0.024589596316218376, -0.024161454290151596, 0.05388028547167778, 0.029149794951081276, 0.10224777460098267, -0.0997709259390831, -0.07443636655807495 ]
null
null
null
# wav2vec2-base-turkish
{}
null
flax-community/wav2vec2-base-turkish
[ "tensorboard", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #tensorboard #region-us
# wav2vec2-base-turkish
[ "# wav2vec2-base-turkish" ]
[ "TAGS\n#tensorboard #region-us \n", "# wav2vec2-base-turkish" ]
[ 10, 10 ]
[ "passage: TAGS\n#tensorboard #region-us \n# wav2vec2-base-turkish" ]
[ 0.017403947189450264, -0.14892001450061798, -0.009956634603440762, -0.04990609362721443, 0.0132444454357028, 0.07873672246932983, 0.2079911231994629, 0.03334413468837738, 0.12851406633853912, 0.010235694237053394, 0.17209063470363617, -0.04197391867637634, 0.05487114191055298, -0.11741260439157486, 0.03597405552864075, -0.22750908136367798, 0.0005622730241157115, -0.007542310282588005, -0.03555414080619812, 0.06111407279968262, -0.006723253522068262, -0.035831764340400696, -0.004242682363837957, -0.023677831515669823, -0.16871555149555206, 0.09674809128046036, 0.0062013305723667145, -0.05914151668548584, 0.10593044757843018, 0.008120693266391754, 0.2102549821138382, -0.015740903094410896, -0.09502733498811722, -0.09000486135482788, 0.036255210638046265, -0.011089703999459743, -0.1270480901002884, 0.05989597737789154, 0.12007284164428711, -0.15264995396137238, 0.0459754578769207, -0.05611073598265648, -0.07404504716396332, -0.012690710835158825, -0.17407196760177612, -0.07300722599029541, -0.04746856167912483, 0.0747891440987587, 0.11653461307287216, -0.011907798238098621, 0.013999504037201405, 0.06334391981363297, -0.0712171271443367, 0.07342066615819931, 0.11431203037500381, -0.4139850437641144, -0.047191765159368515, 0.0988752469420433, -0.046783965080976486, 0.16754098236560822, 0.022367089986801147, 0.14537803828716278, -0.0038542377296835184, -0.09221747517585754, -0.1390944868326187, -0.0736907348036766, -0.07426462322473526, 0.008176016621291637, -0.030862512066960335, 0.002722708508372307, 0.17346864938735962, -0.0170151274651289, 0.11300631612539291, 0.13294008374214172, -0.08101546764373779, -0.04550952836871147, 0.007437113206833601, -0.04358069226145744, -0.0718071460723877, 0.0740092322230339, 0.1484033316373825, -0.13780951499938965, -0.14482294023036957, -0.021179942414164543, -0.2733396291732788, 0.28889715671539307, 0.02175220288336277, 0.10143154859542847, -0.15254592895507812, 0.005428160075098276, -0.12624861299991608, -0.10509119182825089, 0.1291561871767044, 0.045596759766340256, -0.06880348175764084, 0.04936925694346428, -0.006405457854270935, -0.2496296763420105, 0.09401571750640869, -0.08207443356513977, 0.09454905241727829, 0.09685743600130081, -0.03982190415263176, 0.19333457946777344, -0.07510444521903992, 0.005589281674474478, 0.032239723950624466, -0.06018267199397087, 0.008251494728028774, -0.17658285796642303, 0.08304749429225922, -0.08443794399499893, -0.2058681696653366, -0.09545620530843735, -0.0260667335242033, 0.06634741276502609, 0.00043926876969635487, -0.02664235234260559, 0.012898460030555725, 0.04842047765851021, -0.026630135253071785, -0.06239156052470207, 0.015140143223106861, 0.028048744425177574, 0.0323469378054142, 0.11539753526449203, -0.09498815983533859, -0.009291660971939564, -0.0016641538823023438, 0.08533080667257309, 0.007995981723070145, 0.060548365116119385, 0.01542527973651886, -0.026694202795624733, 0.08423564583063126, -0.12673848867416382, -0.008677772246301174, -0.15364938974380493, 0.004183981567621231, 0.03791990503668785, 0.06486567109823227, -0.05728892609477043, 0.15817667543888092, 0.028606079518795013, 0.002784698037430644, 0.06658018380403519, -0.05433883145451546, 0.004971210844814777, -0.03488975390791893, 0.02000962197780609, -0.05402139946818352, 0.11015529185533524, -0.16958566009998322, -0.004132906440645456, -0.025356194004416466, 0.06396602839231491, -0.036824192851781845, -0.028226442635059357, -0.03614422678947449, 0.07727585732936859, -0.03409518674015999, 0.10300859808921814, -0.2504288852214813, -0.01545849908143282, 0.014500726014375687, 0.06407561153173447, -0.22221560776233673, -0.08082985132932663, 0.19753767549991608, -0.09027370810508728, -0.08523726463317871, 0.08328400552272797, 0.05214764550328255, -0.006287598516792059, 0.0357169546186924, 0.42593681812286377, -0.05252177640795708, -0.05881821736693382, 0.035999082028865814, 0.11412566900253296, -0.08418449014425278, -0.046664971858263016, 0.04258633777499199, -0.06403878331184387, 0.02623152732849121, -0.00047006236854940653, 0.09936466813087463, 0.07434331625699997, -0.00807742215692997, -0.021522432565689087, 0.033404674381017685, -0.013533584773540497, 0.12695379555225372, -0.010386141017079353, 0.19848167896270752, -0.11200064420700073, -0.0214870423078537, 0.018465647473931313, 0.0037228402215987444, 0.06616861373186111, 0.032830610871315, -0.02764538675546646, 0.1903925985097885, -0.1591220647096634, 0.032594241201877594, -0.11205729097127914, -0.0711938664317131, -0.056258562952280045, 0.1175827607512474, 0.0630180686712265, 0.17214936017990112, 0.13895560801029205, -0.08762864023447037, -0.03116404078900814, 0.058366794139146805, 0.05278995633125305, 0.06012323498725891, -0.06306149810552597, -0.13723133504390717, 0.10836866497993469, -0.04143768548965454, -0.036712050437927246, -0.07652896642684937, -0.007448459044098854, 0.20559900999069214, 0.1151670590043068, 0.027232086285948753, 0.029918653890490532, -0.06905914098024368, 0.01977294124662876, 0.015012852847576141, 0.0055658225901424885, 0.03474648669362068, -0.06070971488952637, -0.11862722784280777, 0.177992045879364, -0.10824868828058243, 0.2002292275428772, 0.20452944934368134, -0.17108510434627533, 0.00447085639461875, -0.010531879961490631, 0.02382710389792919, -0.03281143680214882, 0.16502560675144196, -0.0486944355070591, 0.08013543486595154, 0.02954503893852234, 0.044708672910928726, 0.016849681735038757, 0.008258088491857052, 0.006431441754102707, -0.07945753633975983, -0.05932846665382385, 0.09538999944925308, 0.04448181018233299, -0.12513470649719238, 0.1403406262397766, 0.36910280585289, -0.009729310870170593, 0.23585295677185059, -0.005554534494876862, -0.019429748877882957, -0.04243677854537964, 0.035873714834451675, 0.009275880642235279, 0.1500108391046524, -0.25298789143562317, -0.06730159372091293, 0.01912601850926876, 0.03376840054988861, 0.08029244095087051, -0.13059057295322418, -0.041574522852897644, -0.025152236223220825, -0.03540821745991707, -0.021712882444262505, 0.04557979479432106, -0.07138078659772873, 0.10250068455934525, 0.006678406149148941, 0.007949482649564743, 0.03115452267229557, -0.018163325265049934, -0.0487234890460968, 0.07487830519676208, -0.11534935235977173, -0.1002916768193245, -0.08138715475797653, -0.041122544556856155, -0.04226667806506157, -0.0026542600244283676, -0.011361617594957352, -0.13303320109844208, 0.09466713666915894, 0.06107710301876068, 0.09173541516065598, -0.10703384876251221, 0.055652618408203125, 0.0008048079907894135, 0.02461879514157772, -0.11624998599290848, -0.02783123590052128, -0.016172125935554504, -0.12152325361967087, -0.020957529544830322, 0.07518421858549118, -0.09296935051679611, 0.06195710599422455, 0.1926698088645935, -0.02863393910229206, 0.08193141967058182, -0.03144470602273941, -0.007376976311206818, -0.15553492307662964, 0.02361355535686016, 0.024288838729262352, -0.10327043384313583, 0.022621579468250275, 0.16354799270629883, 0.0658220425248146, -0.0333457849919796, -0.11140269041061401, 0.006877091247588396, -0.138943612575531, -0.22364568710327148, -0.041932255029678345, -0.10876599699258804, 0.018569424748420715, -0.05835237726569176, 0.05066082999110222, 0.007192524615675211, 0.044838111847639084, 0.06304142624139786, -0.029067805036902428, -0.004938321653753519, -0.04449063539505005, 0.13767628371715546, -0.018604513257741928, 0.02072647586464882, -0.11988802999258041, -0.031161675229668617, 0.09199195355176926, 0.1751704066991806, 0.13232702016830444, 0.17945724725723267, 0.13207392394542694, 0.03904368728399277, 0.10859455913305283, 0.10593453794717789, -0.011069647036492825, 0.01131715252995491, -0.05891185998916626, 0.042875614017248154, -0.06261202692985535, 0.06800034642219543, 0.03658897802233696, 0.05160995200276375, -0.1552039533853531, 0.12477380037307739, -0.11566410213708878, 0.1731915920972824, -0.0670858845114708, 0.048159170895814896, -0.028135405853390694, 0.011565146036446095, 0.04766424000263214, 0.01415296271443367, 0.006441368255764246, 0.015575495548546314, 0.11391843110322952, 0.012104491703212261, 0.11381278187036514, -0.01733260788023472, 0.07156650722026825, -0.017503978684544563, 0.05168291926383972, -0.1458645462989807, -0.1528618186712265, 0.01985335908830166, 0.06661584228277206, -0.13425712287425995, 0.3276628255844116, 0.06287267804145813, -0.023938825353980064, -0.05703802406787872, -0.06235551834106445, 0.0341462679207325, 0.09944193810224533, 0.06456471234560013, 0.0414729081094265, -0.10083367675542831, 0.012015395797789097, -0.12286130338907242, 0.042423952370882034, 0.16231970489025116, -0.03195618465542793, -0.10367679595947266, 0.0513678602874279, 0.034401699900627136, -0.018111011013388634, 0.05737963691353798, -0.08608897775411606, -0.1330098956823349, 0.08038714528083801, 0.009778137318789959, -0.1776706427335739, 0.03762181103229523, -0.036107614636421204, -0.09867700934410095, 0.2171766757965088, -0.15949591994285583, 0.006779565010219812, -0.06542089581489563, -0.050250690430402756, 0.023494606837630272, -0.08252209424972534, -0.05417006090283394, -0.023491257801651955, -0.05119367316365242, -0.1335018128156662, -0.1448391228914261, 0.10733213275671005, -0.024901313707232475, 0.03056715615093708, -0.091817207634449, 0.1917612999677658, -0.011533111333847046, 0.0754680261015892, 0.030924037098884583, 0.013520258478820324, 0.012279090471565723, -0.054607734084129333, 0.13871419429779053, -0.06048735976219177, -0.08768806606531143, -0.08135735243558884, 0.10899624973535538, 0.0026838406920433044, -0.0065381452441215515, -0.02204517461359501, 0.19592417776584625, 0.2677767276763916, -0.0723537802696228, 0.1431034803390503, 0.09264566749334335, -0.021291116252541542, -0.21519088745117188, -0.013323473744094372, -0.09521345049142838, 0.03957106173038483, 0.029140295460820198, -0.12901365756988525, 0.08548542112112045, 0.10734203457832336, -0.09041929244995117, 0.23120641708374023, -0.3196684420108795, -0.09503617137670517, 0.09245240688323975, 0.019363587722182274, 0.49606743454933167, -0.14788606762886047, -0.10197201371192932, -0.004468588624149561, -0.04497433826327324, 0.016538463532924652, -0.24677567183971405, 0.04056989774107933, -0.005729199852794409, 0.05380486324429512, 0.009698384441435337, 0.00010871545964619145, 0.20552711188793182, -0.030407177284359932, 0.014369490556418896, -0.12709356844425201, -0.1668003648519516, 0.13358208537101746, -0.007693622726947069, -0.12380208820104599, -0.014715190045535564, -0.06778639554977417, -0.11530476063489914, 0.016867151483893394, -0.004180027171969414, 0.09491034597158432, 0.017384827136993408, -0.0408640131354332, -0.029015108942985535, -0.08615165203809738, -0.11808369308710098, 0.00977984257042408, 0.30484718084335327, -0.0027654438745230436, 0.046934645622968674, 0.07535084336996078, -0.022863231599330902, -0.11278530210256577, 0.14392663538455963, -0.023008376359939575, -0.04906630516052246, 0.0964842215180397, -0.10119357705116272, -0.045912474393844604, 0.11669841408729553, -0.01991998963057995, -0.03689621388912201, 0.017308171838521957, -0.11492945998907089, 0.09832226485013962, 0.1670505255460739, -0.20431578159332275, -0.1510079801082611, 0.019361793994903564, -0.13660544157028198, 0.18293285369873047, 0.05130637809634209, 0.14230382442474365, 0.035580143332481384, 0.04739176854491234, 0.040697213262319565, -0.06255612522363663, -0.08368533104658127, 0.005376060958951712, 0.07330357283353806, -0.02155614085495472, -0.0410919114947319, 0.12174436450004578, 0.09996137768030167, -0.11470513790845871, 0.03818223252892494, 0.09898748993873596, -0.06764592975378036, -0.0745474323630333, -0.0821160301566124, 0.15282316505908966, 0.08293173462152481, -0.10933104157447815, -0.015676453709602356, -0.07357261329889297, -0.053414493799209595, 0.1558409482240677, 0.023493031039834023, 0.03954826667904854, -0.013237019069492817, 0.005079149734228849, 0.11544021219015121, 0.002387415850535035, -0.04405082389712334, 0.0000032906730211834656, -0.06042872741818428, -0.04352714121341705, 0.0010354655096307397, 0.09019177407026291, -0.08944068104028702, -0.04551652446389198, -0.08621528744697571, 0.05133862793445587, -0.1866331547498703, -0.06626497209072113, -0.09525247663259506, -0.07131984084844589, 0.049115147441625595, -0.08401284366846085, -0.07256176322698593, -0.06675340980291367, -0.1067638173699379, 0.08371066302061081, -0.018680725246667862, 0.0033103935420513153, -0.08808601647615433, 0.010084044188261032, 0.057285938411951065, 0.03753887116909027, 0.1101229265332222, 0.18971379101276398, 0.0526559054851532, 0.20420660078525543, -0.20167988538742065, -0.0014625476906076074, 0.07579498738050461, 0.022159012034535408, 0.07787596434354782, 0.1817333847284317, -0.06026419997215271, -0.003356653032824397, 0.03142748773097992, 0.08839837461709976, 0.0938040018081665, -0.03718471899628639, 0.006462462246417999, -0.1452399343252182, -0.15056274831295013, -0.0007965409313328564, 0.04975387826561928, 0.0953855887055397, 0.036618974059820175, -0.02841603197157383, 0.00499764597043395, 0.0763988271355629, -0.004362273029983044, 0.06189654394984245, 0.010333520360291004, -0.11915004253387451, 0.09564432501792908, -0.0557289682328701, 0.003222634783014655, -0.06452023983001709, 0.23915934562683105, 0.0020741336047649384, -0.0604669563472271, 0.017674481496214867, -0.007482301909476519, -0.04076961800456047, 0.008864148519933224, 0.161774143576622, 0.07103148847818375, -0.05123822018504143, -0.2393447309732437, 0.006357962731271982, -0.012450363487005234, -0.0371534638106823, 0.09151285886764526, 0.07648878544569016, -0.07556852698326111, 0.11744499206542969, 0.08927062898874283, -0.01562043372541666, -0.023750634863972664, -0.018341533839702606, -0.10397017747163773, 0.021174654364585876, 0.022788353264331818, 0.0014282334595918655, 0.296346515417099, -0.028109153732657433, -0.08249514549970627, -0.005147669464349747, -0.043478403240442276, -0.07625754177570343, -0.21518616378307343, -0.009319690056145191, -0.09774599224328995, 0.009831732138991356, -0.006113256793469191, -0.005378093104809523, 0.11544149369001389, 0.07240667194128036, -0.0026573380455374718, 0.21095557510852814, 0.06565464287996292, -0.07214329391717911, 0.039974745362997055, -0.01525168213993311, 0.021741846576333046, -0.055941853672266006, -0.12003496289253235, -0.11235788464546204, -0.0763058289885521, -0.061018336564302444, 0.06855855137109756, -0.020954668521881104, -0.06685344129800797, -0.09894121438264847, -0.09319191426038742, -0.047277774661779404, 0.07529465109109879, 0.04064293950796127, 0.1384105086326599, 0.0738372728228569, -0.034485768526792526, -0.04765207692980766, 0.08090122789144516, 0.02085082419216633, 0.07206358760595322, 0.07343209534883499, -0.21401818096637726, -0.04512228071689606, 0.10879147052764893, -0.09220156073570251, -0.016189558431506157, -0.025808824226260185, 0.20174527168273926, 0.2950683534145355, -0.036883290857076645, 0.07007547467947006, 0.04946230724453926, 0.06655731052160263, 0.029659872874617577, 0.06920386105775833, -0.05029786750674248, 0.1649314910173416, -0.0322694294154644, -0.0972588062286377, -0.05594645068049431, -0.0065605673007667065, -0.10142811387777328, 0.0930042639374733, 0.03918273374438286, -0.07828134298324585, -0.05416381359100342, 0.14652514457702637, -0.12715882062911987, -0.05367586016654968, 0.0857478678226471, -0.23652108013629913, -0.10529208183288574, 0.047397058457136154, 0.20831941068172455, 0.0035157427191734314, 0.10126922279596329, -0.07819850742816925, -0.14112824201583862, -0.11794821172952652, 0.04992583394050598, -0.2426854819059372, -0.036834802478551865, 0.0247053075581789, -0.05811109021306038, 0.06369195133447647, -0.0265151709318161, 0.03866211697459221, 0.037800196558237076, 0.08673584461212158, 0.03225294500589371, 0.020757926627993584, 0.061563342809677124, 0.09054604917764664, -0.10833961516618729, -0.003691701451316476, 0.01427233312278986, -0.1819068342447281, 0.2082766890525818, 0.037887219339609146, 0.018369076773524284, -0.06520503014326096, -0.05856666341423988, 0.017889976501464844, 0.04536895081400871, -0.0706217810511589, 0.020914487540721893, 0.08850901573896408, 0.026340628042817116, -0.015132001601159573, 0.000723421573638916, -0.09393393993377686, 0.10763595253229141, -0.03935706987977028, -0.1136559247970581, -0.0251254141330719, -0.06040027365088463, 0.11665564775466919, 0.005530236754566431, -0.004828877747058868, -0.03200213983654976, -0.10705071687698364, 0.0760519877076149, -0.06338454782962799, 0.017710892483592033, 0.14286385476589203, -0.017477160319685936, -0.019663652405142784, -0.18187777698040009, 0.0985221341252327, 0.006600791588425636, -0.08101502805948257, -0.075764000415802 ]
null
null
transformers
# Wav2Vec2 Dhivehi Wav2vec2 pre-pretrained from scratch using common voice dhivehi dataset. The model was trained with Flax during the [Flax/Jax Community Week](https://discss.huggingface.co/t/open-to-the-community-community-week-using-jax-flax-for-nlp-cv/7104) organised by HuggingFace. ## Model description The model used for training is [Wav2Vec2](https://ai.facebook.com/blog/wav2vec-20-learning-the-structure-of-speech-from-raw-audio/) by FacebookAI. It was introduced in the paper "wav2vec 2.0: A Framework for Self-Supervised Learning of Speech Representations" by Alexei Baevski, Henry Zhou, Abdelrahman Mohamed, and Michael Auli (https://arxiv.org/abs/2006.11477). This model is available in the 🤗 [Model Hub](https://huggingface.co/facebook/wav2vec2-base-960h). ## Training data Dhivehi data from [Common Voice](https://commonvoice.mozilla.org/en/datasets). The dataset is also available in the 🤗 [Datasets](https://huggingface.co/datasets/common_voice) library. ## Team members - Shahu Kareem ([@shahukareem](https://huggingface.co/shahukareem)) - Eyna ([@eyna](https://huggingface.co/eyna))
{"language": "dv", "tags": ["automatic-speech-recognition"], "datasets": ["common_voice"]}
automatic-speech-recognition
flax-community/wav2vec2-dhivehi
[ "transformers", "pytorch", "jax", "tensorboard", "wav2vec2", "pretraining", "automatic-speech-recognition", "dv", "dataset:common_voice", "arxiv:2006.11477", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[ "2006.11477" ]
[ "dv" ]
TAGS #transformers #pytorch #jax #tensorboard #wav2vec2 #pretraining #automatic-speech-recognition #dv #dataset-common_voice #arxiv-2006.11477 #endpoints_compatible #region-us
# Wav2Vec2 Dhivehi Wav2vec2 pre-pretrained from scratch using common voice dhivehi dataset. The model was trained with Flax during the Flax/Jax Community Week organised by HuggingFace. ## Model description The model used for training is Wav2Vec2 by FacebookAI. It was introduced in the paper "wav2vec 2.0: A Framework for Self-Supervised Learning of Speech Representations" by Alexei Baevski, Henry Zhou, Abdelrahman Mohamed, and Michael Auli (URL This model is available in the Model Hub. ## Training data Dhivehi data from Common Voice. The dataset is also available in the Datasets library. ## Team members - Shahu Kareem (@shahukareem) - Eyna (@eyna)
[ "# Wav2Vec2 Dhivehi\n\nWav2vec2 pre-pretrained from scratch using common voice dhivehi dataset. The model was trained with Flax during the Flax/Jax Community Week organised by HuggingFace.", "## Model description\n\nThe model used for training is Wav2Vec2 by FacebookAI. It was introduced in the paper \n\"wav2vec 2.0: A Framework for Self-Supervised Learning of Speech Representations\" by Alexei Baevski, Henry Zhou, Abdelrahman Mohamed, and Michael Auli (URL\n\nThis model is available in the Model Hub.", "## Training data\n\nDhivehi data from Common Voice.\n\nThe dataset is also available in the Datasets library.", "## Team members\n\n- Shahu Kareem (@shahukareem)\n- Eyna (@eyna)" ]
[ "TAGS\n#transformers #pytorch #jax #tensorboard #wav2vec2 #pretraining #automatic-speech-recognition #dv #dataset-common_voice #arxiv-2006.11477 #endpoints_compatible #region-us \n", "# Wav2Vec2 Dhivehi\n\nWav2vec2 pre-pretrained from scratch using common voice dhivehi dataset. The model was trained with Flax during the Flax/Jax Community Week organised by HuggingFace.", "## Model description\n\nThe model used for training is Wav2Vec2 by FacebookAI. It was introduced in the paper \n\"wav2vec 2.0: A Framework for Self-Supervised Learning of Speech Representations\" by Alexei Baevski, Henry Zhou, Abdelrahman Mohamed, and Michael Auli (URL\n\nThis model is available in the Model Hub.", "## Training data\n\nDhivehi data from Common Voice.\n\nThe dataset is also available in the Datasets library.", "## Team members\n\n- Shahu Kareem (@shahukareem)\n- Eyna (@eyna)" ]
[ 67, 56, 77, 25, 21 ]
[ "passage: TAGS\n#transformers #pytorch #jax #tensorboard #wav2vec2 #pretraining #automatic-speech-recognition #dv #dataset-common_voice #arxiv-2006.11477 #endpoints_compatible #region-us \n# Wav2Vec2 Dhivehi\n\nWav2vec2 pre-pretrained from scratch using common voice dhivehi dataset. The model was trained with Flax during the Flax/Jax Community Week organised by HuggingFace.## Model description\n\nThe model used for training is Wav2Vec2 by FacebookAI. It was introduced in the paper \n\"wav2vec 2.0: A Framework for Self-Supervised Learning of Speech Representations\" by Alexei Baevski, Henry Zhou, Abdelrahman Mohamed, and Michael Auli (URL\n\nThis model is available in the Model Hub.## Training data\n\nDhivehi data from Common Voice.\n\nThe dataset is also available in the Datasets library.## Team members\n\n- Shahu Kareem (@shahukareem)\n- Eyna (@eyna)" ]
[ -0.11632109433412552, 0.12207012623548508, -0.0006891957600601017, 0.01035428885370493, 0.07490703463554382, 0.04758402332663536, 0.2098899781703949, 0.09187845885753632, 0.04016388952732086, -0.02112329937517643, 0.07786491513252258, -0.008991650305688381, 0.09511493891477585, 0.16264280676841736, 0.05336835980415344, -0.20522339642047882, 0.0008810790022835135, 0.018308350816369057, -0.047534991055727005, 0.03344251960515976, 0.12669754028320312, -0.09011940658092499, 0.016512984409928322, 0.025918742641806602, -0.1252748817205429, 0.01935630291700363, -0.03918292745947838, -0.1124005988240242, 0.13416582345962524, 0.053730662912130356, 0.08877642452716827, 0.05611783266067505, 0.10184773802757263, -0.15094271302223206, 0.05589238554239273, 0.02576139010488987, -0.03186474367976189, 0.05253753438591957, -0.011261112987995148, -0.052828457206487656, 0.10543730109930038, 0.03567884862422943, 0.01635095290839672, 0.03423779457807541, -0.07423405349254608, -0.1657375693321228, -0.021880801767110825, 0.03667774423956871, 0.062388163059949875, 0.059005267918109894, -0.007474045269191265, 0.06486213207244873, -0.023706231266260147, 0.0382423996925354, 0.08389807492494583, -0.22794583439826965, -0.05411727726459503, 0.10119879990816116, 0.011550855822861195, 0.051840219646692276, -0.07037564367055893, 0.05196482688188553, 0.054735079407691956, 0.031999099999666214, 0.054036226123571396, -0.04056209698319435, -0.18833637237548828, -0.051158372312784195, -0.08991341292858124, 0.03200065717101097, 0.28925570845603943, -0.0303376205265522, -0.059794045984745026, -0.06985796242952347, 0.0028549323324114084, 0.127302885055542, -0.006596557330340147, -0.03762555494904518, 0.012383617460727692, 0.021698815748095512, 0.0033746156841516495, -0.09209663420915604, -0.09988474100828171, -0.10747978836297989, 0.045621760189533234, 0.10263434797525406, 0.004084295127540827, 0.06734070181846619, -0.10359121114015579, 0.011181334964931011, -0.06961480528116226, -0.06285975128412247, -0.0498930886387825, -0.036391086876392365, -0.0070699905045330524, 0.02409638650715351, -0.02556811273097992, -0.15486471354961395, 0.060374725610017776, 0.04261303320527077, 0.06783026456832886, 0.054405584931373596, -0.04343040660023689, 0.0298614464700222, 0.06661738455295563, 0.02797432243824005, -0.02324783056974411, -0.08741249889135361, 0.06362852454185486, -0.0031898804008960724, 0.0100678326562047, -0.04689950868487358, -0.10478454828262329, -0.0045301467180252075, -0.04812634363770485, 0.009072182700037956, -0.03115326352417469, 0.030353624373674393, -0.019436471164226532, -0.05600033700466156, 0.034386731684207916, -0.07254774868488312, -0.01899772137403488, 0.06978755444288254, -0.02782438136637211, 0.021028848364949226, 0.0876726508140564, 0.03768967092037201, -0.04454902559518814, -0.04506014660000801, -0.025072382763028145, 0.0008416763157583773, -0.008622684516012669, -0.06039778143167496, 0.05742981284856796, -0.10171110183000565, 0.015164597891271114, -0.18943044543266296, -0.08494824171066284, -0.03255274519324303, 0.026490282267332077, -0.008828352205455303, -0.027517609298229218, -0.11265294253826141, 0.02273455262184143, 0.0022104240488260984, -0.054368920624256134, 0.045467887073755264, -0.027580562978982925, 0.008029567077755928, -0.029379097744822502, 0.11476345360279083, -0.08304138481616974, 0.05877355858683586, 0.007092606741935015, -0.007680220063775778, 0.043740782886743546, 0.08600324392318726, -0.06520546972751617, -0.02346840500831604, -0.09106962382793427, 0.0029377597384154797, -0.032336823642253876, 0.029009763151407242, 0.07958203554153442, 0.12555526196956635, -0.19942304491996765, -0.0578920878469944, 0.15393713116645813, -0.1396428346633911, -0.1413910984992981, 0.10022140294313431, -0.03546832129359245, 0.16983146965503693, 0.06531992554664612, 0.2052934765815735, 0.09020302444696426, -0.15110069513320923, -0.041406963020563126, 0.03894577547907829, 0.0484100840985775, -0.08761102706193924, 0.06758768856525421, 0.04545777291059494, 0.028918268159031868, 0.012943939305841923, 0.04084509238600731, 0.04828954115509987, -0.043239664286375046, -0.06818466633558273, 0.03656000643968582, -0.17126847803592682, 0.04143807664513588, -0.004332018084824085, 0.06005183979868889, -0.0033976908307522535, 0.015718035399913788, 0.013295096345245838, 0.1432078778743744, -0.09884671121835709, 0.032888878136873245, -0.09837836027145386, 0.06265747547149658, -0.04287869855761528, 0.0017133099026978016, -0.09621096402406693, 0.06701362133026123, -0.0014792266301810741, 0.06349043548107147, 0.0017219438450410962, 0.07354779541492462, 0.02254730463027954, 0.03683662414550781, -0.021772176027297974, 0.010498291812837124, -0.038630079478025436, 0.008844319730997086, -0.0222929660230875, -0.12065933644771576, -0.02293424680829048, -0.08951085805892944, 0.13049863278865814, -0.16307391226291656, -0.0018181472551077604, -0.006917698308825493, 0.1077248677611351, 0.043833471834659576, -0.016989994794130325, 0.07278679311275482, 0.07372716069221497, -0.01728038117289543, -0.02481703646481037, 0.05152850225567818, 0.041943054646253586, -0.05952099710702896, 0.07104617357254028, -0.05638185888528824, -0.010130447335541248, 0.11111656576395035, -0.06538394093513489, 0.018767021596431732, 0.041698724031448364, -0.02594822645187378, -0.007239027880132198, -0.052923452109098434, 0.04334218427538872, 0.17316609621047974, -0.03674759715795517, 0.1447722315788269, -0.06469763815402985, 0.04692820832133293, 0.0486791655421257, -0.04611901938915253, -0.03285393863916397, 0.002169867279008031, 0.035075388848781586, 0.029301336035132408, 0.02803058922290802, 0.02264902926981449, 0.00552191911265254, 0.22950518131256104, 0.012788279913365841, -0.01631997339427471, -0.023907285183668137, -0.09086110442876816, -0.02647661417722702, 0.14413148164749146, -0.22599086165428162, -0.0815042108297348, 0.019308194518089294, 0.02483930066227913, 0.03508604317903519, -0.09929294139146805, -0.006838889792561531, -0.014798291958868504, -0.057652797549963, -0.050293996930122375, 0.043605055660009384, -0.08588437736034393, 0.0676051527261734, -0.026511233299970627, -0.03125510364770889, -0.015600340440869331, -0.06625679135322571, -0.13520020246505737, 0.12261071801185608, -0.09980740398168564, -0.2551243305206299, -0.02224067971110344, -0.030963510274887085, 0.03334105387330055, 0.034035585820674896, 0.07131563127040863, -0.04528643190860748, -0.004123587626963854, -0.0032611163333058357, 0.0759883001446724, -0.035826340317726135, -0.0071558826602995396, 0.09032021462917328, 0.01685131900012493, 0.0316525474190712, -0.12291236221790314, 0.025489412248134613, -0.06927180290222168, -0.06410429626703262, 0.03320494294166565, -0.03136107325553894, 0.04485682025551796, 0.03734133392572403, 0.013120951130986214, 0.02628401294350624, -0.03787641599774361, 0.20177465677261353, -0.06281088292598724, 0.04353288933634758, 0.16538657248020172, -0.0715455487370491, -0.037565525621175766, 0.06236318498849869, 0.016028594225645065, -0.10655273497104645, -0.0233914814889431, -0.058787647634744644, -0.09674054384231567, -0.22704152762889862, -0.10201968997716904, -0.0746261477470398, 0.0015877526020631194, 0.058151666074991226, 0.013149636797606945, -0.01324574463069439, 0.06440670788288116, 0.007563366554677486, 0.0570552758872509, 0.02909955568611622, 0.017868775874376297, 0.023796185851097107, -0.02176184207201004, 0.04735489562153816, -0.07313365489244461, 0.024748973548412323, 0.03721846640110016, 0.07177747040987015, 0.11308324337005615, 0.04423858970403671, 0.053477782756090164, 0.07328830659389496, 0.09693391621112823, 0.05280746892094612, 0.06003211438655853, -0.042976558208465576, 0.020770367234945297, -0.02116088569164276, -0.03712936118245125, -0.08618392050266266, 0.07260391861200333, 0.04991547018289566, -0.05742591619491577, -0.05385630950331688, -0.023486098274588585, 0.02389969676733017, 0.18275904655456543, 0.10626870393753052, -0.12137739360332489, -0.10122854262590408, 0.011291926726698875, 0.005323637276887894, -0.05380919948220253, 0.07023385167121887, 0.14823654294013977, -0.08823233842849731, 0.09616560488939285, 0.0397460013628006, 0.07415162026882172, -0.09132455289363861, 0.000826445349957794, -0.08560997992753983, -0.060969576239585876, 0.016392817720770836, 0.05499114841222763, -0.30044013261795044, 0.1883714497089386, 0.02737877517938614, 0.10325364023447037, -0.060803450644016266, -0.011282484978437424, 0.021716909483075142, 0.030713051557540894, 0.12032457441091537, 0.023045675829052925, -0.03261399641633034, -0.03886769339442253, -0.07473839819431305, 0.05855603888630867, 0.007765298709273338, -0.00005580430297413841, 0.012102901935577393, 0.032999418675899506, 0.002349258167669177, 0.0028726698365062475, 0.02805524878203869, -0.18349714577198029, -0.11184156686067581, 0.029653510078787804, 0.13359259068965912, 0.10358861088752747, -0.022186441347002983, -0.08164432644844055, -0.02910057082772255, 0.001687335898168385, -0.12464672327041626, -0.0555599108338356, -0.07064837962388992, 0.0790497288107872, -0.013718221336603165, -0.04343663901090622, 0.0075638131238520145, 0.07612485438585281, 0.10331158339977264, -0.09853284060955048, -0.08451568335294724, -0.004285827744752169, -0.11986268311738968, -0.1173839196562767, -0.02980649471282959, 0.10217787325382233, 0.11772821843624115, 0.042462706565856934, 0.06625455617904663, 0.019534364342689514, 0.028985943645238876, -0.03116748295724392, 0.08653062582015991, 0.18636231124401093, -0.07387648522853851, -0.020466873422265053, 0.009791894815862179, -0.1327255666255951, -0.039508022367954254, -0.06376525014638901, 0.16184285283088684, 0.11807414144277573, -0.08248026669025421, 0.21393506228923798, 0.19747105240821838, -0.13104061782360077, -0.25318750739097595, -0.057807665318250656, 0.04337368905544281, 0.051551587879657745, -0.07134117186069489, -0.2705228924751282, 0.05502242222428322, -0.054471950978040695, -0.02549789845943451, -0.008760228753089905, -0.1970493197441101, -0.1071055680513382, 0.10186666250228882, 0.026127412915229797, 0.24695414304733276, -0.03960203379392624, -0.01912924088537693, -0.03704110532999039, -0.06244166940450668, 0.12081699818372726, -0.15335547924041748, 0.08931251615285873, -0.02235242910683155, 0.03916696086525917, 0.0036538916174322367, -0.01938694715499878, 0.09299558401107788, 0.04381098970770836, -0.03544911742210388, -0.05974619463086128, 0.023755257949233055, 0.0602901354432106, -0.01064228918403387, 0.05832836404442787, -0.010316016152501106, -0.0021826608572155237, -0.14472004771232605, -0.061575133353471756, -0.04100412875413895, 0.057192541658878326, -0.016660163179039955, -0.06393566727638245, 0.008938970975577831, 0.050997231155633926, 0.04351401329040527, 0.03883270174264908, 0.0670706033706665, -0.017975447699427605, 0.1330944150686264, 0.1434299349784851, 0.1617959588766098, -0.03102874755859375, 0.06894348561763763, -0.017340824007987976, -0.061073318123817444, 0.11174771934747696, -0.1625988483428955, 0.01129106618463993, 0.042277347296476364, 0.04226088896393776, 0.08606939017772675, 0.015199560672044754, -0.14741657674312592, 0.0938834398984909, 0.07824111729860306, -0.11348933726549149, -0.08768859505653381, -0.008189468644559383, 0.017188917845487595, 0.020504729822278023, 0.05976880341768265, 0.21658021211624146, -0.10994464159011841, -0.039600953459739685, -0.05680292844772339, 0.021519001573324203, -0.09048868715763092, 0.10151735693216324, 0.09664085507392883, 0.02361256442964077, -0.07898669689893723, 0.0842873677611351, 0.05054668337106705, -0.014438463374972343, 0.0939641073346138, 0.023914208635687828, -0.08707103878259659, -0.09519144147634506, -0.08160539716482162, 0.14239729940891266, 0.01995704136788845, -0.1316971480846405, -0.02684483490884304, -0.0657254308462143, 0.009334501810371876, 0.16667522490024567, 0.02134031057357788, 0.004190230276435614, -0.023510724306106567, -0.016618775203824043, -0.05790478363633156, 0.0608675442636013, -0.018344935029745102, -0.029233166947960854, -0.06835736334323883, 0.07346855103969574, 0.048980534076690674, 0.10557680577039719, -0.03752913326025009, -0.08809307217597961, -0.08889687806367874, 0.023552600294351578, -0.15057215094566345, 0.05541551113128662, -0.08315572142601013, 0.02689306251704693, -0.012123549357056618, -0.059627823531627655, -0.05924868583679199, 0.060650091618299484, -0.0491093173623085, 0.04600071907043457, -0.03829089179635048, 0.05670999363064766, -0.09956971555948257, -0.04354012385010719, -0.029457876458764076, -0.045560743659734726, 0.11933072656393051, 0.059048403054475784, -0.04992714896798134, 0.09807068854570389, -0.08677105605602264, -0.05839073285460472, 0.003695620456710458, 0.05976793169975281, 0.025907885283231735, -0.03624557703733444, 0.0012047330383211374, 0.012532534077763557, 0.013621351681649685, -0.008766399696469307, 0.18566687405109406, -0.007269513327628374, -0.0068932645954191685, -0.07408512383699417, -0.009293920360505581, -0.041403353214263916, 0.044567570090293884, 0.06641086935997009, 0.10616873949766159, 0.05194714292883873, -0.09761948883533478, 0.0991559699177742, -0.10120468586683273, 0.0016692804638296366, -0.027451250702142715, -0.06059061363339424, -0.09530048072338104, -0.07317952811717987, 0.048756975680589676, -0.05960330367088318, 0.1460350751876831, 0.027911417186260223, -0.03184821456670761, -0.007628650404512882, -0.13265886902809143, -0.14125721156597137, 0.007290584966540337, 0.15390975773334503, 0.02845291793346405, 0.0200541652739048, -0.03702288120985031, 0.053998179733753204, 0.04316726326942444, 0.2573234736919403, 0.0338943675160408, 0.07977043092250824, 0.10705745220184326, 0.08923111110925674, 0.08656425774097443, -0.07461731880903244, -0.007563437335193157, -0.020861176773905754, -0.06772918254137039, 0.05116384103894234, -0.044406551867723465, -0.0051930490881204605, 0.09002026915550232, -0.09117696434259415, 0.0319833867251873, -0.04632788524031639, -0.057826798409223557, -0.12517179548740387, -0.09062164276838303, -0.06639871746301651, -0.1046190932393074, 0.005231354385614395, -0.10960927605628967, -0.028685208410024643, 0.03458484262228012, 0.03383520245552063, 0.0221612099558115, 0.049758292734622955, 0.06367332488298416, -0.04048895090818405, 0.0856705904006958, -0.037520721554756165, 0.015197002328932285, -0.13398556411266327, 0.012571695260703564, 0.05182359367609024, 0.03175702691078186, -0.017837515100836754, 0.014648891054093838, 0.017545422539114952, 0.045924704521894455, -0.024050313979387283, -0.0940045639872551, -0.0032035675831139088, 0.004241115879267454, 0.07402150332927704, 0.12757617235183716, 0.09039782732725143, -0.0347248874604702, 0.021472016349434853, 0.14816604554653168, 0.010471435263752937, -0.052032262086868286, -0.16879548132419586, 0.0624229870736599, -0.042868491262197495, 0.007591594010591507, 0.002738524693995714, -0.011606047861278057, -0.06095902621746063, 0.2458847463130951, 0.2744874656200409, -0.005840566474944353, 0.039811164140701294, -0.00805717334151268, 0.00380480894818902, -0.0004781166499014944, 0.10287808626890182, 0.07760852575302124, 0.1588946282863617, -0.006293122190982103, -0.04335469752550125, -0.054381854832172394, -0.03513321653008461, 0.0019261606503278017, 0.11177124083042145, -0.05544952303171158, -0.011719423346221447, -0.02765079028904438, 0.06238866224884987, -0.056764692068099976, -0.19039247930049896, 0.006961393170058727, -0.1662183403968811, -0.08377727121114731, -0.027852941304445267, -0.05776405334472656, 0.14255046844482422, 0.051894646137952805, -0.037428516894578934, -0.008557405322790146, 0.17476093769073486, 0.009905427694320679, -0.08113396912813187, -0.06180696561932564, 0.09704636037349701, -0.1644245684146881, 0.1024516373872757, -0.04232749342918396, 0.08300858736038208, 0.034217219799757004, 0.07845718413591385, -0.08994080126285553, -0.0010408040834590793, 0.02521975338459015, 0.04022902250289917, -0.027685130015015602, 0.12996606528759003, -0.09128182381391525, 0.13891826570034027, 0.06330420821905136, -0.10105128586292267, 0.011219625361263752, 0.01178247481584549, -0.08340274542570114, -0.02422025240957737, 0.06317171454429626, -0.06739498674869537, 0.11659153550863266, 0.058737147599458694, -0.0853525921702385, -0.09319859743118286, 0.0071253702044487, 0.05337439849972725, -0.0010937295155599713, -0.04261862486600876, -0.04496755078434944, -0.2046431452035904, -0.031852006912231445, -0.14656534790992737, 0.03520413488149643, -0.16095517575740814, 0.003986403811722994, -0.07466427236795425, -0.06524153053760529, 0.004753104876726866, 0.05657389387488365, 0.08168096840381622, -0.007412715815007687, -0.06554997712373734, 0.008333148434758186, 0.025963496416807175, 0.08389224112033844, -0.10161396116018295, -0.1285344809293747 ]
null
null
transformers
# Wav2Vec2-german model [Facebook's Wav2Vec2](https://ai.facebook.com/blog/wav2vec-20-learning-the-structure-of-speech-from-raw-audio/) The base model pretrained on 16kHz sampled speech audio. When using the model make sure that your speech input is also sampled at 16Khz. Note that this model should be fine-tuned on a downstream task, like Automatic Speech Recognition. Check out [this blog](https://huggingface.co/blog/fine-tune-wav2vec2-english) for more information. [Paper](https://arxiv.org/abs/2006.11477) Authors: Alexei Baevski, Henry Zhou, Abdelrahman Mohamed, Michael Auli **Abstract** We show for the first time that learning powerful representations from speech audio alone followed by fine-tuning on transcribed speech can outperform the best semi-supervised methods while being conceptually simpler. wav2vec 2.0 masks the speech input in the latent space and solves a contrastive task defined over a quantization of the latent representations which are jointly learned. Experiments using all labeled data of Librispeech achieve 1.8/3.3 WER on the clean/other test sets. When lowering the amount of labeled data to one hour, wav2vec 2.0 outperforms the previous state of the art on the 100 hour subset while using 100 times less labeled data. Using just ten minutes of labeled data and pre-training on 53k hours of unlabeled data still achieves 4.8/8.2 WER. This demonstrates the feasibility of speech recognition with limited amounts of labeled data. The original model can be found under https://github.com/pytorch/fairseq/tree/master/examples/wav2vec#wav2vec-20. ## Necessary installations: - sndfile library: `sudo apt-get install libsndfile1-dev` - ffmpeg: `sudo apt install ffmpeg` & `pip install ffmpeg` ## Model description `TODO: Update` ## How to use `TODO: Update` ```python from transformers import FlaxWav2Vec2Processor, TFWav2Vec2Model model_id = "flax-community/wav2vec2-german" from datasets import load_dataset import soundfile as sf processor = Wav2Vec2Processor.from_pretrained(model_id) model = TFWav2Vec2Model.from_pretrained(model_id) def map_to_array(batch): speech, _ = sf.read(batch["file"]) batch["speech"] = speech return batch ds = load_dataset("patrickvonplaten/librispeech_asr_dummy", "clean", split="validation") ds = ds.map(map_to_array) input_values = processor(ds["speech"][0], return_tensors="flax").input_values # Batch size 1 hidden_states = model(input_values).last_hidden_state ``` ## Training Data `TODO: Update` ## Training Procedure `TODO: Update`
{"language": "de", "license": "apache-2.0", "tags": ["speech"], "datasets": ["librispeech_asr"]}
null
flax-community/wav2vec2-german
[ "transformers", "tensorboard", "wav2vec2", "pretraining", "speech", "de", "dataset:librispeech_asr", "arxiv:2006.11477", "license:apache-2.0", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[ "2006.11477" ]
[ "de" ]
TAGS #transformers #tensorboard #wav2vec2 #pretraining #speech #de #dataset-librispeech_asr #arxiv-2006.11477 #license-apache-2.0 #endpoints_compatible #region-us
# Wav2Vec2-german model Facebook's Wav2Vec2 The base model pretrained on 16kHz sampled speech audio. When using the model make sure that your speech input is also sampled at 16Khz. Note that this model should be fine-tuned on a downstream task, like Automatic Speech Recognition. Check out this blog for more information. Paper Authors: Alexei Baevski, Henry Zhou, Abdelrahman Mohamed, Michael Auli Abstract We show for the first time that learning powerful representations from speech audio alone followed by fine-tuning on transcribed speech can outperform the best semi-supervised methods while being conceptually simpler. wav2vec 2.0 masks the speech input in the latent space and solves a contrastive task defined over a quantization of the latent representations which are jointly learned. Experiments using all labeled data of Librispeech achieve 1.8/3.3 WER on the clean/other test sets. When lowering the amount of labeled data to one hour, wav2vec 2.0 outperforms the previous state of the art on the 100 hour subset while using 100 times less labeled data. Using just ten minutes of labeled data and pre-training on 53k hours of unlabeled data still achieves 4.8/8.2 WER. This demonstrates the feasibility of speech recognition with limited amounts of labeled data. The original model can be found under URL ## Necessary installations: - sndfile library: 'sudo apt-get install libsndfile1-dev' - ffmpeg: 'sudo apt install ffmpeg' & 'pip install ffmpeg' ## Model description 'TODO: Update' ## How to use 'TODO: Update' ## Training Data 'TODO: Update' ## Training Procedure 'TODO: Update'
[ "# Wav2Vec2-german model\n\nFacebook's Wav2Vec2\n\nThe base model pretrained on 16kHz sampled speech audio. When using the model make sure that your speech input is also sampled at 16Khz. Note that this model should be fine-tuned on a downstream task, like Automatic Speech Recognition. Check out this blog for more information.\n\nPaper\n\nAuthors: Alexei Baevski, Henry Zhou, Abdelrahman Mohamed, Michael Auli\n\nAbstract\nWe show for the first time that learning powerful representations from speech audio alone followed by fine-tuning on transcribed speech can outperform the best semi-supervised methods while being conceptually simpler. wav2vec 2.0 masks the speech input in the latent space and solves a contrastive task defined over a quantization of the latent representations which are jointly learned. Experiments using all labeled data of Librispeech achieve 1.8/3.3 WER on the clean/other test sets. When lowering the amount of labeled data to one hour, wav2vec 2.0 outperforms the previous state of the art on the 100 hour subset while using 100 times less labeled data. Using just ten minutes of labeled data and pre-training on 53k hours of unlabeled data still achieves 4.8/8.2 WER. This demonstrates the feasibility of speech recognition with limited amounts of labeled data.\nThe original model can be found under URL", "## Necessary installations:\n\n- sndfile library: 'sudo apt-get install libsndfile1-dev'\n- ffmpeg: 'sudo apt install ffmpeg' & 'pip install ffmpeg'", "## Model description 'TODO: Update'", "## How to use 'TODO: Update'", "## Training Data 'TODO: Update'", "## Training Procedure 'TODO: Update'" ]
[ "TAGS\n#transformers #tensorboard #wav2vec2 #pretraining #speech #de #dataset-librispeech_asr #arxiv-2006.11477 #license-apache-2.0 #endpoints_compatible #region-us \n", "# Wav2Vec2-german model\n\nFacebook's Wav2Vec2\n\nThe base model pretrained on 16kHz sampled speech audio. When using the model make sure that your speech input is also sampled at 16Khz. Note that this model should be fine-tuned on a downstream task, like Automatic Speech Recognition. Check out this blog for more information.\n\nPaper\n\nAuthors: Alexei Baevski, Henry Zhou, Abdelrahman Mohamed, Michael Auli\n\nAbstract\nWe show for the first time that learning powerful representations from speech audio alone followed by fine-tuning on transcribed speech can outperform the best semi-supervised methods while being conceptually simpler. wav2vec 2.0 masks the speech input in the latent space and solves a contrastive task defined over a quantization of the latent representations which are jointly learned. Experiments using all labeled data of Librispeech achieve 1.8/3.3 WER on the clean/other test sets. When lowering the amount of labeled data to one hour, wav2vec 2.0 outperforms the previous state of the art on the 100 hour subset while using 100 times less labeled data. Using just ten minutes of labeled data and pre-training on 53k hours of unlabeled data still achieves 4.8/8.2 WER. This demonstrates the feasibility of speech recognition with limited amounts of labeled data.\nThe original model can be found under URL", "## Necessary installations:\n\n- sndfile library: 'sudo apt-get install libsndfile1-dev'\n- ffmpeg: 'sudo apt install ffmpeg' & 'pip install ffmpeg'", "## Model description 'TODO: Update'", "## How to use 'TODO: Update'", "## Training Data 'TODO: Update'", "## Training Procedure 'TODO: Update'" ]
[ 62, 320, 53, 9, 10, 9, 10 ]
[ "passage: TAGS\n#transformers #tensorboard #wav2vec2 #pretraining #speech #de #dataset-librispeech_asr #arxiv-2006.11477 #license-apache-2.0 #endpoints_compatible #region-us \n# Wav2Vec2-german model\n\nFacebook's Wav2Vec2\n\nThe base model pretrained on 16kHz sampled speech audio. When using the model make sure that your speech input is also sampled at 16Khz. Note that this model should be fine-tuned on a downstream task, like Automatic Speech Recognition. Check out this blog for more information.\n\nPaper\n\nAuthors: Alexei Baevski, Henry Zhou, Abdelrahman Mohamed, Michael Auli\n\nAbstract\nWe show for the first time that learning powerful representations from speech audio alone followed by fine-tuning on transcribed speech can outperform the best semi-supervised methods while being conceptually simpler. wav2vec 2.0 masks the speech input in the latent space and solves a contrastive task defined over a quantization of the latent representations which are jointly learned. Experiments using all labeled data of Librispeech achieve 1.8/3.3 WER on the clean/other test sets. When lowering the amount of labeled data to one hour, wav2vec 2.0 outperforms the previous state of the art on the 100 hour subset while using 100 times less labeled data. Using just ten minutes of labeled data and pre-training on 53k hours of unlabeled data still achieves 4.8/8.2 WER. This demonstrates the feasibility of speech recognition with limited amounts of labeled data.\nThe original model can be found under URL## Necessary installations:\n\n- sndfile library: 'sudo apt-get install libsndfile1-dev'\n- ffmpeg: 'sudo apt install ffmpeg' & 'pip install ffmpeg'## Model description 'TODO: Update'## How to use 'TODO: Update'## Training Data 'TODO: Update'## Training Procedure 'TODO: Update'" ]
[ -0.11090963333845139, 0.11641894280910492, -0.005916301626712084, -0.009917676448822021, 0.021617526188492775, -0.022590314969420433, 0.09052224457263947, 0.1200055330991745, -0.04997895658016205, 0.13188186287879944, 0.0010967645794153214, -0.03455786406993866, 0.08556848764419556, 0.15990814566612244, 0.031058600172400475, -0.18476177752017975, 0.04595918953418732, -0.09354379773139954, 0.053621094673871994, 0.053188346326351166, 0.11488272994756699, -0.09425710141658783, 0.03645046055316925, 0.01521332561969757, -0.006238322239369154, 0.005074657965451479, -0.0020500801037997007, -0.09482797980308533, 0.052883874624967575, 0.04377170279622078, 0.032624684274196625, 0.06588120013475418, 0.05440414324402809, -0.1826086789369583, 0.0164947547018528, 0.07206127047538757, 0.013444692827761173, 0.06394859403371811, 0.08286578208208084, -0.01969369687139988, 0.11071425676345825, -0.07477699220180511, 0.011473984457552433, 0.09775981307029724, -0.0773097574710846, -0.10859879106283188, -0.12643469870090485, 0.1255377233028412, 0.08754488080739975, 0.06492361426353455, -0.037479467689991, 0.031397927552461624, -0.010769901797175407, 0.060364603996276855, 0.1375339776277542, -0.21837309002876282, -0.02270694635808468, -0.0024352376349270344, 0.009443297050893307, -0.01431824080646038, -0.10471037030220032, 0.04817642271518707, 0.006854187697172165, -0.013837108388543129, 0.0179805476218462, -0.025041185319423676, 0.07790758460760117, -0.04723597317934036, -0.107205830514431, -0.03143981099128723, 0.08758505433797836, 0.030850142240524292, -0.12778469920158386, -0.17505894601345062, -0.03886929899454117, 0.009050404652953148, -0.03562745451927185, -0.030736764892935753, 0.014397632330656052, 0.022550232708454132, 0.03280512988567352, -0.0957118421792984, -0.09966468065977097, -0.008680772967636585, -0.03777508810162544, 0.11133288592100143, 0.024141017347574234, 0.010083145461976528, 0.010894864797592163, 0.054881948977708817, -0.053124114871025085, -0.08377391844987869, -0.07535984367132187, -0.04070974513888359, -0.10059230774641037, -0.040502242743968964, -0.02692977711558342, -0.21655526757240295, 0.01133958250284195, 0.17085494101047516, -0.015926873311400414, 0.063193678855896, -0.07194101810455322, 0.0008710134425200522, 0.04465414956212044, 0.175164595246315, -0.025081919506192207, -0.07530692219734192, 0.040022749453783035, -0.00367356906645, 0.034973934292793274, -0.012598366476595402, 0.0018082461319863796, 0.0014162072911858559, 0.030658310279250145, 0.06450299173593521, 0.05395553261041641, -0.0036335214972496033, -0.06806999444961548, -0.02032400481402874, 0.1010330468416214, -0.17194496095180511, 0.035605963319540024, 0.02680266834795475, 0.01796605810523033, 0.05199512839317322, 0.06473550200462341, -0.015038848854601383, -0.11011648178100586, 0.037553176283836365, -0.025446817278862, -0.017922718077898026, -0.02706221304833889, -0.056725744158029556, 0.028440045192837715, -0.05345278978347778, -0.06849260628223419, -0.07753173261880875, -0.06823984533548355, -0.05010915920138359, 0.024359213188290596, -0.039109665900468826, 0.0293396208435297, -0.016624843701720238, -0.048020485788583755, 0.015884198248386383, 0.00316449417732656, 0.0422961600124836, -0.012485449202358723, 0.01969163678586483, 0.015523928217589855, 0.05316533148288727, 0.0516827329993248, 0.028576651588082314, -0.0248771570622921, 0.02366037853062153, -0.1670115888118744, 0.10416638851165771, -0.06641034781932831, -0.060366712510585785, -0.12915490567684174, -0.015185589902102947, -0.07422446459531784, 0.024941252544522285, 0.04636608436703682, 0.10165835916996002, -0.15815924108028412, -0.04911503568291664, 0.21069645881652832, -0.11564889550209045, 0.02346803992986679, 0.10360109806060791, 0.015296672470867634, 0.08246912807226181, 0.10154712200164795, 0.08919655531644821, 0.05009574443101883, -0.2155420482158661, -0.12803183495998383, -0.04406711459159851, -0.03681730106472969, 0.1395699381828308, 0.06388344615697861, -0.07960986346006393, 0.1181710734963417, 0.013305122032761574, 0.025556907057762146, -0.059262048453092575, -0.005844366271048784, -0.05118616670370102, -0.001197366276755929, -0.04293319210410118, 0.028251877054572105, -0.03619709238409996, -0.014978648163378239, -0.03244442492723465, -0.1446799635887146, -0.03338203951716423, 0.11188570410013199, -0.03670859709382057, 0.06771183758974075, -0.13595888018608093, -0.026676688343286514, -0.01599225215613842, 0.018359925597906113, -0.16258268058300018, 0.04700864851474762, 0.014149175025522709, -0.02143086865544319, 0.052747733891010284, -0.017706872895359993, 0.02584703266620636, 0.019166378304362297, -0.030509576201438904, 0.008894449099898338, -0.08477004617452621, 0.007984085939824581, -0.0664193406701088, -0.1122509017586708, -0.04437737166881561, -0.038894060999155045, 0.12829351425170898, -0.09100868552923203, 0.015768397599458694, 0.11139177531003952, 0.1099369153380394, 0.045547548681497574, -0.08582073450088501, 0.03793293237686157, -0.014033567160367966, 0.005009349435567856, -0.05781508609652519, -0.011102389544248581, 0.0017997752875089645, 0.014589044265449047, 0.06217925623059273, -0.119644396007061, -0.13909494876861572, 0.07702624052762985, 0.07211479544639587, -0.0642673447728157, 0.07779468595981598, -0.04292222857475281, -0.034214701503515244, -0.10125000774860382, -0.09417393803596497, 0.1610652059316635, 0.04415212571620941, 0.06582552194595337, -0.05813618376851082, -0.03400970250368118, 0.02724841982126236, -0.007741313893347979, -0.06937520951032639, 0.05326547101140022, -0.01577712967991829, -0.10452468693256378, 0.014517616480588913, 0.05560111254453659, 0.06667060405015945, 0.12047126144170761, -0.009752171114087105, -0.14462324976921082, -0.04189487174153328, 0.008466837927699089, 0.04218319058418274, 0.0862787589430809, -0.017784688621759415, -0.005236547905951738, 0.029818300157785416, 0.034132201224565506, 0.04690638557076454, -0.0697328969836235, 0.08918861299753189, 0.02381391078233719, -0.057794276624917984, -0.03706878423690796, -0.0018300634110346437, 0.004715067334473133, 0.0721023678779602, 0.0058561027981340885, 0.06100006029009819, -0.02203487791121006, -0.028857124969363213, -0.10020525753498077, 0.06981027871370316, -0.10150720924139023, -0.2983349561691284, -0.16105316579341888, 0.017764799296855927, -0.023854536935687065, -0.0002354013704461977, 0.010939032770693302, -0.020752055570483208, -0.10779678076505661, -0.08375464379787445, 0.0982920452952385, -0.02053280919790268, -0.002678903751075268, 0.08232086151838303, 0.06154957786202431, 0.054377615451812744, -0.10688438266515732, -0.0027192027773708105, 0.00021746396669186652, -0.0749552994966507, 0.009934191592037678, 0.051678288727998734, 0.018854225054383278, 0.05337470769882202, 0.019936058670282364, -0.003267519874498248, -0.011358864605426788, 0.15893076360225677, -0.08795936405658722, 0.12027405202388763, 0.14383655786514282, -0.04903816431760788, 0.017724160104990005, 0.0625632181763649, -0.004875992424786091, -0.07552993297576904, 0.024553682655096054, 0.05617403984069824, -0.026870355010032654, -0.2130478471517563, -0.038612812757492065, -0.04933685064315796, 0.028366461396217346, 0.04584529995918274, 0.06174132600426674, 0.000859391875565052, -0.034256599843502045, -0.0776045098900795, -0.030620701611042023, 0.06447233259677887, 0.05142122879624367, 0.06745517253875732, -0.02056739293038845, 0.05336538329720497, -0.06786540895700455, 0.016182778403162956, 0.11748266965150833, -0.007226278074085712, 0.13729166984558105, 0.04045344889163971, 0.15946055948734283, 0.06080684810876846, 0.033140674233436584, -0.0010897405445575714, 0.06280714273452759, -0.006303357891738415, 0.020214784890413284, -0.0021832140628248453, -0.07865285128355026, -0.02358505129814148, 0.060113172978162766, 0.07793516665697098, -0.04874531924724579, -0.04713509604334831, -0.013828999362885952, 0.07102512568235397, 0.2580174207687378, 0.07638779282569885, -0.06611470133066177, -0.10615457594394684, 0.0033292837906628847, -0.13329097628593445, -0.05306413397192955, -0.021766426041722298, 0.10316839069128036, -0.10950340330600739, 0.07732515037059784, 0.00038143876008689404, 0.06563355028629303, -0.058802030980587006, -0.004598483443260193, -0.10198716819286346, 0.07739491760730743, 0.002349217887967825, 0.0554809495806694, -0.17790044844150543, 0.05794008448719978, 0.04335634410381317, 0.14198043942451477, -0.041307952255010605, 0.05039133504033089, 0.009504927322268486, -0.029924951493740082, 0.13350075483322144, 0.00021354699856601655, -0.0756029412150383, -0.030569618567824364, -0.18577785789966583, -0.008342661894857883, 0.12901444733142853, -0.03534507006406784, 0.09859632700681686, -0.012330092489719391, -0.028122078627347946, -0.017125247046351433, 0.020276959985494614, -0.17955008149147034, -0.12350422143936157, 0.09226999431848526, -0.004199854098260403, -0.008719291538000107, -0.05936494842171669, -0.037055131047964096, -0.07045581936836243, 0.21429350972175598, -0.16692660748958588, -0.039160486310720444, -0.1335441619157791, -0.009169921278953552, 0.12774404883384705, -0.04542391374707222, 0.033022910356521606, 0.034706126898527145, 0.15943269431591034, -0.05618726834654808, -0.07415801286697388, 0.02626904658973217, -0.06328446418046951, -0.17249317467212677, -0.010450730100274086, 0.1755712479352951, 0.06282606720924377, 0.05100801959633827, 0.02632766403257847, 0.03700216859579086, 0.030690137296915054, -0.06529133021831512, 0.05797871574759483, 0.14389607310295105, 0.026898721233010292, -0.011736325919628143, -0.040609560906887054, -0.1069132387638092, -0.07911151647567749, -0.04326555132865906, 0.0801573172211647, 0.2250431478023529, -0.051363009959459305, 0.1858488917350769, 0.08224882930517197, -0.09620600193738937, -0.2360927015542984, -0.020633123815059662, 0.02899530529975891, 0.06525396555662155, 0.0666830912232399, -0.19375424087047577, 0.0528615340590477, 0.033841412514448166, -0.042339637875556946, 0.05560044199228287, -0.17970705032348633, -0.11803407967090607, 0.07815632224082947, -0.0183575302362442, 0.017424220219254494, -0.06716275960206985, -0.027387481182813644, -0.022521980106830597, -0.05674326419830322, 0.05499819293618202, -0.06063741445541382, 0.10838437080383301, 0.047816526144742966, -0.024148521944880486, 0.054731715470552444, -0.020134570077061653, 0.08788078278303146, -0.027055557817220688, -0.01321358047425747, -0.019325997680425644, 0.04471110552549362, 0.0894726812839508, -0.05189669132232666, 0.11326969414949417, 0.021488327533006668, 0.01644025556743145, -0.039573170244693756, -0.05262963846325874, -0.029028283432126045, 0.07211347669363022, -0.05524423345923424, -0.009675474837422371, -0.03862519562244415, 0.060679685324430466, 0.04209067299962044, -0.009644128382205963, 0.035262562334537506, -0.05773050710558891, -0.09728632867336273, 0.2009344846010208, 0.09649989008903503, 0.01422790251672268, -0.018890012055635452, -0.015880748629570007, -0.03384505212306976, 0.02668876200914383, -0.0840027779340744, 0.0816803127527237, 0.04693702608346939, 0.016674665734171867, 0.08786240220069885, -0.01587243750691414, -0.1646600365638733, -0.012185411527752876, 0.08071744441986084, -0.0929843857884407, -0.14348740875720978, -0.0181459691375494, -0.028871804475784302, -0.07624243944883347, -0.0006109516834840178, 0.19067759811878204, -0.025820787996053696, -0.02535400725901127, 0.00694976095110178, 0.07219313085079193, -0.04387494921684265, 0.11842645704746246, -0.020062925294041634, 0.02014562115073204, -0.0633208230137825, 0.15511243045330048, 0.09279021620750427, -0.05186278373003006, 0.05856236442923546, 0.07307957112789154, -0.05149366334080696, -0.02825262024998665, -0.07315666973590851, -0.004596777260303497, 0.0964539498090744, -0.034080710262060165, -0.040307532995939255, -0.05048244446516037, 0.04372279345989227, 0.09390874952077866, -0.0081501305103302, 0.0627846047282219, -0.0011703665368258953, 0.04040858522057533, -0.0651232972741127, 0.055551234632730484, 0.036117538809776306, 0.001460712868720293, -0.05015920102596283, 0.16239677369594574, -0.008533974178135395, 0.03605126589536667, -0.026751525700092316, -0.05553020164370537, -0.05707436800003052, -0.010830150917172432, -0.05529879406094551, 0.038113780319690704, -0.05653185024857521, -0.051493655890226364, -0.0013127630809322, -0.027909955009818077, -0.017286300659179688, 0.06550481170415878, -0.053019385784864426, -0.053471848368644714, -0.07110340893268585, 0.05838007479906082, -0.1365872025489807, 0.029760314151644707, 0.04109937325119972, -0.09638171643018723, 0.1065479964017868, 0.05421246960759163, -0.015965860337018967, 0.048110559582710266, -0.0995546206831932, -0.030611012130975723, -0.0053230151534080505, 0.015746334567666054, 0.003639120841398835, -0.1522100269794464, -0.01488565281033516, 0.011144549585878849, -0.02401112951338291, -0.01479284930974245, 0.07972288131713867, -0.07543348520994186, -0.006374064367264509, -0.058273568749427795, -0.006929886061698198, -0.03588108718395233, 0.01989135891199112, 0.08635604381561279, 0.03461287170648575, 0.11980963498353958, -0.06988166272640228, 0.025219565257430077, -0.13759562373161316, 0.028071312233805656, -0.01728002540767193, 0.009249483235180378, 0.03222223371267319, -0.034173402935266495, 0.06281720846891403, -0.030302472412586212, 0.0701063796877861, -0.04744236543774605, -0.016035549342632294, 0.06323251128196716, -0.10235387086868286, -0.14060628414154053, 0.039965175092220306, 0.1135931983590126, 0.03546155244112015, 0.00010190403554588556, -0.019023653119802475, -0.03636600449681282, 0.020503824576735497, 0.04754004254937172, 0.1286386400461197, 0.15734897553920746, 0.06771267205476761, 0.09258253127336502, -0.006254078354686499, -0.04896250367164612, -0.11394435912370682, 0.12400387227535248, -0.1079169437289238, 0.018724452704191208, -0.07343985885381699, 0.032365504652261734, 0.12284548580646515, -0.13478532433509827, 0.11303666979074478, 0.008647003211081028, -0.043556585907936096, -0.09459065645933151, -0.1414887011051178, -0.0489315502345562, 0.020410126075148582, 0.01240114588290453, -0.08223185688257217, 0.08758169412612915, -0.013991694897413254, 0.02590111456811428, -0.019595656543970108, 0.11018798500299454, -0.16132844984531403, -0.10039395093917847, 0.10488760471343994, -0.00999852828681469, -0.010110216215252876, 0.04732058197259903, 0.011966992169618607, 0.04014384001493454, 0.08263737708330154, 0.1059645488858223, 0.07027633488178253, 0.041226115077733994, 0.03387327864766121, -0.06435243040323257, -0.0713319331407547, 0.014450431801378727, -0.03921985998749733, 0.041625410318374634, 0.1303059458732605, 0.08166861534118652, -0.05616975948214531, 0.00018211445421911776, 0.1673416793346405, -0.04340401664376259, -0.09713993966579437, -0.1806531697511673, 0.0620354525744915, 0.04239067807793617, 0.008197791874408722, 0.010261254385113716, -0.11923418939113617, -0.002264040056616068, 0.19418644905090332, 0.09907300770282745, 0.021172737702727318, 0.03370394557714462, -0.01247336994856596, 0.01558684092015028, 0.012117560021579266, 0.06565448641777039, -0.0023011991288512945, 0.18521329760551453, 0.016178326681256294, 0.04097606986761093, -0.010007577016949654, -0.056751102209091187, -0.10032451152801514, 0.13654521107673645, -0.0819048210978508, -0.0002483995631337166, -0.041055578738451004, 0.07171513885259628, 0.009905111975967884, -0.31221988797187805, -0.0207657553255558, -0.07703456282615662, -0.09577104449272156, 0.03273211419582367, -0.0341293103992939, 0.010620794259011745, 0.0514141321182251, 0.03660396486520767, 0.019801829010248184, 0.1886945515871048, 0.007690309081226587, 0.005002649966627359, 0.0038470132276415825, 0.04778569936752319, -0.127800852060318, 0.16581334173679352, 0.025660144165158272, 0.017442358657717705, 0.06469010561704636, 0.01622566394507885, -0.09561175853013992, 0.06683498620986938, -0.00733643863350153, -0.07822247594594955, 0.04116341844201088, 0.2224717140197754, -0.04225947707891464, 0.09856545925140381, 0.06283017992973328, -0.010350923985242844, 0.02604338899254799, 0.00807474460452795, -0.018362659960985184, -0.06323311477899551, 0.0845998078584671, -0.08953527361154556, 0.1274518519639969, 0.12964217364788055, -0.03567127510905266, 0.016610154882073402, -0.053490329533815384, 0.034663207828998566, -0.008069586008787155, 0.08611813932657242, -0.039368681609630585, -0.16401571035385132, 0.027514498680830002, -0.038387082517147064, 0.05627618357539177, -0.21512851119041443, -0.05498956888914108, -0.00614964822307229, -0.0351923406124115, -0.052333373576402664, 0.10902196168899536, 0.059024516493082047, -0.028988007456064224, -0.030191460624337196, -0.03470461815595627, 0.039937879890203476, 0.0805998370051384, -0.10472224652767181, -0.0307645034044981 ]
null
null
transformers
# Wav2Vec2 Spanish Wav2Vec2 model pre-trained using the Spanish portion of the Common Voice dataset. The model is trained with Flax and using TPUs sponsored by Google since this is part of the [Flax/Jax Community Week](https://discss.huggingface.co/t/open-to-the-community-community-week-using-jax-flax-for-nlp-cv/7104) organised by HuggingFace. ## Model description The model used for training is [Wav2Vec2](https://ai.facebook.com/blog/wav2vec-20-learning-the-structure-of-speech-from-raw-audio/) by FacebookAI. It was introduced in the paper "wav2vec 2.0: A Framework for Self-Supervised Learning of Speech Representations" by Alexei Baevski, Henry Zhou, Abdelrahman Mohamed, and Michael Auli (https://arxiv.org/abs/2006.11477). This model is available in the 🤗 [Model Hub](https://huggingface.co/facebook/wav2vec2-base-960h). ## Training data Spanish portion of [Common Voice](https://commonvoice.mozilla.org/en/datasets). Common Voice is an open source, multi-language dataset of voices part of Mozilla's initiative to help teach machines how real people speak. The dataset is also available in the 🤗 [Datasets](https://huggingface.co/datasets/common_voice) library. ## Team members - María Grandury ([@mariagrandury](https://github.com/mariagrandury)) - Manuel Romero ([@mrm8488](https://huggingface.co/mrm8488)) - Eduardo González Ponferrada ([@edugp](https://huggingface.co/edugp)) - pcuenq ([@pcuenq](https://huggingface.co/pcuenq))
{"language": "es", "tags": ["audio", "automatic-speech-recognition"], "datasets": ["common_voice"]}
automatic-speech-recognition
flax-community/wav2vec2-spanish
[ "transformers", "pytorch", "jax", "wav2vec2", "pretraining", "audio", "automatic-speech-recognition", "es", "dataset:common_voice", "arxiv:2006.11477", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[ "2006.11477" ]
[ "es" ]
TAGS #transformers #pytorch #jax #wav2vec2 #pretraining #audio #automatic-speech-recognition #es #dataset-common_voice #arxiv-2006.11477 #endpoints_compatible #region-us
# Wav2Vec2 Spanish Wav2Vec2 model pre-trained using the Spanish portion of the Common Voice dataset. The model is trained with Flax and using TPUs sponsored by Google since this is part of the Flax/Jax Community Week organised by HuggingFace. ## Model description The model used for training is Wav2Vec2 by FacebookAI. It was introduced in the paper "wav2vec 2.0: A Framework for Self-Supervised Learning of Speech Representations" by Alexei Baevski, Henry Zhou, Abdelrahman Mohamed, and Michael Auli (URL This model is available in the Model Hub. ## Training data Spanish portion of Common Voice. Common Voice is an open source, multi-language dataset of voices part of Mozilla's initiative to help teach machines how real people speak. The dataset is also available in the Datasets library. ## Team members - María Grandury (@mariagrandury) - Manuel Romero (@mrm8488) - Eduardo González Ponferrada (@edugp) - pcuenq (@pcuenq)
[ "# Wav2Vec2 Spanish\n\nWav2Vec2 model pre-trained using the Spanish portion of the Common Voice dataset. The model is trained with Flax and using TPUs sponsored by Google since this is part of the Flax/Jax Community Week organised by HuggingFace.", "## Model description\n\nThe model used for training is Wav2Vec2 by FacebookAI. It was introduced in the paper \n\"wav2vec 2.0: A Framework for Self-Supervised Learning of Speech Representations\" by Alexei Baevski, Henry Zhou, Abdelrahman Mohamed, and Michael Auli (URL\n\nThis model is available in the Model Hub.", "## Training data\n\nSpanish portion of Common Voice. Common Voice is an open source, multi-language dataset of voices part of Mozilla's initiative to help teach machines how real people speak.\n\nThe dataset is also available in the Datasets library.", "## Team members\n\n- María Grandury (@mariagrandury)\n- Manuel Romero (@mrm8488)\n- Eduardo González Ponferrada (@edugp)\n- pcuenq (@pcuenq)" ]
[ "TAGS\n#transformers #pytorch #jax #wav2vec2 #pretraining #audio #automatic-speech-recognition #es #dataset-common_voice #arxiv-2006.11477 #endpoints_compatible #region-us \n", "# Wav2Vec2 Spanish\n\nWav2Vec2 model pre-trained using the Spanish portion of the Common Voice dataset. The model is trained with Flax and using TPUs sponsored by Google since this is part of the Flax/Jax Community Week organised by HuggingFace.", "## Model description\n\nThe model used for training is Wav2Vec2 by FacebookAI. It was introduced in the paper \n\"wav2vec 2.0: A Framework for Self-Supervised Learning of Speech Representations\" by Alexei Baevski, Henry Zhou, Abdelrahman Mohamed, and Michael Auli (URL\n\nThis model is available in the Model Hub.", "## Training data\n\nSpanish portion of Common Voice. Common Voice is an open source, multi-language dataset of voices part of Mozilla's initiative to help teach machines how real people speak.\n\nThe dataset is also available in the Datasets library.", "## Team members\n\n- María Grandury (@mariagrandury)\n- Manuel Romero (@mrm8488)\n- Eduardo González Ponferrada (@edugp)\n- pcuenq (@pcuenq)" ]
[ 66, 68, 77, 53, 42 ]
[ "passage: TAGS\n#transformers #pytorch #jax #wav2vec2 #pretraining #audio #automatic-speech-recognition #es #dataset-common_voice #arxiv-2006.11477 #endpoints_compatible #region-us \n# Wav2Vec2 Spanish\n\nWav2Vec2 model pre-trained using the Spanish portion of the Common Voice dataset. The model is trained with Flax and using TPUs sponsored by Google since this is part of the Flax/Jax Community Week organised by HuggingFace.## Model description\n\nThe model used for training is Wav2Vec2 by FacebookAI. It was introduced in the paper \n\"wav2vec 2.0: A Framework for Self-Supervised Learning of Speech Representations\" by Alexei Baevski, Henry Zhou, Abdelrahman Mohamed, and Michael Auli (URL\n\nThis model is available in the Model Hub.## Training data\n\nSpanish portion of Common Voice. Common Voice is an open source, multi-language dataset of voices part of Mozilla's initiative to help teach machines how real people speak.\n\nThe dataset is also available in the Datasets library.## Team members\n\n- María Grandury (@mariagrandury)\n- Manuel Romero (@mrm8488)\n- Eduardo González Ponferrada (@edugp)\n- pcuenq (@pcuenq)" ]
[ -0.12429972738027573, 0.10933629423379898, -0.000475261447718367, 0.006966141518205404, 0.11415065824985504, 0.028142649680376053, 0.19580918550491333, 0.06192736700177193, -0.01860399730503559, 0.04363382235169411, 0.009780023247003555, -0.03587959706783295, 0.08032292127609253, -0.025972913950681686, 0.061165545135736465, -0.272320419549942, 0.014509531669318676, -0.02691635489463806, -0.039725519716739655, -0.0018944197800010443, 0.1023276224732399, -0.031953372061252594, 0.006189556326717138, 0.07441537082195282, -0.07633151859045029, 0.0029579601250588894, 0.02378269098699093, -0.13930396735668182, 0.17955826222896576, 0.13429594039916992, 0.055768534541130066, 0.00518849166110158, 0.06435936689376831, -0.14942769706249237, 0.02611749805510044, 0.04000985994935036, -0.009142485447227955, 0.04441538080573082, 0.07398887723684311, -0.01675291918218136, 0.09083879739046097, 0.025755370035767555, 0.04585341736674309, 0.09789522737264633, -0.15216057002544403, -0.15626563131809235, -0.052403341978788376, -0.00030120264273136854, 0.0476391576230526, 0.07929921895265579, -0.01692897453904152, 0.000752916734199971, -0.09442171454429626, 0.02405361831188202, 0.049307931214571, -0.19563204050064087, -0.099158875644207, 0.117948979139328, 0.04988950490951538, 0.03599700704216957, 0.015804234892129898, 0.07505863904953003, 0.046987999230623245, -0.012507223524153233, -0.058692287653684616, -0.02598380483686924, -0.0884147509932518, -0.08828980475664139, -0.06607048958539963, -0.029638653621077538, 0.3069264888763428, 0.047651685774326324, -0.04651467502117157, -0.10984311252832413, 0.028768079355359077, 0.17236343026161194, 0.013768377713859081, -0.047301363199949265, 0.022764449939131737, 0.04013780876994133, -0.002219918416813016, -0.03153685852885246, -0.05027926340699196, -0.08923367410898209, 0.02319812774658203, 0.10506724566221237, -0.008168172091245651, -0.0013040207559242845, -0.034411221742630005, 0.018719907850027084, -0.12128309905529022, -0.022817639634013176, 0.03270566463470459, -0.011513051576912403, -0.01905394345521927, -0.005738476756960154, -0.028209857642650604, -0.17139679193496704, 0.06788942217826843, -0.015349891036748886, 0.02733093500137329, 0.028436439111828804, -0.0030760865192860365, 0.03837196156382561, 0.05969041585922241, 0.06016603112220764, -0.02188529074192047, -0.07053112983703613, 0.03362739086151123, -0.07075297832489014, -0.027651222422719002, -0.04310579225420952, -0.13297423720359802, 0.007653950247913599, -0.03680659458041191, 0.02925427258014679, 0.035116516053676605, 0.015180451795458794, -0.07628610730171204, -0.06157620996236801, 0.03856343403458595, -0.04824198782444, 0.013157391920685768, 0.03509378433227539, -0.027818655595183372, 0.05698871240019798, 0.035046689212322235, 0.06331223249435425, -0.049692049622535706, -0.08927938342094421, 0.015213197097182274, -0.06898754835128784, -0.060649529099464417, -0.03913167864084244, 0.0533904954791069, -0.047825418412685394, 0.008195800706744194, -0.15613974630832672, 0.024487491697072983, -0.1536155641078949, 0.02745675854384899, -0.04836450144648552, -0.13695836067199707, -0.13542304933071136, 0.03353285416960716, -0.009105726145207882, -0.022817105054855347, 0.0465933121740818, -0.0009536062134429812, 0.022905344143509865, -0.023613551631569862, 0.044032540172338486, -0.03986931964755058, 0.06267712265253067, 0.046653009951114655, 0.012933201156556606, -0.11524175107479095, 0.16709305346012115, -0.04652578756213188, -0.001477242331020534, -0.1275331676006317, -0.016888657584786415, -0.04906103014945984, 0.09346835315227509, 0.027932971715927124, 0.1336260288953781, -0.07174598425626755, -0.08287310600280762, 0.1881018877029419, -0.08396163582801819, -0.007289132568985224, 0.1417234241962433, -0.010632868856191635, 0.16359540820121765, 0.1479436755180359, 0.20920635759830475, 0.07825057953596115, -0.11284637451171875, 0.04299024119973183, -0.02720573917031288, 0.058700188994407654, -0.003781897248700261, 0.08823055028915405, -0.09293955564498901, -0.03205384314060211, -0.006685398519039154, 0.007273016031831503, 0.040726687759160995, -0.04501530900597572, -0.028392093256115913, 0.057749953120946884, -0.08207312971353531, 0.013347510248422623, 0.004249721299856901, 0.0079018734395504, -0.023100873455405235, -0.04283721745014191, 0.008157627657055855, 0.09034232050180435, -0.08808839321136475, 0.0008991562644951046, -0.12561184167861938, 0.07537645846605301, -0.0541326068341732, -0.014712795615196228, -0.0659882202744484, 0.05358544737100601, -0.006110260728746653, 0.0613827258348465, 0.07547532021999359, 0.11808022111654282, -0.018190236762166023, 0.007122362963855267, -0.058756936341524124, 0.007693754509091377, -0.04120238870382309, -0.011601099744439125, 0.003028476843610406, -0.1817305088043213, -0.00617701793089509, -0.034856464713811874, 0.16558440029621124, -0.15827347338199615, 0.006268152967095375, 0.017943795770406723, 0.032748401165008545, 0.018659688532352448, -0.027373673394322395, 0.041625410318374634, 0.1372615396976471, 0.03559146821498871, -0.053052548319101334, 0.09403221309185028, 0.06329517811536789, -0.07281714677810669, 0.09532876312732697, -0.14632683992385864, -0.06539548188447952, 0.044687580317258835, -0.12722617387771606, -0.025288932025432587, 0.039911527186632156, 0.006620545871555805, -0.0023027420975267887, -0.07126820832490921, -0.00752498721703887, 0.30659914016723633, -0.07502732425928116, 0.09445134550333023, -0.11444787681102753, 0.041212569922208786, 0.03749676048755646, -0.10272054374217987, -0.02136339619755745, 0.06192679703235626, 0.06114828214049339, -0.028163934126496315, 0.019488822668790817, -0.18112289905548096, 0.014412314631044865, 0.2477523237466812, 0.009585922583937645, -0.011637281626462936, -0.011854325421154499, -0.03852568194270134, 0.0323515310883522, 0.11364828050136566, -0.23815684020519257, -0.05656890198588371, -0.0006963405176065862, 0.07183675467967987, 0.07098764181137085, -0.128799170255661, 0.010305066592991352, 0.041596103459596634, -0.06905105710029602, -0.038006071001291275, 0.026246387511491776, -0.09591060131788254, 0.07260510325431824, 0.039608340710401535, -0.03823800012469292, -0.0013386175269261003, -0.05334274098277092, -0.16404390335083008, 0.08530306816101074, -0.0491013340651989, -0.18596401810646057, -0.10888879001140594, -0.012968631461262703, 0.017895661294460297, 0.060925621539354324, 0.0802779421210289, -0.09675441682338715, 0.020181410014629364, 0.02813822217285633, 0.0874626487493515, -0.04124867171049118, -0.060337163507938385, 0.056951820850372314, 0.04020506888628006, 0.05799299106001854, -0.10453129559755325, 0.0016222110716626048, -0.021593209356069565, -0.17422224581241608, -0.04109388589859009, -0.09301510453224182, 0.08098642528057098, 0.14160892367362976, 0.10542751103639603, -0.02339310385286808, -0.06046176329255104, 0.21024519205093384, -0.14334993064403534, 0.025500301271677017, 0.18110960721969604, -0.009916989132761955, -0.027190620079636574, 0.07764321565628052, 0.03937253728508949, -0.08009525388479233, -0.04392419010400772, -0.029940389096736908, -0.11527560651302338, -0.2558990716934204, -0.1540217250585556, -0.06800094246864319, -0.016845542937517166, 0.01718151569366455, 0.020237404853105545, 0.09797589480876923, 0.06759411841630936, -0.01878293603658676, 0.040596406906843185, 0.07248286157846451, 0.016645681113004684, 0.09655068069696426, -0.017326971516013145, 0.02938639186322689, -0.058444246649742126, 0.0073064174503088, 0.05681481957435608, 0.08091866225004196, 0.09880293905735016, 0.09016058593988419, 0.10682492703199387, 0.07286672294139862, 0.04958042502403259, 0.03928619623184204, 0.00003053052569157444, -0.04887527599930763, 0.030487267300486565, -0.05155027657747269, -0.026051795110106468, -0.09841445088386536, -0.007556524593383074, 0.1315186768770218, -0.0764516219496727, -0.11097117513418198, -0.01862430013716221, 0.023573921993374825, 0.2805847227573395, 0.014108751900494099, -0.11463172733783722, -0.1275615692138672, 0.008287481032311916, -0.04174944385886192, -0.041007474064826965, 0.03492655232548714, 0.17606587707996368, -0.16699174046516418, 0.0857040286064148, 0.07207376509904861, 0.08460262417793274, -0.12917134165763855, 0.017920369282364845, -0.028820982202887535, -0.007387304678559303, -0.00048266584053635597, 0.0789804458618164, -0.21868859231472015, 0.22515082359313965, 0.006032047793269157, 0.11756693571805954, -0.057834185659885406, 0.011594535782933235, -0.05156673491001129, 0.01578517071902752, 0.09871187061071396, 0.02956419624388218, 0.0005784053937532008, -0.03467103838920593, -0.08236037194728851, 0.043862853199243546, -0.02496325597167015, -0.04863523319363594, 0.020108269527554512, 0.032399531453847885, 0.01957893744111061, -0.020900428295135498, -0.010653359815478325, -0.15418945252895355, -0.15348698198795319, 0.0023351535201072693, 0.042465001344680786, 0.18368011713027954, -0.04673231020569801, -0.03411141410470009, -0.1360696256160736, 0.0031430902890861034, -0.07794904708862305, -0.01367742009460926, -0.055255334824323654, -0.010211644694209099, 0.00008339260966749862, -0.02235332503914833, 0.03194216638803482, 0.08567043393850327, 0.05107792466878891, -0.05852050334215164, 0.050524331629276276, 0.09215319156646729, -0.140064537525177, -0.14275570213794708, -0.06824466586112976, 0.17689388990402222, 0.11929945647716522, 0.10288918763399124, 0.06522054225206375, 0.0021678125485777855, 0.08131434768438339, -0.03588864579796791, 0.06205405667424202, 0.14374786615371704, -0.06972073763608932, 0.014611774124205112, -0.022943446412682533, -0.09407947957515717, -0.07987096160650253, -0.10696679353713989, 0.16351042687892914, 0.1207883432507515, -0.04576863348484039, 0.15324348211288452, 0.16036629676818848, -0.15628992021083832, -0.12125835567712784, -0.002286158734932542, 0.0826672911643982, 0.06440767645835876, -0.05332766845822334, -0.30431705713272095, -0.01413123868405819, 0.05874976888298988, -0.025065338239073753, -0.07996739447116852, -0.3213292956352234, -0.10180164873600006, 0.018051117658615112, -0.009430715814232826, 0.195050448179245, -0.044537823647260666, -0.05306299775838852, -0.06556612998247147, -0.011132403276860714, -0.008124281652271748, -0.09663797914981842, 0.09027623385190964, 0.09271585941314697, 0.01802881248295307, 0.03266996145248413, 0.008935278281569481, 0.12606360018253326, 0.020726852118968964, -0.060334354639053345, -0.07673641294240952, -0.018562719225883484, 0.0021933994721621275, 0.005359782371670008, -0.0011603923048824072, 0.07345107197761536, -0.051999662071466446, -0.15145628154277802, -0.07893174886703491, -0.04088808596134186, 0.009454123675823212, -0.03599798306822777, -0.02690284140408039, 0.029174834489822388, 0.04341066628694534, 0.05247127637267113, 0.05053986981511116, -0.04964673891663551, -0.14637601375579834, 0.1437627077102661, 0.077477365732193, 0.27195852994918823, -0.005807703360915184, -0.0570782907307148, -0.02538600191473961, -0.02112624980509281, 0.12129698693752289, -0.06029893085360527, 0.020998777821660042, 0.01298132911324501, 0.001988512696698308, 0.08864026516675949, -0.016360554844141006, -0.14431236684322357, 0.12105435878038406, 0.06846374273300171, -0.03404012694954872, -0.21470773220062256, -0.019764982163906097, 0.06321002542972565, 0.00018534873379394412, 0.0376434251666069, 0.1621168851852417, -0.03177058696746826, -0.0492890402674675, -0.028771821409463882, 0.03157521039247513, -0.10377335548400879, 0.09815584123134613, 0.04765236750245094, 0.021741647273302078, -0.05844233185052872, 0.0464337058365345, 0.11290664225816727, -0.08228163421154022, 0.057527802884578705, 0.005319294054061174, -0.0260480809956789, -0.0391489677131176, -0.055441439151763916, 0.1342277079820633, -0.012373595498502254, -0.15955986082553864, -0.05080705136060715, -0.13502319157123566, 0.01407348457723856, 0.06735150516033173, -0.028673391789197922, 0.0028132074512541294, -0.00769363809376955, 0.041591037064790726, -0.07910443842411041, -0.036466892808675766, 0.03238324075937271, -0.04904407635331154, -0.08955314755439758, 0.10278954356908798, 0.0727929100394249, 0.010254671797156334, -0.012220758944749832, -0.08917194604873657, -0.1614401638507843, 0.04543672502040863, -0.04723454266786575, 0.01617106795310974, -0.06792206317186356, 0.03493911027908325, -0.027567902579903603, -0.02304147183895111, -0.0003537202428560704, 0.04213258624076843, -0.05878261849284172, 0.03315801918506622, -0.010380886495113373, 0.09105073660612106, 0.0027058448176831007, 0.055966056883335114, 0.00554463267326355, -0.03129016235470772, 0.10082646459341049, -0.018166013062000275, -0.027942446991801262, 0.03218263387680054, -0.20215342938899994, 0.01936008594930172, 0.01749921590089798, 0.0035315549466758966, -0.0027147745713591576, -0.13382846117019653, 0.00013475048763211817, 0.012536993250250816, 0.011629619635641575, -0.024225831031799316, 0.03829081729054451, -0.038919124752283096, 0.10754584521055222, 0.035620905458927155, -0.07140923291444778, -0.03233363479375839, 0.05727742239832878, 0.09021759778261185, -0.0031273611821234226, 0.048438750207424164, -0.12538772821426392, 0.1059366762638092, -0.1265178918838501, 0.023662889376282692, -0.0011646004859358072, 0.02870877832174301, -0.07759854197502136, -0.06021514907479286, 0.06498464196920395, -0.005019239149987698, 0.12085967510938644, 0.07296307384967804, 0.013177582062780857, -0.02550544962286949, -0.09239327162504196, -0.05724415183067322, 0.02419166825711727, 0.11715320497751236, 0.033165596425533295, 0.050293613225221634, -0.0032284650951623917, 0.06145215779542923, 0.002346065593883395, 0.21343481540679932, 0.013650324195623398, 0.049034539610147476, 0.1518505960702896, 0.04678325355052948, 0.13419955968856812, -0.058557577431201935, 0.0009088693186640739, 0.05255713313817978, -0.009879929013550282, 0.03666398301720619, -0.053698111325502396, -0.033619243651628494, 0.06725257635116577, -0.13611890375614166, 0.0975794792175293, -0.00025775181711651385, -0.04072103276848793, -0.1346416175365448, -0.1863820105791092, -0.03346601873636246, -0.17397518455982208, -0.013284482061862946, -0.09771642833948135, -0.03543735668063164, 0.03476214036345482, 0.0054102493450045586, -0.02535191923379898, 0.05249227583408356, -0.0792723000049591, -0.08051545917987823, 0.07311732321977615, -0.0462358184158802, 0.08912162482738495, -0.19654971361160278, 0.013670279644429684, 0.031123070046305656, 0.10801845788955688, 0.039702482521533966, 0.06259851902723312, -0.005706879775971174, 0.022778868675231934, -0.0134808961302042, -0.03675265610218048, 0.026724891737103462, -0.009612972848117352, 0.08573403209447861, 0.18403840065002441, 0.05835304781794548, -0.06142030656337738, 0.03993135690689087, 0.15250970423221588, -0.004709284752607346, -0.0846836045384407, -0.19001351296901703, 0.01758471503853798, -0.10022728145122528, 0.0036213069688528776, -0.026264529675245285, -0.052235960960388184, 0.02776440605521202, 0.21983712911605835, 0.31011924147605896, 0.03854949399828911, -0.0019539175555109978, -0.04545088857412338, -0.00004923895903630182, 0.048287466168403625, 0.07126351445913315, 0.013440849259495735, 0.21363964676856995, 0.0023541050031781197, 0.02160344086587429, -0.0038994771894067526, 0.024196743965148926, -0.013387152925133705, 0.11570226401090622, -0.04564280807971954, -0.03830059617757797, 0.011522684246301651, 0.17169560492038727, -0.09432120621204376, -0.22610396146774292, 0.002271585864946246, -0.14489802718162537, -0.1041773334145546, -0.02970060519874096, -0.019366031512618065, 0.1485012322664261, 0.11949179321527481, -0.007355812005698681, -0.04942171275615692, 0.11954981088638306, 0.02792399749159813, -0.058922167867422104, -0.12422855198383331, 0.07047095894813538, -0.020997637882828712, 0.16897907853126526, -0.03074243851006031, 0.05734499171376228, 0.06346454471349716, 0.04372575879096985, -0.0622086338698864, 0.00103190413210541, 0.021092450246214867, -0.018986951559782028, 0.018417827785015106, 0.014768360182642937, -0.055904362350702286, 0.1922270506620407, 0.04042111709713936, -0.13062168657779694, 0.06996350735425949, 0.02453465200960636, 0.007880491204559803, -0.07099759578704834, 0.09764651209115982, -0.1400386393070221, 0.10595762729644775, 0.11952994018793106, -0.08491447567939758, -0.09310079365968704, -0.006844694260507822, 0.048569269478321075, 0.039158474653959274, 0.04127155616879463, -0.08209840953350067, -0.26190420985221863, -0.019578175619244576, -0.175354465842247, 0.00736813060939312, -0.10640055686235428, -0.02084207534790039, -0.03387320041656494, -0.06846745312213898, 0.004174512345343828, 0.008766013197600842, 0.12284473329782486, 0.01097473967820406, -0.04523910582065582, -0.020329957827925682, 0.012378422543406487, 0.14606234431266785, -0.04806499555706978, -0.050267044454813004 ]
null
null
sentence-transformers
# Model description The project aims to train sentence embedding models on very large sentence level datasets using a self-supervised contrastive learning objective. We used the pretrained [`MiniLM-L12`](https://huggingface.co/microsoft/MiniLM-L12-H384-uncased) model and fine-tuned in on a 1B sentence pairs dataset. We use a contrastive learning objective: given a sentence from the pair, the model should predict which out of a set of randomly sampled other sentences, was actually paired with it in our dataset. We developped this model during the [Community week using JAX/Flax for NLP & CV](https://discuss.huggingface.co/t/open-to-the-community-community-week-using-jax-flax-for-nlp-cv/7104), organized by Hugging Face. We developped this model as part of the project: [Train the Best Sentence Embedding Model Ever with 1B Training Pairs](https://discuss.huggingface.co/t/train-the-best-sentence-embedding-model-ever-with-1b-training-pairs/7354). We benefited from efficient hardware infrastructure to run the project: 7 TPUs v3-8, as well as intervention from Google’s Flax, JAX, and Cloud team member about efficient deep learning frameworks. ## Intended uses Our model is intented to be used as a sentence encoder. Given an input sentence, it ouptuts a vector which captures the sentence semantic information. The sentence vector may be used for information retrieval, clustering or sentence similarity tasks. ## How to use Here is how to use this model to get the features of a given text using [SentenceTransformers](https://github.com/UKPLab/sentence-transformers) library: ```python from sentence_transformers import SentenceTransformer model = SentenceTransformer('flax-sentence-embeddings/all_datasets_v3_MiniLM-L12') text = "Replace me by any text you'd like." text_embbedding = model.encode(text) # array([-0.01559514, 0.04046123, 0.1317083 , 0.00085931, 0.04585106, # -0.05607086, 0.0138078 , 0.03569756, 0.01420381, 0.04266302 ...], # dtype=float32) ``` # Training procedure ## Pre-training We use the pretrained [`MiniLM-L12`](https://huggingface.co/microsoft/MiniLM-L12-H384-uncased). Please refer to the model card for more detailed information about the pre-training procedure. ## Fine-tuning We fine-tune the model using a contrastive objective. Formally, we compute the cosine similarity from each possible sentence pairs from the batch. We then apply the cross entropy loss by comparing with true pairs. ### Hyper parameters We trained ou model on a TPU v3-8. We train the model during 540k steps using a batch size of 1024 (128 per TPU core). We use a learning rate warm up of 500. The sequence length was limited to 128 tokens. We used the AdamW optimizer with a 2e-5 learning rate. The full training script is accessible in this current repository. ### Training data We use the concatenation from multiple datasets to fine-tune our model. The total number of sentence pairs is above 1 billion sentences. We sampled each dataset given a weighted probability which configuration is detailed in the `data_config.json` file. | Dataset | Paper | Number of training tuples | |:--------------------------------------------------------:|:----------------------------------------:|:--------------------------:| | [GOOAQ: Open Question Answering with Diverse Answer Types](https://github.com/allenai/gooaq) | [paper](https://arxiv.org/pdf/2104.08727.pdf) | 3,012,496 | | [Stack Exchange](https://huggingface.co/datasets/flax-sentence-embeddings/stackexchange_title_body_jsonl) | - | 364,001 | | [Flickr 30k](https://shannon.cs.illinois.edu/DenotationGraph/) | [paper](https://transacl.org/ojs/index.php/tacl/article/view/229/33) | 317,695 | | [COCO 2020](COCO 2020) | [paper](https://link.springer.com/chapter/10.1007%2F978-3-319-10602-1_48) | 828,395| | [Code Search](https://huggingface.co/datasets/code_search_net) | - | 1,151,414 | | [TriviaqQA](https://huggingface.co/datasets/trivia_qa) | - | 73,346 | | [SQuAD2.0](https://rajpurkar.github.io/SQuAD-explorer/) | [paper](https://aclanthology.org/P18-2124.pdf) | 87,599 | | [Natural Questions (NQ)](https://ai.google.com/research/NaturalQuestions) | [paper](https://transacl.org/ojs/index.php/tacl/article/view/1455) | 100,231 | | [Simple Wikipedia](https://cs.pomona.edu/~dkauchak/simplification/) | [paper](https://www.aclweb.org/anthology/P11-2117/) | 102,225 | | [Quora Question Pairs](https://quoradata.quora.com/First-Quora-Dataset-Release-Question-Pairs) | - | 103,663 | | [Altlex](https://github.com/chridey/altlex/) | [paper](https://aclanthology.org/P16-1135.pdf) | 112,696 | | [Wikihow](https://github.com/pvl/wikihow_pairs_dataset) | [paper](https://arxiv.org/abs/1810.09305) | 128,542 | | [Sentence Compression](https://github.com/google-research-datasets/sentence-compression) | [paper](https://www.aclweb.org/anthology/D13-1155/) | 180,000 | | AllNLI ([SNLI](https://nlp.stanford.edu/projects/snli/) and [MultiNLI](https://cims.nyu.edu/~sbowman/multinli/) | [paper SNLI](https://doi.org/10.18653/v1/d15-1075), [paper MultiNLI](https://doi.org/10.18653/v1/n18-1101) | 277,230 | | [Eli5](https://huggingface.co/datasets/eli5) | [paper](https://doi.org/10.18653/v1/p19-1346) | 325,475 | | [SPECTER](https://github.com/allenai/specter) | [paper](https://doi.org/10.18653/v1/2020.acl-main.207) | 684,100 | | [S2ORC](https://github.com/allenai/s2orc) Title/Abstract | [paper](https://aclanthology.org/2020.acl-main.447/) | 41,769,185 | | [S2ORC](https://github.com/allenai/s2orc) Citation/Citation | [paper](https://aclanthology.org/2020.acl-main.447/) | 52,603,982 | | [S2ORC](https://github.com/allenai/s2orc) Citation/Abstract | [paper](https://aclanthology.org/2020.acl-main.447/) | 116,288,806 | | [PAQ](https://github.com/facebookresearch/PAQ) | [paper](https://arxiv.org/abs/2102.07033) | 64,371,441 | | [WikiAnswers](https://github.com/afader/oqa#wikianswers-corpus) | [paper](https://doi.org/10.1145/2623330.2623677) | 77,427,422 | | SearchQA | - | 582,261 | | [Yahoo Answers](https://www.kaggle.com/soumikrakshit/yahoo-answers-dataset) Title/Answer | [paper](https://proceedings.neurips.cc/paper/2015/hash/250cf8b51c773f3f8dc8b4be867a9a02-Abstract.html) | 1,198,260 | | [Yahoo Answers](https://www.kaggle.com/soumikrakshit/yahoo-answers-dataset) Title/Question | [paper](https://proceedings.neurips.cc/paper/2015/hash/250cf8b51c773f3f8dc8b4be867a9a02-Abstract.html) | 659,896 | | [Yahoo Answers](https://www.kaggle.com/soumikrakshit/yahoo-answers-dataset) Question/Answer | [paper](https://proceedings.neurips.cc/paper/2015/hash/250cf8b51c773f3f8dc8b4be867a9a02-Abstract.html) | 681,164 | | [MS MARCO](https://microsoft.github.io/msmarco/) | [paper](https://doi.org/10.1145/3404835.3462804) | 9,144,553 | | [Reddit conversationnal](https://github.com/PolyAI-LDN/conversational-datasets/tree/master/reddit) | [paper](https://arxiv.org/abs/1904.06472) | 726,484,430 | | total | | 1,097,953,922 |
{"language": "en", "tags": ["sentence-transformers", "feature-extraction", "sentence-similarity"], "pipeline_tag": "sentence-similarity"}
sentence-similarity
flax-sentence-embeddings/all_datasets_v3_MiniLM-L12
[ "sentence-transformers", "pytorch", "bert", "feature-extraction", "sentence-similarity", "en", "arxiv:2104.08727", "arxiv:1810.09305", "arxiv:2102.07033", "arxiv:1904.06472", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[ "2104.08727", "1810.09305", "2102.07033", "1904.06472" ]
[ "en" ]
TAGS #sentence-transformers #pytorch #bert #feature-extraction #sentence-similarity #en #arxiv-2104.08727 #arxiv-1810.09305 #arxiv-2102.07033 #arxiv-1904.06472 #endpoints_compatible #region-us
Model description ================= The project aims to train sentence embedding models on very large sentence level datasets using a self-supervised contrastive learning objective. We used the pretrained 'MiniLM-L12' model and fine-tuned in on a 1B sentence pairs dataset. We use a contrastive learning objective: given a sentence from the pair, the model should predict which out of a set of randomly sampled other sentences, was actually paired with it in our dataset. We developped this model during the Community week using JAX/Flax for NLP & CV, organized by Hugging Face. We developped this model as part of the project: Train the Best Sentence Embedding Model Ever with 1B Training Pairs. We benefited from efficient hardware infrastructure to run the project: 7 TPUs v3-8, as well as intervention from Google’s Flax, JAX, and Cloud team member about efficient deep learning frameworks. Intended uses ------------- Our model is intented to be used as a sentence encoder. Given an input sentence, it ouptuts a vector which captures the sentence semantic information. The sentence vector may be used for information retrieval, clustering or sentence similarity tasks. How to use ---------- Here is how to use this model to get the features of a given text using SentenceTransformers library: Training procedure ================== Pre-training ------------ We use the pretrained 'MiniLM-L12'. Please refer to the model card for more detailed information about the pre-training procedure. Fine-tuning ----------- We fine-tune the model using a contrastive objective. Formally, we compute the cosine similarity from each possible sentence pairs from the batch. We then apply the cross entropy loss by comparing with true pairs. ### Hyper parameters We trained ou model on a TPU v3-8. We train the model during 540k steps using a batch size of 1024 (128 per TPU core). We use a learning rate warm up of 500. The sequence length was limited to 128 tokens. We used the AdamW optimizer with a 2e-5 learning rate. The full training script is accessible in this current repository. ### Training data We use the concatenation from multiple datasets to fine-tune our model. The total number of sentence pairs is above 1 billion sentences. We sampled each dataset given a weighted probability which configuration is detailed in the 'data\_config.json' file.
[ "### Hyper parameters\n\n\nWe trained ou model on a TPU v3-8. We train the model during 540k steps using a batch size of 1024 (128 per TPU core).\nWe use a learning rate warm up of 500. The sequence length was limited to 128 tokens. We used the AdamW optimizer with\na 2e-5 learning rate. The full training script is accessible in this current repository.", "### Training data\n\n\nWe use the concatenation from multiple datasets to fine-tune our model. The total number of sentence pairs is above 1 billion sentences.\nWe sampled each dataset given a weighted probability which configuration is detailed in the 'data\\_config.json' file." ]
[ "TAGS\n#sentence-transformers #pytorch #bert #feature-extraction #sentence-similarity #en #arxiv-2104.08727 #arxiv-1810.09305 #arxiv-2102.07033 #arxiv-1904.06472 #endpoints_compatible #region-us \n", "### Hyper parameters\n\n\nWe trained ou model on a TPU v3-8. We train the model during 540k steps using a batch size of 1024 (128 per TPU core).\nWe use a learning rate warm up of 500. The sequence length was limited to 128 tokens. We used the AdamW optimizer with\na 2e-5 learning rate. The full training script is accessible in this current repository.", "### Training data\n\n\nWe use the concatenation from multiple datasets to fine-tune our model. The total number of sentence pairs is above 1 billion sentences.\nWe sampled each dataset given a weighted probability which configuration is detailed in the 'data\\_config.json' file." ]
[ 75, 89, 66 ]
[ "passage: TAGS\n#sentence-transformers #pytorch #bert #feature-extraction #sentence-similarity #en #arxiv-2104.08727 #arxiv-1810.09305 #arxiv-2102.07033 #arxiv-1904.06472 #endpoints_compatible #region-us \n### Hyper parameters\n\n\nWe trained ou model on a TPU v3-8. We train the model during 540k steps using a batch size of 1024 (128 per TPU core).\nWe use a learning rate warm up of 500. The sequence length was limited to 128 tokens. We used the AdamW optimizer with\na 2e-5 learning rate. The full training script is accessible in this current repository.### Training data\n\n\nWe use the concatenation from multiple datasets to fine-tune our model. The total number of sentence pairs is above 1 billion sentences.\nWe sampled each dataset given a weighted probability which configuration is detailed in the 'data\\_config.json' file." ]
[ -0.1166381910443306, 0.028163647279143333, 0.00006523822958115488, 0.08393783867359161, 0.1294025182723999, 0.023931488394737244, 0.041672904044389725, 0.09167788177728653, -0.06433993577957153, 0.06772765517234802, 0.12907597422599792, 0.046693217009305954, 0.05387050285935402, 0.17731580138206482, -0.044460415840148926, -0.16165772080421448, 0.02093549259006977, 0.01131516508758068, 0.005537326913326979, 0.11662805825471878, 0.07105403393507004, -0.08329369127750397, 0.05869973078370094, -0.06218612939119339, -0.14970126748085022, -0.0052159312181174755, -0.016933532431721687, 0.006832611281424761, 0.11188236624002457, 0.055359434336423874, 0.07124953716993332, 0.04161963611841202, 0.04482337459921837, -0.05737471953034401, 0.016249315813183784, 0.018464867025613785, 0.03965803235769272, 0.08537876605987549, -0.006431345362216234, 0.0507199689745903, 0.021316757425665855, -0.05447402969002724, 0.012048940174281597, 0.03777937591075897, -0.0806325301527977, -0.028393752872943878, 0.013827315531671047, 0.020512303337454796, 0.1237078458070755, 0.04058506339788437, -0.027107102796435356, 0.10406911373138428, -0.05914647504687309, 0.06880054622888565, 0.050431858748197556, -0.25795355439186096, -0.020106157287955284, 0.16421879827976227, 0.04685297608375549, 0.08075251430273056, -0.040353402495384216, -0.0414368137717247, 0.11666230857372284, 0.037763919681310654, 0.08122090995311737, -0.02012716606259346, -0.09074469655752182, 0.034271787852048874, -0.12068518996238708, -0.01809098571538925, 0.24862726032733917, 0.009906004182994366, -0.06971367448568344, -0.0872427225112915, -0.06566793471574783, -0.08522799611091614, 0.016671862453222275, 0.011612324975430965, -0.03883073851466179, -0.0022470992989838123, -0.049003034830093384, 0.046147607266902924, -0.1119423434138298, -0.12922030687332153, -0.05161534994840622, 0.13341380655765533, 0.04276784881949425, 0.046647075563669205, -0.0569608174264431, 0.11111701279878616, -0.16338369250297546, -0.0819166973233223, 0.0064437552355229855, -0.07703696191310883, -0.10800337791442871, -0.009432345628738403, -0.10333611816167831, -0.15162873268127441, 0.024603070691227913, 0.029233142733573914, 0.09945439547300339, 0.00035222916631028056, 0.13298743963241577, 0.060387030243873596, 0.07559981942176819, 0.11093205958604813, -0.03664875775575638, -0.09339670091867447, 0.014680413529276848, 0.09363196790218353, -0.041255123913288116, -0.007913379929959774, -0.11950800567865372, -0.09497108310461044, 0.09458043426275253, -0.011320189572870731, -0.02837499976158142, 0.08381430059671402, -0.007442050613462925, -0.054408200085163116, 0.09603451192378998, -0.08711235970258713, -0.043112192302942276, 0.011500732973217964, -0.12391640990972519, 0.0367075651884079, -0.02882901392877102, -0.06689238548278809, -0.0768674835562706, 0.03163301572203636, -0.08274675905704498, -0.03078177385032177, -0.11444298177957535, -0.19183231890201569, -0.037248268723487854, -0.046455882489681244, -0.0018244188977405429, -0.11632000654935837, -0.12876677513122559, -0.06690612435340881, 0.007119618821889162, -0.019504358991980553, -0.07144121080636978, -0.10675623267889023, 0.007716519758105278, -0.008140533231198788, -0.05343179404735565, 0.07738830149173737, -0.0480102114379406, 0.09131946414709091, -0.007544107269495726, 0.0996946394443512, -0.008787120692431927, 0.025604965165257454, -0.11282869428396225, -0.03571919724345207, -0.025467144325375557, 0.05930674821138382, 0.04270065948367119, 0.08122968673706055, -0.1036430075764656, -0.10094486176967621, -0.03883829340338707, -0.010766174644231796, 0.030335567891597748, 0.13152767717838287, -0.20184952020645142, -0.016239263117313385, 0.1505543738603592, -0.04688993841409683, -0.10057415068149567, 0.18553398549556732, -0.035397373139858246, 0.020418422296643257, 0.09892085194587708, 0.12103153020143509, 0.08951745182275772, -0.02525378204882145, 0.007719449233263731, 0.04658706113696098, -0.003611946012824774, -0.11922790110111237, 0.09551959484815598, 0.05722052976489067, -0.11027350276708603, 0.03586603328585625, 0.017137905582785606, 0.06565413624048233, -0.06097320094704628, -0.015006358735263348, -0.0049740527756512165, -0.10464630275964737, -0.0021727229468524456, 0.0002864253765437752, 0.0025066048838198185, -0.09747620671987534, -0.05231671780347824, -0.04394172877073288, 0.15564405918121338, -0.10452508926391602, -0.017938785254955292, -0.04612023010849953, 0.060010530054569244, -0.07501763105392456, -0.01694287732243538, -0.11721794307231903, -0.009843120351433754, 0.061052944511175156, 0.11921176314353943, 0.031096486374735832, 0.131971076130867, 0.0710773766040802, 0.10091571509838104, -0.008649990893900394, -0.02525942586362362, 0.03436668962240219, -0.030627869069576263, -0.08597410470247269, -0.07113823294639587, -0.10522744804620743, -0.06733153015375137, 0.10094712674617767, -0.15681184828281403, -0.005927056074142456, -0.09849771857261658, -0.028363600373268127, -0.02220657840371132, -0.02106129564344883, 0.06623101979494095, 0.014844102784991264, -0.058698929846286774, -0.028660599142313004, 0.07835355401039124, 0.018202705308794975, -0.06805895268917084, 0.04490414634346962, -0.13388720154762268, -0.015393408946692944, 0.07247984409332275, 0.027901072055101395, -0.046039994806051254, -0.09433569014072418, -0.04923224449157715, -0.029392102733254433, -0.05669770389795303, -0.046082139015197754, 0.18897251784801483, 0.014804091304540634, 0.14160767197608948, -0.09479306638240814, -0.00601671077311039, 0.011589701287448406, -0.005654163658618927, 0.05863741412758827, 0.07614394277334213, 0.0044068521820008755, -0.16950510442256927, 0.033187877386808395, -0.06825582683086395, -0.09728334099054337, 0.11492875963449478, -0.007033153437077999, -0.09947141259908676, 0.03450653329491615, 0.051708851009607315, -0.02828972414135933, 0.05304967239499092, -0.06907077878713608, -0.055013738572597504, 0.06478164345026016, 0.0047789160162210464, 0.012417537160217762, -0.14016787707805634, 0.004025436472147703, 0.03424203768372536, -0.03475984185934067, -0.007232628297060728, -0.020481059327721596, -0.03619883581995964, 0.07565709203481674, 0.02187204174697399, -0.13672861456871033, -0.0035383752547204494, -0.018004927784204483, -0.0894978940486908, 0.19044160842895508, -0.016195574775338173, -0.09830496460199356, -0.11421392112970352, 0.03777090460062027, -0.01954823173582554, 0.02488955669105053, 0.013634715229272842, -0.053032003343105316, -0.049720585346221924, -0.07891867309808731, 0.029430069029331207, -0.03904496878385544, 0.041229333728551865, -0.07796620577573776, -0.0029159067198634148, 0.013684636913239956, -0.13951361179351807, 0.0032137183006852865, -0.04959048330783844, -0.0917833000421524, 0.06123898923397064, -0.11550682783126831, 0.06251212954521179, 0.1829266995191574, -0.0699731782078743, 0.05342281237244606, -0.04438040405511856, 0.19518524408340454, 0.039667874574661255, 0.023691650480031967, 0.16800428926944733, 0.02482069656252861, 0.0012182352365925908, 0.10263678431510925, 0.01110935676842928, -0.024804139509797096, 0.09143289923667908, -0.04505884274840355, -0.03633658587932587, -0.18303783237934113, -0.08280360698699951, -0.06473007798194885, 0.06585513800382614, 0.1700086146593094, 0.036460403352975845, -0.0001680564455455169, 0.09542606770992279, -0.03214288502931595, 0.061378080397844315, -0.002151446882635355, 0.06132104620337486, -0.04594586417078972, 0.06431997567415237, 0.1071937158703804, -0.004114124458283186, -0.04970165342092514, 0.07034742087125778, 0.004971699323505163, 0.16915076971054077, -0.08295756578445435, 0.11596354097127914, 0.006096357945352793, 0.09704101085662842, 0.029810568317770958, 0.1557520627975464, -0.08460131287574768, 0.012962982058525085, -0.06845773011445999, -0.06467452645301819, -0.07571770250797272, 0.0769931748509407, 0.06478402018547058, 0.032348521053791046, -0.08575581759214401, -0.05412900820374489, 0.027185890823602676, 0.0742979347705841, 0.2003447711467743, -0.35040390491485596, -0.12193266302347183, -0.0036391685716807842, -0.008069431409239769, -0.044291067868471146, 0.09336727857589722, 0.17594923079013824, -0.01805025339126587, -0.02270451933145523, -0.00487684179097414, 0.14311809837818146, -0.028143160045146942, 0.01012122817337513, 0.0037093672435730696, 0.09438976645469666, -0.0318889394402504, 0.1300869733095169, -0.2305658757686615, 0.15086399018764496, 0.011446228250861168, 0.06918997317552567, -0.06136877089738846, -0.016266610473394394, 0.0034954037982970476, 0.027957383543252945, 0.046010155230760574, -0.007534824777394533, 0.026326244696974754, -0.1155065968632698, -0.11294029653072357, 0.042166683822870255, -0.026247471570968628, -0.017067309468984604, 0.10247211903333664, -0.01390228234231472, 0.0025591817684471607, -0.0037630596198141575, 0.08322557061910629, -0.002260215813294053, -0.04724480211734772, -0.0332774743437767, 0.07936204224824905, 0.009207922965288162, -0.0055913375690579414, -0.08200418949127197, -0.024455804377794266, 0.15796011686325073, 0.039281900972127914, -0.0846337154507637, -0.08520150184631348, 0.08572547137737274, 0.1070663332939148, -0.06735143065452576, -0.045475833117961884, 0.044600896537303925, 0.06248210370540619, -0.029706377536058426, -0.07402747124433517, 0.0837201327085495, -0.07426360994577408, -0.04055793583393097, -0.05040818825364113, 0.11400733888149261, 0.011039593257009983, 0.07721337676048279, 0.0021234629675745964, -0.010179092176258564, -0.09474563598632812, -0.08361395448446274, -0.006544217001646757, -0.011582068167626858, 0.16649013757705688, 0.06543291360139847, -0.032297249883413315, -0.038738347589969635, -0.07687201350927353, 0.05224759504199028, 0.14212282001972198, 0.19919423758983612, -0.08072009682655334, -0.023350076749920845, 0.16063421964645386, -0.0025647259317338467, -0.19164900481700897, -0.07654887437820435, 0.04534819722175598, 0.09146349132061005, -0.061573900282382965, -0.09962017834186554, 0.027224117890000343, 0.032820917665958405, 0.007888219319283962, -0.036142829805612564, -0.3280524015426636, -0.11311440169811249, 0.08074641972780228, 0.08602747321128845, 0.34962156414985657, -0.0893184021115303, 0.023668603971600533, -0.004035058431327343, -0.14590680599212646, 0.1217048391699791, -0.0708562508225441, 0.11683133989572525, -0.028530612587928772, 0.06892451643943787, 0.055363982915878296, -0.06408154964447021, 0.08760266751050949, 0.06145014613866806, 0.052186593413352966, -0.004223024006932974, -0.026983410120010376, -0.03932001814246178, -0.048403188586235046, 0.16659557819366455, -0.13727211952209473, 0.06349699199199677, -0.15352196991443634, -0.08082437515258789, -0.03263482078909874, -0.012263231910765171, 0.04919743910431862, -0.0925556868314743, -0.08373043686151505, 0.04637596383690834, 0.04181276634335518, 0.009975805878639221, 0.025428280234336853, 0.0006472950335592031, 0.07992157340049744, 0.15671773254871368, 0.08266709744930267, -0.0699290931224823, -0.10249011963605881, 0.04932939261198044, 0.003239431418478489, 0.10070677101612091, -0.16698184609413147, 0.025776566937565804, 0.12953278422355652, 0.025570711120963097, 0.13159812986850739, 0.060542698949575424, -0.048997487872838974, -0.025536784902215004, 0.039025794714689255, -0.15143465995788574, -0.05687851086258888, -0.04986170306801796, -0.04458332061767578, -0.08154991269111633, 0.023373723030090332, 0.061599183827638626, -0.12127683311700821, -0.022757232189178467, -0.010583377443253994, 0.02208659239113331, -0.056177861988544464, 0.26022955775260925, 0.06507408618927002, 0.08947733789682388, -0.09616225212812424, 0.026253674179315567, 0.0652412548661232, -0.06454251706600189, 0.00881009642034769, 0.06822749972343445, -0.11719833314418793, -0.015511740930378437, 0.07285316288471222, 0.06384103745222092, 0.024667194113135338, -0.06743398308753967, -0.09736921638250351, -0.05210447683930397, 0.027986939996480942, 0.029092855751514435, 0.09215456247329712, 0.07309724390506744, -0.046373046934604645, -0.04527819901704788, -0.15516196191310883, 0.08883830159902573, 0.10770580917596817, 0.04452923312783241, -0.050432585179805756, 0.20537154376506805, -0.027983060106635094, 0.06454796344041824, -0.05129797384142876, -0.029314368963241577, -0.06178569048643112, 0.032406751066446304, -0.028681855648756027, 0.021212195977568626, -0.04252549260854721, -0.0076232594437897205, -0.0267032403498888, -0.030169198289513588, -0.008257145993411541, 0.025888686999678612, -0.06191456317901611, 0.028467925265431404, -0.014888855628669262, 0.026380855590105057, -0.025900056585669518, -0.05941265448927879, 0.009334306232631207, -0.03694529086351395, 0.05847601965069771, 0.05892108380794525, -0.07126617431640625, 0.03158017620444298, -0.011873713694512844, -0.03880062326788902, 0.051781851798295975, 0.06921988725662231, 0.03134949505329132, -0.057932887226343155, 0.03591903671622276, 0.008837730623781681, 0.010601557791233063, -0.022553576156497, 0.06672419607639313, -0.05907484516501427, -0.03556538745760918, -0.0386744886636734, -0.023573165759444237, -0.08862368017435074, -0.0063630761578679085, 0.017012516036629677, 0.1296999305486679, 0.12616440653800964, -0.07376714795827866, 0.006555142812430859, -0.17503675818443298, -0.012415515258908272, 0.011818106286227703, -0.10555118322372437, -0.1386907994747162, -0.04892011731863022, 0.07258874922990799, -0.022820141166448593, 0.09640616923570633, 0.0038630932103842497, -0.06244906783103943, -0.030342185869812965, 0.009658821858465672, 0.08438029885292053, -0.057243652641773224, 0.194198876619339, 0.00439901789650321, -0.02473350614309311, -0.03767542913556099, 0.08564285188913345, 0.08899150788784027, 0.17423999309539795, 0.15014317631721497, 0.014970291405916214, 0.09922866523265839, 0.08861279487609863, -0.0365433432161808, -0.03514067456126213, -0.047150369733572006, 0.0019032765412703156, -0.00899352878332138, 0.045277584344148636, -0.02580777369439602, 0.2076648771762848, 0.18022221326828003, -0.08041970431804657, 0.04046771302819252, -0.022811230272054672, -0.10102059692144394, -0.11724559962749481, -0.12237050384283066, -0.0872972384095192, -0.1244911402463913, -0.028305087238550186, -0.12014781683683395, -0.021208595484495163, 0.12318804860115051, 0.04253026470541954, -0.022702708840370178, 0.07811830192804337, 0.06165861710906029, -0.04409067705273628, 0.04416688531637192, -0.06402851641178131, 0.06312741339206696, 0.008729654364287853, -0.03475793078541756, 0.0784156396985054, -0.0654272511601448, 0.09488212317228317, -0.0133871641010046, 0.12631350755691528, 0.04625630006194115, 0.006467791274189949, -0.08884580433368683, -0.06424053013324738, 0.005368480924516916, 0.03523442521691322, 0.109218068420887, 0.062150247395038605, -0.025435667484998703, 0.011631258763372898, 0.146530419588089, -0.05346375331282616, -0.10351083427667618, -0.08811460435390472, 0.24703766405582428, 0.0687367171049118, -0.004094807431101799, 0.09706522524356842, -0.04626637324690819, -0.049329955130815506, 0.17269328236579895, 0.1553487777709961, -0.025382377207279205, -0.038936398923397064, 0.010734129697084427, -0.007404282223433256, 0.019895488396286964, 0.14432542026042938, 0.021120131015777588, 0.1335168480873108, -0.028617901727557182, 0.03219650685787201, -0.026001254096627235, 0.019872186705470085, -0.025650711730122566, 0.007232723757624626, 0.0022121898364275694, -0.026038751006126404, -0.058012593537569046, 0.04531489685177803, -0.008376959711313248, -0.0446048378944397, -0.03189326450228691, -0.08294793963432312, -0.13371621072292328, -0.04061007872223854, 0.06752695143222809, 0.05940740555524826, 0.13389843702316284, -0.08916579186916351, 0.08360857516527176, -0.012354881502687931, -0.058692120015621185, -0.12168341875076294, -0.06915947794914246, 0.07426106184720993, -0.01144349854439497, 0.07301130145788193, 0.012163433246314526, 0.13969798386096954, 0.061293359845876694, -0.011549584567546844, -0.11998965591192245, 0.0965556874871254, 0.007276664953678846, 0.028127124533057213, 0.059184297919273376, 0.09711086750030518, -0.043260086327791214, 0.06514264643192291, 0.01341001782566309, -0.15448033809661865, -0.04754588007926941, -0.06066511943936348, -0.0005395898479036987, -0.13044731318950653, 0.01663447916507721, 0.0017534783110022545, 0.14893169701099396, 0.12823940813541412, -0.04271475970745087, -0.03592288866639137, -0.06298235058784485, -0.001330605591647327, 0.021632911637425423, 0.07845992594957352, -0.06458458304405212, -0.13506647944450378, -0.048806726932525635, -0.05901853367686272, 0.0296377744525671, -0.2274160534143448, 0.02128216251730919, -0.08984799683094025, -0.02334815263748169, -0.04699192941188812, 0.12656022608280182, 0.02255050651729107, 0.02690667286515236, -0.04666578769683838, -0.05461854487657547, -0.007236189674586058, 0.07896849513053894, -0.1804998368024826, -0.17625665664672852 ]
null
null
sentence-transformers
# Model description The project aims to train sentence embedding models on very large sentence level datasets using a self-supervised contrastive learning objective. We used the pretrained ['MiniLM-L6-H384-uncased'](https://huggingface.co/nreimers/MiniLM-L6-H384-uncased) model and fine-tuned in on a 1B sentence pairs dataset. We use a contrastive learning objective: given a sentence from the pair, the model should predict which out of a set of randomly sampled other sentences, was actually paired with it in our dataset. We developped this model during the [Community week using JAX/Flax for NLP & CV](https://discuss.huggingface.co/t/open-to-the-community-community-week-using-jax-flax-for-nlp-cv/7104), organized by Hugging Face. We developped this model as part of the project: [Train the Best Sentence Embedding Model Ever with 1B Training Pairs](https://discuss.huggingface.co/t/train-the-best-sentence-embedding-model-ever-with-1b-training-pairs/7354). We benefited from efficient hardware infrastructure to run the project: 7 TPUs v3-8, as well as intervention from Google’s Flax, JAX, and Cloud team member about efficient deep learning frameworks. ## Intended uses Our model is intented to be used as a sentence encoder. Given an input sentence, it ouptuts a vector which captures the sentence semantic information. The sentence vector may be used for information retrieval, clustering or sentence similarity tasks. ## How to use Here is how to use this model to get the features of a given text using [SentenceTransformers](https://github.com/UKPLab/sentence-transformers) library: ```python from sentence_transformers import SentenceTransformer model = SentenceTransformer('flax-sentence-embeddings/all_datasets_v3_MiniLM-L6') text = "Replace me by any text you'd like." text_embbedding = model.encode(text) # array([-0.01559514, 0.04046123, 0.1317083 , 0.00085931, 0.04585106, # -0.05607086, 0.0138078 , 0.03569756, 0.01420381, 0.04266302 ...], # dtype=float32) ``` # Training procedure ## Pre-training We use the pretrained ['MiniLM-L6-H384-uncased'](https://huggingface.co/nreimers/MiniLM-L6-H384-uncased) which is a 6 layer version of ['microsoft/MiniLM-L12-H384-uncased'](https://huggingface.co/microsoft/MiniLM-L12-H384-uncased) by keeping only every second layer. Please refer to the model card for more detailed information about the pre-training procedure. ## Fine-tuning We fine-tune the model using a contrastive objective. Formally, we compute the cosine similarity from each possible sentence pairs from the batch. We then apply the cross entropy loss by comparing with true pairs. ### Hyper parameters We trained ou model on a TPU v3-8. We train the model during 540k steps using a batch size of 1024 (128 per TPU core). We use a learning rate warm up of 500. The sequence length was limited to 128 tokens. We used the AdamW optimizer with a 2e-5 learning rate. The full training script is accessible in this current repository. ### Training data We use the concatenation from multiple datasets to fine-tune our model. The total number of sentence pairs is above 1 billion sentences. We sampled each dataset given a weighted probability which configuration is detailed in the `data_config.json` file. | Dataset | Paper | Number of training tuples | |:--------------------------------------------------------:|:----------------------------------------:|:--------------------------:| | [GOOAQ: Open Question Answering with Diverse Answer Types](https://github.com/allenai/gooaq) | [paper](https://arxiv.org/pdf/2104.08727.pdf) | 3,012,496 | | [Stack Exchange](https://huggingface.co/datasets/flax-sentence-embeddings/stackexchange_title_body_jsonl) | - | 364,001 | | [Flickr 30k](https://shannon.cs.illinois.edu/DenotationGraph/) | [paper](https://transacl.org/ojs/index.php/tacl/article/view/229/33) | 317,695 | | [COCO 2020](COCO 2020) | [paper](https://link.springer.com/chapter/10.1007%2F978-3-319-10602-1_48) | 828,395| | [Code Search](https://huggingface.co/datasets/code_search_net) | - | 1,151,414 | | [TriviaqQA](https://huggingface.co/datasets/trivia_qa) | - | 73,346 | | [SQuAD2.0](https://rajpurkar.github.io/SQuAD-explorer/) | [paper](https://aclanthology.org/P18-2124.pdf) | 87,599 | | [Natural Questions (NQ)](https://ai.google.com/research/NaturalQuestions) | [paper](https://transacl.org/ojs/index.php/tacl/article/view/1455) | 100,231 | | [Simple Wikipedia](https://cs.pomona.edu/~dkauchak/simplification/) | [paper](https://www.aclweb.org/anthology/P11-2117/) | 102,225 | | [Quora Question Pairs](https://quoradata.quora.com/First-Quora-Dataset-Release-Question-Pairs) | - | 103,663 | | [Altlex](https://github.com/chridey/altlex/) | [paper](https://aclanthology.org/P16-1135.pdf) | 112,696 | | [Wikihow](https://github.com/pvl/wikihow_pairs_dataset) | [paper](https://arxiv.org/abs/1810.09305) | 128,542 | | [Sentence Compression](https://github.com/google-research-datasets/sentence-compression) | [paper](https://www.aclweb.org/anthology/D13-1155/) | 180,000 | | AllNLI ([SNLI](https://nlp.stanford.edu/projects/snli/) and [MultiNLI](https://cims.nyu.edu/~sbowman/multinli/) | [paper SNLI](https://doi.org/10.18653/v1/d15-1075), [paper MultiNLI](https://doi.org/10.18653/v1/n18-1101) | 277,230 | | [Eli5](https://huggingface.co/datasets/eli5) | [paper](https://doi.org/10.18653/v1/p19-1346) | 325,475 | | [SPECTER](https://github.com/allenai/specter) | [paper](https://doi.org/10.18653/v1/2020.acl-main.207) | 684,100 | | [S2ORC](https://github.com/allenai/s2orc) Title/Abstract | [paper](https://aclanthology.org/2020.acl-main.447/) | 41,769,185 | | [S2ORC](https://github.com/allenai/s2orc) Citation/Citation | [paper](https://aclanthology.org/2020.acl-main.447/) | 52,603,982 | | [S2ORC](https://github.com/allenai/s2orc) Citation/Abstract | [paper](https://aclanthology.org/2020.acl-main.447/) | 116,288,806 | | [PAQ](https://github.com/facebookresearch/PAQ) | [paper](https://arxiv.org/abs/2102.07033) | 64,371,441 | | [WikiAnswers](https://github.com/afader/oqa#wikianswers-corpus) | [paper](https://doi.org/10.1145/2623330.2623677) | 77,427,422 | | SearchQA | - | 582,261 | | [Yahoo Answers](https://www.kaggle.com/soumikrakshit/yahoo-answers-dataset) Title/Answer | [paper](https://proceedings.neurips.cc/paper/2015/hash/250cf8b51c773f3f8dc8b4be867a9a02-Abstract.html) | 1,198,260 | | [Yahoo Answers](https://www.kaggle.com/soumikrakshit/yahoo-answers-dataset) Title/Question | [paper](https://proceedings.neurips.cc/paper/2015/hash/250cf8b51c773f3f8dc8b4be867a9a02-Abstract.html) | 659,896 | | [Yahoo Answers](https://www.kaggle.com/soumikrakshit/yahoo-answers-dataset) Question/Answer | [paper](https://proceedings.neurips.cc/paper/2015/hash/250cf8b51c773f3f8dc8b4be867a9a02-Abstract.html) | 681,164 | | [MS MARCO](https://microsoft.github.io/msmarco/) | [paper](https://doi.org/10.1145/3404835.3462804) | 9,144,553 | | [Reddit conversationnal](https://github.com/PolyAI-LDN/conversational-datasets/tree/master/reddit) | [paper](https://arxiv.org/abs/1904.06472) | 726,484,430 | | total | | 1,097,953,922 |
{"language": "en", "tags": ["sentence-transformers", "feature-extraction", "sentence-similarity"], "pipeline_tag": "sentence-similarity"}
sentence-similarity
flax-sentence-embeddings/all_datasets_v3_MiniLM-L6
[ "sentence-transformers", "pytorch", "bert", "feature-extraction", "sentence-similarity", "en", "arxiv:2104.08727", "arxiv:1810.09305", "arxiv:2102.07033", "arxiv:1904.06472", "endpoints_compatible", "has_space", "region:us" ]
2022-03-02T23:29:05+00:00
[ "2104.08727", "1810.09305", "2102.07033", "1904.06472" ]
[ "en" ]
TAGS #sentence-transformers #pytorch #bert #feature-extraction #sentence-similarity #en #arxiv-2104.08727 #arxiv-1810.09305 #arxiv-2102.07033 #arxiv-1904.06472 #endpoints_compatible #has_space #region-us
Model description ================= The project aims to train sentence embedding models on very large sentence level datasets using a self-supervised contrastive learning objective. We used the pretrained 'MiniLM-L6-H384-uncased' model and fine-tuned in on a 1B sentence pairs dataset. We use a contrastive learning objective: given a sentence from the pair, the model should predict which out of a set of randomly sampled other sentences, was actually paired with it in our dataset. We developped this model during the Community week using JAX/Flax for NLP & CV, organized by Hugging Face. We developped this model as part of the project: Train the Best Sentence Embedding Model Ever with 1B Training Pairs. We benefited from efficient hardware infrastructure to run the project: 7 TPUs v3-8, as well as intervention from Google’s Flax, JAX, and Cloud team member about efficient deep learning frameworks. Intended uses ------------- Our model is intented to be used as a sentence encoder. Given an input sentence, it ouptuts a vector which captures the sentence semantic information. The sentence vector may be used for information retrieval, clustering or sentence similarity tasks. How to use ---------- Here is how to use this model to get the features of a given text using SentenceTransformers library: Training procedure ================== Pre-training ------------ We use the pretrained 'MiniLM-L6-H384-uncased' which is a 6 layer version of 'microsoft/MiniLM-L12-H384-uncased' by keeping only every second layer. Please refer to the model card for more detailed information about the pre-training procedure. Fine-tuning ----------- We fine-tune the model using a contrastive objective. Formally, we compute the cosine similarity from each possible sentence pairs from the batch. We then apply the cross entropy loss by comparing with true pairs. ### Hyper parameters We trained ou model on a TPU v3-8. We train the model during 540k steps using a batch size of 1024 (128 per TPU core). We use a learning rate warm up of 500. The sequence length was limited to 128 tokens. We used the AdamW optimizer with a 2e-5 learning rate. The full training script is accessible in this current repository. ### Training data We use the concatenation from multiple datasets to fine-tune our model. The total number of sentence pairs is above 1 billion sentences. We sampled each dataset given a weighted probability which configuration is detailed in the 'data\_config.json' file.
[ "### Hyper parameters\n\n\nWe trained ou model on a TPU v3-8. We train the model during 540k steps using a batch size of 1024 (128 per TPU core).\nWe use a learning rate warm up of 500. The sequence length was limited to 128 tokens. We used the AdamW optimizer with\na 2e-5 learning rate. The full training script is accessible in this current repository.", "### Training data\n\n\nWe use the concatenation from multiple datasets to fine-tune our model. The total number of sentence pairs is above 1 billion sentences.\nWe sampled each dataset given a weighted probability which configuration is detailed in the 'data\\_config.json' file." ]
[ "TAGS\n#sentence-transformers #pytorch #bert #feature-extraction #sentence-similarity #en #arxiv-2104.08727 #arxiv-1810.09305 #arxiv-2102.07033 #arxiv-1904.06472 #endpoints_compatible #has_space #region-us \n", "### Hyper parameters\n\n\nWe trained ou model on a TPU v3-8. We train the model during 540k steps using a batch size of 1024 (128 per TPU core).\nWe use a learning rate warm up of 500. The sequence length was limited to 128 tokens. We used the AdamW optimizer with\na 2e-5 learning rate. The full training script is accessible in this current repository.", "### Training data\n\n\nWe use the concatenation from multiple datasets to fine-tune our model. The total number of sentence pairs is above 1 billion sentences.\nWe sampled each dataset given a weighted probability which configuration is detailed in the 'data\\_config.json' file." ]
[ 79, 89, 66 ]
[ "passage: TAGS\n#sentence-transformers #pytorch #bert #feature-extraction #sentence-similarity #en #arxiv-2104.08727 #arxiv-1810.09305 #arxiv-2102.07033 #arxiv-1904.06472 #endpoints_compatible #has_space #region-us \n### Hyper parameters\n\n\nWe trained ou model on a TPU v3-8. We train the model during 540k steps using a batch size of 1024 (128 per TPU core).\nWe use a learning rate warm up of 500. The sequence length was limited to 128 tokens. We used the AdamW optimizer with\na 2e-5 learning rate. The full training script is accessible in this current repository.### Training data\n\n\nWe use the concatenation from multiple datasets to fine-tune our model. The total number of sentence pairs is above 1 billion sentences.\nWe sampled each dataset given a weighted probability which configuration is detailed in the 'data\\_config.json' file." ]
[ -0.09201109409332275, 0.017708173021674156, 0.0007281600846908987, 0.06549153476953506, 0.08606298267841339, 0.02625185064971447, 0.03089722990989685, 0.09053359180688858, -0.0734308585524559, 0.09253323823213577, 0.142208069562912, 0.047674667090177536, 0.0706716924905777, 0.18233586847782135, -0.05991838499903679, -0.16694240272045135, 0.020188242197036743, 0.008317824453115463, 0.03213721886277199, 0.11712642759084702, 0.055006179958581924, -0.09163080155849457, 0.05689315125346184, -0.04602888599038124, -0.1516314446926117, 0.005258951336145401, -0.0007229663897305727, 0.013742517679929733, 0.10081829875707626, 0.07550671696662903, 0.06731007248163223, 0.032934967428445816, 0.03546333685517311, -0.08834586292505264, 0.013586183078587055, 0.021029740571975708, 0.030851993709802628, 0.08143625408411026, -0.0006951636751182377, 0.007914244197309017, 0.05500555783510208, -0.03764057159423828, 0.016006775200366974, 0.04137879237532616, -0.09245505183935165, -0.03348223865032196, -0.009358583018183708, 0.035495638847351074, 0.07926618307828903, 0.025562824681401253, -0.027940211817622185, 0.1433003693819046, -0.06612630933523178, 0.06211351230740547, 0.05862126499414444, -0.24045400321483612, -0.007102681789547205, 0.1843043714761734, 0.044451527297496796, 0.07055113464593887, -0.0459975004196167, -0.04685305058956146, 0.1344471424818039, 0.03386872634291649, 0.0798211321234703, -0.022890815511345863, -0.04985203221440315, 0.0341687947511673, -0.12651492655277252, -0.03297998383641243, 0.2266002595424652, 0.018213827162981033, -0.06015419960021973, -0.09155204147100449, -0.04655792564153671, -0.0841316431760788, 0.03609057888388634, 0.025071920827031136, -0.039100728929042816, -0.0034160709474235773, -0.05054270103573799, 0.08456983417272568, -0.10351870208978653, -0.13085058331489563, -0.07161349058151245, 0.18850989639759064, 0.026838475838303566, 0.06362340599298477, -0.06721213459968567, 0.10526449233293533, -0.1764570027589798, -0.09269434958696365, 0.016506927087903023, -0.05333053693175316, -0.0885019600391388, -0.01567286066710949, -0.08019664138555527, -0.0984579548239708, 0.018339810892939568, 0.07011108100414276, 0.04371907562017441, 0.013056006282567978, 0.10830128937959671, 0.05433352291584015, 0.0834280326962471, 0.0855344608426094, -0.03712267428636551, -0.09601850807666779, 0.01206507533788681, 0.10122662782669067, -0.020228583365678787, -0.010246280580759048, -0.09665636718273163, -0.08055152744054794, 0.08248931169509888, -0.012399302795529366, -0.016533097252249718, 0.08165544271469116, -0.027614714577794075, -0.040399208664894104, 0.10321515053510666, -0.09303348511457443, -0.0396801121532917, 0.01656634733080864, -0.13791513442993164, 0.027739468961954117, -0.03403547406196594, -0.05126775801181793, -0.0621391162276268, 0.034592222422361374, -0.09126503020524979, -0.033007487654685974, -0.11004919558763504, -0.2031431794166565, -0.021544188261032104, -0.05659017339348793, 0.001295816502533853, -0.10280317813158035, -0.11656300723552704, -0.08541429042816162, -0.006741153541952372, -0.015836086124181747, -0.05995278060436249, -0.08996190875768661, -0.004541664384305477, -0.002669100183993578, -0.04806648567318916, 0.07871932536363602, -0.05267946794629097, 0.08746223896741867, -0.009075231850147247, 0.09331396222114563, -0.003632428590208292, 0.018481114879250526, -0.10614703595638275, -0.013386409729719162, -0.05093780905008316, 0.05921892076730728, 0.05105770006775856, 0.09442362189292908, -0.10815014690160751, -0.0904284194111824, -0.048086799681186676, -0.016001898795366287, 0.030223239213228226, 0.1287144124507904, -0.20311018824577332, -0.018524086102843285, 0.14247570931911469, -0.07003773748874664, -0.11186005920171738, 0.1510927975177765, -0.0483061857521534, 0.011228385381400585, 0.10021622478961945, 0.12703837454319, 0.0706874281167984, -0.030791494995355606, -0.02810578979551792, 0.02407621592283249, -0.02158106490969658, -0.07744396477937698, 0.09047520905733109, 0.04923132434487343, -0.13771255314350128, 0.018365580588579178, 0.03004411794245243, 0.06239800155162811, -0.05408257618546486, -0.015428891405463219, -0.0016409476520493627, -0.08515462279319763, -0.02667458914220333, 0.00529222609475255, -0.007742045447230339, -0.0979771614074707, -0.05418636277318001, -0.04198014736175537, 0.14826367795467377, -0.09848128259181976, -0.016396766528487206, -0.06271465122699738, 0.0592963881790638, -0.0793456882238388, -0.01971176639199257, -0.12370768189430237, 0.028230031952261925, 0.06084286794066429, 0.10884193331003189, 0.019984660670161247, 0.10284263640642166, 0.07326433807611465, 0.06529462337493896, -0.010165051557123661, -0.030514560639858246, 0.05805046856403351, -0.033018335700035095, -0.09171660989522934, -0.10645797103643417, -0.09327099472284317, -0.07022269815206528, 0.09788661450147629, -0.16202540695667267, -0.014723068103194237, -0.03526277467608452, -0.004084462765604258, -0.010732031427323818, -0.023913344368338585, 0.05267656594514847, 0.022603055462241173, -0.0687071830034256, -0.030673062428832054, 0.05619826912879944, 0.014333901926875114, -0.1141609475016594, 0.05474783480167389, -0.19064775109291077, -0.038281604647636414, 0.08278896659612656, 0.03800875321030617, -0.055570442229509354, -0.14650948345661163, -0.051807601004838943, -0.028988588601350784, -0.05880574882030487, -0.03766778111457825, 0.18367086350917816, 0.01719523034989834, 0.12531523406505585, -0.09977693855762482, -0.016167355701327324, -0.0014797489857301116, 0.010286282747983932, 0.03800100088119507, 0.07602225244045258, -0.02175697684288025, -0.1569439172744751, 0.037660058587789536, -0.07347851246595383, -0.07595641911029816, 0.11588043719530106, -0.0114357378333807, -0.08630133420228958, 0.006695875432342291, 0.050471846014261246, -0.015267221257090569, 0.041891034692525864, -0.06025828421115875, -0.05597138777375221, 0.05899307131767273, 0.008965957909822464, 0.002410425338894129, -0.14543208479881287, 0.0026980696711689234, 0.03426111489534378, -0.029907606542110443, -0.019962528720498085, -0.04715981334447861, -0.03589947894215584, 0.07943839579820633, 0.02876465953886509, -0.12099405378103256, 0.004640643019229174, -0.028412895277142525, -0.09442082047462463, 0.18431439995765686, -0.012039275839924812, -0.06725041568279266, -0.10639141499996185, 0.042697254568338394, -0.016062315553426743, 0.02063083089888096, 0.000018914714019047096, -0.022042911499738693, -0.05945248156785965, -0.09860134869813919, 0.054432835429906845, -0.05454574152827263, 0.051427893340587616, -0.10238830745220184, -0.0071380711160600185, 0.015419560484588146, -0.1423538476228714, -0.0023763361386954784, -0.049989454448223114, -0.05839379504323006, 0.07107532769441605, -0.11232918500900269, 0.05725973844528198, 0.18425828218460083, -0.06190637871623039, 0.04501604288816452, -0.05346363037824631, 0.20308208465576172, 0.017746971920132637, 0.025349346920847893, 0.15088379383087158, 0.024139119312167168, 0.0032707946375012398, 0.13835091888904572, 0.017674366012215614, -0.029687976464629173, 0.10296132415533066, -0.028838589787483215, -0.03851071745157242, -0.1766824871301651, -0.07401517033576965, -0.05870248004794121, 0.042412564158439636, 0.18020112812519073, 0.02634306252002716, 0.009667443111538887, 0.0922248438000679, -0.05017993226647377, 0.07353140413761139, -0.00008599642751505598, 0.05870083346962929, -0.0649719312787056, 0.06535566598176956, 0.11220148205757141, -0.013981697149574757, -0.04788729548454285, 0.0772317498922348, 0.00980069674551487, 0.14997147023677826, -0.07619919627904892, 0.12346141785383224, 0.023893436416983604, 0.0967511236667633, 0.04579555615782738, 0.14667873084545135, -0.0800866037607193, 0.0011954583460465074, -0.05902957171201706, -0.07450150698423386, -0.0693364292383194, 0.10611256211996078, 0.07328522950410843, 0.0628100037574768, -0.05921847000718117, -0.09507142752408981, 0.024871952831745148, 0.0711502879858017, 0.18139179050922394, -0.351672887802124, -0.09767094254493713, 0.025329239666461945, -0.003382687224075198, -0.02474716119468212, 0.0879397913813591, 0.17320093512535095, -0.008261565119028091, 0.04097045212984085, 0.00451761344447732, 0.13603715598583221, -0.021423742175102234, -0.0025700486730784178, -0.048134904354810715, 0.09805364161729813, -0.05770277604460716, 0.12483905255794525, -0.25196146965026855, 0.146699458360672, 0.0324016809463501, 0.061912212520837784, -0.0829545110464096, -0.014759763143956661, 0.01136060617864132, 0.007570056244730949, 0.04022015258669853, -0.02069007232785225, 0.024225199595093727, -0.12735702097415924, -0.08498205989599228, 0.03029341623187065, -0.02024685963988304, -0.015157223679125309, 0.1092449352145195, -0.00018031190847977996, 0.014888379722833633, 0.008033879101276398, 0.06256743520498276, -0.002280902350321412, -0.046154964715242386, -0.041320282965898514, 0.08503507822751999, 0.01230700220912695, -0.020391620695590973, -0.07348868250846863, -0.02141537517309189, 0.1325235217809677, 0.0029586830642074347, -0.06685151159763336, -0.08791910856962204, 0.10416673123836517, 0.11507004499435425, -0.059484753757715225, -0.06328825652599335, 0.04091633856296539, 0.08280365914106369, -0.040832098573446274, -0.06433029472827911, 0.08485256135463715, -0.05159758776426315, -0.06667951494455338, -0.04516121372580528, 0.11037353426218033, 0.030207060277462006, 0.09174297749996185, -0.010727237910032272, 0.002949734218418598, -0.08606409281492233, -0.10972907394170761, 0.0017575996462255716, -0.003951616119593382, 0.16302892565727234, 0.07343088090419769, 0.011109057813882828, -0.033850762993097305, -0.06898929178714752, 0.052783530205488205, 0.11251898109912872, 0.1911850869655609, -0.07943827658891678, -0.029961666092276573, 0.14674966037273407, 0.002840687520802021, -0.18385182321071625, -0.053640104830265045, 0.03558681905269623, 0.09412776678800583, -0.05018341913819313, -0.06911227852106094, 0.022601699456572533, 0.03131721913814545, 0.004989338107407093, -0.03919586166739464, -0.3198506832122803, -0.10690335184335709, 0.05982084199786186, 0.08600181341171265, 0.29219940304756165, -0.09432674199342728, 0.0151643892750144, -0.02021300420165062, -0.10581789910793304, 0.1249600201845169, -0.0832531675696373, 0.09421083331108093, -0.029521964490413666, 0.05692252516746521, 0.055733535438776016, -0.0647687017917633, 0.09782155603170395, 0.05737490579485893, 0.07869279384613037, -0.005522291641682386, -0.04617222398519516, -0.04036591947078705, -0.058356646448373795, 0.15961813926696777, -0.14818571507930756, 0.05032480135560036, -0.16361932456493378, -0.08123020082712173, -0.024670373648405075, 0.0013618177035823464, 0.04142192378640175, -0.07274407148361206, -0.10088017582893372, 0.03775385767221451, 0.044704653322696686, 0.007019882556051016, 0.050996411591768265, -0.00892629474401474, 0.092737577855587, 0.17092235386371613, 0.10814658552408218, -0.0826752558350563, -0.0733155906200409, 0.07051350176334381, 0.006029796786606312, 0.10771790146827698, -0.16714347898960114, 0.022400284186005592, 0.13595552742481232, 0.043582577258348465, 0.155758336186409, 0.06423785537481308, -0.08619549870491028, -0.027339473366737366, 0.046809300780296326, -0.1417495310306549, -0.04817420244216919, -0.033957041800022125, -0.02363867685198784, -0.09961660951375961, -0.0068754334934055805, 0.05060286447405815, -0.10583864152431488, -0.012883161194622517, -0.011753138154745102, 0.016305025666952133, -0.054704565554857254, 0.2507007420063019, 0.08087930828332901, 0.08502499014139175, -0.11151409894227982, 0.028511792421340942, 0.07094089686870575, -0.0896897241473198, 0.01761503703892231, 0.05808752030134201, -0.09351418167352676, 0.0008251568651758134, 0.05441753938794136, 0.08194266259670258, 0.008397549390792847, -0.07939199358224869, -0.08258025348186493, -0.06958260387182236, 0.029444031417369843, 0.07604236155748367, 0.08838112652301788, 0.09230652451515198, -0.03151552006602287, -0.05469941347837448, -0.15439729392528534, 0.07504341751337051, 0.08996254950761795, 0.028102194890379906, -0.04140082746744156, 0.22747504711151123, -0.0037104745861142874, 0.03357897698879242, -0.05178404971957207, -0.030198395252227783, -0.08848903328180313, 0.028129972517490387, 0.013618368655443192, 0.051647383719682693, -0.0703868642449379, 0.00982666201889515, -0.007680004462599754, -0.02217138558626175, -0.021472951397299767, 0.013529841788113117, -0.06845449656248093, 0.027110159397125244, -0.007536310702562332, 0.02923925593495369, -0.02480318956077099, -0.07283613830804825, 0.0134656373411417, -0.04281315207481384, 0.038443826138973236, 0.03826073929667473, -0.04664655402302742, 0.01080940943211317, -0.016231603920459747, -0.009803085587918758, 0.07139655202627182, 0.05619142949581146, 0.018053391948342323, -0.07481157779693604, 0.033355243504047394, 0.006554591469466686, -0.017652004957199097, -0.012078950181603432, 0.027314189821481705, -0.0702911764383316, -0.03255544975399971, -0.0407746359705925, -0.03605678305029869, -0.09455155581235886, 0.0062525514513254166, 0.03289181366562843, 0.09654609858989716, 0.12030916661024094, -0.051760610193014145, -0.013058055192232132, -0.182264506816864, -0.008623657748103142, -0.0022282034624367952, -0.08990858495235443, -0.14582635462284088, -0.011563105508685112, 0.07547616213560104, -0.0024256922770291567, 0.11513020098209381, 0.00769042270258069, -0.08829731494188309, -0.018302462995052338, 0.012893679551780224, 0.09907080233097076, -0.0559801422059536, 0.17963092029094696, 0.005934490822255611, -0.02920953929424286, -0.01685645990073681, 0.08190599828958511, 0.08048251271247864, 0.14971478283405304, 0.13718952238559723, -0.007654623594135046, 0.09047547727823257, 0.07909208536148071, -0.038505058735609055, -0.053578656166791916, -0.007245940621942282, 0.015812138095498085, -0.01755882054567337, 0.019436627626419067, -0.005899472162127495, 0.19731950759887695, 0.1766257882118225, -0.08950532972812653, 0.03856954723596573, -0.006267910357564688, -0.09276613593101501, -0.11872977763414383, -0.12819574773311615, -0.0846640020608902, -0.11738166958093643, -0.03187203407287598, -0.1254553198814392, -0.01839394122362137, 0.1499449908733368, 0.035426922142505646, -0.007641285192221403, 0.04739042744040489, 0.02321058139204979, -0.050359003245830536, 0.033678337931632996, -0.04945205897092819, 0.058071911334991455, 0.021672675386071205, -0.027954060584306717, 0.10376652330160141, -0.1016978994011879, 0.08481276035308838, -0.0028342618606984615, 0.13906002044677734, 0.052928660064935684, 0.015130436979234219, -0.09010598808526993, -0.050408922135829926, -0.00111980433575809, 0.05983181670308113, 0.13742592930793762, 0.06872392445802689, -0.011256350204348564, -0.000401650439016521, 0.11773629486560822, -0.045108500868082047, -0.06629032641649246, -0.09658859670162201, 0.2736028730869293, 0.06217325106263161, -0.003712322097271681, 0.08284138888120651, -0.06321920454502106, -0.03094382770359516, 0.14722755551338196, 0.12144097685813904, 0.0025074046570807695, -0.03542913869023323, -0.007005166262388229, -0.007935399189591408, 0.037993453443050385, 0.12448040395975113, 0.005066161043941975, 0.13431498408317566, -0.025830410420894623, 0.028055783361196518, -0.03162067010998726, 0.016519537195563316, 0.0088471919298172, -0.0035106749273836613, 0.004693704657256603, -0.029884742572903633, -0.06535495817661285, 0.03154459595680237, 0.001962389564141631, -0.04878176376223564, 0.01864435151219368, -0.09763486683368683, -0.1010766476392746, -0.03160153701901436, 0.036503974348306656, 0.058008577674627304, 0.1295614242553711, -0.07915002107620239, 0.06788075715303421, -0.03183046355843544, -0.055487290024757385, -0.15812896192073822, -0.08529619127511978, 0.0791473537683487, -0.00585958594456315, 0.0682024136185646, -0.009725063107907772, 0.146406888961792, 0.0857788622379303, -0.013478679582476616, -0.12346707284450531, 0.11510144174098969, 0.005551449954509735, 0.022844994440674782, 0.050739835947752, 0.09813500195741653, -0.01995212957262993, 0.08558178693056107, 0.030737388879060745, -0.13868901133537292, -0.04016755893826485, -0.07639018446207047, -0.008471791632473469, -0.15259559452533722, 0.007774436380714178, 0.007123307324945927, 0.15229320526123047, 0.1283184289932251, -0.050138793885707855, -0.029111402109265327, -0.051873523741960526, -0.007142775692045689, 0.016820760443806648, 0.08690854161977768, -0.054650988429784775, -0.14211590588092804, -0.017329523339867592, -0.06463061273097992, 0.009127514436841011, -0.23426669836044312, 0.018013041466474533, -0.08552678674459457, -0.03237803652882576, -0.03677257150411606, 0.10246206820011139, -0.001893040258437395, 0.04429665580391884, -0.058501847088336945, -0.10423442721366882, 0.0021922243759036064, 0.08201851695775986, -0.16478683054447174, -0.16903381049633026 ]
null
null
sentence-transformers
# Model description The project aims to train sentence embedding models on very large sentence level datasets using a self-supervised contrastive learning objective. We used the pretrained [`distilroberta-base`](https://huggingface.co/distilroberta-base) model and fine-tuned in on a 1B sentence pairs dataset. We use a contrastive learning objective: given a sentence from the pair, the model should predict which out of a set of randomly sampled other sentences, was actually paired with it in our dataset. We developped this model during the [Community week using JAX/Flax for NLP & CV](https://discuss.huggingface.co/t/open-to-the-community-community-week-using-jax-flax-for-nlp-cv/7104), organized by Hugging Face. We developped this model as part of the project: [Train the Best Sentence Embedding Model Ever with 1B Training Pairs](https://discuss.huggingface.co/t/train-the-best-sentence-embedding-model-ever-with-1b-training-pairs/7354). We benefited from efficient hardware infrastructure to run the project: 7 TPUs v3-8, as well as intervention from Google’s Flax, JAX, and Cloud team member about efficient deep learning frameworks. ## Intended uses Our model is intented to be used as a sentence encoder. Given an input sentence, it ouptuts a vector which captures the sentence semantic information. The sentence vector may be used for information retrieval, clustering or sentence similarity tasks. ## How to use Here is how to use this model to get the features of a given text using [SentenceTransformers](https://github.com/UKPLab/sentence-transformers) library: ```python from sentence_transformers import SentenceTransformer model = SentenceTransformer('flax-sentence-embeddings/all_datasets_v3_distilroberta-base') text = "Replace me by any text you'd like." text_embbedding = model.encode(text) # array([-0.01559514, 0.04046123, 0.1317083 , 0.00085931, 0.04585106, # -0.05607086, 0.0138078 , 0.03569756, 0.01420381, 0.04266302 ...], # dtype=float32) ``` # Training procedure ## Pre-training We use the pretrained [`distilroberta-base`](https://huggingface.co/distilroberta-base). Please refer to the model card for more detailed information about the pre-training procedure. ## Fine-tuning We fine-tune the model using a contrastive objective. Formally, we compute the cosine similarity from each possible sentence pairs from the batch. We then apply the cross entropy loss by comparing with true pairs. ### Hyper parameters We trained ou model on a TPU v3-8. We train the model during 540k steps using a batch size of 1024 (128 per TPU core). We use a learning rate warm up of 500. The sequence length was limited to 128 tokens. We used the AdamW optimizer with a 2e-5 learning rate. The full training script is accessible in this current repository. ### Training data We use the concatenation from multiple datasets to fine-tune our model. The total number of sentence pairs is above 1 billion sentences. We sampled each dataset given a weighted probability which configuration is detailed in the `data_config.json` file. | Dataset | Paper | Number of training tuples | |:--------------------------------------------------------:|:----------------------------------------:|:--------------------------:| | [GOOAQ: Open Question Answering with Diverse Answer Types](https://github.com/allenai/gooaq) | [paper](https://arxiv.org/pdf/2104.08727.pdf) | 3,012,496 | | [Stack Exchange](https://huggingface.co/datasets/flax-sentence-embeddings/stackexchange_title_body_jsonl) | - | 364,001 | | [Flickr 30k](https://shannon.cs.illinois.edu/DenotationGraph/) | [paper](https://transacl.org/ojs/index.php/tacl/article/view/229/33) | 317,695 | | [COCO 2020](COCO 2020) | [paper](https://link.springer.com/chapter/10.1007%2F978-3-319-10602-1_48) | 828,395| | [Code Search](https://huggingface.co/datasets/code_search_net) | - | 1,151,414 | | [TriviaqQA](https://huggingface.co/datasets/trivia_qa) | - | 73,346 | | [SQuAD2.0](https://rajpurkar.github.io/SQuAD-explorer/) | [paper](https://aclanthology.org/P18-2124.pdf) | 87,599 | | [Natural Questions (NQ)](https://ai.google.com/research/NaturalQuestions) | [paper](https://transacl.org/ojs/index.php/tacl/article/view/1455) | 100,231 | | [Simple Wikipedia](https://cs.pomona.edu/~dkauchak/simplification/) | [paper](https://www.aclweb.org/anthology/P11-2117/) | 102,225 | | [Quora Question Pairs](https://quoradata.quora.com/First-Quora-Dataset-Release-Question-Pairs) | - | 103,663 | | [Altlex](https://github.com/chridey/altlex/) | [paper](https://aclanthology.org/P16-1135.pdf) | 112,696 | | [Wikihow](https://github.com/pvl/wikihow_pairs_dataset) | [paper](https://arxiv.org/abs/1810.09305) | 128,542 | | [Sentence Compression](https://github.com/google-research-datasets/sentence-compression) | [paper](https://www.aclweb.org/anthology/D13-1155/) | 180,000 | | AllNLI ([SNLI](https://nlp.stanford.edu/projects/snli/) and [MultiNLI](https://cims.nyu.edu/~sbowman/multinli/) | [paper SNLI](https://doi.org/10.18653/v1/d15-1075), [paper MultiNLI](https://doi.org/10.18653/v1/n18-1101) | 277,230 | | [Eli5](https://huggingface.co/datasets/eli5) | [paper](https://doi.org/10.18653/v1/p19-1346) | 325,475 | | [SPECTER](https://github.com/allenai/specter) | [paper](https://doi.org/10.18653/v1/2020.acl-main.207) | 684,100 | | [S2ORC](https://github.com/allenai/s2orc) Title/Abstract | [paper](https://aclanthology.org/2020.acl-main.447/) | 41,769,185 | | [S2ORC](https://github.com/allenai/s2orc) Citation/Citation | [paper](https://aclanthology.org/2020.acl-main.447/) | 52,603,982 | | [S2ORC](https://github.com/allenai/s2orc) Citation/Abstract | [paper](https://aclanthology.org/2020.acl-main.447/) | 116,288,806 | | [PAQ](https://github.com/facebookresearch/PAQ) | [paper](https://arxiv.org/abs/2102.07033) | 64,371,441 | | [WikiAnswers](https://github.com/afader/oqa#wikianswers-corpus) | [paper](https://doi.org/10.1145/2623330.2623677) | 77,427,422 | | SearchQA | - | 582,261 | | [Yahoo Answers](https://www.kaggle.com/soumikrakshit/yahoo-answers-dataset) Title/Answer | [paper](https://proceedings.neurips.cc/paper/2015/hash/250cf8b51c773f3f8dc8b4be867a9a02-Abstract.html) | 1,198,260 | | [Yahoo Answers](https://www.kaggle.com/soumikrakshit/yahoo-answers-dataset) Title/Question | [paper](https://proceedings.neurips.cc/paper/2015/hash/250cf8b51c773f3f8dc8b4be867a9a02-Abstract.html) | 659,896 | | [Yahoo Answers](https://www.kaggle.com/soumikrakshit/yahoo-answers-dataset) Question/Answer | [paper](https://proceedings.neurips.cc/paper/2015/hash/250cf8b51c773f3f8dc8b4be867a9a02-Abstract.html) | 681,164 | | [MS MARCO](https://microsoft.github.io/msmarco/) | [paper](https://doi.org/10.1145/3404835.3462804) | 9,144,553 | | [Reddit conversationnal](https://github.com/PolyAI-LDN/conversational-datasets/tree/master/reddit) | [paper](https://arxiv.org/abs/1904.06472) | 726,484,430 | | total | | 1,097,953,922 |
{"language": "en", "tags": ["sentence-transformers", "feature-extraction", "sentence-similarity"], "pipeline_tag": "sentence-similarity"}
sentence-similarity
flax-sentence-embeddings/all_datasets_v3_distilroberta-base
[ "sentence-transformers", "pytorch", "roberta", "feature-extraction", "sentence-similarity", "en", "arxiv:2104.08727", "arxiv:1810.09305", "arxiv:2102.07033", "arxiv:1904.06472", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[ "2104.08727", "1810.09305", "2102.07033", "1904.06472" ]
[ "en" ]
TAGS #sentence-transformers #pytorch #roberta #feature-extraction #sentence-similarity #en #arxiv-2104.08727 #arxiv-1810.09305 #arxiv-2102.07033 #arxiv-1904.06472 #endpoints_compatible #region-us
Model description ================= The project aims to train sentence embedding models on very large sentence level datasets using a self-supervised contrastive learning objective. We used the pretrained 'distilroberta-base' model and fine-tuned in on a 1B sentence pairs dataset. We use a contrastive learning objective: given a sentence from the pair, the model should predict which out of a set of randomly sampled other sentences, was actually paired with it in our dataset. We developped this model during the Community week using JAX/Flax for NLP & CV, organized by Hugging Face. We developped this model as part of the project: Train the Best Sentence Embedding Model Ever with 1B Training Pairs. We benefited from efficient hardware infrastructure to run the project: 7 TPUs v3-8, as well as intervention from Google’s Flax, JAX, and Cloud team member about efficient deep learning frameworks. Intended uses ------------- Our model is intented to be used as a sentence encoder. Given an input sentence, it ouptuts a vector which captures the sentence semantic information. The sentence vector may be used for information retrieval, clustering or sentence similarity tasks. How to use ---------- Here is how to use this model to get the features of a given text using SentenceTransformers library: Training procedure ================== Pre-training ------------ We use the pretrained 'distilroberta-base'. Please refer to the model card for more detailed information about the pre-training procedure. Fine-tuning ----------- We fine-tune the model using a contrastive objective. Formally, we compute the cosine similarity from each possible sentence pairs from the batch. We then apply the cross entropy loss by comparing with true pairs. ### Hyper parameters We trained ou model on a TPU v3-8. We train the model during 540k steps using a batch size of 1024 (128 per TPU core). We use a learning rate warm up of 500. The sequence length was limited to 128 tokens. We used the AdamW optimizer with a 2e-5 learning rate. The full training script is accessible in this current repository. ### Training data We use the concatenation from multiple datasets to fine-tune our model. The total number of sentence pairs is above 1 billion sentences. We sampled each dataset given a weighted probability which configuration is detailed in the 'data\_config.json' file.
[ "### Hyper parameters\n\n\nWe trained ou model on a TPU v3-8. We train the model during 540k steps using a batch size of 1024 (128 per TPU core).\nWe use a learning rate warm up of 500. The sequence length was limited to 128 tokens. We used the AdamW optimizer with\na 2e-5 learning rate. The full training script is accessible in this current repository.", "### Training data\n\n\nWe use the concatenation from multiple datasets to fine-tune our model. The total number of sentence pairs is above 1 billion sentences.\nWe sampled each dataset given a weighted probability which configuration is detailed in the 'data\\_config.json' file." ]
[ "TAGS\n#sentence-transformers #pytorch #roberta #feature-extraction #sentence-similarity #en #arxiv-2104.08727 #arxiv-1810.09305 #arxiv-2102.07033 #arxiv-1904.06472 #endpoints_compatible #region-us \n", "### Hyper parameters\n\n\nWe trained ou model on a TPU v3-8. We train the model during 540k steps using a batch size of 1024 (128 per TPU core).\nWe use a learning rate warm up of 500. The sequence length was limited to 128 tokens. We used the AdamW optimizer with\na 2e-5 learning rate. The full training script is accessible in this current repository.", "### Training data\n\n\nWe use the concatenation from multiple datasets to fine-tune our model. The total number of sentence pairs is above 1 billion sentences.\nWe sampled each dataset given a weighted probability which configuration is detailed in the 'data\\_config.json' file." ]
[ 76, 89, 66 ]
[ "passage: TAGS\n#sentence-transformers #pytorch #roberta #feature-extraction #sentence-similarity #en #arxiv-2104.08727 #arxiv-1810.09305 #arxiv-2102.07033 #arxiv-1904.06472 #endpoints_compatible #region-us \n### Hyper parameters\n\n\nWe trained ou model on a TPU v3-8. We train the model during 540k steps using a batch size of 1024 (128 per TPU core).\nWe use a learning rate warm up of 500. The sequence length was limited to 128 tokens. We used the AdamW optimizer with\na 2e-5 learning rate. The full training script is accessible in this current repository.### Training data\n\n\nWe use the concatenation from multiple datasets to fine-tune our model. The total number of sentence pairs is above 1 billion sentences.\nWe sampled each dataset given a weighted probability which configuration is detailed in the 'data\\_config.json' file." ]
[ -0.09832437336444855, 0.016820183023810387, 0.00006350425246637315, 0.07187484949827194, 0.12101075053215027, 0.022486018016934395, 0.04081562161445618, 0.09339696168899536, -0.1101529598236084, 0.07622093707323074, 0.12479673326015472, 0.05971437320113182, 0.0646650642156601, 0.1824250966310501, -0.044530950486660004, -0.15987859666347504, 0.017732659354805946, -0.001286613754928112, -0.0036602283362299204, 0.11800049245357513, 0.07629874348640442, -0.07147017121315002, 0.058422867208719254, -0.05735592916607857, -0.16959786415100098, -0.0020510652102530003, -0.010964720509946346, -0.0012154746800661087, 0.11078169196844101, 0.06738750636577606, 0.07005292177200317, 0.03181588649749756, 0.03571631386876106, -0.0719863772392273, 0.019781365990638733, 0.02748008817434311, 0.030192876234650612, 0.08438050746917725, -0.01273085456341505, 0.014499708078801632, 0.06331613659858704, -0.045265860855579376, 0.010876729153096676, 0.044836390763521194, -0.09124956279993057, -0.014310315251350403, 0.00534036522731185, 0.022817537188529968, 0.10749603062868118, 0.04276401549577713, -0.0222100131213665, 0.12520849704742432, -0.06570988893508911, 0.06881950795650482, 0.0529821403324604, -0.2328597605228424, -0.021343760192394257, 0.16568489372730255, 0.03784366324543953, 0.06785956025123596, -0.0436183325946331, -0.043399013578891754, 0.12139362841844559, 0.0384431928396225, 0.0699448212981224, -0.019868778064846992, -0.1102559044957161, 0.03188367187976837, -0.1131514310836792, -0.022198716178536415, 0.25209787487983704, 0.0038592489436268806, -0.062302932143211365, -0.08716662228107452, -0.05393722653388977, -0.090439572930336, 0.030589208006858826, 0.02489471808075905, -0.04545033723115921, -0.000148588209412992, -0.06199058145284653, 0.057804930955171585, -0.11015411466360092, -0.13166525959968567, -0.06689305603504181, 0.15764231979846954, 0.04529830440878868, 0.05345376580953598, -0.06548815965652466, 0.10900801420211792, -0.15755826234817505, -0.08437155187129974, 0.004850137513130903, -0.0771518126130104, -0.11516833305358887, -0.005763644818216562, -0.09529410302639008, -0.14209958910942078, 0.04101058095693588, 0.07491561770439148, 0.08511913567781448, -0.0015652880538254976, 0.1311131715774536, 0.0603143647313118, 0.07564935088157654, 0.09478559345006943, -0.040721822530031204, -0.07973513752222061, 0.02747403085231781, 0.08969704061746597, -0.025334736332297325, -0.007225181441754103, -0.11068099737167358, -0.09365159273147583, 0.09529323875904083, -0.002963962033390999, -0.0063780867494642735, 0.08090294897556305, -0.008690248243510723, -0.04469465836882591, 0.10033310949802399, -0.09231159090995789, -0.06128300726413727, 0.008334869518876076, -0.13021241128444672, 0.02539818361401558, -0.02800769917666912, -0.059638407081365585, -0.06944466382265091, 0.014871621504426003, -0.0769100934267044, -0.04279542714357376, -0.11516109853982925, -0.18517424166202545, -0.035763975232839584, -0.06192305311560631, 0.008597781881690025, -0.12211426347494125, -0.1267118752002716, -0.0769527405500412, 0.005930105224251747, -0.029139282181859016, -0.07072029262781143, -0.09667567163705826, -0.0019211664330214262, -0.012253937311470509, -0.04568671062588692, 0.09822981804609299, -0.04529428482055664, 0.08855677396059036, 0.0010646161390468478, 0.0965064987540245, 0.000014985219422669616, 0.02293570153415203, -0.11241645365953445, -0.03437236696481705, -0.011620867997407913, 0.05633624270558357, 0.05508533865213394, 0.09829752147197723, -0.1033804640173912, -0.09275731444358826, -0.05532156676054001, -0.010574597865343094, 0.027044061571359634, 0.11634496599435806, -0.1866340935230255, -0.01424200739711523, 0.15844635665416718, -0.0603114515542984, -0.10676742345094681, 0.16539137065410614, -0.03723998740315437, 0.025214508175849915, 0.08902420103549957, 0.11237603425979614, 0.1026778444647789, -0.014474436640739441, 0.00952429324388504, 0.030871933326125145, -0.03188376873731613, -0.1094212457537651, 0.09016413241624832, 0.0577123761177063, -0.09539301693439484, 0.0357905849814415, 0.04500919580459595, 0.0761781558394432, -0.055389437824487686, -0.016760125756263733, -0.009828769601881504, -0.10405474901199341, -0.04316620156168938, 0.0033069055061787367, -0.003853927366435528, -0.09936635941267014, -0.05516689643263817, -0.0809326097369194, 0.1650194227695465, -0.09544152766466141, -0.02032315917313099, -0.04646405577659607, 0.06472869962453842, -0.06590229272842407, -0.021913817152380943, -0.12431872636079788, 0.009294809773564339, 0.05256348475813866, 0.12675762176513672, 0.033544015139341354, 0.12807567417621613, 0.06691484153270721, 0.07954255491495132, -0.0010142717510461807, -0.019734399393200874, 0.04437832161784172, -0.0361410453915596, -0.06238456070423126, -0.08802292495965958, -0.08389164507389069, -0.075968898832798, 0.11145799607038498, -0.1399984061717987, -0.01016266830265522, -0.08685257285833359, -0.00949840433895588, -0.021751750260591507, -0.014098679646849632, 0.06912841647863388, 0.014153292402625084, -0.07093654572963715, -0.03638223186135292, 0.06312970072031021, 0.021725203841924667, -0.06798945367336273, 0.0539100244641304, -0.16087760031223297, -0.04246344044804573, 0.0750228613615036, 0.042639583349227905, -0.06698822230100632, -0.10465770214796066, -0.05719444528222084, -0.03172080218791962, -0.049809906631708145, -0.02914421632885933, 0.18934495747089386, 0.007690689526498318, 0.1391746997833252, -0.09434740990400314, -0.0093791913241148, 0.009086540900170803, -0.009243356063961983, 0.052298009395599365, 0.07703433930873871, -0.0075438134372234344, -0.16623345017433167, 0.035872261971235275, -0.1012595146894455, -0.09323730319738388, 0.11934257298707962, -0.010630837641656399, -0.09214183688163757, 0.028692951425909996, 0.057758428156375885, -0.013971073552966118, 0.04404642805457115, -0.03749558702111244, -0.05469488725066185, 0.06818686425685883, -0.001158112776465714, 0.02656864933669567, -0.1407414972782135, -0.0013781572924926877, 0.029488587751984596, -0.028124114498496056, 0.020623713731765747, -0.015025733038783073, -0.03324750065803528, 0.08011355996131897, 0.025302015244960785, -0.13099177181720734, -0.006780750118196011, -0.023444820195436478, -0.08786329627037048, 0.1893852949142456, -0.01625276915729046, -0.09468052536249161, -0.11893929541110992, 0.04995660111308098, -0.010116755031049252, 0.020677169784903526, 0.00868035014718771, -0.04934103414416313, -0.0519142709672451, -0.08075381070375443, 0.035697899758815765, -0.052647665143013, 0.03413596376776695, -0.09568637609481812, 0.026329057291150093, 0.0018625445663928986, -0.1408223658800125, 0.006448452826589346, -0.04971570149064064, -0.09103350341320038, 0.07632030546665192, -0.12132425606250763, 0.061773769557476044, 0.17805540561676025, -0.06434546411037445, 0.047616492956876755, -0.046637192368507385, 0.18278981745243073, 0.026463305577635765, 0.028202321380376816, 0.17824316024780273, 0.03943851962685585, -0.0007926053949631751, 0.1131865531206131, -0.0006579473265446723, -0.01973561756312847, 0.10224029421806335, -0.04622797667980194, -0.043052513152360916, -0.18825854361057281, -0.07594824582338333, -0.06711386144161224, 0.03604748845100403, 0.1658603996038437, 0.039072565734386444, 0.025019999593496323, 0.10294576734304428, -0.04520216956734657, 0.04966464638710022, -0.0012964702909812331, 0.06761637330055237, -0.055233266204595566, 0.07419838011264801, 0.10507557541131973, -0.02375182695686817, -0.051909178495407104, 0.07611317187547684, 0.013158810324966908, 0.1820576786994934, -0.09162112325429916, 0.1136285662651062, 0.019974369555711746, 0.0886157900094986, 0.03758802264928818, 0.14344440400600433, -0.0754898339509964, 0.012477913871407509, -0.06399011611938477, -0.06255480647087097, -0.0800102949142456, 0.08997935801744461, 0.0568503737449646, 0.0342046283185482, -0.062205977737903595, -0.05064980313181877, 0.026222996413707733, 0.07348436862230301, 0.1954837590456009, -0.3469238877296448, -0.11169666796922684, 0.0013164292322471738, 0.003313810331746936, -0.03457074239850044, 0.09039031714200974, 0.15397310256958008, -0.02384069561958313, -0.0030103635508567095, -0.00007472043944289908, 0.14025115966796875, -0.02599477581679821, -0.009106619283556938, -0.025947583839297295, 0.11284209042787552, -0.03870629519224167, 0.13611453771591187, -0.24797669053077698, 0.15154556930065155, 0.012785951606929302, 0.06926308572292328, -0.07132522761821747, -0.012253974564373493, 0.0004570289747789502, 0.005804896354675293, 0.03620200231671333, -0.015601199120283127, -0.018389876931905746, -0.09318316727876663, -0.10377094894647598, 0.04122704267501831, -0.016992783173918724, -0.0024529604706913233, 0.10079941153526306, -0.02133389189839363, 0.007451868150383234, -0.0032785646617412567, 0.05409850552678108, 0.004430191125720739, -0.05935826897621155, -0.03426880016922951, 0.06939448416233063, -0.013540741987526417, -0.01508836355060339, -0.06937503069639206, -0.014754545874893665, 0.16124814748764038, 0.026917748153209686, -0.07831668108701706, -0.0845089703798294, 0.09404615312814713, 0.11863464117050171, -0.0668150782585144, -0.04357023909687996, 0.02231016382575035, 0.05990353971719742, -0.030737724155187607, -0.07764827460050583, 0.07266311347484589, -0.06625300645828247, -0.04802432656288147, -0.046455543488264084, 0.1047913134098053, 0.007849359884858131, 0.07380668073892593, -0.0036213065031915903, -0.0022414049599319696, -0.10956241935491562, -0.08511310070753098, -0.005216089077293873, -0.013870388269424438, 0.1622375249862671, 0.08012132346630096, -0.02030925266444683, -0.0523843951523304, -0.0788138136267662, 0.03702189400792122, 0.13209952414035797, 0.1978554129600525, -0.0786152258515358, -0.02268112637102604, 0.14839105308055878, 0.005795956589281559, -0.18059448897838593, -0.07800835371017456, 0.032755158841609955, 0.09386277943849564, -0.0717044323682785, -0.08899228274822235, 0.005737928207963705, 0.028368473052978516, 0.00963554996997118, -0.03648138791322708, -0.3246706426143646, -0.107403464615345, 0.07294541597366333, 0.08381607383489609, 0.3219355046749115, -0.09397153556346893, 0.02737850323319435, -0.011091896332800388, -0.1320132166147232, 0.10925951600074768, -0.07831364870071411, 0.11932352930307388, -0.039841607213020325, 0.057962361723184586, 0.0508907325565815, -0.06909786909818649, 0.0862957164645195, 0.044405534863471985, 0.0675300732254982, -0.016362085938453674, -0.024432480335235596, -0.013217883184552193, -0.04909227415919304, 0.15881159901618958, -0.14898572862148285, 0.06993593275547028, -0.13622431457042694, -0.07948150485754013, -0.0312921516597271, -0.0005381369846872985, 0.047190070152282715, -0.08482489734888077, -0.10711847245693207, 0.052090052515268326, 0.03685910627245903, 0.005835243966430426, 0.021195588633418083, -0.0033590244129300117, 0.09617693722248077, 0.15896108746528625, 0.07236938178539276, -0.039724040776491165, -0.0726991817355156, 0.0510418675839901, 0.008039283566176891, 0.08862018585205078, -0.17483586072921753, 0.01324493158608675, 0.12462928891181946, 0.02967250533401966, 0.13184049725532532, 0.055119313299655914, -0.07824905961751938, -0.018058408051729202, 0.058721836656332016, -0.13097898662090302, -0.039470355957746506, -0.03763420134782791, -0.04202406108379364, -0.07871343195438385, 0.008871166966855526, 0.05290011689066887, -0.11191583424806595, -0.022476768121123314, -0.014879714697599411, 0.021352965384721756, -0.05704662948846817, 0.2533450722694397, 0.08781103044748306, 0.08368837088346481, -0.09638271480798721, 0.03357916697859764, 0.06535164266824722, -0.056168340146541595, 0.017070041969418526, 0.06723537296056747, -0.10920803248882294, -0.011709978803992271, 0.09245307743549347, 0.05248700827360153, 0.004737869370728731, -0.07458168268203735, -0.10310441255569458, -0.050050269812345505, 0.027106506749987602, 0.048330679535865784, 0.08750145882368088, 0.07896039634943008, -0.02483685128390789, -0.05060802027583122, -0.16256290674209595, 0.08130674809217453, 0.09877033531665802, 0.04044640436768532, -0.044588539749383926, 0.2062082141637802, -0.013799915090203285, 0.05807764083147049, -0.05002385750412941, -0.03547651320695877, -0.07066964358091354, 0.03390159085392952, -0.007400372065603733, 0.02927744947373867, -0.05413056164979935, -0.005562273319810629, -0.02145177684724331, -0.031128432601690292, -0.025189220905303955, 0.0245047640055418, -0.058824002742767334, 0.027338681742548943, -0.025949202477931976, 0.018259231001138687, -0.023956457152962685, -0.06425071507692337, 0.01595431938767433, -0.040043771266937256, 0.049075618386268616, 0.05441002920269966, -0.06555816531181335, 0.023987503722310066, -0.02878740057349205, -0.029583172872662544, 0.04724709689617157, 0.06322292238473892, 0.019697895273566246, -0.07393518090248108, 0.04181542992591858, 0.008453112095594406, 0.005704884883016348, -0.017023863270878792, 0.04051550105214119, -0.06909029185771942, -0.029458632692694664, -0.04768713563680649, -0.033753614872694016, -0.09196412563323975, 0.0012253059539943933, 0.01775435358285904, 0.11336137354373932, 0.11795397102832794, -0.06467285007238388, 0.00496548879891634, -0.17074266076087952, -0.01335867028683424, -0.0017664580373093486, -0.09975209087133408, -0.12897473573684692, -0.03189849108457565, 0.07012695074081421, -0.011340190656483173, 0.114069364964962, 0.011331786401569843, -0.08337295800447464, -0.02456345222890377, 0.018080707639455795, 0.08740539103746414, -0.04850810766220093, 0.18358579277992249, 0.011038373224437237, -0.022616077214479446, -0.03658434748649597, 0.07912559807300568, 0.07614413648843765, 0.13942202925682068, 0.14158402383327484, 0.027884431183338165, 0.10013965517282486, 0.07967626303434372, -0.027423234656453133, -0.048047985881567, 0.011706499382853508, 0.01602584682404995, -0.014647338539361954, 0.02114381454885006, -0.012316292151808739, 0.16985028982162476, 0.2119121551513672, -0.07782262563705444, 0.04021311178803444, -0.016291148960590363, -0.09064407646656036, -0.11629340797662735, -0.12228602916002274, -0.09230399876832962, -0.10732639580965042, -0.01973871886730194, -0.11440782994031906, -0.024195684120059013, 0.13859714567661285, 0.03879430890083313, -0.024391166865825653, 0.05617641657590866, 0.07634057104587555, -0.05419453606009483, 0.03349115327000618, -0.05697167292237282, 0.06099458783864975, 0.026278791949152946, -0.026136327534914017, 0.09104505181312561, -0.07509355992078781, 0.09564689546823502, -0.006049580872058868, 0.1341409832239151, 0.057479601353406906, -0.004841576796025038, -0.08223916590213776, -0.05211937427520752, 0.0035195834934711456, 0.03540642186999321, 0.10684448480606079, 0.06487024575471878, -0.022578613832592964, 0.016417432576417923, 0.15691274404525757, -0.04081330820918083, -0.12049491703510284, -0.09872715175151825, 0.24305813014507294, 0.06363911926746368, -0.01597405970096588, 0.08947192877531052, -0.050516825169324875, -0.04091886803507805, 0.17677535116672516, 0.16740109026432037, -0.0048064268194139, -0.03640797361731529, 0.005754763726145029, -0.008220539428293705, 0.02860795520246029, 0.13245368003845215, 0.024322519078850746, 0.12151174992322922, -0.028662387281656265, 0.026499515399336815, -0.030408281832933426, 0.020137855783104897, -0.02150067128241062, -0.0008068282040767372, 0.003939158283174038, -0.03591471537947655, -0.052396148443222046, 0.044268444180488586, -0.008165094070136547, -0.03129620477557182, -0.01616032049059868, -0.08368100970983505, -0.13377845287322998, -0.04167504608631134, 0.05446670576930046, 0.05682341754436493, 0.12857435643672943, -0.08465082198381424, 0.072342149913311, -0.034214165061712265, -0.05628194659948349, -0.13905009627342224, -0.0713888481259346, 0.0712137371301651, -0.012368817813694477, 0.05443299189209938, -0.008935188874602318, 0.13978320360183716, 0.08129651099443436, -0.015148403123021126, -0.12314417958259583, 0.1125025525689125, 0.005946935620158911, 0.0394376702606678, 0.07266782224178314, 0.09853960573673248, -0.035423532128334045, 0.05210830271244049, 0.029463347047567368, -0.1301744431257248, -0.036341093480587006, -0.06853578984737396, 0.013850145041942596, -0.13964617252349854, 0.025783749297261238, -0.0033703239168971777, 0.1554758995771408, 0.12597809731960297, -0.050321828573942184, -0.026166236028075218, -0.06870579719543457, -0.005760408006608486, 0.028178757056593895, 0.08965057134628296, -0.06381881982088089, -0.13512006402015686, -0.042533718049526215, -0.049284107983112335, 0.023557627573609352, -0.2504330277442932, 0.024009598419070244, -0.09681660681962967, -0.0403844490647316, -0.04193085804581642, 0.13634788990020752, 0.014546921476721764, 0.038866229355335236, -0.051283590495586395, -0.04770510271191597, -0.006240921560674906, 0.07209163159132004, -0.18116551637649536, -0.17301982641220093 ]
null
null
sentence-transformers
# all-mpnet-base-v1 This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('sentence-transformers/all-mpnet-base-v1') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch import torch.nn.functional as F #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('sentence-transformers/all-mpnet-base-v1') model = AutoModel.from_pretrained('sentence-transformers/all-mpnet-base-v1') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) # Normalize embeddings sentence_embeddings = F.normalize(sentence_embeddings, p=2, dim=1) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=sentence-transformers/all-mpnet-base-v1) ------ ## Background The project aims to train sentence embedding models on very large sentence level datasets using a self-supervised contrastive learning objective. We used the pretrained [`microsoft/mpnet-base`](https://huggingface.co/microsoft/mpnet-base) model and fine-tuned in on a 1B sentence pairs dataset. We use a contrastive learning objective: given a sentence from the pair, the model should predict which out of a set of randomly sampled other sentences, was actually paired with it in our dataset. We developped this model during the [Community week using JAX/Flax for NLP & CV](https://discuss.huggingface.co/t/open-to-the-community-community-week-using-jax-flax-for-nlp-cv/7104), organized by Hugging Face. We developped this model as part of the project: [Train the Best Sentence Embedding Model Ever with 1B Training Pairs](https://discuss.huggingface.co/t/train-the-best-sentence-embedding-model-ever-with-1b-training-pairs/7354). We benefited from efficient hardware infrastructure to run the project: 7 TPUs v3-8, as well as intervention from Googles Flax, JAX, and Cloud team member about efficient deep learning frameworks. ## Intended uses Our model is intented to be used as a sentence and short paragraph encoder. Given an input text, it ouptuts a vector which captures the semantic information. The sentence vector may be used for information retrieval, clustering or sentence similarity tasks. By default, input text longer than 128 word pieces is truncated. ## Training procedure ### Pre-training We use the pretrained [`microsoft/mpnet-base`](https://huggingface.co/microsoft/mpnet-base). Please refer to the model card for more detailed information about the pre-training procedure. ### Fine-tuning We fine-tune the model using a contrastive objective. Formally, we compute the cosine similarity from each possible sentence pairs from the batch. We then apply the cross entropy loss by comparing with true pairs. #### Hyper parameters We trained ou model on a TPU v3-8. We train the model during 920k steps using a batch size of 512 (64 per TPU core). We use a learning rate warm up of 500. The sequence length was limited to 128 tokens. We used the AdamW optimizer with a 2e-5 learning rate. The full training script is accessible in this current repository: `train_script.py`. #### Training data We use the concatenation from multiple datasets to fine-tune our model. The total number of sentence pairs is above 1 billion sentences. We sampled each dataset given a weighted probability which configuration is detailed in the `data_config.json` file. | Dataset | Paper | Number of training tuples | |--------------------------------------------------------|:----------------------------------------:|:--------------------------:| | [Reddit comments (2015-2018)](https://github.com/PolyAI-LDN/conversational-datasets/tree/master/reddit) | [paper](https://arxiv.org/abs/1904.06472) | 726,484,430 | | [S2ORC](https://github.com/allenai/s2orc) Citation pairs (Abstracts) | [paper](https://aclanthology.org/2020.acl-main.447/) | 116,288,806 | | [WikiAnswers](https://github.com/afader/oqa#wikianswers-corpus) Duplicate question pairs | [paper](https://doi.org/10.1145/2623330.2623677) | 77,427,422 | | [PAQ](https://github.com/facebookresearch/PAQ) (Question, Answer) pairs | [paper](https://arxiv.org/abs/2102.07033) | 64,371,441 | | [S2ORC](https://github.com/allenai/s2orc) Citation pairs (Titles) | [paper](https://aclanthology.org/2020.acl-main.447/) | 52,603,982 | | [S2ORC](https://github.com/allenai/s2orc) (Title, Abstract) | [paper](https://aclanthology.org/2020.acl-main.447/) | 41,769,185 | | [Stack Exchange](https://huggingface.co/datasets/flax-sentence-embeddings/stackexchange_xml) (Title, Body) pairs | - | 25,316,456 | | [MS MARCO](https://microsoft.github.io/msmarco/) triplets | [paper](https://doi.org/10.1145/3404835.3462804) | 9,144,553 | | [GOOAQ: Open Question Answering with Diverse Answer Types](https://github.com/allenai/gooaq) | [paper](https://arxiv.org/pdf/2104.08727.pdf) | 3,012,496 | | [Yahoo Answers](https://www.kaggle.com/soumikrakshit/yahoo-answers-dataset) (Title, Answer) | [paper](https://proceedings.neurips.cc/paper/2015/hash/250cf8b51c773f3f8dc8b4be867a9a02-Abstract.html) | 1,198,260 | | [Code Search](https://huggingface.co/datasets/code_search_net) | - | 1,151,414 | | [COCO](https://cocodataset.org/#home) Image captions | [paper](https://link.springer.com/chapter/10.1007%2F978-3-319-10602-1_48) | 828,395| | [SPECTER](https://github.com/allenai/specter) citation triplets | [paper](https://doi.org/10.18653/v1/2020.acl-main.207) | 684,100 | | [Yahoo Answers](https://www.kaggle.com/soumikrakshit/yahoo-answers-dataset) (Question, Answer) | [paper](https://proceedings.neurips.cc/paper/2015/hash/250cf8b51c773f3f8dc8b4be867a9a02-Abstract.html) | 681,164 | | [Yahoo Answers](https://www.kaggle.com/soumikrakshit/yahoo-answers-dataset) (Title, Question) | [paper](https://proceedings.neurips.cc/paper/2015/hash/250cf8b51c773f3f8dc8b4be867a9a02-Abstract.html) | 659,896 | | [SearchQA](https://huggingface.co/datasets/search_qa) | [paper](https://arxiv.org/abs/1704.05179) | 582,261 | | [Eli5](https://huggingface.co/datasets/eli5) | [paper](https://doi.org/10.18653/v1/p19-1346) | 325,475 | | [Flickr 30k](https://shannon.cs.illinois.edu/DenotationGraph/) | [paper](https://transacl.org/ojs/index.php/tacl/article/view/229/33) | 317,695 | | [Stack Exchange](https://huggingface.co/datasets/flax-sentence-embeddings/stackexchange_xml) Duplicate questions (titles) | | 304,525 | | AllNLI ([SNLI](https://nlp.stanford.edu/projects/snli/) and [MultiNLI](https://cims.nyu.edu/~sbowman/multinli/) | [paper SNLI](https://doi.org/10.18653/v1/d15-1075), [paper MultiNLI](https://doi.org/10.18653/v1/n18-1101) | 277,230 | | [Stack Exchange](https://huggingface.co/datasets/flax-sentence-embeddings/stackexchange_xml) Duplicate questions (bodies) | | 250,519 | | [Stack Exchange](https://huggingface.co/datasets/flax-sentence-embeddings/stackexchange_xml) Duplicate questions (titles+bodies) | | 250,460 | | [Sentence Compression](https://github.com/google-research-datasets/sentence-compression) | [paper](https://www.aclweb.org/anthology/D13-1155/) | 180,000 | | [Wikihow](https://github.com/pvl/wikihow_pairs_dataset) | [paper](https://arxiv.org/abs/1810.09305) | 128,542 | | [Altlex](https://github.com/chridey/altlex/) | [paper](https://aclanthology.org/P16-1135.pdf) | 112,696 | | [Quora Question Triplets](https://quoradata.quora.com/First-Quora-Dataset-Release-Question-Pairs) | - | 103,663 | | [Simple Wikipedia](https://cs.pomona.edu/~dkauchak/simplification/) | [paper](https://www.aclweb.org/anthology/P11-2117/) | 102,225 | | [Natural Questions (NQ)](https://ai.google.com/research/NaturalQuestions) | [paper](https://transacl.org/ojs/index.php/tacl/article/view/1455) | 100,231 | | [SQuAD2.0](https://rajpurkar.github.io/SQuAD-explorer/) | [paper](https://aclanthology.org/P18-2124.pdf) | 87,599 | | [TriviaQA](https://huggingface.co/datasets/trivia_qa) | - | 73,346 | | **Total** | | **1,124,818,467** |
{"language": "en", "license": "apache-2.0", "tags": ["sentence-transformers", "feature-extraction", "sentence-similarity"], "pipeline_tag": "sentence-similarity"}
sentence-similarity
flax-sentence-embeddings/all_datasets_v3_mpnet-base
[ "sentence-transformers", "pytorch", "mpnet", "feature-extraction", "sentence-similarity", "en", "arxiv:1904.06472", "arxiv:2102.07033", "arxiv:2104.08727", "arxiv:1704.05179", "arxiv:1810.09305", "license:apache-2.0", "endpoints_compatible", "has_space", "region:us" ]
2022-03-02T23:29:05+00:00
[ "1904.06472", "2102.07033", "2104.08727", "1704.05179", "1810.09305" ]
[ "en" ]
TAGS #sentence-transformers #pytorch #mpnet #feature-extraction #sentence-similarity #en #arxiv-1904.06472 #arxiv-2102.07033 #arxiv-2104.08727 #arxiv-1704.05179 #arxiv-1810.09305 #license-apache-2.0 #endpoints_compatible #has_space #region-us
all-mpnet-base-v1 ================= This is a sentence-transformers model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. Usage (Sentence-Transformers) ----------------------------- Using this model becomes easy when you have sentence-transformers installed: Then you can use the model like this: Usage (HuggingFace Transformers) -------------------------------- Without sentence-transformers, you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. Evaluation Results ------------------ For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: URL --- Background ---------- The project aims to train sentence embedding models on very large sentence level datasets using a self-supervised contrastive learning objective. We used the pretrained 'microsoft/mpnet-base' model and fine-tuned in on a 1B sentence pairs dataset. We use a contrastive learning objective: given a sentence from the pair, the model should predict which out of a set of randomly sampled other sentences, was actually paired with it in our dataset. We developped this model during the Community week using JAX/Flax for NLP & CV, organized by Hugging Face. We developped this model as part of the project: Train the Best Sentence Embedding Model Ever with 1B Training Pairs. We benefited from efficient hardware infrastructure to run the project: 7 TPUs v3-8, as well as intervention from Googles Flax, JAX, and Cloud team member about efficient deep learning frameworks. Intended uses ------------- Our model is intented to be used as a sentence and short paragraph encoder. Given an input text, it ouptuts a vector which captures the semantic information. The sentence vector may be used for information retrieval, clustering or sentence similarity tasks. By default, input text longer than 128 word pieces is truncated. Training procedure ------------------ ### Pre-training We use the pretrained 'microsoft/mpnet-base'. Please refer to the model card for more detailed information about the pre-training procedure. ### Fine-tuning We fine-tune the model using a contrastive objective. Formally, we compute the cosine similarity from each possible sentence pairs from the batch. We then apply the cross entropy loss by comparing with true pairs. #### Hyper parameters We trained ou model on a TPU v3-8. We train the model during 920k steps using a batch size of 512 (64 per TPU core). We use a learning rate warm up of 500. The sequence length was limited to 128 tokens. We used the AdamW optimizer with a 2e-5 learning rate. The full training script is accessible in this current repository: 'train\_script.py'. #### Training data We use the concatenation from multiple datasets to fine-tune our model. The total number of sentence pairs is above 1 billion sentences. We sampled each dataset given a weighted probability which configuration is detailed in the 'data\_config.json' file.
[ "### Pre-training\n\n\nWe use the pretrained 'microsoft/mpnet-base'. Please refer to the model card for more detailed information about the pre-training procedure.", "### Fine-tuning\n\n\nWe fine-tune the model using a contrastive objective. Formally, we compute the cosine similarity from each possible sentence pairs from the batch.\nWe then apply the cross entropy loss by comparing with true pairs.", "#### Hyper parameters\n\n\nWe trained ou model on a TPU v3-8. We train the model during 920k steps using a batch size of 512 (64 per TPU core).\nWe use a learning rate warm up of 500. The sequence length was limited to 128 tokens. We used the AdamW optimizer with\na 2e-5 learning rate. The full training script is accessible in this current repository: 'train\\_script.py'.", "#### Training data\n\n\nWe use the concatenation from multiple datasets to fine-tune our model. The total number of sentence pairs is above 1 billion sentences.\nWe sampled each dataset given a weighted probability which configuration is detailed in the 'data\\_config.json' file." ]
[ "TAGS\n#sentence-transformers #pytorch #mpnet #feature-extraction #sentence-similarity #en #arxiv-1904.06472 #arxiv-2102.07033 #arxiv-2104.08727 #arxiv-1704.05179 #arxiv-1810.09305 #license-apache-2.0 #endpoints_compatible #has_space #region-us \n", "### Pre-training\n\n\nWe use the pretrained 'microsoft/mpnet-base'. Please refer to the model card for more detailed information about the pre-training procedure.", "### Fine-tuning\n\n\nWe fine-tune the model using a contrastive objective. Formally, we compute the cosine similarity from each possible sentence pairs from the batch.\nWe then apply the cross entropy loss by comparing with true pairs.", "#### Hyper parameters\n\n\nWe trained ou model on a TPU v3-8. We train the model during 920k steps using a batch size of 512 (64 per TPU core).\nWe use a learning rate warm up of 500. The sequence length was limited to 128 tokens. We used the AdamW optimizer with\na 2e-5 learning rate. The full training script is accessible in this current repository: 'train\\_script.py'.", "#### Training data\n\n\nWe use the concatenation from multiple datasets to fine-tune our model. The total number of sentence pairs is above 1 billion sentences.\nWe sampled each dataset given a weighted probability which configuration is detailed in the 'data\\_config.json' file." ]
[ 96, 37, 56, 100, 66 ]
[ "passage: TAGS\n#sentence-transformers #pytorch #mpnet #feature-extraction #sentence-similarity #en #arxiv-1904.06472 #arxiv-2102.07033 #arxiv-2104.08727 #arxiv-1704.05179 #arxiv-1810.09305 #license-apache-2.0 #endpoints_compatible #has_space #region-us \n### Pre-training\n\n\nWe use the pretrained 'microsoft/mpnet-base'. Please refer to the model card for more detailed information about the pre-training procedure.### Fine-tuning\n\n\nWe fine-tune the model using a contrastive objective. Formally, we compute the cosine similarity from each possible sentence pairs from the batch.\nWe then apply the cross entropy loss by comparing with true pairs.#### Hyper parameters\n\n\nWe trained ou model on a TPU v3-8. We train the model during 920k steps using a batch size of 512 (64 per TPU core).\nWe use a learning rate warm up of 500. The sequence length was limited to 128 tokens. We used the AdamW optimizer with\na 2e-5 learning rate. The full training script is accessible in this current repository: 'train\\_script.py'.#### Training data\n\n\nWe use the concatenation from multiple datasets to fine-tune our model. The total number of sentence pairs is above 1 billion sentences.\nWe sampled each dataset given a weighted probability which configuration is detailed in the 'data\\_config.json' file." ]
[ -0.11155711114406586, 0.09995336830615997, -0.002144275000318885, 0.04379827156662941, 0.09948346763849258, 0.03664299100637436, 0.038801372051239014, 0.15904363989830017, -0.09005362540483475, 0.0922713503241539, 0.02413317933678627, -0.012834707275032997, 0.11907520145177841, 0.11770834773778915, 0.05840246006846428, -0.23880447447299957, -0.007725117728114128, -0.035673849284648895, 0.013007891364395618, 0.10932803899049759, 0.08393184095621109, -0.07254805415868759, 0.05385017767548561, -0.0408739410340786, -0.09685541689395905, 0.011478498578071594, -0.051402561366558075, -0.018664514645934105, 0.12885235249996185, 0.05104755982756615, 0.07866036891937256, -0.004228869918733835, 0.05448349937796593, -0.1731598675251007, 0.021640624850988388, 0.09999386221170425, 0.027401823550462723, 0.09559383988380432, 0.07338519394397736, 0.016068045049905777, 0.16361606121063232, -0.09093963354825974, 0.017840439453721046, 0.07660795003175735, -0.10129246860742569, -0.06479258835315704, -0.03871991112828255, 0.02055744268000126, 0.0854596272110939, 0.06791483610868454, -0.02846294827759266, 0.10940242558717728, -0.061405524611473083, 0.03252040967345238, 0.04063110426068306, -0.2942442297935486, -0.027246296405792236, 0.15178993344306946, 0.0529932826757431, 0.0690881609916687, -0.11249735206365585, -0.03915782272815704, 0.06493965536355972, 0.02124159224331379, 0.06186455488204956, 0.028200477361679077, -0.039406824856996536, 0.023123594000935555, -0.12047981470823288, -0.05870511755347252, 0.18204036355018616, -0.0008240078459493816, -0.06230408698320389, -0.10232383757829666, -0.06102444604039192, -0.0739111602306366, 0.027908554300665855, 0.006465625483542681, -0.005931416060775518, 0.07551947981119156, -0.058627769351005554, -0.007069222163408995, -0.1497754603624344, -0.09861019253730774, -0.022586749866604805, 0.011176124215126038, 0.05659139156341553, 0.04731835797429085, 0.015252036042511463, 0.14703898131847382, -0.058608848601579666, -0.051026105880737305, -0.01802644319832325, -0.07293573021888733, -0.15157689154148102, -0.03477577492594719, -0.07322071492671967, -0.0915033221244812, 0.03030467964708805, 0.10861646384000778, 0.01997697912156582, 0.014354436658322811, 0.09467083215713501, 0.03367305174469948, 0.06485747545957565, 0.11369836330413818, -0.08400340378284454, -0.05925958976149559, -0.007998693734407425, 0.05896477773785591, -0.02041945606470108, 0.015160045586526394, -0.0493345782160759, -0.07391145080327988, 0.0770195722579956, 0.04357026889920235, -0.0030155207496136427, 0.08375615626573563, -0.04058975726366043, -0.046611785888671875, 0.09359017759561539, -0.12347565591335297, -0.020676298066973686, 0.030886761844158173, -0.1039896085858345, 0.05619232729077339, 0.010516238398849964, -0.0502595528960228, -0.1195518895983696, 0.0016528763808310032, -0.06995158642530441, -0.055360347032547, -0.1435651332139969, -0.15606725215911865, 0.020482735708355904, -0.07648039609193802, -0.05257710814476013, -0.10709533840417862, -0.11647818237543106, -0.04247136414051056, 0.028809411451220512, -0.04484475031495094, -0.00934712216258049, -0.041183311492204666, -0.024523891508579254, -0.03592471405863762, -0.0032331873662769794, 0.07509730011224747, -0.033369991928339005, 0.06855300813913345, -0.04413920268416405, 0.07839443534612656, 0.07017151266336441, 0.011272517964243889, -0.08419312536716461, -0.017057444900274277, -0.03640399128198624, 0.09244024008512497, 0.02356637641787529, 0.024800175800919533, -0.12689177691936493, -0.06919389963150024, -0.14319249987602234, -0.023971695452928543, 0.04484110698103905, 0.10695771872997284, -0.20199675858020782, 0.011707596480846405, 0.19339795410633087, -0.08652938157320023, -0.061475720256567, 0.17870162427425385, -0.013762298040091991, -0.0214664489030838, 0.09017670154571533, 0.08130267262458801, 0.11299745738506317, -0.1125766932964325, -0.058805178850889206, 0.05616813525557518, -0.09684599936008453, -0.009210145100951195, 0.08712027221918106, 0.0005620294832624495, 0.0365431010723114, -0.0009745389106683433, 0.08957822620868683, 0.03674638271331787, -0.0485767163336277, -0.03369516879320145, -0.003513812320306897, -0.08674830943346024, -0.03412417694926262, 0.026854341849684715, -0.03810800611972809, -0.069935642182827, -0.10559023171663284, -0.09117759764194489, 0.14302584528923035, -0.06959749013185501, 0.005205606110394001, -0.11171489208936691, 0.026210347190499306, -0.023532910272479057, 0.004584700800478458, -0.13452838361263275, -0.02339133247733116, 0.069852314889431, 0.012501336634159088, -0.0024165241047739983, 0.11302824318408966, 0.04468020796775818, 0.054693553596735, -0.02693827636539936, 0.020334387198090553, -0.011619988828897476, -0.041169047355651855, -0.05921066924929619, -0.09477728605270386, -0.10555816441774368, -0.03501678630709648, 0.12281247228384018, -0.12593597173690796, 0.024184152483940125, 0.07143132388591766, 0.03621120750904083, -0.017539190128445625, -0.040726352483034134, 0.05540474131703377, 0.005386843346059322, -0.023708920925855637, -0.09225384891033173, 0.042782947421073914, 0.050938379019498825, -0.019190726801753044, 0.024477766826748848, -0.16969022154808044, -0.14229196310043335, 0.07751740515232086, 0.005003047175705433, -0.08080554008483887, -0.09365908801555634, -0.0652485340833664, -0.05485767126083374, -0.062261950224637985, -0.08719213306903839, 0.16823650896549225, 0.02732726000249386, 0.0989544540643692, -0.0957508310675621, -0.0237862728536129, -0.017246808856725693, 0.008474485948681831, 0.05591564252972603, 0.023923080414533615, 0.02786574326455593, -0.1176355704665184, 0.025142153725028038, -0.07759562879800797, -0.028966909274458885, 0.13088256120681763, -0.009946775622665882, -0.14254383742809296, 0.020469054579734802, 0.07344754040241241, -0.004767300095409155, 0.07220211625099182, -0.028424598276615143, -0.024285564199090004, 0.0480140820145607, 0.010613148100674152, 0.05574922263622284, -0.15061430633068085, 0.05496113374829292, 0.038404155522584915, -0.04051840305328369, 0.043384477496147156, -0.04735669493675232, -0.0063525112345814705, 0.08156227320432663, 0.0401848666369915, -0.002842653775587678, -0.019793611019849777, -0.07191412150859833, -0.1122310608625412, 0.19197086989879608, -0.05898794159293175, -0.1652381718158722, -0.11172165721654892, 0.10272491723299026, 0.06684356927871704, 0.019377626478672028, -0.010718122124671936, -0.038685884326696396, -0.05663280561566353, -0.08343277126550674, 0.01874307543039322, -0.020756904035806656, -0.01080881804227829, -0.08696161955595016, 0.06654233485460281, 0.009703712537884712, -0.14052341878414154, 0.026275591924786568, 0.0007101413211785257, -0.16583295166492462, 0.07624854892492294, -0.10928688943386078, 0.03149498254060745, 0.153507798910141, -0.051262300461530685, 0.002504469361156225, -0.04409271478652954, 0.15284110605716705, -0.03784961253404617, 0.09608905017375946, 0.13378070294857025, 0.048387493938207626, 0.04619234427809715, 0.05333629623055458, -0.00938752107322216, -0.025702686980366707, 0.0910777822136879, 0.001848098007030785, -0.04033631458878517, -0.2247961461544037, -0.06219976395368576, -0.07431533932685852, 0.036391254514455795, 0.1206972673535347, 0.03759035840630531, 0.032953038811683655, 0.08003296703100204, -0.07003607600927353, -0.008183863945305347, 0.030166946351528168, 0.07830466330051422, 0.0009900904260575771, 0.030067363753914833, 0.0658431202173233, -0.07642797380685806, 0.002938600489869714, 0.1057557761669159, 0.057066015899181366, 0.17455880343914032, -0.055442746728658676, 0.16644401848316193, 0.029151229187846184, 0.14760486781597137, 0.054473649710416794, 0.14698109030723572, -0.0703539326786995, 0.027527619153261185, -0.02610722929239273, -0.061738308519124985, -0.08134633302688599, 0.06449674814939499, 0.07181409746408463, -0.02018640749156475, -0.038916151970624924, 0.00437910808250308, 0.061739031225442886, 0.22555463016033173, 0.13993369042873383, -0.2625117003917694, -0.09065622836351395, -0.041190583258867264, -0.025101741775870323, -0.06525071710348129, 0.04317149519920349, 0.20947086811065674, -0.08976937085390091, -0.028413983061909676, -0.018125461414456367, 0.10968752950429916, -0.07371906191110611, -0.006109878420829773, 0.08059975504875183, 0.11119303107261658, -0.04142956808209419, 0.12061284482479095, -0.1520024687051773, 0.088539257645607, 0.019946498796343803, 0.10357675701379776, -0.07574786245822906, 0.009329895488917828, 0.009657141752541065, -0.030909229069948196, 0.042848892509937286, -0.0025308728218078613, -0.02974005602300167, -0.07033750414848328, -0.12768249213695526, 0.052295103669166565, 0.06320393085479736, 0.0028717597015202045, 0.1073114424943924, -0.04329467937350273, 0.02622058242559433, -0.00219337223097682, 0.10177619755268097, -0.012730984948575497, -0.1377924680709839, -0.0031717210076749325, -0.023743482306599617, 0.010337014682590961, -0.04713384434580803, -0.02307347021996975, 0.032650064677000046, 0.19090940058231354, -0.13670770823955536, -0.09868334233760834, -0.10275568068027496, 0.06667573750019073, 0.14722168445587158, -0.013453798368573189, 0.0004676735261455178, 0.03911590203642845, 0.1316661685705185, -0.017046663910150528, -0.07959553599357605, 0.05307135730981827, -0.05134987831115723, -0.10718663036823273, -0.03921327739953995, 0.13742470741271973, 0.023662380874156952, 0.058621447533369064, 0.006495154928416014, -0.013177813030779362, -0.056803688406944275, -0.0752398744225502, -0.009290708228945732, 0.051894109696149826, 0.11681698262691498, 0.051244672387838364, -0.07306595146656036, -0.03505982086062431, -0.07907480746507645, 0.023837555199861526, 0.07011228054761887, 0.1680845320224762, -0.09087160974740982, -0.00767546845600009, 0.16781127452850342, -0.04376474395394325, -0.16957008838653564, -0.04845494404435158, 0.01005738228559494, 0.06735585629940033, -0.06160343438386917, -0.2089327573776245, 0.002794349566102028, 0.08208861202001572, -0.006682762410491705, -0.02993229404091835, -0.31451499462127686, -0.08283612877130508, 0.02511676773428917, 0.01032861229032278, 0.016931409016251564, -0.11955785751342773, 0.01104955654591322, 0.006579664070159197, -0.05934900790452957, 0.0805506780743599, -0.046002428978681564, 0.1334974765777588, -0.015195054933428764, 0.011905868537724018, 0.06711670011281967, -0.054291777312755585, 0.05691114440560341, 0.007238494697958231, 0.05545856058597565, -0.029284624382853508, 0.04577495902776718, 0.02762172557413578, -0.0476565808057785, 0.13383762538433075, -0.09814099222421646, 0.07862038165330887, -0.11776315420866013, -0.05019912123680115, -0.02292310632765293, 0.012972178868949413, 0.014022680930793285, -0.08331996947526932, -0.11325334012508392, 0.06956229358911514, 0.07062753289937973, 0.011724288575351238, -0.12112634629011154, -0.008486554026603699, 0.06242721155285835, 0.16428516805171967, 0.12054840475320816, 0.013551748357713223, -0.0667564794421196, 0.018619783222675323, 0.020695114508271217, 0.0796467512845993, -0.11903221160173416, -0.0014175997348502278, 0.15089096128940582, 0.020413899794220924, 0.10880699008703232, 0.05422407388687134, -0.1313677281141281, -0.024388881400227547, 0.06151806563138962, -0.11771596223115921, -0.0861399695277214, -0.008016888983547688, 0.05491356924176216, -0.1262488216161728, -0.0323316752910614, 0.0325237438082695, -0.09350898861885071, -0.007459533866494894, 0.002231057034805417, 0.05322151631116867, -0.04244563728570938, 0.18598265945911407, 0.06530621647834778, 0.0698285698890686, -0.040846627205610275, 0.15593324601650238, 0.0816769003868103, -0.1600499004125595, 0.010175137780606747, 0.11667615920305252, -0.10509967058897018, -0.021941257640719414, 0.04092670604586601, -0.025304997339844704, 0.00629796739667654, -0.05813784524798393, 0.006335400976240635, -0.04901693016290665, 0.03098902851343155, 0.027471423149108887, 0.03782229498028755, 0.13697943091392517, -0.021751245483756065, 0.009280359372496605, -0.17137360572814941, 0.073999784886837, 0.051127269864082336, -0.003671277780085802, -0.02026478946208954, 0.18555223941802979, 0.0006062825559638441, -0.022058753296732903, -0.02920277789235115, -0.0314057283103466, -0.05133163183927536, -0.0023993137292563915, -0.035008855164051056, 0.011397265829145908, -0.05647100880742073, -0.0408855639398098, 0.009040996432304382, 0.00012373474601190537, -0.009469650685787201, 0.02389587089419365, -0.0373029001057148, -0.031835928559303284, -0.048297297209501266, 0.028992384672164917, -0.09028488397598267, -0.015140870586037636, 0.043658897280693054, -0.09256536513566971, 0.09768735617399216, 0.05115853250026703, -0.033700671046972275, -0.004323956556618214, -0.051716260612010956, -0.02218874916434288, 0.018399512395262718, 0.06388624757528305, -0.025181300938129425, -0.07450336217880249, 0.031192753463983536, -0.010516232810914516, -0.04276985302567482, -0.026557032018899918, 0.05611037090420723, -0.09417635202407837, 0.039718057960271835, -0.019028767943382263, 0.01948038674890995, -0.10572647303342819, 0.019089004024863243, 0.07534507662057877, 0.07876144349575043, 0.07719939202070236, -0.0646495595574379, 0.016854962334036827, -0.19531001150608063, -0.009706776589155197, 0.00457565626129508, 0.012622511014342308, -0.03301667422056198, 0.006947288289666176, 0.08391986042261124, -0.023706480860710144, 0.10671629756689072, -0.02028384618461132, -0.06709011644124985, 0.010739613324403763, -0.03757724165916443, 0.03060670755803585, 0.008423383347690105, 0.17943163216114044, 0.021265028044581413, -0.043236471712589264, -0.021379593759775162, 0.015603210777044296, -0.00040435424307361245, 0.07163193076848984, 0.11503606289625168, 0.12402138113975525, 0.07692024111747742, 0.06544600427150726, -0.016438817605376244, -0.08493426442146301, -0.024172883480787277, 0.06501778215169907, -0.027661291882395744, 0.027751266956329346, -0.0668625459074974, 0.1448448896408081, 0.19555489718914032, -0.1186085194349289, 0.056716885417699814, -0.03326348215341568, -0.09748496860265732, -0.09677699208259583, -0.12900857627391815, -0.021872596815228462, -0.05851325765252113, -0.028636213392019272, -0.13921086490154266, 0.016538361087441444, 0.14799074828624725, 0.0461275652050972, -0.0398012176156044, 0.12452583014965057, -0.043984200805425644, -0.05610152706503868, 0.03964924439787865, -0.002598819090053439, 0.06911754608154297, 0.02291496843099594, -0.01700892671942711, 0.09404611587524414, -0.004114169627428055, 0.11594844609498978, 0.012518388219177723, 0.11726604402065277, 0.0650293380022049, 0.005059623625129461, -0.05869579687714577, -0.03212880715727806, -0.04342891275882721, -0.0071729812771081924, 0.1063174456357956, 0.05751312896609306, -0.04783017560839653, 0.00308248121291399, 0.19919948279857635, -0.06044507026672363, -0.1078561544418335, -0.15812042355537415, 0.20569336414337158, 0.009706656448543072, -0.03314081206917763, 0.055581945925951004, -0.09645890444517136, -0.004733382724225521, 0.1765613704919815, 0.1627143770456314, -0.026404056698083878, -0.028841184452176094, 0.020805928856134415, -0.005168783478438854, 0.00627122400328517, 0.11235376447439194, 0.041124213486909866, 0.13396067917346954, -0.06277299672365189, 0.09440817683935165, 0.0027433589566498995, 0.00123245595023036, -0.04391748458147049, 0.06206781044602394, -0.018211930990219116, 0.008356664329767227, -0.06384088099002838, 0.06960209459066391, 0.013236909173429012, -0.15593650937080383, 0.021082378923892975, -0.05757863074541092, -0.08557896316051483, -0.004849523305892944, 0.007116082590073347, 0.013459534384310246, 0.12155599147081375, -0.06339764595031738, 0.05962543934583664, 0.028081219643354416, -0.011104542762041092, -0.13521702587604523, -0.04043188318610191, 0.05945770442485809, -0.06462158262729645, 0.12436257302761078, -0.0047678290866315365, 0.0683518722653389, 0.10084652900695801, 0.014591916464269161, -0.16178417205810547, 0.038580797612667084, 0.014192295260727406, -0.052063003182411194, 0.025449318811297417, 0.09084508568048477, -0.004430354572832584, 0.06580862402915955, 0.04513503983616829, -0.08447513729333878, -0.01225495245307684, -0.030732080340385437, 0.05636797100305557, -0.13441839814186096, 0.011417658068239689, -0.01879129372537136, 0.1541803777217865, 0.16566599905490875, -0.05014810711145401, 0.0007348751532845199, -0.054678697139024734, -0.03720193728804588, 0.026401285082101822, 0.06881492584943771, -0.03890782967209816, -0.12194497883319855, -0.007368129212409258, -0.10949786007404327, 0.01109587773680687, -0.1384446769952774, -0.024103133007884026, -0.026315385475754738, -0.031731974333524704, -0.059458110481500626, 0.13465800881385803, 0.003312469460070133, 0.06135326623916626, -0.03774235397577286, -0.059402283281087875, 0.006085171364247799, 0.09724047034978867, -0.19124114513397217, -0.12386928498744965 ]
null
null
sentence-transformers
# Model description The project aims to train sentence embedding models on very large sentence level datasets using a self-supervised contrastive learning objective. We used the pretrained [`roberta-large`](https://huggingface.co/roberta-large) model and fine-tuned in on a 1B sentence pairs dataset. We use a contrastive learning objective: given a sentence from the pair, the model should predict which out of a set of randomly sampled other sentences, was actually paired with it in our dataset. We developped this model during the [Community week using JAX/Flax for NLP & CV](https://discuss.huggingface.co/t/open-to-the-community-community-week-using-jax-flax-for-nlp-cv/7104), organized by Hugging Face. We developped this model as part of the project: [Train the Best Sentence Embedding Model Ever with 1B Training Pairs](https://discuss.huggingface.co/t/train-the-best-sentence-embedding-model-ever-with-1b-training-pairs/7354). We benefited from efficient hardware infrastructure to run the project: 7 TPUs v3-8, as well as intervention from Google’s Flax, JAX, and Cloud team member about efficient deep learning frameworks. ## Intended uses Our model is intented to be used as a sentence encoder. Given an input sentence, it ouptuts a vector which captures the sentence semantic information. The sentence vector may be used for information retrieval, clustering or sentence similarity tasks. ## How to use Here is how to use this model to get the features of a given text using [SentenceTransformers](https://github.com/UKPLab/sentence-transformers) library: ```python from sentence_transformers import SentenceTransformer model = SentenceTransformer('flax-sentence-embeddings/all_datasets_v3_roberta-large') text = "Replace me by any text you'd like." text_embbedding = model.encode(text) # array([-0.01559514, 0.04046123, 0.1317083 , 0.00085931, 0.04585106, # -0.05607086, 0.0138078 , 0.03569756, 0.01420381, 0.04266302 ...], # dtype=float32) ``` # Training procedure ## Pre-training We use the pretrained [`roberta-large`](https://huggingface.co/roberta-large). Please refer to the model card for more detailed information about the pre-training procedure. ## Fine-tuning We fine-tune the model using a contrastive objective. Formally, we compute the cosine similarity from each possible sentence pairs from the batch. We then apply the cross entropy loss by comparing with true pairs. ### Hyper parameters We trained ou model on a TPU v3-8. We train the model during 540k steps using a batch size of 1024 (128 per TPU core). We use a learning rate warm up of 500. The sequence length was limited to 128 tokens. We used the AdamW optimizer with a 2e-5 learning rate. The full training script is accessible in this current repository. ### Training data We use the concatenation from multiple datasets to fine-tune our model. The total number of sentence pairs is above 1 billion sentences. We sampled each dataset given a weighted probability which configuration is detailed in the `data_config.json` file. | Dataset | Paper | Number of training tuples | |:--------------------------------------------------------:|:----------------------------------------:|:--------------------------:| | [GOOAQ: Open Question Answering with Diverse Answer Types](https://github.com/allenai/gooaq) | [paper](https://arxiv.org/pdf/2104.08727.pdf) | 3,012,496 | | [Stack Exchange](https://huggingface.co/datasets/flax-sentence-embeddings/stackexchange_title_body_jsonl) | - | 364,001 | | [Flickr 30k](https://shannon.cs.illinois.edu/DenotationGraph/) | [paper](https://transacl.org/ojs/index.php/tacl/article/view/229/33) | 317,695 | | [COCO 2020](COCO 2020) | [paper](https://link.springer.com/chapter/10.1007%2F978-3-319-10602-1_48) | 828,395| | [Code Search](https://huggingface.co/datasets/code_search_net) | - | 1,151,414 | | [TriviaqQA](https://huggingface.co/datasets/trivia_qa) | - | 73,346 | | [SQuAD2.0](https://rajpurkar.github.io/SQuAD-explorer/) | [paper](https://aclanthology.org/P18-2124.pdf) | 87,599 | | [Natural Questions (NQ)](https://ai.google.com/research/NaturalQuestions) | [paper](https://transacl.org/ojs/index.php/tacl/article/view/1455) | 100,231 | | [Simple Wikipedia](https://cs.pomona.edu/~dkauchak/simplification/) | [paper](https://www.aclweb.org/anthology/P11-2117/) | 102,225 | | [Quora Question Pairs](https://quoradata.quora.com/First-Quora-Dataset-Release-Question-Pairs) | - | 103,663 | | [Altlex](https://github.com/chridey/altlex/) | [paper](https://aclanthology.org/P16-1135.pdf) | 112,696 | | [Wikihow](https://github.com/pvl/wikihow_pairs_dataset) | [paper](https://arxiv.org/abs/1810.09305) | 128,542 | | [Sentence Compression](https://github.com/google-research-datasets/sentence-compression) | [paper](https://www.aclweb.org/anthology/D13-1155/) | 180,000 | | AllNLI ([SNLI](https://nlp.stanford.edu/projects/snli/) and [MultiNLI](https://cims.nyu.edu/~sbowman/multinli/) | [paper SNLI](https://doi.org/10.18653/v1/d15-1075), [paper MultiNLI](https://doi.org/10.18653/v1/n18-1101) | 277,230 | | [Eli5](https://huggingface.co/datasets/eli5) | [paper](https://doi.org/10.18653/v1/p19-1346) | 325,475 | | [SPECTER](https://github.com/allenai/specter) | [paper](https://doi.org/10.18653/v1/2020.acl-main.207) | 684,100 | | [S2ORC](https://github.com/allenai/s2orc) Title/Abstract | [paper](https://aclanthology.org/2020.acl-main.447/) | 41,769,185 | | [S2ORC](https://github.com/allenai/s2orc) Citation/Citation | [paper](https://aclanthology.org/2020.acl-main.447/) | 52,603,982 | | [S2ORC](https://github.com/allenai/s2orc) Citation/Abstract | [paper](https://aclanthology.org/2020.acl-main.447/) | 116,288,806 | | [PAQ](https://github.com/facebookresearch/PAQ) | [paper](https://arxiv.org/abs/2102.07033) | 64,371,441 | | [WikiAnswers](https://github.com/afader/oqa#wikianswers-corpus) | [paper](https://doi.org/10.1145/2623330.2623677) | 77,427,422 | | SearchQA | - | 582,261 | | [Yahoo Answers](https://www.kaggle.com/soumikrakshit/yahoo-answers-dataset) Title/Answer | [paper](https://proceedings.neurips.cc/paper/2015/hash/250cf8b51c773f3f8dc8b4be867a9a02-Abstract.html) | 1,198,260 | | [Yahoo Answers](https://www.kaggle.com/soumikrakshit/yahoo-answers-dataset) Title/Question | [paper](https://proceedings.neurips.cc/paper/2015/hash/250cf8b51c773f3f8dc8b4be867a9a02-Abstract.html) | 659,896 | | [Yahoo Answers](https://www.kaggle.com/soumikrakshit/yahoo-answers-dataset) Question/Answer | [paper](https://proceedings.neurips.cc/paper/2015/hash/250cf8b51c773f3f8dc8b4be867a9a02-Abstract.html) | 681,164 | | [MS MARCO](https://microsoft.github.io/msmarco/) | [paper](https://doi.org/10.1145/3404835.3462804) | 9,144,553 | | [Reddit conversationnal](https://github.com/PolyAI-LDN/conversational-datasets/tree/master/reddit) | [paper](https://arxiv.org/abs/1904.06472) | 726,484,430 | | total | | 1,097,953,922 |
{"language": "en", "tags": ["sentence-transformers", "feature-extraction", "sentence-similarity"], "pipeline_tag": "sentence-similarity"}
sentence-similarity
flax-sentence-embeddings/all_datasets_v3_roberta-large
[ "sentence-transformers", "pytorch", "roberta", "feature-extraction", "sentence-similarity", "en", "arxiv:2104.08727", "arxiv:1810.09305", "arxiv:2102.07033", "arxiv:1904.06472", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[ "2104.08727", "1810.09305", "2102.07033", "1904.06472" ]
[ "en" ]
TAGS #sentence-transformers #pytorch #roberta #feature-extraction #sentence-similarity #en #arxiv-2104.08727 #arxiv-1810.09305 #arxiv-2102.07033 #arxiv-1904.06472 #endpoints_compatible #region-us
Model description ================= The project aims to train sentence embedding models on very large sentence level datasets using a self-supervised contrastive learning objective. We used the pretrained 'roberta-large' model and fine-tuned in on a 1B sentence pairs dataset. We use a contrastive learning objective: given a sentence from the pair, the model should predict which out of a set of randomly sampled other sentences, was actually paired with it in our dataset. We developped this model during the Community week using JAX/Flax for NLP & CV, organized by Hugging Face. We developped this model as part of the project: Train the Best Sentence Embedding Model Ever with 1B Training Pairs. We benefited from efficient hardware infrastructure to run the project: 7 TPUs v3-8, as well as intervention from Google’s Flax, JAX, and Cloud team member about efficient deep learning frameworks. Intended uses ------------- Our model is intented to be used as a sentence encoder. Given an input sentence, it ouptuts a vector which captures the sentence semantic information. The sentence vector may be used for information retrieval, clustering or sentence similarity tasks. How to use ---------- Here is how to use this model to get the features of a given text using SentenceTransformers library: Training procedure ================== Pre-training ------------ We use the pretrained 'roberta-large'. Please refer to the model card for more detailed information about the pre-training procedure. Fine-tuning ----------- We fine-tune the model using a contrastive objective. Formally, we compute the cosine similarity from each possible sentence pairs from the batch. We then apply the cross entropy loss by comparing with true pairs. ### Hyper parameters We trained ou model on a TPU v3-8. We train the model during 540k steps using a batch size of 1024 (128 per TPU core). We use a learning rate warm up of 500. The sequence length was limited to 128 tokens. We used the AdamW optimizer with a 2e-5 learning rate. The full training script is accessible in this current repository. ### Training data We use the concatenation from multiple datasets to fine-tune our model. The total number of sentence pairs is above 1 billion sentences. We sampled each dataset given a weighted probability which configuration is detailed in the 'data\_config.json' file.
[ "### Hyper parameters\n\n\nWe trained ou model on a TPU v3-8. We train the model during 540k steps using a batch size of 1024 (128 per TPU core).\nWe use a learning rate warm up of 500. The sequence length was limited to 128 tokens. We used the AdamW optimizer with\na 2e-5 learning rate. The full training script is accessible in this current repository.", "### Training data\n\n\nWe use the concatenation from multiple datasets to fine-tune our model. The total number of sentence pairs is above 1 billion sentences.\nWe sampled each dataset given a weighted probability which configuration is detailed in the 'data\\_config.json' file." ]
[ "TAGS\n#sentence-transformers #pytorch #roberta #feature-extraction #sentence-similarity #en #arxiv-2104.08727 #arxiv-1810.09305 #arxiv-2102.07033 #arxiv-1904.06472 #endpoints_compatible #region-us \n", "### Hyper parameters\n\n\nWe trained ou model on a TPU v3-8. We train the model during 540k steps using a batch size of 1024 (128 per TPU core).\nWe use a learning rate warm up of 500. The sequence length was limited to 128 tokens. We used the AdamW optimizer with\na 2e-5 learning rate. The full training script is accessible in this current repository.", "### Training data\n\n\nWe use the concatenation from multiple datasets to fine-tune our model. The total number of sentence pairs is above 1 billion sentences.\nWe sampled each dataset given a weighted probability which configuration is detailed in the 'data\\_config.json' file." ]
[ 76, 89, 66 ]
[ "passage: TAGS\n#sentence-transformers #pytorch #roberta #feature-extraction #sentence-similarity #en #arxiv-2104.08727 #arxiv-1810.09305 #arxiv-2102.07033 #arxiv-1904.06472 #endpoints_compatible #region-us \n### Hyper parameters\n\n\nWe trained ou model on a TPU v3-8. We train the model during 540k steps using a batch size of 1024 (128 per TPU core).\nWe use a learning rate warm up of 500. The sequence length was limited to 128 tokens. We used the AdamW optimizer with\na 2e-5 learning rate. The full training script is accessible in this current repository.### Training data\n\n\nWe use the concatenation from multiple datasets to fine-tune our model. The total number of sentence pairs is above 1 billion sentences.\nWe sampled each dataset given a weighted probability which configuration is detailed in the 'data\\_config.json' file." ]
[ -0.09832437336444855, 0.016820183023810387, 0.00006350425246637315, 0.07187484949827194, 0.12101075053215027, 0.022486018016934395, 0.04081562161445618, 0.09339696168899536, -0.1101529598236084, 0.07622093707323074, 0.12479673326015472, 0.05971437320113182, 0.0646650642156601, 0.1824250966310501, -0.044530950486660004, -0.15987859666347504, 0.017732659354805946, -0.001286613754928112, -0.0036602283362299204, 0.11800049245357513, 0.07629874348640442, -0.07147017121315002, 0.058422867208719254, -0.05735592916607857, -0.16959786415100098, -0.0020510652102530003, -0.010964720509946346, -0.0012154746800661087, 0.11078169196844101, 0.06738750636577606, 0.07005292177200317, 0.03181588649749756, 0.03571631386876106, -0.0719863772392273, 0.019781365990638733, 0.02748008817434311, 0.030192876234650612, 0.08438050746917725, -0.01273085456341505, 0.014499708078801632, 0.06331613659858704, -0.045265860855579376, 0.010876729153096676, 0.044836390763521194, -0.09124956279993057, -0.014310315251350403, 0.00534036522731185, 0.022817537188529968, 0.10749603062868118, 0.04276401549577713, -0.0222100131213665, 0.12520849704742432, -0.06570988893508911, 0.06881950795650482, 0.0529821403324604, -0.2328597605228424, -0.021343760192394257, 0.16568489372730255, 0.03784366324543953, 0.06785956025123596, -0.0436183325946331, -0.043399013578891754, 0.12139362841844559, 0.0384431928396225, 0.0699448212981224, -0.019868778064846992, -0.1102559044957161, 0.03188367187976837, -0.1131514310836792, -0.022198716178536415, 0.25209787487983704, 0.0038592489436268806, -0.062302932143211365, -0.08716662228107452, -0.05393722653388977, -0.090439572930336, 0.030589208006858826, 0.02489471808075905, -0.04545033723115921, -0.000148588209412992, -0.06199058145284653, 0.057804930955171585, -0.11015411466360092, -0.13166525959968567, -0.06689305603504181, 0.15764231979846954, 0.04529830440878868, 0.05345376580953598, -0.06548815965652466, 0.10900801420211792, -0.15755826234817505, -0.08437155187129974, 0.004850137513130903, -0.0771518126130104, -0.11516833305358887, -0.005763644818216562, -0.09529410302639008, -0.14209958910942078, 0.04101058095693588, 0.07491561770439148, 0.08511913567781448, -0.0015652880538254976, 0.1311131715774536, 0.0603143647313118, 0.07564935088157654, 0.09478559345006943, -0.040721822530031204, -0.07973513752222061, 0.02747403085231781, 0.08969704061746597, -0.025334736332297325, -0.007225181441754103, -0.11068099737167358, -0.09365159273147583, 0.09529323875904083, -0.002963962033390999, -0.0063780867494642735, 0.08090294897556305, -0.008690248243510723, -0.04469465836882591, 0.10033310949802399, -0.09231159090995789, -0.06128300726413727, 0.008334869518876076, -0.13021241128444672, 0.02539818361401558, -0.02800769917666912, -0.059638407081365585, -0.06944466382265091, 0.014871621504426003, -0.0769100934267044, -0.04279542714357376, -0.11516109853982925, -0.18517424166202545, -0.035763975232839584, -0.06192305311560631, 0.008597781881690025, -0.12211426347494125, -0.1267118752002716, -0.0769527405500412, 0.005930105224251747, -0.029139282181859016, -0.07072029262781143, -0.09667567163705826, -0.0019211664330214262, -0.012253937311470509, -0.04568671062588692, 0.09822981804609299, -0.04529428482055664, 0.08855677396059036, 0.0010646161390468478, 0.0965064987540245, 0.000014985219422669616, 0.02293570153415203, -0.11241645365953445, -0.03437236696481705, -0.011620867997407913, 0.05633624270558357, 0.05508533865213394, 0.09829752147197723, -0.1033804640173912, -0.09275731444358826, -0.05532156676054001, -0.010574597865343094, 0.027044061571359634, 0.11634496599435806, -0.1866340935230255, -0.01424200739711523, 0.15844635665416718, -0.0603114515542984, -0.10676742345094681, 0.16539137065410614, -0.03723998740315437, 0.025214508175849915, 0.08902420103549957, 0.11237603425979614, 0.1026778444647789, -0.014474436640739441, 0.00952429324388504, 0.030871933326125145, -0.03188376873731613, -0.1094212457537651, 0.09016413241624832, 0.0577123761177063, -0.09539301693439484, 0.0357905849814415, 0.04500919580459595, 0.0761781558394432, -0.055389437824487686, -0.016760125756263733, -0.009828769601881504, -0.10405474901199341, -0.04316620156168938, 0.0033069055061787367, -0.003853927366435528, -0.09936635941267014, -0.05516689643263817, -0.0809326097369194, 0.1650194227695465, -0.09544152766466141, -0.02032315917313099, -0.04646405577659607, 0.06472869962453842, -0.06590229272842407, -0.021913817152380943, -0.12431872636079788, 0.009294809773564339, 0.05256348475813866, 0.12675762176513672, 0.033544015139341354, 0.12807567417621613, 0.06691484153270721, 0.07954255491495132, -0.0010142717510461807, -0.019734399393200874, 0.04437832161784172, -0.0361410453915596, -0.06238456070423126, -0.08802292495965958, -0.08389164507389069, -0.075968898832798, 0.11145799607038498, -0.1399984061717987, -0.01016266830265522, -0.08685257285833359, -0.00949840433895588, -0.021751750260591507, -0.014098679646849632, 0.06912841647863388, 0.014153292402625084, -0.07093654572963715, -0.03638223186135292, 0.06312970072031021, 0.021725203841924667, -0.06798945367336273, 0.0539100244641304, -0.16087760031223297, -0.04246344044804573, 0.0750228613615036, 0.042639583349227905, -0.06698822230100632, -0.10465770214796066, -0.05719444528222084, -0.03172080218791962, -0.049809906631708145, -0.02914421632885933, 0.18934495747089386, 0.007690689526498318, 0.1391746997833252, -0.09434740990400314, -0.0093791913241148, 0.009086540900170803, -0.009243356063961983, 0.052298009395599365, 0.07703433930873871, -0.0075438134372234344, -0.16623345017433167, 0.035872261971235275, -0.1012595146894455, -0.09323730319738388, 0.11934257298707962, -0.010630837641656399, -0.09214183688163757, 0.028692951425909996, 0.057758428156375885, -0.013971073552966118, 0.04404642805457115, -0.03749558702111244, -0.05469488725066185, 0.06818686425685883, -0.001158112776465714, 0.02656864933669567, -0.1407414972782135, -0.0013781572924926877, 0.029488587751984596, -0.028124114498496056, 0.020623713731765747, -0.015025733038783073, -0.03324750065803528, 0.08011355996131897, 0.025302015244960785, -0.13099177181720734, -0.006780750118196011, -0.023444820195436478, -0.08786329627037048, 0.1893852949142456, -0.01625276915729046, -0.09468052536249161, -0.11893929541110992, 0.04995660111308098, -0.010116755031049252, 0.020677169784903526, 0.00868035014718771, -0.04934103414416313, -0.0519142709672451, -0.08075381070375443, 0.035697899758815765, -0.052647665143013, 0.03413596376776695, -0.09568637609481812, 0.026329057291150093, 0.0018625445663928986, -0.1408223658800125, 0.006448452826589346, -0.04971570149064064, -0.09103350341320038, 0.07632030546665192, -0.12132425606250763, 0.061773769557476044, 0.17805540561676025, -0.06434546411037445, 0.047616492956876755, -0.046637192368507385, 0.18278981745243073, 0.026463305577635765, 0.028202321380376816, 0.17824316024780273, 0.03943851962685585, -0.0007926053949631751, 0.1131865531206131, -0.0006579473265446723, -0.01973561756312847, 0.10224029421806335, -0.04622797667980194, -0.043052513152360916, -0.18825854361057281, -0.07594824582338333, -0.06711386144161224, 0.03604748845100403, 0.1658603996038437, 0.039072565734386444, 0.025019999593496323, 0.10294576734304428, -0.04520216956734657, 0.04966464638710022, -0.0012964702909812331, 0.06761637330055237, -0.055233266204595566, 0.07419838011264801, 0.10507557541131973, -0.02375182695686817, -0.051909178495407104, 0.07611317187547684, 0.013158810324966908, 0.1820576786994934, -0.09162112325429916, 0.1136285662651062, 0.019974369555711746, 0.0886157900094986, 0.03758802264928818, 0.14344440400600433, -0.0754898339509964, 0.012477913871407509, -0.06399011611938477, -0.06255480647087097, -0.0800102949142456, 0.08997935801744461, 0.0568503737449646, 0.0342046283185482, -0.062205977737903595, -0.05064980313181877, 0.026222996413707733, 0.07348436862230301, 0.1954837590456009, -0.3469238877296448, -0.11169666796922684, 0.0013164292322471738, 0.003313810331746936, -0.03457074239850044, 0.09039031714200974, 0.15397310256958008, -0.02384069561958313, -0.0030103635508567095, -0.00007472043944289908, 0.14025115966796875, -0.02599477581679821, -0.009106619283556938, -0.025947583839297295, 0.11284209042787552, -0.03870629519224167, 0.13611453771591187, -0.24797669053077698, 0.15154556930065155, 0.012785951606929302, 0.06926308572292328, -0.07132522761821747, -0.012253974564373493, 0.0004570289747789502, 0.005804896354675293, 0.03620200231671333, -0.015601199120283127, -0.018389876931905746, -0.09318316727876663, -0.10377094894647598, 0.04122704267501831, -0.016992783173918724, -0.0024529604706913233, 0.10079941153526306, -0.02133389189839363, 0.007451868150383234, -0.0032785646617412567, 0.05409850552678108, 0.004430191125720739, -0.05935826897621155, -0.03426880016922951, 0.06939448416233063, -0.013540741987526417, -0.01508836355060339, -0.06937503069639206, -0.014754545874893665, 0.16124814748764038, 0.026917748153209686, -0.07831668108701706, -0.0845089703798294, 0.09404615312814713, 0.11863464117050171, -0.0668150782585144, -0.04357023909687996, 0.02231016382575035, 0.05990353971719742, -0.030737724155187607, -0.07764827460050583, 0.07266311347484589, -0.06625300645828247, -0.04802432656288147, -0.046455543488264084, 0.1047913134098053, 0.007849359884858131, 0.07380668073892593, -0.0036213065031915903, -0.0022414049599319696, -0.10956241935491562, -0.08511310070753098, -0.005216089077293873, -0.013870388269424438, 0.1622375249862671, 0.08012132346630096, -0.02030925266444683, -0.0523843951523304, -0.0788138136267662, 0.03702189400792122, 0.13209952414035797, 0.1978554129600525, -0.0786152258515358, -0.02268112637102604, 0.14839105308055878, 0.005795956589281559, -0.18059448897838593, -0.07800835371017456, 0.032755158841609955, 0.09386277943849564, -0.0717044323682785, -0.08899228274822235, 0.005737928207963705, 0.028368473052978516, 0.00963554996997118, -0.03648138791322708, -0.3246706426143646, -0.107403464615345, 0.07294541597366333, 0.08381607383489609, 0.3219355046749115, -0.09397153556346893, 0.02737850323319435, -0.011091896332800388, -0.1320132166147232, 0.10925951600074768, -0.07831364870071411, 0.11932352930307388, -0.039841607213020325, 0.057962361723184586, 0.0508907325565815, -0.06909786909818649, 0.0862957164645195, 0.044405534863471985, 0.0675300732254982, -0.016362085938453674, -0.024432480335235596, -0.013217883184552193, -0.04909227415919304, 0.15881159901618958, -0.14898572862148285, 0.06993593275547028, -0.13622431457042694, -0.07948150485754013, -0.0312921516597271, -0.0005381369846872985, 0.047190070152282715, -0.08482489734888077, -0.10711847245693207, 0.052090052515268326, 0.03685910627245903, 0.005835243966430426, 0.021195588633418083, -0.0033590244129300117, 0.09617693722248077, 0.15896108746528625, 0.07236938178539276, -0.039724040776491165, -0.0726991817355156, 0.0510418675839901, 0.008039283566176891, 0.08862018585205078, -0.17483586072921753, 0.01324493158608675, 0.12462928891181946, 0.02967250533401966, 0.13184049725532532, 0.055119313299655914, -0.07824905961751938, -0.018058408051729202, 0.058721836656332016, -0.13097898662090302, -0.039470355957746506, -0.03763420134782791, -0.04202406108379364, -0.07871343195438385, 0.008871166966855526, 0.05290011689066887, -0.11191583424806595, -0.022476768121123314, -0.014879714697599411, 0.021352965384721756, -0.05704662948846817, 0.2533450722694397, 0.08781103044748306, 0.08368837088346481, -0.09638271480798721, 0.03357916697859764, 0.06535164266824722, -0.056168340146541595, 0.017070041969418526, 0.06723537296056747, -0.10920803248882294, -0.011709978803992271, 0.09245307743549347, 0.05248700827360153, 0.004737869370728731, -0.07458168268203735, -0.10310441255569458, -0.050050269812345505, 0.027106506749987602, 0.048330679535865784, 0.08750145882368088, 0.07896039634943008, -0.02483685128390789, -0.05060802027583122, -0.16256290674209595, 0.08130674809217453, 0.09877033531665802, 0.04044640436768532, -0.044588539749383926, 0.2062082141637802, -0.013799915090203285, 0.05807764083147049, -0.05002385750412941, -0.03547651320695877, -0.07066964358091354, 0.03390159085392952, -0.007400372065603733, 0.02927744947373867, -0.05413056164979935, -0.005562273319810629, -0.02145177684724331, -0.031128432601690292, -0.025189220905303955, 0.0245047640055418, -0.058824002742767334, 0.027338681742548943, -0.025949202477931976, 0.018259231001138687, -0.023956457152962685, -0.06425071507692337, 0.01595431938767433, -0.040043771266937256, 0.049075618386268616, 0.05441002920269966, -0.06555816531181335, 0.023987503722310066, -0.02878740057349205, -0.029583172872662544, 0.04724709689617157, 0.06322292238473892, 0.019697895273566246, -0.07393518090248108, 0.04181542992591858, 0.008453112095594406, 0.005704884883016348, -0.017023863270878792, 0.04051550105214119, -0.06909029185771942, -0.029458632692694664, -0.04768713563680649, -0.033753614872694016, -0.09196412563323975, 0.0012253059539943933, 0.01775435358285904, 0.11336137354373932, 0.11795397102832794, -0.06467285007238388, 0.00496548879891634, -0.17074266076087952, -0.01335867028683424, -0.0017664580373093486, -0.09975209087133408, -0.12897473573684692, -0.03189849108457565, 0.07012695074081421, -0.011340190656483173, 0.114069364964962, 0.011331786401569843, -0.08337295800447464, -0.02456345222890377, 0.018080707639455795, 0.08740539103746414, -0.04850810766220093, 0.18358579277992249, 0.011038373224437237, -0.022616077214479446, -0.03658434748649597, 0.07912559807300568, 0.07614413648843765, 0.13942202925682068, 0.14158402383327484, 0.027884431183338165, 0.10013965517282486, 0.07967626303434372, -0.027423234656453133, -0.048047985881567, 0.011706499382853508, 0.01602584682404995, -0.014647338539361954, 0.02114381454885006, -0.012316292151808739, 0.16985028982162476, 0.2119121551513672, -0.07782262563705444, 0.04021311178803444, -0.016291148960590363, -0.09064407646656036, -0.11629340797662735, -0.12228602916002274, -0.09230399876832962, -0.10732639580965042, -0.01973871886730194, -0.11440782994031906, -0.024195684120059013, 0.13859714567661285, 0.03879430890083313, -0.024391166865825653, 0.05617641657590866, 0.07634057104587555, -0.05419453606009483, 0.03349115327000618, -0.05697167292237282, 0.06099458783864975, 0.026278791949152946, -0.026136327534914017, 0.09104505181312561, -0.07509355992078781, 0.09564689546823502, -0.006049580872058868, 0.1341409832239151, 0.057479601353406906, -0.004841576796025038, -0.08223916590213776, -0.05211937427520752, 0.0035195834934711456, 0.03540642186999321, 0.10684448480606079, 0.06487024575471878, -0.022578613832592964, 0.016417432576417923, 0.15691274404525757, -0.04081330820918083, -0.12049491703510284, -0.09872715175151825, 0.24305813014507294, 0.06363911926746368, -0.01597405970096588, 0.08947192877531052, -0.050516825169324875, -0.04091886803507805, 0.17677535116672516, 0.16740109026432037, -0.0048064268194139, -0.03640797361731529, 0.005754763726145029, -0.008220539428293705, 0.02860795520246029, 0.13245368003845215, 0.024322519078850746, 0.12151174992322922, -0.028662387281656265, 0.026499515399336815, -0.030408281832933426, 0.020137855783104897, -0.02150067128241062, -0.0008068282040767372, 0.003939158283174038, -0.03591471537947655, -0.052396148443222046, 0.044268444180488586, -0.008165094070136547, -0.03129620477557182, -0.01616032049059868, -0.08368100970983505, -0.13377845287322998, -0.04167504608631134, 0.05446670576930046, 0.05682341754436493, 0.12857435643672943, -0.08465082198381424, 0.072342149913311, -0.034214165061712265, -0.05628194659948349, -0.13905009627342224, -0.0713888481259346, 0.0712137371301651, -0.012368817813694477, 0.05443299189209938, -0.008935188874602318, 0.13978320360183716, 0.08129651099443436, -0.015148403123021126, -0.12314417958259583, 0.1125025525689125, 0.005946935620158911, 0.0394376702606678, 0.07266782224178314, 0.09853960573673248, -0.035423532128334045, 0.05210830271244049, 0.029463347047567368, -0.1301744431257248, -0.036341093480587006, -0.06853578984737396, 0.013850145041942596, -0.13964617252349854, 0.025783749297261238, -0.0033703239168971777, 0.1554758995771408, 0.12597809731960297, -0.050321828573942184, -0.026166236028075218, -0.06870579719543457, -0.005760408006608486, 0.028178757056593895, 0.08965057134628296, -0.06381881982088089, -0.13512006402015686, -0.042533718049526215, -0.049284107983112335, 0.023557627573609352, -0.2504330277442932, 0.024009598419070244, -0.09681660681962967, -0.0403844490647316, -0.04193085804581642, 0.13634788990020752, 0.014546921476721764, 0.038866229355335236, -0.051283590495586395, -0.04770510271191597, -0.006240921560674906, 0.07209163159132004, -0.18116551637649536, -0.17301982641220093 ]
null
null
sentence-transformers
# Model description The project aims to train sentence embedding models on very large sentence level datasets using a self-supervised contrastive learning objective. We used the pretrained ['MiniLM-L12'](https://huggingface.co/microsoft/MiniLM-L12-H384-uncased) model and fine-tuned in on a 1B sentence pairs dataset. We use a contrastive learning objective: given a sentence from the pair, the model should predict which out of a set of randomly sampled other sentences, was actually paired with it in our dataset. We developped this model during the [Community week using JAX/Flax for NLP & CV](https://discuss.huggingface.co/t/open-to-the-community-community-week-using-jax-flax-for-nlp-cv/7104), organized by Hugging Face. We developped this model as part of the project: [Train the Best Sentence Embedding Model Ever with 1B Training Pairs](https://discuss.huggingface.co/t/train-the-best-sentence-embedding-model-ever-with-1b-training-pairs/7354). We benefited from efficient hardware infrastructure to run the project: 7 TPUs v3-8, as well as intervention from Google’s Flax, JAX, and Cloud team member about efficient deep learning frameworks. ## Intended uses Our model is intented to be used as a sentence encoder. Given an input sentence, it ouptuts a vector which captures the sentence semantic information. The sentence vector may be used for information retrieval, clustering or sentence similarity tasks. ## How to use Here is how to use this model to get the features of a given text using [SentenceTransformers](https://github.com/UKPLab/sentence-transformers) library: ```python from sentence_transformers import SentenceTransformer model = SentenceTransformer('flax-sentence-embeddings/all_datasets_v4_MiniLM-L12') text = "Replace me by any text you'd like." text_embbedding = model.encode(text) # array([-0.01559514, 0.04046123, 0.1317083 , 0.00085931, 0.04585106, # -0.05607086, 0.0138078 , 0.03569756, 0.01420381, 0.04266302 ...], # dtype=float32) ``` # Training procedure ## Pre-training We use the pretrained ['MiniLM-L12'](https://huggingface.co/microsoft/MiniLM-L12-H384-uncased). Please refer to the model card for more detailed information about the pre-training procedure. ## Fine-tuning We fine-tune the model using a contrastive objective. Formally, we compute the cosine similarity from each possible sentence pairs from the batch. We then apply the cross entropy loss by comparing with true pairs. ### Hyper parameters We trained ou model on a TPU v3-8. We train the model during 540k steps using a batch size of 1024 (128 per TPU core). We use a learning rate warm up of 500. The sequence length was limited to 128 tokens. We used the AdamW optimizer with a 2e-5 learning rate. The full training script is accessible in this current repository. ### Training data We use the concatenation from multiple datasets to fine-tune our model. The total number of sentence pairs is above 1 billion sentences. We sampled each dataset given a weighted probability which configuration is detailed in the `data_config.json` file. | Dataset | Paper | Number of training tuples | |:--------------------------------------------------------:|:----------------------------------------:|:--------------------------:| | [GOOAQ: Open Question Answering with Diverse Answer Types](https://github.com/allenai/gooaq) | [paper](https://arxiv.org/pdf/2104.08727.pdf) | 3,012,496 | | [Stack Exchange](https://huggingface.co/datasets/flax-sentence-embeddings/stackexchange_title_body_jsonl) | - | 364,001 | | [Flickr 30k](https://shannon.cs.illinois.edu/DenotationGraph/) | [paper](https://transacl.org/ojs/index.php/tacl/article/view/229/33) | 317,695 | | [COCO 2020](COCO 2020) | [paper](https://link.springer.com/chapter/10.1007%2F978-3-319-10602-1_48) | 828,395| | [Code Search](https://huggingface.co/datasets/code_search_net) | - | 1,151,414 | | [TriviaqQA](https://huggingface.co/datasets/trivia_qa) | - | 73,346 | | [SQuAD2.0](https://rajpurkar.github.io/SQuAD-explorer/) | [paper](https://aclanthology.org/P18-2124.pdf) | 87,599 | | [Natural Questions (NQ)](https://ai.google.com/research/NaturalQuestions) | [paper](https://transacl.org/ojs/index.php/tacl/article/view/1455) | 100,231 | | [Simple Wikipedia](https://cs.pomona.edu/~dkauchak/simplification/) | [paper](https://www.aclweb.org/anthology/P11-2117/) | 102,225 | | [Quora Question Pairs](https://quoradata.quora.com/First-Quora-Dataset-Release-Question-Pairs) | - | 103,663 | | [Altlex](https://github.com/chridey/altlex/) | [paper](https://aclanthology.org/P16-1135.pdf) | 112,696 | | [Wikihow](https://github.com/pvl/wikihow_pairs_dataset) | [paper](https://arxiv.org/abs/1810.09305) | 128,542 | | [Sentence Compression](https://github.com/google-research-datasets/sentence-compression) | [paper](https://www.aclweb.org/anthology/D13-1155/) | 180,000 | | AllNLI ([SNLI](https://nlp.stanford.edu/projects/snli/) and [MultiNLI](https://cims.nyu.edu/~sbowman/multinli/) | [paper SNLI](https://doi.org/10.18653/v1/d15-1075), [paper MultiNLI](https://doi.org/10.18653/v1/n18-1101) | 277,230 | | [Eli5](https://huggingface.co/datasets/eli5) | [paper](https://doi.org/10.18653/v1/p19-1346) | 325,475 | | [SPECTER](https://github.com/allenai/specter) | [paper](https://doi.org/10.18653/v1/2020.acl-main.207) | 684,100 | | [S2ORC](https://github.com/allenai/s2orc) Title/Abstract | [paper](https://aclanthology.org/2020.acl-main.447/) | 41,769,185 | | [S2ORC](https://github.com/allenai/s2orc) Citation/Citation | [paper](https://aclanthology.org/2020.acl-main.447/) | 52,603,982 | | [S2ORC](https://github.com/allenai/s2orc) Citation/Abstract | [paper](https://aclanthology.org/2020.acl-main.447/) | 116,288,806 | | [PAQ](https://github.com/facebookresearch/PAQ) | [paper](https://arxiv.org/abs/2102.07033) | 64,371,441 | | [WikiAnswers](https://github.com/afader/oqa#wikianswers-corpus) | [paper](https://doi.org/10.1145/2623330.2623677) | 77,427,422 | | SearchQA | - | 582,261 | | [Yahoo Answers](https://www.kaggle.com/soumikrakshit/yahoo-answers-dataset) Title/Answer | [paper](https://proceedings.neurips.cc/paper/2015/hash/250cf8b51c773f3f8dc8b4be867a9a02-Abstract.html) | 1,198,260 | | [Yahoo Answers](https://www.kaggle.com/soumikrakshit/yahoo-answers-dataset) Title/Question | [paper](https://proceedings.neurips.cc/paper/2015/hash/250cf8b51c773f3f8dc8b4be867a9a02-Abstract.html) | 659,896 | | [Yahoo Answers](https://www.kaggle.com/soumikrakshit/yahoo-answers-dataset) Question/Answer | [paper](https://proceedings.neurips.cc/paper/2015/hash/250cf8b51c773f3f8dc8b4be867a9a02-Abstract.html) | 681,164 | | [MS MARCO](https://microsoft.github.io/msmarco/) | [paper](https://doi.org/10.1145/3404835.3462804) | 9,144,553 | | [Reddit conversationnal](https://github.com/PolyAI-LDN/conversational-datasets/tree/master/reddit) | [paper](https://arxiv.org/abs/1904.06472) | 726,484,430 | | total | | 1,097,953,922 |
{"language": "en", "tags": ["sentence-transformers", "feature-extraction", "sentence-similarity"], "pipeline_tag": "sentence-similarity"}
sentence-similarity
flax-sentence-embeddings/all_datasets_v4_MiniLM-L12
[ "sentence-transformers", "pytorch", "bert", "feature-extraction", "sentence-similarity", "en", "arxiv:2104.08727", "arxiv:1810.09305", "arxiv:2102.07033", "arxiv:1904.06472", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[ "2104.08727", "1810.09305", "2102.07033", "1904.06472" ]
[ "en" ]
TAGS #sentence-transformers #pytorch #bert #feature-extraction #sentence-similarity #en #arxiv-2104.08727 #arxiv-1810.09305 #arxiv-2102.07033 #arxiv-1904.06472 #endpoints_compatible #region-us
Model description ================= The project aims to train sentence embedding models on very large sentence level datasets using a self-supervised contrastive learning objective. We used the pretrained 'MiniLM-L12' model and fine-tuned in on a 1B sentence pairs dataset. We use a contrastive learning objective: given a sentence from the pair, the model should predict which out of a set of randomly sampled other sentences, was actually paired with it in our dataset. We developped this model during the Community week using JAX/Flax for NLP & CV, organized by Hugging Face. We developped this model as part of the project: Train the Best Sentence Embedding Model Ever with 1B Training Pairs. We benefited from efficient hardware infrastructure to run the project: 7 TPUs v3-8, as well as intervention from Google’s Flax, JAX, and Cloud team member about efficient deep learning frameworks. Intended uses ------------- Our model is intented to be used as a sentence encoder. Given an input sentence, it ouptuts a vector which captures the sentence semantic information. The sentence vector may be used for information retrieval, clustering or sentence similarity tasks. How to use ---------- Here is how to use this model to get the features of a given text using SentenceTransformers library: Training procedure ================== Pre-training ------------ We use the pretrained 'MiniLM-L12'. Please refer to the model card for more detailed information about the pre-training procedure. Fine-tuning ----------- We fine-tune the model using a contrastive objective. Formally, we compute the cosine similarity from each possible sentence pairs from the batch. We then apply the cross entropy loss by comparing with true pairs. ### Hyper parameters We trained ou model on a TPU v3-8. We train the model during 540k steps using a batch size of 1024 (128 per TPU core). We use a learning rate warm up of 500. The sequence length was limited to 128 tokens. We used the AdamW optimizer with a 2e-5 learning rate. The full training script is accessible in this current repository. ### Training data We use the concatenation from multiple datasets to fine-tune our model. The total number of sentence pairs is above 1 billion sentences. We sampled each dataset given a weighted probability which configuration is detailed in the 'data\_config.json' file.
[ "### Hyper parameters\n\n\nWe trained ou model on a TPU v3-8. We train the model during 540k steps using a batch size of 1024 (128 per TPU core).\nWe use a learning rate warm up of 500. The sequence length was limited to 128 tokens. We used the AdamW optimizer with\na 2e-5 learning rate. The full training script is accessible in this current repository.", "### Training data\n\n\nWe use the concatenation from multiple datasets to fine-tune our model. The total number of sentence pairs is above 1 billion sentences.\nWe sampled each dataset given a weighted probability which configuration is detailed in the 'data\\_config.json' file." ]
[ "TAGS\n#sentence-transformers #pytorch #bert #feature-extraction #sentence-similarity #en #arxiv-2104.08727 #arxiv-1810.09305 #arxiv-2102.07033 #arxiv-1904.06472 #endpoints_compatible #region-us \n", "### Hyper parameters\n\n\nWe trained ou model on a TPU v3-8. We train the model during 540k steps using a batch size of 1024 (128 per TPU core).\nWe use a learning rate warm up of 500. The sequence length was limited to 128 tokens. We used the AdamW optimizer with\na 2e-5 learning rate. The full training script is accessible in this current repository.", "### Training data\n\n\nWe use the concatenation from multiple datasets to fine-tune our model. The total number of sentence pairs is above 1 billion sentences.\nWe sampled each dataset given a weighted probability which configuration is detailed in the 'data\\_config.json' file." ]
[ 75, 89, 66 ]
[ "passage: TAGS\n#sentence-transformers #pytorch #bert #feature-extraction #sentence-similarity #en #arxiv-2104.08727 #arxiv-1810.09305 #arxiv-2102.07033 #arxiv-1904.06472 #endpoints_compatible #region-us \n### Hyper parameters\n\n\nWe trained ou model on a TPU v3-8. We train the model during 540k steps using a batch size of 1024 (128 per TPU core).\nWe use a learning rate warm up of 500. The sequence length was limited to 128 tokens. We used the AdamW optimizer with\na 2e-5 learning rate. The full training script is accessible in this current repository.### Training data\n\n\nWe use the concatenation from multiple datasets to fine-tune our model. The total number of sentence pairs is above 1 billion sentences.\nWe sampled each dataset given a weighted probability which configuration is detailed in the 'data\\_config.json' file." ]
[ -0.1166381910443306, 0.028163647279143333, 0.00006523822958115488, 0.08393783867359161, 0.1294025182723999, 0.023931488394737244, 0.041672904044389725, 0.09167788177728653, -0.06433993577957153, 0.06772765517234802, 0.12907597422599792, 0.046693217009305954, 0.05387050285935402, 0.17731580138206482, -0.044460415840148926, -0.16165772080421448, 0.02093549259006977, 0.01131516508758068, 0.005537326913326979, 0.11662805825471878, 0.07105403393507004, -0.08329369127750397, 0.05869973078370094, -0.06218612939119339, -0.14970126748085022, -0.0052159312181174755, -0.016933532431721687, 0.006832611281424761, 0.11188236624002457, 0.055359434336423874, 0.07124953716993332, 0.04161963611841202, 0.04482337459921837, -0.05737471953034401, 0.016249315813183784, 0.018464867025613785, 0.03965803235769272, 0.08537876605987549, -0.006431345362216234, 0.0507199689745903, 0.021316757425665855, -0.05447402969002724, 0.012048940174281597, 0.03777937591075897, -0.0806325301527977, -0.028393752872943878, 0.013827315531671047, 0.020512303337454796, 0.1237078458070755, 0.04058506339788437, -0.027107102796435356, 0.10406911373138428, -0.05914647504687309, 0.06880054622888565, 0.050431858748197556, -0.25795355439186096, -0.020106157287955284, 0.16421879827976227, 0.04685297608375549, 0.08075251430273056, -0.040353402495384216, -0.0414368137717247, 0.11666230857372284, 0.037763919681310654, 0.08122090995311737, -0.02012716606259346, -0.09074469655752182, 0.034271787852048874, -0.12068518996238708, -0.01809098571538925, 0.24862726032733917, 0.009906004182994366, -0.06971367448568344, -0.0872427225112915, -0.06566793471574783, -0.08522799611091614, 0.016671862453222275, 0.011612324975430965, -0.03883073851466179, -0.0022470992989838123, -0.049003034830093384, 0.046147607266902924, -0.1119423434138298, -0.12922030687332153, -0.05161534994840622, 0.13341380655765533, 0.04276784881949425, 0.046647075563669205, -0.0569608174264431, 0.11111701279878616, -0.16338369250297546, -0.0819166973233223, 0.0064437552355229855, -0.07703696191310883, -0.10800337791442871, -0.009432345628738403, -0.10333611816167831, -0.15162873268127441, 0.024603070691227913, 0.029233142733573914, 0.09945439547300339, 0.00035222916631028056, 0.13298743963241577, 0.060387030243873596, 0.07559981942176819, 0.11093205958604813, -0.03664875775575638, -0.09339670091867447, 0.014680413529276848, 0.09363196790218353, -0.041255123913288116, -0.007913379929959774, -0.11950800567865372, -0.09497108310461044, 0.09458043426275253, -0.011320189572870731, -0.02837499976158142, 0.08381430059671402, -0.007442050613462925, -0.054408200085163116, 0.09603451192378998, -0.08711235970258713, -0.043112192302942276, 0.011500732973217964, -0.12391640990972519, 0.0367075651884079, -0.02882901392877102, -0.06689238548278809, -0.0768674835562706, 0.03163301572203636, -0.08274675905704498, -0.03078177385032177, -0.11444298177957535, -0.19183231890201569, -0.037248268723487854, -0.046455882489681244, -0.0018244188977405429, -0.11632000654935837, -0.12876677513122559, -0.06690612435340881, 0.007119618821889162, -0.019504358991980553, -0.07144121080636978, -0.10675623267889023, 0.007716519758105278, -0.008140533231198788, -0.05343179404735565, 0.07738830149173737, -0.0480102114379406, 0.09131946414709091, -0.007544107269495726, 0.0996946394443512, -0.008787120692431927, 0.025604965165257454, -0.11282869428396225, -0.03571919724345207, -0.025467144325375557, 0.05930674821138382, 0.04270065948367119, 0.08122968673706055, -0.1036430075764656, -0.10094486176967621, -0.03883829340338707, -0.010766174644231796, 0.030335567891597748, 0.13152767717838287, -0.20184952020645142, -0.016239263117313385, 0.1505543738603592, -0.04688993841409683, -0.10057415068149567, 0.18553398549556732, -0.035397373139858246, 0.020418422296643257, 0.09892085194587708, 0.12103153020143509, 0.08951745182275772, -0.02525378204882145, 0.007719449233263731, 0.04658706113696098, -0.003611946012824774, -0.11922790110111237, 0.09551959484815598, 0.05722052976489067, -0.11027350276708603, 0.03586603328585625, 0.017137905582785606, 0.06565413624048233, -0.06097320094704628, -0.015006358735263348, -0.0049740527756512165, -0.10464630275964737, -0.0021727229468524456, 0.0002864253765437752, 0.0025066048838198185, -0.09747620671987534, -0.05231671780347824, -0.04394172877073288, 0.15564405918121338, -0.10452508926391602, -0.017938785254955292, -0.04612023010849953, 0.060010530054569244, -0.07501763105392456, -0.01694287732243538, -0.11721794307231903, -0.009843120351433754, 0.061052944511175156, 0.11921176314353943, 0.031096486374735832, 0.131971076130867, 0.0710773766040802, 0.10091571509838104, -0.008649990893900394, -0.02525942586362362, 0.03436668962240219, -0.030627869069576263, -0.08597410470247269, -0.07113823294639587, -0.10522744804620743, -0.06733153015375137, 0.10094712674617767, -0.15681184828281403, -0.005927056074142456, -0.09849771857261658, -0.028363600373268127, -0.02220657840371132, -0.02106129564344883, 0.06623101979494095, 0.014844102784991264, -0.058698929846286774, -0.028660599142313004, 0.07835355401039124, 0.018202705308794975, -0.06805895268917084, 0.04490414634346962, -0.13388720154762268, -0.015393408946692944, 0.07247984409332275, 0.027901072055101395, -0.046039994806051254, -0.09433569014072418, -0.04923224449157715, -0.029392102733254433, -0.05669770389795303, -0.046082139015197754, 0.18897251784801483, 0.014804091304540634, 0.14160767197608948, -0.09479306638240814, -0.00601671077311039, 0.011589701287448406, -0.005654163658618927, 0.05863741412758827, 0.07614394277334213, 0.0044068521820008755, -0.16950510442256927, 0.033187877386808395, -0.06825582683086395, -0.09728334099054337, 0.11492875963449478, -0.007033153437077999, -0.09947141259908676, 0.03450653329491615, 0.051708851009607315, -0.02828972414135933, 0.05304967239499092, -0.06907077878713608, -0.055013738572597504, 0.06478164345026016, 0.0047789160162210464, 0.012417537160217762, -0.14016787707805634, 0.004025436472147703, 0.03424203768372536, -0.03475984185934067, -0.007232628297060728, -0.020481059327721596, -0.03619883581995964, 0.07565709203481674, 0.02187204174697399, -0.13672861456871033, -0.0035383752547204494, -0.018004927784204483, -0.0894978940486908, 0.19044160842895508, -0.016195574775338173, -0.09830496460199356, -0.11421392112970352, 0.03777090460062027, -0.01954823173582554, 0.02488955669105053, 0.013634715229272842, -0.053032003343105316, -0.049720585346221924, -0.07891867309808731, 0.029430069029331207, -0.03904496878385544, 0.041229333728551865, -0.07796620577573776, -0.0029159067198634148, 0.013684636913239956, -0.13951361179351807, 0.0032137183006852865, -0.04959048330783844, -0.0917833000421524, 0.06123898923397064, -0.11550682783126831, 0.06251212954521179, 0.1829266995191574, -0.0699731782078743, 0.05342281237244606, -0.04438040405511856, 0.19518524408340454, 0.039667874574661255, 0.023691650480031967, 0.16800428926944733, 0.02482069656252861, 0.0012182352365925908, 0.10263678431510925, 0.01110935676842928, -0.024804139509797096, 0.09143289923667908, -0.04505884274840355, -0.03633658587932587, -0.18303783237934113, -0.08280360698699951, -0.06473007798194885, 0.06585513800382614, 0.1700086146593094, 0.036460403352975845, -0.0001680564455455169, 0.09542606770992279, -0.03214288502931595, 0.061378080397844315, -0.002151446882635355, 0.06132104620337486, -0.04594586417078972, 0.06431997567415237, 0.1071937158703804, -0.004114124458283186, -0.04970165342092514, 0.07034742087125778, 0.004971699323505163, 0.16915076971054077, -0.08295756578445435, 0.11596354097127914, 0.006096357945352793, 0.09704101085662842, 0.029810568317770958, 0.1557520627975464, -0.08460131287574768, 0.012962982058525085, -0.06845773011445999, -0.06467452645301819, -0.07571770250797272, 0.0769931748509407, 0.06478402018547058, 0.032348521053791046, -0.08575581759214401, -0.05412900820374489, 0.027185890823602676, 0.0742979347705841, 0.2003447711467743, -0.35040390491485596, -0.12193266302347183, -0.0036391685716807842, -0.008069431409239769, -0.044291067868471146, 0.09336727857589722, 0.17594923079013824, -0.01805025339126587, -0.02270451933145523, -0.00487684179097414, 0.14311809837818146, -0.028143160045146942, 0.01012122817337513, 0.0037093672435730696, 0.09438976645469666, -0.0318889394402504, 0.1300869733095169, -0.2305658757686615, 0.15086399018764496, 0.011446228250861168, 0.06918997317552567, -0.06136877089738846, -0.016266610473394394, 0.0034954037982970476, 0.027957383543252945, 0.046010155230760574, -0.007534824777394533, 0.026326244696974754, -0.1155065968632698, -0.11294029653072357, 0.042166683822870255, -0.026247471570968628, -0.017067309468984604, 0.10247211903333664, -0.01390228234231472, 0.0025591817684471607, -0.0037630596198141575, 0.08322557061910629, -0.002260215813294053, -0.04724480211734772, -0.0332774743437767, 0.07936204224824905, 0.009207922965288162, -0.0055913375690579414, -0.08200418949127197, -0.024455804377794266, 0.15796011686325073, 0.039281900972127914, -0.0846337154507637, -0.08520150184631348, 0.08572547137737274, 0.1070663332939148, -0.06735143065452576, -0.045475833117961884, 0.044600896537303925, 0.06248210370540619, -0.029706377536058426, -0.07402747124433517, 0.0837201327085495, -0.07426360994577408, -0.04055793583393097, -0.05040818825364113, 0.11400733888149261, 0.011039593257009983, 0.07721337676048279, 0.0021234629675745964, -0.010179092176258564, -0.09474563598632812, -0.08361395448446274, -0.006544217001646757, -0.011582068167626858, 0.16649013757705688, 0.06543291360139847, -0.032297249883413315, -0.038738347589969635, -0.07687201350927353, 0.05224759504199028, 0.14212282001972198, 0.19919423758983612, -0.08072009682655334, -0.023350076749920845, 0.16063421964645386, -0.0025647259317338467, -0.19164900481700897, -0.07654887437820435, 0.04534819722175598, 0.09146349132061005, -0.061573900282382965, -0.09962017834186554, 0.027224117890000343, 0.032820917665958405, 0.007888219319283962, -0.036142829805612564, -0.3280524015426636, -0.11311440169811249, 0.08074641972780228, 0.08602747321128845, 0.34962156414985657, -0.0893184021115303, 0.023668603971600533, -0.004035058431327343, -0.14590680599212646, 0.1217048391699791, -0.0708562508225441, 0.11683133989572525, -0.028530612587928772, 0.06892451643943787, 0.055363982915878296, -0.06408154964447021, 0.08760266751050949, 0.06145014613866806, 0.052186593413352966, -0.004223024006932974, -0.026983410120010376, -0.03932001814246178, -0.048403188586235046, 0.16659557819366455, -0.13727211952209473, 0.06349699199199677, -0.15352196991443634, -0.08082437515258789, -0.03263482078909874, -0.012263231910765171, 0.04919743910431862, -0.0925556868314743, -0.08373043686151505, 0.04637596383690834, 0.04181276634335518, 0.009975805878639221, 0.025428280234336853, 0.0006472950335592031, 0.07992157340049744, 0.15671773254871368, 0.08266709744930267, -0.0699290931224823, -0.10249011963605881, 0.04932939261198044, 0.003239431418478489, 0.10070677101612091, -0.16698184609413147, 0.025776566937565804, 0.12953278422355652, 0.025570711120963097, 0.13159812986850739, 0.060542698949575424, -0.048997487872838974, -0.025536784902215004, 0.039025794714689255, -0.15143465995788574, -0.05687851086258888, -0.04986170306801796, -0.04458332061767578, -0.08154991269111633, 0.023373723030090332, 0.061599183827638626, -0.12127683311700821, -0.022757232189178467, -0.010583377443253994, 0.02208659239113331, -0.056177861988544464, 0.26022955775260925, 0.06507408618927002, 0.08947733789682388, -0.09616225212812424, 0.026253674179315567, 0.0652412548661232, -0.06454251706600189, 0.00881009642034769, 0.06822749972343445, -0.11719833314418793, -0.015511740930378437, 0.07285316288471222, 0.06384103745222092, 0.024667194113135338, -0.06743398308753967, -0.09736921638250351, -0.05210447683930397, 0.027986939996480942, 0.029092855751514435, 0.09215456247329712, 0.07309724390506744, -0.046373046934604645, -0.04527819901704788, -0.15516196191310883, 0.08883830159902573, 0.10770580917596817, 0.04452923312783241, -0.050432585179805756, 0.20537154376506805, -0.027983060106635094, 0.06454796344041824, -0.05129797384142876, -0.029314368963241577, -0.06178569048643112, 0.032406751066446304, -0.028681855648756027, 0.021212195977568626, -0.04252549260854721, -0.0076232594437897205, -0.0267032403498888, -0.030169198289513588, -0.008257145993411541, 0.025888686999678612, -0.06191456317901611, 0.028467925265431404, -0.014888855628669262, 0.026380855590105057, -0.025900056585669518, -0.05941265448927879, 0.009334306232631207, -0.03694529086351395, 0.05847601965069771, 0.05892108380794525, -0.07126617431640625, 0.03158017620444298, -0.011873713694512844, -0.03880062326788902, 0.051781851798295975, 0.06921988725662231, 0.03134949505329132, -0.057932887226343155, 0.03591903671622276, 0.008837730623781681, 0.010601557791233063, -0.022553576156497, 0.06672419607639313, -0.05907484516501427, -0.03556538745760918, -0.0386744886636734, -0.023573165759444237, -0.08862368017435074, -0.0063630761578679085, 0.017012516036629677, 0.1296999305486679, 0.12616440653800964, -0.07376714795827866, 0.006555142812430859, -0.17503675818443298, -0.012415515258908272, 0.011818106286227703, -0.10555118322372437, -0.1386907994747162, -0.04892011731863022, 0.07258874922990799, -0.022820141166448593, 0.09640616923570633, 0.0038630932103842497, -0.06244906783103943, -0.030342185869812965, 0.009658821858465672, 0.08438029885292053, -0.057243652641773224, 0.194198876619339, 0.00439901789650321, -0.02473350614309311, -0.03767542913556099, 0.08564285188913345, 0.08899150788784027, 0.17423999309539795, 0.15014317631721497, 0.014970291405916214, 0.09922866523265839, 0.08861279487609863, -0.0365433432161808, -0.03514067456126213, -0.047150369733572006, 0.0019032765412703156, -0.00899352878332138, 0.045277584344148636, -0.02580777369439602, 0.2076648771762848, 0.18022221326828003, -0.08041970431804657, 0.04046771302819252, -0.022811230272054672, -0.10102059692144394, -0.11724559962749481, -0.12237050384283066, -0.0872972384095192, -0.1244911402463913, -0.028305087238550186, -0.12014781683683395, -0.021208595484495163, 0.12318804860115051, 0.04253026470541954, -0.022702708840370178, 0.07811830192804337, 0.06165861710906029, -0.04409067705273628, 0.04416688531637192, -0.06402851641178131, 0.06312741339206696, 0.008729654364287853, -0.03475793078541756, 0.0784156396985054, -0.0654272511601448, 0.09488212317228317, -0.0133871641010046, 0.12631350755691528, 0.04625630006194115, 0.006467791274189949, -0.08884580433368683, -0.06424053013324738, 0.005368480924516916, 0.03523442521691322, 0.109218068420887, 0.062150247395038605, -0.025435667484998703, 0.011631258763372898, 0.146530419588089, -0.05346375331282616, -0.10351083427667618, -0.08811460435390472, 0.24703766405582428, 0.0687367171049118, -0.004094807431101799, 0.09706522524356842, -0.04626637324690819, -0.049329955130815506, 0.17269328236579895, 0.1553487777709961, -0.025382377207279205, -0.038936398923397064, 0.010734129697084427, -0.007404282223433256, 0.019895488396286964, 0.14432542026042938, 0.021120131015777588, 0.1335168480873108, -0.028617901727557182, 0.03219650685787201, -0.026001254096627235, 0.019872186705470085, -0.025650711730122566, 0.007232723757624626, 0.0022121898364275694, -0.026038751006126404, -0.058012593537569046, 0.04531489685177803, -0.008376959711313248, -0.0446048378944397, -0.03189326450228691, -0.08294793963432312, -0.13371621072292328, -0.04061007872223854, 0.06752695143222809, 0.05940740555524826, 0.13389843702316284, -0.08916579186916351, 0.08360857516527176, -0.012354881502687931, -0.058692120015621185, -0.12168341875076294, -0.06915947794914246, 0.07426106184720993, -0.01144349854439497, 0.07301130145788193, 0.012163433246314526, 0.13969798386096954, 0.061293359845876694, -0.011549584567546844, -0.11998965591192245, 0.0965556874871254, 0.007276664953678846, 0.028127124533057213, 0.059184297919273376, 0.09711086750030518, -0.043260086327791214, 0.06514264643192291, 0.01341001782566309, -0.15448033809661865, -0.04754588007926941, -0.06066511943936348, -0.0005395898479036987, -0.13044731318950653, 0.01663447916507721, 0.0017534783110022545, 0.14893169701099396, 0.12823940813541412, -0.04271475970745087, -0.03592288866639137, -0.06298235058784485, -0.001330605591647327, 0.021632911637425423, 0.07845992594957352, -0.06458458304405212, -0.13506647944450378, -0.048806726932525635, -0.05901853367686272, 0.0296377744525671, -0.2274160534143448, 0.02128216251730919, -0.08984799683094025, -0.02334815263748169, -0.04699192941188812, 0.12656022608280182, 0.02255050651729107, 0.02690667286515236, -0.04666578769683838, -0.05461854487657547, -0.007236189674586058, 0.07896849513053894, -0.1804998368024826, -0.17625665664672852 ]
null
null
sentence-transformers
# Model description The project aims to train sentence embedding models on very large sentence level datasets using a self-supervised contrastive learning objective. We used the pretrained ['MiniLM-L6-H384-uncased'](https://huggingface.co/nreimers/MiniLM-L6-H384-uncased) model and fine-tuned in on a 1B sentence pairs dataset. We use a contrastive learning objective: given a sentence from the pair, the model should predict which out of a set of randomly sampled other sentences, was actually paired with it in our dataset. We developped this model during the [Community week using JAX/Flax for NLP & CV](https://discuss.huggingface.co/t/open-to-the-community-community-week-using-jax-flax-for-nlp-cv/7104), organized by Hugging Face. We developped this model as part of the project: [Train the Best Sentence Embedding Model Ever with 1B Training Pairs](https://discuss.huggingface.co/t/train-the-best-sentence-embedding-model-ever-with-1b-training-pairs/7354). We benefited from efficient hardware infrastructure to run the project: 7 TPUs v3-8, as well as intervention from Google’s Flax, JAX, and Cloud team member about efficient deep learning frameworks. ## Intended uses Our model is intented to be used as a sentence encoder. Given an input sentence, it ouptuts a vector which captures the sentence semantic information. The sentence vector may be used for information retrieval, clustering or sentence similarity tasks. ## How to use Here is how to use this model to get the features of a given text using [SentenceTransformers](https://github.com/UKPLab/sentence-transformers) library: ```python from sentence_transformers import SentenceTransformer model = SentenceTransformer('flax-sentence-embeddings/all_datasets_v4_MiniLM-L6') text = "Replace me by any text you'd like." text_embbedding = model.encode(text) # array([-0.01559514, 0.04046123, 0.1317083 , 0.00085931, 0.04585106, # -0.05607086, 0.0138078 , 0.03569756, 0.01420381, 0.04266302 ...], # dtype=float32) ``` # Training procedure ## Pre-training We use the pretrained ['MiniLM-L6-H384-uncased'](https://huggingface.co/nreimers/MiniLM-L6-H384-uncased) which is a 6 layer version of ['microsoft/MiniLM-L12-H384-uncased'](https://huggingface.co/microsoft/MiniLM-L12-H384-uncased) by keeping only every second layer. Please refer to the model card for more detailed information about the pre-training procedure. ## Fine-tuning We fine-tune the model using a contrastive objective. Formally, we compute the cosine similarity from each possible sentence pairs from the batch. We then apply the cross entropy loss by comparing with true pairs. ### Hyper parameters We trained ou model on a TPU v3-8. We train the model during 540k steps using a batch size of 1024 (128 per TPU core). We use a learning rate warm up of 500. The sequence length was limited to 128 tokens. We used the AdamW optimizer with a 2e-5 learning rate. The full training script is accessible in this current repository. ### Training data We use the concatenation from multiple datasets to fine-tune our model. The total number of sentence pairs is above 1 billion sentences. We sampled each dataset given a weighted probability which configuration is detailed in the `data_config.json` file. | Dataset | Paper | Number of training tuples | |:--------------------------------------------------------:|:----------------------------------------:|:--------------------------:| | [GOOAQ: Open Question Answering with Diverse Answer Types](https://github.com/allenai/gooaq) | [paper](https://arxiv.org/pdf/2104.08727.pdf) | 3,012,496 | | [Stack Exchange](https://huggingface.co/datasets/flax-sentence-embeddings/stackexchange_title_body_jsonl) | - | 364,001 | | [Flickr 30k](https://shannon.cs.illinois.edu/DenotationGraph/) | [paper](https://transacl.org/ojs/index.php/tacl/article/view/229/33) | 317,695 | | [COCO 2020](COCO 2020) | [paper](https://link.springer.com/chapter/10.1007%2F978-3-319-10602-1_48) | 828,395| | [Code Search](https://huggingface.co/datasets/code_search_net) | - | 1,151,414 | | [TriviaqQA](https://huggingface.co/datasets/trivia_qa) | - | 73,346 | | [SQuAD2.0](https://rajpurkar.github.io/SQuAD-explorer/) | [paper](https://aclanthology.org/P18-2124.pdf) | 87,599 | | [Natural Questions (NQ)](https://ai.google.com/research/NaturalQuestions) | [paper](https://transacl.org/ojs/index.php/tacl/article/view/1455) | 100,231 | | [Simple Wikipedia](https://cs.pomona.edu/~dkauchak/simplification/) | [paper](https://www.aclweb.org/anthology/P11-2117/) | 102,225 | | [Quora Question Pairs](https://quoradata.quora.com/First-Quora-Dataset-Release-Question-Pairs) | - | 103,663 | | [Altlex](https://github.com/chridey/altlex/) | [paper](https://aclanthology.org/P16-1135.pdf) | 112,696 | | [Wikihow](https://github.com/pvl/wikihow_pairs_dataset) | [paper](https://arxiv.org/abs/1810.09305) | 128,542 | | [Sentence Compression](https://github.com/google-research-datasets/sentence-compression) | [paper](https://www.aclweb.org/anthology/D13-1155/) | 180,000 | | AllNLI ([SNLI](https://nlp.stanford.edu/projects/snli/) and [MultiNLI](https://cims.nyu.edu/~sbowman/multinli/) | [paper SNLI](https://doi.org/10.18653/v1/d15-1075), [paper MultiNLI](https://doi.org/10.18653/v1/n18-1101) | 277,230 | | [Eli5](https://huggingface.co/datasets/eli5) | [paper](https://doi.org/10.18653/v1/p19-1346) | 325,475 | | [SPECTER](https://github.com/allenai/specter) | [paper](https://doi.org/10.18653/v1/2020.acl-main.207) | 684,100 | | [S2ORC](https://github.com/allenai/s2orc) Title/Abstract | [paper](https://aclanthology.org/2020.acl-main.447/) | 41,769,185 | | [S2ORC](https://github.com/allenai/s2orc) Citation/Citation | [paper](https://aclanthology.org/2020.acl-main.447/) | 52,603,982 | | [S2ORC](https://github.com/allenai/s2orc) Citation/Abstract | [paper](https://aclanthology.org/2020.acl-main.447/) | 116,288,806 | | [PAQ](https://github.com/facebookresearch/PAQ) | [paper](https://arxiv.org/abs/2102.07033) | 64,371,441 | | [WikiAnswers](https://github.com/afader/oqa#wikianswers-corpus) | [paper](https://doi.org/10.1145/2623330.2623677) | 77,427,422 | | SearchQA | - | 582,261 | | [Yahoo Answers](https://www.kaggle.com/soumikrakshit/yahoo-answers-dataset) Title/Answer | [paper](https://proceedings.neurips.cc/paper/2015/hash/250cf8b51c773f3f8dc8b4be867a9a02-Abstract.html) | 1,198,260 | | [Yahoo Answers](https://www.kaggle.com/soumikrakshit/yahoo-answers-dataset) Title/Question | [paper](https://proceedings.neurips.cc/paper/2015/hash/250cf8b51c773f3f8dc8b4be867a9a02-Abstract.html) | 659,896 | | [Yahoo Answers](https://www.kaggle.com/soumikrakshit/yahoo-answers-dataset) Question/Answer | [paper](https://proceedings.neurips.cc/paper/2015/hash/250cf8b51c773f3f8dc8b4be867a9a02-Abstract.html) | 681,164 | | [MS MARCO](https://microsoft.github.io/msmarco/) | [paper](https://doi.org/10.1145/3404835.3462804) | 9,144,553 | | [Reddit conversationnal](https://github.com/PolyAI-LDN/conversational-datasets/tree/master/reddit) | [paper](https://arxiv.org/abs/1904.06472) | 726,484,430 | | total | | 1,097,953,922 |
{"language": "en", "tags": ["sentence-transformers", "feature-extraction", "sentence-similarity"], "pipeline_tag": "sentence-similarity"}
sentence-similarity
flax-sentence-embeddings/all_datasets_v4_MiniLM-L6
[ "sentence-transformers", "pytorch", "bert", "feature-extraction", "sentence-similarity", "en", "arxiv:2104.08727", "arxiv:1810.09305", "arxiv:2102.07033", "arxiv:1904.06472", "endpoints_compatible", "has_space", "region:us" ]
2022-03-02T23:29:05+00:00
[ "2104.08727", "1810.09305", "2102.07033", "1904.06472" ]
[ "en" ]
TAGS #sentence-transformers #pytorch #bert #feature-extraction #sentence-similarity #en #arxiv-2104.08727 #arxiv-1810.09305 #arxiv-2102.07033 #arxiv-1904.06472 #endpoints_compatible #has_space #region-us
Model description ================= The project aims to train sentence embedding models on very large sentence level datasets using a self-supervised contrastive learning objective. We used the pretrained 'MiniLM-L6-H384-uncased' model and fine-tuned in on a 1B sentence pairs dataset. We use a contrastive learning objective: given a sentence from the pair, the model should predict which out of a set of randomly sampled other sentences, was actually paired with it in our dataset. We developped this model during the Community week using JAX/Flax for NLP & CV, organized by Hugging Face. We developped this model as part of the project: Train the Best Sentence Embedding Model Ever with 1B Training Pairs. We benefited from efficient hardware infrastructure to run the project: 7 TPUs v3-8, as well as intervention from Google’s Flax, JAX, and Cloud team member about efficient deep learning frameworks. Intended uses ------------- Our model is intented to be used as a sentence encoder. Given an input sentence, it ouptuts a vector which captures the sentence semantic information. The sentence vector may be used for information retrieval, clustering or sentence similarity tasks. How to use ---------- Here is how to use this model to get the features of a given text using SentenceTransformers library: Training procedure ================== Pre-training ------------ We use the pretrained 'MiniLM-L6-H384-uncased' which is a 6 layer version of 'microsoft/MiniLM-L12-H384-uncased' by keeping only every second layer. Please refer to the model card for more detailed information about the pre-training procedure. Fine-tuning ----------- We fine-tune the model using a contrastive objective. Formally, we compute the cosine similarity from each possible sentence pairs from the batch. We then apply the cross entropy loss by comparing with true pairs. ### Hyper parameters We trained ou model on a TPU v3-8. We train the model during 540k steps using a batch size of 1024 (128 per TPU core). We use a learning rate warm up of 500. The sequence length was limited to 128 tokens. We used the AdamW optimizer with a 2e-5 learning rate. The full training script is accessible in this current repository. ### Training data We use the concatenation from multiple datasets to fine-tune our model. The total number of sentence pairs is above 1 billion sentences. We sampled each dataset given a weighted probability which configuration is detailed in the 'data\_config.json' file.
[ "### Hyper parameters\n\n\nWe trained ou model on a TPU v3-8. We train the model during 540k steps using a batch size of 1024 (128 per TPU core).\nWe use a learning rate warm up of 500. The sequence length was limited to 128 tokens. We used the AdamW optimizer with\na 2e-5 learning rate. The full training script is accessible in this current repository.", "### Training data\n\n\nWe use the concatenation from multiple datasets to fine-tune our model. The total number of sentence pairs is above 1 billion sentences.\nWe sampled each dataset given a weighted probability which configuration is detailed in the 'data\\_config.json' file." ]
[ "TAGS\n#sentence-transformers #pytorch #bert #feature-extraction #sentence-similarity #en #arxiv-2104.08727 #arxiv-1810.09305 #arxiv-2102.07033 #arxiv-1904.06472 #endpoints_compatible #has_space #region-us \n", "### Hyper parameters\n\n\nWe trained ou model on a TPU v3-8. We train the model during 540k steps using a batch size of 1024 (128 per TPU core).\nWe use a learning rate warm up of 500. The sequence length was limited to 128 tokens. We used the AdamW optimizer with\na 2e-5 learning rate. The full training script is accessible in this current repository.", "### Training data\n\n\nWe use the concatenation from multiple datasets to fine-tune our model. The total number of sentence pairs is above 1 billion sentences.\nWe sampled each dataset given a weighted probability which configuration is detailed in the 'data\\_config.json' file." ]
[ 79, 89, 66 ]
[ "passage: TAGS\n#sentence-transformers #pytorch #bert #feature-extraction #sentence-similarity #en #arxiv-2104.08727 #arxiv-1810.09305 #arxiv-2102.07033 #arxiv-1904.06472 #endpoints_compatible #has_space #region-us \n### Hyper parameters\n\n\nWe trained ou model on a TPU v3-8. We train the model during 540k steps using a batch size of 1024 (128 per TPU core).\nWe use a learning rate warm up of 500. The sequence length was limited to 128 tokens. We used the AdamW optimizer with\na 2e-5 learning rate. The full training script is accessible in this current repository.### Training data\n\n\nWe use the concatenation from multiple datasets to fine-tune our model. The total number of sentence pairs is above 1 billion sentences.\nWe sampled each dataset given a weighted probability which configuration is detailed in the 'data\\_config.json' file." ]
[ -0.09201109409332275, 0.017708173021674156, 0.0007281600846908987, 0.06549153476953506, 0.08606298267841339, 0.02625185064971447, 0.03089722990989685, 0.09053359180688858, -0.0734308585524559, 0.09253323823213577, 0.142208069562912, 0.047674667090177536, 0.0706716924905777, 0.18233586847782135, -0.05991838499903679, -0.16694240272045135, 0.020188242197036743, 0.008317824453115463, 0.03213721886277199, 0.11712642759084702, 0.055006179958581924, -0.09163080155849457, 0.05689315125346184, -0.04602888599038124, -0.1516314446926117, 0.005258951336145401, -0.0007229663897305727, 0.013742517679929733, 0.10081829875707626, 0.07550671696662903, 0.06731007248163223, 0.032934967428445816, 0.03546333685517311, -0.08834586292505264, 0.013586183078587055, 0.021029740571975708, 0.030851993709802628, 0.08143625408411026, -0.0006951636751182377, 0.007914244197309017, 0.05500555783510208, -0.03764057159423828, 0.016006775200366974, 0.04137879237532616, -0.09245505183935165, -0.03348223865032196, -0.009358583018183708, 0.035495638847351074, 0.07926618307828903, 0.025562824681401253, -0.027940211817622185, 0.1433003693819046, -0.06612630933523178, 0.06211351230740547, 0.05862126499414444, -0.24045400321483612, -0.007102681789547205, 0.1843043714761734, 0.044451527297496796, 0.07055113464593887, -0.0459975004196167, -0.04685305058956146, 0.1344471424818039, 0.03386872634291649, 0.0798211321234703, -0.022890815511345863, -0.04985203221440315, 0.0341687947511673, -0.12651492655277252, -0.03297998383641243, 0.2266002595424652, 0.018213827162981033, -0.06015419960021973, -0.09155204147100449, -0.04655792564153671, -0.0841316431760788, 0.03609057888388634, 0.025071920827031136, -0.039100728929042816, -0.0034160709474235773, -0.05054270103573799, 0.08456983417272568, -0.10351870208978653, -0.13085058331489563, -0.07161349058151245, 0.18850989639759064, 0.026838475838303566, 0.06362340599298477, -0.06721213459968567, 0.10526449233293533, -0.1764570027589798, -0.09269434958696365, 0.016506927087903023, -0.05333053693175316, -0.0885019600391388, -0.01567286066710949, -0.08019664138555527, -0.0984579548239708, 0.018339810892939568, 0.07011108100414276, 0.04371907562017441, 0.013056006282567978, 0.10830128937959671, 0.05433352291584015, 0.0834280326962471, 0.0855344608426094, -0.03712267428636551, -0.09601850807666779, 0.01206507533788681, 0.10122662782669067, -0.020228583365678787, -0.010246280580759048, -0.09665636718273163, -0.08055152744054794, 0.08248931169509888, -0.012399302795529366, -0.016533097252249718, 0.08165544271469116, -0.027614714577794075, -0.040399208664894104, 0.10321515053510666, -0.09303348511457443, -0.0396801121532917, 0.01656634733080864, -0.13791513442993164, 0.027739468961954117, -0.03403547406196594, -0.05126775801181793, -0.0621391162276268, 0.034592222422361374, -0.09126503020524979, -0.033007487654685974, -0.11004919558763504, -0.2031431794166565, -0.021544188261032104, -0.05659017339348793, 0.001295816502533853, -0.10280317813158035, -0.11656300723552704, -0.08541429042816162, -0.006741153541952372, -0.015836086124181747, -0.05995278060436249, -0.08996190875768661, -0.004541664384305477, -0.002669100183993578, -0.04806648567318916, 0.07871932536363602, -0.05267946794629097, 0.08746223896741867, -0.009075231850147247, 0.09331396222114563, -0.003632428590208292, 0.018481114879250526, -0.10614703595638275, -0.013386409729719162, -0.05093780905008316, 0.05921892076730728, 0.05105770006775856, 0.09442362189292908, -0.10815014690160751, -0.0904284194111824, -0.048086799681186676, -0.016001898795366287, 0.030223239213228226, 0.1287144124507904, -0.20311018824577332, -0.018524086102843285, 0.14247570931911469, -0.07003773748874664, -0.11186005920171738, 0.1510927975177765, -0.0483061857521534, 0.011228385381400585, 0.10021622478961945, 0.12703837454319, 0.0706874281167984, -0.030791494995355606, -0.02810578979551792, 0.02407621592283249, -0.02158106490969658, -0.07744396477937698, 0.09047520905733109, 0.04923132434487343, -0.13771255314350128, 0.018365580588579178, 0.03004411794245243, 0.06239800155162811, -0.05408257618546486, -0.015428891405463219, -0.0016409476520493627, -0.08515462279319763, -0.02667458914220333, 0.00529222609475255, -0.007742045447230339, -0.0979771614074707, -0.05418636277318001, -0.04198014736175537, 0.14826367795467377, -0.09848128259181976, -0.016396766528487206, -0.06271465122699738, 0.0592963881790638, -0.0793456882238388, -0.01971176639199257, -0.12370768189430237, 0.028230031952261925, 0.06084286794066429, 0.10884193331003189, 0.019984660670161247, 0.10284263640642166, 0.07326433807611465, 0.06529462337493896, -0.010165051557123661, -0.030514560639858246, 0.05805046856403351, -0.033018335700035095, -0.09171660989522934, -0.10645797103643417, -0.09327099472284317, -0.07022269815206528, 0.09788661450147629, -0.16202540695667267, -0.014723068103194237, -0.03526277467608452, -0.004084462765604258, -0.010732031427323818, -0.023913344368338585, 0.05267656594514847, 0.022603055462241173, -0.0687071830034256, -0.030673062428832054, 0.05619826912879944, 0.014333901926875114, -0.1141609475016594, 0.05474783480167389, -0.19064775109291077, -0.038281604647636414, 0.08278896659612656, 0.03800875321030617, -0.055570442229509354, -0.14650948345661163, -0.051807601004838943, -0.028988588601350784, -0.05880574882030487, -0.03766778111457825, 0.18367086350917816, 0.01719523034989834, 0.12531523406505585, -0.09977693855762482, -0.016167355701327324, -0.0014797489857301116, 0.010286282747983932, 0.03800100088119507, 0.07602225244045258, -0.02175697684288025, -0.1569439172744751, 0.037660058587789536, -0.07347851246595383, -0.07595641911029816, 0.11588043719530106, -0.0114357378333807, -0.08630133420228958, 0.006695875432342291, 0.050471846014261246, -0.015267221257090569, 0.041891034692525864, -0.06025828421115875, -0.05597138777375221, 0.05899307131767273, 0.008965957909822464, 0.002410425338894129, -0.14543208479881287, 0.0026980696711689234, 0.03426111489534378, -0.029907606542110443, -0.019962528720498085, -0.04715981334447861, -0.03589947894215584, 0.07943839579820633, 0.02876465953886509, -0.12099405378103256, 0.004640643019229174, -0.028412895277142525, -0.09442082047462463, 0.18431439995765686, -0.012039275839924812, -0.06725041568279266, -0.10639141499996185, 0.042697254568338394, -0.016062315553426743, 0.02063083089888096, 0.000018914714019047096, -0.022042911499738693, -0.05945248156785965, -0.09860134869813919, 0.054432835429906845, -0.05454574152827263, 0.051427893340587616, -0.10238830745220184, -0.0071380711160600185, 0.015419560484588146, -0.1423538476228714, -0.0023763361386954784, -0.049989454448223114, -0.05839379504323006, 0.07107532769441605, -0.11232918500900269, 0.05725973844528198, 0.18425828218460083, -0.06190637871623039, 0.04501604288816452, -0.05346363037824631, 0.20308208465576172, 0.017746971920132637, 0.025349346920847893, 0.15088379383087158, 0.024139119312167168, 0.0032707946375012398, 0.13835091888904572, 0.017674366012215614, -0.029687976464629173, 0.10296132415533066, -0.028838589787483215, -0.03851071745157242, -0.1766824871301651, -0.07401517033576965, -0.05870248004794121, 0.042412564158439636, 0.18020112812519073, 0.02634306252002716, 0.009667443111538887, 0.0922248438000679, -0.05017993226647377, 0.07353140413761139, -0.00008599642751505598, 0.05870083346962929, -0.0649719312787056, 0.06535566598176956, 0.11220148205757141, -0.013981697149574757, -0.04788729548454285, 0.0772317498922348, 0.00980069674551487, 0.14997147023677826, -0.07619919627904892, 0.12346141785383224, 0.023893436416983604, 0.0967511236667633, 0.04579555615782738, 0.14667873084545135, -0.0800866037607193, 0.0011954583460465074, -0.05902957171201706, -0.07450150698423386, -0.0693364292383194, 0.10611256211996078, 0.07328522950410843, 0.0628100037574768, -0.05921847000718117, -0.09507142752408981, 0.024871952831745148, 0.0711502879858017, 0.18139179050922394, -0.351672887802124, -0.09767094254493713, 0.025329239666461945, -0.003382687224075198, -0.02474716119468212, 0.0879397913813591, 0.17320093512535095, -0.008261565119028091, 0.04097045212984085, 0.00451761344447732, 0.13603715598583221, -0.021423742175102234, -0.0025700486730784178, -0.048134904354810715, 0.09805364161729813, -0.05770277604460716, 0.12483905255794525, -0.25196146965026855, 0.146699458360672, 0.0324016809463501, 0.061912212520837784, -0.0829545110464096, -0.014759763143956661, 0.01136060617864132, 0.007570056244730949, 0.04022015258669853, -0.02069007232785225, 0.024225199595093727, -0.12735702097415924, -0.08498205989599228, 0.03029341623187065, -0.02024685963988304, -0.015157223679125309, 0.1092449352145195, -0.00018031190847977996, 0.014888379722833633, 0.008033879101276398, 0.06256743520498276, -0.002280902350321412, -0.046154964715242386, -0.041320282965898514, 0.08503507822751999, 0.01230700220912695, -0.020391620695590973, -0.07348868250846863, -0.02141537517309189, 0.1325235217809677, 0.0029586830642074347, -0.06685151159763336, -0.08791910856962204, 0.10416673123836517, 0.11507004499435425, -0.059484753757715225, -0.06328825652599335, 0.04091633856296539, 0.08280365914106369, -0.040832098573446274, -0.06433029472827911, 0.08485256135463715, -0.05159758776426315, -0.06667951494455338, -0.04516121372580528, 0.11037353426218033, 0.030207060277462006, 0.09174297749996185, -0.010727237910032272, 0.002949734218418598, -0.08606409281492233, -0.10972907394170761, 0.0017575996462255716, -0.003951616119593382, 0.16302892565727234, 0.07343088090419769, 0.011109057813882828, -0.033850762993097305, -0.06898929178714752, 0.052783530205488205, 0.11251898109912872, 0.1911850869655609, -0.07943827658891678, -0.029961666092276573, 0.14674966037273407, 0.002840687520802021, -0.18385182321071625, -0.053640104830265045, 0.03558681905269623, 0.09412776678800583, -0.05018341913819313, -0.06911227852106094, 0.022601699456572533, 0.03131721913814545, 0.004989338107407093, -0.03919586166739464, -0.3198506832122803, -0.10690335184335709, 0.05982084199786186, 0.08600181341171265, 0.29219940304756165, -0.09432674199342728, 0.0151643892750144, -0.02021300420165062, -0.10581789910793304, 0.1249600201845169, -0.0832531675696373, 0.09421083331108093, -0.029521964490413666, 0.05692252516746521, 0.055733535438776016, -0.0647687017917633, 0.09782155603170395, 0.05737490579485893, 0.07869279384613037, -0.005522291641682386, -0.04617222398519516, -0.04036591947078705, -0.058356646448373795, 0.15961813926696777, -0.14818571507930756, 0.05032480135560036, -0.16361932456493378, -0.08123020082712173, -0.024670373648405075, 0.0013618177035823464, 0.04142192378640175, -0.07274407148361206, -0.10088017582893372, 0.03775385767221451, 0.044704653322696686, 0.007019882556051016, 0.050996411591768265, -0.00892629474401474, 0.092737577855587, 0.17092235386371613, 0.10814658552408218, -0.0826752558350563, -0.0733155906200409, 0.07051350176334381, 0.006029796786606312, 0.10771790146827698, -0.16714347898960114, 0.022400284186005592, 0.13595552742481232, 0.043582577258348465, 0.155758336186409, 0.06423785537481308, -0.08619549870491028, -0.027339473366737366, 0.046809300780296326, -0.1417495310306549, -0.04817420244216919, -0.033957041800022125, -0.02363867685198784, -0.09961660951375961, -0.0068754334934055805, 0.05060286447405815, -0.10583864152431488, -0.012883161194622517, -0.011753138154745102, 0.016305025666952133, -0.054704565554857254, 0.2507007420063019, 0.08087930828332901, 0.08502499014139175, -0.11151409894227982, 0.028511792421340942, 0.07094089686870575, -0.0896897241473198, 0.01761503703892231, 0.05808752030134201, -0.09351418167352676, 0.0008251568651758134, 0.05441753938794136, 0.08194266259670258, 0.008397549390792847, -0.07939199358224869, -0.08258025348186493, -0.06958260387182236, 0.029444031417369843, 0.07604236155748367, 0.08838112652301788, 0.09230652451515198, -0.03151552006602287, -0.05469941347837448, -0.15439729392528534, 0.07504341751337051, 0.08996254950761795, 0.028102194890379906, -0.04140082746744156, 0.22747504711151123, -0.0037104745861142874, 0.03357897698879242, -0.05178404971957207, -0.030198395252227783, -0.08848903328180313, 0.028129972517490387, 0.013618368655443192, 0.051647383719682693, -0.0703868642449379, 0.00982666201889515, -0.007680004462599754, -0.02217138558626175, -0.021472951397299767, 0.013529841788113117, -0.06845449656248093, 0.027110159397125244, -0.007536310702562332, 0.02923925593495369, -0.02480318956077099, -0.07283613830804825, 0.0134656373411417, -0.04281315207481384, 0.038443826138973236, 0.03826073929667473, -0.04664655402302742, 0.01080940943211317, -0.016231603920459747, -0.009803085587918758, 0.07139655202627182, 0.05619142949581146, 0.018053391948342323, -0.07481157779693604, 0.033355243504047394, 0.006554591469466686, -0.017652004957199097, -0.012078950181603432, 0.027314189821481705, -0.0702911764383316, -0.03255544975399971, -0.0407746359705925, -0.03605678305029869, -0.09455155581235886, 0.0062525514513254166, 0.03289181366562843, 0.09654609858989716, 0.12030916661024094, -0.051760610193014145, -0.013058055192232132, -0.182264506816864, -0.008623657748103142, -0.0022282034624367952, -0.08990858495235443, -0.14582635462284088, -0.011563105508685112, 0.07547616213560104, -0.0024256922770291567, 0.11513020098209381, 0.00769042270258069, -0.08829731494188309, -0.018302462995052338, 0.012893679551780224, 0.09907080233097076, -0.0559801422059536, 0.17963092029094696, 0.005934490822255611, -0.02920953929424286, -0.01685645990073681, 0.08190599828958511, 0.08048251271247864, 0.14971478283405304, 0.13718952238559723, -0.007654623594135046, 0.09047547727823257, 0.07909208536148071, -0.038505058735609055, -0.053578656166791916, -0.007245940621942282, 0.015812138095498085, -0.01755882054567337, 0.019436627626419067, -0.005899472162127495, 0.19731950759887695, 0.1766257882118225, -0.08950532972812653, 0.03856954723596573, -0.006267910357564688, -0.09276613593101501, -0.11872977763414383, -0.12819574773311615, -0.0846640020608902, -0.11738166958093643, -0.03187203407287598, -0.1254553198814392, -0.01839394122362137, 0.1499449908733368, 0.035426922142505646, -0.007641285192221403, 0.04739042744040489, 0.02321058139204979, -0.050359003245830536, 0.033678337931632996, -0.04945205897092819, 0.058071911334991455, 0.021672675386071205, -0.027954060584306717, 0.10376652330160141, -0.1016978994011879, 0.08481276035308838, -0.0028342618606984615, 0.13906002044677734, 0.052928660064935684, 0.015130436979234219, -0.09010598808526993, -0.050408922135829926, -0.00111980433575809, 0.05983181670308113, 0.13742592930793762, 0.06872392445802689, -0.011256350204348564, -0.000401650439016521, 0.11773629486560822, -0.045108500868082047, -0.06629032641649246, -0.09658859670162201, 0.2736028730869293, 0.06217325106263161, -0.003712322097271681, 0.08284138888120651, -0.06321920454502106, -0.03094382770359516, 0.14722755551338196, 0.12144097685813904, 0.0025074046570807695, -0.03542913869023323, -0.007005166262388229, -0.007935399189591408, 0.037993453443050385, 0.12448040395975113, 0.005066161043941975, 0.13431498408317566, -0.025830410420894623, 0.028055783361196518, -0.03162067010998726, 0.016519537195563316, 0.0088471919298172, -0.0035106749273836613, 0.004693704657256603, -0.029884742572903633, -0.06535495817661285, 0.03154459595680237, 0.001962389564141631, -0.04878176376223564, 0.01864435151219368, -0.09763486683368683, -0.1010766476392746, -0.03160153701901436, 0.036503974348306656, 0.058008577674627304, 0.1295614242553711, -0.07915002107620239, 0.06788075715303421, -0.03183046355843544, -0.055487290024757385, -0.15812896192073822, -0.08529619127511978, 0.0791473537683487, -0.00585958594456315, 0.0682024136185646, -0.009725063107907772, 0.146406888961792, 0.0857788622379303, -0.013478679582476616, -0.12346707284450531, 0.11510144174098969, 0.005551449954509735, 0.022844994440674782, 0.050739835947752, 0.09813500195741653, -0.01995212957262993, 0.08558178693056107, 0.030737388879060745, -0.13868901133537292, -0.04016755893826485, -0.07639018446207047, -0.008471791632473469, -0.15259559452533722, 0.007774436380714178, 0.007123307324945927, 0.15229320526123047, 0.1283184289932251, -0.050138793885707855, -0.029111402109265327, -0.051873523741960526, -0.007142775692045689, 0.016820760443806648, 0.08690854161977768, -0.054650988429784775, -0.14211590588092804, -0.017329523339867592, -0.06463061273097992, 0.009127514436841011, -0.23426669836044312, 0.018013041466474533, -0.08552678674459457, -0.03237803652882576, -0.03677257150411606, 0.10246206820011139, -0.001893040258437395, 0.04429665580391884, -0.058501847088336945, -0.10423442721366882, 0.0021922243759036064, 0.08201851695775986, -0.16478683054447174, -0.16903381049633026 ]
null
null
sentence-transformers
# Model description The project aims to train sentence embedding models on very large sentence level datasets using a self-supervised contrastive learning objective. We used the pretrained ['mpnet-base'](https://huggingface.co/microsoft/mpnet-base) model and fine-tuned in on a 1B sentence pairs dataset. We use a contrastive learning objective: given a sentence from the pair, the model should predict which out of a set of randomly sampled other sentences, was actually paired with it in our dataset. We developped this model during the [Community week using JAX/Flax for NLP & CV](https://discuss.huggingface.co/t/open-to-the-community-community-week-using-jax-flax-for-nlp-cv/7104), organized by Hugging Face. We developped this model as part of the project: [Train the Best Sentence Embedding Model Ever with 1B Training Pairs](https://discuss.huggingface.co/t/train-the-best-sentence-embedding-model-ever-with-1b-training-pairs/7354). We benefited from efficient hardware infrastructure to run the project: 7 TPUs v3-8, as well as intervention from Google’s Flax, JAX, and Cloud team member about efficient deep learning frameworks. ## Intended uses Our model is intented to be used as a sentence encoder. Given an input sentence, it ouptuts a vector which captures the sentence semantic information. The sentence vector may be used for information retrieval, clustering or sentence similarity tasks. ## How to use Here is how to use this model to get the features of a given text using [SentenceTransformers](https://github.com/UKPLab/sentence-transformers) library: ```python from sentence_transformers import SentenceTransformer model = SentenceTransformer('flax-sentence-embeddings/all_datasets_v4_mpnet-base') text = "Replace me by any text you'd like." text_embbedding = model.encode(text) # array([-0.01559514, 0.04046123, 0.1317083 , 0.00085931, 0.04585106, # -0.05607086, 0.0138078 , 0.03569756, 0.01420381, 0.04266302 ...], # dtype=float32) ``` # Training procedure ## Pre-training We use the pretrained ['mpnet-base'](https://huggingface.co/microsoft/mpnet-base). Please refer to the model card for more detailed information about the pre-training procedure. ## Fine-tuning We fine-tune the model using a contrastive objective. Formally, we compute the cosine similarity from each possible sentence pairs from the batch. We then apply the cross entropy loss by comparing with true pairs. ### Hyper parameters We trained ou model on a TPU v3-8. We train the model during 540k steps using a batch size of 1024 (128 per TPU core). We use a learning rate warm up of 500. The sequence length was limited to 128 tokens. We used the AdamW optimizer with a 2e-5 learning rate. The full training script is accessible in this current repository. ### Training data We use the concatenation from multiple datasets to fine-tune our model. The total number of sentence pairs is above 1 billion sentences. We sampled each dataset given a weighted probability which configuration is detailed in the `data_config.json` file. | Dataset | Paper | Number of training tuples | |:--------------------------------------------------------:|:----------------------------------------:|:--------------------------:| | [GOOAQ: Open Question Answering with Diverse Answer Types](https://github.com/allenai/gooaq) | [paper](https://arxiv.org/pdf/2104.08727.pdf) | 3,012,496 | | [Stack Exchange](https://huggingface.co/datasets/flax-sentence-embeddings/stackexchange_title_body_jsonl) | - | 364,001 | | [Flickr 30k](https://shannon.cs.illinois.edu/DenotationGraph/) | [paper](https://transacl.org/ojs/index.php/tacl/article/view/229/33) | 317,695 | | [COCO 2020](COCO 2020) | [paper](https://link.springer.com/chapter/10.1007%2F978-3-319-10602-1_48) | 828,395| | [Code Search](https://huggingface.co/datasets/code_search_net) | - | 1,151,414 | | [TriviaqQA](https://huggingface.co/datasets/trivia_qa) | - | 73,346 | | [SQuAD2.0](https://rajpurkar.github.io/SQuAD-explorer/) | [paper](https://aclanthology.org/P18-2124.pdf) | 87,599 | | [Natural Questions (NQ)](https://ai.google.com/research/NaturalQuestions) | [paper](https://transacl.org/ojs/index.php/tacl/article/view/1455) | 100,231 | | [Simple Wikipedia](https://cs.pomona.edu/~dkauchak/simplification/) | [paper](https://www.aclweb.org/anthology/P11-2117/) | 102,225 | | [Quora Question Pairs](https://quoradata.quora.com/First-Quora-Dataset-Release-Question-Pairs) | - | 103,663 | | [Altlex](https://github.com/chridey/altlex/) | [paper](https://aclanthology.org/P16-1135.pdf) | 112,696 | | [Wikihow](https://github.com/pvl/wikihow_pairs_dataset) | [paper](https://arxiv.org/abs/1810.09305) | 128,542 | | [Sentence Compression](https://github.com/google-research-datasets/sentence-compression) | [paper](https://www.aclweb.org/anthology/D13-1155/) | 180,000 | | AllNLI ([SNLI](https://nlp.stanford.edu/projects/snli/) and [MultiNLI](https://cims.nyu.edu/~sbowman/multinli/) | [paper SNLI](https://doi.org/10.18653/v1/d15-1075), [paper MultiNLI](https://doi.org/10.18653/v1/n18-1101) | 277,230 | | [Eli5](https://huggingface.co/datasets/eli5) | [paper](https://doi.org/10.18653/v1/p19-1346) | 325,475 | | [SPECTER](https://github.com/allenai/specter) | [paper](https://doi.org/10.18653/v1/2020.acl-main.207) | 684,100 | | [S2ORC](https://github.com/allenai/s2orc) Title/Abstract | [paper](https://aclanthology.org/2020.acl-main.447/) | 41,769,185 | | [S2ORC](https://github.com/allenai/s2orc) Citation/Citation | [paper](https://aclanthology.org/2020.acl-main.447/) | 52,603,982 | | [S2ORC](https://github.com/allenai/s2orc) Citation/Abstract | [paper](https://aclanthology.org/2020.acl-main.447/) | 116,288,806 | | [PAQ](https://github.com/facebookresearch/PAQ) | [paper](https://arxiv.org/abs/2102.07033) | 64,371,441 | | [WikiAnswers](https://github.com/afader/oqa#wikianswers-corpus) | [paper](https://doi.org/10.1145/2623330.2623677) | 77,427,422 | | SearchQA | - | 582,261 | | [Yahoo Answers](https://www.kaggle.com/soumikrakshit/yahoo-answers-dataset) Title/Answer | [paper](https://proceedings.neurips.cc/paper/2015/hash/250cf8b51c773f3f8dc8b4be867a9a02-Abstract.html) | 1,198,260 | | [Yahoo Answers](https://www.kaggle.com/soumikrakshit/yahoo-answers-dataset) Title/Question | [paper](https://proceedings.neurips.cc/paper/2015/hash/250cf8b51c773f3f8dc8b4be867a9a02-Abstract.html) | 659,896 | | [Yahoo Answers](https://www.kaggle.com/soumikrakshit/yahoo-answers-dataset) Question/Answer | [paper](https://proceedings.neurips.cc/paper/2015/hash/250cf8b51c773f3f8dc8b4be867a9a02-Abstract.html) | 681,164 | | [MS MARCO](https://microsoft.github.io/msmarco/) | [paper](https://doi.org/10.1145/3404835.3462804) | 9,144,553 | | [Reddit conversationnal](https://github.com/PolyAI-LDN/conversational-datasets/tree/master/reddit) | [paper](https://arxiv.org/abs/1904.06472) | 726,484,430 | | total | | 1,097,953,922 |
{"language": "en", "tags": ["sentence-transformers", "feature-extraction", "sentence-similarity"], "pipeline_tag": "sentence-similarity"}
sentence-similarity
flax-sentence-embeddings/all_datasets_v4_mpnet-base
[ "sentence-transformers", "pytorch", "mpnet", "feature-extraction", "sentence-similarity", "en", "arxiv:2104.08727", "arxiv:1810.09305", "arxiv:2102.07033", "arxiv:1904.06472", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[ "2104.08727", "1810.09305", "2102.07033", "1904.06472" ]
[ "en" ]
TAGS #sentence-transformers #pytorch #mpnet #feature-extraction #sentence-similarity #en #arxiv-2104.08727 #arxiv-1810.09305 #arxiv-2102.07033 #arxiv-1904.06472 #endpoints_compatible #region-us
Model description ================= The project aims to train sentence embedding models on very large sentence level datasets using a self-supervised contrastive learning objective. We used the pretrained 'mpnet-base' model and fine-tuned in on a 1B sentence pairs dataset. We use a contrastive learning objective: given a sentence from the pair, the model should predict which out of a set of randomly sampled other sentences, was actually paired with it in our dataset. We developped this model during the Community week using JAX/Flax for NLP & CV, organized by Hugging Face. We developped this model as part of the project: Train the Best Sentence Embedding Model Ever with 1B Training Pairs. We benefited from efficient hardware infrastructure to run the project: 7 TPUs v3-8, as well as intervention from Google’s Flax, JAX, and Cloud team member about efficient deep learning frameworks. Intended uses ------------- Our model is intented to be used as a sentence encoder. Given an input sentence, it ouptuts a vector which captures the sentence semantic information. The sentence vector may be used for information retrieval, clustering or sentence similarity tasks. How to use ---------- Here is how to use this model to get the features of a given text using SentenceTransformers library: Training procedure ================== Pre-training ------------ We use the pretrained 'mpnet-base'. Please refer to the model card for more detailed information about the pre-training procedure. Fine-tuning ----------- We fine-tune the model using a contrastive objective. Formally, we compute the cosine similarity from each possible sentence pairs from the batch. We then apply the cross entropy loss by comparing with true pairs. ### Hyper parameters We trained ou model on a TPU v3-8. We train the model during 540k steps using a batch size of 1024 (128 per TPU core). We use a learning rate warm up of 500. The sequence length was limited to 128 tokens. We used the AdamW optimizer with a 2e-5 learning rate. The full training script is accessible in this current repository. ### Training data We use the concatenation from multiple datasets to fine-tune our model. The total number of sentence pairs is above 1 billion sentences. We sampled each dataset given a weighted probability which configuration is detailed in the 'data\_config.json' file.
[ "### Hyper parameters\n\n\nWe trained ou model on a TPU v3-8. We train the model during 540k steps using a batch size of 1024 (128 per TPU core).\nWe use a learning rate warm up of 500. The sequence length was limited to 128 tokens. We used the AdamW optimizer with\na 2e-5 learning rate. The full training script is accessible in this current repository.", "### Training data\n\n\nWe use the concatenation from multiple datasets to fine-tune our model. The total number of sentence pairs is above 1 billion sentences.\nWe sampled each dataset given a weighted probability which configuration is detailed in the 'data\\_config.json' file." ]
[ "TAGS\n#sentence-transformers #pytorch #mpnet #feature-extraction #sentence-similarity #en #arxiv-2104.08727 #arxiv-1810.09305 #arxiv-2102.07033 #arxiv-1904.06472 #endpoints_compatible #region-us \n", "### Hyper parameters\n\n\nWe trained ou model on a TPU v3-8. We train the model during 540k steps using a batch size of 1024 (128 per TPU core).\nWe use a learning rate warm up of 500. The sequence length was limited to 128 tokens. We used the AdamW optimizer with\na 2e-5 learning rate. The full training script is accessible in this current repository.", "### Training data\n\n\nWe use the concatenation from multiple datasets to fine-tune our model. The total number of sentence pairs is above 1 billion sentences.\nWe sampled each dataset given a weighted probability which configuration is detailed in the 'data\\_config.json' file." ]
[ 76, 89, 66 ]
[ "passage: TAGS\n#sentence-transformers #pytorch #mpnet #feature-extraction #sentence-similarity #en #arxiv-2104.08727 #arxiv-1810.09305 #arxiv-2102.07033 #arxiv-1904.06472 #endpoints_compatible #region-us \n### Hyper parameters\n\n\nWe trained ou model on a TPU v3-8. We train the model during 540k steps using a batch size of 1024 (128 per TPU core).\nWe use a learning rate warm up of 500. The sequence length was limited to 128 tokens. We used the AdamW optimizer with\na 2e-5 learning rate. The full training script is accessible in this current repository.### Training data\n\n\nWe use the concatenation from multiple datasets to fine-tune our model. The total number of sentence pairs is above 1 billion sentences.\nWe sampled each dataset given a weighted probability which configuration is detailed in the 'data\\_config.json' file." ]
[ -0.10845435410737991, 0.03891265019774437, 0.000295678386464715, 0.06089577078819275, 0.11239072680473328, 0.016166282817721367, 0.03600875288248062, 0.08561289310455322, -0.14096768200397491, 0.06666091084480286, 0.13258790969848633, 0.05621024966239929, 0.05773578956723213, 0.17307865619659424, -0.03215869143605232, -0.17134296894073486, 0.02792397141456604, 0.008130835369229317, -0.01799328252673149, 0.11998298019170761, 0.07678788155317307, -0.06861460208892822, 0.05976177006959915, -0.0436813123524189, -0.15857122838497162, -0.011407310143113136, -0.025859350338578224, 0.008536881767213345, 0.10785473138093948, 0.06255944818258286, 0.05958186835050583, 0.01211297232657671, 0.037727952003479004, -0.08308551460504532, 0.016702931374311447, 0.04659751057624817, 0.03997621312737465, 0.09035198390483856, -0.005015338305383921, 0.04938822612166405, 0.10262055695056915, -0.042885445058345795, 0.012807546183466911, 0.04205692559480667, -0.05473844334483147, 0.006868686992675066, 0.02876981347799301, 0.02717267908155918, 0.10601641237735748, 0.06366736441850662, -0.018493017181754112, 0.19192145764827728, -0.07855196297168732, 0.07380308210849762, 0.04117446392774582, -0.2414110004901886, -0.024415800347924232, 0.199313223361969, 0.05762919411063194, 0.07684186846017838, -0.04652202129364014, -0.04917553812265396, 0.11133395880460739, 0.042942196130752563, 0.0731101781129837, -0.004745154175907373, -0.0703900158405304, 0.017733879387378693, -0.14170029759407043, -0.012888714671134949, 0.2660415768623352, 0.009459217078983784, -0.03399607911705971, -0.09581092745065689, -0.07639722526073456, -0.10345570743083954, 0.030732734128832817, 0.02051461674273014, -0.041382670402526855, 0.00604985048994422, -0.03360852971673012, 0.06697027385234833, -0.1051577478647232, -0.12364991009235382, -0.06767481565475464, 0.133486807346344, 0.05994020774960518, 0.06081593409180641, -0.06599126756191254, 0.09803824126720428, -0.15179114043712616, -0.0644674226641655, 0.01721973344683647, -0.08759558945894241, -0.09925509244203568, -0.007262428756803274, -0.09153790771961212, -0.1503911316394806, 0.035127297043800354, 0.033566270023584366, 0.0842311903834343, 0.01192508265376091, 0.1360160857439041, 0.07882381230592728, 0.07770904898643494, 0.06015826389193535, -0.05491591617465019, -0.06906171143054962, 0.019010130316019058, 0.09318041801452637, -0.022865882143378258, -0.0036490338388830423, -0.10374428331851959, -0.07302757352590561, 0.09162092953920364, -0.011179679073393345, -0.004022551700472832, 0.09556951373815536, 0.004819859284907579, -0.061838001012802124, 0.12771114706993103, -0.09018570929765701, -0.049450017511844635, 0.015429151244461536, -0.13984835147857666, 0.04418565332889557, -0.02003444917500019, -0.04745544493198395, -0.10043232142925262, 0.019168633967638016, -0.07731810957193375, -0.023640310391783714, -0.11361251771450043, -0.18457527458667755, -0.022364618256688118, -0.029153380542993546, -0.015830231830477715, -0.1244395524263382, -0.08598297834396362, -0.07355302572250366, 0.020320268347859383, -0.0017800129717215896, -0.07380438596010208, -0.09207256138324738, -0.01767980121076107, -0.01615864969789982, -0.038011617958545685, 0.0934368371963501, -0.05809866636991501, 0.07221560925245285, -0.02518254704773426, 0.08991822600364685, -0.0007591830799356103, 0.018774310126900673, -0.10000763088464737, -0.038239192217588425, -0.02526845410466194, 0.040254902094602585, 0.039957236498594284, 0.07891383767127991, -0.09364981204271317, -0.11234397441148758, -0.06993833184242249, -0.03069581463932991, 0.010052915662527084, 0.11863839626312256, -0.1821628212928772, -0.010830789804458618, 0.13615891337394714, -0.06822501868009567, -0.10355260968208313, 0.1680125743150711, -0.02455485239624977, -0.003982115536928177, 0.08430344611406326, 0.10046953707933426, 0.11478985846042633, -0.04128343611955643, 0.011285675689578056, 0.04373522475361824, -0.03875815495848656, -0.13194511830806732, 0.09096100181341171, 0.061415623873472214, -0.08225270360708237, 0.023868266493082047, 0.012711973860859871, 0.07234619557857513, -0.05906764045357704, -0.021779393777251244, -0.007758921477943659, -0.10653175413608551, -0.036624420434236526, 0.01353373285382986, -0.0064345067366957664, -0.09373603761196136, -0.0477319173514843, -0.061202459037303925, 0.1793336719274521, -0.09283284842967987, -0.004963412880897522, -0.050338294357061386, 0.027179118245840073, -0.060117851942777634, -0.013143233954906464, -0.12069831788539886, -0.00415683351457119, 0.05859604850411415, 0.07390371710062027, 0.02272822894155979, 0.11622565984725952, 0.06141498684883118, 0.0925375446677208, -0.005920286290347576, -0.008585629053413868, 0.043273162096738815, -0.02862757444381714, -0.06546694785356522, -0.11104008555412292, -0.08692765235900879, -0.05900753289461136, 0.10738123208284378, -0.1529143899679184, -0.0033857787493616343, -0.1050097867846489, 0.00805036723613739, -0.023562608286738396, -0.02747364714741707, 0.06232861056923866, 0.002843943191692233, -0.06622321903705597, -0.033897969871759415, 0.06357308477163315, 0.0255698561668396, -0.062330588698387146, 0.06147579103708267, -0.15682657063007355, -0.017523830756545067, 0.09621340781450272, 0.009103204123675823, -0.04403509944677353, -0.10005049407482147, -0.05613410845398903, -0.053340740501880646, -0.04524928703904152, -0.026966579258441925, 0.15540675818920135, 0.013183267787098885, 0.1329178512096405, -0.10424929857254028, -0.017598828300833702, 0.01815631240606308, -0.009949621744453907, 0.05014008656144142, 0.06378106772899628, 0.026090120896697044, -0.17237110435962677, 0.030541282147169113, -0.08595149219036102, -0.10310542583465576, 0.11485160887241364, -0.007835440337657928, -0.09239785373210907, 0.03795692324638367, 0.06319104880094528, -0.020825151354074478, 0.03501541540026665, -0.0892222449183464, -0.055671609938144684, 0.06004640832543373, 0.020962951704859734, 0.04326342046260834, -0.14094676077365875, 0.0030539759900420904, 0.020631711930036545, -0.022732194513082504, 0.021403897553682327, -0.04305001720786095, -0.03521312400698662, 0.07889057695865631, 0.022768506780266762, -0.1529490202665329, -0.0008611949160695076, -0.029666006565093994, -0.10153690725564957, 0.18467934429645538, -0.044194601476192474, -0.11012930423021317, -0.09513173997402191, 0.06742934137582779, -0.04985253885388374, 0.010885526426136494, -0.014574852772057056, -0.047541603446006775, -0.049326200038194656, -0.09165788441896439, 0.019720831885933876, -0.05488191545009613, 0.043417882174253464, -0.08476819097995758, 0.03702498972415924, 0.020254790782928467, -0.14927761256694794, 0.014559919014573097, -0.058619506657123566, -0.0732288509607315, 0.07276186347007751, -0.12388135492801666, 0.05049861595034599, 0.20933830738067627, -0.06640700995922089, 0.05261589214205742, -0.019320063292980194, 0.1850907951593399, 0.03127339854836464, 0.02749861590564251, 0.15436194837093353, 0.043264564126729965, 0.0026561073027551174, 0.09594203531742096, 0.010349941439926624, -0.01741916686296463, 0.10919860750436783, -0.03726903721690178, -0.03279830142855644, -0.18700355291366577, -0.11006830632686615, -0.06203761324286461, 0.03709394484758377, 0.16332806646823883, 0.05546465516090393, 0.009267211891710758, 0.08705749362707138, -0.047364503145217896, 0.013166544027626514, 0.0243515744805336, 0.06424310803413391, -0.059688739478588104, 0.0644427016377449, 0.10384802520275116, -0.016152380034327507, -0.050887249410152435, 0.06827237457036972, 0.004505892284214497, 0.1649835854768753, -0.08321382850408554, 0.10365922003984451, 0.02229255810379982, 0.12688679993152618, 0.03245823457837105, 0.1475990116596222, -0.06251741945743561, 0.004775616340339184, -0.03698776662349701, -0.07396165281534195, -0.06685744225978851, 0.09073444455862045, 0.07351554930210114, 0.03011973574757576, -0.045695580542087555, -0.03215713053941727, 0.02727517858147621, 0.07886408269405365, 0.1916777640581131, -0.35812413692474365, -0.09283829480409622, -0.02902960032224655, -0.012709934264421463, -0.038227230310440063, 0.09555663913488388, 0.17538277804851532, -0.027024606242775917, 0.007209510076791048, -0.0007538723875768483, 0.13971981406211853, -0.02781081758439541, -0.00665937690064311, 0.011174815706908703, 0.09733355045318604, -0.029569663107395172, 0.12904497981071472, -0.2230692356824875, 0.13395535945892334, 0.0024283193051815033, 0.06321951746940613, -0.08016443997621536, -0.019546175375580788, 0.007191805634647608, 0.04915735498070717, 0.017351705580949783, -0.00046934906276874244, 0.050826143473386765, -0.08089348673820496, -0.11772242188453674, 0.03204692527651787, -0.003899723058566451, 0.01828010380268097, 0.0815538763999939, -0.008373956196010113, 0.00007574808114441112, 0.009682769887149334, 0.06826307624578476, -0.00803311262279749, -0.04396771267056465, -0.03170308470726013, 0.10166299343109131, -0.018191922456026077, -0.0123435752466321, -0.08275759220123291, -0.03263281285762787, 0.1971461921930313, 0.02503293752670288, -0.08420076221227646, -0.05773510783910751, 0.049258455634117126, 0.11477606743574142, -0.04809880629181862, -0.04151270538568497, 0.025808289647102356, 0.08875297009944916, -0.02751753479242325, -0.07322049140930176, 0.0907803550362587, -0.0777946338057518, -0.044974006712436676, -0.043653346598148346, 0.12373325973749161, 0.02427491918206215, 0.07011038064956665, -0.011238220147788525, -0.016075139865279198, -0.11328566819429398, -0.08861540257930756, -0.03269628807902336, 0.014539781957864761, 0.15930502116680145, 0.08312095701694489, -0.014597313478589058, -0.041408244520425797, -0.07248371839523315, 0.040910378098487854, 0.13259431719779968, 0.18668554723262787, -0.0708833858370781, -0.03528589382767677, 0.169581800699234, 0.015068734996020794, -0.18585732579231262, -0.06594683974981308, 0.046699315309524536, 0.06349733471870422, -0.07460527122020721, -0.07261773198843002, 0.0379815436899662, 0.03647360950708389, 0.004906279034912586, -0.02311038412153721, -0.35996320843696594, -0.1025703027844429, 0.06298966705799103, 0.07129009068012238, 0.28654342889785767, -0.08890467882156372, 0.03765367716550827, -0.02119366079568863, -0.13592030107975006, 0.13569776713848114, -0.09112237393856049, 0.11270809918642044, -0.02773204632103443, 0.04327933490276337, 0.03919791430234909, -0.07939369976520538, 0.08489886671304703, 0.06603556126356125, 0.05612780526280403, -0.0171034038066864, 0.010555596090853214, -0.015324460342526436, -0.04483985900878906, 0.17857441306114197, -0.13610956072807312, 0.054532311856746674, -0.1373041421175003, -0.07381869107484818, -0.04109944775700569, -0.0039233677089214325, 0.048301346600055695, -0.08742167800664902, -0.10408332943916321, 0.04941249638795853, 0.051431961357593536, 0.009617223404347897, 0.0190562903881073, 0.013746693730354309, 0.08717285096645355, 0.20539219677448273, 0.07484785467386246, -0.08797550946474075, -0.11188087612390518, 0.05842537805438042, 0.012664715759456158, 0.10767754912376404, -0.1487192064523697, 0.020633233711123466, 0.13410186767578125, 0.018366465345025063, 0.11397622525691986, 0.04975612834095955, -0.08497674018144608, -0.05749508738517761, 0.048007432371377945, -0.1260911077260971, -0.029109414666891098, -0.034628741443157196, -0.009073532186448574, -0.0779477059841156, 0.031155353412032127, 0.040663979947566986, -0.13540475070476532, -0.0008099085534922779, -0.008016061969101429, 0.022059854120016098, -0.07258888334035873, 0.26906922459602356, 0.09043218195438385, 0.08380477130413055, -0.1059410497546196, 0.05744500830769539, 0.056508805602788925, -0.06839258968830109, 0.0008012921316549182, 0.0903317779302597, -0.13072146475315094, -0.016888147220015526, 0.09721817076206207, 0.026687782257795334, 0.028874333947896957, -0.09066030383110046, -0.08130857348442078, -0.04993604123592377, 0.039225831627845764, -0.0004663535510189831, 0.09415356069803238, 0.08111321926116943, -0.028024688363075256, -0.05344138666987419, -0.1763203889131546, 0.06925122439861298, 0.09290570765733719, 0.040847208350896835, -0.06054691597819328, 0.20908695459365845, 0.0005171551601961255, 0.05525440722703934, -0.05341664329171181, -0.0326373465359211, -0.04128240793943405, 0.04583714157342911, 0.004540049936622381, 0.02014094963669777, -0.0677601546049118, -0.004995149094611406, -0.023022720590233803, -0.013515535742044449, -0.022753871977329254, 0.031371068209409714, -0.05698256567120552, 0.022182075306773186, -0.02544245310127735, -0.0032960947137326, -0.025101983919739723, -0.05546930804848671, 0.006430972833186388, -0.04338818043470383, 0.048685118556022644, 0.051064085215330124, -0.07324341684579849, 0.01697087101638317, 0.008497286587953568, -0.03325001522898674, 0.0688195750117302, 0.07317736744880676, 0.005351364146918058, -0.07354840636253357, 0.03483012691140175, 0.02680480107665062, 0.008972149342298508, -0.015907518565654755, 0.06222102418541908, -0.07528319209814072, -0.04156934842467308, -0.0705588087439537, -0.023782577365636826, -0.07906902581453323, -0.022074339911341667, 0.013344773091375828, 0.11516891419887543, 0.13943184912204742, -0.05208410695195198, -0.009178323671221733, -0.16453811526298523, -0.014081898145377636, 0.010934858582913876, -0.09676282852888107, -0.10388864576816559, 0.002988325199112296, 0.07120433449745178, -0.027190793305635452, 0.11969788372516632, 0.0033255191519856453, -0.10563349723815918, -0.017059829086065292, 0.02765117771923542, 0.044243209064006805, -0.047916121780872345, 0.17458553612232208, 0.018097668886184692, -0.021667154505848885, -0.021334990859031677, 0.07554278522729874, 0.08336716145277023, 0.13724066317081451, 0.13180334866046906, 0.02198369801044464, 0.11197330057621002, 0.08426619321107864, -0.018897753208875656, -0.047391798347234726, -0.03194689750671387, 0.030275462195277214, -0.03069036453962326, 0.053400155156850815, -0.020349347963929176, 0.16537199914455414, 0.20536650717258453, -0.06376610696315765, 0.024095557630062103, -0.021664908155798912, -0.1016092300415039, -0.12471423298120499, -0.1478082537651062, -0.08241505920886993, -0.13155798614025116, -0.03821688890457153, -0.1097930371761322, -0.03626059740781784, 0.13792507350444794, 0.06157169118523598, -0.032192450016736984, 0.07161656767129898, 0.04901604726910591, -0.072688028216362, 0.0243986789137125, -0.05847826972603798, 0.05401891469955444, 0.028264543041586876, -0.022768976166844368, 0.09915093332529068, -0.0827154591679573, 0.10744287073612213, -0.005967356730252504, 0.11848888546228409, 0.07525771111249924, 0.001236885553225875, -0.08114425837993622, -0.054640285670757294, -0.012098888866603374, 0.024088561534881592, 0.11987078189849854, 0.061033327132463455, -0.03287230432033539, 0.008234960958361626, 0.1356072574853897, -0.05166596546769142, -0.13837496936321259, -0.10027219355106354, 0.24275663495063782, 0.06320205330848694, -0.004829025827348232, 0.0799894705414772, -0.044304266571998596, -0.07402993738651276, 0.17101319134235382, 0.19794033467769623, -0.012824973091483116, -0.03568974509835243, 0.02513762004673481, -0.013927610591053963, 0.006113303825259209, 0.12824465334415436, 0.05212320759892464, 0.11571153253316879, -0.015451474115252495, 0.051474813371896744, -0.043248873203992844, 0.027729136869311333, -0.03354031592607498, -0.046256326138973236, 0.016616448760032654, -0.032440926879644394, -0.05787285417318344, 0.039480824023485184, -0.01434467826038599, -0.01182512566447258, -0.02586786448955536, -0.06834782660007477, -0.12469848245382309, -0.03374454379081726, 0.05827046185731888, 0.04986155778169632, 0.12093894183635712, -0.07943178713321686, 0.07582566887140274, -0.03824304789304733, -0.06384127587080002, -0.14128157496452332, -0.10953819006681442, 0.0679566040635109, -0.010973332449793816, 0.054501842707395554, 0.0060781012289226055, 0.16003857553005219, 0.05955606698989868, -0.020061582326889038, -0.12503671646118164, 0.11953660100698471, 0.011524228379130363, 0.031641777604818344, 0.051223788410425186, 0.08513161540031433, -0.031181439757347107, 0.07644698023796082, 0.020216643810272217, -0.12723594903945923, -0.05752220377326012, -0.08865325152873993, 0.03217380866408348, -0.1435476392507553, 0.02951628901064396, -0.00038675605901516974, 0.14687593281269073, 0.11895641684532166, -0.048773474991321564, -0.022457953542470932, -0.07355770468711853, -0.02176624722778797, 0.011507175862789154, 0.06862276792526245, -0.05309002846479416, -0.16665562987327576, -0.03571081534028053, -0.08983498066663742, 0.043287962675094604, -0.20166964828968048, 0.01757083274424076, -0.09063032269477844, -0.05266552418470383, -0.04022345319390297, 0.11658981442451477, 0.001074788044206798, 0.034843843430280685, -0.059527743607759476, -0.03799719735980034, 0.0012124525383114815, 0.07275079190731049, -0.1777423769235611, -0.18274283409118652 ]
null
null
sentence-transformers
# mpnet_stackexchange_v1 ## Model Description SentenceTransformers is a set of models and frameworks that enable training and generating sentence embeddings from given data. The generated sentence embeddings can be utilized for Clustering, Semantic Search and other tasks. We used a pretrained [mpnet-base](https://huggingface.co/microsoft/mpnet-base) model and trained it using Siamese Network setup and contrastive learning objective. Question and answer pairs from StackExchange was used as training data to make the model robust to Question / Answer embedding similarity. We developped this model during the [Community week using JAX/Flax for NLP & CV](https://discuss.huggingface.co/t/open-to-the-community-community-week-using-jax-flax-for-nlp-cv/7104), organized by Hugging Face. We developped this model as part of the project: [Train the Best Sentence Embedding Model Ever with 1B Training Pairs](https://discuss.huggingface.co/t/train-the-best-sentence-embedding-model-ever-with-1b-training-pairs/7354). We benefited from efficient hardware infrastructure to run the project: 7 TPUs v3-8, as well as assistance from Google’s Flax, JAX, and Cloud team members about efficient deep learning frameworks. ## Intended uses Our model is intended to be used as a sentence encoder for a search engine. Given an input sentence, it ouptuts a vector which captures the sentence semantic information. The sentence vector may be used for semantic-search, clustering or sentence similarity tasks. ## How to use Here is how to use this model to get the features of a given text using [SentenceTransformers](https://github.com/UKPLab/sentence-transformers) library: ```python from sentence_transformers import SentenceTransformer model = SentenceTransformer('flax-sentence-embeddings/mpnet_stackexchange_v1') text = "Replace me by any question / answer you'd like." text_embbedding = model.encode(text) # array([-0.01559514, 0.04046123, 0.1317083 , 0.00085931, 0.04585106, # -0.05607086, 0.0138078 , 0.03569756, 0.01420381, 0.04266302 ...], # dtype=float32) ``` # Training procedure ## Pre-training We use the pretrained [`Mpnet-base`](https://huggingface.co/microsoft/mpnet-base). Please refer to the model card for more detailed information about the pre-training procedure. ## Fine-tuning We fine-tune the model using a contrastive objective. Formally, we compute the cosine similarity from each possible sentence pairs from the batch. We then apply the cross entropy loss by comparing with true pairs. ### Hyper parameters We trained on model on a TPU v3-8. We train the model during 80k steps using a batch size of 1024 (128 per TPU core). We use a learning rate warm up of 500. The sequence length was limited to 128 tokens. We used the AdamW optimizer with a 2e-5 learning rate. The full training script is accessible in this current repository. ### Training data We used the concatenation from multiple Stackexchange Question-Answer datasets to fine-tune our model. We sampled each StackExchange given a weighted probability of following equation. ``` int((stackexchange_length[path] / total_stackexchange_length) * total_weight) ``` MSMARCO, NQ & other question-answer datasets were also used. Sampling ratio for StackExchange vs remaining : 2 vs 1. | Dataset | Paper | Number of training tuples | |:--------------------------------------------------------:|:----------------------------------------:|:--------------------------:| | [Stack Exchange QA - Title & Answer](https://huggingface.co/datasets/flax-sentence-embeddings/stackexchange_title_best_voted_answer_jsonl) | - | 4,750,619 | | [MS MARCO](https://microsoft.github.io/msmarco/) | [paper](https://doi.org/10.1145/3404835.3462804) | 9,144,553 | | [GOOAQ: Open Question Answering with Diverse Answer Types](https://github.com/allenai/gooaq) | [paper](https://arxiv.org/pdf/2104.08727.pdf) | 3,012,496 | | [Yahoo Answers](https://www.kaggle.com/soumikrakshit/yahoo-answers-dataset) Question/Answer | [paper](https://proceedings.neurips.cc/paper/2015/hash/250cf8b51c773f3f8dc8b4be867a9a02-Abstract.html) | 681,164 | | SearchQA | - | 582,261 | | [Natural Questions (NQ)](https://ai.google.com/research/NaturalQuestions) | [paper](https://transacl.org/ojs/index.php/tacl/article/view/1455) | 100,231 |
{"tags": ["sentence-transformers", "feature-extraction", "sentence-similarity"], "pipeline_tag": "sentence-similarity"}
sentence-similarity
flax-sentence-embeddings/mpnet_stackexchange_v1
[ "sentence-transformers", "pytorch", "mpnet", "feature-extraction", "sentence-similarity", "arxiv:2104.08727", "endpoints_compatible", "has_space", "region:us" ]
2022-03-02T23:29:05+00:00
[ "2104.08727" ]
[]
TAGS #sentence-transformers #pytorch #mpnet #feature-extraction #sentence-similarity #arxiv-2104.08727 #endpoints_compatible #has_space #region-us
mpnet\_stackexchange\_v1 ======================== Model Description ----------------- SentenceTransformers is a set of models and frameworks that enable training and generating sentence embeddings from given data. The generated sentence embeddings can be utilized for Clustering, Semantic Search and other tasks. We used a pretrained mpnet-base model and trained it using Siamese Network setup and contrastive learning objective. Question and answer pairs from StackExchange was used as training data to make the model robust to Question / Answer embedding similarity. We developped this model during the Community week using JAX/Flax for NLP & CV, organized by Hugging Face. We developped this model as part of the project: Train the Best Sentence Embedding Model Ever with 1B Training Pairs. We benefited from efficient hardware infrastructure to run the project: 7 TPUs v3-8, as well as assistance from Google’s Flax, JAX, and Cloud team members about efficient deep learning frameworks. Intended uses ------------- Our model is intended to be used as a sentence encoder for a search engine. Given an input sentence, it ouptuts a vector which captures the sentence semantic information. The sentence vector may be used for semantic-search, clustering or sentence similarity tasks. How to use ---------- Here is how to use this model to get the features of a given text using SentenceTransformers library: Training procedure ================== Pre-training ------------ We use the pretrained 'Mpnet-base'. Please refer to the model card for more detailed information about the pre-training procedure. Fine-tuning ----------- We fine-tune the model using a contrastive objective. Formally, we compute the cosine similarity from each possible sentence pairs from the batch. We then apply the cross entropy loss by comparing with true pairs. ### Hyper parameters We trained on model on a TPU v3-8. We train the model during 80k steps using a batch size of 1024 (128 per TPU core). We use a learning rate warm up of 500. The sequence length was limited to 128 tokens. We used the AdamW optimizer with a 2e-5 learning rate. The full training script is accessible in this current repository. ### Training data We used the concatenation from multiple Stackexchange Question-Answer datasets to fine-tune our model. We sampled each StackExchange given a weighted probability of following equation. MSMARCO, NQ & other question-answer datasets were also used. Sampling ratio for StackExchange vs remaining : 2 vs 1.
[ "### Hyper parameters\n\n\nWe trained on model on a TPU v3-8. We train the model during 80k steps using a batch size of 1024 (128 per TPU core).\nWe use a learning rate warm up of 500. The sequence length was limited to 128 tokens. We used the AdamW optimizer with\na 2e-5 learning rate. The full training script is accessible in this current repository.", "### Training data\n\n\nWe used the concatenation from multiple Stackexchange Question-Answer datasets to fine-tune our model.\nWe sampled each StackExchange given a weighted probability of following equation.\n\n\nMSMARCO, NQ & other question-answer datasets were also used. Sampling ratio for StackExchange vs remaining : 2 vs 1." ]
[ "TAGS\n#sentence-transformers #pytorch #mpnet #feature-extraction #sentence-similarity #arxiv-2104.08727 #endpoints_compatible #has_space #region-us \n", "### Hyper parameters\n\n\nWe trained on model on a TPU v3-8. We train the model during 80k steps using a batch size of 1024 (128 per TPU core).\nWe use a learning rate warm up of 500. The sequence length was limited to 128 tokens. We used the AdamW optimizer with\na 2e-5 learning rate. The full training script is accessible in this current repository.", "### Training data\n\n\nWe used the concatenation from multiple Stackexchange Question-Answer datasets to fine-tune our model.\nWe sampled each StackExchange given a weighted probability of following equation.\n\n\nMSMARCO, NQ & other question-answer datasets were also used. Sampling ratio for StackExchange vs remaining : 2 vs 1." ]
[ 53, 89, 87 ]
[ "passage: TAGS\n#sentence-transformers #pytorch #mpnet #feature-extraction #sentence-similarity #arxiv-2104.08727 #endpoints_compatible #has_space #region-us \n### Hyper parameters\n\n\nWe trained on model on a TPU v3-8. We train the model during 80k steps using a batch size of 1024 (128 per TPU core).\nWe use a learning rate warm up of 500. The sequence length was limited to 128 tokens. We used the AdamW optimizer with\na 2e-5 learning rate. The full training script is accessible in this current repository.### Training data\n\n\nWe used the concatenation from multiple Stackexchange Question-Answer datasets to fine-tune our model.\nWe sampled each StackExchange given a weighted probability of following equation.\n\n\nMSMARCO, NQ & other question-answer datasets were also used. Sampling ratio for StackExchange vs remaining : 2 vs 1." ]
[ -0.055468033999204636, 0.00981901679188013, -0.002896648831665516, 0.01862693950533867, 0.028140056878328323, 0.007601538673043251, 0.06242753192782402, 0.08890628069639206, -0.1103631928563118, 0.027391977608203888, 0.018476976081728935, 0.009841086342930794, 0.06815367192029953, 0.050456445664167404, -0.04936862736940384, -0.2350282073020935, 0.06910670548677444, 0.025866232812404633, 0.019156649708747864, 0.11358248442411423, 0.13685202598571777, -0.09470248222351074, 0.038514964282512665, 0.027521740645170212, -0.04337230697274208, 0.0094539700075984, 0.001182110863737762, -0.03666873648762703, 0.10555527359247208, 0.04145393148064613, 0.1418742835521698, 0.05365559458732605, 0.05242187902331352, -0.16221502423286438, 0.03939386457204819, 0.06342728435993195, 0.07842547446489334, 0.06717588752508163, -0.014441176317632198, -0.030589288100600243, 0.11352848261594772, 0.0014277147129178047, 0.03886723145842552, 0.01872437447309494, -0.05717490613460541, -0.1175183579325676, 0.009733506478369236, -0.03558846190571785, 0.04349135234951973, 0.015571941621601582, -0.03762471303343773, 0.19323302805423737, -0.12616735696792603, 0.06504322588443756, 0.11378716677427292, -0.2789510190486908, -0.03584904968738556, 0.1537231206893921, 0.06347722560167313, 0.12929978966712952, -0.08217630535364151, -0.045466117560863495, 0.07013111561536789, -0.01792415790259838, 0.0741184651851654, 0.030755557119846344, -0.044448450207710266, 0.09218298643827438, -0.158389613032341, 0.00656457245349884, 0.20579609274864197, 0.005883171688765287, 0.0007290526991710067, -0.10044265538454056, -0.11870914697647095, 0.01540743000805378, 0.04847358912229538, -0.03402189537882805, 0.004265939816832542, 0.04210592806339264, -0.05376792326569557, 0.032315708696842194, -0.12316478043794632, -0.05177442356944084, -0.16232013702392578, 0.012499514035880566, 0.04386034980416298, 0.1018725335597992, -0.015825524926185608, 0.10702148079872131, -0.06780996173620224, -0.10209193080663681, 0.012167145498096943, -0.0740213394165039, -0.15945476293563843, 0.011718828231096268, -0.021866148337721825, -0.1656130701303482, -0.0405898354947567, 0.03150772675871849, -0.02306622453033924, 0.019859405234456062, 0.028956379741430283, 0.05394025146961212, 0.033858511596918106, 0.190158873796463, 0.023381432518363, -0.022100254893302917, -0.08579406887292862, 0.022061750292778015, -0.04290289431810379, -0.009417575784027576, -0.04429679363965988, -0.010724303312599659, 0.078507199883461, 0.0011778525076806545, -0.06544709950685501, 0.00857110507786274, -0.010393615812063217, -0.0712437853217125, 0.09667664766311646, -0.1405666172504425, -0.016094611957669258, -0.0028616832569241524, -0.04953717440366745, 0.17880788445472717, -0.002454842906445265, 0.027908876538276672, -0.08828509598970413, 0.03328946232795715, -0.08574347198009491, -0.018096858635544777, -0.10697592794895172, -0.1915978342294693, 0.020552663132548332, -0.07812505960464478, -0.04944281652569771, -0.1026763841509819, -0.06741493940353394, 0.011832468211650848, 0.022346382960677147, -0.006030173972249031, -0.003972653299570084, -0.06365729868412018, 0.0498262494802475, -0.004961702506989241, -0.011435016058385372, 0.11476947367191315, -0.04733746126294136, 0.03713301196694374, -0.05442693084478378, 0.07649283856153488, 0.10442321002483368, 0.001009264844469726, -0.061789773404598236, -0.029026394709944725, -0.0757041871547699, 0.08559784293174744, -0.020852940157055855, 0.005035782232880592, -0.07765461504459381, -0.10942137986421585, -0.09721522778272629, -0.0895986557006836, -0.04701431840658188, 0.04965505748987198, -0.23556599020957947, -0.010371416807174683, 0.1905624270439148, -0.1305137276649475, -0.06593659520149231, 0.15700191259384155, -0.0867580771446228, -0.07371458411216736, 0.1091422587633133, 0.08034680783748627, 0.10778480023145676, -0.18855999410152435, 0.009042926132678986, 0.09054356813430786, -0.01728418841958046, 0.05242140591144562, 0.12168024480342865, 0.03890120983123779, 0.01909387856721878, 0.02258063666522503, 0.005543275736272335, -0.002475185552611947, -0.06194953992962837, -0.013473695144057274, -0.04275639355182648, -0.015082145109772682, -0.005830037873238325, -0.015325977467000484, -0.03495234623551369, -0.10084240883588791, -0.13624121248722076, 0.0049912151880562305, 0.1346471756696701, -0.09211485087871552, 0.029086267575621605, -0.10850580781698227, -0.019205717369914055, -0.05738596245646477, -0.04244517907500267, -0.11397223174571991, -0.06562932580709457, 0.05312929302453995, 0.012609023600816727, -0.017924172803759575, 0.2779156565666199, 0.05063530430197716, 0.02539495751261711, -0.04576478153467178, 0.07304836809635162, 0.022197019308805466, -0.040111176669597626, -0.04907381907105446, -0.04280979186296463, -0.03210148587822914, -0.04653768986463547, 0.06054900959134102, 0.014225441962480545, 0.004867943003773689, 0.01265888474881649, 0.06514106690883636, -0.019907308742403984, -0.02114403061568737, -0.06585913151502609, -0.039597250521183014, -0.0722171813249588, -0.051920611411333084, 0.012293325737118721, 0.05069771409034729, -0.1063917726278305, 0.1782558113336563, -0.19053161144256592, -0.03939558565616608, 0.09856332838535309, 0.09064752608537674, 0.06667225807905197, -0.13230502605438232, -0.0844101831316948, 0.014038197696208954, -0.12232819944620132, -0.019091662019491196, 0.18988850712776184, 0.03013823740184307, 0.14860300719738007, -0.1891557276248932, -0.07850269973278046, -0.02387416549026966, -0.002711982000619173, -0.00408170185983181, 0.060645557940006256, -0.07180356979370117, -0.10134036839008331, 0.02487470768392086, 0.004128411412239075, 0.05952144041657448, 0.18285968899726868, -0.04560510441660881, -0.10391765832901001, -0.04758034646511078, 0.026629382744431496, -0.04012934863567352, 0.006066091824322939, -0.05742046609520912, 0.015321127139031887, 0.0967307910323143, 0.08046965301036835, 0.05601409822702408, -0.1721377819776535, 0.048384349793195724, 0.08131948858499527, -0.07366102188825607, -0.025880951434373856, -0.038054462522268295, 0.023624978959560394, 0.09685476869344711, 0.0016011327970772982, -0.04030401259660721, -0.07734356820583344, -0.05181489139795303, -0.07627414911985397, 0.13259711861610413, -0.07957147806882858, -0.19560977816581726, -0.13756796717643738, 0.007956437766551971, -0.009156467393040657, -0.0020736122969537973, -0.00296900630928576, -0.06214188411831856, -0.09566357731819153, -0.11024907231330872, 0.011232394725084305, -0.09022220969200134, 0.005627533420920372, -0.011252712458372116, 0.05850076302886009, -0.025460876524448395, -0.15903668105602264, -0.026920514181256294, -0.04340175911784172, -0.018209194764494896, 0.059298571199178696, -0.10356583446264267, 0.03935573995113373, 0.21101725101470947, -0.09005670994520187, 0.008363088592886925, -0.03380239009857178, 0.15035071969032288, 0.00040460421587340534, 0.07280700653791428, 0.13897062838077545, 0.012578768655657768, 0.06434255838394165, 0.008956696838140488, -0.02838742546737194, 0.016618020832538605, 0.08616580069065094, 0.008286646567285061, -0.05340612679719925, -0.2883671522140503, -0.05715005099773407, -0.05050180107355118, -0.030193272978067398, 0.05528569966554642, 0.012829309329390526, -0.03180256485939026, 0.0456925593316555, -0.04624345898628235, -0.06257916241884232, 0.0781836062669754, 0.04759736731648445, 0.012789242900907993, -0.003809925401583314, 0.18785980343818665, -0.06862232834100723, -0.07136880606412888, 0.12409801036119461, 0.005862336605787277, 0.24326957762241364, -0.03403525426983833, 0.08654545247554779, 0.03796560317277908, 0.12658628821372986, 0.10082601010799408, 0.10553053021430969, -0.02229376509785652, 0.016798855736851692, -0.07576234638690948, -0.04586365818977356, -0.027618790045380592, 0.062322743237018585, 0.05077803134918213, 0.03918643668293953, -0.018210027366876602, 0.08492081612348557, 0.05580669268965721, 0.20109811425209045, 0.11307842284440994, -0.20978862047195435, -0.07227408140897751, 0.03858137130737305, -0.08911070227622986, -0.0266500785946846, 0.05327123776078224, 0.15567918121814728, -0.05768854543566704, 0.05841963365674019, -0.010653921402990818, 0.14701086282730103, 0.014479713514447212, 0.0078010568395257, -0.08352039754390717, 0.035949043929576874, -0.04516737163066864, 0.18930456042289734, -0.15684394538402557, 0.15687620639801025, 0.004144537728279829, 0.02044806070625782, -0.07601248472929001, -0.0004567380528897047, -0.050810348242521286, 0.009839299134910107, 0.027375532314181328, -0.004071033094078302, -0.06939276307821274, 0.07734178751707077, -0.12921926379203796, 0.027877185493707657, 0.08629650622606277, 0.056021615862846375, 0.08906660228967667, -0.0728515014052391, 0.025444602593779564, 0.02103886939585209, 0.054424263536930084, 0.07042664289474487, -0.09830911457538605, -0.012398977763950825, 0.027673309668898582, -0.07155758887529373, -0.04677018150687218, -0.04364446550607681, -0.14201882481575012, 0.1869506686925888, -0.05373242124915123, -0.09994500875473022, -0.13516825437545776, 0.03817358240485191, 0.17279751598834991, -0.05804715305566788, -0.04743530601263046, -0.03767620399594307, 0.24347229301929474, -0.042815424501895905, -0.08275142312049866, -0.03463540971279144, -0.02729100175201893, -0.03495994955301285, -0.018032502382993698, 0.1498485803604126, -0.011502666398882866, 0.07372003048658371, 0.028046872466802597, -0.002556851599365473, -0.20269028842449188, -0.12065033614635468, -0.06678689271211624, 0.03024623543024063, 0.08538971096277237, 0.07359986007213593, -0.07502882927656174, 0.07571166753768921, -0.06625308096408844, 0.03444671630859375, 0.09338689595460892, 0.11486156284809113, -0.09513716399669647, 0.02739032544195652, 0.08277624100446701, -0.03849954158067703, -0.13229121267795563, -0.097379669547081, 0.031016778200864792, 0.07168567925691605, -0.03221013396978378, 0.016915004700422287, 0.013335436582565308, 0.10052576661109924, 0.026388725265860558, -0.15796950459480286, -0.252424418926239, -0.08060643076896667, 0.027814963832497597, -0.05954276770353317, 0.1484084576368332, -0.05186622962355614, 0.011568523943424225, -0.03287697583436966, -0.18871580064296722, 0.04452543705701828, -0.09828739613294601, 0.0891951248049736, -0.011597659438848495, 0.025154057890176773, 0.04740341007709503, -0.06944292038679123, 0.128069669008255, 0.06829971075057983, 0.05835206061601639, -0.01168593019247055, 0.07277360558509827, 0.08713451772928238, -0.04974103346467018, 0.14170226454734802, -0.060616374015808105, 0.09837373346090317, -0.0798448994755745, -0.0950063019990921, -0.017100850120186806, -0.07549294084310532, 0.04284720495343208, -0.0542420856654644, -0.16286338865756989, 0.015032333321869373, 0.11873811483383179, -0.007867886684834957, 0.0915951207280159, -0.029079098254442215, 0.09339287132024765, 0.13924361765384674, 0.10227330774068832, -0.18592479825019836, -0.12537162005901337, -0.016083909198641777, 0.039941493421792984, 0.029244478791952133, -0.14941416680812836, 0.093647301197052, 0.17247183620929718, -0.042537666857242584, 0.16982273757457733, 0.06949909776449203, -0.11372628808021545, -0.03642748296260834, 0.04781842604279518, -0.09117621183395386, -0.15500876307487488, -0.06291579455137253, -0.061034176498651505, -0.13495077192783356, -0.06019720435142517, 0.09675336629152298, -0.016110053285956383, 0.011729448102414608, -0.009485045447945595, 0.014771303161978722, 0.0019102069782093167, 0.19696730375289917, 0.030190102756023407, 0.0671568512916565, -0.08697931468486786, 0.11177121102809906, 0.09554233402013779, -0.07656098902225494, -0.035509537905454636, -0.01136105041950941, -0.11888451129198074, 0.008338709361851215, 0.008319525979459286, 0.023444820195436478, -0.04313525930047035, -0.02236807532608509, -0.12530304491519928, -0.14055602252483368, 0.0625118613243103, 0.006778152659535408, 0.08405580371618271, 0.11991672217845917, -0.058198556303977966, -0.027895651757717133, -0.08439923822879791, 0.1001441702246666, 0.09440022706985474, 0.027157112956047058, -0.04231414571404457, 0.255477637052536, -0.0004952473100274801, 0.05724835395812988, -0.03144100308418274, -0.05601576715707779, -0.01805766485631466, 0.03538907691836357, -0.07227133959531784, 0.004445898812264204, 0.03037220984697342, -0.031533826142549515, 0.0169665589928627, -0.04445032402873039, -0.03869463503360748, 0.046609360724687576, -0.051338739693164825, 0.02306794561445713, -0.058737024664878845, -0.0033387956209480762, -0.05913952738046646, -0.019141025841236115, 0.10143020749092102, -0.05671921372413635, 0.01896817237138748, 0.030081819742918015, -0.05957397073507309, 0.019850555807352066, -0.013037554919719696, -0.006525655742734671, 0.08864469081163406, 0.11686157435178757, 0.0056284223683178425, -0.09712963551282883, 0.07034283131361008, 0.08262406289577484, -0.0003170905401930213, -0.011561548337340355, -0.0710393488407135, -0.06525908410549164, -0.03679933398962021, -0.007318845018744469, -0.08144188672304153, -0.049715228378772736, -0.011959505267441273, 0.038231924176216125, 0.13827505707740784, 0.09517082571983337, 0.011626822873950005, -0.0007760906009934843, -0.19640153646469116, -0.0015293493634089828, 0.02504398301243782, -0.039480142295360565, 0.05194135382771492, -0.053395576775074005, 0.018754510208964348, -0.007907560095191002, 0.17317542433738708, 0.1038639023900032, 0.006464953068643808, 0.02252436988055706, 0.06015355885028839, 0.00968387071043253, -0.01719745434820652, 0.18178385496139526, 0.04696056246757507, -0.01602884568274021, 0.05510440096259117, -0.016427133232355118, 0.035359472036361694, -0.033686812967061996, 0.08890654146671295, 0.09711718559265137, 0.0764612928032875, 0.04921350255608559, -0.011414933949708939, 0.015219084918498993, -0.07905346900224686, 0.04743480309844017, -0.05354093015193939, 0.0051569403149187565, 0.000731435080524534, 0.1180981993675232, 0.15212659537792206, -0.16011948883533478, 0.10814666002988815, 0.05851325765252113, -0.09337325394153595, -0.2072022408246994, -0.025665586814284325, -0.1146363615989685, -0.10457190871238708, -0.004032504744827747, -0.16155193746089935, 0.04269139841198921, 0.08254695683717728, 0.057382915169000626, -0.007019536104053259, -0.01823568157851696, -0.07974456995725632, -0.11088024824857712, 0.03941818326711655, 0.011933119036257267, 0.05573736131191254, 0.06314717233181, 0.034350067377090454, 0.13831304013729095, -0.00352630577981472, 0.08156552910804749, -0.008552313782274723, 0.13651803135871887, 0.029819156974554062, -0.004627559334039688, -0.045975033193826675, -0.03399376571178436, -0.06026818975806236, -0.01880522444844246, 0.08249810338020325, 0.05210045725107193, 0.03357961028814316, -0.03150084987282753, 0.16002735495567322, -0.040432803332805634, -0.17686329782009125, -0.17185306549072266, 0.1725149303674698, 0.06244749203324318, 0.06487169116735458, 0.07904109358787537, -0.03072701022028923, -0.06431441754102707, 0.17785046994686127, 0.09400026500225067, -0.03532058745622635, -0.04041292518377304, 0.02852991595864296, 0.0019333213567733765, 0.07138223201036453, 0.0925881564617157, 0.055661555379629135, 0.11467432230710983, -0.029604224488139153, 0.05890321731567383, -0.028512900695204735, -0.016537455841898918, 0.00323141785338521, 0.036417726427316666, -0.061795011162757874, 0.006526281591504812, -0.04444054514169693, 0.014689825475215912, 0.08738207817077637, -0.0551660880446434, -0.05030035972595215, -0.014786478132009506, -0.06794223189353943, 0.041351255029439926, 0.0668310597538948, -0.08371568471193314, 0.041408736258745193, -0.04282836616039276, -0.01313132792711258, 0.20351669192314148, -0.006832573097199202, -0.1368633210659027, -0.06709013879299164, 0.09748048335313797, -0.0808524489402771, -0.02984555810689926, 0.019694706425070763, 0.06489424407482147, 0.060874734073877335, -0.005877953954041004, -0.03716440126299858, 0.1354016810655594, -0.0031634627375751734, -0.006538093090057373, 0.05793631449341774, 0.02404157444834709, 0.009066413156688213, 0.05021044611930847, 0.05776004120707512, -0.07561466842889786, -0.005131852347403765, -0.015966154634952545, -0.02413756772875786, -0.08163481950759888, 0.035230204463005066, -0.03381417319178581, 0.08683697879314423, 0.16720226407051086, 0.0019687421154230833, 0.05203017219901085, -0.04774153605103493, -0.015239639207720757, -0.049182623624801636, 0.08844585716724396, 0.025211887434124947, -0.06729920953512192, -0.07091125845909119, -0.055240482091903687, 0.00021585436479654163, -0.22127293050289154, -0.04993615299463272, -0.03467467799782753, -0.08995284885168076, 0.022358112037181854, 0.10737022012472153, 0.0013034335570409894, 0.048823680728673935, -0.03665342926979065, -0.033183030784130096, 0.022635700181126595, 0.051515258848667145, -0.12267417460680008, -0.044358011335134506 ]
null
null
sentence-transformers
# multi-QA_v1-mpnet-asymmetric-A ## Model Description SentenceTransformers is a set of models and frameworks that enable training and generating sentence embeddings from given data. The generated sentence embeddings can be utilized for Clustering, Semantic Search and other tasks. We used two separate pretrained [mpnet-base](https://huggingface.co/microsoft/mpnet-base) models and trained them using contrastive learning objective. Question and answer pairs from StackExchange and other datasets were used as training data to make the model robust to Question / Answer embedding similarity. We developed this model during the [Community week using JAX/Flax for NLP & CV](https://discuss.huggingface.co/t/open-to-the-community-community-week-using-jax-flax-for-nlp-cv/7104), organized by Hugging Face. We developed this model as part of the project: [Train the Best Sentence Embedding Model Ever with 1B Training Pairs](https://discuss.huggingface.co/t/train-the-best-sentence-embedding-model-ever-with-1b-training-pairs/7354). We benefited from efficient hardware infrastructure to run the project: 7 TPUs v3-8, as well as assistance from Google’s Flax, JAX, and Cloud team members about efficient deep learning frameworks. ## Intended uses This model set is intended to be used as a sentence encoder for a search engine. Given an input sentence, it ouptuts a vector which captures the sentence semantic information. The sentence vector may be used for semantic-search, clustering or sentence similarity tasks. Two models should be used on conjunction for Semantic Search purposes. 1. [multi-QA_v1-mpnet-asymmetric-Q](https://huggingface.co/flax-sentence-embeddings/multi-QA_v1-mpnet-asymmetric-Q) - Model to encode Questions 1. [multi-QA_v1-mpnet-asymmetric-A](https://huggingface.co/flax-sentence-embeddings/multi-QA_v1-mpnet-asymmetric-A) - Model to encode Answers ## How to use Here is how to use this model to get the features of a given text using [SentenceTransformers](https://github.com/UKPLab/sentence-transformers) library: ```python from sentence_transformers import SentenceTransformer model_Q = SentenceTransformer('flax-sentence-embeddings/multi-QA_v1-mpnet-asymmetric-Q') model_A = SentenceTransformer('flax-sentence-embeddings/multi-QA_v1-mpnet-asymmetric-A') question = "Replace me by any question you'd like." question_embbedding = model_Q.encode(text) answer = "Replace me by any answer you'd like." answer_embbedding = model_A.encode(text) answer_likeliness = cosine_similarity(question_embedding, answer_embedding) ``` # Training procedure ## Pre-training We use the pretrained [`Mpnet-base`](https://huggingface.co/microsoft/mpnet-base). Please refer to the model card for more detailed information about the pre-training procedure. ## Fine-tuning We fine-tune the model using a contrastive objective. Formally, we compute the cosine similarity from each possible sentence pairs from the batch. We then apply the cross entropy loss by comparing with true pairs. ### Hyper parameters We trained on model on a TPU v3-8. We train the model during 80k steps using a batch size of 1024 (128 per TPU core). We use a learning rate warm up of 500. The sequence length was limited to 128 tokens. We used the AdamW optimizer with a 2e-5 learning rate. The full training script is accessible in this current repository. ### Training data We used the concatenation from multiple Stackexchange Question-Answer datasets to fine-tune our model. MSMARCO, NQ & other question-answer datasets were also used. | Dataset | Paper | Number of training tuples | |:--------------------------------------------------------:|:----------------------------------------:|:--------------------------:| | [Stack Exchange QA - Title & Answer](https://huggingface.co/datasets/flax-sentence-embeddings/stackexchange_title_best_voted_answer_jsonl) | - | 4,750,619 | | [Stack Exchange](https://huggingface.co/datasets/flax-sentence-embeddings/stackexchange_title_body_jsonl) | - | 364,001 | | [TriviaqQA](https://huggingface.co/datasets/trivia_qa) | - | 73,346 | | [SQuAD2.0](https://rajpurkar.github.io/SQuAD-explorer/) | [paper](https://aclanthology.org/P18-2124.pdf) | 87,599 | | [Quora Question Pairs](https://quoradata.quora.com/First-Quora-Dataset-Release-Question-Pairs) | - | 103,663 | | [Eli5](https://huggingface.co/datasets/eli5) | [paper](https://doi.org/10.18653/v1/p19-1346) | 325,475 | | [PAQ](https://github.com/facebookresearch/PAQ) | [paper](https://arxiv.org/abs/2102.07033) | 64,371,441 | | [WikiAnswers](https://github.com/afader/oqa#wikianswers-corpus) | [paper](https://doi.org/10.1145/2623330.2623677) | 77,427,422 | | [MS MARCO](https://microsoft.github.io/msmarco/) | [paper](https://doi.org/10.1145/3404835.3462804) | 9,144,553 | | [GOOAQ: Open Question Answering with Diverse Answer Types](https://github.com/allenai/gooaq) | [paper](https://arxiv.org/pdf/2104.08727.pdf) | 3,012,496 | | [Yahoo Answers](https://www.kaggle.com/soumikrakshit/yahoo-answers-dataset) Question/Answer | [paper](https://proceedings.neurips.cc/paper/2015/hash/250cf8b51c773f3f8dc8b4be867a9a02-Abstract.html) | 681,164 | | SearchQA | - | 582,261 | | [Natural Questions (NQ)](https://ai.google.com/research/NaturalQuestions) | [paper](https://transacl.org/ojs/index.php/tacl/article/view/1455) | 100,231 |
{"tags": ["sentence-transformers", "feature-extraction", "sentence-similarity"], "pipeline_tag": "sentence-similarity"}
sentence-similarity
flax-sentence-embeddings/multi-QA_v1-mpnet-asymmetric-A
[ "sentence-transformers", "pytorch", "mpnet", "feature-extraction", "sentence-similarity", "arxiv:2102.07033", "arxiv:2104.08727", "endpoints_compatible", "has_space", "region:us" ]
2022-03-02T23:29:05+00:00
[ "2102.07033", "2104.08727" ]
[]
TAGS #sentence-transformers #pytorch #mpnet #feature-extraction #sentence-similarity #arxiv-2102.07033 #arxiv-2104.08727 #endpoints_compatible #has_space #region-us
multi-QA\_v1-mpnet-asymmetric-A =============================== Model Description ----------------- SentenceTransformers is a set of models and frameworks that enable training and generating sentence embeddings from given data. The generated sentence embeddings can be utilized for Clustering, Semantic Search and other tasks. We used two separate pretrained mpnet-base models and trained them using contrastive learning objective. Question and answer pairs from StackExchange and other datasets were used as training data to make the model robust to Question / Answer embedding similarity. We developed this model during the Community week using JAX/Flax for NLP & CV, organized by Hugging Face. We developed this model as part of the project: Train the Best Sentence Embedding Model Ever with 1B Training Pairs. We benefited from efficient hardware infrastructure to run the project: 7 TPUs v3-8, as well as assistance from Google’s Flax, JAX, and Cloud team members about efficient deep learning frameworks. Intended uses ------------- This model set is intended to be used as a sentence encoder for a search engine. Given an input sentence, it ouptuts a vector which captures the sentence semantic information. The sentence vector may be used for semantic-search, clustering or sentence similarity tasks. Two models should be used on conjunction for Semantic Search purposes. 1. multi-QA\_v1-mpnet-asymmetric-Q - Model to encode Questions 2. multi-QA\_v1-mpnet-asymmetric-A - Model to encode Answers How to use ---------- Here is how to use this model to get the features of a given text using SentenceTransformers library: Training procedure ================== Pre-training ------------ We use the pretrained 'Mpnet-base'. Please refer to the model card for more detailed information about the pre-training procedure. Fine-tuning ----------- We fine-tune the model using a contrastive objective. Formally, we compute the cosine similarity from each possible sentence pairs from the batch. We then apply the cross entropy loss by comparing with true pairs. ### Hyper parameters We trained on model on a TPU v3-8. We train the model during 80k steps using a batch size of 1024 (128 per TPU core). We use a learning rate warm up of 500. The sequence length was limited to 128 tokens. We used the AdamW optimizer with a 2e-5 learning rate. The full training script is accessible in this current repository. ### Training data We used the concatenation from multiple Stackexchange Question-Answer datasets to fine-tune our model. MSMARCO, NQ & other question-answer datasets were also used.
[ "### Hyper parameters\n\n\nWe trained on model on a TPU v3-8. We train the model during 80k steps using a batch size of 1024 (128 per TPU core).\nWe use a learning rate warm up of 500. The sequence length was limited to 128 tokens. We used the AdamW optimizer with\na 2e-5 learning rate. The full training script is accessible in this current repository.", "### Training data\n\n\nWe used the concatenation from multiple Stackexchange Question-Answer datasets to fine-tune our model. MSMARCO, NQ & other question-answer datasets were also used." ]
[ "TAGS\n#sentence-transformers #pytorch #mpnet #feature-extraction #sentence-similarity #arxiv-2102.07033 #arxiv-2104.08727 #endpoints_compatible #has_space #region-us \n", "### Hyper parameters\n\n\nWe trained on model on a TPU v3-8. We train the model during 80k steps using a batch size of 1024 (128 per TPU core).\nWe use a learning rate warm up of 500. The sequence length was limited to 128 tokens. We used the AdamW optimizer with\na 2e-5 learning rate. The full training script is accessible in this current repository.", "### Training data\n\n\nWe used the concatenation from multiple Stackexchange Question-Answer datasets to fine-tune our model. MSMARCO, NQ & other question-answer datasets were also used." ]
[ 61, 89, 51 ]
[ "passage: TAGS\n#sentence-transformers #pytorch #mpnet #feature-extraction #sentence-similarity #arxiv-2102.07033 #arxiv-2104.08727 #endpoints_compatible #has_space #region-us \n### Hyper parameters\n\n\nWe trained on model on a TPU v3-8. We train the model during 80k steps using a batch size of 1024 (128 per TPU core).\nWe use a learning rate warm up of 500. The sequence length was limited to 128 tokens. We used the AdamW optimizer with\na 2e-5 learning rate. The full training script is accessible in this current repository.### Training data\n\n\nWe used the concatenation from multiple Stackexchange Question-Answer datasets to fine-tune our model. MSMARCO, NQ & other question-answer datasets were also used." ]
[ -0.09991768002510071, -0.009785488247871399, 0.0010262558935210109, 0.07692968100309372, 0.12713755667209625, 0.030215393751859665, 0.0401039682328701, 0.13678531348705292, -0.11727447807788849, 0.00350885558873415, 0.10194744169712067, 0.04555400833487511, 0.007954929023981094, 0.12689609825611115, -0.02227906696498394, -0.2371172308921814, 0.024424588307738304, 0.042124927043914795, -0.009542888961732388, 0.12592856585979462, 0.07891570776700974, -0.08495990186929703, 0.05124010890722275, -0.043831709772348404, -0.15957409143447876, 0.017138628289103508, -0.059313952922821045, -0.0346311591565609, 0.14412035048007965, 0.025658797472715378, 0.07190624624490738, 0.003794472897425294, 0.036059703677892685, -0.08885068446397781, 0.044687654823064804, 0.06123865023255348, 0.01198438461869955, 0.07394137233495712, -0.009134465828537941, 0.050066959112882614, 0.2152780145406723, -0.047841571271419525, 0.015576142817735672, 0.038188058882951736, -0.0638020858168602, -0.03504630923271179, 0.013921255245804787, -0.0029652463272213936, 0.1230652928352356, 0.12297722697257996, -0.02767178602516651, 0.21404270827770233, -0.1524815708398819, 0.10081291943788528, 0.08973823487758636, -0.3307023048400879, -0.06310827285051346, 0.16639260947704315, 0.13297930359840393, 0.10710001736879349, -0.07005142420530319, -0.00895741954445839, 0.04851986840367317, 0.060949377715587616, 0.05650472268462181, -0.015895143151283264, -0.1449645310640335, 0.029755720868706703, -0.1560267060995102, 0.011341290548443794, 0.2059580683708191, 0.017624136060476303, -0.018559949472546577, -0.056934747844934464, -0.09334200620651245, -0.06652095168828964, -0.01302708126604557, -0.012503274716436863, -0.017724959179759026, 0.02960270270705223, -0.12680554389953613, -0.020353859290480614, -0.10391931235790253, -0.11677411198616028, -0.06287456303834915, 0.09490339457988739, 0.060206133872270584, 0.05556323006749153, -0.08364542573690414, 0.09396084398031235, -0.05227622017264366, -0.04115264117717743, -0.011339548043906689, -0.06333062052726746, -0.09264697879552841, -0.009486316703259945, -0.1259257048368454, -0.1308140903711319, 0.033016644418239594, 0.010680120438337326, 0.04500296711921692, 0.014436711557209492, 0.10197965055704117, 0.05355891212821007, 0.013575800694525242, 0.11574526131153107, -0.07625206559896469, -0.06877508014440536, 0.010048219934105873, 0.013735142536461353, -0.041474923491477966, -0.011428932659327984, -0.12355724722146988, -0.054602161049842834, 0.10193314403295517, 0.0315694659948349, -0.05527951568365097, 0.09649002552032471, 0.025452714413404465, -0.04672396555542946, 0.052827682346105576, -0.07427895814180374, -0.052587345242500305, 0.011816037818789482, -0.09764190018177032, 0.08963742107152939, -0.012518576346337795, -0.044068414717912674, -0.12301404029130936, -0.018030155450105667, -0.09268845617771149, -0.019152166321873665, -0.10280786454677582, -0.13940761983394623, 0.021266594529151917, -0.0880509614944458, -0.011749307624995708, -0.16028441488742828, -0.09414231777191162, -0.007911176420748234, 0.03428485989570618, -0.01177823543548584, -0.03513120487332344, -0.09945797175168991, -0.0364413782954216, 0.004137368407100439, -0.013816289603710175, 0.1523723155260086, -0.06254246830940247, 0.06196121126413345, -0.034274399280548096, 0.09506002813577652, -0.016498535871505737, 0.022683721035718918, -0.07608816027641296, -0.04962003976106644, 0.0031185036059468985, 0.03659539669752121, 0.06821157783269882, 0.07292745262384415, -0.08169809728860855, -0.12792080640792847, -0.13925063610076904, -0.014452330768108368, 0.036267779767513275, 0.0949510782957077, -0.19866451621055603, -0.002960271667689085, 0.13088837265968323, -0.026749731972813606, -0.12112782150506973, 0.1826058179140091, -0.018729453906416893, -0.0011221971362829208, 0.07989930361509323, 0.11712592840194702, 0.05059231072664261, -0.08816847205162048, 0.03285802900791168, 0.0895833745598793, -0.06960594654083252, -0.16603057086467743, 0.08338405936956406, 0.0842004045844078, 0.026629289612174034, 0.014627900905907154, 0.030786767601966858, 0.07452374696731567, -0.09041700512170792, -0.03981509059667587, -0.04385683685541153, -0.1046251580119133, -0.04652772843837738, 0.03721129521727562, 0.0515352338552475, -0.08787132799625397, -0.09425552189350128, -0.0008937345701269805, 0.16238552331924438, -0.10193407535552979, 0.051644839346408844, -0.10022614151239395, 0.03971540555357933, -0.03091210499405861, 0.025713372975587845, -0.15688638389110565, -0.02652701362967491, 0.018046032637357712, 0.08396602421998978, -0.004165950231254101, 0.15660232305526733, 0.04206748679280281, 0.028070012107491493, -0.021072620525956154, 0.04139845818281174, -0.004460363183170557, -0.028384428471326828, -0.11848758161067963, -0.05820610374212265, -0.06976335495710373, -0.05331302806735039, 0.05995231866836548, -0.10007133334875107, -0.009378899820148945, -0.041715532541275024, -0.004617493599653244, -0.03344627842307091, -0.008206291124224663, 0.022084731608629227, 0.023696957156062126, -0.03004583716392517, -0.052809637039899826, 0.10664825886487961, 0.041943106800317764, -0.07831431180238724, 0.053783778101205826, -0.15059703588485718, -0.015026913024485111, 0.11782694607973099, -0.06259770691394806, -0.018886592239141464, -0.014858479611575603, -0.05215393006801605, -0.03319761902093887, -0.03646869212388992, 0.012236525304615498, 0.17118076980113983, 0.020121384412050247, 0.14553268253803253, -0.11867347359657288, -0.03299322724342346, -0.01935678906738758, 0.005301757249981165, 0.06018046662211418, 0.07094968110322952, -0.0037526628002524376, -0.1438882052898407, 0.006632409058511257, 0.01629147306084633, -0.08896135538816452, 0.15164534747600555, -0.002156390342861414, -0.10986395180225372, 0.03208346292376518, 0.020120518282055855, -0.030351318418979645, 0.03903761878609657, -0.15869076550006866, -0.0499548614025116, 0.03768264129757881, 0.03831165283918381, 0.07478904724121094, -0.14060784876346588, -0.007812747731804848, -0.014395990408957005, -0.033959705382585526, -0.03379220515489578, 0.015075734816491604, -0.03593840450048447, 0.08736148476600647, 0.04244626685976982, -0.11676439642906189, -0.003219996113330126, -0.03559885919094086, -0.0772758275270462, 0.20043525099754333, -0.0437251552939415, -0.1892096996307373, -0.03393947333097458, 0.04765576124191284, -0.010040323249995708, 0.007045728154480457, 0.033487867563962936, -0.07262687385082245, -0.029576096683740616, -0.0731680616736412, -0.04392414912581444, -0.03941202536225319, 0.023149041458964348, -0.03729962930083275, 0.05873044207692146, -0.005470081698149443, -0.14849133789539337, 0.02010226808488369, -0.09368541091680527, -0.11810579150915146, 0.06683555990457535, -0.1331351101398468, 0.05138864368200302, 0.23089756071567535, -0.042125847190618515, 0.04881780594587326, -0.029980767518281937, 0.15210619568824768, -0.02403309941291809, 0.00493191322311759, 0.16886718571186066, 0.0379655696451664, -0.0011967517202720046, -0.011237435042858124, 0.0007621585973538458, -0.060982536524534225, 0.1023988425731659, -0.00962117314338684, -0.07479371875524521, -0.21115685999393463, -0.08793717622756958, -0.1010364517569542, 0.01767302304506302, 0.08590422570705414, 0.05831276625394821, -0.026587173342704773, 0.05498804152011871, -0.011702712625265121, -0.01767111010849476, 0.009449687786400318, 0.06388237327337265, 0.014701968058943748, 0.03841106966137886, 0.12925538420677185, -0.04066476225852966, -0.04738613963127136, 0.04806109145283699, 0.026904722675681114, 0.18846425414085388, -0.04856608062982559, 0.08756285905838013, 0.011166280135512352, 0.12476180493831635, 0.04857763648033142, 0.12340472638607025, -0.05818074196577072, -0.041793011128902435, -0.04616420343518257, -0.02973373420536518, -0.03129652515053749, 0.04886920005083084, 0.046756014227867126, -0.023830430582165718, -0.06369258463382721, 0.05809446796774864, 0.06959052383899689, 0.22908516228199005, 0.1331094205379486, -0.28137752413749695, -0.10012378543615341, -0.047711193561553955, -0.06936436891555786, -0.03726127743721008, 0.09962456673383713, 0.17838378250598907, -0.053718969225883484, -0.08570768684148788, -0.016567928716540337, 0.1495113968849182, 0.023050392046570778, 0.02782275900244713, 0.0027073367964476347, 0.08317675441503525, -0.021874787285923958, 0.12430300563573837, -0.21938206255435944, 0.15013642609119415, -0.004973273724317551, 0.09297628700733185, -0.08343435078859329, -0.05507064238190651, 0.04061983525753021, 0.040633250027894974, 0.0543656125664711, 0.00718732550740242, -0.0010273541556671262, -0.02350468561053276, -0.10358373820781708, 0.0687703937292099, 0.06768815219402313, 0.09185223281383514, 0.08266115933656693, -0.04700358211994171, 0.010360841639339924, 0.042665403336286545, 0.12428328394889832, 0.013612511567771435, -0.045892201364040375, -0.03639044612646103, 0.08091815561056137, -0.041377659887075424, -0.018632136285305023, -0.06080550327897072, -0.03622005879878998, 0.19266636669635773, 0.05980290099978447, -0.05184252932667732, -0.08618457615375519, 0.046303603798151016, 0.09649983793497086, -0.042836688458919525, 0.007808304391801357, 0.049306195229291916, 0.08947845548391342, 0.009585061110556126, -0.0876837745308876, 0.09289581328630447, -0.09070813655853271, -0.052299365401268005, -0.0029068069998174906, 0.0906825065612793, 0.0008308726828545332, 0.06256270408630371, 0.012467744760215282, -0.021446051076054573, -0.12464624643325806, -0.06409986317157745, -0.0679006353020668, -0.05783515423536301, 0.1185431107878685, 0.038828298449516296, -0.09361876547336578, 0.07469625025987625, -0.06160354986786842, 0.01791200041770935, 0.17763438820838928, 0.0997617319226265, -0.0646342784166336, -0.016276787966489792, 0.1587091088294983, 0.004220494069159031, -0.22243402898311615, -0.04507029429078102, 0.015768535435199738, 0.026757443323731422, -0.060115765780210495, -0.09580215066671371, 0.06747033447027206, 0.07187118381261826, 0.018544796854257584, -0.012445079162716866, -0.3547644019126892, -0.0960533395409584, 0.11131283640861511, 0.06285311281681061, 0.31259647011756897, -0.09593845158815384, 0.07571618258953094, -0.030427703633904457, -0.0854843482375145, 0.122196264564991, -0.14506730437278748, 0.16315585374832153, -0.04017484560608864, 0.026001492515206337, 0.028966126963496208, -0.06273700296878815, 0.035136908292770386, 0.05607046186923981, 0.056817881762981415, -0.030821308493614197, 0.03889786824584007, 0.007880032993853092, -0.05060920864343643, 0.1341055929660797, -0.10358036309480667, 0.07398331165313721, -0.09905197471380234, -0.047306790947914124, -0.05212566256523132, -0.013748991303145885, 0.06626074761152267, -0.06530846655368805, -0.0689316838979721, 0.05594801530241966, 0.04689523205161095, 0.028243012726306915, 0.05391188710927963, -0.03024623915553093, 0.07441291958093643, 0.11763361096382141, 0.11059297621250153, -0.15867246687412262, -0.03753408044576645, 0.021098529919981956, 0.006973704788833857, 0.08859734237194061, -0.13479913771152496, 0.028941042721271515, 0.10976902395486832, 0.0010257675312459469, 0.09028059989213943, 0.09391319751739502, -0.011605433188378811, -0.025973936542868614, 0.056278809905052185, -0.10666436702013016, -0.035927895456552505, -0.030295003205537796, -0.059992410242557526, -0.07674115896224976, 0.02077188529074192, 0.061474740505218506, -0.09533156454563141, 0.006455759052187204, 0.005157416220754385, 0.007886252366006374, -0.07552565634250641, 0.20407462120056152, 0.09060375392436981, 0.04336674511432648, -0.08677120506763458, 0.10390941798686981, 0.0355975478887558, -0.06183939799666405, 0.024479717016220093, 0.11232897639274597, -0.12806706130504608, -0.07387585937976837, 0.055925339460372925, 0.011205241084098816, -0.04361559823155403, -0.06118369475007057, -0.09774123877286911, -0.03889548406004906, 0.05817533656954765, 0.06516467779874802, 0.08901405334472656, 0.06271068751811981, -0.09235531091690063, -0.003154987469315529, -0.15891632437705994, 0.056234195828437805, 0.03015386126935482, 0.013098124414682388, -0.0507667176425457, 0.20568813383579254, 0.010338053107261658, 0.09402452409267426, -0.06587019562721252, -0.04179108515381813, -0.05981800705194473, 0.06397432088851929, -0.10507705062627792, -0.03195582702755928, -0.023336857557296753, -0.0077777220867574215, -0.042007457464933395, -0.005095916800200939, -0.07055830955505371, 0.019729312509298325, -0.06764320284128189, 0.007595964707434177, -0.011695952154695988, -0.015696965157985687, -0.037161391228437424, -0.040267687290906906, -0.0019060723716393113, -0.05291835963726044, 0.07213783264160156, 0.08392807841300964, -0.06984546780586243, 0.06870143860578537, -0.06899767369031906, -0.04661981388926506, 0.042432863265275955, 0.08023423701524734, 0.025696782395243645, -0.022809168323874474, 0.03484252095222473, 0.047015171498060226, 0.06343228369951248, 0.014088180847465992, 0.044257752597332, -0.06890447437763214, -0.03367220610380173, -0.11064467579126358, -0.03530062362551689, -0.07760840654373169, -0.029908888041973114, 0.027960550040006638, 0.1539693921804428, 0.13529567420482635, -0.051617901772260666, 0.012212070636451244, -0.1509678214788437, 0.00022706126037519425, 0.014528816565871239, -0.08787883818149567, -0.05329770967364311, -0.04320336878299713, 0.07414162158966064, -0.0374949686229229, 0.12813226878643036, -0.016926955431699753, -0.015933822840452194, 0.005213139578700066, 0.020970730111002922, 0.006873396225273609, -0.06051790341734886, 0.2424684464931488, 0.0616937018930912, -0.011036179959774017, 0.013228046707808971, 0.06763974577188492, 0.07697394490242004, 0.14197798073291779, 0.18197916448116302, 0.09444024413824081, 0.08838899433612823, 0.1677873134613037, -0.0237936619669199, 0.0017818666528910398, -0.03591496869921684, 0.008335133083164692, -0.054144587367773056, 0.05870114639401436, -0.04639289900660515, 0.13398374617099762, 0.20020824670791626, -0.09909141808748245, 0.016904577612876892, -0.04429614171385765, -0.09222683310508728, -0.13337251543998718, -0.0426577664911747, -0.07636978477239609, -0.15059302747249603, -0.011792582459747791, -0.1368260532617569, -0.01889151893556118, 0.1263987272977829, 0.060639504343271255, -0.028725046664476395, 0.11521276086568832, -0.01456694770604372, -0.04675942659378052, 0.07389859855175018, -0.045532263815402985, 0.04998401552438736, 0.008232798427343369, -0.024801824241876602, 0.06653859466314316, -0.0634986162185669, 0.09251180291175842, -0.030539194121956825, 0.04163168743252754, 0.05600370094180107, -0.0498783253133297, -0.06640111654996872, -0.05347372591495514, 0.019831106066703796, 0.015235359780490398, 0.1165875717997551, 0.057439882308244705, -0.041208416223526, 0.008685705251991749, 0.20975269377231598, -0.06558766216039658, -0.15548549592494965, -0.11915262043476105, 0.23224373161792755, 0.0728345513343811, -0.017398938536643982, 0.027376439422369003, -0.03461780399084091, -0.06437141448259354, 0.2400280386209488, 0.17518696188926697, -0.12268365919589996, -0.014901474118232727, 0.040831442922353745, 0.00030179187888279557, -0.028501618653535843, 0.15563875436782837, 0.1248963326215744, 0.10889771580696106, -0.04092612862586975, 0.002880074782297015, -0.03706343099474907, 0.00974944420158863, -0.05552506074309349, 0.0038445787504315376, 0.04409286007285118, -0.02914242446422577, -0.032495707273483276, 0.054111551493406296, -0.05923625826835632, 0.009844474494457245, -0.05315220728516579, -0.05942479148507118, -0.11571703851222992, -0.010105583816766739, 0.01169662643224001, 0.022724317386746407, 0.12958569824695587, -0.08134280145168304, 0.07640434801578522, -0.023281700909137726, -0.02602182887494564, -0.1008220911026001, -0.11720047146081924, 0.12397115677595139, -0.023625554516911507, 0.04575895890593529, -0.016904111951589584, 0.10258971899747849, 0.07106248289346695, 0.019505217671394348, -0.09223109483718872, 0.12327144294977188, -0.015456627123057842, -0.046256374567747116, 0.06505916267633438, 0.06242635101079941, -0.06051381304860115, 0.0009774030186235905, 0.035791218280792236, -0.07948233187198639, -0.026020783931016922, -0.07739312946796417, 0.05564948543906212, -0.10437929630279541, 0.009737025015056133, -0.025826631113886833, 0.14599573612213135, 0.15900884568691254, -0.04218851029872894, -0.016438905149698257, -0.07213087379932404, -0.007595841772854328, 0.0054406835697591305, -0.03215532377362251, -0.06906607002019882, -0.17773635685443878, -0.028947941958904266, -0.08494611084461212, -0.016617706045508385, -0.19166074693202972, -0.012522665783762932, -0.0722021609544754, -0.0736875981092453, -0.06501210480928421, 0.10573766380548477, 0.057832490652799606, 0.015171489678323269, -0.049234580248594284, 0.007310967892408371, 0.00017458671936765313, 0.0735899806022644, -0.20293933153152466, -0.157658651471138 ]
null
null
sentence-transformers
# multi-QA_v1-mpnet-asymmetric-Q ## Model Description SentenceTransformers is a set of models and frameworks that enable training and generating sentence embeddings from given data. The generated sentence embeddings can be utilized for Clustering, Semantic Search and other tasks. We used two separate pretrained [mpnet-base](https://huggingface.co/microsoft/mpnet-base) models and trained them using contrastive learning objective. Question and answer pairs from StackExchange and other datasets were used as training data to make the model robust to Question / Answer embedding similarity. We developed this model during the [Community week using JAX/Flax for NLP & CV](https://discuss.huggingface.co/t/open-to-the-community-community-week-using-jax-flax-for-nlp-cv/7104), organized by Hugging Face. We developed this model as part of the project: [Train the Best Sentence Embedding Model Ever with 1B Training Pairs](https://discuss.huggingface.co/t/train-the-best-sentence-embedding-model-ever-with-1b-training-pairs/7354). We benefited from efficient hardware infrastructure to run the project: 7 TPUs v3-8, as well as assistance from Google’s Flax, JAX, and Cloud team members about efficient deep learning frameworks. ## Intended uses This model set is intended to be used as a sentence encoder for a search engine. Given an input sentence, it ouptuts a vector which captures the sentence semantic information. The sentence vector may be used for semantic-search, clustering or sentence similarity tasks. Two models should be used on conjunction for Semantic Search purposes. 1. [multi-QA_v1-mpnet-asymmetric-Q](https://huggingface.co/flax-sentence-embeddings/multi-QA_v1-mpnet-asymmetric-Q) - Model to encode Questions 1. [multi-QA_v1-mpnet-asymmetric-Q](https://huggingface.co/flax-sentence-embeddings/multi-QA_v1-mpnet-asymmetric-A) - Model to encode Answers ## How to use Here is how to use this model to get the features of a given text using [SentenceTransformers](https://github.com/UKPLab/sentence-transformers) library: ```python from sentence_transformers import SentenceTransformer model_Q = SentenceTransformer('flax-sentence-embeddings/multi-QA_v1-mpnet-asymmetric-Q') model_A = SentenceTransformer('flax-sentence-embeddings/multi-QA_v1-mpnet-asymmetric-A') question = "Replace me by any question you'd like." question_embbedding = model_Q.encode(text) answer = "Replace me by any answer you'd like." answer_embbedding = model_A.encode(text) answer_likeliness = cosine_similarity(question_embedding, answer_embedding) ``` # Training procedure ## Pre-training We use the pretrained [`Mpnet-base`](https://huggingface.co/microsoft/mpnet-base). Please refer to the model card for more detailed information about the pre-training procedure. ## Fine-tuning We fine-tune the model using a contrastive objective. Formally, we compute the cosine similarity from each possible sentence pairs from the batch. We then apply the cross entropy loss by comparing with true pairs. ### Hyper parameters We trained on model on a TPU v3-8. We train the model during 80k steps using a batch size of 1024 (128 per TPU core). We use a learning rate warm up of 500. The sequence length was limited to 128 tokens. We used the AdamW optimizer with a 2e-5 learning rate. The full training script is accessible in this current repository. ### Training data We used the concatenation from multiple Stackexchange Question-Answer datasets to fine-tune our model. MSMARCO, NQ & other question-answer datasets were also used. | Dataset | Paper | Number of training tuples | |:--------------------------------------------------------:|:----------------------------------------:|:--------------------------:| | [Stack Exchange QA - Title & Answer](https://huggingface.co/datasets/flax-sentence-embeddings/stackexchange_title_best_voted_answer_jsonl) | - | 4,750,619 | | [Stack Exchange](https://huggingface.co/datasets/flax-sentence-embeddings/stackexchange_title_body_jsonl) | - | 364,001 | | [TriviaqQA](https://huggingface.co/datasets/trivia_qa) | - | 73,346 | | [SQuAD2.0](https://rajpurkar.github.io/SQuAD-explorer/) | [paper](https://aclanthology.org/P18-2124.pdf) | 87,599 | | [Quora Question Pairs](https://quoradata.quora.com/First-Quora-Dataset-Release-Question-Pairs) | - | 103,663 | | [Eli5](https://huggingface.co/datasets/eli5) | [paper](https://doi.org/10.18653/v1/p19-1346) | 325,475 | | [PAQ](https://github.com/facebookresearch/PAQ) | [paper](https://arxiv.org/abs/2102.07033) | 64,371,441 | | [WikiAnswers](https://github.com/afader/oqa#wikianswers-corpus) | [paper](https://doi.org/10.1145/2623330.2623677) | 77,427,422 | | [MS MARCO](https://microsoft.github.io/msmarco/) | [paper](https://doi.org/10.1145/3404835.3462804) | 9,144,553 | | [GOOAQ: Open Question Answering with Diverse Answer Types](https://github.com/allenai/gooaq) | [paper](https://arxiv.org/pdf/2104.08727.pdf) | 3,012,496 | | [Yahoo Answers](https://www.kaggle.com/soumikrakshit/yahoo-answers-dataset) Question/Answer | [paper](https://proceedings.neurips.cc/paper/2015/hash/250cf8b51c773f3f8dc8b4be867a9a02-Abstract.html) | 681,164 | | SearchQA | - | 582,261 | | [Natural Questions (NQ)](https://ai.google.com/research/NaturalQuestions) | [paper](https://transacl.org/ojs/index.php/tacl/article/view/1455) | 100,231 |
{"tags": ["sentence-transformers", "feature-extraction", "sentence-similarity"], "pipeline_tag": "sentence-similarity"}
sentence-similarity
flax-sentence-embeddings/multi-QA_v1-mpnet-asymmetric-Q
[ "sentence-transformers", "pytorch", "mpnet", "feature-extraction", "sentence-similarity", "arxiv:2102.07033", "arxiv:2104.08727", "endpoints_compatible", "has_space", "region:us" ]
2022-03-02T23:29:05+00:00
[ "2102.07033", "2104.08727" ]
[]
TAGS #sentence-transformers #pytorch #mpnet #feature-extraction #sentence-similarity #arxiv-2102.07033 #arxiv-2104.08727 #endpoints_compatible #has_space #region-us
multi-QA\_v1-mpnet-asymmetric-Q =============================== Model Description ----------------- SentenceTransformers is a set of models and frameworks that enable training and generating sentence embeddings from given data. The generated sentence embeddings can be utilized for Clustering, Semantic Search and other tasks. We used two separate pretrained mpnet-base models and trained them using contrastive learning objective. Question and answer pairs from StackExchange and other datasets were used as training data to make the model robust to Question / Answer embedding similarity. We developed this model during the Community week using JAX/Flax for NLP & CV, organized by Hugging Face. We developed this model as part of the project: Train the Best Sentence Embedding Model Ever with 1B Training Pairs. We benefited from efficient hardware infrastructure to run the project: 7 TPUs v3-8, as well as assistance from Google’s Flax, JAX, and Cloud team members about efficient deep learning frameworks. Intended uses ------------- This model set is intended to be used as a sentence encoder for a search engine. Given an input sentence, it ouptuts a vector which captures the sentence semantic information. The sentence vector may be used for semantic-search, clustering or sentence similarity tasks. Two models should be used on conjunction for Semantic Search purposes. 1. multi-QA\_v1-mpnet-asymmetric-Q - Model to encode Questions 2. multi-QA\_v1-mpnet-asymmetric-Q - Model to encode Answers How to use ---------- Here is how to use this model to get the features of a given text using SentenceTransformers library: Training procedure ================== Pre-training ------------ We use the pretrained 'Mpnet-base'. Please refer to the model card for more detailed information about the pre-training procedure. Fine-tuning ----------- We fine-tune the model using a contrastive objective. Formally, we compute the cosine similarity from each possible sentence pairs from the batch. We then apply the cross entropy loss by comparing with true pairs. ### Hyper parameters We trained on model on a TPU v3-8. We train the model during 80k steps using a batch size of 1024 (128 per TPU core). We use a learning rate warm up of 500. The sequence length was limited to 128 tokens. We used the AdamW optimizer with a 2e-5 learning rate. The full training script is accessible in this current repository. ### Training data We used the concatenation from multiple Stackexchange Question-Answer datasets to fine-tune our model. MSMARCO, NQ & other question-answer datasets were also used.
[ "### Hyper parameters\n\n\nWe trained on model on a TPU v3-8. We train the model during 80k steps using a batch size of 1024 (128 per TPU core).\nWe use a learning rate warm up of 500. The sequence length was limited to 128 tokens. We used the AdamW optimizer with\na 2e-5 learning rate. The full training script is accessible in this current repository.", "### Training data\n\n\nWe used the concatenation from multiple Stackexchange Question-Answer datasets to fine-tune our model. MSMARCO, NQ & other question-answer datasets were also used." ]
[ "TAGS\n#sentence-transformers #pytorch #mpnet #feature-extraction #sentence-similarity #arxiv-2102.07033 #arxiv-2104.08727 #endpoints_compatible #has_space #region-us \n", "### Hyper parameters\n\n\nWe trained on model on a TPU v3-8. We train the model during 80k steps using a batch size of 1024 (128 per TPU core).\nWe use a learning rate warm up of 500. The sequence length was limited to 128 tokens. We used the AdamW optimizer with\na 2e-5 learning rate. The full training script is accessible in this current repository.", "### Training data\n\n\nWe used the concatenation from multiple Stackexchange Question-Answer datasets to fine-tune our model. MSMARCO, NQ & other question-answer datasets were also used." ]
[ 61, 89, 51 ]
[ "passage: TAGS\n#sentence-transformers #pytorch #mpnet #feature-extraction #sentence-similarity #arxiv-2102.07033 #arxiv-2104.08727 #endpoints_compatible #has_space #region-us \n### Hyper parameters\n\n\nWe trained on model on a TPU v3-8. We train the model during 80k steps using a batch size of 1024 (128 per TPU core).\nWe use a learning rate warm up of 500. The sequence length was limited to 128 tokens. We used the AdamW optimizer with\na 2e-5 learning rate. The full training script is accessible in this current repository.### Training data\n\n\nWe used the concatenation from multiple Stackexchange Question-Answer datasets to fine-tune our model. MSMARCO, NQ & other question-answer datasets were also used." ]
[ -0.09991768002510071, -0.009785488247871399, 0.0010262558935210109, 0.07692968100309372, 0.12713755667209625, 0.030215393751859665, 0.0401039682328701, 0.13678531348705292, -0.11727447807788849, 0.00350885558873415, 0.10194744169712067, 0.04555400833487511, 0.007954929023981094, 0.12689609825611115, -0.02227906696498394, -0.2371172308921814, 0.024424588307738304, 0.042124927043914795, -0.009542888961732388, 0.12592856585979462, 0.07891570776700974, -0.08495990186929703, 0.05124010890722275, -0.043831709772348404, -0.15957409143447876, 0.017138628289103508, -0.059313952922821045, -0.0346311591565609, 0.14412035048007965, 0.025658797472715378, 0.07190624624490738, 0.003794472897425294, 0.036059703677892685, -0.08885068446397781, 0.044687654823064804, 0.06123865023255348, 0.01198438461869955, 0.07394137233495712, -0.009134465828537941, 0.050066959112882614, 0.2152780145406723, -0.047841571271419525, 0.015576142817735672, 0.038188058882951736, -0.0638020858168602, -0.03504630923271179, 0.013921255245804787, -0.0029652463272213936, 0.1230652928352356, 0.12297722697257996, -0.02767178602516651, 0.21404270827770233, -0.1524815708398819, 0.10081291943788528, 0.08973823487758636, -0.3307023048400879, -0.06310827285051346, 0.16639260947704315, 0.13297930359840393, 0.10710001736879349, -0.07005142420530319, -0.00895741954445839, 0.04851986840367317, 0.060949377715587616, 0.05650472268462181, -0.015895143151283264, -0.1449645310640335, 0.029755720868706703, -0.1560267060995102, 0.011341290548443794, 0.2059580683708191, 0.017624136060476303, -0.018559949472546577, -0.056934747844934464, -0.09334200620651245, -0.06652095168828964, -0.01302708126604557, -0.012503274716436863, -0.017724959179759026, 0.02960270270705223, -0.12680554389953613, -0.020353859290480614, -0.10391931235790253, -0.11677411198616028, -0.06287456303834915, 0.09490339457988739, 0.060206133872270584, 0.05556323006749153, -0.08364542573690414, 0.09396084398031235, -0.05227622017264366, -0.04115264117717743, -0.011339548043906689, -0.06333062052726746, -0.09264697879552841, -0.009486316703259945, -0.1259257048368454, -0.1308140903711319, 0.033016644418239594, 0.010680120438337326, 0.04500296711921692, 0.014436711557209492, 0.10197965055704117, 0.05355891212821007, 0.013575800694525242, 0.11574526131153107, -0.07625206559896469, -0.06877508014440536, 0.010048219934105873, 0.013735142536461353, -0.041474923491477966, -0.011428932659327984, -0.12355724722146988, -0.054602161049842834, 0.10193314403295517, 0.0315694659948349, -0.05527951568365097, 0.09649002552032471, 0.025452714413404465, -0.04672396555542946, 0.052827682346105576, -0.07427895814180374, -0.052587345242500305, 0.011816037818789482, -0.09764190018177032, 0.08963742107152939, -0.012518576346337795, -0.044068414717912674, -0.12301404029130936, -0.018030155450105667, -0.09268845617771149, -0.019152166321873665, -0.10280786454677582, -0.13940761983394623, 0.021266594529151917, -0.0880509614944458, -0.011749307624995708, -0.16028441488742828, -0.09414231777191162, -0.007911176420748234, 0.03428485989570618, -0.01177823543548584, -0.03513120487332344, -0.09945797175168991, -0.0364413782954216, 0.004137368407100439, -0.013816289603710175, 0.1523723155260086, -0.06254246830940247, 0.06196121126413345, -0.034274399280548096, 0.09506002813577652, -0.016498535871505737, 0.022683721035718918, -0.07608816027641296, -0.04962003976106644, 0.0031185036059468985, 0.03659539669752121, 0.06821157783269882, 0.07292745262384415, -0.08169809728860855, -0.12792080640792847, -0.13925063610076904, -0.014452330768108368, 0.036267779767513275, 0.0949510782957077, -0.19866451621055603, -0.002960271667689085, 0.13088837265968323, -0.026749731972813606, -0.12112782150506973, 0.1826058179140091, -0.018729453906416893, -0.0011221971362829208, 0.07989930361509323, 0.11712592840194702, 0.05059231072664261, -0.08816847205162048, 0.03285802900791168, 0.0895833745598793, -0.06960594654083252, -0.16603057086467743, 0.08338405936956406, 0.0842004045844078, 0.026629289612174034, 0.014627900905907154, 0.030786767601966858, 0.07452374696731567, -0.09041700512170792, -0.03981509059667587, -0.04385683685541153, -0.1046251580119133, -0.04652772843837738, 0.03721129521727562, 0.0515352338552475, -0.08787132799625397, -0.09425552189350128, -0.0008937345701269805, 0.16238552331924438, -0.10193407535552979, 0.051644839346408844, -0.10022614151239395, 0.03971540555357933, -0.03091210499405861, 0.025713372975587845, -0.15688638389110565, -0.02652701362967491, 0.018046032637357712, 0.08396602421998978, -0.004165950231254101, 0.15660232305526733, 0.04206748679280281, 0.028070012107491493, -0.021072620525956154, 0.04139845818281174, -0.004460363183170557, -0.028384428471326828, -0.11848758161067963, -0.05820610374212265, -0.06976335495710373, -0.05331302806735039, 0.05995231866836548, -0.10007133334875107, -0.009378899820148945, -0.041715532541275024, -0.004617493599653244, -0.03344627842307091, -0.008206291124224663, 0.022084731608629227, 0.023696957156062126, -0.03004583716392517, -0.052809637039899826, 0.10664825886487961, 0.041943106800317764, -0.07831431180238724, 0.053783778101205826, -0.15059703588485718, -0.015026913024485111, 0.11782694607973099, -0.06259770691394806, -0.018886592239141464, -0.014858479611575603, -0.05215393006801605, -0.03319761902093887, -0.03646869212388992, 0.012236525304615498, 0.17118076980113983, 0.020121384412050247, 0.14553268253803253, -0.11867347359657288, -0.03299322724342346, -0.01935678906738758, 0.005301757249981165, 0.06018046662211418, 0.07094968110322952, -0.0037526628002524376, -0.1438882052898407, 0.006632409058511257, 0.01629147306084633, -0.08896135538816452, 0.15164534747600555, -0.002156390342861414, -0.10986395180225372, 0.03208346292376518, 0.020120518282055855, -0.030351318418979645, 0.03903761878609657, -0.15869076550006866, -0.0499548614025116, 0.03768264129757881, 0.03831165283918381, 0.07478904724121094, -0.14060784876346588, -0.007812747731804848, -0.014395990408957005, -0.033959705382585526, -0.03379220515489578, 0.015075734816491604, -0.03593840450048447, 0.08736148476600647, 0.04244626685976982, -0.11676439642906189, -0.003219996113330126, -0.03559885919094086, -0.0772758275270462, 0.20043525099754333, -0.0437251552939415, -0.1892096996307373, -0.03393947333097458, 0.04765576124191284, -0.010040323249995708, 0.007045728154480457, 0.033487867563962936, -0.07262687385082245, -0.029576096683740616, -0.0731680616736412, -0.04392414912581444, -0.03941202536225319, 0.023149041458964348, -0.03729962930083275, 0.05873044207692146, -0.005470081698149443, -0.14849133789539337, 0.02010226808488369, -0.09368541091680527, -0.11810579150915146, 0.06683555990457535, -0.1331351101398468, 0.05138864368200302, 0.23089756071567535, -0.042125847190618515, 0.04881780594587326, -0.029980767518281937, 0.15210619568824768, -0.02403309941291809, 0.00493191322311759, 0.16886718571186066, 0.0379655696451664, -0.0011967517202720046, -0.011237435042858124, 0.0007621585973538458, -0.060982536524534225, 0.1023988425731659, -0.00962117314338684, -0.07479371875524521, -0.21115685999393463, -0.08793717622756958, -0.1010364517569542, 0.01767302304506302, 0.08590422570705414, 0.05831276625394821, -0.026587173342704773, 0.05498804152011871, -0.011702712625265121, -0.01767111010849476, 0.009449687786400318, 0.06388237327337265, 0.014701968058943748, 0.03841106966137886, 0.12925538420677185, -0.04066476225852966, -0.04738613963127136, 0.04806109145283699, 0.026904722675681114, 0.18846425414085388, -0.04856608062982559, 0.08756285905838013, 0.011166280135512352, 0.12476180493831635, 0.04857763648033142, 0.12340472638607025, -0.05818074196577072, -0.041793011128902435, -0.04616420343518257, -0.02973373420536518, -0.03129652515053749, 0.04886920005083084, 0.046756014227867126, -0.023830430582165718, -0.06369258463382721, 0.05809446796774864, 0.06959052383899689, 0.22908516228199005, 0.1331094205379486, -0.28137752413749695, -0.10012378543615341, -0.047711193561553955, -0.06936436891555786, -0.03726127743721008, 0.09962456673383713, 0.17838378250598907, -0.053718969225883484, -0.08570768684148788, -0.016567928716540337, 0.1495113968849182, 0.023050392046570778, 0.02782275900244713, 0.0027073367964476347, 0.08317675441503525, -0.021874787285923958, 0.12430300563573837, -0.21938206255435944, 0.15013642609119415, -0.004973273724317551, 0.09297628700733185, -0.08343435078859329, -0.05507064238190651, 0.04061983525753021, 0.040633250027894974, 0.0543656125664711, 0.00718732550740242, -0.0010273541556671262, -0.02350468561053276, -0.10358373820781708, 0.0687703937292099, 0.06768815219402313, 0.09185223281383514, 0.08266115933656693, -0.04700358211994171, 0.010360841639339924, 0.042665403336286545, 0.12428328394889832, 0.013612511567771435, -0.045892201364040375, -0.03639044612646103, 0.08091815561056137, -0.041377659887075424, -0.018632136285305023, -0.06080550327897072, -0.03622005879878998, 0.19266636669635773, 0.05980290099978447, -0.05184252932667732, -0.08618457615375519, 0.046303603798151016, 0.09649983793497086, -0.042836688458919525, 0.007808304391801357, 0.049306195229291916, 0.08947845548391342, 0.009585061110556126, -0.0876837745308876, 0.09289581328630447, -0.09070813655853271, -0.052299365401268005, -0.0029068069998174906, 0.0906825065612793, 0.0008308726828545332, 0.06256270408630371, 0.012467744760215282, -0.021446051076054573, -0.12464624643325806, -0.06409986317157745, -0.0679006353020668, -0.05783515423536301, 0.1185431107878685, 0.038828298449516296, -0.09361876547336578, 0.07469625025987625, -0.06160354986786842, 0.01791200041770935, 0.17763438820838928, 0.0997617319226265, -0.0646342784166336, -0.016276787966489792, 0.1587091088294983, 0.004220494069159031, -0.22243402898311615, -0.04507029429078102, 0.015768535435199738, 0.026757443323731422, -0.060115765780210495, -0.09580215066671371, 0.06747033447027206, 0.07187118381261826, 0.018544796854257584, -0.012445079162716866, -0.3547644019126892, -0.0960533395409584, 0.11131283640861511, 0.06285311281681061, 0.31259647011756897, -0.09593845158815384, 0.07571618258953094, -0.030427703633904457, -0.0854843482375145, 0.122196264564991, -0.14506730437278748, 0.16315585374832153, -0.04017484560608864, 0.026001492515206337, 0.028966126963496208, -0.06273700296878815, 0.035136908292770386, 0.05607046186923981, 0.056817881762981415, -0.030821308493614197, 0.03889786824584007, 0.007880032993853092, -0.05060920864343643, 0.1341055929660797, -0.10358036309480667, 0.07398331165313721, -0.09905197471380234, -0.047306790947914124, -0.05212566256523132, -0.013748991303145885, 0.06626074761152267, -0.06530846655368805, -0.0689316838979721, 0.05594801530241966, 0.04689523205161095, 0.028243012726306915, 0.05391188710927963, -0.03024623915553093, 0.07441291958093643, 0.11763361096382141, 0.11059297621250153, -0.15867246687412262, -0.03753408044576645, 0.021098529919981956, 0.006973704788833857, 0.08859734237194061, -0.13479913771152496, 0.028941042721271515, 0.10976902395486832, 0.0010257675312459469, 0.09028059989213943, 0.09391319751739502, -0.011605433188378811, -0.025973936542868614, 0.056278809905052185, -0.10666436702013016, -0.035927895456552505, -0.030295003205537796, -0.059992410242557526, -0.07674115896224976, 0.02077188529074192, 0.061474740505218506, -0.09533156454563141, 0.006455759052187204, 0.005157416220754385, 0.007886252366006374, -0.07552565634250641, 0.20407462120056152, 0.09060375392436981, 0.04336674511432648, -0.08677120506763458, 0.10390941798686981, 0.0355975478887558, -0.06183939799666405, 0.024479717016220093, 0.11232897639274597, -0.12806706130504608, -0.07387585937976837, 0.055925339460372925, 0.011205241084098816, -0.04361559823155403, -0.06118369475007057, -0.09774123877286911, -0.03889548406004906, 0.05817533656954765, 0.06516467779874802, 0.08901405334472656, 0.06271068751811981, -0.09235531091690063, -0.003154987469315529, -0.15891632437705994, 0.056234195828437805, 0.03015386126935482, 0.013098124414682388, -0.0507667176425457, 0.20568813383579254, 0.010338053107261658, 0.09402452409267426, -0.06587019562721252, -0.04179108515381813, -0.05981800705194473, 0.06397432088851929, -0.10507705062627792, -0.03195582702755928, -0.023336857557296753, -0.0077777220867574215, -0.042007457464933395, -0.005095916800200939, -0.07055830955505371, 0.019729312509298325, -0.06764320284128189, 0.007595964707434177, -0.011695952154695988, -0.015696965157985687, -0.037161391228437424, -0.040267687290906906, -0.0019060723716393113, -0.05291835963726044, 0.07213783264160156, 0.08392807841300964, -0.06984546780586243, 0.06870143860578537, -0.06899767369031906, -0.04661981388926506, 0.042432863265275955, 0.08023423701524734, 0.025696782395243645, -0.022809168323874474, 0.03484252095222473, 0.047015171498060226, 0.06343228369951248, 0.014088180847465992, 0.044257752597332, -0.06890447437763214, -0.03367220610380173, -0.11064467579126358, -0.03530062362551689, -0.07760840654373169, -0.029908888041973114, 0.027960550040006638, 0.1539693921804428, 0.13529567420482635, -0.051617901772260666, 0.012212070636451244, -0.1509678214788437, 0.00022706126037519425, 0.014528816565871239, -0.08787883818149567, -0.05329770967364311, -0.04320336878299713, 0.07414162158966064, -0.0374949686229229, 0.12813226878643036, -0.016926955431699753, -0.015933822840452194, 0.005213139578700066, 0.020970730111002922, 0.006873396225273609, -0.06051790341734886, 0.2424684464931488, 0.0616937018930912, -0.011036179959774017, 0.013228046707808971, 0.06763974577188492, 0.07697394490242004, 0.14197798073291779, 0.18197916448116302, 0.09444024413824081, 0.08838899433612823, 0.1677873134613037, -0.0237936619669199, 0.0017818666528910398, -0.03591496869921684, 0.008335133083164692, -0.054144587367773056, 0.05870114639401436, -0.04639289900660515, 0.13398374617099762, 0.20020824670791626, -0.09909141808748245, 0.016904577612876892, -0.04429614171385765, -0.09222683310508728, -0.13337251543998718, -0.0426577664911747, -0.07636978477239609, -0.15059302747249603, -0.011792582459747791, -0.1368260532617569, -0.01889151893556118, 0.1263987272977829, 0.060639504343271255, -0.028725046664476395, 0.11521276086568832, -0.01456694770604372, -0.04675942659378052, 0.07389859855175018, -0.045532263815402985, 0.04998401552438736, 0.008232798427343369, -0.024801824241876602, 0.06653859466314316, -0.0634986162185669, 0.09251180291175842, -0.030539194121956825, 0.04163168743252754, 0.05600370094180107, -0.0498783253133297, -0.06640111654996872, -0.05347372591495514, 0.019831106066703796, 0.015235359780490398, 0.1165875717997551, 0.057439882308244705, -0.041208416223526, 0.008685705251991749, 0.20975269377231598, -0.06558766216039658, -0.15548549592494965, -0.11915262043476105, 0.23224373161792755, 0.0728345513343811, -0.017398938536643982, 0.027376439422369003, -0.03461780399084091, -0.06437141448259354, 0.2400280386209488, 0.17518696188926697, -0.12268365919589996, -0.014901474118232727, 0.040831442922353745, 0.00030179187888279557, -0.028501618653535843, 0.15563875436782837, 0.1248963326215744, 0.10889771580696106, -0.04092612862586975, 0.002880074782297015, -0.03706343099474907, 0.00974944420158863, -0.05552506074309349, 0.0038445787504315376, 0.04409286007285118, -0.02914242446422577, -0.032495707273483276, 0.054111551493406296, -0.05923625826835632, 0.009844474494457245, -0.05315220728516579, -0.05942479148507118, -0.11571703851222992, -0.010105583816766739, 0.01169662643224001, 0.022724317386746407, 0.12958569824695587, -0.08134280145168304, 0.07640434801578522, -0.023281700909137726, -0.02602182887494564, -0.1008220911026001, -0.11720047146081924, 0.12397115677595139, -0.023625554516911507, 0.04575895890593529, -0.016904111951589584, 0.10258971899747849, 0.07106248289346695, 0.019505217671394348, -0.09223109483718872, 0.12327144294977188, -0.015456627123057842, -0.046256374567747116, 0.06505916267633438, 0.06242635101079941, -0.06051381304860115, 0.0009774030186235905, 0.035791218280792236, -0.07948233187198639, -0.026020783931016922, -0.07739312946796417, 0.05564948543906212, -0.10437929630279541, 0.009737025015056133, -0.025826631113886833, 0.14599573612213135, 0.15900884568691254, -0.04218851029872894, -0.016438905149698257, -0.07213087379932404, -0.007595841772854328, 0.0054406835697591305, -0.03215532377362251, -0.06906607002019882, -0.17773635685443878, -0.028947941958904266, -0.08494611084461212, -0.016617706045508385, -0.19166074693202972, -0.012522665783762932, -0.0722021609544754, -0.0736875981092453, -0.06501210480928421, 0.10573766380548477, 0.057832490652799606, 0.015171489678323269, -0.049234580248594284, 0.007310967892408371, 0.00017458671936765313, 0.0735899806022644, -0.20293933153152466, -0.157658651471138 ]
null
null
sentence-transformers
# multi-qa_v1-MiniLM-L6-cls_dot ## Model Description SentenceTransformers is a set of models and frameworks that enable training and generating sentence embeddings from given data. The generated sentence embeddings can be utilized for Clustering, Semantic Search and other tasks. We used a pretrained [nreimers/MiniLM-L6-H384-uncased](https://huggingface.co/nreimers/MiniLM-L6-H384-uncased) model and trained it using Siamese Network setup and contrastive learning objective. Question and answer pairs from StackExchange was used as training data to make the model robust to Question / Answer embedding similarity. For this model, cls output was used instead of mean pooling as sentence embeddings. Dot product was used to calculate similarity for learning objective. We developed this model during the [Community week using JAX/Flax for NLP & CV](https://discuss.huggingface.co/t/open-to-the-community-community-week-using-jax-flax-for-nlp-cv/7104), organized by Hugging Face. We developed this model as part of the project: [Train the Best Sentence Embedding Model Ever with 1B Training Pairs](https://discuss.huggingface.co/t/train-the-best-sentence-embedding-model-ever-with-1b-training-pairs/7354). We benefited from efficient hardware infrastructure to run the project: 7 TPUs v3-8, as well as assistance from Google’s Flax, JAX, and Cloud team members about efficient deep learning frameworks. ## Intended uses Our model is intended to be used as a sentence encoder for a search engine. Given an input sentence, it outputs a vector which captures the sentence semantic information. The sentence vector may be used for semantic-search, clustering or sentence similarity tasks. ## How to use Here is how to use this model to get the features of a given text using [SentenceTransformers](https://github.com/UKPLab/sentence-transformers) library: ```python from sentence_transformers import SentenceTransformer model = SentenceTransformer('flax-sentence-embeddings/multi-qa_v1-MiniLM-L6-cls_dot') text = "Replace me by any question / answer you'd like." text_embbedding = model.encode(text) # array([-0.01559514, 0.04046123, 0.1317083 , 0.00085931, 0.04585106, # -0.05607086, 0.0138078 , 0.03569756, 0.01420381, 0.04266302 ...], # dtype=float32) ``` # Training procedure ## Pre-training We use the pretrained [nreimers/MiniLM-L6-H384-uncased](https://huggingface.co/nreimers/MiniLM-L6-H384-uncased). Please refer to the model card for more detailed information about the pre-training procedure. ## Fine-tuning We fine-tune the model using a contrastive objective. Formally, we compute the cosine similarity from each possible sentence pairs from the batch. We then apply the cross entropy loss by comparing with true pairs. ### Hyper parameters We trained on model on a TPU v3-8. We train the model during 80k steps using a batch size of 1024 (128 per TPU core). We use a learning rate warm up of 500. The sequence length was limited to 128 tokens. We used the AdamW optimizer with a 2e-5 learning rate. The full training script is accessible in this current repository. ### Training data We used the concatenation from multiple Stackexchange Question-Answer datasets to fine-tune our model. MSMARCO, NQ & other question-answer datasets were also used. | Dataset | Paper | Number of training tuples | |:--------------------------------------------------------:|:----------------------------------------:|:--------------------------:| | [Stack Exchange QA - Title & Answer](https://huggingface.co/datasets/flax-sentence-embeddings/stackexchange_title_best_voted_answer_jsonl) | - | 4,750,619 | | [Stack Exchange](https://huggingface.co/datasets/flax-sentence-embeddings/stackexchange_title_body_jsonl) | - | 364,001 | | [TriviaqQA](https://huggingface.co/datasets/trivia_qa) | - | 73,346 | | [SQuAD2.0](https://rajpurkar.github.io/SQuAD-explorer/) | [paper](https://aclanthology.org/P18-2124.pdf) | 87,599 | | [Quora Question Pairs](https://quoradata.quora.com/First-Quora-Dataset-Release-Question-Pairs) | - | 103,663 | | [Eli5](https://huggingface.co/datasets/eli5) | [paper](https://doi.org/10.18653/v1/p19-1346) | 325,475 | | [PAQ](https://github.com/facebookresearch/PAQ) | [paper](https://arxiv.org/abs/2102.07033) | 64,371,441 | | [WikiAnswers](https://github.com/afader/oqa#wikianswers-corpus) | [paper](https://doi.org/10.1145/2623330.2623677) | 77,427,422 | | [MS MARCO](https://microsoft.github.io/msmarco/) | [paper](https://doi.org/10.1145/3404835.3462804) | 9,144,553 | | [GOOAQ: Open Question Answering with Diverse Answer Types](https://github.com/allenai/gooaq) | [paper](https://arxiv.org/pdf/2104.08727.pdf) | 3,012,496 | | [Yahoo Answers](https://www.kaggle.com/soumikrakshit/yahoo-answers-dataset) Question/Answer | [paper](https://proceedings.neurips.cc/paper/2015/hash/250cf8b51c773f3f8dc8b4be867a9a02-Abstract.html) | 681,164 | | SearchQA | - | 582,261 | | [Natural Questions (NQ)](https://ai.google.com/research/NaturalQuestions) | [paper](https://transacl.org/ojs/index.php/tacl/article/view/1455) | 100,231 |
{"tags": ["sentence-transformers", "feature-extraction", "sentence-similarity"], "pipeline_tag": "sentence-similarity"}
sentence-similarity
flax-sentence-embeddings/multi-qa_v1-MiniLM-L6-cls_dot
[ "sentence-transformers", "pytorch", "bert", "feature-extraction", "sentence-similarity", "arxiv:2102.07033", "arxiv:2104.08727", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[ "2102.07033", "2104.08727" ]
[]
TAGS #sentence-transformers #pytorch #bert #feature-extraction #sentence-similarity #arxiv-2102.07033 #arxiv-2104.08727 #endpoints_compatible #region-us
multi-qa\_v1-MiniLM-L6-cls\_dot =============================== Model Description ----------------- SentenceTransformers is a set of models and frameworks that enable training and generating sentence embeddings from given data. The generated sentence embeddings can be utilized for Clustering, Semantic Search and other tasks. We used a pretrained nreimers/MiniLM-L6-H384-uncased model and trained it using Siamese Network setup and contrastive learning objective. Question and answer pairs from StackExchange was used as training data to make the model robust to Question / Answer embedding similarity. For this model, cls output was used instead of mean pooling as sentence embeddings. Dot product was used to calculate similarity for learning objective. We developed this model during the Community week using JAX/Flax for NLP & CV, organized by Hugging Face. We developed this model as part of the project: Train the Best Sentence Embedding Model Ever with 1B Training Pairs. We benefited from efficient hardware infrastructure to run the project: 7 TPUs v3-8, as well as assistance from Google’s Flax, JAX, and Cloud team members about efficient deep learning frameworks. Intended uses ------------- Our model is intended to be used as a sentence encoder for a search engine. Given an input sentence, it outputs a vector which captures the sentence semantic information. The sentence vector may be used for semantic-search, clustering or sentence similarity tasks. How to use ---------- Here is how to use this model to get the features of a given text using SentenceTransformers library: Training procedure ================== Pre-training ------------ We use the pretrained nreimers/MiniLM-L6-H384-uncased. Please refer to the model card for more detailed information about the pre-training procedure. Fine-tuning ----------- We fine-tune the model using a contrastive objective. Formally, we compute the cosine similarity from each possible sentence pairs from the batch. We then apply the cross entropy loss by comparing with true pairs. ### Hyper parameters We trained on model on a TPU v3-8. We train the model during 80k steps using a batch size of 1024 (128 per TPU core). We use a learning rate warm up of 500. The sequence length was limited to 128 tokens. We used the AdamW optimizer with a 2e-5 learning rate. The full training script is accessible in this current repository. ### Training data We used the concatenation from multiple Stackexchange Question-Answer datasets to fine-tune our model. MSMARCO, NQ & other question-answer datasets were also used.
[ "### Hyper parameters\n\n\nWe trained on model on a TPU v3-8. We train the model during 80k steps using a batch size of 1024 (128 per TPU core).\nWe use a learning rate warm up of 500. The sequence length was limited to 128 tokens. We used the AdamW optimizer with\na 2e-5 learning rate. The full training script is accessible in this current repository.", "### Training data\n\n\nWe used the concatenation from multiple Stackexchange Question-Answer datasets to fine-tune our model. MSMARCO, NQ & other question-answer datasets were also used." ]
[ "TAGS\n#sentence-transformers #pytorch #bert #feature-extraction #sentence-similarity #arxiv-2102.07033 #arxiv-2104.08727 #endpoints_compatible #region-us \n", "### Hyper parameters\n\n\nWe trained on model on a TPU v3-8. We train the model during 80k steps using a batch size of 1024 (128 per TPU core).\nWe use a learning rate warm up of 500. The sequence length was limited to 128 tokens. We used the AdamW optimizer with\na 2e-5 learning rate. The full training script is accessible in this current repository.", "### Training data\n\n\nWe used the concatenation from multiple Stackexchange Question-Answer datasets to fine-tune our model. MSMARCO, NQ & other question-answer datasets were also used." ]
[ 56, 89, 51 ]
[ "passage: TAGS\n#sentence-transformers #pytorch #bert #feature-extraction #sentence-similarity #arxiv-2102.07033 #arxiv-2104.08727 #endpoints_compatible #region-us \n### Hyper parameters\n\n\nWe trained on model on a TPU v3-8. We train the model during 80k steps using a batch size of 1024 (128 per TPU core).\nWe use a learning rate warm up of 500. The sequence length was limited to 128 tokens. We used the AdamW optimizer with\na 2e-5 learning rate. The full training script is accessible in this current repository.### Training data\n\n\nWe used the concatenation from multiple Stackexchange Question-Answer datasets to fine-tune our model. MSMARCO, NQ & other question-answer datasets were also used." ]
[ -0.1025325283408165, -0.012422198429703712, 0.0008506531594321132, 0.08156034350395203, 0.1585550159215927, 0.027510326355695724, 0.056524019688367844, 0.12407992780208588, -0.06923495978116989, 0.005007301922887564, 0.11367449164390564, 0.07859273999929428, 0.0179344043135643, 0.13535939157009125, -0.052977174520492554, -0.23936434090137482, 0.012109233066439629, 0.04827059432864189, 0.011033822782337666, 0.1264495849609375, 0.07862295210361481, -0.09915826469659805, 0.061163805425167084, -0.05589121952652931, -0.16664767265319824, 0.023398226127028465, -0.03792531415820122, -0.040944550186395645, 0.15820252895355225, 0.04368031024932861, 0.09345623850822449, 0.020239494740962982, 0.03198389708995819, -0.09825906902551651, 0.042822182178497314, 0.034894660115242004, 0.019585011526942253, 0.07181216776371002, 0.0031724616419523954, 0.0416419543325901, 0.14259235560894012, -0.050823986530303955, 0.00406812084838748, 0.03511873632669449, -0.08501287549734116, -0.02711944468319416, -0.0011990603525191545, -0.010397542268037796, 0.11707586795091629, 0.10359097272157669, -0.02195284515619278, 0.18006308376789093, -0.11794543266296387, 0.10117747634649277, 0.0971333310008049, -0.323498010635376, -0.05354468151926994, 0.12807196378707886, 0.09546417742967606, 0.11737655103206635, -0.06121307611465454, -0.0048109921626746655, 0.05028339475393295, 0.0595998652279377, 0.04664526507258415, -0.03324354439973831, -0.13719332218170166, 0.04553097486495972, -0.1327867954969406, 0.014463298954069614, 0.17730869352817535, 0.02571682445704937, -0.03484075516462326, -0.03806834667921066, -0.0738712027668953, -0.024087129160761833, -0.026421746239066124, -0.02027043327689171, -0.02461669221520424, 0.016988081857562065, -0.13921640813350677, -0.0027301001828163862, -0.10644364356994629, -0.10116684436798096, -0.06623734533786774, 0.08573280274868011, 0.03923528641462326, 0.05406952276825905, -0.08868668973445892, 0.08072644472122192, -0.08002914488315582, -0.058604881167411804, 0.01850222609937191, -0.052963994443416595, -0.09040821343660355, -0.014637261629104614, -0.1145276129245758, -0.13864757120609283, 0.050436101853847504, -0.015395784750580788, 0.03519716113805771, 0.02158176153898239, 0.09616807848215103, 0.03439071774482727, 0.01136111281812191, 0.16592982411384583, -0.06057087332010269, -0.09445612877607346, -0.005319187417626381, 0.0071982708759605885, -0.06601110100746155, -0.01606524921953678, -0.13029897212982178, -0.04272283613681793, 0.10756853967905045, 0.02801543101668358, -0.07520026713609695, 0.08838766068220139, 0.019458748400211334, -0.04105878621339798, 0.04084973782300949, -0.07073140144348145, -0.05798804387450218, -0.0024039801210165024, -0.07505514472723007, 0.11374831944704056, -0.05120548605918884, -0.04719342291355133, -0.10330852121114731, 0.021548520773649216, -0.1001826748251915, -0.032851822674274445, -0.1002466231584549, -0.1547936648130417, 0.013347146101295948, -0.11248550564050674, 0.003584478981792927, -0.14572346210479736, -0.0964471623301506, -0.02187541499733925, 0.027718400582671165, -0.026080932468175888, -0.02841019816696644, -0.11405562609434128, -0.010199821554124355, 0.003234733594581485, -0.025060804560780525, 0.1397312730550766, -0.055420104414224625, 0.07735072821378708, -0.014200754463672638, 0.08319445699453354, -0.045114170759916306, 0.02802109904587269, -0.08247613161802292, -0.04251902922987938, 0.00026053879992105067, 0.03644916042685509, 0.07365702092647552, 0.08925976604223251, -0.092499278485775, -0.10908645391464233, -0.08734365552663803, 0.001345780910924077, 0.053066518157720566, 0.08470696955919266, -0.22409875690937042, -0.014912835322320461, 0.11822455376386642, -0.02396984025835991, -0.13481289148330688, 0.1894175261259079, -0.03629138693213463, 0.017634952440857887, 0.10340455919504166, 0.1267971694469452, 0.019614018499851227, -0.06582063436508179, 0.03994984179735184, 0.07625996321439743, -0.05873887985944748, -0.15620291233062744, 0.07376178354024887, 0.07316962629556656, -0.010147441178560257, 0.03254307806491852, 0.03053475171327591, 0.0683697983622551, -0.10131917148828506, -0.02799333445727825, -0.028305938467383385, -0.09492753446102142, -0.05254986882209778, 0.03774231672286987, 0.04461979120969772, -0.10631383955478668, -0.0784309133887291, -0.0008974469383247197, 0.12246556580066681, -0.10917797684669495, 0.03169349581003189, -0.10609981417655945, 0.050706762820482254, -0.0442536398768425, 0.012758451513946056, -0.15052054822444916, -0.03734253719449043, 0.01704169251024723, 0.12385114282369614, 0.005377344321459532, 0.16459105908870697, 0.042873963713645935, 0.015771225094795227, -0.02133258245885372, 0.039842844009399414, 0.0401410274207592, -0.022239618003368378, -0.13769519329071045, -0.047645166516304016, -0.055611319839954376, -0.04984285682439804, 0.036240577697753906, -0.0947287455201149, -0.0323965884745121, -0.04388654977083206, -0.029181821271777153, -0.04419499263167381, 0.009986490942537785, 0.0067153433337807655, 0.04971731826663017, -0.022059576585888863, -0.04296040162444115, 0.12577445805072784, 0.0357762910425663, -0.08556938171386719, 0.04886915162205696, -0.1566566526889801, -0.019911600276827812, 0.09479717910289764, -0.0713503435254097, -0.013874104246497154, -0.060043368488550186, -0.039499666541814804, -0.026459306478500366, -0.03971713036298752, 0.013104911893606186, 0.20383693277835846, 0.030396385118365288, 0.15206922590732574, -0.1042860597372055, -0.011438293382525444, -0.023298164829611778, 0.0037124857772141695, 0.05196629837155342, 0.09524829685688019, -0.018406102433800697, -0.16790713369846344, 0.018616553395986557, 0.008163494989275932, -0.06797704100608826, 0.13762646913528442, -0.007332960143685341, -0.1005854606628418, 0.030258798971772194, 0.006868596188724041, -0.029195545241236687, 0.032709479331970215, -0.13421572744846344, -0.04842865467071533, 0.049475960433483124, 0.025823960080742836, 0.057858165353536606, -0.1408386379480362, -0.003290770575404167, -0.007499496918171644, -0.03253152593970299, -0.04233173280954361, 0.01483827643096447, -0.02919894829392433, 0.09025922417640686, 0.04629868268966675, -0.12655839323997498, 0.004564749076962471, -0.028523879125714302, -0.07334760576486588, 0.20054017007350922, -0.03154797479510307, -0.19880449771881104, -0.07327952235937119, -0.010680620558559895, 0.0033822422847151756, 0.010921803303062916, 0.041250307112932205, -0.08806885033845901, -0.04002595692873001, -0.04991096258163452, -0.03204742819070816, -0.029221510514616966, 0.015959449112415314, -0.044297028332948685, 0.027846377342939377, -0.02478894218802452, -0.13013948500156403, 0.0013945987448096275, -0.09638515114784241, -0.09705012291669846, 0.0770481675863266, -0.14656962454319, 0.06799154728651047, 0.2271125316619873, -0.04705880954861641, 0.05008678510785103, -0.04928840324282646, 0.15347634255886078, -0.017268210649490356, 0.008433624170720577, 0.17611339688301086, 0.007730172015726566, 0.007734935265034437, 0.008132072165608406, 0.002508192090317607, -0.06828512996435165, 0.0954630970954895, -0.009122882969677448, -0.07646514475345612, -0.2206066995859146, -0.07562074065208435, -0.08354491740465164, 0.01647733896970749, 0.08034837245941162, 0.03791870176792145, -0.035731587558984756, 0.07219962775707245, 0.011456556618213654, -0.009057843126356602, -0.02566809393465519, 0.05863426998257637, 0.05125735327601433, 0.04521157965064049, 0.13740213215351105, -0.03457598760724068, -0.0579310767352581, 0.05063801631331444, 0.01798359677195549, 0.1890675574541092, -0.028145799413323402, 0.104793980717659, 0.006708601024001837, 0.07876432687044144, 0.05192587152123451, 0.13771145045757294, -0.06380704045295715, -0.04735247790813446, -0.07648751139640808, -0.021792160347104073, -0.051752056926488876, 0.0436830073595047, 0.014060192741453648, -0.02585594914853573, -0.09153135865926743, 0.06300359964370728, 0.05922646075487137, 0.21270418167114258, 0.1218130886554718, -0.2754693627357483, -0.11375484615564346, -0.03182565048336983, -0.05675268545746803, -0.04804394021630287, 0.09534730017185211, 0.16346634924411774, -0.05018509924411774, -0.09407270699739456, -0.028762033209204674, 0.15836109220981598, 0.004061214160174131, 0.046925392001867294, -0.013862328603863716, 0.10065614432096481, -0.033318448811769485, 0.13420897722244263, -0.26172372698783875, 0.17898240685462952, 0.006704077590256929, 0.08189426362514496, -0.07920491695404053, -0.05566146597266197, 0.010479127056896687, 0.009508414193987846, 0.05374811589717865, -0.0016742527950555086, -0.04168614372611046, -0.05662113055586815, -0.0776718258857727, 0.08099986612796783, 0.0726328194141388, 0.0974743589758873, 0.09406725317239761, -0.05126539245247841, 0.013026167638599873, 0.0390777587890625, 0.11263908445835114, 0.030491894111037254, -0.053456082940101624, -0.03588586300611496, 0.06881190836429596, -0.039863601326942444, -0.009376956149935722, -0.05999179929494858, -0.04688084498047829, 0.1610928326845169, 0.06400135159492493, -0.05504736676812172, -0.1050724908709526, 0.08116424828767776, 0.10517273098230362, -0.06077073886990547, -0.007424616254866123, 0.04545120149850845, 0.0670987069606781, 0.014194460585713387, -0.07722856104373932, 0.09158866107463837, -0.08721298724412918, -0.04903309792280197, -0.01605192758142948, 0.08535733819007874, 0.005381710361689329, 0.06108073517680168, 0.014483250677585602, -0.02079550363123417, -0.10686834156513214, -0.06569350510835648, -0.05575156211853027, -0.08057975023984909, 0.12287425249814987, 0.024175608530640602, -0.09454365074634552, 0.09599357843399048, -0.08594711124897003, 0.006375544238835573, 0.18534478545188904, 0.07839523255825043, -0.05284528061747551, -0.01270306296646595, 0.17565569281578064, -0.014287035912275314, -0.20786580443382263, -0.0516456663608551, 0.02109859697520733, 0.03423231840133667, -0.06373265385627747, -0.0849502757191658, 0.0758742168545723, 0.0726194828748703, 0.0312445480376482, -0.03573254868388176, -0.2990763783454895, -0.09221266955137253, 0.1366778016090393, 0.07588598877191544, 0.3690341114997864, -0.10782590508460999, 0.05829606577754021, -0.03855663165450096, -0.09728053212165833, 0.11668943613767624, -0.06516087800264359, 0.1496715098619461, -0.04077950119972229, 0.058565519750118256, 0.038228970021009445, -0.05995919927954674, 0.02528197318315506, 0.07038063555955887, 0.061503492295742035, -0.020929912105202675, -0.010198797099292278, -0.019642576575279236, -0.042149126529693604, 0.10689324885606766, -0.09918764233589172, 0.0732959657907486, -0.09029561281204224, -0.0602804534137249, -0.05173540860414505, -0.027904793620109558, 0.06692440062761307, -0.06777624785900116, -0.04335535690188408, 0.045063719153404236, 0.03259707987308502, 0.023855624720454216, 0.0709603950381279, -0.051995668560266495, 0.07344404608011246, 0.07495643198490143, 0.127950981259346, -0.18379323184490204, -0.030469132587313652, 0.007538655307143927, 0.0043555875308811665, 0.07115234434604645, -0.12169935554265976, 0.03393097594380379, 0.1301635503768921, -0.006194825749844313, 0.11255817115306854, 0.0995502918958664, -0.00047735279076732695, -0.02332516759634018, 0.05128555744886398, -0.11655395478010178, -0.0251618605107069, -0.03500685840845108, -0.06610824167728424, -0.06695538759231567, 0.011836202815175056, 0.0824529156088829, -0.05975549668073654, -0.0038866859395056963, -0.008787285536527634, 0.004563287366181612, -0.04764673486351967, 0.21757827699184418, 0.08391229063272476, 0.05188755691051483, -0.09895254671573639, 0.06896241009235382, 0.03910325467586517, -0.072983518242836, 0.02179853431880474, 0.10000927746295929, -0.12010503560304642, -0.05608995631337166, 0.06357882916927338, 0.06023861840367317, -0.08962640911340714, -0.06405486166477203, -0.10446298122406006, -0.041662923991680145, 0.048717714846134186, 0.10986882448196411, 0.08678979426622391, 0.06250057369470596, -0.09727142751216888, -0.022712983191013336, -0.15599031746387482, 0.060548048466444016, 0.04052228480577469, 0.016225816681981087, -0.04393075779080391, 0.19795134663581848, -0.008800574578344822, 0.09871819615364075, -0.06024537980556488, -0.036540351808071136, -0.08846594393253326, 0.05702882632613182, -0.13155248761177063, -0.014684129506349564, -0.005988914053887129, -0.015961505472660065, -0.030143890529870987, -0.02059926651418209, -0.051233693957328796, 0.004315853584557772, -0.06720203906297684, 0.021293897181749344, 0.006708870641887188, 0.004643077030777931, -0.01838156022131443, -0.04677419736981392, 0.007247509900480509, -0.03158056363463402, 0.06635347008705139, 0.07680849730968475, -0.07669179886579514, 0.08714835345745087, -0.11204133927822113, -0.042542964220047, 0.031230013817548752, 0.07590700685977936, 0.05509785935282707, -0.028968611732125282, 0.04193877801299095, 0.047768354415893555, 0.06128572300076485, 0.019823649898171425, 0.05260920897126198, -0.06618180125951767, -0.027636129409074783, -0.08074462413787842, -0.06081352010369301, -0.07755379378795624, -0.02657458558678627, 0.033374983817338943, 0.14998240768909454, 0.12534654140472412, -0.06914770603179932, 0.022559382021427155, -0.14727529883384705, 0.0010057581821456552, 0.011251520365476608, -0.09794409573078156, -0.05895546078681946, -0.07557851821184158, 0.07761610299348831, -0.025258496403694153, 0.11822746694087982, -0.0018783558625727892, 0.028873542323708534, -0.0006406675674952567, 0.00773954950273037, 0.03192661702632904, -0.06961999088525772, 0.24613609910011292, 0.05350759997963905, -0.01578592322766781, -0.0062710074707865715, 0.08263173699378967, 0.06703311949968338, 0.15219958126544952, 0.20141248404979706, 0.08896227926015854, 0.06796283274888992, 0.15166398882865906, -0.026460222899913788, 0.01503983698785305, -0.0090641425922513, -0.01052957121282816, -0.04416101053357124, 0.040430355817079544, -0.03421316295862198, 0.17227667570114136, 0.17907072603702545, -0.1004844456911087, 0.029700979590415955, -0.0548892468214035, -0.09826570004224777, -0.1303100436925888, -0.02449970319867134, -0.09091637283563614, -0.13210934400558472, -0.0038857010658830404, -0.14497654139995575, -0.009949096478521824, 0.1561022847890854, 0.04415024816989899, -0.033941883593797684, 0.0860501229763031, 0.000926127249840647, -0.033141639083623886, 0.08075837045907974, -0.04312100633978844, 0.057804521173238754, 0.009180237539112568, -0.018226778134703636, 0.04438680782914162, -0.05283388867974281, 0.07275033742189407, -0.033939216285943985, 0.06877609342336655, 0.02722807787358761, -0.05056491494178772, -0.08121579885482788, -0.057357288897037506, 0.030816178768873215, 0.030300617218017578, 0.11773019284009933, 0.049975473433732986, -0.027609338983893394, 0.008833407424390316, 0.20416465401649475, -0.048853401094675064, -0.13648788630962372, -0.1007191464304924, 0.27683109045028687, 0.07429856806993484, -0.002563862595707178, 0.03897732123732567, -0.024204084649682045, -0.03555794432759285, 0.2525160312652588, 0.14569802582263947, -0.13134631514549255, -0.03551098704338074, 0.020108163356781006, 0.009763524867594242, -0.019068073481321335, 0.18840879201889038, 0.09977806359529495, 0.1302630454301834, -0.047982990741729736, -0.014605586417019367, -0.04098960757255554, 0.005725317168980837, -0.04076079651713371, 0.030562536790966988, 0.05886617675423622, -0.021441156044602394, -0.030307643115520477, 0.07274794578552246, -0.04577967897057533, -0.014938535168766975, -0.07044965773820877, -0.06977251917123795, -0.11896146088838577, -0.016219425946474075, 0.008551311679184437, 0.028484078124165535, 0.13866814970970154, -0.08081680536270142, 0.07835282385349274, -0.007802931591868401, -0.020282786339521408, -0.10269737243652344, -0.08449342846870422, 0.12310221791267395, -0.04995213821530342, 0.024113839492201805, -0.014848420396447182, 0.10772427916526794, 0.09015310555696487, 0.029313983395695686, -0.07042261958122253, 0.13126829266548157, -0.022709587588906288, -0.041994836181402206, 0.09083268791437149, 0.048302434384822845, -0.056863296777009964, -0.007391872350126505, 0.0392892062664032, -0.10110259801149368, -0.015061113983392715, -0.06270615011453629, 0.028780266642570496, -0.0921841412782669, 0.010523478500545025, -0.03564329817891121, 0.14310143887996674, 0.1663898527622223, -0.030961906537413597, -0.010836045257747173, -0.06963646411895752, 0.010107138194143772, 0.005409847013652325, -0.006708573084324598, -0.0838710144162178, -0.16441233456134796, -0.03286350518465042, -0.05529414862394333, -0.047682758420705795, -0.22757749259471893, 0.004434681031852961, -0.08095734566450119, -0.05641430243849754, -0.06604748219251633, 0.10469131916761398, 0.04531678557395935, 0.01978829689323902, -0.04940664768218994, 0.00834920909255743, -0.012289962731301785, 0.07903492450714111, -0.2038092464208603, -0.15009474754333496 ]
null
null
sentence-transformers
# multi-qa_v1-MiniLM-L6-mean_cos ## Model Description SentenceTransformers is a set of models and frameworks that enable training and generating sentence embeddings from given data. The generated sentence embeddings can be utilized for Clustering, Semantic Search and other tasks. We used a pretrained [nreimers/MiniLM-L6-H384-uncased](https://huggingface.co/nreimers/MiniLM-L6-H384-uncased) model and trained it using Siamese Network setup and contrastive learning objective. Question and answer pairs from StackExchange was used as training data to make the model robust to Question / Answer embedding similarity. For this model, mean pooling of the hidden states were used as sentence embeddings. We developed this model during the [Community week using JAX/Flax for NLP & CV](https://discuss.huggingface.co/t/open-to-the-community-community-week-using-jax-flax-for-nlp-cv/7104), organized by Hugging Face. We developed this model as part of the project: [Train the Best Sentence Embedding Model Ever with 1B Training Pairs](https://discuss.huggingface.co/t/train-the-best-sentence-embedding-model-ever-with-1b-training-pairs/7354). We benefited from efficient hardware infrastructure to run the project: 7 TPUs v3-8, as well as assistance from Google’s Flax, JAX, and Cloud team members about efficient deep learning frameworks. ## Intended uses Our model is intended to be used as a sentence encoder for a search engine. Given an input sentence, it outputs a vector which captures the sentence semantic information. The sentence vector may be used for semantic-search, clustering or sentence similarity tasks. ## How to use Here is how to use this model to get the features of a given text using [SentenceTransformers](https://github.com/UKPLab/sentence-transformers) library: ```python from sentence_transformers import SentenceTransformer model = SentenceTransformer('flax-sentence-embeddings/multi-qa_v1-MiniLM-L6-mean_cos') text = "Replace me by any question / answer you'd like." text_embbedding = model.encode(text) # array([-0.01559514, 0.04046123, 0.1317083 , 0.00085931, 0.04585106, # -0.05607086, 0.0138078 , 0.03569756, 0.01420381, 0.04266302 ...], # dtype=float32) ``` # Training procedure ## Pre-training We use the pretrained [nreimers/MiniLM-L6-H384-uncased](https://huggingface.co/nreimers/MiniLM-L6-H384-uncased). Please refer to the model card for more detailed information about the pre-training procedure. ## Fine-tuning We fine-tune the model using a contrastive objective. Formally, we compute the cosine similarity from each possible sentence pairs from the batch. We then apply the cross entropy loss by comparing with true pairs. ### Hyper parameters We trained on model on a TPU v3-8. We train the model during 80k steps using a batch size of 1024 (128 per TPU core). We use a learning rate warm up of 500. The sequence length was limited to 128 tokens. We used the AdamW optimizer with a 2e-5 learning rate. The full training script is accessible in this current repository. ### Training data We used the concatenation from multiple Stackexchange Question-Answer datasets to fine-tune our model. MSMARCO, NQ & other question-answer datasets were also used. | Dataset | Paper | Number of training tuples | |:--------------------------------------------------------:|:----------------------------------------:|:--------------------------:| | [Stack Exchange QA - Title & Answer](https://huggingface.co/datasets/flax-sentence-embeddings/stackexchange_title_best_voted_answer_jsonl) | - | 4,750,619 | | [Stack Exchange](https://huggingface.co/datasets/flax-sentence-embeddings/stackexchange_title_body_jsonl) | - | 364,001 | | [TriviaqQA](https://huggingface.co/datasets/trivia_qa) | - | 73,346 | | [SQuAD2.0](https://rajpurkar.github.io/SQuAD-explorer/) | [paper](https://aclanthology.org/P18-2124.pdf) | 87,599 | | [Quora Question Pairs](https://quoradata.quora.com/First-Quora-Dataset-Release-Question-Pairs) | - | 103,663 | | [Eli5](https://huggingface.co/datasets/eli5) | [paper](https://doi.org/10.18653/v1/p19-1346) | 325,475 | | [PAQ](https://github.com/facebookresearch/PAQ) | [paper](https://arxiv.org/abs/2102.07033) | 64,371,441 | | [WikiAnswers](https://github.com/afader/oqa#wikianswers-corpus) | [paper](https://doi.org/10.1145/2623330.2623677) | 77,427,422 | | [MS MARCO](https://microsoft.github.io/msmarco/) | [paper](https://doi.org/10.1145/3404835.3462804) | 9,144,553 | | [GOOAQ: Open Question Answering with Diverse Answer Types](https://github.com/allenai/gooaq) | [paper](https://arxiv.org/pdf/2104.08727.pdf) | 3,012,496 | | [Yahoo Answers](https://www.kaggle.com/soumikrakshit/yahoo-answers-dataset) Question/Answer | [paper](https://proceedings.neurips.cc/paper/2015/hash/250cf8b51c773f3f8dc8b4be867a9a02-Abstract.html) | 681,164 | | SearchQA | - | 582,261 | | [Natural Questions (NQ)](https://ai.google.com/research/NaturalQuestions) | [paper](https://transacl.org/ojs/index.php/tacl/article/view/1455) | 100,231 |
{"tags": ["sentence-transformers", "feature-extraction", "sentence-similarity"], "pipeline_tag": "sentence-similarity"}
sentence-similarity
flax-sentence-embeddings/multi-qa_v1-MiniLM-L6-mean_cos
[ "sentence-transformers", "pytorch", "bert", "feature-extraction", "sentence-similarity", "arxiv:2102.07033", "arxiv:2104.08727", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[ "2102.07033", "2104.08727" ]
[]
TAGS #sentence-transformers #pytorch #bert #feature-extraction #sentence-similarity #arxiv-2102.07033 #arxiv-2104.08727 #endpoints_compatible #region-us
multi-qa\_v1-MiniLM-L6-mean\_cos ================================ Model Description ----------------- SentenceTransformers is a set of models and frameworks that enable training and generating sentence embeddings from given data. The generated sentence embeddings can be utilized for Clustering, Semantic Search and other tasks. We used a pretrained nreimers/MiniLM-L6-H384-uncased model and trained it using Siamese Network setup and contrastive learning objective. Question and answer pairs from StackExchange was used as training data to make the model robust to Question / Answer embedding similarity. For this model, mean pooling of the hidden states were used as sentence embeddings. We developed this model during the Community week using JAX/Flax for NLP & CV, organized by Hugging Face. We developed this model as part of the project: Train the Best Sentence Embedding Model Ever with 1B Training Pairs. We benefited from efficient hardware infrastructure to run the project: 7 TPUs v3-8, as well as assistance from Google’s Flax, JAX, and Cloud team members about efficient deep learning frameworks. Intended uses ------------- Our model is intended to be used as a sentence encoder for a search engine. Given an input sentence, it outputs a vector which captures the sentence semantic information. The sentence vector may be used for semantic-search, clustering or sentence similarity tasks. How to use ---------- Here is how to use this model to get the features of a given text using SentenceTransformers library: Training procedure ================== Pre-training ------------ We use the pretrained nreimers/MiniLM-L6-H384-uncased. Please refer to the model card for more detailed information about the pre-training procedure. Fine-tuning ----------- We fine-tune the model using a contrastive objective. Formally, we compute the cosine similarity from each possible sentence pairs from the batch. We then apply the cross entropy loss by comparing with true pairs. ### Hyper parameters We trained on model on a TPU v3-8. We train the model during 80k steps using a batch size of 1024 (128 per TPU core). We use a learning rate warm up of 500. The sequence length was limited to 128 tokens. We used the AdamW optimizer with a 2e-5 learning rate. The full training script is accessible in this current repository. ### Training data We used the concatenation from multiple Stackexchange Question-Answer datasets to fine-tune our model. MSMARCO, NQ & other question-answer datasets were also used.
[ "### Hyper parameters\n\n\nWe trained on model on a TPU v3-8. We train the model during 80k steps using a batch size of 1024 (128 per TPU core).\nWe use a learning rate warm up of 500. The sequence length was limited to 128 tokens. We used the AdamW optimizer with\na 2e-5 learning rate. The full training script is accessible in this current repository.", "### Training data\n\n\nWe used the concatenation from multiple Stackexchange Question-Answer datasets to fine-tune our model. MSMARCO, NQ & other question-answer datasets were also used." ]
[ "TAGS\n#sentence-transformers #pytorch #bert #feature-extraction #sentence-similarity #arxiv-2102.07033 #arxiv-2104.08727 #endpoints_compatible #region-us \n", "### Hyper parameters\n\n\nWe trained on model on a TPU v3-8. We train the model during 80k steps using a batch size of 1024 (128 per TPU core).\nWe use a learning rate warm up of 500. The sequence length was limited to 128 tokens. We used the AdamW optimizer with\na 2e-5 learning rate. The full training script is accessible in this current repository.", "### Training data\n\n\nWe used the concatenation from multiple Stackexchange Question-Answer datasets to fine-tune our model. MSMARCO, NQ & other question-answer datasets were also used." ]
[ 56, 89, 51 ]
[ "passage: TAGS\n#sentence-transformers #pytorch #bert #feature-extraction #sentence-similarity #arxiv-2102.07033 #arxiv-2104.08727 #endpoints_compatible #region-us \n### Hyper parameters\n\n\nWe trained on model on a TPU v3-8. We train the model during 80k steps using a batch size of 1024 (128 per TPU core).\nWe use a learning rate warm up of 500. The sequence length was limited to 128 tokens. We used the AdamW optimizer with\na 2e-5 learning rate. The full training script is accessible in this current repository.### Training data\n\n\nWe used the concatenation from multiple Stackexchange Question-Answer datasets to fine-tune our model. MSMARCO, NQ & other question-answer datasets were also used." ]
[ -0.1025325283408165, -0.012422198429703712, 0.0008506531594321132, 0.08156034350395203, 0.1585550159215927, 0.027510326355695724, 0.056524019688367844, 0.12407992780208588, -0.06923495978116989, 0.005007301922887564, 0.11367449164390564, 0.07859273999929428, 0.0179344043135643, 0.13535939157009125, -0.052977174520492554, -0.23936434090137482, 0.012109233066439629, 0.04827059432864189, 0.011033822782337666, 0.1264495849609375, 0.07862295210361481, -0.09915826469659805, 0.061163805425167084, -0.05589121952652931, -0.16664767265319824, 0.023398226127028465, -0.03792531415820122, -0.040944550186395645, 0.15820252895355225, 0.04368031024932861, 0.09345623850822449, 0.020239494740962982, 0.03198389708995819, -0.09825906902551651, 0.042822182178497314, 0.034894660115242004, 0.019585011526942253, 0.07181216776371002, 0.0031724616419523954, 0.0416419543325901, 0.14259235560894012, -0.050823986530303955, 0.00406812084838748, 0.03511873632669449, -0.08501287549734116, -0.02711944468319416, -0.0011990603525191545, -0.010397542268037796, 0.11707586795091629, 0.10359097272157669, -0.02195284515619278, 0.18006308376789093, -0.11794543266296387, 0.10117747634649277, 0.0971333310008049, -0.323498010635376, -0.05354468151926994, 0.12807196378707886, 0.09546417742967606, 0.11737655103206635, -0.06121307611465454, -0.0048109921626746655, 0.05028339475393295, 0.0595998652279377, 0.04664526507258415, -0.03324354439973831, -0.13719332218170166, 0.04553097486495972, -0.1327867954969406, 0.014463298954069614, 0.17730869352817535, 0.02571682445704937, -0.03484075516462326, -0.03806834667921066, -0.0738712027668953, -0.024087129160761833, -0.026421746239066124, -0.02027043327689171, -0.02461669221520424, 0.016988081857562065, -0.13921640813350677, -0.0027301001828163862, -0.10644364356994629, -0.10116684436798096, -0.06623734533786774, 0.08573280274868011, 0.03923528641462326, 0.05406952276825905, -0.08868668973445892, 0.08072644472122192, -0.08002914488315582, -0.058604881167411804, 0.01850222609937191, -0.052963994443416595, -0.09040821343660355, -0.014637261629104614, -0.1145276129245758, -0.13864757120609283, 0.050436101853847504, -0.015395784750580788, 0.03519716113805771, 0.02158176153898239, 0.09616807848215103, 0.03439071774482727, 0.01136111281812191, 0.16592982411384583, -0.06057087332010269, -0.09445612877607346, -0.005319187417626381, 0.0071982708759605885, -0.06601110100746155, -0.01606524921953678, -0.13029897212982178, -0.04272283613681793, 0.10756853967905045, 0.02801543101668358, -0.07520026713609695, 0.08838766068220139, 0.019458748400211334, -0.04105878621339798, 0.04084973782300949, -0.07073140144348145, -0.05798804387450218, -0.0024039801210165024, -0.07505514472723007, 0.11374831944704056, -0.05120548605918884, -0.04719342291355133, -0.10330852121114731, 0.021548520773649216, -0.1001826748251915, -0.032851822674274445, -0.1002466231584549, -0.1547936648130417, 0.013347146101295948, -0.11248550564050674, 0.003584478981792927, -0.14572346210479736, -0.0964471623301506, -0.02187541499733925, 0.027718400582671165, -0.026080932468175888, -0.02841019816696644, -0.11405562609434128, -0.010199821554124355, 0.003234733594581485, -0.025060804560780525, 0.1397312730550766, -0.055420104414224625, 0.07735072821378708, -0.014200754463672638, 0.08319445699453354, -0.045114170759916306, 0.02802109904587269, -0.08247613161802292, -0.04251902922987938, 0.00026053879992105067, 0.03644916042685509, 0.07365702092647552, 0.08925976604223251, -0.092499278485775, -0.10908645391464233, -0.08734365552663803, 0.001345780910924077, 0.053066518157720566, 0.08470696955919266, -0.22409875690937042, -0.014912835322320461, 0.11822455376386642, -0.02396984025835991, -0.13481289148330688, 0.1894175261259079, -0.03629138693213463, 0.017634952440857887, 0.10340455919504166, 0.1267971694469452, 0.019614018499851227, -0.06582063436508179, 0.03994984179735184, 0.07625996321439743, -0.05873887985944748, -0.15620291233062744, 0.07376178354024887, 0.07316962629556656, -0.010147441178560257, 0.03254307806491852, 0.03053475171327591, 0.0683697983622551, -0.10131917148828506, -0.02799333445727825, -0.028305938467383385, -0.09492753446102142, -0.05254986882209778, 0.03774231672286987, 0.04461979120969772, -0.10631383955478668, -0.0784309133887291, -0.0008974469383247197, 0.12246556580066681, -0.10917797684669495, 0.03169349581003189, -0.10609981417655945, 0.050706762820482254, -0.0442536398768425, 0.012758451513946056, -0.15052054822444916, -0.03734253719449043, 0.01704169251024723, 0.12385114282369614, 0.005377344321459532, 0.16459105908870697, 0.042873963713645935, 0.015771225094795227, -0.02133258245885372, 0.039842844009399414, 0.0401410274207592, -0.022239618003368378, -0.13769519329071045, -0.047645166516304016, -0.055611319839954376, -0.04984285682439804, 0.036240577697753906, -0.0947287455201149, -0.0323965884745121, -0.04388654977083206, -0.029181821271777153, -0.04419499263167381, 0.009986490942537785, 0.0067153433337807655, 0.04971731826663017, -0.022059576585888863, -0.04296040162444115, 0.12577445805072784, 0.0357762910425663, -0.08556938171386719, 0.04886915162205696, -0.1566566526889801, -0.019911600276827812, 0.09479717910289764, -0.0713503435254097, -0.013874104246497154, -0.060043368488550186, -0.039499666541814804, -0.026459306478500366, -0.03971713036298752, 0.013104911893606186, 0.20383693277835846, 0.030396385118365288, 0.15206922590732574, -0.1042860597372055, -0.011438293382525444, -0.023298164829611778, 0.0037124857772141695, 0.05196629837155342, 0.09524829685688019, -0.018406102433800697, -0.16790713369846344, 0.018616553395986557, 0.008163494989275932, -0.06797704100608826, 0.13762646913528442, -0.007332960143685341, -0.1005854606628418, 0.030258798971772194, 0.006868596188724041, -0.029195545241236687, 0.032709479331970215, -0.13421572744846344, -0.04842865467071533, 0.049475960433483124, 0.025823960080742836, 0.057858165353536606, -0.1408386379480362, -0.003290770575404167, -0.007499496918171644, -0.03253152593970299, -0.04233173280954361, 0.01483827643096447, -0.02919894829392433, 0.09025922417640686, 0.04629868268966675, -0.12655839323997498, 0.004564749076962471, -0.028523879125714302, -0.07334760576486588, 0.20054017007350922, -0.03154797479510307, -0.19880449771881104, -0.07327952235937119, -0.010680620558559895, 0.0033822422847151756, 0.010921803303062916, 0.041250307112932205, -0.08806885033845901, -0.04002595692873001, -0.04991096258163452, -0.03204742819070816, -0.029221510514616966, 0.015959449112415314, -0.044297028332948685, 0.027846377342939377, -0.02478894218802452, -0.13013948500156403, 0.0013945987448096275, -0.09638515114784241, -0.09705012291669846, 0.0770481675863266, -0.14656962454319, 0.06799154728651047, 0.2271125316619873, -0.04705880954861641, 0.05008678510785103, -0.04928840324282646, 0.15347634255886078, -0.017268210649490356, 0.008433624170720577, 0.17611339688301086, 0.007730172015726566, 0.007734935265034437, 0.008132072165608406, 0.002508192090317607, -0.06828512996435165, 0.0954630970954895, -0.009122882969677448, -0.07646514475345612, -0.2206066995859146, -0.07562074065208435, -0.08354491740465164, 0.01647733896970749, 0.08034837245941162, 0.03791870176792145, -0.035731587558984756, 0.07219962775707245, 0.011456556618213654, -0.009057843126356602, -0.02566809393465519, 0.05863426998257637, 0.05125735327601433, 0.04521157965064049, 0.13740213215351105, -0.03457598760724068, -0.0579310767352581, 0.05063801631331444, 0.01798359677195549, 0.1890675574541092, -0.028145799413323402, 0.104793980717659, 0.006708601024001837, 0.07876432687044144, 0.05192587152123451, 0.13771145045757294, -0.06380704045295715, -0.04735247790813446, -0.07648751139640808, -0.021792160347104073, -0.051752056926488876, 0.0436830073595047, 0.014060192741453648, -0.02585594914853573, -0.09153135865926743, 0.06300359964370728, 0.05922646075487137, 0.21270418167114258, 0.1218130886554718, -0.2754693627357483, -0.11375484615564346, -0.03182565048336983, -0.05675268545746803, -0.04804394021630287, 0.09534730017185211, 0.16346634924411774, -0.05018509924411774, -0.09407270699739456, -0.028762033209204674, 0.15836109220981598, 0.004061214160174131, 0.046925392001867294, -0.013862328603863716, 0.10065614432096481, -0.033318448811769485, 0.13420897722244263, -0.26172372698783875, 0.17898240685462952, 0.006704077590256929, 0.08189426362514496, -0.07920491695404053, -0.05566146597266197, 0.010479127056896687, 0.009508414193987846, 0.05374811589717865, -0.0016742527950555086, -0.04168614372611046, -0.05662113055586815, -0.0776718258857727, 0.08099986612796783, 0.0726328194141388, 0.0974743589758873, 0.09406725317239761, -0.05126539245247841, 0.013026167638599873, 0.0390777587890625, 0.11263908445835114, 0.030491894111037254, -0.053456082940101624, -0.03588586300611496, 0.06881190836429596, -0.039863601326942444, -0.009376956149935722, -0.05999179929494858, -0.04688084498047829, 0.1610928326845169, 0.06400135159492493, -0.05504736676812172, -0.1050724908709526, 0.08116424828767776, 0.10517273098230362, -0.06077073886990547, -0.007424616254866123, 0.04545120149850845, 0.0670987069606781, 0.014194460585713387, -0.07722856104373932, 0.09158866107463837, -0.08721298724412918, -0.04903309792280197, -0.01605192758142948, 0.08535733819007874, 0.005381710361689329, 0.06108073517680168, 0.014483250677585602, -0.02079550363123417, -0.10686834156513214, -0.06569350510835648, -0.05575156211853027, -0.08057975023984909, 0.12287425249814987, 0.024175608530640602, -0.09454365074634552, 0.09599357843399048, -0.08594711124897003, 0.006375544238835573, 0.18534478545188904, 0.07839523255825043, -0.05284528061747551, -0.01270306296646595, 0.17565569281578064, -0.014287035912275314, -0.20786580443382263, -0.0516456663608551, 0.02109859697520733, 0.03423231840133667, -0.06373265385627747, -0.0849502757191658, 0.0758742168545723, 0.0726194828748703, 0.0312445480376482, -0.03573254868388176, -0.2990763783454895, -0.09221266955137253, 0.1366778016090393, 0.07588598877191544, 0.3690341114997864, -0.10782590508460999, 0.05829606577754021, -0.03855663165450096, -0.09728053212165833, 0.11668943613767624, -0.06516087800264359, 0.1496715098619461, -0.04077950119972229, 0.058565519750118256, 0.038228970021009445, -0.05995919927954674, 0.02528197318315506, 0.07038063555955887, 0.061503492295742035, -0.020929912105202675, -0.010198797099292278, -0.019642576575279236, -0.042149126529693604, 0.10689324885606766, -0.09918764233589172, 0.0732959657907486, -0.09029561281204224, -0.0602804534137249, -0.05173540860414505, -0.027904793620109558, 0.06692440062761307, -0.06777624785900116, -0.04335535690188408, 0.045063719153404236, 0.03259707987308502, 0.023855624720454216, 0.0709603950381279, -0.051995668560266495, 0.07344404608011246, 0.07495643198490143, 0.127950981259346, -0.18379323184490204, -0.030469132587313652, 0.007538655307143927, 0.0043555875308811665, 0.07115234434604645, -0.12169935554265976, 0.03393097594380379, 0.1301635503768921, -0.006194825749844313, 0.11255817115306854, 0.0995502918958664, -0.00047735279076732695, -0.02332516759634018, 0.05128555744886398, -0.11655395478010178, -0.0251618605107069, -0.03500685840845108, -0.06610824167728424, -0.06695538759231567, 0.011836202815175056, 0.0824529156088829, -0.05975549668073654, -0.0038866859395056963, -0.008787285536527634, 0.004563287366181612, -0.04764673486351967, 0.21757827699184418, 0.08391229063272476, 0.05188755691051483, -0.09895254671573639, 0.06896241009235382, 0.03910325467586517, -0.072983518242836, 0.02179853431880474, 0.10000927746295929, -0.12010503560304642, -0.05608995631337166, 0.06357882916927338, 0.06023861840367317, -0.08962640911340714, -0.06405486166477203, -0.10446298122406006, -0.041662923991680145, 0.048717714846134186, 0.10986882448196411, 0.08678979426622391, 0.06250057369470596, -0.09727142751216888, -0.022712983191013336, -0.15599031746387482, 0.060548048466444016, 0.04052228480577469, 0.016225816681981087, -0.04393075779080391, 0.19795134663581848, -0.008800574578344822, 0.09871819615364075, -0.06024537980556488, -0.036540351808071136, -0.08846594393253326, 0.05702882632613182, -0.13155248761177063, -0.014684129506349564, -0.005988914053887129, -0.015961505472660065, -0.030143890529870987, -0.02059926651418209, -0.051233693957328796, 0.004315853584557772, -0.06720203906297684, 0.021293897181749344, 0.006708870641887188, 0.004643077030777931, -0.01838156022131443, -0.04677419736981392, 0.007247509900480509, -0.03158056363463402, 0.06635347008705139, 0.07680849730968475, -0.07669179886579514, 0.08714835345745087, -0.11204133927822113, -0.042542964220047, 0.031230013817548752, 0.07590700685977936, 0.05509785935282707, -0.028968611732125282, 0.04193877801299095, 0.047768354415893555, 0.06128572300076485, 0.019823649898171425, 0.05260920897126198, -0.06618180125951767, -0.027636129409074783, -0.08074462413787842, -0.06081352010369301, -0.07755379378795624, -0.02657458558678627, 0.033374983817338943, 0.14998240768909454, 0.12534654140472412, -0.06914770603179932, 0.022559382021427155, -0.14727529883384705, 0.0010057581821456552, 0.011251520365476608, -0.09794409573078156, -0.05895546078681946, -0.07557851821184158, 0.07761610299348831, -0.025258496403694153, 0.11822746694087982, -0.0018783558625727892, 0.028873542323708534, -0.0006406675674952567, 0.00773954950273037, 0.03192661702632904, -0.06961999088525772, 0.24613609910011292, 0.05350759997963905, -0.01578592322766781, -0.0062710074707865715, 0.08263173699378967, 0.06703311949968338, 0.15219958126544952, 0.20141248404979706, 0.08896227926015854, 0.06796283274888992, 0.15166398882865906, -0.026460222899913788, 0.01503983698785305, -0.0090641425922513, -0.01052957121282816, -0.04416101053357124, 0.040430355817079544, -0.03421316295862198, 0.17227667570114136, 0.17907072603702545, -0.1004844456911087, 0.029700979590415955, -0.0548892468214035, -0.09826570004224777, -0.1303100436925888, -0.02449970319867134, -0.09091637283563614, -0.13210934400558472, -0.0038857010658830404, -0.14497654139995575, -0.009949096478521824, 0.1561022847890854, 0.04415024816989899, -0.033941883593797684, 0.0860501229763031, 0.000926127249840647, -0.033141639083623886, 0.08075837045907974, -0.04312100633978844, 0.057804521173238754, 0.009180237539112568, -0.018226778134703636, 0.04438680782914162, -0.05283388867974281, 0.07275033742189407, -0.033939216285943985, 0.06877609342336655, 0.02722807787358761, -0.05056491494178772, -0.08121579885482788, -0.057357288897037506, 0.030816178768873215, 0.030300617218017578, 0.11773019284009933, 0.049975473433732986, -0.027609338983893394, 0.008833407424390316, 0.20416465401649475, -0.048853401094675064, -0.13648788630962372, -0.1007191464304924, 0.27683109045028687, 0.07429856806993484, -0.002563862595707178, 0.03897732123732567, -0.024204084649682045, -0.03555794432759285, 0.2525160312652588, 0.14569802582263947, -0.13134631514549255, -0.03551098704338074, 0.020108163356781006, 0.009763524867594242, -0.019068073481321335, 0.18840879201889038, 0.09977806359529495, 0.1302630454301834, -0.047982990741729736, -0.014605586417019367, -0.04098960757255554, 0.005725317168980837, -0.04076079651713371, 0.030562536790966988, 0.05886617675423622, -0.021441156044602394, -0.030307643115520477, 0.07274794578552246, -0.04577967897057533, -0.014938535168766975, -0.07044965773820877, -0.06977251917123795, -0.11896146088838577, -0.016219425946474075, 0.008551311679184437, 0.028484078124165535, 0.13866814970970154, -0.08081680536270142, 0.07835282385349274, -0.007802931591868401, -0.020282786339521408, -0.10269737243652344, -0.08449342846870422, 0.12310221791267395, -0.04995213821530342, 0.024113839492201805, -0.014848420396447182, 0.10772427916526794, 0.09015310555696487, 0.029313983395695686, -0.07042261958122253, 0.13126829266548157, -0.022709587588906288, -0.041994836181402206, 0.09083268791437149, 0.048302434384822845, -0.056863296777009964, -0.007391872350126505, 0.0392892062664032, -0.10110259801149368, -0.015061113983392715, -0.06270615011453629, 0.028780266642570496, -0.0921841412782669, 0.010523478500545025, -0.03564329817891121, 0.14310143887996674, 0.1663898527622223, -0.030961906537413597, -0.010836045257747173, -0.06963646411895752, 0.010107138194143772, 0.005409847013652325, -0.006708573084324598, -0.0838710144162178, -0.16441233456134796, -0.03286350518465042, -0.05529414862394333, -0.047682758420705795, -0.22757749259471893, 0.004434681031852961, -0.08095734566450119, -0.05641430243849754, -0.06604748219251633, 0.10469131916761398, 0.04531678557395935, 0.01978829689323902, -0.04940664768218994, 0.00834920909255743, -0.012289962731301785, 0.07903492450714111, -0.2038092464208603, -0.15009474754333496 ]
null
null
sentence-transformers
# multi-qa_v1-distilbert-cls_dot ## Model Description SentenceTransformers is a set of models and frameworks that enable training and generating sentence embeddings from given data. The generated sentence embeddings can be utilized for Clustering, Semantic Search and other tasks. We used a pretrained [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) model and trained it using Siamese Network setup and contrastive learning objective. Question and answer pairs from StackExchange was used as training data to make the model robust to Question / Answer embedding similarity. For this model, cls output was used instead of mean pooling as sentence embeddings. Dot product was used to calculate similarity for learning objective. We developed this model during the [Community week using JAX/Flax for NLP & CV](https://discuss.huggingface.co/t/open-to-the-community-community-week-using-jax-flax-for-nlp-cv/7104), organized by Hugging Face. We developed this model as part of the project: [Train the Best Sentence Embedding Model Ever with 1B Training Pairs](https://discuss.huggingface.co/t/train-the-best-sentence-embedding-model-ever-with-1b-training-pairs/7354). We benefited from efficient hardware infrastructure to run the project: 7 TPUs v3-8, as well as assistance from Google’s Flax, JAX, and Cloud team members about efficient deep learning frameworks. ## Intended uses Our model is intended to be used as a sentence encoder for a search engine. Given an input sentence, it outputs a vector which captures the sentence semantic information. The sentence vector may be used for semantic-search, clustering or sentence similarity tasks. ## How to use Here is how to use this model to get the features of a given text using [SentenceTransformers](https://github.com/UKPLab/sentence-transformers) library: ```python from sentence_transformers import SentenceTransformer model = SentenceTransformer('flax-sentence-embeddings/multi-qa_v1-distilbert-cls_dot') text = "Replace me by any question / answer you'd like." text_embbedding = model.encode(text) # array([-0.01559514, 0.04046123, 0.1317083 , 0.00085931, 0.04585106, # -0.05607086, 0.0138078 , 0.03569756, 0.01420381, 0.04266302 ...], # dtype=float32) ``` # Training procedure ## Pre-training We use the pretrained [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased). Please refer to the model card for more detailed information about the pre-training procedure. ## Fine-tuning We fine-tune the model using a contrastive objective. Formally, we compute the cosine similarity from each possible sentence pairs from the batch. We then apply the cross entropy loss by comparing with true pairs. ### Hyper parameters We trained on model on a TPU v3-8. We train the model during 80k steps using a batch size of 1024 (128 per TPU core). We use a learning rate warm up of 500. The sequence length was limited to 128 tokens. We used the AdamW optimizer with a 2e-5 learning rate. The full training script is accessible in this current repository. ### Training data We used the concatenation from multiple Stackexchange Question-Answer datasets to fine-tune our model. MSMARCO, NQ & other question-answer datasets were also used. | Dataset | Paper | Number of training tuples | |:--------------------------------------------------------:|:----------------------------------------:|:--------------------------:| | [Stack Exchange QA - Title & Answer](https://huggingface.co/datasets/flax-sentence-embeddings/stackexchange_title_best_voted_answer_jsonl) | - | 4,750,619 | | [Stack Exchange](https://huggingface.co/datasets/flax-sentence-embeddings/stackexchange_title_body_jsonl) | - | 364,001 | | [TriviaqQA](https://huggingface.co/datasets/trivia_qa) | - | 73,346 | | [SQuAD2.0](https://rajpurkar.github.io/SQuAD-explorer/) | [paper](https://aclanthology.org/P18-2124.pdf) | 87,599 | | [Quora Question Pairs](https://quoradata.quora.com/First-Quora-Dataset-Release-Question-Pairs) | - | 103,663 | | [Eli5](https://huggingface.co/datasets/eli5) | [paper](https://doi.org/10.18653/v1/p19-1346) | 325,475 | | [PAQ](https://github.com/facebookresearch/PAQ) | [paper](https://arxiv.org/abs/2102.07033) | 64,371,441 | | [WikiAnswers](https://github.com/afader/oqa#wikianswers-corpus) | [paper](https://doi.org/10.1145/2623330.2623677) | 77,427,422 | | [MS MARCO](https://microsoft.github.io/msmarco/) | [paper](https://doi.org/10.1145/3404835.3462804) | 9,144,553 | | [GOOAQ: Open Question Answering with Diverse Answer Types](https://github.com/allenai/gooaq) | [paper](https://arxiv.org/pdf/2104.08727.pdf) | 3,012,496 | | [Yahoo Answers](https://www.kaggle.com/soumikrakshit/yahoo-answers-dataset) Question/Answer | [paper](https://proceedings.neurips.cc/paper/2015/hash/250cf8b51c773f3f8dc8b4be867a9a02-Abstract.html) | 681,164 | | SearchQA | - | 582,261 | | [Natural Questions (NQ)](https://ai.google.com/research/NaturalQuestions) | [paper](https://transacl.org/ojs/index.php/tacl/article/view/1455) | 100,231 |
{"tags": ["sentence-transformers", "feature-extraction", "sentence-similarity"], "pipeline_tag": "sentence-similarity"}
sentence-similarity
flax-sentence-embeddings/multi-qa_v1-distilbert-cls_dot
[ "sentence-transformers", "pytorch", "distilbert", "feature-extraction", "sentence-similarity", "arxiv:2102.07033", "arxiv:2104.08727", "endpoints_compatible", "has_space", "region:us" ]
2022-03-02T23:29:05+00:00
[ "2102.07033", "2104.08727" ]
[]
TAGS #sentence-transformers #pytorch #distilbert #feature-extraction #sentence-similarity #arxiv-2102.07033 #arxiv-2104.08727 #endpoints_compatible #has_space #region-us
multi-qa\_v1-distilbert-cls\_dot ================================ Model Description ----------------- SentenceTransformers is a set of models and frameworks that enable training and generating sentence embeddings from given data. The generated sentence embeddings can be utilized for Clustering, Semantic Search and other tasks. We used a pretrained distilbert-base-uncased model and trained it using Siamese Network setup and contrastive learning objective. Question and answer pairs from StackExchange was used as training data to make the model robust to Question / Answer embedding similarity. For this model, cls output was used instead of mean pooling as sentence embeddings. Dot product was used to calculate similarity for learning objective. We developed this model during the Community week using JAX/Flax for NLP & CV, organized by Hugging Face. We developed this model as part of the project: Train the Best Sentence Embedding Model Ever with 1B Training Pairs. We benefited from efficient hardware infrastructure to run the project: 7 TPUs v3-8, as well as assistance from Google’s Flax, JAX, and Cloud team members about efficient deep learning frameworks. Intended uses ------------- Our model is intended to be used as a sentence encoder for a search engine. Given an input sentence, it outputs a vector which captures the sentence semantic information. The sentence vector may be used for semantic-search, clustering or sentence similarity tasks. How to use ---------- Here is how to use this model to get the features of a given text using SentenceTransformers library: Training procedure ================== Pre-training ------------ We use the pretrained distilbert-base-uncased. Please refer to the model card for more detailed information about the pre-training procedure. Fine-tuning ----------- We fine-tune the model using a contrastive objective. Formally, we compute the cosine similarity from each possible sentence pairs from the batch. We then apply the cross entropy loss by comparing with true pairs. ### Hyper parameters We trained on model on a TPU v3-8. We train the model during 80k steps using a batch size of 1024 (128 per TPU core). We use a learning rate warm up of 500. The sequence length was limited to 128 tokens. We used the AdamW optimizer with a 2e-5 learning rate. The full training script is accessible in this current repository. ### Training data We used the concatenation from multiple Stackexchange Question-Answer datasets to fine-tune our model. MSMARCO, NQ & other question-answer datasets were also used.
[ "### Hyper parameters\n\n\nWe trained on model on a TPU v3-8. We train the model during 80k steps using a batch size of 1024 (128 per TPU core).\nWe use a learning rate warm up of 500. The sequence length was limited to 128 tokens. We used the AdamW optimizer with\na 2e-5 learning rate. The full training script is accessible in this current repository.", "### Training data\n\n\nWe used the concatenation from multiple Stackexchange Question-Answer datasets to fine-tune our model. MSMARCO, NQ & other question-answer datasets were also used." ]
[ "TAGS\n#sentence-transformers #pytorch #distilbert #feature-extraction #sentence-similarity #arxiv-2102.07033 #arxiv-2104.08727 #endpoints_compatible #has_space #region-us \n", "### Hyper parameters\n\n\nWe trained on model on a TPU v3-8. We train the model during 80k steps using a batch size of 1024 (128 per TPU core).\nWe use a learning rate warm up of 500. The sequence length was limited to 128 tokens. We used the AdamW optimizer with\na 2e-5 learning rate. The full training script is accessible in this current repository.", "### Training data\n\n\nWe used the concatenation from multiple Stackexchange Question-Answer datasets to fine-tune our model. MSMARCO, NQ & other question-answer datasets were also used." ]
[ 62, 89, 51 ]
[ "passage: TAGS\n#sentence-transformers #pytorch #distilbert #feature-extraction #sentence-similarity #arxiv-2102.07033 #arxiv-2104.08727 #endpoints_compatible #has_space #region-us \n### Hyper parameters\n\n\nWe trained on model on a TPU v3-8. We train the model during 80k steps using a batch size of 1024 (128 per TPU core).\nWe use a learning rate warm up of 500. The sequence length was limited to 128 tokens. We used the AdamW optimizer with\na 2e-5 learning rate. The full training script is accessible in this current repository.### Training data\n\n\nWe used the concatenation from multiple Stackexchange Question-Answer datasets to fine-tune our model. MSMARCO, NQ & other question-answer datasets were also used." ]
[ -0.10165123641490936, -0.017714373767375946, 0.0009203749941661954, 0.08512994647026062, 0.1351708322763443, 0.03609524294734001, 0.036786019802093506, 0.13990755379199982, -0.07541769742965698, 0.01558228861540556, 0.09280174970626831, 0.05252230167388916, 0.008775987662374973, 0.14348378777503967, -0.035202816128730774, -0.2345273345708847, 0.016133135184645653, 0.0409797728061676, 0.008870556950569153, 0.12360682338476181, 0.07895611971616745, -0.08890043944120407, 0.04149560257792473, -0.05845325440168381, -0.16934983432292938, 0.016629599034786224, -0.05221746489405632, -0.03984899818897247, 0.14566883444786072, 0.023456688970327377, 0.08410020917654037, 0.031992357224226, 0.03905940800905228, -0.08201432228088379, 0.04406401515007019, 0.0420398972928524, 0.016844401136040688, 0.06790128350257874, -0.017790453508496284, 0.03225698322057724, 0.17237421870231628, -0.05807984620332718, 0.02069346234202385, 0.04037567228078842, -0.08722354471683502, -0.04824905842542648, 0.0033548600040376186, -0.011251808144152164, 0.11880622804164886, 0.1113160029053688, -0.028496181592345238, 0.15925376117229462, -0.13773879408836365, 0.09375074505805969, 0.09022963047027588, -0.32918229699134827, -0.05652138218283653, 0.14991715550422668, 0.11422976106405258, 0.10365010052919388, -0.07464184612035751, -0.005042994860559702, 0.056987214833498, 0.057943154126405716, 0.07254082709550858, -0.02327868342399597, -0.16013628244400024, 0.030501535162329674, -0.1372983753681183, 0.01194784976541996, 0.20632290840148926, 0.01787402294576168, -0.03691789507865906, -0.06631676107645035, -0.07947143167257309, -0.05204221233725548, -0.015057573094964027, -0.02486015111207962, -0.018026795238256454, 0.02688031829893589, -0.13340634107589722, -0.03320520743727684, -0.11404199153184891, -0.11607802659273148, -0.06276608258485794, 0.1049913763999939, 0.0426054410636425, 0.03945687413215637, -0.07316836714744568, 0.10128811746835709, -0.06124470755457878, -0.061021193861961365, -0.025637120008468628, -0.05996860936284065, -0.10084547847509384, -0.017574798315763474, -0.12610124051570892, -0.13955311477184296, 0.028524551540613174, 0.013361028395593166, 0.04241359978914261, 0.0047121839597821236, 0.09274425357580185, 0.044501472264528275, 0.013739178888499737, 0.1507241129875183, -0.053514573723077774, -0.07977928221225739, 0.005087072029709816, 0.01802852563560009, -0.0473395399749279, -0.01684311218559742, -0.12887710332870483, -0.06381052732467651, 0.1033012643456459, 0.03568684309720993, -0.06637215614318848, 0.09006820619106293, 0.007726053707301617, -0.04273224622011185, 0.03581947833299637, -0.0742330327630043, -0.05799252912402153, 0.007111647166311741, -0.08930034935474396, 0.09031692892313004, -0.022633982822299004, -0.05639839172363281, -0.09947839379310608, -0.011979744769632816, -0.09659580141305923, -0.02567433938384056, -0.10612738877534866, -0.14185163378715515, 0.009524318389594555, -0.10640757530927658, -0.006198293529450893, -0.15807786583900452, -0.11996646225452423, -0.01472585741430521, 0.018794197589159012, -0.02997121587395668, -0.026891235262155533, -0.11375903338193893, -0.01585214026272297, 0.006891689728945494, -0.02280336618423462, 0.12413756549358368, -0.057059068232774734, 0.07588372379541397, -0.016571195796132088, 0.1020367220044136, -0.0282087791711092, 0.03023413009941578, -0.0896666944026947, -0.04557466879487038, 0.006218810100108385, 0.059836797416210175, 0.07839389890432358, 0.08443668484687805, -0.08583147078752518, -0.1253838837146759, -0.1394501030445099, -0.0077766976319253445, 0.043659064918756485, 0.09841892868280411, -0.2189406305551529, -0.008073863573372364, 0.1464793086051941, -0.02329961024224758, -0.12475109845399857, 0.17970149219036102, -0.0236447025090456, 0.03703119978308678, 0.08822673559188843, 0.12873613834381104, 0.03877101466059685, -0.07767205685377121, 0.024456843733787537, 0.08714670687913895, -0.05670994147658348, -0.14140033721923828, 0.0753079503774643, 0.077314592897892, 0.023613059893250465, 0.02764805592596531, 0.04265661537647247, 0.07126663625240326, -0.0864698514342308, -0.03178223595023155, -0.04362886771559715, -0.10314907878637314, -0.023446843028068542, 0.030735865235328674, 0.05567284673452377, -0.08934983611106873, -0.0912613496184349, 0.0071585513651371, 0.14519555866718292, -0.10596110671758652, 0.03727390989661217, -0.09761691093444824, 0.05782012641429901, -0.018684715032577515, 0.018630467355251312, -0.16062958538532257, -0.02886633202433586, 0.02247166819870472, 0.1176784336566925, 0.0006207411061041057, 0.16579797863960266, 0.046052876859903336, 0.024217523634433746, -0.022434251382946968, 0.031708065420389175, -0.01180283259600401, -0.0291520394384861, -0.11881229281425476, -0.029488712549209595, -0.06883666664361954, -0.06123846396803856, 0.070830799639225, -0.0977967232465744, -0.010361933149397373, -0.02509535290300846, -0.024021871387958527, -0.027197176590561867, -0.0067125046625733376, 0.024920212104916573, 0.032573409378528595, -0.026271015405654907, -0.05785805732011795, 0.10830997675657272, 0.048459239304065704, -0.0912705510854721, 0.03460096940398216, -0.15377898514270782, -0.027560627087950706, 0.10001156479120255, -0.04041371867060661, -0.033304497599601746, -0.03381173685193062, -0.05381109192967415, -0.01995738409459591, -0.047601569443941116, 0.004215875640511513, 0.18944069743156433, 0.02077930048108101, 0.14705941081047058, -0.10587310045957565, -0.021380340680480003, -0.02831840142607689, 0.011630723252892494, 0.054444193840026855, 0.06722339987754822, -0.028722023591399193, -0.14386151731014252, 0.010127197951078415, 0.018986813724040985, -0.07568194717168808, 0.15692026913166046, -0.0004447122919373214, -0.10824517905712128, 0.024911774322390556, 0.01901531033217907, -0.031191155314445496, 0.04422410577535629, -0.13181117177009583, -0.04629496484994888, 0.04316479340195656, 0.026704270392656326, 0.05706842988729477, -0.1398874819278717, -0.009232757613062859, -0.001662401482462883, -0.03566024452447891, -0.03122001700103283, 0.02820148505270481, -0.030190983787178993, 0.0856630802154541, 0.0440218485891819, -0.09650606662034988, -0.005641088355332613, -0.030879592522978783, -0.07216880470514297, 0.19921532273292542, -0.03271828964352608, -0.20660759508609772, -0.04606200009584427, 0.05206836014986038, 0.015401911921799183, 0.015297959558665752, 0.04764919728040695, -0.06337486952543259, -0.029229015111923218, -0.06146961823105812, -0.03233668953180313, -0.028972851112484932, 0.014025258831679821, -0.03587359935045242, 0.04316876083612442, -0.01836487092077732, -0.14539514482021332, 0.006527889519929886, -0.08348064869642258, -0.13186590373516083, 0.06932445615530014, -0.13088785111904144, 0.056031234562397, 0.21943891048431396, -0.03872528672218323, 0.046659018844366074, -0.05709750950336456, 0.15090195834636688, -0.028172358870506287, 0.007979263551533222, 0.18235576152801514, 0.037776149809360504, -0.003635390428826213, 0.00510411337018013, -0.0008254291606135666, -0.07076481729745865, 0.09753753244876862, -0.021959470584988594, -0.07759742438793182, -0.19867779314517975, -0.07805449515581131, -0.10769758373498917, 0.014036441221833229, 0.09152746200561523, 0.04477144405245781, -0.00826541893184185, 0.06217900291085243, -0.009019381366670132, 0.002373432507738471, -0.006966106127947569, 0.06581813097000122, 0.032428983598947525, 0.03885723650455475, 0.13299432396888733, -0.03871697932481766, -0.04534235596656799, 0.05169665068387985, 0.022795535624027252, 0.19973963499069214, -0.04499458149075508, 0.10601280629634857, 0.007278287783265114, 0.09833496809005737, 0.04511089250445366, 0.11732621490955353, -0.06480169296264648, -0.03977113217115402, -0.06260297447443008, -0.027251476421952248, -0.04402037709951401, 0.0503966249525547, 0.04316820204257965, -0.013936399482190609, -0.08593854308128357, 0.039390113204717636, 0.07418517023324966, 0.22167854011058807, 0.13860292732715607, -0.27242806553840637, -0.12163370847702026, -0.03567217290401459, -0.05024934187531471, -0.0380287691950798, 0.0925440564751625, 0.1698533594608307, -0.05400918796658516, -0.09194864332675934, -0.015975506976246834, 0.1450893133878708, 0.015133136883378029, 0.03241289034485817, -0.012850362807512283, 0.08172818273305893, -0.025468388572335243, 0.12679211795330048, -0.25095313787460327, 0.1583336591720581, 0.0019404006889089942, 0.10288948565721512, -0.07411418110132217, -0.051647018641233444, 0.027960356324911118, 0.02136216312646866, 0.06849204003810883, -0.003925942350178957, -0.026635807007551193, -0.04304702207446098, -0.08826424181461334, 0.06659512221813202, 0.06320030242204666, 0.07183480262756348, 0.09211201220750809, -0.053791943937540054, 0.01913030445575714, 0.03854094818234444, 0.11872075498104095, 0.0163966603577137, -0.06193181499838829, -0.02684089168906212, 0.058462921530008316, -0.019602643325924873, -0.021314216777682304, -0.05929302051663399, -0.017899777740240097, 0.17532287538051605, 0.05607049539685249, -0.05601353198289871, -0.10666842013597488, 0.07999950647354126, 0.08540037274360657, -0.05191241577267647, 0.008579988032579422, 0.05614401772618294, 0.07669904828071594, 0.00551936961710453, -0.08498037606477737, 0.08003712445497513, -0.08059310168027878, -0.05337902531027794, -0.005512595642358065, 0.08602084964513779, -0.006074084434658289, 0.0675487071275711, 0.023374561220407486, -0.014792335219681263, -0.10122668743133545, -0.06735889613628387, -0.05077949911355972, -0.06569492816925049, 0.122012197971344, 0.028475496917963028, -0.10118521749973297, 0.07792038470506668, -0.06650706380605698, 0.023389097303152084, 0.18500153720378876, 0.10140752792358398, -0.07233469933271408, -0.003413928672671318, 0.13896679878234863, -0.007007400970906019, -0.21608971059322357, -0.046151068061590195, 0.014798703603446484, 0.04445229843258858, -0.0539519302546978, -0.11514441668987274, 0.048582110553979874, 0.07486643642187119, 0.021227512508630753, -0.019757606089115143, -0.34753960371017456, -0.09665965288877487, 0.1159372553229332, 0.06922287493944168, 0.3265857696533203, -0.10046427696943283, 0.06439941376447678, -0.022410543635487556, -0.09476656466722488, 0.11979523301124573, -0.10704129934310913, 0.16629034280776978, -0.046784572303295135, 0.029520519077777863, 0.04258066788315773, -0.05369480326771736, 0.03451204672455788, 0.04611997306346893, 0.058332111686468124, -0.026319801807403564, 0.017491787672042847, 0.004490434192121029, -0.05653974786400795, 0.12824079394340515, -0.10011190921068192, 0.08114904910326004, -0.08843787759542465, -0.05610722675919533, -0.04535211622714996, -0.0020655810367316008, 0.06490078568458557, -0.07308661192655563, -0.06553192436695099, 0.060787852853536606, 0.039606932550668716, 0.023168057203292847, 0.044652752578258514, -0.04027823358774185, 0.08739041537046432, 0.08078055828809738, 0.11236888915300369, -0.1463218331336975, -0.0319635383784771, 0.007026216480880976, 0.007714594714343548, 0.07795435190200806, -0.13347762823104858, 0.028083842247724533, 0.11670109629631042, 0.014130158349871635, 0.11583185195922852, 0.09902749210596085, 0.0031079198233783245, -0.003987621050328016, 0.06251785159111023, -0.11253711581230164, -0.06336914002895355, -0.037832703441381454, -0.07764256000518799, -0.079627625644207, 0.0074377115815877914, 0.07008925825357437, -0.0754392147064209, -0.0030294866301119328, 0.0015799303073436022, 0.006323314271867275, -0.05524229258298874, 0.19660544395446777, 0.08162661641836166, 0.04454268887639046, -0.0778408944606781, 0.08163619041442871, 0.04510453715920448, -0.0599527508020401, 0.02808111533522606, 0.09185360372066498, -0.11864924430847168, -0.06298059970140457, 0.04257326200604439, 0.007693793158978224, -0.04457269608974457, -0.04181846231222153, -0.10497548431158066, -0.04179584980010986, 0.04048646613955498, 0.09020081162452698, 0.08625410497188568, 0.06746290624141693, -0.09843090176582336, 0.0022271559573709965, -0.14772532880306244, 0.06239287182688713, 0.027351180091500282, 0.016443219035863876, -0.04355182498693466, 0.21580833196640015, -0.003007618710398674, 0.09630827605724335, -0.06429734081029892, -0.051594797521829605, -0.07540272921323776, 0.0500975176692009, -0.1041935607790947, -0.024451719596982002, -0.014682105742394924, -0.010948657989501953, -0.04041987285017967, -0.012475410476326942, -0.06049578636884689, 0.013363629579544067, -0.06731812655925751, 0.0103372223675251, -0.005832059774547815, 0.006661694031208754, -0.04083263501524925, -0.047166261821985245, -0.00006451195804402232, -0.05095900595188141, 0.07574865967035294, 0.0849241316318512, -0.06550735235214233, 0.0780259370803833, -0.08711991459131241, -0.04244906082749367, 0.040805067867040634, 0.07908675074577332, 0.03942584618926048, -0.014556323178112507, 0.03571363538503647, 0.03748839721083641, 0.05504738539457321, 0.0169502142816782, 0.029921893030405045, -0.06758015602827072, -0.030670689418911934, -0.09388986974954605, -0.03528662398457527, -0.08297577500343323, -0.016460943967103958, 0.02982955053448677, 0.15186505019664764, 0.12316075712442398, -0.06450372189283371, 0.022305523976683617, -0.15734907984733582, -0.005540287122130394, 0.011582055129110813, -0.08341184258460999, -0.060617901384830475, -0.06786436587572098, 0.07680267095565796, -0.026627156883478165, 0.1143830269575119, -0.012486429885029793, 0.005734554026275873, 0.0015984185738489032, 0.015785541385412216, 0.036399759352207184, -0.06905566155910492, 0.24778462946414948, 0.058912910521030426, -0.014765945263206959, 0.006472781766206026, 0.07839827239513397, 0.07420738786458969, 0.15632623434066772, 0.2088385373353958, 0.09560353308916092, 0.060691818594932556, 0.15754114091396332, -0.03300289809703827, 0.0052613201551139355, -0.03397456929087639, 0.0009167285752482712, -0.035565994679927826, 0.04671596735715866, -0.04097810015082359, 0.14961771667003632, 0.18367817997932434, -0.11323966830968857, 0.03361748158931732, -0.04127834737300873, -0.09107612073421478, -0.12222789973020554, -0.031649138778448105, -0.07781671732664108, -0.1439099758863449, -0.007144652307033539, -0.14285072684288025, -0.013539773412048817, 0.1177990585565567, 0.04631180316209793, -0.02873718924820423, 0.11399383842945099, -0.004904194734990597, -0.037786878645420074, 0.08882196992635727, -0.048970777541399, 0.05681779608130455, -0.016052771359682083, -0.023967904970049858, 0.05556265264749527, -0.04245340824127197, 0.08779796212911606, -0.028837457299232483, 0.05425770580768585, 0.023545019328594208, -0.05177178606390953, -0.06693126261234283, -0.054096855223178864, 0.03278468921780586, 0.013335589319467545, 0.10584775358438492, 0.06005704402923584, -0.03802835941314697, 0.009860958904027939, 0.2245837152004242, -0.05352621152997017, -0.1462113857269287, -0.11866901814937592, 0.2351403385400772, 0.07979651540517807, -0.01972031034529209, 0.04029979184269905, -0.04158797487616539, -0.04421939328312874, 0.23243936896324158, 0.13825854659080505, -0.11821465194225311, -0.011963754892349243, 0.025627460330724716, 0.004268824588507414, -0.012249395251274109, 0.16547267138957977, 0.09945105016231537, 0.12822692096233368, -0.04376249387860298, -0.008415287360548973, -0.030647970736026764, 0.0000889879884198308, -0.04702334105968475, 0.03670879080891609, 0.03482213243842125, -0.01993686892092228, -0.03723928704857826, 0.06254280358552933, -0.049484945833683014, -0.0009554096614010632, -0.05213012173771858, -0.0708114430308342, -0.12197280675172806, -0.01914503239095211, 0.0053071328438818455, 0.016094345599412918, 0.13427983224391937, -0.08332352340221405, 0.07240743190050125, -0.001556874718517065, -0.020685981959104538, -0.09572430700063705, -0.08790963143110275, 0.12275673449039459, -0.0353115014731884, 0.050912171602249146, -0.02375570684671402, 0.08861541002988815, 0.07560618221759796, 0.03502094745635986, -0.08770545572042465, 0.12161330133676529, -0.01868646964430809, -0.0375605933368206, 0.0838480144739151, 0.07299723476171494, -0.06446106731891632, -0.005216526333242655, 0.045299042016267776, -0.10395827144384384, -0.013460500165820122, -0.06290625780820847, 0.03188887611031532, -0.10418111085891724, 0.006333180237561464, -0.022818798199295998, 0.1477503925561905, 0.16709566116333008, -0.03925183787941933, -0.02069328911602497, -0.061577726155519485, 0.007058614864945412, 0.017034176737070084, -0.00814120378345251, -0.07975031435489655, -0.16087564826011658, -0.034412845969200134, -0.05906825140118599, -0.03246098384261131, -0.20713010430335999, -0.01785162463784218, -0.06938482075929642, -0.06280267238616943, -0.057470597326755524, 0.11871731281280518, 0.06262259185314178, 0.016178179532289505, -0.046277306973934174, -0.004528430290520191, -0.009313913993537426, 0.07792568951845169, -0.2079913467168808, -0.14938399195671082 ]
null
null
sentence-transformers
# multi-qa_v1-distilbert-mean_cos ## Model Description SentenceTransformers is a set of models and frameworks that enable training and generating sentence embeddings from given data. The generated sentence embeddings can be utilized for Clustering, Semantic Search and other tasks. We used a pretrained [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) model and trained it using Siamese Network setup and contrastive learning objective. Question and answer pairs from StackExchange was used as training data to make the model robust to Question / Answer embedding similarity. For this model, mean pooling of hidden states were used as sentence embeddings. We developed this model during the [Community week using JAX/Flax for NLP & CV](https://discuss.huggingface.co/t/open-to-the-community-community-week-using-jax-flax-for-nlp-cv/7104), organized by Hugging Face. We developed this model as part of the project: [Train the Best Sentence Embedding Model Ever with 1B Training Pairs](https://discuss.huggingface.co/t/train-the-best-sentence-embedding-model-ever-with-1b-training-pairs/7354). We benefited from efficient hardware infrastructure to run the project: 7 TPUs v3-8, as well as assistance from Google’s Flax, JAX, and Cloud team members about efficient deep learning frameworks. ## Intended uses Our model is intended to be used as a sentence encoder for a search engine. Given an input sentence, it outputs a vector which captures the sentence semantic information. The sentence vector may be used for semantic-search, clustering or sentence similarity tasks. ## How to use Here is how to use this model to get the features of a given text using [SentenceTransformers](https://github.com/UKPLab/sentence-transformers) library: ```python from sentence_transformers import SentenceTransformer model = SentenceTransformer('flax-sentence-embeddings/multi-qa_v1-distilbert-mean_cos') text = "Replace me by any question / answer you'd like." text_embbedding = model.encode(text) # array([-0.01559514, 0.04046123, 0.1317083 , 0.00085931, 0.04585106, # -0.05607086, 0.0138078 , 0.03569756, 0.01420381, 0.04266302 ...], # dtype=float32) ``` # Training procedure ## Pre-training We use the pretrained [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased). Please refer to the model card for more detailed information about the pre-training procedure. ## Fine-tuning We fine-tune the model using a contrastive objective. Formally, we compute the cosine similarity from each possible sentence pairs from the batch. We then apply the cross entropy loss by comparing with true pairs. ### Hyper parameters We trained on model on a TPU v3-8. We train the model during 80k steps using a batch size of 1024 (128 per TPU core). We use a learning rate warm up of 500. The sequence length was limited to 128 tokens. We used the AdamW optimizer with a 2e-5 learning rate. The full training script is accessible in this current repository. ### Training data We used the concatenation from multiple Stackexchange Question-Answer datasets to fine-tune our model. MSMARCO, NQ & other question-answer datasets were also used. | Dataset | Paper | Number of training tuples | |:--------------------------------------------------------:|:----------------------------------------:|:--------------------------:| | [Stack Exchange QA - Title & Answer](https://huggingface.co/datasets/flax-sentence-embeddings/stackexchange_title_best_voted_answer_jsonl) | - | 4,750,619 | | [Stack Exchange](https://huggingface.co/datasets/flax-sentence-embeddings/stackexchange_title_body_jsonl) | - | 364,001 | | [TriviaqQA](https://huggingface.co/datasets/trivia_qa) | - | 73,346 | | [SQuAD2.0](https://rajpurkar.github.io/SQuAD-explorer/) | [paper](https://aclanthology.org/P18-2124.pdf) | 87,599 | | [Quora Question Pairs](https://quoradata.quora.com/First-Quora-Dataset-Release-Question-Pairs) | - | 103,663 | | [Eli5](https://huggingface.co/datasets/eli5) | [paper](https://doi.org/10.18653/v1/p19-1346) | 325,475 | | [PAQ](https://github.com/facebookresearch/PAQ) | [paper](https://arxiv.org/abs/2102.07033) | 64,371,441 | | [WikiAnswers](https://github.com/afader/oqa#wikianswers-corpus) | [paper](https://doi.org/10.1145/2623330.2623677) | 77,427,422 | | [MS MARCO](https://microsoft.github.io/msmarco/) | [paper](https://doi.org/10.1145/3404835.3462804) | 9,144,553 | | [GOOAQ: Open Question Answering with Diverse Answer Types](https://github.com/allenai/gooaq) | [paper](https://arxiv.org/pdf/2104.08727.pdf) | 3,012,496 | | [Yahoo Answers](https://www.kaggle.com/soumikrakshit/yahoo-answers-dataset) Question/Answer | [paper](https://proceedings.neurips.cc/paper/2015/hash/250cf8b51c773f3f8dc8b4be867a9a02-Abstract.html) | 681,164 | | SearchQA | - | 582,261 | | [Natural Questions (NQ)](https://ai.google.com/research/NaturalQuestions) | [paper](https://transacl.org/ojs/index.php/tacl/article/view/1455) | 100,231 |
{"tags": ["sentence-transformers", "feature-extraction", "sentence-similarity"], "pipeline_tag": "sentence-similarity"}
sentence-similarity
flax-sentence-embeddings/multi-qa_v1-distilbert-mean_cos
[ "sentence-transformers", "pytorch", "distilbert", "feature-extraction", "sentence-similarity", "arxiv:2102.07033", "arxiv:2104.08727", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[ "2102.07033", "2104.08727" ]
[]
TAGS #sentence-transformers #pytorch #distilbert #feature-extraction #sentence-similarity #arxiv-2102.07033 #arxiv-2104.08727 #endpoints_compatible #region-us
multi-qa\_v1-distilbert-mean\_cos ================================= Model Description ----------------- SentenceTransformers is a set of models and frameworks that enable training and generating sentence embeddings from given data. The generated sentence embeddings can be utilized for Clustering, Semantic Search and other tasks. We used a pretrained distilbert-base-uncased model and trained it using Siamese Network setup and contrastive learning objective. Question and answer pairs from StackExchange was used as training data to make the model robust to Question / Answer embedding similarity. For this model, mean pooling of hidden states were used as sentence embeddings. We developed this model during the Community week using JAX/Flax for NLP & CV, organized by Hugging Face. We developed this model as part of the project: Train the Best Sentence Embedding Model Ever with 1B Training Pairs. We benefited from efficient hardware infrastructure to run the project: 7 TPUs v3-8, as well as assistance from Google’s Flax, JAX, and Cloud team members about efficient deep learning frameworks. Intended uses ------------- Our model is intended to be used as a sentence encoder for a search engine. Given an input sentence, it outputs a vector which captures the sentence semantic information. The sentence vector may be used for semantic-search, clustering or sentence similarity tasks. How to use ---------- Here is how to use this model to get the features of a given text using SentenceTransformers library: Training procedure ================== Pre-training ------------ We use the pretrained distilbert-base-uncased. Please refer to the model card for more detailed information about the pre-training procedure. Fine-tuning ----------- We fine-tune the model using a contrastive objective. Formally, we compute the cosine similarity from each possible sentence pairs from the batch. We then apply the cross entropy loss by comparing with true pairs. ### Hyper parameters We trained on model on a TPU v3-8. We train the model during 80k steps using a batch size of 1024 (128 per TPU core). We use a learning rate warm up of 500. The sequence length was limited to 128 tokens. We used the AdamW optimizer with a 2e-5 learning rate. The full training script is accessible in this current repository. ### Training data We used the concatenation from multiple Stackexchange Question-Answer datasets to fine-tune our model. MSMARCO, NQ & other question-answer datasets were also used.
[ "### Hyper parameters\n\n\nWe trained on model on a TPU v3-8. We train the model during 80k steps using a batch size of 1024 (128 per TPU core).\nWe use a learning rate warm up of 500. The sequence length was limited to 128 tokens. We used the AdamW optimizer with\na 2e-5 learning rate. The full training script is accessible in this current repository.", "### Training data\n\n\nWe used the concatenation from multiple Stackexchange Question-Answer datasets to fine-tune our model. MSMARCO, NQ & other question-answer datasets were also used." ]
[ "TAGS\n#sentence-transformers #pytorch #distilbert #feature-extraction #sentence-similarity #arxiv-2102.07033 #arxiv-2104.08727 #endpoints_compatible #region-us \n", "### Hyper parameters\n\n\nWe trained on model on a TPU v3-8. We train the model during 80k steps using a batch size of 1024 (128 per TPU core).\nWe use a learning rate warm up of 500. The sequence length was limited to 128 tokens. We used the AdamW optimizer with\na 2e-5 learning rate. The full training script is accessible in this current repository.", "### Training data\n\n\nWe used the concatenation from multiple Stackexchange Question-Answer datasets to fine-tune our model. MSMARCO, NQ & other question-answer datasets were also used." ]
[ 58, 89, 51 ]
[ "passage: TAGS\n#sentence-transformers #pytorch #distilbert #feature-extraction #sentence-similarity #arxiv-2102.07033 #arxiv-2104.08727 #endpoints_compatible #region-us \n### Hyper parameters\n\n\nWe trained on model on a TPU v3-8. We train the model during 80k steps using a batch size of 1024 (128 per TPU core).\nWe use a learning rate warm up of 500. The sequence length was limited to 128 tokens. We used the AdamW optimizer with\na 2e-5 learning rate. The full training script is accessible in this current repository.### Training data\n\n\nWe used the concatenation from multiple Stackexchange Question-Answer datasets to fine-tune our model. MSMARCO, NQ & other question-answer datasets were also used." ]
[ -0.107619509100914, -0.011544960550963879, 0.0003161515633109957, 0.07867102324962616, 0.1514226198196411, 0.03234822675585747, 0.05643847957253456, 0.13480713963508606, -0.07410181313753128, 0.005350389517843723, 0.09991998970508575, 0.07524159550666809, 0.02176021970808506, 0.1384548395872116, -0.04986827075481415, -0.23804971575737, 0.009745080955326557, 0.04456889629364014, 0.011063813231885433, 0.1255563646554947, 0.08781366795301437, -0.0847293958067894, 0.05212041363120079, -0.06149390712380409, -0.16521459817886353, 0.02181730419397354, -0.0402899868786335, -0.041947055608034134, 0.15897119045257568, 0.04069587215781212, 0.08845536410808563, 0.02567392960190773, 0.038997650146484375, -0.10281822830438614, 0.04594957083463669, 0.03729778900742531, 0.0213767122477293, 0.07016958296298981, -0.00040337335667572916, 0.03360503539443016, 0.1656000316143036, -0.05016361549496651, 0.010188726708292961, 0.041068099439144135, -0.08377629518508911, -0.03428267315030098, 0.0004163247940596193, -0.016054406762123108, 0.12927992641925812, 0.11431741714477539, -0.024620410054922104, 0.16012631356716156, -0.12497902661561966, 0.1026528924703598, 0.08034831285476685, -0.3050876557826996, -0.053568314760923386, 0.12895911931991577, 0.08869434148073196, 0.09917297214269638, -0.06760476529598236, -0.014359713532030582, 0.04939495772123337, 0.06445755809545517, 0.044159647077322006, -0.025661341845989227, -0.14648409187793732, 0.03461550176143646, -0.12639127671718597, 0.016333354637026787, 0.1942417323589325, 0.016292540356516838, -0.036096666008234024, -0.04970954358577728, -0.07531709969043732, -0.02586098574101925, -0.02636513113975525, -0.021152472123503685, -0.029350681230425835, 0.02549961395561695, -0.12434743344783783, -0.006255325861275196, -0.11347738653421402, -0.10668840259313583, -0.06385690718889236, 0.0733427107334137, 0.04617138206958771, 0.04515204578638077, -0.08726934343576431, 0.08768808841705322, -0.0570131279528141, -0.06163777783513069, 0.006630187388509512, -0.05382208898663521, -0.09491266310214996, -0.01899104006588459, -0.11625507473945618, -0.13851298391819, 0.046156831085681915, 0.0013277162797749043, 0.030321622267365456, 0.02090553008019924, 0.09889522939920425, 0.03420739620923996, 0.009054973721504211, 0.15401865541934967, -0.05516233667731285, -0.08498905599117279, 0.005856520030647516, 0.017988398671150208, -0.05946394056081772, -0.00904129073023796, -0.1256520301103592, -0.04616599157452583, 0.1100471094250679, 0.03643747791647911, -0.06778091937303543, 0.08580698072910309, 0.013102344237267971, -0.03839106112718582, 0.04883057251572609, -0.08214409649372101, -0.06833696365356445, -0.0008362794178538024, -0.08175837248563766, 0.12153196334838867, -0.04288202151656151, -0.0548212006688118, -0.11131712794303894, 0.007489773910492659, -0.0947263166308403, -0.023608475923538208, -0.0977599173784256, -0.14438320696353912, 0.015616300515830517, -0.11054365336894989, -0.0016936473548412323, -0.1500009149312973, -0.11101586371660233, -0.022162089124321938, 0.025244105607271194, -0.031083663925528526, -0.025997398421168327, -0.12239453196525574, -0.012232525274157524, 0.004363361746072769, -0.019014079123735428, 0.1270172894001007, -0.052365366369485855, 0.08068657666444778, -0.0067435214295983315, 0.08795527368783951, -0.037839245051145554, 0.02742227166891098, -0.0898098349571228, -0.04532158747315407, 0.005826965440064669, 0.047298431396484375, 0.07669947296380997, 0.0896245688199997, -0.09279612451791763, -0.11639373749494553, -0.10615185648202896, -0.0029848443809896708, 0.052797041833400726, 0.09279890358448029, -0.24212023615837097, -0.009583529084920883, 0.1298060566186905, -0.03127403184771538, -0.12606261670589447, 0.1936417818069458, -0.025563016533851624, 0.022269679233431816, 0.09779041260480881, 0.12466970831155777, 0.032343536615371704, -0.07138283550739288, 0.03682396188378334, 0.08413650095462799, -0.060800112783908844, -0.14441844820976257, 0.07646741718053818, 0.07247964292764664, 0.015745099633932114, 0.033271126449108124, 0.04739813134074211, 0.0740932896733284, -0.09191281348466873, -0.03104398027062416, -0.03026524744927883, -0.09198778122663498, -0.05294360592961311, 0.04185757413506508, 0.04463246092200279, -0.09967914968729019, -0.08137023448944092, -0.010583196766674519, 0.13906064629554749, -0.1111147329211235, 0.0341537781059742, -0.10957227647304535, 0.051825642585754395, -0.019742293283343315, 0.02065812051296234, -0.1567559391260147, -0.024181878194212914, 0.013708343729376793, 0.12874701619148254, 0.00486918305978179, 0.16171464323997498, 0.039020832628011703, 0.017404329031705856, -0.02453204244375229, 0.03623904287815094, 0.024960776790976524, -0.02949531562626362, -0.12507936358451843, -0.03914567455649376, -0.049507204443216324, -0.05380600690841675, 0.059886619448661804, -0.09406498074531555, -0.021944282576441765, -0.04123743250966072, -0.026469016447663307, -0.03896225616335869, 0.006864270195364952, 0.01465853676199913, 0.045318834483623505, -0.029483254998922348, -0.05271179601550102, 0.12118460983037949, 0.03574732318520546, -0.07695182412862778, 0.04166274145245552, -0.1570483297109604, -0.044151078909635544, 0.09551706165075302, -0.05552159994840622, -0.023151550441980362, -0.05213062837719917, -0.04470660537481308, -0.022778397426009178, -0.038148120045661926, 0.01041986420750618, 0.19265101850032806, 0.02918737381696701, 0.1530197560787201, -0.10581400245428085, -0.016837485134601593, -0.027392951771616936, 0.004101109690964222, 0.046464212238788605, 0.08703634142875671, -0.016647495329380035, -0.15909993648529053, 0.011898713186383247, 0.001924046198837459, -0.07174619287252426, 0.1417424976825714, -0.012694668024778366, -0.10486353188753128, 0.03503652662038803, 0.012065216898918152, -0.027072597295045853, 0.03246331959962845, -0.123377725481987, -0.04051453247666359, 0.04707634076476097, 0.024027639999985695, 0.06525509059429169, -0.14162981510162354, -0.004619108512997627, -0.013052028603851795, -0.03743874281644821, -0.040814485400915146, 0.026561444625258446, -0.030224721878767014, 0.09146684408187866, 0.03314266726374626, -0.12045254558324814, -0.004475517198443413, -0.03242545202374458, -0.07765715569257736, 0.19889608025550842, -0.041973698884248734, -0.20781485736370087, -0.07064665853977203, 0.028860758990049362, 0.016331175342202187, 0.013427332043647766, 0.04189290478825569, -0.08330442756414413, -0.03612254559993744, -0.05497629567980766, -0.03421755135059357, -0.027058573439717293, 0.0062454151920974255, -0.03490321710705757, 0.04768180847167969, -0.02578262984752655, -0.1332402527332306, 0.005507774651050568, -0.08640044182538986, -0.10014713555574417, 0.07925145328044891, -0.14972950518131256, 0.054716479033231735, 0.22744828462600708, -0.04317566379904747, 0.045000337064266205, -0.05546173080801964, 0.15005183219909668, -0.020718572661280632, 0.016841696575284004, 0.19409915804862976, 0.021863652393221855, 0.002172542968764901, 0.0037022775504738092, -0.007669819053262472, -0.07204394787549973, 0.09916316717863083, -0.014610322192311287, -0.07054492086172104, -0.22001448273658752, -0.07565446197986603, -0.09273862838745117, 0.021273361518979073, 0.0828583836555481, 0.037214718759059906, -0.03214336931705475, 0.06791205704212189, -0.0064201741479337215, -0.008612675592303276, -0.007791262585669756, 0.05839429795742035, 0.05423634499311447, 0.0455690398812294, 0.12874117493629456, -0.04266294464468956, -0.05148348584771156, 0.04847443476319313, 0.019865969195961952, 0.19088411331176758, -0.03830449655652046, 0.10439571738243103, 0.004205267410725355, 0.07697834819555283, 0.045970454812049866, 0.13359107077121735, -0.061209145933389664, -0.042577825486660004, -0.06950153410434723, -0.021205808967351913, -0.05674804747104645, 0.042944490909576416, 0.021257052198052406, -0.028859885409474373, -0.08787117898464203, 0.08371414989233017, 0.06358080357313156, 0.21340100467205048, 0.1272752732038498, -0.27048003673553467, -0.12015790492296219, -0.03435468301177025, -0.05816612392663956, -0.04222405329346657, 0.09205655753612518, 0.16497178375720978, -0.04954703897237778, -0.08871150016784668, -0.021397825330495834, 0.15163911879062653, 0.014423733577132225, 0.039792902767658234, -0.013495557941496372, 0.10055577009916306, -0.024680951610207558, 0.13574306666851044, -0.2768568694591522, 0.16675004363059998, 0.003206007881090045, 0.09616927802562714, -0.07785627245903015, -0.0476103238761425, 0.016641220077872276, 0.008990461006760597, 0.058646898716688156, -0.004301529843360186, -0.048902515321969986, -0.04837610200047493, -0.08237709850072861, 0.07838514447212219, 0.07129646092653275, 0.09220656007528305, 0.09235700219869614, -0.05593695864081383, 0.01761201210319996, 0.037240006029605865, 0.10071415454149246, 0.019918521866202354, -0.06939606368541718, -0.030172882601618767, 0.059685058891773224, -0.04052330181002617, -0.014720561914145947, -0.05545992776751518, -0.03581777960062027, 0.1560344099998474, 0.04441085085272789, -0.0581454373896122, -0.10210967063903809, 0.08351360261440277, 0.10519714653491974, -0.061283212155103683, -0.00686252536252141, 0.04787907376885414, 0.06713097542524338, 0.009386617690324783, -0.08230295777320862, 0.07827106863260269, -0.09081611037254333, -0.05388746038079262, -0.009388635866343975, 0.09835335612297058, -0.004945358727127314, 0.0641142949461937, 0.020736778154969215, -0.024976689368486404, -0.10162448137998581, -0.061563197523355484, -0.05592181906104088, -0.07312122732400894, 0.12617120146751404, 0.02711513452231884, -0.10389655083417892, 0.0733015388250351, -0.08904336392879486, 0.0022245715372264385, 0.1831001192331314, 0.08454117178916931, -0.0523066483438015, -0.011053640395402908, 0.15945935249328613, -0.009433887898921967, -0.20668798685073853, -0.05809224024415016, 0.02116422913968563, 0.037877537310123444, -0.06520652025938034, -0.10377984493970871, 0.05651244893670082, 0.07386010140180588, 0.03440892696380615, -0.031110337004065514, -0.31985804438591003, -0.09646377712488174, 0.1273529976606369, 0.06907078623771667, 0.3356683850288391, -0.10028314590454102, 0.06654627621173859, -0.04004988074302673, -0.09711587429046631, 0.1132831797003746, -0.06129363551735878, 0.15617763996124268, -0.04472962021827698, 0.04695243760943413, 0.03939494490623474, -0.05712687224149704, 0.029604684561491013, 0.06642308831214905, 0.06216062605381012, -0.020101172849535942, 0.008067520335316658, -0.014320624992251396, -0.03930109739303589, 0.12230769544839859, -0.10209278762340546, 0.0792534351348877, -0.08466939628124237, -0.05776152387261391, -0.047072723507881165, -0.02024860493838787, 0.0680057555437088, -0.06420744955539703, -0.05034441873431206, 0.05614398792386055, 0.03491232171654701, 0.02146001160144806, 0.05175652354955673, -0.048429373651742935, 0.07507668435573578, 0.06607777625322342, 0.13112027943134308, -0.16557979583740234, -0.015144930221140385, 0.0039034844376146793, 0.009522460401058197, 0.06572654843330383, -0.12255554646253586, 0.02843579463660717, 0.1277208924293518, -0.0029924053233116865, 0.1169910877943039, 0.09692669659852982, 0.0019569136202335358, -0.014923890121281147, 0.06181403249502182, -0.10706306248903275, -0.04240228608250618, -0.037579599767923355, -0.06573614478111267, -0.07244385778903961, 0.006888199131935835, 0.07310683280229568, -0.0591655895113945, -0.004307246766984463, -0.003567789914086461, 0.011171218939125538, -0.04582742974162102, 0.22375060617923737, 0.07680784910917282, 0.05083082243800163, -0.09161290526390076, 0.08089859038591385, 0.04031677171587944, -0.07485782355070114, 0.024872859939932823, 0.10420071333646774, -0.12022171914577484, -0.061233848333358765, 0.05438123270869255, 0.030118567869067192, -0.06736268848180771, -0.05874708667397499, -0.10955744981765747, -0.042120032012462616, 0.044497597962617874, 0.09321732819080353, 0.08442241698503494, 0.07047630101442337, -0.09905728697776794, -0.020288513973355293, -0.16423657536506653, 0.06287086755037308, 0.045188285410404205, 0.01117880642414093, -0.04059707000851631, 0.2132607400417328, -0.00798781868070364, 0.09490954130887985, -0.05835263803601265, -0.03835571929812431, -0.0744435116648674, 0.05504828691482544, -0.11472757905721664, -0.014221172779798508, -0.02018604427576065, -0.013031869195401669, -0.029542166739702225, -0.012096174992620945, -0.04705501347780228, 0.007701840717345476, -0.06183018907904625, 0.01738811656832695, -0.006156331393867731, 0.0035587886814028025, -0.02173062413930893, -0.04212232306599617, 0.003147274488583207, -0.04189672693610191, 0.07298050820827484, 0.08148495107889175, -0.07549776136875153, 0.09016480296850204, -0.11219381541013718, -0.045394089072942734, 0.033508624881505966, 0.0825466439127922, 0.03924029320478439, -0.02628934755921364, 0.04371939226984978, 0.04953811317682266, 0.05504428967833519, 0.01938062347471714, 0.042714137583971024, -0.06590580940246582, -0.027530746534466743, -0.0901041105389595, -0.05185249075293541, -0.08343109488487244, -0.019328523427248, 0.03222256153821945, 0.14635032415390015, 0.134897843003273, -0.0731162279844284, 0.02679183892905712, -0.1530652940273285, 0.0011474870843812823, 0.008747385814785957, -0.08578924089670181, -0.05966704338788986, -0.07160710543394089, 0.07892166823148727, -0.02514783665537834, 0.09959197789430618, -0.010863736271858215, 0.023079657927155495, 0.0030676855240017176, 0.009822322055697441, 0.02658110484480858, -0.06848569214344025, 0.2411973476409912, 0.05544790253043175, -0.015014796517789364, -0.010538127273321152, 0.07185199856758118, 0.06631007790565491, 0.15118877589702606, 0.2018629014492035, 0.095527783036232, 0.052676327526569366, 0.1546907126903534, -0.033806655555963516, 0.009892944246530533, -0.0029573761858046055, 0.004205483477562666, -0.047568026930093765, 0.029340269044041634, -0.03121141716837883, 0.15925556421279907, 0.1884658932685852, -0.10161367803812027, 0.028819048777222633, -0.05271284282207489, -0.09970629215240479, -0.12876032292842865, -0.028396926820278168, -0.08435966074466705, -0.12647797167301178, -0.004128739237785339, -0.14613063633441925, -0.012726468034088612, 0.13537734746932983, 0.04812866449356079, -0.044438865035772324, 0.09210871160030365, 0.004021608270704746, -0.04428541660308838, 0.08618442714214325, -0.042640719562768936, 0.052749525755643845, 0.008937866427004337, -0.01744931936264038, 0.05409996956586838, -0.05284121632575989, 0.08281063288450241, -0.031227992847561836, 0.06210196763277054, 0.027601461857557297, -0.05841466411948204, -0.07226134836673737, -0.05439087375998497, 0.032937534153461456, 0.02257438376545906, 0.12334415316581726, 0.05864601209759712, -0.0316515751183033, 0.014134629629552364, 0.2066032886505127, -0.042947884649038315, -0.15532398223876953, -0.1143733337521553, 0.2692718207836151, 0.08154913038015366, -0.010377161204814911, 0.042899832129478455, -0.029105689376592636, -0.03234926238656044, 0.2369115799665451, 0.14168782532215118, -0.12316159904003143, -0.03215686231851578, 0.01722848415374756, 0.009495915845036507, -0.02363581210374832, 0.17933538556098938, 0.10941079258918762, 0.12487515807151794, -0.04484620690345764, -0.01633629947900772, -0.04169593006372452, 0.005421624053269625, -0.04965219274163246, 0.025633618235588074, 0.0478278212249279, -0.020744672045111656, -0.02174682356417179, 0.07409665733575821, -0.04961546137928963, 0.001354576786980033, -0.0751543790102005, -0.06481189280748367, -0.1180269867181778, -0.01811348646879196, 0.007050071377307177, 0.023889217525720596, 0.13196301460266113, -0.08174201846122742, 0.07883115857839584, 0.0002498155226930976, -0.021577468141913414, -0.09988191723823547, -0.07583214342594147, 0.11709257960319519, -0.04856035113334656, 0.015079585835337639, -0.021373504772782326, 0.11121487617492676, 0.08456264436244965, 0.038006462156772614, -0.07242193073034286, 0.1362195909023285, -0.023956801742315292, -0.02196536399424076, 0.09934454411268234, 0.060568053275346756, -0.054795145988464355, -0.012719258666038513, 0.04653681069612503, -0.09394115209579468, -0.016116667538881302, -0.05957403779029846, 0.02621525526046753, -0.09531298279762268, 0.024979325011372566, -0.03346613422036171, 0.14447715878486633, 0.16335400938987732, -0.03734242916107178, -0.011015526950359344, -0.0669778436422348, 0.008867824450135231, 0.006210723891854286, -0.008531640283763409, -0.08376273512840271, -0.1720184087753296, -0.03321151062846184, -0.07625310868024826, -0.04339445009827614, -0.2127382904291153, 0.0015520089073106647, -0.08475358039140701, -0.0663481280207634, -0.06987074762582779, 0.11966236680746078, 0.04864545539021492, 0.02476862445473671, -0.047372542321681976, 0.004976646974682808, -0.01046840101480484, 0.0795605331659317, -0.20907072722911835, -0.14774379134178162 ]
null
null
sentence-transformers
# multi-qa_v1-mpnet-cls_dot ## Model Description SentenceTransformers is a set of models and frameworks that enable training and generating sentence embeddings from given data. The generated sentence embeddings can be utilized for Clustering, Semantic Search and other tasks. We used a pretrained [microsoft/mpnet-base](https://huggingface.co/microsoft/mpnet-base) model and trained it using Siamese Network setup and contrastive learning objective. Question and answer pairs from StackExchange was used as training data to make the model robust to Question / Answer embedding similarity. For this model, cls output was used instead of mean pooling as sentence embeddings. Dot product was used to calculate similarity for learning objective. We developed this model during the [Community week using JAX/Flax for NLP & CV](https://discuss.huggingface.co/t/open-to-the-community-community-week-using-jax-flax-for-nlp-cv/7104), organized by Hugging Face. We developed this model as part of the project: [Train the Best Sentence Embedding Model Ever with 1B Training Pairs](https://discuss.huggingface.co/t/train-the-best-sentence-embedding-model-ever-with-1b-training-pairs/7354). We benefited from efficient hardware infrastructure to run the project: 7 TPUs v3-8, as well as assistance from Google’s Flax, JAX, and Cloud team members about efficient deep learning frameworks. ## Intended uses Our model is intended to be used as a sentence encoder for a search engine. Given an input sentence, it outputs a vector which captures the sentence semantic information. The sentence vector may be used for semantic-search, clustering or sentence similarity tasks. ## How to use Here is how to use this model to get the features of a given text using [SentenceTransformers](https://github.com/UKPLab/sentence-transformers) library: ```python from sentence_transformers import SentenceTransformer model = SentenceTransformer('flax-sentence-embeddings/multi-qa_v1-mpnet-cls_dot') text = "Replace me by any question / answer you'd like." text_embbedding = model.encode(text) # array([-0.01559514, 0.04046123, 0.1317083 , 0.00085931, 0.04585106, # -0.05607086, 0.0138078 , 0.03569756, 0.01420381, 0.04266302 ...], # dtype=float32) ``` # Training procedure ## Pre-training We use the pretrained [microsoft/mpnet-base](https://huggingface.co/microsoft/mpnet-base). Please refer to the model card for more detailed information about the pre-training procedure. ## Fine-tuning We fine-tune the model using a contrastive objective. Formally, we compute the cosine similarity from each possible sentence pairs from the batch. We then apply the cross entropy loss by comparing with true pairs. ### Hyper parameters We trained on model on a TPU v3-8. We train the model during 80k steps using a batch size of 1024 (128 per TPU core). We use a learning rate warm up of 500. The sequence length was limited to 128 tokens. We used the AdamW optimizer with a 2e-5 learning rate. The full training script is accessible in this current repository. ### Training data We used the concatenation from multiple Stackexchange Question-Answer datasets to fine-tune our model. MSMARCO, NQ & other question-answer datasets were also used. | Dataset | Paper | Number of training tuples | |:--------------------------------------------------------:|:----------------------------------------:|:--------------------------:| | [Stack Exchange QA - Title & Answer](https://huggingface.co/datasets/flax-sentence-embeddings/stackexchange_title_best_voted_answer_jsonl) | - | 4,750,619 | | [Stack Exchange](https://huggingface.co/datasets/flax-sentence-embeddings/stackexchange_title_body_jsonl) | - | 364,001 | | [TriviaqQA](https://huggingface.co/datasets/trivia_qa) | - | 73,346 | | [SQuAD2.0](https://rajpurkar.github.io/SQuAD-explorer/) | [paper](https://aclanthology.org/P18-2124.pdf) | 87,599 | | [Quora Question Pairs](https://quoradata.quora.com/First-Quora-Dataset-Release-Question-Pairs) | - | 103,663 | | [Eli5](https://huggingface.co/datasets/eli5) | [paper](https://doi.org/10.18653/v1/p19-1346) | 325,475 | | [PAQ](https://github.com/facebookresearch/PAQ) | [paper](https://arxiv.org/abs/2102.07033) | 64,371,441 | | [WikiAnswers](https://github.com/afader/oqa#wikianswers-corpus) | [paper](https://doi.org/10.1145/2623330.2623677) | 77,427,422 | | [MS MARCO](https://microsoft.github.io/msmarco/) | [paper](https://doi.org/10.1145/3404835.3462804) | 9,144,553 | | [GOOAQ: Open Question Answering with Diverse Answer Types](https://github.com/allenai/gooaq) | [paper](https://arxiv.org/pdf/2104.08727.pdf) | 3,012,496 | | [Yahoo Answers](https://www.kaggle.com/soumikrakshit/yahoo-answers-dataset) Question/Answer | [paper](https://proceedings.neurips.cc/paper/2015/hash/250cf8b51c773f3f8dc8b4be867a9a02-Abstract.html) | 681,164 | | SearchQA | - | 582,261 | | [Natural Questions (NQ)](https://ai.google.com/research/NaturalQuestions) | [paper](https://transacl.org/ojs/index.php/tacl/article/view/1455) | 100,231 |
{"tags": ["sentence-transformers", "feature-extraction", "sentence-similarity"], "pipeline_tag": "sentence-similarity"}
sentence-similarity
flax-sentence-embeddings/multi-qa_v1-mpnet-cls_dot
[ "sentence-transformers", "pytorch", "mpnet", "feature-extraction", "sentence-similarity", "arxiv:2102.07033", "arxiv:2104.08727", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[ "2102.07033", "2104.08727" ]
[]
TAGS #sentence-transformers #pytorch #mpnet #feature-extraction #sentence-similarity #arxiv-2102.07033 #arxiv-2104.08727 #endpoints_compatible #region-us
multi-qa\_v1-mpnet-cls\_dot =========================== Model Description ----------------- SentenceTransformers is a set of models and frameworks that enable training and generating sentence embeddings from given data. The generated sentence embeddings can be utilized for Clustering, Semantic Search and other tasks. We used a pretrained microsoft/mpnet-base model and trained it using Siamese Network setup and contrastive learning objective. Question and answer pairs from StackExchange was used as training data to make the model robust to Question / Answer embedding similarity. For this model, cls output was used instead of mean pooling as sentence embeddings. Dot product was used to calculate similarity for learning objective. We developed this model during the Community week using JAX/Flax for NLP & CV, organized by Hugging Face. We developed this model as part of the project: Train the Best Sentence Embedding Model Ever with 1B Training Pairs. We benefited from efficient hardware infrastructure to run the project: 7 TPUs v3-8, as well as assistance from Google’s Flax, JAX, and Cloud team members about efficient deep learning frameworks. Intended uses ------------- Our model is intended to be used as a sentence encoder for a search engine. Given an input sentence, it outputs a vector which captures the sentence semantic information. The sentence vector may be used for semantic-search, clustering or sentence similarity tasks. How to use ---------- Here is how to use this model to get the features of a given text using SentenceTransformers library: Training procedure ================== Pre-training ------------ We use the pretrained microsoft/mpnet-base. Please refer to the model card for more detailed information about the pre-training procedure. Fine-tuning ----------- We fine-tune the model using a contrastive objective. Formally, we compute the cosine similarity from each possible sentence pairs from the batch. We then apply the cross entropy loss by comparing with true pairs. ### Hyper parameters We trained on model on a TPU v3-8. We train the model during 80k steps using a batch size of 1024 (128 per TPU core). We use a learning rate warm up of 500. The sequence length was limited to 128 tokens. We used the AdamW optimizer with a 2e-5 learning rate. The full training script is accessible in this current repository. ### Training data We used the concatenation from multiple Stackexchange Question-Answer datasets to fine-tune our model. MSMARCO, NQ & other question-answer datasets were also used.
[ "### Hyper parameters\n\n\nWe trained on model on a TPU v3-8. We train the model during 80k steps using a batch size of 1024 (128 per TPU core).\nWe use a learning rate warm up of 500. The sequence length was limited to 128 tokens. We used the AdamW optimizer with\na 2e-5 learning rate. The full training script is accessible in this current repository.", "### Training data\n\n\nWe used the concatenation from multiple Stackexchange Question-Answer datasets to fine-tune our model. MSMARCO, NQ & other question-answer datasets were also used." ]
[ "TAGS\n#sentence-transformers #pytorch #mpnet #feature-extraction #sentence-similarity #arxiv-2102.07033 #arxiv-2104.08727 #endpoints_compatible #region-us \n", "### Hyper parameters\n\n\nWe trained on model on a TPU v3-8. We train the model during 80k steps using a batch size of 1024 (128 per TPU core).\nWe use a learning rate warm up of 500. The sequence length was limited to 128 tokens. We used the AdamW optimizer with\na 2e-5 learning rate. The full training script is accessible in this current repository.", "### Training data\n\n\nWe used the concatenation from multiple Stackexchange Question-Answer datasets to fine-tune our model. MSMARCO, NQ & other question-answer datasets were also used." ]
[ 57, 89, 51 ]
[ "passage: TAGS\n#sentence-transformers #pytorch #mpnet #feature-extraction #sentence-similarity #arxiv-2102.07033 #arxiv-2104.08727 #endpoints_compatible #region-us \n### Hyper parameters\n\n\nWe trained on model on a TPU v3-8. We train the model during 80k steps using a batch size of 1024 (128 per TPU core).\nWe use a learning rate warm up of 500. The sequence length was limited to 128 tokens. We used the AdamW optimizer with\na 2e-5 learning rate. The full training script is accessible in this current repository.### Training data\n\n\nWe used the concatenation from multiple Stackexchange Question-Answer datasets to fine-tune our model. MSMARCO, NQ & other question-answer datasets were also used." ]
[ -0.10176990181207657, 0.0030192879494279623, 0.000385324121452868, 0.0693395733833313, 0.14555634558200836, 0.0222961213439703, 0.06459968537092209, 0.1272008866071701, -0.10825201123952866, -0.0005302892532199621, 0.11519941687583923, 0.07079561054706573, 0.016736803576350212, 0.13208144903182983, -0.03777550905942917, -0.23173284530639648, 0.019220588728785515, 0.0460193008184433, -0.006121407728642225, 0.12486038357019424, 0.0871136486530304, -0.0821736603975296, 0.06160059571266174, -0.04868645593523979, -0.1596325933933258, 0.019094962626695633, -0.049705442041158676, -0.03574660047888756, 0.15385203063488007, 0.03821118548512459, 0.08448491990566254, -0.001331099309027195, 0.028794841840863228, -0.10984338819980621, 0.04335286095738411, 0.05061326548457146, 0.023307185620069504, 0.07566959410905838, 0.0035427510738372803, 0.04922212287783623, 0.18402016162872314, -0.042221471667289734, 0.00028473808197304606, 0.037594024091959, -0.06377910822629929, -0.017198488116264343, 0.0052946386858820915, -0.009854769334197044, 0.12421821802854538, 0.12412617355585098, -0.021558523178100586, 0.2150367796421051, -0.12555697560310364, 0.10403890907764435, 0.08793579041957855, -0.30804678797721863, -0.05650604888796806, 0.1635209023952484, 0.10754553973674774, 0.11273767799139023, -0.0648164302110672, -0.011571235954761505, 0.043408337980508804, 0.06082170084118843, 0.03255114704370499, -0.023530833423137665, -0.12538325786590576, 0.030476827174425125, -0.1405848264694214, 0.016363730654120445, 0.18962077796459198, 0.02332526631653309, -0.018337754532694817, -0.04519561678171158, -0.08441217243671417, -0.0401068739593029, -0.02457953244447708, -0.007585596293210983, -0.025172218680381775, 0.026366980746388435, -0.12424775213003159, 0.003717830404639244, -0.10296113789081573, -0.09608998894691467, -0.062344279140233994, 0.06523139774799347, 0.0526951365172863, 0.06138192489743233, -0.0900762528181076, 0.07173537462949753, -0.06810933351516724, -0.04425716772675514, 0.021400118246674538, -0.06209508329629898, -0.08462399244308472, -0.008255553431808949, -0.10832937061786652, -0.14776401221752167, 0.06179920583963394, -0.0036537284031510353, 0.03280527889728546, 0.032735276967287064, 0.10347502678632736, 0.04692847281694412, 0.00984923169016838, 0.1282249093055725, -0.06988608092069626, -0.09165944904088974, 0.0019521176582202315, 0.00988774560391903, -0.05437793582677841, -0.006641058251261711, -0.12088190764188766, -0.03201499581336975, 0.10286135971546173, 0.02675202302634716, -0.05403180420398712, 0.09162892401218414, 0.03384377807378769, -0.04374063387513161, 0.055992767214775085, -0.07279195636510849, -0.058014750480651855, 0.0028025531210005283, -0.08385539054870605, 0.1206040158867836, -0.042791590094566345, -0.03851033002138138, -0.12029222398996353, 0.002990029053762555, -0.0944938063621521, -0.02071494795382023, -0.09747405350208282, -0.14812727272510529, 0.023543233051896095, -0.09898999333381653, -0.008085533045232296, -0.14952048659324646, -0.08088979125022888, -0.02644854225218296, 0.04536393657326698, -0.015767384320497513, -0.03159342706203461, -0.11224215477705002, -0.028221286833286285, 0.0011395704932510853, -0.015496774576604366, 0.14498122036457062, -0.059430237859487534, 0.06232423707842827, -0.02562009170651436, 0.08368723094463348, -0.03368768095970154, 0.020452266559004784, -0.07693160325288773, -0.047242000699043274, 0.000932652794290334, 0.028094124048948288, 0.05989738553762436, 0.09107336401939392, -0.08817888051271439, -0.1097097396850586, -0.10424217581748962, -0.009525748901069164, 0.04461120441555977, 0.08902805298566818, -0.2060127705335617, -0.006033561658114195, 0.11595350503921509, -0.03284318000078201, -0.12615565955638885, 0.1921774446964264, -0.025271475315093994, -0.0030192576814442873, 0.09081625938415527, 0.11983560770750046, 0.03833804279565811, -0.07581712305545807, 0.03776082396507263, 0.08135979622602463, -0.0690058246254921, -0.17782527208328247, 0.07968351989984512, 0.07800114899873734, 0.018136968836188316, 0.024643409997224808, 0.03444754704833031, 0.07295987010002136, -0.09700900316238403, -0.03587464615702629, -0.02694951370358467, -0.09419586509466171, -0.07399772852659225, 0.04316287115216255, 0.044454917311668396, -0.09978996217250824, -0.07757280021905899, -0.012626114301383495, 0.14822113513946533, -0.107449471950531, 0.04083552956581116, -0.10423371940851212, 0.027514688670635223, -0.042324136942625046, 0.02195550501346588, -0.14524652063846588, -0.03554140403866768, 0.01241219975054264, 0.08258061110973358, 0.0038567001465708017, 0.15667027235031128, 0.03796377405524254, 0.01869661547243595, -0.01802171766757965, 0.050478387624025345, 0.0378282368183136, -0.025234974920749664, -0.12975388765335083, -0.061902694404125214, -0.047695960849523544, -0.04621616750955582, 0.055791258811950684, -0.10373686999082565, -0.022416377440094948, -0.06403455138206482, -0.013995498418807983, -0.04753124341368675, 0.0016260955017060041, 0.013429496437311172, 0.03545032814145088, -0.031147094443440437, -0.047947514802217484, 0.11802304536104202, 0.03835210204124451, -0.07206694781780243, 0.0596214197576046, -0.1531161665916443, -0.030063731595873833, 0.1071290522813797, -0.0791114866733551, -0.005310003645718098, -0.04392753541469574, -0.044152211397886276, -0.03915320336818695, -0.034348517656326294, 0.01973562501370907, 0.1755094677209854, 0.03161980211734772, 0.14932768046855927, -0.1085847020149231, -0.01938934251666069, -0.016592342406511307, -0.008127358742058277, 0.051501404494047165, 0.08793024718761444, 0.0009304435807280242, -0.15785843133926392, 0.018441878259181976, -0.010011203587055206, -0.08352500200271606, 0.12966494262218475, -0.008662739768624306, -0.0970139279961586, 0.03871239721775055, 0.014603632502257824, -0.0258058812469244, 0.026080990210175514, -0.14841443300247192, -0.04910038411617279, 0.04544634744524956, 0.03822806105017662, 0.08072259277105331, -0.1346861869096756, -0.0017977701500058174, -0.024055594578385353, -0.031091291457414627, -0.03157651796936989, 0.006704437080770731, -0.03611595556139946, 0.08584550023078918, 0.03876810520887375, -0.14153538644313812, -0.0017096416559070349, -0.03745906427502632, -0.07887238264083862, 0.20025233924388885, -0.045896533876657486, -0.2061891108751297, -0.06778977066278458, 0.009145617485046387, -0.016277693212032318, 0.005374759901314974, 0.02918604388833046, -0.08744572848081589, -0.03787558898329735, -0.06397803127765656, -0.04638317972421646, -0.03683268651366234, 0.015351844020187855, -0.0332002267241478, 0.05339343100786209, -0.014432519674301147, -0.13655205070972443, 0.012926794588565826, -0.09852235019207001, -0.08951222151517868, 0.08068589121103287, -0.15097326040267944, 0.055096350610256195, 0.2359292060136795, -0.04463142529129982, 0.047464579343795776, -0.027914419770240784, 0.145344540476799, -0.021611452102661133, 0.007832148112356663, 0.17171213030815125, 0.02473500743508339, 0.00701927300542593, -0.002658944809809327, -0.0009881067089736462, -0.06537291407585144, 0.09957452118396759, -0.003847848391160369, -0.07270993292331696, -0.23096133768558502, -0.08836296945810318, -0.08454284071922302, 0.024053221568465233, 0.07917682081460953, 0.04992194101214409, -0.03800429403781891, 0.06614778935909271, 0.0008272784180007875, -0.028265975415706635, 0.0012514195404946804, 0.060055505484342575, 0.03984925523400307, 0.04804253578186035, 0.13000598549842834, -0.04150041565299034, -0.05398467928171158, 0.048287004232406616, 0.021117066964507103, 0.1869484931230545, -0.02973470836877823, 0.09649183601140976, 0.012919244356453419, 0.08857369422912598, 0.04943512752652168, 0.1334388256072998, -0.056258730590343475, -0.04597887024283409, -0.058461517095565796, -0.02356543019413948, -0.04365202412009239, 0.043714091181755066, 0.016595974564552307, -0.0384981743991375, -0.06160908564925194, 0.08615179359912872, 0.0638640895485878, 0.21415835618972778, 0.12668877840042114, -0.2825113534927368, -0.10188447684049606, -0.046966925263404846, -0.06883589923381805, -0.0431460440158844, 0.09628716111183167, 0.17062774300575256, -0.05190737545490265, -0.08238311111927032, -0.028541289269924164, 0.15814512968063354, 0.0027554661501199007, 0.03829558566212654, -0.006011968944221735, 0.09756055474281311, -0.025488050654530525, 0.13289624452590942, -0.2460152506828308, 0.16548551619052887, -0.0025163195095956326, 0.08074146509170532, -0.07957662642002106, -0.0538526214659214, 0.01917634904384613, 0.02063247747719288, 0.03759729862213135, 0.00849913153797388, -0.02801007777452469, -0.031686071306467056, -0.10037308931350708, 0.07764581590890884, 0.07248345017433167, 0.11241386085748672, 0.0860690101981163, -0.045612215995788574, 0.008834301494061947, 0.039205387234687805, 0.10590583086013794, 0.028988922014832497, -0.0514240488409996, -0.038231391459703445, 0.08731083571910858, -0.0519859604537487, -0.009716670028865337, -0.05461094528436661, -0.04901877045631409, 0.18522822856903076, 0.05850154906511307, -0.053876474499702454, -0.08685695379972458, 0.05786939710378647, 0.11166336387395859, -0.05090008303523064, -0.0051442706026136875, 0.03958900272846222, 0.07931209355592728, 0.011113965883851051, -0.07464822381734848, 0.09162895381450653, -0.09749659895896912, -0.04462805762887001, -0.011754419654607773, 0.0946161076426506, 0.006129564251750708, 0.055490847676992416, 0.010913298465311527, -0.025558533146977425, -0.12396753579378128, -0.06460284441709518, -0.07326973974704742, -0.06338700652122498, 0.11740972846746445, 0.03687354177236557, -0.08485610783100128, 0.0833982527256012, -0.08409029245376587, -0.004291674587875605, 0.17751388251781464, 0.09074080735445023, -0.04755697771906853, -0.02382943406701088, 0.18824802339076996, -0.006986718159168959, -0.21325895190238953, -0.05228681489825249, 0.0234239362180233, 0.01844414882361889, -0.07439902424812317, -0.07768047600984573, 0.08224742114543915, 0.07849309593439102, 0.028029989451169968, -0.02494662255048752, -0.32437267899513245, -0.08802469074726105, 0.12023837864398956, 0.060588933527469635, 0.3446388244628906, -0.10338202118873596, 0.06773968040943146, -0.05104329064488411, -0.0922134593129158, 0.11712060868740082, -0.08792420476675034, 0.1549120545387268, -0.0372651107609272, 0.04592977836728096, 0.027195919305086136, -0.07054689526557922, 0.02718341164290905, 0.08172409981489182, 0.06038461625576019, -0.023478953167796135, 0.02727627567946911, -0.005035842768847942, -0.03824752941727638, 0.13045555353164673, -0.09724336862564087, 0.0660700798034668, -0.0914238765835762, -0.05016560107469559, -0.0507335364818573, -0.023194491863250732, 0.07059776037931442, -0.06179080903530121, -0.05647001415491104, 0.047799043357372284, 0.03991794213652611, 0.03231372311711311, 0.07792642712593079, -0.034978173673152924, 0.07147952169179916, 0.10318443179130554, 0.11343339085578918, -0.1895885020494461, -0.03350284695625305, 0.014345556497573853, 0.009007047861814499, 0.07000856101512909, -0.12231273949146271, 0.028060175478458405, 0.12580138444900513, -0.015485319308936596, 0.09521041810512543, 0.09010690450668335, -0.014154856093227863, -0.03546275943517685, 0.05634130910038948, -0.10179569572210312, -0.009248381480574608, -0.025539826601743698, -0.05418514087796211, -0.06740089505910873, 0.02502373233437538, 0.07694563269615173, -0.07743971049785614, 0.006940566468983889, -0.002638533478602767, 0.013291696086525917, -0.059480857104063034, 0.230992391705513, 0.08727793395519257, 0.05142839998006821, -0.09888341277837753, 0.09367373585700989, 0.03652067482471466, -0.06601041555404663, 0.012561107985675335, 0.12172964960336685, -0.13125300407409668, -0.06489241868257523, 0.06892171502113342, 0.03004859946668148, -0.07410047948360443, -0.07189204543828964, -0.10576388239860535, -0.0327177420258522, 0.05500003322958946, 0.06463448703289032, 0.08978735655546188, 0.06473378837108612, -0.0849599540233612, -0.024425029754638672, -0.17266394197940826, 0.05642776936292648, 0.039919089525938034, 0.016436727717518806, -0.05037451162934303, 0.19331541657447815, 0.005623772740364075, 0.08871370553970337, -0.05910122022032738, -0.03351762518286705, -0.06990443170070648, 0.06487152725458145, -0.11044885963201523, -0.02071484550833702, -0.020668940618634224, -0.015222709625959396, -0.034323129802942276, -0.00911817979067564, -0.06017037853598595, 0.011304277926683426, -0.062211774289608, 0.01437597069889307, -0.009604948572814465, -0.010851841419935226, -0.017031854018568993, -0.03793743997812271, 0.00173460622318089, -0.03885198011994362, 0.06619451940059662, 0.07876333594322205, -0.07622107863426208, 0.07547341287136078, -0.09618479758501053, -0.04314689338207245, 0.03952619433403015, 0.08105260133743286, 0.033926334232091904, -0.03344832733273506, 0.03887460008263588, 0.058678917586803436, 0.06814707070589066, 0.01792752929031849, 0.05162792652845383, -0.07035326212644577, -0.03342782333493233, -0.10695900022983551, -0.05040914565324783, -0.07310687750577927, -0.03618071973323822, 0.029848292469978333, 0.15372461080551147, 0.14345309138298035, -0.06178105250000954, 0.017293239012360573, -0.1421319991350174, 0.0021466491743922234, 0.012728695757687092, -0.09600444883108139, -0.03804221749305725, -0.05018658936023712, 0.07486820966005325, -0.03397979587316513, 0.12965142726898193, -0.00603328924626112, 0.002353870077058673, 0.005667187739163637, 0.013291573151946068, 0.00031860917806625366, -0.0663231685757637, 0.22553633153438568, 0.06460919976234436, -0.010419541969895363, 0.0024138404987752438, 0.07300585508346558, 0.07391136884689331, 0.13633368909358978, 0.1793295294046402, 0.09188342839479446, 0.08143135905265808, 0.15870627760887146, -0.019348252564668655, 0.01297235768288374, -0.015747234225273132, 0.01391354575753212, -0.06315222382545471, 0.04658644273877144, -0.03941963613033295, 0.15700608491897583, 0.2020493447780609, -0.08612097054719925, 0.01899106241762638, -0.05414808914065361, -0.09816708415746689, -0.13407520949840546, -0.041377317160367966, -0.0877678394317627, -0.1391288936138153, -0.011801941320300102, -0.1398751139640808, -0.019006356596946716, 0.16120509803295135, 0.06150110065937042, -0.037652574479579926, 0.08583378046751022, 0.0005344680976122618, -0.050294581800699234, 0.06644094735383987, -0.04530436545610428, 0.04637277498841286, 0.023720743134617805, -0.013684424571692944, 0.05642768740653992, -0.057781293988227844, 0.09145648032426834, -0.029324572533369064, 0.06344737112522125, 0.051923271268606186, -0.05314009636640549, -0.07937851548194885, -0.06074468791484833, 0.02267121523618698, 0.024034610018134117, 0.11673004925251007, 0.05226880684494972, -0.03500916808843613, 0.011135965585708618, 0.19895559549331665, -0.05227300152182579, -0.16341863572597504, -0.10706060379743576, 0.2564723491668701, 0.07294973731040955, -0.002915269462391734, 0.019674597308039665, -0.02203010953962803, -0.052023518830537796, 0.2475235015153885, 0.17854593694210052, -0.12119569629430771, -0.03658841922879219, 0.0363403744995594, 0.003435802413150668, -0.03403693810105324, 0.17322273552417755, 0.12124014645814896, 0.11891744285821915, -0.039560843259096146, -0.001293185050599277, -0.04708721116185188, 0.009354161098599434, -0.05898667499423027, -0.003379418281838298, 0.053373437374830246, -0.020817765966057777, -0.023449914529919624, 0.07213601469993591, -0.05492579936981201, -0.0003483033215161413, -0.08069774508476257, -0.0573260672390461, -0.11419372260570526, -0.00904457364231348, 0.00988570973277092, 0.02693147584795952, 0.13006716966629028, -0.07479394972324371, 0.08087526261806488, -0.023078618571162224, -0.029248476028442383, -0.1035420224070549, -0.11002979427576065, 0.11297078430652618, -0.04120108485221863, 0.019171349704265594, -0.013938444666564465, 0.11468902230262756, 0.0825522169470787, 0.015040754340589046, -0.07635404914617538, 0.13330896198749542, -0.022043298929929733, -0.03312951698899269, 0.08351008594036102, 0.04169131815433502, -0.05618346109986305, 0.003712727688252926, 0.0400078147649765, -0.07784446328878403, -0.029381822794675827, -0.07613963633775711, 0.04864327982068062, -0.0943789929151535, 0.014330507256090641, -0.032243210822343826, 0.14337919652462006, 0.15483787655830383, -0.04040837287902832, -0.009926708415150642, -0.07456133514642715, -0.003280277829617262, -0.004009875003248453, -0.02166360430419445, -0.0752733126282692, -0.19368398189544678, -0.03194495290517807, -0.0848146453499794, -0.02708415500819683, -0.1994532197713852, 0.008028795942664146, -0.08570487052202225, -0.0696050226688385, -0.06776420772075653, 0.10207614302635193, 0.040499381721019745, 0.01973174884915352, -0.05678435415029526, 0.008951513096690178, -0.005198484752327204, 0.0773458406329155, -0.2007652223110199, -0.16041189432144165 ]
null
null
sentence-transformers
# multi-qa_v1-mpnet-mean_cos ## Model Description SentenceTransformers is a set of models and frameworks that enable training and generating sentence embeddings from given data. The generated sentence embeddings can be utilized for Clustering, Semantic Search and other tasks. We used a pretrained [microsoft/mpnet-base](https://huggingface.co/microsoft/mpnet-base) model and trained it using Siamese Network setup and contrastive learning objective. Question and answer pairs from StackExchange was used as training data to make the model robust to Question / Answer embedding similarity. For this model, mean pooling of hidden states were used as sentence embeddings. We developed this model during the [Community week using JAX/Flax for NLP & CV](https://discuss.huggingface.co/t/open-to-the-community-community-week-using-jax-flax-for-nlp-cv/7104), organized by Hugging Face. We developed this model as part of the project: [Train the Best Sentence Embedding Model Ever with 1B Training Pairs](https://discuss.huggingface.co/t/train-the-best-sentence-embedding-model-ever-with-1b-training-pairs/7354). We benefited from efficient hardware infrastructure to run the project: 7 TPUs v3-8, as well as assistance from Google’s Flax, JAX, and Cloud team members about efficient deep learning frameworks. ## Intended uses Our model is intended to be used as a sentence encoder for a search engine. Given an input sentence, it outputs a vector which captures the sentence semantic information. The sentence vector may be used for semantic-search, clustering or sentence similarity tasks. ## How to use Here is how to use this model to get the features of a given text using [SentenceTransformers](https://github.com/UKPLab/sentence-transformers) library: ```python from sentence_transformers import SentenceTransformer model = SentenceTransformer('flax-sentence-embeddings/multi-qa_v1-mpnet-mean_cos') text = "Replace me by any question / answer you'd like." text_embbedding = model.encode(text) # array([-0.01559514, 0.04046123, 0.1317083 , 0.00085931, 0.04585106, # -0.05607086, 0.0138078 , 0.03569756, 0.01420381, 0.04266302 ...], # dtype=float32) ``` # Training procedure ## Pre-training We use the pretrained [microsoft/mpnet-base](https://huggingface.co/microsoft/mpnet-base). Please refer to the model card for more detailed information about the pre-training procedure. ## Fine-tuning We fine-tune the model using a contrastive objective. Formally, we compute the cosine similarity from each possible sentence pairs from the batch. We then apply the cross entropy loss by comparing with true pairs. ### Hyper parameters We trained on model on a TPU v3-8. We train the model during 80k steps using a batch size of 1024 (128 per TPU core). We use a learning rate warm up of 500. The sequence length was limited to 128 tokens. We used the AdamW optimizer with a 2e-5 learning rate. The full training script is accessible in this current repository. ### Training data We used the concatenation from multiple Stackexchange Question-Answer datasets to fine-tune our model. MSMARCO, NQ & other question-answer datasets were also used. | Dataset | Paper | Number of training tuples | |:--------------------------------------------------------:|:----------------------------------------:|:--------------------------:| | [Stack Exchange QA - Title & Answer](https://huggingface.co/datasets/flax-sentence-embeddings/stackexchange_title_best_voted_answer_jsonl) | - | 4,750,619 | | [Stack Exchange](https://huggingface.co/datasets/flax-sentence-embeddings/stackexchange_title_body_jsonl) | - | 364,001 | | [TriviaqQA](https://huggingface.co/datasets/trivia_qa) | - | 73,346 | | [SQuAD2.0](https://rajpurkar.github.io/SQuAD-explorer/) | [paper](https://aclanthology.org/P18-2124.pdf) | 87,599 | | [Quora Question Pairs](https://quoradata.quora.com/First-Quora-Dataset-Release-Question-Pairs) | - | 103,663 | | [Eli5](https://huggingface.co/datasets/eli5) | [paper](https://doi.org/10.18653/v1/p19-1346) | 325,475 | | [PAQ](https://github.com/facebookresearch/PAQ) | [paper](https://arxiv.org/abs/2102.07033) | 64,371,441 | | [WikiAnswers](https://github.com/afader/oqa#wikianswers-corpus) | [paper](https://doi.org/10.1145/2623330.2623677) | 77,427,422 | | [MS MARCO](https://microsoft.github.io/msmarco/) | [paper](https://doi.org/10.1145/3404835.3462804) | 9,144,553 | | [GOOAQ: Open Question Answering with Diverse Answer Types](https://github.com/allenai/gooaq) | [paper](https://arxiv.org/pdf/2104.08727.pdf) | 3,012,496 | | [Yahoo Answers](https://www.kaggle.com/soumikrakshit/yahoo-answers-dataset) Question/Answer | [paper](https://proceedings.neurips.cc/paper/2015/hash/250cf8b51c773f3f8dc8b4be867a9a02-Abstract.html) | 681,164 | | SearchQA | - | 582,261 | | [Natural Questions (NQ)](https://ai.google.com/research/NaturalQuestions) | [paper](https://transacl.org/ojs/index.php/tacl/article/view/1455) | 100,231 |
{"tags": ["sentence-transformers", "feature-extraction", "sentence-similarity"], "pipeline_tag": "sentence-similarity"}
sentence-similarity
flax-sentence-embeddings/multi-qa_v1-mpnet-mean_cos
[ "sentence-transformers", "pytorch", "mpnet", "feature-extraction", "sentence-similarity", "arxiv:2102.07033", "arxiv:2104.08727", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[ "2102.07033", "2104.08727" ]
[]
TAGS #sentence-transformers #pytorch #mpnet #feature-extraction #sentence-similarity #arxiv-2102.07033 #arxiv-2104.08727 #endpoints_compatible #region-us
multi-qa\_v1-mpnet-mean\_cos ============================ Model Description ----------------- SentenceTransformers is a set of models and frameworks that enable training and generating sentence embeddings from given data. The generated sentence embeddings can be utilized for Clustering, Semantic Search and other tasks. We used a pretrained microsoft/mpnet-base model and trained it using Siamese Network setup and contrastive learning objective. Question and answer pairs from StackExchange was used as training data to make the model robust to Question / Answer embedding similarity. For this model, mean pooling of hidden states were used as sentence embeddings. We developed this model during the Community week using JAX/Flax for NLP & CV, organized by Hugging Face. We developed this model as part of the project: Train the Best Sentence Embedding Model Ever with 1B Training Pairs. We benefited from efficient hardware infrastructure to run the project: 7 TPUs v3-8, as well as assistance from Google’s Flax, JAX, and Cloud team members about efficient deep learning frameworks. Intended uses ------------- Our model is intended to be used as a sentence encoder for a search engine. Given an input sentence, it outputs a vector which captures the sentence semantic information. The sentence vector may be used for semantic-search, clustering or sentence similarity tasks. How to use ---------- Here is how to use this model to get the features of a given text using SentenceTransformers library: Training procedure ================== Pre-training ------------ We use the pretrained microsoft/mpnet-base. Please refer to the model card for more detailed information about the pre-training procedure. Fine-tuning ----------- We fine-tune the model using a contrastive objective. Formally, we compute the cosine similarity from each possible sentence pairs from the batch. We then apply the cross entropy loss by comparing with true pairs. ### Hyper parameters We trained on model on a TPU v3-8. We train the model during 80k steps using a batch size of 1024 (128 per TPU core). We use a learning rate warm up of 500. The sequence length was limited to 128 tokens. We used the AdamW optimizer with a 2e-5 learning rate. The full training script is accessible in this current repository. ### Training data We used the concatenation from multiple Stackexchange Question-Answer datasets to fine-tune our model. MSMARCO, NQ & other question-answer datasets were also used.
[ "### Hyper parameters\n\n\nWe trained on model on a TPU v3-8. We train the model during 80k steps using a batch size of 1024 (128 per TPU core).\nWe use a learning rate warm up of 500. The sequence length was limited to 128 tokens. We used the AdamW optimizer with\na 2e-5 learning rate. The full training script is accessible in this current repository.", "### Training data\n\n\nWe used the concatenation from multiple Stackexchange Question-Answer datasets to fine-tune our model. MSMARCO, NQ & other question-answer datasets were also used." ]
[ "TAGS\n#sentence-transformers #pytorch #mpnet #feature-extraction #sentence-similarity #arxiv-2102.07033 #arxiv-2104.08727 #endpoints_compatible #region-us \n", "### Hyper parameters\n\n\nWe trained on model on a TPU v3-8. We train the model during 80k steps using a batch size of 1024 (128 per TPU core).\nWe use a learning rate warm up of 500. The sequence length was limited to 128 tokens. We used the AdamW optimizer with\na 2e-5 learning rate. The full training script is accessible in this current repository.", "### Training data\n\n\nWe used the concatenation from multiple Stackexchange Question-Answer datasets to fine-tune our model. MSMARCO, NQ & other question-answer datasets were also used." ]
[ 57, 89, 51 ]
[ "passage: TAGS\n#sentence-transformers #pytorch #mpnet #feature-extraction #sentence-similarity #arxiv-2102.07033 #arxiv-2104.08727 #endpoints_compatible #region-us \n### Hyper parameters\n\n\nWe trained on model on a TPU v3-8. We train the model during 80k steps using a batch size of 1024 (128 per TPU core).\nWe use a learning rate warm up of 500. The sequence length was limited to 128 tokens. We used the AdamW optimizer with\na 2e-5 learning rate. The full training script is accessible in this current repository.### Training data\n\n\nWe used the concatenation from multiple Stackexchange Question-Answer datasets to fine-tune our model. MSMARCO, NQ & other question-answer datasets were also used." ]
[ -0.10176990181207657, 0.0030192879494279623, 0.000385324121452868, 0.0693395733833313, 0.14555634558200836, 0.0222961213439703, 0.06459968537092209, 0.1272008866071701, -0.10825201123952866, -0.0005302892532199621, 0.11519941687583923, 0.07079561054706573, 0.016736803576350212, 0.13208144903182983, -0.03777550905942917, -0.23173284530639648, 0.019220588728785515, 0.0460193008184433, -0.006121407728642225, 0.12486038357019424, 0.0871136486530304, -0.0821736603975296, 0.06160059571266174, -0.04868645593523979, -0.1596325933933258, 0.019094962626695633, -0.049705442041158676, -0.03574660047888756, 0.15385203063488007, 0.03821118548512459, 0.08448491990566254, -0.001331099309027195, 0.028794841840863228, -0.10984338819980621, 0.04335286095738411, 0.05061326548457146, 0.023307185620069504, 0.07566959410905838, 0.0035427510738372803, 0.04922212287783623, 0.18402016162872314, -0.042221471667289734, 0.00028473808197304606, 0.037594024091959, -0.06377910822629929, -0.017198488116264343, 0.0052946386858820915, -0.009854769334197044, 0.12421821802854538, 0.12412617355585098, -0.021558523178100586, 0.2150367796421051, -0.12555697560310364, 0.10403890907764435, 0.08793579041957855, -0.30804678797721863, -0.05650604888796806, 0.1635209023952484, 0.10754553973674774, 0.11273767799139023, -0.0648164302110672, -0.011571235954761505, 0.043408337980508804, 0.06082170084118843, 0.03255114704370499, -0.023530833423137665, -0.12538325786590576, 0.030476827174425125, -0.1405848264694214, 0.016363730654120445, 0.18962077796459198, 0.02332526631653309, -0.018337754532694817, -0.04519561678171158, -0.08441217243671417, -0.0401068739593029, -0.02457953244447708, -0.007585596293210983, -0.025172218680381775, 0.026366980746388435, -0.12424775213003159, 0.003717830404639244, -0.10296113789081573, -0.09608998894691467, -0.062344279140233994, 0.06523139774799347, 0.0526951365172863, 0.06138192489743233, -0.0900762528181076, 0.07173537462949753, -0.06810933351516724, -0.04425716772675514, 0.021400118246674538, -0.06209508329629898, -0.08462399244308472, -0.008255553431808949, -0.10832937061786652, -0.14776401221752167, 0.06179920583963394, -0.0036537284031510353, 0.03280527889728546, 0.032735276967287064, 0.10347502678632736, 0.04692847281694412, 0.00984923169016838, 0.1282249093055725, -0.06988608092069626, -0.09165944904088974, 0.0019521176582202315, 0.00988774560391903, -0.05437793582677841, -0.006641058251261711, -0.12088190764188766, -0.03201499581336975, 0.10286135971546173, 0.02675202302634716, -0.05403180420398712, 0.09162892401218414, 0.03384377807378769, -0.04374063387513161, 0.055992767214775085, -0.07279195636510849, -0.058014750480651855, 0.0028025531210005283, -0.08385539054870605, 0.1206040158867836, -0.042791590094566345, -0.03851033002138138, -0.12029222398996353, 0.002990029053762555, -0.0944938063621521, -0.02071494795382023, -0.09747405350208282, -0.14812727272510529, 0.023543233051896095, -0.09898999333381653, -0.008085533045232296, -0.14952048659324646, -0.08088979125022888, -0.02644854225218296, 0.04536393657326698, -0.015767384320497513, -0.03159342706203461, -0.11224215477705002, -0.028221286833286285, 0.0011395704932510853, -0.015496774576604366, 0.14498122036457062, -0.059430237859487534, 0.06232423707842827, -0.02562009170651436, 0.08368723094463348, -0.03368768095970154, 0.020452266559004784, -0.07693160325288773, -0.047242000699043274, 0.000932652794290334, 0.028094124048948288, 0.05989738553762436, 0.09107336401939392, -0.08817888051271439, -0.1097097396850586, -0.10424217581748962, -0.009525748901069164, 0.04461120441555977, 0.08902805298566818, -0.2060127705335617, -0.006033561658114195, 0.11595350503921509, -0.03284318000078201, -0.12615565955638885, 0.1921774446964264, -0.025271475315093994, -0.0030192576814442873, 0.09081625938415527, 0.11983560770750046, 0.03833804279565811, -0.07581712305545807, 0.03776082396507263, 0.08135979622602463, -0.0690058246254921, -0.17782527208328247, 0.07968351989984512, 0.07800114899873734, 0.018136968836188316, 0.024643409997224808, 0.03444754704833031, 0.07295987010002136, -0.09700900316238403, -0.03587464615702629, -0.02694951370358467, -0.09419586509466171, -0.07399772852659225, 0.04316287115216255, 0.044454917311668396, -0.09978996217250824, -0.07757280021905899, -0.012626114301383495, 0.14822113513946533, -0.107449471950531, 0.04083552956581116, -0.10423371940851212, 0.027514688670635223, -0.042324136942625046, 0.02195550501346588, -0.14524652063846588, -0.03554140403866768, 0.01241219975054264, 0.08258061110973358, 0.0038567001465708017, 0.15667027235031128, 0.03796377405524254, 0.01869661547243595, -0.01802171766757965, 0.050478387624025345, 0.0378282368183136, -0.025234974920749664, -0.12975388765335083, -0.061902694404125214, -0.047695960849523544, -0.04621616750955582, 0.055791258811950684, -0.10373686999082565, -0.022416377440094948, -0.06403455138206482, -0.013995498418807983, -0.04753124341368675, 0.0016260955017060041, 0.013429496437311172, 0.03545032814145088, -0.031147094443440437, -0.047947514802217484, 0.11802304536104202, 0.03835210204124451, -0.07206694781780243, 0.0596214197576046, -0.1531161665916443, -0.030063731595873833, 0.1071290522813797, -0.0791114866733551, -0.005310003645718098, -0.04392753541469574, -0.044152211397886276, -0.03915320336818695, -0.034348517656326294, 0.01973562501370907, 0.1755094677209854, 0.03161980211734772, 0.14932768046855927, -0.1085847020149231, -0.01938934251666069, -0.016592342406511307, -0.008127358742058277, 0.051501404494047165, 0.08793024718761444, 0.0009304435807280242, -0.15785843133926392, 0.018441878259181976, -0.010011203587055206, -0.08352500200271606, 0.12966494262218475, -0.008662739768624306, -0.0970139279961586, 0.03871239721775055, 0.014603632502257824, -0.0258058812469244, 0.026080990210175514, -0.14841443300247192, -0.04910038411617279, 0.04544634744524956, 0.03822806105017662, 0.08072259277105331, -0.1346861869096756, -0.0017977701500058174, -0.024055594578385353, -0.031091291457414627, -0.03157651796936989, 0.006704437080770731, -0.03611595556139946, 0.08584550023078918, 0.03876810520887375, -0.14153538644313812, -0.0017096416559070349, -0.03745906427502632, -0.07887238264083862, 0.20025233924388885, -0.045896533876657486, -0.2061891108751297, -0.06778977066278458, 0.009145617485046387, -0.016277693212032318, 0.005374759901314974, 0.02918604388833046, -0.08744572848081589, -0.03787558898329735, -0.06397803127765656, -0.04638317972421646, -0.03683268651366234, 0.015351844020187855, -0.0332002267241478, 0.05339343100786209, -0.014432519674301147, -0.13655205070972443, 0.012926794588565826, -0.09852235019207001, -0.08951222151517868, 0.08068589121103287, -0.15097326040267944, 0.055096350610256195, 0.2359292060136795, -0.04463142529129982, 0.047464579343795776, -0.027914419770240784, 0.145344540476799, -0.021611452102661133, 0.007832148112356663, 0.17171213030815125, 0.02473500743508339, 0.00701927300542593, -0.002658944809809327, -0.0009881067089736462, -0.06537291407585144, 0.09957452118396759, -0.003847848391160369, -0.07270993292331696, -0.23096133768558502, -0.08836296945810318, -0.08454284071922302, 0.024053221568465233, 0.07917682081460953, 0.04992194101214409, -0.03800429403781891, 0.06614778935909271, 0.0008272784180007875, -0.028265975415706635, 0.0012514195404946804, 0.060055505484342575, 0.03984925523400307, 0.04804253578186035, 0.13000598549842834, -0.04150041565299034, -0.05398467928171158, 0.048287004232406616, 0.021117066964507103, 0.1869484931230545, -0.02973470836877823, 0.09649183601140976, 0.012919244356453419, 0.08857369422912598, 0.04943512752652168, 0.1334388256072998, -0.056258730590343475, -0.04597887024283409, -0.058461517095565796, -0.02356543019413948, -0.04365202412009239, 0.043714091181755066, 0.016595974564552307, -0.0384981743991375, -0.06160908564925194, 0.08615179359912872, 0.0638640895485878, 0.21415835618972778, 0.12668877840042114, -0.2825113534927368, -0.10188447684049606, -0.046966925263404846, -0.06883589923381805, -0.0431460440158844, 0.09628716111183167, 0.17062774300575256, -0.05190737545490265, -0.08238311111927032, -0.028541289269924164, 0.15814512968063354, 0.0027554661501199007, 0.03829558566212654, -0.006011968944221735, 0.09756055474281311, -0.025488050654530525, 0.13289624452590942, -0.2460152506828308, 0.16548551619052887, -0.0025163195095956326, 0.08074146509170532, -0.07957662642002106, -0.0538526214659214, 0.01917634904384613, 0.02063247747719288, 0.03759729862213135, 0.00849913153797388, -0.02801007777452469, -0.031686071306467056, -0.10037308931350708, 0.07764581590890884, 0.07248345017433167, 0.11241386085748672, 0.0860690101981163, -0.045612215995788574, 0.008834301494061947, 0.039205387234687805, 0.10590583086013794, 0.028988922014832497, -0.0514240488409996, -0.038231391459703445, 0.08731083571910858, -0.0519859604537487, -0.009716670028865337, -0.05461094528436661, -0.04901877045631409, 0.18522822856903076, 0.05850154906511307, -0.053876474499702454, -0.08685695379972458, 0.05786939710378647, 0.11166336387395859, -0.05090008303523064, -0.0051442706026136875, 0.03958900272846222, 0.07931209355592728, 0.011113965883851051, -0.07464822381734848, 0.09162895381450653, -0.09749659895896912, -0.04462805762887001, -0.011754419654607773, 0.0946161076426506, 0.006129564251750708, 0.055490847676992416, 0.010913298465311527, -0.025558533146977425, -0.12396753579378128, -0.06460284441709518, -0.07326973974704742, -0.06338700652122498, 0.11740972846746445, 0.03687354177236557, -0.08485610783100128, 0.0833982527256012, -0.08409029245376587, -0.004291674587875605, 0.17751388251781464, 0.09074080735445023, -0.04755697771906853, -0.02382943406701088, 0.18824802339076996, -0.006986718159168959, -0.21325895190238953, -0.05228681489825249, 0.0234239362180233, 0.01844414882361889, -0.07439902424812317, -0.07768047600984573, 0.08224742114543915, 0.07849309593439102, 0.028029989451169968, -0.02494662255048752, -0.32437267899513245, -0.08802469074726105, 0.12023837864398956, 0.060588933527469635, 0.3446388244628906, -0.10338202118873596, 0.06773968040943146, -0.05104329064488411, -0.0922134593129158, 0.11712060868740082, -0.08792420476675034, 0.1549120545387268, -0.0372651107609272, 0.04592977836728096, 0.027195919305086136, -0.07054689526557922, 0.02718341164290905, 0.08172409981489182, 0.06038461625576019, -0.023478953167796135, 0.02727627567946911, -0.005035842768847942, -0.03824752941727638, 0.13045555353164673, -0.09724336862564087, 0.0660700798034668, -0.0914238765835762, -0.05016560107469559, -0.0507335364818573, -0.023194491863250732, 0.07059776037931442, -0.06179080903530121, -0.05647001415491104, 0.047799043357372284, 0.03991794213652611, 0.03231372311711311, 0.07792642712593079, -0.034978173673152924, 0.07147952169179916, 0.10318443179130554, 0.11343339085578918, -0.1895885020494461, -0.03350284695625305, 0.014345556497573853, 0.009007047861814499, 0.07000856101512909, -0.12231273949146271, 0.028060175478458405, 0.12580138444900513, -0.015485319308936596, 0.09521041810512543, 0.09010690450668335, -0.014154856093227863, -0.03546275943517685, 0.05634130910038948, -0.10179569572210312, -0.009248381480574608, -0.025539826601743698, -0.05418514087796211, -0.06740089505910873, 0.02502373233437538, 0.07694563269615173, -0.07743971049785614, 0.006940566468983889, -0.002638533478602767, 0.013291696086525917, -0.059480857104063034, 0.230992391705513, 0.08727793395519257, 0.05142839998006821, -0.09888341277837753, 0.09367373585700989, 0.03652067482471466, -0.06601041555404663, 0.012561107985675335, 0.12172964960336685, -0.13125300407409668, -0.06489241868257523, 0.06892171502113342, 0.03004859946668148, -0.07410047948360443, -0.07189204543828964, -0.10576388239860535, -0.0327177420258522, 0.05500003322958946, 0.06463448703289032, 0.08978735655546188, 0.06473378837108612, -0.0849599540233612, -0.024425029754638672, -0.17266394197940826, 0.05642776936292648, 0.039919089525938034, 0.016436727717518806, -0.05037451162934303, 0.19331541657447815, 0.005623772740364075, 0.08871370553970337, -0.05910122022032738, -0.03351762518286705, -0.06990443170070648, 0.06487152725458145, -0.11044885963201523, -0.02071484550833702, -0.020668940618634224, -0.015222709625959396, -0.034323129802942276, -0.00911817979067564, -0.06017037853598595, 0.011304277926683426, -0.062211774289608, 0.01437597069889307, -0.009604948572814465, -0.010851841419935226, -0.017031854018568993, -0.03793743997812271, 0.00173460622318089, -0.03885198011994362, 0.06619451940059662, 0.07876333594322205, -0.07622107863426208, 0.07547341287136078, -0.09618479758501053, -0.04314689338207245, 0.03952619433403015, 0.08105260133743286, 0.033926334232091904, -0.03344832733273506, 0.03887460008263588, 0.058678917586803436, 0.06814707070589066, 0.01792752929031849, 0.05162792652845383, -0.07035326212644577, -0.03342782333493233, -0.10695900022983551, -0.05040914565324783, -0.07310687750577927, -0.03618071973323822, 0.029848292469978333, 0.15372461080551147, 0.14345309138298035, -0.06178105250000954, 0.017293239012360573, -0.1421319991350174, 0.0021466491743922234, 0.012728695757687092, -0.09600444883108139, -0.03804221749305725, -0.05018658936023712, 0.07486820966005325, -0.03397979587316513, 0.12965142726898193, -0.00603328924626112, 0.002353870077058673, 0.005667187739163637, 0.013291573151946068, 0.00031860917806625366, -0.0663231685757637, 0.22553633153438568, 0.06460919976234436, -0.010419541969895363, 0.0024138404987752438, 0.07300585508346558, 0.07391136884689331, 0.13633368909358978, 0.1793295294046402, 0.09188342839479446, 0.08143135905265808, 0.15870627760887146, -0.019348252564668655, 0.01297235768288374, -0.015747234225273132, 0.01391354575753212, -0.06315222382545471, 0.04658644273877144, -0.03941963613033295, 0.15700608491897583, 0.2020493447780609, -0.08612097054719925, 0.01899106241762638, -0.05414808914065361, -0.09816708415746689, -0.13407520949840546, -0.041377317160367966, -0.0877678394317627, -0.1391288936138153, -0.011801941320300102, -0.1398751139640808, -0.019006356596946716, 0.16120509803295135, 0.06150110065937042, -0.037652574479579926, 0.08583378046751022, 0.0005344680976122618, -0.050294581800699234, 0.06644094735383987, -0.04530436545610428, 0.04637277498841286, 0.023720743134617805, -0.013684424571692944, 0.05642768740653992, -0.057781293988227844, 0.09145648032426834, -0.029324572533369064, 0.06344737112522125, 0.051923271268606186, -0.05314009636640549, -0.07937851548194885, -0.06074468791484833, 0.02267121523618698, 0.024034610018134117, 0.11673004925251007, 0.05226880684494972, -0.03500916808843613, 0.011135965585708618, 0.19895559549331665, -0.05227300152182579, -0.16341863572597504, -0.10706060379743576, 0.2564723491668701, 0.07294973731040955, -0.002915269462391734, 0.019674597308039665, -0.02203010953962803, -0.052023518830537796, 0.2475235015153885, 0.17854593694210052, -0.12119569629430771, -0.03658841922879219, 0.0363403744995594, 0.003435802413150668, -0.03403693810105324, 0.17322273552417755, 0.12124014645814896, 0.11891744285821915, -0.039560843259096146, -0.001293185050599277, -0.04708721116185188, 0.009354161098599434, -0.05898667499423027, -0.003379418281838298, 0.053373437374830246, -0.020817765966057777, -0.023449914529919624, 0.07213601469993591, -0.05492579936981201, -0.0003483033215161413, -0.08069774508476257, -0.0573260672390461, -0.11419372260570526, -0.00904457364231348, 0.00988570973277092, 0.02693147584795952, 0.13006716966629028, -0.07479394972324371, 0.08087526261806488, -0.023078618571162224, -0.029248476028442383, -0.1035420224070549, -0.11002979427576065, 0.11297078430652618, -0.04120108485221863, 0.019171349704265594, -0.013938444666564465, 0.11468902230262756, 0.0825522169470787, 0.015040754340589046, -0.07635404914617538, 0.13330896198749542, -0.022043298929929733, -0.03312951698899269, 0.08351008594036102, 0.04169131815433502, -0.05618346109986305, 0.003712727688252926, 0.0400078147649765, -0.07784446328878403, -0.029381822794675827, -0.07613963633775711, 0.04864327982068062, -0.0943789929151535, 0.014330507256090641, -0.032243210822343826, 0.14337919652462006, 0.15483787655830383, -0.04040837287902832, -0.009926708415150642, -0.07456133514642715, -0.003280277829617262, -0.004009875003248453, -0.02166360430419445, -0.0752733126282692, -0.19368398189544678, -0.03194495290517807, -0.0848146453499794, -0.02708415500819683, -0.1994532197713852, 0.008028795942664146, -0.08570487052202225, -0.0696050226688385, -0.06776420772075653, 0.10207614302635193, 0.040499381721019745, 0.01973174884915352, -0.05678435415029526, 0.008951513096690178, -0.005198484752327204, 0.0773458406329155, -0.2007652223110199, -0.16041189432144165 ]
null
null
sentence-transformers
# Model description The project aims to train sentence embedding models on very large sentence level datasets using a self-supervised contrastive learning objective. We used the pretrained ['mpnet-base'](https://huggingface.co/microsoft/mpnet-base) model and fine-tuned in on a 700M sentence pairs dataset. We use a contrastive learning objective: given a sentence from the pair, the model should predict which out of a set of randomly sampled other sentences, was actually paired with it in our dataset. We developped this model during the [Community week using JAX/Flax for NLP & CV](https://discuss.huggingface.co/t/open-to-the-community-community-week-using-jax-flax-for-nlp-cv/7104), organized by Hugging Face. We developped this model as part of the project: [Train the Best Sentence Embedding Model Ever with 1B Training Pairs](https://discuss.huggingface.co/t/train-the-best-sentence-embedding-model-ever-with-1b-training-pairs/7354). We benefited from efficient hardware infrastructure to run the project: 7 TPUs v3-8, as well as intervention from Google’s Flax, JAX, and Cloud team member about efficient deep learning frameworks. ## Intended uses Our model is intented to be used as a sentence encoder. Given an input sentence, it ouptuts a vector which captures the sentence semantic information. The sentence vector may be used for information retrieval, clustering or sentence similarity tasks. ## How to use Here is how to use this model to get the features of a given text using [SentenceTransformers](https://github.com/UKPLab/sentence-transformers) library: ```python from sentence_transformers import SentenceTransformer model = SentenceTransformer('flax-sentence-embeddings/reddit_single-context_mpnet-base') text = "Replace me by any text you'd like." text_embbedding = model.encode(text) # array([-0.01559514, 0.04046123, 0.1317083 , 0.00085931, 0.04585106, # -0.05607086, 0.0138078 , 0.03569756, 0.01420381, 0.04266302 ...], # dtype=float32) ``` # Training procedure ## Pre-training We use the pretrained ['mpnet-base'](https://huggingface.co/microsoft/mpnet-base). Please refer to the model card for more detailed information about the pre-training procedure. ## Fine-tuning We fine-tune the model using a contrastive objective. Formally, we compute the cosine similarity from each possible sentence pairs from the batch. We then apply the cross entropy loss by comparing with true pairs. ### Hyper parameters We trained ou model on a TPU v3-8. We train the model during 540k steps using a batch size of 1024 (128 per TPU core). We use a learning rate warm up of 500. The sequence length was limited to 128 tokens. We used the AdamW optimizer with a 2e-5 learning rate. The full training script is accessible in this current repository. ### Training data We use the concatenation from multiple datasets to fine-tune our model. The total number of sentence pairs is above 700M sentences. We sampled each dataset given a weighted probability which configuration is detailed in the `data_config.json` file. We only use the first context response when building the dataset. | Dataset | Paper | Number of training tuples | |:--------------------------------------------------------:|:----------------------------------------:|:--------------------------:| | [Reddit conversationnal](https://github.com/PolyAI-LDN/conversational-datasets/tree/master/reddit) | [paper](https://arxiv.org/abs/1904.06472) | 726,484,430 |
{"language": "en", "tags": ["sentence-transformers", "feature-extraction", "sentence-similarity"], "pipeline_tag": "sentence-similarity"}
sentence-similarity
flax-sentence-embeddings/reddit_single-context_mpnet-base
[ "sentence-transformers", "pytorch", "mpnet", "feature-extraction", "sentence-similarity", "en", "arxiv:1904.06472", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[ "1904.06472" ]
[ "en" ]
TAGS #sentence-transformers #pytorch #mpnet #feature-extraction #sentence-similarity #en #arxiv-1904.06472 #endpoints_compatible #region-us
Model description ================= The project aims to train sentence embedding models on very large sentence level datasets using a self-supervised contrastive learning objective. We used the pretrained 'mpnet-base' model and fine-tuned in on a 700M sentence pairs dataset. We use a contrastive learning objective: given a sentence from the pair, the model should predict which out of a set of randomly sampled other sentences, was actually paired with it in our dataset. We developped this model during the Community week using JAX/Flax for NLP & CV, organized by Hugging Face. We developped this model as part of the project: Train the Best Sentence Embedding Model Ever with 1B Training Pairs. We benefited from efficient hardware infrastructure to run the project: 7 TPUs v3-8, as well as intervention from Google’s Flax, JAX, and Cloud team member about efficient deep learning frameworks. Intended uses ------------- Our model is intented to be used as a sentence encoder. Given an input sentence, it ouptuts a vector which captures the sentence semantic information. The sentence vector may be used for information retrieval, clustering or sentence similarity tasks. How to use ---------- Here is how to use this model to get the features of a given text using SentenceTransformers library: Training procedure ================== Pre-training ------------ We use the pretrained 'mpnet-base'. Please refer to the model card for more detailed information about the pre-training procedure. Fine-tuning ----------- We fine-tune the model using a contrastive objective. Formally, we compute the cosine similarity from each possible sentence pairs from the batch. We then apply the cross entropy loss by comparing with true pairs. ### Hyper parameters We trained ou model on a TPU v3-8. We train the model during 540k steps using a batch size of 1024 (128 per TPU core). We use a learning rate warm up of 500. The sequence length was limited to 128 tokens. We used the AdamW optimizer with a 2e-5 learning rate. The full training script is accessible in this current repository. ### Training data We use the concatenation from multiple datasets to fine-tune our model. The total number of sentence pairs is above 700M sentences. We sampled each dataset given a weighted probability which configuration is detailed in the 'data\_config.json' file. We only use the first context response when building the dataset.
[ "### Hyper parameters\n\n\nWe trained ou model on a TPU v3-8. We train the model during 540k steps using a batch size of 1024 (128 per TPU core).\nWe use a learning rate warm up of 500. The sequence length was limited to 128 tokens. We used the AdamW optimizer with\na 2e-5 learning rate. The full training script is accessible in this current repository.", "### Training data\n\n\nWe use the concatenation from multiple datasets to fine-tune our model. The total number of sentence pairs is above 700M sentences.\nWe sampled each dataset given a weighted probability which configuration is detailed in the 'data\\_config.json' file.\nWe only use the first context response when building the dataset." ]
[ "TAGS\n#sentence-transformers #pytorch #mpnet #feature-extraction #sentence-similarity #en #arxiv-1904.06472 #endpoints_compatible #region-us \n", "### Hyper parameters\n\n\nWe trained ou model on a TPU v3-8. We train the model during 540k steps using a batch size of 1024 (128 per TPU core).\nWe use a learning rate warm up of 500. The sequence length was limited to 128 tokens. We used the AdamW optimizer with\na 2e-5 learning rate. The full training script is accessible in this current repository.", "### Training data\n\n\nWe use the concatenation from multiple datasets to fine-tune our model. The total number of sentence pairs is above 700M sentences.\nWe sampled each dataset given a weighted probability which configuration is detailed in the 'data\\_config.json' file.\nWe only use the first context response when building the dataset." ]
[ 50, 89, 79 ]
[ "passage: TAGS\n#sentence-transformers #pytorch #mpnet #feature-extraction #sentence-similarity #en #arxiv-1904.06472 #endpoints_compatible #region-us \n### Hyper parameters\n\n\nWe trained ou model on a TPU v3-8. We train the model during 540k steps using a batch size of 1024 (128 per TPU core).\nWe use a learning rate warm up of 500. The sequence length was limited to 128 tokens. We used the AdamW optimizer with\na 2e-5 learning rate. The full training script is accessible in this current repository.### Training data\n\n\nWe use the concatenation from multiple datasets to fine-tune our model. The total number of sentence pairs is above 700M sentences.\nWe sampled each dataset given a weighted probability which configuration is detailed in the 'data\\_config.json' file.\nWe only use the first context response when building the dataset." ]
[ -0.09100828319787979, -0.0012544958153739572, 0.00051634426927194, 0.054797448217868805, 0.12385546416044235, 0.04034694284200668, 0.012101959437131882, 0.10898545384407043, -0.1435103416442871, -0.00027277323533780873, 0.11430265754461288, 0.041582681238651276, 0.060766760259866714, 0.1347888559103012, -0.06150412932038307, -0.20187921822071075, 0.03356324881315231, 0.04249083995819092, -0.03033440187573433, 0.12042813003063202, 0.078638456761837, -0.052491944283246994, 0.07347697764635086, -0.04101458936929703, -0.15715278685092926, 0.01431482657790184, -0.01736229844391346, 0.01172869373112917, 0.12245325744152069, 0.04661059007048607, 0.0689263641834259, 0.014556504786014557, 0.008883113972842693, -0.07851365208625793, 0.026130877435207367, 0.04232725128531456, 0.012604909017682076, 0.04707563668489456, 0.025166599079966545, -0.013776540756225586, 0.15353085100650787, -0.054709795862436295, -0.011109847575426102, 0.054972678422927856, -0.09510482847690582, 0.009499894455075264, 0.014286144636571407, -0.0009002372971735895, 0.13043685257434845, 0.06620419025421143, -0.044028058648109436, 0.1976027488708496, -0.12948721647262573, 0.08718497306108475, 0.021298468112945557, -0.2921510934829712, -0.03703152760863304, 0.20506614446640015, 0.09308471530675888, 0.06855218857526779, -0.05313882231712341, -0.039490677416324615, 0.0867202877998352, 0.07351843267679214, 0.024063678458333015, -0.009180043824017048, -0.11564220488071442, 0.04134327545762062, -0.14980946481227875, 0.01906975731253624, 0.25739338994026184, 0.009323734790086746, -0.023845797404646873, -0.03674880787730217, -0.09408900141716003, -0.05858320742845535, 0.013584200292825699, 0.01781916804611683, -0.04006033390760422, 0.033094413578510284, -0.07121691852807999, 0.08805093914270401, -0.12026312202215195, -0.09581851214170456, -0.09410447627305984, 0.051221854984760284, 0.07270484417676926, 0.06904402375221252, -0.08711641281843185, 0.0889822319149971, -0.11576281487941742, -0.04552605003118515, 0.008998120203614235, -0.09330372512340546, -0.11875823885202408, -0.03494252637028694, -0.12698259949684143, -0.15982146561145782, 0.05251453071832657, 0.026253247633576393, 0.04482477530837059, 0.00004629285103874281, 0.1104605421423912, 0.05503029376268387, 0.06546223908662796, 0.09697721898555756, -0.07259582728147507, -0.10792078822851181, -0.00046973436838015914, 0.03578465059399605, -0.07182040810585022, 0.017886534333229065, -0.08809922635555267, -0.08323325216770172, 0.10120031237602234, -0.003942771814763546, -0.05875968560576439, 0.11079958081245422, -0.0075696660205721855, -0.04098530858755112, 0.0083444993942976, -0.07849311828613281, -0.06424310803413391, -0.008545022457838058, -0.09686364978551865, 0.11789081990718842, -0.0277971513569355, -0.03590983897447586, -0.11433839797973633, -0.012349340133368969, -0.09892189502716064, -0.03692399710416794, -0.10876914858818054, -0.17931079864501953, 0.0025060386396944523, -0.09450599551200867, -0.0041043320670723915, -0.14371708035469055, -0.09428760409355164, -0.04960167035460472, 0.05528607219457626, -0.016226617619395256, -0.061865806579589844, -0.11104428023099899, -0.037741731852293015, -0.018826359882950783, -0.006344014313071966, 0.1184929758310318, -0.0627640038728714, 0.0691806823015213, -0.04453515261411667, 0.11892257630825043, -0.0365632139146328, 0.018377557396888733, -0.12034665793180466, -0.023574624210596085, -0.002758693415671587, 0.03566896915435791, 0.06977903842926025, 0.08400442451238632, -0.08869864791631699, -0.07387546449899673, -0.08647049963474274, -0.01785217970609665, 0.02616744302213192, 0.11763288080692291, -0.21217933297157288, 0.0029439039062708616, 0.12455293536186218, -0.05023907124996185, -0.09662153571844101, 0.19881005585193634, -0.021058853715658188, 0.017418760806322098, 0.09070400893688202, 0.1397247165441513, 0.062236085534095764, -0.03663292154669762, 0.021094007417559624, 0.07420403510332108, -0.08795928210020065, -0.12351305037736893, 0.087522491812706, 0.08853847533464432, -0.059106409549713135, 0.0184523556381464, 0.07002481073141098, 0.09139095991849899, -0.09930001199245453, -0.037957411259412766, -0.01463599968701601, -0.10409760475158691, -0.03979017585515976, 0.014763008803129196, 0.010836602188646793, -0.08745653182268143, -0.04652596637606621, -0.04505879431962967, 0.1589812934398651, -0.10022007673978806, 0.016896039247512817, -0.07901081442832947, 0.06360971182584763, -0.07986930012702942, 0.012136377394199371, -0.11690086871385574, -0.02268725261092186, 0.03226975351572037, 0.1267690658569336, 0.010549686849117279, 0.16093158721923828, 0.05161983519792557, 0.05633780360221863, -0.03175023943185806, 0.02336878888309002, 0.07199818640947342, -0.02708287723362446, -0.10935743153095245, -0.10479721426963806, -0.06506559252738953, -0.0408114455640316, 0.11168742924928665, -0.10573390871286392, -0.018634801730513573, -0.08464114367961884, 0.01747261919081211, -0.037521958351135254, 0.0035410388372838497, 0.04543004184961319, 0.0178526658564806, -0.06456827372312546, -0.02847304567694664, 0.10177507251501083, 0.01576848141849041, -0.06192823126912117, 0.10478789359331131, -0.12135792523622513, -0.07027648389339447, 0.11621230840682983, -0.040363017469644547, -0.03120044805109501, -0.043068625032901764, -0.05817248672246933, -0.05519483610987663, -0.040229830890893936, -0.02068023756146431, 0.1361166089773178, 0.0048452988266944885, 0.12286609411239624, -0.10870464146137238, -0.029248038306832314, -0.005554522387683392, -0.00948084145784378, 0.04472155123949051, 0.08453362435102463, 0.028490498661994934, -0.19645512104034424, 0.0438532680273056, -0.04583799093961716, -0.08365511149168015, 0.1490371972322464, -0.028774503618478775, -0.11257314682006836, 0.051522236317396164, 0.043443791568279266, -0.03310367837548256, 0.05447234958410263, -0.12029919028282166, -0.03965945541858673, 0.050879910588264465, 0.03600744158029556, 0.0671551525592804, -0.14192719757556915, 0.004931885749101639, -0.014337663538753986, -0.019865626469254494, -0.026216870173811913, 0.010358369909226894, -0.024162456393241882, 0.09713239967823029, 0.02745119109749794, -0.1661454737186432, 0.0021287333220243454, -0.017822831869125366, -0.0877460464835167, 0.1960226446390152, -0.03452122211456299, -0.13685104250907898, -0.05301908031105995, 0.05160381644964218, -0.03663090988993645, 0.021465551108121872, 0.003656917018815875, -0.06317166984081268, -0.041703056544065475, -0.06650394946336746, 0.02066110633313656, -0.04036426916718483, 0.05253620445728302, -0.10886861383914948, 0.04601005092263222, -0.008451116271317005, -0.13757552206516266, 0.010875687934458256, -0.08652600646018982, -0.10439861565828323, 0.09000436961650848, -0.1888732612133026, 0.06559959053993225, 0.22399044036865234, -0.0822720006108284, 0.05140326917171478, -0.027975594624876976, 0.19954542815685272, 0.015216021798551083, 0.031502265483140945, 0.12335575371980667, 0.015207018703222275, -0.0050899856723845005, 0.07834013551473618, -0.020984891802072525, -0.04378985986113548, 0.10422972589731216, 0.001311701606027782, -0.03802139312028885, -0.21244245767593384, -0.07720549404621124, -0.08795591443777084, 0.0665455088019371, 0.08991395682096481, 0.027495265007019043, -0.038863323628902435, 0.09120748937129974, -0.028096085414290428, 0.02423243410885334, 0.017280587926506996, 0.06284864246845245, -0.014994005672633648, 0.06181330606341362, 0.10518893599510193, -0.02492605149745941, -0.06467233598232269, 0.04820504039525986, 0.05521019175648689, 0.16443434357643127, -0.07681640237569809, 0.02143433503806591, 0.04390469565987587, 0.1162133440375328, 0.048720039427280426, 0.1564020812511444, -0.08278269320726395, -0.009653035551309586, -0.06473942846059799, -0.0341651514172554, -0.0334172360599041, 0.07669627666473389, 0.0785682275891304, -0.0051321242935955524, -0.07079873979091644, 0.037734560668468475, 0.07066282629966736, 0.16478373110294342, 0.21728360652923584, -0.32534629106521606, -0.07797029614448547, -0.014115117490291595, -0.05107787624001503, -0.042725056409835815, 0.12148261815309525, 0.18112581968307495, -0.02283453568816185, -0.023926327005028725, -0.003304397454485297, 0.13962845504283905, 0.010773452930152416, 0.019936280325055122, 0.023827427998185158, 0.07639835774898529, -0.03354791924357414, 0.11120948940515518, -0.24431325495243073, 0.13465771079063416, -0.0015921093290671706, 0.060451190918684006, -0.06945155560970306, -0.055299654603004456, 0.012963103130459785, 0.053603846579790115, 0.02597874402999878, 0.019612642005085945, 0.023696912452578545, -0.04429331794381142, -0.0888444185256958, 0.06964102387428284, 0.011942034587264061, 0.06021491438150406, 0.10413267463445663, -0.04210992529988289, -0.003109930781647563, 0.01938060112297535, 0.14413399994373322, 0.001572818262502551, -0.024220267310738564, -0.0569562092423439, 0.07553251832723618, -0.02675148844718933, 0.005911110434681177, -0.05613609403371811, -0.02465364895761013, 0.18111330270767212, 0.01775943674147129, -0.07779457420110703, -0.06123335286974907, 0.05864255875349045, 0.12753725051879883, -0.02154519595205784, -0.04037811607122421, 0.040601760149002075, 0.05685243010520935, -0.014637879095971584, -0.1071256548166275, 0.09756691008806229, -0.08088041841983795, -0.04010721296072006, -0.04594877362251282, 0.1190505102276802, -0.008537243120372295, 0.07071369886398315, 0.006567270029336214, -0.022672828286886215, -0.11024735867977142, -0.04336899146437645, -0.050396427512168884, -0.03428492322564125, 0.14333388209342957, 0.08851153403520584, -0.06640388816595078, -0.018132636323571205, -0.07107465714216232, 0.024124691262841225, 0.14533734321594238, 0.12020562589168549, -0.056592416018247604, -0.024556681513786316, 0.17665953934192657, 0.006977247539907694, -0.22134332358837128, -0.03401796147227287, 0.020844051614403725, 0.058260105550289154, -0.07858699560165405, -0.030348801985383034, 0.051574356853961945, 0.028932178393006325, 0.0385807640850544, -0.04142603650689125, -0.3380883038043976, -0.09924649447202682, 0.06436064839363098, 0.049680572003126144, 0.41291478276252747, -0.09594709426164627, 0.07834413647651672, -0.02023068629205227, -0.13368386030197144, 0.14298740029335022, -0.1167881116271019, 0.1451350450515747, -0.03209435194730759, 0.05751879885792732, 0.03185282275080681, -0.0591101348400116, 0.0477818101644516, 0.1143096312880516, 0.06170642375946045, -0.004672978073358536, 0.025164609774947166, 0.006890745833516121, -0.016232216730713844, 0.1428295224905014, -0.08352828025817871, 0.0467696413397789, -0.09575071185827255, -0.06422997266054153, -0.06920624524354935, -0.020237401127815247, 0.06601903587579727, -0.07809858024120331, -0.06080949679017067, 0.053915731608867645, 0.07759925723075867, 0.013774014078080654, -0.002977849217131734, -0.02975844033062458, 0.09188204258680344, 0.10602971166372299, 0.108374685049057, -0.1350470632314682, -0.03942316025495529, 0.06080257147550583, 0.008226165547966957, 0.09200754016637802, -0.13819001615047455, 0.024154679849743843, 0.13025161623954773, -0.019129516556859016, 0.1032123938202858, 0.10989326238632202, -0.04387276992201805, -0.0573996976017952, 0.06853337585926056, -0.14014051854610443, -0.002060921862721443, -0.037879254668951035, -0.13349856436252594, -0.05445710942149162, 0.02578497864305973, 0.06939741969108582, -0.11488129943609238, -0.0003364088770467788, -0.012360659427940845, 0.028552312403917313, -0.11047112941741943, 0.23589405417442322, 0.05836435407400131, 0.05083611607551575, -0.1080855205655098, 0.08345941454172134, 0.05816511809825897, -0.11197565495967865, -0.0011369774583727121, 0.10477165132761002, -0.12619875371456146, -0.039690226316452026, 0.08388575911521912, 0.042852871119976044, -0.025120381265878677, -0.07567726075649261, -0.07556486874818802, -0.07085293531417847, 0.053987644612789154, 0.07112117856740952, 0.09723270684480667, 0.12784196436405182, -0.03469876945018768, -0.05173217132687569, -0.1903555542230606, 0.06678463518619537, 0.10876268893480301, 0.0301047433167696, -0.05206957831978798, 0.19297339022159576, -0.027301445603370667, 0.0725662037730217, -0.06133747473359108, -0.018052993342280388, -0.0771419107913971, 0.05828547850251198, -0.07491505891084671, -0.015644410625100136, -0.04917276278138161, -0.013215909712016582, -0.009315685369074345, -0.016105448827147484, -0.05793151259422302, 0.019857725128531456, -0.0617128387093544, 0.029949424788355827, -0.017410514876246452, 0.0021105532068759203, 0.01563252881169319, -0.048496417701244354, 0.009129058569669724, -0.049822352826595306, 0.06012000888586044, 0.06201741844415665, -0.09224148839712143, 0.02851467952132225, -0.05843311920762062, -0.07239362597465515, 0.04082454741001129, 0.06725803017616272, 0.02166455052793026, -0.04921495169401169, 0.05305080860853195, 0.041979145258665085, 0.042119886726140976, 0.014880452305078506, 0.07278865575790405, -0.060300327837467194, -0.033547211438417435, -0.08496130257844925, -0.05657888948917389, -0.0877842903137207, -0.061235833913087845, 0.007340512238442898, 0.15862971544265747, 0.13406068086624146, -0.05338955670595169, -0.024136528372764587, -0.14580202102661133, 0.004047058057039976, -0.0007030320703051984, -0.1035907119512558, -0.09233570843935013, -0.03650033846497536, 0.07371820509433746, -0.00853413064032793, 0.12866513431072235, 0.014849659986793995, -0.01760810613632202, -0.010013445280492306, 0.051406364887952805, 0.03705041855573654, -0.027798350900411606, 0.17169104516506195, 0.013262077234685421, -0.024555958807468414, -0.06202371418476105, 0.08640539646148682, 0.08509239554405212, 0.13523262739181519, 0.17350412905216217, 0.030731281265616417, 0.10004377365112305, 0.13489708304405212, -0.059095874428749084, -0.009075099602341652, 0.0065712397918105125, 0.026392826810479164, -0.04972776025533676, 0.03238632157444954, -0.037061452865600586, 0.13715995848178864, 0.21156105399131775, -0.09122472256422043, 0.024550480768084526, -0.0738842561841011, -0.09558701515197754, -0.13002437353134155, -0.09695329517126083, -0.07213945686817169, -0.13578705489635468, -0.01147326547652483, -0.13560745120048523, -0.020400729030370712, 0.13359332084655762, 0.06645660847425461, -0.03595464676618576, 0.07548336684703827, 0.005772748030722141, -0.06834127753973007, 0.03308592736721039, -0.045851822942495346, 0.07138162106275558, 0.0403890497982502, -0.03286292403936386, 0.07109586894512177, -0.07469723373651505, 0.07238968461751938, -0.02641977183520794, 0.088705874979496, 0.06287185847759247, -0.050138864666223526, -0.07989634573459625, -0.05678857862949371, -0.0036196645814925432, 0.022080600261688232, 0.0886840671300888, 0.06292629987001419, -0.02356084994971752, 0.02499019354581833, 0.15991567075252533, -0.056223753839731216, -0.1782558262348175, -0.14590106904506683, 0.2727837860584259, 0.07211511582136154, -0.006816898938268423, 0.07749664783477783, -0.05105862393975258, -0.07050752639770508, 0.22778885066509247, 0.18206603825092316, -0.08604560792446136, -0.06475834548473358, 0.02150237187743187, 0.0025662127882242203, -0.015483052469789982, 0.15339034795761108, 0.07510343194007874, 0.14473238587379456, -0.05320427194237709, 0.02847999520599842, -0.040382497012615204, 0.03194788843393326, -0.02284359559416771, -0.01288844458758831, 0.0366891473531723, -0.03508439287543297, -0.0318731851875782, 0.06278432905673981, -0.06976240128278732, 0.04573295637965202, -0.06711647659540176, -0.0783424824476242, -0.10323610156774521, -0.05210497975349426, 0.030664121732115746, 0.0343901552259922, 0.12893614172935486, -0.09144160896539688, 0.07683335244655609, -0.04136830195784569, -0.0491100512444973, -0.1246052011847496, -0.08312531560659409, 0.11655966937541962, -0.00036859061219729483, 0.011781887151300907, -0.0003263540274929255, 0.13756319880485535, 0.07268549501895905, 0.01870110258460045, -0.08661051094532013, 0.08356507867574692, -0.01429322175681591, 0.007119653280824423, 0.05799848213791847, 0.07887168973684311, -0.03465203195810318, 0.02389460615813732, 0.01632853038609028, -0.12404484301805496, -0.028095457702875137, -0.08259107917547226, 0.055414412170648575, -0.10141410678625107, 0.029229803010821342, -0.009326500818133354, 0.14220276474952698, 0.15385106205940247, -0.038153067231178284, 0.003150532953441143, -0.09184227883815765, -0.023287475109100342, 0.006625462789088488, 0.015522036701440811, -0.05254361778497696, -0.17851115763187408, -0.02999570406973362, -0.10143395513296127, -0.00001539903496450279, -0.16919642686843872, 0.01336232665926218, -0.09013161808252335, -0.0379173569381237, -0.0989316999912262, 0.13072189688682556, 0.03332224488258362, 0.02288452908396721, -0.05404307693243027, -0.051710620522499084, 0.006408262997865677, 0.062415603548288345, -0.1734381467103958, -0.18979261815547943 ]
null
null
sentence-transformers
# flax-sentence-embeddings/st-codesearch-distilroberta-base This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. It was trained on the [code_search_net](https://huggingface.co/datasets/code_search_net) dataset and can be used to search program code given text. ## Usage: ```python from sentence_transformers import SentenceTransformer, util #This list the defines the different programm codes code = ["""def sort_list(x): return sorted(x)""", """def count_above_threshold(elements, threshold=0): counter = 0 for e in elements: if e > threshold: counter += 1 return counter""", """def find_min_max(elements): min_ele = 99999 max_ele = -99999 for e in elements: if e < min_ele: min_ele = e if e > max_ele: max_ele = e return min_ele, max_ele"""] model = SentenceTransformer("flax-sentence-embeddings/st-codesearch-distilroberta-base") # Encode our code into the vector space code_emb = model.encode(code, convert_to_tensor=True) # Interactive demo: Enter queries, and the method returns the best function from the # 3 functions we defined while True: query = input("Query: ") query_emb = model.encode(query, convert_to_tensor=True) hits = util.semantic_search(query_emb, code_emb)[0] top_hit = hits[0] print("Cossim: {:.2f}".format(top_hit['score'])) print(code[top_hit['corpus_id']]) print("\n\n") ``` ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('flax-sentence-embeddings/st-codesearch-distilroberta-base') embeddings = model.encode(sentences) print(embeddings) ``` ## Training The model was trained with a DistilRoBERTa-base model for 10k training steps on the codesearch dataset with batch_size 256 and MultipleNegativesRankingLoss. It is some preliminary model. It was neither tested nor was the trained quite sophisticated The model was trained with the parameters: **DataLoader**: `MultiDatasetDataLoader.MultiDatasetDataLoader` of length 5371 with parameters: ``` {'batch_size': 256} ``` **Loss**: `sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss` with parameters: ``` {'scale': 20, 'similarity_fct': 'dot_score'} ``` Parameters of the fit()-Method: ``` { "callback": null, "epochs": 1, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "warmupconstant", "steps_per_epoch": 10000, "warmup_steps": 500, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: RobertaModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) (2): Normalize() ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
{"tags": ["sentence-transformers", "feature-extraction", "sentence-similarity"], "datasets": ["code_search_net"], "pipeline_tag": "sentence-similarity"}
sentence-similarity
flax-sentence-embeddings/st-codesearch-distilroberta-base
[ "sentence-transformers", "pytorch", "roberta", "feature-extraction", "sentence-similarity", "dataset:code_search_net", "endpoints_compatible", "has_space", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #sentence-transformers #pytorch #roberta #feature-extraction #sentence-similarity #dataset-code_search_net #endpoints_compatible #has_space #region-us
# flax-sentence-embeddings/st-codesearch-distilroberta-base This is a sentence-transformers model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. It was trained on the code_search_net dataset and can be used to search program code given text. ## Usage: ## Usage (Sentence-Transformers) Using this model becomes easy when you have sentence-transformers installed: Then you can use the model like this: ## Training The model was trained with a DistilRoBERTa-base model for 10k training steps on the codesearch dataset with batch_size 256 and MultipleNegativesRankingLoss. It is some preliminary model. It was neither tested nor was the trained quite sophisticated The model was trained with the parameters: DataLoader: 'MultiDatasetDataLoader.MultiDatasetDataLoader' of length 5371 with parameters: Loss: 'sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss' with parameters: Parameters of the fit()-Method: ## Full Model Architecture ## Citing & Authors
[ "# flax-sentence-embeddings/st-codesearch-distilroberta-base\n\nThis is a sentence-transformers model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.\n\nIt was trained on the code_search_net dataset and can be used to search program code given text.", "## Usage:", "## Usage (Sentence-Transformers)\n\nUsing this model becomes easy when you have sentence-transformers installed:\n\n\n\nThen you can use the model like this:", "## Training\n\nThe model was trained with a DistilRoBERTa-base model for 10k training steps on the codesearch dataset with batch_size 256 and MultipleNegativesRankingLoss. \n\nIt is some preliminary model. It was neither tested nor was the trained quite sophisticated \n\n\nThe model was trained with the parameters:\n\nDataLoader:\n\n'MultiDatasetDataLoader.MultiDatasetDataLoader' of length 5371 with parameters:\n\n\nLoss:\n\n'sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss' with parameters:\n \n\nParameters of the fit()-Method:", "## Full Model Architecture", "## Citing & Authors" ]
[ "TAGS\n#sentence-transformers #pytorch #roberta #feature-extraction #sentence-similarity #dataset-code_search_net #endpoints_compatible #has_space #region-us \n", "# flax-sentence-embeddings/st-codesearch-distilroberta-base\n\nThis is a sentence-transformers model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.\n\nIt was trained on the code_search_net dataset and can be used to search program code given text.", "## Usage:", "## Usage (Sentence-Transformers)\n\nUsing this model becomes easy when you have sentence-transformers installed:\n\n\n\nThen you can use the model like this:", "## Training\n\nThe model was trained with a DistilRoBERTa-base model for 10k training steps on the codesearch dataset with batch_size 256 and MultipleNegativesRankingLoss. \n\nIt is some preliminary model. It was neither tested nor was the trained quite sophisticated \n\n\nThe model was trained with the parameters:\n\nDataLoader:\n\n'MultiDatasetDataLoader.MultiDatasetDataLoader' of length 5371 with parameters:\n\n\nLoss:\n\n'sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss' with parameters:\n \n\nParameters of the fit()-Method:", "## Full Model Architecture", "## Citing & Authors" ]
[ 53, 89, 4, 38, 158, 5, 6 ]
[ "passage: TAGS\n#sentence-transformers #pytorch #roberta #feature-extraction #sentence-similarity #dataset-code_search_net #endpoints_compatible #has_space #region-us \n# flax-sentence-embeddings/st-codesearch-distilroberta-base\n\nThis is a sentence-transformers model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.\n\nIt was trained on the code_search_net dataset and can be used to search program code given text.## Usage:## Usage (Sentence-Transformers)\n\nUsing this model becomes easy when you have sentence-transformers installed:\n\n\n\nThen you can use the model like this:## Training\n\nThe model was trained with a DistilRoBERTa-base model for 10k training steps on the codesearch dataset with batch_size 256 and MultipleNegativesRankingLoss. \n\nIt is some preliminary model. It was neither tested nor was the trained quite sophisticated \n\n\nThe model was trained with the parameters:\n\nDataLoader:\n\n'MultiDatasetDataLoader.MultiDatasetDataLoader' of length 5371 with parameters:\n\n\nLoss:\n\n'sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss' with parameters:\n \n\nParameters of the fit()-Method:## Full Model Architecture## Citing & Authors" ]
[ -0.03370130434632301, 0.12699344754219055, -0.0072758933529257774, 0.06220025569200516, 0.09470411390066147, 0.023966481909155846, 0.07433868199586868, 0.10994654893875122, -0.08384755998849869, 0.12949010729789734, 0.0034738495014607906, -0.0029235989786684513, 0.03717704117298126, 0.04315068945288658, 0.017392877489328384, -0.253583699464798, 0.006358076352626085, -0.05484786629676819, -0.011053729802370071, 0.0718844011425972, 0.13806912302970886, -0.07265984266996384, 0.04468462988734245, -0.011237218044698238, -0.05760504677891731, 0.01394900307059288, -0.017933592200279236, -0.037890590727329254, 0.06545449793338776, 0.047883812338113785, 0.09558290243148804, -0.015682080760598183, 0.03930291160941124, -0.1783754974603653, 0.00699789309874177, 0.10120963305234909, 0.02689691074192524, 0.06397572159767151, 0.050478823482990265, 0.030445173382759094, 0.11882098764181137, -0.11096929758787155, 0.056844014674425125, 0.041631486266851425, -0.10114625841379166, -0.09230859577655792, -0.0766221284866333, -0.011588547378778458, 0.0733993798494339, 0.08660577982664108, -0.030778968706727028, 0.0799216628074646, -0.009083973243832588, 0.07877188920974731, 0.08952977508306503, -0.21746282279491425, -0.04679073765873909, 0.0809825211763382, 0.0623055025935173, 0.09426148235797882, -0.07118243724107742, -0.039453987032175064, 0.008604819886386395, 0.03728810325264931, 0.03542441129684448, -0.016193589195609093, 0.00484660267829895, -0.009145432151854038, -0.09339059889316559, -0.020817844197154045, 0.15575912594795227, 0.021849511191248894, -0.024275872856378555, -0.1621619164943695, -0.09860993176698685, 0.029628926888108253, -0.008812444284558296, -0.03986692801117897, 0.005443955305963755, 0.06464654207229614, -0.013992947526276112, -0.11444737762212753, -0.09910449385643005, -0.003423986490815878, -0.08706806600093842, -0.0020604904275387526, -0.0033096608240157366, 0.010187945328652859, -0.024350643157958984, 0.03315582871437073, -0.04650161415338516, -0.10028242319822311, -0.007161078508943319, -0.026037342846393585, -0.11082374304533005, -0.01836598478257656, -0.04800780862569809, -0.11233726888895035, 0.051350101828575134, 0.02615850232541561, -0.01257335301488638, 0.018779227510094643, -0.05790122598409653, 0.010203907266259193, 0.03329949453473091, 0.08502957224845886, -0.032463762909173965, -0.06873218715190887, -0.009070103988051414, 0.0276547372341156, 0.032726921141147614, -0.024639206007122993, -0.05036918818950653, -0.03647257760167122, 0.055429086089134216, 0.05317455530166626, 0.07047072798013687, 0.013199382461607456, -0.029155895113945007, -0.03811826929450035, 0.03922943398356438, -0.14261102676391602, 0.05534346029162407, 0.030997859314084053, -0.02215735800564289, 0.05260992422699928, 0.0014544696314260364, -0.003835410811007023, -0.08823483437299728, 0.0181135181337595, -0.08930018544197083, -0.01984483189880848, -0.07499197125434875, -0.13778120279312134, 0.011505101807415485, -0.05603168532252312, -0.08053632080554962, -0.07372588664293289, -0.17757828533649445, -0.06530612707138062, 0.033983729779720306, -0.06331365555524826, -0.013430614955723286, -0.0569586344063282, -0.024056531488895416, 0.0133988531306386, 0.02025238424539566, -0.00976521149277687, -0.0006039234576746821, 0.04617144167423248, -0.039464086294174194, 0.06138800457119942, 0.024607360363006592, 0.04204695671796799, -0.11680740118026733, 0.03594614565372467, -0.0629732757806778, 0.1725933700799942, -0.0229555144906044, 0.020636936649680138, -0.0970211997628212, -0.047334086149930954, -0.03991598263382912, 0.008508085273206234, 0.014001019299030304, 0.09950052201747894, -0.23544789850711823, -0.014516038820147514, 0.16805148124694824, -0.0829019844532013, -0.04173867031931877, 0.12019947916269302, -0.05414808541536331, 0.10075152665376663, 0.1061255931854248, 0.10938571393489838, 0.1791149526834488, -0.038175929337739944, -0.014250301755964756, 0.036492638289928436, 0.000021621008272632025, 0.12236437946557999, 0.06655683368444443, -0.05335936322808266, 0.07551498711109161, -0.0030723828822374344, 0.04526428133249283, -0.006422481033951044, -0.0017354165902361274, -0.06832405924797058, -0.04137541726231575, -0.014521830715239048, 0.049974508583545685, -0.004998578689992428, 0.0015954013215377927, -0.03845417499542236, -0.09473264217376709, 0.047793760895729065, 0.06915387511253357, -0.06917735189199448, 0.034377604722976685, -0.049660373479127884, 0.005756407044827938, -0.014113022945821285, -0.018768802285194397, -0.18666298687458038, -0.11982933431863785, 0.04240550100803375, -0.03161468356847763, 0.020388547331094742, 0.09635970741510391, 0.03501902520656586, 0.047078460454940796, -0.031972818076610565, 0.03760948404669762, 0.01374288834631443, -0.008208073675632477, -0.07235576212406158, -0.07151423394680023, -0.03912388160824776, -0.042758192867040634, 0.10271137952804565, -0.11389411240816116, 0.008455127477645874, 0.027672139927744865, 0.10838345438241959, 0.015439513139426708, -0.057602882385253906, -0.0030419796239584684, 0.004772960674017668, -0.0102512426674366, -0.06670092046260834, 0.03242272883653641, 0.047811295837163925, -0.05768890678882599, 0.009573613293468952, -0.15846720337867737, -0.15777961909770966, 0.04242083057761192, 0.100108802318573, -0.05579037964344025, -0.025173846632242203, -0.02890927530825138, 0.004296514205634594, -0.08802961558103561, -0.08389167487621307, 0.08594934642314911, 0.04570704326033592, 0.11267773061990738, -0.09206084907054901, -0.00763988122344017, -0.02489987015724182, -0.023031434044241905, -0.023717204108834267, 0.053980786353349686, -0.07781264185905457, -0.1713261753320694, 0.08269793540239334, 0.0397065207362175, -0.015013331547379494, 0.1224774718284607, -0.029034817591309547, -0.07671651244163513, -0.06869074702262878, 0.034018296748399734, 0.010868453420698643, -0.020491531118750572, -0.04405742883682251, 0.0471750907599926, 0.04922522231936455, 0.04511509835720062, 0.034618403762578964, -0.08127650618553162, 0.052284155040979385, 0.058041904121637344, -0.020737184211611748, 0.05412587523460388, -0.02047811821103096, 0.046052224934101105, 0.07648635655641556, 0.029278559610247612, 0.0521797351539135, 0.009300755336880684, -0.06184267997741699, -0.10340183973312378, 0.1316990852355957, -0.13486403226852417, -0.21924005448818207, -0.16281183063983917, 0.07389655709266663, -0.044276051223278046, -0.0011026180582121015, 0.03799211606383324, -0.03313964232802391, -0.03237081319093704, -0.1102631688117981, 0.027416672557592392, -0.02342107892036438, -0.04904833808541298, 0.03290699049830437, 0.05173048749566078, 0.022684112191200256, -0.11796282976865768, -0.0005585106555372477, 0.022761886939406395, -0.07362834364175797, -0.012997590005397797, -0.02053346112370491, 0.03335660696029663, 0.09201088547706604, 0.010595303028821945, -0.009999744594097137, 0.002590348944067955, 0.21164312958717346, -0.04497238248586655, 0.08745107054710388, 0.15060937404632568, 0.022939009591937065, 0.08363880217075348, 0.09331005811691284, 0.017628859728574753, -0.026275387033820152, 0.05245576426386833, 0.06188192591071129, -0.035100679844617844, -0.16916409134864807, -0.10935386270284653, -0.06548631191253662, -0.04199184477329254, 0.08180365711450577, 0.021670138463377953, -0.005759849213063717, 0.04472770541906357, -0.046829428523778915, 0.00773955462500453, 0.03473611921072006, 0.0634649395942688, 0.16281047463417053, 0.0027912163641303778, 0.07146824896335602, -0.06463678926229477, -0.0347895473241806, 0.1001175120472908, -0.003656170330941677, 0.1720457375049591, -0.029251551255583763, 0.16108615696430206, 0.01792776957154274, 0.05944158136844635, -0.0002571331278886646, 0.06377585977315903, -0.037220872938632965, 0.04758511856198311, -0.030818600207567215, -0.08266636729240417, -0.011325177736580372, 0.05706394091248512, 0.07637076824903488, -0.01240887213498354, 0.005430941469967365, 0.03736046701669693, 0.05575864389538765, 0.16632872819900513, 0.08992909640073776, -0.1912190169095993, -0.06526965647935867, 0.04922160878777504, -0.058234065771102905, -0.09083133190870285, 0.014556719921529293, 0.14289143681526184, -0.12098078429698944, 0.056323207914829254, -0.03003140352666378, 0.09504979848861694, -0.03415241464972496, 0.011213099583983421, -0.013531176373362541, 0.04005565494298935, 0.005852575413882732, 0.10794579237699509, -0.17778415977954865, 0.06621494889259338, 0.028914935886859894, 0.05632476881146431, -0.059541426599025726, 0.04843980073928833, 0.008185754530131817, 0.016039211302995682, 0.12507928907871246, 0.012109722010791302, -0.05437016487121582, -0.01909341663122177, -0.06585245579481125, 0.0024286271072924137, 0.08761711418628693, -0.04762500524520874, 0.09793057292699814, -0.05281151086091995, 0.0034377998672425747, -0.0017808063421398401, 0.02403954789042473, -0.056774359196424484, -0.18348084390163422, 0.025508811697363853, 0.04107694327831268, -0.028764205053448677, -0.04078168421983719, -0.022859368473291397, 0.042579490691423416, 0.1873268187046051, -0.07196524739265442, -0.08009975403547287, -0.12009656429290771, 0.037870295345783234, 0.16487392783164978, -0.05681818723678589, 0.009655037894845009, -0.041496071964502335, 0.1484101414680481, -0.028113465756177902, -0.08019346743822098, 0.016854749992489815, -0.038943350315093994, -0.10950122028589249, -0.03636641055345535, 0.11983901262283325, 0.022379521280527115, 0.051402121782302856, 0.027330651879310608, 0.09120677411556244, -0.02922441065311432, -0.08789161592721939, -0.0396481491625309, 0.10613429546356201, 0.004401283338665962, 0.061467524617910385, -0.09697011113166809, -0.019337445497512817, -0.04824773222208023, 0.0026190669741481543, 0.1894960105419159, 0.13865911960601807, -0.0954064428806305, 0.09209650754928589, 0.10638079792261124, -0.09851949661970139, -0.18753190338611603, -0.04965924844145775, 0.0653156116604805, 0.05607530102133751, 0.004000775050371885, -0.17523080110549927, 0.062425751239061356, 0.09168771654367447, -0.007666529156267643, -0.0557183213531971, -0.2933712601661682, -0.10338452458381653, 0.010502263903617859, -0.04180688038468361, -0.0625428855419159, -0.1333829015493393, -0.08163182437419891, -0.06716398149728775, -0.039210524410009384, 0.1473698914051056, -0.03654363751411438, 0.08115280419588089, 0.025600656867027283, 0.007056317757815123, 0.06622689962387085, -0.035801660269498825, 0.14190302789211273, 0.016829825937747955, 0.017097238451242447, -0.041903816163539886, -0.009027558378875256, 0.14977344870567322, -0.050255805253982544, 0.13464140892028809, 0.011109278537333012, 0.09096750617027283, -0.1287843883037567, -0.027253786101937294, -0.0810871496796608, 0.011811119504272938, -0.045404475182294846, -0.042606160044670105, -0.07399096339941025, 0.05940152332186699, 0.1344773769378662, -0.03602907061576843, 0.03029933199286461, -0.011167735792696476, 0.09131558239459991, 0.16957731544971466, 0.06785845011472702, 0.06027993559837341, -0.13675647974014282, 0.03201135993003845, 0.0036039354745298624, 0.0466039776802063, -0.09960193186998367, 0.051094043999910355, 0.09303923696279526, 0.027057025581598282, 0.1180640384554863, 0.028005585074424744, -0.1049826592206955, 0.007049115374684334, 0.04644801840186119, -0.08336744457483292, -0.19794203341007233, -0.04557470977306366, -0.014414981007575989, -0.143007293343544, -0.08192390948534012, 0.1322793960571289, -0.008019891567528248, 0.0027159948367625475, -0.005212721880525351, 0.05693809688091278, -0.020764101296663284, 0.08555582910776138, 0.022883646190166473, 0.056222103536129, -0.044526178389787674, 0.08594942092895508, 0.1325032114982605, -0.11036556959152222, 0.020901303738355637, 0.14469389617443085, -0.07433237135410309, -0.03489283099770546, -0.022703317925333977, 0.05915950611233711, -0.05018414556980133, -0.020277492702007294, -0.02959420531988144, -0.040057599544525146, 0.02883310429751873, 0.0449690967798233, 0.02175947278738022, 0.0827711969614029, -0.07518395036458969, -0.016433153301477432, -0.09063557535409927, 0.08590934425592422, 0.050121959298849106, 0.020930711179971695, -0.046902354806661606, 0.1391366720199585, -0.028985824435949326, 0.019362259656190872, -0.017983857542276382, -0.02625967189669609, -0.03527951240539551, -0.018723107874393463, -0.08195032924413681, 0.010856189765036106, -0.11306096613407135, -0.03613005578517914, 0.008576415479183197, 0.003906968515366316, -0.0044098044745624065, 0.002504003932699561, -0.014785916544497013, -0.07614254951477051, -0.08195004612207413, 0.050495121628046036, -0.15121454000473022, -0.014247367158532143, 0.03096063621342182, -0.08631223440170288, 0.06936416029930115, 0.004968396853655577, -0.0245189405977726, -0.00616463553160429, -0.01253469754010439, -0.0381949208676815, 0.013972054235637188, 0.05718817561864853, 0.011513764038681984, -0.11174099892377853, 0.01767806150019169, 0.013454614207148552, 0.016139648854732513, 0.026331432163715363, 0.06332198530435562, -0.10939231514930725, 0.02226586826145649, -0.0328059047460556, -0.04017610847949982, -0.09001081436872482, 0.023178862407803535, 0.06635501235723495, 0.045983634889125824, 0.1361701488494873, -0.06669667363166809, 0.0985516682267189, -0.15034614503383636, -0.02710384875535965, -0.010894975624978542, -0.006480272859334946, 0.03953743353486061, -0.041825179010629654, 0.05346280708909035, -0.028278756886720657, 0.08782186359167099, 0.01726425625383854, -0.011382815428078175, 0.05767440423369408, 0.011860540136694908, -0.0013310593785718083, 0.013629916124045849, 0.12000104784965515, 0.05293116346001625, -0.05095129460096359, 0.016057562083005905, -0.006242319475859404, -0.013409748673439026, 0.08020299673080444, 0.07606948912143707, 0.13777019083499908, 0.08734360337257385, 0.0650787279009819, 0.06052401289343834, -0.036633528769016266, -0.05478871241211891, 0.06912536174058914, -0.04824970290064812, 0.046725742518901825, -0.06160120666027069, 0.012275343760848045, 0.1010020449757576, -0.1687730997800827, 0.12513798475265503, -0.03377016261219978, -0.09331464022397995, -0.09491917490959167, -0.10460859537124634, -0.0908200591802597, -0.00869844388216734, -0.030400017276406288, -0.13507628440856934, 0.0658397525548935, 0.0885566771030426, -0.011311965994536877, -0.019714314490556717, 0.1313246339559555, -0.07099395245313644, -0.09865974634885788, 0.06612880527973175, 0.008846688084304333, 0.09435023367404938, 0.06479354202747345, 0.012733690440654755, 0.040967632085084915, 0.06038891151547432, 0.06155170872807503, 0.07109726220369339, 0.08394189924001694, 0.016964200884103775, -0.079403817653656, -0.06869030743837357, -0.004365970846265554, -0.021516213193535805, -0.021383298560976982, 0.07703942805528641, 0.066738560795784, -0.04269925877451897, -0.019864477217197418, 0.20918762683868408, -0.08185423910617828, -0.11849912256002426, -0.18178315460681915, 0.12571437656879425, 0.004414293449372053, 0.017306862398982048, 0.02906002104282379, -0.09824880212545395, -0.028312448412179947, 0.08578750491142273, 0.19429083168506622, -0.05934833362698555, 0.010275188833475113, 0.04683038964867592, 0.0072978176176548, 0.02153364010155201, 0.08156145364046097, 0.03894779458642006, 0.21280121803283691, -0.05983695760369301, 0.08809646219015121, -0.03732664883136749, -0.03566581383347511, -0.12638354301452637, 0.10331951826810837, -0.018257228657603264, 0.03980383276939392, -0.03990072384476662, 0.10115610808134079, 0.0361664704978466, -0.11759239435195923, 0.027034981176257133, -0.10869555175304413, -0.12690985202789307, -0.007835566066205502, 0.037270139902830124, -0.014421447180211544, 0.07168392091989517, 0.018618060275912285, 0.018986715003848076, 0.10752309113740921, -0.023160763084888458, -0.06729723513126373, -0.020702781155705452, 0.07547379285097122, -0.091475710272789, 0.10166122764348984, 0.028508935123682022, 0.057880949229002, 0.11116424202919006, -0.015406754799187183, -0.07426531612873077, 0.07202284038066864, 0.07511747628450394, 0.01083421427756548, 0.06064877659082413, 0.0854034274816513, -0.009748977608978748, 0.09770731627941132, 0.10628300905227661, -0.11797407269477844, 0.03453359380364418, 0.06673752516508102, -0.038315221667289734, -0.11916115134954453, 0.031374409794807434, -0.08250652998685837, 0.12785354256629944, 0.1961624175310135, -0.043131545186042786, -0.00027586016221903265, -0.008834554813802242, -0.0031290771439671516, 0.017819199711084366, 0.11050020158290863, -0.023545965552330017, -0.1400214582681656, -0.017491599544882774, -0.031166624277830124, 0.0641212910413742, -0.24553018808364868, -0.08140072226524353, 0.028043556958436966, -0.021266665309667587, -0.030979329720139503, 0.1138276681303978, 0.0172274149954319, -0.012241384945809841, -0.024080723524093628, -0.12261281162500381, -0.0011640925658866763, 0.0947696715593338, -0.09803921729326248, -0.05576521158218384 ]
null
null
sentence-transformers
# stackoverflow_mpnet-base This is a microsoft/mpnet-base model trained on 18,562,443 (title, body) pairs from StackOverflow. SentenceTransformers is a set of models and frameworks that enable training and generating sentence embeddings from given data. The generated sentence embeddings can be utilized for Clustering, Semantic Search and other tasks. We used a pretrained [microsoft/mpnet-base](https://huggingface.co/microsoft/mpnet-base) model and trained it using Siamese Network setup and contrastive learning objective. 18,562,443 (title, body) pairs from StackOverflow was used as training data. For this model, mean pooling of hidden states were used as sentence embeddings. See data_config.json and train_script.py in this respository how the model was trained and which datasets have been used. We developed this model during the [Community week using JAX/Flax for NLP & CV](https://discuss.huggingface.co/t/open-to-the-community-community-week-using-jax-flax-for-nlp-cv/7104), organized by Hugging Face. We developed this model as part of the project: [Train the Best Sentence Embedding Model Ever with 1B Training Pairs](https://discuss.huggingface.co/t/train-the-best-sentence-embedding-model-ever-with-1b-training-pairs/7354). We benefited from efficient hardware infrastructure to run the project: 7 TPUs v3-8, as well as assistance from Google’s Flax, JAX, and Cloud team members about efficient deep learning frameworks. ## Intended uses Our model is intended to be used as a sentence encoder for a search engine. Given an input sentence, it outputs a vector which captures the sentence semantic information. The sentence vector may be used for semantic-search, clustering or sentence similarity tasks. ## How to use Here is how to use this model to get the features of a given text using [SentenceTransformers](https://github.com/UKPLab/sentence-transformers) library: ```python from sentence_transformers import SentenceTransformer model = SentenceTransformer('flax-sentence-embeddings/stackoverflow_mpnet-base') text = "Replace me by any question / answer you'd like." text_embbedding = model.encode(text) # array([-0.01559514, 0.04046123, 0.1317083 , 0.00085931, 0.04585106, # -0.05607086, 0.0138078 , 0.03569756, 0.01420381, 0.04266302 ...], # dtype=float32) ``` # Training procedure ## Pre-training We use the pretrained [microsoft/mpnet-base](https://huggingface.co/microsoft/mpnet-base). Please refer to the model card for more detailed information about the pre-training procedure. ## Fine-tuning We fine-tune the model using a contrastive objective. Formally, we compute the cosine similarity from each possible sentence pairs from the batch. We then apply the cross entropy loss by comparing with true pairs. ### Hyper parameters We trained on model on a TPU v3-8. We train the model during 80k steps using a batch size of 1024 (128 per TPU core). We use a learning rate warm up of 500. The sequence length was limited to 128 tokens. We used the AdamW optimizer with a 2e-5 learning rate. The full training script is accessible in this current repository. ### Training data We used 18,562,443 (title, body) pairs from StackOverflow as training data. | Dataset | Paper | Number of training tuples | |:--------------------------------------------------------:|:----------------------------------------:|:--------------------------:| | StackOverflow title body pairs | - | 18,562,443 |
{"tags": ["sentence-transformers", "feature-extraction", "sentence-similarity"], "pipeline_tag": "sentence-similarity"}
sentence-similarity
flax-sentence-embeddings/stackoverflow_mpnet-base
[ "sentence-transformers", "pytorch", "mpnet", "feature-extraction", "sentence-similarity", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #sentence-transformers #pytorch #mpnet #feature-extraction #sentence-similarity #endpoints_compatible #region-us
stackoverflow\_mpnet-base ========================= This is a microsoft/mpnet-base model trained on 18,562,443 (title, body) pairs from StackOverflow. SentenceTransformers is a set of models and frameworks that enable training and generating sentence embeddings from given data. The generated sentence embeddings can be utilized for Clustering, Semantic Search and other tasks. We used a pretrained microsoft/mpnet-base model and trained it using Siamese Network setup and contrastive learning objective. 18,562,443 (title, body) pairs from StackOverflow was used as training data. For this model, mean pooling of hidden states were used as sentence embeddings. See data\_config.json and train\_script.py in this respository how the model was trained and which datasets have been used. We developed this model during the Community week using JAX/Flax for NLP & CV, organized by Hugging Face. We developed this model as part of the project: Train the Best Sentence Embedding Model Ever with 1B Training Pairs. We benefited from efficient hardware infrastructure to run the project: 7 TPUs v3-8, as well as assistance from Google’s Flax, JAX, and Cloud team members about efficient deep learning frameworks. Intended uses ------------- Our model is intended to be used as a sentence encoder for a search engine. Given an input sentence, it outputs a vector which captures the sentence semantic information. The sentence vector may be used for semantic-search, clustering or sentence similarity tasks. How to use ---------- Here is how to use this model to get the features of a given text using SentenceTransformers library: Training procedure ================== Pre-training ------------ We use the pretrained microsoft/mpnet-base. Please refer to the model card for more detailed information about the pre-training procedure. Fine-tuning ----------- We fine-tune the model using a contrastive objective. Formally, we compute the cosine similarity from each possible sentence pairs from the batch. We then apply the cross entropy loss by comparing with true pairs. ### Hyper parameters We trained on model on a TPU v3-8. We train the model during 80k steps using a batch size of 1024 (128 per TPU core). We use a learning rate warm up of 500. The sequence length was limited to 128 tokens. We used the AdamW optimizer with a 2e-5 learning rate. The full training script is accessible in this current repository. ### Training data We used 18,562,443 (title, body) pairs from StackOverflow as training data.
[ "### Hyper parameters\n\n\nWe trained on model on a TPU v3-8. We train the model during 80k steps using a batch size of 1024 (128 per TPU core).\nWe use a learning rate warm up of 500. The sequence length was limited to 128 tokens. We used the AdamW optimizer with\na 2e-5 learning rate. The full training script is accessible in this current repository.", "### Training data\n\n\nWe used 18,562,443 (title, body) pairs from StackOverflow as training data." ]
[ "TAGS\n#sentence-transformers #pytorch #mpnet #feature-extraction #sentence-similarity #endpoints_compatible #region-us \n", "### Hyper parameters\n\n\nWe trained on model on a TPU v3-8. We train the model during 80k steps using a batch size of 1024 (128 per TPU core).\nWe use a learning rate warm up of 500. The sequence length was limited to 128 tokens. We used the AdamW optimizer with\na 2e-5 learning rate. The full training script is accessible in this current repository.", "### Training data\n\n\nWe used 18,562,443 (title, body) pairs from StackOverflow as training data." ]
[ 40, 89, 28 ]
[ "passage: TAGS\n#sentence-transformers #pytorch #mpnet #feature-extraction #sentence-similarity #endpoints_compatible #region-us \n### Hyper parameters\n\n\nWe trained on model on a TPU v3-8. We train the model during 80k steps using a batch size of 1024 (128 per TPU core).\nWe use a learning rate warm up of 500. The sequence length was limited to 128 tokens. We used the AdamW optimizer with\na 2e-5 learning rate. The full training script is accessible in this current repository.### Training data\n\n\nWe used 18,562,443 (title, body) pairs from StackOverflow as training data." ]
[ -0.08352814614772797, -0.029659634456038475, 0.0014120194828137755, 0.07390979677438736, 0.16641758382320404, 0.04601486772298813, 0.014490446075797081, 0.12141487747430801, -0.1351211667060852, -0.04320656508207321, 0.11417454481124878, 0.07584013044834137, 0.02641887590289116, 0.10592424869537354, -0.009910683147609234, -0.2794051170349121, 0.03470668941736221, 0.05509250611066818, -0.03835158422589302, 0.12130876630544662, 0.07738251984119415, -0.06899969279766083, 0.05755270645022392, -0.048684749752283096, -0.16809538006782532, 0.010690471157431602, -0.027721932157874107, -0.013519044034183025, 0.15375502407550812, 0.021189697086811066, 0.08429940044879913, -0.0055976794101297855, 0.027419719845056534, -0.05105141922831535, 0.03356555849313736, 0.08965242654085159, 0.008427117951214314, 0.05910570174455643, -0.0048743607476353645, 0.059576064348220825, 0.23218432068824768, -0.03702371567487717, 0.0004534623585641384, 0.030989637598395348, -0.07328876107931137, -0.032496128231287, 0.023110054433345795, 0.023203717544674873, 0.1149553507566452, 0.09518314898014069, -0.0271335206925869, 0.2589094340801239, -0.1513558030128479, 0.11560265719890594, 0.0805843397974968, -0.33849358558654785, -0.04964689537882805, 0.16530749201774597, 0.12991265952587128, 0.09333585202693939, -0.0484306626021862, -0.03073066473007202, 0.03854235261678696, 0.07984651625156403, 0.05941375344991684, -0.004034625366330147, -0.12024901062250137, 0.034889619797468185, -0.1606070101261139, 0.029326096177101135, 0.1491486132144928, 0.016004176810383797, -0.009535077959299088, -0.023110147565603256, -0.11018375307321548, -0.09388410300016403, -0.0005444986745715141, -0.0131122637540102, -0.01022238191217184, 0.04185497388243675, -0.10836579650640488, 0.02687237225472927, -0.0767950639128685, -0.10159735381603241, -0.06940115988254547, 0.04491313919425011, 0.08423135429620743, 0.06712602078914642, -0.08357229083776474, 0.11486919224262238, -0.03282908350229263, -0.027751212939620018, 0.05934109538793564, -0.0599934346973896, -0.0782112330198288, -0.027399247512221336, -0.1221051812171936, -0.1378210335969925, 0.015036272816359997, -0.05051708221435547, 0.06463399529457092, 0.01297121774405241, 0.11887864023447037, 0.06064039468765259, -0.018116284161806107, 0.10625296831130981, -0.10229592025279999, -0.06944738328456879, -0.0004978777724318206, 0.020161613821983337, -0.08311714977025986, 0.004817782901227474, -0.10856650769710541, -0.044900257140398026, 0.13094523549079895, 0.012786840088665485, -0.09339246898889542, 0.10373006761074066, 0.029473204165697098, -0.04692512005567551, -0.010680178180336952, -0.0750855952501297, -0.06564731895923615, -0.0388195738196373, -0.09157955646514893, 0.10790624469518661, -0.002159473020583391, -0.056086085736751556, -0.14699843525886536, 0.0020513664931058884, -0.11101643741130829, -0.02288137935101986, -0.13270552456378937, -0.14296947419643402, 0.004563129041343927, -0.13156498968601227, 0.006625793874263763, -0.12006951868534088, -0.11114463955163956, -0.019767379388213158, 0.07392214238643646, -0.00954546220600605, -0.07401315867900848, -0.09475264698266983, -0.04623783379793167, -0.017447173595428467, -0.01488890964537859, 0.17920608818531036, -0.058634959161281586, 0.0880567654967308, -0.07640084624290466, 0.10480184853076935, -0.04313628748059273, 0.029594343155622482, -0.07364947348833084, -0.038835469633340836, -0.047782041132450104, 0.01767044886946678, 0.0634380429983139, 0.09549634158611298, -0.060643620789051056, -0.10322238504886627, -0.0874282717704773, -0.003922001458704472, 0.03773839771747589, 0.0708756297826767, -0.24641060829162598, -0.0060753533616662025, 0.18390719592571259, -0.0450383797287941, -0.11146940290927887, 0.18344974517822266, -0.03557514399290085, 0.02297634817659855, 0.1185971051454544, 0.11876946687698364, 0.04893525317311287, -0.03812292963266373, 0.06406296044588089, 0.103399857878685, -0.10124681144952774, -0.16989490389823914, 0.04937117546796799, 0.12463335692882538, -0.0051362840458750725, 0.0010197091614827514, 0.048866309225559235, 0.10272153466939926, -0.11406127363443375, -0.028573643416166306, -0.04276133328676224, -0.12591491639614105, -0.07800489664077759, 0.03262762725353241, 0.0623508095741272, -0.11333438009023666, -0.08469634503126144, 0.0649908185005188, 0.15398851037025452, -0.10691727697849274, 0.04391806945204735, -0.08463002741336823, -0.0014257620787248015, 0.012273333966732025, 0.013367334380745888, -0.12876002490520477, -0.016274655237793922, -0.0008792511071078479, 0.12560684978961945, 0.0033622272312641144, 0.19600479304790497, 0.04556431248784065, 0.036991219967603683, -0.033562902361154556, 0.04427788406610489, 0.02354557439684868, -0.03370770812034607, -0.1408626139163971, -0.07736703753471375, -0.05381282418966293, -0.025054067373275757, 0.012878604233264923, -0.10839613527059555, -0.008330597542226315, -0.10224507004022598, 0.03238788992166519, -0.019450116902589798, -0.00009090639650821686, -0.0022853356786072254, 0.029233183711767197, -0.016704421490430832, -0.07435847073793411, 0.12059464305639267, 0.030843224376440048, -0.0899040699005127, 0.07327847182750702, -0.10271219164133072, 0.04449213296175003, 0.14048311114311218, -0.11053862422704697, -0.0341828390955925, 0.03109922632575035, -0.04730928689241409, -0.053109537810087204, -0.027703244239091873, 0.00882776826620102, 0.160127192735672, 0.0008881508256308734, 0.1408427208662033, -0.10501055419445038, -0.036825962364673615, -0.022025832906365395, 0.00928212609142065, 0.09193240106105804, 0.07261429727077484, 0.022128328680992126, -0.17348983883857727, 0.021823234856128693, 0.0032881603110581636, -0.09787901490926743, 0.18139171600341797, -0.034839533269405365, -0.10310488939285278, 0.0648309588432312, 0.01712045446038246, -0.030949240550398827, 0.03826240450143814, -0.17587043344974518, -0.050592027604579926, 0.03110489621758461, 0.047161392867565155, 0.08003842830657959, -0.17401988804340363, -0.014567160978913307, -0.02935030683875084, -0.02861374244093895, -0.019026119261980057, -0.014928998425602913, -0.04487248510122299, 0.10399128496646881, 0.03520346060395241, -0.1609954535961151, 0.026440387591719627, -0.0017156110843643546, -0.06962543725967407, 0.1747504323720932, -0.038354501128196716, -0.1811802238225937, -0.03734692931175232, 0.04733571410179138, 0.005431498400866985, 0.016982002183794975, 0.010371958836913109, -0.0749267190694809, -0.01791553944349289, -0.039449431002140045, -0.011500575579702854, -0.02577294036746025, 0.06939496845006943, -0.08310754597187042, 0.08672495186328888, 0.008171779103577137, -0.13779215514659882, 0.016093188896775246, -0.10398983955383301, -0.11131276935338974, 0.06705088913440704, -0.15267913043498993, 0.021259117871522903, 0.2430233508348465, -0.08488088846206665, 0.050769876688718796, -0.019170889630913734, 0.16525253653526306, -0.01164315640926361, 0.03144783154129982, 0.15847811102867126, 0.000017807633412303403, 0.002811197657138109, -0.0411779060959816, -0.007613533642143011, -0.07158445566892624, 0.10207393020391464, 0.01565689593553543, -0.06276413053274155, -0.19637247920036316, -0.06087993457913399, -0.07375873625278473, 0.025138050317764282, 0.053952086716890335, 0.03832287713885307, -0.07918773591518402, 0.07128932327032089, 0.006249995902180672, 0.04248548299074173, -0.027314310893416405, 0.04461609572172165, -0.05107288807630539, 0.03369665890932083, 0.1312721073627472, -0.05228433012962341, -0.07192600518465042, 0.03354163095355034, 0.02640506625175476, 0.21321401000022888, -0.04878602549433708, 0.008205401711165905, 0.020605798810720444, 0.14488638937473297, 0.05745299905538559, 0.17107746005058289, -0.08488930761814117, -0.05299469828605652, -0.072532057762146, -0.011232232674956322, -0.0453949049115181, 0.04358430951833725, 0.010638577863574028, -0.03908564895391464, -0.0746987909078598, 0.08738879859447479, 0.05745210126042366, 0.27063971757888794, 0.14947780966758728, -0.287876695394516, -0.07884372770786285, -0.044937167316675186, -0.1011599525809288, -0.05538420006632805, 0.11352045834064484, 0.16411450505256653, -0.04095690697431564, -0.07040628045797348, -0.024912485852837563, 0.1510327160358429, -0.007419177796691656, 0.03900139033794403, 0.03102143108844757, 0.06408242136240005, -0.027037575840950012, 0.12168284505605698, -0.22884824872016907, 0.1501767933368683, -0.021516909822821617, 0.0765504464507103, -0.10038775205612183, -0.072384312748909, 0.03830123320221901, 0.05784260481595993, 0.007412266917526722, 0.019789567217230797, 0.03094060719013214, 0.02156795933842659, -0.09650025516748428, 0.061791736632585526, 0.055504728108644485, 0.10067921876907349, 0.07825230062007904, -0.05105935409665108, 0.026326065883040428, 0.0519951768219471, 0.11463087797164917, 0.037740882486104965, 0.010689768940210342, -0.08886784315109253, 0.05521829053759575, -0.06102284789085388, -0.014263580553233624, -0.07316885888576508, -0.015017680823802948, 0.2216518670320511, 0.050539929419755936, -0.05396227166056633, -0.06260709464550018, 0.04470325633883476, 0.09114034473896027, -0.021521735936403275, -0.009999056346714497, 0.06867522746324539, 0.040951840579509735, 0.021406108513474464, -0.09234631806612015, 0.1365903615951538, -0.08383601903915405, -0.04791410267353058, -0.029437124729156494, 0.09489623457193375, -0.0035364769864827394, 0.07276155799627304, -0.018815375864505768, -0.06461823731660843, -0.1093822494149208, -0.05762757733464241, -0.061795808374881744, -0.08560161292552948, 0.100835420191288, 0.05701637268066406, -0.0709235817193985, 0.07380659878253937, -0.05509009212255478, 0.018837692216038704, 0.15086953341960907, 0.09539608657360077, -0.03199508786201477, -0.013723303563892841, 0.15294522047042847, 0.025006312876939774, -0.22439055144786835, -0.012328453361988068, 0.027139786630868912, 0.026501134037971497, -0.08058065176010132, -0.08299316465854645, 0.1171196699142456, 0.06528986990451813, 0.0342828594148159, 0.023883959278464317, -0.28828221559524536, -0.10176469385623932, 0.11354509741067886, 0.09169778227806091, 0.41650423407554626, -0.07936259359121323, 0.09521838277578354, -0.03961813449859619, -0.07828553020954132, 0.1446845382452011, -0.18052735924720764, 0.15546894073486328, -0.02382829412817955, 0.04840642958879471, 0.028077000752091408, -0.054602719843387604, 0.004852515645325184, 0.07133333384990692, 0.07968391478061676, -0.042600929737091064, 0.04972612485289574, -0.0004104785621166229, -0.023053865879774094, 0.11211135238409042, -0.10598166286945343, 0.06685279309749603, -0.08936850726604462, -0.04811156913638115, -0.06490696221590042, -0.043889690190553665, 0.07685326784849167, -0.09105424582958221, -0.0427204854786396, 0.06967373192310333, 0.049618907272815704, 0.0201614610850811, 0.03988517075777054, -0.022982675582170486, 0.056190211325883865, 0.08069733530282974, 0.09756454080343246, -0.2165062129497528, -0.03876922279596329, 0.016336072236299515, 0.011907110922038555, 0.0863710418343544, -0.1295435130596161, 0.01765415072441101, 0.09657794237136841, -0.034016869962215424, 0.07837881147861481, 0.11096210777759552, -0.010732850059866905, -0.0521300733089447, 0.06872950494289398, -0.13815368711948395, 0.037207819521427155, -0.05258692428469658, -0.13145692646503448, -0.06075737625360489, 0.030862387269735336, 0.06648500263690948, -0.11275841295719147, 0.014738539233803749, -0.017613712698221207, -0.0062097483314573765, -0.11852686107158661, 0.21136216819286346, 0.0797610729932785, 0.05424054339528084, -0.10539498180150986, 0.0937114804983139, 0.023654958233237267, -0.07561053335666656, 0.01828708127140999, 0.1330544501543045, -0.13076461851596832, -0.045298270881175995, 0.10534775257110596, 0.07722114771604538, -0.05867893621325493, -0.06673905998468399, -0.11448703706264496, -0.0531664714217186, 0.08575982600450516, 0.08333712816238403, 0.10014740377664566, 0.098103366792202, -0.08703921735286713, -0.011290650814771652, -0.17325755953788757, 0.031181424856185913, 0.06261700391769409, 0.02462354674935341, -0.09656152874231339, 0.27008992433547974, 0.0224740169942379, 0.09882454574108124, -0.07405134290456772, 0.006796920206397772, -0.09013307839632034, 0.07555259019136429, -0.1011580228805542, -0.05659497529268265, 0.019626203924417496, -0.011500751599669456, -0.021502548828721046, 0.005420884117484093, -0.06130961701273918, 0.016961710527539253, -0.08165881037712097, 0.029478544369339943, -0.00008916482329368591, -0.03524310141801834, 0.0213675145059824, -0.03301088884472847, -0.0012121429899707437, -0.05154631286859512, 0.06323104351758957, 0.056441593915224075, -0.07761671394109726, 0.0838928073644638, -0.019973566755652428, -0.04126831516623497, 0.04056224599480629, 0.05270467326045036, 0.03251505643129349, 0.019713692367076874, 0.03226456791162491, 0.02625948190689087, 0.09536731243133545, 0.018635595217347145, 0.025896036997437477, -0.06394897401332855, -0.03731369972229004, -0.08282802253961563, -0.051818497478961945, -0.06629715859889984, -0.057837940752506256, 0.03231378644704819, 0.14510183036327362, 0.12870889902114868, -0.038120172917842865, -0.019432159140706062, -0.1649949699640274, 0.0006011013174429536, 0.007469418458640575, -0.09667544811964035, -0.016111383214592934, -0.045183975249528885, 0.08432730287313461, -0.03811885043978691, 0.12992367148399353, 0.04413823038339615, -0.006647755391895771, -0.004980400670319796, 0.01271703839302063, -0.008646583184599876, -0.039302386343479156, 0.24429087340831757, 0.03519653528928757, -0.019240405410528183, -0.047226857393980026, 0.07333146035671234, 0.06305550783872604, 0.10577209293842316, 0.1900993436574936, 0.06595326215028763, 0.040800582617521286, 0.17231783270835876, -0.027458954602479935, 0.02968447469174862, -0.08017536252737045, -0.002551246201619506, -0.02846408449113369, 0.0527619831264019, -0.036877311766147614, 0.16607943177223206, 0.17371010780334473, -0.09883211553096771, 0.01757785677909851, -0.046905796974897385, -0.0933273583650589, -0.12676110863685608, -0.04786621779203415, -0.0638711005449295, -0.15391966700553894, 0.0011577887926250696, -0.121121846139431, -0.025168582797050476, 0.1408052146434784, 0.04921377822756767, -0.04496002942323685, 0.10400833189487457, -0.02243286930024624, -0.0268253143876791, 0.07485935837030411, -0.024460675194859505, 0.03265732154250145, 0.0005991196376271546, -0.06652650237083435, 0.040419720113277435, -0.06220846623182297, 0.06533249467611313, -0.07877134531736374, 0.013926339335739613, 0.05729323625564575, -0.025559861212968826, -0.07168425619602203, -0.039676256477832794, -0.001332317478954792, 0.02464589662849903, 0.09745479375123978, 0.03673664852976799, -0.03650279343128204, -0.00844109058380127, 0.19336572289466858, -0.08968384563922882, -0.18098664283752441, -0.10658522695302963, 0.30276185274124146, 0.0725201815366745, -0.012841534800827503, 0.04642406851053238, -0.01896897330880165, -0.0704069584608078, 0.24844412505626678, 0.17865532636642456, -0.15658438205718994, -0.04403328150510788, 0.03140417858958244, -0.0002357593912165612, -0.061572302132844925, 0.22418197989463806, 0.14790955185890198, 0.09366423636674881, -0.053674060851335526, 0.0013753458624705672, -0.06394706666469574, 0.002810009755194187, -0.05122237280011177, -0.037882402539253235, 0.08743893355131149, -0.015149543061852455, -0.01605832204222679, 0.057768456637859344, -0.08830612897872925, -0.0002932898642029613, -0.0649200901389122, -0.04994376376271248, -0.12310602515935898, -0.02723444439470768, 0.0057394676841795444, 0.015836667269468307, 0.12947629392147064, -0.07595260441303253, 0.09697972238063812, -0.05982331186532974, -0.03713260963559151, -0.11812138557434082, -0.10657535493373871, 0.12227214872837067, -0.03602487966418266, 0.012379378080368042, -0.007698436267673969, 0.09332048892974854, 0.060463178902864456, 0.03221405670046806, -0.05718299746513367, 0.13801811635494232, -0.057414449751377106, -0.03727421537041664, 0.04888505861163139, 0.08823920786380768, -0.0497208870947361, -0.0474318265914917, 0.007895305752754211, -0.12405727058649063, -0.05185159295797348, -0.08918920159339905, 0.04214247316122055, -0.08967966586351395, 0.012395692989230156, -0.025989849120378494, 0.1403396874666214, 0.2196061611175537, -0.030811375007033348, 0.01209547370672226, -0.11346062272787094, -0.014120022766292095, 0.02127429097890854, -0.07418622076511383, -0.07221560180187225, -0.1610058844089508, -0.06153547018766403, -0.0466180257499218, -0.056438177824020386, -0.17001190781593323, -0.009141256101429462, -0.09181837737560272, -0.07867597788572311, -0.10689330101013184, 0.10888946056365967, 0.03743084520101547, 0.03352038189768791, -0.03719751909375191, 0.00586361438035965, -0.008474718779325485, 0.06098629906773567, -0.19531047344207764, -0.1757415235042572 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # reddit-bert-text2 This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.4969 - Perplexity: 12.14 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.8378 | 1.0 | 1007 | 2.6379 | | 2.6493 | 2.0 | 2014 | 2.5655 | | 2.5561 | 3.0 | 3021 | 2.5382 | ### Framework versions - Transformers 4.12.5 - Pytorch 1.10.0+cu113 - Datasets 1.16.1 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "model-index": [{"name": "reddit-bert-text2", "results": []}]}
fill-mask
flboehm/reddit-bert-text2
[ "transformers", "pytorch", "tensorboard", "bert", "fill-mask", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #bert #fill-mask #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
reddit-bert-text2 ================= This model is a fine-tuned version of bert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set: * Loss: 2.4969 * Perplexity: 12.14 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 8 * eval\_batch\_size: 8 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 3.0 ### Training results ### Framework versions * Transformers 4.12.5 * Pytorch 1.10.0+cu113 * Datasets 1.16.1 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3.0", "### Training results", "### Framework versions\n\n\n* Transformers 4.12.5\n* Pytorch 1.10.0+cu113\n* Datasets 1.16.1\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #bert #fill-mask #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3.0", "### Training results", "### Framework versions\n\n\n* Transformers 4.12.5\n* Pytorch 1.10.0+cu113\n* Datasets 1.16.1\n* Tokenizers 0.10.3" ]
[ 55, 98, 4, 33 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #bert #fill-mask #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3.0### Training results### Framework versions\n\n\n* Transformers 4.12.5\n* Pytorch 1.10.0+cu113\n* Datasets 1.16.1\n* Tokenizers 0.10.3" ]
[ -0.11675286293029785, 0.05161556974053383, -0.002028231741860509, 0.1262878030538559, 0.16310612857341766, 0.03185926005244255, 0.12015407532453537, 0.11548902839422226, -0.0901307687163353, 0.02122493088245392, 0.13511322438716888, 0.1723906546831131, 0.01296550314873457, 0.11832171678543091, -0.028657684102654457, -0.23708504438400269, -0.01167223695665598, 0.04081098362803459, -0.10300322622060776, 0.13658452033996582, 0.08597660809755325, -0.1343258172273636, 0.07864557951688766, 0.012850925326347351, -0.2105814665555954, 0.0147422319278121, 0.025692978873848915, -0.05952265486121178, 0.1531226933002472, 0.003164552850648761, 0.1389009952545166, -0.004845437128096819, 0.08363652974367142, -0.15759949386119843, 0.014672129414975643, 0.05651451647281647, 0.007373385597020388, 0.08461657166481018, 0.04413497820496559, 0.009326787665486336, 0.09467044472694397, -0.09008213132619858, 0.05444571375846863, 0.020979320630431175, -0.12718676030635834, -0.23751741647720337, -0.08411815017461777, 0.0034631991293281317, 0.06084040179848671, 0.10803037136793137, 0.00654837628826499, 0.1514735072851181, -0.09291068464517593, 0.08708726614713669, 0.25982245802879333, -0.2962189018726349, -0.07013969123363495, 0.020749103277921677, 0.01952318288385868, 0.0495007298886776, -0.10109847038984299, -0.01315554603934288, 0.044271063059568405, 0.049759361892938614, 0.1451311558485031, -0.03858957812190056, -0.10126426815986633, 0.01863235794007778, -0.13740761578083038, -0.031064162030816078, 0.09976896643638611, 0.029432736337184906, -0.036751262843608856, -0.02855902910232544, -0.06927604973316193, -0.1598730832338333, -0.04148782044649124, -0.009229524061083794, 0.044507745653390884, -0.04253125563263893, -0.08058485388755798, -0.0023778921458870173, -0.10340991616249084, -0.08375001698732376, -0.07453082501888275, 0.16869427263736725, 0.039153411984443665, 0.02600277215242386, -0.03242767974734306, 0.10809963196516037, -0.007331587839871645, -0.1432029753923416, 0.03391299024224281, 0.03993526101112366, -0.011953259818255901, -0.027474327012896538, -0.07313323020935059, -0.08297929912805557, 0.018168823793530464, 0.11629459261894226, -0.04434555396437645, 0.04177924990653992, 0.05484314262866974, 0.050651680678129196, -0.1219419538974762, 0.18653620779514313, -0.04669782891869545, -0.019326763227581978, 0.008426602929830551, 0.044960811734199524, 0.022991657257080078, -0.008385601453483105, -0.10699888318777084, -0.001971256686374545, 0.08352851122617722, 0.012780860997736454, -0.059069421142339706, 0.05866475775837898, -0.06368408352136612, -0.01423234585672617, 0.011384022422134876, -0.09832057356834412, 0.029326366260647774, -0.013192787766456604, -0.07339740544557571, -0.03145652264356613, 0.038226883858442307, 0.012064243666827679, -0.008809507824480534, 0.12448374181985855, -0.08745121955871582, 0.034396544098854065, -0.11112168431282043, -0.1095578595995903, 0.004855090752243996, -0.08999995142221451, 0.021691875532269478, -0.09262725710868835, -0.1675521284341812, -0.0012150368420407176, 0.07293315976858139, -0.02413906343281269, -0.046969830989837646, -0.019896384328603745, -0.06764604896306992, 0.007371376734226942, -0.008611337281763554, 0.17688478529453278, -0.05695547163486481, 0.11306790262460709, 0.048497263342142105, 0.08485250920057297, -0.05535395070910454, 0.05387147143483162, -0.09169647842645645, 0.0075415330938994884, -0.19521193206310272, 0.013362467288970947, -0.043931424617767334, 0.06475316733121872, -0.0870489776134491, -0.10557114332914352, -0.004933966789394617, -0.0053293295204639435, 0.08497919887304306, 0.092054583132267, -0.17699342966079712, -0.0783964991569519, 0.1648356169462204, -0.060305800288915634, -0.1069810763001442, 0.12051420658826828, -0.05127501115202904, 0.03895777091383934, 0.05604398623108864, 0.12366896867752075, 0.06796655803918839, -0.10645056515932083, 0.042716722935438156, 0.0023846535477787256, 0.04618832841515541, -0.07887641340494156, 0.07025796920061111, -0.013351384550333023, -0.01202894002199173, 0.0321800634264946, -0.03031170554459095, 0.06270484626293182, -0.09374309331178665, -0.10464303940534592, -0.042556922882795334, -0.11008832603693008, 0.06864719837903976, 0.07044588774442673, 0.07859614491462708, -0.10040023177862167, -0.08570932596921921, 0.028803817927837372, 0.07195011526346207, -0.043709203600883484, 0.03022078238427639, -0.05542777478694916, 0.06148833408951759, -0.059115245938301086, -0.029273508116602898, -0.18659323453903198, -0.01595277525484562, 0.004540765192359686, -0.021607836708426476, 0.015330073423683643, 0.01569722406566143, 0.08795791119337082, 0.06614430248737335, -0.055062394589185715, -0.013852838426828384, -0.04552745819091797, -0.009157833643257618, -0.13416354358196259, -0.20204158127307892, -0.04059376195073128, -0.019363755360245705, 0.11743751168251038, -0.1660510003566742, 0.026484018191695213, -0.058671459555625916, 0.0645153746008873, 0.004289358854293823, -0.012955821119248867, -0.05260365828871727, 0.09171244502067566, -0.016047142446041107, -0.050229351967573166, 0.07083114236593246, -0.002606866182759404, -0.08887913823127747, -0.04591916501522064, -0.08795499056577682, 0.1885080337524414, 0.1344916820526123, -0.12202432751655579, -0.08201109617948532, 0.03262512385845184, -0.06399127840995789, -0.03628474101424217, -0.04852081835269928, 0.042663972824811935, 0.17526094615459442, -0.003862294601276517, 0.13751886785030365, -0.0623113177716732, -0.03973190113902092, 0.03356553241610527, -0.035469215363264084, 0.03383657708764076, 0.0967106819152832, 0.13279321789741516, -0.04380905628204346, 0.13193508982658386, 0.17317867279052734, -0.11527305096387863, 0.12625837326049805, -0.03221646323800087, -0.07992532849311829, -0.018301842734217644, -0.020548440515995026, 0.011315207928419113, 0.12154796719551086, -0.14098702371120453, -0.004977679345756769, 0.02343166433274746, 0.0029735397547483444, 0.019711274653673172, -0.23652321100234985, -0.04881829023361206, 0.033975981175899506, -0.03884317725896835, -0.021904634311795235, -0.007821899838745594, 0.0018929975340142846, 0.09939473867416382, 0.0021421511191874743, -0.08655671030282974, 0.04237814620137215, 0.006535960361361504, -0.06528044492006302, 0.21436898410320282, -0.07974272966384888, -0.150449737906456, -0.12674757838249207, -0.0802994817495346, -0.039448127150535583, 0.008991596288979053, 0.05832841619849205, -0.09828007221221924, -0.03414110839366913, -0.04072361811995506, 0.007397878915071487, 0.011139731854200363, 0.05741561949253082, 0.004618517123162746, -0.013551071286201477, 0.09073363989591599, -0.109782375395298, -0.01004024501889944, -0.04751439392566681, -0.07008138298988342, 0.05166090652346611, 0.05639830604195595, 0.12294430285692215, 0.14508061110973358, -0.017000796273350716, 0.003749571042135358, -0.015339478850364685, 0.22473400831222534, -0.06675978004932404, -0.03356962278485298, 0.14088717103004456, -0.003472563810646534, 0.06104068085551262, 0.09616050869226456, 0.07871052622795105, -0.08363588899374008, 0.006943391170352697, 0.03138159587979317, -0.04523615166544914, -0.21199066936969757, -0.03176785632967949, -0.0642896220088005, -0.05352241173386574, 0.09670692682266235, 0.028780611231923103, 0.046018678694963455, 0.0733981654047966, 0.04861992597579956, 0.08881264179944992, -0.06529548764228821, 0.041098665446043015, 0.06535554677248001, 0.0510004498064518, 0.12288406491279602, -0.039925530552864075, -0.0728834792971611, 0.025885172188282013, -0.01600787602365017, 0.22493267059326172, 0.005819176789373159, 0.12701725959777832, 0.07020088285207748, 0.21277737617492676, -0.008212631568312645, 0.10535985976457596, -0.0043373326770961285, -0.05564728379249573, -0.009013007394969463, -0.051860034465789795, -0.03170601651072502, 0.012577264569699764, -0.04555634781718254, 0.07168792933225632, -0.10608343034982681, -0.010865558870136738, 0.03762146458029747, 0.27571529150009155, 0.03732943534851074, -0.32757604122161865, -0.07652520388364792, -0.013331661932170391, -0.012626332230865955, -0.016982922330498695, 0.004521749913692474, 0.09230565279722214, -0.08908749371767044, 0.03151381388306618, -0.07665164023637772, 0.08767471462488174, 0.002560216933488846, 0.04438105225563049, 0.07912009954452515, 0.10808414965867996, 0.014513086527585983, 0.06958990544080734, -0.3150534927845001, 0.29270651936531067, 0.005085041746497154, 0.08451374620199203, -0.08976242691278458, 0.006571087520569563, 0.04478657245635986, 0.02934638224542141, 0.06801918894052505, -0.014767051674425602, 0.003774149576202035, -0.19114769995212555, -0.057426851242780685, 0.032847434282302856, 0.08753929287195206, -0.02564067207276821, 0.08694661408662796, -0.020192788913846016, -0.0067025721073150635, 0.07625042647123337, 0.026018261909484863, -0.06571958214044571, -0.08596009016036987, -0.0051454161293804646, 0.02894529514014721, -0.0807637944817543, -0.07139865309000015, -0.11793283373117447, -0.129981130361557, 0.15578842163085938, 0.009963560849428177, -0.025251036509871483, -0.1163492426276207, 0.07375973463058472, 0.09447399526834488, -0.08775100111961365, 0.059279367327690125, 0.0022140832152217627, 0.05534467101097107, 0.02460227906703949, -0.07363224774599075, 0.11436403542757034, -0.06987440586090088, -0.14475589990615845, -0.07057621330022812, 0.09453024715185165, 0.033468134701251984, 0.06775525212287903, -0.018554767593741417, 0.019078999757766724, -0.04251467064023018, -0.08335640281438828, 0.04020393267273903, -0.039860695600509644, 0.07210002839565277, 0.024248147383332253, -0.047333505004644394, 0.015060536563396454, -0.05377403274178505, -0.02602388523519039, 0.1707712560892105, 0.2317596822977066, -0.10199344158172607, 0.019676800817251205, 0.03708645701408386, -0.05193391442298889, -0.20583347976207733, 0.03739861026406288, 0.06033224239945412, 0.01659267581999302, 0.06061117351055145, -0.17233766615390778, 0.1380053609609604, 0.09582465142011642, -0.01477639377117157, 0.12977749109268188, -0.32841774821281433, -0.12955893576145172, 0.13364119827747345, 0.16193132102489471, 0.1519758552312851, -0.1416657716035843, -0.020293917506933212, -0.027765264734625816, -0.12822581827640533, 0.06391548365354538, -0.1009296253323555, 0.12540769577026367, -0.03950326144695282, 0.08647916465997696, -0.002066846704110503, -0.07429047673940659, 0.12709426879882812, 0.00005992688238620758, 0.09453979134559631, -0.05586521327495575, -0.02066911943256855, 0.049993131309747696, -0.030772240832448006, 0.0032581640407443047, -0.08633419126272202, 0.025348743423819542, -0.05061659589409828, -0.012481133453547955, -0.08509673923254013, 0.056584808975458145, -0.031778689473867416, -0.056292276829481125, -0.021316928789019585, 0.01871664635837078, 0.03493034094572067, -0.020143458619713783, 0.10972519963979721, 0.03467106446623802, 0.16172781586647034, 0.09172463417053223, 0.0391598679125309, -0.0611451119184494, -0.10012985020875931, -0.013489813543856144, -0.018365686759352684, 0.06941767781972885, -0.11764346808195114, 0.01920708268880844, 0.1253010481595993, 0.029290825128555298, 0.11719834804534912, 0.08358033746480942, -0.03283785283565521, 0.01324665080755949, 0.07352574914693832, -0.16122785210609436, -0.060403283685445786, 0.004273784812539816, -0.06863982230424881, -0.11617350578308105, 0.04465387761592865, 0.07515779882669449, -0.06268887221813202, -0.007841783575713634, -0.012011499144136906, -0.0012009021593257785, -0.08338078111410141, 0.22068488597869873, 0.05825597420334816, 0.051991742104291916, -0.10401792079210281, 0.05472095310688019, 0.039912912994623184, -0.06740685552358627, -0.011710465885698795, 0.06072030961513519, -0.07353363931179047, -0.034725505858659744, 0.12412049621343613, 0.17603600025177002, -0.03316836431622505, -0.041478175669908524, -0.14696036279201508, -0.11254400759935379, 0.0683637484908104, 0.15676136314868927, 0.11000651121139526, 0.004053404089063406, -0.0516154021024704, 0.014878972433507442, -0.10751926153898239, 0.06916064769029617, 0.04489464685320854, 0.07214518636465073, -0.12523503601551056, 0.163154736161232, 0.013776343315839767, 0.057268545031547546, -0.020636701956391335, 0.03661800175905228, -0.09359537810087204, 0.01715407520532608, -0.11997333914041519, -0.038629498332738876, -0.015395806171000004, -0.011256572790443897, -0.006727762520313263, -0.060703497380018234, -0.061468999832868576, 0.023241817951202393, -0.12322700768709183, -0.03860294446349144, 0.04164646193385124, 0.03463954105973244, -0.11748412996530533, -0.0418047159910202, 0.03662807494401932, -0.05952143296599388, 0.04743771627545357, 0.05865908041596413, 0.016993636265397072, 0.0644555613398552, -0.14991576969623566, -0.013166777789592743, 0.06548323482275009, 0.012493087910115719, 0.0742131844162941, -0.07666052132844925, -0.015501615591347218, -0.007699435111135244, 0.07409939169883728, 0.009489033371210098, 0.083297960460186, -0.1504654884338379, -0.0008666599751450121, -0.027124814689159393, -0.09154681116342545, -0.06022879481315613, 0.013452167622745037, 0.09254390001296997, 0.01125210803002119, 0.1957036405801773, -0.087822325527668, 0.050572991371154785, -0.21083800494670868, 0.0030758909415453672, -0.025395726785063744, -0.09543447941541672, -0.11560649424791336, -0.05238460376858711, 0.0697329118847847, -0.05380085110664368, 0.1302890032529831, 0.01886647753417492, 0.048493850976228714, 0.019340239465236664, -0.017853880301117897, 0.02070368453860283, 0.012392483651638031, 0.21184583008289337, 0.035065896809101105, -0.033065732568502426, 0.07101590186357498, 0.06658381223678589, 0.09550238400697708, 0.12429734319448471, 0.2080901712179184, 0.15414319932460785, 0.02872229553759098, 0.10125088691711426, 0.021192513406276703, -0.05282577872276306, -0.1503886580467224, 0.019127344712615013, -0.051479700952768326, 0.09665624052286148, -0.01388046145439148, 0.20339171588420868, 0.06665881723165512, -0.16916561126708984, 0.05559059977531433, -0.043961051851511, -0.08554777503013611, -0.11258917301893234, -0.040526650846004486, -0.07684910297393799, -0.12422565370798111, 0.003781333565711975, -0.08305330574512482, 0.01790376752614975, 0.12301263213157654, -0.0021616860758513212, -0.015994306653738022, 0.19634360074996948, 0.03201180696487427, 0.03809310868382454, 0.04174710810184479, 0.010012269020080566, -0.025129025802016258, -0.08223141729831696, -0.06283993273973465, -0.02787080407142639, -0.014241967350244522, 0.037688735872507095, -0.0743732899427414, -0.08721951395273209, 0.05327526852488518, -0.007571708410978317, -0.10619359463453293, 0.013766673393547535, 0.005289421882480383, 0.06591634452342987, 0.04527370631694794, 0.013151115737855434, 0.02997577376663685, -0.023092547431588173, 0.1907155066728592, -0.08658701181411743, -0.09180071204900742, -0.09064605832099915, 0.25152793526649475, 0.03636480122804642, -0.018859392032027245, 0.026122191920876503, -0.05851542577147484, -0.0002848056028597057, 0.2610902190208435, 0.21808747947216034, -0.09126540273427963, -0.0010357656283304095, 0.012819305062294006, -0.014938678592443466, -0.041127923876047134, 0.12142264097929001, 0.13499866425991058, 0.059020474553108215, -0.1021764874458313, -0.04469405487179756, -0.061345964670181274, -0.014922428876161575, -0.06680402904748917, 0.040557701140642166, 0.0430239737033844, 0.0038193631917238235, -0.0392829030752182, 0.05287058651447296, -0.040319811552762985, -0.10990392416715622, 0.09581052511930466, -0.19534333050251007, -0.1662302017211914, -0.015118704177439213, 0.11550643295049667, 0.003914330154657364, 0.07047665119171143, -0.030943842604756355, 0.008862626738846302, 0.06624451279640198, -0.017040928825736046, -0.08433841913938522, -0.10142587870359421, 0.10431548207998276, -0.10405043512582779, 0.21618443727493286, -0.038398537784814835, 0.06555548310279846, 0.12269017100334167, 0.07741942256689072, -0.06652449816465378, 0.06404999643564224, 0.03822993487119675, -0.09900534898042679, 0.02521868795156479, 0.09115537256002426, -0.03373631089925766, 0.02247334085404873, 0.026723019778728485, -0.10311425477266312, 0.029883230105042458, -0.07271487265825272, -0.03754488006234169, -0.03584134951233864, -0.038551438599824905, -0.06219745799899101, 0.11867252737283707, 0.21657603979110718, -0.017885014414787292, 0.01138873677700758, -0.07864169031381607, 0.01358646247535944, 0.0658891424536705, 0.020636796951293945, -0.10261695832014084, -0.21521137654781342, 0.01871798373758793, 0.0415416955947876, -0.030749650672078133, -0.24044765532016754, -0.10120514035224915, 0.006164880003780127, -0.08569242805242538, -0.08782113343477249, 0.06047280505299568, 0.0731695294380188, 0.060993049293756485, -0.045041557401418686, -0.08954187482595444, -0.07751213759183884, 0.1498131901025772, -0.16930289566516876, -0.09490291029214859 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # reddit-bert-text3 This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.5346 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 3.1924 | 1.0 | 981 | 2.6541 | | 2.7158 | 2.0 | 1962 | 2.5480 | | 2.6583 | 3.0 | 2943 | 2.5072 | ### Framework versions - Transformers 4.12.5 - Pytorch 1.10.0+cu113 - Datasets 1.16.1 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "model-index": [{"name": "reddit-bert-text3", "results": []}]}
fill-mask
flboehm/reddit-bert-text3
[ "transformers", "pytorch", "tensorboard", "bert", "fill-mask", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #bert #fill-mask #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
reddit-bert-text3 ================= This model is a fine-tuned version of bert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set: * Loss: 2.5346 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 8 * eval\_batch\_size: 8 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 3.0 ### Training results ### Framework versions * Transformers 4.12.5 * Pytorch 1.10.0+cu113 * Datasets 1.16.1 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3.0", "### Training results", "### Framework versions\n\n\n* Transformers 4.12.5\n* Pytorch 1.10.0+cu113\n* Datasets 1.16.1\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #bert #fill-mask #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3.0", "### Training results", "### Framework versions\n\n\n* Transformers 4.12.5\n* Pytorch 1.10.0+cu113\n* Datasets 1.16.1\n* Tokenizers 0.10.3" ]
[ 55, 98, 4, 33 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #bert #fill-mask #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3.0### Training results### Framework versions\n\n\n* Transformers 4.12.5\n* Pytorch 1.10.0+cu113\n* Datasets 1.16.1\n* Tokenizers 0.10.3" ]
[ -0.11675286293029785, 0.05161556974053383, -0.002028231741860509, 0.1262878030538559, 0.16310612857341766, 0.03185926005244255, 0.12015407532453537, 0.11548902839422226, -0.0901307687163353, 0.02122493088245392, 0.13511322438716888, 0.1723906546831131, 0.01296550314873457, 0.11832171678543091, -0.028657684102654457, -0.23708504438400269, -0.01167223695665598, 0.04081098362803459, -0.10300322622060776, 0.13658452033996582, 0.08597660809755325, -0.1343258172273636, 0.07864557951688766, 0.012850925326347351, -0.2105814665555954, 0.0147422319278121, 0.025692978873848915, -0.05952265486121178, 0.1531226933002472, 0.003164552850648761, 0.1389009952545166, -0.004845437128096819, 0.08363652974367142, -0.15759949386119843, 0.014672129414975643, 0.05651451647281647, 0.007373385597020388, 0.08461657166481018, 0.04413497820496559, 0.009326787665486336, 0.09467044472694397, -0.09008213132619858, 0.05444571375846863, 0.020979320630431175, -0.12718676030635834, -0.23751741647720337, -0.08411815017461777, 0.0034631991293281317, 0.06084040179848671, 0.10803037136793137, 0.00654837628826499, 0.1514735072851181, -0.09291068464517593, 0.08708726614713669, 0.25982245802879333, -0.2962189018726349, -0.07013969123363495, 0.020749103277921677, 0.01952318288385868, 0.0495007298886776, -0.10109847038984299, -0.01315554603934288, 0.044271063059568405, 0.049759361892938614, 0.1451311558485031, -0.03858957812190056, -0.10126426815986633, 0.01863235794007778, -0.13740761578083038, -0.031064162030816078, 0.09976896643638611, 0.029432736337184906, -0.036751262843608856, -0.02855902910232544, -0.06927604973316193, -0.1598730832338333, -0.04148782044649124, -0.009229524061083794, 0.044507745653390884, -0.04253125563263893, -0.08058485388755798, -0.0023778921458870173, -0.10340991616249084, -0.08375001698732376, -0.07453082501888275, 0.16869427263736725, 0.039153411984443665, 0.02600277215242386, -0.03242767974734306, 0.10809963196516037, -0.007331587839871645, -0.1432029753923416, 0.03391299024224281, 0.03993526101112366, -0.011953259818255901, -0.027474327012896538, -0.07313323020935059, -0.08297929912805557, 0.018168823793530464, 0.11629459261894226, -0.04434555396437645, 0.04177924990653992, 0.05484314262866974, 0.050651680678129196, -0.1219419538974762, 0.18653620779514313, -0.04669782891869545, -0.019326763227581978, 0.008426602929830551, 0.044960811734199524, 0.022991657257080078, -0.008385601453483105, -0.10699888318777084, -0.001971256686374545, 0.08352851122617722, 0.012780860997736454, -0.059069421142339706, 0.05866475775837898, -0.06368408352136612, -0.01423234585672617, 0.011384022422134876, -0.09832057356834412, 0.029326366260647774, -0.013192787766456604, -0.07339740544557571, -0.03145652264356613, 0.038226883858442307, 0.012064243666827679, -0.008809507824480534, 0.12448374181985855, -0.08745121955871582, 0.034396544098854065, -0.11112168431282043, -0.1095578595995903, 0.004855090752243996, -0.08999995142221451, 0.021691875532269478, -0.09262725710868835, -0.1675521284341812, -0.0012150368420407176, 0.07293315976858139, -0.02413906343281269, -0.046969830989837646, -0.019896384328603745, -0.06764604896306992, 0.007371376734226942, -0.008611337281763554, 0.17688478529453278, -0.05695547163486481, 0.11306790262460709, 0.048497263342142105, 0.08485250920057297, -0.05535395070910454, 0.05387147143483162, -0.09169647842645645, 0.0075415330938994884, -0.19521193206310272, 0.013362467288970947, -0.043931424617767334, 0.06475316733121872, -0.0870489776134491, -0.10557114332914352, -0.004933966789394617, -0.0053293295204639435, 0.08497919887304306, 0.092054583132267, -0.17699342966079712, -0.0783964991569519, 0.1648356169462204, -0.060305800288915634, -0.1069810763001442, 0.12051420658826828, -0.05127501115202904, 0.03895777091383934, 0.05604398623108864, 0.12366896867752075, 0.06796655803918839, -0.10645056515932083, 0.042716722935438156, 0.0023846535477787256, 0.04618832841515541, -0.07887641340494156, 0.07025796920061111, -0.013351384550333023, -0.01202894002199173, 0.0321800634264946, -0.03031170554459095, 0.06270484626293182, -0.09374309331178665, -0.10464303940534592, -0.042556922882795334, -0.11008832603693008, 0.06864719837903976, 0.07044588774442673, 0.07859614491462708, -0.10040023177862167, -0.08570932596921921, 0.028803817927837372, 0.07195011526346207, -0.043709203600883484, 0.03022078238427639, -0.05542777478694916, 0.06148833408951759, -0.059115245938301086, -0.029273508116602898, -0.18659323453903198, -0.01595277525484562, 0.004540765192359686, -0.021607836708426476, 0.015330073423683643, 0.01569722406566143, 0.08795791119337082, 0.06614430248737335, -0.055062394589185715, -0.013852838426828384, -0.04552745819091797, -0.009157833643257618, -0.13416354358196259, -0.20204158127307892, -0.04059376195073128, -0.019363755360245705, 0.11743751168251038, -0.1660510003566742, 0.026484018191695213, -0.058671459555625916, 0.0645153746008873, 0.004289358854293823, -0.012955821119248867, -0.05260365828871727, 0.09171244502067566, -0.016047142446041107, -0.050229351967573166, 0.07083114236593246, -0.002606866182759404, -0.08887913823127747, -0.04591916501522064, -0.08795499056577682, 0.1885080337524414, 0.1344916820526123, -0.12202432751655579, -0.08201109617948532, 0.03262512385845184, -0.06399127840995789, -0.03628474101424217, -0.04852081835269928, 0.042663972824811935, 0.17526094615459442, -0.003862294601276517, 0.13751886785030365, -0.0623113177716732, -0.03973190113902092, 0.03356553241610527, -0.035469215363264084, 0.03383657708764076, 0.0967106819152832, 0.13279321789741516, -0.04380905628204346, 0.13193508982658386, 0.17317867279052734, -0.11527305096387863, 0.12625837326049805, -0.03221646323800087, -0.07992532849311829, -0.018301842734217644, -0.020548440515995026, 0.011315207928419113, 0.12154796719551086, -0.14098702371120453, -0.004977679345756769, 0.02343166433274746, 0.0029735397547483444, 0.019711274653673172, -0.23652321100234985, -0.04881829023361206, 0.033975981175899506, -0.03884317725896835, -0.021904634311795235, -0.007821899838745594, 0.0018929975340142846, 0.09939473867416382, 0.0021421511191874743, -0.08655671030282974, 0.04237814620137215, 0.006535960361361504, -0.06528044492006302, 0.21436898410320282, -0.07974272966384888, -0.150449737906456, -0.12674757838249207, -0.0802994817495346, -0.039448127150535583, 0.008991596288979053, 0.05832841619849205, -0.09828007221221924, -0.03414110839366913, -0.04072361811995506, 0.007397878915071487, 0.011139731854200363, 0.05741561949253082, 0.004618517123162746, -0.013551071286201477, 0.09073363989591599, -0.109782375395298, -0.01004024501889944, -0.04751439392566681, -0.07008138298988342, 0.05166090652346611, 0.05639830604195595, 0.12294430285692215, 0.14508061110973358, -0.017000796273350716, 0.003749571042135358, -0.015339478850364685, 0.22473400831222534, -0.06675978004932404, -0.03356962278485298, 0.14088717103004456, -0.003472563810646534, 0.06104068085551262, 0.09616050869226456, 0.07871052622795105, -0.08363588899374008, 0.006943391170352697, 0.03138159587979317, -0.04523615166544914, -0.21199066936969757, -0.03176785632967949, -0.0642896220088005, -0.05352241173386574, 0.09670692682266235, 0.028780611231923103, 0.046018678694963455, 0.0733981654047966, 0.04861992597579956, 0.08881264179944992, -0.06529548764228821, 0.041098665446043015, 0.06535554677248001, 0.0510004498064518, 0.12288406491279602, -0.039925530552864075, -0.0728834792971611, 0.025885172188282013, -0.01600787602365017, 0.22493267059326172, 0.005819176789373159, 0.12701725959777832, 0.07020088285207748, 0.21277737617492676, -0.008212631568312645, 0.10535985976457596, -0.0043373326770961285, -0.05564728379249573, -0.009013007394969463, -0.051860034465789795, -0.03170601651072502, 0.012577264569699764, -0.04555634781718254, 0.07168792933225632, -0.10608343034982681, -0.010865558870136738, 0.03762146458029747, 0.27571529150009155, 0.03732943534851074, -0.32757604122161865, -0.07652520388364792, -0.013331661932170391, -0.012626332230865955, -0.016982922330498695, 0.004521749913692474, 0.09230565279722214, -0.08908749371767044, 0.03151381388306618, -0.07665164023637772, 0.08767471462488174, 0.002560216933488846, 0.04438105225563049, 0.07912009954452515, 0.10808414965867996, 0.014513086527585983, 0.06958990544080734, -0.3150534927845001, 0.29270651936531067, 0.005085041746497154, 0.08451374620199203, -0.08976242691278458, 0.006571087520569563, 0.04478657245635986, 0.02934638224542141, 0.06801918894052505, -0.014767051674425602, 0.003774149576202035, -0.19114769995212555, -0.057426851242780685, 0.032847434282302856, 0.08753929287195206, -0.02564067207276821, 0.08694661408662796, -0.020192788913846016, -0.0067025721073150635, 0.07625042647123337, 0.026018261909484863, -0.06571958214044571, -0.08596009016036987, -0.0051454161293804646, 0.02894529514014721, -0.0807637944817543, -0.07139865309000015, -0.11793283373117447, -0.129981130361557, 0.15578842163085938, 0.009963560849428177, -0.025251036509871483, -0.1163492426276207, 0.07375973463058472, 0.09447399526834488, -0.08775100111961365, 0.059279367327690125, 0.0022140832152217627, 0.05534467101097107, 0.02460227906703949, -0.07363224774599075, 0.11436403542757034, -0.06987440586090088, -0.14475589990615845, -0.07057621330022812, 0.09453024715185165, 0.033468134701251984, 0.06775525212287903, -0.018554767593741417, 0.019078999757766724, -0.04251467064023018, -0.08335640281438828, 0.04020393267273903, -0.039860695600509644, 0.07210002839565277, 0.024248147383332253, -0.047333505004644394, 0.015060536563396454, -0.05377403274178505, -0.02602388523519039, 0.1707712560892105, 0.2317596822977066, -0.10199344158172607, 0.019676800817251205, 0.03708645701408386, -0.05193391442298889, -0.20583347976207733, 0.03739861026406288, 0.06033224239945412, 0.01659267581999302, 0.06061117351055145, -0.17233766615390778, 0.1380053609609604, 0.09582465142011642, -0.01477639377117157, 0.12977749109268188, -0.32841774821281433, -0.12955893576145172, 0.13364119827747345, 0.16193132102489471, 0.1519758552312851, -0.1416657716035843, -0.020293917506933212, -0.027765264734625816, -0.12822581827640533, 0.06391548365354538, -0.1009296253323555, 0.12540769577026367, -0.03950326144695282, 0.08647916465997696, -0.002066846704110503, -0.07429047673940659, 0.12709426879882812, 0.00005992688238620758, 0.09453979134559631, -0.05586521327495575, -0.02066911943256855, 0.049993131309747696, -0.030772240832448006, 0.0032581640407443047, -0.08633419126272202, 0.025348743423819542, -0.05061659589409828, -0.012481133453547955, -0.08509673923254013, 0.056584808975458145, -0.031778689473867416, -0.056292276829481125, -0.021316928789019585, 0.01871664635837078, 0.03493034094572067, -0.020143458619713783, 0.10972519963979721, 0.03467106446623802, 0.16172781586647034, 0.09172463417053223, 0.0391598679125309, -0.0611451119184494, -0.10012985020875931, -0.013489813543856144, -0.018365686759352684, 0.06941767781972885, -0.11764346808195114, 0.01920708268880844, 0.1253010481595993, 0.029290825128555298, 0.11719834804534912, 0.08358033746480942, -0.03283785283565521, 0.01324665080755949, 0.07352574914693832, -0.16122785210609436, -0.060403283685445786, 0.004273784812539816, -0.06863982230424881, -0.11617350578308105, 0.04465387761592865, 0.07515779882669449, -0.06268887221813202, -0.007841783575713634, -0.012011499144136906, -0.0012009021593257785, -0.08338078111410141, 0.22068488597869873, 0.05825597420334816, 0.051991742104291916, -0.10401792079210281, 0.05472095310688019, 0.039912912994623184, -0.06740685552358627, -0.011710465885698795, 0.06072030961513519, -0.07353363931179047, -0.034725505858659744, 0.12412049621343613, 0.17603600025177002, -0.03316836431622505, -0.041478175669908524, -0.14696036279201508, -0.11254400759935379, 0.0683637484908104, 0.15676136314868927, 0.11000651121139526, 0.004053404089063406, -0.0516154021024704, 0.014878972433507442, -0.10751926153898239, 0.06916064769029617, 0.04489464685320854, 0.07214518636465073, -0.12523503601551056, 0.163154736161232, 0.013776343315839767, 0.057268545031547546, -0.020636701956391335, 0.03661800175905228, -0.09359537810087204, 0.01715407520532608, -0.11997333914041519, -0.038629498332738876, -0.015395806171000004, -0.011256572790443897, -0.006727762520313263, -0.060703497380018234, -0.061468999832868576, 0.023241817951202393, -0.12322700768709183, -0.03860294446349144, 0.04164646193385124, 0.03463954105973244, -0.11748412996530533, -0.0418047159910202, 0.03662807494401932, -0.05952143296599388, 0.04743771627545357, 0.05865908041596413, 0.016993636265397072, 0.0644555613398552, -0.14991576969623566, -0.013166777789592743, 0.06548323482275009, 0.012493087910115719, 0.0742131844162941, -0.07666052132844925, -0.015501615591347218, -0.007699435111135244, 0.07409939169883728, 0.009489033371210098, 0.083297960460186, -0.1504654884338379, -0.0008666599751450121, -0.027124814689159393, -0.09154681116342545, -0.06022879481315613, 0.013452167622745037, 0.09254390001296997, 0.01125210803002119, 0.1957036405801773, -0.087822325527668, 0.050572991371154785, -0.21083800494670868, 0.0030758909415453672, -0.025395726785063744, -0.09543447941541672, -0.11560649424791336, -0.05238460376858711, 0.0697329118847847, -0.05380085110664368, 0.1302890032529831, 0.01886647753417492, 0.048493850976228714, 0.019340239465236664, -0.017853880301117897, 0.02070368453860283, 0.012392483651638031, 0.21184583008289337, 0.035065896809101105, -0.033065732568502426, 0.07101590186357498, 0.06658381223678589, 0.09550238400697708, 0.12429734319448471, 0.2080901712179184, 0.15414319932460785, 0.02872229553759098, 0.10125088691711426, 0.021192513406276703, -0.05282577872276306, -0.1503886580467224, 0.019127344712615013, -0.051479700952768326, 0.09665624052286148, -0.01388046145439148, 0.20339171588420868, 0.06665881723165512, -0.16916561126708984, 0.05559059977531433, -0.043961051851511, -0.08554777503013611, -0.11258917301893234, -0.040526650846004486, -0.07684910297393799, -0.12422565370798111, 0.003781333565711975, -0.08305330574512482, 0.01790376752614975, 0.12301263213157654, -0.0021616860758513212, -0.015994306653738022, 0.19634360074996948, 0.03201180696487427, 0.03809310868382454, 0.04174710810184479, 0.010012269020080566, -0.025129025802016258, -0.08223141729831696, -0.06283993273973465, -0.02787080407142639, -0.014241967350244522, 0.037688735872507095, -0.0743732899427414, -0.08721951395273209, 0.05327526852488518, -0.007571708410978317, -0.10619359463453293, 0.013766673393547535, 0.005289421882480383, 0.06591634452342987, 0.04527370631694794, 0.013151115737855434, 0.02997577376663685, -0.023092547431588173, 0.1907155066728592, -0.08658701181411743, -0.09180071204900742, -0.09064605832099915, 0.25152793526649475, 0.03636480122804642, -0.018859392032027245, 0.026122191920876503, -0.05851542577147484, -0.0002848056028597057, 0.2610902190208435, 0.21808747947216034, -0.09126540273427963, -0.0010357656283304095, 0.012819305062294006, -0.014938678592443466, -0.041127923876047134, 0.12142264097929001, 0.13499866425991058, 0.059020474553108215, -0.1021764874458313, -0.04469405487179756, -0.061345964670181274, -0.014922428876161575, -0.06680402904748917, 0.040557701140642166, 0.0430239737033844, 0.0038193631917238235, -0.0392829030752182, 0.05287058651447296, -0.040319811552762985, -0.10990392416715622, 0.09581052511930466, -0.19534333050251007, -0.1662302017211914, -0.015118704177439213, 0.11550643295049667, 0.003914330154657364, 0.07047665119171143, -0.030943842604756355, 0.008862626738846302, 0.06624451279640198, -0.017040928825736046, -0.08433841913938522, -0.10142587870359421, 0.10431548207998276, -0.10405043512582779, 0.21618443727493286, -0.038398537784814835, 0.06555548310279846, 0.12269017100334167, 0.07741942256689072, -0.06652449816465378, 0.06404999643564224, 0.03822993487119675, -0.09900534898042679, 0.02521868795156479, 0.09115537256002426, -0.03373631089925766, 0.02247334085404873, 0.026723019778728485, -0.10311425477266312, 0.029883230105042458, -0.07271487265825272, -0.03754488006234169, -0.03584134951233864, -0.038551438599824905, -0.06219745799899101, 0.11867252737283707, 0.21657603979110718, -0.017885014414787292, 0.01138873677700758, -0.07864169031381607, 0.01358646247535944, 0.0658891424536705, 0.020636796951293945, -0.10261695832014084, -0.21521137654781342, 0.01871798373758793, 0.0415416955947876, -0.030749650672078133, -0.24044765532016754, -0.10120514035224915, 0.006164880003780127, -0.08569242805242538, -0.08782113343477249, 0.06047280505299568, 0.0731695294380188, 0.060993049293756485, -0.045041557401418686, -0.08954187482595444, -0.07751213759183884, 0.1498131901025772, -0.16930289566516876, -0.09490291029214859 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # reddit-bert-text4 This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.4763 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 3.1071 | 1.0 | 978 | 2.6170 | | 2.6788 | 2.0 | 1956 | 2.5332 | | 2.6112 | 3.0 | 2934 | 2.4844 | ### Framework versions - Transformers 4.13.0 - Pytorch 1.10.0+cu113 - Datasets 1.16.1 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "model-index": [{"name": "reddit-bert-text4", "results": []}]}
fill-mask
flboehm/reddit-bert-text4
[ "transformers", "pytorch", "tensorboard", "bert", "fill-mask", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #bert #fill-mask #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
reddit-bert-text4 ================= This model is a fine-tuned version of bert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set: * Loss: 2.4763 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 8 * eval\_batch\_size: 8 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 3.0 ### Training results ### Framework versions * Transformers 4.13.0 * Pytorch 1.10.0+cu113 * Datasets 1.16.1 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3.0", "### Training results", "### Framework versions\n\n\n* Transformers 4.13.0\n* Pytorch 1.10.0+cu113\n* Datasets 1.16.1\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #bert #fill-mask #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3.0", "### Training results", "### Framework versions\n\n\n* Transformers 4.13.0\n* Pytorch 1.10.0+cu113\n* Datasets 1.16.1\n* Tokenizers 0.10.3" ]
[ 55, 98, 4, 33 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #bert #fill-mask #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3.0### Training results### Framework versions\n\n\n* Transformers 4.13.0\n* Pytorch 1.10.0+cu113\n* Datasets 1.16.1\n* Tokenizers 0.10.3" ]
[ -0.11525418609380722, 0.05112874135375023, -0.002001094864681363, 0.12625552713871002, 0.16319842636585236, 0.03161817044019699, 0.12071207910776138, 0.11609277129173279, -0.09121573716402054, 0.02057754062116146, 0.13580137491226196, 0.17313015460968018, 0.012436936609447002, 0.11820852756500244, -0.028577974066138268, -0.23693053424358368, -0.010536547750234604, 0.03934672847390175, -0.10156188160181046, 0.13658744096755981, 0.08683422207832336, -0.1338181495666504, 0.07921480387449265, 0.013119363225996494, -0.20979225635528564, 0.014986605383455753, 0.02401632070541382, -0.060215163975954056, 0.15261323750019073, 0.001949883415363729, 0.13900794088840485, -0.004119328688830137, 0.08417848497629166, -0.15821920335292816, 0.014634138904511929, 0.056349847465753555, 0.007641890551894903, 0.08379912376403809, 0.04430210217833519, 0.008559335954487324, 0.09546831250190735, -0.0891513004899025, 0.05599662661552429, 0.021002722904086113, -0.1261797696352005, -0.23581449687480927, -0.08523891121149063, 0.004004800226539373, 0.06085215508937836, 0.10809146612882614, 0.0076529704965651035, 0.1514243334531784, -0.09250769019126892, 0.08687248080968857, 0.2593787610530853, -0.29583749175071716, -0.07073990255594254, 0.021864404901862144, 0.021534418687224388, 0.049851302057504654, -0.09989064931869507, -0.012602337636053562, 0.04357468709349632, 0.051064383238554, 0.14540374279022217, -0.03964829072356224, -0.10172096639871597, 0.01798020862042904, -0.13788282871246338, -0.031003030017018318, 0.10103267431259155, 0.02876192517578602, -0.03726077452301979, -0.029358288273215294, -0.06806952506303787, -0.15981312096118927, -0.04129786416888237, -0.009623227640986443, 0.04428079351782799, -0.042783722281455994, -0.0807935819029808, -0.004452471621334553, -0.10316970944404602, -0.08347717672586441, -0.07444458454847336, 0.16950933635234833, 0.03883077949285507, 0.026652619242668152, -0.03159884735941887, 0.10813727974891663, -0.005146965850144625, -0.14208854734897614, 0.0328550785779953, 0.03892514854669571, -0.010992287658154964, -0.027123741805553436, -0.07350964844226837, -0.08275730162858963, 0.019328558817505836, 0.1169690266251564, -0.04429987445473671, 0.041991714388132095, 0.05453851446509361, 0.051141466945409775, -0.12211349606513977, 0.18686489760875702, -0.04622120037674904, -0.01986909657716751, 0.008801635354757309, 0.04579596221446991, 0.024521077051758766, -0.008500954136252403, -0.10768983513116837, -0.0011117911199107766, 0.08284488320350647, 0.013665836304426193, -0.058029960840940475, 0.05933058261871338, -0.06381253153085709, -0.01523805782198906, 0.01302973460406065, -0.09828237444162369, 0.028407519683241844, -0.01393415778875351, -0.07265041023492813, -0.03173784166574478, 0.03882504999637604, 0.01295978482812643, -0.00819343701004982, 0.12329617142677307, -0.0867873802781105, 0.034180834889411926, -0.11075669527053833, -0.10886021703481674, 0.005133538972586393, -0.0898844301700592, 0.02122216485440731, -0.09347042441368103, -0.16855363547801971, -0.0010927757248282433, 0.07346383482217789, -0.023799598217010498, -0.04687971994280815, -0.01914811134338379, -0.06683727353811264, 0.006947217974811792, -0.00906932819634676, 0.1765415221452713, -0.05754946172237396, 0.11209722608327866, 0.047588691115379333, 0.08444848656654358, -0.05652568116784096, 0.05377485975623131, -0.09100130200386047, 0.007521593943238258, -0.19384193420410156, 0.013884422369301319, -0.044733788818120956, 0.06390839070081711, -0.08617794513702393, -0.10624030977487564, -0.004508978221565485, -0.005023777950555086, 0.08475515246391296, 0.09154250472784042, -0.17659753561019897, -0.07750236243009567, 0.16331030428409576, -0.060358043760061264, -0.10780981928110123, 0.12001102417707443, -0.05071784183382988, 0.037484947592020035, 0.05575493350625038, 0.12323341518640518, 0.06815730780363083, -0.10751023143529892, 0.043235789984464645, 0.0028046835213899612, 0.04609276354312897, -0.07920730859041214, 0.07103245705366135, -0.01390464510768652, -0.011958693154156208, 0.03259856253862381, -0.032199494540691376, 0.06234690919518471, -0.09309747070074081, -0.10467911511659622, -0.04240356758236885, -0.11034411191940308, 0.06819719821214676, 0.06918973475694656, 0.07728671282529831, -0.10125654935836792, -0.08494409173727036, 0.02860538475215435, 0.07252154499292374, -0.04399549961090088, 0.030864985659718513, -0.05526095628738403, 0.0621124692261219, -0.058962900191545486, -0.029289649799466133, -0.185943141579628, -0.01704663783311844, 0.0046172961592674255, -0.0197711493819952, 0.01533126924186945, 0.01529912929981947, 0.08797750622034073, 0.06614049524068832, -0.05533448979258537, -0.014454390853643417, -0.04568527266383171, -0.008633644320070744, -0.13298927247524261, -0.2012152224779129, -0.040972750633955, -0.019821980968117714, 0.11851563304662704, -0.1637812852859497, 0.026236513629555702, -0.059334646910429, 0.06360553950071335, 0.004062785301357508, -0.013029247522354126, -0.052092745900154114, 0.0919109508395195, -0.0168452225625515, -0.05122258886694908, 0.07125639170408249, -0.0014050081372261047, -0.08925890177488327, -0.04555853083729744, -0.08732446283102036, 0.18878285586833954, 0.13446968793869019, -0.12162654846906662, -0.08153103291988373, 0.03280311077833176, -0.06466053426265717, -0.03561334311962128, -0.04763665795326233, 0.042480673640966415, 0.1757960319519043, -0.003701260080561042, 0.13734108209609985, -0.062311504036188126, -0.03938014805316925, 0.032563697546720505, -0.036143649369478226, 0.032628949731588364, 0.09521859139204025, 0.13199420273303986, -0.0433577336370945, 0.13110776245594025, 0.17410676181316376, -0.11593537777662277, 0.12539483606815338, -0.030858665704727173, -0.07890133559703827, -0.017736094072461128, -0.02025691047310829, 0.011730392463505268, 0.12064338475465775, -0.14051665365695953, -0.004862331785261631, 0.023369155824184418, 0.0032550666946917772, 0.01995803415775299, -0.23587258160114288, -0.04909072443842888, 0.033761877566576004, -0.03975408151745796, -0.019941585138440132, -0.008227631449699402, 0.001340390183031559, 0.09962848573923111, 0.0026777705643326044, -0.0871443822979927, 0.04326014220714569, 0.006519461050629616, -0.06516604870557785, 0.21380867063999176, -0.08104077726602554, -0.15214593708515167, -0.1270895153284073, -0.08229649811983109, -0.04161809757351875, 0.009592792950570583, 0.05809178948402405, -0.09777066111564636, -0.034113042056560516, -0.04180444777011871, 0.006223392207175493, 0.010385654866695404, 0.056887924671173096, 0.006526278331875801, -0.013999325223267078, 0.09083420038223267, -0.10988926142454147, -0.010914928279817104, -0.04767522215843201, -0.07115820050239563, 0.05181792750954628, 0.056592583656311035, 0.12347513437271118, 0.14468999207019806, -0.016999011859297752, 0.004192713648080826, -0.015519612468779087, 0.2242497056722641, -0.06543485075235367, -0.03407913073897362, 0.14250920712947845, -0.003461843589320779, 0.06101566553115845, 0.09580730646848679, 0.07829808443784714, -0.08402979373931885, 0.0076888552866876125, 0.031041577458381653, -0.046087343245744705, -0.21145685017108917, -0.031826410442590714, -0.06438908725976944, -0.05410771071910858, 0.0960770919919014, 0.029283568263053894, 0.04550645872950554, 0.07365428656339645, 0.04833739623427391, 0.08761775493621826, -0.06472823768854141, 0.04124804958701134, 0.0663406252861023, 0.050867706537246704, 0.12391477078199387, -0.039233166724443436, -0.0724233090877533, 0.027401266619563103, -0.014582794159650803, 0.22331523895263672, 0.005090923979878426, 0.12530411779880524, 0.07172439992427826, 0.2124159187078476, -0.008725314401090145, 0.10530935972929001, -0.004367771092802286, -0.055115893483161926, -0.009599607437849045, -0.05220150947570801, -0.03306012973189354, 0.011460266076028347, -0.044486258178949356, 0.07204592972993851, -0.10550829023122787, -0.009708740748465061, 0.03757850453257561, 0.27648332715034485, 0.036028165370225906, -0.328548401594162, -0.07568016648292542, -0.012546967715024948, -0.011510009877383709, -0.017363248392939568, 0.004904637113213539, 0.09149578213691711, -0.0902354046702385, 0.03306872025132179, -0.07642952352762222, 0.08666227012872696, 0.0024122612085193396, 0.04380948841571808, 0.08019117265939713, 0.10872519761323929, 0.015465122647583485, 0.06932485848665237, -0.3153424561023712, 0.29039713740348816, 0.004623638466000557, 0.08428250998258591, -0.08949621766805649, 0.007814756594598293, 0.04551386833190918, 0.030503230169415474, 0.06866227835416794, -0.014817659743130207, 0.00454397639259696, -0.19070284068584442, -0.057980895042419434, 0.03308125212788582, 0.0866742730140686, -0.024720780551433563, 0.08717939257621765, -0.021009251475334167, -0.006571629550307989, 0.07592958211898804, 0.02636771835386753, -0.06588609516620636, -0.08722714334726334, -0.004869827069342136, 0.029811305925250053, -0.08134137839078903, -0.07221684604883194, -0.11792538315057755, -0.12998346984386444, 0.15839284658432007, 0.011778841726481915, -0.026268059387803078, -0.11715671420097351, 0.07106491178274155, 0.09425408393144608, -0.08708999305963516, 0.05878245830535889, 0.001608608290553093, 0.055618274956941605, 0.024878887459635735, -0.07496104389429092, 0.11227726191282272, -0.07139072567224503, -0.14388594031333923, -0.07062844187021255, 0.09378725290298462, 0.0317092202603817, 0.06788534671068192, -0.018229858949780464, 0.01882994920015335, -0.04227017983794212, -0.08403872698545456, 0.03946169465780258, -0.038648080080747604, 0.0732569694519043, 0.02455154061317444, -0.04861484467983246, 0.01608259789645672, -0.0531061589717865, -0.02550792135298252, 0.171716570854187, 0.22965222597122192, -0.10109155625104904, 0.02146250568330288, 0.037137147039175034, -0.051600273698568344, -0.20703791081905365, 0.03638847917318344, 0.06056267023086548, 0.016209183260798454, 0.06165376678109169, -0.17141395807266235, 0.13799796998500824, 0.09652477502822876, -0.015125039964914322, 0.12954796850681305, -0.32782498002052307, -0.12917710840702057, 0.13311626017093658, 0.16326911747455597, 0.1500699669122696, -0.14175643026828766, -0.02007446624338627, -0.02817411907017231, -0.1265532225370407, 0.06390505284070969, -0.10011181980371475, 0.12584175169467926, -0.039551105350255966, 0.08555302023887634, -0.0027411675546318293, -0.07404399663209915, 0.12754233181476593, -0.001974731683731079, 0.09377297759056091, -0.05634821578860283, -0.019779490306973457, 0.049772959202528, -0.031630758196115494, 0.0038463978562504053, -0.08717186003923416, 0.0255152378231287, -0.05052096024155617, -0.013091289438307285, -0.08546704053878784, 0.05701344087719917, -0.03162007033824921, -0.0567953921854496, -0.020486969500780106, 0.01873249001801014, 0.03559247776865959, -0.02027818374335766, 0.10918349772691727, 0.034386005252599716, 0.16128717362880707, 0.09213924407958984, 0.04030944034457207, -0.06275351345539093, -0.09949810057878494, -0.014384482987225056, -0.01909705065190792, 0.06804722547531128, -0.11471261829137802, 0.018715081736445427, 0.12436413764953613, 0.027779290452599525, 0.11673914641141891, 0.0839320495724678, -0.03225652873516083, 0.013704945333302021, 0.07351433485746384, -0.16106615960597992, -0.05764101818203926, 0.004264073446393013, -0.0689224973320961, -0.11675269156694412, 0.044370222836732864, 0.07592693716287613, -0.0618903785943985, -0.007650092244148254, -0.01236684899777174, -0.0008486439473927021, -0.08333682268857956, 0.21964029967784882, 0.05859524384140968, 0.05152594670653343, -0.10385546088218689, 0.05489666387438774, 0.03874232992529869, -0.06571082025766373, -0.010871456004679203, 0.06013092026114464, -0.07388988882303238, -0.03480159118771553, 0.12277894467115402, 0.17575673758983612, -0.03406886011362076, -0.04223410412669182, -0.14716340601444244, -0.11337226629257202, 0.06813350319862366, 0.15374906361103058, 0.11039653420448303, 0.003643946023657918, -0.05187629163265228, 0.014553572982549667, -0.10691539198160172, 0.06869815289974213, 0.04247583821415901, 0.07183649390935898, -0.1258590817451477, 0.16063053905963898, 0.01398441568017006, 0.05852307379245758, -0.02084425650537014, 0.036471813917160034, -0.09243834763765335, 0.017246635630726814, -0.12162071466445923, -0.038685716688632965, -0.015731342136859894, -0.010647646151483059, -0.006150086876004934, -0.06036357581615448, -0.06236947700381279, 0.023791247978806496, -0.12317385524511337, -0.038998182862997055, 0.040978699922561646, 0.034797508269548416, -0.11774782091379166, -0.0421946756541729, 0.03587980940937996, -0.059907909482717514, 0.04740798845887184, 0.05871450528502464, 0.01609054021537304, 0.0636662021279335, -0.15018479526042938, -0.014900987036526203, 0.06691405922174454, 0.012493640184402466, 0.07431047409772873, -0.0772666335105896, -0.01572265289723873, -0.006362444255501032, 0.07326812297105789, 0.01005630660802126, 0.0836637020111084, -0.14992277324199677, -0.000707921979483217, -0.02728923223912716, -0.09126416593790054, -0.05981406942009926, 0.014434714801609516, 0.09366798400878906, 0.0120302839204669, 0.1970035880804062, -0.08837881684303284, 0.050139669328927994, -0.21051494777202606, 0.002765284152701497, -0.025338441133499146, -0.09492114186286926, -0.11749187856912613, -0.051935866475105286, 0.06944795697927475, -0.05304291844367981, 0.13183940947055817, 0.01836898922920227, 0.04874561354517937, 0.019049035385251045, -0.017346758395433426, 0.022771643474698067, 0.011684476397931576, 0.2115555852651596, 0.03473040461540222, -0.03305703029036522, 0.07252040505409241, 0.06575765460729599, 0.09590714424848557, 0.1216246485710144, 0.20802146196365356, 0.15390422940254211, 0.02989179827272892, 0.10160046070814133, 0.02201618254184723, -0.05196638032793999, -0.15013210475444794, 0.017078807577490807, -0.05079907178878784, 0.09624651074409485, -0.013420219533145428, 0.20237047970294952, 0.06613076478242874, -0.17018498480319977, 0.05444512143731117, -0.044085968285799026, -0.08492603898048401, -0.11296719312667847, -0.04037119820713997, -0.07685424387454987, -0.12405011057853699, 0.0034709458705037832, -0.08368945121765137, 0.016987580806016922, 0.12326965481042862, -0.0017090491019189358, -0.01556138414889574, 0.195481076836586, 0.030921226367354393, 0.03841332718729973, 0.04019472375512123, 0.009778146632015705, -0.024323096498847008, -0.08163488656282425, -0.06379309296607971, -0.028292154893279076, -0.01354097668081522, 0.03895987197756767, -0.0740145742893219, -0.0871414914727211, 0.05357220396399498, -0.008441971614956856, -0.10631539672613144, 0.013906928710639477, 0.00517961336299777, 0.0660429522395134, 0.04629816487431526, 0.01360947173088789, 0.029491489753127098, -0.022608818486332893, 0.18971337378025055, -0.086445651948452, -0.09229513257741928, -0.09134025126695633, 0.2514815628528595, 0.03575027361512184, -0.018952613696455956, 0.025811990723013878, -0.05768102407455444, -0.002020191168412566, 0.26194894313812256, 0.22015953063964844, -0.09238386154174805, -0.0015203097136691213, 0.013355969451367855, -0.014502027072012424, -0.04138158634305, 0.12222062796354294, 0.13542421162128448, 0.05841891095042229, -0.10178009420633316, -0.04476489499211311, -0.06075276806950569, -0.014072856865823269, -0.06759174913167953, 0.03908420354127884, 0.0427551232278347, 0.004264226648956537, -0.03900261968374252, 0.0520905964076519, -0.0410340316593647, -0.10937901586294174, 0.09556648880243301, -0.1950637549161911, -0.1662818044424057, -0.014520839788019657, 0.11569283157587051, 0.00327892042696476, 0.07090867310762405, -0.030978627502918243, 0.00932763610035181, 0.06574651598930359, -0.017609914764761925, -0.0838414803147316, -0.10040980577468872, 0.10520723462104797, -0.10206359624862671, 0.21769876778125763, -0.03852590546011925, 0.0657450333237648, 0.12280034273862839, 0.07708811014890671, -0.06688666343688965, 0.0649242177605629, 0.03827719762921333, -0.09846582263708115, 0.0254961084574461, 0.09010171890258789, -0.03451599180698395, 0.022367803379893303, 0.02704835869371891, -0.10135865211486816, 0.029742181301116943, -0.07147698849439621, -0.037080686539411545, -0.03565026819705963, -0.03821752592921257, -0.0628388524055481, 0.11932152509689331, 0.21603460609912872, -0.01751614362001419, 0.011149592697620392, -0.0785025805234909, 0.014292780309915543, 0.06590399146080017, 0.020158765837550163, -0.10291785001754761, -0.2150111198425293, 0.01818186417222023, 0.041153572499752045, -0.03166632726788521, -0.24174101650714874, -0.10171246528625488, 0.006953472271561623, -0.08529039472341537, -0.08853328227996826, 0.060219258069992065, 0.07136349380016327, 0.06112518534064293, -0.04455107823014259, -0.08582807332277298, -0.0778275802731514, 0.14921993017196655, -0.16991527378559113, -0.09449393302202225 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # reddit-bert-text_10 This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.5198 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.9626 | 1.0 | 946 | 2.6163 | | 2.6934 | 2.0 | 1892 | 2.5612 | | 2.5971 | 3.0 | 2838 | 2.5023 | ### Framework versions - Transformers 4.14.1 - Pytorch 1.10.0+cu113 - Datasets 1.16.1 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "model-index": [{"name": "reddit-bert-text_10", "results": []}]}
fill-mask
flboehm/reddit-bert-text_10
[ "transformers", "pytorch", "tensorboard", "bert", "fill-mask", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #bert #fill-mask #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
reddit-bert-text\_10 ==================== This model is a fine-tuned version of bert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set: * Loss: 2.5198 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 8 * eval\_batch\_size: 8 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 3.0 ### Training results ### Framework versions * Transformers 4.14.1 * Pytorch 1.10.0+cu113 * Datasets 1.16.1 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3.0", "### Training results", "### Framework versions\n\n\n* Transformers 4.14.1\n* Pytorch 1.10.0+cu113\n* Datasets 1.16.1\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #bert #fill-mask #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3.0", "### Training results", "### Framework versions\n\n\n* Transformers 4.14.1\n* Pytorch 1.10.0+cu113\n* Datasets 1.16.1\n* Tokenizers 0.10.3" ]
[ 55, 98, 4, 33 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #bert #fill-mask #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3.0### Training results### Framework versions\n\n\n* Transformers 4.14.1\n* Pytorch 1.10.0+cu113\n* Datasets 1.16.1\n* Tokenizers 0.10.3" ]
[ -0.11694002896547318, 0.052188560366630554, -0.002005036221817136, 0.12668617069721222, 0.16362138092517853, 0.0318472646176815, 0.11992093175649643, 0.1164364144206047, -0.09028220176696777, 0.021091239526867867, 0.13531775772571564, 0.1724647879600525, 0.012852122075855732, 0.11731851100921631, -0.02808440290391445, -0.2372802048921585, -0.011928011663258076, 0.04139493778347969, -0.10224169492721558, 0.13638223707675934, 0.08632955700159073, -0.13408423960208893, 0.07911735028028488, 0.013800903223454952, -0.21026383340358734, 0.014739674516022205, 0.025359079241752625, -0.05943402647972107, 0.1529918611049652, 0.002852811710909009, 0.13946624100208282, -0.005768700037151575, 0.08284685015678406, -0.15693867206573486, 0.014773470349609852, 0.05660785362124443, 0.0075765252113342285, 0.08507987856864929, 0.04343611001968384, 0.008964895270764828, 0.09339288622140884, -0.09083626419305801, 0.05401134490966797, 0.02107187919318676, -0.12698520720005035, -0.23861654102802277, -0.08483743667602539, 0.0035968106240034103, 0.059699852019548416, 0.10830983519554138, 0.007149434182792902, 0.15121713280677795, -0.09263348579406738, 0.08673190325498581, 0.257840096950531, -0.29674169421195984, -0.06979379802942276, 0.01953096315264702, 0.018954696133732796, 0.048949792981147766, -0.10130361467599869, -0.012918676249682903, 0.0436469130218029, 0.04991279914975166, 0.14514599740505219, -0.0379522331058979, -0.10148496180772781, 0.01821848936378956, -0.13703560829162598, -0.031139200553297997, 0.10124876350164413, 0.029352746903896332, -0.0365753211081028, -0.028929701074957848, -0.06979624181985855, -0.16057492792606354, -0.04174162074923515, -0.008989127352833748, 0.04419584572315216, -0.04246142506599426, -0.07997772842645645, -0.002493743086233735, -0.10306302458047867, -0.0827917829155922, -0.07577233761548996, 0.168268084526062, 0.03937019035220146, 0.025995224714279175, -0.03217022120952606, 0.10798776894807816, -0.006306875497102737, -0.14295397698879242, 0.03415180742740631, 0.03991043195128441, -0.010233552195131779, -0.02661379612982273, -0.07343786209821701, -0.0823519304394722, 0.01829959824681282, 0.11682424694299698, -0.04483179375529289, 0.04109855368733406, 0.05539516732096672, 0.051125407218933105, -0.12241998314857483, 0.18679939210414886, -0.04844416305422783, -0.018590431660413742, 0.009571893140673637, 0.04406609758734703, 0.023672355338931084, -0.008336053229868412, -0.10747761279344559, -0.0022962007205933332, 0.0831230878829956, 0.012251864187419415, -0.058887362480163574, 0.06014286354184151, -0.06344381719827652, -0.014757189899682999, 0.013597187586128712, -0.09856459498405457, 0.028998270630836487, -0.013441371731460094, -0.07336854934692383, -0.03141118213534355, 0.03899149224162102, 0.011966380290687084, -0.009135161526501179, 0.12346187233924866, -0.08799784630537033, 0.033398546278476715, -0.11118751019239426, -0.10928324609994888, 0.00475873751565814, -0.08982983231544495, 0.022122332826256752, -0.09257528185844421, -0.16737155616283417, -0.0012199879856780171, 0.07267144322395325, -0.02302434854209423, -0.047213535755872726, -0.018929744139313698, -0.06730236858129501, 0.007192591205239296, -0.008234920911490917, 0.17632631957530975, -0.05675427243113518, 0.112855464220047, 0.04833037778735161, 0.084543377161026, -0.056623056530952454, 0.05432334542274475, -0.09211242944002151, 0.007260443177074194, -0.1946825534105301, 0.014021191745996475, -0.044061969965696335, 0.06442292034626007, -0.08564803749322891, -0.10605631023645401, -0.004873993340879679, -0.005302613601088524, 0.08495688438415527, 0.09169495105743408, -0.17568713426589966, -0.07859480381011963, 0.16531352698802948, -0.059945762157440186, -0.10677676647901535, 0.12089657783508301, -0.05141395330429077, 0.03676780313253403, 0.05622049793601036, 0.12434621900320053, 0.06943802535533905, -0.10631384700536728, 0.042713895440101624, 0.002700856188312173, 0.044794078916311264, -0.07980802655220032, 0.07037234306335449, -0.013106231577694416, -0.012392569333314896, 0.03256920352578163, -0.03017270565032959, 0.06301341950893402, -0.09356793761253357, -0.10471916943788528, -0.04283955693244934, -0.10970509797334671, 0.06899712234735489, 0.07077229768037796, 0.078525111079216, -0.10052916407585144, -0.0857275053858757, 0.027262622490525246, 0.0725172758102417, -0.04364896938204765, 0.029895348474383354, -0.05576075240969658, 0.0626123920083046, -0.05885563790798187, -0.029014259576797485, -0.18582086265087128, -0.016327815130352974, 0.004426258150488138, -0.02137460745871067, 0.015580962412059307, 0.015712767839431763, 0.08831963688135147, 0.06611736863851547, -0.0550980269908905, -0.013924576342105865, -0.04487927630543709, -0.009591096080839634, -0.13409952819347382, -0.20093131065368652, -0.04078296571969986, -0.018927771598100662, 0.11835426837205887, -0.16441066563129425, 0.026541268453001976, -0.059153106063604355, 0.06492112576961517, 0.004145944956690073, -0.012713727541267872, -0.051912616938352585, 0.09172353893518448, -0.01586483232676983, -0.05068175122141838, 0.07148364186286926, -0.002002753084525466, -0.08822657912969589, -0.045518189668655396, -0.08672481775283813, 0.18858802318572998, 0.13502644002437592, -0.12157315760850906, -0.08147624880075455, 0.0325627401471138, -0.06418686360120773, -0.03600763529539108, -0.04669974371790886, 0.042158037424087524, 0.1769418567419052, -0.0042586117051541805, 0.1375444233417511, -0.0620330274105072, -0.0392657108604908, 0.03328375145792961, -0.03546798601746559, 0.03451726585626602, 0.09671909362077713, 0.1308039277791977, -0.04242822155356407, 0.1322811096906662, 0.17192144691944122, -0.11420133709907532, 0.12562952935695648, -0.03191344812512398, -0.07952575385570526, -0.01737966202199459, -0.021034514531493187, 0.011386903934180737, 0.1211777925491333, -0.14147959649562836, -0.005056068301200867, 0.023983711376786232, 0.002583752851933241, 0.020183054730296135, -0.23597902059555054, -0.04852348938584328, 0.033874236047267914, -0.03893177583813667, -0.021746771410107613, -0.007728781551122665, 0.002238324610516429, 0.0999293103814125, 0.002414504997432232, -0.08628109842538834, 0.04302703216671944, 0.006772805005311966, -0.06446114927530289, 0.21347437798976898, -0.08072656393051147, -0.15081427991390228, -0.12827979028224945, -0.08035102486610413, -0.04027431085705757, 0.00985098909586668, 0.05760028958320618, -0.09836215525865555, -0.03335199132561684, -0.039698924869298935, 0.006924877408891916, 0.011353920213878155, 0.056579336524009705, 0.004891726188361645, -0.014244377613067627, 0.09138598293066025, -0.11011611670255661, -0.010164572857320309, -0.0477590449154377, -0.07038580626249313, 0.052167024463415146, 0.05675303563475609, 0.1235148087143898, 0.14466530084609985, -0.01823684200644493, 0.003722868161275983, -0.01470873225480318, 0.22479061782360077, -0.06655541062355042, -0.03321155905723572, 0.14154531061649323, -0.0030507100746035576, 0.061185065656900406, 0.09545022249221802, 0.0786527693271637, -0.08331427723169327, 0.006645513698458672, 0.031203558668494225, -0.045093778520822525, -0.21182747185230255, -0.0322614349424839, -0.06441990286111832, -0.0548054538667202, 0.09648022055625916, 0.028776466846466064, 0.046390607953071594, 0.07416269928216934, 0.04753490164875984, 0.0889425277709961, -0.06681275367736816, 0.04043065384030342, 0.06713148206472397, 0.05028637871146202, 0.12306112051010132, -0.03983297199010849, -0.07374101877212524, 0.025982685387134552, -0.015814561396837234, 0.2238413244485855, 0.004650179762393236, 0.12777312099933624, 0.07039523869752884, 0.21475951373577118, -0.007824329659342766, 0.10582640022039413, -0.005189927294850349, -0.05500425770878792, -0.009081090800464153, -0.05161307379603386, -0.03323952481150627, 0.011411062441766262, -0.04552839696407318, 0.07190222293138504, -0.10601701587438583, -0.011196239851415157, 0.037390679121017456, 0.276509553194046, 0.036470670253038406, -0.32856082916259766, -0.07708005607128143, -0.013767902739346027, -0.011875518597662449, -0.01798478327691555, 0.004573170095682144, 0.09147366136312485, -0.08956900238990784, 0.031354621052742004, -0.07615603506565094, 0.08782804757356644, 0.0018604282522574067, 0.04396681487560272, 0.07982160151004791, 0.10940030217170715, 0.014685486443340778, 0.07057194411754608, -0.31434866786003113, 0.291063129901886, 0.005100725218653679, 0.08432983607053757, -0.08996670693159103, 0.007418216671794653, 0.045311421155929565, 0.03054395131766796, 0.06840471178293228, -0.014073807746171951, 0.005854935850948095, -0.19029812514781952, -0.05813857913017273, 0.032756123691797256, 0.08618064969778061, -0.025354968383908272, 0.08668021112680435, -0.0202662143856287, -0.006928168702870607, 0.07605025172233582, 0.02583177387714386, -0.06448944658041, -0.0866837427020073, -0.005559390876442194, 0.03092114068567753, -0.08013870567083359, -0.0714086964726448, -0.11793094128370285, -0.13061265647411346, 0.15632785856723785, 0.010508649051189423, -0.026448361575603485, -0.11636289209127426, 0.07226705551147461, 0.09403547644615173, -0.08793851733207703, 0.058750104159116745, 0.0013871645787730813, 0.056040454655885696, 0.024848243221640587, -0.07438258826732635, 0.11370524019002914, -0.06972049921751022, -0.14414294064044952, -0.07101355493068695, 0.0948801338672638, 0.032399386167526245, 0.06730090081691742, -0.01872619427740574, 0.019001761451363564, -0.04366494342684746, -0.08334556221961975, 0.04047255963087082, -0.04104737564921379, 0.07318207621574402, 0.02421065978705883, -0.04868742823600769, 0.01557248830795288, -0.05363958701491356, -0.024889737367630005, 0.1708887815475464, 0.22751779854297638, -0.1018412783741951, 0.019860554486513138, 0.03802715614438057, -0.05153287574648857, -0.20632724463939667, 0.03596220910549164, 0.059628069400787354, 0.01696345955133438, 0.05899633839726448, -0.17316794395446777, 0.13851821422576904, 0.09557119756937027, -0.014880445785820484, 0.13119345903396606, -0.32565799355506897, -0.12898468971252441, 0.13395956158638, 0.161821186542511, 0.1526612490415573, -0.14158663153648376, -0.020357545465230942, -0.02765275351703167, -0.12729878723621368, 0.0630902573466301, -0.10043569654226303, 0.12554456293582916, -0.040375180542469025, 0.08740189671516418, -0.002280243206769228, -0.07418854534626007, 0.12683886289596558, 0.0003275951894465834, 0.09450686722993851, -0.05667949095368385, -0.02008170261979103, 0.05051315203309059, -0.030431054532527924, 0.003444315865635872, -0.08579102158546448, 0.026216382160782814, -0.05245273932814598, -0.011961725540459156, -0.08565954118967056, 0.05748528242111206, -0.031210994347929955, -0.056311506778001785, -0.021521568298339844, 0.018310422077775, 0.034446295350790024, -0.020231453701853752, 0.10892771929502487, 0.03493176028132439, 0.1622045934200287, 0.0909324511885643, 0.03854205459356308, -0.06286240369081497, -0.10058692842721939, -0.01363475900143385, -0.018411176279187202, 0.0697021558880806, -0.11569654196500778, 0.018850212916731834, 0.1255204826593399, 0.029014745727181435, 0.11611583083868027, 0.08341658860445023, -0.03270052745938301, 0.01330996211618185, 0.0731295719742775, -0.16175399720668793, -0.05866548791527748, 0.004118850454688072, -0.07013256102800369, -0.1156577542424202, 0.04483863338828087, 0.07471708208322525, -0.06244148313999176, -0.00805304478853941, -0.012312655337154865, -0.0017978381365537643, -0.08323895186185837, 0.21923589706420898, 0.05941824987530708, 0.05159962177276611, -0.10502243787050247, 0.054913681000471115, 0.040553126484155655, -0.06751003116369247, -0.011838105507194996, 0.05956481024622917, -0.07415098696947098, -0.03495606780052185, 0.12309607118368149, 0.17690204083919525, -0.03308461233973503, -0.04225419834256172, -0.14650417864322662, -0.11307115107774734, 0.06850484013557434, 0.15380357205867767, 0.10993703454732895, 0.004019435960799456, -0.05208585038781166, 0.013724294491112232, -0.10820280760526657, 0.06872620433568954, 0.04292432963848114, 0.07182996720075607, -0.12524043023586273, 0.16179877519607544, 0.013592044822871685, 0.058175746351480484, -0.0208298247307539, 0.03646731749176979, -0.09212801605463028, 0.016802914440631866, -0.1198919340968132, -0.03888611122965813, -0.015417446382343769, -0.010856237262487411, -0.007027341052889824, -0.06062593683600426, -0.061301324516534805, 0.023535946384072304, -0.1232195496559143, -0.03838244080543518, 0.04217327758669853, 0.034624189138412476, -0.11741729825735092, -0.04198937118053436, 0.036332737654447556, -0.05908442661166191, 0.04759344831109047, 0.05991475284099579, 0.017043692991137505, 0.06331337988376617, -0.14924739301204681, -0.014384071342647076, 0.0650709941983223, 0.01255583856254816, 0.0741342231631279, -0.07668818533420563, -0.014742654748260975, -0.007182982284575701, 0.07306685298681259, 0.009226194582879543, 0.08310580253601074, -0.15050800144672394, -0.0005530623602680862, -0.026090621948242188, -0.09046176075935364, -0.06088007614016533, 0.013782341964542866, 0.09350951761007309, 0.011367417871952057, 0.19562435150146484, -0.08743220567703247, 0.050335269421339035, -0.2109701782464981, 0.003049589693546295, -0.025548258796334267, -0.09610957652330399, -0.11621194332838058, -0.05192534625530243, 0.06952624768018723, -0.053246960043907166, 0.13234087824821472, 0.018643440678715706, 0.04721711948513985, 0.018397467210888863, -0.017615268006920815, 0.02056478150188923, 0.011755083687603474, 0.2117416262626648, 0.03480571135878563, -0.03346596285700798, 0.07192828506231308, 0.06641458719968796, 0.0944693312048912, 0.12373741716146469, 0.20581351220607758, 0.15387199819087982, 0.030291544273495674, 0.10050264745950699, 0.0217207670211792, -0.05181298777461052, -0.1507808268070221, 0.018191849812865257, -0.05116009712219238, 0.09585276991128922, -0.01338751707226038, 0.2030135840177536, 0.06600846350193024, -0.16880084574222565, 0.056229379028081894, -0.04425731673836708, -0.08531459420919418, -0.11195448040962219, -0.039867158979177475, -0.07651282101869583, -0.12391024827957153, 0.003622749587520957, -0.08334232121706009, 0.016608871519565582, 0.12299606204032898, -0.002405729843303561, -0.017285769805312157, 0.19668181240558624, 0.03185095265507698, 0.037743810564279556, 0.04067346453666687, 0.010083816014230251, -0.024718182161450386, -0.08168710768222809, -0.0640224814414978, -0.02682814747095108, -0.013905827887356281, 0.03810855373740196, -0.07437451183795929, -0.08631286770105362, 0.0533825121819973, -0.008000661619007587, -0.10607489943504333, 0.01321971882134676, 0.005406719166785479, 0.06610225141048431, 0.04548661410808563, 0.012746758759021759, 0.030260518193244934, -0.02359883487224579, 0.18941783905029297, -0.08545989543199539, -0.09079137444496155, -0.09083563089370728, 0.2514931857585907, 0.035689134150743484, -0.01964941993355751, 0.026030944660305977, -0.05763738229870796, -0.000006633849352510879, 0.262268990278244, 0.21927206218242645, -0.09145764261484146, -0.0014747577952221036, 0.013249878771603107, -0.014926080591976643, -0.04084734246134758, 0.12163055688142776, 0.13530942797660828, 0.057699382305145264, -0.10188475996255875, -0.04414837434887886, -0.06137779727578163, -0.013833950273692608, -0.06781322509050369, 0.04060450568795204, 0.042483001947402954, 0.0035171115305274725, -0.03923000767827034, 0.051600053906440735, -0.04037356376647949, -0.1109224483370781, 0.09656688570976257, -0.19544096291065216, -0.16599257290363312, -0.014927533455193043, 0.11532783508300781, 0.0050287493504583836, 0.07070878893136978, -0.030555063858628273, 0.009927180595695972, 0.06687887758016586, -0.017171936109662056, -0.0842357948422432, -0.10053861141204834, 0.1040593683719635, -0.10407301783561707, 0.21656210720539093, -0.03822670504450798, 0.06569891422986984, 0.12231617420911789, 0.07768048346042633, -0.0668976828455925, 0.0641707256436348, 0.03752822056412697, -0.09865399450063705, 0.02542698197066784, 0.09026620537042618, -0.033032771199941635, 0.020655803382396698, 0.026516051962971687, -0.10194903612136841, 0.02969161607325077, -0.07249245792627335, -0.037561316043138504, -0.03593751788139343, -0.03841298446059227, -0.062019091099500656, 0.11920233815908432, 0.2173919826745987, -0.017798857763409615, 0.010985701344907284, -0.07874719053506851, 0.012885666452348232, 0.06648802012205124, 0.018484028056263924, -0.10279861092567444, -0.21432740986347198, 0.01842648722231388, 0.042365219444036484, -0.031223466619849205, -0.24132610857486725, -0.10067691653966904, 0.005276523530483246, -0.08623442053794861, -0.08725419640541077, 0.059816982597112656, 0.07162205129861832, 0.06167951598763466, -0.044324684888124466, -0.0861147865653038, -0.07726871222257614, 0.1492149531841278, -0.1694517284631729, -0.09443414956331253 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # reddit-bert-text_20 This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.4702 - Perplexity: 11.82 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.9383 | 1.0 | 947 | 2.5420 | | 2.6448 | 2.0 | 1894 | 2.5241 | | 2.586 | 3.0 | 2841 | 2.4833 | ### Framework versions - Transformers 4.14.1 - Pytorch 1.10.0+cu113 - Datasets 1.16.1 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "model-index": [{"name": "reddit-bert-text_20", "results": []}]}
fill-mask
flboehm/reddit-bert-text_20
[ "transformers", "pytorch", "tensorboard", "bert", "fill-mask", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #bert #fill-mask #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
reddit-bert-text\_20 ==================== This model is a fine-tuned version of bert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set: * Loss: 2.4702 * Perplexity: 11.82 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 8 * eval\_batch\_size: 8 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 3.0 ### Training results ### Framework versions * Transformers 4.14.1 * Pytorch 1.10.0+cu113 * Datasets 1.16.1 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3.0", "### Training results", "### Framework versions\n\n\n* Transformers 4.14.1\n* Pytorch 1.10.0+cu113\n* Datasets 1.16.1\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #bert #fill-mask #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3.0", "### Training results", "### Framework versions\n\n\n* Transformers 4.14.1\n* Pytorch 1.10.0+cu113\n* Datasets 1.16.1\n* Tokenizers 0.10.3" ]
[ 55, 98, 4, 33 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #bert #fill-mask #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3.0### Training results### Framework versions\n\n\n* Transformers 4.14.1\n* Pytorch 1.10.0+cu113\n* Datasets 1.16.1\n* Tokenizers 0.10.3" ]
[ -0.11694002896547318, 0.052188560366630554, -0.002005036221817136, 0.12668617069721222, 0.16362138092517853, 0.0318472646176815, 0.11992093175649643, 0.1164364144206047, -0.09028220176696777, 0.021091239526867867, 0.13531775772571564, 0.1724647879600525, 0.012852122075855732, 0.11731851100921631, -0.02808440290391445, -0.2372802048921585, -0.011928011663258076, 0.04139493778347969, -0.10224169492721558, 0.13638223707675934, 0.08632955700159073, -0.13408423960208893, 0.07911735028028488, 0.013800903223454952, -0.21026383340358734, 0.014739674516022205, 0.025359079241752625, -0.05943402647972107, 0.1529918611049652, 0.002852811710909009, 0.13946624100208282, -0.005768700037151575, 0.08284685015678406, -0.15693867206573486, 0.014773470349609852, 0.05660785362124443, 0.0075765252113342285, 0.08507987856864929, 0.04343611001968384, 0.008964895270764828, 0.09339288622140884, -0.09083626419305801, 0.05401134490966797, 0.02107187919318676, -0.12698520720005035, -0.23861654102802277, -0.08483743667602539, 0.0035968106240034103, 0.059699852019548416, 0.10830983519554138, 0.007149434182792902, 0.15121713280677795, -0.09263348579406738, 0.08673190325498581, 0.257840096950531, -0.29674169421195984, -0.06979379802942276, 0.01953096315264702, 0.018954696133732796, 0.048949792981147766, -0.10130361467599869, -0.012918676249682903, 0.0436469130218029, 0.04991279914975166, 0.14514599740505219, -0.0379522331058979, -0.10148496180772781, 0.01821848936378956, -0.13703560829162598, -0.031139200553297997, 0.10124876350164413, 0.029352746903896332, -0.0365753211081028, -0.028929701074957848, -0.06979624181985855, -0.16057492792606354, -0.04174162074923515, -0.008989127352833748, 0.04419584572315216, -0.04246142506599426, -0.07997772842645645, -0.002493743086233735, -0.10306302458047867, -0.0827917829155922, -0.07577233761548996, 0.168268084526062, 0.03937019035220146, 0.025995224714279175, -0.03217022120952606, 0.10798776894807816, -0.006306875497102737, -0.14295397698879242, 0.03415180742740631, 0.03991043195128441, -0.010233552195131779, -0.02661379612982273, -0.07343786209821701, -0.0823519304394722, 0.01829959824681282, 0.11682424694299698, -0.04483179375529289, 0.04109855368733406, 0.05539516732096672, 0.051125407218933105, -0.12241998314857483, 0.18679939210414886, -0.04844416305422783, -0.018590431660413742, 0.009571893140673637, 0.04406609758734703, 0.023672355338931084, -0.008336053229868412, -0.10747761279344559, -0.0022962007205933332, 0.0831230878829956, 0.012251864187419415, -0.058887362480163574, 0.06014286354184151, -0.06344381719827652, -0.014757189899682999, 0.013597187586128712, -0.09856459498405457, 0.028998270630836487, -0.013441371731460094, -0.07336854934692383, -0.03141118213534355, 0.03899149224162102, 0.011966380290687084, -0.009135161526501179, 0.12346187233924866, -0.08799784630537033, 0.033398546278476715, -0.11118751019239426, -0.10928324609994888, 0.00475873751565814, -0.08982983231544495, 0.022122332826256752, -0.09257528185844421, -0.16737155616283417, -0.0012199879856780171, 0.07267144322395325, -0.02302434854209423, -0.047213535755872726, -0.018929744139313698, -0.06730236858129501, 0.007192591205239296, -0.008234920911490917, 0.17632631957530975, -0.05675427243113518, 0.112855464220047, 0.04833037778735161, 0.084543377161026, -0.056623056530952454, 0.05432334542274475, -0.09211242944002151, 0.007260443177074194, -0.1946825534105301, 0.014021191745996475, -0.044061969965696335, 0.06442292034626007, -0.08564803749322891, -0.10605631023645401, -0.004873993340879679, -0.005302613601088524, 0.08495688438415527, 0.09169495105743408, -0.17568713426589966, -0.07859480381011963, 0.16531352698802948, -0.059945762157440186, -0.10677676647901535, 0.12089657783508301, -0.05141395330429077, 0.03676780313253403, 0.05622049793601036, 0.12434621900320053, 0.06943802535533905, -0.10631384700536728, 0.042713895440101624, 0.002700856188312173, 0.044794078916311264, -0.07980802655220032, 0.07037234306335449, -0.013106231577694416, -0.012392569333314896, 0.03256920352578163, -0.03017270565032959, 0.06301341950893402, -0.09356793761253357, -0.10471916943788528, -0.04283955693244934, -0.10970509797334671, 0.06899712234735489, 0.07077229768037796, 0.078525111079216, -0.10052916407585144, -0.0857275053858757, 0.027262622490525246, 0.0725172758102417, -0.04364896938204765, 0.029895348474383354, -0.05576075240969658, 0.0626123920083046, -0.05885563790798187, -0.029014259576797485, -0.18582086265087128, -0.016327815130352974, 0.004426258150488138, -0.02137460745871067, 0.015580962412059307, 0.015712767839431763, 0.08831963688135147, 0.06611736863851547, -0.0550980269908905, -0.013924576342105865, -0.04487927630543709, -0.009591096080839634, -0.13409952819347382, -0.20093131065368652, -0.04078296571969986, -0.018927771598100662, 0.11835426837205887, -0.16441066563129425, 0.026541268453001976, -0.059153106063604355, 0.06492112576961517, 0.004145944956690073, -0.012713727541267872, -0.051912616938352585, 0.09172353893518448, -0.01586483232676983, -0.05068175122141838, 0.07148364186286926, -0.002002753084525466, -0.08822657912969589, -0.045518189668655396, -0.08672481775283813, 0.18858802318572998, 0.13502644002437592, -0.12157315760850906, -0.08147624880075455, 0.0325627401471138, -0.06418686360120773, -0.03600763529539108, -0.04669974371790886, 0.042158037424087524, 0.1769418567419052, -0.0042586117051541805, 0.1375444233417511, -0.0620330274105072, -0.0392657108604908, 0.03328375145792961, -0.03546798601746559, 0.03451726585626602, 0.09671909362077713, 0.1308039277791977, -0.04242822155356407, 0.1322811096906662, 0.17192144691944122, -0.11420133709907532, 0.12562952935695648, -0.03191344812512398, -0.07952575385570526, -0.01737966202199459, -0.021034514531493187, 0.011386903934180737, 0.1211777925491333, -0.14147959649562836, -0.005056068301200867, 0.023983711376786232, 0.002583752851933241, 0.020183054730296135, -0.23597902059555054, -0.04852348938584328, 0.033874236047267914, -0.03893177583813667, -0.021746771410107613, -0.007728781551122665, 0.002238324610516429, 0.0999293103814125, 0.002414504997432232, -0.08628109842538834, 0.04302703216671944, 0.006772805005311966, -0.06446114927530289, 0.21347437798976898, -0.08072656393051147, -0.15081427991390228, -0.12827979028224945, -0.08035102486610413, -0.04027431085705757, 0.00985098909586668, 0.05760028958320618, -0.09836215525865555, -0.03335199132561684, -0.039698924869298935, 0.006924877408891916, 0.011353920213878155, 0.056579336524009705, 0.004891726188361645, -0.014244377613067627, 0.09138598293066025, -0.11011611670255661, -0.010164572857320309, -0.0477590449154377, -0.07038580626249313, 0.052167024463415146, 0.05675303563475609, 0.1235148087143898, 0.14466530084609985, -0.01823684200644493, 0.003722868161275983, -0.01470873225480318, 0.22479061782360077, -0.06655541062355042, -0.03321155905723572, 0.14154531061649323, -0.0030507100746035576, 0.061185065656900406, 0.09545022249221802, 0.0786527693271637, -0.08331427723169327, 0.006645513698458672, 0.031203558668494225, -0.045093778520822525, -0.21182747185230255, -0.0322614349424839, -0.06441990286111832, -0.0548054538667202, 0.09648022055625916, 0.028776466846466064, 0.046390607953071594, 0.07416269928216934, 0.04753490164875984, 0.0889425277709961, -0.06681275367736816, 0.04043065384030342, 0.06713148206472397, 0.05028637871146202, 0.12306112051010132, -0.03983297199010849, -0.07374101877212524, 0.025982685387134552, -0.015814561396837234, 0.2238413244485855, 0.004650179762393236, 0.12777312099933624, 0.07039523869752884, 0.21475951373577118, -0.007824329659342766, 0.10582640022039413, -0.005189927294850349, -0.05500425770878792, -0.009081090800464153, -0.05161307379603386, -0.03323952481150627, 0.011411062441766262, -0.04552839696407318, 0.07190222293138504, -0.10601701587438583, -0.011196239851415157, 0.037390679121017456, 0.276509553194046, 0.036470670253038406, -0.32856082916259766, -0.07708005607128143, -0.013767902739346027, -0.011875518597662449, -0.01798478327691555, 0.004573170095682144, 0.09147366136312485, -0.08956900238990784, 0.031354621052742004, -0.07615603506565094, 0.08782804757356644, 0.0018604282522574067, 0.04396681487560272, 0.07982160151004791, 0.10940030217170715, 0.014685486443340778, 0.07057194411754608, -0.31434866786003113, 0.291063129901886, 0.005100725218653679, 0.08432983607053757, -0.08996670693159103, 0.007418216671794653, 0.045311421155929565, 0.03054395131766796, 0.06840471178293228, -0.014073807746171951, 0.005854935850948095, -0.19029812514781952, -0.05813857913017273, 0.032756123691797256, 0.08618064969778061, -0.025354968383908272, 0.08668021112680435, -0.0202662143856287, -0.006928168702870607, 0.07605025172233582, 0.02583177387714386, -0.06448944658041, -0.0866837427020073, -0.005559390876442194, 0.03092114068567753, -0.08013870567083359, -0.0714086964726448, -0.11793094128370285, -0.13061265647411346, 0.15632785856723785, 0.010508649051189423, -0.026448361575603485, -0.11636289209127426, 0.07226705551147461, 0.09403547644615173, -0.08793851733207703, 0.058750104159116745, 0.0013871645787730813, 0.056040454655885696, 0.024848243221640587, -0.07438258826732635, 0.11370524019002914, -0.06972049921751022, -0.14414294064044952, -0.07101355493068695, 0.0948801338672638, 0.032399386167526245, 0.06730090081691742, -0.01872619427740574, 0.019001761451363564, -0.04366494342684746, -0.08334556221961975, 0.04047255963087082, -0.04104737564921379, 0.07318207621574402, 0.02421065978705883, -0.04868742823600769, 0.01557248830795288, -0.05363958701491356, -0.024889737367630005, 0.1708887815475464, 0.22751779854297638, -0.1018412783741951, 0.019860554486513138, 0.03802715614438057, -0.05153287574648857, -0.20632724463939667, 0.03596220910549164, 0.059628069400787354, 0.01696345955133438, 0.05899633839726448, -0.17316794395446777, 0.13851821422576904, 0.09557119756937027, -0.014880445785820484, 0.13119345903396606, -0.32565799355506897, -0.12898468971252441, 0.13395956158638, 0.161821186542511, 0.1526612490415573, -0.14158663153648376, -0.020357545465230942, -0.02765275351703167, -0.12729878723621368, 0.0630902573466301, -0.10043569654226303, 0.12554456293582916, -0.040375180542469025, 0.08740189671516418, -0.002280243206769228, -0.07418854534626007, 0.12683886289596558, 0.0003275951894465834, 0.09450686722993851, -0.05667949095368385, -0.02008170261979103, 0.05051315203309059, -0.030431054532527924, 0.003444315865635872, -0.08579102158546448, 0.026216382160782814, -0.05245273932814598, -0.011961725540459156, -0.08565954118967056, 0.05748528242111206, -0.031210994347929955, -0.056311506778001785, -0.021521568298339844, 0.018310422077775, 0.034446295350790024, -0.020231453701853752, 0.10892771929502487, 0.03493176028132439, 0.1622045934200287, 0.0909324511885643, 0.03854205459356308, -0.06286240369081497, -0.10058692842721939, -0.01363475900143385, -0.018411176279187202, 0.0697021558880806, -0.11569654196500778, 0.018850212916731834, 0.1255204826593399, 0.029014745727181435, 0.11611583083868027, 0.08341658860445023, -0.03270052745938301, 0.01330996211618185, 0.0731295719742775, -0.16175399720668793, -0.05866548791527748, 0.004118850454688072, -0.07013256102800369, -0.1156577542424202, 0.04483863338828087, 0.07471708208322525, -0.06244148313999176, -0.00805304478853941, -0.012312655337154865, -0.0017978381365537643, -0.08323895186185837, 0.21923589706420898, 0.05941824987530708, 0.05159962177276611, -0.10502243787050247, 0.054913681000471115, 0.040553126484155655, -0.06751003116369247, -0.011838105507194996, 0.05956481024622917, -0.07415098696947098, -0.03495606780052185, 0.12309607118368149, 0.17690204083919525, -0.03308461233973503, -0.04225419834256172, -0.14650417864322662, -0.11307115107774734, 0.06850484013557434, 0.15380357205867767, 0.10993703454732895, 0.004019435960799456, -0.05208585038781166, 0.013724294491112232, -0.10820280760526657, 0.06872620433568954, 0.04292432963848114, 0.07182996720075607, -0.12524043023586273, 0.16179877519607544, 0.013592044822871685, 0.058175746351480484, -0.0208298247307539, 0.03646731749176979, -0.09212801605463028, 0.016802914440631866, -0.1198919340968132, -0.03888611122965813, -0.015417446382343769, -0.010856237262487411, -0.007027341052889824, -0.06062593683600426, -0.061301324516534805, 0.023535946384072304, -0.1232195496559143, -0.03838244080543518, 0.04217327758669853, 0.034624189138412476, -0.11741729825735092, -0.04198937118053436, 0.036332737654447556, -0.05908442661166191, 0.04759344831109047, 0.05991475284099579, 0.017043692991137505, 0.06331337988376617, -0.14924739301204681, -0.014384071342647076, 0.0650709941983223, 0.01255583856254816, 0.0741342231631279, -0.07668818533420563, -0.014742654748260975, -0.007182982284575701, 0.07306685298681259, 0.009226194582879543, 0.08310580253601074, -0.15050800144672394, -0.0005530623602680862, -0.026090621948242188, -0.09046176075935364, -0.06088007614016533, 0.013782341964542866, 0.09350951761007309, 0.011367417871952057, 0.19562435150146484, -0.08743220567703247, 0.050335269421339035, -0.2109701782464981, 0.003049589693546295, -0.025548258796334267, -0.09610957652330399, -0.11621194332838058, -0.05192534625530243, 0.06952624768018723, -0.053246960043907166, 0.13234087824821472, 0.018643440678715706, 0.04721711948513985, 0.018397467210888863, -0.017615268006920815, 0.02056478150188923, 0.011755083687603474, 0.2117416262626648, 0.03480571135878563, -0.03346596285700798, 0.07192828506231308, 0.06641458719968796, 0.0944693312048912, 0.12373741716146469, 0.20581351220607758, 0.15387199819087982, 0.030291544273495674, 0.10050264745950699, 0.0217207670211792, -0.05181298777461052, -0.1507808268070221, 0.018191849812865257, -0.05116009712219238, 0.09585276991128922, -0.01338751707226038, 0.2030135840177536, 0.06600846350193024, -0.16880084574222565, 0.056229379028081894, -0.04425731673836708, -0.08531459420919418, -0.11195448040962219, -0.039867158979177475, -0.07651282101869583, -0.12391024827957153, 0.003622749587520957, -0.08334232121706009, 0.016608871519565582, 0.12299606204032898, -0.002405729843303561, -0.017285769805312157, 0.19668181240558624, 0.03185095265507698, 0.037743810564279556, 0.04067346453666687, 0.010083816014230251, -0.024718182161450386, -0.08168710768222809, -0.0640224814414978, -0.02682814747095108, -0.013905827887356281, 0.03810855373740196, -0.07437451183795929, -0.08631286770105362, 0.0533825121819973, -0.008000661619007587, -0.10607489943504333, 0.01321971882134676, 0.005406719166785479, 0.06610225141048431, 0.04548661410808563, 0.012746758759021759, 0.030260518193244934, -0.02359883487224579, 0.18941783905029297, -0.08545989543199539, -0.09079137444496155, -0.09083563089370728, 0.2514931857585907, 0.035689134150743484, -0.01964941993355751, 0.026030944660305977, -0.05763738229870796, -0.000006633849352510879, 0.262268990278244, 0.21927206218242645, -0.09145764261484146, -0.0014747577952221036, 0.013249878771603107, -0.014926080591976643, -0.04084734246134758, 0.12163055688142776, 0.13530942797660828, 0.057699382305145264, -0.10188475996255875, -0.04414837434887886, -0.06137779727578163, -0.013833950273692608, -0.06781322509050369, 0.04060450568795204, 0.042483001947402954, 0.0035171115305274725, -0.03923000767827034, 0.051600053906440735, -0.04037356376647949, -0.1109224483370781, 0.09656688570976257, -0.19544096291065216, -0.16599257290363312, -0.014927533455193043, 0.11532783508300781, 0.0050287493504583836, 0.07070878893136978, -0.030555063858628273, 0.009927180595695972, 0.06687887758016586, -0.017171936109662056, -0.0842357948422432, -0.10053861141204834, 0.1040593683719635, -0.10407301783561707, 0.21656210720539093, -0.03822670504450798, 0.06569891422986984, 0.12231617420911789, 0.07768048346042633, -0.0668976828455925, 0.0641707256436348, 0.03752822056412697, -0.09865399450063705, 0.02542698197066784, 0.09026620537042618, -0.033032771199941635, 0.020655803382396698, 0.026516051962971687, -0.10194903612136841, 0.02969161607325077, -0.07249245792627335, -0.037561316043138504, -0.03593751788139343, -0.03841298446059227, -0.062019091099500656, 0.11920233815908432, 0.2173919826745987, -0.017798857763409615, 0.010985701344907284, -0.07874719053506851, 0.012885666452348232, 0.06648802012205124, 0.018484028056263924, -0.10279861092567444, -0.21432740986347198, 0.01842648722231388, 0.042365219444036484, -0.031223466619849205, -0.24132610857486725, -0.10067691653966904, 0.005276523530483246, -0.08623442053794861, -0.08725419640541077, 0.059816982597112656, 0.07162205129861832, 0.06167951598763466, -0.044324684888124466, -0.0861147865653038, -0.07726871222257614, 0.1492149531841278, -0.1694517284631729, -0.09443414956331253 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # reddit-bert-text5 This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.5749 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 3.0257 | 1.0 | 945 | 2.6167 | | 2.7138 | 2.0 | 1890 | 2.5529 | | 2.6363 | 3.0 | 2835 | 2.5463 | ### Framework versions - Transformers 4.14.1 - Pytorch 1.10.0+cu113 - Datasets 1.16.1 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "model-index": [{"name": "reddit-bert-text5", "results": []}]}
fill-mask
flboehm/reddit-bert-text_5
[ "transformers", "pytorch", "tensorboard", "bert", "fill-mask", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #bert #fill-mask #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
reddit-bert-text5 ================= This model is a fine-tuned version of bert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set: * Loss: 2.5749 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 8 * eval\_batch\_size: 8 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 3.0 ### Training results ### Framework versions * Transformers 4.14.1 * Pytorch 1.10.0+cu113 * Datasets 1.16.1 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3.0", "### Training results", "### Framework versions\n\n\n* Transformers 4.14.1\n* Pytorch 1.10.0+cu113\n* Datasets 1.16.1\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #bert #fill-mask #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3.0", "### Training results", "### Framework versions\n\n\n* Transformers 4.14.1\n* Pytorch 1.10.0+cu113\n* Datasets 1.16.1\n* Tokenizers 0.10.3" ]
[ 55, 98, 4, 33 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #bert #fill-mask #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3.0### Training results### Framework versions\n\n\n* Transformers 4.14.1\n* Pytorch 1.10.0+cu113\n* Datasets 1.16.1\n* Tokenizers 0.10.3" ]
[ -0.11694002896547318, 0.052188560366630554, -0.002005036221817136, 0.12668617069721222, 0.16362138092517853, 0.0318472646176815, 0.11992093175649643, 0.1164364144206047, -0.09028220176696777, 0.021091239526867867, 0.13531775772571564, 0.1724647879600525, 0.012852122075855732, 0.11731851100921631, -0.02808440290391445, -0.2372802048921585, -0.011928011663258076, 0.04139493778347969, -0.10224169492721558, 0.13638223707675934, 0.08632955700159073, -0.13408423960208893, 0.07911735028028488, 0.013800903223454952, -0.21026383340358734, 0.014739674516022205, 0.025359079241752625, -0.05943402647972107, 0.1529918611049652, 0.002852811710909009, 0.13946624100208282, -0.005768700037151575, 0.08284685015678406, -0.15693867206573486, 0.014773470349609852, 0.05660785362124443, 0.0075765252113342285, 0.08507987856864929, 0.04343611001968384, 0.008964895270764828, 0.09339288622140884, -0.09083626419305801, 0.05401134490966797, 0.02107187919318676, -0.12698520720005035, -0.23861654102802277, -0.08483743667602539, 0.0035968106240034103, 0.059699852019548416, 0.10830983519554138, 0.007149434182792902, 0.15121713280677795, -0.09263348579406738, 0.08673190325498581, 0.257840096950531, -0.29674169421195984, -0.06979379802942276, 0.01953096315264702, 0.018954696133732796, 0.048949792981147766, -0.10130361467599869, -0.012918676249682903, 0.0436469130218029, 0.04991279914975166, 0.14514599740505219, -0.0379522331058979, -0.10148496180772781, 0.01821848936378956, -0.13703560829162598, -0.031139200553297997, 0.10124876350164413, 0.029352746903896332, -0.0365753211081028, -0.028929701074957848, -0.06979624181985855, -0.16057492792606354, -0.04174162074923515, -0.008989127352833748, 0.04419584572315216, -0.04246142506599426, -0.07997772842645645, -0.002493743086233735, -0.10306302458047867, -0.0827917829155922, -0.07577233761548996, 0.168268084526062, 0.03937019035220146, 0.025995224714279175, -0.03217022120952606, 0.10798776894807816, -0.006306875497102737, -0.14295397698879242, 0.03415180742740631, 0.03991043195128441, -0.010233552195131779, -0.02661379612982273, -0.07343786209821701, -0.0823519304394722, 0.01829959824681282, 0.11682424694299698, -0.04483179375529289, 0.04109855368733406, 0.05539516732096672, 0.051125407218933105, -0.12241998314857483, 0.18679939210414886, -0.04844416305422783, -0.018590431660413742, 0.009571893140673637, 0.04406609758734703, 0.023672355338931084, -0.008336053229868412, -0.10747761279344559, -0.0022962007205933332, 0.0831230878829956, 0.012251864187419415, -0.058887362480163574, 0.06014286354184151, -0.06344381719827652, -0.014757189899682999, 0.013597187586128712, -0.09856459498405457, 0.028998270630836487, -0.013441371731460094, -0.07336854934692383, -0.03141118213534355, 0.03899149224162102, 0.011966380290687084, -0.009135161526501179, 0.12346187233924866, -0.08799784630537033, 0.033398546278476715, -0.11118751019239426, -0.10928324609994888, 0.00475873751565814, -0.08982983231544495, 0.022122332826256752, -0.09257528185844421, -0.16737155616283417, -0.0012199879856780171, 0.07267144322395325, -0.02302434854209423, -0.047213535755872726, -0.018929744139313698, -0.06730236858129501, 0.007192591205239296, -0.008234920911490917, 0.17632631957530975, -0.05675427243113518, 0.112855464220047, 0.04833037778735161, 0.084543377161026, -0.056623056530952454, 0.05432334542274475, -0.09211242944002151, 0.007260443177074194, -0.1946825534105301, 0.014021191745996475, -0.044061969965696335, 0.06442292034626007, -0.08564803749322891, -0.10605631023645401, -0.004873993340879679, -0.005302613601088524, 0.08495688438415527, 0.09169495105743408, -0.17568713426589966, -0.07859480381011963, 0.16531352698802948, -0.059945762157440186, -0.10677676647901535, 0.12089657783508301, -0.05141395330429077, 0.03676780313253403, 0.05622049793601036, 0.12434621900320053, 0.06943802535533905, -0.10631384700536728, 0.042713895440101624, 0.002700856188312173, 0.044794078916311264, -0.07980802655220032, 0.07037234306335449, -0.013106231577694416, -0.012392569333314896, 0.03256920352578163, -0.03017270565032959, 0.06301341950893402, -0.09356793761253357, -0.10471916943788528, -0.04283955693244934, -0.10970509797334671, 0.06899712234735489, 0.07077229768037796, 0.078525111079216, -0.10052916407585144, -0.0857275053858757, 0.027262622490525246, 0.0725172758102417, -0.04364896938204765, 0.029895348474383354, -0.05576075240969658, 0.0626123920083046, -0.05885563790798187, -0.029014259576797485, -0.18582086265087128, -0.016327815130352974, 0.004426258150488138, -0.02137460745871067, 0.015580962412059307, 0.015712767839431763, 0.08831963688135147, 0.06611736863851547, -0.0550980269908905, -0.013924576342105865, -0.04487927630543709, -0.009591096080839634, -0.13409952819347382, -0.20093131065368652, -0.04078296571969986, -0.018927771598100662, 0.11835426837205887, -0.16441066563129425, 0.026541268453001976, -0.059153106063604355, 0.06492112576961517, 0.004145944956690073, -0.012713727541267872, -0.051912616938352585, 0.09172353893518448, -0.01586483232676983, -0.05068175122141838, 0.07148364186286926, -0.002002753084525466, -0.08822657912969589, -0.045518189668655396, -0.08672481775283813, 0.18858802318572998, 0.13502644002437592, -0.12157315760850906, -0.08147624880075455, 0.0325627401471138, -0.06418686360120773, -0.03600763529539108, -0.04669974371790886, 0.042158037424087524, 0.1769418567419052, -0.0042586117051541805, 0.1375444233417511, -0.0620330274105072, -0.0392657108604908, 0.03328375145792961, -0.03546798601746559, 0.03451726585626602, 0.09671909362077713, 0.1308039277791977, -0.04242822155356407, 0.1322811096906662, 0.17192144691944122, -0.11420133709907532, 0.12562952935695648, -0.03191344812512398, -0.07952575385570526, -0.01737966202199459, -0.021034514531493187, 0.011386903934180737, 0.1211777925491333, -0.14147959649562836, -0.005056068301200867, 0.023983711376786232, 0.002583752851933241, 0.020183054730296135, -0.23597902059555054, -0.04852348938584328, 0.033874236047267914, -0.03893177583813667, -0.021746771410107613, -0.007728781551122665, 0.002238324610516429, 0.0999293103814125, 0.002414504997432232, -0.08628109842538834, 0.04302703216671944, 0.006772805005311966, -0.06446114927530289, 0.21347437798976898, -0.08072656393051147, -0.15081427991390228, -0.12827979028224945, -0.08035102486610413, -0.04027431085705757, 0.00985098909586668, 0.05760028958320618, -0.09836215525865555, -0.03335199132561684, -0.039698924869298935, 0.006924877408891916, 0.011353920213878155, 0.056579336524009705, 0.004891726188361645, -0.014244377613067627, 0.09138598293066025, -0.11011611670255661, -0.010164572857320309, -0.0477590449154377, -0.07038580626249313, 0.052167024463415146, 0.05675303563475609, 0.1235148087143898, 0.14466530084609985, -0.01823684200644493, 0.003722868161275983, -0.01470873225480318, 0.22479061782360077, -0.06655541062355042, -0.03321155905723572, 0.14154531061649323, -0.0030507100746035576, 0.061185065656900406, 0.09545022249221802, 0.0786527693271637, -0.08331427723169327, 0.006645513698458672, 0.031203558668494225, -0.045093778520822525, -0.21182747185230255, -0.0322614349424839, -0.06441990286111832, -0.0548054538667202, 0.09648022055625916, 0.028776466846466064, 0.046390607953071594, 0.07416269928216934, 0.04753490164875984, 0.0889425277709961, -0.06681275367736816, 0.04043065384030342, 0.06713148206472397, 0.05028637871146202, 0.12306112051010132, -0.03983297199010849, -0.07374101877212524, 0.025982685387134552, -0.015814561396837234, 0.2238413244485855, 0.004650179762393236, 0.12777312099933624, 0.07039523869752884, 0.21475951373577118, -0.007824329659342766, 0.10582640022039413, -0.005189927294850349, -0.05500425770878792, -0.009081090800464153, -0.05161307379603386, -0.03323952481150627, 0.011411062441766262, -0.04552839696407318, 0.07190222293138504, -0.10601701587438583, -0.011196239851415157, 0.037390679121017456, 0.276509553194046, 0.036470670253038406, -0.32856082916259766, -0.07708005607128143, -0.013767902739346027, -0.011875518597662449, -0.01798478327691555, 0.004573170095682144, 0.09147366136312485, -0.08956900238990784, 0.031354621052742004, -0.07615603506565094, 0.08782804757356644, 0.0018604282522574067, 0.04396681487560272, 0.07982160151004791, 0.10940030217170715, 0.014685486443340778, 0.07057194411754608, -0.31434866786003113, 0.291063129901886, 0.005100725218653679, 0.08432983607053757, -0.08996670693159103, 0.007418216671794653, 0.045311421155929565, 0.03054395131766796, 0.06840471178293228, -0.014073807746171951, 0.005854935850948095, -0.19029812514781952, -0.05813857913017273, 0.032756123691797256, 0.08618064969778061, -0.025354968383908272, 0.08668021112680435, -0.0202662143856287, -0.006928168702870607, 0.07605025172233582, 0.02583177387714386, -0.06448944658041, -0.0866837427020073, -0.005559390876442194, 0.03092114068567753, -0.08013870567083359, -0.0714086964726448, -0.11793094128370285, -0.13061265647411346, 0.15632785856723785, 0.010508649051189423, -0.026448361575603485, -0.11636289209127426, 0.07226705551147461, 0.09403547644615173, -0.08793851733207703, 0.058750104159116745, 0.0013871645787730813, 0.056040454655885696, 0.024848243221640587, -0.07438258826732635, 0.11370524019002914, -0.06972049921751022, -0.14414294064044952, -0.07101355493068695, 0.0948801338672638, 0.032399386167526245, 0.06730090081691742, -0.01872619427740574, 0.019001761451363564, -0.04366494342684746, -0.08334556221961975, 0.04047255963087082, -0.04104737564921379, 0.07318207621574402, 0.02421065978705883, -0.04868742823600769, 0.01557248830795288, -0.05363958701491356, -0.024889737367630005, 0.1708887815475464, 0.22751779854297638, -0.1018412783741951, 0.019860554486513138, 0.03802715614438057, -0.05153287574648857, -0.20632724463939667, 0.03596220910549164, 0.059628069400787354, 0.01696345955133438, 0.05899633839726448, -0.17316794395446777, 0.13851821422576904, 0.09557119756937027, -0.014880445785820484, 0.13119345903396606, -0.32565799355506897, -0.12898468971252441, 0.13395956158638, 0.161821186542511, 0.1526612490415573, -0.14158663153648376, -0.020357545465230942, -0.02765275351703167, -0.12729878723621368, 0.0630902573466301, -0.10043569654226303, 0.12554456293582916, -0.040375180542469025, 0.08740189671516418, -0.002280243206769228, -0.07418854534626007, 0.12683886289596558, 0.0003275951894465834, 0.09450686722993851, -0.05667949095368385, -0.02008170261979103, 0.05051315203309059, -0.030431054532527924, 0.003444315865635872, -0.08579102158546448, 0.026216382160782814, -0.05245273932814598, -0.011961725540459156, -0.08565954118967056, 0.05748528242111206, -0.031210994347929955, -0.056311506778001785, -0.021521568298339844, 0.018310422077775, 0.034446295350790024, -0.020231453701853752, 0.10892771929502487, 0.03493176028132439, 0.1622045934200287, 0.0909324511885643, 0.03854205459356308, -0.06286240369081497, -0.10058692842721939, -0.01363475900143385, -0.018411176279187202, 0.0697021558880806, -0.11569654196500778, 0.018850212916731834, 0.1255204826593399, 0.029014745727181435, 0.11611583083868027, 0.08341658860445023, -0.03270052745938301, 0.01330996211618185, 0.0731295719742775, -0.16175399720668793, -0.05866548791527748, 0.004118850454688072, -0.07013256102800369, -0.1156577542424202, 0.04483863338828087, 0.07471708208322525, -0.06244148313999176, -0.00805304478853941, -0.012312655337154865, -0.0017978381365537643, -0.08323895186185837, 0.21923589706420898, 0.05941824987530708, 0.05159962177276611, -0.10502243787050247, 0.054913681000471115, 0.040553126484155655, -0.06751003116369247, -0.011838105507194996, 0.05956481024622917, -0.07415098696947098, -0.03495606780052185, 0.12309607118368149, 0.17690204083919525, -0.03308461233973503, -0.04225419834256172, -0.14650417864322662, -0.11307115107774734, 0.06850484013557434, 0.15380357205867767, 0.10993703454732895, 0.004019435960799456, -0.05208585038781166, 0.013724294491112232, -0.10820280760526657, 0.06872620433568954, 0.04292432963848114, 0.07182996720075607, -0.12524043023586273, 0.16179877519607544, 0.013592044822871685, 0.058175746351480484, -0.0208298247307539, 0.03646731749176979, -0.09212801605463028, 0.016802914440631866, -0.1198919340968132, -0.03888611122965813, -0.015417446382343769, -0.010856237262487411, -0.007027341052889824, -0.06062593683600426, -0.061301324516534805, 0.023535946384072304, -0.1232195496559143, -0.03838244080543518, 0.04217327758669853, 0.034624189138412476, -0.11741729825735092, -0.04198937118053436, 0.036332737654447556, -0.05908442661166191, 0.04759344831109047, 0.05991475284099579, 0.017043692991137505, 0.06331337988376617, -0.14924739301204681, -0.014384071342647076, 0.0650709941983223, 0.01255583856254816, 0.0741342231631279, -0.07668818533420563, -0.014742654748260975, -0.007182982284575701, 0.07306685298681259, 0.009226194582879543, 0.08310580253601074, -0.15050800144672394, -0.0005530623602680862, -0.026090621948242188, -0.09046176075935364, -0.06088007614016533, 0.013782341964542866, 0.09350951761007309, 0.011367417871952057, 0.19562435150146484, -0.08743220567703247, 0.050335269421339035, -0.2109701782464981, 0.003049589693546295, -0.025548258796334267, -0.09610957652330399, -0.11621194332838058, -0.05192534625530243, 0.06952624768018723, -0.053246960043907166, 0.13234087824821472, 0.018643440678715706, 0.04721711948513985, 0.018397467210888863, -0.017615268006920815, 0.02056478150188923, 0.011755083687603474, 0.2117416262626648, 0.03480571135878563, -0.03346596285700798, 0.07192828506231308, 0.06641458719968796, 0.0944693312048912, 0.12373741716146469, 0.20581351220607758, 0.15387199819087982, 0.030291544273495674, 0.10050264745950699, 0.0217207670211792, -0.05181298777461052, -0.1507808268070221, 0.018191849812865257, -0.05116009712219238, 0.09585276991128922, -0.01338751707226038, 0.2030135840177536, 0.06600846350193024, -0.16880084574222565, 0.056229379028081894, -0.04425731673836708, -0.08531459420919418, -0.11195448040962219, -0.039867158979177475, -0.07651282101869583, -0.12391024827957153, 0.003622749587520957, -0.08334232121706009, 0.016608871519565582, 0.12299606204032898, -0.002405729843303561, -0.017285769805312157, 0.19668181240558624, 0.03185095265507698, 0.037743810564279556, 0.04067346453666687, 0.010083816014230251, -0.024718182161450386, -0.08168710768222809, -0.0640224814414978, -0.02682814747095108, -0.013905827887356281, 0.03810855373740196, -0.07437451183795929, -0.08631286770105362, 0.0533825121819973, -0.008000661619007587, -0.10607489943504333, 0.01321971882134676, 0.005406719166785479, 0.06610225141048431, 0.04548661410808563, 0.012746758759021759, 0.030260518193244934, -0.02359883487224579, 0.18941783905029297, -0.08545989543199539, -0.09079137444496155, -0.09083563089370728, 0.2514931857585907, 0.035689134150743484, -0.01964941993355751, 0.026030944660305977, -0.05763738229870796, -0.000006633849352510879, 0.262268990278244, 0.21927206218242645, -0.09145764261484146, -0.0014747577952221036, 0.013249878771603107, -0.014926080591976643, -0.04084734246134758, 0.12163055688142776, 0.13530942797660828, 0.057699382305145264, -0.10188475996255875, -0.04414837434887886, -0.06137779727578163, -0.013833950273692608, -0.06781322509050369, 0.04060450568795204, 0.042483001947402954, 0.0035171115305274725, -0.03923000767827034, 0.051600053906440735, -0.04037356376647949, -0.1109224483370781, 0.09656688570976257, -0.19544096291065216, -0.16599257290363312, -0.014927533455193043, 0.11532783508300781, 0.0050287493504583836, 0.07070878893136978, -0.030555063858628273, 0.009927180595695972, 0.06687887758016586, -0.017171936109662056, -0.0842357948422432, -0.10053861141204834, 0.1040593683719635, -0.10407301783561707, 0.21656210720539093, -0.03822670504450798, 0.06569891422986984, 0.12231617420911789, 0.07768048346042633, -0.0668976828455925, 0.0641707256436348, 0.03752822056412697, -0.09865399450063705, 0.02542698197066784, 0.09026620537042618, -0.033032771199941635, 0.020655803382396698, 0.026516051962971687, -0.10194903612136841, 0.02969161607325077, -0.07249245792627335, -0.037561316043138504, -0.03593751788139343, -0.03841298446059227, -0.062019091099500656, 0.11920233815908432, 0.2173919826745987, -0.017798857763409615, 0.010985701344907284, -0.07874719053506851, 0.012885666452348232, 0.06648802012205124, 0.018484028056263924, -0.10279861092567444, -0.21432740986347198, 0.01842648722231388, 0.042365219444036484, -0.031223466619849205, -0.24132610857486725, -0.10067691653966904, 0.005276523530483246, -0.08623442053794861, -0.08725419640541077, 0.059816982597112656, 0.07162205129861832, 0.06167951598763466, -0.044324684888124466, -0.0861147865653038, -0.07726871222257614, 0.1492149531841278, -0.1694517284631729, -0.09443414956331253 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # youtube-bert This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.4771 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.691 | 1.0 | 1077 | 2.5445 | | 2.5768 | 2.0 | 2154 | 2.5226 | | 2.5227 | 3.0 | 3231 | 2.5027 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu113 - Datasets 1.17.0 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "model-index": [{"name": "youtube-bert", "results": []}]}
fill-mask
flboehm/youtube-bert
[ "transformers", "pytorch", "tensorboard", "bert", "fill-mask", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #bert #fill-mask #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
youtube-bert ============ This model is a fine-tuned version of bert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set: * Loss: 2.4771 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 8 * eval\_batch\_size: 8 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 3.0 ### Training results ### Framework versions * Transformers 4.15.0 * Pytorch 1.10.0+cu113 * Datasets 1.17.0 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3.0", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.0+cu113\n* Datasets 1.17.0\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #bert #fill-mask #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3.0", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.0+cu113\n* Datasets 1.17.0\n* Tokenizers 0.10.3" ]
[ 55, 98, 4, 33 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #bert #fill-mask #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3.0### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.0+cu113\n* Datasets 1.17.0\n* Tokenizers 0.10.3" ]
[ -0.11846747249364853, 0.05082894489169121, -0.0019793969113379717, 0.12627840042114258, 0.16321681439876556, 0.0316256619989872, 0.11859195679426193, 0.11626989394426346, -0.09061025828123093, 0.020752908661961555, 0.13602827489376068, 0.17300693690776825, 0.013392153196036816, 0.11767100542783737, -0.02931824140250683, -0.23596973717212677, -0.0117343096062541, 0.04172564670443535, -0.10095227509737015, 0.13651059567928314, 0.08623865246772766, -0.13507655262947083, 0.07937420159578323, 0.01365911215543747, -0.21064259111881256, 0.014260868541896343, 0.026129668578505516, -0.060457389801740646, 0.15245579183101654, 0.002626886358484626, 0.1390848606824875, -0.005617823451757431, 0.08276201039552689, -0.15678848326206207, 0.01466336939483881, 0.05790339410305023, 0.00852618645876646, 0.08546661585569382, 0.04327278956770897, 0.009545384906232357, 0.09636644273996353, -0.09146536141633987, 0.05462237074971199, 0.020659184083342552, -0.1265215426683426, -0.23746919631958008, -0.08551620692014694, 0.004147805739194155, 0.059346407651901245, 0.10860735923051834, 0.007380627561360598, 0.1536276638507843, -0.09280166774988174, 0.08731889724731445, 0.25830408930778503, -0.2962288558483124, -0.06964995712041855, 0.02143649198114872, 0.019329296424984932, 0.04898607358336449, -0.10126251727342606, -0.012144490145146847, 0.04429849982261658, 0.0492461659014225, 0.14684359729290009, -0.03807486593723297, -0.10312584787607193, 0.01870366744697094, -0.13674208521842957, -0.031000390648841858, 0.10093916207551956, 0.02980496734380722, -0.03699016571044922, -0.029573770239949226, -0.06886152923107147, -0.16174998879432678, -0.04141957685351372, -0.009548663161695004, 0.04442309960722923, -0.04248344898223877, -0.08037924021482468, -0.0022631632164120674, -0.10242416709661484, -0.08291497081518173, -0.07678211480379105, 0.16850291192531586, 0.03891158103942871, 0.026559511199593544, -0.03262893483042717, 0.10765945911407471, -0.00836288183927536, -0.142229363322258, 0.03356730565428734, 0.03971976414322853, -0.010889840312302113, -0.027500247582793236, -0.07336599379777908, -0.08493220806121826, 0.018774382770061493, 0.11476164311170578, -0.044459421187639236, 0.04088786989450455, 0.0548180527985096, 0.05108925327658653, -0.12253805249929428, 0.18883073329925537, -0.04779474064707756, -0.020451374351978302, 0.010525367222726345, 0.044676389545202255, 0.024863936007022858, -0.008382834494113922, -0.10648635029792786, -0.0034346755128353834, 0.08387964963912964, 0.011666297912597656, -0.05780009925365448, 0.05952799320220947, -0.0629681870341301, -0.014193194918334484, 0.013780161738395691, -0.0976133942604065, 0.029277851805090904, -0.013880312442779541, -0.0741272121667862, -0.0302884578704834, 0.03881823271512985, 0.012018718756735325, -0.009034865535795689, 0.12457975745201111, -0.08778820186853409, 0.03402842581272125, -0.11226644366979599, -0.10939300060272217, 0.004553583916276693, -0.0914832279086113, 0.0217027198523283, -0.09304413944482803, -0.16815586388111115, -0.001352545921690762, 0.07198842614889145, -0.022791950032114983, -0.04690585657954216, -0.01918846182525158, -0.06682045012712479, 0.007364715915173292, -0.009047607891261578, 0.17735934257507324, -0.05736466869711876, 0.1131284236907959, 0.048091381788253784, 0.08447938412427902, -0.058147281408309937, 0.05376189947128296, -0.09178867191076279, 0.0062589808367192745, -0.19432123005390167, 0.014144537039101124, -0.04319429770112038, 0.06519479304552078, -0.08499053865671158, -0.10546410083770752, -0.006230032071471214, -0.005411989521235228, 0.08589331060647964, 0.09200453758239746, -0.17670762538909912, -0.07821425795555115, 0.16480392217636108, -0.0595647357404232, -0.10784944891929626, 0.12145797163248062, -0.051185984164476395, 0.03595448657870293, 0.057945042848587036, 0.12309194356203079, 0.06816510111093521, -0.10718831419944763, 0.042567793279886246, 0.002903713844716549, 0.04514308646321297, -0.08110616356134415, 0.07060137391090393, -0.013394133187830448, -0.013370613567531109, 0.03254372626543045, -0.03049817867577076, 0.06364402920007706, -0.09326960891485214, -0.10420811921358109, -0.04439164325594902, -0.11025679111480713, 0.06806329637765884, 0.07158034294843674, 0.07806146889925003, -0.10063907504081726, -0.08532506227493286, 0.02774921990931034, 0.07257471978664398, -0.04308922961354256, 0.030159423127770424, -0.05545932427048683, 0.06283021718263626, -0.05865197256207466, -0.029279330745339394, -0.18608246743679047, -0.014867588877677917, 0.004160920158028603, -0.020955711603164673, 0.014960053376853466, 0.014751545153558254, 0.08784469217061996, 0.06586054712533951, -0.05481019988656044, -0.012954006902873516, -0.045003652572631836, -0.0093834875151515, -0.13484613597393036, -0.20152080059051514, -0.03970414027571678, -0.018834218382835388, 0.11947373300790787, -0.16521915793418884, 0.02603120543062687, -0.060191813856363297, 0.06428699940443039, 0.004588935058563948, -0.012584560550749302, -0.05209321901202202, 0.09317570924758911, -0.015776466578245163, -0.05039316043257713, 0.07115036994218826, -0.001574175083078444, -0.08899283409118652, -0.04664583504199982, -0.08627765625715256, 0.18939514458179474, 0.13584108650684357, -0.1213454082608223, -0.08090504258871078, 0.03230892866849899, -0.06369452178478241, -0.03590569645166397, -0.047932546585798264, 0.04338119551539421, 0.17564576864242554, -0.003944371361285448, 0.1377956122159958, -0.06284065544605255, -0.03907888010144234, 0.03320753201842308, -0.035014841705560684, 0.034999947994947433, 0.09634196013212204, 0.13177193701267242, -0.04342074319720268, 0.13195250928401947, 0.17242342233657837, -0.11613253504037857, 0.12620438635349274, -0.03170548751950264, -0.07958751171827316, -0.016800731420516968, -0.02163316123187542, 0.011043914593756199, 0.12220198661088943, -0.1424550563097, -0.0055475845001637936, 0.024100961163640022, 0.002434596186503768, 0.020185934379696846, -0.23554444313049316, -0.04850221052765846, 0.03366133198142052, -0.03871966153383255, -0.02194574661552906, -0.006877336651086807, 0.00209417543374002, 0.09967943280935287, 0.002024613553658128, -0.08666781336069107, 0.04288649559020996, 0.0073686703108251095, -0.0645749419927597, 0.21360419690608978, -0.08007689565420151, -0.15141403675079346, -0.1270134598016739, -0.0785384550690651, -0.04154248535633087, 0.00879198219627142, 0.05787033960223198, -0.09781496971845627, -0.03363678231835365, -0.04100651666522026, 0.005597454961389303, 0.01186339184641838, 0.05676347017288208, 0.004335348028689623, -0.014203552156686783, 0.09079733490943909, -0.11023201793432236, -0.01051872968673706, -0.048583388328552246, -0.07012084871530533, 0.050746213644742966, 0.056980449706315994, 0.12331629544496536, 0.14501668512821198, -0.01804995909333229, 0.00432346248999238, -0.01583775319159031, 0.22449123859405518, -0.06633398681879044, -0.03416575863957405, 0.14277321100234985, -0.0016812296817079186, 0.06028643250465393, 0.09475118666887283, 0.07843516021966934, -0.08273075520992279, 0.006323285400867462, 0.030819229781627655, -0.04551642760634422, -0.21098840236663818, -0.032421428710222244, -0.06504080444574356, -0.05452575907111168, 0.09543547034263611, 0.028739096596837044, 0.04784382879734039, 0.07423284649848938, 0.04845237359404564, 0.08868847042322159, -0.06684926897287369, 0.040497686713933945, 0.06601216644048691, 0.051146913319826126, 0.12359991669654846, -0.04025063291192055, -0.07295241206884384, 0.026262953877449036, -0.018021656200289726, 0.22311557829380035, 0.004362867679446936, 0.12630249559879303, 0.06971502304077148, 0.2159353345632553, -0.008483880199491978, 0.10514336824417114, -0.0056366766802966595, -0.05570196732878685, -0.008848141878843307, -0.051960721611976624, -0.03426704183220863, 0.010449468158185482, -0.04554895684123039, 0.07323206216096878, -0.10574076324701309, -0.011099494062364101, 0.037797361612319946, 0.2753346264362335, 0.036200638860464096, -0.33064699172973633, -0.07585778832435608, -0.014371226541697979, -0.010785757564008236, -0.019266927614808083, 0.0038025863468647003, 0.09133679419755936, -0.08911830186843872, 0.03210832551121712, -0.07636497169733047, 0.0881156399846077, 0.0016451729461550713, 0.04378526285290718, 0.07786783576011658, 0.11045216768980026, 0.014812339097261429, 0.0696306899189949, -0.3153003752231598, 0.2914085388183594, 0.005200110841542482, 0.08591321110725403, -0.09037039428949356, 0.006562388967722654, 0.045094821602106094, 0.03257790580391884, 0.06701990216970444, -0.01477111503481865, 0.007056031376123428, -0.19075997173786163, -0.05821378529071808, 0.03338214010000229, 0.0853210911154747, -0.02404814027249813, 0.08537691086530685, -0.020468125119805336, -0.006770776119083166, 0.07606805860996246, 0.02633240818977356, -0.06592909246683121, -0.08603828400373459, -0.0065131173469126225, 0.032536830753088, -0.0793839767575264, -0.07115577161312103, -0.11748858541250229, -0.1319855898618698, 0.15517592430114746, 0.0108799384906888, -0.025333261117339134, -0.1162135973572731, 0.07355546206235886, 0.0930602177977562, -0.08723562210798264, 0.05909484252333641, 0.00102242489811033, 0.05501700937747955, 0.02515070140361786, -0.07409163564443588, 0.11305060982704163, -0.06951012462377548, -0.14343532919883728, -0.0707349106669426, 0.09339872002601624, 0.03239782154560089, 0.06694922596216202, -0.017969965934753418, 0.01922876387834549, -0.04307502508163452, -0.08340650051832199, 0.03868637606501579, -0.03886495530605316, 0.07316874712705612, 0.02494712360203266, -0.04639848694205284, 0.013985485769808292, -0.0538535974919796, -0.025217825546860695, 0.17025883495807648, 0.2276402860879898, -0.10202112048864365, 0.020039869472384453, 0.03797604516148567, -0.05166557431221008, -0.20599614083766937, 0.03800640627741814, 0.05928727611899376, 0.017319096252322197, 0.05928796902298927, -0.1705440729856491, 0.13922053575515747, 0.09689223021268845, -0.01480757538229227, 0.13092364370822906, -0.32775750756263733, -0.12948383390903473, 0.13398195803165436, 0.16197125613689423, 0.1535702347755432, -0.1411040872335434, -0.019568204879760742, -0.02917136251926422, -0.12672436237335205, 0.0638481080532074, -0.10191719979047775, 0.1248096451163292, -0.04032256081700325, 0.08542311191558838, -0.0019173118053004146, -0.07477955520153046, 0.12773557007312775, -0.0018255949253216386, 0.09482434391975403, -0.05624241754412651, -0.019117651507258415, 0.04976610839366913, -0.03132983669638634, 0.004546863492578268, -0.08748526126146317, 0.026435663923621178, -0.051084768027067184, -0.012545078061521053, -0.08561588078737259, 0.058324698358774185, -0.030747272074222565, -0.05571909248828888, -0.02252446673810482, 0.017793364822864532, 0.03394176438450813, -0.0200498029589653, 0.11065850406885147, 0.0347348153591156, 0.16212789714336395, 0.08991318196058273, 0.038586489856243134, -0.0657462552189827, -0.10048195719718933, -0.013175461441278458, -0.018249914050102234, 0.07001899927854538, -0.11549528688192368, 0.019062653183937073, 0.12489169090986252, 0.0294655654579401, 0.11611407995223999, 0.08308010548353195, -0.03235682472586632, 0.013146291486918926, 0.0732114166021347, -0.16171106696128845, -0.05834794044494629, 0.004134070593863726, -0.06897662580013275, -0.1150742769241333, 0.04559789597988129, 0.07429418712854385, -0.06349067389965057, -0.0072297025471925735, -0.012349898926913738, -0.0019885734654963017, -0.08367498964071274, 0.2197556346654892, 0.05870026722550392, 0.050683438777923584, -0.10447677224874496, 0.05469413474202156, 0.03998533636331558, -0.0678795874118805, -0.011721931397914886, 0.05796313285827637, -0.07460358738899231, -0.034120988100767136, 0.12340551614761353, 0.1773378849029541, -0.03358064219355583, -0.04362812265753746, -0.14627104997634888, -0.11223342269659042, 0.06835584342479706, 0.1555706262588501, 0.11036282777786255, 0.0038954659830778837, -0.052157044410705566, 0.0135762644931674, -0.10806510597467422, 0.06840227544307709, 0.043271999806165695, 0.07191406190395355, -0.12569813430309296, 0.16276852786540985, 0.014777771197259426, 0.05685434862971306, -0.020706849172711372, 0.03616167604923248, -0.09209626168012619, 0.017499126493930817, -0.11922558397054672, -0.038342610001564026, -0.0154781648889184, -0.010544594377279282, -0.006835638079792261, -0.06093476712703705, -0.06201605871319771, 0.023220039904117584, -0.12313169986009598, -0.03828826919198036, 0.04242268577218056, 0.03454676643013954, -0.11762208491563797, -0.041769009083509445, 0.03592359647154808, -0.05869373679161072, 0.046402838081121445, 0.05861520394682884, 0.01659252867102623, 0.06380072981119156, -0.151092529296875, -0.013618157245218754, 0.0653512254357338, 0.012438904494047165, 0.07453829050064087, -0.0767274722456932, -0.014011525548994541, -0.005635441746562719, 0.07361512631177902, 0.009896417148411274, 0.08268111199140549, -0.15068474411964417, -0.0015164247015491128, -0.0260224100202322, -0.08999565988779068, -0.06018711254000664, 0.01452790480107069, 0.09348075836896896, 0.011729910038411617, 0.1964542120695114, -0.08771339058876038, 0.04869116470217705, -0.2113606333732605, 0.003398169996216893, -0.025431638583540916, -0.09638800472021103, -0.11711937189102173, -0.051484376192092896, 0.07077828794717789, -0.053261712193489075, 0.1318199336528778, 0.02041045017540455, 0.048537444323301315, 0.01872134767472744, -0.01702173799276352, 0.021054407581686974, 0.010976164601743221, 0.21348826587200165, 0.03497398644685745, -0.03291531279683113, 0.07294916361570358, 0.06669086217880249, 0.09610578417778015, 0.12532280385494232, 0.2069895714521408, 0.15415839850902557, 0.02860730141401291, 0.10197311639785767, 0.020761726424098015, -0.051600322127342224, -0.14883220195770264, 0.01829230971634388, -0.0524209626019001, 0.09702358394861221, -0.014439127407968044, 0.20410728454589844, 0.06672444939613342, -0.16919194161891937, 0.05560733377933502, -0.043630510568618774, -0.08527078479528427, -0.11266053467988968, -0.041657838970422745, -0.07710075378417969, -0.12491976469755173, 0.0037823403254151344, -0.08261608332395554, 0.01717987284064293, 0.12316914647817612, -0.0022419814486056566, -0.017533447593450546, 0.19548524916172028, 0.03149798512458801, 0.03798747435212135, 0.04194393754005432, 0.009875461459159851, -0.025334613397717476, -0.08338681608438492, -0.0640437975525856, -0.02766176499426365, -0.014385444112122059, 0.039459194988012314, -0.07387559860944748, -0.08669313788414001, 0.054004937410354614, -0.007069891784340143, -0.10555264353752136, 0.013736882247030735, 0.004997233394533396, 0.06662531197071075, 0.046262454241514206, 0.01332913339138031, 0.030571311712265015, -0.023809796199202538, 0.19042299687862396, -0.08575420826673508, -0.09151346236467361, -0.09067472815513611, 0.25058165192604065, 0.037610650062561035, -0.01937670074403286, 0.02650643140077591, -0.05802033841609955, -0.0003656639310065657, 0.2622021436691284, 0.21804887056350708, -0.09079959988594055, -0.0019392702961340547, 0.011479933746159077, -0.015456105582416058, -0.042505886405706406, 0.12214865535497665, 0.13508082926273346, 0.05737362429499626, -0.1011517271399498, -0.0434277318418026, -0.0619756281375885, -0.013977383263409138, -0.06719548255205154, 0.03943506255745888, 0.04173843935132027, 0.0031365782488137484, -0.039221979677677155, 0.05244296416640282, -0.03952711448073387, -0.11076158285140991, 0.09669479727745056, -0.19481337070465088, -0.16612567007541656, -0.014920840971171856, 0.1162521243095398, 0.003704410744830966, 0.07020283490419388, -0.03016602247953415, 0.010668385773897171, 0.06504932045936584, -0.017874261364340782, -0.08356905728578568, -0.1028849259018898, 0.10373592376708984, -0.10209766030311584, 0.21801255643367767, -0.038196779787540436, 0.06648125499486923, 0.12255660444498062, 0.07768208533525467, -0.06721503287553787, 0.06443048268556595, 0.036972153931856155, -0.09868239611387253, 0.02600887604057789, 0.08958470821380615, -0.032884787768125534, 0.021850762888789177, 0.026431070640683174, -0.09995686262845993, 0.030083471909165382, -0.07510901987552643, -0.03700725734233856, -0.036452699452638626, -0.037630628794431686, -0.06240057572722435, 0.11923771351575851, 0.21615742146968842, -0.0171199981123209, 0.011774454265832901, -0.07984302192926407, 0.013156701810657978, 0.06563487648963928, 0.017983028665184975, -0.10310562700033188, -0.21422310173511505, 0.01944034919142723, 0.04244734346866608, -0.032195668667554855, -0.24007193744182587, -0.10043025761842728, 0.005879571195691824, -0.08645963668823242, -0.0863286629319191, 0.059289027005434036, 0.07192905992269516, 0.061207231134176254, -0.044523030519485474, -0.08705667406320572, -0.07735421508550644, 0.149191752076149, -0.16903056204319, -0.0948701798915863 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # youtube-bert_10 This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.4456 - Perplexity: 11.54 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.6799 | 1.0 | 1899 | 2.5135 | | 2.5736 | 2.0 | 3798 | 2.4612 | | 2.5172 | 3.0 | 5697 | 2.4363 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu111 - Datasets 1.17.0 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "model-index": [{"name": "youtube-bert_10", "results": []}]}
fill-mask
flboehm/youtube-bert_10
[ "transformers", "pytorch", "tensorboard", "bert", "fill-mask", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #bert #fill-mask #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
youtube-bert\_10 ================ This model is a fine-tuned version of bert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set: * Loss: 2.4456 * Perplexity: 11.54 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 8 * eval\_batch\_size: 8 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 3.0 ### Training results ### Framework versions * Transformers 4.15.0 * Pytorch 1.10.0+cu111 * Datasets 1.17.0 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3.0", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.0+cu111\n* Datasets 1.17.0\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #bert #fill-mask #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3.0", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.0+cu111\n* Datasets 1.17.0\n* Tokenizers 0.10.3" ]
[ 55, 98, 4, 33 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #bert #fill-mask #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3.0### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.0+cu111\n* Datasets 1.17.0\n* Tokenizers 0.10.3" ]
[ -0.1185666099190712, 0.05154503881931305, -0.001991863129660487, 0.1259721964597702, 0.16331331431865692, 0.031548526138067245, 0.11890581250190735, 0.1158909872174263, -0.08979245275259018, 0.02165108360350132, 0.1368781477212906, 0.17217640578746796, 0.012965775094926357, 0.11795971542596817, -0.029528489336371422, -0.23616047203540802, -0.011919830925762653, 0.041640859097242355, -0.10168840736150742, 0.13639819622039795, 0.08591291308403015, -0.13578127324581146, 0.07982739061117172, 0.013810690492391586, -0.21127593517303467, 0.013829745352268219, 0.025812627747654915, -0.060649264603853226, 0.15207840502262115, 0.0027124544139951468, 0.139947772026062, -0.004759540315717459, 0.08299518376588821, -0.15673433244228363, 0.014666896313428879, 0.05779961869120598, 0.008064473047852516, 0.08558357506990433, 0.043225064873695374, 0.008507699705660343, 0.09627152234315872, -0.0917462706565857, 0.054921090602874756, 0.020648004487156868, -0.12664943933486938, -0.2360801249742508, -0.08528059720993042, 0.004651615861803293, 0.058807313442230225, 0.1083327904343605, 0.007199296727776527, 0.1520586460828781, -0.09310062974691391, 0.08716356754302979, 0.2574237287044525, -0.2959791123867035, -0.06984749436378479, 0.020541921257972717, 0.018759924918413162, 0.04902006313204765, -0.10169059038162231, -0.012431897222995758, 0.04480139911174774, 0.04897655174136162, 0.14673326909542084, -0.038217149674892426, -0.10335386544466019, 0.018521035090088844, -0.13680018484592438, -0.030901873484253883, 0.1002330556511879, 0.029376765713095665, -0.036986883729696274, -0.02927144430577755, -0.06883161514997482, -0.1630038470029831, -0.04173831269145012, -0.009356518276035786, 0.044356539845466614, -0.042471785098314285, -0.0803486630320549, -0.003138977102935314, -0.10294009000062943, -0.08304473012685776, -0.07641546428203583, 0.16881126165390015, 0.038664937019348145, 0.02619274891912937, -0.03296726569533348, 0.10748106986284256, -0.008003893308341503, -0.14246971905231476, 0.0337345190346241, 0.03985012322664261, -0.010827512480318546, -0.027620086446404457, -0.07328420877456665, -0.08548559993505478, 0.019203951582312584, 0.11422524601221085, -0.04364387318491936, 0.041119251400232315, 0.05433918908238411, 0.05137321725487709, -0.12207100540399551, 0.18899758160114288, -0.047487299889326096, -0.02038688212633133, 0.010652822442352772, 0.04526795446872711, 0.024460801854729652, -0.008670804090797901, -0.10704082250595093, -0.0031697351951152086, 0.08358187228441238, 0.011758974753320217, -0.05764889717102051, 0.05940273776650429, -0.0629042312502861, -0.013751399703323841, 0.013050959445536137, -0.09750746935606003, 0.029626330360770226, -0.013377734459936619, -0.07359118014574051, -0.030234334990382195, 0.03862730413675308, 0.011988754384219646, -0.008351379074156284, 0.1250682920217514, -0.08841998130083084, 0.034012388437986374, -0.11205122619867325, -0.10950788110494614, 0.0047110565938055515, -0.09217014908790588, 0.02147040329873562, -0.09345448017120361, -0.1672959327697754, -0.0013841524487361312, 0.07182008773088455, -0.022816522046923637, -0.046076949685811996, -0.02002711221575737, -0.06747882813215256, 0.007451064884662628, -0.00854859035462141, 0.17745448648929596, -0.057458002120256424, 0.11331111937761307, 0.047473859041929245, 0.08484622836112976, -0.05833516642451286, 0.05375621095299721, -0.09184784442186356, 0.006465725135058165, -0.19436265528202057, 0.014406397007405758, -0.04355626925826073, 0.06504752486944199, -0.08485414832830429, -0.10520941764116287, -0.0069612846709787846, -0.0052687362767755985, 0.08578690141439438, 0.09277284145355225, -0.17761999368667603, -0.07855764776468277, 0.16522569954395294, -0.05985333397984505, -0.10702268034219742, 0.12166973948478699, -0.05131860449910164, 0.036102913320064545, 0.05796314403414726, 0.12333166599273682, 0.06874337792396545, -0.10693442821502686, 0.041748080402612686, 0.002565591363236308, 0.04501602426171303, -0.08023276180028915, 0.07022405415773392, -0.013675856404006481, -0.012911509722471237, 0.03227700665593147, -0.03025161661207676, 0.06307336688041687, -0.09361114352941513, -0.10414334386587143, -0.04420609399676323, -0.11030023545026779, 0.06885332614183426, 0.07123053073883057, 0.07813755422830582, -0.10023976117372513, -0.08544296026229858, 0.02687968872487545, 0.07230675965547562, -0.0431336872279644, 0.03006741590797901, -0.055642422288656235, 0.06303247064352036, -0.05870428681373596, -0.02924186922609806, -0.18597684800624847, -0.014883589930832386, 0.0041814097203314304, -0.020231319591403008, 0.015504363924264908, 0.015280995517969131, 0.08754968643188477, 0.06610224395990372, -0.05465494468808174, -0.012955191545188427, -0.04520723223686218, -0.00939409900456667, -0.13462011516094208, -0.20210541784763336, -0.039533987641334534, -0.019168438389897346, 0.12036830931901932, -0.1666729599237442, 0.02621101588010788, -0.057976141571998596, 0.06416820734739304, 0.005303523037582636, -0.012643869034945965, -0.051880378276109695, 0.09347028285264969, -0.01581558771431446, -0.050514981150627136, 0.07076723128557205, -0.0015732599422335625, -0.0891030803322792, -0.046860843896865845, -0.08616388589143753, 0.1896461695432663, 0.13601769506931305, -0.12125612050294876, -0.08125719428062439, 0.03222212567925453, -0.06364566087722778, -0.0354495607316494, -0.04770876094698906, 0.04326658323407173, 0.17585523426532745, -0.003758148057386279, 0.13804732263088226, -0.06276220828294754, -0.03859742358326912, 0.03391306847333908, -0.03527088463306427, 0.034960199147462845, 0.09622424840927124, 0.13265007734298706, -0.0436449833214283, 0.13224786520004272, 0.17182008922100067, -0.11615736037492752, 0.1270415186882019, -0.031166337430477142, -0.07972996681928635, -0.016773326322436333, -0.02140195481479168, 0.01101519912481308, 0.12282883375883102, -0.14344097673892975, -0.006241913884878159, 0.023810314014554024, 0.0021330607123672962, 0.02048610709607601, -0.23602791130542755, -0.048390764743089676, 0.03336069732904434, -0.0384502150118351, -0.02207092195749283, -0.007178789470344782, 0.0024067487102001905, 0.10011780261993408, 0.0018331320025026798, -0.08565574139356613, 0.04257999733090401, 0.007614416535943747, -0.06450432538986206, 0.2133892923593521, -0.0802527442574501, -0.15187068283557892, -0.12702786922454834, -0.07840953022241592, -0.040983717888593674, 0.009333097375929356, 0.05767291411757469, -0.09833624213933945, -0.033430494368076324, -0.04086914286017418, 0.006541009526699781, 0.011967643164098263, 0.0566878616809845, 0.00436390982940793, -0.013732747174799442, 0.08990251272916794, -0.1101469025015831, -0.010492876172065735, -0.04861503466963768, -0.07050983607769012, 0.05128560960292816, 0.05761084333062172, 0.12344840168952942, 0.14547346532344818, -0.017955133691430092, 0.004315595608204603, -0.016009388491511345, 0.22373203933238983, -0.06661293655633926, -0.03369421884417534, 0.14164605736732483, -0.002271252917125821, 0.06036926805973053, 0.09501203149557114, 0.07851669192314148, -0.08320188522338867, 0.006109592039138079, 0.030696960166096687, -0.04563803970813751, -0.21054668724536896, -0.03281120955944061, -0.0649380311369896, -0.0538257397711277, 0.0962330624461174, 0.028637384995818138, 0.04727712273597717, 0.07444982975721359, 0.04853430390357971, 0.08895218372344971, -0.0672173872590065, 0.04061386361718178, 0.06567799299955368, 0.05069388076663017, 0.12352003902196884, -0.04055643454194069, -0.07276331633329391, 0.026222949847579002, -0.017988556995987892, 0.22409822046756744, 0.004598585423082113, 0.12686224281787872, 0.06994598358869553, 0.21535234153270721, -0.007917801849544048, 0.10461273789405823, -0.005180540960282087, -0.05604546144604683, -0.008756770752370358, -0.051913484930992126, -0.03462392836809158, 0.010789132677018642, -0.0449359267950058, 0.07273170351982117, -0.10594445466995239, -0.010356953367590904, 0.0377165824174881, 0.2746969163417816, 0.03644633665680885, -0.33040300011634827, -0.07563033699989319, -0.014343560673296452, -0.011139840818941593, -0.019237348809838295, 0.003698396496474743, 0.09272032231092453, -0.08902283757925034, 0.03173748031258583, -0.07649707049131393, 0.08775646239519119, 0.0012802989222109318, 0.043652232736349106, 0.07692836970090866, 0.11058638244867325, 0.01433571893721819, 0.06959289312362671, -0.3151698410511017, 0.2919296324253082, 0.0054991766810417175, 0.08589011430740356, -0.09063518047332764, 0.006306268274784088, 0.044846419245004654, 0.032437074929475784, 0.06722528487443924, -0.014898368157446384, 0.007478604558855295, -0.19105559587478638, -0.05825602635741234, 0.033294953405857086, 0.08651942759752274, -0.024216903373599052, 0.08591294288635254, -0.020247245207428932, -0.007086357567459345, 0.07591399550437927, 0.026569729670882225, -0.06546018272638321, -0.08681251853704453, -0.0065132067538797855, 0.03207319602370262, -0.07955724000930786, -0.07155508548021317, -0.11721106618642807, -0.13109619915485382, 0.1537569761276245, 0.010210110805928707, -0.025220362469553947, -0.11612258106470108, 0.07431529462337494, 0.09315452724695206, -0.08734671026468277, 0.0596860907971859, 0.0009742123074829578, 0.05559683218598366, 0.02489655464887619, -0.07326842099428177, 0.11258616298437119, -0.06973551213741302, -0.14422817528247833, -0.07115625590085983, 0.09416430443525314, 0.032365355640649796, 0.06675515323877335, -0.01789604127407074, 0.019414745271205902, -0.04266993701457977, -0.08337438851594925, 0.03897139057517052, -0.03852074220776558, 0.0734829306602478, 0.024341441690921783, -0.046794939786195755, 0.013986960984766483, -0.053590428084135056, -0.025310086086392403, 0.1715381145477295, 0.22775398194789886, -0.10208622366189957, 0.020456800237298012, 0.0379319041967392, -0.05169225111603737, -0.2065131515264511, 0.039048291742801666, 0.05964863672852516, 0.017402885481715202, 0.05847853049635887, -0.17148347198963165, 0.13869859278202057, 0.09689655154943466, -0.014251473359763622, 0.13285528123378754, -0.32770559191703796, -0.12936115264892578, 0.1332014799118042, 0.16186222434043884, 0.1533248871564865, -0.14122025668621063, -0.020025895908474922, -0.02882508933544159, -0.12677709758281708, 0.06459585577249527, -0.10110261291265488, 0.12485870718955994, -0.039769481867551804, 0.08551540225744247, -0.001699658459983766, -0.07472284883260727, 0.12735651433467865, -0.0018954662373289466, 0.09431430697441101, -0.05592302978038788, -0.021339373663067818, 0.05037766322493553, -0.031133053824305534, 0.004019241314381361, -0.0875220000743866, 0.025706857442855835, -0.05030526593327522, -0.012729640118777752, -0.08563733100891113, 0.05829552933573723, -0.030952805653214455, -0.05558154359459877, -0.022628581151366234, 0.0174558088183403, 0.03365272656083107, -0.019991165027022362, 0.11012978106737137, 0.03408527746796608, 0.1611141711473465, 0.08993668109178543, 0.0386839359998703, -0.06633230298757553, -0.09938143938779831, -0.012999254278838634, -0.018629973754286766, 0.06997372955083847, -0.11639487743377686, 0.019166303798556328, 0.12452664971351624, 0.03014390356838703, 0.1164555624127388, 0.08312380313873291, -0.03206706419587135, 0.013652301393449306, 0.07339020818471909, -0.16137391328811646, -0.05937463045120239, 0.004103053826838732, -0.06860106438398361, -0.11526337265968323, 0.04549515247344971, 0.07435808330774307, -0.0636117085814476, -0.0072888657450675964, -0.012766480445861816, -0.002350968075916171, -0.08353818207979202, 0.2190736085176468, 0.059260595589876175, 0.05075366795063019, -0.10446011275053024, 0.0547802560031414, 0.0401371605694294, -0.06808695197105408, -0.011537308804690838, 0.05782373622059822, -0.07447952777147293, -0.034379515796899796, 0.12226486206054688, 0.1784084439277649, -0.03242594376206398, -0.04307399317622185, -0.14626766741275787, -0.11233208328485489, 0.06850484758615494, 0.15721355378627777, 0.11003950238227844, 0.004015973769128323, -0.052421897649765015, 0.014333694241940975, -0.10855136066675186, 0.06833703815937042, 0.04330125078558922, 0.07205981016159058, -0.12578196823596954, 0.16407561302185059, 0.014784012921154499, 0.056495893746614456, -0.02059757523238659, 0.036021288484334946, -0.09236348420381546, 0.017086826264858246, -0.11888966709375381, -0.03771015629172325, -0.015627138316631317, -0.010972387157380581, -0.006685182917863131, -0.060923125594854355, -0.0621161051094532, 0.02260262332856655, -0.12320316582918167, -0.03827161714434624, 0.042114272713661194, 0.03471748158335686, -0.11770500987768173, -0.04144556447863579, 0.03584691509604454, -0.058863118290901184, 0.04656480252742767, 0.05856838822364807, 0.016491513699293137, 0.06413108855485916, -0.15059542655944824, -0.013538692146539688, 0.0655880868434906, 0.012291967868804932, 0.07487507909536362, -0.07590422034263611, -0.01410194393247366, -0.006440092343837023, 0.07399704307317734, 0.009698270820081234, 0.08328980207443237, -0.1501903533935547, -0.001177963218651712, -0.025757858529686928, -0.09041041880846024, -0.06021593138575554, 0.015049909241497517, 0.09332489222288132, 0.010954920202493668, 0.19644086062908173, -0.08743524551391602, 0.04905640706419945, -0.21110951900482178, 0.003328733379021287, -0.025360330939292908, -0.09587627649307251, -0.11634298413991928, -0.051765408366918564, 0.07079558819532394, -0.05331442132592201, 0.13162952661514282, 0.019823715090751648, 0.047597598284482956, 0.018639065325260162, -0.016535716131329536, 0.019984206184744835, 0.011776451952755451, 0.21352805197238922, 0.03520699217915535, -0.03336261212825775, 0.0713900774717331, 0.066425621509552, 0.09663256257772446, 0.12494824081659317, 0.20762448012828827, 0.15409938991069794, 0.0287006963044405, 0.10194700211286545, 0.020886579528450966, -0.05202002450823784, -0.1491106003522873, 0.019387859851121902, -0.052787795662879944, 0.09677990525960922, -0.014715918339788914, 0.2051200419664383, 0.0666583999991417, -0.1690557450056076, 0.055241361260414124, -0.04342174902558327, -0.08545991778373718, -0.11203763633966446, -0.04229632392525673, -0.07764151692390442, -0.12484031915664673, 0.004014087375253439, -0.08279015123844147, 0.017516108229756355, 0.12222494930028915, -0.002598297782242298, -0.017150476574897766, 0.19628767669200897, 0.03104005940258503, 0.03765018656849861, 0.042356640100479126, 0.01045034546405077, -0.02519180439412594, -0.08429092913866043, -0.06369374692440033, -0.0278062354773283, -0.014314863830804825, 0.03925429284572601, -0.07354877889156342, -0.08660650253295898, 0.05364618077874184, -0.007113597821444273, -0.10554596781730652, 0.013948419131338596, 0.0048472885973751545, 0.06683596223592758, 0.04563571885228157, 0.01301465556025505, 0.030305029824376106, -0.023681296035647392, 0.1906057745218277, -0.08553221821784973, -0.0916363075375557, -0.09087767452001572, 0.24897997081279755, 0.03743553161621094, -0.019014965742826462, 0.026539387181401253, -0.05825146660208702, 0.0002493232022970915, 0.26249030232429504, 0.21820692718029022, -0.09097818285226822, -0.0014660957967862487, 0.011857966892421246, -0.015337098389863968, -0.04280710592865944, 0.12228136509656906, 0.13455063104629517, 0.0580008327960968, -0.1012813076376915, -0.04414428398013115, -0.0620507188141346, -0.01388945896178484, -0.06679093837738037, 0.04053268954157829, 0.04150594770908356, 0.003134046448394656, -0.039624541997909546, 0.05214816704392433, -0.03972489386796951, -0.11097311228513718, 0.09710364788770676, -0.1962416172027588, -0.16615140438079834, -0.015066022984683514, 0.11616552621126175, 0.0036018758546561003, 0.07057882845401764, -0.03025643341243267, 0.010124663822352886, 0.06527143716812134, -0.01784300059080124, -0.08362721651792526, -0.10231908410787582, 0.10310569405555725, -0.10250431299209595, 0.21842877566814423, -0.03848506137728691, 0.06593940407037735, 0.12257137149572372, 0.07803380489349365, -0.06709659844636917, 0.06396021693944931, 0.03708234801888466, -0.09835124015808105, 0.025425521656870842, 0.08937790244817734, -0.03326650708913803, 0.021844202652573586, 0.026671893894672394, -0.10072394460439682, 0.030467675998806953, -0.07408648729324341, -0.03727876767516136, -0.03625280037522316, -0.037759929895401, -0.06280141323804855, 0.11906527727842331, 0.21579210460186005, -0.01707552932202816, 0.011731069535017014, -0.0792316123843193, 0.013454982079565525, 0.06622429192066193, 0.019551390781998634, -0.1031242087483406, -0.21472717821598053, 0.018952591344714165, 0.0426400862634182, -0.032142654061317444, -0.2402496486902237, -0.10051145404577255, 0.005789774935692549, -0.08572307974100113, -0.08662299066781998, 0.05933287739753723, 0.0722365453839302, 0.06132306531071663, -0.04443158581852913, -0.08705952763557434, -0.07715585082769394, 0.14963117241859436, -0.16891981661319733, -0.09465058892965317 ]
null
null
transformers
# Cheapity3 🐷 GPT-like T5 model trained to generate text in multiple languages. ## Motivation - GPT models are expensive to run. - GPT models are monolingual. ## Solution - Maybe, Small Models aren't Terrible (*SMarT*) - Plus, they are cheaper to run. I fine-tuned T5 on multiple languages (🇬🇧 English, 🇩🇪 German, 🇫🇷 French) and multiple academic text snippets from various domains like tech, law, finance and science etc. to generate text, just like GPT models do. ## Usage - [NLPlayStore](https://github.com/flexudy/NLPlayStore) 👈 ```python from store.service_management import ServiceManager service_manager = ServiceManager().get_service("cheapity3") service.install() service = service.launch() input_text = "The mechanical engineering field requires ... " generated_texts = service.play(input_text, 15) # A list a generated text ``` ## Usage - Hugging Face Transformers 🤗 - Provide some text e.g `"Italy, officially the Italian Republic is a country consisting of"` - Tell Cheapity3 how many words you want to generate e.g `15` -- 😃 Yes, you can control the length. - Cheapity3 reads your text and generates a continuation containing approximately 15 words. ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("flexudy/cheapity3") model = AutoModelWithLMHead.from_pretrained("flexudy/cheapity3") input_text = """The mechanical engineering field requires an understanding of core areas including mechanics, dynamics, thermodynamics, materials science, structural analysis, and electricity. { _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ }""" # 15 words inputs = tokenizer(input_text, return_tensors="pt", truncation=True, max_length=512) input_ids = inputs["input_ids"] attention_mask = inputs["attention_mask"] outputs = model.generate( input_ids=input_ids, attention_mask=attention_mask, max_length=128, do_sample=True, early_stopping=True, num_return_sequences=4, repetition_penalty=2.5 ) for i in range(4): print(tokenizer.decode(outputs[i], skip_special_tokens=True, clean_up_tokenization_spaces=True)) ``` **INPUT: The mechanical engineering field requires an understanding of core areas including mechanics, dynamics, thermodynamics, materials science, structural analysis, and electricity.** ``` > Cheapity3 continues with beam search: ... The field of mechanical engineering is a broad field that includes many core areas of engineering. > Cheapity3 continues with sampling and top_k=50: ... Developing the knowledge base for these core areas will enable engineers to build their capabilities rapidly and efficiently. ... ... The field of mechanics offers a variety and broad range for applications throughout the engineering/technological fields. ... ... Mechanics generally is not understood by students. While they can be employed in the field, mechanical engineering ... ... Introduction to mechanical engineering and core fields including chemical products, materials science, structural analysis, and geomatics ... ``` ## Pretty decent right? Hence, whenever you feel like GPT3 is too expensive, Cheapity3 comes to the rescue 🤗. ## Model Training FYI - T5-base model - Trained on ONLY 1M sentences from English, French and German text - Mostly text from Wikipedia, arxiv and QA datasets - Learning rate: 0.00003 - 2 epochs - Max input: 512 tokens - Max output: 128 tokens
{}
text2text-generation
flexudy/cheapity3
[ "transformers", "pytorch", "t5", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #t5 #text2text-generation #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
# Cheapity3 GPT-like T5 model trained to generate text in multiple languages. ## Motivation - GPT models are expensive to run. - GPT models are monolingual. ## Solution - Maybe, Small Models aren't Terrible (*SMarT*) - Plus, they are cheaper to run. I fine-tuned T5 on multiple languages (🇬🇧 English, 🇩🇪 German, 🇫🇷 French) and multiple academic text snippets from various domains like tech, law, finance and science etc. to generate text, just like GPT models do. ## Usage - NLPlayStore ## Usage - Hugging Face Transformers - Provide some text e.g '"Italy, officially the Italian Republic is a country consisting of"' - Tell Cheapity3 how many words you want to generate e.g '15' -- Yes, you can control the length. - Cheapity3 reads your text and generates a continuation containing approximately 15 words. INPUT: The mechanical engineering field requires an understanding of core areas including mechanics, dynamics, thermodynamics, materials science, structural analysis, and electricity. ## Pretty decent right? Hence, whenever you feel like GPT3 is too expensive, Cheapity3 comes to the rescue . ## Model Training FYI - T5-base model - Trained on ONLY 1M sentences from English, French and German text - Mostly text from Wikipedia, arxiv and QA datasets - Learning rate: 0.00003 - 2 epochs - Max input: 512 tokens - Max output: 128 tokens
[ "# Cheapity3 \n\nGPT-like T5 model trained to generate text in multiple languages.", "## Motivation\n\n- GPT models are expensive to run.\n- GPT models are monolingual.", "## Solution\n\n- Maybe, Small Models aren't Terrible (*SMarT*)\n- Plus, they are cheaper to run.\n\nI fine-tuned T5 on multiple languages (🇬🇧 English, 🇩🇪 German, 🇫🇷 French) and multiple academic text snippets from\nvarious domains like tech, law, finance and science etc. to generate text, just like GPT models do.", "## Usage - NLPlayStore", "## Usage - Hugging Face Transformers \n\n- Provide some text e.g '\"Italy, officially the Italian Republic is a country consisting of\"'\n- Tell Cheapity3 how many words you want to generate e.g '15' -- Yes, you can control the length.\n- Cheapity3 reads your text and generates a continuation containing approximately 15 words.\n\n\n\nINPUT: The mechanical engineering field requires an understanding of core areas including mechanics, dynamics, thermodynamics, materials science, structural analysis, and electricity.", "## Pretty decent right?\n\nHence, whenever you feel like GPT3 is too expensive, Cheapity3 comes to the rescue .", "## Model Training FYI\n- T5-base model\n- Trained on ONLY 1M sentences from English, French and German text\n- Mostly text from Wikipedia, arxiv and QA datasets\n- Learning rate: 0.00003\n- 2 epochs\n- Max input: 512 tokens\n- Max output: 128 tokens" ]
[ "TAGS\n#transformers #pytorch #t5 #text2text-generation #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "# Cheapity3 \n\nGPT-like T5 model trained to generate text in multiple languages.", "## Motivation\n\n- GPT models are expensive to run.\n- GPT models are monolingual.", "## Solution\n\n- Maybe, Small Models aren't Terrible (*SMarT*)\n- Plus, they are cheaper to run.\n\nI fine-tuned T5 on multiple languages (🇬🇧 English, 🇩🇪 German, 🇫🇷 French) and multiple academic text snippets from\nvarious domains like tech, law, finance and science etc. to generate text, just like GPT models do.", "## Usage - NLPlayStore", "## Usage - Hugging Face Transformers \n\n- Provide some text e.g '\"Italy, officially the Italian Republic is a country consisting of\"'\n- Tell Cheapity3 how many words you want to generate e.g '15' -- Yes, you can control the length.\n- Cheapity3 reads your text and generates a continuation containing approximately 15 words.\n\n\n\nINPUT: The mechanical engineering field requires an understanding of core areas including mechanics, dynamics, thermodynamics, materials science, structural analysis, and electricity.", "## Pretty decent right?\n\nHence, whenever you feel like GPT3 is too expensive, Cheapity3 comes to the rescue .", "## Model Training FYI\n- T5-base model\n- Trained on ONLY 1M sentences from English, French and German text\n- Mostly text from Wikipedia, arxiv and QA datasets\n- Learning rate: 0.00003\n- 2 epochs\n- Max input: 512 tokens\n- Max output: 128 tokens" ]
[ 48, 22, 20, 87, 8, 121, 32, 68 ]
[ "passage: TAGS\n#transformers #pytorch #t5 #text2text-generation #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n# Cheapity3 \n\nGPT-like T5 model trained to generate text in multiple languages.## Motivation\n\n- GPT models are expensive to run.\n- GPT models are monolingual.## Solution\n\n- Maybe, Small Models aren't Terrible (*SMarT*)\n- Plus, they are cheaper to run.\n\nI fine-tuned T5 on multiple languages (🇬🇧 English, 🇩🇪 German, 🇫🇷 French) and multiple academic text snippets from\nvarious domains like tech, law, finance and science etc. to generate text, just like GPT models do.## Usage - NLPlayStore## Usage - Hugging Face Transformers \n\n- Provide some text e.g '\"Italy, officially the Italian Republic is a country consisting of\"'\n- Tell Cheapity3 how many words you want to generate e.g '15' -- Yes, you can control the length.\n- Cheapity3 reads your text and generates a continuation containing approximately 15 words.\n\n\n\nINPUT: The mechanical engineering field requires an understanding of core areas including mechanics, dynamics, thermodynamics, materials science, structural analysis, and electricity.## Pretty decent right?\n\nHence, whenever you feel like GPT3 is too expensive, Cheapity3 comes to the rescue .## Model Training FYI\n- T5-base model\n- Trained on ONLY 1M sentences from English, French and German text\n- Mostly text from Wikipedia, arxiv and QA datasets\n- Learning rate: 0.00003\n- 2 epochs\n- Max input: 512 tokens\n- Max output: 128 tokens" ]
[ -0.11033980548381805, 0.08559476584196091, -0.0016709627816453576, 0.07728438824415207, 0.10434217005968094, 0.027059737592935562, 0.10423171520233154, 0.09687153249979019, 0.018938781693577766, 0.07560639083385468, 0.024478228762745857, -0.053492315113544464, 0.09191378951072693, 0.15480230748653412, 0.07075545191764832, -0.27681687474250793, 0.07735221087932587, -0.0491175651550293, 0.10121182352304459, 0.06642986834049225, 0.11255519092082977, -0.04810251668095589, 0.07417936623096466, -0.049291037023067474, -0.0918402299284935, 0.06391877681016922, 0.0019464995712041855, -0.07469075918197632, 0.15571147203445435, 0.08258973062038422, 0.08751605451107025, -0.03164125606417656, 0.030955787748098373, -0.17146261036396027, -0.0037666852585971355, 0.032759279012680054, -0.07949711382389069, -0.0050868624821305275, 0.10172358900308609, 0.047138407826423645, 0.24317334592342377, -0.052552785724401474, 0.006356879603117704, 0.05686641484498978, -0.0689058005809784, -0.06332210451364517, -0.09967745095491409, 0.07097256928682327, 0.05215591564774513, 0.09586894512176514, -0.03906537964940071, 0.1602392941713333, -0.16277630627155304, 0.02380482479929924, 0.06851300597190857, -0.1364147812128067, -0.047529760748147964, 0.024168789386749268, 0.0129765085875988, 0.13260236382484436, -0.055698174983263016, 0.06587737053632736, 0.010556691326200962, 0.08672121912240982, -0.03872087225317955, -0.0022611627355217934, 0.0802992656826973, -0.010781655088067055, -0.07717414945363998, -0.05027637258172035, 0.19505354762077332, -0.006909981835633516, -0.05547558516263962, -0.14394420385360718, -0.013615728355944157, 0.044290438294410706, -0.05253392085433006, -0.051518090069293976, -0.013010084629058838, 0.03047822043299675, 0.10141220688819885, -0.04727071896195412, -0.12551577389240265, -0.0022998969070613384, -0.05233614891767502, 0.1604938805103302, 0.021770711988210678, 0.016236113384366035, 0.06296446919441223, 0.07276206463575363, -0.1192997619509697, -0.07096622884273529, -0.03352385386824608, -0.025603197515010834, -0.01125598605722189, -0.012210064567625523, -0.021162042394280434, 0.030508000403642654, 0.036510780453681946, 0.025771774351596832, -0.1316777616739273, -0.0018392638303339481, 0.0847402960062027, 0.03515535593032837, 0.041088350117206573, 0.11164731532335281, -0.056871313601732254, -0.11870606243610382, -0.05117926374077797, -0.1085829883813858, -0.027651527896523476, -0.029180634766817093, -0.11817752569913864, -0.04648369178175926, 0.07782136648893356, 0.05843053385615349, 0.026474297046661377, -0.04612957686185837, -0.02514774724841118, 0.0021427790634334087, 0.04135730490088463, -0.09814351052045822, 0.02372654154896736, -0.0621800497174263, -0.05836182460188866, 0.16177290678024292, -0.09889597445726395, 0.015041432343423367, -0.13005900382995605, 0.06460379809141159, -0.07943733036518097, -0.03282427415251732, -0.09256347268819809, -0.08424186706542969, 0.06901054084300995, -0.1437438577413559, -0.026156654581427574, -0.10227431356906891, -0.10275648534297943, -0.020810769870877266, 0.04324736073613167, -0.10501881688833237, 0.016664309427142143, -0.000779042427893728, -0.017245706170797348, 0.028156666085124016, 0.06101890280842781, -0.09830725193023682, -0.03575266897678375, -0.028436971828341484, -0.0641503781080246, -0.003507391782477498, -0.03846553713083267, 0.013510555028915405, -0.15685327351093292, -0.0078688133507967, -0.24988296627998352, 0.09103624522686005, -0.050208110362291336, 0.049252595752477646, -0.08969025313854218, -0.01379870530217886, 0.02759537100791931, 0.04054062068462372, 0.011902263388037682, 0.20744265615940094, -0.14928817749023438, -0.11187780648469925, 0.15737825632095337, -0.18397647142410278, -0.02803673967719078, 0.18505583703517914, 0.02240593172609806, 0.1108878031373024, 0.15015175938606262, 0.08196956664323807, 0.0863201692700386, -0.17569920420646667, -0.07738571614027023, 0.06542834639549255, -0.009320441633462906, -0.019875498488545418, 0.09754622727632523, -0.06415046006441116, 0.04846523329615593, 0.058314576745033264, -0.05223464593291283, 0.04838283732533455, -0.04963826388120651, -0.014605890028178692, -0.03417927399277687, -0.034054577350616455, 0.09527293592691422, 0.07425570487976074, 0.04801666736602783, -0.06420501321554184, -0.11841248720884323, -0.05141854286193848, 0.0463530495762825, -0.0285261832177639, 0.00970064103603363, -0.008297743275761604, 0.1683991551399231, 0.05069873109459877, 0.011852055788040161, -0.08812464028596878, -0.18207833170890808, 0.06077294051647186, 0.02063310518860817, 0.11235745996236801, 0.020785953849554062, 0.06121944636106491, 0.15628565847873688, -0.06129259243607521, -0.030699143186211586, -0.06407423317432404, -0.03224586695432663, -0.012623707763850689, -0.15589655935764313, -0.004031718242913485, -0.03541802987456322, 0.0919162854552269, -0.04944930598139763, 0.009838838130235672, 0.09188655763864517, 0.12965801358222961, 0.010914620012044907, -0.01859382726252079, -0.1082659587264061, 0.03035774640738964, -0.029555104672908783, -0.0116990115493536, 0.005917818285524845, -0.054769158363342285, 0.014069582335650921, 0.03888905793428421, -0.06634723395109177, 0.03557414561510086, 0.10979126393795013, 0.009583469480276108, -0.09834988415241241, -0.11256910860538483, -0.0029571768827736378, -0.0140201011672616, -0.02535565011203289, -0.12039797008037567, 0.0796738788485527, 0.04432706534862518, 0.03703619912266731, -0.07913156598806381, 0.020643075928092003, 0.0568864606320858, -0.012613484635949135, -0.12213139981031418, 0.03709844872355461, 0.11212916672229767, -0.11449798941612244, 0.14733336865901947, 0.06336195021867752, 0.006458191201090813, 0.24366675317287445, -0.015375841408967972, -0.1537933200597763, 0.00456947460770607, 0.036583539098501205, -0.008053470402956009, 0.06861360371112823, -0.05698706954717636, -0.009546337649226189, 0.02115539088845253, -0.0016590344021096826, 0.03065914288163185, -0.0772760733962059, -0.01683460921049118, 0.0022189875598996878, -0.009267560206353664, 0.04594777151942253, 0.004253976978361607, -0.06903485953807831, 0.09590112417936325, 0.03158605471253395, -0.11134354025125504, 0.04403996095061302, 0.006680744234472513, -0.0996704250574112, 0.13736344873905182, -0.0924837589263916, -0.23608292639255524, -0.1635499745607376, 0.00007415075378958136, -0.042907971888780594, 0.016905909404158592, -0.018819572404026985, -0.14415906369686127, -0.0760778933763504, -0.03713924437761307, 0.06530291587114334, -0.006432781461626291, -0.06910381466150284, -0.15152738988399506, 0.04591995105147362, -0.1353822499513626, -0.08077865093946457, -0.029715023934841156, 0.004943654872477055, -0.026464395225048065, 0.0033963338937610388, -0.11448187381029129, 0.14358367025852203, 0.1648171991109848, -0.0094977505505085, 0.040090739727020264, -0.0377945676445961, 0.22302037477493286, -0.131200909614563, 0.10941566526889801, 0.12280730158090591, 0.09560850262641907, 0.08004830777645111, 0.17365510761737823, 0.05777385085821152, 0.008041014894843102, 0.003081278642639518, -0.0066930195316672325, -0.07673060148954391, -0.18149429559707642, -0.1529446244239807, -0.08725995570421219, -0.026794882491230965, -0.03903406113386154, 0.04736603796482086, 0.18991246819496155, 0.0778900757431984, -0.052184708416461945, -0.014484239742159843, 0.04253915697336197, 0.06983696669340134, 0.0797370970249176, 0.025186697021126747, 0.07587142288684845, -0.032889679074287415, -0.06271769106388092, 0.13384641706943512, -0.007519547827541828, 0.25091296434402466, 0.04857102781534195, 0.15301087498664856, -0.04222668707370758, 0.12613222002983093, -0.015232794918119907, 0.12351518124341965, 0.05265440419316292, -0.03683910891413689, 0.010209290310740471, -0.05822119861841202, 0.04668774828314781, 0.1274237036705017, 0.0430438332259655, -0.1428297907114029, -0.10225684940814972, 0.03983695060014725, 0.06750579923391342, 0.149605393409729, -0.008750233799219131, -0.11670255661010742, -0.08883435279130936, 0.009519790299236774, -0.03737475350499153, -0.03958345949649811, -0.01732596568763256, 0.07584159821271896, -0.140823096036911, -0.01699918322265148, -0.00490513164550066, 0.05752859637141228, -0.0020254584960639477, 0.02365213632583618, 0.009016890078783035, 0.09517064690589905, -0.017403503879904747, 0.10554075241088867, -0.12664923071861267, 0.21025055646896362, 0.009718461893498898, 0.07062043249607086, -0.11720719933509827, 0.048823852092027664, -0.013060834258794785, 0.14922556281089783, 0.16929377615451813, 0.020090632140636444, -0.13014069199562073, -0.15738734602928162, 0.0009300880483351648, -0.03328816220164299, 0.1443033367395401, -0.08538064360618591, 0.04761146754026413, -0.03247212991118431, 0.015472405590116978, -0.043040793389081955, -0.006016135681420565, -0.13770243525505066, -0.16608518362045288, 0.09347828477621078, -0.0954909399151802, -0.04491499438881874, -0.05158704146742821, -0.11029732972383499, -0.07687565684318542, 0.1842140257358551, -0.001462901709601283, -0.08411649614572525, -0.14298175275325775, -0.07583914697170258, 0.11126366257667542, -0.12391822040081024, 0.08887087553739548, -0.039394721388816833, 0.11209484189748764, -0.10306397825479507, -0.02542351372539997, 0.09876105189323425, -0.09789299964904785, -0.08144526928663254, -0.02398359403014183, 0.09469413757324219, 0.09703166782855988, 0.04900500923395157, 0.056003767997026443, 0.05324127897620201, 0.03206678107380867, -0.12694810330867767, -0.00934433564543724, -0.09164551645517349, -0.028571637347340584, 0.08472403138875961, -0.05227258428931236, -0.09618839621543884, -0.058947041630744934, -0.05375366657972336, 0.21134676039218903, 0.1391371637582779, -0.07951600104570389, 0.08319263905286789, 0.2079090029001236, -0.04763837903738022, -0.2452574521303177, 0.026120763272047043, -0.013010740280151367, -0.005193379707634449, 0.0006528502563014627, -0.24448153376579285, 0.027612049132585526, 0.040574293583631516, -0.02643475867807865, -0.026111721992492676, -0.204942524433136, -0.10038682073354721, 0.049045488238334656, 0.06093563884496689, -0.04526948928833008, -0.05209505558013916, -0.03089909441769123, -0.004277147352695465, -0.04345620423555374, 0.026587238535284996, -0.10601858049631119, 0.03270904719829559, 0.02986709401011467, 0.036462511867284775, 0.038522981107234955, -0.06255602836608887, 0.13423189520835876, 0.029989514499902725, -0.026601850986480713, -0.08399002999067307, -0.021038711071014404, 0.1581864207983017, 0.030369937419891357, 0.12077657878398895, -0.04714042693376541, -0.07116194814443588, -0.08415497839450836, -0.06711315363645554, -0.10141254961490631, 0.09415331482887268, -0.0740092471241951, -0.10751429200172424, -0.01738191768527031, 0.11162969470024109, -0.039220038801431656, -0.0036655892618000507, -0.058556728065013885, -0.022351950407028198, 0.07701797038316727, 0.24868954718112946, 0.12794987857341766, -0.058165449649095535, -0.04195228964090347, 0.037265367805957794, -0.025755731388926506, 0.006843825336545706, -0.0230969600379467, -0.003199709113687277, 0.12191564589738846, -0.03225227817893028, 0.09742777049541473, -0.005954516585916281, -0.1579376757144928, -0.0019218202214688063, 0.11070000380277634, -0.05307185277342796, -0.21632573008537292, -0.11315347254276276, -0.04622576758265495, -0.03919997066259384, 0.025135861709713936, 0.08343478292226791, -0.07900749891996384, 0.00039425448630936444, -0.08934461325407028, 0.016559140756726265, -0.07577408105134964, 0.10551467537879944, 0.02058950811624527, -0.002784974407404661, -0.06491070240736008, 0.046139564365148544, 0.06911037862300873, -0.08833762258291245, 0.006636314559727907, 0.2140631377696991, -0.06414897739887238, -0.1092619001865387, 0.05771479383111, 0.07761049270629883, -0.19405891001224518, -0.08258592337369919, -0.04692133516073227, -0.15459254384040833, 0.0467054583132267, 0.03509121760725975, 0.031610436737537384, -0.0451657697558403, -0.05674925819039345, -0.0383833646774292, -0.04663168638944626, 0.033539652824401855, 0.09364115446805954, -0.012693097814917564, -0.03616883233189583, 0.0862206295132637, 0.016898097470402718, -0.017459915950894356, -0.042675670236349106, -0.05639065057039261, -0.06432926654815674, -0.0007836360018700361, -0.10828643292188644, -0.03596886247396469, -0.06039472669363022, -0.01792379841208458, -0.05363762751221657, -0.045205943286418915, 0.03559059649705887, -0.019473033025860786, -0.09406792372465134, 0.0009090868989005685, -0.025432687252759933, 0.07473333925008774, -0.09584438055753708, 0.04997295141220093, 0.10384828597307205, -0.034073688089847565, 0.13459448516368866, -0.00673589576035738, 0.03321364149451256, 0.12607699632644653, -0.14281496405601501, 0.07609301060438156, -0.022499818354845047, -0.000300853222142905, 0.026085518300533295, -0.033085666596889496, 0.03968717157840729, 0.016834987327456474, -0.003972225822508335, 0.04377902299165726, 0.0136227672919631, -0.06678329408168793, 0.08237660676240921, 0.023422198370099068, -0.21988092362880707, -0.10625338554382324, 0.14489397406578064, 0.12094514071941376, -0.08409924060106277, 0.06649259477853775, -0.03481973707675934, 0.06407962739467621, -0.08778785169124603, 0.00011554503726074472, 0.043307460844516754, -0.0066546606831252575, -0.07213731110095978, -0.11104284226894379, 0.025666428729891777, 0.026444103568792343, 0.13093268871307373, 0.06516610085964203, 0.14368857443332672, 0.03834466263651848, 0.10925168544054031, 0.07354183495044708, 0.021000323817133904, 0.05289723351597786, 0.046925030648708344, 0.02452871948480606, -0.10012095421552658, -0.00608740234747529, -0.057393185794353485, -0.10133589059114456, 0.14166797697544098, 0.04677542299032211, 0.0776764526963234, 0.054395660758018494, 0.06230718269944191, -0.027158157899975777, -0.09332900494337082, -0.021908948197960854, 0.012373791076242924, -0.0036630267277359962, -0.08712280541658401, 0.10282613337039948, 0.19599038362503052, -0.18735694885253906, 0.08086524903774261, 0.0058514708653092384, -0.09527690708637238, -0.06753215193748474, -0.1953183263540268, 0.005308456718921661, -0.0686369389295578, 0.04293810948729515, -0.09233057498931885, 0.08766408264636993, -0.02861854061484337, 0.05055567994713783, -0.08327335864305496, 0.11053866893053055, -0.06674433499574661, -0.06530515104532242, 0.07777062803506851, 0.005852204747498035, 0.09971198439598083, -0.01121220551431179, -0.04517243430018425, -0.18277575075626373, 0.02785157784819603, 0.016801539808511734, 0.04916137829422951, -0.058884523808956146, 0.0009030568180605769, -0.05192697420716286, -0.041976526379585266, -0.011598953977227211, -0.0221613347530365, -0.03059961646795273, 0.18772897124290466, -0.026504112407565117, -0.02818196639418602, -0.0026548143941909075, 0.11150108277797699, -0.039778754115104675, -0.1062379777431488, -0.10682639479637146, 0.07945339381694794, 0.0008395824115723372, 0.07532608509063721, 0.011828060261905193, -0.08427612483501434, -0.0034084708895534277, 0.1687619835138321, 0.23035834729671478, 0.028138993307948112, -0.02183462493121624, 0.016687516123056412, 0.008966820314526558, 0.021816564723849297, 0.12256084382534027, -0.020195914432406425, 0.28491324186325073, -0.1573404222726822, 0.22630691528320312, -0.06557739526033401, -0.04157659038901329, -0.11194522678852081, 0.1172076165676117, 0.026280870661139488, -0.006800531409680843, -0.07316310703754425, 0.15985311567783356, -0.1057576835155487, -0.015866858884692192, 0.05505714192986488, -0.09293027967214584, -0.05712101235985756, -0.007394484709948301, 0.021547408774495125, 0.0530262216925621, 0.1108969897031784, 0.03011292591691017, -0.02025042288005352, 0.07160843908786774, 0.05359131470322609, -0.15808230638504028, -0.12097267061471939, 0.10627872496843338, -0.04220474511384964, 0.13390019536018372, -0.012020992115139961, 0.09719908982515335, 0.12020464241504669, 0.048954565078020096, -0.06181475892663002, 0.02810986153781414, 0.08141159266233444, -0.06268897652626038, -0.015544416382908821, 0.028102079406380653, -0.018463702872395515, 0.052419427782297134, 0.02566567435860634, -0.1016380786895752, 0.11858911067247391, -0.042138416320085526, 0.027923308312892914, -0.04008692130446434, 0.13043977320194244, -0.10295788943767548, 0.11616037786006927, 0.16135810315608978, 0.02068968489766121, -0.02630651369690895, -0.07220009714365005, 0.05003292113542557, 0.019662857055664062, 0.00008786268881522119, -0.03744090348482132, -0.14328517019748688, 0.022831719368696213, 0.11549465358257294, 0.05857506021857262, -0.1276678889989853, -0.07261969149112701, -0.03159505873918533, 0.05800986662507057, -0.13898137211799622, 0.08908548951148987, 0.16985805332660675, -0.03393598645925522, -0.006603812798857689, -0.19483859837055206, -0.020574310794472694, 0.05245083197951317, -0.048463620245456696, 0.009753186255693436 ]
null
null
transformers
# Towards Neuro-Symbolic Language Understanding ![alt text](https://www.flexudy.com/wp-content/uploads/2021/09/conceptor.png "Flexudy's conceptor") At [Flexudy](https://flexudy.com), we look for ways to unify symbolic and sub-symbolic methods to improve model interpretation and inference. ## Problem 1. Word embeddings are awesome 🚀. However, no one really knows what an array of 768 numbers means? 2. Text/Token classification is also awesome ❤️‍. Still, classifying things into a finite set of concepts is rather limited. 3. Last but not least, how do I know that the word *cat* is a **mammal** and also an **animal** if my neural network is only trained to predict whether something is an animal or not? ## Solution 1. It would be cool if my neural network would just know that **cat** is an **animal** right? *∀x.Cat(x) ⇒ Animal(x)*. Or for example, (*∀x.SchöneBlumen(x) ⇒ Blumen(x)*) -- English meaning: For all x, If x is a beautiful flower, then x is still a flower. -- 2. All of a sudden, tasks like **Question Answering**, **Summarization**, **Named Entity Recognition** or even **Intent Classification** etc become easier right? Well, one might probably still need time to build a good and robust solution that is not as large as **GPT3**. Like [Peter Gärdenfors, author of conceptual spaces](https://www.goodreads.com/book/show/1877443.Conceptual_Spaces), we are trying to find ways to navigate between the symbolic and the sub-symbolic by thinking in concepts. Should such a solution exist, one could easily leverage true logical reasoning engines on natural language. How awesome would that be? 💡 ## Flexudy's Conceptor 1. We developed a poor man's implementation of the ideal solution described above. 2. Though it is a poor man's model, **it is still a useful one** 🤗. ### Usage No library should anyone suffer. Especially not if it is built on top of 🤗 **HF Transformers**. Go to the [Github repo](https://github.com/flexudy/natural-language-logic) `pip install git+https://github.com/flexudy/[email protected]` ```python from flexudy.conceptor.start import FlexudyConceptInferenceMachineFactory # Load me only once concept_inference_machine = FlexudyConceptInferenceMachineFactory.get_concept_inference_machine() # A list of terms. terms = ["cat", "dog", "economics and sociology", "public company"] # If you don't pass the language, a language detector will attempt to predict it for you # If any error occurs, the language defaults to English. language = "en" # Predict concepts # You can also pass the batch_size=2 and the beam_size=4 concepts = concept_inference_machine.infer_concepts(terms, language=language) ``` Output: ```python {'cat': ['mammal', 'animal'], 'dog': ['hound', 'animal'], 'economics and sociology': ['both fields of study'], 'public company': ['company']} ``` ### How was it trained? 1. Using Google's T5-base and T5-small. Both models are released on the Hugging Face Hub. 2. T5-base was trained for only two epochs while T5-small was trained for 5 epochs. ## Where did you get the data? 1. I extracted and curated a fragment of [Conceptnet](https://conceptnet.io/) 2. In particular, only the IsA relation was used. 3. Note that one term can belong to multiple concepts (which is pretty cool if you think about [Fuzzy Description Logics](https://lat.inf.tu-dresden.de/~stefborg/Talks/QuantLAWorkshop2013.pdf)). Multiple inheritances however mean some terms belong to so many concepts. Hence, I decided to randomly throw away some due to the **maximum length limitation**. ### Setup 1. I finally allowed only `2` to `4` concepts at random for each term. This means, there is still great potential to make the models generalise better 🚀. 3. I used a total of `279884` training examples and `1260` for testing. Edges -- i.e `IsA(concept u, concept v)` -- in both sets are disjoint. 4. Trained for `15K` steps with learning rate linear decay during each step. Starting at `0.001` 5. Used `RAdam Optimiser` with weight_decay =`0.01` and batch_size =`36`. 6. Source and target max length were both `64`. ### Multilingual Models 1. The "conceptor" model is multilingual. English, German and French is supported. 2. [Conceptnet](https://conceptnet.io/) supports many languages, but I just chose those three because those are the ones I speak. ### Metrics for flexudy-conceptor-t5-base | Metric | Score | | ------------- |:-------------:| | Exact Match | 36.67 | | F1 | 43.08 | | Loss smooth | 1.214 | Unfortunately, we no longer have the metrics for flexudy-conceptor-t5-small. If I recall correctly, base was just slightly better on the test set (ca. `2%` F1). ## Why not just use the data if you have it structured already? Conceptnet is very large. Even if you just consider loading a fragment into your RAM, say with only 100K edges, this is still a large graph. Especially, if you think about how you will save the node embeddings efficiently for querying. If you prefer this approach, [Milvus](https://github.com/milvus-io/pymilvus) can be of great help. You can compute query embeddings and try to find the best match. From there (after matching), you can navigate through the graph at `100%` precision.
{}
text2text-generation
flexudy/t5-base-conceptor
[ "transformers", "pytorch", "t5", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #t5 #text2text-generation #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
Towards Neuro-Symbolic Language Understanding ============================================= !alt text At Flexudy, we look for ways to unify symbolic and sub-symbolic methods to improve model interpretation and inference. Problem ------- 1. Word embeddings are awesome . However, no one really knows what an array of 768 numbers means? 2. Text/Token classification is also awesome ️‍. Still, classifying things into a finite set of concepts is rather limited. 3. Last but not least, how do I know that the word *cat* is a mammal and also an animal if my neural network is only trained to predict whether something is an animal or not? Solution -------- 1. It would be cool if my neural network would just know that cat is an animal right? *∀x.Cat(x) ⇒ Animal(x)*. Or for example, (*∀x.SchöneBlumen(x) ⇒ Blumen(x)*) -- English meaning: For all x, If x is a beautiful flower, then x is still a flower. -- 2. All of a sudden, tasks like Question Answering, Summarization, Named Entity Recognition or even Intent Classification etc become easier right? Well, one might probably still need time to build a good and robust solution that is not as large as GPT3. Like Peter Gärdenfors, author of conceptual spaces, we are trying to find ways to navigate between the symbolic and the sub-symbolic by thinking in concepts. Should such a solution exist, one could easily leverage true logical reasoning engines on natural language. How awesome would that be? Flexudy's Conceptor ------------------- 1. We developed a poor man's implementation of the ideal solution described above. 2. Though it is a poor man's model, it is still a useful one . ### Usage No library should anyone suffer. Especially not if it is built on top of HF Transformers. Go to the Github repo 'pip install git+URL Output: ### How was it trained? 1. Using Google's T5-base and T5-small. Both models are released on the Hugging Face Hub. 2. T5-base was trained for only two epochs while T5-small was trained for 5 epochs. Where did you get the data? --------------------------- 1. I extracted and curated a fragment of Conceptnet 2. In particular, only the IsA relation was used. 3. Note that one term can belong to multiple concepts (which is pretty cool if you think about Fuzzy Description Logics). Multiple inheritances however mean some terms belong to so many concepts. Hence, I decided to randomly throw away some due to the maximum length limitation. ### Setup 1. I finally allowed only '2' to '4' concepts at random for each term. This means, there is still great potential to make the models generalise better . 2. I used a total of '279884' training examples and '1260' for testing. Edges -- i.e 'IsA(concept u, concept v)' -- in both sets are disjoint. 3. Trained for '15K' steps with learning rate linear decay during each step. Starting at '0.001' 4. Used 'RAdam Optimiser' with weight\_decay ='0.01' and batch\_size ='36'. 5. Source and target max length were both '64'. ### Multilingual Models 1. The "conceptor" model is multilingual. English, German and French is supported. 2. Conceptnet supports many languages, but I just chose those three because those are the ones I speak. ### Metrics for flexudy-conceptor-t5-base Unfortunately, we no longer have the metrics for flexudy-conceptor-t5-small. If I recall correctly, base was just slightly better on the test set (ca. '2%' F1). Why not just use the data if you have it structured already? ------------------------------------------------------------ Conceptnet is very large. Even if you just consider loading a fragment into your RAM, say with only 100K edges, this is still a large graph. Especially, if you think about how you will save the node embeddings efficiently for querying. If you prefer this approach, Milvus can be of great help. You can compute query embeddings and try to find the best match. From there (after matching), you can navigate through the graph at '100%' precision.
[ "### Usage\n\n\nNo library should anyone suffer. Especially not if it is built on top of HF Transformers.\n\n\nGo to the Github repo\n\n\n'pip install git+URL\n\n\nOutput:", "### How was it trained?\n\n\n1. Using Google's T5-base and T5-small. Both models are released on the Hugging Face Hub.\n2. T5-base was trained for only two epochs while T5-small was trained for 5 epochs.\n\n\nWhere did you get the data?\n---------------------------\n\n\n1. I extracted and curated a fragment of Conceptnet\n2. In particular, only the IsA relation was used.\n3. Note that one term can belong to multiple concepts (which is pretty cool if you think about Fuzzy Description Logics).\nMultiple inheritances however mean some terms belong to so many concepts. Hence, I decided to randomly throw away some due to the maximum length limitation.", "### Setup\n\n\n1. I finally allowed only '2' to '4' concepts at random for each term. This means, there is still great potential to make the models generalise better .\n2. I used a total of '279884' training examples and '1260' for testing. Edges -- i.e 'IsA(concept u, concept v)' -- in both sets are disjoint.\n3. Trained for '15K' steps with learning rate linear decay during each step. Starting at '0.001'\n4. Used 'RAdam Optimiser' with weight\\_decay ='0.01' and batch\\_size ='36'.\n5. Source and target max length were both '64'.", "### Multilingual Models\n\n\n1. The \"conceptor\" model is multilingual. English, German and French is supported.\n2. Conceptnet supports many languages, but I just chose those three because those are the ones I speak.", "### Metrics for flexudy-conceptor-t5-base\n\n\n\nUnfortunately, we no longer have the metrics for flexudy-conceptor-t5-small. If I recall correctly, base was just slightly better on the test set (ca. '2%' F1).\n\n\nWhy not just use the data if you have it structured already?\n------------------------------------------------------------\n\n\nConceptnet is very large. Even if you just consider loading a fragment into your RAM, say with only 100K edges, this is still a large graph.\nEspecially, if you think about how you will save the node embeddings efficiently for querying.\nIf you prefer this approach, Milvus can be of great help.\nYou can compute query embeddings and try to find the best match. From there (after matching), you can navigate through the graph at '100%' precision." ]
[ "TAGS\n#transformers #pytorch #t5 #text2text-generation #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "### Usage\n\n\nNo library should anyone suffer. Especially not if it is built on top of HF Transformers.\n\n\nGo to the Github repo\n\n\n'pip install git+URL\n\n\nOutput:", "### How was it trained?\n\n\n1. Using Google's T5-base and T5-small. Both models are released on the Hugging Face Hub.\n2. T5-base was trained for only two epochs while T5-small was trained for 5 epochs.\n\n\nWhere did you get the data?\n---------------------------\n\n\n1. I extracted and curated a fragment of Conceptnet\n2. In particular, only the IsA relation was used.\n3. Note that one term can belong to multiple concepts (which is pretty cool if you think about Fuzzy Description Logics).\nMultiple inheritances however mean some terms belong to so many concepts. Hence, I decided to randomly throw away some due to the maximum length limitation.", "### Setup\n\n\n1. I finally allowed only '2' to '4' concepts at random for each term. This means, there is still great potential to make the models generalise better .\n2. I used a total of '279884' training examples and '1260' for testing. Edges -- i.e 'IsA(concept u, concept v)' -- in both sets are disjoint.\n3. Trained for '15K' steps with learning rate linear decay during each step. Starting at '0.001'\n4. Used 'RAdam Optimiser' with weight\\_decay ='0.01' and batch\\_size ='36'.\n5. Source and target max length were both '64'.", "### Multilingual Models\n\n\n1. The \"conceptor\" model is multilingual. English, German and French is supported.\n2. Conceptnet supports many languages, but I just chose those three because those are the ones I speak.", "### Metrics for flexudy-conceptor-t5-base\n\n\n\nUnfortunately, we no longer have the metrics for flexudy-conceptor-t5-small. If I recall correctly, base was just slightly better on the test set (ca. '2%' F1).\n\n\nWhy not just use the data if you have it structured already?\n------------------------------------------------------------\n\n\nConceptnet is very large. Even if you just consider loading a fragment into your RAM, say with only 100K edges, this is still a large graph.\nEspecially, if you think about how you will save the node embeddings efficiently for querying.\nIf you prefer this approach, Milvus can be of great help.\nYou can compute query embeddings and try to find the best match. From there (after matching), you can navigate through the graph at '100%' precision." ]
[ 48, 44, 160, 160, 52, 200 ]
[ "passage: TAGS\n#transformers #pytorch #t5 #text2text-generation #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n### Usage\n\n\nNo library should anyone suffer. Especially not if it is built on top of HF Transformers.\n\n\nGo to the Github repo\n\n\n'pip install git+URL\n\n\nOutput:### How was it trained?\n\n\n1. Using Google's T5-base and T5-small. Both models are released on the Hugging Face Hub.\n2. T5-base was trained for only two epochs while T5-small was trained for 5 epochs.\n\n\nWhere did you get the data?\n---------------------------\n\n\n1. I extracted and curated a fragment of Conceptnet\n2. In particular, only the IsA relation was used.\n3. Note that one term can belong to multiple concepts (which is pretty cool if you think about Fuzzy Description Logics).\nMultiple inheritances however mean some terms belong to so many concepts. Hence, I decided to randomly throw away some due to the maximum length limitation.### Setup\n\n\n1. I finally allowed only '2' to '4' concepts at random for each term. This means, there is still great potential to make the models generalise better .\n2. I used a total of '279884' training examples and '1260' for testing. Edges -- i.e 'IsA(concept u, concept v)' -- in both sets are disjoint.\n3. Trained for '15K' steps with learning rate linear decay during each step. Starting at '0.001'\n4. Used 'RAdam Optimiser' with weight\\_decay ='0.01' and batch\\_size ='36'.\n5. Source and target max length were both '64'.### Multilingual Models\n\n\n1. The \"conceptor\" model is multilingual. English, German and French is supported.\n2. Conceptnet supports many languages, but I just chose those three because those are the ones I speak." ]
[ -0.0590653121471405, 0.0253603495657444, -0.005915574263781309, 0.07104142755270004, 0.05471336096525192, -0.015877926722168922, 0.061635516583919525, 0.06662604212760925, 0.00146364769898355, 0.10351132601499557, 0.00812840647995472, -0.010740402154624462, 0.034228552132844925, 0.07626216113567352, 0.035128526389598846, -0.2579444348812103, 0.06588634103536606, -0.11310877650976181, 0.053285177797079086, 0.06092314422130585, 0.09659898281097412, -0.03427228331565857, 0.05555920675396919, -0.00919435452669859, -0.0326693095266819, 0.033543214201927185, -0.0031797862611711025, -0.026299532502889633, 0.10271023958921432, 0.07050559669733047, 0.039236027747392654, 0.027747677639126778, 0.011562146246433258, -0.19675256311893463, 0.020459866151213646, 0.08248680830001831, -0.013787330128252506, 0.03656626120209694, 0.060028862208127975, -0.026676543056964874, 0.16536110639572144, -0.03326421603560448, 0.01553923450410366, 0.07801754772663116, -0.06891138851642609, -0.06165533512830734, -0.07207143306732178, 0.0696893036365509, -0.015176789835095406, -0.01729116216301918, -0.02456427551805973, 0.009830312803387642, -0.016612187027931213, 0.0531468503177166, 0.16632027924060822, -0.2644455134868622, -0.025314290076494217, 0.13174286484718323, -0.031111810356378555, 0.054386839270591736, -0.026961008086800575, 0.011024934239685535, 0.04528544470667839, 0.0500108040869236, 0.08328868448734283, -0.000019419065210968256, 0.0691925659775734, -0.020420538261532784, -0.15246416628360748, -0.0789894387125969, 0.06684151291847229, 0.06154171749949455, -0.1509106308221817, -0.12676292657852173, -0.06665806472301483, 0.006164642050862312, -0.009201445616781712, -0.0421484000980854, -0.007212253287434578, 0.0401969812810421, 0.02805384062230587, -0.08738674223423004, -0.08626900613307953, 0.008271468803286552, -0.10712035745382309, 0.16515256464481354, 0.07076968997716904, 0.04899747669696808, 0.10689740628004074, 0.0934898629784584, -0.17782694101333618, -0.020095566287636757, -0.07888014614582062, -0.05924028530716896, -0.10700498521327972, -0.00025382195599377155, -0.027739912271499634, -0.0404510535299778, -0.003953281324356794, 0.13385511934757233, -0.08612043410539627, 0.010366291739046574, 0.000143134719110094, 0.008641626685857773, 0.049835991114377975, 0.0550021268427372, -0.040432922542095184, 0.010405388660728931, 0.045332327485084534, 0.0059228637255728245, -0.008279858157038689, -0.05936529487371445, -0.06491383165121078, 0.022317200899124146, 0.08908478915691376, 0.0677555501461029, -0.00595539016649127, 0.05932234600186348, -0.02054211124777794, -0.030604220926761627, 0.02917235717177391, -0.1328611820936203, 0.021732408553361893, -0.00802006945014, -0.05149643123149872, 0.03725535795092583, 0.004529068246483803, -0.009346924722194672, -0.1309538632631302, 0.016129935160279274, -0.030477413907647133, -0.030909448862075806, -0.06740865111351013, -0.10734368115663528, 0.02578902430832386, 0.02071096934378147, -0.09268463402986526, -0.16108916699886322, -0.18675480782985687, -0.02374470978975296, 0.04378623887896538, -0.04784870892763138, -0.009489038027822971, 0.006787300109863281, -0.10698893666267395, -0.03305990621447563, -0.018682114779949188, -0.07147049903869629, -0.04031948745250702, 0.014387059956789017, -0.05972627177834511, 0.007055163849145174, -0.021926328539848328, 0.0067319669760763645, -0.04048081859946251, 0.039622414857149124, -0.21857933700084686, 0.19549058377742767, -0.0671645849943161, -0.05431508272886276, -0.08785010874271393, -0.05868358910083771, 0.019930550828576088, 0.03130597993731499, 0.024590712040662766, 0.09263356029987335, -0.17193499207496643, -0.020469844341278076, 0.10591112822294235, -0.1153133288025856, -0.025276290252804756, 0.19175481796264648, -0.05989118292927742, 0.04175003618001938, 0.13762441277503967, 0.11279740184545517, 0.0343436561524868, -0.07515330612659454, -0.09356816112995148, -0.03549210727214813, -0.03522530198097229, 0.13852685689926147, 0.042522259056568146, -0.010147524066269398, -0.010376479476690292, 0.021849239245057106, 0.006696732714772224, -0.05407603457570076, 0.002440003678202629, -0.03314614295959473, -0.045634087175130844, 0.01637163944542408, 0.030981872230768204, -0.020241720601916313, -0.015122522599995136, -0.055613018572330475, -0.12488432973623276, 0.01777486503124237, 0.06716664135456085, -0.05698836222290993, 0.03143049031496048, -0.07256565243005753, 0.10441767424345016, -0.033660244196653366, 0.00824778899550438, -0.14630471169948578, -0.1173262894153595, 0.08091608434915543, -0.10225889086723328, 0.08646280318498611, 0.03145713731646538, 0.03065253607928753, 0.12782324850559235, -0.062242940068244934, -0.0034041840117424726, -0.06645899266004562, -0.01828286610543728, -0.006061782594770193, -0.13835862278938293, -0.10308510810136795, -0.01590331643819809, 0.009097851812839508, -0.0983537882566452, 0.03626066818833351, 0.10235439985990524, 0.13123632967472076, -0.012773023918271065, -0.05538472905755043, -0.042681463062763214, -0.01148294284939766, -0.05798710882663727, -0.04660075902938843, 0.0028425713535398245, 0.009745015762746334, -0.07822612673044205, 0.03165619075298309, -0.11426276713609695, -0.0977325439453125, 0.04454496130347252, 0.05103396996855736, -0.0959315225481987, -0.021062074229121208, -0.07466632127761841, -0.003485133172944188, -0.10255115479230881, -0.10604604333639145, 0.19179904460906982, 0.006281713489443064, 0.09324523061513901, -0.11829161643981934, -0.02694621868431568, -0.0053557357750833035, -0.0014140782877802849, -0.009286732412874699, 0.032797884196043015, 0.003096573520451784, -0.11097515374422073, 0.07609815895557404, -0.05535741150379181, 0.006334027741104364, 0.15829797089099884, -0.009751621633768082, -0.09656612575054169, -0.07716541737318039, 0.1136377826333046, 0.02491249516606331, 0.05608568340539932, -0.029159964993596077, 0.03205442801117897, 0.026814080774784088, 0.04445178061723709, 0.0369090661406517, -0.12842558324337006, 0.06892136484384537, 0.011688390746712685, -0.04500771313905716, 0.032231785356998444, -0.026369094848632812, 0.020383179187774658, 0.11062482744455338, 0.022164268419146538, -0.01744929328560829, 0.020228922367095947, -0.027743952348828316, -0.10680055618286133, 0.17586511373519897, -0.054178375750780106, -0.19630923867225647, -0.08839746564626694, 0.021510466933250427, -0.11352216452360153, -0.021820437163114548, 0.010848816484212875, -0.016199683770537376, -0.07864086329936981, -0.1263878047466278, 0.13052813708782196, -0.04383942112326622, -0.01303101982921362, -0.06524019688367844, 0.003760437248274684, 0.018530696630477905, -0.08736861497163773, -0.042376331984996796, 0.01734492927789688, -0.0714077576994896, -0.0005575334071181715, 0.032507456839084625, 0.0536348894238472, 0.09172861278057098, 0.00005425025665317662, -0.037407707422971725, -0.024961823597550392, 0.18001770973205566, -0.032248612493276596, 0.10521796345710754, 0.03421911224722862, -0.03230007365345955, 0.10840398073196411, 0.126219242811203, 0.04151758924126625, -0.06464409828186035, 0.0278998464345932, 0.06399140506982803, -0.06969089806079865, -0.20652014017105103, -0.058473262935876846, -0.06442620605230331, 0.07938408106565475, 0.053257569670677185, 0.042535047978162766, 0.0693637803196907, 0.011407922022044659, -0.10372135788202286, 0.059644877910614014, 0.04090767726302147, 0.08979050815105438, 0.0738307312130928, -0.01287778839468956, 0.06484947353601456, -0.021176278591156006, -0.03574301674962044, 0.1357032209634781, 0.024771369993686676, 0.18104864656925201, -0.08866650611162186, 0.13650599122047424, 0.08441632241010666, 0.08773652464151382, 0.03346626088023186, 0.04734355956315994, -0.0377594493329525, 0.022269295528531075, -0.034034255892038345, -0.04616975039243698, -0.011582364328205585, 0.1266680359840393, 0.04394061863422394, -0.00006428379856515676, -0.042736366391181946, -0.026204997673630714, 0.08275888115167618, 0.19995826482772827, 0.0008479389944113791, -0.1451094150543213, -0.11318807303905487, 0.04830043017864227, -0.11364827305078506, -0.07282159477472305, 0.005193051416426897, 0.18671326339244843, -0.1283642053604126, 0.08191973716020584, -0.036557089537382126, 0.05092207342386246, -0.09624932706356049, 0.002298111794516444, -0.03786053508520126, 0.13171330094337463, -0.011617662385106087, 0.05993083119392395, -0.19946689903736115, 0.005655760411173105, -0.0053960359655320644, 0.04569073021411896, -0.06054844334721565, 0.07344939559698105, 0.03338135778903961, -0.003347070189192891, 0.07374927401542664, 0.03533351793885231, -0.09794895350933075, -0.04898041859269142, -0.04407312721014023, -0.0002017145452555269, 0.10296633839607239, -0.055994611233472824, 0.10399770736694336, -0.012784376740455627, 0.025972651317715645, -0.022472931072115898, 0.0006381819257512689, -0.12466742098331451, -0.15466554462909698, 0.08005087077617645, -0.061877235770225525, 0.04947091266512871, -0.07198594510555267, -0.04265604168176651, -0.040594130754470825, 0.27949821949005127, -0.08331208676099777, -0.1271456778049469, -0.10663915425539017, 0.08123387396335602, 0.11307868361473083, -0.05091197416186333, 0.028238756582140923, -0.036896321922540665, 0.14576838910579681, -0.07721898704767227, -0.06312073767185211, 0.020489657297730446, -0.061451319605112076, -0.17348209023475647, -0.023519081994891167, 0.11191331595182419, 0.04136518016457558, 0.04515137895941734, -0.013731653802096844, 0.00511032622307539, 0.05151590332388878, -0.15834107995033264, 0.019541995599865913, 0.11259977519512177, -0.039784904569387436, 0.10363553464412689, -0.053159281611442566, -0.0561973974108696, -0.07159093767404556, -0.007189110852777958, 0.1333709955215454, 0.16753515601158142, -0.08761139214038849, 0.0953773781657219, 0.11304381489753723, -0.04941611364483833, -0.16184869408607483, -0.03631056845188141, 0.07332875579595566, 0.013548322021961212, -0.07370065897703171, -0.17126838862895966, 0.04109818488359451, 0.07577035576105118, 0.008419670164585114, 0.06580710411071777, -0.2749866545200348, -0.11137908697128296, -0.03570612892508507, 0.02873331494629383, 0.032584626227617264, -0.11517729610204697, -0.06776831299066544, -0.00737337488681078, 0.046322762966156006, 0.11103063076734543, -0.03508118540048599, 0.06905657052993774, 0.02335943467915058, 0.055523984134197235, 0.046420205384492874, -0.022996926680207253, 0.12164762616157532, 0.03015865571796894, 0.04014652967453003, -0.055294670164585114, 0.06836876273155212, 0.11631720513105392, -0.06720265001058578, 0.12951858341693878, 0.006219669245183468, 0.030681515112519264, -0.03321472555398941, -0.07077804952859879, -0.06010982394218445, 0.0655762106180191, -0.04691324383020401, -0.07288236171007156, -0.07029066979885101, 0.07653647661209106, 0.09916587173938751, -0.02052275836467743, -0.029936283826828003, -0.01870507188141346, 0.08349359780550003, 0.20777128636837006, 0.03093050606548786, -0.04558243975043297, -0.11194316297769547, 0.02257726900279522, 0.007131586782634258, 0.06522371619939804, -0.14769913256168365, 0.04210550710558891, 0.12237824499607086, -0.014676174148917198, 0.14253546297550201, 0.04080355167388916, -0.1802467256784439, 0.006909695919603109, 0.04460390284657478, -0.12448727339506149, -0.24340446293354034, 0.012167077511548996, 0.011439139023423195, -0.05205385759472847, 0.04485999420285225, 0.15422895550727844, -0.08717865496873856, -0.0055383844301104546, 0.00024609873071312904, 0.05375249683856964, 0.007766794413328171, 0.044281307607889175, -0.003375946544110775, 0.040554214268922806, -0.0797516480088234, 0.07652231305837631, 0.051872171461582184, -0.09384401142597198, 0.03430624678730965, 0.08980121463537216, -0.09230668097734451, -0.028151357546448708, -0.08288869261741638, -0.04658941179513931, -0.06502342224121094, -0.028877750039100647, -0.019741887226700783, -0.13085828721523285, 0.1036076620221138, 0.11462169140577316, 0.010071177035570145, 0.05495530739426613, -0.030094590038061142, 0.04043445363640785, -0.030446592718362808, 0.07870155572891235, 0.02345225214958191, 0.047764282673597336, -0.06909766793251038, 0.11387185007333755, 0.018997332081198692, 0.025624454021453857, -0.009610929526388645, -0.05433719605207443, -0.05688822641968727, -0.03506568446755409, -0.20242582261562347, 0.012875569052994251, -0.1063050776720047, 0.006007957272231579, 0.035068217664957047, -0.01696016453206539, 0.0274184737354517, 0.07011400908231735, -0.05902257189154625, -0.06636010110378265, -0.019590133801102638, 0.05829387530684471, -0.09737952798604965, -0.003663410199806094, 0.055045172572135925, -0.11417143791913986, 0.13735172152519226, 0.015541927888989449, -0.05912390351295471, 0.02029576525092125, 0.01870940811932087, 0.022974178194999695, 0.017004575580358505, 0.07465250045061111, 0.0016610660823062062, -0.08134158700704575, 0.03013579174876213, 0.0008581358706578612, -0.02001567929983139, 0.0161556676030159, 0.08386068046092987, -0.09619038552045822, -0.04192834720015526, 0.05810333415865898, -0.009241371415555477, -0.09289470314979553, 0.05403795465826988, 0.008690518327057362, 0.03007848560810089, 0.07576150447130203, -0.029824193567037582, 0.04385627061128616, -0.1215021088719368, -0.018285412341356277, 0.03403950855135918, -0.02312416397035122, 0.008468580432236195, -0.035339388996362686, 0.036109380424022675, -0.04764144495129585, 0.15550513565540314, -0.059925224632024765, -0.020721351727843285, 0.02359883300960064, -0.010429995134472847, 0.04540720209479332, 0.029226073995232582, 0.023486686870455742, 0.015028243884444237, -0.035292379558086395, -0.05086672306060791, -0.03417050465941429, 0.022944625467061996, -0.02928033471107483, 0.13624714314937592, 0.038178715854883194, 0.09749829769134521, 0.0617915578186512, 0.044796157628297806, -0.023847302421927452, -0.07693138718605042, 0.06738755106925964, -0.038157932460308075, 0.061376530677080154, -0.061271537095308304, 0.024359209463000298, 0.12804102897644043, -0.1251022219657898, 0.14367620646953583, 0.07500336319208145, -0.06067626178264618, -0.06611117720603943, -0.20359113812446594, -0.030592793598771095, -0.05677483230829239, 0.0265627671033144, -0.12617798149585724, 0.05804606154561043, 0.09519039839506149, 0.05626843497157097, 0.004655849654227495, 0.06372640281915665, -0.036620136350393295, -0.10876576602458954, 0.09863303601741791, -0.00422928761690855, 0.04323246330022812, 0.14573590457439423, -0.027279993519186974, -0.0015911866212263703, 0.03914650157094002, 0.06139836087822914, 0.06336123496294022, 0.09886884689331055, 0.001019161893054843, -0.03844544664025307, -0.028661362826824188, -0.01019263081252575, -0.02661469206213951, -0.012256192974746227, 0.14545948803424835, 0.06883249431848526, -0.06536474823951721, 0.015465408563613892, 0.17232036590576172, -0.048844657838344574, -0.07129880785942078, -0.17920997738838196, 0.21460476517677307, -0.0044098105281591415, 0.01607818901538849, 0.04382295534014702, -0.09198971837759018, -0.021598931401968002, 0.10344338417053223, 0.11632566899061203, 0.0036576620768755674, -0.013979887589812279, 0.01653791218996048, -0.02252371795475483, 0.036873266100883484, 0.09775813668966293, 0.013284731656312943, 0.24970358610153198, -0.06597515940666199, 0.08745524287223816, -0.03744221851229668, -0.03948632627725601, -0.036161694675683975, 0.211838036775589, -0.07284457236528397, 0.024044619873166084, -0.09016534686088562, 0.04545334354043007, -0.08378561586141586, -0.2535597085952759, 0.03168356046080589, -0.031442124396562576, -0.07978114485740662, 0.015880104154348373, -0.03500179201364517, 0.007351066917181015, 0.059475623071193695, -0.0076361121609807014, -0.011182141490280628, 0.1354847252368927, 0.003754175268113613, -0.07959293574094772, 0.021104028448462486, 0.10133379697799683, -0.02197352424263954, 0.08980058133602142, 0.010788258165121078, 0.09049858152866364, 0.12833373248577118, 0.016743874177336693, -0.09090787917375565, 0.04348301514983177, 0.06726133823394775, -0.02939855493605137, -0.019485048949718475, 0.1694779247045517, 0.02271231822669506, 0.10872101783752441, 0.07220322638750076, -0.04762035235762596, -0.004355014767497778, 0.07568607479333878, -0.07312100380659103, -0.10905405133962631, 0.03910762816667557, -0.08505278825759888, 0.08492720127105713, 0.17650413513183594, -0.02853821963071823, -0.003246485022827983, -0.08114873617887497, -0.0041840560734272, -0.013268126174807549, 0.08362016826868057, 0.019023213535547256, -0.1798473745584488, 0.03705868870019913, 0.026729514822363853, 0.09820766746997833, -0.16191470623016357, -0.08622221648693085, 0.1190146654844284, 0.022665690630674362, -0.041570693254470825, 0.1312706470489502, 0.10836602002382278, 0.03263953700661659, -0.040133554488420486, -0.10907971858978271, -0.044056765735149384, 0.07732322812080383, -0.0377778485417366, -0.011034023948013783 ]
null
null
transformers
![avatar](sent-banner.png) # Sentence-Doctor Sentence doctor is a T5 model that attempts to correct the errors or mistakes found in sentences. Model works on English, German and French text. ## 1. Problem: Many NLP models depend on tasks like *Text Extraction Libraries, OCR, Speech to Text libraries* and **Sentence Boundary Detection** As a consequence errors caused by these tasks in your NLP pipeline can affect the quality of models in applications. Especially since models are often trained on **clean** input. ## 2. Solution: Here we provide a model that **attempts** to reconstruct sentences based on the its context (sourrounding text). The task is pretty straightforward: * `Given an "erroneous" sentence, and its context, reconstruct the "intended" sentence`. ## 3. Use Cases: * Attempt to repair noisy sentences that where extracted with OCR software or text extractors. * Attempt to repair sentence boundaries. * Example (in German): **Input: "und ich bin im**", * Prefix_Context: "Hallo! Mein Name ist John", Postfix_Context: "Januar 1990 geboren." * Output: "John und ich bin im Jahr 1990 geboren" * Possibly sentence level spelling correction -- Although this is not the intended use. * Input: "I went to church **las yesteday**" => Output: "I went to church last Sunday". ## 4. Disclaimer Note how we always emphises on the word *attempt*. The current version of the model was only trained on **150K** sentences from the tatoeba dataset: https://tatoeba.org/eng. (50K per language -- En, Fr, De). Hence, we strongly encourage you to finetune the model on your dataset. We might release a version trained on more data. ## 5. Datasets We generated synthetic data from the tatoeba dataset: https://tatoeba.org/eng. Randomly applying different transformations on words and characters based on some probabilities. The datasets are available in the data folder (where **sentence_doctor_dataset_300K** is a larger dataset with 100K sentences for each language). ## 6. Usage ### 6.1 Preprocessing * Let us assume we have the following text (Note that there are no punctuation marks in the text): ```python text = "That is my job I am a medical doctor I save lives" ``` * You decided extract the sentences and for some obscure reason, you obtained these sentences: ```python sentences = ["That is my job I a", "m a medical doct", "I save lives"] ``` * You now wish to correct the sentence **"m a medical doct"**. Here is the single preprocessing step for the model: ```python input_text = "repair_sentence: " + sentences[1] + " context: {" + sentences[0] + "}{" + sentences[2] + "} </s>" ``` **Explanation**:</br> * We are telling the model to repair the sentence with the prefix "repair_sentence: " * Then append the sentence we want to repair **sentence[1]** which is "m a medical doct" * Next we give some context to the model. In the case, the context is some text that occured before the sentence and some text that appeard after the sentence in the original text. * To do that, we append the keyword "context :" * Append **{sentence[0]}** "{That is my job I a}". (Note how it is sourrounded by curly braces). * Append **{sentence[2]}** "{I save lives}". * At last we tell the model this is the end of the input with </s>. ```python print(input_text) # repair_sentence: m a medical doct context: {That is my job I a}{or I save lives} </s> ``` <br/> **The context is optional**, so the input could also be ```repair_sentence: m a medical doct context: {}{} </s>``` ### 6.2 Inference ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("flexudy/t5-base-multi-sentence-doctor") model = AutoModelWithLMHead.from_pretrained("flexudy/t5-base-multi-sentence-doctor") input_text = "repair_sentence: m a medical doct context: {That is my job I a}{or I save lives} </s>" input_ids = tokenizer.encode(input_text, return_tensors="pt") outputs = model.generate(input_ids, max_length=32, num_beams=1) sentence = tokenizer.decode(outputs[0], skip_special_tokens=True, clean_up_tokenization_spaces=True) assert sentence == "I am a medical doctor." ``` ## 7. Fine-tuning We also provide a script `train_any_t5_task.py` that might help you fine-tune any Text2Text Task with T5. We added #TODO comments all over to help you use train with ease. For example: ```python # TODO Set your training epochs config.TRAIN_EPOCHS = 3 ``` If you don't want to read the #TODO comments, just pass in your data like this ```python # TODO Where is your data ? Enter the path trainer.start("data/sentence_doctor_dataset_300.csv") ``` and voila!! Please feel free to correct any mistakes in the code and make a pull request. ## 8. Attribution * [Huggingface](https://huggingface.co/) transformer lib for making this possible * Abhishek Kumar Mishra's transformer [tutorial](https://github.com/abhimishra91/transformers-tutorials/blob/master/transformers_summarization_wandb.ipynb) on text summarisation. Our training code is just a modified version of their code. So many thanks. * We finetuned this model from the huggingface hub: WikinewsSum/t5-base-multi-combine-wiki-news. Thanks to the [authors](https://huggingface.co/WikinewsSum) * We also read a lot of work from [Suraj Patil](https://github.com/patil-suraj) * No one has been forgotten, hopefully :)
{}
text2text-generation
flexudy/t5-base-multi-sentence-doctor
[ "transformers", "pytorch", "tf", "t5", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tf #t5 #text2text-generation #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
!avatar # Sentence-Doctor Sentence doctor is a T5 model that attempts to correct the errors or mistakes found in sentences. Model works on English, German and French text. ## 1. Problem: Many NLP models depend on tasks like *Text Extraction Libraries, OCR, Speech to Text libraries* and Sentence Boundary Detection As a consequence errors caused by these tasks in your NLP pipeline can affect the quality of models in applications. Especially since models are often trained on clean input. ## 2. Solution: Here we provide a model that attempts to reconstruct sentences based on the its context (sourrounding text). The task is pretty straightforward: * 'Given an "erroneous" sentence, and its context, reconstruct the "intended" sentence'. ## 3. Use Cases: * Attempt to repair noisy sentences that where extracted with OCR software or text extractors. * Attempt to repair sentence boundaries. * Example (in German): Input: "und ich bin im", * Prefix_Context: "Hallo! Mein Name ist John", Postfix_Context: "Januar 1990 geboren." * Output: "John und ich bin im Jahr 1990 geboren" * Possibly sentence level spelling correction -- Although this is not the intended use. * Input: "I went to church las yesteday" => Output: "I went to church last Sunday". ## 4. Disclaimer Note how we always emphises on the word *attempt*. The current version of the model was only trained on 150K sentences from the tatoeba dataset: URL (50K per language -- En, Fr, De). Hence, we strongly encourage you to finetune the model on your dataset. We might release a version trained on more data. ## 5. Datasets We generated synthetic data from the tatoeba dataset: URL Randomly applying different transformations on words and characters based on some probabilities. The datasets are available in the data folder (where sentence_doctor_dataset_300K is a larger dataset with 100K sentences for each language). ## 6. Usage ### 6.1 Preprocessing * Let us assume we have the following text (Note that there are no punctuation marks in the text): * You decided extract the sentences and for some obscure reason, you obtained these sentences: * You now wish to correct the sentence "m a medical doct". Here is the single preprocessing step for the model: Explanation:</br> * We are telling the model to repair the sentence with the prefix "repair_sentence: " * Then append the sentence we want to repair sentence[1] which is "m a medical doct" * Next we give some context to the model. In the case, the context is some text that occured before the sentence and some text that appeard after the sentence in the original text. * To do that, we append the keyword "context :" * Append {sentence[0]} "{That is my job I a}". (Note how it is sourrounded by curly braces). * Append {sentence[2]} "{I save lives}". * At last we tell the model this is the end of the input with </s>. <br/> The context is optional, so the input could also be ### 6.2 Inference ## 7. Fine-tuning We also provide a script 'train_any_t5_task.py' that might help you fine-tune any Text2Text Task with T5. We added #TODO comments all over to help you use train with ease. For example: If you don't want to read the #TODO comments, just pass in your data like this and voila!! Please feel free to correct any mistakes in the code and make a pull request. ## 8. Attribution * Huggingface transformer lib for making this possible * Abhishek Kumar Mishra's transformer tutorial on text summarisation. Our training code is just a modified version of their code. So many thanks. * We finetuned this model from the huggingface hub: WikinewsSum/t5-base-multi-combine-wiki-news. Thanks to the authors * We also read a lot of work from Suraj Patil * No one has been forgotten, hopefully :)
[ "# Sentence-Doctor\nSentence doctor is a T5 model that attempts to correct the errors or mistakes found in sentences. Model works on English, German and French text.", "## 1. Problem:\nMany NLP models depend on tasks like *Text Extraction Libraries, OCR, Speech to Text libraries* and Sentence Boundary Detection\nAs a consequence errors caused by these tasks in your NLP pipeline can affect the quality of models in applications. Especially since models are often trained on clean input.", "## 2. Solution:\nHere we provide a model that attempts to reconstruct sentences based on the its context (sourrounding text). The task is pretty straightforward:\n* 'Given an \"erroneous\" sentence, and its context, reconstruct the \"intended\" sentence'.", "## 3. Use Cases:\n* Attempt to repair noisy sentences that where extracted with OCR software or text extractors.\n* Attempt to repair sentence boundaries.\n * Example (in German): Input: \"und ich bin im\", \n * Prefix_Context: \"Hallo! Mein Name ist John\", Postfix_Context: \"Januar 1990 geboren.\"\n * Output: \"John und ich bin im Jahr 1990 geboren\"\n* Possibly sentence level spelling correction -- Although this is not the intended use.\n * Input: \"I went to church las yesteday\" => Output: \"I went to church last Sunday\".", "## 4. Disclaimer\nNote how we always emphises on the word *attempt*. The current version of the model was only trained on 150K sentences from the tatoeba dataset: URL (50K per language -- En, Fr, De).\nHence, we strongly encourage you to finetune the model on your dataset. We might release a version trained on more data.", "## 5. Datasets\nWe generated synthetic data from the tatoeba dataset: URL Randomly applying different transformations on words and characters based on some probabilities. The datasets are available in the data folder (where sentence_doctor_dataset_300K is a larger dataset with 100K sentences for each language).", "## 6. Usage", "### 6.1 Preprocessing\n* Let us assume we have the following text (Note that there are no punctuation marks in the text):\n\n\n* You decided extract the sentences and for some obscure reason, you obtained these sentences:\n\n\n* You now wish to correct the sentence \"m a medical doct\".\n\nHere is the single preprocessing step for the model:\n\n\n\nExplanation:</br>\n* We are telling the model to repair the sentence with the prefix \"repair_sentence: \"\n* Then append the sentence we want to repair sentence[1] which is \"m a medical doct\"\n* Next we give some context to the model. In the case, the context is some text that occured before the sentence and some text that appeard after the sentence in the original text.\n * To do that, we append the keyword \"context :\"\n * Append {sentence[0]} \"{That is my job I a}\". (Note how it is sourrounded by curly braces).\n * Append {sentence[2]} \"{I save lives}\". \n* At last we tell the model this is the end of the input with </s>.\n\n\n\n<br/>\n\nThe context is optional, so the input could also be", "### 6.2 Inference", "## 7. Fine-tuning\nWe also provide a script 'train_any_t5_task.py' that might help you fine-tune any Text2Text Task with T5. We added #TODO comments all over to help you use train with ease. For example:\n\n \nIf you don't want to read the #TODO comments, just pass in your data like this\n\n\nand voila!! Please feel free to correct any mistakes in the code and make a pull request.", "## 8. Attribution\n* Huggingface transformer lib for making this possible\n* Abhishek Kumar Mishra's transformer tutorial on text summarisation. Our training code is just a modified version of their code. So many thanks.\n* We finetuned this model from the huggingface hub: WikinewsSum/t5-base-multi-combine-wiki-news. Thanks to the authors\n* We also read a lot of work from Suraj Patil\n* No one has been forgotten, hopefully :)" ]
[ "TAGS\n#transformers #pytorch #tf #t5 #text2text-generation #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "# Sentence-Doctor\nSentence doctor is a T5 model that attempts to correct the errors or mistakes found in sentences. Model works on English, German and French text.", "## 1. Problem:\nMany NLP models depend on tasks like *Text Extraction Libraries, OCR, Speech to Text libraries* and Sentence Boundary Detection\nAs a consequence errors caused by these tasks in your NLP pipeline can affect the quality of models in applications. Especially since models are often trained on clean input.", "## 2. Solution:\nHere we provide a model that attempts to reconstruct sentences based on the its context (sourrounding text). The task is pretty straightforward:\n* 'Given an \"erroneous\" sentence, and its context, reconstruct the \"intended\" sentence'.", "## 3. Use Cases:\n* Attempt to repair noisy sentences that where extracted with OCR software or text extractors.\n* Attempt to repair sentence boundaries.\n * Example (in German): Input: \"und ich bin im\", \n * Prefix_Context: \"Hallo! Mein Name ist John\", Postfix_Context: \"Januar 1990 geboren.\"\n * Output: \"John und ich bin im Jahr 1990 geboren\"\n* Possibly sentence level spelling correction -- Although this is not the intended use.\n * Input: \"I went to church las yesteday\" => Output: \"I went to church last Sunday\".", "## 4. Disclaimer\nNote how we always emphises on the word *attempt*. The current version of the model was only trained on 150K sentences from the tatoeba dataset: URL (50K per language -- En, Fr, De).\nHence, we strongly encourage you to finetune the model on your dataset. We might release a version trained on more data.", "## 5. Datasets\nWe generated synthetic data from the tatoeba dataset: URL Randomly applying different transformations on words and characters based on some probabilities. The datasets are available in the data folder (where sentence_doctor_dataset_300K is a larger dataset with 100K sentences for each language).", "## 6. Usage", "### 6.1 Preprocessing\n* Let us assume we have the following text (Note that there are no punctuation marks in the text):\n\n\n* You decided extract the sentences and for some obscure reason, you obtained these sentences:\n\n\n* You now wish to correct the sentence \"m a medical doct\".\n\nHere is the single preprocessing step for the model:\n\n\n\nExplanation:</br>\n* We are telling the model to repair the sentence with the prefix \"repair_sentence: \"\n* Then append the sentence we want to repair sentence[1] which is \"m a medical doct\"\n* Next we give some context to the model. In the case, the context is some text that occured before the sentence and some text that appeard after the sentence in the original text.\n * To do that, we append the keyword \"context :\"\n * Append {sentence[0]} \"{That is my job I a}\". (Note how it is sourrounded by curly braces).\n * Append {sentence[2]} \"{I save lives}\". \n* At last we tell the model this is the end of the input with </s>.\n\n\n\n<br/>\n\nThe context is optional, so the input could also be", "### 6.2 Inference", "## 7. Fine-tuning\nWe also provide a script 'train_any_t5_task.py' that might help you fine-tune any Text2Text Task with T5. We added #TODO comments all over to help you use train with ease. For example:\n\n \nIf you don't want to read the #TODO comments, just pass in your data like this\n\n\nand voila!! Please feel free to correct any mistakes in the code and make a pull request.", "## 8. Attribution\n* Huggingface transformer lib for making this possible\n* Abhishek Kumar Mishra's transformer tutorial on text summarisation. Our training code is just a modified version of their code. So many thanks.\n* We finetuned this model from the huggingface hub: WikinewsSum/t5-base-multi-combine-wiki-news. Thanks to the authors\n* We also read a lot of work from Suraj Patil\n* No one has been forgotten, hopefully :)" ]
[ 51, 40, 75, 63, 142, 83, 75, 4, 264, 6, 104, 108 ]
[ "passage: TAGS\n#transformers #pytorch #tf #t5 #text2text-generation #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n# Sentence-Doctor\nSentence doctor is a T5 model that attempts to correct the errors or mistakes found in sentences. Model works on English, German and French text.## 1. Problem:\nMany NLP models depend on tasks like *Text Extraction Libraries, OCR, Speech to Text libraries* and Sentence Boundary Detection\nAs a consequence errors caused by these tasks in your NLP pipeline can affect the quality of models in applications. Especially since models are often trained on clean input.## 2. Solution:\nHere we provide a model that attempts to reconstruct sentences based on the its context (sourrounding text). The task is pretty straightforward:\n* 'Given an \"erroneous\" sentence, and its context, reconstruct the \"intended\" sentence'.## 3. Use Cases:\n* Attempt to repair noisy sentences that where extracted with OCR software or text extractors.\n* Attempt to repair sentence boundaries.\n * Example (in German): Input: \"und ich bin im\", \n * Prefix_Context: \"Hallo! Mein Name ist John\", Postfix_Context: \"Januar 1990 geboren.\"\n * Output: \"John und ich bin im Jahr 1990 geboren\"\n* Possibly sentence level spelling correction -- Although this is not the intended use.\n * Input: \"I went to church las yesteday\" => Output: \"I went to church last Sunday\".## 4. Disclaimer\nNote how we always emphises on the word *attempt*. The current version of the model was only trained on 150K sentences from the tatoeba dataset: URL (50K per language -- En, Fr, De).\nHence, we strongly encourage you to finetune the model on your dataset. We might release a version trained on more data." ]
[ -0.05480193346738815, 0.034280743449926376, -0.00523133110255003, 0.04232586547732353, 0.0356777049601078, -0.03659946098923683, 0.03258384019136429, 0.0366949625313282, -0.057830940932035446, 0.11893263459205627, 0.016419628635048866, -0.030794983729720116, 0.07470624148845673, 0.03895546495914459, 0.007784467190504074, -0.13688991963863373, 0.10535486042499542, -0.07193971425294876, 0.048093054443597794, 0.09098599851131439, 0.1006072387099266, -0.020291415974497795, 0.06422661244869232, -0.03330216929316521, -0.09406503289937973, 0.05557512491941452, 0.006946144625544548, 0.04209276661276817, 0.048698540776968, 0.09481503069400787, 0.06748668104410172, 0.014325596392154694, -0.04752061143517494, -0.13043121993541718, 0.01586393639445305, 0.07930123060941696, -0.06347737461328506, -0.00626745168119669, 0.06640267372131348, 0.03077075630426407, 0.12025923281908035, -0.09476595371961594, -0.057260215282440186, 0.064759261906147, -0.1167302131652832, 0.020980821922421455, -0.1372319459915161, 0.11168062686920166, 0.09137582033872604, 0.11471075564622879, -0.07902020215988159, 0.09614653885364532, -0.06763844192028046, 0.07712723314762115, 0.1499893069267273, -0.14189240336418152, -0.015447643585503101, 0.043362028896808624, 0.04056565463542938, 0.050480760633945465, -0.08924493938684464, -0.02297389507293701, -0.0029780056793242693, 0.025857264176011086, -0.06672555208206177, -0.10094655305147171, 0.10004772990942001, -0.06764687597751617, -0.14156773686408997, -0.06922411918640137, 0.14251917600631714, 0.003734622383490205, -0.10684600472450256, -0.13035321235656738, -0.0034185736440122128, -0.009597538970410824, 0.02890411764383316, -0.03044050745666027, 0.001185563625767827, -0.018768521025776863, 0.11409760266542435, -0.06455076485872269, -0.09924387186765671, 0.02674247696995735, -0.0728013664484024, 0.12726828455924988, 0.028589360415935516, -0.02849115990102291, -0.01683861017227173, 0.10813898593187332, -0.09371272474527359, -0.08127398043870926, -0.09570159018039703, -0.0777762308716774, -0.0902826189994812, -0.002777884714305401, -0.1098799780011177, -0.10690759867429733, 0.0009602659265510738, 0.17735856771469116, -0.06660917401313782, 0.034021615982055664, -0.07652367651462555, 0.03957170248031616, 0.10073010623455048, 0.1173037439584732, -0.07698513567447662, -0.06653428077697754, 0.01808582991361618, -0.018992867320775986, -0.02488585188984871, 0.02430296503007412, -0.015179948881268501, -0.0382801853120327, 0.05019374564290047, 0.041893549263477325, 0.07334095984697342, 0.08097568899393082, -0.04266026243567467, -0.04552561417222023, 0.04502151161432266, -0.13301263749599457, -0.007411849219352007, -0.0025191029999405146, -0.037849850952625275, 0.0654727891087532, 0.05098764970898628, 0.004780638497322798, -0.162779301404953, 0.00269767502322793, -0.03519635647535324, -0.0486886203289032, -0.09369529038667679, -0.12462335079908371, 0.013196512125432491, -0.06677469611167908, -0.042108792811632156, -0.10168122500181198, -0.05781551077961922, -0.1437232494354248, 0.01368040218949318, -0.004643756430596113, -0.014483906328678131, -0.036556363105773926, -0.0758621096611023, -0.037585243582725525, 0.005280021112412214, -0.1099088191986084, 0.012372885830700397, 0.016580738127231598, -0.11673720926046371, -0.014555909670889378, -0.09372390806674957, 0.03393302857875824, -0.15973782539367676, 0.003743604989722371, -0.15235407650470734, 0.10450167208909988, -0.057117510586977005, -0.03444087505340576, -0.0949346125125885, -0.024456046521663666, -0.036367516964673996, 0.04460792616009712, 0.022007739171385765, 0.11238730698823929, -0.18692535161972046, -0.03978576138615608, 0.19632020592689514, -0.1246141865849495, -0.027222588658332825, 0.1494174599647522, -0.01470180507749319, 0.09256528317928314, 0.10753961652517319, 0.06418278813362122, 0.0906207337975502, -0.08727813512086868, -0.126133993268013, -0.11368841677904129, -0.06290926039218903, 0.16470299661159515, 0.03950106352567673, -0.034042634069919586, 0.01728195883333683, 0.010276822373270988, -0.07529234886169434, -0.03734419122338295, 0.03513873741030693, -0.016026051715016365, 0.038089245557785034, 0.03737351670861244, -0.028852302581071854, -0.02965853549540043, -0.07285553216934204, -0.00028816331177949905, -0.12387301027774811, -0.046339452266693115, 0.03657654672861099, -0.04552165046334267, 0.03562213107943535, -0.03158954530954361, -0.008306587114930153, 0.06476689875125885, 0.04167654365301132, -0.16211670637130737, -0.06289970129728317, 0.019384408369660378, -0.07199522852897644, 0.10990279912948608, 0.09784761071205139, 0.043719582259655, 0.04215018451213837, -0.006676029413938522, -0.012540401890873909, -0.06410426646471024, -0.011744107119739056, -0.017832091078162193, -0.08950302004814148, -0.005232337396591902, -0.04316580295562744, 0.15245413780212402, -0.03744285926222801, -0.005578497424721718, 0.11846501380205154, 0.09758633375167847, 0.013138845562934875, -0.05449032410979271, -0.0492740124464035, 0.03342147916555405, -0.02033190429210663, -0.02025415375828743, -0.01801610365509987, 0.001380672911182046, 0.0036479560658335686, 0.1144714504480362, -0.18816693127155304, -0.18198740482330322, 0.04726019129157066, 0.03209765627980232, -0.0946708619594574, -0.08967448025941849, -0.08954313397407532, -0.02246876433491707, 0.027247730642557144, -0.13917139172554016, 0.2708846628665924, 0.03999171778559685, 0.024525964632630348, -0.040016550570726395, -0.0373508594930172, -0.012741701677441597, -0.02864105813205242, -0.06008896976709366, 0.09206918627023697, -0.01829632930457592, -0.18154315650463104, 0.07914585620164871, 0.040559593588113785, -0.04940231889486313, 0.12342946976423264, -0.00029830358107574284, -0.08338049054145813, -0.02678588405251503, 0.03909659758210182, 0.04350537434220314, -0.01849515736103058, 0.050000157207250595, 0.030064886435866356, 0.027613472193479538, -0.0025587151758372784, 0.055440276861190796, -0.0014522559940814972, 0.06793147325515747, 0.030092595145106316, 0.023221218958497047, 0.017498226836323738, 0.029041867703199387, 0.03866846486926079, 0.07709412276744843, -0.030971799045801163, 0.011311409994959831, 0.015456453897058964, -0.045803252607584, -0.1127735897898674, 0.15034091472625732, -0.09273047000169754, -0.3529985249042511, -0.15704838931560516, 0.010723448358476162, -0.06695244461297989, -0.0033657278399914503, 0.0754067674279213, -0.02422069013118744, -0.0891353115439415, -0.09261561930179596, 0.15922394394874573, 0.02029181271791458, -0.08953133970499039, -0.13418853282928467, -0.022103002294898033, 0.010055874474346638, -0.09866492450237274, -0.028230195865035057, -0.002468754770234227, -0.1606309711933136, 0.027189597487449646, -0.05882716551423073, 0.10176600515842438, 0.05824730545282364, 0.029013870283961296, -0.0272857453674078, -0.018714196979999542, 0.18975384533405304, -0.10536675155162811, 0.1090574562549591, 0.09638501703739166, -0.1052338257431984, 0.08177779614925385, 0.14194133877754211, -0.02950468100607395, -0.027147145941853523, 0.0362577959895134, 0.08799081295728683, -0.01529698446393013, -0.17757293581962585, -0.08573219180107117, -0.09027265012264252, -0.0554901659488678, 0.06609057635068893, 0.019113577902317047, 0.14617511630058289, 0.014672158285975456, -0.09704045206308365, 0.014560390263795853, 0.06306275725364685, 0.07999981939792633, 0.07814349234104156, -0.01713201217353344, 0.04704461619257927, 0.006903815548866987, -0.040703918784856796, 0.09497731178998947, -0.0376875177025795, 0.15303602814674377, -0.03653554245829582, 0.12707079946994781, 0.11623719334602356, 0.016573404893279076, -0.03245577961206436, 0.04899395629763603, -0.04231145605444908, 0.032024215906858444, -0.04555858299136162, -0.09486139565706253, -0.029597435146570206, 0.0795053020119667, 0.08017171174287796, -0.01483763474971056, -0.053429294377565384, -0.03988398611545563, 0.046621885150671005, 0.09241330623626709, -0.020734114572405815, -0.10920150578022003, -0.035955287516117096, 0.003319790121167898, 0.004769338760524988, -0.07187386602163315, 0.017187990248203278, 0.08990242332220078, -0.109465591609478, -0.010618699714541435, -0.05216009542346001, 0.10592880845069885, -0.02318849228322506, 0.045537713915109634, -0.04662292078137398, 0.08146345615386963, -0.020075920969247818, 0.08691477030515671, -0.27659013867378235, 0.10306558758020401, 0.007542253937572241, -0.008003761060535908, -0.08546885848045349, 0.040602438151836395, 0.005062814336270094, -0.01137574389576912, 0.16939634084701538, 0.016076236963272095, -0.032769568264484406, -0.03201183304190636, -0.03323446959257126, -0.0018953316612169147, 0.10383389890193939, -0.08450223505496979, 0.10328289866447449, -0.02023315243422985, 0.02532869577407837, -0.06985247135162354, 0.06999558955430984, -0.13000257313251495, -0.1552446335554123, 0.1268594115972519, -0.015329292044043541, 0.08015967160463333, -0.04012599214911461, -0.010447357781231403, -0.023402996361255646, 0.2228022664785385, -0.15827390551567078, -0.014859857968986034, -0.14644071459770203, 0.02116483636200428, 0.16763517260551453, -0.11301501095294952, 0.01263242308050394, -0.014484451152384281, 0.05088101327419281, -0.09949108958244324, -0.086060531437397, 0.07126805186271667, -0.10707522183656693, -0.07794686406850815, -0.008809260092675686, 0.12017888575792313, 0.11584839224815369, 0.047026000916957855, 0.015519325621426105, 0.05912704020738602, -0.010230624116957188, -0.13001492619514465, -0.01968163624405861, 0.03499087318778038, 0.02938942238688469, 0.11670494824647903, -0.053707305341959, -0.12712202966213226, -0.11496392637491226, 0.05474327877163887, 0.05717707797884941, 0.13867564499378204, -0.025549236685037613, 0.08691184222698212, 0.11877571791410446, -0.07412263751029968, -0.27054914832115173, -0.012664048001170158, 0.09230788797140121, 0.05833858996629715, 0.047706007957458496, -0.10615824908018112, 0.03931296244263649, 0.05873044580221176, 0.017906473949551582, -0.023352304473519325, -0.1599564105272293, -0.08159279078245163, 0.1352805644273758, 0.014756844379007816, 0.012156255543231964, -0.0706210508942604, -0.026538588106632233, 0.01563451997935772, -0.1021188348531723, 0.01860809326171875, -0.0807814970612526, 0.03631594404578209, 0.06989844888448715, 0.013416268862783909, 0.06774909794330597, -0.057469651103019714, 0.09510441869497299, 0.07666811347007751, 0.0422627218067646, -0.12362135946750641, -0.041179005056619644, 0.0027855588123202324, -0.04705991968512535, 0.12693919241428375, -0.0006448154454119503, 0.0597585029900074, -0.07304797321557999, -0.021541181951761246, -0.06382320821285248, 0.10272728651762009, -0.06694117933511734, -0.03825772926211357, -0.05226355418562889, 0.14849168062210083, 0.07594645023345947, 0.029537279158830643, -0.00017616759578231722, -0.08743026107549667, -0.02059108205139637, 0.22377292811870575, 0.09010393917560577, 0.10818613320589066, -0.08964768052101135, 0.00309389759786427, 0.02724313549697399, 0.06096011772751808, 0.06135696545243263, 0.08106604963541031, 0.12014922499656677, -0.019683538004755974, 0.15655185282230377, -0.007943845354020596, -0.13402262330055237, -0.04018383473157883, 0.04185212403535843, -0.1269093155860901, -0.04341595619916916, -0.08866991847753525, 0.01468039583414793, -0.0609116330742836, -0.028246108442544937, 0.1797582060098648, -0.06489348411560059, 0.012958568520843983, 0.004336866550147533, 0.08420342206954956, -0.003193014534190297, 0.12209693342447281, -0.018911367282271385, 0.014858354814350605, -0.049888983368873596, 0.03647105023264885, 0.0792711153626442, -0.10853617638349533, 0.0684625655412674, 0.057628169655799866, -0.054288025945425034, -0.052437059581279755, 0.003269725013524294, -0.022120343521237373, -0.016411080956459045, -0.026497887447476387, -0.01599489338696003, -0.06901785731315613, 0.03970852866768837, 0.09956604242324829, 0.016479989513754845, 0.06475641578435898, -0.0445077121257782, -0.014540459960699081, -0.06551836431026459, 0.06666290760040283, 0.07293958216905594, 0.019860710948705673, 0.030166270211338997, 0.12483999878168106, -0.015511716715991497, 0.023900803178548813, -0.0238018985837698, -0.028757350519299507, -0.12217633426189423, -0.040047310292720795, -0.019804267212748528, 0.010498994030058384, -0.0022257938981056213, -0.018395034596323967, -0.0037836129777133465, -0.04466327279806137, 0.013277431949973106, 0.046163953840732574, -0.03850395977497101, -0.03966570273041725, -0.016569925472140312, 0.09337648749351501, -0.09744926542043686, -0.017534276470541954, 0.12885157763957977, -0.05177775397896767, 0.0704413428902626, 0.012646198272705078, -0.04971492663025856, 0.03752238303422928, -0.14014391601085663, -0.014115676283836365, -0.022050146013498306, 0.033621903508901596, -0.022134631872177124, -0.07780925184488297, -0.02328314632177353, 0.021447863429784775, -0.03544588387012482, -0.02093626745045185, -0.057960305362939835, -0.07651247084140778, 0.08210287243127823, 0.008604185655713081, -0.07466242462396622, -0.0632362961769104, 0.06018116697669029, -0.005232055671513081, 0.0014342858921736479, 0.10701631009578705, -0.03782512620091438, 0.05576057732105255, -0.057789623737335205, -0.010300190187990665, 0.047532662749290466, 0.008848997764289379, -0.0027143971528857946, -0.10581134259700775, 0.039652325212955475, 0.009205634705722332, 0.06558120995759964, -0.01229896117001772, -0.03315315768122673, 0.03472823649644852, 0.028342975303530693, -0.05033770576119423, 0.005885521415621042, 0.008871164172887802, 0.011689580976963043, -0.007012208458036184, -0.09703957289457321, -0.039674755185842514, -0.08461286127567291, -0.04708923399448395, 0.21015094220638275, 0.1188449114561081, 0.09814811497926712, 0.03190867230296135, 0.07345021516084671, 0.000287791364826262, 0.044172897934913635, 0.040750857442617416, 0.02874978817999363, -0.007033923640847206, -0.0712183341383934, 0.09180539846420288, 0.1097729355096817, -0.10245124250650406, 0.13101021945476532, 0.0593397282063961, -0.0329182967543602, -0.03049328178167343, -0.16658970713615417, -0.038376081734895706, 0.019164230674505234, -0.023075822740793228, -0.11970427632331848, 0.10721885412931442, 0.031548067927360535, 0.05772056430578232, -0.03232291713356972, 0.1635909378528595, -0.14817006886005402, -0.1737356185913086, 0.08777063339948654, -0.03623263165354729, 0.07198675721883774, 0.022012734785676003, 0.017000051215291023, 0.03785428777337074, 0.1164969950914383, 0.10097987204790115, 0.09149174392223358, 0.11333631724119186, -0.03871570900082588, -0.10518272966146469, -0.07911596447229385, -0.009178539738059044, 0.012105477042496204, 0.021975254639983177, 0.13123726844787598, 0.03333083167672157, -0.03154880180954933, -0.0040918635204434395, 0.0974220559000969, -0.01614290475845337, -0.12214686721563339, -0.1083127111196518, 0.07435174286365509, 0.06145797669887543, 0.021839244291186333, -0.028853515163064003, -0.13576436042785645, 0.0502142570912838, 0.1628912389278412, 0.12969376146793365, -0.015590674243867397, 0.00610611354932189, 0.03809449076652527, 0.038113754242658615, 0.09593580663204193, 0.10214517265558243, -0.029184386134147644, 0.31629249453544617, -0.012811720371246338, 0.08737437427043915, -0.037248723208904266, -0.04172719269990921, -0.015347467735409737, 0.08145657181739807, -0.018317071720957756, -0.06768544763326645, -0.03730522096157074, 0.09299812465906143, -0.0345209501683712, -0.22421976923942566, -0.07770085334777832, -0.024694157764315605, -0.06893754750490189, -0.026068195700645447, 0.07073061168193817, 0.10864924639463425, 0.07438620924949646, 0.011315079405903816, -0.043300192803144455, 0.21142175793647766, -0.008056797087192535, -0.03495369851589203, -0.05976366251707077, 0.06461020559072495, -0.024635616689920425, 0.12863169610500336, 0.01615246944129467, 0.12379565089941025, 0.06603555381298065, -0.02384304255247116, -0.04560156911611557, 0.003826378146186471, -0.007147025782614946, -0.12140287458896637, 0.022245030850172043, 0.14075058698654175, -0.012043043039739132, 0.09841210395097733, 0.05424817278981209, -0.13906453549861908, 0.07254168391227722, 0.024122431874275208, -0.002517464803531766, -0.06290942430496216, 0.14884740114212036, -0.07700755447149277, 0.12163709104061127, 0.1897576004266739, 0.01509877573698759, 0.028424087911844254, -0.09323035925626755, 0.007028146181255579, -0.008481635712087154, 0.1318816989660263, 0.01700437068939209, -0.08895654231309891, 0.03939654678106308, -0.0537833571434021, 0.0031815653201192617, -0.19733402132987976, -0.03477110341191292, 0.02322179451584816, 0.03034830279648304, -0.03235255926847458, 0.11651254445314407, 0.03532886132597923, -0.019851453602313995, -0.018853211775422096, -0.07303427904844284, 0.016355309635400772, 0.04906937852501869, -0.047104764729738235, -0.010829608887434006 ]
null
null
transformers
# flexudy-pipe-question-generation-v2 After transcribing your audio with Wav2Vec2, you might be interested in a post processor. All paragraphs had at most 128 tokens (separated by white spaces) ```python from transformers import T5Tokenizer, T5ForConditionalGeneration model_name = "flexudy/t5-small-wav2vec2-grammar-fixer" tokenizer = T5Tokenizer.from_pretrained(model_name) model = T5ForConditionalGeneration.from_pretrained(model_name) sent = """GOING ALONG SLUSHY COUNTRY ROADS AND SPEAKING TO DAMP AUDIENCES IN DRAUGHTY SCHOOL ROOMS DAY AFTER DAY FOR A FORTNIGHT HE'LL HAVE TO PUT IN AN APPEARANCE AT SOME PLACE OF WORSHIP ON SUNDAY MORNING AND HE CAN COME TO US IMMEDIATELY AFTERWARDS""" input_text = "fix: { " + sent + " } </s>" input_ids = tokenizer.encode(input_text, return_tensors="pt", max_length=256, truncation=True, add_special_tokens=True) outputs = model.generate( input_ids=input_ids, max_length=256, num_beams=4, repetition_penalty=1.0, length_penalty=1.0, early_stopping=True ) sentence = tokenizer.decode(outputs[0], skip_special_tokens=True, clean_up_tokenization_spaces=True) print(f"{sentence}") ``` INPUT 1: ``` WHEN ARE YOU COMING TOMORROW I AM ASKING BECAUSE OF THE MONEY YOU OWE ME PLEASE GIVE IT TO ME I AM WAITING YOU HAVE BEEN AVOIDING ME SINCE TWO THOUSAND AND THREE ``` OUTPUT 1: ``` When are you coming tomorrow? I am asking because of the money you owe me, please give it to me. I am waiting. You have been avoiding me since 2003. ``` INPUT 2: ``` GOING ALONG SLUSHY COUNTRY ROADS AND SPEAKING TO DAMP AUDIENCES IN DRAUGHTY SCHOOL ROOMS DAY AFTER DAY FOR A FORTNIGHT HE'LL HAVE TO PUT IN AN APPEARANCE AT SOME PLACE OF WORSHIP ON SUNDAY MORNING AND HE CAN COME TO US IMMEDIATELY AFTERWARDS ``` OUTPUT 2: ``` Going along Slushy Country Roads and speaking to Damp audiences in Draughty School rooms day after day for a fortnight, he'll have to put in an appearance at some place of worship on Sunday morning and he can come to us immediately afterwards. ``` I strongly recommend improving the performance via further fine-tuning or by training more examples. - Possible Quick Rule based improvements: Align the transcribed version and the generated version. If the similarity of two words (case-insensitive) vary by more than some threshold based on some similarity metric (e.g. Levenshtein), then keep the transcribed word.
{}
null
flexudy/t5-small-wav2vec2-grammar-fixer
[ "transformers", "pytorch", "tf", "endpoints_compatible", "has_space", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tf #endpoints_compatible #has_space #region-us
# flexudy-pipe-question-generation-v2 After transcribing your audio with Wav2Vec2, you might be interested in a post processor. All paragraphs had at most 128 tokens (separated by white spaces) INPUT 1: OUTPUT 1: INPUT 2: OUTPUT 2: I strongly recommend improving the performance via further fine-tuning or by training more examples. - Possible Quick Rule based improvements: Align the transcribed version and the generated version. If the similarity of two words (case-insensitive) vary by more than some threshold based on some similarity metric (e.g. Levenshtein), then keep the transcribed word.
[ "# flexudy-pipe-question-generation-v2\nAfter transcribing your audio with Wav2Vec2, you might be interested in a post processor.\n\nAll paragraphs had at most 128 tokens (separated by white spaces)\n\n\n\nINPUT 1:\n\nOUTPUT 1:\n\n\nINPUT 2:\n\n\nOUTPUT 2:\n\nI strongly recommend improving the performance via further fine-tuning or by training more examples.\n- Possible Quick Rule based improvements: Align the transcribed version and the generated version. If the similarity of two words (case-insensitive) vary by more than some threshold based on some similarity metric (e.g. Levenshtein), then keep the transcribed word." ]
[ "TAGS\n#transformers #pytorch #tf #endpoints_compatible #has_space #region-us \n", "# flexudy-pipe-question-generation-v2\nAfter transcribing your audio with Wav2Vec2, you might be interested in a post processor.\n\nAll paragraphs had at most 128 tokens (separated by white spaces)\n\n\n\nINPUT 1:\n\nOUTPUT 1:\n\n\nINPUT 2:\n\n\nOUTPUT 2:\n\nI strongly recommend improving the performance via further fine-tuning or by training more examples.\n- Possible Quick Rule based improvements: Align the transcribed version and the generated version. If the similarity of two words (case-insensitive) vary by more than some threshold based on some similarity metric (e.g. Levenshtein), then keep the transcribed word." ]
[ 28, 164 ]
[ "passage: TAGS\n#transformers #pytorch #tf #endpoints_compatible #has_space #region-us \n# flexudy-pipe-question-generation-v2\nAfter transcribing your audio with Wav2Vec2, you might be interested in a post processor.\n\nAll paragraphs had at most 128 tokens (separated by white spaces)\n\n\n\nINPUT 1:\n\nOUTPUT 1:\n\n\nINPUT 2:\n\n\nOUTPUT 2:\n\nI strongly recommend improving the performance via further fine-tuning or by training more examples.\n- Possible Quick Rule based improvements: Align the transcribed version and the generated version. If the similarity of two words (case-insensitive) vary by more than some threshold based on some similarity metric (e.g. Levenshtein), then keep the transcribed word." ]
[ -0.09712760150432587, -0.02920972742140293, -0.004668851848691702, 0.01976858265697956, 0.0351436473429203, -0.022092850878834724, -0.014375532977283001, 0.10500825196504593, -0.06631707400083542, 0.03238849341869354, 0.06401906162500381, 0.029482316225767136, 0.05594731494784355, 0.057800352573394775, -0.02205861173570156, -0.17162449657917023, 0.11010538041591644, 0.11573167890310287, -0.006655775010585785, 0.10023365914821625, 0.10451244562864304, -0.07119594514369965, 0.014537754468619823, 0.05542362108826637, -0.13189591467380524, 0.03003484383225441, 0.05525796860456467, -0.018748337402939796, 0.12315642088651657, 0.08441875129938126, 0.07160111516714096, 0.11613333970308304, -0.06556473672389984, -0.11787580698728561, 0.05132616311311722, 0.12082469463348389, -0.006915599573403597, 0.017832506448030472, 0.1786758452653885, -0.036361534148454666, 0.10462255775928497, 0.006310952361673117, -0.06782905012369156, 0.021674491465091705, -0.05937518551945686, -0.22711938619613647, -0.017396941781044006, -0.027718637138605118, 0.12196089327335358, -0.02576032653450966, -0.06543485820293427, 0.13812319934368134, -0.08220810443162918, 0.1797255277633667, 0.14990234375, -0.30590149760246277, 0.03421717882156372, 0.04915464296936989, 0.1015644297003746, 0.05086600035429001, 0.010653646662831306, 0.043439123779535294, 0.03614475950598717, 0.036834679543972015, 0.012690634466707706, -0.054058048874139786, -0.20510010421276093, -0.006213780492544174, -0.17745749652385712, -0.027891000732779503, 0.12306474894285202, -0.029356352984905243, -0.043555594980716705, -0.07658152282238007, -0.11153526604175568, -0.024105897173285484, -0.0021664220839738846, -0.10494811087846756, -0.05979030951857567, 0.018482845276594162, 0.022625701501965523, -0.05868161469697952, -0.09633136540651321, -0.11194223165512085, -0.08446743339300156, -0.05188676342368126, 0.11504433304071426, 0.022654492408037186, -0.07890765368938446, 0.06263430416584015, -0.0638197809457779, -0.06983847171068192, -0.009299957193434238, -0.05974653363227844, -0.12386073172092438, -0.018627390265464783, -0.20502306520938873, -0.12734635174274445, 0.030964544042944908, 0.023730913177132607, 0.010672279633581638, 0.04327346757054329, -0.020132914185523987, 0.04500504955649376, -0.01506813708692789, -0.001749733230099082, -0.11583083122968674, 0.018776405602693558, 0.027215447276830673, -0.03033692203462124, -0.08474178612232208, -0.0845959410071373, -0.11575490236282349, -0.10975272208452225, 0.16003111004829407, 0.013794147409498692, 0.03050895407795906, 0.07630790024995804, -0.050491176545619965, -0.0437508299946785, -0.01348410826176405, -0.11113595962524414, -0.025928407907485962, 0.00781739316880703, 0.04995246231555939, 0.15154853463172913, 0.020765390247106552, 0.024246610701084137, -0.2137518674135208, -0.020257264375686646, -0.02734800986945629, -0.014788570813834667, -0.005494221113622189, -0.08076845109462738, 0.022106997668743134, -0.09818801283836365, -0.01951650157570839, -0.10869547724723816, -0.08524936437606812, 0.03264898806810379, 0.051213618367910385, 0.02014991082251072, -0.029282337054610252, 0.029026197269558907, 0.03700995817780495, -0.017100809141993523, -0.06480734050273895, 0.05126957595348358, -0.0515257827937603, 0.09311160445213318, 0.019188812002539635, 0.10912229865789413, -0.043635543435811996, 0.08026054501533508, -0.07652736455202103, -0.004969824105501175, -0.005636324640363455, 0.05157148092985153, 0.0018853937508538365, -0.1649409830570221, -0.1030498594045639, -0.11230716109275818, -0.14937567710876465, 0.04993174970149994, -0.00706386798992753, -0.0009222305379807949, -0.16197413206100464, -0.07886562496423721, 0.2083556354045868, -0.07994108647108078, -0.02211499959230423, 0.2316790670156479, 0.02772727981209755, -0.11056457459926605, 0.0954354852437973, 0.20536313951015472, 0.18955416977405548, -0.21030274033546448, 0.10347400605678558, 0.11619815975427628, -0.09413214027881622, 0.017534123733639717, 0.05549006536602974, 0.06314626336097717, 0.052890844643116, -0.0016227797605097294, 0.08287214487791061, -0.020182814449071884, -0.0475798174738884, -0.01677284762263298, -0.06312327831983566, 0.010543362237513065, 0.04241304099559784, -0.020795434713363647, -0.028763622045516968, -0.028614947572350502, -0.0677335113286972, 0.05751807242631912, 0.06044130027294159, -0.11440908908843994, 0.11009034514427185, -0.08957023918628693, 0.17930081486701965, -0.00943609420210123, 0.03314647451043129, -0.20600725710391998, 0.08500440418720245, -0.009239157661795616, 0.07511238008737564, -0.02003728412091732, 0.3101772665977478, -0.03390093520283699, 0.04276884347200394, -0.030735189095139503, 0.057119596749544144, 0.0803946703672409, -0.02656744047999382, -0.04315827786922455, -0.07419713586568832, -0.0135343037545681, -0.016875525936484337, 0.014893940649926662, -0.017172878608107567, -0.03092866949737072, 0.16412082314491272, 0.12801778316497803, 0.0014811877626925707, -0.005967399105429649, 0.03661474585533142, 0.07603555917739868, -0.03260449320077896, 0.046717800199985504, 0.06246111914515495, 0.0005327048129402101, -0.017256442457437515, 0.22612857818603516, -0.15529142320156097, 0.15978236496448517, 0.14482994377613068, -0.1409338414669037, 0.04888079687952995, -0.057870689779520035, -0.003700739936903119, -0.02144535444676876, -0.01943826675415039, -0.10516086220741272, 0.1150694191455841, -0.010081958025693893, 0.15735439956188202, -0.16667978465557098, -0.0517367348074913, 0.042900752276182175, -0.054638348519802094, 0.015450960956513882, 0.06380812078714371, -0.06559484452009201, -0.011863740161061287, 0.05884836986660957, 0.08627055585384369, -0.047134459018707275, 0.15534654259681702, -0.034520987421274185, -0.13312435150146484, 0.04219914972782135, 0.02517736703157425, -0.030131610110402107, -0.04892126843333244, -0.04372677579522133, 0.025161240249872208, 0.12796559929847717, 0.0959448590874672, 0.07207256555557251, -0.1631603091955185, 0.054489124566316605, 0.06623218208551407, -0.12481429427862167, -0.10285762697458267, 0.08088212460279465, 0.02816414274275303, 0.09075140208005905, -0.07206118851900101, -0.016910813748836517, -0.008918778970837593, -0.02260640636086464, -0.08831430226564407, 0.0913420021533966, -0.07857847213745117, -0.27172836661338806, -0.22018778324127197, -0.10945580154657364, -0.046903423964977264, 0.07750998437404633, 0.10214472562074661, 0.001878757611848414, -0.02865060232579708, -0.03057551197707653, 0.09978985041379929, -0.06463741511106491, 0.03327137231826782, -0.09970096498727798, 0.027051035314798355, 0.051894061267375946, -0.11689628660678864, 0.018462959676980972, 0.003964719828218222, 0.014073717407882214, 0.08976539224386215, -0.0284125879406929, 0.037329286336898804, 0.10916578769683838, -0.01627773605287075, -0.010464604012668133, -0.05424417927861214, 0.2437446117401123, -0.059435006231069565, 0.0188225619494915, 0.30924949049949646, -0.10229164361953735, 0.08517789095640182, 0.045323699712753296, -0.05111438035964966, -0.05786234140396118, 0.020201096311211586, 0.012467162683606148, -0.06670108437538147, -0.1537259966135025, -0.043508730828762054, -0.14009486138820648, 0.03260231018066406, -0.002134142443537712, -0.05026460811495781, 0.01776476390659809, 0.021913228556513786, -0.14098191261291504, 0.08551442623138428, 0.04735010862350464, 0.0006577619351446629, 0.18751169741153717, 0.011911671608686447, 0.159801185131073, -0.021362408995628357, -0.0406334213912487, 0.06928770244121552, 0.0941540077328682, 0.14025846123695374, -0.03544733673334122, 0.10866474360227585, 0.0924944281578064, 0.10680414736270905, 0.1280282437801361, 0.08285887539386749, -0.09382432699203491, 0.022220173850655556, -0.04750172421336174, -0.07632051408290863, -0.0478479266166687, 0.007701009511947632, 0.061785634607076645, -0.14373250305652618, -0.04748954996466637, -0.01939917542040348, -0.00799710676074028, 0.14885525405406952, 0.08480069786310196, -0.20980407297611237, -0.025313466787338257, -0.027686849236488342, -0.06918979436159134, -0.03438032045960426, 0.055879443883895874, 0.13666261732578278, -0.03034423105418682, -0.0018678986234590411, -0.01338224671781063, 0.11803001165390015, 0.015639396384358406, 0.07196047902107239, -0.06805813312530518, 0.018724855035543442, 0.018189484253525734, 0.09755866229534149, -0.2211388796567917, 0.11513950675725937, 0.0367710143327713, -0.012535595335066319, -0.05345187708735466, 0.015364735387265682, -0.04392640292644501, 0.10183678567409515, 0.04597177729010582, -0.012461883947253227, -0.07379023730754852, -0.13942992687225342, -0.0298879723995924, 0.016721578314900398, 0.14939862489700317, 0.09594633430242538, 0.02894768863916397, -0.09017124772071838, 0.00032260367879644036, 0.01374849583953619, 0.04718507453799248, -0.06214470788836479, -0.12716160714626312, 0.08472398668527603, 0.07616585493087769, 0.027881378307938576, -0.02618948370218277, -0.02601146511733532, -0.18265067040920258, 0.07488858699798584, -0.12769339978694916, -0.05493755638599396, -0.07987947016954422, -0.01872584968805313, 0.08552658557891846, -0.0315706729888916, 0.06692849099636078, -0.009984978474676609, 0.1363416463136673, -0.030500277876853943, -0.15353572368621826, 0.0217899102717638, -0.0835282951593399, -0.12465204298496246, -0.022178873419761658, 0.16869257390499115, -0.07244270294904709, 0.04442794620990753, 0.04438849538564682, 0.021743908524513245, -0.07736371457576752, -0.004248014651238918, -0.01720007322728634, -0.07550305128097534, 0.1294088512659073, -0.03173413872718811, -0.010917820036411285, 0.054523590952157974, -0.011990560218691826, -0.013507978059351444, 0.08754616975784302, 0.1598266214132309, -0.039275333285331726, 0.1696631908416748, 0.2090342938899994, 0.002299028914421797, -0.2785363793373108, -0.09395591914653778, 0.09297322481870651, 0.06326573342084885, 0.034677423536777496, -0.0723862573504448, 0.1002807691693306, 0.02770206704735756, -0.0050707473419606686, -0.007067152298986912, -0.22543282806873322, -0.11675599962472916, 0.05246193706989288, -0.010441931895911694, 0.1491926908493042, -0.030216393992304802, -0.038654934614896774, -0.03401196375489235, -0.23981623351573944, 0.06755091995000839, -0.12930424511432648, 0.1059713363647461, 0.02984914742410183, -0.06730858981609344, 0.03417598083615303, 0.0008472380577586591, 0.07468461990356445, 0.03617612645030022, 0.04446723684668541, -0.028640182688832283, 0.22468870878219604, -0.05189663544297218, 0.004124550614506006, 0.03831539675593376, -0.09129156172275543, 0.06653045862913132, -0.06847669929265976, -0.08223851025104523, -0.04716097190976143, 0.053477853536605835, 0.02599177323281765, -0.02880694344639778, -0.04472603648900986, -0.041146598756313324, 0.026262415573000908, -0.08068061619997025, -0.012466000393033028, -0.10974504798650742, 0.013083345256745815, 0.22259929776191711, 0.13773059844970703, -0.17881476879119873, -0.10634119808673859, -0.015009044669568539, -0.05635034665465355, 0.11900771409273148, -0.009577837772667408, 0.12083280086517334, 0.04903726279735565, -0.0407504066824913, 0.041386932134628296, 0.07535164058208466, -0.022604115307331085, -0.030097415670752525, 0.10376320779323578, -0.1575552076101303, -0.046371664851903915, -0.06932182610034943, -0.09801415354013443, 0.046006955206394196, -0.008292235434055328, 0.14667029678821564, 0.030807683244347572, 0.0014986846363171935, 0.04739648476243019, -0.04278887063264847, -0.034176796674728394, 0.156641885638237, 0.07074052095413208, 0.09408870339393616, -0.09467370808124542, 0.01772666722536087, 0.03428512066602707, -0.21999599039554596, 0.015793532133102417, -0.10715878754854202, -0.12705600261688232, -0.07278365641832352, -0.008709529414772987, -0.05240974575281143, 0.10777229815721512, -0.0990053117275238, -0.061202842742204666, -0.0737968385219574, 0.04023980349302292, 0.13474875688552856, 0.10499042272567749, 0.1275683492422104, -0.017518803477287292, -0.0017038738587871194, -0.07636559009552002, 0.1023256927728653, 0.06392767280340195, 0.08683900535106659, -0.19575531780719757, 0.23792487382888794, -0.060341499745845795, 0.12028907239437103, -0.09988892823457718, 0.007831353694200516, -0.03190400078892708, 0.01736154779791832, -0.06145849451422691, -0.006867675110697746, -0.031694233417510986, -0.04650493711233139, -0.006456294097006321, -0.04311351478099823, -0.017824864014983177, 0.07643404603004456, -0.07328331470489502, 0.04751656576991081, -0.07355666160583496, 0.03858806937932968, -0.06300421059131622, 0.014973854646086693, 0.1268395185470581, -0.06846047192811966, 0.04484478756785393, 0.02190445177257061, -0.15417063236236572, 0.058416515588760376, -0.04530339315533638, -0.09866873919963837, 0.03040904365479946, 0.12585888803005219, -0.03414919227361679, 0.01802123337984085, 0.08167015016078949, 0.059104159474372864, 0.029736852273344994, -0.002442355966195464, 0.07586346566677094, -0.10836448520421982, -0.035017963498830795, -0.12570179998874664, -0.04731529578566551, -0.06628627330064774, -0.03921564295887947, 0.09715919196605682, 0.16299808025360107, 0.17515411972999573, -0.05239800363779068, -0.004532516468316317, -0.11636015772819519, 0.027662087231874466, 0.039261918514966965, -0.10175972431898117, -0.0200644601136446, -0.13888444006443024, 0.04220404103398323, -0.008000110276043415, 0.16228896379470825, -0.0037788529880344868, 0.0027879688423126936, 0.006080714985728264, -0.001180244260467589, 0.018061475828289986, 0.008228517137467861, 0.15664203464984894, 0.061554960906505585, 0.005762149579823017, -0.10445350408554077, 0.00577296270057559, 0.05296992138028145, 0.15292075276374817, 0.05022516846656799, 0.13581304252147675, 0.016387207433581352, 0.09427100419998169, -0.04933041334152222, 0.02551841177046299, -0.06423899531364441, -0.0148842204362154, -0.1066891998052597, 0.07786856591701508, 0.022252744063735008, 0.06552256643772125, 0.17410928010940552, -0.09544827044010162, 0.09451188147068024, 0.012057710438966751, -0.05535014718770981, -0.1786058247089386, -0.09852147847414017, -0.07032477855682373, -0.15684615075588226, -0.0052427868358790874, -0.11968182772397995, 0.0876188650727272, 0.0970143973827362, 0.07020746171474457, 0.02240053564310074, 0.12863847613334656, -0.07787510752677917, -0.1310553103685379, 0.028954481706023216, -0.07055766135454178, 0.013539441861212254, 0.11222865432500839, -0.11289120465517044, 0.16949552297592163, 0.024072004482150078, 0.04464259743690491, -0.015661494806408882, 0.061109960079193115, 0.017245134338736534, -0.16318447887897491, -0.043277353048324585, -0.0018189364345744252, -0.02069924771785736, 0.009516829624772072, 0.08696348965167999, 0.03642464801669121, -0.025988848879933357, 0.0019415367860347033, 0.1518109142780304, -0.014662627130746841, -0.1633022129535675, -0.12751999497413635, 0.16200023889541626, 0.09456907212734222, 0.08907276391983032, 0.04413513094186783, -0.0780850350856781, -0.051711127161979675, 0.33071497082710266, 0.05257672071456909, -0.034739553928375244, -0.015431893058121204, 0.061471544206142426, 0.03269679844379425, 0.044068593531847, 0.1073765829205513, 0.08512143045663834, 0.1944342702627182, 0.019811883568763733, -0.07557928562164307, -0.04248131066560745, 0.01653042435646057, -0.1336042433977127, 0.10037266463041306, -0.00005087453973828815, -0.09285648167133331, 0.007318484131246805, 0.08132895827293396, -0.015643270686268806, -0.0680210292339325, -0.14714255928993225, 0.006114177405834198, -0.060824986547231674, -0.00962167326360941, 0.11556104570627213, -0.014974112622439861, 0.01760854199528694, -0.08235206454992294, 0.038381725549697876, 0.07101008296012878, 0.013516628183424473, -0.06924708187580109, 0.033925194293260574, 0.0687519907951355, -0.010065309703350067, -0.12110283970832825, -0.007442418020218611, 0.20432841777801514, 0.0005487148300744593, 0.06717169284820557, 0.05437294766306877, 0.08367520570755005, -0.015897635370492935, -0.09622007608413696, 0.012164627201855183, 0.12674355506896973, -0.005704834591597319, -0.08749345690011978, 0.014672919176518917, -0.1061127558350563, 0.024835625663399696, -0.06398603320121765, -0.016727430745959282, -0.026375558227300644, 0.02779034525156021, -0.034275736659765244, 0.03456505015492439, 0.07938488572835922, -0.009923557750880718, 0.001991765573620796, -0.06747214496135712, 0.015966758131980896, 0.026826664805412292, -0.05697762221097946, -0.003068439196795225, -0.17914532124996185, 0.0009915134869515896, -0.051330555230379105, -0.011861271224915981, -0.08203147351741791, -0.04297814518213272, 0.016225341707468033, -0.03545237332582474, -0.10167639702558517, 0.13364465534687042, 0.015873311087489128, -0.02897084318101406, 0.00413631834089756, -0.07293487340211868, 0.021804658696055412, 0.026015056297183037, -0.13809357583522797, -0.10022157430648804 ]
null
null
transformers
@Rick from Rick and Morty GPT-2 Conversation Model ---
{"tags": "conversational"}
text-generation
flooptherocket/DialogGPT-small-rick
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
@Rick from Rick and Morty GPT-2 Conversation Model ---
[]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 51 ]
[ "passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ -0.009697278961539268, 0.03208012506365776, -0.007204889785498381, 0.004809224978089333, 0.16726240515708923, 0.014898733235895634, 0.09765533357858658, 0.13672804832458496, -0.007841327227652073, -0.031050153076648712, 0.14490588009357452, 0.20411323010921478, -0.006439372431486845, 0.0661218985915184, -0.07572533935308456, -0.2683109939098358, 0.05759621039032936, 0.046649303287267685, 0.016515716910362244, 0.1200079694390297, 0.08573378622531891, -0.05473608896136284, 0.08714032918214798, -0.014583407901227474, -0.150366872549057, 0.017733458429574966, 0.043394338339567184, -0.12260226160287857, 0.11910516023635864, 0.05462685227394104, 0.07063519209623337, 0.014929565601050854, -0.07541623711585999, -0.1631229966878891, 0.03031250834465027, 0.01425902172923088, -0.0594632662832737, 0.04757995903491974, 0.059961482882499695, -0.10165371745824814, 0.10819483548402786, 0.09530027210712433, -0.013078106567263603, 0.06798283755779266, -0.16849711537361145, -0.020869607105851173, -0.01446688175201416, 0.009899779222905636, 0.05550243332982063, 0.09964893013238907, -0.03413357585668564, 0.10497362166643143, -0.09214533120393753, 0.11017382889986038, 0.10932035744190216, -0.32057443261146545, -0.005767723545432091, 0.09167823940515518, 0.039358653128147125, 0.07352814823389053, -0.04467793554067612, 0.06258884817361832, 0.018015462905168533, 0.017986174672842026, -0.014015024527907372, -0.07283061742782593, -0.11612214148044586, 0.04717336222529411, -0.08668071031570435, -0.059868961572647095, 0.2244078367948532, -0.05464440956711769, 0.06881742179393768, -0.05281897634267807, -0.10522868484258652, -0.04308144748210907, -0.029833965003490448, 0.00475557055324316, -0.07660607248544693, 0.08692064881324768, 0.00869679357856512, -0.09547875821590424, -0.1376667022705078, -0.02496783249080181, -0.1776352822780609, 0.16140350699424744, 0.02465328387916088, 0.05232657864689827, -0.2027255892753601, 0.09623090922832489, 0.017906051129102707, -0.08045592904090881, 0.022091427817940712, -0.10046248883008957, 0.029131146147847176, 0.013760408386588097, -0.04754498973488808, -0.061387211084365845, 0.0843690037727356, 0.11199145019054413, -0.01731434464454651, 0.025486016646027565, -0.039331406354904175, 0.08100687712430954, 0.03553595021367073, 0.09077847748994827, 0.007288969587534666, -0.028338588774204254, 0.025842782109975815, -0.13719046115875244, -0.003647835226729512, -0.07116208970546722, -0.16572439670562744, -0.021088803187012672, 0.02994808368384838, 0.08289173990488052, 0.015449047088623047, 0.11682453751564026, -0.03272046521306038, -0.025152435526251793, 0.03602350503206253, -0.047656361013650894, -0.012649794109165668, 0.016648368909955025, 0.013163427822291851, 0.12399329990148544, -0.0022096503525972366, 0.03235051408410072, -0.13653022050857544, 0.031423524022102356, -0.06793295592069626, -0.003740974934771657, -0.03486552834510803, -0.040637075901031494, 0.009043924510478973, -0.06862333416938782, 0.003486064961180091, -0.15030112862586975, -0.15063877403736115, 0.007587034720927477, -0.007836631499230862, -0.04107699543237686, -0.06370922178030014, -0.06952770054340363, -0.013550350442528725, 0.04251532256603241, -0.07093454152345657, -0.011352915316820145, -0.06403283774852753, 0.11004766076803207, -0.03197755664587021, 0.07921615242958069, -0.11953279376029968, 0.08390819281339645, -0.11260783672332764, -0.02386913076043129, -0.060801517218351364, 0.09317506104707718, -0.0006014376995153725, 0.09549830108880997, -0.006563255097717047, -0.017931854352355003, -0.07981178909540176, 0.06445012241601944, -0.042872510850429535, 0.21701598167419434, -0.0615808479487896, -0.11181682348251343, 0.28781595826148987, -0.052628401666879654, -0.1370542049407959, 0.11647392809391022, 0.008682746440172195, 0.05777018144726753, 0.10703510791063309, 0.19733482599258423, -0.015276194550096989, 0.004040541127324104, 0.09471915662288666, 0.11263324320316315, -0.11276852339506149, -0.033160366117954254, 0.013019153848290443, -0.04081077128648758, -0.10867965966463089, 0.04689536616206169, 0.09810488671064377, 0.07090286910533905, -0.04786505550146103, -0.03377414867281914, -0.01366397924721241, 0.0052589005790650845, 0.08885077387094498, -0.007157256826758385, 0.10962837189435959, -0.05819983780384064, -0.03796621412038803, -0.029282379895448685, -0.012126247398555279, -0.03951939567923546, 0.03137664496898651, -0.043376367539167404, 0.10821941494941711, -0.011204327456653118, 0.06364280730485916, -0.16185984015464783, -0.07691477984189987, -0.017002692446112633, 0.1581239402294159, 0.024538565427064896, 0.09859629720449448, 0.0552486926317215, -0.040398042649030685, -0.0012767292791977525, 0.012792680412530899, 0.15581141412258148, -0.022091681137681007, -0.065607450902462, -0.052166227251291275, 0.08642971515655518, -0.05641226842999458, 0.04504093527793884, -0.05937713757157326, 0.012367865070700645, 0.05064384639263153, 0.10342344641685486, -0.00018274025933351368, 0.03323284164071083, -0.008164864964783192, 0.002145637758076191, -0.058205123990774155, 0.007405933458358049, 0.10799351334571838, 0.00036868182360194623, -0.07365862280130386, 0.22074243426322937, -0.17796069383621216, 0.1765957772731781, 0.1893044263124466, -0.299345999956131, 0.017949223518371582, -0.10759581625461578, -0.04561871662735939, 0.014407722279429436, 0.05567655712366104, -0.0454222597181797, 0.1703362911939621, -0.009871348738670349, 0.18874616920948029, -0.04946064203977585, -0.04464937001466751, -0.0200483538210392, -0.05118836089968681, -0.0024189651012420654, 0.07781197130680084, 0.10685696452856064, -0.13992026448249817, 0.1964332014322281, 0.1621224284172058, 0.048237916082143784, 0.19945049285888672, 0.015346456319093704, -0.011589210480451584, 0.0909530371427536, 0.005220826715230942, -0.058739423751831055, -0.07409929484128952, -0.2594851851463318, -0.030033592134714127, 0.07992640137672424, 0.0422382652759552, 0.1212305948138237, -0.11349532753229141, -0.038956157863140106, -0.01763172075152397, -0.023146281018853188, 0.021672505885362625, 0.0914369598031044, 0.06075398623943329, 0.13201528787612915, -0.001710098935291171, -0.007300339173525572, 0.10524573177099228, 0.01783694699406624, -0.09354141354560852, 0.18308524787425995, -0.13652534782886505, -0.37097251415252686, -0.13911493122577667, -0.18057456612586975, -0.05449081212282181, 0.05712554603815079, 0.11679314076900482, -0.12011238187551498, -0.018752124160528183, 0.01578843593597412, 0.10931742936372757, -0.08449502289295197, 0.0021454424131661654, -0.06880278885364532, 0.0321490578353405, -0.10310184955596924, -0.09194442629814148, -0.055416494607925415, -0.031392451375722885, -0.08001253753900528, 0.1423761546611786, -0.10777941346168518, 0.04476889222860336, 0.20262959599494934, 0.04653622955083847, 0.05625178664922714, -0.044105201959609985, 0.19377262890338898, -0.11264272034168243, -0.01661740615963936, 0.19215328991413116, -0.048360925167798996, 0.07476246356964111, 0.1232115849852562, -0.006348740309476852, -0.08765771239995956, 0.03011748194694519, -0.02085109055042267, -0.07988511025905609, -0.23219464719295502, -0.13938382267951965, -0.12429051846265793, 0.09477275609970093, 0.028005298227071762, 0.056365787982940674, 0.17219258844852448, 0.06577219814062119, -0.038416244089603424, 0.006410336587578058, 0.02959546446800232, 0.08237514644861221, 0.23417828977108002, -0.06035616248846054, 0.1364797055721283, -0.03420931473374367, -0.14982740581035614, 0.08169995993375778, 0.0713929831981659, 0.10213395953178406, 0.06678459793329239, 0.0804823637008667, 0.0149586396291852, 0.06188136339187622, 0.1311223804950714, 0.08191446959972382, 0.019586285576224327, -0.02480296604335308, -0.03388110175728798, -0.025523077696561813, -0.05937909707427025, 0.040128443390131, 0.06589099019765854, -0.16763372719287872, -0.039227183908224106, -0.09338314831256866, 0.09657008945941925, 0.0873042419552803, 0.06609832495450974, -0.1842060089111328, -0.008006223477423191, 0.08488986641168594, -0.03854905813932419, -0.13727426528930664, 0.09535189718008041, 0.01523482333868742, -0.15144726634025574, 0.03139317408204079, -0.04061909019947052, 0.12188644707202911, -0.07804752141237259, 0.09809603542089462, -0.08108244836330414, -0.07448557764291763, 0.02123199962079525, 0.1261177361011505, -0.30527687072753906, 0.20240111649036407, -0.0024993624538183212, -0.06486981362104416, -0.1243603527545929, -0.0032166161108762026, 0.002410882618278265, 0.07357452809810638, 0.10519039630889893, -0.007196315098553896, 0.001897757756523788, -0.06300821900367737, -0.01829923689365387, 0.032471053302288055, 0.13080233335494995, -0.0401318334043026, -0.021158374845981598, -0.050194524228572845, -0.001653497340157628, -0.03173094615340233, -0.06934895366430283, 0.02002747356891632, -0.19509181380271912, 0.08751901984214783, 0.04166261479258537, 0.09648149460554123, 0.029994789510965347, 0.004265148192644119, -0.09651939570903778, 0.24698667228221893, -0.07148019969463348, -0.10072879493236542, -0.10919588059186935, -0.046813901513814926, 0.03569883480668068, -0.05628936365246773, 0.04309194162487984, -0.0788632407784462, 0.028997479006648064, -0.06352769583463669, -0.19235502183437347, 0.12410202622413635, -0.09027006477117538, -0.04412810131907463, -0.02371402643620968, 0.2110891044139862, -0.05598580464720726, 0.010335659608244896, 0.02930437959730625, 0.01208863127976656, -0.11645778268575668, -0.09678568691015244, 0.031018631532788277, -0.007351789623498917, 0.050603240728378296, 0.041841957718133926, -0.05915454775094986, -0.017138581722974777, -0.052199993282556534, -0.022926922887563705, 0.3496883809566498, 0.14231905341148376, -0.043836336582899094, 0.19347235560417175, 0.12347975373268127, -0.07452994585037231, -0.3159443140029907, -0.1066238060593605, -0.10937739163637161, -0.04680149629712105, -0.07012093812227249, -0.2002030611038208, 0.06474938243627548, 0.00662544509395957, -0.013415241613984108, 0.12749312818050385, -0.2561831772327423, -0.07571036368608475, 0.15906259417533875, -0.017980827018618584, 0.3745945692062378, -0.1168576180934906, -0.10926306992769241, -0.03950892388820648, -0.14175476133823395, 0.16968177258968353, -0.01989765651524067, 0.11221715062856674, -0.009765521623194218, 0.14388824999332428, 0.05548359826207161, -0.023479344323277473, 0.08544106781482697, 0.004999885335564613, -0.03290518373250961, -0.10304180532693863, -0.05676887184381485, 0.007092386484146118, 0.02477436140179634, 0.018026655539870262, -0.041834570467472076, 0.02227151393890381, -0.11731979995965958, -0.04657655209302902, -0.08982590585947037, 0.04431166127324104, 0.03899754583835602, -0.07325074821710587, -0.002380647463724017, -0.07165111601352692, -0.012272949330508709, 0.022334342822432518, 0.20356793701648712, -0.08029330521821976, 0.16448934376239777, 0.09239562600851059, 0.12419285625219345, -0.14376309514045715, -0.00019283240544609725, -0.0762530043721199, -0.05611240118741989, 0.07737895101308823, -0.09433035552501678, 0.058893077075481415, 0.10901971161365509, -0.04567738622426987, 0.08828683942556381, 0.10377411544322968, 0.008936077356338501, 0.003213887568563223, 0.10916902124881744, -0.2667325437068939, -0.0296600554138422, -0.07532413303852081, 0.000883326749317348, 0.09092561900615692, 0.08562852442264557, 0.18840822577476501, 0.025361526757478714, -0.04293036088347435, -0.002770674182102084, 0.028597986325621605, -0.039021048694849014, 0.051667019724845886, 0.001123449532315135, 0.01947369985282421, -0.1530752182006836, 0.072522833943367, 0.01490565575659275, -0.15215420722961426, 0.021316176280379295, 0.16572684049606323, -0.11656328290700912, -0.1283872276544571, -0.06520111113786697, 0.08313824236392975, -0.11755692958831787, -0.01578943058848381, -0.03279297426342964, -0.13145680725574493, 0.07992171496152878, 0.12629036605358124, 0.05557859688997269, 0.0972496047616005, -0.06061713397502899, -0.020469192415475845, -0.018721895292401314, -0.014099318534135818, -0.012384648434817791, -0.007667020428925753, -0.055978111922740936, 0.0590752474963665, -0.026677248999476433, 0.1425808072090149, -0.09221141785383224, -0.1037059873342514, -0.16142144799232483, 0.0374140702188015, -0.11013076454401016, -0.08825794607400894, -0.08821134269237518, -0.050188567489385605, 0.002360827289521694, -0.019856395199894905, -0.04037635400891304, -0.05829505994915962, -0.12300454825162888, 0.0338277705013752, -0.040771447122097015, 0.024727050215005875, -0.07512269169092178, 0.015856385231018066, 0.08507686108350754, -0.03285100311040878, 0.15655414760112762, 0.1450488418340683, -0.1006515845656395, 0.10741901397705078, -0.14806775748729706, -0.09138492494821548, 0.11116421222686768, 0.015329592861235142, 0.0449691042304039, 0.09723787009716034, 0.013362943194806576, 0.0635865181684494, 0.032776717096567154, 0.05308786407113075, 0.027619892731308937, -0.11959987878799438, 0.06483134627342224, -0.03626115620136261, -0.14700546860694885, -0.049338050186634064, -0.05282869189977646, 0.01647452637553215, 0.013054544106125832, 0.09622690081596375, -0.05301849544048309, 0.10698331147432327, -0.04055701196193695, 0.0346808135509491, 0.017554637044668198, -0.1730053424835205, -0.03816922754049301, -0.08538098633289337, 0.03681723028421402, 0.014741539023816586, 0.25266793370246887, 0.030072299763560295, 0.012416383251547813, 0.032671261578798294, 0.08285367488861084, 0.03899408504366875, 0.010228337720036507, 0.17482228577136993, 0.1162426546216011, -0.06621865928173065, -0.10445023328065872, 0.0729617029428482, 0.016332454979419708, 0.01286179106682539, 0.13617953658103943, 0.008365051820874214, 0.005795429926365614, 0.08649782836437225, -0.016865963116288185, 0.009968153201043606, -0.10052056610584259, -0.13426925241947174, -0.022176474332809448, 0.05151832848787308, -0.04655967652797699, 0.11727844923734665, 0.1406494379043579, -0.01806013658642769, 0.03222079202532768, -0.021771740168333054, -0.05699979141354561, -0.1683429479598999, -0.1429590880870819, -0.06883849948644638, -0.13416796922683716, 0.00897989235818386, -0.11180389672517776, 0.05395037308335304, 0.06001098081469536, 0.06750501692295074, -0.06899319589138031, 0.10220931470394135, 0.04626858979463577, -0.11440542340278625, 0.06264589726924896, -0.0296088308095932, 0.09430401772260666, -0.02759445086121559, -0.019505485892295837, -0.09039592742919922, 0.014574515633285046, 0.011419114656746387, 0.06245238706469536, -0.04707273095846176, 0.007463190704584122, -0.14696238934993744, -0.08972041308879852, -0.0523175448179245, 0.0718572810292244, -0.050409089773893356, 0.14282815158367157, 0.00775480642914772, -0.0170906875282526, 0.039554283022880554, 0.22787313163280487, -0.07476283609867096, -0.04778539761900902, -0.05269690603017807, 0.20717895030975342, 0.02975541539490223, 0.1171872541308403, -0.022938819602131844, -0.006106364540755749, -0.0919521227478981, 0.3764844834804535, 0.30030161142349243, -0.09031439572572708, 0.011794124729931355, 0.02137952297925949, 0.04502861574292183, 0.1316293478012085, 0.1216534823179245, 0.10318691283464432, 0.3006802201271057, -0.07452366501092911, -0.04653361067175865, -0.012629742734134197, -0.023858042433857918, -0.09059546142816544, 0.1021224707365036, 0.04839762672781944, -0.06382183730602264, -0.03313443064689636, 0.0954432487487793, -0.25862133502960205, 0.1277991235256195, -0.12311873584985733, -0.17578600347042084, -0.06654827296733856, 0.009760108776390553, 0.10465722531080246, 0.015642458572983742, 0.0946015790104866, 0.007128213066607714, -0.11252258718013763, 0.06305865943431854, 0.03397420793771744, -0.22762253880500793, 0.0006893770187161863, 0.06642123311758041, -0.07006710022687912, -0.0024247700348496437, -0.026499588042497635, 0.05657242611050606, 0.0656052976846695, 0.054629553109407425, -0.00971333310008049, 0.03816632181406021, 0.0034184439573436975, -0.0585215799510479, 0.016623929142951965, 0.05121519789099693, 0.02472509816288948, -0.09763528406620026, 0.06927435845136642, -0.1574270874261856, 0.04766253009438515, -0.0030655991286039352, -0.04124255105853081, 0.006064958870410919, 0.008823691867291927, -0.06491616368293762, 0.05165379121899605, 0.07916834205389023, -0.0016257909592241049, -0.0062433634884655476, -0.057178743183612823, -0.02632102556526661, -0.027755750343203545, -0.09291748702526093, -0.10495562851428986, -0.14682936668395996, -0.11640441417694092, 0.09368976950645447, -0.01011267676949501, -0.1848134547472, 0.022154374048113823, -0.08606051653623581, 0.08319322764873505, -0.1670055389404297, 0.08040720224380493, 0.07041648775339127, 0.013038921169936657, -0.0031511052511632442, -0.02002427540719509, 0.054132770746946335, 0.086809903383255, -0.10407156497240067, -0.07400695979595184 ]
null
null
transformers
example outputs: input: ich liebe das leben --> output: Ich liebe das Leben. input: es ist schön so viele tolle menschen um sich zu haben denn ohne sie wäre es nicht so schön --> output: Es ist schön, so viele tolle Menschen, um sich zu haben, denn ohne sie wäre es nicht so schön. input: der kunde hat ausdrücklich nach dirk verlangt weil er den rabatt haben möchte --> output: Der Kunde hat ausdrücklich nach Dirk verlangt, weil er den Rabatt haben möchte. the data can be prepared like this: the broken_text is used as input, while the text is the output ```python import re import phonetics import random chars_to_ignore_regex = "[^A-Za-z0-9\ö\ä\ü\Ö\Ä\Ü\ß\-,;.:?! ]+" broken_chars_to_ignore_regex = "[^A-Za-z0-9\ö\ä\ü\Ö\Ä\Ü\ß\- ]+" def do_manipulation(string): text = re.sub(chars_to_ignore_regex, '', string) broken_text = re.sub(broken_chars_to_ignore_regex, "", text.lower()) if(random.randint(0,100) >= 50): for xyz in range(int(len(broken_text.split(" "))/4)): if(random.randint(0,100) > 30): randc = random.choice(broken_text.split(" ")) if(random.randint(0,10) > 4): broken_text = broken_text.replace(randc, ''.join(random.choice('abcdefghijklmnopqrstuvxyz') for _ in range(len(randc))).lower()) else: broken_text = broken_text.replace(randc, phonetics.metaphone(randc).lower()) return text, broken_text ```
{"language": "de", "tags": ["grammar"], "widget": [{"text": "correct german grammar: es ist sch\u00f6n so viele tolle menschen um sich zu haben denn ohne sie w\u00e4re es nicht so sch\u00f6n"}]}
text2text-generation
aware-ai/byt5-german-grammar
[ "transformers", "pytorch", "safetensors", "t5", "text2text-generation", "grammar", "de", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "de" ]
TAGS #transformers #pytorch #safetensors #t5 #text2text-generation #grammar #de #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
example outputs: input: ich liebe das leben --> output: Ich liebe das Leben. input: es ist schön so viele tolle menschen um sich zu haben denn ohne sie wäre es nicht so schön --> output: Es ist schön, so viele tolle Menschen, um sich zu haben, denn ohne sie wäre es nicht so schön. input: der kunde hat ausdrücklich nach dirk verlangt weil er den rabatt haben möchte --> output: Der Kunde hat ausdrücklich nach Dirk verlangt, weil er den Rabatt haben möchte. the data can be prepared like this: the broken_text is used as input, while the text is the output
[]
[ "TAGS\n#transformers #pytorch #safetensors #t5 #text2text-generation #grammar #de #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 58 ]
[ "passage: TAGS\n#transformers #pytorch #safetensors #t5 #text2text-generation #grammar #de #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ -0.019429126754403114, -0.017514869570732117, -0.007313721813261509, 0.011123224161565304, 0.1399143636226654, -0.00908004678785801, 0.11315683275461197, 0.11082455515861511, -0.032097574323415756, -0.019429609179496765, 0.13337017595767975, 0.19111128151416779, -0.022945288568735123, 0.0669788271188736, -0.11153232306241989, -0.25355446338653564, 0.0682850182056427, 0.029094120487570763, 0.016911253333091736, 0.12981601059436798, 0.09995120763778687, -0.06855358183383942, 0.0752779096364975, -0.039085619151592255, -0.11562953889369965, 0.036246828734874725, 0.07442118227481842, -0.13476476073265076, 0.13906708359718323, 0.03337372466921806, 0.12111829966306686, 0.04432256147265434, -0.05247381329536438, -0.1531548649072647, 0.03508998826146126, 0.03043798729777336, -0.06575687974691391, 0.03630661964416504, 0.09877341985702515, -0.1052451953291893, 0.09586390852928162, 0.02000472880899906, -0.001858801580965519, 0.05885949730873108, -0.16145862638950348, -0.007844159379601479, 0.004539955407381058, 0.009691997431218624, 0.07749439775943756, 0.118345707654953, -0.03392503038048744, 0.1513180136680603, -0.105010487139225, 0.14114393293857574, 0.12318731844425201, -0.32124555110931396, -0.011130807921290398, 0.009868383407592773, 0.07176586240530014, 0.07469336688518524, -0.04430681839585304, 0.04657972604036331, 0.05007018893957138, 0.03254356607794762, 0.04302677512168884, -0.06637386977672577, -0.15341292321681976, 0.01790129952132702, -0.09758094698190689, -0.048629436641931534, 0.22079895436763763, -0.06784313172101974, 0.04832007735967636, -0.04992808401584625, -0.13203434646129608, -0.036195073276758194, 0.004743494559079409, -0.041658852249383926, -0.06180677190423012, 0.07050501555204391, 0.061641108244657516, -0.04085517302155495, -0.15014313161373138, 0.0013134801993146539, -0.17734259366989136, 0.15864434838294983, 0.021871907636523247, 0.01865430735051632, -0.21241360902786255, 0.08704332262277603, 0.05488857626914978, -0.12622769176959991, 0.07212579995393753, -0.09244139492511749, 0.04855750873684883, -0.00879939366132021, -0.05062750354409218, -0.12012258917093277, 0.08944482356309891, 0.07593770325183868, -0.05612919479608536, 0.012299058958888054, -0.07523243874311447, 0.06653624773025513, 0.017870446667075157, 0.05471242591738701, 0.007040276657789946, -0.014606594108045101, 0.06493593007326126, -0.06674475222826004, 0.017218520864844322, -0.04756574332714081, -0.1119595468044281, -0.04573316127061844, 0.12384297698736191, 0.11429764330387115, 0.021652542054653168, 0.10884831100702286, -0.046075332909822464, 0.004351455718278885, 0.030067522078752518, -0.09819251298904419, -0.0244013462215662, 0.01921842433512211, 0.04379764199256897, 0.09389325976371765, 0.004796172492206097, 0.014543406665325165, -0.1584569811820984, 0.04534761980175972, -0.07067301869392395, -0.03085700422525406, -0.0032215204555541277, -0.0852568969130516, 0.02543742023408413, -0.08878635615110397, 0.00950783584266901, -0.18166877329349518, -0.14135172963142395, 0.011526507325470448, -0.02242886833846569, -0.0064927819184958935, -0.04698265343904495, -0.05339939147233963, -0.06602077186107635, 0.030553506687283516, -0.052993614226579666, -0.05370158702135086, -0.053079333156347275, 0.12301468104124069, -0.03417130559682846, 0.0410546138882637, -0.12544213235378265, 0.06140119209885597, -0.1627892702817917, -0.025402294471859932, -0.08861014246940613, 0.05605290085077286, 0.03428565338253975, 0.11580821871757507, -0.007019808050245047, -0.030464937910437584, -0.0994289442896843, 0.06522029638290405, -0.0271022766828537, 0.22854715585708618, -0.12404042482376099, -0.08943968266248703, 0.2501256465911865, -0.12101855129003525, -0.17124487459659576, 0.1317196488380432, 0.011494478210806847, 0.0650252252817154, 0.12496016919612885, 0.1840018630027771, 0.04847278818488121, -0.020482124760746956, 0.08072513341903687, 0.0842684805393219, -0.09655047208070755, -0.009960291907191277, -0.007092683110386133, -0.027414701879024506, -0.11485599726438522, 0.041411977261304855, 0.06393236666917801, 0.044547006487846375, -0.04177309200167656, -0.04372865706682205, -0.04757270589470863, 0.003976310603320599, 0.10593119263648987, -0.0024581262841820717, 0.08299031108617783, -0.0952027440071106, -0.03409209102392197, -0.029989859089255333, -0.028835469856858253, -0.028223274275660515, 0.03248082473874092, -0.05016414076089859, 0.10790272802114487, 0.027503207325935364, 0.05301046371459961, -0.1805504560470581, -0.08184688538312912, -0.012646181508898735, 0.17453089356422424, -0.004445010796189308, 0.07764488458633423, 0.05964008346199989, -0.0010361933382228017, -0.020918579772114754, -0.04378348961472511, 0.14563803374767303, 0.010200858116149902, -0.06880738586187363, -0.0922594889998436, 0.09718216955661774, -0.07226987928152084, 0.03613715618848801, -0.10572253912687302, 0.03559296205639839, 0.05385822802782059, 0.12256062775850296, 0.01303985994309187, 0.06283204257488251, -0.027378594502806664, 0.011445112526416779, -0.07749943435192108, 0.01521525252610445, 0.09695681929588318, -0.008734985254704952, -0.06161249056458473, 0.1885814666748047, -0.23526665568351746, 0.2589503228664398, 0.20190562307834625, -0.27314648032188416, -0.007590165827423334, -0.055192627012729645, -0.02908417023718357, 0.011530767194926739, 0.04231332242488861, -0.06399749219417572, 0.09472707659006119, -0.012074255384504795, 0.17302578687667847, -0.09233593195676804, -0.05877916142344475, 0.006148573011159897, -0.045616503804922104, -0.026285553351044655, 0.07993314415216446, 0.0008462725090794265, -0.18683476746082306, 0.16925865411758423, 0.27790799736976624, 0.03799940645694733, 0.17688943445682526, -0.020478136837482452, -0.01284985151141882, 0.08277671039104462, 0.04729708284139633, -0.04081476852297783, -0.08311234414577484, -0.17417576909065247, -0.01210075430572033, 0.046846017241477966, 0.047415636479854584, 0.09402626752853394, -0.12981857359409332, -0.03463515266776085, -0.010371892713010311, -0.008230880834162235, 0.030659737065434456, 0.07301753014326096, 0.07107849419116974, 0.16599732637405396, -0.03838445246219635, -0.05339452996850014, 0.10960589349269867, 0.0017868864815682173, -0.14136993885040283, 0.20887982845306396, -0.14818893373012543, -0.34259530901908875, -0.12917232513427734, -0.0867648720741272, -0.029825136065483093, 0.04879247769713402, 0.12979307770729065, -0.11440787464380264, -0.01778077520430088, -0.04824194684624672, 0.0796264037489891, -0.036798153072595596, 0.027040258049964905, -0.08490487188100815, 0.06436877697706223, -0.05344628170132637, -0.0797727182507515, -0.05201701819896698, -0.014777100645005703, -0.07155293971300125, 0.13367462158203125, -0.10632334649562836, 0.053206298500299454, 0.19712942838668823, -0.0169250275939703, 0.024924006313085556, -0.058406565338373184, 0.17565102875232697, -0.060387592762708664, 0.020117241889238358, 0.21071188151836395, -0.07933025807142258, 0.07106161117553711, 0.15830548107624054, -0.024507829919457436, -0.07245922088623047, 0.06186509132385254, -0.02200208604335785, -0.05851920694112778, -0.253706693649292, -0.1238887757062912, -0.1031811386346817, 0.09193369746208191, 0.025433367118239403, 0.06283120065927505, 0.15102054178714752, 0.048727087676525116, -0.041148725897073746, -0.025006167590618134, 0.08241767436265945, 0.07627341896295547, 0.206313356757164, -0.028320321813225746, 0.13544341921806335, -0.047125332057476044, -0.1632431000471115, 0.06553914397954941, 0.02585788629949093, 0.05163528770208359, 0.04192907735705376, 0.015675215050578117, 0.02836611121892929, 0.08762490004301071, 0.11066530644893646, 0.14655937254428864, 0.014020553790032864, -0.02018193155527115, -0.022501865401864052, -0.05880287289619446, -0.04233163222670555, 0.026394439861178398, -0.035855650901794434, -0.08962217718362808, -0.1119900643825531, -0.048014041036367416, 0.11177704483270645, 0.1001778095960617, 0.08392845094203949, -0.2267022579908371, 0.010645518079400063, 0.10174328833818436, -0.023865731433033943, -0.12150996923446655, 0.11580396443605423, 0.03214189410209656, -0.1096990779042244, 0.06149262562394142, -0.040129367262125015, 0.09714874625205994, 0.0022814313415437937, 0.11622074991464615, -0.08107011765241623, -0.07692360132932663, -0.0008016425999812782, 0.09576182067394257, -0.3126550614833832, 0.20519763231277466, 0.005049775820225477, -0.030059801414608955, -0.10098671168088913, -0.010667319409549236, 0.01272721029818058, 0.14456228911876678, 0.14138993620872498, -0.01636846549808979, -0.047059036791324615, -0.0685572624206543, -0.0022718447726219893, 0.034297212958335876, 0.14195629954338074, -0.01591768115758896, 0.02516845054924488, -0.07727576047182083, -0.001192987896502018, 0.0014477507211267948, -0.015167209319770336, -0.05040839686989784, -0.14661967754364014, 0.04186023399233818, 0.02961547113955021, 0.08571340143680573, -0.013867150992155075, -0.02947906404733658, -0.09506399184465408, 0.19214889407157898, -0.09019672125577927, -0.0900714099407196, -0.11013364791870117, -0.07756906747817993, 0.026730967685580254, -0.07365462183952332, 0.023100407794117928, -0.07007165998220444, 0.04902034252882004, -0.07611648738384247, -0.20075450837612152, 0.13603006303310394, -0.09154282510280609, -0.08485464751720428, -0.037480760365724564, 0.2172573208808899, -0.06341824680566788, -0.011535858735442162, 0.039780061691999435, 0.006312806624919176, -0.06184347718954086, -0.06746044009923935, -0.0006426157196983695, -0.039076682180166245, 0.048184361308813095, 0.05249987915158272, -0.12346860021352768, -0.16278760135173798, -0.05980563163757324, 0.002891985233873129, 0.30360278487205505, 0.1645577847957611, -0.02948632650077343, 0.13629451394081116, 0.16924114525318146, -0.07567854225635529, -0.3296005427837372, -0.08423265069723129, -0.13238343596458435, -0.02772258222103119, -0.007196566089987755, -0.09259703755378723, 0.0836065262556076, 0.001703658839687705, -0.0036774578038603067, 0.08056323230266571, -0.2274264395236969, -0.09979741275310516, 0.19183862209320068, 0.030743159353733063, 0.3134983479976654, -0.1442834734916687, -0.08389926701784134, -0.030905453488230705, -0.10037945955991745, 0.17103637754917145, -0.14046530425548553, 0.06112002581357956, -0.0034473962150514126, 0.039893124252557755, 0.059284478425979614, -0.02487628161907196, 0.056435178965330124, -0.01819455437362194, 0.03160769119858742, -0.10636061429977417, -0.05844838544726372, 0.08241177350282669, 0.0024761913809925318, 0.03775763139128685, -0.06516804546117783, 0.05738268047571182, -0.06684885919094086, -0.035548292100429535, -0.09500390291213989, 0.0745435357093811, -0.01021927036345005, -0.07620413601398468, 0.02951785735785961, -0.061697714030742645, 0.012749512679874897, -0.012714088894426823, 0.18958429992198944, -0.06599833816289902, 0.21219892799854279, 0.16696539521217346, 0.17687560617923737, -0.09102749824523926, 0.091745525598526, -0.04412252455949783, -0.07183077186346054, 0.0610368438065052, -0.05539917200803757, 0.06523667275905609, 0.10519197583198547, -0.03921082615852356, 0.06546217203140259, 0.10856408625841141, 0.01334424689412117, -0.033819183707237244, 0.1258237361907959, -0.2810550034046173, -0.026253128424286842, -0.08591146022081375, -0.020540647208690643, 0.043549545109272, 0.09623908251523972, 0.19246119260787964, -0.00015737091598566622, -0.02919951267540455, -0.02008306421339512, 0.02450527995824814, -0.044947750866413116, 0.06622393429279327, 0.01623004674911499, 0.031645260751247406, -0.10885564982891083, 0.07386025786399841, 0.02150200493633747, -0.17971928417682648, 0.029630661010742188, 0.19833356142044067, -0.13459375500679016, -0.13196398317813873, 0.00042243156349286437, 0.10783780366182327, -0.07893475145101547, -0.04341493546962738, -0.06775786727666855, -0.17950059473514557, 0.06487508118152618, 0.22096000611782074, 0.058790165930986404, 0.10996488481760025, -0.03330732882022858, -0.04478253424167633, -0.0342719592154026, 0.05363956093788147, 0.012828510254621506, -0.005760263651609421, -0.09595990926027298, 0.09001725912094116, -0.027985019609332085, 0.1266224980354309, -0.09768074005842209, -0.0459710992872715, -0.1450851708650589, 0.026050211861729622, -0.13407212495803833, -0.03824910894036293, -0.06659248471260071, -0.043339189141988754, -0.01124913152307272, -0.01511326152831316, -0.022847319021821022, -0.05438657104969025, -0.08436957001686096, 0.035583216696977615, -0.025014592334628105, 0.03921528160572052, -0.09354669600725174, -0.013526596128940582, 0.06268469244241714, -0.05161689594388008, 0.13120640814304352, 0.10546671599149704, -0.12457814812660217, 0.13502386212348938, -0.1812010258436203, -0.08663199096918106, 0.1265360414981842, -0.003943470306694508, 0.03080446831882, 0.0669696107506752, 0.006228941958397627, 0.08883927017450333, 0.020869024097919464, 0.051198266446590424, 0.046509820967912674, -0.10664595663547516, 0.0636739432811737, -0.002692954149097204, -0.1569676548242569, -0.054439954459667206, -0.06123199313879013, 0.022834140807390213, -0.04446331784129143, 0.14862565696239471, -0.08744236826896667, 0.1005316749215126, -0.09464464336633682, 0.029575875028967857, 0.008717979304492474, -0.16855457425117493, -0.11012908071279526, -0.053110431879758835, 0.04748434200882912, -0.010078650899231434, 0.16424398124217987, 0.019337669014930725, 0.03526383265852928, 0.05628693476319313, 0.031294044107198715, 0.013092348352074623, 0.04467005282640457, 0.20905660092830658, 0.05348546802997589, -0.08871020376682281, -0.1409897655248642, 0.007352826185524464, 0.002379845129325986, -0.008856358006596565, 0.16441228985786438, 0.07920760661363602, -0.014994136989116669, 0.10766896605491638, 0.004563302733004093, 0.03634093701839447, -0.07834482938051224, -0.15946142375469208, 0.0012032026425004005, 0.04100045934319496, -0.014259597286581993, 0.08077799528837204, 0.21470053493976593, -0.01330089196562767, 0.008470766246318817, -0.04340457543730736, -0.05637489631772041, -0.18824060261249542, -0.1312895119190216, -0.0845714583992958, -0.06697674840688705, -0.02515266090631485, -0.12414776533842087, 0.016781803220510483, -0.0001532944879727438, 0.05694594606757164, -0.07428449392318726, 0.142257958650589, 0.0766405537724495, -0.10623927414417267, 0.08162670582532883, -0.009897279553115368, 0.09989380091428757, 0.022054525092244148, -0.024788541719317436, -0.08686339110136032, 0.011519450694322586, -0.03159619867801666, 0.04900719225406647, -0.05925682187080383, 0.02248268760740757, -0.15817657113075256, -0.10698093473911285, -0.016275331377983093, 0.06617575883865356, -0.039089757949113846, 0.11803878098726273, 0.03683873638510704, -0.053827643394470215, 0.04992314428091049, 0.2138228565454483, -0.0650174617767334, -0.1305949091911316, -0.029067358002066612, 0.27713629603385925, 0.054810378700494766, 0.11259401589632034, 0.0056737689301371574, -0.028147105127573013, -0.05859175696969032, 0.3164442777633667, 0.3159428834915161, -0.07493191957473755, 0.04450205713510513, -0.01559616718441248, 0.03786202520132065, 0.10140972584486008, 0.1367167979478836, 0.09739989787340164, 0.30123594403266907, -0.06901838630437851, 0.02157541923224926, -0.02649674192070961, 0.0007710910867899656, -0.10486425459384918, 0.11020036041736603, 0.047674164175987244, -0.052773959934711456, -0.02508373372256756, 0.1056775152683258, -0.1944030523300171, 0.12081746011972427, -0.12700723111629486, -0.15397004783153534, -0.046807773411273956, -0.015134027227759361, 0.128025084733963, -0.0064892214722931385, 0.08581852167844772, -0.01340312510728836, -0.08905508369207382, 0.02656479924917221, 0.02237086184322834, -0.16412873566150665, 0.043157801032066345, 0.03980756923556328, -0.08183816820383072, 0.014863803051412106, -0.0011084802681580186, 0.03959228843450546, 0.08025969564914703, 0.04693528264760971, -0.03491491824388504, 0.08488823473453522, 0.009392122738063335, 0.01406730618327856, 0.04105626419186592, 0.023632006719708443, 0.026790685951709747, -0.08389341086149216, 0.07867597788572311, -0.17054449021816254, 0.05811412259936333, -0.008873228915035725, -0.07869670540094376, -0.014392186887562275, 0.03550434485077858, -0.043695636093616486, 0.045219264924526215, 0.09241417795419693, -0.010720588266849518, 0.016037018969655037, -0.07387358695268631, -0.030858373269438744, 0.0007537564961239696, -0.07714179158210754, -0.04410887137055397, -0.1376487910747528, -0.07173686474561691, 0.15450918674468994, -0.01432841643691063, -0.26202699542045593, -0.0018897594418376684, -0.08998318761587143, 0.0547727532684803, -0.22630734741687775, 0.0924634113907814, 0.09137526899576187, 0.01403881423175335, 0.008280803449451923, -0.025313010439276695, 0.034740231931209564, 0.11730024963617325, -0.09809382259845734, -0.09485206007957458 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-skills This model is a fine-tuned version of [flozi00/t5-skills](https://huggingface.co/flozi00/t5-skills) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1.0 ### Training results ### Framework versions - Transformers 4.12.5 - Pytorch 1.8.1 - Datasets 1.14.0 - Tokenizers 0.10.2
{"tags": ["generated_from_trainer"], "model-index": [{"name": "t5-skills", "results": []}]}
text2text-generation
aware-ai/t5-skills
[ "transformers", "pytorch", "tensorboard", "safetensors", "t5", "text2text-generation", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #safetensors #t5 #text2text-generation #generated_from_trainer #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
# t5-skills This model is a fine-tuned version of flozi00/t5-skills on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1.0 ### Training results ### Framework versions - Transformers 4.12.5 - Pytorch 1.8.1 - Datasets 1.14.0 - Tokenizers 0.10.2
[ "# t5-skills\n\nThis model is a fine-tuned version of flozi00/t5-skills on the None dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 5e-05\n- train_batch_size: 64\n- eval_batch_size: 64\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 1.0", "### Training results", "### Framework versions\n\n- Transformers 4.12.5\n- Pytorch 1.8.1\n- Datasets 1.14.0\n- Tokenizers 0.10.2" ]
[ "TAGS\n#transformers #pytorch #tensorboard #safetensors #t5 #text2text-generation #generated_from_trainer #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "# t5-skills\n\nThis model is a fine-tuned version of flozi00/t5-skills on the None dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 5e-05\n- train_batch_size: 64\n- eval_batch_size: 64\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 1.0", "### Training results", "### Framework versions\n\n- Transformers 4.12.5\n- Pytorch 1.8.1\n- Datasets 1.14.0\n- Tokenizers 0.10.2" ]
[ 64, 30, 6, 12, 8, 3, 90, 4, 30 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #safetensors #t5 #text2text-generation #generated_from_trainer #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n# t5-skills\n\nThis model is a fine-tuned version of flozi00/t5-skills on the None dataset.## Model description\n\nMore information needed## Intended uses & limitations\n\nMore information needed## Training and evaluation data\n\nMore information needed## Training procedure### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 5e-05\n- train_batch_size: 64\n- eval_batch_size: 64\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 1.0### Training results### Framework versions\n\n- Transformers 4.12.5\n- Pytorch 1.8.1\n- Datasets 1.14.0\n- Tokenizers 0.10.2" ]
[ -0.09696397930383682, 0.010667325928807259, -0.0015045276377350092, 0.08693140000104904, 0.16118410229682922, 0.03414807841181755, 0.12613415718078613, 0.11472363024950027, -0.1377161294221878, 0.02939494699239731, 0.05572813004255295, 0.08327025920152664, 0.03354182094335556, 0.11834541708230972, -0.04938024282455444, -0.28236648440361023, -0.025067493319511414, 0.015324761159718037, -0.11836998164653778, 0.12084577232599258, 0.12461040914058685, -0.10375392436981201, 0.06951074302196503, 0.022206341847777367, -0.2061852663755417, 0.032169926911592484, 0.017802003771066666, -0.08760786056518555, 0.1385345607995987, 0.05972103402018547, 0.11436474323272705, 0.019660204648971558, 0.1371261030435562, -0.1545395702123642, 0.01698758266866207, 0.11095837503671646, 0.026618534699082375, 0.08081872761249542, 0.05724411830306053, 0.002942795865237713, 0.1744544804096222, -0.11126438528299332, 0.084729865193367, 0.052440498024225235, -0.0858352854847908, -0.21593433618545532, -0.06977177411317825, 0.03504463657736778, 0.05141530930995941, 0.097590871155262, 0.005723763722926378, 0.17593923211097717, -0.07049515843391418, 0.10808660089969635, 0.18792356550693512, -0.28835687041282654, -0.09620493650436401, 0.07229797542095184, 0.06214697286486626, 0.09603407233953476, -0.11145361512899399, 0.010530872270464897, 0.06956515461206436, 0.050103094428777695, 0.1118040606379509, -0.014134311117231846, -0.10667777806520462, -0.013784845359623432, -0.12954318523406982, 0.0065084039233624935, 0.15232889354228973, 0.01397265587002039, -0.05517903342843056, -0.08263048529624939, -0.07083359360694885, -0.08225904405117035, -0.020064864307641983, -0.04463917016983032, 0.025503404438495636, -0.03292374312877655, -0.06876355409622192, -0.07001924514770508, -0.10182458907365799, -0.08004264533519745, -0.016712846234440804, 0.1598411202430725, 0.038579098880290985, 0.021144192665815353, -0.07052774727344513, 0.1101580560207367, -0.008741720579564571, -0.12497938424348831, -0.000814541126601398, -0.0012909786310046911, -0.04465474933385849, -0.06036127731204033, -0.08011544495820999, -0.08971633017063141, 0.024400854483246803, 0.10786337405443192, -0.07861990481615067, 0.05795424431562424, -0.01344931498169899, 0.01015998050570488, -0.04578295350074768, 0.13993804156780243, -0.030126042664051056, -0.00548265827819705, 0.022177953273057938, 0.0682893693447113, -0.006617702078074217, -0.02036638930439949, -0.07208124548196793, -0.016076816245913506, 0.0992773026227951, 0.042321573942899704, -0.0826110914349556, 0.057089533656835556, 0.013984546065330505, -0.02090747281908989, -0.07142695039510727, -0.128618061542511, 0.013937585055828094, -0.006089258473366499, -0.08710784465074539, 0.02815573662519455, 0.03199115768074989, -0.004445843398571014, -0.030447199940681458, 0.10270868241786957, -0.08976112306118011, -0.0006079634767957032, -0.10187648981809616, -0.09543747454881668, -0.0032420449424535036, -0.07286741584539413, -0.00046062699402682483, -0.09565956145524979, -0.18612395226955414, -0.031151995062828064, 0.048558276146650314, -0.039153214544057846, -0.0319940522313118, -0.007249930407851934, -0.08047705888748169, 0.00848101545125246, -0.0006850211066193879, 0.1778336465358734, -0.04329359158873558, 0.1051425039768219, 0.03792855516076088, 0.02245546504855156, -0.01833229325711727, 0.030696846544742584, -0.0726783350110054, -0.003142132656648755, -0.1293151080608368, 0.05678253620862961, -0.06852395087480545, 0.03770729899406433, -0.08606863021850586, -0.1269010454416275, 0.021362509578466415, 0.007149818353354931, 0.054667484015226364, 0.08326850086450577, -0.1826757788658142, -0.038248103111982346, 0.14521954953670502, -0.10813187062740326, -0.09644890576601028, 0.08999072760343552, -0.04743804782629013, 0.07763704657554626, 0.06930070370435715, 0.1298639178276062, 0.12463598698377609, -0.12000880390405655, 0.03353826329112053, 0.0018076665000990033, 0.062116917222738266, 0.016082793474197388, 0.035251740366220474, 0.011945598758757114, -0.018885470926761627, 0.021286102011799812, -0.042749498039484024, -0.0009851903887465596, -0.10785247385501862, -0.07069584727287292, -0.07344776391983032, -0.10531044006347656, 0.04052979126572609, 0.0477079413831234, 0.06911306083202362, -0.09458689391613007, -0.10953275114297867, 0.08624064177274704, 0.112995445728302, -0.05821944773197174, 0.013788905926048756, -0.08207446336746216, 0.029997175559401512, 0.013459759764373302, -0.017628924921154976, -0.21856780350208282, -0.12081491202116013, 0.003421517089009285, -0.010644149035215378, 0.03494482859969139, 0.03943561017513275, 0.08095554262399673, 0.08875215798616409, -0.06287681311368942, 0.010342911817133427, -0.09510809183120728, -0.009230202063918114, -0.0878598764538765, -0.20422382652759552, -0.053643595427274704, -0.03517594933509827, 0.146016463637352, -0.2522761821746826, 0.03484214469790459, 0.0004994124174118042, 0.13289201259613037, 0.03637475520372391, -0.02512022666633129, -0.039478596299886703, 0.06265144795179367, -0.030078347772359848, -0.08338969200849533, 0.04884044826030731, 0.01587233506143093, -0.07479953020811081, -0.09600316733121872, -0.13698972761631012, 0.12009665369987488, 0.10409147292375565, -0.009291843511164188, -0.11264465749263763, -0.0019507389515638351, -0.08625952154397964, -0.018778333440423012, -0.07313540577888489, -0.00023799626796972007, 0.14598780870437622, -0.009975473396480083, 0.15823163092136383, -0.07377606630325317, -0.07234746962785721, 0.02435135841369629, -0.006869022734463215, 0.02910642698407173, 0.06273514777421951, 0.043870482593774796, -0.08337345719337463, 0.09114829450845718, 0.06892365217208862, -0.08201676607131958, 0.17169950902462006, -0.07559012621641159, -0.07301031053066254, 0.008721590042114258, 0.008343696594238281, 0.007610899396240711, 0.12299934029579163, -0.11837325990200043, 0.000908761634491384, 0.023871298879384995, 0.008884737268090248, 0.04080071672797203, -0.20763875544071198, -0.008054827339947224, 0.033544957637786865, -0.03568490594625473, -0.012874624691903591, 0.010492034256458282, 0.028990020975470543, 0.11814801394939423, -0.009493930265307426, -0.02100863680243492, 0.017972473055124283, 0.007246340159326792, -0.07969594746828079, 0.199875146150589, -0.09928663820028305, -0.1217673122882843, -0.11145728826522827, 0.00942725595086813, -0.07145942002534866, -0.024451300501823425, 0.03230925649404526, -0.09733518213033676, -0.04106450453400612, -0.0664137750864029, 0.03748026117682457, -0.019724076613783836, 0.01787223480641842, 0.04341820254921913, 0.018778592348098755, 0.09589900076389313, -0.15652139484882355, 0.01443458255380392, -0.03253529593348503, -0.11375854164361954, 0.01984359137713909, 0.05837225541472435, 0.09963785111904144, 0.14074306190013885, -0.04964077100157738, 0.03366430848836899, -0.04051358625292778, 0.22566039860248566, -0.07201111316680908, 0.009811279363930225, 0.16775308549404144, -0.002612085547298193, 0.03616265952587128, 0.06632924824953079, 0.056599799543619156, -0.10434098541736603, 0.04243183881044388, 0.08750620484352112, -0.03990012779831886, -0.24488119781017303, -0.01644696295261383, -0.037743519991636276, -0.07016723603010178, 0.06390289962291718, 0.050589367747306824, 0.08274587243795395, 0.067291758954525, 0.009997847490012646, 0.05954417586326599, 0.006492560729384422, 0.07489664852619171, 0.11009778827428818, 0.03883372247219086, 0.11481042206287384, -0.04988628998398781, -0.04285409301519394, 0.07009351253509521, -0.04118343070149422, 0.26253700256347656, -0.03332456946372986, 0.047567013651132584, 0.06157330051064491, 0.12094101309776306, -0.010998617857694626, 0.09179212898015976, -0.00429170485585928, -0.020273247733712196, 0.011714237742125988, -0.07109501212835312, -0.01056874543428421, 0.008843657560646534, -0.10635560750961304, 0.057444918900728226, -0.118450827896595, 0.02988443337380886, 0.034631941467523575, 0.2482563555240631, 0.001556076342239976, -0.29405707120895386, -0.10710979253053665, -0.01910499669611454, -0.03294086456298828, -0.07080591470003128, 0.027020122855901718, 0.13248252868652344, -0.11147801578044891, 0.06340488791465759, -0.08191666007041931, 0.09746871143579483, 0.025949085131287575, 0.013748674653470516, 0.09862294048070908, 0.15746527910232544, -0.018847154453396797, 0.07523193955421448, -0.26202592253685, 0.22259624302387238, 0.007088472601026297, 0.13223758339881897, -0.07668015360832214, 0.03943510353565216, 0.04411016404628754, 0.11589785665273666, 0.06650838255882263, -0.018146852031350136, -0.03580353781580925, -0.15098392963409424, -0.012707464396953583, 0.04378920793533325, 0.14495819807052612, -0.026672381907701492, 0.10324669629335403, -0.06885062903165817, 0.017002129927277565, 0.07229603826999664, -0.07690052688121796, -0.1905110478401184, -0.10224997252225876, 0.007629694417119026, 0.0180183257907629, -0.041892703622579575, -0.09552907198667526, -0.11437305808067322, -0.0491630993783474, 0.14214932918548584, 0.02062506601214409, -0.05400720611214638, -0.1624421626329422, 0.11248334497213364, 0.10447777062654495, -0.04471403360366821, 0.027364084497094154, 0.014460097067058086, 0.12968052923679352, 0.03829878568649292, -0.09661626815795898, 0.048625554889440536, -0.0787603110074997, -0.19570641219615936, -0.03891365975141525, 0.11256203055381775, 0.028599856421351433, 0.029705224558711052, 0.012364713475108147, -0.0023041851818561554, 0.013477982953190804, -0.09781524538993835, -0.009212290868163109, 0.01864928938448429, 0.04896721988916397, 0.00961911678314209, -0.09060537070035934, -0.0052219172939658165, -0.03003840148448944, -0.022602805867791176, 0.12962383031845093, 0.18106940388679504, -0.08344479650259018, 0.020412927493453026, 0.04556586965918541, -0.07263254374265671, -0.15497665107250214, 0.09360344707965851, 0.09767413884401321, 0.013819757848978043, 0.025100035592913628, -0.19887132942676544, 0.121043361723423, 0.10416854918003082, -0.005916413385421038, 0.11114346235990524, -0.3427008092403412, -0.1368991583585739, 0.0747932568192482, 0.15267427265644073, 0.05441185086965561, -0.16157686710357666, -0.02479473315179348, -0.01877371408045292, -0.11955293267965317, 0.10873168706893921, -0.1775897592306137, 0.10236276686191559, 0.00004557532156468369, 0.08498062193393707, 0.025333961471915245, -0.02660311385989189, 0.11887125670909882, -0.004646413028240204, 0.10007808357477188, -0.0643947571516037, 0.033572033047676086, 0.11720585078001022, -0.041081614792346954, 0.013521144166588783, -0.06357291340827942, 0.06967294961214066, -0.11084585636854172, -0.02792860008776188, -0.08598913252353668, 0.07000907510519028, -0.06291051208972931, -0.07962270081043243, -0.03699707239866257, 0.03956625983119011, 0.038225188851356506, -0.0556732639670372, 0.05088208243250847, -0.006357715930789709, 0.1879442036151886, 0.11625529080629349, 0.09943853318691254, -0.027532007545232773, -0.06550952792167664, 0.006069554015994072, -0.00869454350322485, 0.06877929717302322, -0.1384175568819046, 0.024923868477344513, 0.12771821022033691, 0.05600523576140404, 0.12101329118013382, 0.07779520004987717, -0.03797595947980881, 0.008629720658063889, 0.06571464985609055, -0.1288277506828308, -0.13288959860801697, -0.03729435056447983, -0.03706725314259529, -0.1109829917550087, 0.06379842013120651, 0.12321467697620392, -0.07998731732368469, 0.005154925864189863, -0.02457491308450699, -0.02101222239434719, -0.038509801030159, 0.19096916913986206, 0.050877053290605545, 0.06483718007802963, -0.09001854807138443, 0.08813917636871338, 0.04692360386252403, -0.04698788747191429, 0.010147579945623875, 0.10433664917945862, -0.09249737858772278, -0.022998688742518425, 0.09924105554819107, 0.1661309152841568, -0.07717578113079071, -0.04772321507334709, -0.11346063762903214, -0.13416768610477448, 0.03545404598116875, 0.22598116099834442, 0.055144742131233215, -0.010313468985259533, -0.05684715136885643, 0.05243819206953049, -0.162626251578331, 0.0887492224574089, 0.05601056292653084, 0.0776001438498497, -0.1705920398235321, 0.20930208265781403, 0.01431758888065815, 0.024919385090470314, -0.03370009362697601, 0.018733995035290718, -0.08791317045688629, -0.01837214268743992, -0.1580832451581955, -0.02033550851047039, 0.011846502311527729, 0.00971876922994852, 0.0022451092954725027, -0.05572129040956497, -0.05464255437254906, 0.059066079556941986, -0.0808538869023323, -0.04408953711390495, 0.031160349026322365, 0.03645915910601616, -0.13254311680793762, -0.008292153477668762, 0.0012987260706722736, -0.09880899637937546, 0.0761512964963913, 0.04956751689314842, -0.009462535381317139, 0.07162147015333176, -0.11531241983175278, -0.003541011596098542, 0.037101518362760544, 0.01930956542491913, 0.06667295843362808, -0.04987845942378044, 0.016247102990746498, -0.036015357822179794, 0.07596488296985626, 0.023386694490909576, 0.07154320925474167, -0.12216655910015106, -0.01656591147184372, -0.03447876498103142, -0.04942724481225014, -0.051140859723091125, 0.030375178903341293, 0.10096859186887741, 0.04268429055809975, 0.15878497064113617, -0.09460916370153427, 0.037056341767311096, -0.22056660056114197, -0.02109655737876892, 0.0009202135261148214, -0.05599251016974449, -0.07666502147912979, -0.0424635112285614, 0.0680452287197113, -0.06701596081256866, 0.09106957167387009, 0.02498519979417324, 0.11084291338920593, 0.041622258722782135, -0.0628664493560791, -0.026971114799380302, 0.007146892137825489, 0.2535320818424225, 0.047526899725198746, -0.0006983109633438289, 0.06708366423845291, 0.006562354508787394, 0.07088713347911835, 0.008534601889550686, 0.2346997857093811, 0.1258363425731659, -0.08157449215650558, 0.06636954843997955, 0.06264432519674301, -0.08449439704418182, -0.1273869425058365, 0.06470609456300735, -0.016949420794844627, 0.10870443284511566, -0.07498642802238464, 0.1313599944114685, 0.12460385262966156, -0.14386221766471863, 0.04470961540937424, -0.06707065552473068, -0.09483163803815842, -0.125001922249794, 0.0029995390214025974, -0.07949705421924591, -0.13914817571640015, 0.01793641410768032, -0.1359792798757553, 0.046113792806863785, 0.0694853812456131, 0.019826743751764297, -0.00031697360100224614, 0.18284322321414948, -0.04659951478242874, 0.0016341328155249357, 0.07786930352449417, 0.01943039335310459, 0.003730864729732275, -0.08479199558496475, -0.07616430521011353, 0.0183049775660038, -0.006673526018857956, 0.03220643103122711, -0.056749437004327774, -0.02991115115582943, 0.033604834228754044, -0.0240696519613266, -0.056755565106868744, 0.036803536117076874, 0.01832900568842888, 0.05707154422998428, 0.020525120198726654, 0.024370716884732246, -0.019686833024024963, -0.043378621339797974, 0.30259716510772705, -0.08733752369880676, -0.1277020424604416, -0.13808754086494446, 0.2497389316558838, 0.029689477756619453, -0.020189780741930008, 0.06919820606708527, -0.10284154862165451, -0.010167435742914677, 0.214427649974823, 0.14588813483715057, -0.06229915842413902, -0.012471972964704037, -0.010178198106586933, -0.02049306407570839, -0.059229981154203415, 0.16329386830329895, 0.11823143810033798, 0.039111338555812836, -0.040103405714035034, -0.008521202951669693, -0.02116694115102291, -0.008811364881694317, -0.061952076852321625, 0.11213954538106918, 0.03344402089715004, -0.015108359977602959, -0.02750369906425476, 0.08655394613742828, 0.002259122673422098, -0.14896564185619354, 0.06504317373037338, -0.14460060000419617, -0.16427788138389587, -0.03859768062829971, 0.07494965195655823, -0.027747638523578644, 0.059062421321868896, -0.016118468716740608, -0.010532661341130733, 0.10080873966217041, -0.009795887395739555, -0.0354623906314373, -0.10206929594278336, 0.11000756174325943, -0.12012529373168945, 0.2195436954498291, -0.033122822642326355, 0.05806635320186615, 0.11414053291082382, 0.008287408389151096, -0.10110434144735336, 0.05756760016083717, 0.04920216277241707, -0.09403345733880997, 0.01819206029176712, 0.14261651039123535, -0.04222923889756203, 0.052914734929800034, 0.015643594786524773, -0.1749516725540161, 0.0012911480152979493, -0.010403920896351337, -0.04399845749139786, -0.05797005444765091, 0.0011860150843858719, -0.07892857491970062, 0.12912236154079437, 0.22515971958637238, -0.029861245304346085, 0.030916759744286537, -0.09749333560466766, 0.050887297838926315, 0.07401836663484573, 0.06764452159404755, -0.03451274707913399, -0.2334587126970291, -0.002969204680994153, 0.017833556979894638, -0.02344447560608387, -0.25747907161712646, -0.07819847017526627, 0.033943187445402145, -0.049415577203035355, -0.08197750151157379, 0.0968126729130745, 0.11383494734764099, 0.039908405393362045, -0.030493346974253654, -0.10736873000860214, -0.06577683985233307, 0.1657734513282776, -0.16427287459373474, -0.041229214519262314 ]
null
null
transformers
**Test Result** | Model | WER | CER | | ------------- | ------------- | ------------- | | flozi00/wav2vec2-large-xlsr-53-german-with-lm | **5.7467896819046755%** | **1.8980142607670552%** | ## Evaluation The model can be evaluated as follows on the German test data of Common Voice. ```python import torchaudio.functional as F import torch from transformers import AutoModelForCTC, AutoProcessor import re from datasets import load_dataset, load_metric CHARS_TO_IGNORE = [",", "?", "¿", ".", "!", "¡", ";", ";", ":", '""', "%", '"', "�", "ʿ", "·", "჻", "~", "՞", "؟", "،", "।", "॥", "«", "»", "„", "“", "”", "「", "」", "‘", "’", "《", "》", "(", ")", "[", "]", "{", "}", "=", "`", "_", "+", "<", ">", "…", "–", "°", "´", "ʾ", "‹", "›", "©", "®", "—", "→", "。", "、", "﹂", "﹁", "‧", "~", "﹏", ",", "{", "}", "(", ")", "[", "]", "【", "】", "‥", "〽", "『", "』", "〝", "〟", "⟨", "⟩", "〜", ":", "!", "?", "♪", "؛", "/", "\\", "º", "−", "^", "ʻ", "ˆ"] chars_to_ignore_regex = f"[{re.escape(''.join(CHARS_TO_IGNORE))}]" counter = 0 wer_counter = 0 cer_counter = 0 def main(): model = AutoModelForCTC.from_pretrained("flozi00/wav2vec2-large-xlsr-53-german-with-lm") processor = AutoProcessor.from_pretrained("flozi00/wav2vec2-large-xlsr-53-german-with-lm") wer = load_metric("wer") cer = load_metric("cer") ds = load_dataset("common_voice", "de", split="test") #ds = ds.select(range(100)) def calculate_metrics(batch): global counter, wer_counter, cer_counter resampled_audio = F.resample(torch.tensor(batch["audio"]["array"]), 48_000, 16_000).numpy() input_values = processor(resampled_audio, return_tensors="pt", sampling_rate=16_000).input_values with torch.no_grad(): logits = model(input_values).logits.numpy()[0] decoded = processor.decode(logits) pred = decoded.text ref = re.sub(chars_to_ignore_regex, "", batch["sentence"]).upper() wer_result = wer.compute(predictions=[pred], references=[ref]) cer_result = cer.compute(predictions=[pred], references=[ref]) counter += 1 wer_counter += wer_result cer_counter += cer_result print(f"WER: {(wer_counter/counter)*100} | CER: {(cer_counter/counter)*100}") return batch ds.map(calculate_metrics, remove_columns=ds.column_names) main() ``` Credits: The Acoustic model is an copy of [jonatasgrosman's model](https://huggingface.co/jonatasgrosman/wav2vec2-large-xlsr-53-german) I used to train an matching kenlm language model for
{"language": "de", "license": "apache-2.0", "tags": ["audio", "automatic-speech-recognition", "speech", "xlsr-fine-tuning-week", "hf-asr-leaderboard"], "datasets": ["common_voice"], "metrics": ["wer", "cer"], "model-index": [{"name": "XLSR Wav2Vec2 German with LM by Florian Zimmermeister @A\\\\Ware", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Speech Recognition"}, "dataset": {"name": "Common Voice de", "type": "common_voice", "args": "de"}, "metrics": [{"type": "wer", "value": 5.7467896819046755, "name": "Test WER"}, {"type": "cer", "value": 1.8980142607670552, "name": "Test CER"}]}]}]}
automatic-speech-recognition
aware-ai/wav2vec2-large-xlsr-53-german-with-lm
[ "transformers", "pytorch", "safetensors", "wav2vec2", "automatic-speech-recognition", "audio", "speech", "xlsr-fine-tuning-week", "hf-asr-leaderboard", "de", "dataset:common_voice", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "de" ]
TAGS #transformers #pytorch #safetensors #wav2vec2 #automatic-speech-recognition #audio #speech #xlsr-fine-tuning-week #hf-asr-leaderboard #de #dataset-common_voice #license-apache-2.0 #model-index #endpoints_compatible #region-us
Test Result Model: flozi00/wav2vec2-large-xlsr-53-german-with-lm, WER: 5.7467896819046755%, CER: 1.8980142607670552% Evaluation ---------- The model can be evaluated as follows on the German test data of Common Voice. Credits: The Acoustic model is an copy of jonatasgrosman's model I used to train an matching kenlm language model for
[]
[ "TAGS\n#transformers #pytorch #safetensors #wav2vec2 #automatic-speech-recognition #audio #speech #xlsr-fine-tuning-week #hf-asr-leaderboard #de #dataset-common_voice #license-apache-2.0 #model-index #endpoints_compatible #region-us \n" ]
[ 92 ]
[ "passage: TAGS\n#transformers #pytorch #safetensors #wav2vec2 #automatic-speech-recognition #audio #speech #xlsr-fine-tuning-week #hf-asr-leaderboard #de #dataset-common_voice #license-apache-2.0 #model-index #endpoints_compatible #region-us \n" ]
[ -0.1748489886522293, 0.10790791362524033, -0.004587041679769754, -0.04349851980805397, 0.0630904957652092, -0.04866142198443413, 0.13651427626609802, 0.09375923871994019, 0.06406829506158829, -0.004438403528183699, 0.061536967754364014, 0.13045434653759003, 0.028254127129912376, 0.08415082842111588, -0.07822952419519424, -0.13364626467227936, 0.08722759038209915, 0.011518842540681362, 0.05529124662280083, 0.08291985839605331, 0.103636734187603, -0.049384284764528275, 0.02262590266764164, 0.047467853873968124, -0.03078303299844265, -0.00008229957893490791, 0.08883079141378403, -0.134031280875206, 0.1315242499113083, 0.041879624128341675, -0.01187409833073616, 0.07517077028751373, 0.03574443235993385, -0.1673784703016281, 0.03084520809352398, 0.016461042687296867, 0.009961407631635666, 0.044523876160383224, 0.03872930631041527, 0.012028885073959827, -0.04076666012406349, 0.04698704183101654, -0.057123079895973206, 0.10454150289297104, -0.035969898104667664, -0.24184997379779816, -0.08722516149282455, 0.09543216228485107, 0.056797247380018234, 0.0838019922375679, -0.023663973435759544, 0.15091249346733093, -0.11158281564712524, 0.07513970881700516, 0.09126464277505875, -0.2248353809118271, 0.05263833329081535, -0.041705355048179626, 0.02177143096923828, 0.008645846508443356, -0.03100566752254963, 0.04312286153435707, 0.035010650753974915, -0.006692864000797272, -0.009939194656908512, -0.0407058522105217, -0.1680724173784256, -0.022237038239836693, -0.09957098960876465, -0.02552003227174282, 0.2200498729944229, 0.041527505964040756, 0.015704194083809853, -0.08638536930084229, -0.05192847549915314, 0.027078203856945038, -0.06727059930562973, 0.018844133242964745, -0.012224026024341583, 0.03421902284026146, 0.07155252248048782, 0.01890440098941326, -0.10062248259782791, -0.07327697426080704, -0.09020119160413742, 0.14770208299160004, -0.00759419659152627, 0.036310795694589615, -0.13770851492881775, 0.005177667830139399, -0.01709546335041523, -0.11169061809778214, -0.02157326601445675, 0.012852317653596401, 0.007764911279082298, 0.040004078298807144, 0.017184371128678322, 0.013087719678878784, 0.18651436269283295, 0.06351416558027267, -0.024921543896198273, 0.019071338698267937, -0.058878421783447266, 0.08199144154787064, -0.016638444736599922, 0.0817878469824791, -0.029927106574177742, -0.029712021350860596, 0.09412377327680588, 0.05103768780827522, 0.07569658011198044, -0.03107166849076748, -0.061995428055524826, -0.02365158684551716, 0.04653472825884819, 0.08155489712953568, 0.047461558133363724, 0.013558783568441868, -0.04062950238585472, 0.029048876836895943, 0.13850964605808258, -0.1465139538049698, -0.011454162187874317, 0.0761866495013237, 0.06584365665912628, 0.0686953216791153, -0.003611711086705327, 0.04038107022643089, -0.0749138668179512, 0.030340010300278664, -0.009060523472726345, -0.011572199873626232, 0.052241165190935135, 0.00031403606408275664, 0.06028874218463898, -0.07277083396911621, 0.0302236620336771, -0.10575687885284424, -0.05600768327713013, -0.027071097865700722, -0.05659210681915283, 0.039583902806043625, -0.12222766131162643, -0.017403488978743553, -0.060294732451438904, 0.014651629142463207, -0.11929380893707275, 0.0230985339730978, -0.10827348381280899, 0.08162447065114975, 0.05859231948852539, 0.039415016770362854, -0.111524797976017, 0.06223322078585625, -0.06429553776979446, -0.011017085053026676, -0.013647911138832569, 0.06374421715736389, -0.11569436639547348, 0.08103985339403152, -0.048463355749845505, -0.01938912831246853, -0.09680501371622086, 0.059196602553129196, -0.045214634388685226, 0.09414581209421158, -0.17050491273403168, -0.15167848765850067, 0.1948876976966858, -0.12787437438964844, -0.11718631535768509, 0.1449286937713623, 0.05115818604826927, -0.03301675617694855, 0.11266275495290756, 0.25061163306236267, 0.048958051949739456, -0.13979630172252655, -0.011804702691733837, 0.09898116439580917, -0.09002071619033813, -0.13435210287570953, 0.04011143743991852, -0.07291428744792938, -0.001689861179329455, 0.03434436768293381, -0.03533518686890602, 0.08570898324251175, -0.011678752489387989, -0.087566077709198, -0.03678315505385399, -0.10080709308385849, -0.018881767988204956, -0.0048020039685070515, -0.014793001115322113, -0.046531885862350464, -0.0152256665751338, -0.0699402391910553, 0.09725875407457352, -0.02821231819689274, 0.03663875535130501, -0.14172451198101044, 0.11163538694381714, -0.027098601683974266, 0.02713456191122532, -0.12321209907531738, 0.15581351518630981, -0.05165311321616173, 0.043989479541778564, 0.0590982586145401, 0.06753029674291611, 0.0463627390563488, -0.068946473300457, -0.0027532000094652176, -0.06735025346279144, 0.1327952742576599, 0.05252161622047424, 0.006479985546320677, -0.19937007129192352, 0.048289090394973755, -0.053451597690582275, 0.10525590926408768, -0.0973811149597168, -0.019517017528414726, 0.12055888026952744, 0.06940466910600662, 0.003753891447558999, 0.04479316994547844, 0.031138388440012932, 0.004114850889891386, 0.026127958670258522, 0.01036726776510477, 0.05380900576710701, -0.009720224887132645, -0.06853754818439484, 0.2049754410982132, -0.19709359109401703, 0.23068402707576752, 0.19806784391403198, -0.0792900025844574, 0.09013370424509048, 0.14196185767650604, -0.03106020949780941, -0.022201018407940865, -0.00620453292503953, -0.03699938952922821, 0.12723594903945923, -0.005705904681235552, 0.12783771753311157, -0.067324697971344, -0.012275398708879948, 0.026601629331707954, -0.04527982696890831, 0.007211774587631226, 0.07046612352132797, -0.0025009617675095797, -0.06366104632616043, 0.092569500207901, 0.11903184652328491, -0.031297896057367325, 0.19826501607894897, -0.09822625666856766, -0.06613582372665405, 0.09185316413640976, -0.021527478471398354, -0.03679407015442848, 0.10540001839399338, -0.18720482289791107, -0.04089048132300377, 0.06134228780865669, 0.005945342127233744, 0.0628640279173851, -0.18658845126628876, 0.01372010912746191, -0.0523957759141922, -0.101023830473423, -0.15275134146213531, 0.07037205249071121, -0.019867682829499245, 0.09036750346422195, -0.10310238599777222, -0.22226230800151825, 0.07318420708179474, -0.05361124873161316, -0.13704003393650055, 0.05632853880524635, -0.07679253816604614, -0.2684335708618164, -0.11266779154539108, -0.04402008280158043, -0.011463199742138386, -0.001112748752348125, 0.11077773571014404, -0.09465653449296951, -0.029108108952641487, -0.022682318463921547, 0.013151881285011768, 0.053937751799821854, 0.014348864555358887, 0.07235996425151825, 0.03410239890217781, 0.11537084728479385, -0.1500670164823532, -0.010831542313098907, -0.044113073498010635, 0.018001480028033257, 0.03904879465699196, 0.03503342345356941, 0.0354829877614975, 0.18530632555484772, 0.0916539654135704, 0.01826460286974907, 0.0013102017110213637, 0.169088676571846, -0.1284942477941513, -0.04270635172724724, 0.18402469158172607, -0.03991459682583809, 0.0013633257476612926, 0.17433400452136993, 0.0491853766143322, -0.03989841416478157, -0.046307217329740524, -0.010178023017942905, -0.04505939781665802, -0.21852855384349823, -0.1327744424343109, -0.09310230612754822, -0.01599390245974064, -0.04598367586731911, 0.08788389712572098, 0.05956166982650757, -0.04441903159022331, -0.034975532442331314, -0.12320038676261902, 0.05700713396072388, -0.05294204130768776, 0.19996081292629242, -0.028066353872418404, 0.0869719460606575, -0.08422178775072098, -0.054814089089632034, 0.04859915375709534, 0.08955454081296921, 0.005391744431108236, 0.12883590161800385, 0.06630755960941315, 0.04621746018528938, 0.14376001060009003, 0.11458832770586014, 0.05653263255953789, 0.011960471980273724, -0.031310807913541794, 0.02430763654410839, -0.05725164711475372, -0.04704933241009712, 0.03820174187421799, 0.11633375287055969, -0.06829279661178589, -0.022672973573207855, -0.03757118806242943, 0.04887883737683296, 0.23064368963241577, 0.08407021313905716, -0.15251104533672333, 0.004173139575868845, 0.017780311405658722, -0.11232887953519821, 0.019645931199193, 0.09181150048971176, 0.003750668140128255, -0.024656912311911583, 0.1081516221165657, 0.0570228137075901, 0.08792275190353394, -0.06649842858314514, 0.061608631163835526, -0.12562339007854462, -0.0010483451187610626, 0.03752180561423302, 0.05947291851043701, -0.231941357254982, 0.23718076944351196, 0.027488524094223976, 0.1275353729724884, -0.016737880185246468, 0.004500866401940584, 0.06921296566724777, 0.1656973510980606, 0.115940622985363, 0.009526245296001434, -0.04237368330359459, -0.068238265812397, -0.11225870996713638, 0.05895066261291504, -0.007123169954866171, 0.10304854065179825, -0.056144338101148605, -0.024033570662140846, -0.05024654045701027, 0.04779880866408348, -0.13538970053195953, -0.14159061014652252, -0.05893383547663689, 0.04293036460876465, 0.29515540599823, 0.10726400464773178, -0.06147659942507744, -0.0716942623257637, -0.21255014836788177, -0.01247341651469469, -0.15980176627635956, 0.004640362691134214, -0.06449785828590393, -0.13868188858032227, 0.07526230812072754, -0.02335859276354313, -0.013428946025669575, 0.0326189361512661, 0.05163554474711418, -0.021003762260079384, -0.1062643900513649, 0.10424023866653442, -0.119326151907444, -0.11539500206708908, -0.008616598322987556, 0.27127543091773987, 0.008566862903535366, 0.04937209561467171, 0.025526218116283417, 0.0008143943850882351, -0.0026570323389023542, -0.03637869656085968, 0.12122705578804016, 0.082670196890831, -0.1022481694817543, 0.006512138992547989, 0.01612854190170765, -0.2176036387681961, -0.04891025647521019, -0.03392135724425316, 0.16310866177082062, 0.16526411473751068, -0.040320977568626404, 0.20867979526519775, 0.25909847021102905, -0.014259574003517628, -0.3030749261379242, -0.13810810446739197, -0.05151290073990822, 0.00011642681056400761, -0.037819210439920425, -0.10693848878145218, 0.1498020738363266, -0.027612095698714256, -0.09953770786523819, 0.07664139568805695, -0.18605054914951324, -0.08685928583145142, 0.2718123495578766, -0.12803538143634796, 0.2362229973077774, -0.07774866372346878, -0.07331927865743637, -0.05417622625827789, -0.12383753061294556, 0.05541492626070976, -0.15893711149692535, 0.06290929019451141, 0.02780703455209732, 0.045113757252693176, -0.013767196796834469, -0.02400682121515274, 0.08110442012548447, 0.0834396481513977, -0.01759381778538227, 0.001835940289311111, 0.06538964807987213, 0.025854332372546196, 0.02779318392276764, 0.08791694790124893, -0.11912893503904343, 0.013023633509874344, -0.043408822268247604, -0.04661090672016144, -0.08643468469381332, 0.11280852556228638, 0.05909241735935211, 0.038564085960388184, 0.06588280946016312, -0.08248912543058395, -0.025994211435317993, 0.017786268144845963, 0.19007891416549683, -0.10711956769227982, 0.024757005274295807, 0.13514377176761627, 0.22452640533447266, -0.2674051523208618, -0.0848817452788353, -0.07710794359445572, -0.06616716831922531, 0.1192941665649414, -0.010167189873754978, 0.12273199111223221, 0.028665825724601746, 0.04136132821440697, 0.06804820150136948, 0.05263223126530647, -0.05866563320159912, -0.014206373132765293, 0.0875367596745491, -0.10978222638368607, -0.13437002897262573, 0.014506014995276928, 0.03216717392206192, 0.025258496403694153, 0.13964615762233734, 0.14028944075107574, 0.0064874631352722645, -0.008978125639259815, -0.0003516754659358412, 0.05971731245517731, -0.1401854306459427, 0.18509159982204437, 0.08544445782899857, 0.06281998753547668, -0.18882997334003448, 0.08110588788986206, -0.048228997737169266, -0.08577179908752441, 0.010314523242413998, 0.031552866101264954, -0.0860138013958931, -0.11715102195739746, -0.07977496832609177, 0.06257336586713791, 0.014085670001804829, -0.18419671058654785, -0.05035843327641487, -0.15815596282482147, 0.03343774005770683, 0.16082578897476196, 0.05734853819012642, 0.085194893181324, -0.03933897241950035, -0.0920838788151741, -0.023432834073901176, 0.028512589633464813, -0.03882541134953499, 0.0038661984726786613, -0.164589986205101, -0.020602412521839142, 0.014852483756840229, 0.06848271191120148, -0.07779883593320847, -0.03963282331824303, -0.042100291699171066, 0.06808433681726456, -0.07879311591386795, 0.003186420537531376, -0.06611465662717819, 0.03540383279323578, 0.0334574319422245, -0.09758490324020386, -0.009947528131306171, 0.06302769482135773, -0.10291627049446106, 0.025929996743798256, 0.021755285561084747, 0.08944839239120483, -0.12712101638317108, 0.034603413194417953, 0.007682308554649353, -0.03310136869549751, 0.1378830373287201, 0.13614359498023987, -0.1381644755601883, 0.10621746629476547, -0.2552366554737091, -0.2053889036178589, 0.1319008618593216, 0.05182855203747749, 0.000026517236619838513, -0.04168833792209625, -0.011050431989133358, 0.15755198895931244, 0.04108736291527748, 0.015265412628650665, 0.060669925063848495, -0.07879506051540375, 0.003728474723175168, -0.13353081047534943, -0.039085015654563904, -0.015241649933159351, -0.06354599446058273, 0.15563935041427612, 0.07558505982160568, 0.1738746166229248, -0.08310147374868393, -0.015656447038054466, -0.07488762587308884, 0.05258916690945625, -0.04508659243583679, -0.15737128257751465, -0.1639416366815567, 0.011604498140513897, 0.05965857580304146, -0.04176126793026924, 0.2226051539182663, -0.03610781207680702, -0.04165944457054138, 0.05013424530625343, -0.05045156553387642, -0.061130035668611526, 0.021706873551011086, 0.2909884452819824, 0.05257038772106171, -0.002207924611866474, -0.007521539926528931, -0.07062840461730957, 0.03280339017510414, 0.03613327443599701, 0.021093279123306274, 0.12112563848495483, 0.07298146188259125, 0.1038188710808754, 0.1394536793231964, -0.10154575854539871, -0.04466843232512474, 0.028396883979439735, -0.143349289894104, 0.06556712836027145, -0.028949974104762077, 0.1464717835187912, 0.16592258214950562, 0.060882050544023514, 0.04275299981236458, -0.07253670692443848, -0.02437165193259716, -0.1918729543685913, -0.08526963740587234, -0.07741588354110718, -0.1606002002954483, 0.030821576714515686, -0.019563017413020134, 0.003480493323877454, 0.05415443703532219, 0.018453078344464302, -0.030460776761174202, 0.048901114612817764, 0.034426018595695496, -0.017526553943753242, 0.07257968187332153, -0.05656731128692627, -0.03771643713116646, -0.07720217108726501, -0.017355620861053467, 0.10417231172323227, 0.013845947571098804, 0.0017331211129203439, -0.015872204676270485, -0.10620053857564926, 0.07829081267118454, -0.10831546783447266, -0.09069343656301498, 0.002321594161912799, -0.009976926259696484, 0.04599626734852791, 0.11415622383356094, 0.0910840705037117, -0.03726169094443321, 0.07237283140420914, 0.13989019393920898, -0.06007225438952446, -0.2030491679906845, -0.07437064498662949, 0.1260252743959427, -0.017140844836831093, 0.05611429736018181, -0.03741424158215523, -0.06137387454509735, -0.00708581879734993, 0.2121884673833847, 0.26390737295150757, -0.0251400638371706, 0.07705625891685486, -0.12327048927545547, 0.01485507283359766, -0.08182214945554733, -0.003837442025542259, 0.13262112438678741, 0.23427794873714447, 0.011994075961411, -0.07148927450180054, -0.046646688133478165, -0.031036876142024994, -0.06702922284603119, 0.053350601345300674, -0.04678196832537651, -0.09384232014417648, -0.0018187252571806312, 0.10428430885076523, -0.07346568256616592, -0.0907987654209137, -0.148354634642601, -0.07560940831899643, -0.035158850252628326, -0.014760546386241913, 0.13384394347667694, 0.1362612396478653, -0.008518957532942295, -0.0657334104180336, -0.03781222552061081, 0.06996079534292221, -0.03361264988780022, -0.15591299533843994, 0.015250763855874538, -0.0015799828106537461, -0.11696050316095352, 0.06094447150826454, -0.0003027090278919786, 0.11747816205024719, 0.01700485497713089, 0.09165073186159134, -0.03682733699679375, 0.18167747557163239, -0.006050925236195326, -0.13014920055866241, 0.019477197900414467, 0.11318174004554749, 0.02419855259358883, 0.039923641830682755, 0.049311306327581406, -0.11281029134988785, 0.03586394712328911, -0.09507602453231812, -0.09692621976137161, -0.06869896501302719, 0.018798884004354477, -0.02299412526190281, 0.04073266312479973, -0.0478435754776001, -0.048184171319007874, -0.029170645400881767, -0.034345414489507675, 0.01388233806937933, 0.03927049785852432, -0.12567926943302155, -0.05412406101822853, -0.1579829752445221, 0.01094138901680708, -0.07962700724601746, -0.030725648626685143, -0.10343500971794128, -0.020259471610188484, -0.11253484338521957, -0.022626740857958794, -0.06131226196885109, -0.016879303380846977, 0.11349406093358994, 0.02368544600903988, 0.002340878127142787, -0.02173454500734806, 0.0782633051276207, 0.09314513951539993, -0.14547103643417358, -0.08496671169996262 ]
null
null
transformers
### Model Description GPT-J 6B is a transformer model designed using EleutherAI's replication of the GPT-3 architecture. GPT-J refers to the class of models, while 6B represents the number of parameters of this particular pre-trained model. The original GPT-J-6B model is trained with TPUs, which is not easy to use for normal users. Thus, through a converting script, we convert the TPU version GPT-J-6B into GPU version, which could be load and fine-tuned with GPUs. As we have tried, the model can be loaded with 1 GPU with 16G memory to do inference. For fine-tune, we used 8 * 32G GPUs with DeepSpeed library to distribute the model, data and gradients, in order to allocate the huge amount of model parameters.
{}
text-generation
flyhero/gpt-j-6B
[ "transformers", "pytorch", "gpt_neo", "text-generation", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #gpt_neo #text-generation #autotrain_compatible #endpoints_compatible #has_space #region-us
### Model Description GPT-J 6B is a transformer model designed using EleutherAI's replication of the GPT-3 architecture. GPT-J refers to the class of models, while 6B represents the number of parameters of this particular pre-trained model. The original GPT-J-6B model is trained with TPUs, which is not easy to use for normal users. Thus, through a converting script, we convert the TPU version GPT-J-6B into GPU version, which could be load and fine-tuned with GPUs. As we have tried, the model can be loaded with 1 GPU with 16G memory to do inference. For fine-tune, we used 8 * 32G GPUs with DeepSpeed library to distribute the model, data and gradients, in order to allocate the huge amount of model parameters.
[ "### Model Description\nGPT-J 6B is a transformer model designed using EleutherAI's replication of the GPT-3 architecture. GPT-J refers to the class of models, while 6B represents the number of parameters of this particular pre-trained model.\n\nThe original GPT-J-6B model is trained with TPUs, which is not easy to use for normal users. Thus, through a converting script, we convert the TPU version GPT-J-6B into GPU version, which could be load and fine-tuned with GPUs.\n\nAs we have tried, the model can be loaded with 1 GPU with 16G memory to do inference. For fine-tune, we used 8 * 32G GPUs with DeepSpeed library to distribute the model, data and gradients, in order to allocate the huge amount of model parameters." ]
[ "TAGS\n#transformers #pytorch #gpt_neo #text-generation #autotrain_compatible #endpoints_compatible #has_space #region-us \n", "### Model Description\nGPT-J 6B is a transformer model designed using EleutherAI's replication of the GPT-3 architecture. GPT-J refers to the class of models, while 6B represents the number of parameters of this particular pre-trained model.\n\nThe original GPT-J-6B model is trained with TPUs, which is not easy to use for normal users. Thus, through a converting script, we convert the TPU version GPT-J-6B into GPU version, which could be load and fine-tuned with GPUs.\n\nAs we have tried, the model can be loaded with 1 GPU with 16G memory to do inference. For fine-tune, we used 8 * 32G GPUs with DeepSpeed library to distribute the model, data and gradients, in order to allocate the huge amount of model parameters." ]
[ 43, 194 ]
[ "passage: TAGS\n#transformers #pytorch #gpt_neo #text-generation #autotrain_compatible #endpoints_compatible #has_space #region-us \n### Model Description\nGPT-J 6B is a transformer model designed using EleutherAI's replication of the GPT-3 architecture. GPT-J refers to the class of models, while 6B represents the number of parameters of this particular pre-trained model.\n\nThe original GPT-J-6B model is trained with TPUs, which is not easy to use for normal users. Thus, through a converting script, we convert the TPU version GPT-J-6B into GPU version, which could be load and fine-tuned with GPUs.\n\nAs we have tried, the model can be loaded with 1 GPU with 16G memory to do inference. For fine-tune, we used 8 * 32G GPUs with DeepSpeed library to distribute the model, data and gradients, in order to allocate the huge amount of model parameters." ]
[ -0.04645518213510513, -0.006065163295716047, -0.0000815723033156246, 0.11796194314956665, 0.17038987576961517, 0.11936020851135254, 0.0775492712855339, 0.13211296498775482, 0.04757513105869293, -0.013814526610076427, 0.06517557054758072, 0.11228626221418381, 0.0533745102584362, 0.08076434582471848, 0.09628138691186905, -0.27441200613975525, -0.0003620105271693319, 0.02525746263563633, -0.03413555398583412, 0.058255888521671295, 0.03437574952840805, -0.0827966257929802, 0.1299080103635788, 0.010630829259753227, -0.1479472517967224, -0.02402636967599392, 0.036756157875061035, -0.01610809564590454, 0.12457364797592163, 0.12082988768815994, -0.0016466922825202346, 0.011788012459874153, 0.11896714568138123, -0.04076573625206947, 0.016010958701372147, 0.06625396013259888, -0.022651253268122673, 0.08732432126998901, 0.03022150695323944, 0.006276585627347231, 0.19957496225833893, 0.02112804353237152, 0.004407054744660854, 0.03098394349217415, -0.10786592215299606, -0.1453397125005722, 0.015310683287680149, -0.065782330930233, 0.10426608473062515, 0.034436341375112534, 0.006040189880877733, 0.07861083000898361, -0.05968058109283447, 0.03190723434090614, 0.10704044252634048, -0.2798865735530853, -0.008755233138799667, 0.1907854676246643, 0.014378448948264122, -0.019459234550595284, -0.0024169415701180696, 0.022362368181347847, 0.010679016821086407, 0.06155388057231903, 0.11266244947910309, -0.025733664631843567, 0.03134164214134216, -0.005363997537642717, -0.14722910523414612, -0.013658519834280014, 0.14402486383914948, -0.08118045330047607, -0.021239280700683594, -0.05048353224992752, -0.08748703449964523, 0.011316175572574139, -0.028337154537439346, -0.0049723363481462, -0.054330144077539444, 0.04323355481028557, 0.0698540136218071, -0.05286964029073715, -0.09884048998355865, -0.18416941165924072, -0.11750414222478867, 0.1609494686126709, 0.07475587725639343, 0.1122329980134964, -0.0626775324344635, 0.1926170140504837, -0.19469180703163147, -0.020648803561925888, -0.013908160850405693, -0.10483802109956741, -0.08078296482563019, -0.012216535396873951, -0.05909191444516182, -0.04788781702518463, -0.012018858455121517, 0.09935538470745087, 0.1589701622724533, -0.024902688339352608, 0.17164379358291626, 0.028472784906625748, 0.06565696746110916, 0.04684620350599289, -0.07705698907375336, 0.007678594905883074, 0.027239207178354263, -0.016861071810126305, -0.010630720295011997, -0.022308489307761192, -0.09141509979963303, -0.06193209066987038, -0.04287521168589592, -0.013927362859249115, 0.016364581882953644, 0.11441265046596527, -0.040448661893606186, -0.09013354033231735, 0.2069936841726303, -0.05805494263768196, -0.037114325910806656, -0.027654265984892845, -0.08312439173460007, 0.054103922098875046, 0.050582680851221085, -0.055418044328689575, -0.061557456851005554, -0.04347994178533554, -0.08865060657262802, -0.07377747446298599, -0.151106595993042, -0.08519096672534943, -0.03759649395942688, -0.01390448771417141, 0.036601074039936066, -0.1402764767408371, -0.2761317789554596, 0.02231484279036522, 0.06805899739265442, -0.055806104093790054, -0.005769971292465925, 0.007354367524385452, 0.051977772265672684, 0.01061498373746872, -0.036122992634773254, 0.14294849336147308, -0.05945362523198128, 0.03894811123609543, 0.0224519744515419, 0.13759450614452362, -0.03482935577630997, 0.04129797965288162, -0.03810567036271095, -0.03862495347857475, -0.17742383480072021, 0.09278722107410431, -0.02500762790441513, -0.036088552325963974, -0.07707035541534424, -0.04967173933982849, -0.00899511482566595, 0.010263941250741482, 0.028275372460484505, 0.12890003621578217, -0.11438541859388351, -0.03717927634716034, 0.12266944348812103, -0.11116357147693634, -0.04200359433889389, 0.11478449404239655, -0.0005917310481891036, 0.02025163359940052, 0.09617535769939423, 0.0066232020035386086, 0.17918965220451355, -0.05875848978757858, -0.012246486730873585, 0.08771653473377228, -0.08489412069320679, -0.11015143990516663, 0.10729659348726273, 0.09060880541801453, -0.09024776518344879, 0.05179859325289726, -0.05268637463450432, 0.10905665159225464, -0.06632974743843079, 0.01596851460635662, -0.012580146081745625, -0.04694078117609024, 0.06079297140240669, -0.0041243527084589005, 0.05721606686711311, 0.051811739802360535, -0.10073494911193848, -0.0696600154042244, 0.14483468234539032, -0.05824728682637215, -0.014584686607122421, -0.08841070532798767, 0.09923754632472992, -0.16745957732200623, 0.0733984112739563, -0.09359939396381378, -0.12239785492420197, 0.05581574887037277, 0.036313675343990326, 0.03734751418232918, 0.16413934528827667, 0.05564703419804573, 0.06449897587299347, -0.038754723966121674, 0.016631199046969414, 0.04038983955979347, -0.0424906350672245, -0.02434348128736019, -0.0978231132030487, -0.07533538341522217, -0.06982070207595825, -0.08858758211135864, -0.0477534718811512, 0.01562969759106636, -0.0041890270076692104, 0.011838001199066639, -0.01761450618505478, 0.003516311291605234, -0.005938074551522732, -0.05347128212451935, -0.051022790372371674, -0.06960812211036682, 0.05265156179666519, -0.006050324533134699, -0.028088750317692757, 0.052685510367155075, -0.15043817460536957, 0.022494053468108177, 0.14494016766548157, 0.010322494432330132, -0.02774791233241558, -0.0059220315888524055, -0.04439282417297363, -0.008825390599668026, -0.0116837527602911, 0.03183235600590706, 0.1710038185119629, 0.014776620082557201, 0.053791988641023636, -0.06543165445327759, -0.002077902667224407, 0.06482964754104614, -0.017796073108911514, 0.07114139944314957, -0.0014136799145489931, 0.23378194868564606, -0.06026791036128998, 0.0315241813659668, 0.018980173394083977, -0.021386317908763885, 0.15651966631412506, 0.06604105234146118, -0.06327418237924576, 0.00333399442024529, -0.04219713807106018, -0.008518096059560776, 0.09881292283535004, -0.04577906057238579, -0.03640390932559967, 0.058092597872018814, 0.014425985515117645, 0.07266291230916977, -0.11604263633489609, 0.06059813126921654, -0.022823309525847435, -0.016594938933849335, 0.06153828650712967, 0.024551907554268837, -0.10382260382175446, 0.09415421634912491, 0.0033286805264651775, -0.017912521958351135, 0.046247754245996475, 0.01809937134385109, -0.0631723552942276, 0.1754055917263031, -0.0640001893043518, -0.163936585187912, -0.12159861624240875, -0.03607241064310074, -0.07404343038797379, 0.09849477559328079, -0.016156300902366638, -0.07491308450698853, -0.0902324840426445, 0.0012997256126254797, 0.20433999598026276, 0.029268570244312286, 0.06427905708551407, -0.06539082527160645, -0.042253874242305756, -0.0718703344464302, -0.08948710560798645, -0.013979660347104073, -0.03845726326107979, -0.19718661904335022, 0.1364767998456955, -0.04351375997066498, -0.021312324330210686, 0.16952717304229736, -0.0020313062705099583, -0.01684294268488884, -0.036957379430532455, 0.14601394534111023, -0.06402942538261414, 0.10220120847225189, 0.24152708053588867, 0.07410776615142822, -0.013626457192003727, 0.0022557638585567474, 0.0031145031098276377, -0.07607807219028473, 0.06272238492965698, -0.026121938601136208, -0.08955620229244232, -0.16552186012268066, -0.08179780095815659, -0.08395148068666458, 0.012304524891078472, 0.10703914612531662, 0.023048562929034233, -0.08555421978235245, 0.15349343419075012, -0.019950417801737785, 0.13608713448047638, -0.023019185289740562, 0.07194000482559204, 0.09830348938703537, -0.011953013017773628, 0.13203462958335876, -0.060807183384895325, -0.015729995444417, 0.12181663513183594, 0.12207753956317902, 0.21522463858127594, -0.0896327793598175, 0.04190991818904877, 0.05509517341852188, 0.06505341082811356, 0.08039430528879166, 0.1383575052022934, -0.049201708287000656, 0.0038103628903627396, -0.09209363907575607, -0.0003578662290237844, -0.13693742454051971, 0.07487132400274277, -0.005975030828267336, -0.09163966774940491, -0.03839682787656784, 0.11731589585542679, 0.010779617354273796, 0.03916056081652641, 0.08623629808425903, -0.28984054923057556, -0.09443634003400803, 0.014559797942638397, 0.016803868114948273, -0.10507594048976898, 0.0864933505654335, 0.04680021479725838, -0.060939524322748184, 0.014791696332395077, -0.010957225225865841, 0.05691426247358322, -0.13036496937274933, -0.017903489992022514, 0.06469119340181351, 0.1410970687866211, -0.012216312810778618, 0.14358673989772797, -0.26877546310424805, 0.023955652490258217, 0.021684234961867332, 0.043696776032447815, -0.11461345851421356, 0.04647698625922203, 0.034338533878326416, 0.0780763030052185, 0.07835564762353897, -0.0027419659309089184, -0.04655379056930542, -0.013315093703567982, -0.09279441088438034, 0.07288595288991928, -0.0148412911221385, -0.05129876732826233, 0.03995941951870918, -0.030904199928045273, 0.05101867392659187, -0.01285408902913332, 0.014643372036516666, 0.017349453642964363, -0.12144067138433456, 0.03515510633587837, -0.05599376559257507, -0.07673413306474686, -0.00714574009180069, -0.05007696524262428, -0.04951230809092522, 0.11156772077083588, 0.03799014165997505, -0.0946442112326622, -0.11826694011688232, 0.05654788017272949, 0.07953710854053497, -0.09142419695854187, 0.05307075008749962, -0.016922226175665855, 0.07401998341083527, 0.002935354597866535, -0.19567902386188507, 0.10645993798971176, -0.11088989675045013, -0.10397808253765106, -0.03966715186834335, 0.00915805995464325, 0.015177103690803051, 0.028703710064291954, -0.001661457121372223, -0.015211795456707478, -0.06317690759897232, -0.13145212829113007, 0.04496559873223305, 0.10596413910388947, 0.04418092221021652, 0.034870900213718414, -0.029801450669765472, -0.06273286789655685, 0.010590177960693836, 0.03931912034749985, 0.028521167114377022, 0.09230782091617584, -0.05885526165366173, 0.03720886632800102, 0.1474161297082901, -0.06235026568174362, -0.2435590624809265, -0.04135431721806526, 0.014542768709361553, 0.034798409789800644, -0.114502914249897, -0.23514346778392792, 0.11689236015081406, -0.007530109025537968, -0.016886768862605095, 0.05983663722872734, -0.1289645880460739, -0.0781102105975151, 0.11795314401388168, 0.08297840505838394, 0.30752262473106384, -0.0659622922539711, 0.03747399523854256, -0.001763948705047369, -0.11914189159870148, 0.20859046280384064, -0.04811038821935654, 0.12002460658550262, -0.09154928475618362, 0.08804529905319214, -0.00018351410108152777, -0.040340356528759, 0.04072220250964165, 0.06612340360879898, 0.07252449542284012, -0.03405971825122833, 0.09941720962524414, 0.06149555370211601, -0.036070629954338074, 0.12610319256782532, -0.020326362922787666, 0.07039511948823929, -0.10239870101213455, -0.1198696494102478, -0.08390804380178452, 0.017210068181157112, 0.031931884586811066, -0.1335381120443344, -0.00810811948031187, 0.06404461711645126, -0.01869003288447857, -0.03008432686328888, -0.1221526712179184, 0.02533601224422455, -0.048084378242492676, 0.02537219412624836, 0.030444037169218063, -0.08249851316213608, -0.07258694618940353, -0.0026794536970555782, 0.018201008439064026, 0.11999024450778961, -0.2031434029340744, 0.012127847410738468, 0.09489864110946655, -0.043719153851270676, 0.05680860951542854, 0.09832940995693207, -0.06678644567728043, 0.006634622346609831, 0.07161885499954224, -0.14590294659137726, -0.1037248820066452, -0.04259691759943962, -0.0455046147108078, 0.010610309429466724, 0.11216588318347931, 0.11994849890470505, -0.045355141162872314, -0.025177059695124626, -0.006368441041558981, 0.016649657860398293, -0.04434267431497574, 0.12708371877670288, 0.04565269127488136, 0.005743716843426228, -0.09852060675621033, 0.03836534917354584, 0.01884995587170124, -0.048257868736982346, 0.009775055572390556, 0.003779001533985138, -0.11429660767316818, -0.09792734682559967, -0.040207937359809875, 0.06329220533370972, -0.0945189893245697, -0.004062287043780088, -0.054728176444768906, -0.030683081597089767, 0.050197847187519073, -0.1175757423043251, 0.058105021715164185, 0.020748037844896317, -0.08147308230400085, 0.00989125669002533, -0.11398735642433167, 0.04238917678594589, -0.02136959694325924, 0.04718054085969925, -0.10117529332637787, 0.0779719203710556, -0.009672562591731548, 0.06502722203731537, -0.09150022268295288, -0.018637685105204582, -0.08960925787687302, 0.017488621175289154, 0.004840078763663769, -0.02192194014787674, -0.07930175215005875, 0.023623168468475342, -0.003559123259037733, 0.0001663641887716949, -0.004612496588379145, 0.022009868174791336, -0.08258907496929169, 0.04625849053263664, -0.007386337034404278, 0.03420766070485115, -0.03834579885005951, -0.019581032916903496, -0.020350802689790726, -0.03606240823864937, 0.1142779290676117, 0.022488726302981377, 0.0025873822160065174, 0.08487556874752045, 0.09615752846002579, 0.024829789996147156, 0.051895130425691605, 0.09328208863735199, 0.025426669046282768, 0.016473179683089256, 0.07395109534263611, -0.01725657284259796, 0.012317392975091934, -0.03859376162290573, -0.013421897776424885, -0.07355176657438278, 0.07981108129024506, -0.04790776968002319, 0.01166375819593668, -0.04261578619480133, 0.042022813111543655, 0.013811856508255005, 0.13291876018047333, 0.07200184464454651, 0.0010612658224999905, 0.018078459426760674, -0.15329664945602417, 0.015101133845746517, -0.001733794342726469, -0.03231646865606308, -0.03928587585687637, -0.03924882411956787, 0.05006180331110954, 0.014089505188167095, 0.20765185356140137, 0.12240084260702133, -0.06520568579435349, -0.08183528482913971, 0.06948300451040268, 0.0816112831234932, -0.03000148944556713, 0.08396221697330475, 0.039242975413799286, 0.023065272718667984, -0.01774820126593113, 0.138743594288826, 0.05204537883400917, 0.031016424298286438, 0.08283928036689758, -0.08082123845815659, 0.07566414028406143, 0.09609229862689972, -0.008610038086771965, -0.12192913889884949, -0.09701864421367645, -0.010647621937096119, -0.09384354203939438, 0.08464236557483673, -0.015192229300737381, -0.05629833787679672, 0.07707443088293076, -0.052702512592077255, 0.03765086829662323, -0.012554903514683247, -0.07816293090581894, -0.10487961024045944, -0.19547319412231445, -0.035338666290044785, -0.15207132697105408, 0.005477122031152248, -0.08949640393257141, -0.08107312768697739, 0.11031781136989594, 0.03803935647010803, -0.035685986280441284, 0.09068863093852997, 0.021562322974205017, -0.029743466526269913, -0.025721624493598938, 0.01673036813735962, 0.0012572138803079724, -0.019770201295614243, -0.014894670806825161, 0.0029698493890464306, 0.028877004981040955, 0.04693922773003578, -0.022986657917499542, -0.005818008910864592, 0.10295622795820236, 0.04965844377875328, -0.010960005223751068, -0.0711616799235344, -0.017285315319895744, -0.05358904227614403, 0.10744770616292953, -0.04476722702383995, -0.04220271110534668, 0.030012553557753563, 0.12234432250261307, -0.03237127885222435, -0.08691786229610443, -0.11793600022792816, 0.2891989052295685, -0.03287506476044655, 0.020785724744200706, 0.0053756264969706535, -0.021016016602516174, -0.062778539955616, 0.15335577726364136, 0.22417156398296356, -0.05609920993447304, -0.05709509551525116, 0.0561731792986393, -0.02873685024678707, 0.019482461735606194, 0.20402731001377106, 0.016637558117508888, 0.1847877949476242, -0.05556038022041321, -0.002098364755511284, -0.009730583056807518, 0.029286984354257584, 0.10213372856378555, 0.014314795844256878, 0.04073334485292435, 0.02334931120276451, -0.0368247851729393, -0.0382729172706604, -0.07095756381750107, -0.00574655644595623, -0.046098630875349045, 0.023090500384569168, -0.06189417839050293, -0.036024242639541626, -0.06108996272087097, -0.0255951676517725, 0.11090321093797684, -0.0754428282380104, 0.05204349756240845, 0.07722462713718414, -0.013767335563898087, -0.218745157122612, -0.017788885161280632, 0.10453536361455917, 0.09953252971172333, 0.10757765918970108, -0.04217137023806572, 0.0872005820274353, 0.05792742595076561, -0.008721405640244484, -0.17644646763801575, 0.018495768308639526, -0.09691470861434937, -0.027773872017860413, 0.029240842908620834, -0.010666551068425179, 0.015130424872040749, -0.06146105006337166, -0.028821242973208427, -0.07534635812044144, -0.011163189075887203, -0.03434080630540848, -0.01322078611701727, -0.07329388707876205, 0.028803911060094833, -0.07833326607942581, 0.15571723878383636, 0.094049833714962, 0.028827613219618797, -0.04457378014922142, -0.087521031498909, 0.08232976496219635, 0.018274834379553795, 0.1144721731543541, -0.03916815668344498, -0.10073935985565186, -0.04161559045314789, -0.04513578116893768, -0.026717480272054672, -0.20646505057811737, -0.011589987203478813, -0.04852839559316635, -0.06562425941228867, -0.08443845063447952, 0.09241694211959839, 0.015073264949023724, 0.06870655715465546, -0.06623666733503342, -0.06863980740308762, -0.05870481953024864, -0.007698373403400183, -0.18129120767116547, -0.1629129946231842 ]
null
null
transformers
# Chinese BART-Base ### News **12/30/2022** An updated version of CPT & Chinese BART are released. In the new version, we changed the following parts: - **Vocabulary** We replace the old BERT vocabulary with a larger one of size 51271 built from the training data, in which we 1) add missing 6800+ Chinese characters (most of them are traditional Chinese characters); 2) remove redundant tokens (e.g. Chinese character tokens with ## prefix); 3) add some English tokens to reduce OOV. - **Position Embeddings** We extend the max_position_embeddings from 512 to 1024. We initialize the new version of models with the old version of checkpoints with vocabulary alignment. Token embeddings found in the old checkpoints are copied. And other newly added parameters are randomly initialized. We further train the new CPT & Chinese BART 50K steps with batch size 2048, max-seq-length 1024, peak learning rate 2e-5, and warmup ratio 0.1. The result compared to the previous checkpoints is as followings: | | AFQMC | IFLYTEK | CSL-sum | LCSTS | AVG | | :--------- | :---: | :-----: | :-----: | :---: | :---: | | Previous | | | | | | | bart-base | 73.0 | 60 | 62.1 | 37.8 | 58.23 | | cpt-base | 75.1 | 60.5 | 63.0 | 38.2 | 59.20 | | bart-large | 75.7 | 62.1 | 64.2 | 40.6 | 60.65 | | cpt-large | 75.9 | 61.8 | 63.7 | 42.0 | 60.85 | | Updataed | | | | | | | bart-base | 73.03 | 61.25 | 61.51 | 38.78 | 58.64 | | cpt-base | 74.40 | 61.23 | 62.09 | 38.81 | 59.13 | | bart-large | 75.81 | 61.52 | 64.62 | 40.90 | 60.71 | | cpt-large | 75.97 | 61.63 | 63.83 | 42.08 | 60.88 | The result shows that the updated models maintain comparative performance compared with previous checkpoints. There are still some cases that the updated model is slightly worse than the previous one, which results from the following reasons: 1) Training additional a few steps did not lead to significant performance improvement; 2) some downstream tasks are not affected by the newly added tokens and longer encoding sequences, but sensitive to the fine-tuning hyperparameters. - Note that to use updated models, please update the `modeling_cpt.py` (new version download [Here](https://github.com/fastnlp/CPT/blob/master/finetune/modeling_cpt.py)) and the vocabulary (refresh the cache). ## Model description This is an implementation of Chinese BART-Base. [**CPT: A Pre-Trained Unbalanced Transformer for Both Chinese Language Understanding and Generation**](https://arxiv.org/pdf/2109.05729.pdf) Yunfan Shao, Zhichao Geng, Yitao Liu, Junqi Dai, Fei Yang, Li Zhe, Hujun Bao, Xipeng Qiu **Github Link:** https://github.com/fastnlp/CPT ## Usage ```python >>> from transformers import BertTokenizer, BartForConditionalGeneration, Text2TextGenerationPipeline >>> tokenizer = BertTokenizer.from_pretrained("fnlp/bart-base-chinese") >>> model = BartForConditionalGeneration.from_pretrained("fnlp/bart-base-chinese") >>> text2text_generator = Text2TextGenerationPipeline(model, tokenizer) >>> text2text_generator("北京是[MASK]的首都", max_length=50, do_sample=False) [{'generated_text': '北 京 是 中 国 的 首 都'}] ``` **Note: Please use BertTokenizer for the model vocabulary. DO NOT use original BartTokenizer.** ## Citation ```bibtex @article{shao2021cpt, title={CPT: A Pre-Trained Unbalanced Transformer for Both Chinese Language Understanding and Generation}, author={Yunfan Shao and Zhichao Geng and Yitao Liu and Junqi Dai and Fei Yang and Li Zhe and Hujun Bao and Xipeng Qiu}, journal={arXiv preprint arXiv:2109.05729}, year={2021} } ```
{"language": "zh", "tags": ["text2text-generation", "Chinese", "seq2seq", "BART"]}
text2text-generation
fnlp/bart-base-chinese
[ "transformers", "pytorch", "safetensors", "bart", "text2text-generation", "Chinese", "seq2seq", "BART", "zh", "arxiv:2109.05729", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
2022-03-02T23:29:05+00:00
[ "2109.05729" ]
[ "zh" ]
TAGS #transformers #pytorch #safetensors #bart #text2text-generation #Chinese #seq2seq #BART #zh #arxiv-2109.05729 #autotrain_compatible #endpoints_compatible #has_space #region-us
Chinese BART-Base ================= ### News 12/30/2022 An updated version of CPT & Chinese BART are released. In the new version, we changed the following parts: * Vocabulary We replace the old BERT vocabulary with a larger one of size 51271 built from the training data, in which we 1) add missing 6800+ Chinese characters (most of them are traditional Chinese characters); 2) remove redundant tokens (e.g. Chinese character tokens with ## prefix); 3) add some English tokens to reduce OOV. * Position Embeddings We extend the max\_position\_embeddings from 512 to 1024. We initialize the new version of models with the old version of checkpoints with vocabulary alignment. Token embeddings found in the old checkpoints are copied. And other newly added parameters are randomly initialized. We further train the new CPT & Chinese BART 50K steps with batch size 2048, max-seq-length 1024, peak learning rate 2e-5, and warmup ratio 0.1. The result compared to the previous checkpoints is as followings: The result shows that the updated models maintain comparative performance compared with previous checkpoints. There are still some cases that the updated model is slightly worse than the previous one, which results from the following reasons: 1) Training additional a few steps did not lead to significant performance improvement; 2) some downstream tasks are not affected by the newly added tokens and longer encoding sequences, but sensitive to the fine-tuning hyperparameters. * Note that to use updated models, please update the 'modeling\_cpt.py' (new version download Here) and the vocabulary (refresh the cache). Model description ----------------- This is an implementation of Chinese BART-Base. CPT: A Pre-Trained Unbalanced Transformer for Both Chinese Language Understanding and Generation Yunfan Shao, Zhichao Geng, Yitao Liu, Junqi Dai, Fei Yang, Li Zhe, Hujun Bao, Xipeng Qiu Github Link: URL Usage ----- Note: Please use BertTokenizer for the model vocabulary. DO NOT use original BartTokenizer.
[ "### News\n\n\n12/30/2022\n\n\nAn updated version of CPT & Chinese BART are released. In the new version, we changed the following parts:\n\n\n* Vocabulary We replace the old BERT vocabulary with a larger one of size 51271 built from the training data, in which we 1) add missing 6800+ Chinese characters (most of them are traditional Chinese characters); 2) remove redundant tokens (e.g. Chinese character tokens with ## prefix); 3) add some English tokens to reduce OOV.\n* Position Embeddings We extend the max\\_position\\_embeddings from 512 to 1024.\n\n\nWe initialize the new version of models with the old version of checkpoints with vocabulary alignment. Token embeddings found in the old checkpoints are copied. And other newly added parameters are randomly initialized. We further train the new CPT & Chinese BART 50K steps with batch size 2048, max-seq-length 1024, peak learning rate 2e-5, and warmup ratio 0.1.\n\n\nThe result compared to the previous checkpoints is as followings:\n\n\n\nThe result shows that the updated models maintain comparative performance compared with previous checkpoints. There are still some cases that the updated model is slightly worse than the previous one, which results from the following reasons: 1) Training additional a few steps did not lead to significant performance improvement; 2) some downstream tasks are not affected by the newly added tokens and longer encoding sequences, but sensitive to the fine-tuning hyperparameters.\n\n\n* Note that to use updated models, please update the 'modeling\\_cpt.py' (new version download Here) and the vocabulary (refresh the cache).\n\n\nModel description\n-----------------\n\n\nThis is an implementation of Chinese BART-Base.\n\n\nCPT: A Pre-Trained Unbalanced Transformer for Both Chinese Language Understanding and Generation\n\n\nYunfan Shao, Zhichao Geng, Yitao Liu, Junqi Dai, Fei Yang, Li Zhe, Hujun Bao, Xipeng Qiu\n\n\nGithub Link: URL\n\n\nUsage\n-----\n\n\nNote: Please use BertTokenizer for the model vocabulary. DO NOT use original BartTokenizer." ]
[ "TAGS\n#transformers #pytorch #safetensors #bart #text2text-generation #Chinese #seq2seq #BART #zh #arxiv-2109.05729 #autotrain_compatible #endpoints_compatible #has_space #region-us \n", "### News\n\n\n12/30/2022\n\n\nAn updated version of CPT & Chinese BART are released. In the new version, we changed the following parts:\n\n\n* Vocabulary We replace the old BERT vocabulary with a larger one of size 51271 built from the training data, in which we 1) add missing 6800+ Chinese characters (most of them are traditional Chinese characters); 2) remove redundant tokens (e.g. Chinese character tokens with ## prefix); 3) add some English tokens to reduce OOV.\n* Position Embeddings We extend the max\\_position\\_embeddings from 512 to 1024.\n\n\nWe initialize the new version of models with the old version of checkpoints with vocabulary alignment. Token embeddings found in the old checkpoints are copied. And other newly added parameters are randomly initialized. We further train the new CPT & Chinese BART 50K steps with batch size 2048, max-seq-length 1024, peak learning rate 2e-5, and warmup ratio 0.1.\n\n\nThe result compared to the previous checkpoints is as followings:\n\n\n\nThe result shows that the updated models maintain comparative performance compared with previous checkpoints. There are still some cases that the updated model is slightly worse than the previous one, which results from the following reasons: 1) Training additional a few steps did not lead to significant performance improvement; 2) some downstream tasks are not affected by the newly added tokens and longer encoding sequences, but sensitive to the fine-tuning hyperparameters.\n\n\n* Note that to use updated models, please update the 'modeling\\_cpt.py' (new version download Here) and the vocabulary (refresh the cache).\n\n\nModel description\n-----------------\n\n\nThis is an implementation of Chinese BART-Base.\n\n\nCPT: A Pre-Trained Unbalanced Transformer for Both Chinese Language Understanding and Generation\n\n\nYunfan Shao, Zhichao Geng, Yitao Liu, Junqi Dai, Fei Yang, Li Zhe, Hujun Bao, Xipeng Qiu\n\n\nGithub Link: URL\n\n\nUsage\n-----\n\n\nNote: Please use BertTokenizer for the model vocabulary. DO NOT use original BartTokenizer." ]
[ 70, 483 ]
[ "passage: TAGS\n#transformers #pytorch #safetensors #bart #text2text-generation #Chinese #seq2seq #BART #zh #arxiv-2109.05729 #autotrain_compatible #endpoints_compatible #has_space #region-us \n" ]
[ -0.024905353784561157, 0.018910855054855347, -0.004910271614789963, 0.00470407260581851, 0.08621499687433243, -0.04054434597492218, 0.169122114777565, 0.09552175551652908, 0.01850719191133976, 0.04173413664102554, 0.14647242426872253, 0.09592530131340027, 0.0024250769056379795, 0.13790269196033478, -0.029423123225569725, -0.2297137975692749, 0.08331228047609329, 0.08111308515071869, -0.022062402218580246, 0.11732852458953857, 0.09448839724063873, -0.1216425895690918, 0.10677479207515717, 0.004958628211170435, -0.07592596858739853, 0.03016158752143383, -0.002788688987493515, -0.11894718557596207, 0.13461263477802277, 0.019237075001001358, 0.15366166830062866, 0.07641065865755081, -0.020905455574393272, -0.10887714475393295, 0.029740532860159874, -0.0276861023157835, -0.0970567986369133, 0.038758061826229095, 0.05974356085062027, -0.0503811314702034, 0.055199120193719864, 0.017704416066408157, -0.015660466626286507, 0.04590985178947449, -0.10035894066095352, -0.10315725952386856, -0.052289996296167374, 0.13911427557468414, 0.0727371945977211, 0.09847676008939743, -0.006243227981030941, 0.1583653688430786, -0.09999142587184906, 0.10014642775058746, 0.20987127721309662, -0.38824301958084106, -0.005493605975061655, 0.08744388073682785, 0.12884382903575897, 0.061109479516744614, -0.0691433772444725, 0.030551176518201828, 0.07002917677164078, -0.03572487831115723, -0.004897724837064743, -0.08462688326835632, -0.05571136623620987, 0.05730550363659859, -0.084653839468956, 0.020334212109446526, 0.23979370296001434, -0.04009458050131798, 0.06080671399831772, -0.027272338047623634, -0.1062208041548729, -0.11122243106365204, -0.0015144114149734378, -0.03154899179935455, -0.027822034433484077, 0.03713870793581009, 0.03533637896180153, -0.0380496084690094, -0.14093708992004395, 0.0036167711950838566, -0.16662177443504333, 0.14554090797901154, 0.005478225648403168, 0.0254148468375206, -0.19598795473575592, 0.031616318970918655, 0.04740391671657562, -0.1405772715806961, 0.05900675430893898, -0.0845232903957367, 0.04245481267571449, 0.05249885469675064, 0.006584884133189917, -0.04443277046084404, 0.0706297904253006, 0.1502653956413269, -0.010099819861352444, 0.08935891091823578, 0.018549570813775063, 0.08769848197698593, -0.010483031161129475, 0.09445232152938843, -0.0413045771420002, -0.08237790316343307, 0.03030734695494175, -0.026839714497327805, 0.05426143854856491, -0.08101553469896317, -0.16129346191883087, -0.06183503195643425, 0.0715472400188446, 0.047803085297346115, 0.02311830222606659, 0.06988424062728882, -0.032743100076913834, 0.04273820295929909, 0.10529910027980804, -0.042577628046274185, 0.027682092040777206, 0.013165948912501335, 0.006829099263995886, 0.007941486313939095, -0.0012414552038535476, 0.03075951524078846, -0.014982170425355434, 0.1059507355093956, -0.07764046639204025, 0.010502507910132408, -0.022281257435679436, -0.0612032487988472, 0.03108026832342148, -0.07431734353303909, 0.031595516949892044, -0.1788179576396942, -0.08170787990093231, 0.0047535365447402, -0.02701987884938717, -0.0032079655211418867, -0.023221749812364578, 0.010857447981834412, -0.0874377116560936, 0.05647987127304077, -0.06427757441997528, -0.03785499185323715, -0.053206123411655426, 0.07817274332046509, 0.010659106075763702, 0.08453281968832016, -0.14864657819271088, 0.013482469134032726, -0.1002076119184494, 0.032666586339473724, -0.054528314620256424, -0.02592480182647705, -0.0378505103290081, 0.13452793657779694, 0.058379244059324265, -0.0014327894896268845, -0.09454061836004257, 0.0455462820827961, 0.015846626833081245, 0.16985048353672028, -0.17693018913269043, -0.06814201176166534, 0.18539944291114807, -0.14758571982383728, -0.17788425087928772, 0.0899304449558258, 0.018180489540100098, -0.016757911071181297, 0.014070590026676655, 0.22753934562206268, 0.01333728339523077, -0.053958211094141006, -0.05098898336291313, 0.09701359272003174, -0.10472408682107925, -0.05813881382346153, 0.0380132682621479, 0.06276814639568329, -0.04530102387070656, 0.02828928828239441, 0.08573968708515167, 0.053370580077171326, -0.06471475213766098, -0.0726444348692894, -0.041393086314201355, -0.045408885926008224, 0.1267685443162918, 0.010381912812590599, 0.13524042069911957, -0.09429038316011429, -0.0018483110470697284, -0.022868750616908073, 0.03359345346689224, 0.04322043061256409, 0.030186569318175316, -0.09365587681531906, 0.13495178520679474, 0.06583944708108902, 0.01870526559650898, -0.14009903371334076, -0.006203954108059406, -0.012986220419406891, 0.10705919563770294, -0.012123068794608116, 0.10893348604440689, 0.06702127307653427, -0.014133727177977562, -0.021643878892064095, -0.06795906275510788, 0.12909796833992004, 0.05100271478295326, -0.07617878168821335, -0.09184310585260391, 0.06674224138259888, -0.0633830800652504, 0.03957314416766167, -0.1179058849811554, 0.034856826066970825, 0.07485301792621613, 0.15236371755599976, -0.007608753629028797, 0.08160585910081863, -0.019025737419724464, 0.042473334819078445, -0.10035718232393265, 0.03699386864900589, 0.050055716186761856, 0.02121434547007084, -0.12399334460496902, 0.23052112758159637, -0.19052517414093018, 0.3398686945438385, 0.2281554639339447, -0.21822085976600647, -0.022942060604691505, 0.010222545824944973, -0.015480997040867805, -0.004665998741984367, 0.04686811938881874, -0.003184814238920808, -0.013041328638792038, -0.052516091614961624, 0.18098552525043488, -0.06263276934623718, -0.007984340190887451, 0.007547175511717796, -0.10035731643438339, -0.05220295861363411, 0.12012917548418045, -0.01050319243222475, -0.13560758531093597, 0.21854446828365326, 0.2381511926651001, -0.0051355683244764805, 0.17624419927597046, 0.0364069864153862, 0.05211678519845009, 0.00153275893535465, 0.0070939878933131695, -0.061555165797472, 0.08632571995258331, -0.16706039011478424, -0.07081405818462372, 0.047084737569093704, 0.003082300303503871, 0.050795890390872955, -0.15813346207141876, -0.06611856073141098, 0.0006220954819582403, 0.02077900432050228, 0.010293162427842617, 0.08293619006872177, 0.00900937058031559, 0.14256733655929565, -0.041726015508174896, -0.050717249512672424, 0.051576483994722366, 0.018779784440994263, -0.10188944637775421, 0.12825646996498108, -0.14412112534046173, -0.31074631214141846, -0.06713145226240158, -0.10471870750188828, -0.011483523063361645, 0.04359900578856468, 0.09426740556955338, -0.14255110919475555, -0.02139999158680439, -0.03494482487440109, -0.07690612226724625, -0.085788294672966, 0.0645580068230629, -0.02096926048398018, 0.052215252071619034, -0.03648164123296738, -0.04713946953415871, -0.04149816930294037, -0.044196370989084244, -0.013631920330226421, 0.1481585055589676, -0.06320677697658539, 0.1019468903541565, 0.12443768233060837, -0.010805116966366768, 0.030277526006102562, -0.031883761286735535, 0.13263559341430664, -0.07720845192670822, 0.0032125068828463554, 0.18504078686237335, -0.022540563717484474, 0.07846899330615997, 0.16515128314495087, -0.007074700202792883, -0.028217263519763947, 0.036858659237623215, -0.05107234790921211, -0.09296698123216629, -0.1682608425617218, -0.1079532653093338, -0.09580428898334503, 0.11688244342803955, -0.02090441808104515, 0.08594086021184921, 0.119942806661129, 0.07542917132377625, 0.0041829803958535194, 0.016575107350945473, -0.0235578790307045, 0.05949810519814491, 0.10509848594665527, -0.02421182207763195, 0.1490115076303482, -0.0746043398976326, -0.10248661041259766, 0.07787419110536575, 0.03709720820188522, 0.033831749111413956, 0.0649707242846489, -0.03982364758849144, 0.025516806170344353, 0.22040356695652008, 0.20007137954235077, 0.05529981851577759, 0.0034294212237000465, -0.07280248403549194, -0.02033892832696438, -0.01882695034146309, -0.0402621254324913, 0.08914057910442352, 0.03433655574917793, -0.0973193421959877, -0.030261410400271416, -0.02117757685482502, 0.1080251932144165, 0.017312679439783096, 0.056581009179353714, -0.12788917124271393, 0.006631316151469946, 0.08346202969551086, 0.013263103552162647, -0.05123300850391388, 0.09437592327594757, 0.10977832973003387, -0.12516926229000092, 0.08425494283437729, 0.02369600348174572, 0.08462365716695786, 0.05116192623972893, 0.0940348356962204, -0.12908083200454712, -0.16397008299827576, 0.008480341173708439, 0.056222882121801376, -0.35450446605682373, 0.22784610092639923, -0.020623737946152687, -0.08935125172138214, -0.06825859844684601, -0.043407417833805084, 0.03221601992845535, 0.12719300389289856, 0.09714796394109726, 0.01874687150120735, -0.12426000088453293, -0.13067373633384705, -0.02372213639318943, 0.006190439220517874, 0.12226501852273941, 0.046938881278038025, -0.024972116574645042, -0.021992692723870277, -0.025992192327976227, -0.01902909204363823, 0.06928306818008423, -0.012122094631195068, -0.12310688942670822, 0.057182248681783676, 0.04670252278447151, 0.02711055800318718, -0.022183649241924286, -0.03273150697350502, -0.10611198842525482, 0.12657926976680756, -0.0896962434053421, -0.034317322075366974, -0.08692371845245361, -0.09830193966627121, 0.05734231695532799, -0.09126884490251541, 0.06431537866592407, -0.05200681462883949, -0.006377521436661482, -0.07396367937326431, -0.10280805081129074, 0.11163027584552765, -0.09282443672418594, -0.10496874153614044, -0.0737837702035904, 0.12668518722057343, -0.07658519595861435, 0.051429517567157745, 0.0017199668800458312, 0.01567520573735237, -0.11668804287910461, -0.11800384521484375, -0.007530505768954754, -0.06839169561862946, 0.05617114529013634, 0.00716409832239151, -0.06195184215903282, -0.1172923818230629, -0.014426622539758682, -0.08735348284244537, 0.18018117547035217, 0.28619611263275146, -0.09742257744073868, 0.12916316092014313, 0.15696193277835846, 0.008287063799798489, -0.3251003324985504, -0.16452394425868988, -0.14110936224460602, 0.0021020725835114717, -0.013140682131052017, -0.047523774206638336, 0.038095131516456604, -0.018195386976003647, -0.08109299838542938, 0.03461756184697151, -0.1777268946170807, -0.13608451187610626, 0.14837205410003662, -0.0281654242426157, 0.3236694931983948, -0.18587283790111542, -0.09616877138614655, -0.022563301026821136, -0.09032763540744781, 0.09780124574899673, -0.0687619149684906, 0.05984673649072647, -0.021692097187042236, -0.005077911540865898, 0.027555514127016068, -0.06701426953077316, 0.125177800655365, -0.06238911673426628, 0.027799518778920174, -0.13788147270679474, -0.14609256386756897, 0.06614906340837479, -0.014427410438656807, 0.018578356131911278, -0.08718103915452957, 0.05880089849233627, -0.12228893488645554, 0.008873911574482918, -0.05550350993871689, 0.033565521240234375, -0.005016077309846878, -0.04247515648603439, -0.08241802453994751, -0.00024049507919698954, -0.03433919697999954, 0.004460969008505344, 0.267757385969162, -0.001276360941119492, 0.11995608359575272, 0.14504751563072205, 0.07388991862535477, -0.1618061065673828, 0.13602866232395172, -0.030888598412275314, -0.07052914798259735, 0.07492989301681519, -0.09475753456354141, 0.04771832376718521, 0.09517840296030045, -0.023356202989816666, 0.06695384532213211, 0.08899077028036118, 0.007130338344722986, 0.036211464554071426, 0.15801794826984406, -0.24861449003219604, -0.03768547624349594, -0.054949309676885605, 0.046981263905763626, 0.11076759546995163, 0.07661988586187363, 0.10459073632955551, -0.015186473727226257, -0.024943118914961815, -0.01757178083062172, -0.008942428044974804, -0.04410475492477417, 0.06129753962159157, 0.06388747692108154, 0.052996717393398285, -0.09655547142028809, 0.019861461594700813, 0.03896475210785866, -0.07708314806222916, 0.02298138476908207, 0.15962184965610504, -0.13447903096675873, -0.10200198739767075, -0.06750804930925369, 0.12664979696273804, -0.08822506666183472, -0.07232329994440079, -0.07941702008247375, -0.11633122712373734, 0.016314126551151276, 0.20614691078662872, 0.08674333244562149, 0.053647615015506744, 0.03521641716361046, -0.043116115033626556, 0.01747336983680725, 0.008305640891194344, 0.029678089544177055, 0.06133149936795235, -0.15816350281238556, 0.07020546495914459, 0.03605509176850319, 0.16959570348262787, -0.0993446409702301, 0.0023020028602331877, -0.20247361063957214, 0.021650534123182297, -0.11520107090473175, -0.0279880091547966, -0.11347662657499313, -0.09003384411334991, -0.02994580566883087, -0.13323388993740082, -0.06605368852615356, -0.040674127638339996, -0.08455964922904968, 0.024916136637330055, -0.012034360319375992, 0.033837366849184036, -0.10149567574262619, -0.03214224427938461, 0.1193583607673645, -0.0225247610360384, 0.09873691201210022, 0.15264569222927094, -0.056105561554431915, 0.07012881338596344, -0.11166761815547943, -0.0802903026342392, 0.08931192755699158, 0.03571446239948273, 0.050874728709459305, 0.10830801725387573, -0.030550260096788406, 0.06770956516265869, 0.055612314492464066, 0.04707438871264458, 0.09085060656070709, -0.0664883479475975, 0.024406438693404198, -0.09973680973052979, -0.1507648080587387, -0.04530337080359459, -0.021005621179938316, 0.12091539055109024, -0.014333789236843586, 0.10647758096456528, -0.05524574592709541, 0.06666131317615509, -0.08556533604860306, 0.04094405472278595, -0.022453349083662033, -0.16698004305362701, -0.041586291044950485, -0.07268314063549042, 0.012661613523960114, -0.021554555743932724, 0.22113750874996185, -0.021280420944094658, -0.07363957911729813, 0.046414077281951904, 0.05435312166810036, 0.0005011433968320489, 0.031188134104013443, 0.1956212818622589, 0.07669347524642944, -0.04778244346380234, -0.08365556597709656, 0.06892954558134079, -0.00832449458539486, -0.0063434019684791565, 0.06349365413188934, 0.0675564855337143, -0.00875508226454258, 0.09262446314096451, 0.012410894967615604, -0.036311279982328415, -0.12141717225313187, -0.15399721264839172, -0.17885717749595642, -0.03434435650706291, -0.04260740429162979, 0.1172381341457367, 0.24464716017246246, -0.006595400627702475, 0.024567825719714165, -0.056704919785261154, -0.04595637321472168, -0.13794119656085968, -0.08805765956640244, -0.11099068820476532, -0.11771774291992188, -0.012602201662957668, -0.04073159769177437, 0.021336715668439865, 0.04586933180689812, 0.04100324958562851, -0.03156473860144615, 0.09575900435447693, 0.0684477761387825, -0.03617088869214058, -0.017289655283093452, 0.0174604170024395, 0.025379637256264687, -0.03292081505060196, -0.039644669741392136, -0.09571969509124756, -0.03583652898669243, -0.05234599858522415, 0.03544431924819946, -0.08479716628789902, 0.01667913794517517, -0.05194004625082016, -0.07802405953407288, -0.04017278552055359, -0.00277317245490849, 0.03346860781311989, 0.1105940043926239, 0.004141722805798054, 0.02379191480576992, 0.008556491695344448, 0.2559153437614441, -0.05730222910642624, -0.08683297783136368, -0.01971750147640705, 0.13968117535114288, 0.023399606347084045, 0.0950707346200943, -0.04173593968153, 0.006259704940021038, -0.07102451473474503, 0.29567939043045044, 0.28891801834106445, -0.12654484808444977, 0.07685390114784241, -0.008657285943627357, 0.03852909058332443, 0.029095083475112915, 0.029741154983639717, 0.1327638030052185, 0.31193479895591736, -0.07293488085269928, -0.007424374110996723, -0.08754004538059235, -0.003862013341858983, -0.11450956761837006, 0.10600884258747101, 0.02505083754658699, -0.04655441641807556, -0.07701505720615387, 0.03050808236002922, -0.15735583007335663, 0.10210579633712769, -0.033970654010772705, -0.23830601572990417, -0.03952827304601669, 0.08688145875930786, 0.18120001256465912, 0.00791996717453003, 0.042892321944236755, -0.005502711050212383, -0.025637855753302574, -0.056520506739616394, 0.017790358513593674, -0.13713669776916504, 0.034502752125263214, 0.0673048198223114, -0.088349349796772, 0.12145335972309113, -0.034905366599559784, -0.011500244028866291, 0.1107836663722992, 0.07353247702121735, -0.04401658847928047, 0.10241210460662842, 0.031080741435289383, -0.06355095654726028, -0.0450567863881588, -0.007111364044249058, 0.04113724082708359, -0.044259458780288696, 0.07713578641414642, -0.1195032000541687, 0.06937789171934128, 0.040259361267089844, -0.009595520794391632, -0.021779458969831467, 0.07056137174367905, -0.04548037797212601, 0.09474921226501465, 0.026916177943348885, -0.042193613946437836, 0.0028465408831834793, 0.003775225253775716, -0.04533310979604721, -0.052328336983919144, -0.07233396172523499, -0.0626320093870163, -0.14771956205368042, -0.03109518252313137, 0.09823210537433624, 0.006528972182422876, -0.12315914779901505, -0.045933641493320465, -0.09500700980424881, 0.042437843978405, -0.13818088173866272, 0.023933542892336845, 0.09499010443687439, 0.011606055311858654, -0.009407204575836658, -0.11533092707395554, 0.03385793790221214, 0.0877065435051918, -0.09926046431064606, -0.12962661683559418 ]
null
null
transformers
# Chinese BART-Large ### News **12/30/2022** An updated version of CPT & Chinese BART are released. In the new version, we changed the following parts: - **Vocabulary** We replace the old BERT vocabulary with a larger one of size 51271 built from the training data, in which we 1) add missing 6800+ Chinese characters (most of them are traditional Chinese characters); 2) remove redundant tokens (e.g. Chinese character tokens with ## prefix); 3) add some English tokens to reduce OOV. - **Position Embeddings** We extend the max_position_embeddings from 512 to 1024. We initialize the new version of models with the old version of checkpoints with vocabulary alignment. Token embeddings found in the old checkpoints are copied. And other newly added parameters are randomly initialized. We further train the new CPT & Chinese BART 50K steps with batch size 2048, max-seq-length 1024, peak learning rate 2e-5, and warmup ratio 0.1. The result compared to the previous checkpoints is as followings: | | AFQMC | IFLYTEK | CSL-sum | LCSTS | AVG | | :--------- | :---: | :-----: | :-----: | :---: | :---: | | Previous | | | | | | | bart-base | 73.0 | 60 | 62.1 | 37.8 | 58.23 | | cpt-base | 75.1 | 60.5 | 63.0 | 38.2 | 59.20 | | bart-large | 75.7 | 62.1 | 64.2 | 40.6 | 60.65 | | cpt-large | 75.9 | 61.8 | 63.7 | 42.0 | 60.85 | | Updataed | | | | | | | bart-base | 73.03 | 61.25 | 61.51 | 38.78 | 58.64 | | cpt-base | 74.40 | 61.23 | 62.09 | 38.81 | 59.13 | | bart-large | 75.81 | 61.52 | 64.62 | 40.90 | 60.71 | | cpt-large | 75.97 | 61.63 | 63.83 | 42.08 | 60.88 | The result shows that the updated models maintain comparative performance compared with previous checkpoints. There are still some cases that the updated model is slightly worse than the previous one, which results from the following reasons: 1) Training additional a few steps did not lead to significant performance improvement; 2) some downstream tasks are not affected by the newly added tokens and longer encoding sequences, but sensitive to the fine-tuning hyperparameters. - Note that to use updated models, please update the `modeling_cpt.py` (new version download [Here](https://github.com/fastnlp/CPT/blob/master/finetune/modeling_cpt.py)) and the vocabulary (refresh the cache). ## Model description This is an implementation of Chinese BART-Large. [**CPT: A Pre-Trained Unbalanced Transformer for Both Chinese Language Understanding and Generation**](https://arxiv.org/pdf/2109.05729.pdf) Yunfan Shao, Zhichao Geng, Yitao Liu, Junqi Dai, Fei Yang, Li Zhe, Hujun Bao, Xipeng Qiu **Github Link:** https://github.com/fastnlp/CPT ## Usage ```python >>> from transformers import BertTokenizer, BartForConditionalGeneration, Text2TextGenerationPipeline >>> tokenizer = BertTokenizer.from_pretrained("fnlp/bart-large-chinese") >>> model = BartForConditionalGeneration.from_pretrained("fnlp/bart-large-chinese") >>> text2text_generator = Text2TextGenerationPipeline(model, tokenizer) >>> text2text_generator("北京是[MASK]的首都", max_length=50, do_sample=False) [{'generated_text': '北 京 是 中 华 人 民 共 和 国 的 首 都'}] ``` **Note: Please use BertTokenizer for the model vocabulary. DO NOT use original BartTokenizer.** ## Citation ```bibtex @article{shao2021cpt, title={CPT: A Pre-Trained Unbalanced Transformer for Both Chinese Language Understanding and Generation}, author={Yunfan Shao and Zhichao Geng and Yitao Liu and Junqi Dai and Fei Yang and Li Zhe and Hujun Bao and Xipeng Qiu}, journal={arXiv preprint arXiv:2109.05729}, year={2021} } ```
{"language": "zh", "tags": ["text2text-generation", "Chinese", "seq2seq"]}
text2text-generation
fnlp/bart-large-chinese
[ "transformers", "pytorch", "safetensors", "bart", "text2text-generation", "Chinese", "seq2seq", "zh", "arxiv:2109.05729", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
2022-03-02T23:29:05+00:00
[ "2109.05729" ]
[ "zh" ]
TAGS #transformers #pytorch #safetensors #bart #text2text-generation #Chinese #seq2seq #zh #arxiv-2109.05729 #autotrain_compatible #endpoints_compatible #has_space #region-us
Chinese BART-Large ================== ### News 12/30/2022 An updated version of CPT & Chinese BART are released. In the new version, we changed the following parts: * Vocabulary We replace the old BERT vocabulary with a larger one of size 51271 built from the training data, in which we 1) add missing 6800+ Chinese characters (most of them are traditional Chinese characters); 2) remove redundant tokens (e.g. Chinese character tokens with ## prefix); 3) add some English tokens to reduce OOV. * Position Embeddings We extend the max\_position\_embeddings from 512 to 1024. We initialize the new version of models with the old version of checkpoints with vocabulary alignment. Token embeddings found in the old checkpoints are copied. And other newly added parameters are randomly initialized. We further train the new CPT & Chinese BART 50K steps with batch size 2048, max-seq-length 1024, peak learning rate 2e-5, and warmup ratio 0.1. The result compared to the previous checkpoints is as followings: The result shows that the updated models maintain comparative performance compared with previous checkpoints. There are still some cases that the updated model is slightly worse than the previous one, which results from the following reasons: 1) Training additional a few steps did not lead to significant performance improvement; 2) some downstream tasks are not affected by the newly added tokens and longer encoding sequences, but sensitive to the fine-tuning hyperparameters. * Note that to use updated models, please update the 'modeling\_cpt.py' (new version download Here) and the vocabulary (refresh the cache). Model description ----------------- This is an implementation of Chinese BART-Large. CPT: A Pre-Trained Unbalanced Transformer for Both Chinese Language Understanding and Generation Yunfan Shao, Zhichao Geng, Yitao Liu, Junqi Dai, Fei Yang, Li Zhe, Hujun Bao, Xipeng Qiu Github Link: URL Usage ----- Note: Please use BertTokenizer for the model vocabulary. DO NOT use original BartTokenizer.
[ "### News\n\n\n12/30/2022\n\n\nAn updated version of CPT & Chinese BART are released. In the new version, we changed the following parts:\n\n\n* Vocabulary We replace the old BERT vocabulary with a larger one of size 51271 built from the training data, in which we 1) add missing 6800+ Chinese characters (most of them are traditional Chinese characters); 2) remove redundant tokens (e.g. Chinese character tokens with ## prefix); 3) add some English tokens to reduce OOV.\n* Position Embeddings We extend the max\\_position\\_embeddings from 512 to 1024.\n\n\nWe initialize the new version of models with the old version of checkpoints with vocabulary alignment. Token embeddings found in the old checkpoints are copied. And other newly added parameters are randomly initialized. We further train the new CPT & Chinese BART 50K steps with batch size 2048, max-seq-length 1024, peak learning rate 2e-5, and warmup ratio 0.1.\n\n\nThe result compared to the previous checkpoints is as followings:\n\n\n\nThe result shows that the updated models maintain comparative performance compared with previous checkpoints. There are still some cases that the updated model is slightly worse than the previous one, which results from the following reasons: 1) Training additional a few steps did not lead to significant performance improvement; 2) some downstream tasks are not affected by the newly added tokens and longer encoding sequences, but sensitive to the fine-tuning hyperparameters.\n\n\n* Note that to use updated models, please update the 'modeling\\_cpt.py' (new version download Here) and the vocabulary (refresh the cache).\n\n\nModel description\n-----------------\n\n\nThis is an implementation of Chinese BART-Large.\n\n\nCPT: A Pre-Trained Unbalanced Transformer for Both Chinese Language Understanding and Generation\n\n\nYunfan Shao, Zhichao Geng, Yitao Liu, Junqi Dai, Fei Yang, Li Zhe, Hujun Bao, Xipeng Qiu\n\n\nGithub Link: URL\n\n\nUsage\n-----\n\n\nNote: Please use BertTokenizer for the model vocabulary. DO NOT use original BartTokenizer." ]
[ "TAGS\n#transformers #pytorch #safetensors #bart #text2text-generation #Chinese #seq2seq #zh #arxiv-2109.05729 #autotrain_compatible #endpoints_compatible #has_space #region-us \n", "### News\n\n\n12/30/2022\n\n\nAn updated version of CPT & Chinese BART are released. In the new version, we changed the following parts:\n\n\n* Vocabulary We replace the old BERT vocabulary with a larger one of size 51271 built from the training data, in which we 1) add missing 6800+ Chinese characters (most of them are traditional Chinese characters); 2) remove redundant tokens (e.g. Chinese character tokens with ## prefix); 3) add some English tokens to reduce OOV.\n* Position Embeddings We extend the max\\_position\\_embeddings from 512 to 1024.\n\n\nWe initialize the new version of models with the old version of checkpoints with vocabulary alignment. Token embeddings found in the old checkpoints are copied. And other newly added parameters are randomly initialized. We further train the new CPT & Chinese BART 50K steps with batch size 2048, max-seq-length 1024, peak learning rate 2e-5, and warmup ratio 0.1.\n\n\nThe result compared to the previous checkpoints is as followings:\n\n\n\nThe result shows that the updated models maintain comparative performance compared with previous checkpoints. There are still some cases that the updated model is slightly worse than the previous one, which results from the following reasons: 1) Training additional a few steps did not lead to significant performance improvement; 2) some downstream tasks are not affected by the newly added tokens and longer encoding sequences, but sensitive to the fine-tuning hyperparameters.\n\n\n* Note that to use updated models, please update the 'modeling\\_cpt.py' (new version download Here) and the vocabulary (refresh the cache).\n\n\nModel description\n-----------------\n\n\nThis is an implementation of Chinese BART-Large.\n\n\nCPT: A Pre-Trained Unbalanced Transformer for Both Chinese Language Understanding and Generation\n\n\nYunfan Shao, Zhichao Geng, Yitao Liu, Junqi Dai, Fei Yang, Li Zhe, Hujun Bao, Xipeng Qiu\n\n\nGithub Link: URL\n\n\nUsage\n-----\n\n\nNote: Please use BertTokenizer for the model vocabulary. DO NOT use original BartTokenizer." ]
[ 67, 483 ]
[ "passage: TAGS\n#transformers #pytorch #safetensors #bart #text2text-generation #Chinese #seq2seq #zh #arxiv-2109.05729 #autotrain_compatible #endpoints_compatible #has_space #region-us \n" ]
[ -0.019023088738322258, 0.0102955037727952, -0.004935917444527149, 0.0021991864778101444, 0.09286759793758392, -0.03633582964539528, 0.1724282056093216, 0.09880057722330093, 0.01542864739894867, 0.0430380143225193, 0.129745751619339, 0.09941281378269196, -0.0005391961894929409, 0.14392288029193878, -0.04320349171757698, -0.226700559258461, 0.08259319514036179, 0.08180958032608032, -0.010739496909081936, 0.11515851318836212, 0.09834081679582596, -0.1188293918967247, 0.10701119154691696, 0.0033807074651122093, -0.06563854962587357, 0.028428588062524796, -0.005134581122547388, -0.11471366882324219, 0.1357601284980774, 0.015289990231394768, 0.14903220534324646, 0.07161961495876312, -0.02871134504675865, -0.11002305895090103, 0.030169406905770302, -0.03013792261481285, -0.0953446552157402, 0.025608396157622337, 0.06249932199716568, -0.05179392546415329, 0.06384110450744629, 0.0025573645252734423, -0.018836019560694695, 0.05177461728453636, -0.09416726231575012, -0.08144987374544144, -0.056733790785074234, 0.134571835398674, 0.08163713663816452, 0.09812439978122711, -0.012170377187430859, 0.15702742338180542, -0.0968468189239502, 0.10332835465669632, 0.20628957450389862, -0.3835635185241699, -0.005209766793996096, 0.07900362461805344, 0.1244925782084465, 0.06135537475347519, -0.055548638105392456, 0.03928631544113159, 0.06588371098041534, -0.03150896355509758, -0.011321107856929302, -0.08639737218618393, -0.0762016773223877, 0.04970791935920715, -0.08268561959266663, 0.01866224966943264, 0.24880021810531616, -0.03754975274205208, 0.06112021952867508, -0.039755575358867645, -0.11205966025590897, -0.0996188223361969, -0.008331158198416233, -0.030771248042583466, -0.027804140001535416, 0.03416448086500168, 0.04894036799669266, -0.04059012234210968, -0.14461646974086761, 0.005866976920515299, -0.16807623207569122, 0.13695994019508362, 0.005868853069841862, 0.020109467208385468, -0.19523537158966064, 0.028819669038057327, 0.04644594341516495, -0.1389932781457901, 0.05529528856277466, -0.08376307040452957, 0.039334263652563095, 0.055280011147260666, -0.005772138945758343, -0.045973002910614014, 0.07937555760145187, 0.1444217413663864, -0.013152611441910267, 0.09237705916166306, 0.02175559103488922, 0.08059491217136383, -0.010785228572785854, 0.08040449023246765, -0.024880114942789078, -0.08547265082597733, 0.03898850455880165, -0.027689380571246147, 0.06432884931564331, -0.08100251853466034, -0.15707753598690033, -0.06850285083055496, 0.07810270041227341, 0.045420460402965546, 0.024794775992631912, 0.07099819928407669, -0.030657023191452026, 0.043434903025627136, 0.11628890037536621, -0.048261214047670364, 0.028433963656425476, 0.01811855286359787, 0.013662182725965977, 0.018099043518304825, 0.005859899800270796, 0.03631513938307762, -0.02712637186050415, 0.09465312957763672, -0.06599116325378418, 0.014043542556464672, -0.011524495668709278, -0.05302434787154198, 0.028390586376190186, -0.08175794035196304, 0.03295646235346794, -0.18310546875, -0.07926423102617264, 0.004467356484383345, -0.03171534836292267, 0.003851794870570302, -0.035596441477537155, 0.013781419955193996, -0.08434972912073135, 0.05753181874752045, -0.061087097972631454, -0.03523305431008339, -0.04891642928123474, 0.07430490851402283, 0.01634998805820942, 0.0826965942978859, -0.15116050839424133, 0.01802997477352619, -0.09471583366394043, 0.028359567746520042, -0.05118539184331894, -0.017298124730587006, -0.02264130488038063, 0.13175415992736816, 0.059652309864759445, -0.0008659782470203936, -0.0874674990773201, 0.047197677195072174, 0.010302642360329628, 0.17693094909191132, -0.1859835535287857, -0.0666956752538681, 0.1812574714422226, -0.14859294891357422, -0.19466754794120789, 0.09563775360584259, 0.01972244121134281, -0.022988948971033096, 0.014451516792178154, 0.22885097563266754, 0.01102512888610363, -0.04780549183487892, -0.051179759204387665, 0.09769873321056366, -0.09197089076042175, -0.05387485772371292, 0.03445500135421753, 0.05919402092695236, -0.03175937756896019, 0.030977478250861168, 0.08590137958526611, 0.03886635974049568, -0.05686454474925995, -0.08022218942642212, -0.05467844009399414, -0.04682193696498871, 0.11794053763151169, 0.004400553181767464, 0.13020487129688263, -0.0929475948214531, 0.002103381557390094, -0.023830596357584, 0.03541454300284386, 0.0436248853802681, 0.0356006883084774, -0.08773157745599747, 0.13645519316196442, 0.08645979315042496, 0.019422374665737152, -0.14148607850074768, -0.008090336807072163, -0.018051331862807274, 0.107706218957901, -0.013574902899563313, 0.09657580405473709, 0.06005088984966278, -0.01147207897156477, -0.01655302569270134, -0.06380172818899155, 0.12663568556308746, 0.05442551523447037, -0.06993944197893143, -0.0860479325056076, 0.061114903539419174, -0.06150683015584946, 0.05497380718588829, -0.1155114620923996, 0.03831416741013527, 0.05866284295916557, 0.15851502120494843, -0.02022588811814785, 0.08037466555833817, -0.014105357229709625, 0.04170210659503937, -0.10452699661254883, 0.039715755730867386, 0.050526704639196396, 0.02139437384903431, -0.13068948686122894, 0.22948592901229858, -0.19976618885993958, 0.33110350370407104, 0.23238077759742737, -0.21685868501663208, -0.019719377160072327, 0.006076962221413851, -0.01218608021736145, -0.00339706614613533, 0.048763126134872437, 0.004561031237244606, -0.010500501841306686, -0.05143976956605911, 0.18317373096942902, -0.06171145290136337, -0.003800335107371211, 0.005148766096681356, -0.10635942965745926, -0.04960862174630165, 0.11869388818740845, -0.014478888362646103, -0.14101402461528778, 0.212879478931427, 0.2303418666124344, -0.007873454131186008, 0.1631365418434143, 0.032595887780189514, 0.05546890199184418, 0.006650224328041077, 0.011911118403077126, -0.06146317347884178, 0.06712142378091812, -0.18402038514614105, -0.07042992115020752, 0.05046015977859497, 0.002968581160530448, 0.05757817253470421, -0.1541343629360199, -0.06296011805534363, 0.006613464094698429, 0.015767131000757217, 0.004252196289598942, 0.09035574644804001, 0.020052717998623848, 0.1476578712463379, -0.051266927272081375, -0.03814297169446945, 0.04637850448489189, 0.02002652920782566, -0.1105252280831337, 0.13080741465091705, -0.14394232630729675, -0.30837348103523254, -0.061935000121593475, -0.10413222014904022, -0.021032478660345078, 0.04500502720475197, 0.10545223206281662, -0.1440674513578415, -0.01855856366455555, -0.04127347841858864, -0.08710107952356339, -0.08159586042165756, 0.06546907871961594, -0.020909124985337257, 0.04932486638426781, -0.03336036577820778, -0.04138016700744629, -0.04501085728406906, -0.03791316971182823, -0.024070462211966515, 0.15191197395324707, -0.06333164125680923, 0.10904036462306976, 0.12676222622394562, -0.015435940586030483, 0.03160644322633743, -0.024649549275636673, 0.1380814164876938, -0.07720023393630981, 0.0091697471216321, 0.21006545424461365, -0.021701272577047348, 0.08007486909627914, 0.1572202742099762, -0.010834903456270695, -0.028378766030073166, 0.037441421300172806, -0.04267006367444992, -0.09095818549394608, -0.16912373900413513, -0.11617700755596161, -0.10089941322803497, 0.10030676424503326, -0.03302687779068947, 0.08768735080957413, 0.12100066244602203, 0.07312114536762238, -0.007927212864160538, 0.014386758208274841, -0.021477840840816498, 0.058968015015125275, 0.11566785722970963, -0.01845463365316391, 0.146007239818573, -0.0783131942152977, -0.09743563830852509, 0.08076674491167068, 0.03995954990386963, 0.026910655200481415, 0.05992870777845383, -0.05081408843398094, 0.03081144392490387, 0.2137140929698944, 0.1923518180847168, 0.04836301505565643, 0.008329727686941624, -0.06931287795305252, -0.017899053171277046, -0.022141842171549797, -0.03820545971393585, 0.09485165774822235, 0.02390819974243641, -0.10774532705545425, -0.04528139531612396, -0.001661282149143517, 0.11214922368526459, 0.02071756310760975, 0.05575704574584961, -0.13054558634757996, 0.006579048000276089, 0.09684889018535614, 0.016107764095067978, -0.05622819811105728, 0.08830202370882034, 0.10222697257995605, -0.12265720963478088, 0.10761559009552002, 0.029595965519547462, 0.09011960029602051, 0.055271197110414505, 0.09722301363945007, -0.13118016719818115, -0.16375474631786346, 0.018827781081199646, 0.054461896419525146, -0.356096088886261, 0.21807214617729187, -0.021447189152240753, -0.08728353679180145, -0.0633634477853775, -0.041241127997636795, 0.03159347176551819, 0.13711470365524292, 0.09753497689962387, 0.01703386940062046, -0.1244565099477768, -0.12649045884609222, -0.0175631083548069, 0.013921369798481464, 0.1234530583024025, 0.05137046054005623, -0.02325606718659401, -0.02371329627931118, -0.024880433455109596, -0.021261606365442276, 0.07850722223520279, -0.025216005742549896, -0.1332666128873825, 0.05388571321964264, 0.05242185294628143, 0.0226702019572258, -0.020572224631905556, -0.024196600541472435, -0.11558327078819275, 0.13558827340602875, -0.07670284807682037, -0.041740983724594116, -0.08580198884010315, -0.11078610271215439, 0.05398094654083252, -0.08947079628705978, 0.06816615909337997, -0.057357896119356155, -0.0072106895968317986, -0.08157806843519211, -0.10775059461593628, 0.10044864565134048, -0.09489484876394272, -0.10367093980312347, -0.06617242842912674, 0.13048137724399567, -0.07769196480512619, 0.04771338775753975, 0.009953347034752369, 0.009790259413421154, -0.12164917588233948, -0.12092582136392593, -0.008603648282587528, -0.05343784764409065, 0.06060847267508507, 0.009886011481285095, -0.06502766162157059, -0.12746617197990417, -0.02034062333405018, -0.08495426923036575, 0.18249766528606415, 0.2874937355518341, -0.09434342384338379, 0.12836109101772308, 0.1387581080198288, 0.006093902513384819, -0.31253132224082947, -0.17673073709011078, -0.14396479725837708, 0.00621509924530983, -0.017366984859108925, -0.04692939296364784, 0.0362442210316658, -0.03127969056367874, -0.07593458145856857, 0.02601941116154194, -0.18017563223838806, -0.14081844687461853, 0.1516791731119156, -0.03303806483745575, 0.31785401701927185, -0.1834523230791092, -0.0957987979054451, -0.023255636915564537, -0.08884494006633759, 0.09273021668195724, -0.08022355288267136, 0.058382268995046616, -0.019565703347325325, 0.007260635029524565, 0.02921600081026554, -0.06449846923351288, 0.13064128160476685, -0.056029606610536575, 0.025847459211945534, -0.1336607038974762, -0.13892078399658203, 0.05450665205717087, -0.017650913447141647, 0.022931208834052086, -0.09282420575618744, 0.06380878388881683, -0.13545572757720947, 0.010010598227381706, -0.056335993111133575, 0.03668219968676567, -0.007530484348535538, -0.036013584583997726, -0.07797633856534958, -0.008161814883351326, -0.025943880900740623, 0.00805338378995657, 0.2603291869163513, -0.004422071855515242, 0.1271149069070816, 0.15216398239135742, 0.07255080342292786, -0.16302435100078583, 0.13662093877792358, -0.03118172474205494, -0.0696098804473877, 0.06267663836479187, -0.08964207768440247, 0.04863682761788368, 0.08607447892427444, -0.025260457769036293, 0.05961066856980324, 0.08848922699689865, 0.013834434561431408, 0.04147082939743996, 0.15926694869995117, -0.25182104110717773, -0.04445146769285202, -0.059733953326940536, 0.034364253282547, 0.10964015871286392, 0.07605288177728653, 0.11085960268974304, -0.01202466432005167, -0.026192888617515564, -0.025108784437179565, -0.006222588010132313, -0.04342447966337204, 0.052518654614686966, 0.05843370780348778, 0.053870297968387604, -0.09872715175151825, 0.0139419911429286, 0.03590014949440956, -0.07708627730607986, 0.02386092208325863, 0.16161663830280304, -0.13978087902069092, -0.10507243871688843, -0.05938999354839325, 0.11538591235876083, -0.08856844902038574, -0.07641106843948364, -0.08285818994045258, -0.12421810626983643, 0.015160493552684784, 0.19847318530082703, 0.08802860975265503, 0.05236596614122391, 0.03493421897292137, -0.047988180071115494, 0.02239406853914261, 0.004067335277795792, 0.03961954638361931, 0.05626769736409187, -0.15963411331176758, 0.0807037428021431, 0.03535600006580353, 0.17343391478061676, -0.09853193908929825, 0.0004513859748840332, -0.18474817276000977, 0.01902180165052414, -0.12047912925481796, -0.024251507595181465, -0.11882000416517258, -0.08819705247879028, -0.030164726078510284, -0.13199423253536224, -0.06413671374320984, -0.03941100835800171, -0.07824966311454773, 0.018119411543011665, -0.021710697561502457, 0.04031263664364815, -0.10758096724748611, -0.029159558936953545, 0.11608579009771347, -0.029899483546614647, 0.09602072089910507, 0.1569441705942154, -0.06578394025564194, 0.0647987350821495, -0.11690397560596466, -0.08710037916898727, 0.09926267713308334, 0.044045791029930115, 0.04641333594918251, 0.10923220217227936, -0.03291269391775131, 0.07209503650665283, 0.05430489033460617, 0.04497009143233299, 0.10031849145889282, -0.06320639699697495, 0.02279672399163246, -0.10649535059928894, -0.14621961116790771, -0.049060922116041183, -0.022516414523124695, 0.12182946503162384, -0.009402432478964329, 0.10502087324857712, -0.05660182610154152, 0.07151739299297333, -0.0916108712553978, 0.03961161896586418, -0.025930428877472878, -0.16434265673160553, -0.055357467383146286, -0.07424218207597733, 0.01773657836019993, -0.018383214250206947, 0.22018198668956757, -0.0267279502004385, -0.05702396109700203, 0.0483899749815464, 0.06752827763557434, -0.0026894628535956144, 0.03116542100906372, 0.20463410019874573, 0.07849910855293274, -0.047043439000844955, -0.07605239003896713, 0.061133142560720444, -0.008873297832906246, -0.009116560220718384, 0.07388916611671448, 0.07181253284215927, -0.01703166402876377, 0.0984664186835289, 0.011637886054813862, -0.032871000468730927, -0.13738210499286652, -0.16213975846767426, -0.17898593842983246, -0.031700991094112396, -0.04912569373846054, 0.10036999732255936, 0.24478265643119812, -0.014032615348696709, 0.025877656415104866, -0.050997037440538406, -0.04620526358485222, -0.1443706899881363, -0.08045302331447601, -0.11776039004325867, -0.11185901612043381, -0.016117582097649574, -0.041289206594228745, 0.02957279607653618, 0.04178202152252197, 0.03206278756260872, -0.03369847312569618, 0.0874038115143776, 0.08181531727313995, -0.03509507328271866, -0.019502798095345497, 0.014146366156637669, 0.03141510486602783, -0.019507573917508125, -0.0447702519595623, -0.09258317202329636, -0.03591455519199371, -0.05038401484489441, 0.03751653432846069, -0.08324333280324936, 0.026267852634191513, -0.06084729731082916, -0.07766809314489365, -0.04038223624229431, -0.004853102378547192, 0.034384243190288544, 0.11015523970127106, 0.010765635408461094, 0.018802154809236526, 0.00772326672449708, 0.2620116174221039, -0.05790777504444122, -0.09789291024208069, -0.019220653921365738, 0.1452179104089737, 0.025280412286520004, 0.08752837032079697, -0.02920476160943508, 0.004086517263203859, -0.08080927282571793, 0.2973364591598511, 0.2871292233467102, -0.12367340922355652, 0.07983867824077606, -0.015520552173256874, 0.04041799530386925, 0.032330311834812164, 0.027996696531772614, 0.13342414796352386, 0.31510382890701294, -0.06930168718099594, -0.0018278867937624454, -0.09477154165506363, -0.006607289891690016, -0.12181882560253143, 0.11637433618307114, 0.025137772783637047, -0.04929247871041298, -0.06230653077363968, 0.03358304873108864, -0.16212871670722961, 0.11099264770746231, -0.0428035631775856, -0.2379758059978485, -0.03900349885225296, 0.08719661086797714, 0.17905162274837494, 0.011955595575273037, 0.0444629043340683, -0.0031165573745965958, -0.026613006368279457, -0.04066095128655434, 0.015893323346972466, -0.13261838257312775, 0.05086727440357208, 0.07149416953325272, -0.09206024557352066, 0.10259538143873215, -0.028459101915359497, -0.006728596985340118, 0.10535454750061035, 0.07842039316892624, -0.03871292993426323, 0.10880778729915619, 0.027816569432616234, -0.0477132648229599, -0.031795747578144073, -0.0062078507617115974, 0.035552527755498886, -0.061635855585336685, 0.08222748339176178, -0.1264440268278122, 0.07196471840143204, 0.04234836995601654, -0.011391645297408104, -0.022601153701543808, 0.07091847062110901, -0.049279823899269104, 0.08542138338088989, 0.026501668617129326, -0.045226436108350754, 0.008277088403701782, 0.004531793296337128, -0.04304870590567589, -0.05695062875747681, -0.07683814316987991, -0.06430036574602127, -0.14839814603328705, -0.03392939642071724, 0.0967417061328888, 0.00757799856364727, -0.11527658998966217, -0.0500086285173893, -0.09337985515594482, 0.04634961485862732, -0.14453570544719696, 0.0287456214427948, 0.09984438866376877, 0.002007236471399665, -0.014084790833294392, -0.10559838265180588, 0.039674147963523865, 0.09406334161758423, -0.09107479453086853, -0.13034582138061523 ]
null
null
transformers
# Chinese CPT-Base ### News **12/30/2022** An updated version of CPT & Chinese BART are released. In the new version, we changed the following parts: - **Vocabulary** We replace the old BERT vocabulary with a larger one of size 51271 built from the training data, in which we 1) add missing 6800+ Chinese characters (most of them are traditional Chinese characters); 2) remove redundant tokens (e.g. Chinese character tokens with ## prefix); 3) add some English tokens to reduce OOV. - **Position Embeddings** We extend the max_position_embeddings from 512 to 1024. We initialize the new version of models with the old version of checkpoints with vocabulary alignment. Token embeddings found in the old checkpoints are copied. And other newly added parameters are randomly initialized. We further train the new CPT & Chinese BART 50K steps with batch size 2048, max-seq-length 1024, peak learning rate 2e-5, and warmup ratio 0.1. The result compared to the previous checkpoints is as followings: | | AFQMC | IFLYTEK | CSL-sum | LCSTS | AVG | | :--------- | :---: | :-----: | :-----: | :---: | :---: | | Previous | | | | | | | bart-base | 73.0 | 60 | 62.1 | 37.8 | 58.23 | | cpt-base | 75.1 | 60.5 | 63.0 | 38.2 | 59.20 | | bart-large | 75.7 | 62.1 | 64.2 | 40.6 | 60.65 | | cpt-large | 75.9 | 61.8 | 63.7 | 42.0 | 60.85 | | Updataed | | | | | | | bart-base | 73.03 | 61.25 | 61.51 | 38.78 | 58.64 | | cpt-base | 74.40 | 61.23 | 62.09 | 38.81 | 59.13 | | bart-large | 75.81 | 61.52 | 64.62 | 40.90 | 60.71 | | cpt-large | 75.97 | 61.63 | 63.83 | 42.08 | 60.88 | The result shows that the updated models maintain comparative performance compared with previous checkpoints. There are still some cases that the updated model is slightly worse than the previous one, which results from the following reasons: 1) Training additional a few steps did not lead to significant performance improvement; 2) some downstream tasks are not affected by the newly added tokens and longer encoding sequences, but sensitive to the fine-tuning hyperparameters. - Note that to use updated models, please update the `modeling_cpt.py` (new version download [Here](https://github.com/fastnlp/CPT/blob/master/finetune/modeling_cpt.py)) and the vocabulary (refresh the cache). ## Model description This is an implementation of CPT-Base. To use CPT, please import the file `modeling_cpt.py` (**Download** [Here](https://github.com/fastnlp/CPT/blob/master/finetune/modeling_cpt.py)) that define the architecture of CPT into your project. [**CPT: A Pre-Trained Unbalanced Transformer for Both Chinese Language Understanding and Generation**](https://arxiv.org/pdf/2109.05729.pdf) Yunfan Shao, Zhichao Geng, Yitao Liu, Junqi Dai, Fei Yang, Li Zhe, Hujun Bao, Xipeng Qiu **Github Link:** https://github.com/fastnlp/CPT ## Usage ```python >>> from modeling_cpt import CPTForConditionalGeneration >>> from transformers import BertTokenizer >>> tokenizer = BertTokenizer.from_pretrained("fnlp/cpt-base") >>> model = CPTForConditionalGeneration.from_pretrained("fnlp/cpt-base") >>> inputs = tokenizer.encode("北京是[MASK]的首都", return_tensors='pt') >>> pred_ids = model.generate(input_ids, num_beams=4, max_length=20) >>> print(tokenizer.convert_ids_to_tokens(pred_ids[i])) ['[SEP]', '[CLS]', '北', '京', '是', '中', '国', '的', '首', '都', '[SEP]'] ``` **Note: Please use BertTokenizer for the model vocabulary. DO NOT use original BartTokenizer.** ## Citation ```bibtex @article{shao2021cpt, title={CPT: A Pre-Trained Unbalanced Transformer for Both Chinese Language Understanding and Generation}, author={Yunfan Shao and Zhichao Geng and Yitao Liu and Junqi Dai and Fei Yang and Li Zhe and Hujun Bao and Xipeng Qiu}, journal={arXiv preprint arXiv:2109.05729}, year={2021} } ```
{"language": "zh", "initializedtags": ["fill-mask", "text2text-generation", "fill-mask", "text-classification", "Summarization", "Chinese", "CPT", "BART", "BERT", "seq2seq"]}
text2text-generation
fnlp/cpt-base
[ "transformers", "pytorch", "safetensors", "bart", "text2text-generation", "zh", "arxiv:2109.05729", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[ "2109.05729" ]
[ "zh" ]
TAGS #transformers #pytorch #safetensors #bart #text2text-generation #zh #arxiv-2109.05729 #autotrain_compatible #endpoints_compatible #region-us
Chinese CPT-Base ================ ### News 12/30/2022 An updated version of CPT & Chinese BART are released. In the new version, we changed the following parts: * Vocabulary We replace the old BERT vocabulary with a larger one of size 51271 built from the training data, in which we 1) add missing 6800+ Chinese characters (most of them are traditional Chinese characters); 2) remove redundant tokens (e.g. Chinese character tokens with ## prefix); 3) add some English tokens to reduce OOV. * Position Embeddings We extend the max\_position\_embeddings from 512 to 1024. We initialize the new version of models with the old version of checkpoints with vocabulary alignment. Token embeddings found in the old checkpoints are copied. And other newly added parameters are randomly initialized. We further train the new CPT & Chinese BART 50K steps with batch size 2048, max-seq-length 1024, peak learning rate 2e-5, and warmup ratio 0.1. The result compared to the previous checkpoints is as followings: The result shows that the updated models maintain comparative performance compared with previous checkpoints. There are still some cases that the updated model is slightly worse than the previous one, which results from the following reasons: 1) Training additional a few steps did not lead to significant performance improvement; 2) some downstream tasks are not affected by the newly added tokens and longer encoding sequences, but sensitive to the fine-tuning hyperparameters. * Note that to use updated models, please update the 'modeling\_cpt.py' (new version download Here) and the vocabulary (refresh the cache). Model description ----------------- This is an implementation of CPT-Base. To use CPT, please import the file 'modeling\_cpt.py' (Download Here) that define the architecture of CPT into your project. CPT: A Pre-Trained Unbalanced Transformer for Both Chinese Language Understanding and Generation Yunfan Shao, Zhichao Geng, Yitao Liu, Junqi Dai, Fei Yang, Li Zhe, Hujun Bao, Xipeng Qiu Github Link: URL Usage ----- Note: Please use BertTokenizer for the model vocabulary. DO NOT use original BartTokenizer.
[ "### News\n\n\n12/30/2022\n\n\nAn updated version of CPT & Chinese BART are released. In the new version, we changed the following parts:\n\n\n* Vocabulary We replace the old BERT vocabulary with a larger one of size 51271 built from the training data, in which we 1) add missing 6800+ Chinese characters (most of them are traditional Chinese characters); 2) remove redundant tokens (e.g. Chinese character tokens with ## prefix); 3) add some English tokens to reduce OOV.\n* Position Embeddings We extend the max\\_position\\_embeddings from 512 to 1024.\n\n\nWe initialize the new version of models with the old version of checkpoints with vocabulary alignment. Token embeddings found in the old checkpoints are copied. And other newly added parameters are randomly initialized. We further train the new CPT & Chinese BART 50K steps with batch size 2048, max-seq-length 1024, peak learning rate 2e-5, and warmup ratio 0.1.\n\n\nThe result compared to the previous checkpoints is as followings:\n\n\n\nThe result shows that the updated models maintain comparative performance compared with previous checkpoints. There are still some cases that the updated model is slightly worse than the previous one, which results from the following reasons: 1) Training additional a few steps did not lead to significant performance improvement; 2) some downstream tasks are not affected by the newly added tokens and longer encoding sequences, but sensitive to the fine-tuning hyperparameters.\n\n\n* Note that to use updated models, please update the 'modeling\\_cpt.py' (new version download Here) and the vocabulary (refresh the cache).\n\n\nModel description\n-----------------\n\n\nThis is an implementation of CPT-Base. To use CPT, please import the file 'modeling\\_cpt.py' (Download Here) that define the architecture of CPT into your project.\n\n\nCPT: A Pre-Trained Unbalanced Transformer for Both Chinese Language Understanding and Generation\n\n\nYunfan Shao, Zhichao Geng, Yitao Liu, Junqi Dai, Fei Yang, Li Zhe, Hujun Bao, Xipeng Qiu\n\n\nGithub Link: URL\n\n\nUsage\n-----\n\n\nNote: Please use BertTokenizer for the model vocabulary. DO NOT use original BartTokenizer." ]
[ "TAGS\n#transformers #pytorch #safetensors #bart #text2text-generation #zh #arxiv-2109.05729 #autotrain_compatible #endpoints_compatible #region-us \n", "### News\n\n\n12/30/2022\n\n\nAn updated version of CPT & Chinese BART are released. In the new version, we changed the following parts:\n\n\n* Vocabulary We replace the old BERT vocabulary with a larger one of size 51271 built from the training data, in which we 1) add missing 6800+ Chinese characters (most of them are traditional Chinese characters); 2) remove redundant tokens (e.g. Chinese character tokens with ## prefix); 3) add some English tokens to reduce OOV.\n* Position Embeddings We extend the max\\_position\\_embeddings from 512 to 1024.\n\n\nWe initialize the new version of models with the old version of checkpoints with vocabulary alignment. Token embeddings found in the old checkpoints are copied. And other newly added parameters are randomly initialized. We further train the new CPT & Chinese BART 50K steps with batch size 2048, max-seq-length 1024, peak learning rate 2e-5, and warmup ratio 0.1.\n\n\nThe result compared to the previous checkpoints is as followings:\n\n\n\nThe result shows that the updated models maintain comparative performance compared with previous checkpoints. There are still some cases that the updated model is slightly worse than the previous one, which results from the following reasons: 1) Training additional a few steps did not lead to significant performance improvement; 2) some downstream tasks are not affected by the newly added tokens and longer encoding sequences, but sensitive to the fine-tuning hyperparameters.\n\n\n* Note that to use updated models, please update the 'modeling\\_cpt.py' (new version download Here) and the vocabulary (refresh the cache).\n\n\nModel description\n-----------------\n\n\nThis is an implementation of CPT-Base. To use CPT, please import the file 'modeling\\_cpt.py' (Download Here) that define the architecture of CPT into your project.\n\n\nCPT: A Pre-Trained Unbalanced Transformer for Both Chinese Language Understanding and Generation\n\n\nYunfan Shao, Zhichao Geng, Yitao Liu, Junqi Dai, Fei Yang, Li Zhe, Hujun Bao, Xipeng Qiu\n\n\nGithub Link: URL\n\n\nUsage\n-----\n\n\nNote: Please use BertTokenizer for the model vocabulary. DO NOT use original BartTokenizer." ]
[ 54, 517 ]
[ "passage: TAGS\n#transformers #pytorch #safetensors #bart #text2text-generation #zh #arxiv-2109.05729 #autotrain_compatible #endpoints_compatible #region-us \n" ]
[ -0.07237685471773148, -0.03583166003227234, -0.006217675283551216, -0.013432753272354603, 0.1072613075375557, -0.0034819820430129766, 0.13206735253334045, 0.09714239090681076, 0.040889713913202286, 0.01215423084795475, 0.16052749752998352, 0.18393725156784058, -0.017079005017876625, 0.13551615178585052, -0.09832781553268433, -0.17510950565338135, 0.06703617423772812, 0.06995780020952225, 0.017668938264250755, 0.11290833353996277, 0.0973869040608406, -0.09083196520805359, 0.06849196553230286, -0.02900049462914467, -0.10700623691082001, 0.026106789708137512, 0.05046524852514267, -0.1078147143125534, 0.12923018634319305, 0.03872806578874588, 0.12595893442630768, 0.08140704035758972, -0.04247196763753891, -0.1504911184310913, 0.03766028583049774, -0.012552835047245026, -0.07841809093952179, 0.034293994307518005, 0.08446813374757767, -0.0819057747721672, 0.05580167844891548, 0.006545368582010269, -0.040906742215156555, 0.06950699537992477, -0.10905232280492783, -0.12069351971149445, -0.06274478137493134, 0.08960358053445816, 0.05640154704451561, 0.09361405670642853, 0.0038992504123598337, 0.17503225803375244, -0.0581522136926651, 0.11414097994565964, 0.20568370819091797, -0.3505801260471344, 0.0014069619355723262, 0.037326451390981674, 0.08914545178413391, 0.039682939648628235, -0.04802737012505531, 0.05853608250617981, 0.055911265313625336, -0.0016336997505277395, -0.009056412614881992, -0.06480522453784943, -0.04506397992372513, 0.016302481293678284, -0.08012702316045761, -0.04792182147502899, 0.20683535933494568, -0.044171687215566635, 0.039389029145240784, -0.04578264430165291, -0.1134878620505333, -0.04000706598162651, -0.014167029410600662, 0.017787886783480644, -0.07784029841423035, 0.03571166843175888, 0.010116198100149632, -0.008642056956887245, -0.15622250735759735, 0.0021531074307858944, -0.1578647643327713, 0.2331896424293518, 0.0160550307482481, 0.05435991287231445, -0.18753039836883545, 0.06548008322715759, 0.03958206996321678, -0.14900672435760498, 0.047829028218984604, -0.10211160778999329, 0.08119899779558182, 0.02581423707306385, -0.02461472898721695, -0.08922228217124939, 0.13006462156772614, 0.1713857650756836, -0.0037585909012705088, 0.06983949989080429, -0.026581842452287674, 0.06724684685468674, -0.015425910241901875, 0.06102732568979263, 0.042390428483486176, -0.07967457920312881, 0.09379267692565918, -0.047863952815532684, 0.06416486203670502, -0.06480932980775833, -0.13315808773040771, -0.06946920603513718, 0.12462934106588364, 0.11085350811481476, 0.03487062454223633, 0.06721863895654678, -0.026222048327326775, 0.025390109047293663, 0.08579341322183609, -0.05795764550566673, -0.02148461900651455, 0.017445584759116173, 0.028154009953141212, 0.04710732772946358, 0.00032855005702003837, 0.010006650350987911, -0.08235366642475128, 0.1091395765542984, -0.05302504822611809, -0.012427720241248608, -0.00799615029245615, -0.048596397042274475, 0.0429375059902668, -0.07161407172679901, 0.03740737587213516, -0.20102980732917786, -0.12104544788599014, 0.011402668431401253, -0.019052231684327126, 0.028009694069623947, -0.005923828110098839, -0.007730870507657528, -0.014528266154229641, 0.05746587738394737, -0.0650608241558075, -0.017922429367899895, -0.05852032080292702, 0.1211036667227745, 0.018852069973945618, 0.04834296554327011, -0.14684726297855377, 0.019971860572695732, -0.09255792200565338, -0.0023323106579482555, -0.037033677101135254, -0.03604118153452873, -0.042284078896045685, 0.1569238156080246, 0.010850725695490837, -0.013162678107619286, -0.08100409060716629, 0.039274778217077255, 0.005385231226682663, 0.19124862551689148, -0.08395899832248688, -0.07032245397567749, 0.24979422986507416, -0.13650327920913696, -0.19119593501091003, 0.08267343789339066, 0.01541922613978386, -0.019814569503068924, 0.09705273061990738, 0.19805556535720825, 0.049656111747026443, -0.0674733817577362, 0.018801631405949593, 0.08518116921186447, -0.09655430167913437, -0.10258561372756958, -0.0014828454004600644, 0.00711521552875638, -0.11923975497484207, 0.04953274875879288, 0.08471313118934631, 0.07083313912153244, -0.06184867396950722, -0.03973440080881119, -0.05300632864236832, -0.045638613402843475, 0.11310635507106781, 0.02044723741710186, 0.09726928919553757, -0.10411524772644043, -0.012629788368940353, -0.08833885192871094, 0.03236040845513344, 0.02249409444630146, 0.02542293444275856, -0.07425155490636826, 0.13524353504180908, 0.01217680424451828, 0.03777867183089256, -0.16166602075099945, -0.05236756429076195, -0.029337413609027863, 0.10559345781803131, -0.021490151062607765, 0.051527366042137146, 0.07985861599445343, -0.003586071776226163, -0.006233936175704002, -0.06979088485240936, 0.15481235086917877, 0.030651383101940155, -0.06523078680038452, -0.08074625581502914, 0.06027040258049965, -0.06354887038469315, 0.045322235673666, -0.11040414869785309, 0.017459876835346222, 0.0711587592959404, 0.13851593434810638, -0.0031509276013821363, 0.05417164787650108, -0.033069901168346405, 0.012134682387113571, -0.06331025809049606, 0.02719227597117424, 0.09258508682250977, 0.021479707211256027, -0.08158563822507858, 0.15734222531318665, -0.19015143811702728, 0.3182034194469452, 0.1958654373884201, -0.20640765130519867, 0.028906138613820076, -0.0344247967004776, -0.010579022578895092, 0.004330636002123356, 0.060157231986522675, -0.02580060251057148, 0.0008977903635241091, 0.00014697734150104225, 0.18195393681526184, -0.06828052550554276, -0.041370708495378494, 0.026342784985899925, -0.09381519258022308, -0.010349434800446033, 0.09237326681613922, -0.03006105311214924, -0.21669234335422516, 0.1648915857076645, 0.21014831960201263, 0.034832198172807693, 0.18423543870449066, -0.013505510985851288, 0.028974048793315887, 0.04350784793496132, 0.015818892046809196, -0.021701263263821602, 0.022799920290708542, -0.14540383219718933, -0.028150541707873344, 0.0705874040722847, 0.0062936036847531796, 0.08449802547693253, -0.13360899686813354, -0.035756275057792664, -0.008479134179651737, 0.009413945488631725, 0.004406496416777372, 0.11259141564369202, 0.030706796795129776, 0.14393843710422516, -0.02972426638007164, -0.031788770109415054, 0.08162734657526016, 0.0067289420403540134, -0.11548233032226562, 0.17146362364292145, -0.14248758554458618, -0.3148595988750458, -0.14883916079998016, -0.12043096125125885, -0.04088520258665085, 0.030292028561234474, 0.11736315488815308, -0.08677475154399872, -0.02607668749988079, 0.009921839460730553, -0.019855016842484474, -0.03841470181941986, 0.03436970338225365, -0.012340432032942772, 0.04779689759016037, -0.03251414746046066, -0.08689326792955399, -0.06510260701179504, -0.04365401342511177, -0.02454567328095436, 0.1521570384502411, -0.09041868895292282, 0.09862841665744781, 0.11009085923433304, 0.005439933389425278, 0.05917340889573097, -0.02143108658492565, 0.1270650327205658, -0.05777835100889206, -0.004950197413563728, 0.23997239768505096, -0.05741950124502182, 0.09727698564529419, 0.11901947855949402, -0.008942396380007267, -0.057549938559532166, 0.02302868291735649, -0.061424411833286285, -0.0910274088382721, -0.20962846279144287, -0.13879315555095673, -0.08411481231451035, 0.0635608434677124, 0.029194772243499756, 0.06749995797872543, 0.1550133377313614, 0.07320435345172882, -0.038247641175985336, -0.03661418706178665, 0.011995679698884487, 0.08364900201559067, 0.17336052656173706, -0.004507713485509157, 0.12890614569187164, -0.08537055552005768, -0.10202525556087494, 0.08362394571304321, -0.0038824635557830334, 0.09316974878311157, 0.056337498128414154, -0.016330474987626076, 0.02753441408276558, 0.15668325126171112, 0.1515134871006012, 0.1420312374830246, 0.02350621111690998, -0.06996353715658188, 0.0008976156241260469, -0.03367786481976509, -0.07899054139852524, 0.027664560824632645, -0.03672163188457489, -0.09454923123121262, -0.07449159771203995, -0.08578146994113922, 0.09430117905139923, 0.04199442267417908, 0.03795020654797554, -0.19227232038974762, -0.01062839012593031, 0.0666218027472496, -0.006576451938599348, -0.1077326089143753, 0.06199533864855766, 0.0005192520329728723, -0.11060555279254913, 0.11007171124219894, -0.03357568383216858, 0.0856127068400383, 0.011277692392468452, 0.09166005253791809, -0.13608227670192719, -0.0986587256193161, 0.011300885118544102, 0.10740990936756134, -0.3200312852859497, 0.20347760617733002, 0.0006902724271640182, -0.014267239719629288, -0.10206849873065948, -0.040345948189496994, 0.025844430550932884, 0.12410619854927063, 0.10357775539159775, 0.014478552155196667, -0.06633225083351135, -0.12036194652318954, -0.00941480603069067, 0.02976970747113228, 0.1300172060728073, 0.0217728391289711, 0.0013198646483942866, -0.04828447476029396, -0.022793130949139595, -0.025473210960626602, -0.011867884546518326, -0.02688160352408886, -0.13130633533000946, 0.06924866884946823, 0.04468556120991707, 0.05353362858295441, -0.05080340802669525, -0.020314570516347885, -0.07545500248670578, 0.13066262006759644, -0.09569162875413895, -0.07725983113050461, -0.10524453967809677, -0.0844775065779686, 0.04145047813653946, -0.10234523564577103, 0.064179927110672, -0.06484590470790863, 0.03075207956135273, -0.10998043417930603, -0.18008899688720703, 0.09157279133796692, -0.11996597796678543, -0.09284041821956635, -0.04341473430395126, 0.19484290480613708, -0.053436700254678726, -0.004305979236960411, 0.03569936752319336, -0.008328885771334171, -0.10283004492521286, -0.08924635499715805, -0.010238059796392918, -0.027998104691505432, 0.052522528916597366, -0.016665104776620865, -0.03967905044555664, -0.125900998711586, -0.029751934111118317, -0.05288069322705269, 0.25200799107551575, 0.25307005643844604, -0.056150637567043304, 0.1317061483860016, 0.1845935583114624, -0.013646502047777176, -0.3262346386909485, -0.16089469194412231, -0.1255819946527481, -0.01912587881088257, -0.06358332931995392, -0.052694838494062424, 0.07043275982141495, -0.014222278259694576, -0.054982103407382965, 0.14681017398834229, -0.19578810036182404, -0.10913100838661194, 0.1918855607509613, 0.02338632568717003, 0.4147806465625763, -0.15304496884346008, -0.10586295276880264, -0.07531923055648804, -0.13713222742080688, 0.11494792252779007, -0.07218080759048462, 0.06664115190505981, -0.03681448847055435, 0.0403742641210556, 0.040273457765579224, -0.07521618157625198, 0.09772054105997086, -0.04505867138504982, 0.025766616687178612, -0.13365283608436584, -0.08312462270259857, 0.055056132376194, -0.03170999884605408, 0.014355176128447056, -0.10111711174249649, 0.04724378138780594, -0.11586672067642212, -0.017357105389237404, -0.08986640721559525, 0.07827936857938766, 0.010389088653028011, -0.03990054130554199, -0.006391782313585281, -0.05968376249074936, -0.018437311053276062, 0.002530911471694708, 0.22958076000213623, -0.041530486196279526, 0.16070517897605896, 0.14757317304611206, 0.10456647723913193, -0.1816396713256836, 0.08766040205955505, -0.0588541179895401, -0.07906777411699295, 0.06309134513139725, -0.06085047870874405, 0.06411448121070862, 0.11344156414270401, -0.004936713259667158, 0.03393930941820145, 0.07562930881977081, -0.015203725546598434, -0.025296151638031006, 0.16348113119602203, -0.2667790949344635, 0.023925863206386566, -0.06800452619791031, 0.11183462291955948, 0.0862506702542305, 0.10333354026079178, 0.15927250683307648, 0.04463379085063934, -0.03460714966058731, -0.037739597260951996, -0.012032109312713146, -0.04344136267900467, 0.09850048273801804, 0.07469750195741653, 0.0569133535027504, -0.1186084970831871, 0.03191983699798584, -0.03358587622642517, -0.09448631852865219, 0.006912709213793278, 0.15889939665794373, -0.1650383025407791, -0.11873306334018707, -0.014066883362829685, 0.1420116126537323, -0.1317240595817566, -0.09580650180578232, -0.0843496024608612, -0.12875041365623474, 0.040565043687820435, 0.26460304856300354, 0.07470828294754028, 0.06104660779237747, 0.011722964234650135, -0.047555260360240936, -0.022794043645262718, -0.0022074056323617697, 0.038902733474969864, 0.04645470529794693, -0.1104942262172699, 0.042849406599998474, -0.011759970337152481, 0.12880077958106995, -0.09301939606666565, -0.015190432779490948, -0.15662096440792084, 0.025574207305908203, -0.15713214874267578, -0.014221446588635445, -0.09209904819726944, -0.05458543449640274, -0.02522028051316738, -0.0705895647406578, -0.025462212041020393, -0.024011163040995598, -0.08703351765871048, 0.0297060776501894, -0.023018047213554382, 0.002891652984544635, -0.08570805937051773, -0.03423057869076729, 0.0728006660938263, -0.03887823596596718, 0.10504277050495148, 0.1572086215019226, -0.064884714782238, 0.12274664640426636, -0.18026228249073029, -0.09644799679517746, 0.0915619432926178, 0.01625751331448555, 0.02307341806590557, 0.07588358223438263, 0.011604690924286842, 0.08969607949256897, 0.014989214017987251, 0.05363250523805618, 0.06336689740419388, -0.09910020977258682, 0.048808444291353226, -0.042300429195165634, -0.12757529318332672, -0.0451260507106781, -0.052356917411088943, 0.07295997440814972, 0.005433324724435806, 0.11883780360221863, -0.06940536946058273, 0.0724433958530426, -0.06642084568738937, 0.030054625123739243, -0.010656295344233513, -0.2004600167274475, -0.054870881140232086, -0.06114222854375839, 0.01539247203618288, 0.00963382888585329, 0.17060750722885132, -0.05266997963190079, -0.014041060581803322, 0.036949001252651215, 0.08698529005050659, -0.0160979013890028, -0.0014402942033484578, 0.23010458052158356, 0.047025974839925766, -0.03816794604063034, -0.1099078357219696, 0.05715286731719971, 0.004279077518731356, -0.0515575148165226, 0.10807785391807556, 0.08031988888978958, 0.003920535556972027, 0.07393349707126617, 0.006060065235942602, 0.011822369880974293, -0.10546699911355972, -0.18203318119049072, -0.08904102444648743, -0.004580650944262743, 0.006500289775431156, 0.11345828324556351, 0.22130165994167328, -0.009111782535910606, -0.017211023718118668, -0.039986055344343185, -0.03371212258934975, -0.1380765736103058, -0.13717544078826904, -0.09964574128389359, -0.07922066748142242, 0.014201045036315918, -0.047475311905145645, 0.013275815173983574, 0.056487683206796646, 0.04319317638874054, -0.04764159023761749, 0.11445792764425278, 0.07423481345176697, -0.08451395481824875, 0.04908054694533348, -0.01327076181769371, 0.008758781477808952, 0.04468914493918419, -0.02715553157031536, -0.09592065960168839, -0.04630761966109276, -0.02590176649391651, 0.041812434792518616, -0.05513207986950874, 0.016173120588064194, -0.0876217931509018, -0.09446461498737335, -0.03220286965370178, 0.0568995475769043, 0.024794068187475204, 0.15538771450519562, 0.004460632801055908, 0.014545397832989693, 0.02873929962515831, 0.21302670240402222, -0.03533947840332985, -0.15733684599399567, 0.015800073742866516, 0.1833977997303009, 0.05448651686310768, 0.0952078327536583, -0.014704307541251183, 0.01705745980143547, -0.01028779149055481, 0.3127553462982178, 0.2514955401420593, -0.038628626614809036, 0.07522035390138626, -0.021334059536457062, 0.04163848236203194, 0.06244014576077461, 0.09993152320384979, 0.0908588096499443, 0.30158522725105286, -0.0665106251835823, 0.010824763216078281, -0.05081111565232277, -0.00064169178949669, -0.12186451256275177, 0.10533539205789566, 0.002708398038521409, -0.052972324192523956, -0.0514565072953701, 0.07354803383350372, -0.13994334638118744, 0.11445662379264832, -0.04911342263221741, -0.17497195303440094, -0.04114968702197075, 0.022241946309804916, 0.1804019957780838, -0.007082437165081501, 0.07262701541185379, -0.017977844923734665, -0.06320876628160477, -0.022802934050559998, 0.003678449196740985, -0.16259858012199402, 0.02211972512304783, 0.04388148710131645, -0.09626930207014084, 0.06347084045410156, -0.02925800532102585, 0.05712154880166054, 0.11063739657402039, 0.05345125123858452, -0.053964246064424515, 0.10806626826524734, 0.014180718921124935, -0.06686872243881226, 0.002514112973585725, 0.013748825527727604, 0.02348601631820202, -0.07698773592710495, 0.049327049404382706, -0.16313548386096954, 0.05075854808092117, 0.049490850418806076, -0.03463374823331833, 0.00029733648989349604, 0.07789427787065506, -0.043517105281353, 0.08546747267246246, -0.0000662875609123148, -0.03375384211540222, -0.01903175562620163, -0.04244169220328331, -0.0043702078983187675, 0.009281727485358715, -0.053010493516922, -0.060609981417655945, -0.1592341810464859, -0.05485761538147926, 0.12061047554016113, -0.002275416161864996, -0.1962011307477951, -0.01032791193574667, -0.13085222244262695, 0.0322447344660759, -0.165997713804245, 0.07359939068555832, 0.08069886267185211, 0.004448234103620052, 0.01272035762667656, -0.08902495354413986, 0.024555763229727745, 0.0901089534163475, -0.10104364156723022, -0.11484687030315399 ]
null
null
transformers
# Chinese CPT-Large ### News **12/30/2022** An updated version of CPT & Chinese BART are released. In the new version, we changed the following parts: - **Vocabulary** We replace the old BERT vocabulary with a larger one of size 51271 built from the training data, in which we 1) add missing 6800+ Chinese characters (most of them are traditional Chinese characters); 2) remove redundant tokens (e.g. Chinese character tokens with ## prefix); 3) add some English tokens to reduce OOV. - **Position Embeddings** We extend the max_position_embeddings from 512 to 1024. We initialize the new version of models with the old version of checkpoints with vocabulary alignment. Token embeddings found in the old checkpoints are copied. And other newly added parameters are randomly initialized. We further train the new CPT & Chinese BART 50K steps with batch size 2048, max-seq-length 1024, peak learning rate 2e-5, and warmup ratio 0.1. The result compared to the previous checkpoints is as followings: | | AFQMC | IFLYTEK | CSL-sum | LCSTS | AVG | | :--------- | :---: | :-----: | :-----: | :---: | :---: | | Previous | | | | | | | bart-base | 73.0 | 60 | 62.1 | 37.8 | 58.23 | | cpt-base | 75.1 | 60.5 | 63.0 | 38.2 | 59.20 | | bart-large | 75.7 | 62.1 | 64.2 | 40.6 | 60.65 | | cpt-large | 75.9 | 61.8 | 63.7 | 42.0 | 60.85 | | Updataed | | | | | | | bart-base | 73.03 | 61.25 | 61.51 | 38.78 | 58.64 | | cpt-base | 74.40 | 61.23 | 62.09 | 38.81 | 59.13 | | bart-large | 75.81 | 61.52 | 64.62 | 40.90 | 60.71 | | cpt-large | 75.97 | 61.63 | 63.83 | 42.08 | 60.88 | The result shows that the updated models maintain comparative performance compared with previous checkpoints. There are still some cases that the updated model is slightly worse than the previous one, which results from the following reasons: 1) Training additional a few steps did not lead to significant performance improvement; 2) some downstream tasks are not affected by the newly added tokens and longer encoding sequences, but sensitive to the fine-tuning hyperparameters. - Note that to use updated models, please update the `modeling_cpt.py` (new version download [Here](https://github.com/fastnlp/CPT/blob/master/finetune/modeling_cpt.py)) and the vocabulary (refresh the cache). ## Model description This is an implementation of CPT-Large. To use CPT, please import the file `modeling_cpt.py` (**Download** [Here](https://github.com/fastnlp/CPT/blob/master/finetune/modeling_cpt.py)) that define the architecture of CPT into your project. [**CPT: A Pre-Trained Unbalanced Transformer for Both Chinese Language Understanding and Generation**](https://arxiv.org/pdf/2109.05729.pdf) Yunfan Shao, Zhichao Geng, Yitao Liu, Junqi Dai, Fei Yang, Li Zhe, Hujun Bao, Xipeng Qiu **Github Link:** https://github.com/fastnlp/CPT ## Usage ```python >>> from modeling_cpt import CPTForConditionalGeneration >>> from transformers import BertTokenizer >>> tokenizer = BertTokenizer.from_pretrained("fnlp/cpt-large") >>> model = CPTForConditionalGeneration.from_pretrained("fnlp/cpt-large") >>> input_ids = tokenizer.encode("北京是[MASK]的首都", return_tensors='pt') >>> pred_ids = model.generate(input_ids, num_beams=4, max_length=20) >>> print(tokenizer.convert_ids_to_tokens(pred_ids[0])) ['[SEP]', '[CLS]', '北', '京', '是', '中', '国', '的', '首', '都', '[SEP]'] ``` **Note: Please use BertTokenizer for the model vocabulary. DO NOT use original BartTokenizer.** ## Citation ```bibtex @article{shao2021cpt, title={CPT: A Pre-Trained Unbalanced Transformer for Both Chinese Language Understanding and Generation}, author={Yunfan Shao and Zhichao Geng and Yitao Liu and Junqi Dai and Fei Yang and Li Zhe and Hujun Bao and Xipeng Qiu}, journal={arXiv preprint arXiv:2109.05729}, year={2021} } ```
{"language": "zh", "tags": ["fill-mask", "text2text-generation", "fill-mask", "text-classification", "Summarization", "Chinese", "CPT", "BART", "BERT", "seq2seq"]}
text-classification
fnlp/cpt-large
[ "transformers", "pytorch", "safetensors", "bart", "text2text-generation", "fill-mask", "text-classification", "Summarization", "Chinese", "CPT", "BART", "BERT", "seq2seq", "zh", "arxiv:2109.05729", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[ "2109.05729" ]
[ "zh" ]
TAGS #transformers #pytorch #safetensors #bart #text2text-generation #fill-mask #text-classification #Summarization #Chinese #CPT #BART #BERT #seq2seq #zh #arxiv-2109.05729 #autotrain_compatible #endpoints_compatible #region-us
Chinese CPT-Large ================= ### News 12/30/2022 An updated version of CPT & Chinese BART are released. In the new version, we changed the following parts: * Vocabulary We replace the old BERT vocabulary with a larger one of size 51271 built from the training data, in which we 1) add missing 6800+ Chinese characters (most of them are traditional Chinese characters); 2) remove redundant tokens (e.g. Chinese character tokens with ## prefix); 3) add some English tokens to reduce OOV. * Position Embeddings We extend the max\_position\_embeddings from 512 to 1024. We initialize the new version of models with the old version of checkpoints with vocabulary alignment. Token embeddings found in the old checkpoints are copied. And other newly added parameters are randomly initialized. We further train the new CPT & Chinese BART 50K steps with batch size 2048, max-seq-length 1024, peak learning rate 2e-5, and warmup ratio 0.1. The result compared to the previous checkpoints is as followings: The result shows that the updated models maintain comparative performance compared with previous checkpoints. There are still some cases that the updated model is slightly worse than the previous one, which results from the following reasons: 1) Training additional a few steps did not lead to significant performance improvement; 2) some downstream tasks are not affected by the newly added tokens and longer encoding sequences, but sensitive to the fine-tuning hyperparameters. * Note that to use updated models, please update the 'modeling\_cpt.py' (new version download Here) and the vocabulary (refresh the cache). Model description ----------------- This is an implementation of CPT-Large. To use CPT, please import the file 'modeling\_cpt.py' (Download Here) that define the architecture of CPT into your project. CPT: A Pre-Trained Unbalanced Transformer for Both Chinese Language Understanding and Generation Yunfan Shao, Zhichao Geng, Yitao Liu, Junqi Dai, Fei Yang, Li Zhe, Hujun Bao, Xipeng Qiu Github Link: URL Usage ----- Note: Please use BertTokenizer for the model vocabulary. DO NOT use original BartTokenizer.
[ "### News\n\n\n12/30/2022\n\n\nAn updated version of CPT & Chinese BART are released. In the new version, we changed the following parts:\n\n\n* Vocabulary We replace the old BERT vocabulary with a larger one of size 51271 built from the training data, in which we 1) add missing 6800+ Chinese characters (most of them are traditional Chinese characters); 2) remove redundant tokens (e.g. Chinese character tokens with ## prefix); 3) add some English tokens to reduce OOV.\n* Position Embeddings We extend the max\\_position\\_embeddings from 512 to 1024.\n\n\nWe initialize the new version of models with the old version of checkpoints with vocabulary alignment. Token embeddings found in the old checkpoints are copied. And other newly added parameters are randomly initialized. We further train the new CPT & Chinese BART 50K steps with batch size 2048, max-seq-length 1024, peak learning rate 2e-5, and warmup ratio 0.1.\n\n\nThe result compared to the previous checkpoints is as followings:\n\n\n\nThe result shows that the updated models maintain comparative performance compared with previous checkpoints. There are still some cases that the updated model is slightly worse than the previous one, which results from the following reasons: 1) Training additional a few steps did not lead to significant performance improvement; 2) some downstream tasks are not affected by the newly added tokens and longer encoding sequences, but sensitive to the fine-tuning hyperparameters.\n\n\n* Note that to use updated models, please update the 'modeling\\_cpt.py' (new version download Here) and the vocabulary (refresh the cache).\n\n\nModel description\n-----------------\n\n\nThis is an implementation of CPT-Large. To use CPT, please import the file 'modeling\\_cpt.py' (Download Here) that define the architecture of CPT into your project.\n\n\nCPT: A Pre-Trained Unbalanced Transformer for Both Chinese Language Understanding and Generation\n\n\nYunfan Shao, Zhichao Geng, Yitao Liu, Junqi Dai, Fei Yang, Li Zhe, Hujun Bao, Xipeng Qiu\n\n\nGithub Link: URL\n\n\nUsage\n-----\n\n\nNote: Please use BertTokenizer for the model vocabulary. DO NOT use original BartTokenizer." ]
[ "TAGS\n#transformers #pytorch #safetensors #bart #text2text-generation #fill-mask #text-classification #Summarization #Chinese #CPT #BART #BERT #seq2seq #zh #arxiv-2109.05729 #autotrain_compatible #endpoints_compatible #region-us \n", "### News\n\n\n12/30/2022\n\n\nAn updated version of CPT & Chinese BART are released. In the new version, we changed the following parts:\n\n\n* Vocabulary We replace the old BERT vocabulary with a larger one of size 51271 built from the training data, in which we 1) add missing 6800+ Chinese characters (most of them are traditional Chinese characters); 2) remove redundant tokens (e.g. Chinese character tokens with ## prefix); 3) add some English tokens to reduce OOV.\n* Position Embeddings We extend the max\\_position\\_embeddings from 512 to 1024.\n\n\nWe initialize the new version of models with the old version of checkpoints with vocabulary alignment. Token embeddings found in the old checkpoints are copied. And other newly added parameters are randomly initialized. We further train the new CPT & Chinese BART 50K steps with batch size 2048, max-seq-length 1024, peak learning rate 2e-5, and warmup ratio 0.1.\n\n\nThe result compared to the previous checkpoints is as followings:\n\n\n\nThe result shows that the updated models maintain comparative performance compared with previous checkpoints. There are still some cases that the updated model is slightly worse than the previous one, which results from the following reasons: 1) Training additional a few steps did not lead to significant performance improvement; 2) some downstream tasks are not affected by the newly added tokens and longer encoding sequences, but sensitive to the fine-tuning hyperparameters.\n\n\n* Note that to use updated models, please update the 'modeling\\_cpt.py' (new version download Here) and the vocabulary (refresh the cache).\n\n\nModel description\n-----------------\n\n\nThis is an implementation of CPT-Large. To use CPT, please import the file 'modeling\\_cpt.py' (Download Here) that define the architecture of CPT into your project.\n\n\nCPT: A Pre-Trained Unbalanced Transformer for Both Chinese Language Understanding and Generation\n\n\nYunfan Shao, Zhichao Geng, Yitao Liu, Junqi Dai, Fei Yang, Li Zhe, Hujun Bao, Xipeng Qiu\n\n\nGithub Link: URL\n\n\nUsage\n-----\n\n\nNote: Please use BertTokenizer for the model vocabulary. DO NOT use original BartTokenizer." ]
[ 87, 517 ]
[ "passage: TAGS\n#transformers #pytorch #safetensors #bart #text2text-generation #fill-mask #text-classification #Summarization #Chinese #CPT #BART #BERT #seq2seq #zh #arxiv-2109.05729 #autotrain_compatible #endpoints_compatible #region-us \n" ]
[ -0.04612765833735466, 0.038524869829416275, -0.007016943767666817, 0.009754816070199013, 0.09380753338336945, -0.034052442759275436, 0.16346772015094757, 0.09279642254114151, 0.05272287875413895, 0.01508109737187624, 0.1431964486837387, 0.10120394825935364, 0.03335929289460182, 0.16403235495090485, -0.06147536262869835, -0.2512749433517456, 0.0709248036146164, 0.06898917257785797, -0.031308602541685104, 0.1300513595342636, 0.08165346086025238, -0.09380471706390381, 0.10559925436973572, 0.007386094890534878, -0.02998766303062439, 0.008825327269732952, 0.017118999734520912, -0.13656960427761078, 0.11990925669670105, 0.04128279909491539, 0.1478692591190338, 0.07671037316322327, -0.021468380466103554, -0.13643884658813477, 0.047140829265117645, -0.027654414996504784, -0.1068214550614357, 0.045311808586120605, 0.05024341866374016, -0.07543137669563293, 0.046306684613227844, -0.020150812342762947, 0.00041676234104670584, 0.07860240340232849, -0.1111384928226471, -0.03521394357085228, -0.0232895128428936, 0.1523708552122116, 0.10179919749498367, 0.07631286978721619, -0.011948873288929462, 0.1485583633184433, -0.09211695194244385, 0.10565435141324997, 0.17132404446601868, -0.36964207887649536, -0.003414832055568695, 0.009440853260457516, 0.09213801473379135, 0.007007214240729809, -0.06535566598176956, 0.03553757444024086, 0.06653251498937607, -0.05287238582968712, -0.021134326234459877, -0.08025297522544861, 0.006858942098915577, 0.0019065662054345012, -0.0759352296590805, 0.024366289377212524, 0.17622607946395874, -0.02824922651052475, 0.02366293966770172, -0.03899397328495979, -0.10729764401912689, -0.09378784149885178, -0.013264060951769352, -0.010323707014322281, -0.03334907442331314, 0.031535804271698, 0.027500195428729057, -0.025194477289915085, -0.10704674571752548, -0.022430069744586945, -0.15172521770000458, 0.15902310609817505, 0.03792558237910271, 0.012637535110116005, -0.20809988677501678, 0.00645078020170331, 0.05392495170235634, -0.1435072422027588, 0.05681144818663597, -0.0835719108581543, 0.023899303749203682, 0.039575859904289246, 0.048381827771663666, -0.07453995198011398, 0.08821804821491241, 0.13956648111343384, -0.023107057437300682, 0.12687410414218903, -0.040667057037353516, 0.10376885533332825, -0.015187740325927734, 0.07077234238386154, -0.011156394146382809, -0.028507336974143982, 0.03409291431307793, -0.052030447870492935, 0.06667080521583557, -0.07487787306308746, -0.1348196417093277, -0.019876208156347275, 0.05154189467430115, 0.08544676005840302, -0.00813823938369751, 0.11310265958309174, -0.05762752145528793, 0.026827722787857056, 0.07811296731233597, -0.04669293388724327, 0.0023548041936010122, 0.04086596891283989, 0.0149798933416605, 0.002852371660992503, -0.0023756681475788355, 0.03185504302382469, -0.04696093499660492, 0.14997771382331848, -0.07548615336418152, 0.0009113157284446061, -0.011771220713853836, -0.049191784113645554, 0.04623992741107941, -0.113655224442482, 0.004471349064260721, -0.14645534753799438, -0.14029155671596527, 0.04161987081170082, -0.04659384861588478, 0.01975790224969387, -0.021657750010490417, -0.04037906974554062, -0.0590803325176239, 0.03021615371108055, -0.0369296595454216, -0.05380856245756149, -0.07357706129550934, 0.08588863164186478, -0.014273871667683125, 0.08667213469743729, -0.1346062272787094, -0.0038556503131985664, -0.07713290303945541, 0.03559551760554314, -0.09888208657503128, 0.0013589761219918728, -0.04717755690217018, 0.14309117197990417, 0.026969553902745247, -0.027931420132517815, -0.07901968061923981, 0.03667474165558815, -0.028608165681362152, 0.22600895166397095, -0.17700880765914917, -0.1050645187497139, 0.2727296054363251, -0.15502217411994934, -0.13778389990329742, 0.1029311791062355, 0.0023712182883173227, -0.04853544011712074, 0.07092533260583878, 0.2178870439529419, -0.011930668726563454, -0.07203706353902817, -0.013987947255373001, 0.09886197745800018, -0.11522864550352097, -0.015346178784966469, 0.05234495550394058, 0.02762153372168541, -0.09871260821819305, 0.028395891189575195, 0.07878478616476059, 0.0443260483443737, -0.06222508102655411, -0.06426744908094406, 0.0021119844168424606, -0.026939695701003075, 0.1670072227716446, -0.0033556860871613026, 0.10862091928720474, -0.09211395680904388, -0.023210987448692322, -0.08893433958292007, 0.017781905829906464, 0.040378637611866, 0.035366982221603394, -0.14592866599559784, 0.10360483080148697, 0.10532484948635101, 0.020576780661940575, -0.13032321631908417, -0.004673013463616371, -0.011640844866633415, 0.11822821199893951, 0.003907485399395227, 0.02345147542655468, 0.050506915897130966, -0.0003056251152884215, -0.048654887825250626, -0.07061861455440521, 0.1231081485748291, 0.009264236316084862, -0.046461571007966995, -0.1472586691379547, 0.07854476571083069, -0.05279284343123436, 0.07482520490884781, -0.10896670073270798, 0.04108084365725517, 0.10032770037651062, 0.11739099770784378, 0.004249681252986193, 0.07247305661439896, 0.0035337163135409355, 0.023299260064959526, -0.06241992115974426, 0.029622690752148628, 0.07580461353063583, 0.020769502967596054, -0.18889644742012024, 0.1855950802564621, -0.15215350687503815, 0.2799028754234314, 0.19302719831466675, -0.20672012865543365, -0.03796550631523132, -0.0035269202198833227, -0.021571125835180283, 0.0004529957950580865, 0.029957158491015434, 0.010716714896261692, 0.10232585668563843, -0.03564387559890747, 0.20015251636505127, -0.0857366994023323, -0.02419581264257431, 0.022433018311858177, -0.06733690947294235, -0.03317061439156532, 0.13061366975307465, 0.027847928926348686, -0.1735740751028061, 0.1938115656375885, 0.18537187576293945, 0.050298191606998444, 0.2090051919221878, 0.02117622084915638, 0.0696244165301323, 0.02633027546107769, 0.043579328805208206, -0.020434096455574036, 0.06139795109629631, -0.18763402104377747, -0.057697709649801254, 0.01716139353811741, -0.007859298028051853, 0.043733853846788406, -0.1412399858236313, -0.06167150288820267, -0.017761778086423874, -0.006381616927683353, -0.08239603787660599, 0.06378379464149475, 0.0008737563039176166, 0.15772055089473724, -0.019833162426948547, -0.05906498059630394, 0.07447722554206848, -0.005069501232355833, -0.12467967718839645, 0.16884101927280426, -0.15314342081546783, -0.35019856691360474, -0.06781501322984695, -0.12055026739835739, -0.023204080760478973, 0.053789276629686356, 0.06624262034893036, -0.1723598688840866, -0.013164960779249668, -0.011896885000169277, -0.05109824612736702, -0.07097810506820679, 0.07016687840223312, -0.008367618545889854, 0.06822224706411362, -0.0227779783308506, -0.03666478022933006, -0.047892019152641296, -0.054679106920957565, -0.015572162345051765, 0.1513049602508545, -0.11552377045154572, 0.07929562777280807, 0.13269928097724915, 0.004606660921126604, 0.02849005162715912, -0.07214419543743134, 0.10005947947502136, -0.09771686792373657, -0.014767772518098354, 0.12463978677988052, -0.10745852440595627, 0.08184695988893509, 0.1346355378627777, -0.010543765500187874, -0.04343770816922188, 0.04792458191514015, -0.035958338528871536, -0.06698708981275558, -0.2172812521457672, -0.10243542492389679, -0.0714743509888649, 0.15110474824905396, -0.014388123527169228, 0.08093924075365067, 0.1266077309846878, 0.047982651740312576, -0.019801372662186623, 0.014540677890181541, 0.04103102162480354, 0.07315157353878021, 0.06068228557705879, -0.022498508915305138, 0.12783163785934448, -0.047688815742731094, -0.11812376976013184, 0.052310314029455185, -0.03639933094382286, 0.051017411053180695, 0.08358537405729294, 0.0233097355812788, 0.04570310190320015, 0.15004509687423706, 0.20449544489383698, 0.07887319475412369, 0.004667423665523529, -0.06082499027252197, -0.02907729707658291, -0.03041764162480831, -0.06586892157793045, 0.0328785702586174, 0.01721341349184513, -0.05586463212966919, -0.061799656599760056, 0.018408864736557007, 0.12553423643112183, 0.07354787737131119, 0.05493466928601265, -0.11979164183139801, 0.022768840193748474, 0.08620819449424744, 0.006852406542748213, -0.06407753378152847, 0.10595211386680603, 0.06599785387516022, -0.14227460324764252, 0.15930293500423431, 0.001675476087257266, 0.09820958971977234, 0.01236435491591692, 0.09752514958381653, -0.13964438438415527, -0.15973874926567078, -0.011174437589943409, 0.06605887413024902, -0.333553671836853, 0.2650182843208313, 0.019117234274744987, -0.051164571195840836, -0.09127472341060638, -0.0528993085026741, 0.043989941477775574, 0.12696950137615204, 0.17702962458133698, 0.017155194655060768, -0.03780503571033478, -0.09790554642677307, -0.07472074776887894, 0.026905613020062447, 0.14991940557956696, 0.033673323690891266, -0.040690869092941284, -0.006909133866429329, -0.04627726972103119, -0.026004314422607422, 0.01655159704387188, -0.02956409752368927, -0.09594330191612244, 0.050369083881378174, 0.016893140971660614, 0.025444647297263145, -0.023206356912851334, -0.04583452641963959, -0.07082261145114899, 0.15958157181739807, -0.182872474193573, -0.068000927567482, -0.08461451530456543, -0.08620843291282654, -0.0063360692001879215, -0.09444068372249603, 0.03690085560083389, -0.04236304759979248, 0.04528336599469185, -0.07378679513931274, -0.1048303097486496, 0.12862692773342133, -0.0816878229379654, -0.14018861949443817, -0.06835120916366577, 0.18930132687091827, -0.04286320134997368, 0.06904206424951553, 0.013610758818686008, -0.014718317426741123, -0.03126542270183563, -0.10824769735336304, 0.00036804802948608994, -0.06093186140060425, 0.05639166384935379, 0.07057882845401764, -0.0958542451262474, -0.14366266131401062, -0.0511959046125412, -0.04161442071199417, 0.21492333710193634, 0.3355332612991333, -0.033104829490184784, 0.15607325732707977, 0.1677296757698059, -0.03403696045279503, -0.32532477378845215, -0.1198972761631012, -0.12472894787788391, -0.005225877743214369, -0.04979349672794342, -0.10393135249614716, 0.02361411601305008, -0.028091371059417725, -0.04382232949137688, 0.05228107050061226, -0.1528947800397873, -0.13068215548992157, 0.15503840148448944, -0.011447259224951267, 0.33965927362442017, -0.15934708714485168, -0.1151435524225235, -0.0770377665758133, -0.04119293391704559, 0.10333698242902756, -0.089230015873909, 0.060650262981653214, -0.018162986263632774, -0.03682584688067436, 0.025653425604104996, -0.056412916630506516, 0.09697434306144714, -0.04302654042840004, 0.01392642967402935, -0.11454380303621292, -0.16152051091194153, 0.09205251932144165, 0.013490905053913593, -0.007093914318829775, -0.11429807543754578, 0.026488833129405975, -0.08779990673065186, -0.022971026599407196, -0.05170633643865585, 0.033331744372844696, -0.02136276289820671, -0.03221128135919571, -0.04909038171172142, 0.013190078549087048, -0.008833933621644974, 0.011882186867296696, 0.2789761424064636, -0.02991299144923687, 0.12888430058956146, 0.05995069071650505, 0.16735531389713287, -0.13041740655899048, 0.12626908719539642, -0.04281873628497124, -0.06692076474428177, 0.06416139751672745, -0.08073364943265915, 0.06233207881450653, 0.11328136175870895, 0.00202521332539618, 0.10698679089546204, 0.10724243521690369, 0.006606327369809151, 0.02758205682039261, 0.14045462012290955, -0.2371077537536621, -0.04206202179193497, -0.060667745769023895, 0.0449567474424839, 0.07293129712343216, 0.08510542660951614, 0.09377703070640564, 0.0066960714757442474, -0.03170570358633995, -0.002727980725467205, 0.01872177980840206, -0.03169300779700279, 0.053933799266815186, 0.04798237979412079, 0.048496779054403305, -0.1167035773396492, 0.05930381640791893, 0.0008319807820953429, -0.07422178238630295, 0.027125075459480286, 0.15062315762043, -0.16578562557697296, -0.07798507064580917, -0.04869292676448822, 0.1991226226091385, 0.0064153666608035564, -0.08392373472452164, -0.1078391969203949, -0.14073120057582855, 0.0314766950905323, 0.2852526605129242, 0.0661344826221466, 0.04830070585012436, 0.031069602817296982, -0.05326049029827118, 0.02402445301413536, 0.003376381704583764, 0.0038834528531879187, 0.015287418849766254, -0.114364393055439, 0.09689395874738693, 0.04747135564684868, 0.17897558212280273, -0.09170414507389069, -0.008796715177595615, -0.21342766284942627, 0.040503550320863724, -0.09612817317247391, 0.02695542387664318, -0.08761212229728699, -0.08287341147661209, -0.04124368727207184, -0.07334142178297043, -0.056136079132556915, -0.0521492175757885, -0.07812322676181793, 0.032736580818891525, 0.00901768822222948, 0.013988977298140526, -0.0910266637802124, -0.017222935333848, 0.11970863491296768, -0.037255387753248215, 0.11149497330188751, 0.13047732412815094, -0.07751437276601791, 0.10673315078020096, -0.15342481434345245, -0.06441733241081238, 0.10633759945631027, 0.009545903652906418, 0.021301425993442535, 0.1084430068731308, -0.012752874754369259, 0.037904080003499985, 0.018149537965655327, 0.06617068499326706, 0.099680595099926, -0.05965648964047432, 0.06180129572749138, -0.05493532866239548, -0.1514664590358734, -0.030127011239528656, -0.02180587500333786, 0.08385708928108215, -0.02004093863070011, 0.11762062460184097, -0.07629960030317307, 0.07739058881998062, -0.06081727147102356, 0.05127055197954178, 0.001947017153725028, -0.14384610950946808, -0.0405745767056942, -0.06302673369646072, 0.02000788226723671, -0.042280860245227814, 0.19370095431804657, -0.05432094261050224, -0.049747880548238754, 0.06426946073770523, 0.05307888239622116, -0.027588073164224625, 0.033238958567380905, 0.16988833248615265, 0.04517178609967232, -0.05640599876642227, -0.053901541978120804, 0.03556857630610466, 0.00762363662943244, -0.011357923038303852, 0.1413908749818802, 0.049268294125795364, -0.0007834500283934176, 0.07430406659841537, -0.0038187906611710787, 0.004587592091411352, -0.08363677561283112, -0.1486014425754547, -0.15066908299922943, -0.012050616554915905, 0.02767852135002613, 0.11309848725795746, 0.19373026490211487, -0.010051748715341091, 0.02300911955535412, -0.03728676587343216, -0.0785270407795906, -0.17532840371131897, -0.10590720176696777, -0.1025065928697586, -0.043110575526952744, 0.023401545360684395, -0.04921750724315643, -0.027882060036063194, -0.009468920528888702, 0.06503082066774368, -0.04109996184706688, 0.10991326719522476, -0.005661876872181892, -0.04883509501814842, 0.05096244812011719, 0.015958886593580246, 0.01734289713203907, -0.025522110983729362, -0.04212188720703125, -0.06497131288051605, -0.04091176763176918, -0.04435158148407936, 0.0305048655718565, -0.07257601618766785, 0.025998007506132126, -0.059958312660455704, -0.08164362609386444, -0.013140811584889889, 0.004956928081810474, 0.036036211997270584, 0.1133943721652031, 0.018850227817893028, 0.018397988751530647, 0.027139166370034218, 0.18535538017749786, -0.015284602530300617, -0.07258838415145874, -0.04068300873041153, 0.14861129224300385, 0.0283054206520319, 0.08132972568273544, -0.021188246086239815, 0.00840511079877615, -0.04117424413561821, 0.30447039008140564, 0.299659788608551, -0.10858368873596191, 0.0730656236410141, -0.04055166617035866, 0.05057966336607933, 0.08317672461271286, 0.03668906167149544, 0.10324618220329285, 0.2744073271751404, -0.07202046364545822, -0.008189371787011623, -0.05512971058487892, -0.011271806433796883, -0.11648659408092499, 0.07845664769411087, 0.043396759778261185, -0.034131161868572235, -0.07349799573421478, 0.06606200337409973, -0.2172250896692276, 0.058761149644851685, -0.046156853437423706, -0.21870467066764832, -0.04727666452527046, 0.046723026782274246, 0.10064297914505005, 0.047697003930807114, 0.04561064392328262, 0.01976799964904785, -0.03093756176531315, -0.05626397579908371, 0.049004994332790375, -0.14954370260238647, -0.0039903814904391766, 0.057302359491586685, -0.07134786993265152, 0.13600008189678192, -0.009578699246048927, 0.008495744317770004, 0.09218384325504303, 0.05772452801465988, -0.0017314935103058815, 0.08349741250276566, 0.01763875223696232, -0.03003348968923092, -0.056095585227012634, 0.018026191741228104, 0.02993309684097767, -0.05687655881047249, 0.07698429375886917, -0.07786989957094193, 0.06155483424663544, -0.004101453348994255, -0.06273779273033142, -0.03566122055053711, 0.14023128151893616, -0.07629303634166718, 0.05256444960832596, 0.07792580872774124, -0.026655294001102448, -0.0027105596382170916, -0.01890484243631363, -0.05162632465362549, -0.053255561739206314, -0.1131555438041687, -0.05822338908910751, -0.15169312059879303, -0.03772953152656555, 0.07971341162919998, 0.02812204696238041, -0.20348761975765228, -0.013399465009570122, -0.14379481971263885, 0.04587933421134949, -0.17105261981487274, 0.009400329552590847, 0.05810992419719696, 0.022076286375522614, -0.0024079373106360435, -0.11896830052137375, 0.06757038831710815, 0.07628601044416428, -0.09192358702421188, -0.11210878938436508 ]
null
null
transformers
# ElasticBERT-BASE ## Model description This is an implementation of the `base` version of ElasticBERT. [**Towards Efficient NLP: A Standard Evaluation and A Strong Baseline**](https://arxiv.org/pdf/2110.07038.pdf) Xiangyang Liu, Tianxiang Sun, Junliang He, Lingling Wu, Xinyu Zhang, Hao Jiang, Zhao Cao, Xuanjing Huang, Xipeng Qiu ## Code link [**fastnlp/elasticbert**](https://github.com/fastnlp/ElasticBERT) ## Usage ```python >>> from transformers import BertTokenizer as ElasticBertTokenizer >>> from models.configuration_elasticbert import ElasticBertConfig >>> from models.modeling_elasticbert import ElasticBertForSequenceClassification >>> num_output_layers = 1 >>> config = ElasticBertConfig.from_pretrained('fnlp/elasticbert-base', num_output_layers=num_output_layers ) >>> tokenizer = ElasticBertTokenizer.from_pretrained('fnlp/elasticbert-base') >>> model = ElasticBertForSequenceClassification.from_pretrained('fnlp/elasticbert-base', config=config) >>> input_ids = tokenizer.encode('The actors are fantastic .', return_tensors='pt') >>> outputs = model(input_ids) ``` ## Citation ```bibtex @article{liu2021elasticbert, author = {Xiangyang Liu and Tianxiang Sun and Junliang He and Lingling Wu and Xinyu Zhang and Hao Jiang and Zhao Cao and Xuanjing Huang and Xipeng Qiu}, title = {Towards Efficient {NLP:} {A} Standard Evaluation and {A} Strong Baseline}, journal = {CoRR}, volume = {abs/2110.07038}, year = {2021}, url = {https://arxiv.org/abs/2110.07038}, eprinttype = {arXiv}, eprint = {2110.07038}, timestamp = {Fri, 22 Oct 2021 13:33:09 +0200}, biburl = {https://dblp.org/rec/journals/corr/abs-2110-07038.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } ```
{"language": "en", "tags": ["Multi-exit-BERT"], "datasets": ["wikipedia", "bookcorpus", "c4"]}
fill-mask
fnlp/elasticbert-base
[ "transformers", "pytorch", "elasticbert", "fill-mask", "Multi-exit-BERT", "en", "dataset:wikipedia", "dataset:bookcorpus", "dataset:c4", "arxiv:2110.07038", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[ "2110.07038" ]
[ "en" ]
TAGS #transformers #pytorch #elasticbert #fill-mask #Multi-exit-BERT #en #dataset-wikipedia #dataset-bookcorpus #dataset-c4 #arxiv-2110.07038 #autotrain_compatible #endpoints_compatible #region-us
# ElasticBERT-BASE ## Model description This is an implementation of the 'base' version of ElasticBERT. Towards Efficient NLP: A Standard Evaluation and A Strong Baseline Xiangyang Liu, Tianxiang Sun, Junliang He, Lingling Wu, Xinyu Zhang, Hao Jiang, Zhao Cao, Xuanjing Huang, Xipeng Qiu ## Code link fastnlp/elasticbert ## Usage
[ "# ElasticBERT-BASE", "## Model description\n\nThis is an implementation of the 'base' version of ElasticBERT.\n\nTowards Efficient NLP: A Standard Evaluation and A Strong Baseline\n\nXiangyang Liu, Tianxiang Sun, Junliang He, Lingling Wu, Xinyu Zhang, Hao Jiang, Zhao Cao, Xuanjing Huang, Xipeng Qiu", "## Code link\n\nfastnlp/elasticbert", "## Usage" ]
[ "TAGS\n#transformers #pytorch #elasticbert #fill-mask #Multi-exit-BERT #en #dataset-wikipedia #dataset-bookcorpus #dataset-c4 #arxiv-2110.07038 #autotrain_compatible #endpoints_compatible #region-us \n", "# ElasticBERT-BASE", "## Model description\n\nThis is an implementation of the 'base' version of ElasticBERT.\n\nTowards Efficient NLP: A Standard Evaluation and A Strong Baseline\n\nXiangyang Liu, Tianxiang Sun, Junliang He, Lingling Wu, Xinyu Zhang, Hao Jiang, Zhao Cao, Xuanjing Huang, Xipeng Qiu", "## Code link\n\nfastnlp/elasticbert", "## Usage" ]
[ 76, 8, 82, 10, 3 ]
[ "passage: TAGS\n#transformers #pytorch #elasticbert #fill-mask #Multi-exit-BERT #en #dataset-wikipedia #dataset-bookcorpus #dataset-c4 #arxiv-2110.07038 #autotrain_compatible #endpoints_compatible #region-us \n# ElasticBERT-BASE## Model description\n\nThis is an implementation of the 'base' version of ElasticBERT.\n\nTowards Efficient NLP: A Standard Evaluation and A Strong Baseline\n\nXiangyang Liu, Tianxiang Sun, Junliang He, Lingling Wu, Xinyu Zhang, Hao Jiang, Zhao Cao, Xuanjing Huang, Xipeng Qiu## Code link\n\nfastnlp/elasticbert## Usage" ]
[ -0.11253015697002411, 0.12889769673347473, -0.00004417393574840389, 0.07819481939077377, 0.09503506869077682, -0.018431533128023148, 0.11352437734603882, 0.0747830718755722, 0.005356095265597105, 0.03977563977241516, 0.10480330139398575, 0.0621582567691803, 0.03592634201049805, 0.15959908068180084, -0.00972164049744606, -0.26248830556869507, 0.02227618917822838, 0.11389137804508209, -0.009871603921055794, 0.08653128147125244, 0.09325960278511047, -0.112498439848423, 0.16704247891902924, 0.06053813174366951, -0.045680586248636246, -0.005320050287991762, -0.05012412741780281, -0.07066882401704788, 0.13606981933116913, 0.06318061053752899, 0.12332140654325485, 0.03777867928147316, 0.05999666079878807, -0.08998266607522964, 0.004158709663897753, -0.059667762368917465, -0.05559961870312691, 0.07404334843158722, 0.013666277751326561, 0.1005619689822197, 0.09538794308900833, -0.0031693936325609684, 0.010062279179692268, -0.00009241508087143302, -0.05253926292061806, 0.02190268225967884, -0.051318954676389694, 0.08533217012882233, 0.1361607313156128, 0.014675624668598175, -0.0040498413145542145, 0.11994824558496475, -0.10279464721679688, 0.046919334679841995, 0.0885809138417244, -0.3764250874519348, -0.0526420958340168, 0.039421360939741135, 0.036906734108924866, -0.017545826733112335, -0.05307554453611374, -0.012296251021325588, 0.09319420158863068, -0.025819193571805954, 0.03708674758672714, -0.10820863395929337, -0.0810854583978653, 0.07448842376470566, -0.11034758388996124, 0.16682559251785278, 0.2596011161804199, 0.029048170894384384, 0.0028518030885607004, -0.02745163068175316, -0.03572962060570717, 0.023159842938184738, -0.07580262422561646, -0.09855660796165466, 0.03975934162735939, -0.015901342034339905, -0.002798335859552026, -0.06502573192119598, -0.03945761173963547, -0.02074982225894928, -0.1152358278632164, -0.050663482397794724, 0.0026008267886936665, -0.02784566394984722, 0.03133596107363701, 0.026581307873129845, 0.001553357345983386, -0.10678000748157501, -0.010885589756071568, -0.08801789581775665, 0.026371022686362267, -0.039334531873464584, 0.03488938510417938, 0.07008903473615646, 0.033851660788059235, 0.09423666447401047, 0.11833719909191132, 0.04299674555659294, 0.08932630717754364, 0.004468225874006748, -0.05556424334645271, 0.09438946098089218, -0.07115918397903442, -0.19938704371452332, 0.04672062397003174, 0.025873152539134026, 0.04925251007080078, -0.03262196481227875, -0.11247853189706802, -0.016982678323984146, -0.017091035842895508, -0.03541580215096474, -0.04060385376214981, 0.046473558992147446, -0.10557723045349121, -0.06686928868293762, 0.12022892385721207, -0.03802695497870445, -0.004113178234547377, -0.027927037328481674, -0.07370017468929291, -0.0539824441075325, 0.024000540375709534, 0.0477764792740345, -0.020999453961849213, 0.025916339829564095, -0.1487257182598114, -0.04883403703570366, -0.029100822284817696, -0.06359966844320297, 0.024932418018579483, -0.06549736857414246, 0.04980552941560745, -0.0998184010386467, -0.2254025787115097, 0.016510700806975365, 0.002476057503372431, -0.05943147465586662, -0.05323975160717964, -0.07200314104557037, -0.04583992436528206, 0.002830709796398878, -0.002476766938343644, -0.006084999069571495, -0.05486905574798584, -0.014181551523506641, 0.08750671148300171, 0.05715544521808624, -0.07840128242969513, 0.035721637308597565, -0.14032986760139465, 0.02018369734287262, -0.12792426347732544, 0.026202168315649033, -0.03662616387009621, 0.0555889829993248, -0.04915134981274605, -0.006164361257106066, -0.005894497502595186, 0.026516329497098923, 0.04565299302339554, 0.1788010597229004, -0.16055282950401306, -0.1295924335718155, 0.007899235934019089, -0.08835195749998093, -0.1714169830083847, 0.09881901741027832, -0.04527027904987335, 0.09689248353242874, 0.025675976648926735, 0.05289168655872345, 0.08225744217634201, -0.0810047909617424, -0.05204366520047188, 0.10289128869771957, 0.022115660831332207, -0.05387604236602783, 0.09083510935306549, 0.050747256726026535, -0.030919356271624565, 0.04176228120923042, -0.04751318693161011, 0.014666556380689144, -0.08312449604272842, -0.10084560513496399, 0.006608254741877317, -0.08383394777774811, 0.10058660060167313, 0.008174393326044083, 0.085723377764225, -0.017128851264715195, -0.03102460503578186, 0.08641483634710312, 0.08854451030492783, -0.03046037070453167, -0.03933688998222351, -0.09408647567033768, 0.13138288259506226, -0.029651915654540062, -0.01961619406938553, -0.08672172576189041, -0.03352656215429306, 0.03568347170948982, 0.06424369663000107, -0.02553466334939003, 0.04819699749350548, 0.0166521817445755, 0.05939261615276337, -0.07878822833299637, -0.02490217424929142, 0.03908935934305191, 0.022724071517586708, -0.07732807099819183, -0.20612068474292755, -0.016017286106944084, -0.025889867916703224, 0.13697949051856995, -0.2363109588623047, 0.005130160134285688, -0.07507861405611038, 0.08706973493099213, 0.02108214795589447, 0.054422538727521896, 0.006903898436576128, 0.07139118760824203, -0.10966607928276062, 0.011698948219418526, 0.0650947093963623, 0.03207021579146385, -0.16143566370010376, 0.08811895549297333, -0.04452335089445114, 0.20659391582012177, 0.1252187341451645, -0.14114154875278473, -0.009414799511432648, -0.04289872199296951, 0.010240553878247738, -0.08678828179836273, -0.007496298756450415, 0.07867838442325592, 0.06746980547904968, -0.02508792281150818, 0.1530599594116211, -0.07823475450277328, 0.040909770876169205, -0.0005063849384896457, -0.04829782620072365, -0.007804401684552431, 0.16371580958366394, 0.08460501581430435, -0.057441163808107376, 0.14547455310821533, 0.11066559702157974, -0.09880691766738892, 0.14211291074752808, 0.0457640215754509, -0.059764716774225235, -0.04232654720544815, 0.0005111353239044547, 0.0030387365259230137, 0.12938685715198517, -0.1522637903690338, -0.08213832974433899, 0.04803582280874252, -0.08045808970928192, 0.025209419429302216, -0.11778302490711212, -0.025493159890174866, 0.032615646719932556, 0.016618570312857628, 0.06479137390851974, -0.023264067247509956, -0.0818851888179779, 0.06958373636007309, -0.029897062107920647, -0.1395478993654251, 0.01957089640200138, 0.025142503902316093, -0.10954847931861877, 0.16943562030792236, -0.06232919543981552, -0.2787693738937378, -0.04332951083779335, -0.15257851779460907, -0.056943442672491074, 0.025007331743836403, -0.008476745337247849, -0.08888690918684006, -0.05416014418005943, -0.043779097497463226, -0.037665728479623795, 0.0441061407327652, -0.010607597418129444, 0.0060215662233531475, 0.02260778099298477, -0.02049170807003975, -0.06569580733776093, -0.0035340453032404184, -0.047238241881132126, -0.002541601425036788, 0.05291518196463585, -0.08613801002502441, 0.12572182714939117, 0.08624303340911865, 0.07686543464660645, -0.05826729163527489, -0.0017691055545583367, 0.1255003660917282, -0.010774804279208183, 0.025290552526712418, 0.12988312542438507, -0.0274918545037508, -0.003772701369598508, 0.08950748294591904, 0.033547550439834595, -0.0343676395714283, 0.0034909662790596485, -0.003154706908389926, -0.01200385857373476, -0.1389414668083191, -0.11655166745185852, -0.09446331858634949, 0.0647507831454277, 0.03893043473362923, -0.0010205555008724332, -0.004075685981661081, 0.11060503125190735, 0.056392885744571686, 0.15128685534000397, -0.04996713623404503, 0.07694230228662491, 0.07553376257419586, 0.0016995975747704506, 0.12357883900403976, -0.011369439773261547, -0.09918340295553207, 0.10916334390640259, 0.032094795256853104, 0.132524311542511, 0.014577314257621765, 0.10758384317159653, -0.0033704228699207306, 0.2500729560852051, 0.09804964810609818, 0.048221174627542496, -0.04448448866605759, -0.06834030151367188, -0.03834667429327965, -0.046868421137332916, -0.02749478444457054, 0.09442166239023209, 0.010893444530665874, 0.0025669236201792955, -0.050502628087997437, 0.13917918503284454, 0.06503985077142715, 0.11946670711040497, 0.16469219326972961, -0.25253188610076904, -0.06134882941842079, 0.0073159183375537395, 0.008921636268496513, -0.07514701038599014, 0.03680194914340973, 0.06799223273992538, -0.1038663238286972, 0.07261163741350174, -0.01568961702287197, 0.08910315483808517, -0.0431012287735939, 0.04042266681790352, -0.060624316334724426, 0.02652912773191929, 0.0043300422839820385, 0.04569418355822563, -0.22608086466789246, 0.22856681048870087, 0.017517292872071266, 0.013966333121061325, -0.05878781899809837, -0.017502300441265106, 0.08511989563703537, 0.07282653450965881, 0.1424781084060669, 0.0006136740557849407, 0.0027363302651792765, -0.09339780360460281, -0.13786429166793823, 0.066731296479702, 0.014852911233901978, 0.03116372600197792, 0.04004567116498947, 0.013446747325360775, -0.03905000537633896, 0.014090959914028645, 0.07173433899879456, -0.09515329450368881, -0.10941851884126663, 0.04987737163901329, -0.04561583325266838, -0.07984492927789688, -0.016624925658106804, -0.10163042694330215, 0.04295850917696953, 0.19878587126731873, -0.0668964833021164, -0.044238798320293427, -0.09290245175361633, 0.03171903267502785, 0.10618700832128525, -0.0574762299656868, 0.0693751648068428, -0.005999216344207525, 0.04191969335079193, 0.04343542456626892, -0.05547204613685608, 0.09326226264238358, -0.10734361410140991, -0.09628232568502426, -0.11113585531711578, 0.04096242040395737, 0.019753174856305122, 0.08547204732894897, 0.0020381235517561436, -0.02941376343369484, -0.06588426232337952, -0.09097523987293243, -0.05877166613936424, -0.03134116157889366, 0.06187715381383896, 0.023046167567372322, -0.17565776407718658, 0.037002574652433395, -0.0458793006837368, -0.027648484334349632, 0.13134975731372833, 0.2164219468832016, -0.05966486409306526, 0.04518725350499153, 0.17790593206882477, -0.040681906044483185, -0.21854351460933685, -0.06439793109893799, -0.012402537278831005, 0.04625615105032921, 0.004969293251633644, -0.17706555128097534, 0.1997431218624115, 0.13081014156341553, -0.01870551146566868, 0.06193483620882034, -0.0588897168636322, -0.12521736323833466, 0.20613737404346466, -0.02362886816263199, 0.15980051457881927, -0.11056225001811981, -0.06984252482652664, -0.03611091524362564, -0.09366033226251602, 0.04601520672440529, -0.02797747403383255, 0.06361852586269379, -0.02565302886068821, -0.04964173585176468, -0.001833945163525641, -0.041643623262643814, 0.12024053186178207, -0.03860757127404213, 0.019437506794929504, -0.028277192264795303, -0.1058875024318695, 0.002607910195365548, -0.03230247274041176, 0.08434139937162399, -0.04999111592769623, 0.036257728934288025, -0.16339515149593353, -0.034761954098939896, 0.018865982070565224, 0.08494564145803452, -0.029440108686685562, -0.07490294426679611, -0.05043209716677666, 0.10619233548641205, -0.003923024982213974, 0.014260925352573395, 0.13227979838848114, 0.06532422453165054, -0.015969861298799515, 0.0527895949780941, 0.10762658715248108, -0.1027975082397461, 0.08726552873849869, -0.0432199202477932, -0.04996069148182869, 0.05712561309337616, -0.12463796138763428, 0.015559151768684387, 0.1306477040052414, 0.013533656485378742, 0.10100261121988297, 0.07226439565420151, 0.02758546732366085, 0.02702559158205986, 0.08604681491851807, -0.17557919025421143, 0.033951789140701294, -0.08435036987066269, -0.1367436647415161, -0.08456858992576599, 0.03122720867395401, 0.07995559275150299, -0.09532971680164337, -0.031507670879364014, -0.005132789257913828, 0.021422386169433594, -0.02607700601220131, 0.1599729359149933, 0.08252372592687607, -0.003666869830340147, -0.09643351286649704, 0.06369578838348389, 0.020185180008411407, 0.040073465555906296, -0.020721424371004105, 0.003539646277204156, -0.1392643004655838, -0.05353766679763794, -0.0426814928650856, 0.2524348199367523, -0.13572394847869873, -0.04480104148387909, -0.13152052462100983, -0.07851482927799225, 0.0530032180249691, 0.14663247764110565, 0.10706174373626709, -0.002592412754893303, 0.003796492237597704, -0.045486822724342346, -0.026299824938178062, 0.07377370446920395, 0.1170002743601799, 0.07153835892677307, -0.13421210646629333, 0.04791243001818657, 0.0068414462730288506, 0.10084544122219086, -0.07258152961730957, 0.0077873896807432175, -0.17494164407253265, -0.021426813676953316, -0.1607486456632614, 0.024221578612923622, -0.12217430770397186, -0.01573532447218895, -0.02027551271021366, -0.06176112964749336, -0.10457886010408401, -0.007757653947919607, -0.028789624571800232, 0.002694494556635618, 0.03197949752211571, 0.08375765383243561, -0.04697633162140846, -0.012586027383804321, 0.08533663302659988, -0.057947468012571335, 0.05843697860836983, 0.04033951461315155, 0.032515838742256165, 0.04875577986240387, -0.12277944386005402, -0.017237501218914986, 0.04543619602918625, 0.06159042567014694, 0.11282749474048615, -0.06125645339488983, -0.010214140638709068, 0.05328478291630745, 0.020893074572086334, -0.01751515083014965, 0.1568709909915924, -0.036825086921453476, -0.03354762867093086, -0.12870825827121735, -0.12021677941083908, -0.07910020649433136, 0.04928199201822281, 0.15642543137073517, 0.05026112496852875, 0.13469694554805756, -0.07488704472780228, 0.018194472417235374, -0.11247830837965012, 0.01001952774822712, -0.01635836996138096, -0.09960964322090149, -0.02694452926516533, -0.08542967587709427, 0.04838627576828003, -0.0471259243786335, 0.2454129457473755, -0.111563540995121, -0.02004806138575077, -0.03235132619738579, 0.03471718728542328, -0.011995233595371246, 0.044043149799108505, 0.2044983059167862, 0.11607758700847626, -0.0008056051447056234, -0.03365615755319595, 0.11677851527929306, 0.06992105394601822, 0.17623046040534973, 0.03098788484930992, 0.02353610470890999, 0.006536735221743584, 0.12562085688114166, 0.030895771458745003, -0.05349314957857132, -0.05730458348989487, 0.03830624744296074, -0.09613848477602005, 0.06273700296878815, 0.04553349316120148, 0.13272517919540405, 0.13239821791648865, -0.09945811331272125, 0.018882740288972855, -0.014576755464076996, -0.09042486548423767, -0.13058488070964813, -0.035536155104637146, -0.12615536153316498, -0.10012955963611603, 0.010552489198744297, -0.13867299258708954, -0.08468831330537796, 0.05666779354214668, 0.02347177267074585, -0.049567196518182755, 0.029811356216669083, 0.019428003579378128, -0.03749224543571472, 0.045620307326316833, 0.01768893003463745, -0.019260523840785027, -0.13988232612609863, -0.05103398486971855, -0.09837561845779419, 0.030403748154640198, -0.06096547096967697, -0.057662054896354675, -0.014655953273177147, 0.08489181846380234, 0.03360775485634804, -0.07645990699529648, -0.0041366214863955975, -0.06491395831108093, 0.05170529708266258, 0.044257793575525284, 0.029644768685102463, -0.012645673006772995, 0.025678230449557304, 0.15462598204612732, -0.024966219440102577, 0.016704056411981583, -0.18261337280273438, 0.07055505365133286, -0.04673391953110695, 0.0035419189371168613, 0.015707535669207573, -0.020643437281250954, 0.029566606506705284, 0.2566511332988739, 0.2107672393321991, -0.17347346246242523, -0.010974952019751072, 0.0332808643579483, -0.012402905151247978, -0.03750797361135483, -0.028897373005747795, 0.07236120849847794, 0.2430308610200882, -0.07655148208141327, -0.13274145126342773, -0.07464724034070969, -0.040293872356414795, -0.06503699719905853, 0.060689594596624374, 0.13851389288902283, -0.015122379176318645, -0.06786052882671356, 0.02171803079545498, -0.07519911229610443, -0.05707605555653572, 0.05130736157298088, -0.18126918375492096, -0.1088990867137909, -0.013108556158840656, -0.0419585183262825, 0.07991946488618851, 0.034757841378450394, -0.039279866963624954, 0.03228152170777321, -0.02964790165424347, 0.02039860375225544, -0.10303601622581482, -0.04661926254630089, 0.13786834478378296, 0.08605381846427917, 0.17622342705726624, -0.018450522795319557, -0.015488769859075546, 0.1178278997540474, 0.08143699914216995, -0.051591917872428894, 0.05188566818833351, 0.0392661988735199, -0.05169551447033882, 0.04918919876217842, -0.07695918530225754, 0.00796524528414011, 0.1057937815785408, 0.0852915570139885, -0.0013127881102263927, 0.07056847214698792, 0.03931042551994324, -0.03656806796789169, -0.0910029336810112, 0.061486952006816864, -0.1058822050690651, 0.12650975584983826, 0.17452508211135864, -0.051769744604825974, 0.0044912295415997505, -0.023182258009910583, 0.061175890266895294, 0.014077875763177872, 0.055980850011110306, -0.010182603262364864, -0.15938904881477356, 0.0353984534740448, 0.0212742630392313, -0.03323954716324806, -0.1409311145544052, -0.08072656393051147, -0.0942162349820137, -0.032819006592035294, -0.081231988966465, 0.05556299909949303, 0.13936875760555267, 0.013409116305410862, -0.03974650427699089, -0.03643106669187546, -0.008823681622743607, 0.026678966358304024, -0.07273060828447342, -0.13392844796180725 ]
null
null
transformers
# ElasticBERT-LARGE ## Model description This is an implementation of the `large` version of ElasticBERT. [**Towards Efficient NLP: A Standard Evaluation and A Strong Baseline**](https://arxiv.org/pdf/2110.07038.pdf) Xiangyang Liu, Tianxiang Sun, Junliang He, Lingling Wu, Xinyu Zhang, Hao Jiang, Zhao Cao, Xuanjing Huang, Xipeng Qiu ## Code link [**fastnlp/elasticbert**](https://github.com/fastnlp/ElasticBERT) ## Usage ```python >>> from transformers import BertTokenizer as ElasticBertTokenizer >>> from models.configuration_elasticbert import ElasticBertConfig >>> from models.modeling_elasticbert import ElasticBertForSequenceClassification >>> num_output_layers = 1 >>> config = ElasticBertConfig.from_pretrained('fnlp/elasticbert-large', num_output_layers=num_output_layers ) >>> tokenizer = ElasticBertTokenizer.from_pretrained('fnlp/elasticbert-large') >>> model = ElasticBertForSequenceClassification.from_pretrained('fnlp/elasticbert-large', config=config) >>> input_ids = tokenizer.encode('The actors are fantastic .', return_tensors='pt') >>> outputs = model(input_ids) ``` ## Citation ```bibtex @article{liu2021elasticbert, author = {Xiangyang Liu and Tianxiang Sun and Junliang He and Lingling Wu and Xinyu Zhang and Hao Jiang and Zhao Cao and Xuanjing Huang and Xipeng Qiu}, title = {Towards Efficient {NLP:} {A} Standard Evaluation and {A} Strong Baseline}, journal = {CoRR}, volume = {abs/2110.07038}, year = {2021}, url = {https://arxiv.org/abs/2110.07038}, eprinttype = {arXiv}, eprint = {2110.07038}, timestamp = {Fri, 22 Oct 2021 13:33:09 +0200}, biburl = {https://dblp.org/rec/journals/corr/abs-2110-07038.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } ```
{"language": "en", "tags": ["Multi-exit-BERT"], "datasets": ["wikipedia", "bookcorpus", "c4"]}
fill-mask
fnlp/elasticbert-large
[ "transformers", "pytorch", "elasticbert", "fill-mask", "Multi-exit-BERT", "en", "dataset:wikipedia", "dataset:bookcorpus", "dataset:c4", "arxiv:2110.07038", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[ "2110.07038" ]
[ "en" ]
TAGS #transformers #pytorch #elasticbert #fill-mask #Multi-exit-BERT #en #dataset-wikipedia #dataset-bookcorpus #dataset-c4 #arxiv-2110.07038 #autotrain_compatible #endpoints_compatible #region-us
# ElasticBERT-LARGE ## Model description This is an implementation of the 'large' version of ElasticBERT. Towards Efficient NLP: A Standard Evaluation and A Strong Baseline Xiangyang Liu, Tianxiang Sun, Junliang He, Lingling Wu, Xinyu Zhang, Hao Jiang, Zhao Cao, Xuanjing Huang, Xipeng Qiu ## Code link fastnlp/elasticbert ## Usage
[ "# ElasticBERT-LARGE", "## Model description\n\nThis is an implementation of the 'large' version of ElasticBERT.\n\nTowards Efficient NLP: A Standard Evaluation and A Strong Baseline\n\nXiangyang Liu, Tianxiang Sun, Junliang He, Lingling Wu, Xinyu Zhang, Hao Jiang, Zhao Cao, Xuanjing Huang, Xipeng Qiu", "## Code link\n\nfastnlp/elasticbert", "## Usage" ]
[ "TAGS\n#transformers #pytorch #elasticbert #fill-mask #Multi-exit-BERT #en #dataset-wikipedia #dataset-bookcorpus #dataset-c4 #arxiv-2110.07038 #autotrain_compatible #endpoints_compatible #region-us \n", "# ElasticBERT-LARGE", "## Model description\n\nThis is an implementation of the 'large' version of ElasticBERT.\n\nTowards Efficient NLP: A Standard Evaluation and A Strong Baseline\n\nXiangyang Liu, Tianxiang Sun, Junliang He, Lingling Wu, Xinyu Zhang, Hao Jiang, Zhao Cao, Xuanjing Huang, Xipeng Qiu", "## Code link\n\nfastnlp/elasticbert", "## Usage" ]
[ 76, 8, 83, 10, 3 ]
[ "passage: TAGS\n#transformers #pytorch #elasticbert #fill-mask #Multi-exit-BERT #en #dataset-wikipedia #dataset-bookcorpus #dataset-c4 #arxiv-2110.07038 #autotrain_compatible #endpoints_compatible #region-us \n# ElasticBERT-LARGE## Model description\n\nThis is an implementation of the 'large' version of ElasticBERT.\n\nTowards Efficient NLP: A Standard Evaluation and A Strong Baseline\n\nXiangyang Liu, Tianxiang Sun, Junliang He, Lingling Wu, Xinyu Zhang, Hao Jiang, Zhao Cao, Xuanjing Huang, Xipeng Qiu## Code link\n\nfastnlp/elasticbert## Usage" ]
[ -0.10531438887119293, 0.11949767917394638, 0.000025552744773449376, 0.08352237194776535, 0.10330105572938919, -0.02910623885691166, 0.11100714653730392, 0.06685083359479904, 0.006171560380607843, 0.04995983466506004, 0.10639932006597519, 0.05981551483273506, 0.03145384415984154, 0.1417207270860672, -0.0032043454702943563, -0.2853550910949707, 0.01190335862338543, 0.10914576798677444, -0.029328150674700737, 0.08370118588209152, 0.09339184314012527, -0.12308455258607864, 0.17936426401138306, 0.06472089141607285, -0.04722148925065994, -0.014631776139140129, -0.053374335169792175, -0.07181469351053238, 0.1346481293439865, 0.07161842286586761, 0.11056175082921982, 0.030115021392703056, 0.05364363640546799, -0.08260682225227356, 0.0002667316293809563, -0.06786715984344482, -0.04191402718424797, 0.06622689962387085, 0.031386300921440125, 0.12430016696453094, 0.10439261794090271, -0.027454085648059845, 0.007004893384873867, -0.00023536503431387246, -0.044698286801576614, 0.011161990463733673, -0.05340251326560974, 0.07495133578777313, 0.1225879043340683, 0.026251550763845444, -0.003003418678417802, 0.12600822746753693, -0.12869980931282043, 0.0413031242787838, 0.0940316841006279, -0.38054367899894714, -0.046728938817977905, 0.04358505830168724, 0.041510049253702164, -0.01868768222630024, -0.06024445965886116, -0.013881168328225613, 0.09269427508115768, -0.022017352283000946, 0.04355255141854286, -0.11550939083099365, -0.08959358930587769, 0.07216119021177292, -0.10761545598506927, 0.17534077167510986, 0.25187090039253235, 0.02873218059539795, 0.015589679591357708, -0.045436322689056396, -0.030890939757227898, 0.027719244360923767, -0.06885119527578354, -0.10522015392780304, 0.047453317791223526, -0.026828281581401825, -0.0024941328447312117, -0.05577235296368599, -0.04550350457429886, -0.010355139151215553, -0.13225893676280975, -0.05210220441222191, 0.004987198859453201, -0.032409243285655975, 0.010617006570100784, -0.003354534739628434, 0.009608833119273186, -0.10383981466293335, -0.008723650127649307, -0.08570485562086105, 0.019335955381393433, -0.03720514103770256, 0.04158608615398407, 0.06678532063961029, 0.03630046918988228, 0.06750133633613586, 0.09486396610736847, 0.03758867084980011, 0.11132016777992249, 0.004134747665375471, -0.06388731300830841, 0.10952334851026535, -0.08178936690092087, -0.19863659143447876, 0.03729395568370819, 0.01467954833060503, 0.05514863133430481, -0.0314483642578125, -0.11640214920043945, -0.02242388390004635, -0.03786536306142807, -0.03305114060640335, -0.05258587375283241, 0.05036667734384537, -0.0981399342417717, -0.06401406973600388, 0.10738236457109451, -0.03040899522602558, 0.009894303977489471, -0.0257710013538599, -0.07506034523248672, -0.03490745648741722, -0.0037633110769093037, 0.03923343867063522, -0.019038261845707893, 0.041576068848371506, -0.1486719846725464, -0.04460390284657478, -0.02294854260981083, -0.06652574986219406, 0.03593240678310394, -0.05748801678419113, 0.05057239904999733, -0.11393041908740997, -0.20118576288223267, 0.021651173010468483, -0.01841728202998638, -0.05279398709535599, -0.0535372830927372, -0.06861300766468048, -0.05412699282169342, -0.00411311537027359, 0.0035369712859392166, -0.004600635729730129, -0.05266078934073448, -0.017778610810637474, 0.08561509847640991, 0.06994236260652542, -0.07347137480974197, 0.03294766694307327, -0.14971481263637543, 0.014613635838031769, -0.10777324438095093, 0.020896688103675842, -0.014053238555788994, 0.05635686218738556, -0.05097611993551254, -0.0209394171833992, -0.004181503783911467, 0.032106515020132065, 0.03321649134159088, 0.1645774096250534, -0.17306290566921234, -0.1367390751838684, 0.027830205857753754, -0.08139687776565552, -0.16914156079292297, 0.11337193846702576, -0.0334731787443161, 0.09562194347381592, 0.033051520586013794, 0.05005894601345062, 0.09030555188655853, -0.06721661984920502, -0.06337620317935944, 0.09987621754407883, 0.014806087128818035, -0.05584687367081642, 0.10279719531536102, 0.04990469664335251, -0.014028802514076233, 0.04081292822957039, -0.02152039296925068, 0.01368875801563263, -0.08359608054161072, -0.09741479903459549, 0.0070770736783742905, -0.08397114276885986, 0.08835700899362564, 0.005414774641394615, 0.09214509278535843, -0.01622120477259159, -0.020149536430835724, 0.07324101775884628, 0.0834229588508606, -0.027829620987176895, -0.039863038808107376, -0.09716030210256577, 0.12027237564325333, -0.01985744573175907, -0.016184212639927864, -0.0800677239894867, -0.03034062311053276, 0.0367918387055397, 0.04990938678383827, -0.02723568119108677, 0.07382610440254211, 0.018467005342245102, 0.05205747112631798, -0.07252006977796555, -0.011021029204130173, 0.0503535233438015, 0.01183051522821188, -0.07261554151773453, -0.18787400424480438, 0.00015094413538463414, -0.018842725083231926, 0.12727586925029755, -0.2508505880832672, -0.003539016004651785, -0.06886955350637436, 0.07679490745067596, 0.02642940543591976, 0.0604524239897728, 0.0082521578297019, 0.07957767695188522, -0.11478056013584137, 0.018362853676080704, 0.061689551919698715, 0.02027054689824581, -0.17037975788116455, 0.09670058637857437, -0.05809460207819939, 0.21460175514221191, 0.1269461214542389, -0.14123481512069702, -0.006888742092996836, -0.0395069420337677, 0.011926575563848019, -0.08572793751955032, -0.018001431599259377, 0.08134932816028595, 0.05444985628128052, -0.026843221858143806, 0.162143275141716, -0.07932471483945847, 0.04429612681269646, 0.008814968168735504, -0.041554663330316544, -0.00030298728961497545, 0.18215571343898773, 0.09271185100078583, -0.0591106116771698, 0.14334876835346222, 0.11412966251373291, -0.10156115144491196, 0.15076406300067902, 0.05391940474510193, -0.0644804835319519, -0.037320978939533234, -0.000016338923160219565, 0.003614140674471855, 0.10535966604948044, -0.12970750033855438, -0.0726735070347786, 0.056268494576215744, -0.07026215642690659, 0.013437889516353607, -0.11577663570642471, -0.03832770138978958, 0.03719183802604675, 0.02173793688416481, 0.06190992146730423, -0.0067562623880803585, -0.0747174620628357, 0.0745324194431305, -0.03310063108801842, -0.1460788995027542, 0.02113359607756138, 0.030278736725449562, -0.1043439656496048, 0.16864006221294403, -0.04885860159993172, -0.3123599588871002, -0.03583609685301781, -0.14301344752311707, -0.059277161955833435, 0.01708289235830307, -0.0057370527647435665, -0.10371080040931702, -0.055715978145599365, -0.045590221881866455, -0.01682850532233715, 0.03538506105542183, -0.0027702846564352512, -0.001525674480944872, 0.028603337705135345, -0.032979436218738556, -0.056176673620939255, -0.0016977937193587422, -0.04811384901404381, -0.015248599462211132, 0.05754198133945465, -0.07802104949951172, 0.13121972978115082, 0.08651457726955414, 0.07619184255599976, -0.0621909536421299, -0.0007478446350432932, 0.11803821474313736, -0.020593393594026566, 0.019791439175605774, 0.1446082592010498, -0.014566655270755291, -0.004743137396872044, 0.09292296320199966, 0.03834381327033043, -0.03309851512312889, -0.000819257227703929, 0.00001315174904448213, -0.01650841161608696, -0.1341780126094818, -0.1226457804441452, -0.10292084515094757, 0.0754215344786644, 0.03949318826198578, -0.003186485031619668, -0.019614188000559807, 0.10507010668516159, 0.060066115111112595, 0.15564584732055664, -0.06453975290060043, 0.07358582317829132, 0.0967753604054451, 0.005982978269457817, 0.1164950281381607, -0.021877510473132133, -0.11763142049312592, 0.11486352980136871, 0.016340358182787895, 0.1428905874490738, 0.018087143078446388, 0.11846967786550522, -0.007822692394256592, 0.22009454667568207, 0.0993758961558342, 0.04203800857067108, -0.040486592799425125, -0.0796242505311966, -0.04450872913002968, -0.05154853314161301, -0.013981442898511887, 0.09616056084632874, 0.024683164432644844, 0.0030030591879040003, -0.05177553370594978, 0.16464760899543762, 0.0674191415309906, 0.1082955151796341, 0.17012636363506317, -0.25700098276138306, -0.058560553938150406, 0.0015911402879282832, 0.007803255692124367, -0.06446926295757294, 0.04681180417537689, 0.10648573189973831, -0.09973156452178955, 0.08437201380729675, -0.0055075050331652164, 0.08065950870513916, -0.044360220432281494, 0.05204930528998375, -0.06153561547398567, 0.03928788751363754, 0.01613551750779152, 0.050043102353811264, -0.23517322540283203, 0.22937507927417755, 0.019044192507863045, 0.009733649902045727, -0.07254336029291153, -0.026608431711792946, 0.07942923158407211, 0.06459516286849976, 0.14389631152153015, 0.004629946313798428, 0.0027577567379921675, -0.09786173701286316, -0.14289675652980804, 0.06292404234409332, 0.025287462398409843, 0.04856596514582634, 0.03680592402815819, 0.00746204424649477, -0.04095824807882309, 0.01049245148897171, 0.06856100261211395, -0.06958329677581787, -0.11871789395809174, 0.04439062252640724, -0.01776537112891674, -0.09950996190309525, -0.0043197693303227425, -0.09492982178926468, 0.027248436585068703, 0.18636344373226166, -0.06005381420254707, -0.03629790246486664, -0.08286714553833008, 0.0325893759727478, 0.1025872528553009, -0.06578483432531357, 0.058097146451473236, -0.005390881095081568, 0.0440296046435833, 0.047954022884368896, -0.0385369248688221, 0.08709552884101868, -0.10119162499904633, -0.10456239432096481, -0.10346553474664688, 0.04268399998545647, 0.005552718881517649, 0.09324289113283157, 0.005206398665904999, -0.027618035674095154, -0.06821173429489136, -0.10245338827371597, -0.06479541957378387, -0.010954762808978558, 0.0587008073925972, 0.021889720112085342, -0.17120836675167084, 0.05479789152741432, -0.03413192182779312, -0.04320629686117172, 0.15617263317108154, 0.22531446814537048, -0.07192637026309967, 0.04120395705103874, 0.16190676391124725, -0.022193798795342445, -0.22399793565273285, -0.05452631041407585, -0.016636695712804794, 0.04392080381512642, 0.020356537774205208, -0.1711423546075821, 0.2063894271850586, 0.14429359138011932, -0.008787876926362514, 0.06412671506404877, -0.08524365723133087, -0.12277685105800629, 0.1721985936164856, -0.037484440952539444, 0.16224119067192078, -0.10677921026945114, -0.06301821023225784, -0.042563967406749725, -0.07168211042881012, 0.06389870494604111, -0.008489049971103668, 0.07209867238998413, -0.0337594598531723, -0.04152127727866173, 0.0021638572216033936, -0.044998899102211, 0.11862373352050781, -0.046455953270196915, 0.016332058236002922, -0.032069701701402664, -0.10926727205514908, 0.00142982741817832, -0.025289777666330338, 0.09107188135385513, -0.07208148390054703, 0.025499051436781883, -0.15395472943782806, -0.03989700600504875, 0.0029831479769200087, 0.08111415803432465, -0.029782220721244812, -0.06850288808345795, -0.06391257792711258, 0.10885047167539597, 0.007964277639985085, 0.014089978300035, 0.12068157643079758, 0.0679192990064621, -0.04688967764377594, 0.0072220079600811005, 0.1270921230316162, -0.10724105685949326, 0.06345394253730774, -0.05076825991272926, -0.04731674864888191, 0.05916377156972885, -0.1233409196138382, 0.017008494585752487, 0.1330968737602234, 0.01816343143582344, 0.08995553106069565, 0.07568582892417908, 0.03931413218379021, 0.02247522957623005, 0.09014110267162323, -0.16534936428070068, 0.0001832797861425206, -0.08278483897447586, -0.11096376180648804, -0.07576277107000351, 0.02133624069392681, 0.07273189723491669, -0.09868859499692917, -0.026706362143158913, -0.0028616676572710276, 0.023741360753774643, -0.016259096562862396, 0.1594928652048111, 0.07053986936807632, -0.005638012196868658, -0.0995158851146698, 0.051225192844867706, 0.030823232606053352, 0.02124372497200966, -0.019913198426365852, 0.023501133546233177, -0.13457739353179932, -0.05182594805955887, -0.041295260190963745, 0.24227046966552734, -0.13906511664390564, -0.052177779376506805, -0.11702003329992294, -0.07900531589984894, 0.05468423664569855, 0.1289588063955307, 0.10379224270582199, -0.008651687763631344, 0.005371748469769955, -0.05261910706758499, -0.03629477322101593, 0.06613648682832718, 0.09988441318273544, 0.0724860280752182, -0.14913594722747803, 0.06617119163274765, 0.003675297601148486, 0.104169100522995, -0.06649669259786606, 0.015311883762478828, -0.17865176498889923, -0.025514677166938782, -0.15280240774154663, 0.030822666361927986, -0.10914227366447449, -0.018142005428671837, -0.02920558489859104, -0.05445195361971855, -0.10563839226961136, -0.018623506650328636, -0.027811812236905098, -0.0017833062447607517, 0.03143099322915077, 0.08745533227920532, -0.04611155018210411, -0.016642333939671516, 0.0796104446053505, -0.04974598437547684, 0.06179603934288025, 0.01856028288602829, 0.02337595447897911, 0.035398051142692566, -0.1152508407831192, -0.027879765257239342, 0.05882544070482254, 0.06994998455047607, 0.1234477311372757, -0.05795362591743469, -0.007467322051525116, 0.06290674954652786, 0.025547627359628677, -0.012816433794796467, 0.12974244356155396, -0.03950759023427963, -0.017743948847055435, -0.13566066324710846, -0.12303128838539124, -0.08314799517393112, 0.04056921228766441, 0.13582782447338104, 0.04576203227043152, 0.14371760189533234, -0.07155469805002213, 0.02269313484430313, -0.11107149720191956, 0.005642856936901808, -0.02468007430434227, -0.10227766633033752, -0.022502165287733078, -0.07384080439805984, 0.05712294951081276, -0.04737187549471855, 0.2430889755487442, -0.0955234169960022, -0.03649703785777092, -0.031676035374403, 0.045703187584877014, -0.03097679279744625, 0.03462360426783562, 0.20206838846206665, 0.12194431573152542, -0.0043481988832354546, -0.020326048135757446, 0.11678200960159302, 0.07750257849693298, 0.21725890040397644, 0.06095293536782265, 0.032757796347141266, -0.002315376652404666, 0.11384333670139313, 0.028344398364424706, -0.05992173030972481, -0.0799187645316124, 0.03585626557469368, -0.10289973765611649, 0.06724930554628372, 0.03647652640938759, 0.1277317851781845, 0.1275831013917923, -0.09398827701807022, 0.016893435269594193, -0.030468696728348732, -0.08504322171211243, -0.1312941163778305, -0.028090601786971092, -0.13753333687782288, -0.07991761714220047, 0.008029688149690628, -0.13385888934135437, -0.0799989178776741, 0.05337083339691162, 0.02637004852294922, -0.05553680658340454, 0.02903936058282852, 0.007298801094293594, -0.03544339910149574, 0.03900499269366264, 0.013855637982487679, -0.016756467521190643, -0.12835918366909027, -0.04466913640499115, -0.10799800604581833, 0.023717982694506645, -0.056185800582170486, -0.05283117666840553, -0.018672427162528038, 0.0723763108253479, 0.018706968054175377, -0.06951919198036194, -0.007712007965892553, -0.06310290843248367, 0.06017600744962692, 0.02217697910964489, 0.0358642153441906, -0.018395598977804184, 0.021702110767364502, 0.14913712441921234, -0.02462168037891388, 0.007072256412357092, -0.16378439962863922, 0.07980072498321533, -0.05100259929895401, 0.005010085180401802, 0.007171823177486658, -0.019096536561846733, 0.012661643326282501, 0.2737315595149994, 0.21783000230789185, -0.18321740627288818, -0.008421998471021652, 0.020997246727347374, -0.008985258638858795, -0.04263162612915039, -0.021547311916947365, 0.07852953672409058, 0.27944186329841614, -0.07433868944644928, -0.13361690938472748, -0.07387370616197586, -0.029978187754750252, -0.07906903326511383, 0.06671557575464249, 0.1414211392402649, -0.004729607608169317, -0.06643088907003403, 0.013656283728778362, -0.07941864430904388, -0.03926050290465355, 0.04433115944266319, -0.1968105286359787, -0.10513299703598022, -0.0004921846557408571, -0.033873628824949265, 0.08124121278524399, 0.039930157363414764, -0.04351707547903061, 0.0310699213296175, -0.06523650139570236, 0.01812106929719448, -0.11283456534147263, -0.02651231177151203, 0.1391068994998932, 0.10909558087587357, 0.1689338982105255, -0.013894903473556042, 0.005128867924213409, 0.12659792602062225, 0.0793406292796135, -0.051699310541152954, 0.05097566172480583, 0.04072488099336624, -0.04164900258183479, 0.04715077951550484, -0.07871143519878387, 0.006207585334777832, 0.09134519100189209, 0.09283189475536346, -0.0031907688826322556, 0.06679060310125351, 0.06045931950211525, -0.02340024523437023, -0.0969466120004654, 0.06170816347002983, -0.10025826096534729, 0.12805157899856567, 0.18687140941619873, -0.04967857897281647, -0.003048329148441553, -0.022480087354779243, 0.06402097642421722, 0.013374661095440388, 0.04974546656012535, -0.02094113826751709, -0.15207092463970184, 0.028787000104784966, 0.012661739252507687, -0.021856389939785004, -0.1330929398536682, -0.08400646597146988, -0.0904403105378151, -0.03552019223570824, -0.0775398388504982, 0.04754301533102989, 0.13632388412952423, 0.01417122595012188, -0.041096463799476624, -0.04662872105836868, -0.007765299640595913, 0.02070453017950058, -0.07499297708272934, -0.1357177495956421 ]
null
null
transformers
# bart-base-python-1m
{"language": "py", "license": "mit", "tags": ["bart", "pytorch"], "thumbnail": "https://avatars.githubusercontent.com/u/70610668?s=400&u=f0699303289113c125e8686338739d9a63d5826c&v=4"}
text2text-generation
formermagic/bart-base-python-1m
[ "transformers", "pytorch", "bart", "text2text-generation", "py", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "py" ]
TAGS #transformers #pytorch #bart #text2text-generation #py #license-mit #autotrain_compatible #endpoints_compatible #region-us
# bart-base-python-1m
[ "# bart-base-python-1m" ]
[ "TAGS\n#transformers #pytorch #bart #text2text-generation #py #license-mit #autotrain_compatible #endpoints_compatible #region-us \n", "# bart-base-python-1m" ]
[ 45, 10 ]
[ "passage: TAGS\n#transformers #pytorch #bart #text2text-generation #py #license-mit #autotrain_compatible #endpoints_compatible #region-us \n# bart-base-python-1m" ]
[ -0.018411003053188324, 0.043056078255176544, -0.0060632792301476, 0.029332980513572693, 0.1169705018401146, 0.028568897396326065, 0.17928948998451233, 0.15664523839950562, 0.040220972150564194, -0.04506659135222435, 0.14801643788814545, 0.21909745037555695, -0.020534643903374672, 0.1485699564218521, -0.053443390876054764, -0.26030856370925903, 0.060031957924366, 0.06401556730270386, 0.05065428838133812, 0.13851580023765564, 0.09225807338953018, -0.02331637591123581, 0.060248833149671555, -0.026335766538977623, -0.15047083795070648, 0.026492418721318245, 0.04093455523252487, -0.1291077584028244, 0.08360275626182556, 0.037724584341049194, 0.10385751724243164, 0.06373535096645355, -0.036965999752283096, -0.1125718206167221, 0.02729649469256401, -0.010207891464233398, -0.07277224957942963, 0.07706368714570999, 0.01374497264623642, -0.11049286276102066, 0.1014082208275795, 0.06887674331665039, 0.04621421545743942, 0.037668075412511826, -0.11971130222082138, -0.12588298320770264, -0.06286495178937912, 0.11228886246681213, 0.04398773983120918, 0.0841112956404686, 0.02991744503378868, 0.17852646112442017, -0.0919007658958435, 0.09630008786916733, 0.186025470495224, -0.3645125925540924, 0.011765848845243454, 0.09354247897863388, 0.01768016628921032, 0.03947974741458893, 0.0055131204426288605, -0.022653907537460327, 0.019623545929789543, 0.042097415775060654, 0.03216347470879555, -0.0666038915514946, -0.043658606708049774, 0.004726435989141464, -0.0604623518884182, -0.10933154821395874, 0.18687184154987335, -0.08185367286205292, 0.0006313947960734367, -0.027271533384919167, -0.055580005049705505, -0.06267770379781723, -0.04189366102218628, 0.08611483126878738, -0.06062118709087372, 0.06751486659049988, -0.06489083915948868, -0.016020065173506737, -0.10551854968070984, 0.012178746052086353, -0.16007959842681885, 0.1795790195465088, 0.02038510888814926, 0.06418779492378235, -0.15582840144634247, 0.12089817225933075, -0.02541862428188324, -0.10710809379816055, 0.006024784874171019, -0.05162939429283142, 0.12547709047794342, 0.014431385323405266, -0.05928653106093407, -0.03372260183095932, 0.09028533846139908, 0.24313263595104218, 0.03311526030302048, 0.009335795417428017, -0.04844454675912857, 0.06762108206748962, -0.00161364593077451, 0.0613211952149868, 0.04899700731039047, -0.029570182785391808, 0.08825155347585678, -0.10495410859584808, 0.05089204013347626, -0.046725355088710785, -0.1575276106595993, -0.026992283761501312, 0.0857226699590683, 0.05711064115166664, 0.07821174710988998, 0.08715972304344177, -0.03436138108372688, -0.03737576678395271, 0.1495751589536667, -0.07424880564212799, 0.011267350986599922, 0.018341204151511192, 0.01617300696671009, 0.0815887302160263, 0.05949309095740318, -0.02700170688331127, -0.10539810359477997, 0.17153973877429962, -0.046832818537950516, 0.012613301165401936, -0.040771760046482086, -0.08623374253511429, 0.06414786726236343, -0.020524749532341957, 0.018963759765028954, -0.1646837741136551, -0.17666564881801605, 0.03556593507528305, 0.05192195251584053, -0.01955571398139, -0.0593130923807621, 0.029517529532313347, -0.014492340385913849, 0.04915737360715866, -0.08661670237779617, 0.015308031812310219, -0.05418267473578453, 0.13532832264900208, -0.02463879995048046, 0.01770956441760063, -0.1993056833744049, 0.07277058809995651, -0.12990334630012512, -0.028926489874720573, -0.10396039485931396, 0.002211177721619606, -0.05850672721862793, 0.13508391380310059, -0.025195512920618057, -0.0688912570476532, -0.059280529618263245, 0.012441039085388184, -0.0012637866893783212, 0.14299960434436798, -0.013809731230139732, -0.10436078906059265, 0.19097024202346802, -0.10871779173612595, -0.1320038139820099, 0.05123873054981232, -0.022228507325053215, 0.0528358556330204, 0.08494341373443604, 0.1716661900281906, 0.10064154863357544, -0.04137272387742996, 0.06356887519359589, 0.08239986002445221, -0.019464915618300438, -0.1489960104227066, 0.020001133903861046, -0.011396401561796665, -0.13019998371601105, 0.07062900811433792, -0.010507959872484207, 0.08253767341375351, -0.02694840356707573, -0.023140184581279755, -0.06583190709352493, 0.001714515034109354, 0.0817900002002716, -0.00448105251416564, 0.10711339861154556, -0.0889471173286438, -0.05710639804601669, 0.10202601552009583, 0.02671155333518982, 0.00187129364348948, 0.043787844479084015, -0.06652811169624329, 0.135503888130188, -0.00621590344235301, 0.016834311187267303, -0.15917322039604187, 0.03366342931985855, -0.02660410664975643, 0.07667110115289688, 0.06616459041833878, 0.0221768356859684, 0.0571761280298233, -0.038855116814374924, 0.01245938241481781, -0.01600966975092888, 0.11860653758049011, 0.012188720516860485, -0.039563193917274475, -0.06738562136888504, -0.008052966557443142, -0.05272276699542999, 0.018533023074269295, 0.021809253841638565, 0.060031816363334656, 0.03505261242389679, 0.10146573185920715, -0.008397381752729416, 0.020801153033971786, -0.031883202493190765, 0.053740277886390686, -0.04916125535964966, 0.011827941052615643, 0.06868454068899155, 0.04747961461544037, -0.06405140459537506, 0.1364659070968628, -0.15816277265548706, 0.2416374832391739, 0.23824436962604523, -0.15288472175598145, 0.010754127986729145, -0.024053869768977165, -0.021166857331991196, 0.010904086753726006, 0.04300942271947861, 0.004434873815625906, 0.019327960908412933, 0.027397403493523598, 0.1794329434633255, -0.02541455253958702, -0.05048003047704697, -0.006459936033934355, -0.075816310942173, 0.012230982072651386, 0.03257044032216072, 0.054303936660289764, -0.10766790807247162, 0.1739017367362976, 0.2200654149055481, -0.007469204720109701, 0.11718549579381943, -0.01677909679710865, -0.010641118511557579, 0.03482106700539589, 0.008403985761106014, -0.014615095220506191, -0.00568437622860074, -0.1600349396467209, -0.0027232535649091005, 0.09890110790729523, 0.008835683576762676, 0.06410200893878937, -0.12162523716688156, -0.0303653534501791, -0.004677447024732828, -0.02497825026512146, -0.08856657892465591, 0.047867707908153534, 0.04940148442983627, 0.08300143480300903, -0.010529942810535431, -0.013234100304543972, 0.08877548575401306, 0.03875451534986496, -0.08858691900968552, 0.1681496948003769, -0.13544650375843048, -0.2963138818740845, -0.18511080741882324, -0.1821068525314331, -0.017409032210707664, -0.004835336469113827, 0.15726493299007416, -0.019310392439365387, -0.016298793256282806, -0.008367527276277542, 0.040510497987270355, -0.027864985167980194, 0.007441936992108822, -0.07969192415475845, -0.0010833583073690534, -0.02483740821480751, -0.13125301897525787, -0.0742773488163948, 0.027687178924679756, -0.053217992186546326, 0.1702672690153122, -0.09404254704713821, 0.016557935625314713, 0.1159573346376419, -0.031043626368045807, 0.05117643252015114, -0.05299300327897072, 0.20771081745624542, -0.003939362708479166, -0.014541513286530972, 0.18910527229309082, -0.022044578567147255, 0.057283028960227966, 0.10669130086898804, 0.04297098144888878, -0.02495434135198593, 0.008173969574272633, -0.06755132973194122, -0.09872990846633911, -0.1964057832956314, -0.09823805838823318, -0.08734980970621109, 0.1204475536942482, 0.11477965861558914, 0.08045393228530884, 0.1453486829996109, 0.08463866263628006, -0.03821716457605362, 0.01260008942335844, 0.045952778309583664, 0.1385158747434616, 0.2219717651605606, -0.0037819137796759605, 0.15347164869308472, -0.08129099011421204, -0.06895483285188675, 0.10628236085176468, 0.08663873374462128, 0.11035025864839554, 0.052305374294519424, 0.06306241452693939, 0.04894999414682388, 0.1878347545862198, 0.11795586347579956, 0.13820135593414307, 0.016984552145004272, 0.007348262704908848, -0.017800014466047287, -0.03962475433945656, -0.055168040096759796, 0.008847041986882687, -0.04338246211409569, -0.10665438324213028, -0.05719950795173645, -0.21456032991409302, 0.02751929871737957, 0.1546311229467392, 0.04618620499968529, -0.21133920550346375, -0.0492471419274807, 0.04881802201271057, -0.05599280819296837, -0.062465161085128784, 0.03945611044764519, -0.11349708586931229, -0.14264346659183502, 0.08674034476280212, -0.061023399233818054, 0.13034644722938538, 0.0243302620947361, 0.0493934340775013, -0.02469502203166485, -0.09860089421272278, 0.025369182229042053, 0.08306455612182617, -0.36972612142562866, 0.17136703431606293, -0.018773242831230164, -0.015115094371140003, -0.0830271914601326, -0.003462765133008361, -0.007155135739594698, 0.12875570356845856, 0.0011784848757088184, 0.015718704089522362, 0.03304215893149376, -0.059399403631687164, -0.05003536492586136, 0.026554210111498833, 0.01865752413868904, -0.003656873246654868, 0.01844790019094944, -0.04728412628173828, -0.0011124187149107456, -0.011310508474707603, 0.017241448163986206, -0.009871135465800762, -0.15663109719753265, 0.06179189682006836, 0.022153005003929138, 0.08285576850175858, -0.04504445195198059, -0.04553419351577759, 0.03073265589773655, 0.20005424320697784, -0.020422670990228653, -0.11204004287719727, -0.09693004190921783, -0.04189600795507431, 0.034714967012405396, -0.07523845136165619, 0.044396813958883286, -0.07946041226387024, -0.04988904297351837, -0.059970274567604065, -0.22746868431568146, 0.11189395934343338, -0.0855613425374031, -0.035582829266786575, -0.011581046506762505, 0.13902026414871216, -0.09324198216199875, 0.03782190755009651, 0.014937680214643478, 0.0005956393433734775, -0.11621221899986267, -0.07828634232282639, -0.07321891188621521, -0.013451182283461094, 0.03530329465866089, -0.021522322669625282, -0.05418412387371063, -0.0365607850253582, -0.03318948298692703, 0.013256560079753399, 0.22103942930698395, 0.1558561772108078, -0.07209520787000656, 0.20269668102264404, 0.10587015002965927, -0.04712425544857979, -0.22368687391281128, -0.13090096414089203, -0.09357966482639313, -0.054914042353630066, -0.015947353094816208, -0.15896402299404144, 0.03695148974657059, 0.032794851809740067, -0.051641013473272324, 0.1010347530245781, -0.2703438401222229, -0.0953746885061264, 0.19474059343338013, 0.04097696766257286, 0.34231430292129517, -0.16491028666496277, -0.08157940208911896, -0.04675530642271042, -0.31579849123954773, 0.17459934949874878, -0.03870286047458649, 0.0955316424369812, -0.04538857564330101, 0.1786469668149948, 0.009588837623596191, -0.05489339306950569, 0.06097453832626343, -0.024019479751586914, 0.005108121316879988, -0.10488329827785492, -0.0024533828254789114, -0.0004870911652687937, -0.004849797580391169, 0.09181070327758789, -0.14838331937789917, 0.02778073027729988, -0.1735033541917801, -0.03506232798099518, -0.09924136847257614, 0.07277137786149979, -0.014675911515951157, -0.0709436684846878, 0.025625111535191536, -0.05706675723195076, -0.026408616453409195, -0.015210120938718319, 0.19007956981658936, -0.02044638991355896, 0.16269251704216003, 0.17335888743400574, 0.022055434063076973, -0.1563502848148346, -0.01100078597664833, -0.05606162175536156, -0.10318879783153534, 0.06493489444255829, -0.12390737980604172, 0.01697814278304577, 0.09275827556848526, -0.01629108004271984, 0.07743117958307266, 0.08324537426233292, 0.0017944661667570472, -0.015492248348891735, 0.13850076496601105, -0.21373087167739868, -0.0056437053717672825, -0.022099537774920464, 0.08776462823152542, 0.05651510879397392, 0.05160778388381004, 0.18728572130203247, -0.033757083117961884, -0.09184897691011429, 0.01160451490432024, -0.009808273985981941, -0.0951671451330185, 0.08031200617551804, 0.04021134600043297, 0.031180644407868385, -0.14923231303691864, 0.03269021213054657, 0.037101589143276215, -0.07878491282463074, -0.012810014188289642, 0.1479986160993576, -0.12280512601137161, -0.11962801963090897, -0.02228834666311741, 0.06909839808940887, -0.2033681869506836, -0.013665076345205307, -0.06878133863210678, -0.09575671702623367, 0.07772408425807953, 0.12259327620267868, 0.08062394708395004, 0.08376052230596542, -0.04250829666852951, -0.02317085489630699, -0.0082321185618639, -0.012223306111991405, 0.034735459834337234, 0.08843717724084854, -0.0480152890086174, 0.08451192080974579, -0.014430169016122818, 0.06568759679794312, -0.06373509764671326, -0.04163612797856331, -0.12731488049030304, 0.0017387346597388387, -0.1833982765674591, -0.04900463670492172, -0.1142665222287178, -0.028842566534876823, 0.029876211658120155, -0.0541202537715435, -0.008596527390182018, -0.015114786103367805, -0.11531416326761246, -0.00008239533781306818, -0.05025482550263405, -0.0000029660886866622604, -0.1096925139427185, 0.01412515714764595, 0.06365186721086502, -0.04461754485964775, 0.08484585583209991, 0.15897740423679352, -0.1089138388633728, 0.07437511533498764, -0.14938083291053772, -0.07197247445583344, 0.06456317752599716, 0.0011400767834857106, 0.02468026615679264, 0.01842333748936653, 0.03123018518090248, 0.10168765485286713, 0.03393441438674927, 0.045939017087221146, 0.11540191620588303, -0.15338367223739624, -0.026926936581730843, -0.03232063725590706, -0.11700712144374847, -0.05557479336857796, -0.03378833457827568, 0.07345379889011383, 0.037369441241025925, 0.16010740399360657, -0.06945168972015381, 0.06642301380634308, -0.09899717569351196, -0.017146587371826172, -0.022920915856957436, -0.12514150142669678, -0.14821721613407135, -0.07248490303754807, -0.022056058049201965, 0.050717756152153015, 0.17755159735679626, 0.023139415308833122, -0.09020740538835526, 0.04383917897939682, 0.036135558038949966, 0.09172976016998291, -0.020207412540912628, 0.2788505256175995, 0.04371685907244682, -0.028583072125911713, -0.1170894056558609, 0.05563446134328842, -0.023810548707842827, -0.04920323193073273, 0.0659203827381134, 0.15365727245807648, -0.007768816314637661, 0.026444293558597565, 0.023958029225468636, 0.08614495396614075, -0.08826874196529388, -0.19008372724056244, 0.045495033264160156, 0.08331432193517685, -0.04267652705311775, 0.19888412952423096, 0.13128720223903656, -0.05172127112746239, 0.028682945296168327, -0.010242385789752007, -0.02999006398022175, -0.12944777309894562, -0.17312085628509521, -0.07217594236135483, -0.18723003566265106, 0.007349009159952402, -0.07077033072710037, 0.04151766747236252, 0.06907472014427185, 0.05415528640151024, -0.04559730738401413, 0.009893505834043026, 0.03832564875483513, -0.0722820833325386, 0.0038461668882519007, -0.026543188840150833, 0.021289046853780746, -0.03456151857972145, -0.003369623329490423, -0.0751088410615921, -0.011965480633080006, 0.01433340273797512, 0.07966067641973495, -0.005803287960588932, 0.024808429181575775, -0.11066886782646179, -0.10211936384439468, -0.007966079749166965, 0.04639916121959686, 0.023875568062067032, 0.31751748919487, 0.00010558053327258676, -0.0009590324480086565, 0.03798598051071167, 0.2402951419353485, -0.07435935735702515, -0.19727644324302673, -0.07743654400110245, 0.2236214131116867, 0.040747497230768204, 0.046813592314720154, 0.0032623426523059607, 0.023253759369254112, -0.05598219484090805, 0.24907688796520233, 0.3108368217945099, 0.017659088596701622, 0.04317503795027733, 0.014687751419842243, 0.021047521382570267, 0.11070512235164642, 0.1515427678823471, 0.10765361040830612, 0.24897177517414093, -0.06854179501533508, 0.005897980649024248, -0.0487586110830307, -0.0022008484229445457, -0.1572864055633545, 0.044127147644758224, -0.02414124086499214, -0.13844969868659973, -0.03217510133981705, 0.0871039628982544, -0.11622480303049088, 0.08345107734203339, -0.037738215178251266, -0.1574966311454773, -0.05259619653224945, -0.014047740027308464, 0.14588110148906708, 0.01464906521141529, 0.07487967610359192, -0.02441933937370777, -0.020603839308023453, 0.09047983586788177, -0.0030246851965785027, -0.203995943069458, -0.04809263348579407, 0.09765628725290298, -0.11101788282394409, 0.009692464955151081, -0.010980234481394291, 0.07006855309009552, 0.09121333062648773, 0.07834938168525696, -0.06547363102436066, 0.0677371546626091, 0.010072287172079086, -0.04669013246893883, 0.0025223938282579184, -0.011557981371879578, 0.01325181033462286, -0.04987826198339462, 0.036119528114795685, -0.16371992230415344, 0.015308036468923092, -0.007689701858907938, -0.0010121091036126018, -0.049907051026821136, -0.03117534890770912, -0.03676166385412216, 0.05008098483085632, 0.07252591848373413, -0.04556119814515114, -0.018025003373622894, -0.07457663863897324, -0.00748926168307662, 0.05520898848772049, -0.15577735006809235, -0.08074785023927689, -0.12140539288520813, -0.08570189028978348, 0.07990964502096176, -0.00025826491764746606, -0.26422813534736633, 0.0027547923382371664, -0.11906449496746063, 0.02652011625468731, -0.1688774675130844, 0.12778852880001068, 0.04297226667404175, 0.015737799927592278, -0.006971055641770363, -0.06722447276115417, 0.006276129279285669, 0.09680381417274475, -0.10572534799575806, -0.08577558398246765 ]
null
null
transformers
# Python T5 base model Pre-trained model on CodeSearchNet Python dataset using a span-masking objective. The training objective and model were introduced in [this paper](https://arxiv.org/pdf/1910.10683.pdf) and first released in [this repository](https://github.com/google-research/text-to-text-transfer-transformer). PyT5 model used [git-t5](https://github.com/formermagic/git-t5) framework built on top of JAX/Flax to pre-train the model on a TPU v3-8 node. # How to use You can use this model to denoise span-masked sequences. First, install the [git-t5](https://github.com/formermagic/git-t5) pip package: ```shell > pip install git-t5 ``` Next, download the model and tokenizer: ```python from transformers import AutoModelForSeq2SeqLM, AutoTokenizer, model = AutoModelForSeq2SeqLM.from_pretrained("formermagic/pyt5-base") tokenizer = AutoTokenizer.from_pretrained("formermagic/pyt5-base") ``` Finally, encode your input and generate the output sequence: ```python from git_t5.utils import encode_input text = """ def alias(self, annotationtype, set, fallback=False): if inspect.isclass(annotationtype): annotationtype = annotationtype.ANNOTATIONTYPE if annotationtype in self.set_alias and set in self.set_alias[annotationtype]: return self.set_alias[annotationtype][set] elif fallback: return set else: raise KeyError("No alias for set " + set) """ batch, max_length = encode_input(tokenizer, text, seed=22) outputs = model.generate(batch["input_ids"], max_length=max_length, num_beams=1) print(tokenizer.batch_decode(outputs[..., 1:])) print(tokenizer.batch_decode(batch["labels"])) ``` You should see the following output: ```shell ['<extra_id_0>, fallback=<extra_id_1> inspect<extra_id_2>.set_alias<extra_id_3> return self.set<extra_id_4>) def fallback'] ['<extra_id_0>, fallback=<extra_id_1> inspect<extra_id_2>.set_alias<extra_id_3> return self.set<extra_id_4>) </s></s>'] ``` As you can see, the predicted result is very close to the target sequence.
{}
text2text-generation
formermagic/pyt5-base
[ "transformers", "pytorch", "jax", "tensorboard", "t5", "text2text-generation", "arxiv:1910.10683", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[ "1910.10683" ]
[]
TAGS #transformers #pytorch #jax #tensorboard #t5 #text2text-generation #arxiv-1910.10683 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
# Python T5 base model Pre-trained model on CodeSearchNet Python dataset using a span-masking objective. The training objective and model were introduced in this paper and first released in this repository. PyT5 model used git-t5 framework built on top of JAX/Flax to pre-train the model on a TPU v3-8 node. # How to use You can use this model to denoise span-masked sequences. First, install the git-t5 pip package: Next, download the model and tokenizer: Finally, encode your input and generate the output sequence: You should see the following output: As you can see, the predicted result is very close to the target sequence.
[ "# Python T5 base model\n\nPre-trained model on CodeSearchNet Python dataset using a span-masking objective. The training objective and model were introduced in this paper and first released in this repository. PyT5 model used git-t5 framework built on top of JAX/Flax to pre-train the model on a TPU v3-8 node.", "# How to use\n\nYou can use this model to denoise span-masked sequences.\n\nFirst, install the git-t5 pip package:\n\n\nNext, download the model and tokenizer:\n\n\nFinally, encode your input and generate the output sequence:\n\n\nYou should see the following output:\n\n\nAs you can see, the predicted result is very close to the target sequence." ]
[ "TAGS\n#transformers #pytorch #jax #tensorboard #t5 #text2text-generation #arxiv-1910.10683 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "# Python T5 base model\n\nPre-trained model on CodeSearchNet Python dataset using a span-masking objective. The training objective and model were introduced in this paper and first released in this repository. PyT5 model used git-t5 framework built on top of JAX/Flax to pre-train the model on a TPU v3-8 node.", "# How to use\n\nYou can use this model to denoise span-masked sequences.\n\nFirst, install the git-t5 pip package:\n\n\nNext, download the model and tokenizer:\n\n\nFinally, encode your input and generate the output sequence:\n\n\nYou should see the following output:\n\n\nAs you can see, the predicted result is very close to the target sequence." ]
[ 64, 82, 82 ]
[ "passage: TAGS\n#transformers #pytorch #jax #tensorboard #t5 #text2text-generation #arxiv-1910.10683 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n# Python T5 base model\n\nPre-trained model on CodeSearchNet Python dataset using a span-masking objective. The training objective and model were introduced in this paper and first released in this repository. PyT5 model used git-t5 framework built on top of JAX/Flax to pre-train the model on a TPU v3-8 node.# How to use\n\nYou can use this model to denoise span-masked sequences.\n\nFirst, install the git-t5 pip package:\n\n\nNext, download the model and tokenizer:\n\n\nFinally, encode your input and generate the output sequence:\n\n\nYou should see the following output:\n\n\nAs you can see, the predicted result is very close to the target sequence." ]
[ -0.11453612893819809, 0.011015164665877819, -0.0011041166726499796, 0.05513850226998329, 0.1373213678598404, -0.04167953506112099, -0.012713688425719738, 0.1260514259338379, -0.03806144744157791, 0.07361313700675964, 0.11009487509727478, 0.17184361815452576, 0.08854708075523376, 0.2018277496099472, 0.06916438043117523, -0.26304033398628235, 0.008711913600564003, 0.040754642337560654, 0.06989461183547974, 0.15580029785633087, 0.09277039766311646, -0.021338993683457375, 0.08750522881746292, 0.08619162440299988, -0.11517839878797531, 0.004307961091399193, -0.028393074870109558, -0.03375585749745369, 0.10840047895908356, 0.0006228846032172441, 0.1093657985329628, -0.01958223059773445, 0.04187794402241707, -0.012997444719076157, 0.020060710608959198, 0.09150788933038712, 0.02584623545408249, 0.0747523307800293, 0.08470813184976578, -0.03280063718557358, 0.13829459249973297, -0.03689618408679962, 0.03030930459499359, 0.028559265658259392, -0.1001361683011055, -0.1026303619146347, -0.02541157975792885, 0.0693497359752655, 0.1328386515378952, 0.07530150562524796, -0.005369093734771013, 0.14311255514621735, 0.06877657771110535, 0.10289826989173889, 0.1904924511909485, -0.3369852602481842, -0.04003489762544632, 0.10282010585069656, 0.08859416842460632, -0.005083673167973757, 0.06860454380512238, -0.01666085049510002, 0.0351715125143528, 0.06433671712875366, 0.1038227528333664, -0.005209405906498432, -0.06039177253842354, -0.033530719578266144, -0.23566848039627075, -0.08192870765924454, 0.1264832615852356, -0.08964992314577103, -0.06254926323890686, -0.0696650817990303, -0.14521996676921844, -0.11842382699251175, 0.009890434332191944, -0.0946085974574089, 0.003215739969164133, 0.031135117635130882, -0.0020408499985933304, -0.013091818429529667, -0.09549427032470703, -0.07634760439395905, -0.03896376118063927, 0.1616838425397873, 0.07044606655836105, 0.08254321664571762, -0.16633878648281097, 0.14782384037971497, -0.029002444818615913, -0.061339665204286575, -0.039427824318408966, -0.06271939724683762, -0.053450874984264374, -0.035089924931526184, -0.05968796834349632, -0.2094721645116806, -0.045654669404029846, 0.0760546326637268, 0.06750699132680893, 0.01859085075557232, 0.05425236001610756, 0.02349238470196724, 0.0809127688407898, 0.08233515173196793, -0.1570035219192505, 0.017518099397420883, 0.020727215334773064, -0.013067126274108887, 0.03980505093932152, -0.0053435880690813065, -0.040834035724401474, -0.08007858693599701, 0.06813447922468185, 0.06630668044090271, 0.04739011451601982, 0.08623277395963669, -0.02383570559322834, -0.08552008122205734, 0.07842874526977539, -0.06565701216459274, -0.09344551712274551, -0.052699655294418335, -0.1430405080318451, 0.09251637011766434, 0.06338503211736679, -0.053290728479623795, -0.15986797213554382, 0.03128942847251892, -0.08727692812681198, -0.009398523718118668, -0.07179360836744308, -0.14274580776691437, -0.026321128010749817, -0.08428725600242615, -0.06092630326747894, -0.15447169542312622, -0.18016117811203003, -0.031981099396944046, 0.02110700123012066, 0.01890946738421917, 0.0022400168236345053, -0.03351633995771408, -0.01899956911802292, -0.01399426069110632, -0.030737226828932762, 0.0532715730369091, -0.04756934195756912, 0.04440693184733391, 0.049379393458366394, 0.1412617564201355, 0.08669184893369675, -0.0005474289646372199, -0.1409761756658554, -0.0007818068843334913, -0.11552604287862778, -0.0006364761502481997, 0.022158723324537277, 0.08341192454099655, -0.13668717443943024, -0.09339509904384613, -0.033208563923835754, 0.016496757045388222, 0.11283554136753082, 0.1046186238527298, -0.13609404861927032, -0.011302659288048744, 0.28193628787994385, -0.13373413681983948, -0.07386172562837601, 0.0701213926076889, 0.024752041324973106, 0.048125170171260834, 0.07263307273387909, 0.10811689496040344, 0.07225526869297028, -0.14003680646419525, 0.00825556181371212, 0.04950869083404541, -0.17914296686649323, -0.0694313794374466, 0.0507093220949173, 0.034378811717033386, -0.14369402825832367, 0.025437887758016586, -0.011503798887133598, 0.028345104306936264, -0.06181775778532028, -0.014207955449819565, -0.06161564961075783, -0.03881344199180603, -0.061297062784433365, -0.01956639066338539, 0.02518632262945175, -0.03466075286269188, -0.054994091391563416, -0.01878267712891102, 0.136836439371109, -0.009700962342321873, 0.00228483066894114, -0.07987485080957413, 0.14761675894260406, -0.13631919026374817, 0.0032605561427772045, -0.1904120147228241, -0.010520041920244694, 0.029410438612103462, -0.01134855393320322, -0.0018739342922344804, -0.06412632018327713, 0.02975596860051155, 0.02762928232550621, 0.09672681987285614, -0.002271294128149748, 0.10600806027650833, -0.04274012893438339, -0.08020955324172974, -0.07160234451293945, -0.05814805626869202, -0.04748810455203056, -0.01657683588564396, -0.05603999271988869, 0.008133316412568092, -0.04525278881192207, 0.0729350820183754, -0.018518522381782532, -0.041500262916088104, 0.12527140974998474, -0.002740426454693079, -0.0531674288213253, -0.03339788690209389, 0.07239585369825363, 0.01594596914947033, 0.022455502301454544, 0.09327464550733566, -0.09828933328390121, -0.06380732357501984, 0.11043603718280792, -0.10253294557332993, -0.08341264724731445, 0.04052745923399925, -0.08788619935512543, 0.01207654271274805, 0.002444889862090349, 0.012491252273321152, 0.052366260439157486, -0.000881764164660126, 0.1303822249174118, -0.07879036664962769, -0.0179663747549057, 0.08086823672056198, -0.02553371712565422, 0.045388709753751755, 0.05275978147983551, 0.0693732351064682, -0.17488117516040802, 0.0008440959500148892, -0.03193245828151703, 0.019811227917671204, 0.07087382674217224, 0.05465228110551834, -0.10072457045316696, 0.03198636695742607, 0.05365334823727608, 0.012761340476572514, 0.03495393693447113, -0.08893054723739624, -0.08549115806818008, 0.045417774468660355, 0.01447307225316763, 0.03657127916812897, -0.1324525773525238, 0.004253995139151812, 0.0279548279941082, -0.01944791153073311, -0.030428724363446236, 0.03239598125219345, -0.09635885804891586, 0.10888712108135223, 0.055047549307346344, -0.05833613499999046, -0.028943436220288277, -0.0055047571659088135, -0.12297694385051727, 0.19314533472061157, -0.025344569236040115, -0.27132323384284973, -0.04241996258497238, -0.03254108130931854, 0.01603718101978302, 0.024182206019759178, 0.03484084829688072, -0.03260601684451103, -0.026747990399599075, -0.05880933627486229, -0.005625314544886351, -0.12456493079662323, 0.06674656271934509, -0.07853247970342636, -0.03912685066461563, 0.01827472448348999, -0.14207905530929565, 0.020836493000388145, -0.09035143256187439, -0.06548827886581421, 0.072174571454525, -0.07649765908718109, 0.11511831730604172, 0.1782071739435196, -0.01978023536503315, 0.036175262182950974, -0.046510349959135056, 0.18568155169487, -0.008529497310519218, 0.032793257385492325, 0.16868099570274353, 0.039129480719566345, 0.021834829822182655, 0.05406350642442703, -0.028908273205161095, -0.061646901071071625, 0.07268029451370239, -0.03826317936182022, -0.09590215981006622, -0.16720367968082428, -0.062180548906326294, -0.037581346929073334, 0.08145555108785629, 0.1512630134820938, 0.060315798968076706, 0.003734487108886242, 0.09165223687887192, -0.03984130546450615, 0.01774750091135502, -0.055348169058561325, 0.12927702069282532, -0.038172587752342224, 0.013707421720027924, 0.09928575903177261, -0.045995768159627914, -0.025787433609366417, 0.08699653297662735, 0.03231436386704445, 0.07913025468587875, -0.07200693339109421, 0.04749283567070961, 0.0718885138630867, 0.07528989017009735, 0.02324599400162697, 0.09511100500822067, -0.07263610512018204, 0.0321323499083519, -0.02678043209016323, -0.06322348862886429, 0.01499876007437706, 0.0412396639585495, -0.1310155689716339, 0.03402364253997803, -0.06705836951732635, -0.005430770106613636, 0.026251481845974922, 0.19468431174755096, 0.16416417062282562, -0.36653512716293335, -0.13281115889549255, -0.043670788407325745, -0.021961990743875504, -0.06979610025882721, 0.08560898154973984, -0.029973499476909637, -0.06181996315717697, 0.09399827569723129, -0.04158889129757881, 0.08006356656551361, -0.041539520025253296, 0.004095437936484814, 0.043949153274297714, 0.14123453199863434, -0.020947670564055443, 0.08512011170387268, -0.24307040870189667, 0.12984468042850494, -0.008671531453728676, 0.058863550424575806, -0.044792916625738144, 0.0018511014059185982, 0.007719647604972124, 0.02471947856247425, 0.16660670936107635, 0.017527926713228226, 0.05731625854969025, -0.0579017736017704, -0.0968669056892395, 0.004392932169139385, 0.030835604295134544, 0.0008884257404133677, 0.09631519764661789, 0.008453704416751862, -0.02680027298629284, -0.02767929993569851, -0.01665876805782318, -0.024129128083586693, 0.009408696554601192, 0.036884281784296036, 0.01232677698135376, -0.034176118671894073, 0.010666959919035435, -0.049325939267873764, 0.027522174641489983, 0.14804665744304657, -0.020990511402487755, -0.12073207646608353, -0.08993536233901978, 0.03158799931406975, 0.04609568044543266, -0.05023537576198578, 0.026027319952845573, -0.02857835218310356, 0.10257835686206818, 0.008557723835110664, -0.16708947718143463, 0.14413446187973022, -0.1144605502486229, -0.0834214985370636, -0.0910656526684761, 0.12777017056941986, 0.03818678483366966, -0.013682293705642223, 0.008140675723552704, 0.02270970307290554, -0.10271976888179779, -0.0493626743555069, 0.09636658430099487, 0.10678648203611374, -0.01673734188079834, 0.03421611338853836, -0.009220803156495094, -0.07128781825304031, -0.061955466866493225, 0.05881282687187195, 0.08619800209999084, 0.09708090126514435, -0.06903804838657379, 0.05777920037508011, 0.11530662328004837, -0.047620680183172226, -0.1633184254169464, -0.004842695314437151, 0.037390850484371185, 0.053882185369729996, -0.055846501141786575, -0.1271078735589981, 0.07741909474134445, -0.012091120705008507, -0.0332525372505188, 0.0764375627040863, -0.3824395537376404, -0.09775733202695847, 0.02498815394937992, 0.11711446940898895, 0.15459564328193665, -0.10301385819911957, -0.0021503311581909657, 0.03797317296266556, -0.08202134817838669, 0.12006160616874695, -0.11968566477298737, 0.08013608306646347, -0.056443557143211365, 0.07136220484972, 0.02631659060716629, -0.06128142774105072, 0.013389617204666138, 0.035948485136032104, -0.02326423116028309, -0.05175967514514923, 0.08024978637695312, -0.057106032967567444, -0.0744374543428421, 0.166780024766922, 0.1053299680352211, 0.10682668536901474, -0.1774437576532364, -0.07256107777357101, -0.0894184410572052, 0.06724799424409866, 0.02726631984114647, -0.09137948602437973, -0.0673237144947052, 0.002980675781145692, 0.07074660807847977, -0.0035166661255061626, -0.03991119936108589, -0.012598170898854733, 0.06587360799312592, 0.06498942524194717, 0.01339502353221178, -0.0038684909231960773, -0.08860330283641815, 0.01447143591940403, 0.003990108612924814, 0.08648388832807541, -0.13315287232398987, -0.03423571586608887, 0.09701165556907654, 0.081857830286026, -0.03344104439020157, 0.07388279587030411, -0.10020270943641663, 0.002776016015559435, 0.04061782732605934, -0.18896786868572235, 0.051377490162849426, -0.05989832803606987, -0.06591527909040451, 0.0018036082619801164, 0.10079824179410934, 0.10316532105207443, -0.0841202437877655, -0.038666632026433945, 0.0055986251682043076, 0.006321301683783531, -0.037349484860897064, 0.13685865700244904, 0.05359320715069771, 0.01764712855219841, -0.07452442497015, 0.05978856235742569, 0.04893272742629051, -0.06092602387070656, 0.03874931111931801, 0.14189746975898743, -0.180679053068161, -0.05150231346487999, -0.08323600888252258, 0.031093871220946312, -0.09500826895236969, -0.0632137581706047, -0.0842980220913887, 0.05529986321926117, 0.07591163367033005, 0.17167514562606812, 0.08461284637451172, -0.010753101669251919, -0.030191950500011444, 0.004504010546952486, -0.14348271489143372, 0.044492386281490326, 0.08409908413887024, 0.07485876977443695, -0.1291666328907013, 0.19990921020507812, 0.011853785254061222, 0.08349602669477463, -0.07518924027681351, -0.06573076546192169, -0.08870352059602737, 0.01792442426085472, -0.025240369141101837, 0.0005318777984939516, -0.08697118610143661, -0.043156467378139496, 0.005810904782265425, -0.016673386096954346, -0.023984279483556747, 0.04075777530670166, -0.04037563130259514, -0.003862532554194331, -0.020448213443160057, -0.04048001021146774, -0.09346244484186172, 0.00974261574447155, -0.007981761358678341, -0.020425517112016678, 0.058501847088336945, 0.08647982776165009, -0.051036588847637177, 0.004446372855454683, -0.07346341758966446, -0.035581935197114944, 0.04276356101036072, -0.0035062360111624002, 0.006600415334105492, -0.02673926204442978, 0.053161635994911194, 0.0010916678002104163, -0.04235022887587547, -0.05867515876889229, 0.07618208229541779, -0.09328777343034744, -0.018658436834812164, 0.029788995161652565, 0.06735309958457947, -0.07126864790916443, 0.03128160536289215, 0.061975982040166855, 0.11512096971273422, 0.04224943742156029, -0.07168576866388321, 0.04322095587849617, -0.14230498671531677, -0.02519492618739605, -0.019346779212355614, -0.04479200020432472, -0.04672214016318321, 0.012652309611439705, 0.01732318103313446, -0.04738274961709976, 0.08654703199863434, 0.06185305491089821, 0.1193845197558403, 0.012290356680750847, -0.011711852625012398, 0.023530427366495132, -0.029908478260040283, 0.08667697012424469, 0.0382181778550148, -0.00046410513459704816, 0.016701964661478996, 0.08600330352783203, 0.07303004711866379, 0.1317538321018219, 0.07928911596536636, -0.021961994469165802, 0.007636131718754768, 0.09843630343675613, -0.031187571585178375, -0.007426160853356123, -0.17282357811927795, -0.19753357768058777, -0.05197929963469505, 0.09566456824541092, 0.02004031091928482, 0.10519125312566757, 0.14922890067100525, 0.018402596935629845, -0.01190238632261753, 0.014095757156610489, -0.041066352277994156, -0.10997770726680756, -0.1782379448413849, -0.022118283435702324, -0.05800890922546387, -0.042089156806468964, -0.06404189020395279, 0.013772481121122837, 0.08511246740818024, 0.060909293591976166, 0.0023262077011168003, 0.13552922010421753, 0.1141645759344101, -0.08748462051153183, 0.04328467696905136, -0.018880294635891914, 0.05303057283163071, 0.02728237211704254, -0.012770510278642178, 0.012636411003768444, -0.03564202040433884, 0.02395508997142315, -0.02787405624985695, 0.01647074893116951, 0.04449848830699921, 0.0195026732981205, -0.06014389544725418, -0.020258789882063866, 0.03688720241189003, 0.01593039743602276, 0.051583871245384216, 0.07959285378456116, -0.0511673167347908, 0.00006201208452694118, 0.21860560774803162, -0.034529924392700195, 0.006795627996325493, -0.06033306568861008, 0.3735424876213074, 0.005773673299700022, -0.04409059137105942, 0.009078134782612324, -0.07322322577238083, -0.07489622384309769, 0.2695178985595703, 0.1244344711303711, 0.04416971281170845, -0.03565388172864914, -0.00013155053602531552, 0.008522397838532925, 0.0700925812125206, 0.10246912389993668, 0.06930968165397644, 0.33062121272087097, -0.058137983083724976, 0.05520009994506836, -0.027693770825862885, 0.048176731914281845, -0.056870702654123306, -0.049629200249910355, 0.062241729348897934, -0.0346200056374073, -0.035290442407131195, 0.10052396357059479, -0.12187282741069794, -0.04626575484871864, -0.06389804929494858, 0.008519037626683712, -0.10836122184991837, -0.06371656805276871, -0.035974934697151184, 0.05727219209074974, 0.12128648906946182, -0.04524320736527443, 0.04855107516050339, 0.08678632974624634, 0.007830282673239708, -0.1264147013425827, -0.11135277152061462, 0.062012672424316406, -0.02662571519613266, 0.08687146008014679, -0.05496267229318619, 0.07789681851863861, 0.07687307149171829, 0.038122113794088364, -0.13974279165267944, -0.02811398357152939, -0.024886708706617355, 0.022884314879775047, 0.01277900766581297, 0.09537384659051895, 0.0017783778021112084, -0.03163868561387062, 0.009165376424789429, -0.10116858780384064, -0.018383916467428207, -0.01853135973215103, 0.05025777965784073, -0.11921749264001846, 0.024213746190071106, -0.0369456484913826, 0.13163051009178162, 0.11636597663164139, -0.06862784177064896, 0.0028583193197846413, -0.11975064873695374, 0.01666981540620327, 0.0012015411630272865, -0.012270691804587841, 0.008605622686445713, -0.11015591025352478, -0.040100883692502975, -0.055085912346839905, -0.004651763942092657, -0.21171754598617554, 0.015415000729262829, -0.03873177990317345, -0.06795361638069153, -0.02421741373836994, 0.0395052507519722, 0.005731125827878714, 0.08309552818536758, -0.041888393461704254, 0.21749083697795868, 0.016905061900615692, 0.1420566439628601, -0.18049770593643188, -0.18399636447429657 ]
null
null
transformers
# roberta-base-python-1m
{"language": "py", "license": "mit", "tags": ["roberta", "pytorch"], "thumbnail": "https://avatars.githubusercontent.com/u/70610668?s=400&u=f0699303289113c125e8686338739d9a63d5826c&v=4"}
fill-mask
formermagic/roberta-base-python-1m
[ "transformers", "pytorch", "jax", "roberta", "fill-mask", "py", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "py" ]
TAGS #transformers #pytorch #jax #roberta #fill-mask #py #license-mit #autotrain_compatible #endpoints_compatible #region-us
# roberta-base-python-1m
[ "# roberta-base-python-1m" ]
[ "TAGS\n#transformers #pytorch #jax #roberta #fill-mask #py #license-mit #autotrain_compatible #endpoints_compatible #region-us \n", "# roberta-base-python-1m" ]
[ 47, 10 ]
[ "passage: TAGS\n#transformers #pytorch #jax #roberta #fill-mask #py #license-mit #autotrain_compatible #endpoints_compatible #region-us \n# roberta-base-python-1m" ]
[ -0.026132797822356224, 0.03342029079794884, -0.007470728829503059, 0.06050238758325577, 0.12887535989284515, 0.02683958224952221, 0.14318552613258362, 0.12884385883808136, 0.02665460668504238, -0.015367026440799236, 0.14918658137321472, 0.23954275250434875, -0.008663605898618698, 0.17102406919002533, -0.019372541457414627, -0.25967761874198914, 0.055726058781147, 0.013171968050301075, -0.0585053451359272, 0.12275554239749908, 0.08952709287405014, -0.03242991864681244, 0.05976536124944687, -0.02098133973777294, -0.12400326132774353, 0.027844557538628578, 0.05761304125189781, -0.12127033621072769, 0.10600540041923523, -0.003183961845934391, 0.12953215837478638, 0.037294063717126846, -0.0013012830168008804, -0.07805662602186203, 0.039656855165958405, -0.0008387094712816179, -0.06936101615428925, 0.06847836822271347, -0.03658462315797806, -0.09872525185346603, 0.04719693213701248, 0.07086552679538727, 0.06347055733203888, 0.024141108617186546, -0.13027474284172058, -0.22079448401927948, -0.06286328285932541, 0.12270446121692657, 0.03409687802195549, 0.07217036187648773, 0.03216231241822243, 0.20963019132614136, -0.11001341789960861, 0.07866895198822021, 0.1756581813097, -0.32785719633102417, -0.012094613164663315, 0.0696183443069458, 0.02594062127172947, -0.021620946004986763, 0.0031591039150953293, -0.007866290397942066, -0.002157788723707199, 0.02126237191259861, 0.042383674532175064, -0.08026495575904846, -0.01900719664990902, -0.030867792665958405, -0.05856393650174141, -0.08709819614887238, 0.17731693387031555, -0.05601892247796059, -0.003221102524548769, 0.036132220178842545, -0.0755571722984314, -0.036257266998291016, -0.04800762981176376, 0.060845594853162766, -0.02826749160885811, 0.05266240984201431, -0.09027720987796783, 0.0006996481097303331, -0.0811404138803482, 0.006225083488970995, -0.15739355981349945, 0.22189530730247498, 0.04620446637272835, 0.07929964363574982, -0.11917448043823242, 0.0681421160697937, -0.025389792397618294, -0.11071009933948517, 0.025854185223579407, -0.05981505289673805, 0.08867713063955307, 0.0265006385743618, -0.02013668231666088, 0.038741592317819595, 0.11982360482215881, 0.3201304078102112, 0.0783071368932724, 0.009995984844863415, 0.017295589670538902, 0.07684571295976639, 0.007070028688758612, 0.04807625338435173, -0.001935724401846528, -0.015155336819589138, 0.12513850629329681, -0.08945460617542267, 0.06340682506561279, -0.04137805104255676, -0.11811498552560806, -0.013158788904547691, 0.08093810826539993, 0.07410607486963272, 0.06844410300254822, 0.07018167525529861, -0.04658010974526405, -0.0062425644136965275, 0.09929017722606659, -0.08075708150863647, -0.010077540762722492, -0.0050781723111867905, 0.03470343351364136, 0.04030068963766098, 0.05621124058961868, -0.029834523797035217, -0.02119459956884384, 0.11515648663043976, -0.0824526771903038, -0.0147298788651824, -0.038378261029720306, -0.08250711858272552, 0.0361766442656517, -0.09959178417921066, 0.05477488785982132, -0.19235405325889587, -0.14146065711975098, 0.051388826221227646, 0.0808665007352829, -0.010324249044060707, -0.0684719830751419, 0.05750826373696327, -0.020625123754143715, 0.02820867858827114, -0.04355594143271446, 0.008407561108469963, -0.042102713137865067, 0.13024286925792694, 0.012857298366725445, 0.06714819371700287, -0.11661498248577118, 0.04943911358714104, -0.11194218695163727, -0.0002310232084710151, -0.1471732258796692, -0.060186199843883514, -0.09366478770971298, 0.15930144488811493, -0.04801769182085991, -0.07162237167358398, -0.03879338875412941, -0.0013023058418184519, 0.005144208204001188, 0.11808889359235764, 0.012879268266260624, -0.11153821647167206, 0.20352065563201904, -0.1185804009437561, -0.10897035896778107, 0.06883666664361954, -0.027114246040582657, 0.052131667733192444, 0.047747790813446045, 0.11790817230939865, 0.061275653541088104, -0.1267443746328354, 0.07318876683712006, 0.05126155912876129, -0.07622258365154266, -0.15924689173698425, 0.06816098839044571, -0.01793755777180195, -0.11311202496290207, 0.06449475139379501, 0.008328043855726719, 0.09635482728481293, -0.05571099743247032, -0.05486830696463585, -0.029618846252560616, -0.02901817485690117, 0.05941600725054741, 0.023339595645666122, 0.10071216523647308, -0.07745774835348129, -0.08852346241474152, -0.040204472839832306, 0.05726853385567665, 0.04681020602583885, 0.016790397465229034, -0.11252683401107788, 0.1803102046251297, -0.04666860029101372, -0.009075284004211426, -0.1439138501882553, -0.014386208727955818, -0.02630559727549553, 0.09096698462963104, 0.03534261882305145, 0.017171602696180344, 0.06364527344703674, -0.051092151552438736, 0.016978375613689423, -0.002280249260365963, 0.07306627929210663, 0.023295491933822632, 0.004359658807516098, -0.1064264178276062, -0.008347706869244576, -0.0670604407787323, 0.07474348694086075, 0.04997473955154419, 0.03405669331550598, -0.02285243570804596, 0.07443975657224655, -0.015738898888230324, 0.021695079281926155, -0.048175353556871414, 0.04073609784245491, -0.027114326134324074, -0.0028467446099966764, 0.08158475160598755, 0.039390165358781815, 0.005074905697256327, 0.09879551082849503, -0.11183129996061325, 0.2857208549976349, 0.20007532835006714, -0.13862381875514984, -0.06168954074382782, 0.10087796300649643, -0.023102881386876106, 0.004000423941761255, 0.06399325281381607, 0.03397253900766373, 0.026237307116389275, -0.00354841654188931, 0.15259921550750732, -0.0147134093567729, -0.0049209906719625, 0.04234396666288376, -0.11131253093481064, 0.006880713161081076, 0.029478158801794052, 0.1278596669435501, -0.15102146565914154, 0.1680826097726822, 0.1506006121635437, -0.0545642264187336, 0.07913922518491745, -0.019406970590353012, -0.010305976495146751, -0.021989507600665092, -0.03438599407672882, 0.012592947110533714, 0.05459500849246979, -0.12169967591762543, -0.02813514694571495, 0.06922821700572968, -0.047118403017520905, 0.04128772392868996, -0.10233774781227112, -0.05361210182309151, -0.01675267703831196, 0.02483072690665722, -0.09984558075666428, 0.104514479637146, 0.020656000822782516, 0.053744420409202576, 0.014302907511591911, -0.09873314946889877, 0.06940784305334091, 0.029003892093896866, -0.03953481838107109, 0.17522789537906647, -0.10351692140102386, -0.24079769849777222, -0.14315983653068542, -0.24102526903152466, 0.039596933871507645, -0.015330156311392784, 0.10412412881851196, -0.031529419124126434, -0.027084870263934135, 0.05062471330165863, -0.00594669533893466, -0.05030052736401558, 0.020990895107388496, -0.07054325938224792, 0.029896479099988937, -0.01666288822889328, -0.09478522092103958, -0.08037490397691727, -0.016307422891259193, -0.08448248356580734, 0.1690884828567505, -0.07646580785512924, 0.033901896327733994, 0.09477473050355911, -0.009389564394950867, 0.04165339097380638, -0.02772129699587822, 0.18728993833065033, -0.016035113483667374, -0.010960806161165237, 0.18699368834495544, 0.0001844001526478678, 0.08183669298887253, 0.15423384308815002, 0.04525106027722359, -0.022382212802767754, -0.010577939450740814, -0.05909878760576248, -0.11393387615680695, -0.1742723435163498, -0.07680397480726242, -0.0973774865269661, 0.019629165530204773, 0.10524477809667587, 0.07447784394025803, 0.11592934280633926, 0.10724054276943207, 0.02014203369617462, -0.010609923861920834, -0.022179434075951576, 0.09932348877191544, 0.16788886487483978, 0.004345389548689127, 0.1410963237285614, -0.055645085871219635, -0.10743594914674759, 0.05574868991971016, 0.06546658277511597, 0.1519804745912552, 0.06506292521953583, -0.004679504316300154, 0.06970935314893723, 0.22207523882389069, 0.12258128076791763, 0.11674802750349045, 0.017605362460017204, -0.014977038837969303, -0.021895909681916237, -0.015263201668858528, -0.05035765469074249, -0.005570584908127785, 0.060937780886888504, -0.08056605607271194, -0.03830281272530556, -0.13289301097393036, -0.007018447387963533, 0.17887543141841888, 0.04987362027168274, -0.23403921723365784, -0.03625563532114029, 0.04376618564128876, -0.028175082057714462, -0.03521587327122688, 0.022980498149991035, -0.16033588349819183, -0.15064215660095215, 0.038589734584093094, -0.06679472327232361, 0.08696790039539337, 0.05126999691128731, 0.015506072901189327, -0.0353546217083931, -0.03810780867934227, 0.034186847507953644, 0.06034263223409653, -0.2243247777223587, 0.24641865491867065, -0.021076608449220657, 0.014200727455317974, -0.05105719342827797, 0.01852414384484291, 0.039497945457696915, 0.06752755492925644, 0.0883447527885437, 0.018863994628190994, -0.02986443229019642, -0.10622335970401764, -0.06715525686740875, 0.03654399514198303, 0.017785247415304184, -0.017351442947983742, 0.02191551774740219, -0.05827305093407631, -0.018806535750627518, -0.016406655311584473, 0.04601885750889778, -0.006574652157723904, -0.1206812635064125, 0.05514123663306236, -0.02998405322432518, -0.02102913148701191, -0.04972933977842331, -0.057732727378606796, -0.05181196704506874, 0.20556488633155823, 0.0013730047503486276, -0.08138202875852585, -0.08587037771940231, -0.05626839026808739, 0.08394457399845123, -0.11245031654834747, 0.10214382410049438, -0.10245645046234131, -0.06482726335525513, -0.0746370479464531, -0.19277486205101013, 0.12261906266212463, -0.10297852009534836, -0.012603433802723885, -0.04869672283530235, 0.12936186790466309, -0.08073533326387405, 0.04413408413529396, 0.014327159151434898, 0.04919939488172531, -0.11622343957424164, -0.048853591084480286, -0.000414523936342448, -0.08276965469121933, 0.036137551069259644, -0.012756869196891785, -0.061581917107105255, -0.05518577992916107, -0.034096844494342804, 0.024335594847798347, 0.21694186329841614, 0.24700412154197693, -0.08148795366287231, 0.15087194740772247, 0.1274995505809784, -0.024911707267165184, -0.2721730172634125, -0.16073337197303772, -0.0960378423333168, -0.032083429396152496, -0.011826109141111374, -0.16689899563789368, 0.04593541845679283, 0.04980883747339249, -0.06525622308254242, 0.11298132687807083, -0.19613970816135406, -0.07507668435573578, 0.22930818796157837, 0.0422380305826664, 0.42285895347595215, -0.14828680455684662, -0.04154278337955475, -0.017313065007328987, -0.20304836332798004, 0.04447053745388985, 0.009671208448708057, 0.1142500638961792, -0.046310558915138245, 0.1127023994922638, -0.0031677735969424248, -0.07440824806690216, 0.06471286714076996, -0.05985857918858528, 0.0046938033774495125, -0.08739358931779861, -0.10336999595165253, 0.1068432480096817, 0.0042051346972584724, 0.03129221126437187, -0.04262687265872955, 0.024692755192518234, -0.08741329610347748, -0.0195435993373394, -0.0975932702422142, 0.08957995474338531, 0.005732916295528412, -0.06840641051530838, 0.005793937481939793, 0.010285471566021442, -0.027418622747063637, -0.022879041731357574, 0.18005327880382538, 0.00019172750762663782, 0.17475184798240662, 0.08519553393125534, -0.05592959001660347, -0.07701189070940018, -0.07605160027742386, -0.04288362339138985, -0.11270484328269958, 0.06904777884483337, -0.09150256961584091, 0.01449350081384182, 0.06516724824905396, 0.014281843788921833, 0.05606945976614952, 0.08251502364873886, -0.03210272267460823, 0.013896392658352852, 0.1509190797805786, -0.16019997000694275, 0.010060847736895084, 0.023786885663866997, 0.008804640732705593, 0.03550643473863602, 0.03621557727456093, 0.12101318687200546, -0.023779353126883507, -0.09254301339387894, -0.0021698689088225365, 0.011693906038999557, -0.09291234612464905, 0.05855801701545715, 0.09884200245141983, 0.046330101788043976, -0.1356518268585205, 0.02587726153433323, 0.011548059992492199, -0.053558509796857834, -0.014498639851808548, 0.09971000999212265, -0.11169110238552094, -0.11459299176931381, -0.00441159401088953, 0.05423273891210556, -0.10956558585166931, 0.005204709246754646, -0.10126286000013351, -0.08169353008270264, 0.048614464700222015, 0.13069665431976318, 0.09468638896942139, 0.0446895956993103, -0.019846417009830475, -0.020140988752245903, -0.03319770097732544, -0.0058526573702692986, 0.029563238844275475, 0.04014114290475845, -0.06815601140260696, 0.020061835646629333, -0.002473588800057769, 0.1050993874669075, -0.07359937578439713, -0.04887227714061737, -0.14490792155265808, 0.0262864101678133, -0.029521208256483078, -0.049031585454940796, -0.10786319524049759, -0.04657706245779991, 0.03337409719824791, -0.05752713978290558, -0.04812084138393402, -0.005557161755859852, -0.11187397688627243, 0.007126460783183575, 0.0019308465998619795, -0.009763963520526886, -0.071515753865242, -0.01812705770134926, 0.09873320162296295, -0.049884624779224396, 0.07291723042726517, 0.15538300573825836, -0.04204835370182991, 0.0774509534239769, -0.1357913762331009, -0.08743657916784286, 0.06269532442092896, -0.007939701899886131, 0.04165402799844742, -0.03716865926980972, 0.048037268221378326, 0.0384347103536129, 0.03693561255931854, 0.031676121056079865, 0.07826703041791916, -0.1407223492860794, 0.025633135810494423, -0.020022405311465263, -0.14428509771823883, -0.02909536100924015, -0.05393880233168602, 0.08064711093902588, 0.023665184155106544, 0.16034665703773499, -0.06773906946182251, 0.0802774578332901, -0.07587508112192154, -0.00855007953941822, -0.04908231273293495, -0.12307590246200562, -0.07832300662994385, -0.03570163622498512, -0.028842290863394737, 0.013989944942295551, 0.1714785248041153, 0.016008490696549416, -0.11128737032413483, 0.03608061373233795, 0.02832898125052452, 0.055826585739851, -0.002510966034606099, 0.2223883718252182, 0.07075116038322449, -0.023580122739076614, -0.06876757740974426, 0.05579156428575516, -0.015502726659178734, -0.042101748287677765, 0.053665902465581894, 0.14378513395786285, 0.11712954938411713, 0.022043127566576004, 0.05848907679319382, 0.05668599531054497, -0.05266774445772171, -0.151933953166008, 0.025519847869873047, 0.029429636895656586, 0.011009844951331615, 0.0820346549153328, 0.20188815891742706, -0.011499473825097084, 0.029196137562394142, -0.01600223407149315, -0.011471118777990341, -0.17235319316387177, -0.12724952399730682, -0.09525538980960846, -0.09293871372938156, 0.05207767337560654, -0.012534446083009243, -0.024024194106459618, 0.1325034648180008, 0.02509363740682602, -0.021491574123501778, -0.000982128200121224, 0.03144039586186409, -0.03533262386918068, -0.017575981095433235, -0.00890966597944498, -0.047025203704833984, 0.019511453807353973, 0.0023396455217152834, -0.10706062614917755, -0.03538891673088074, 0.016411954537034035, 0.02869265154004097, -0.04909677058458328, 0.0667075514793396, -0.12321038544178009, -0.11791656911373138, -0.034167032688856125, 0.04222891107201576, -0.0024170882534235716, 0.19900059700012207, -0.00010728640336310491, 0.02167370170354843, 0.02325982041656971, 0.15281620621681213, -0.03897770121693611, -0.16107018291950226, -0.08550859987735748, 0.22688846290111542, 0.02590225264430046, 0.037919264286756516, 0.000949638313613832, 0.024074016138911247, -0.03379235044121742, 0.24755965173244476, 0.3748377561569214, 0.043547019362449646, 0.06582989543676376, 0.04710313305258751, 0.004072006791830063, 0.04571710154414177, 0.12402278929948807, 0.08234122395515442, 0.21708722412586212, -0.09514868259429932, -0.02980739064514637, -0.07933830469846725, -0.015728328377008438, -0.1687772125005722, -0.01940157823264599, 0.006314591504633427, -0.07364606112241745, -0.040699731558561325, 0.07473491877317429, -0.13244307041168213, 0.054832685738801956, 0.08661641925573349, -0.146135613322258, -0.08621449768543243, -0.01537438202649355, 0.06341752409934998, 0.04834265634417534, 0.10002906620502472, -0.051352765411138535, -0.03337198868393898, 0.04357117414474487, 0.018528617918491364, -0.19491834938526154, -0.09239944070577621, 0.12112914770841599, 0.0604446642100811, 0.09431775659322739, -0.040779903531074524, 0.06381731480360031, 0.11320831626653671, 0.059820596128702164, -0.051702581346035004, 0.06512182205915451, 0.021422147750854492, -0.06744741648435593, -0.023013727739453316, -0.031008604913949966, -0.003470492083579302, -0.07115278393030167, 0.019172659143805504, -0.06890256702899933, 0.02363339439034462, -0.09813223034143448, -0.004690846428275108, -0.04262788966298103, 0.04207877814769745, -0.06237844377756119, 0.05863257870078087, 0.0686216726899147, -0.02562973089516163, -0.03909163922071457, -0.0808170735836029, -0.007553696632385254, 0.11717889457941055, -0.145603209733963, -0.15366332232952118, -0.1018051728606224, -0.06262528151273727, 0.008379841223359108, -0.010477039963006973, -0.23231635987758636, -0.01833348535001278, -0.13089311122894287, 0.006309221964329481, -0.16935496032238007, 0.08479625731706619, 0.048911333084106445, 0.0453338697552681, 0.008455224335193634, -0.044140517711639404, -0.004355210345238447, 0.0543316975235939, -0.15669262409210205, -0.07760128378868103 ]
null
null
null
https://www.geogebra.org/m/w8uzjttg https://www.geogebra.org/m/gvn7m78g https://www.geogebra.org/m/arxecanq https://www.geogebra.org/m/xb69bvww https://www.geogebra.org/m/apvepfnd https://www.geogebra.org/m/evmj8ckk https://www.geogebra.org/m/qxcxwmhp https://www.geogebra.org/m/p3cxqh6c https://www.geogebra.org/m/ggrahbgd https://www.geogebra.org/m/pnhymrbc https://www.geogebra.org/m/zjukbtk9 https://www.geogebra.org/m/bbezun8r https://www.geogebra.org/m/sgwamtru https://www.geogebra.org/m/fpunkxxp https://www.geogebra.org/m/acxebrr7
{}
null
formu/DR-Site
[ "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #region-us
URL URL URL URL URL URL URL URL URL URL URL URL URL URL URL
[]
[ "TAGS\n#region-us \n" ]
[ 6 ]
[ "passage: TAGS\n#region-us \n" ]
[ 0.024608636274933815, -0.026205500587821007, -0.009666500613093376, -0.10395516455173492, 0.08638657629489899, 0.059816278517246246, 0.01882290467619896, 0.020661840215325356, 0.23975107073783875, -0.005599027033895254, 0.1219947561621666, 0.0015615287702530622, -0.037353623658418655, 0.03733762726187706, -0.0035912662278860807, -0.17583473026752472, 0.03876631706953049, -0.018274923786520958, 0.01843859627842903, 0.026470553129911423, -0.07776834815740585, -0.07564429938793182, 0.015296397730708122, -0.10247814655303955, -0.083692267537117, 0.11002834886312485, 0.031466204673051834, -0.019670886918902397, 0.10779199749231339, -0.04243955761194229, 0.18699054419994354, -0.011512263678014278, -0.11213519424200058, -0.2536850869655609, 0.021806683391332626, -0.01765260472893715, -0.08747660368680954, 0.01506110467016697, 0.0665089413523674, -0.09014441072940826, -0.0588928684592247, 0.0795099288225174, -0.01132340170443058, 0.04246443510055542, -0.27593839168548584, -0.12684126198291779, -0.05297930911183357, -0.1421966552734375, 0.08651168644428253, 0.04035491496324539, 0.008764253929257393, 0.15506891906261444, -0.20897391438484192, 0.004104613792151213, 0.08255259692668915, -0.2538507878780365, 0.05591634660959244, 0.17671173810958862, 0.03623908758163452, 0.18037272989749908, 0.0060391901060938835, 0.11029672622680664, 0.0716743916273117, -0.024263937026262283, -0.17590197920799255, -0.08127854019403458, -0.04696211963891983, 0.16642488539218903, -0.06727185100317001, -0.14248386025428772, 0.34701237082481384, 0.00015008423360995948, 0.009657775051891804, 0.16921205818653107, -0.059524230659008026, -0.09972117841243744, 0.07259953022003174, 0.016484731808304787, 0.018492350354790688, 0.1471305936574936, 0.16307872533798218, -0.0458691343665123, -0.13837823271751404, -0.018630273640155792, -0.22798998653888702, 0.17510560154914856, -0.03248048573732376, 0.13137903809547424, -0.27447956800460815, 0.01684025302529335, -0.2570667266845703, 0.0032130838371813297, 0.04178816080093384, -0.06004921346902847, -0.0226522795855999, -0.013265985064208508, -0.08018817007541656, 0.004899587947875261, 0.06192673370242119, 0.1266920566558838, -0.06128726154565811, 0.06128238886594772, -0.09319206327199936, 0.141696035861969, 0.07166698575019836, 0.07868369668722153, 0.13037432730197906, 0.041205424815416336, -0.07187089323997498, -0.21872246265411377, -0.0026476888451725245, -0.06275863200426102, -0.09502086788415909, -0.0020165652967989445, -0.11606067419052124, 0.17244569957256317, -0.030802514404058456, -0.09825427830219269, -0.11208184063434601, 0.09148659557104111, -0.032992321997880936, -0.03437839448451996, -0.03552987426519394, -0.020977836102247238, 0.019381176680326462, 0.04704452306032181, -0.1548958420753479, -0.005131472367793322, 0.07039852440357208, 0.11502562463283539, -0.1346137970685959, -0.003783059772104025, -0.07908964157104492, 0.03039063885807991, 0.07654735445976257, -0.16510222852230072, 0.03158547356724739, -0.1124754324555397, -0.07531405985355377, 0.002912673633545637, -0.015710093080997467, -0.016202643513679504, 0.166526660323143, -0.0020451415330171585, 0.0714716836810112, -0.026345307007431984, -0.05890209600329399, -0.11243434250354767, -0.08489254862070084, 0.05390460044145584, 0.03670717030763626, 0.03266148269176483, -0.2193479984998703, 0.014805203303694725, -0.12762966752052307, 0.1360815018415451, -0.10566820204257965, -0.04705966264009476, -0.022842247039079666, 0.20562705397605896, 0.037286072969436646, 0.08762791007757187, -0.22171171009540558, 0.039756543934345245, -0.05404696613550186, 0.18480908870697021, -0.1502426266670227, -0.0799463614821434, 0.20813211798667908, -0.07964949309825897, -0.10115210711956024, 0.021235812455415726, 0.020391687750816345, 0.026287272572517395, 0.0766737088561058, 0.4564172327518463, -0.09766800701618195, -0.09146861732006073, 0.10178250074386597, 0.17055274546146393, -0.12427149713039398, -0.1827561855316162, 0.06446871906518936, -0.16666454076766968, -0.1973118633031845, 0.0018917324487119913, 0.09222044050693512, 0.038269978016614914, -0.07875611633062363, -0.020746968686580658, 0.06325206160545349, -0.0007678253459744155, 0.09095914661884308, 0.03755716234445572, 0.09034032374620438, -0.08716782182455063, 0.11115926504135132, -0.05017651244997978, 0.004037132486701012, 0.1343354731798172, 0.027325427159667015, -0.03223329409956932, 0.08694463223218918, -0.0485352948307991, 0.05295134335756302, -0.1662379503250122, -0.15068690478801727, 0.03398871049284935, 0.06283251196146011, 0.03186952322721481, 0.1280253529548645, 0.08141885697841644, -0.10732853412628174, 0.022690722718834877, -0.004228927195072174, 0.058398615568876266, 0.03891623765230179, 0.006107209715992212, 0.008764320984482765, 0.0961301177740097, -0.10607069730758667, -0.13589619100093842, -0.07336436957120895, -0.014715781435370445, 0.14371353387832642, -0.0302802175283432, 0.07690227776765823, -0.004240254405885935, 0.00013200697139836848, 0.06930823624134064, 0.08137880265712738, 0.016412746161222458, 0.08971183747053146, -0.05237193778157234, -0.05160155147314072, 0.10863113403320312, -0.13533565402030945, 0.17837053537368774, 0.14053137600421906, -0.20532016456127167, 0.029453208670020103, -0.06838275492191315, 0.03670361638069153, -0.008162540383636951, 0.0975119024515152, -0.08272241055965424, -0.02106042578816414, 0.013134466484189034, 0.0052274600602686405, -0.013007243163883686, 0.017682146281003952, -0.07295988500118256, -0.07787393033504486, -0.10233919322490692, 0.08436838537454605, 0.11562882363796234, -0.10282530635595322, 0.14214380085468292, 0.4384984076023102, 0.11495281755924225, 0.21582984924316406, -0.09581480920314789, -0.0412987545132637, 0.007486371789127588, 0.0001535322517156601, -0.04476691037416458, 0.08031861484050751, -0.15973517298698425, -0.038901735097169876, 0.027348900213837624, 0.07128690183162689, 0.11475157737731934, -0.14959022402763367, -0.09639324247837067, -0.00793045200407505, 0.0022841424215584993, -0.1249532699584961, 0.023905446752905846, -0.03974650055170059, 0.04015624523162842, 0.07232289016246796, -0.021535737439990044, 0.13939237594604492, -0.04166141897439957, -0.0639561116695404, 0.07585346698760986, -0.2017085999250412, -0.23179671168327332, -0.12309670448303223, -0.14680525660514832, 0.04366797208786011, 0.05154111236333847, 0.01726446859538555, -0.17635835707187653, -0.015074856579303741, 0.07706750929355621, 0.07820965349674225, -0.20886357128620148, -0.022814949974417686, -0.004290030337870121, 0.0895976573228836, -0.10227091610431671, -0.0017130117630586028, -0.04419664293527603, -0.10150232166051865, 0.0017003051470965147, 0.07279510796070099, -0.137485533952713, 0.13807645440101624, 0.21589438617229462, 0.07225540280342102, 0.07359948754310608, -0.019093448296189308, 0.09936179965734482, -0.10856141895055771, -0.16549113392829895, 0.08348225057125092, -0.06234746053814888, 0.047262318432331085, 0.17534415423870087, 0.03307317942380905, -0.13904969394207, -0.015682822093367577, -0.0402069091796875, -0.15603256225585938, -0.238995760679245, -0.09178274869918823, -0.1182505264878273, 0.16442428529262543, 0.0009358620154671371, 0.06651917099952698, 0.08258313685655594, -0.022042419761419296, 0.16447891294956207, -0.07379321753978729, -0.07578866183757782, -0.006978808436542749, 0.12375060468912125, -0.056660156697034836, -0.03080669604241848, -0.10566964000463486, -0.008295975625514984, 0.1151021271944046, 0.15304014086723328, 0.12214863300323486, 0.2957419455051422, 0.08268889784812927, 0.026645636186003685, 0.08958091586828232, 0.17622539401054382, 0.09495089203119278, 0.07838419824838638, -0.045413073152303696, -0.014814783819019794, 0.014317171648144722, -0.04022889584302902, 0.010141594335436821, 0.14683100581169128, -0.2679629921913147, -0.006678564939647913, -0.2710230350494385, 0.0965198427438736, -0.10913380235433578, 0.11837165057659149, -0.01015760749578476, 0.10194015502929688, 0.11082887649536133, 0.03233652561903, -0.03858073800802231, 0.16613617539405823, 0.08450309932231903, -0.11277695000171661, 0.001758623169735074, 0.03737903758883476, 0.09715615212917328, -0.02818971499800682, 0.12721189856529236, -0.11048974841833115, -0.1464834064245224, 0.013753619976341724, 0.07152791321277618, -0.15373679995536804, 0.3138748109340668, 0.012069208547472954, -0.13481520116329193, -0.01481647603213787, -0.09957809001207352, -0.006440147757530212, 0.1254177987575531, 0.09333524852991104, 0.07935678958892822, -0.2185502052307129, -0.13339371979236603, 0.05872276425361633, -0.00575496768578887, 0.22408108413219452, -0.034034017473459244, -0.11356475204229355, -0.027013886719942093, 0.04241163283586502, -0.06043251231312752, 0.08524788916110992, 0.023536119610071182, -0.08113526552915573, -0.032957352697849274, 0.05323701351881027, 0.012368366122245789, 0.00524376705288887, 0.09360801428556442, 0.020107939839363098, -0.0009265501867048442, 0.01785753294825554, 0.047885000705718994, -0.0675911232829094, -0.1984109878540039, 0.09357594698667526, -0.05215044692158699, 0.0015536568826064467, -0.08013670891523361, -0.15122665464878082, -0.08837161958217621, -0.16009655594825745, 0.12540200352668762, -0.034406669437885284, 0.12700119614601135, -0.06619787961244583, 0.17341409623622894, -0.07871770113706589, 0.04481020197272301, -0.047349292784929276, 0.050332702696323395, -0.007268077693879604, -0.07756082713603973, 0.16585899889469147, -0.15564003586769104, 0.01809087023139, 0.19572502374649048, -0.018915493041276932, 0.07177707552909851, 0.021322092041373253, -0.0636206790804863, 0.23147478699684143, 0.3014698624610901, 0.008138049393892288, 0.1665448248386383, 0.3018903136253357, -0.07466315478086472, -0.2642788887023926, -0.05505012720823288, -0.2841376066207886, -0.05371501296758652, 0.10716094076633453, -0.22523896396160126, 0.06986407935619354, 0.14383509755134583, -0.06471995264291763, 0.30228954553604126, -0.21825523674488068, 0.012589273042976856, 0.15434536337852478, -0.08868814259767532, 0.5515313148498535, -0.1133413165807724, -0.17677772045135498, -0.008122089318931103, -0.08741296827793121, 0.10602109134197235, -0.0340677872300148, 0.06877441704273224, 0.013465235009789467, 0.04797380417585373, 0.048932258039712906, -0.03111894056200981, 0.22701001167297363, 0.008710170164704323, 0.09015397727489471, -0.07378865778446198, -0.18624304234981537, 0.11639340221881866, -0.04359482601284981, -0.08891059458255768, 0.0849778801202774, -0.05942516401410103, -0.11078983545303345, 0.04663389176130295, -0.07950539886951447, -0.024862350896000862, 0.08423490077257156, -0.04678233340382576, -0.042606171220541, -0.008054176345467567, -0.1618063747882843, -0.0002289071271661669, 0.31360217928886414, -0.07096036523580551, 0.16695955395698547, 0.03677211329340935, 0.00038613268407061696, -0.11027684062719345, 0.030288029462099075, -0.05203165486454964, -0.021576624363660812, 0.09578979015350342, -0.11096979677677155, 0.03204701095819473, 0.14160704612731934, -0.04864364117383957, 0.05846960097551346, 0.09256096184253693, -0.0849417969584465, 0.007583672646433115, 0.17753590643405914, -0.17537221312522888, -0.1273445188999176, -0.006135711446404457, -0.09862716495990753, 0.14055661857128143, 0.04394126310944557, 0.05191568285226822, 0.16669964790344238, 0.03967129811644554, -0.029474308714270592, -0.02817419543862343, -0.1153380498290062, -0.0201893113553524, 0.040153320878744125, 0.00045633706031367183, -0.08791285753250122, 0.2262638509273529, 0.06409153342247009, -0.1328488290309906, -0.051157206296920776, 0.2161225974559784, -0.06805316358804703, -0.04911920800805092, -0.223562553524971, 0.10752306133508682, -0.07112517952919006, -0.0965060144662857, 0.05453834682703018, -0.02270081453025341, 0.005106312222778797, 0.181985542178154, 0.03941008821129799, 0.11070270836353302, 0.03738937899470329, -0.02448922023177147, 0.15798696875572205, -0.142850860953331, -0.14191335439682007, -0.025354057550430298, -0.08757315576076508, -0.13844476640224457, -0.026804137974977493, 0.1617041826248169, -0.09177309274673462, -0.14772607386112213, -0.2621181011199951, 0.10968475043773651, -0.16432365775108337, -0.10192688554525375, -0.03469514101743698, -0.08968492597341537, 0.0696166530251503, 0.030301768332719803, -0.03093348816037178, -0.06706760823726654, -0.18593791127204895, 0.0816768929362297, 0.06349513679742813, 0.045533183962106705, -0.017847947776317596, 0.0067379772663116455, 0.1720137596130371, 0.025955144315958023, 0.10040043294429779, 0.16762186586856842, 0.011397695168852806, 0.2246655523777008, -0.1671202927827835, -0.11496317386627197, 0.1336962729692459, -0.026543032377958298, 0.06762003898620605, 0.16792191565036774, -0.0772583931684494, 0.015526676550507545, -0.028136352077126503, 0.07066910713911057, -0.11003983020782471, -0.105624258518219, 0.007937257178127766, 0.02567129209637642, -0.2755882740020752, -0.005599735304713249, -0.19717298448085785, 0.14788752794265747, 0.02579621411859989, 0.03297143429517746, 0.10257530212402344, 0.10404334217309952, 0.08312062919139862, -0.0017710148822516203, 0.03226327523589134, -0.1176818460226059, 0.02753005363047123, -0.059239376336336136, -0.020663779228925705, 0.017624232918024063, 0.36952024698257446, -0.03603357449173927, -0.046802736818790436, 0.003710439894348383, 0.1307835876941681, -0.02139742486178875, 0.017395347356796265, 0.13209912180900574, 0.12607666850090027, -0.08595693111419678, -0.1504845917224884, 0.04888554662466049, -0.04565655067563057, -0.02836887165904045, 0.1464131623506546, 0.05905961990356445, 0.1050296202301979, 0.0908031314611435, -0.014463032595813274, -0.00318976235575974, 0.012856799177825451, -0.15486004948616028, 0.06223496049642563, -0.010558074340224266, 0.012565906159579754, 0.017934376373887062, 0.15238402783870697, -0.005540105979889631, 0.07739730179309845, -0.09889880567789078, 0.004208535887300968, -0.13498884439468384, -0.07913459837436676, 0.03617347031831741, -0.13393273949623108, 0.04141177982091904, -0.01871878281235695, 0.029611799865961075, 0.30386561155319214, 0.02558239921927452, -0.020639164373278618, 0.12512871623039246, -0.1214587539434433, -0.12050267308950424, -0.001594188273884356, -0.029960084706544876, 0.0791488066315651, -0.02633434161543846, -0.0997740775346756, -0.1001306027173996, -0.15166029334068298, -0.09759195148944855, 0.05182836204767227, -0.04993441700935364, -0.059362251311540604, -0.17634081840515137, -0.05707859992980957, -0.05147340148687363, 0.14025864005088806, -0.12263951450586319, 0.15159130096435547, -0.014490418136119843, 0.004084470681846142, 0.04405883327126503, 0.1950942426919937, -0.03644494712352753, 0.08714226633310318, 0.0154351145029068, 0.1522706001996994, -0.05119588226079941, 0.14720745384693146, -0.10931728035211563, -0.04014137014746666, -0.06710435450077057, 0.21513493359088898, 0.25630924105644226, -0.06136954948306084, -0.008937356993556023, -0.012760217301547527, 0.058654606342315674, 0.1073930487036705, 0.16049085557460785, 0.002326392102986574, 0.2802925705909729, -0.03133585304021835, 0.04815128445625305, 0.02901598811149597, 0.013607407920062542, -0.06336209923028946, 0.03397751972079277, 0.07539387792348862, -0.035039983689785004, -0.1412304788827896, 0.15837742388248444, -0.21980468928813934, 0.18157227337360382, 0.11640069633722305, -0.19996967911720276, -0.013728445395827293, -0.04882071167230606, 0.1689416468143463, -0.0856364443898201, 0.1637246012687683, -0.0903693437576294, -0.2108195722103119, -0.2056000679731369, 0.03867346793413162, -0.34623071551322937, -0.254462867975235, 0.10422009229660034, 0.1488201916217804, 0.04015883058309555, -0.018507536500692368, -0.019967829808592796, -0.018367022275924683, 0.04877542704343796, -0.0067357709631323814, 0.06014643982052803, 0.031397558748722076, -0.02988368645310402, -0.24127542972564697, -0.029804671183228493, 0.023964406922459602, -0.07093082368373871, 0.07464958727359772, -0.06874357163906097, -0.022495782002806664, 0.08059766888618469, -0.03066304884850979, 0.03298592567443848, -0.035373736172914505, -0.16326889395713806, 0.027529051527380943, 0.03900543600320816, 0.036012712866067886, 0.00634160777553916, 0.0008072225609794259, -0.03455270454287529, 0.0644603744149208, -0.16716794669628143, -0.16015739738941193, 0.14140215516090393, -0.06745140254497528, 0.2779497504234314, -0.05812826007604599, -0.0809100940823555, 0.04766704887151718, -0.03426874056458473, 0.1807648241519928, -0.07756473124027252, 0.047254521399736404, 0.12766779959201813, 0.011127962730824947, 0.03121316432952881, -0.3092964291572571, 0.11082969605922699, -0.000795336440205574, -0.006093299947679043, -0.07581598311662674 ]
null
null
transformers
tags: - Text2text Generation - Conversational - Text generation model: - "355M" model-type: - gpt2 widgets: text_example_1: - "One would be forgiven if one was not aware that Julian Assange is being" title_example_1: - "David North wsws" text_example_2: - "I would like to extend my sincerest greetings to the people of the world. When monstrous and absurd accusations were hurled at me and my family -- when" title_example_2: - "Leon Trotsky" # GPT_2_Marxism is based on the gpt-2 355M model finetuned on a large corpus of Marxist documents, polemics and literature from historical and contemporary writers # in the international socialist movement and the ICFI (fourth international) which upholds the principles which characterize genuine revolutionary marxism i.e. Trotskyism. # This finetuned gpt-2 model generates genuinely Marxist insights and responses. # - Generated with the GPT2-355M model converted to pytorch using Max Woolf's aitextgen notebook (https://github.com/minimaxir/aitextgen) # - "Finetuned on a large corpus of text mostly unstructured, unlabeled, raw copy and paste of entire selected works." # - "Able to generate genuine Marxist responses" # - "This model also generates insights that marxists often agree on, like freedom and equality." import torch import random pip3 install aitextgen import aitextgen model = aitextgen("model.pytorch.bin") text = "one would be forgiven if one was not aware that Julian Assange is currently being" model.generate(n=3, prompt="Lenin:"+str(text), max_length=77, temperature=random.uniform(0.5, 1.5), seed=random.randint(0, 195302), lstrip=False) """ Lenin:one would be forgiven if one was not aware that Julian Assange is currently being persecuted by the governments of the United States, the UK and many other countries in spite of, or perhaps because of, the fact that he is an outspoken enemy of imperialism. This not unexpected. In 2003 a law was passed in the US that allowed prosecution of those who helped the FBI to violate civil ========== Lenin:one would be forgiven if one was not aware that Julian Assange is currently being investigated by the FBI for illegally departing Ecuador - (although I had no proof available at the time) with the purpose of, as it were, of snatching up the devious Clintonite. Indeed, such an intrusion seems all the more fishy from the standpoint of a serious study of the facts ========== Lenin:one would be forgiven if one was not aware that Julian Assange is currently being extradited before the beginning of June to answer questions which require a presumption of guilt. This follows from the very revealing papers that WikiLeaks provided in relation to the numerous criminal cases, and of the complex international network which organised it, the publication by WikiLeaks of thousands of secret cables from the intelligence agencies of the """
{}
text-generation
fractaldna22/GPT_2_Marxism
[ "transformers", "pytorch", "gpt2", "text-generation", "autotrain_compatible", "endpoints_compatible", "has_space", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #gpt2 #text-generation #autotrain_compatible #endpoints_compatible #has_space #text-generation-inference #region-us
tags: - Text2text Generation - Conversational - Text generation model: - "355M" model-type: - gpt2 widgets: text_example_1: - "One would be forgiven if one was not aware that Julian Assange is being" title_example_1: - "David North wsws" text_example_2: - "I would like to extend my sincerest greetings to the people of the world. When monstrous and absurd accusations were hurled at me and my family -- when" title_example_2: - "Leon Trotsky" # GPT_2_Marxism is based on the gpt-2 355M model finetuned on a large corpus of Marxist documents, polemics and literature from historical and contemporary writers # in the international socialist movement and the ICFI (fourth international) which upholds the principles which characterize genuine revolutionary marxism i.e. Trotskyism. # This finetuned gpt-2 model generates genuinely Marxist insights and responses. # - Generated with the GPT2-355M model converted to pytorch using Max Woolf's aitextgen notebook (URL # - "Finetuned on a large corpus of text mostly unstructured, unlabeled, raw copy and paste of entire selected works." # - "Able to generate genuine Marxist responses" # - "This model also generates insights that marxists often agree on, like freedom and equality." import torch import random pip3 install aitextgen import aitextgen model = aitextgen("URL") text = "one would be forgiven if one was not aware that Julian Assange is currently being" model.generate(n=3, prompt="Lenin:"+str(text), max_length=77, temperature=random.uniform(0.5, 1.5), seed=random.randint(0, 195302), lstrip=False) """ Lenin:one would be forgiven if one was not aware that Julian Assange is currently being persecuted by the governments of the United States, the UK and many other countries in spite of, or perhaps because of, the fact that he is an outspoken enemy of imperialism. This not unexpected. In 2003 a law was passed in the US that allowed prosecution of those who helped the FBI to violate civil ========== Lenin:one would be forgiven if one was not aware that Julian Assange is currently being investigated by the FBI for illegally departing Ecuador - (although I had no proof available at the time) with the purpose of, as it were, of snatching up the devious Clintonite. Indeed, such an intrusion seems all the more fishy from the standpoint of a serious study of the facts ========== Lenin:one would be forgiven if one was not aware that Julian Assange is currently being extradited before the beginning of June to answer questions which require a presumption of guilt. This follows from the very revealing papers that WikiLeaks provided in relation to the numerous criminal cases, and of the complex international network which organised it, the publication by WikiLeaks of thousands of secret cables from the intelligence agencies of the """
[ "# GPT_2_Marxism is based on the gpt-2 355M model finetuned on a large corpus of Marxist documents, polemics and literature from historical and contemporary writers", "# in the international socialist movement and the ICFI (fourth international) which upholds the principles which characterize genuine revolutionary marxism i.e. Trotskyism. # This finetuned gpt-2 model generates genuinely Marxist insights and responses.", "# - Generated with the GPT2-355M model converted to pytorch using Max Woolf's aitextgen notebook (URL", "# - \"Finetuned on a large corpus of text mostly unstructured, unlabeled, raw copy and paste of entire selected works.\"", "# - \"Able to generate genuine Marxist responses\"", "# - \"This model also generates insights that marxists often agree on, like freedom and equality.\"\n\nimport torch\nimport random\npip3 install aitextgen\nimport aitextgen\nmodel = aitextgen(\"URL\")\n\ntext = \"one would be forgiven if one was not aware that Julian Assange is currently being\"\nmodel.generate(n=3, prompt=\"Lenin:\"+str(text), max_length=77, temperature=random.uniform(0.5, 1.5), seed=random.randint(0, 195302), lstrip=False)\n\n\"\"\"\n\nLenin:one would be forgiven if one was not aware that Julian Assange is currently being persecuted by the governments of the United States, the UK and many other countries in spite of, or perhaps because of, the fact that he is an outspoken enemy of imperialism. This not unexpected. In 2003 a law was passed in the US that allowed prosecution of those who helped the FBI to violate civil\n\n==========\nLenin:one would be forgiven if one was not aware that Julian Assange is currently being investigated by the FBI for illegally departing Ecuador - (although I had no proof available at the time) with the purpose of, as it were, of snatching up the devious Clintonite. Indeed, such an intrusion seems all the more fishy from the standpoint of a serious study of the facts\n\n==========\nLenin:one would be forgiven if one was not aware that Julian Assange is currently being extradited before the beginning of June to answer questions which require a presumption of guilt. This follows from the very revealing papers that WikiLeaks provided in relation to the numerous criminal cases, and of the complex international network which organised it, the publication by WikiLeaks of thousands of secret cables from the intelligence agencies of the\n\n\"\"\"" ]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #autotrain_compatible #endpoints_compatible #has_space #text-generation-inference #region-us \n", "# GPT_2_Marxism is based on the gpt-2 355M model finetuned on a large corpus of Marxist documents, polemics and literature from historical and contemporary writers", "# in the international socialist movement and the ICFI (fourth international) which upholds the principles which characterize genuine revolutionary marxism i.e. Trotskyism. # This finetuned gpt-2 model generates genuinely Marxist insights and responses.", "# - Generated with the GPT2-355M model converted to pytorch using Max Woolf's aitextgen notebook (URL", "# - \"Finetuned on a large corpus of text mostly unstructured, unlabeled, raw copy and paste of entire selected works.\"", "# - \"Able to generate genuine Marxist responses\"", "# - \"This model also generates insights that marxists often agree on, like freedom and equality.\"\n\nimport torch\nimport random\npip3 install aitextgen\nimport aitextgen\nmodel = aitextgen(\"URL\")\n\ntext = \"one would be forgiven if one was not aware that Julian Assange is currently being\"\nmodel.generate(n=3, prompt=\"Lenin:\"+str(text), max_length=77, temperature=random.uniform(0.5, 1.5), seed=random.randint(0, 195302), lstrip=False)\n\n\"\"\"\n\nLenin:one would be forgiven if one was not aware that Julian Assange is currently being persecuted by the governments of the United States, the UK and many other countries in spite of, or perhaps because of, the fact that he is an outspoken enemy of imperialism. This not unexpected. In 2003 a law was passed in the US that allowed prosecution of those who helped the FBI to violate civil\n\n==========\nLenin:one would be forgiven if one was not aware that Julian Assange is currently being investigated by the FBI for illegally departing Ecuador - (although I had no proof available at the time) with the purpose of, as it were, of snatching up the devious Clintonite. Indeed, such an intrusion seems all the more fishy from the standpoint of a serious study of the facts\n\n==========\nLenin:one would be forgiven if one was not aware that Julian Assange is currently being extradited before the beginning of June to answer questions which require a presumption of guilt. This follows from the very revealing papers that WikiLeaks provided in relation to the numerous criminal cases, and of the complex international network which organised it, the publication by WikiLeaks of thousands of secret cables from the intelligence agencies of the\n\n\"\"\"" ]
[ 51, 45, 61, 30, 31, 14, 422 ]
[ "passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #autotrain_compatible #endpoints_compatible #has_space #text-generation-inference #region-us \n# GPT_2_Marxism is based on the gpt-2 355M model finetuned on a large corpus of Marxist documents, polemics and literature from historical and contemporary writers# in the international socialist movement and the ICFI (fourth international) which upholds the principles which characterize genuine revolutionary marxism i.e. Trotskyism. # This finetuned gpt-2 model generates genuinely Marxist insights and responses.# - Generated with the GPT2-355M model converted to pytorch using Max Woolf's aitextgen notebook (URL# - \"Finetuned on a large corpus of text mostly unstructured, unlabeled, raw copy and paste of entire selected works.\"# - \"Able to generate genuine Marxist responses\"" ]
[ -0.031455520540475845, -0.014892552979290485, -0.004462843760848045, 0.12146797776222229, -0.015312419272959232, 0.02162783406674862, 0.11787378787994385, 0.10446816682815552, 0.03464015945792198, -0.05198996886610985, 0.10117591917514801, 0.13635674118995667, -0.053936850279569626, -0.0024127878714352846, 0.06407121568918228, -0.19862104952335358, -0.020803097635507584, 0.048796024173498154, -0.07461465150117874, 0.10381422191858292, 0.07601483166217804, 0.012362859211862087, 0.08255557715892792, 0.051009997725486755, -0.09926189482212067, -0.00855718832463026, -0.013080442324280739, -0.07173721492290497, 0.14082857966423035, 0.1393735110759735, 0.023291651159524918, 0.03393327072262764, -0.014004458673298359, -0.030259231105446815, 0.023175129666924477, -0.004476211033761501, -0.10088951885700226, 0.018467623740434647, 0.09891998022794724, -0.12015555799007416, 0.2483418732881546, -0.06047223135828972, -0.04313668981194496, -0.009715259075164795, -0.2213350385427475, 0.00518436636775732, -0.04407290369272232, 0.20859774947166443, 0.005279581528156996, 0.06265300512313843, -0.058541230857372284, 0.11877760291099548, -0.042763762176036835, 0.07391201704740524, 0.1275063157081604, -0.31281089782714844, -0.05402157083153725, 0.09876178205013275, 0.03682168945670128, 0.10357271879911423, 0.031700972467660904, 0.15089644491672516, 0.05012365058064461, -0.017487695440649986, 0.023542148992419243, -0.15607573091983795, -0.00461972551420331, -0.02311609871685505, -0.16501449048519135, 0.003941099159419537, 0.17576052248477936, -0.0020738274324685335, -0.01697775349020958, -0.10392991453409195, -0.049654360860586166, 0.09111680835485458, 0.07117241621017456, -0.12011238187551498, -0.08740577101707458, 0.06965681910514832, 0.08738252520561218, -0.12927867472171783, -0.10084149241447449, -0.007563937921077013, -0.10291451960802078, 0.09081938862800598, -0.014658160507678986, 0.037904802709817886, 0.06089562177658081, 0.10166585445404053, -0.14206527173519135, -0.01867167465388775, 0.0021893561352044344, -0.1296473890542984, 0.0726662427186966, -0.003522273385897279, -0.07601302862167358, 0.10900764912366867, -0.026800470426678658, 0.04609766602516174, -0.0044525014236569405, -0.08040965348482132, 0.08967369049787521, 0.08319328725337982, 0.10116809606552124, 0.0046766665764153, -0.12989689409732819, 0.04939388483762741, -0.010260281153023243, -0.07132294028997421, 0.019286636263132095, -0.004166961181908846, -0.15190251171588898, -0.06710579246282578, 0.018049191683530807, -0.008839755319058895, -0.010133485309779644, 0.08455211669206619, -0.07209932804107666, -0.025541257113218307, -0.05677670240402222, -0.0008721639751456678, -0.03066127747297287, -0.05815547704696655, -0.031397782266139984, 0.0807851105928421, 0.0601925253868103, 0.03672424703836441, -0.08600310236215591, -0.0451439805328846, -0.09196969121694565, 0.0825142189860344, 0.037593793123960495, -0.0641041025519371, 0.013040641322731972, -0.1461687833070755, -0.011610042303800583, -0.12636281549930573, -0.061979230493307114, 0.014088296331465244, 0.06392586976289749, -0.01968257501721382, -0.0338059701025486, 0.00804827269166708, 0.012617675587534904, -0.010572033002972603, -0.010594353079795837, -0.08109010756015778, -0.05488491430878639, 0.040049634873867035, -0.022803591564297676, 0.06557239592075348, -0.0006333680357784033, 0.006044115871191025, -0.09795694053173065, -0.05324883013963699, -0.10127095133066177, 0.1147250160574913, -0.04448489099740982, -0.02152550406754017, -0.046363648027181625, -0.08064653724431992, 0.05557040125131607, 0.08885057270526886, -0.08824329823255539, 0.20390616357326508, -0.06165624409914017, -0.04558148607611656, 0.14412006735801697, -0.08801145851612091, -0.04212101176381111, 0.18024836480617523, 0.00933243241161108, 0.10676765441894531, 0.07265733927488327, 0.1576555222272873, 0.0008314800215885043, -0.016814526170492172, 0.006478691939264536, 0.10288086533546448, -0.01825612410902977, 0.14844568073749542, 0.07361456751823425, 0.019190732389688492, -0.04780351370573044, -0.03974659740924835, -0.0315348356962204, -0.04626777395606041, -0.036091338843107224, -0.04687216877937317, -0.0196666456758976, 0.03721262142062187, 0.1560792773962021, -0.07046429067850113, 0.09115441143512726, -0.06029842421412468, -0.14172157645225525, -0.06589993089437485, 0.00816121231764555, 0.07322628051042557, 0.0352378785610199, -0.12169753760099411, 0.0424649603664875, -0.019197890534996986, 0.011193805374205112, -0.16597412526607513, -0.00666133314371109, -0.033659037202596664, 0.12018459290266037, 0.19353188574314117, 0.2702796757221222, -0.019176524132490158, 0.025561364367604256, -0.028247961774468422, 0.07217300683259964, -0.1064743772149086, -0.05131830647587776, -0.037867989391088486, -0.11159371584653854, 0.018941940739750862, -0.05055631324648857, 0.0647377297282219, -0.115749292075634, 0.039092596620321274, 0.11861911416053772, -0.03432873636484146, 0.013625254854559898, 0.04950214549899101, 0.04782306030392647, 0.0215094406157732, -0.055329903960227966, 0.012866250239312649, 0.08499062061309814, -0.02137177065014839, -0.16221563518047333, 0.09503969550132751, -0.04787176847457886, 0.14608752727508545, 0.1215815469622612, -0.12502621114253998, -0.11734887212514877, 0.04831476882100105, -0.04626711457967758, 0.024471059441566467, -0.023429732769727707, 0.035865265876054764, 0.12246310710906982, -0.07665551453828812, 0.020621437579393387, -0.11310923844575882, 0.0023570279590785503, -0.02756057307124138, -0.13040168583393097, -0.046081990003585815, 0.13164177536964417, 0.062156956642866135, -0.1351711004972458, 0.12008778005838394, 0.16388048231601715, 0.006044609006494284, 0.22182419896125793, 0.0811515673995018, 0.07745517790317535, -0.046966783702373505, -0.060820262879133224, 0.006514078471809626, -0.002015111967921257, -0.03830977529287338, -0.03083575703203678, 0.024778323248028755, -0.008167464286088943, -0.0051818047650158405, -0.15551066398620605, -0.06008906289935112, 0.00043321793782524765, -0.03554752096533775, 0.12313095480203629, 0.10236009210348129, -0.0336158461868763, 0.0888705626130104, 0.006828670855611563, -0.0073182834312319756, 0.023378772661089897, 0.05142366141080856, -0.09287506341934204, 0.09442099928855896, -0.059750862419605255, -0.20713670551776886, -0.017870236188173294, -0.02203473076224327, -0.0837884172797203, 0.08306283503770828, 0.059155747294425964, -0.060931552201509476, 0.02324075810611248, -0.032381873577833176, 0.1416238695383072, -0.04541873559355736, -0.04037903621792793, 0.024155814200639725, 0.016257716342806816, -0.06330715864896774, -0.06497541069984436, -0.058911316096782684, -0.07507608830928802, -0.17827346920967102, 0.06737352162599564, -0.11453428864479065, 0.03288928419351578, 0.10088527947664261, 0.0838010236620903, -0.014252699911594391, -0.05490550771355629, 0.218472421169281, -0.07019215822219849, 0.0927768275141716, 0.10626266151666641, -0.02182713896036148, 0.06586216390132904, -0.0020960525143891573, 0.02225581929087639, -0.0705176442861557, 0.020772287622094154, -0.0035878606140613556, -0.07841628789901733, -0.11957161128520966, -0.13456642627716064, -0.040832262486219406, 0.15781742334365845, 0.06087159365415573, -0.015416848473250866, 0.03964921087026596, 0.1535940170288086, -0.044147100299596786, 0.13339562714099884, 0.01742599345743656, 0.032648734748363495, 0.14428284764289856, -0.009606938809156418, 0.13989639282226562, -0.06839162111282349, -0.071393221616745, 0.11804815381765366, -0.10401704907417297, 0.10197697579860687, 0.045125480741262436, -0.04139798879623413, 0.0831756740808487, 0.134784996509552, 0.041291963309049606, 0.05891745537519455, 0.041049811989068985, 0.008735609240829945, -0.041402895003557205, -0.07580450177192688, -0.04335135221481323, 0.08195821940898895, 0.03563636168837547, -0.06691604852676392, -0.015273692086338997, 0.006835853215306997, 0.12634722888469696, 0.07776837795972824, 0.11701975017786026, -0.09248805791139603, -0.12047342211008072, 0.056088224053382874, 0.022597642615437508, -0.03638396039605141, 0.0001885835372377187, -0.029458211734890938, -0.16138024628162384, 0.05472007021307945, -0.0202516820281744, 0.04789980500936508, -0.08207161724567413, 0.04182443022727966, -0.0681835263967514, -0.12024623900651932, 0.002248269971460104, 0.09753107279539108, -0.1727048009634018, 0.2659182548522949, 0.0237655658274889, -0.04503318667411804, -0.142256960272789, -0.05539923906326294, 0.05768831446766853, 0.20111919939517975, 0.17124046385288239, 0.059220001101493835, 0.15250256657600403, 0.02410014532506466, -0.06340450793504715, -0.0025675685610622168, 0.100711889564991, -0.20540793240070343, 0.03587009012699127, -0.012451685965061188, 0.06811989098787308, -0.014427285641431808, 0.21477317810058594, -0.08627017587423325, -0.127650648355484, 0.10802718251943588, -0.09320486336946487, -0.030749306082725525, -0.017443086951971054, -0.09139863401651382, -0.06769879907369614, 0.30842825770378113, -0.10904578864574432, -0.11795850843191147, -0.031037192791700363, -0.036342963576316833, -0.019658075645565987, -0.05962086468935013, -0.028195442631840706, -0.0003566178784240037, -0.010098536498844624, -0.07641200721263885, -0.08866921067237854, 0.08912854641675949, -0.09292716532945633, -0.0943293645977974, -0.03641840070486069, 0.15053942799568176, 0.0732327252626419, 0.02715161070227623, 0.06297174096107483, 0.01665578968822956, 0.0033789346925914288, -0.1410723775625229, -0.02953839860856533, -0.028065016493201256, 0.008751780726015568, 0.07338085770606995, -0.14255717396736145, 0.0016329240752384067, -0.06373528391122818, -0.15809445083141327, 0.07431857287883759, 0.15974067151546478, -0.08980529755353928, 0.08438814431428909, 0.03736046701669693, -0.04642319306731224, -0.24210037291049957, -0.08352520316839218, 0.007699380163103342, -0.04003007709980011, 0.021630635485053062, -0.21597984433174133, 0.014139099046587944, 0.03567814454436302, -0.009731586091220379, -0.043220486491918564, -0.23088333010673523, -0.12330585718154907, 0.04548163339495659, -0.029054995626211166, 0.3288818895816803, -0.09973794966936111, -0.06545086205005646, 0.024227796122431755, 0.010420406237244606, 0.2909719944000244, -0.06453265994787216, 0.12781070172786713, -0.015097690746188164, 0.08593548089265823, 0.023476729169487953, 0.0696076825261116, 0.09201924502849579, 0.047836583107709885, -0.008793742395937443, -0.16083300113677979, -0.032793834805488586, 0.06944677233695984, 0.01302927453070879, 0.008911066688597202, 0.05002221837639809, -0.011540115810930729, -0.20037685334682465, -0.02762535959482193, -0.034622348845005035, 0.06468150019645691, 0.004694401286542416, -0.16648854315280914, -0.1373220831155777, 0.05702188238501549, -0.135244682431221, -0.04848802834749222, 0.12312561273574829, -0.051950737833976746, 0.17579792439937592, 0.03803142160177231, 0.10094854980707169, -0.030847929418087006, 0.023641156032681465, -0.021299054846167564, -0.012604407966136932, 0.05101631581783295, -0.05196079611778259, -0.0325971283018589, 0.10525542497634888, -0.00604631844907999, 0.09129825234413147, 0.03842863067984581, -0.05114388465881348, -0.0014458862133324146, 0.08892665803432465, -0.2618047297000885, -0.11426705121994019, -0.045649778097867966, -0.14644496142864227, 0.06381011754274368, -0.024942606687545776, 0.23657868802547455, -0.0604914091527462, -0.07021141052246094, 0.008716722019016743, -0.03194762021303177, -0.04630002751946449, 0.014693653210997581, -0.0028673517517745495, -0.004489000886678696, -0.017213186249136925, 0.035351671278476715, 0.03922713175415993, -0.08033965528011322, -0.033741749823093414, 0.1390206664800644, -0.13689883053302765, -0.15581810474395752, -0.0909939631819725, 0.017769651487469673, -0.23707176744937897, 0.057552020996809006, 0.042550284415483475, -0.09295569360256195, 0.0500209704041481, 0.10290677100419998, 0.15531380474567413, 0.019967176020145416, -0.05442721024155617, -0.013456973247230053, 0.07737307995557785, -0.057008448988199234, 0.12975792586803436, -0.09112700819969177, -0.021793939173221588, 0.11176368594169617, 0.031127773225307465, 0.16319485008716583, -0.0778094157576561, -0.020317120477557182, -0.14173312485218048, -0.008131406269967556, 0.00453843642026186, 0.006147938314825296, -0.09183765947818756, -0.03887125849723816, -0.07956378161907196, -0.05646519362926483, -0.009576196782290936, -0.0718514621257782, -0.08476367592811584, 0.08773677051067352, -0.04037397727370262, 0.05240841582417488, -0.048060040920972824, -0.0010684023145586252, 0.08935954421758652, -0.0283860731869936, 0.09205860644578934, 0.07417545467615128, -0.07410437613725662, 0.030368691310286522, -0.05660837143659592, 0.09960652887821198, 0.024120716378092766, 0.012321670539677143, -0.029481688514351845, 0.016793660819530487, 0.014730200171470642, -0.02898358553647995, 0.11532776802778244, 0.08335153013467789, 0.08915991336107254, -0.08912631124258041, 0.05386864393949509, 0.023374361917376518, -0.04461238160729408, -0.013958888128399849, 0.07414095848798752, 0.07259881496429443, 0.05545782670378685, 0.14681045711040497, -0.07850486785173416, 0.010264451615512371, -0.06822890788316727, 0.039938222616910934, -0.0167795792222023, -0.09004300832748413, 0.010248800739645958, -0.11246935278177261, -0.012405148707330227, 0.004193776752799749, 0.21311528980731964, 0.02315925806760788, -0.013403640128672123, 0.041212502866983414, 0.02089867554605007, 0.031543225049972534, -0.05062736198306084, 0.0014861066592857242, -0.0016351309604942799, -0.009834677912294865, -0.1419249325990677, 0.050350673496723175, 0.06749647855758667, -0.032107800245285034, 0.15804001688957214, -0.08327439427375793, 0.03839603066444397, 0.05503583699464798, -0.053026147186756134, 0.01972474902868271, 0.02927629090845585, -0.13090701401233673, 0.046389706432819366, 0.051741164177656174, -0.06829383969306946, -0.007579463068395853, 0.10407228767871857, -0.02553415484726429, 0.056275077164173126, 0.03945353627204895, -0.038116395473480225, -0.1468113362789154, -0.20124934613704681, -0.035926830023527145, -0.0260123573243618, -0.03872642293572426, -0.07913151383399963, 0.0026664813049137592, -0.014418575912714005, 0.10361891984939575, -0.01489955559372902, 0.11107119917869568, -0.16136910021305084, -0.13895905017852783, 0.0994744598865509, -0.015104066580533981, 0.04914688318967819, -0.04292641207575798, 0.02022698149085045, -0.1263795644044876, 0.019094981253147125, 0.0025676873046904802, 0.06670962274074554, -0.06167270243167877, -0.051741793751716614, -0.08705522119998932, -0.004683171398937702, -0.10107189416885376, 0.03737622871994972, 0.010028082877397537, 0.07111713290214539, -0.0036576201673597097, -0.03833998739719391, -0.0037119213957339525, 0.22884152829647064, -0.018280787393450737, -0.05885213613510132, -0.04239005595445633, 0.20314128696918488, -0.06607531756162643, 0.095106340944767, -0.020219793543219566, 0.06414897739887238, 0.07586362212896347, 0.25594910979270935, 0.3167858421802521, -0.13812540471553802, 0.06377708166837692, -0.030375951901078224, 0.0503782220184803, 0.10301505774259567, -0.03045743890106678, 0.051892250776290894, 0.12737250328063965, -0.08875536173582077, 0.04169042780995369, -0.0651664063334465, 0.027648713439702988, -0.08828074485063553, 0.08117847144603729, 0.01150945108383894, -0.027391526848077774, -0.0460260733962059, 0.0688830241560936, -0.06792057305574417, -0.02730029635131359, 0.0203908272087574, -0.11170176416635513, -0.08907792717218399, 0.056994516402482986, -0.076381616294384, -0.0020112863276153803, 0.13932326436042786, 0.022723380476236343, -0.05140802264213562, -0.0770699754357338, 0.11066225916147232, -0.1659144163131714, 0.008892492391169071, 0.09960424900054932, 0.08682961016893387, 0.011977050453424454, 0.04094458371400833, 0.07336684316396713, 0.06664571166038513, -0.03228000923991203, -0.012353392317891121, 0.05579925701022148, 0.026659173890948296, 0.049279555678367615, -0.09331492334604263, -0.04091958701610565, 0.04211100935935974, -0.07240760326385498, 0.11298677325248718, -0.09996732324361801, 0.08375725150108337, 0.1311044543981552, -0.041006214916706085, -0.015299108810722828, 0.09104308485984802, -0.16714996099472046, 0.10726954787969589, 0.14156970381736755, -0.001871536485850811, -0.002523184521123767, -0.02375040575861931, 0.013328011147677898, 0.00012206248356960714, -0.06481638550758362, -0.04915766417980194, -0.07878454774618149, -0.03478535637259483, -0.0203311275690794, 0.038347721099853516, -0.08018535375595093, -0.08632344752550125, -0.07043550163507462, 0.03696194291114807, -0.12829041481018066, 0.05465416982769966, 0.03181743994355202, 0.001054761465638876, 0.022381693124771118, -0.12116967141628265, 0.04659329354763031, 0.011902104131877422, -0.112045057117939, -0.05604877322912216 ]
null
null
transformers
## Fact checking This generative model - trained on FEVER - aims to predict whether a claim is consistent with the provided evidence. ### Installation and simple usage One quick way to install it is to type ```bash pip install fact_checking ``` and then use the following code: ```python from transformers import ( GPT2LMHeadModel, GPT2Tokenizer, ) from fact_checking import FactChecker _evidence = """ Justine Tanya Bateman (born February 19, 1966) is an American writer, producer, and actress . She is best known for her regular role as Mallory Keaton on the sitcom Family Ties (1982 -- 1989). Until recently, Bateman ran a production and consulting company, SECTION 5 . In the fall of 2012, she started studying computer science at UCLA. """ _claim = 'Justine Bateman is a poet.' tokenizer = GPT2Tokenizer.from_pretrained('gpt2') fact_checking_model = GPT2LMHeadModel.from_pretrained('fractalego/fact-checking') fact_checker = FactChecker(fact_checking_model, tokenizer) is_claim_true = fact_checker.validate(_evidence, _claim) print(is_claim_true) ``` which gives the output ```bash False ``` ### Probabilistic output with replicas The output can include a probabilistic component, obtained by iterating a number of times the output generation. The system generates an ensemble of answers and groups them by Yes or No. For example, one can ask ```python from transformers import ( GPT2LMHeadModel, GPT2Tokenizer, ) from fact_checking import FactChecker _evidence = """ Jane writes code for Huggingface. """ _claim = 'Jane is an engineer.' tokenizer = GPT2Tokenizer.from_pretrained('gpt2') fact_checking_model = GPT2LMHeadModel.from_pretrained('fractalego/fact-checking') fact_checker = FactChecker(fact_checking_model, tokenizer) is_claim_true = fact_checker.validate_with_replicas(_evidence, _claim) print(is_claim_true) ``` with output ```bash {'Y': 0.95, 'N': 0.05} ``` ### Score on FEVER The predictions are evaluated on a subset of the FEVER dev dataset, restricted to the SUPPORTING and REFUTING options: | precision | recall | F1| | --- | --- | --- | |0.94|0.98|0.96| These results should be taken with many grains of salt. This is still a work in progress, and there might be leakage coming from the underlining GPT2 model unnaturally raising the scores.
{}
text-generation
fractalego/fact-checking
[ "transformers", "pytorch", "gpt2", "text-generation", "doi:10.57967/hf/0009", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #gpt2 #text-generation #doi-10.57967/hf/0009 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
Fact checking ------------- This generative model - trained on FEVER - aims to predict whether a claim is consistent with the provided evidence. ### Installation and simple usage One quick way to install it is to type and then use the following code: which gives the output ### Probabilistic output with replicas The output can include a probabilistic component, obtained by iterating a number of times the output generation. The system generates an ensemble of answers and groups them by Yes or No. For example, one can ask with output ### Score on FEVER The predictions are evaluated on a subset of the FEVER dev dataset, restricted to the SUPPORTING and REFUTING options: precision: 0.94, recall: 0.98, F1: 0.96 These results should be taken with many grains of salt. This is still a work in progress, and there might be leakage coming from the underlining GPT2 model unnaturally raising the scores.
[ "### Installation and simple usage\n\n\nOne quick way to install it is to type\n\n\nand then use the following code:\n\n\nwhich gives the output", "### Probabilistic output with replicas\n\n\nThe output can include a probabilistic component, obtained by iterating a number of times the output generation.\nThe system generates an ensemble of answers and groups them by Yes or No.\n\n\nFor example, one can ask\n\n\nwith output", "### Score on FEVER\n\n\nThe predictions are evaluated on a subset of the FEVER dev dataset,\nrestricted to the SUPPORTING and REFUTING options:\n\n\nprecision: 0.94, recall: 0.98, F1: 0.96\n\n\nThese results should be taken with many grains of salt. This is still a work in progress,\nand there might be leakage coming from the underlining GPT2 model unnaturally raising the scores." ]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #doi-10.57967/hf/0009 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "### Installation and simple usage\n\n\nOne quick way to install it is to type\n\n\nand then use the following code:\n\n\nwhich gives the output", "### Probabilistic output with replicas\n\n\nThe output can include a probabilistic component, obtained by iterating a number of times the output generation.\nThe system generates an ensemble of answers and groups them by Yes or No.\n\n\nFor example, one can ask\n\n\nwith output", "### Score on FEVER\n\n\nThe predictions are evaluated on a subset of the FEVER dev dataset,\nrestricted to the SUPPORTING and REFUTING options:\n\n\nprecision: 0.94, recall: 0.98, F1: 0.96\n\n\nThese results should be taken with many grains of salt. This is still a work in progress,\nand there might be leakage coming from the underlining GPT2 model unnaturally raising the scores." ]
[ 59, 26, 56, 101 ]
[ "passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #doi-10.57967/hf/0009 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n### Installation and simple usage\n\n\nOne quick way to install it is to type\n\n\nand then use the following code:\n\n\nwhich gives the output### Probabilistic output with replicas\n\n\nThe output can include a probabilistic component, obtained by iterating a number of times the output generation.\nThe system generates an ensemble of answers and groups them by Yes or No.\n\n\nFor example, one can ask\n\n\nwith output### Score on FEVER\n\n\nThe predictions are evaluated on a subset of the FEVER dev dataset,\nrestricted to the SUPPORTING and REFUTING options:\n\n\nprecision: 0.94, recall: 0.98, F1: 0.96\n\n\nThese results should be taken with many grains of salt. This is still a work in progress,\nand there might be leakage coming from the underlining GPT2 model unnaturally raising the scores." ]
[ -0.10899621993303299, 0.04892144724726677, -0.00043644270044751465, 0.0836966335773468, 0.10239708423614502, 0.006097006611526012, -0.0003252906317356974, 0.07427605986595154, 0.037823256105184555, 0.1107124537229538, 0.15710537135601044, 0.058570124208927155, 0.034711696207523346, 0.16046878695487976, -0.017844000831246376, -0.1469530165195465, 0.022821255028247833, -0.036344271153211594, 0.07399848103523254, 0.0973077341914177, 0.00401825737208128, -0.0904780849814415, 0.09130890667438507, -0.025874804705381393, -0.1032630130648613, -0.030603427439928055, 0.010998276993632317, -0.006597691681236029, 0.09999144077301025, 0.09788020700216293, 0.0037561925128102303, 0.015056979842483997, 0.033249903470277786, 0.014861381612718105, 0.00797045137733221, 0.05123576894402504, 0.014438220299780369, 0.05164583399891853, 0.07390305399894714, 0.046672433614730835, -0.05388515442609787, 0.005828333552926779, -0.02486025169491768, 0.04779168963432312, -0.09537360072135925, -0.11146519333124161, -0.025400731712579727, -0.02984904870390892, 0.09235768020153046, 0.05072850361466408, -0.03889217972755432, 0.19796347618103027, -0.014460577629506588, 0.07435072213411331, 0.18043644726276398, -0.2849367558956146, -0.007425251416862011, 0.12083069980144501, -0.007728500757366419, 0.08097925782203674, 0.06051475182175636, 0.030879639089107513, 0.07216786593198776, 0.03508207947015762, -0.015395944938063622, -0.04232015088200569, -0.04200546443462372, -0.041001737117767334, -0.1437212973833084, -0.0619514137506485, 0.2590100169181824, -0.041848283261060715, -0.10416782647371292, -0.09225395321846008, -0.08007142692804337, -0.06588290631771088, 0.04674850031733513, -0.013437838293612003, -0.04301679506897926, -0.010905949398875237, 0.04257523640990257, -0.010826186276972294, -0.0673237219452858, -0.15446625649929047, -0.07485614717006683, 0.17477011680603027, 0.04067213460803032, 0.05880952998995781, -0.03682958707213402, 0.1810573786497116, -0.13755430281162262, -0.04487435519695282, -0.05752275139093399, -0.03763847425580025, -0.07578519731760025, 0.01599702425301075, -0.09967845678329468, 0.01396186649799347, 0.03393125534057617, 0.17054985463619232, 0.006877557840198278, 0.08780606091022491, 0.05814553052186966, 0.062100786715745926, 0.09254252910614014, 0.0340828076004982, -0.13764256238937378, 0.027556026354432106, 0.06175687909126282, -0.07359517365694046, 0.051694635301828384, -0.07497373968362808, -0.06247655302286148, -0.11716968566179276, 0.10871584713459015, 0.0461873821914196, 0.035693395882844925, 0.044641874730587006, -0.04961289465427399, -0.0548807755112648, 0.0033508427441120148, -0.05643736571073532, -0.09587852656841278, -0.04595639184117317, -0.10280665755271912, 0.0065531604923307896, 0.04278450831770897, -0.045561131089925766, -0.08377052843570709, 0.014846066944301128, -0.11516792327165604, -0.07912162691354752, -0.07706198841333389, -0.0726417601108551, -0.03947114199399948, -0.08928041160106659, -0.026797128841280937, -0.08984723687171936, -0.2508135735988617, -0.030273891985416412, 0.007279288489371538, -0.06592810153961182, -0.044240210205316544, 0.011503754183650017, -0.01731392741203308, -0.007498389109969139, -0.041072748601436615, 0.09483169764280319, -0.03196948021650314, 0.06453876197338104, 0.057535551488399506, 0.10777875036001205, -0.06946946680545807, 0.005058728624135256, -0.09104053676128387, 0.029591474682092667, -0.09840399771928787, -0.0049975598230957985, -0.005141550209373236, -0.04400889575481415, -0.08813425153493881, -0.049389246851205826, 0.01752435602247715, 0.01323452778160572, 0.07412630319595337, 0.14335548877716064, -0.09249922633171082, -0.01532895490527153, 0.1328713744878769, -0.1133098155260086, -0.04884486272931099, 0.13111387193202972, 0.07592125982046127, 0.027224332094192505, 0.03669511154294014, 0.06704510748386383, 0.03444981202483177, -0.02097001112997532, 0.018633877858519554, 0.08130612224340439, -0.07001184672117233, -0.01916401833295822, 0.05248820036649704, 0.049109093844890594, -0.13699130713939667, 0.07081753015518188, -0.0037031068932265043, -0.010840339586138725, -0.1091727465391159, -0.007078867405653, -0.04457100108265877, -0.043452296406030655, -0.05768952518701553, 0.004827052354812622, 0.07234057784080505, 0.022953633219003677, -0.0731927901506424, -0.0953148603439331, 0.05929936096072197, -0.03903338313102722, 0.004371592774987221, -0.0991789698600769, 0.2039778083562851, -0.04771650955080986, -0.009438630193471909, -0.22927340865135193, 0.01929091289639473, 0.040201738476753235, -0.018448220565915108, -0.0006470721564255655, 0.07406911998987198, 0.022834302857518196, 0.09626049548387527, 0.024402469396591187, 0.01429711189121008, 0.11542922258377075, -0.056697968393564224, -0.07613977044820786, -0.12042711675167084, -0.03248438611626625, -0.04090722277760506, 0.0738636925816536, -0.06627529114484787, -0.025015754625201225, -0.018222954124212265, 0.06384698301553726, -0.02659178152680397, -0.07365674525499344, 0.007599044591188431, 0.024880196899175644, -0.035578738898038864, -0.0400208979845047, 0.07440038025379181, 0.0013064327649772167, -0.1253780573606491, 0.01269109919667244, -0.18461577594280243, -0.01039054710417986, 0.09617685526609421, 0.04458300396800041, -0.09934909641742706, -0.03940962255001068, -0.01747002638876438, -0.05086696892976761, -0.00023841882648412138, -0.039003126323223114, 0.18948891758918762, 0.01063165720552206, 0.08347397297620773, -0.06266406923532486, -0.026788439601659775, 0.0634770616889, -0.026280241087079048, 0.0027758292853832245, 0.07926508039236069, 0.029086461290717125, -0.056061532348394394, 0.03550618886947632, -0.020811449736356735, -0.06772308796644211, 0.053105808794498444, -0.007386242039501667, -0.06413374096155167, 0.00494936341419816, 0.05833175405859947, 0.007650154177099466, 0.05187453329563141, -0.049041397869586945, 0.032965973019599915, 0.060263171792030334, 0.04486595466732979, 0.027857141569256783, -0.10512491315603256, 0.014792891219258308, -0.025943689048290253, 0.0006693972973152995, -0.02967970445752144, 0.06964480876922607, -0.08423450589179993, 0.07392741739749908, 0.015889978036284447, 0.05039570853114128, 0.03326665237545967, -0.022514894604682922, -0.07321193814277649, 0.24527861177921295, -0.046366263180971146, -0.1954234391450882, -0.1420106738805771, -0.035767678171396255, -0.032809630036354065, 0.007528310641646385, 0.05858495831489563, -0.0438837930560112, -0.06496811658143997, -0.04086662083864212, 0.07816127687692642, -0.07608833909034729, 0.038826074451208115, -0.075457364320755, -0.06849317997694016, 0.03693893551826477, -0.08387070894241333, 0.004261138383299112, -0.007811740972101688, -0.12403947114944458, 0.1766299158334732, -0.0232705008238554, -0.012564914301037788, 0.09540576487779617, 0.04301644489169121, 0.028942391276359558, -0.003979178611189127, 0.23029392957687378, -0.004361165687441826, -0.02646980993449688, 0.23109926283359528, -0.016998186707496643, 0.053763143718242645, 0.0408182293176651, -0.020587990060448647, -0.1354753077030182, 0.05742798373103142, 0.00015365930448751897, -0.08749119937419891, -0.12290861457586288, -0.10123678296804428, -0.04069163277745247, 0.03096589632332325, 0.042107321321964264, 0.011802063323557377, 0.026612538844347, 0.08125966787338257, -0.04642266035079956, 0.08295749127864838, -0.08643932640552521, 0.08132854104042053, 0.10356999188661575, -0.020497160032391548, 0.10733379423618317, -0.00017027226567734033, 0.018000470474362373, 0.1022319346666336, -0.06986580789089203, 0.2281172126531601, -0.05915306881070137, 0.03317229822278023, 0.032507382333278656, 0.06532525271177292, 0.040315840393304825, 0.07904692739248276, -0.02828753925859928, -0.00494683813303709, -0.04972168803215027, -0.059309445321559906, -0.03717166930437088, 0.026982538402080536, -0.0690460354089737, -0.05695169419050217, -0.05737047269940376, -0.020487863570451736, -0.029440749436616898, 0.08474769443273544, 0.11674651503562927, -0.2914641201496124, -0.11331377178430557, 0.007777223829180002, 0.015100965276360512, -0.10215892642736435, 0.044585298746824265, 0.07658293098211288, -0.09201674163341522, -0.04215419664978981, -0.0363372266292572, 0.0856238454580307, -0.06301452219486237, 0.023792235180735588, -0.04803038388490677, 0.09214391559362411, -0.02201305888593197, 0.06100183352828026, -0.14057262241840363, 0.10860239714384079, 0.007318318821489811, 0.010707242414355278, -0.08915901929140091, -0.0009037851705215871, -0.03686691075563431, 0.018111012876033783, 0.14535847306251526, 0.010801302269101143, 0.01908673718571663, -0.16733944416046143, -0.11036854982376099, 0.06809399276971817, 0.08716057240962982, -0.02658110298216343, 0.019100220873951912, 0.006585574708878994, 0.06709126383066177, -0.008217932656407356, -0.03132711350917816, -0.1166762113571167, 0.014652252197265625, 0.07420866191387177, -0.005830446258187294, 0.04203513637185097, -0.037064455449581146, -0.05606740340590477, -0.015542794018983841, 0.1168883815407753, -0.15300969779491425, -0.07864759117364883, -0.11448655277490616, 0.11977718025445938, 0.16101306676864624, -0.0586397722363472, 0.06605694442987442, -0.012243859469890594, -0.014059281907975674, 0.0881657749414444, -0.13631078600883484, 0.08373712003231049, -0.08777281641960144, -0.17397817969322205, -0.03241784870624542, 0.025416722521185875, 0.10094069689512253, 0.004742524586617947, -0.05591661110520363, 0.031101493164896965, -0.061457522213459015, -0.12946464121341705, 0.0401223860681057, 0.11351675540208817, 0.12140804529190063, 0.04668533056974411, 0.07078363001346588, 0.0565040297806263, -0.0019143626559525728, 0.0003553740680217743, 0.05862129479646683, 0.291218638420105, -0.047269873321056366, 0.06739310920238495, 0.1712174117565155, -0.003229186637327075, -0.25008219480514526, -0.07990545779466629, 0.06991869956254959, 0.09733060747385025, -0.04579991474747658, -0.16692566871643066, 0.16189846396446228, 0.07395796477794647, -0.023394301533699036, 0.16370706260204315, -0.2787843644618988, -0.13856825232505798, 0.1081940233707428, 0.10737469047307968, 0.3033062815666199, -0.0748799666762352, -0.036417026072740555, 0.006325447466224432, -0.07664790749549866, 0.06401195377111435, -0.04051386937499046, 0.10147100687026978, -0.07908795773983002, 0.03691372275352478, 0.03273576498031616, -0.05507728084921837, 0.13005012273788452, -0.060083337128162384, 0.02875605970621109, -0.040995243936777115, 0.06475676596164703, 0.015893571078777313, 0.014557193964719772, 0.0600697323679924, 0.0010377051075920463, 0.10227712988853455, -0.08141429722309113, -0.054078709334135056, -0.029992293566465378, 0.09969733655452728, -0.009374485351145267, -0.07473695278167725, -0.007911025546491146, 0.03348682448267937, -0.09431550651788712, -0.04242049157619476, -0.05196194350719452, -0.030047830194234848, 0.003729413030669093, 0.16837286949157715, 0.06074180081486702, 0.005188893061131239, -0.03023361973464489, 0.06921703368425369, -0.0023699437733739614, 0.12120959162712097, -0.10251631587743759, 0.0007270328933373094, 0.09908144921064377, 0.07612257450819016, 0.00459293182939291, 0.06955603510141373, -0.0710345059633255, 0.037491586059331894, 0.03305651992559433, -0.20648401975631714, -0.020797964185476303, 0.003123447997495532, 0.020700644701719284, 0.0007860325276851654, 0.07775534689426422, 0.09803199768066406, -0.03480355441570282, -0.009059513919055462, -0.009261460043489933, 0.009228400886058807, -0.00950944609940052, 0.20470184087753296, 0.022609975188970566, 0.025046667084097862, -0.11026636511087418, 0.07458334416151047, -0.02052503079175949, -0.05109860375523567, 0.0518551766872406, -0.007897601462900639, -0.15830738842487335, -0.056412603706121445, 0.014050857163965702, -0.038913480937480927, -0.0004915770841762424, -0.06287557631731033, -0.053451310843229294, 0.015289233066141605, 0.018716033548116684, 0.06499841809272766, 0.09392541646957397, 0.05380033701658249, -0.04204685240983963, -0.038508977741003036, -0.04637349396944046, 0.022556301206350327, 0.10861247777938843, 0.04344738647341728, -0.146543949842453, 0.07029877603054047, -0.00571777205914259, 0.018842751160264015, -0.08562727272510529, -0.08035487681627274, -0.15478189289569855, 0.016619807109236717, -0.011985884979367256, 0.006323523353785276, -0.035253752022981644, -0.04153337702155113, 0.02463129535317421, -0.06027735769748688, -0.03132625296711922, 0.029054438695311546, -0.023892633616924286, -0.01454867422580719, -0.013610601425170898, -0.0008563132723793387, -0.027071034535765648, -0.02755863592028618, 0.06078934669494629, -0.0401713065803051, 0.09511980414390564, 0.11443330347537994, -0.029943767935037613, 0.05515648424625397, -0.05952712520956993, 0.058737363666296005, 0.028415758162736893, 0.06348024308681488, 0.031561098992824554, -0.026002606377005577, 0.021474061533808708, -0.010251684114336967, 0.022620877251029015, -0.0031880191527307034, 0.1367647498846054, -0.11872366815805435, 0.0030294256284832954, -0.06058996915817261, 0.007822757586836815, -0.1277400702238083, -0.0037434203550219536, 0.09025287628173828, 0.16179600358009338, 0.026139192283153534, -0.03536558151245117, 0.04073280096054077, -0.07671789079904556, -0.013028951361775398, 0.04631606861948967, -0.03325481340289116, -0.024733420461416245, -0.04172533378005028, 0.08825371414422989, 0.015159361995756626, 0.13613183796405792, -0.06742718815803528, 0.06973948329687119, -0.01946856826543808, 0.021573767066001892, 0.07160832732915878, -0.02978689782321453, 0.16783633828163147, 0.06297507882118225, 0.030897410586476326, -0.057659000158309937, 0.10693909227848053, 0.0019845510832965374, -0.05837413668632507, 0.10771965235471725, -0.032756783068180084, -0.09488482773303986, 0.034011706709861755, -0.0678289532661438, -0.11292801052331924, -0.05237790197134018, 0.0583629235625267, -0.06991353631019592, 0.04631827399134636, -0.009135349653661251, 0.0363696925342083, 0.059064991772174835, 0.01245070155709982, -0.005144060589373112, -0.023980798199772835, -0.05202320218086243, -0.10976200550794601, -0.13078667223453522, -0.03676870837807655, -0.10179523378610611, 0.0059639401733875275, -0.07857244461774826, 0.010330923832952976, 0.11637360602617264, 0.048274651169776917, -0.013425045646727085, 0.14487242698669434, 0.03253340348601341, -0.08445284515619278, -0.037641216069459915, -0.03759396821260452, 0.014775408431887627, -0.0064802346751093864, -0.029798323288559914, 0.03934091702103615, 0.011083722114562988, 0.03691338747739792, 0.061156194657087326, -0.006040392443537712, 0.04905872419476509, -0.02382236160337925, -0.07395292073488235, -0.07513261586427689, 0.06282006949186325, -0.06166156381368637, 0.07025620341300964, -0.010000634007155895, -0.02129761129617691, -0.06222591549158096, 0.18819566071033478, -0.10692466050386429, 0.031876154243946075, -0.04072657972574234, 0.3921354413032532, -0.029978377744555473, 0.010651662945747375, 0.03343645855784416, -0.0900660902261734, -0.012948521412909031, 0.1918530911207199, 0.06902521103620529, 0.0007535213371738791, -0.043126966804265976, 0.08267660439014435, -0.02376140095293522, -0.043922245502471924, 0.13552066683769226, 0.037428177893161774, 0.25143760442733765, -0.05003508925437927, 0.06412605941295624, -0.026415975764393806, -0.018950212746858597, -0.0746147483587265, -0.04583422839641571, 0.034540869295597076, -0.021776879206299782, -0.08135155588388443, 0.09182129800319672, -0.11058740317821503, -0.06788554042577744, 0.023818327113986015, 0.038450490683317184, -0.058533407747745514, -0.020062221214175224, -0.02792469970881939, -0.030820481479167938, 0.10012994706630707, -0.0990108922123909, 0.06874370574951172, -0.043109871447086334, 0.015267515555024147, -0.09036397188901901, -0.07271632552146912, 0.05130770802497864, 0.06069868057966232, 0.11687158793210983, -0.016543585807085037, 0.2253914773464203, 0.06508293002843857, -0.024926023557782173, -0.11484825611114502, 0.024118697270751, -0.035472363233566284, -0.08883257210254669, -0.003166052745655179, 0.09527690708637238, 0.02570626325905323, 0.00538669852539897, -0.03626355901360512, -0.07163006067276001, -0.009589415043592453, -0.03920743241906166, 0.092884860932827, -0.09546104818582535, 0.0374348945915699, -0.06106462702155113, 0.15934304893016815, 0.04286151006817818, -0.06452835351228714, -0.02442328818142414, -0.0775054544210434, 0.05826874077320099, -0.028779858723282814, -0.01838025450706482, 0.010089503601193428, -0.15524283051490784, 0.02771778032183647, -0.005091038532555103, -0.044159699231386185, -0.1711455136537552, 0.013555862940847874, -0.01023771520704031, -0.024122880771756172, -0.017724933102726936, 0.03681052476167679, -0.0028636488132178783, 0.001056404784321785, -0.03316619619727135, -0.02426222339272499, -0.007565720472484827, 0.06735227257013321, -0.10284731537103653, -0.14288491010665894 ]
null
null
transformers
## Introduction This is a zero-shot relation extractor based on the paper [Exploring the zero-shot limit of FewRel](https://www.aclweb.org/anthology/2020.coling-main.124). ## Installation ```bash $ pip install zero-shot-re ``` ## Run the Extractor ```python from transformers import AutoTokenizer from zero_shot_re import RelTaggerModel, RelationExtractor model = RelTaggerModel.from_pretrained("fractalego/fewrel-zero-shot") tokenizer = AutoTokenizer.from_pretrained("fractalego/fewrel-zero-shot") relations = ['noble title', 'founding date', 'occupation of a person'] extractor = RelationExtractor(model, tokenizer, relations) ranked_rels = extractor.rank(text='John Smith received an OBE', head='John Smith', tail='OBE') print(ranked_rels) ``` with results ```python3 [('noble title', 0.9690611883997917), ('occupation of a person', 0.0012609362602233887), ('founding date', 0.00024014711380004883)] ``` ## Accuracy The results as in the paper are | Model | 0-shot 5-ways | 0-shot 10-ways | |------------------------|--------------|----------------| |(1) Distillbert |70.1±0.5 | 55.9±0.6 | |(2) Bert Large |80.8±0.4 | 69.6±0.5 | |(3) Distillbert + SQUAD |81.3±0.4 | 70.0±0.2 | |(4) Bert Large + SQUAD |86.0±0.6 | 76.2±0.4 | This version uses the (4) Bert Large + SQUAD model ## Cite as ```bibtex @inproceedings{cetoli-2020-exploring, title = "Exploring the zero-shot limit of {F}ew{R}el", author = "Cetoli, Alberto", booktitle = "Proceedings of the 28th International Conference on Computational Linguistics", month = dec, year = "2020", address = "Barcelona, Spain (Online)", publisher = "International Committee on Computational Linguistics", url = "https://www.aclweb.org/anthology/2020.coling-main.124", doi = "10.18653/v1/2020.coling-main.124", pages = "1447--1451", abstract = "This paper proposes a general purpose relation extractor that uses Wikidata descriptions to represent the relation{'}s surface form. The results are tested on the FewRel 1.0 dataset, which provides an excellent framework for training and evaluating the proposed zero-shot learning system in English. This relation extractor architecture exploits the implicit knowledge of a language model through a question-answering approach.", } ```
{}
question-answering
fractalego/fewrel-zero-shot
[ "transformers", "pytorch", "bert", "question-answering", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #bert #question-answering #endpoints_compatible #region-us
Introduction ------------ This is a zero-shot relation extractor based on the paper Exploring the zero-shot limit of FewRel. Installation ------------ Run the Extractor ----------------- with results Accuracy -------- The results as in the paper are Model: (1) Distillbert, 0-shot 5-ways: 70.1±0.5, 0-shot 10-ways: 55.9±0.6 Model: (2) Bert Large, 0-shot 5-ways: 80.8±0.4, 0-shot 10-ways: 69.6±0.5 Model: (3) Distillbert + SQUAD, 0-shot 5-ways: 81.3±0.4, 0-shot 10-ways: 70.0±0.2 Model: (4) Bert Large + SQUAD, 0-shot 5-ways: 86.0±0.6, 0-shot 10-ways: 76.2±0.4 This version uses the (4) Bert Large + SQUAD model Cite as -------
[]
[ "TAGS\n#transformers #pytorch #bert #question-answering #endpoints_compatible #region-us \n" ]
[ 29 ]
[ "passage: TAGS\n#transformers #pytorch #bert #question-answering #endpoints_compatible #region-us \n" ]
[ -0.03135230019688606, 0.019992724061012268, -0.0106701934710145, -0.018308134749531746, 0.09194501489400864, 0.033905480057001114, 0.015166199766099453, 0.09145615994930267, 0.134480282664299, 0.009099881164729595, 0.1723843812942505, 0.20330657064914703, -0.06626442819833755, -0.06713318079710007, -0.10391829162836075, -0.2025584578514099, 0.04793500155210495, 0.10157988965511322, -0.023979786783456802, 0.12151781469583511, 0.03099050000309944, -0.13043755292892456, 0.038694705814123154, -0.03934689983725548, -0.07007598131895065, 0.061426807194948196, 0.002661224454641342, -0.05560101941227913, 0.1275879591703415, 0.01988556981086731, 0.16128244996070862, 0.032734207808971405, -0.13124491274356842, -0.19133411347866058, 0.0434899628162384, -0.02546050027012825, -0.05259579047560692, 0.028877267614006996, 0.052893463522195816, -0.0953020453453064, -0.03832237422466278, 0.07442127913236618, 0.0002482777344994247, 0.06498449295759201, -0.18763136863708496, -0.1596250683069229, -0.05712383985519409, 0.015845056623220444, 0.0636272132396698, 0.09438946843147278, -0.02710471861064434, 0.17875422537326813, -0.18476411700248718, 0.09474390745162964, 0.18092048168182373, -0.31450721621513367, -0.01166314072906971, 0.08102051168680191, 0.09412065893411636, 0.051648981869220734, -0.020864112302660942, 0.06979437917470932, 0.0380079485476017, 0.02188878506422043, -0.11535484343767166, -0.11366855353116989, -0.033182621002197266, 0.10256030410528183, -0.08841803669929504, -0.09839369356632233, 0.2299497276544571, 0.01531962025910616, 0.04654033109545708, 0.04189028963446617, -0.09467408806085587, 0.021009191870689392, 0.02639743499457836, -0.031534597277641296, -0.030764060094952583, 0.050264179706573486, 0.01495309267193079, -0.03456006199121475, -0.11285790801048279, 0.022392652928829193, -0.24631081521511078, 0.24179495871067047, 0.03275267407298088, 0.0936693400144577, -0.2500198483467102, 0.05645543336868286, -0.04845157638192177, -0.07376648485660553, 0.0028497406747192144, -0.07651493698358536, 0.0036522154696285725, -0.008018171414732933, -0.06546273827552795, 0.06301076710224152, 0.060571182519197464, 0.18575403094291687, -0.0070006283931434155, 0.03181932866573334, -0.014564059674739838, 0.09062321484088898, 0.06006910279393196, 0.11936818808317184, -0.021268334239721298, 0.002836136845871806, -0.03208696469664574, -0.14179284870624542, -0.041232071816921234, -0.03558903932571411, -0.08642159402370453, -0.058963969349861145, 0.0002489425241947174, 0.1372518092393875, 0.08277205377817154, 0.003957946319133043, -0.07083798944950104, 0.0008623613393865526, -0.022650524973869324, -0.026950567960739136, -0.014865356497466564, 0.0037242902908474207, 0.019868748262524605, 0.197527214884758, -0.07651297003030777, 0.026126010343432426, -0.041966866701841354, 0.09156736731529236, -0.07137662917375565, -0.019976438954472542, -0.019683154299855232, -0.009521318599581718, 0.07046832889318466, -0.12470054626464844, 0.07528544962406158, -0.11439041793346405, -0.04859017953276634, 0.015044530853629112, 0.03159348666667938, -0.00811055675148964, 0.024456506595015526, 0.0011752002174034715, -0.027929307892918587, -0.04827839136123657, -0.055367715656757355, -0.02931503765285015, -0.0629315972328186, 0.11279169470071793, 0.024471081793308258, 0.03690626099705696, -0.07810340076684952, 0.059454578906297684, -0.0799008384346962, 0.04948350414633751, -0.06193244829773903, -0.04327748715877533, -0.00406288867816329, 0.13943274319171906, -0.0188955869525671, -0.0814240500330925, -0.10613562166690826, 0.034284912049770355, -0.05427347868680954, 0.1935708075761795, -0.00923309288918972, -0.06814873218536377, 0.2118416130542755, -0.040127113461494446, -0.2278028279542923, 0.08400595188140869, 0.0055225868709385395, -0.006558615248650312, 0.07845839112997055, 0.18719437718391418, -0.021085986867547035, -0.08935558795928955, 0.0636000707745552, 0.12111418694257736, -0.12495958805084229, -0.07829990983009338, 0.043070293962955475, -0.07017793506383896, -0.11699909716844559, 0.03349027782678604, 0.013137046247720718, 0.03932749107480049, -0.10104537010192871, -0.031039975583553314, -0.012059801258146763, 0.0038918794598430395, 0.07856530696153641, 0.07118111103773117, 0.06136491149663925, -0.07381823658943176, 0.013349482789635658, -0.02925417199730873, -0.032968953251838684, 0.052713699638843536, 0.02929193526506424, -0.07410431653261185, 0.13964945077896118, -0.11522811651229858, 0.01286560483276844, -0.21762342751026154, -0.1018327847123146, -0.026389047503471375, 0.1203073263168335, -0.02318541333079338, 0.23964986205101013, 0.09678550064563751, -0.14600299298763275, -0.024652112275362015, -0.04226558282971382, 0.10834454745054245, 0.0070869335904717445, -0.03607034310698509, -0.03498968854546547, 0.04036606475710869, -0.07709482312202454, -0.09886907041072845, -0.01497116032987833, -0.030939951539039612, 0.1038946807384491, 0.10997966676950455, -0.008906964212656021, 0.05910978466272354, -0.009353389963507652, 0.04758423939347267, 0.01564851403236389, 0.04256250336766243, 0.10758287459611893, -0.04391014575958252, -0.09051477909088135, 0.10550031810998917, -0.07713214308023453, 0.29826268553733826, 0.17867204546928406, -0.31840789318084717, 0.02676197700202465, -0.049528881907463074, -0.05446058511734009, 0.024229198694229126, 0.07913020253181458, -0.005939568392932415, 0.1239536926150322, 0.046388477087020874, 0.0834580585360527, -0.041127074509859085, -0.06847981363534927, -0.025993147864937782, -0.05089956149458885, -0.04375419393181801, 0.11598169803619385, 0.06533234566450119, -0.18627792596817017, 0.15774103999137878, 0.31001606583595276, 0.058010876178741455, 0.08272289484739304, -0.0744117945432663, -0.045550115406513214, 0.007455171085894108, 0.04436682537198067, -0.05532664805650711, 0.048578739166259766, -0.2567776143550873, -0.002197499154135585, 0.08615592122077942, 0.0150474077090621, 0.0801461935043335, -0.13763967156410217, -0.08460202068090439, 0.00677099684253335, 0.015640581026673317, -0.08960431814193726, 0.10787198692560196, 0.05573767051100731, 0.09508851170539856, 0.03299635648727417, -0.010484343394637108, 0.1108626276254654, -0.009887348860502243, -0.06068798899650574, 0.15392078459262848, -0.10568766295909882, -0.24203269183635712, -0.03854992240667343, -0.09625014662742615, 0.012964913621544838, 0.00018531580280978233, 0.0804150328040123, -0.09665409475564957, -0.01300626341253519, 0.10569056868553162, 0.043230123817920685, -0.19515320658683777, 0.0074298488907516, -0.046658266335725784, 0.041596390306949615, -0.09609968215227127, -0.05583184212446213, -0.0663028135895729, -0.07535520195960999, -0.07003165036439896, 0.11798246949911118, -0.12265362590551376, 0.09397588670253754, 0.11396625638008118, 0.05636340752243996, 0.06993921101093292, -0.01918971538543701, 0.23854759335517883, -0.12224425375461578, -0.04046132415533066, 0.1740262806415558, -0.042808569967746735, 0.10165534913539886, 0.14503295719623566, 0.02203395403921604, -0.08699861168861389, 0.0018511483212932944, -0.019437525421380997, -0.06568467617034912, -0.2527044117450714, -0.05329287797212601, -0.1233673095703125, 0.0628412589430809, -0.00775183504447341, 0.03164323791861534, 0.09978434443473816, 0.06742298603057861, 0.025705672800540924, -0.14536437392234802, -0.047002241015434265, 0.049619875848293304, 0.2609071135520935, -0.062233880162239075, 0.08922796696424484, -0.05042990669608116, -0.11225856095552444, 0.054784633219242096, 0.08798287063837051, 0.14191558957099915, 0.13485278189182281, -0.0012541507603600621, 0.08753865957260132, 0.15189595520496368, 0.13263347744941711, 0.09365297108888626, -0.01275166217237711, -0.05979113653302193, -0.026594338938593864, 0.008423350751399994, -0.057978056371212006, 0.017605869099497795, 0.18533632159233093, -0.13100740313529968, -0.04123637452721596, -0.22012758255004883, 0.08449064940214157, 0.04960712045431137, 0.06855249404907227, -0.06138977035880089, 0.02542274072766304, 0.08517176657915115, -0.022691896185278893, -0.04600032791495323, 0.09733358770608902, 0.018432024866342545, -0.1500939279794693, 0.013220317661762238, -0.03884725272655487, 0.1429862529039383, 0.03140929341316223, 0.09210632741451263, -0.07383108139038086, -0.17207033932209015, 0.06419593840837479, 0.10168318450450897, -0.28792649507522583, 0.31095463037490845, 0.011329254135489464, -0.10282246023416519, -0.0687149316072464, -0.051583193242549896, -0.04170820862054825, 0.14244696497917175, 0.17153170704841614, 0.01912018284201622, -0.016781393438577652, -0.08975808322429657, 0.0813727155327797, 0.05595412105321884, 0.14812445640563965, -0.03946775943040848, -0.019575145095586777, -0.009081060066819191, 0.018597830086946487, -0.03334806114435196, 0.07303453981876373, 0.06333085149526596, -0.10992588102817535, 0.04181332513689995, -0.03497014939785004, 0.03160944581031799, -0.004879975691437721, 0.0007611183100380003, -0.0661424919962883, 0.10216393321752548, -0.05482377111911774, -0.055647995322942734, -0.087758369743824, -0.125993013381958, 0.13307835161685944, -0.09655394405126572, 0.01837206818163395, -0.08865699172019958, -0.08842838555574417, -0.06578792631626129, -0.13334771990776062, 0.13474911451339722, -0.09167075157165527, -0.00372123415581882, -0.03356693685054779, 0.21501420438289642, -0.07080360502004623, 0.026272060349583626, 0.0075701139867305756, 0.038749873638153076, -0.14425958693027496, -0.10025361180305481, 0.026171782985329628, -0.09551046043634415, 0.08756383508443832, 0.06237189844250679, -0.01696663163602352, 0.12272684276103973, -0.00312767899595201, 0.030395150184631348, 0.22212424874305725, 0.2156762182712555, -0.033601753413677216, 0.08700301498174667, 0.17262640595436096, -0.012947848998010159, -0.2656528055667877, -0.053389135748147964, -0.157435804605484, -0.07222622632980347, -0.01569162867963314, -0.10197952389717102, 0.13498151302337646, 0.023410171270370483, -0.03472396731376648, 0.08764279633760452, -0.23221847414970398, -0.02134993113577366, 0.15970177948474884, -0.0018289608415216208, 0.503491222858429, -0.12488686293363571, -0.09662727266550064, 0.04213958978652954, -0.26681509613990784, 0.09501863270998001, 0.023150363937020302, 0.040762800723314285, -0.027052946388721466, 0.11409859359264374, 0.03983669728040695, -0.087588831782341, 0.154712975025177, 0.019638868048787117, 0.008942476473748684, -0.06394541263580322, -0.14411474764347076, 0.02673479914665222, 0.015640057623386383, -0.0205686055123806, 0.05106743797659874, 0.042612675577402115, -0.17278915643692017, -0.01770436391234398, -0.14686651527881622, 0.05070509389042854, 0.015234127640724182, -0.048967428505420685, -0.02123750001192093, -0.02703016623854637, -0.013095390982925892, 0.004948455840349197, 0.26325055956840515, -0.07312103360891342, 0.17537301778793335, -0.0264870747923851, 0.14215585589408875, -0.19738759100437164, -0.11319785565137863, -0.06279365718364716, -0.04668644443154335, 0.08705991506576538, -0.03566458821296692, 0.05618258938193321, 0.19768133759498596, -0.01593010127544403, 0.029327290132641792, 0.10862293839454651, 0.030872980132699013, -0.03635275363922119, 0.08378896117210388, -0.21281634271144867, -0.14595142006874084, -0.020121952518820763, -0.03108396753668785, 0.05637865886092186, 0.0810856968164444, 0.06577019393444061, 0.12356884032487869, -0.027859080582857132, 0.010623176582157612, -0.0415089912712574, -0.05093950033187866, 0.0011893544578924775, 0.08625370264053345, 0.03957598656415939, -0.10335700213909149, 0.048189807683229446, -0.028619252145290375, -0.26291027665138245, -0.04337899759411812, 0.08210968226194382, -0.1047981008887291, -0.1045025959610939, -0.10444848984479904, 0.053661737591028214, -0.1388372927904129, -0.023707421496510506, -0.020813921466469765, -0.10614456236362457, 0.06624601781368256, 0.2284243404865265, 0.09281963109970093, 0.07564294338226318, -0.002429374260827899, -0.03401452675461769, 0.06096583977341652, -0.03658943623304367, -0.041938427835702896, -0.01639465242624283, -0.04779340326786041, -0.07221720367670059, -0.021267537027597427, 0.19879907369613647, -0.07687898725271225, -0.08742836862802505, -0.17992953956127167, 0.10190094262361526, -0.16759216785430908, -0.11017142981290817, -0.11501381546258926, -0.08021751791238785, 0.0074523696675896645, -0.12993402779102325, -0.030433058738708496, -0.04129278287291527, -0.14015986025333405, 0.08424700796604156, 0.06597542017698288, 0.0144586730748415, -0.07749994844198227, -0.049343839287757874, 0.17375698685646057, -0.03013371303677559, 0.09371156990528107, 0.1599135547876358, -0.11322277784347534, 0.10763051360845566, -0.11577168852090836, -0.16121093928813934, 0.0631881058216095, 0.01964796893298626, 0.07204954326152802, 0.04969954863190651, -0.008374828845262527, 0.07370220124721527, 0.048836011439561844, 0.08179794251918793, -0.0492769293487072, -0.1146647185087204, 0.013015234842896461, 0.036680009216070175, -0.1983516365289688, -0.03920695185661316, -0.11963635683059692, 0.10883194953203201, 0.018821001052856445, 0.08767793327569962, 0.030451947823166847, 0.13595004379749298, -0.04663078859448433, 0.016889382153749466, 0.01088773924857378, -0.15472035109996796, 0.042594362050294876, -0.07039690762758255, 0.01914464868605137, -0.019411256536841393, 0.256925493478775, -0.11366448551416397, 0.09016063064336777, 0.05351637303829193, 0.058282043784856796, 0.04103595018386841, -0.00021439496777020395, 0.21260762214660645, 0.08834570646286011, -0.06397779285907745, -0.08060546219348907, 0.07965119928121567, -0.06695281714200974, -0.061735931783914566, 0.15358220040798187, 0.14465074241161346, 0.08401516824960709, 0.061305031180381775, -0.010541096329689026, 0.06096964329481125, -0.03317619860172272, -0.2506944537162781, 0.024842530488967896, 0.013741164468228817, 0.004459200892597437, 0.12087604403495789, 0.1336645632982254, -0.0315852053463459, 0.06568727642297745, -0.05112520232796669, -0.011567851528525352, -0.1471722573041916, -0.06196950376033783, -0.056035030633211136, -0.0801311731338501, 0.05537676438689232, -0.10163131356239319, -0.01644347794353962, 0.12720726430416107, 0.07157047837972641, -0.04949105158448219, 0.1256283074617386, 0.048139408230781555, -0.0648137629032135, 0.016248608008027077, 0.001133329002186656, 0.09110874682664871, 0.03384251520037651, 0.03011697717010975, -0.12861861288547516, -0.08243808150291443, -0.05201524868607521, 0.04190807044506073, -0.12921161949634552, -0.0575026273727417, -0.14889025688171387, -0.09961677342653275, -0.06934770941734314, 0.10918867588043213, -0.048636797815561295, 0.16727615892887115, -0.03501144424080849, 0.04687380790710449, 0.020574437454342842, 0.22149790823459625, -0.07983614504337311, -0.035045426338911057, -0.02953096479177475, 0.19169217348098755, 0.02293289452791214, 0.10123874247074127, 0.0039009263273328543, 0.02663610689342022, -0.05562928318977356, 0.3356931805610657, 0.21145908534526825, -0.07349588721990585, 0.04438743740320206, 0.07307980209589005, 0.051443129777908325, 0.11890368908643723, 0.015651078894734383, 0.10086067020893097, 0.290741890668869, -0.10576304793357849, -0.02907668985426426, -0.017210746183991432, 0.006212418898940086, -0.036074891686439514, 0.05308860167860985, 0.06385476887226105, -0.06612837314605713, -0.07547162473201752, 0.1183580681681633, -0.15669208765029907, 0.10222597420215607, 0.043853580951690674, -0.1995655596256256, -0.05199456587433815, -0.03384201601147652, 0.1678486317396164, -0.016779230907559395, 0.12842759490013123, -0.029464829713106155, -0.12687046825885773, 0.03811600059270859, 0.0530795156955719, -0.2323380559682846, -0.07880351692438126, 0.15334609150886536, 0.029253190383315086, -0.01345739234238863, 0.010100535117089748, 0.0423290953040123, 0.07262477278709412, 0.032937027513980865, -0.029636263847351074, 0.018044499680399895, 0.09700760990381241, -0.12007711827754974, -0.12795883417129517, -0.017589513212442398, 0.059171874076128006, -0.09466255456209183, 0.07944472134113312, -0.19034650921821594, 0.048007190227508545, 0.005575351417064667, -0.024408496916294098, -0.05244743824005127, 0.06626787036657333, -0.07314711064100266, 0.012519342824816704, 0.06918328255414963, 0.0026371274143457413, -0.034837137907743454, -0.03111114725470543, -0.004997910466045141, 0.03914216533303261, -0.08890500664710999, -0.14575104415416718, 0.01178313884884119, -0.06271177530288696, 0.09262482821941376, -0.04425259679555893, -0.08461843430995941, -0.031173918396234512, 0.0015296326018869877, 0.0687042847275734, -0.0828213095664978, 0.010084830224514008, 0.03441310301423073, 0.046000514179468155, 0.02118447609245777, -0.09721404314041138, 0.03851703181862831, 0.05934135988354683, -0.11750422418117523, -0.05397212877869606 ]
null
null
transformers
# Personal speech to text model s2t models often do not understand my accent, so I fine tuned this one from "facebook/wav2vec2-large-robust-ft-swbd-300h" using about 1000 recordings of my voice. Do not download unless you have exactly my accent.
{}
automatic-speech-recognition
fractalego/personal-speech-to-text-model
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "endpoints_compatible", "has_space", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #wav2vec2 #automatic-speech-recognition #endpoints_compatible #has_space #region-us
# Personal speech to text model s2t models often do not understand my accent, so I fine tuned this one from "facebook/wav2vec2-large-robust-ft-swbd-300h" using about 1000 recordings of my voice. Do not download unless you have exactly my accent.
[ "# Personal speech to text model\ns2t models often do not understand my accent, so I fine tuned this one from \"facebook/wav2vec2-large-robust-ft-swbd-300h\" using about 1000 recordings of my voice.\n\nDo not download unless you have exactly my accent." ]
[ "TAGS\n#transformers #pytorch #wav2vec2 #automatic-speech-recognition #endpoints_compatible #has_space #region-us \n", "# Personal speech to text model\ns2t models often do not understand my accent, so I fine tuned this one from \"facebook/wav2vec2-large-robust-ft-swbd-300h\" using about 1000 recordings of my voice.\n\nDo not download unless you have exactly my accent." ]
[ 41, 66 ]
[ "passage: TAGS\n#transformers #pytorch #wav2vec2 #automatic-speech-recognition #endpoints_compatible #has_space #region-us \n# Personal speech to text model\ns2t models often do not understand my accent, so I fine tuned this one from \"facebook/wav2vec2-large-robust-ft-swbd-300h\" using about 1000 recordings of my voice.\n\nDo not download unless you have exactly my accent." ]
[ -0.09028255939483643, -0.002347920322790742, -0.0019495888845995069, -0.03312394395470619, 0.10016030818223953, -0.06959781795740128, 0.06892705708742142, 0.0639021098613739, 0.06094340234994888, 0.0321991890668869, 0.06601239740848541, -0.009538388811051846, 0.051216404885053635, 0.025107651948928833, 0.006754012778401375, -0.2077355831861496, 0.10685361921787262, -0.0361255519092083, 0.13394488394260406, 0.07034608721733093, 0.0933840200304985, -0.044082142412662506, 0.06797685474157333, 0.048279426991939545, -0.15596747398376465, 0.07604553550481796, 0.10331887006759644, -0.11237578094005585, 0.1221778392791748, 0.07062260061502457, 0.04294503852725029, 0.041245825588703156, 0.08659712970256805, -0.20235317945480347, 0.021952863782644272, -0.004109754227101803, 0.03717762604355812, -0.031433865427970886, -0.01627776399254799, 0.06251468509435654, 0.20268797874450684, 0.012460281141102314, -0.02356506697833538, 0.11289533227682114, -0.0805281475186348, -0.08538379520177841, 0.0127765703946352, 0.07724694907665253, 0.10017817467451096, 0.10791998356580734, -0.053450461477041245, 0.07108955830335617, -0.09795493632555008, 0.07934757322072983, 0.12908633053302765, -0.23990662395954132, 0.013677777722477913, -0.0403871089220047, 0.033684443682432175, 0.03728888928890228, -0.05972660705447197, 0.06053023040294647, -0.015942981466650963, 0.03575063869357109, -0.08782581239938736, -0.07148696482181549, -0.12833064794540405, -0.052086006850004196, -0.07591349631547928, 0.011440528556704521, 0.12888115644454956, 0.03959029167890549, -0.0315159372985363, -0.15693606436252594, -0.05120839178562164, -0.02471713349223137, -0.022502297535538673, -0.10038173198699951, -0.07272698730230331, 0.019824577495455742, -0.06356300413608551, -0.12611980736255646, -0.12075492739677429, -0.0942031666636467, -0.16718311607837677, 0.12472180277109146, 0.0004694261006079614, 0.03752759099006653, -0.11830350011587143, 0.001967694377526641, -0.08019009977579117, -0.046081263571977615, 0.057322289794683456, -0.09542298316955566, -0.028094714507460594, 0.08012007921934128, -0.08459870517253876, -0.07090943306684494, 0.060862939804792404, -0.028188280761241913, 0.029231207445263863, 0.045685775578022, -0.044954996556043625, 0.048735447227954865, -0.014989478513598442, 0.10307812690734863, -0.08418971300125122, -0.0604565404355526, 0.01772986724972725, -0.1174621731042862, 0.01938118413090706, -0.03606406971812248, -0.1426275074481964, -0.10988609492778778, -0.027173858135938644, 0.040204547345638275, -0.034943800419569016, 0.00923403725028038, 0.039508156478405, -0.003604157827794552, 0.04889971762895584, -0.06150352582335472, 0.0017542274435982108, 0.003691878169775009, 0.02389851212501526, 0.15891823172569275, 0.012184793129563332, 0.08161909878253937, -0.13596346974372864, -0.09381865710020065, 0.012929845601320267, 0.016781482845544815, 0.061683233827352524, -0.049113161861896515, 0.017074447125196457, -0.09900366514921188, -0.00798400491476059, -0.1753016859292984, -0.017180582508444786, -0.02886425144970417, -0.13709168136119843, 0.027046699076890945, -0.021673480048775673, -0.08257502317428589, 0.015367825515568256, 0.0741504654288292, -0.08921381831169128, -0.017701059579849243, -0.040776681154966354, 0.03756995499134064, -0.0025833670515567064, 0.08980949223041534, -0.1899840086698532, 0.061948563903570175, -0.035010725259780884, -0.06324294954538345, -0.05311538651585579, 0.090950146317482, 0.011944590136408806, -0.042903102934360504, -0.0826491042971611, -0.0496830977499485, -0.11414632946252823, 0.08709497004747391, -0.0014256408903747797, 0.123141348361969, -0.22177371382713318, -0.07868006080389023, 0.19085510075092316, -0.08048512786626816, 0.08167474716901779, 0.19179244339466095, 0.054309140890836716, -0.05020446330308914, 0.14232182502746582, 0.28606635332107544, -0.02538960613310337, -0.15376128256320953, 0.03259844705462456, 0.08127561211585999, -0.09214512258768082, -0.021586596965789795, 0.028074856847524643, -0.05672202631831169, 0.0011471499456092715, 0.01958843134343624, 0.05907173454761505, 0.09864594787359238, 0.030699361115694046, -0.034822817891836166, -0.00217431434430182, -0.05768350139260292, 0.03525553643703461, 0.006397515069693327, -0.009642763063311577, -0.07022036612033844, -0.043151888996362686, 0.004825595300644636, 0.04103301465511322, -0.06780961155891418, 0.08989116549491882, -0.10917885601520538, 0.012285134755074978, 0.07501351088285446, -0.024801449850201607, -0.0899413526058197, 0.1353512704372406, -0.0787917971611023, 0.18947188556194305, 0.14523352682590485, 0.15877656638622284, 0.050190579146146774, -0.03575858846306801, -0.07159960269927979, 0.013835824094712734, 0.09128502011299133, 0.05970200151205063, -0.024644913151860237, -0.03298357501626015, 0.04217590019106865, -0.015105703845620155, 0.01674513705074787, 0.02420479990541935, -0.0329621247947216, 0.041980743408203125, 0.10359005630016327, -0.008226319216191769, -0.047818608582019806, 0.01515098474919796, 0.018307702615857124, 0.03320491313934326, 0.011091930791735649, 0.015706460922956467, -0.01871171034872532, -0.09965454787015915, 0.2502208352088928, -0.14694587886333466, 0.06734496355056763, 0.18908534944057465, -0.08081864565610886, 0.01578798145055771, 0.0383889339864254, 0.03348385915160179, -0.00438620476052165, 0.01986580155789852, -0.14676883816719055, 0.2726841866970062, -0.0447373129427433, 0.09032753109931946, -0.05565047636628151, 0.04969629645347595, 0.044440217316150665, -0.04084968939423561, -0.062823586165905, 0.02215474843978882, -0.03323816508054733, -0.11085200309753418, 0.031081732362508774, 0.05796064808964729, -0.004978572018444538, 0.1780756562948227, 0.019213326275348663, -0.030000826343894005, 0.03379034250974655, -0.09114130586385727, -0.10612823814153671, 0.03866996988654137, -0.22659187018871307, -0.07847849279642105, 0.04946613311767578, 0.04258624091744423, 0.08352365344762802, -0.09384702891111374, -0.007790004834532738, -0.027199048548936844, -0.08669140189886093, -0.13247185945510864, 0.048049651086330414, 0.00943605788052082, 0.07541892677545547, -0.059599243104457855, -0.08152469992637634, 0.00471216905862093, -0.03426878899335861, -0.13419537246227264, 0.020762305706739426, -0.17850996553897858, -0.2737117111682892, -0.14160533249378204, -0.07876215875148773, -0.004598134197294712, 0.08952527493238449, 0.08796034008264542, -0.12839344143867493, -0.024545229971408844, -0.007402479182928801, 0.1193234995007515, -0.04477379843592644, 0.0040434072725474834, -0.03770751878619194, -0.013094897381961346, -0.027916457504034042, -0.07453560829162598, -0.02197743020951748, -0.02962581068277359, 0.00961623527109623, -0.002962822327390313, -0.08762583136558533, 0.037267010658979416, 0.19114543497562408, 0.06001534312963486, 0.03199204057455063, -0.05155154690146446, 0.16688960790634155, -0.0395272821187973, 0.021711912006139755, 0.18993264436721802, -0.031368959695100784, 0.0030781482346355915, 0.18650342524051666, -0.03392563760280609, -0.02280464954674244, -0.001099614892154932, -0.0702207088470459, -0.05945666879415512, -0.12662085890769958, -0.1024136021733284, -0.05125480517745018, -0.051003120839595795, -0.045552950352430344, -0.006829528138041496, 0.05697245895862579, -0.045991118997335434, -0.05863812193274498, -0.11525877565145493, 0.02580896019935608, 0.008500941097736359, 0.18784089386463165, -0.06791457533836365, 0.09775932133197784, -0.017344240099191666, -0.09085673838853836, 0.0873369500041008, -0.05537071451544762, -0.06001618131995201, 0.0923151895403862, 0.07714230567216873, -0.04619748890399933, 0.14084824919700623, 0.09694273769855499, 0.05982833355665207, 0.03969486802816391, -0.050830986350774765, -0.03130253031849861, -0.02257111296057701, -0.057668451219797134, 0.06207072734832764, 0.26918309926986694, -0.07914174348115921, -0.0792756974697113, 0.00799920316785574, 0.0013442781055346131, 0.10969031602144241, 0.138183131814003, -0.13030888140201569, -0.004503692965954542, 0.04256999492645264, -0.13101333379745483, -0.10704990476369858, 0.11776673048734665, 0.2274450808763504, -0.10319638252258301, 0.06166393682360649, 0.13096244633197784, 0.03776298090815544, 0.06597127765417099, 0.08172578364610672, -0.1998559981584549, -0.07948852330446243, -0.0011112471111118793, 0.03741580992937088, -0.19279859960079193, 0.13928624987602234, -0.0023600775748491287, -0.007697524037212133, -0.06822055578231812, -0.018780894577503204, 0.03264157474040985, 0.01603785715997219, 0.13185402750968933, 0.03136793524026871, -0.17756323516368866, -0.016881590709090233, -0.08471286296844482, 0.014526650309562683, 0.10063490271568298, 0.10895538330078125, -0.03413751348853111, 0.004979867022484541, -0.04905045032501221, 0.044251278042793274, -0.023539084941148758, -0.15109439194202423, -0.08709771931171417, 0.023394497111439705, 0.2615053653717041, 0.015683822333812714, 0.03406902775168419, -0.02690115012228489, -0.16319619119167328, 0.08435280621051788, -0.11276844143867493, 0.00976686179637909, -0.06134449318051338, -0.08078568428754807, 0.1139925867319107, -0.05503444746136665, 0.03650977090001106, 0.04851718991994858, 0.07036108523607254, -0.05210677906870842, -0.054265547543764114, 0.11301557719707489, -0.0788513720035553, -0.0593133270740509, 0.0007709802011959255, 0.26062774658203125, 0.03403707966208458, 0.07879603654146194, 0.08707713335752487, -0.010471675544977188, -0.021020814776420593, -0.013298869132995605, 0.055479127913713455, 0.05831701681017876, -0.04123993590474129, 0.04208802059292793, 0.06405441462993622, -0.19454734027385712, -0.1241982951760292, -0.024637499824166298, 0.27205216884613037, 0.01452746894210577, -0.08431694656610489, 0.1345728039741516, 0.17689456045627594, 0.0018217053730040789, -0.2233911156654358, -0.11821939796209335, -0.048543062061071396, 0.08450032025575638, -0.029031474143266678, -0.01605072245001793, 0.07457633316516876, -0.078337661921978, 0.001055181841365993, -0.10036192089319229, -0.18262916803359985, -0.16597431898117065, 0.2078549563884735, -0.06865128874778748, 0.3151836693286896, 0.0350869745016098, -0.07936905324459076, -0.11668270826339722, -0.02323470264673233, 0.08434171974658966, -0.12688463926315308, 0.036582447588443756, 0.07258109003305435, 0.14684370160102844, 0.06386973708868027, 0.0054964483715593815, 0.08851641416549683, 0.04966883733868599, -0.05244774743914604, -0.06660149246454239, -0.08501435816287994, -0.0994436964392662, 0.014102289453148842, 0.07273613661527634, -0.013246376998722553, -0.029541175812482834, -0.07373238354921341, -0.05992181599140167, -0.13278870284557343, 0.06971152871847153, 0.0530979223549366, -0.0049888803623616695, -0.005609181243926287, -0.06509572267532349, -0.011165722273290157, 0.005066961515694857, -0.006699787452816963, -0.20739053189754486, 0.017640039324760437, 0.16613435745239258, 0.17496617138385773, -0.09820807725191116, 0.12056436389684677, -0.011781102046370506, -0.08967569470405579, 0.025895917788147926, 0.007152996491640806, 0.06885308772325516, 0.017530709505081177, 0.01628096215426922, 0.0695730671286583, 0.011976944282650948, -0.017515897750854492, 0.0053681484423577785, 0.0796675980091095, -0.05825744941830635, -0.08145111799240112, -0.07721032202243805, 0.021880529820919037, 0.11013481020927429, -0.023324985057115555, 0.15167009830474854, -0.024732233956456184, -0.008663385175168514, -0.05159711465239525, 0.02593391388654709, -0.11537247896194458, 0.09592557698488235, 0.07692214101552963, 0.004783818498253822, -0.15799857676029205, 0.06715761125087738, -0.029819387942552567, -0.08906905353069305, 0.05764607712626457, 0.028269635513424873, -0.06638486683368683, -0.07791607081890106, -0.0884598046541214, -0.0688706636428833, 0.025806410238146782, -0.14736399054527283, 0.013373801484704018, -0.16279424726963043, -0.0021703317761421204, 0.1442284733057022, 0.049189597368240356, 0.04206012189388275, -0.08329513669013977, -0.023226024582982063, -0.003212959738448262, -0.05385226011276245, 0.028171295300126076, 0.006407120730727911, -0.13739901781082153, 0.19863839447498322, 0.0020347286481410265, 0.0955888107419014, -0.07258515805006027, -0.04161502793431282, -0.04575292393565178, 0.0517549030482769, -0.12015679478645325, -0.007585738319903612, -0.07154645770788193, -0.02736891247332096, 0.028663136065006256, -0.0817452073097229, -0.019704896956682205, 0.006612313445657492, -0.07543665170669556, 0.06661004573106766, -0.0058892397210001945, -0.016638711094856262, -0.026503911241889, 0.052391521632671356, 0.05210869759321213, 0.00456935865804553, 0.11630202829837799, 0.1781679093837738, -0.11767091602087021, 0.1534203588962555, -0.15863153338432312, -0.15497466921806335, 0.1003924161195755, 0.057698868215084076, -0.031138036400079727, 0.03493327647447586, 0.0028549658600240946, 0.08504793047904968, 0.10449428111314774, -0.014056568033993244, 0.14578379690647125, -0.03191976621747017, 0.041379231959581375, -0.06275229901075363, -0.10388337075710297, -0.05029619112610817, -0.032474808394908905, 0.1623319536447525, 0.041594985872507095, 0.11361385881900787, -0.07902121543884277, 0.013752331957221031, 0.010140872560441494, 0.08451417833566666, -0.0630921944975853, -0.02185053378343582, 0.014776414260268211, -0.06507348269224167, 0.08009708672761917, 0.002086059655994177, 0.13764064013957977, -0.07992320507764816, 0.026690522208809853, -0.004106415901333094, -0.07136981189250946, -0.05460003763437271, -0.007500154431909323, 0.25884002447128296, 0.05065007135272026, -0.052111197263002396, -0.023514578118920326, -0.013498242013156414, 0.02287122793495655, 0.1920395791530609, 0.07400036603212357, 0.07288897782564163, 0.09148949384689331, 0.1837332844734192, 0.07261285930871964, -0.007114385720342398, -0.02177676185965538, -0.07493353635072708, -0.06198449432849884, -0.03318158537149429, -0.1290283352136612, 0.08828340470790863, 0.07924538105726242, -0.06459203362464905, 0.014070793986320496, 0.011421110481023788, -0.05087094381451607, -0.19119945168495178, -0.054616525769233704, -0.04635234922170639, -0.10484892874956131, -0.005681596230715513, -0.042151499539613724, 0.0445537194609642, -0.07850737869739532, 0.0426829494535923, -0.07402048259973526, 0.10597442090511322, -0.14746280014514923, -0.16013051569461823, 0.13094592094421387, -0.013188538141548634, 0.0812285915017128, 0.04202054440975189, -0.00583646958693862, 0.09556573629379272, 0.010457459837198257, 0.060358379036188126, 0.01558183878660202, -0.07447243481874466, -0.04384581744670868, -0.11619535088539124, -0.04435453936457634, -0.0573093518614769, -0.0021976062562316656, 0.062138330191373825, 0.17474821209907532, 0.13258250057697296, -0.06290457397699356, -0.04809468239545822, 0.11365055292844772, -0.11866423487663269, -0.17004181444644928, -0.057602349668741226, 0.11627743393182755, 0.016210483387112617, 0.10057829320430756, -0.09534923732280731, -0.0342693068087101, -0.03773246705532074, 0.21554049849510193, 0.22325538098812103, -0.06913655251264572, 0.05530896782875061, 0.015520493499934673, 0.032190192490816116, -0.0400882326066494, 0.08931975066661835, 0.11340077966451645, 0.17963333427906036, 0.027028704062104225, -0.034610357135534286, -0.01598816178739071, -0.07007168233394623, -0.1090342178940773, 0.053736526519060135, -0.07369066029787064, -0.12151221185922623, 0.02224363572895527, 0.09143383800983429, -0.154572993516922, -0.013430098071694374, -0.1523904651403427, -0.06595253199338913, -0.01649973914027214, 0.07074502855539322, -0.004103425424546003, 0.15010851621627808, 0.03713103383779526, -0.023021474480628967, 0.02530396170914173, 0.0987110286951065, 0.027991725131869316, -0.15065760910511017, 0.06264343112707138, 0.018702473491430283, -0.09741413593292236, -0.012495694682002068, 0.006989197339862585, 0.18539570271968842, 0.0038512595929205418, 0.12258986383676529, 0.0408114530146122, 0.18016761541366577, -0.0033004041761159897, -0.03764114901423454, 0.03430525213479996, 0.23833321034908295, -0.03463900089263916, 0.028074530884623528, 0.022679366171360016, -0.1107301265001297, 0.060994166880846024, 0.023763487115502357, -0.0474449060857296, -0.06523116677999496, 0.0805073007941246, -0.0831090658903122, 0.1005234494805336, -0.0030698201153427362, -0.012334002181887627, -0.02095867320895195, 0.003207697533071041, -0.0552673414349556, -0.027369942516088486, -0.028127942234277725, -0.058482542634010315, -0.14772900938987732, -0.04470589756965637, -0.031209390610456467, 0.03699100390076637, -0.1493278592824936, -0.010332046076655388, -0.09100224077701569, -0.04242437705397606, -0.029289960861206055, 0.08781439065933228, 0.03553963825106621, -0.011079970747232437, 0.03688943386077881, -0.006441221572458744, 0.1050155982375145, 0.15083077549934387, -0.1545197069644928, -0.07927501946687698 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-distilled-clinc This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the clinc_oos dataset. It achieves the following results on the evaluation set: - Loss: 0.1002 - Accuracy: 0.9406 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 48 - eval_batch_size: 48 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.9039 | 1.0 | 318 | 0.5777 | 0.7335 | | 0.4486 | 2.0 | 636 | 0.2860 | 0.8768 | | 0.2528 | 3.0 | 954 | 0.1792 | 0.9210 | | 0.176 | 4.0 | 1272 | 0.1398 | 0.9274 | | 0.1417 | 5.0 | 1590 | 0.1209 | 0.9329 | | 0.1245 | 6.0 | 1908 | 0.1110 | 0.94 | | 0.1135 | 7.0 | 2226 | 0.1061 | 0.9390 | | 0.1074 | 8.0 | 2544 | 0.1026 | 0.94 | | 0.1032 | 9.0 | 2862 | 0.1006 | 0.9410 | | 0.1017 | 10.0 | 3180 | 0.1002 | 0.9406 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.16.1 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["clinc_oos"], "metrics": ["accuracy"], "model-index": [{"name": "distilbert-base-uncased-distilled-clinc", "results": [{"task": {"type": "text-classification", "name": "Text Classification"}, "dataset": {"name": "clinc_oos", "type": "clinc_oos", "args": "plus"}, "metrics": [{"type": "accuracy", "value": 0.9406451612903226, "name": "Accuracy"}]}]}]}
text-classification
frahman/distilbert-base-uncased-distilled-clinc
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "dataset:clinc_oos", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #distilbert #text-classification #generated_from_trainer #dataset-clinc_oos #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us
distilbert-base-uncased-distilled-clinc ======================================= This model is a fine-tuned version of distilbert-base-uncased on the clinc\_oos dataset. It achieves the following results on the evaluation set: * Loss: 0.1002 * Accuracy: 0.9406 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 48 * eval\_batch\_size: 48 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 10 ### Training results ### Framework versions * Transformers 4.11.3 * Pytorch 1.10.0+cu111 * Datasets 1.16.1 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 48\n* eval\\_batch\\_size: 48\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 10", "### Training results", "### Framework versions\n\n\n* Transformers 4.11.3\n* Pytorch 1.10.0+cu111\n* Datasets 1.16.1\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #distilbert #text-classification #generated_from_trainer #dataset-clinc_oos #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 48\n* eval\\_batch\\_size: 48\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 10", "### Training results", "### Framework versions\n\n\n* Transformers 4.11.3\n* Pytorch 1.10.0+cu111\n* Datasets 1.16.1\n* Tokenizers 0.10.3" ]
[ 66, 98, 4, 33 ]
[ "passage: TAGS\n#transformers #pytorch #distilbert #text-classification #generated_from_trainer #dataset-clinc_oos #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 48\n* eval\\_batch\\_size: 48\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 10### Training results### Framework versions\n\n\n* Transformers 4.11.3\n* Pytorch 1.10.0+cu111\n* Datasets 1.16.1\n* Tokenizers 0.10.3" ]
[ -0.10298602283000946, 0.0936116948723793, -0.0017803153023123741, 0.12322583049535751, 0.16730628907680511, 0.032303694635629654, 0.1258230209350586, 0.11928348243236542, -0.093723364174366, 0.014442668296396732, 0.10600849986076355, 0.1628611832857132, 0.03100098855793476, 0.11136790364980698, -0.0793372169137001, -0.23763452470302582, 0.0016744418535381556, 0.03456404060125351, -0.07830709218978882, 0.12701138854026794, 0.0956013947725296, -0.11169654130935669, 0.1001439094543457, 0.0040133255533874035, -0.17442333698272705, 0.011044579558074474, 0.0033396484795957804, -0.06465655565261841, 0.1211831197142601, 0.03882579505443573, 0.10505920648574829, 0.01174294762313366, 0.0921161100268364, -0.20474481582641602, 0.006420011632144451, 0.043755535036325455, -0.013499402441084385, 0.07362627983093262, 0.033121708780527115, 0.0066862269304692745, 0.14682817459106445, -0.09652557969093323, 0.05552159994840622, 0.025918420404195786, -0.12181030958890915, -0.20245225727558136, -0.0726129412651062, 0.02761700190603733, 0.08521518111228943, 0.13120588660240173, -0.0006502009346149862, 0.12667371332645416, -0.12272945046424866, 0.08478139340877533, 0.20384861528873444, -0.2428240031003952, -0.06212131306529045, 0.022784454748034477, 0.008902602829039097, 0.06138220429420471, -0.10991407185792923, -0.0549590140581131, 0.043687377125024796, 0.03517824411392212, 0.09619508683681488, -0.04029880091547966, -0.09342636913061142, 0.024854406714439392, -0.13552436232566833, -0.034437667578458786, 0.18900498747825623, 0.07028861343860626, -0.039256080985069275, -0.02224799618124962, -0.05365831032395363, -0.16626399755477905, -0.028917204588651657, 0.002509396057575941, 0.07238658517599106, -0.021726340055465698, -0.027514269575476646, 0.01726318895816803, -0.10760048776865005, -0.04804148152470589, -0.09390447288751602, 0.1362609714269638, 0.02553071640431881, 0.008230040781199932, -0.021561134606599808, 0.10045790672302246, 0.02705783024430275, -0.1166052594780922, -0.003361590439453721, 0.04036872833967209, 0.013075998984277248, -0.039026785641908646, -0.06096262484788895, -0.013045825064182281, 0.0348137691617012, 0.10994710773229599, -0.031139293685555458, 0.027166329324245453, 0.03916548192501068, 0.03510700538754463, -0.07804867625236511, 0.1969873458147049, -0.020094163715839386, -0.017116088420152664, 0.014321507886052132, 0.04854895547032356, 0.007513089571148157, -0.007673881947994232, -0.11655353009700775, 0.014676876366138458, 0.07168319821357727, -0.002669834764674306, -0.06278742849826813, 0.06344693154096603, -0.07264594733715057, -0.028890548273921013, -0.012892531231045723, -0.10267890244722366, 0.04400226101279259, 0.0073076337575912476, -0.08778726309537888, -0.01188344694674015, 0.03636954352259636, 0.03862844407558441, -0.032039351761341095, 0.08861706405878067, -0.08735495060682297, 0.03410860151052475, -0.09118612110614777, -0.08543796092271805, 0.006018368061631918, -0.0922238826751709, 0.042650800198316574, -0.09875689446926117, -0.175653874874115, -0.042660411447286606, 0.05322756990790367, -0.004182780161499977, -0.07873962819576263, -0.09388557076454163, -0.07029788196086884, 0.010030477307736874, -0.004203357268124819, 0.1119023859500885, -0.07247408479452133, 0.09243595600128174, 0.029242541640996933, 0.04272792488336563, -0.07700188457965851, 0.061874162405729294, -0.13032713532447815, 0.005229616537690163, -0.10500757396221161, 0.03549899160861969, -0.027279991656541824, 0.07824206352233887, -0.061341505497694016, -0.09884161502122879, 0.02766338735818863, 0.010274764150381088, 0.04531451314687729, 0.09538470208644867, -0.15884332358837128, -0.07336313277482986, 0.12379952520132065, -0.058407627046108246, -0.12180807441473007, 0.1056397408246994, -0.05552171170711517, 0.03812194988131523, 0.05760516598820686, 0.1486392617225647, 0.07313067466020584, -0.06315422803163528, 0.008485209196805954, -0.0064013744704425335, 0.06647675484418869, -0.06886639446020126, 0.09708990901708603, 0.003003083635121584, 0.0005086534656584263, 0.03250123932957649, -0.03798077628016472, 0.042421504855155945, -0.08114225417375565, -0.10735619068145752, -0.04463204741477966, -0.08423113822937012, 0.011785988695919514, 0.0749039277434349, 0.06402070820331573, -0.10514145344495773, -0.07220641523599625, 0.03635918349027634, 0.10566021502017975, -0.05543484538793564, 0.016005322337150574, -0.06547383219003677, 0.06339868903160095, -0.03849520906805992, -0.01844293437898159, -0.16638024151325226, -0.007570343557745218, 0.0033670959528535604, 0.02027692086994648, 0.0162432212382555, 0.039133407175540924, 0.05906200781464577, 0.06338575482368469, -0.03169798478484154, -0.032617948949337006, -0.043373897671699524, -0.000649692548904568, -0.11194849014282227, -0.19749031960964203, -0.017597880214452744, -0.015011940151453018, 0.17722457647323608, -0.2298988699913025, 0.041546016931533813, -0.015191820450127125, 0.06634164601564407, 0.010792525485157967, -0.0028881023172289133, -0.05439981445670128, 0.08650728315114975, -0.05053959786891937, -0.05551561340689659, 0.06689247488975525, 0.012157293036580086, -0.09059960395097733, -0.07281935214996338, -0.08280492573976517, 0.19587723910808563, 0.14033664762973785, -0.10211077332496643, -0.049575090408325195, -0.007145978510379791, -0.07765401899814606, -0.027571743354201317, -0.04648571461439133, 0.055079150944948196, 0.21270982921123505, -0.03153412789106369, 0.1270751655101776, -0.06290597468614578, -0.02386980876326561, 0.019777312874794006, -0.04455385357141495, 0.016203701496124268, 0.1395273357629776, 0.13734093308448792, -0.09296043962240219, 0.16281536221504211, 0.14898428320884705, -0.07541520148515701, 0.12155824154615402, -0.05029022693634033, -0.06366163492202759, -0.021874364465475082, -0.032824061810970306, -0.012957029975950718, 0.08895334601402283, -0.16942445933818817, 0.009842775762081146, 0.01950479857623577, 0.016853220760822296, 0.01800270937383175, -0.21932974457740784, -0.039831072092056274, 0.051513925194740295, -0.032819364219903946, -0.039936941117048264, -0.03227505087852478, 0.005330661777406931, 0.09744051098823547, -0.008490091189742088, -0.10379251837730408, 0.053981468081474304, 0.005895810667425394, -0.07774016261100769, 0.21315181255340576, -0.0882379561662674, -0.15205112099647522, -0.129399836063385, -0.06438665091991425, -0.0702059417963028, 0.01750035397708416, 0.07067225128412247, -0.08145100623369217, -0.03336096182465553, -0.08311358839273453, 0.028617212548851967, 0.013217365369200706, 0.03403886407613754, 0.025410961359739304, 0.01990325376391411, 0.06721806526184082, -0.09745994955301285, -0.03497318923473358, -0.045060161501169205, -0.07893629372119904, 0.037627529352903366, 0.022803962230682373, 0.12614133954048157, 0.12738600373268127, -0.011082978919148445, 0.00019088607223238796, -0.0072789909318089485, 0.20322294533252716, -0.06589943915605545, -0.051397912204265594, 0.133393794298172, 0.0038997416850179434, 0.03111334703862667, 0.1095438227057457, 0.05500226467847824, -0.08937662839889526, 0.006314810831099749, 0.03751062601804733, -0.017247941344976425, -0.22981463372707367, -0.04477906972169876, -0.060792434960603714, -0.018156591802835464, 0.08971293270587921, 0.03335386514663696, 0.04578132927417755, 0.06938525289297104, 0.04673835635185242, 0.1034373790025711, -0.039864681661129, 0.04308994114398956, 0.1095358207821846, 0.054192814975976944, 0.10346703231334686, -0.03318067267537117, -0.05640838295221329, 0.050597548484802246, -0.028632700443267822, 0.21053875982761383, 0.01845061033964157, 0.12227264791727066, 0.05038699135184288, 0.15835238993167877, -0.02258273959159851, 0.06921510398387909, 0.02421163208782673, -0.028028147295117378, -0.016106123104691505, -0.029792869463562965, -0.04689078405499458, 0.036374013870954514, -0.049606069922447205, 0.08981844037771225, -0.1576240360736847, 0.02593771182000637, 0.05364174768328667, 0.258302241563797, 0.015257883816957474, -0.33788585662841797, -0.08644226938486099, 0.011518861167132854, -0.03746715188026428, -0.02975424937903881, 0.041509803384542465, 0.0751931294798851, -0.09221857786178589, 0.012698681093752384, -0.03568531945347786, 0.10094287246465683, -0.061023931950330734, 0.04681316763162613, 0.07545378804206848, 0.0885550007224083, 0.01159582193940878, 0.0994025245308876, -0.3141471743583679, 0.26151999831199646, -0.010453300550580025, 0.07843506336212158, -0.07926253974437714, 0.0057078818790614605, 0.03265616297721863, 0.08644179254770279, 0.07648514211177826, -0.009434754960238934, -0.03086818940937519, -0.19209745526313782, -0.07241644710302353, 0.04276241362094879, 0.05255803465843201, -0.07648136466741562, 0.09075095504522324, -0.03673875331878662, 0.009453789331018925, 0.06239558011293411, 0.0012146845692768693, -0.043528664857149124, -0.09631864726543427, -0.00963673833757639, 0.04548186436295509, -0.017594479024410248, -0.07105179876089096, -0.10304250568151474, -0.10234382003545761, 0.1556396335363388, -0.01915273442864418, -0.020221693441271782, -0.11410728842020035, 0.08659050613641739, 0.06315788626670837, -0.08655856549739838, 0.01442986074835062, 0.024213828146457672, 0.05770028382539749, 0.04786995053291321, -0.0770956352353096, 0.11597698926925659, -0.06425213068723679, -0.1646256297826767, -0.0644398182630539, 0.09951288253068924, 0.032568637281656265, 0.06983382999897003, -0.013902523554861546, 0.0033629892859607935, -0.04702913016080856, -0.07883195579051971, 0.015051117166876793, 0.035985078662633896, 0.09353446215391159, 0.044471919536590576, -0.05344726890325546, -0.0009670148137956858, -0.07199294120073318, -0.0470084547996521, 0.18123352527618408, 0.2266385555267334, -0.07554958760738373, 0.01891341619193554, 0.0028050506953150034, -0.08630651980638504, -0.16481241583824158, 0.03842661529779434, 0.04366251453757286, 0.029478810727596283, 0.017291324213147163, -0.16419845819473267, 0.138961061835289, 0.12321484088897705, -0.0027562191244214773, 0.11015812307596207, -0.3242758810520172, -0.11444602161645889, 0.14749126136302948, 0.1345401108264923, 0.1512756049633026, -0.14488448202610016, 0.0014585176249966025, -0.04047879949212074, -0.14271971583366394, 0.11683481186628342, -0.07801985740661621, 0.11334702372550964, -0.04131252318620682, 0.07443404197692871, 0.009478808380663395, -0.04760812595486641, 0.13551470637321472, 0.028334088623523712, 0.10115806758403778, -0.08498327434062958, -0.03786328434944153, 0.013958161696791649, -0.028939129784703255, 0.011645945720374584, -0.09216254204511642, 0.027953006327152252, -0.1298087239265442, -0.032056283205747604, -0.06107447296380997, 0.03780921921133995, -0.04086410999298096, -0.056342415511608124, -0.0236771572381258, 0.026879576966166496, 0.07297918200492859, -0.001281819073483348, 0.1503705531358719, 0.022496400400996208, 0.12025827169418335, 0.0635240375995636, 0.07417108863592148, -0.05700546130537987, -0.06575824320316315, -0.029528088867664337, 0.0019881397020071745, 0.0511946827173233, -0.1328621804714203, 0.020013239234685898, 0.1550944298505783, 0.008573168888688087, 0.1612219214439392, 0.08959326148033142, 0.006522428244352341, -0.0005765299429185688, 0.05101696774363518, -0.15345259010791779, -0.06185717508196831, -0.027848336845636368, -0.06143587827682495, -0.11346770077943802, 0.043452754616737366, 0.09380951523780823, -0.075286366045475, -0.006681890692561865, -0.015070907771587372, 0.038875337690114975, -0.08523494005203247, 0.16936060786247253, 0.04190649837255478, 0.04617740213871002, -0.09714314341545105, 0.07683220505714417, 0.06876462697982788, -0.07611428946256638, 0.0023718292359262705, 0.05137554928660393, -0.07160650193691254, -0.050269097089767456, 0.10077059268951416, 0.2059623897075653, -0.04374299570918083, -0.06779109686613083, -0.1559116542339325, -0.13950663805007935, 0.089389368891716, 0.12962520122528076, 0.11778785288333893, 0.022906765341758728, -0.05316908285021782, -0.01963420771062374, -0.126806378364563, 0.06259917467832565, 0.03416411578655243, 0.05815419554710388, -0.14258991181850433, 0.11501561105251312, -0.014063358306884766, 0.03464238718152046, -0.007479595951735973, 0.02514042891561985, -0.1177300438284874, 0.007586360443383455, -0.09311024844646454, -0.015430541709065437, -0.02596450038254261, 0.028601789847016335, 0.015201945789158344, -0.07095874100923538, -0.05811428651213646, 0.02013341337442398, -0.11242084950208664, -0.030735962092876434, 0.03764829784631729, 0.08091763406991959, -0.09356757253408432, -0.0515824630856514, 0.02212637849152088, -0.06880900263786316, 0.05704236775636673, 0.07544756680727005, 0.017933446913957596, 0.031390801072120667, -0.15853476524353027, 0.02637597732245922, 0.06561989337205887, 0.031375546008348465, 0.0694473460316658, -0.098435178399086, -0.004433921538293362, 0.027995577082037926, 0.025416191667318344, 0.011931747198104858, 0.07774773240089417, -0.1374424695968628, -0.021888192743062973, -0.02388630621135235, -0.10115671157836914, -0.06021936610341072, 0.013638375326991081, 0.1085866242647171, 0.013760820031166077, 0.21376755833625793, -0.0597091019153595, 0.05391622707247734, -0.2056708186864853, 0.0016630471218377352, -0.004623510874807835, -0.09527082741260529, -0.10502812266349792, -0.08397959917783737, 0.0639936625957489, -0.04815778136253357, 0.13339929282665253, 0.040906038135290146, 0.0673869401216507, 0.016301199793815613, -0.030074896290898323, 0.03908665478229523, 0.026222210377454758, 0.20615467429161072, 0.04403548315167427, -0.03790371119976044, 0.08927828818559647, 0.02573898434638977, 0.118592269718647, 0.11864400655031204, 0.1875186413526535, 0.1377204954624176, -0.0008404729305766523, 0.11136798560619354, 0.03720562160015106, -0.060500651597976685, -0.14073540270328522, 0.04316483065485954, -0.03435913473367691, 0.09634153544902802, -0.0317775197327137, 0.19510799646377563, 0.04489661380648613, -0.16760694980621338, 0.029136236757040024, -0.06188299134373665, -0.08261485397815704, -0.11048845201730728, -0.03800668939948082, -0.09713015705347061, -0.14494848251342773, 0.0003100902249570936, -0.11677528917789459, 0.007235642056912184, 0.09982354193925858, -0.0024140598252415657, -0.026102237403392792, 0.14598463475704193, 0.0068775140680372715, 0.03249939903616905, 0.05621281638741493, -0.014729556627571583, -0.0430312380194664, -0.13371782004833221, -0.08238853514194489, -0.017073504626750946, -0.03639453649520874, 0.032028138637542725, -0.06541641801595688, -0.04040012136101723, 0.04472396522760391, -0.03134704753756523, -0.0907093733549118, 0.012133382260799408, -0.005873001180589199, 0.050559066236019135, 0.05044887959957123, 0.028542742133140564, 0.024025190621614456, 0.01272081770002842, 0.21484223008155823, -0.0725071057677269, -0.07125603407621384, -0.11105325073003769, 0.2130921483039856, 0.05385193973779678, -0.030104324221611023, 0.04529859125614166, -0.06887105852365494, 0.0005880501703359187, 0.2289145141839981, 0.1852053552865982, -0.0744706243276596, -0.011441272683441639, 0.00923999398946762, -0.010384936816990376, -0.029345311224460602, 0.09805624932050705, 0.13891935348510742, 0.0271829292178154, -0.08790023624897003, -0.05726407468318939, -0.05248677358031273, -0.0008305873489007354, -0.021932968869805336, 0.05907145515084267, 0.0322013758122921, 0.009608564898371696, -0.019388215616345406, 0.039307691156864166, -0.06209375709295273, -0.08568491041660309, 0.0874485969543457, -0.20742188394069672, -0.15411995351314545, -0.033191874623298645, 0.10661058127880096, 0.014529915526509285, 0.06584382057189941, -0.026698563247919083, -0.021806690841913223, 0.09246328473091125, -0.015523300506174564, -0.10510675609111786, -0.06997039169073105, 0.08734412491321564, -0.10388519614934921, 0.21131259202957153, -0.04739980399608612, 0.07282149791717529, 0.1170913428068161, 0.07857798784971237, -0.07015928626060486, 0.07072966545820236, 0.030103713274002075, -0.049013420939445496, 0.0458015613257885, 0.05585832893848419, -0.04719966650009155, 0.0736762061715126, 0.04635273292660713, -0.11783827096223831, 0.023349976167082787, -0.07157745212316513, -0.051054131239652634, -0.025726553052663803, -0.03270110860466957, -0.07693662494421005, 0.12710465490818024, 0.2150527834892273, -0.029755033552646637, -0.008419463410973549, -0.0696333646774292, 0.04562241584062576, 0.03960258513689041, 0.009800394997000694, -0.058957669883966446, -0.1941453367471695, 0.005374600645154715, 0.03984735906124115, -0.0168303269892931, -0.22689634561538696, -0.09077540785074234, -0.0006080748280510306, -0.09394214302301407, -0.104499951004982, 0.05207386985421181, 0.0879991203546524, 0.04261472076177597, -0.0779218003153801, -0.06012073904275894, -0.0669032484292984, 0.15427832305431366, -0.1297416388988495, -0.09255388379096985 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-clinc This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the clinc_oos dataset. It achieves the following results on the evaluation set: - Loss: 0.7703 - Accuracy: 0.9187 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 48 - eval_batch_size: 48 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 4.2896 | 1.0 | 318 | 3.2887 | 0.7419 | | 2.6309 | 2.0 | 636 | 1.8797 | 0.8310 | | 1.5443 | 3.0 | 954 | 1.1537 | 0.8974 | | 1.0097 | 4.0 | 1272 | 0.8560 | 0.9135 | | 0.7918 | 5.0 | 1590 | 0.7703 | 0.9187 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.16.1 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["clinc_oos"], "metrics": ["accuracy"], "model-index": [{"name": "distilbert-base-uncased-finetuned-clinc", "results": [{"task": {"type": "text-classification", "name": "Text Classification"}, "dataset": {"name": "clinc_oos", "type": "clinc_oos", "args": "plus"}, "metrics": [{"type": "accuracy", "value": 0.9187096774193548, "name": "Accuracy"}]}]}]}
text-classification
frahman/distilbert-base-uncased-finetuned-clinc
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:clinc_oos", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #dataset-clinc_oos #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us
distilbert-base-uncased-finetuned-clinc ======================================= This model is a fine-tuned version of distilbert-base-uncased on the clinc\_oos dataset. It achieves the following results on the evaluation set: * Loss: 0.7703 * Accuracy: 0.9187 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 48 * eval\_batch\_size: 48 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 5 ### Training results ### Framework versions * Transformers 4.11.3 * Pytorch 1.10.0+cu111 * Datasets 1.16.1 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 48\n* eval\\_batch\\_size: 48\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.11.3\n* Pytorch 1.10.0+cu111\n* Datasets 1.16.1\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #dataset-clinc_oos #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 48\n* eval\\_batch\\_size: 48\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.11.3\n* Pytorch 1.10.0+cu111\n* Datasets 1.16.1\n* Tokenizers 0.10.3" ]
[ 70, 98, 4, 33 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #dataset-clinc_oos #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 48\n* eval\\_batch\\_size: 48\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5### Training results### Framework versions\n\n\n* Transformers 4.11.3\n* Pytorch 1.10.0+cu111\n* Datasets 1.16.1\n* Tokenizers 0.10.3" ]
[ -0.09811203926801682, 0.08608308434486389, -0.002551027573645115, 0.12844321131706238, 0.15504604578018188, 0.03048267960548401, 0.13327725231647491, 0.11747828871011734, -0.071298748254776, 0.0252614114433527, 0.10373243689537048, 0.1563369780778885, 0.03534480929374695, 0.11434014141559601, -0.07988443225622177, -0.23721778392791748, -0.005442212335765362, 0.041689176112413406, -0.06611212342977524, 0.12845593690872192, 0.0969274491071701, -0.11190713196992874, 0.09615344554185867, -0.0013395370915532112, -0.1605018824338913, 0.0020873125176876783, 0.001814398798160255, -0.06257230788469315, 0.12180325388908386, 0.026638394221663475, 0.10465480387210846, 0.01214112900197506, 0.08122013509273529, -0.19447045028209686, 0.00793277844786644, 0.043328892439603806, -0.014779831282794476, 0.0805925503373146, 0.03413470834493637, 0.004777634982019663, 0.11853519082069397, -0.09102171659469604, 0.05390913411974907, 0.018525129184126854, -0.12201062589883804, -0.20941151678562164, -0.06572508066892624, 0.02461867593228817, 0.07483234256505966, 0.11344844847917557, -0.003915324807167053, 0.1299794465303421, -0.10398267954587936, 0.0903097614645958, 0.21194246411323547, -0.25531458854675293, -0.0645131766796112, 0.045045170933008194, 0.02605941705405712, 0.07845694571733475, -0.107094407081604, -0.0509619414806366, 0.03754692152142525, 0.041029829531908035, 0.11589782685041428, -0.03674282878637314, -0.07520453631877899, 0.01834164187312126, -0.13767747581005096, -0.037324316799640656, 0.18560640513896942, 0.0660133883357048, -0.0348791740834713, -0.027589602395892143, -0.06062246859073639, -0.16182515025138855, -0.02835114859044552, -0.0009606840321794152, 0.07184506207704544, -0.02384011261165142, -0.040256135165691376, 0.0023242244496941566, -0.10652372241020203, -0.045770835131406784, -0.08880886435508728, 0.13360145688056946, 0.024148305878043175, 0.008758109994232655, -0.022093556821346283, 0.10477248579263687, 0.00218040868639946, -0.12016036361455917, 0.0049554104916751385, 0.042941976338624954, 0.02025587111711502, -0.034995656460523605, -0.06230083107948303, -0.036499954760074615, 0.029332559555768967, 0.11016391217708588, -0.03561430796980858, 0.030037255957722664, 0.03233504295349121, 0.047231193631887436, -0.07549288868904114, 0.18891564011573792, -0.017335593700408936, -0.018325502052903175, 0.010209894739091396, 0.06440714746713638, 0.012365670874714851, -0.01662580668926239, -0.1193610280752182, 0.024157745763659477, 0.09093932062387466, -0.005316938739269972, -0.05541372671723366, 0.0589836984872818, -0.07920457422733307, -0.029474491253495216, -0.022526277229189873, -0.10521167516708374, 0.04317453131079674, 0.0033548648934811354, -0.08904888480901718, -0.01695077493786812, 0.030897876247763634, 0.03303199261426926, -0.03335513547062874, 0.10018958896398544, -0.09131026268005371, 0.03261830285191536, -0.0873144343495369, -0.08761836588382721, 0.00829138234257698, -0.10555386543273926, 0.03261052817106247, -0.09432145208120346, -0.17562367022037506, -0.0388181246817112, 0.061277296394109726, -0.008256766013801098, -0.07167334109544754, -0.08499955385923386, -0.06831611692905426, 0.005207978654652834, -0.00482959346845746, 0.10265039652585983, -0.06771441549062729, 0.10266588628292084, 0.030920663848519325, 0.047957587987184525, -0.07632109522819519, 0.0599539652466774, -0.1298713982105255, 0.015219008550047874, -0.11597193032503128, 0.035435888916254044, -0.02862509898841381, 0.06810245662927628, -0.05826346203684807, -0.10112792253494263, 0.01400961633771658, 0.0010734895477071404, 0.048498012125492096, 0.08458477258682251, -0.16610728204250336, -0.07589338719844818, 0.13462790846824646, -0.056207019835710526, -0.12029927968978882, 0.1192726194858551, -0.0570540726184845, 0.037041161209344864, 0.05847034230828285, 0.172673761844635, 0.06421326100826263, -0.06795461475849152, 0.008724065497517586, -0.009139935486018658, 0.07014667242765427, -0.05909450724720955, 0.09402737766504288, 0.00929695088416338, 0.015084205195307732, 0.031077036634087563, -0.03771510347723961, 0.03100784309208393, -0.08194104582071304, -0.10351020097732544, -0.04387316480278969, -0.08601939678192139, 0.024820972234010696, 0.07093410193920135, 0.061728667467832565, -0.10576673597097397, -0.06975202262401581, 0.02929023467004299, 0.09109294414520264, -0.0585884153842926, 0.01950855366885662, -0.06724370270967484, 0.08279251307249069, -0.03747764229774475, -0.014293662272393703, -0.16982409358024597, -0.009226434864103794, 0.012746002525091171, 0.010311475954949856, 0.028528612107038498, 0.04334951192140579, 0.06283318996429443, 0.06523322314023972, -0.03442441299557686, -0.025150248780846596, -0.04228455200791359, -0.0032002136576920748, -0.11196760088205338, -0.18919549882411957, -0.024559559300541878, -0.016969380900263786, 0.16849812865257263, -0.22276614606380463, 0.04885285720229149, -0.006590080913156271, 0.07995016872882843, 0.01713397167623043, -0.010426712222397327, -0.053728941828012466, 0.08250743895769119, -0.04441018030047417, -0.05333578959107399, 0.07048927992582321, 0.014920336194336414, -0.09438377618789673, -0.0814751461148262, -0.10363408178091049, 0.19949236512184143, 0.1391698569059372, -0.10647056251764297, -0.04793224111199379, -0.010410015471279621, -0.07419056445360184, -0.026657648384571075, -0.04940832778811455, 0.036860279738903046, 0.2013724446296692, -0.019399847835302353, 0.13122083246707916, -0.07422278821468353, -0.028621505945920944, 0.022682705894112587, -0.04821133613586426, 0.010056255385279655, 0.13739031553268433, 0.11825203150510788, -0.09098775684833527, 0.16083745658397675, 0.16138717532157898, -0.07557837665081024, 0.12570500373840332, -0.04497029259800911, -0.05785290151834488, -0.03122868202626705, -0.026210960000753403, -0.011452396400272846, 0.09254057705402374, -0.1617252677679062, 0.011551409028470516, 0.018493587151169777, 0.01375551801174879, 0.017649391666054726, -0.22084257006645203, -0.03539430350065231, 0.04897051677107811, -0.032774731516838074, -0.0289805568754673, -0.02564150094985962, 0.00909343734383583, 0.09926425665616989, -0.009748658165335655, -0.10705545544624329, 0.056879542768001556, 0.003907452803105116, -0.06956291943788528, 0.2048294097185135, -0.08061234652996063, -0.16607993841171265, -0.12652388215065002, -0.06184818595647812, -0.07123022526502609, 0.015167023055255413, 0.06665205955505371, -0.06523320078849792, -0.030189337208867073, -0.0864475816488266, 0.020484711974859238, 0.007749175187200308, 0.02754146419465542, 0.029722154140472412, 0.012807228602468967, 0.07043701410293579, -0.09931224584579468, -0.03450537845492363, -0.045554276555776596, -0.06930480152368546, 0.040437936782836914, 0.026699434965848923, 0.11950927972793579, 0.12556590139865875, -0.018834564834833145, 0.0030272933654487133, -0.005542838014662266, 0.21236412227153778, -0.06328430026769638, -0.04219508543610573, 0.12934260070323944, -0.007860435172915459, 0.04739636182785034, 0.10698873549699783, 0.06283926963806152, -0.08730494976043701, 0.00047542763059027493, 0.03395018354058266, -0.02865396812558174, -0.22776123881340027, -0.041540421545505524, -0.06162577122449875, 0.0012848101323470473, 0.09177254885435104, 0.033259689807891846, 0.04745187982916832, 0.06746121495962143, 0.04902734234929085, 0.10658854991197586, -0.03105458803474903, 0.04726768285036087, 0.12192653119564056, 0.05059005320072174, 0.10505862534046173, -0.021695485338568687, -0.059296391904354095, 0.04825706407427788, -0.011788883246481419, 0.20395737886428833, 0.018225016072392464, 0.1294020563364029, 0.043853819370269775, 0.16076280176639557, -0.025471610948443413, 0.06833416223526001, 0.006624696310609579, -0.01812121644616127, -0.020943863317370415, -0.0305444598197937, -0.04258941486477852, 0.03026634082198143, -0.03655996546149254, 0.07626659423112869, -0.1399221122264862, 0.015653979033231735, 0.054544467478990555, 0.2394961267709732, 0.010807636193931103, -0.3375359773635864, -0.08085013180971146, 0.01053625252097845, -0.036543551832437515, -0.02747284807264805, 0.04055850952863693, 0.0846358984708786, -0.08725415915250778, 0.01715536043047905, -0.04795888438820839, 0.10083719342947006, -0.06707213819026947, 0.05108017474412918, 0.07081884145736694, 0.09474235773086548, 0.012778612785041332, 0.09315264225006104, -0.30497875809669495, 0.2535775601863861, -0.004529984202235937, 0.06747274100780487, -0.08041594922542572, 0.0002707513340283185, 0.025803325697779655, 0.06355737894773483, 0.07502278685569763, -0.008500823751091957, -0.01383332721889019, -0.1887645572423935, -0.07177434861660004, 0.03358519822359085, 0.06975727528333664, -0.08027258515357971, 0.0878349244594574, -0.03360315412282944, 0.009610847570002079, 0.055957116186618805, -0.0016482099890708923, -0.04077144339680672, -0.09137849509716034, 0.006136348936706781, 0.06000641733407974, -0.023877086117863655, -0.06790381669998169, -0.10415514558553696, -0.10932539403438568, 0.15124593675136566, -0.020722227171063423, -0.02542075701057911, -0.10410737991333008, 0.08407147973775864, 0.07128232717514038, -0.08119986951351166, 0.011858946643769741, 0.013856897130608559, 0.0646815076470375, 0.03588918223977089, -0.06884563714265823, 0.11611918359994888, -0.060002055019140244, -0.16515256464481354, -0.06438373029232025, 0.1150144562125206, 0.03165033087134361, 0.0709734633564949, -0.015922801569104195, 0.005345126148313284, -0.04770740494132042, -0.07687123864889145, 0.0261368565261364, 0.010155333206057549, 0.07837586849927902, 0.041964005678892136, -0.04699330776929855, -0.003125137649476528, -0.07107093185186386, -0.04185362532734871, 0.17370392382144928, 0.23209713399410248, -0.07146400213241577, 0.01763780601322651, 0.02560422569513321, -0.07739821821451187, -0.15556317567825317, 0.027288807556033134, 0.037537816911935806, 0.02196895144879818, 0.031877923756837845, -0.16135282814502716, 0.12282516807317734, 0.11259730160236359, -0.008091666735708714, 0.12494456768035889, -0.3252822160720825, -0.11442451924085617, 0.13426505029201508, 0.13592535257339478, 0.14845934510231018, -0.14482907950878143, -0.010416420176625252, -0.02388622611761093, -0.14599983394145966, 0.13095639646053314, -0.08514109253883362, 0.12090378254652023, -0.03872263804078102, 0.08561795949935913, 0.01365431398153305, -0.050141312181949615, 0.13297925889492035, 0.02791856974363327, 0.09573252499103546, -0.08664507418870926, -0.04213535413146019, 0.03291292116045952, -0.0314621739089489, 0.012263058684766293, -0.09941209107637405, 0.026853453367948532, -0.11773961037397385, -0.029317643493413925, -0.0598442442715168, 0.0332888625562191, -0.04116452857851982, -0.056099094450473785, -0.02823130041360855, 0.03404581546783447, 0.0664350613951683, 0.003180037485435605, 0.14510299265384674, 0.029546817764639854, 0.13129650056362152, 0.09720567613840103, 0.07338238507509232, -0.06652246415615082, -0.07380514591932297, -0.030526423826813698, -0.0010540731018409133, 0.051416028290987015, -0.11652026325464249, 0.020832277834415436, 0.162451833486557, 0.010827980935573578, 0.1590023636817932, 0.08992970734834671, -0.005862111691385508, 0.0011646015336737037, 0.04895614832639694, -0.16897611320018768, -0.0759696438908577, -0.02521965652704239, -0.053831953555345535, -0.12089337408542633, 0.049710121005773544, 0.10472923517227173, -0.07164977490901947, -0.004793821834027767, -0.007878594100475311, 0.03744133561849594, -0.07233209908008575, 0.17037241160869598, 0.0451471172273159, 0.04748957231640816, -0.09329406172037125, 0.07397770881652832, 0.07407500594854355, -0.08106972277164459, -0.002024314599111676, 0.057678334414958954, -0.07177968323230743, -0.04496040940284729, 0.07248251140117645, 0.194074809551239, -0.04754133149981499, -0.06046794727444649, -0.1573900729417801, -0.1308043748140335, 0.08339641243219376, 0.13067668676376343, 0.11264809221029282, 0.021208198741078377, -0.05726596340537071, -0.01406946498900652, -0.11561179161071777, 0.07663743197917938, 0.0502183698117733, 0.06297707557678223, -0.14243049919605255, 0.1095343604683876, -0.0099731320515275, 0.03695821762084961, -0.00999742466956377, 0.021554118022322655, -0.11211958527565002, 0.006444592494517565, -0.08016841858625412, -0.013508359901607037, -0.018521536141633987, 0.023207252845168114, 0.009022220969200134, -0.07307141274213791, -0.05508234724402428, 0.017733430489897728, -0.11257437616586685, -0.03221053257584572, 0.038339532911777496, 0.06956950575113297, -0.10160939395427704, -0.05503249540925026, 0.02651818096637726, -0.06684362143278122, 0.06377477943897247, 0.06453389674425125, 0.00602662842720747, 0.02529214322566986, -0.1548307240009308, 0.026662681251764297, 0.05309196561574936, 0.034139715135097504, 0.06392139196395874, -0.09192372113466263, -0.008337186649441719, 0.02113921009004116, 0.027559442445635796, 0.015190445818006992, 0.08367130905389786, -0.14213284850120544, -0.01418712642043829, -0.024519026279449463, -0.10082349926233292, -0.059295304119586945, 0.012131735682487488, 0.09927196055650711, 0.024943333119153976, 0.20903059840202332, -0.05542986840009689, 0.0557989738881588, -0.20939184725284576, 0.006074489559978247, 0.007333028595894575, -0.1060139536857605, -0.09642732888460159, -0.07962480932474136, 0.060462623834609985, -0.053242165595293045, 0.13691426813602448, 0.04410857334733009, 0.05773951858282089, 0.016505155712366104, -0.0175976250320673, 0.023665884509682655, 0.016944998875260353, 0.18594564497470856, 0.0395762175321579, -0.04192053899168968, 0.0768272876739502, 0.019088158383965492, 0.11236840486526489, 0.10571955889463425, 0.19303853809833527, 0.13118956983089447, 0.008750197477638721, 0.10253828018903732, 0.04117703065276146, -0.045226700603961945, -0.1609722524881363, 0.051024988293647766, -0.023278499022126198, 0.1016409695148468, -0.03014512173831463, 0.2008565217256546, 0.045661862939596176, -0.1629294455051422, 0.03185984492301941, -0.05857710540294647, -0.08325225859880447, -0.10257647931575775, -0.05667548254132271, -0.09285511821508408, -0.1374921053647995, -0.0018556464929133654, -0.11309556663036346, 0.01377374678850174, 0.10257811099290848, -0.00027937316917814314, -0.028064824640750885, 0.14679019153118134, -0.0029121446423232555, 0.031478915363550186, 0.06606712192296982, -0.010420377366244793, -0.04101411998271942, -0.11995230615139008, -0.09301794320344925, -0.02594500407576561, -0.022722816094756126, 0.03198351711034775, -0.06129962205886841, -0.028753651306033134, 0.03078133426606655, -0.027849841862916946, -0.09482769668102264, 0.005207799840718508, -0.0040191770531237125, 0.04812026768922806, 0.04556899890303612, 0.01779010146856308, 0.023633301258087158, 0.008621525950729847, 0.21059739589691162, -0.06929153203964233, -0.06249968707561493, -0.09830119460821152, 0.18766409158706665, 0.039218418300151825, -0.0381430983543396, 0.04607260227203369, -0.07323598116636276, -0.00033099771826528013, 0.22109103202819824, 0.1872560977935791, -0.08449435234069824, -0.008553114719688892, 0.01423694472759962, -0.006426616571843624, -0.01824183203279972, 0.09020744264125824, 0.12866611778736115, 0.04038935527205467, -0.09070096909999847, -0.04619048163294792, -0.05921971797943115, 0.0023198635317385197, -0.02494804374873638, 0.047578342258930206, 0.03340170159935951, 0.014678215608000755, -0.031511206179857254, 0.04101766273379326, -0.06935641914606094, -0.09750789403915405, 0.07618790119886398, -0.217960387468338, -0.15297454595565796, -0.03453138843178749, 0.11656351387500763, 0.0043092393316328526, 0.06308992207050323, -0.028420887887477875, -0.014150619506835938, 0.0778343454003334, -0.01654721423983574, -0.0957958921790123, -0.06504063308238983, 0.08798923343420029, -0.10222315788269043, 0.2113768309354782, -0.04940646514296532, 0.07994798570871353, 0.11359484493732452, 0.07179151475429535, -0.05813588201999664, 0.06403113156557083, 0.0375225804746151, -0.038976069539785385, 0.03347400948405266, 0.0682835504412651, -0.03888032212853432, 0.0797279104590416, 0.05272549390792847, -0.11182050406932831, 0.013761485926806927, -0.049066219478845596, -0.045998360961675644, -0.02854783460497856, -0.034717511385679245, -0.07348661124706268, 0.12474500387907028, 0.20739269256591797, -0.02973521314561367, -0.017122792080044746, -0.06714555621147156, 0.03841958940029144, 0.0510636605322361, 0.0019596368074417114, -0.05769971385598183, -0.19918900728225708, 0.0014540993142873049, 0.049287099391222, -0.015779942274093628, -0.2302779257297516, -0.09639463573694229, -0.0034070273395627737, -0.08162744343280792, -0.10710611939430237, 0.05323920398950577, 0.08935686945915222, 0.0393286868929863, -0.07433215528726578, -0.04889032989740372, -0.07407467067241669, 0.1502884477376938, -0.13759469985961914, -0.07982667535543442 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2202 - Accuracy: 0.9205 - F1: 0.9207 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.8234 | 1.0 | 250 | 0.3185 | 0.9025 | 0.8992 | | 0.2466 | 2.0 | 500 | 0.2202 | 0.9205 | 0.9207 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.0
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["emotion"], "metrics": ["accuracy", "f1"], "model-index": [{"name": "distilbert-base-uncased-finetuned-emotion", "results": [{"task": {"type": "text-classification", "name": "Text Classification"}, "dataset": {"name": "emotion", "type": "emotion", "args": "default"}, "metrics": [{"type": "accuracy", "value": 0.9205, "name": "Accuracy"}, {"type": "f1", "value": 0.9206660865871332, "name": "F1"}]}]}]}
text-classification
frahman/distilbert-base-uncased-finetuned-emotion
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:emotion", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #dataset-emotion #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us
distilbert-base-uncased-finetuned-emotion ========================================= This model is a fine-tuned version of distilbert-base-uncased on the emotion dataset. It achieves the following results on the evaluation set: * Loss: 0.2202 * Accuracy: 0.9205 * F1: 0.9207 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 64 * eval\_batch\_size: 64 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 2 ### Training results ### Framework versions * Transformers 4.16.2 * Pytorch 1.10.0+cu111 * Datasets 1.18.3 * Tokenizers 0.11.0
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 2", "### Training results", "### Framework versions\n\n\n* Transformers 4.16.2\n* Pytorch 1.10.0+cu111\n* Datasets 1.18.3\n* Tokenizers 0.11.0" ]
[ "TAGS\n#transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #dataset-emotion #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 2", "### Training results", "### Framework versions\n\n\n* Transformers 4.16.2\n* Pytorch 1.10.0+cu111\n* Datasets 1.18.3\n* Tokenizers 0.11.0" ]
[ 67, 98, 4, 35 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #dataset-emotion #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 2### Training results### Framework versions\n\n\n* Transformers 4.16.2\n* Pytorch 1.10.0+cu111\n* Datasets 1.18.3\n* Tokenizers 0.11.0" ]
[ -0.10729362070560455, 0.1047292947769165, -0.0024711175356060266, 0.13316385447978973, 0.16401071846485138, 0.04042576253414154, 0.10044105350971222, 0.12800730764865875, -0.0852288007736206, 0.03607739880681038, 0.11509311944246292, 0.16314564645290375, 0.02035607397556305, 0.10854325443506241, -0.06299330294132233, -0.27483588457107544, -0.008726350031793118, 0.051931120455265045, -0.0033133854158222675, 0.13180971145629883, 0.09558909386396408, -0.1265009194612503, 0.09691281616687775, 0.007633947767317295, -0.1788771152496338, 0.0042419941164553165, 0.002333219163119793, -0.04618934169411659, 0.14245866239070892, 0.018829884007573128, 0.10378188639879227, 0.0042160204611718655, 0.08303368091583252, -0.21592605113983154, 0.01686237007379532, 0.03884436935186386, -0.0008284060168080032, 0.0867934301495552, 0.035970304161310196, -0.017690220847725868, 0.15871582925319672, -0.07400691509246826, 0.051401637494564056, 0.01809038780629635, -0.10891712456941605, -0.22057516872882843, -0.08290493488311768, 0.04705986753106117, 0.06983020156621933, 0.12207958847284317, -0.01847134716808796, 0.13202212750911713, -0.09214302152395248, 0.09749164432287216, 0.2406737506389618, -0.2591608166694641, -0.06779301911592484, 0.013458365574479103, 0.014229160733520985, 0.03417785093188286, -0.1190149188041687, -0.042226482182741165, 0.05254526063799858, 0.05231756344437599, 0.11917786300182343, -0.034545574337244034, -0.09468395262956619, 0.005687303841114044, -0.1268710047006607, -0.04855029657483101, 0.16417168080806732, 0.05871021747589111, -0.029439294710755348, -0.060039691627025604, -0.05639486759901047, -0.16768014430999756, -0.03451862558722496, -0.011855937540531158, 0.05206918716430664, -0.016418155282735825, -0.06295408308506012, 0.01447153277695179, -0.12162116169929504, -0.039976008236408234, -0.06780802458524704, 0.1075311154127121, 0.022186413407325745, 0.009949775412678719, -0.021492179483175278, 0.10042563080787659, 0.0003224578977096826, -0.1253768801689148, 0.01070945430546999, 0.01928461715579033, 0.030408021062612534, -0.03198050707578659, -0.06958989053964615, -0.0558076873421669, -0.007334659341722727, 0.10167807340621948, -0.0694628581404686, 0.04918947070837021, 0.041475359350442886, 0.036121904850006104, -0.06748844683170319, 0.19640591740608215, -0.03118940442800522, -0.02915976382791996, -0.0018044040771201253, 0.05060819536447525, 0.02405879832804203, -0.0032724638003855944, -0.12272071838378906, 0.020775578916072845, 0.0907864049077034, -0.001129860058426857, -0.09488388895988464, 0.08389153331518173, -0.0698997750878334, -0.016850372776389122, -0.016022395342588425, -0.07870841026306152, 0.03298290818929672, 0.016868289560079575, -0.07184309512376785, 0.002036898862570524, 0.030261674895882607, 0.007831711322069168, -0.020847242325544357, 0.09522684663534164, -0.07746980339288712, 0.027547942474484444, -0.09554529935121536, -0.10057154297828674, 0.0319836363196373, -0.0933026447892189, 0.03707559034228325, -0.09557268768548965, -0.1969965547323227, -0.02371833100914955, 0.06897696107625961, -0.023075198754668236, -0.049408528953790665, -0.06973061710596085, -0.06573869287967682, 0.022101590409874916, -0.006038626190274954, 0.09978187829256058, -0.06488972902297974, 0.08648522943258286, 0.029132578521966934, 0.08314822614192963, -0.0327628068625927, 0.05228634178638458, -0.11530283838510513, 0.007176255341619253, -0.14477860927581787, 0.04921390488743782, -0.040933482348918915, 0.08032797276973724, -0.06651826202869415, -0.11272696405649185, 0.014270448125898838, -0.008701889775693417, 0.06811949610710144, 0.10830722749233246, -0.1874769777059555, -0.08503932505846024, 0.16656242311000824, -0.06960446387529373, -0.11231537163257599, 0.12582966685295105, -0.06890527158975601, 0.06420158594846725, 0.06954458355903625, 0.17675773799419403, 0.04454420506954193, -0.07582211494445801, -0.021538954228162766, 0.011303065344691277, 0.046311553567647934, -0.040882594883441925, 0.05243360996246338, 0.032127413898706436, 0.036118075251579285, 0.039608173072338104, -0.009041768498718739, 0.06707309186458588, -0.08848506212234497, -0.09591000527143478, -0.03961322456598282, -0.08873633295297623, 0.035664066672325134, 0.08954097330570221, 0.06674152612686157, -0.10992896556854248, -0.07744910567998886, 0.025461889803409576, 0.09009505808353424, -0.06347711384296417, 0.033417969942092896, -0.06480710953474045, 0.06617280095815659, -0.003511756658554077, -0.01667897403240204, -0.17729134857654572, 0.01630166359245777, 0.004542169161140919, 0.02844761498272419, -0.00019540746870916337, 0.023198576644062996, 0.06452924013137817, 0.03740648180246353, -0.05454067140817642, -0.02172916568815708, -0.03341880440711975, -0.004205236677080393, -0.11680345982313156, -0.21564458310604095, -0.01974746398627758, -0.02661697380244732, 0.15774938464164734, -0.2086779922246933, 0.03996117785573006, -0.0019243378192186356, 0.05956423282623291, 0.012203168123960495, -0.01787281036376953, -0.033852286636829376, 0.06017862632870674, -0.05613437667489052, -0.042680077254772186, 0.07588963210582733, 0.01740330085158348, -0.08511539548635483, -0.030706949532032013, -0.1021745353937149, 0.14219696819782257, 0.13248753547668457, -0.10826127231121063, -0.07062311470508575, -0.011296364478766918, -0.06772562861442566, -0.017247330397367477, -0.039187315851449966, 0.04301421716809273, 0.20019438862800598, -0.00820479542016983, 0.14059090614318848, -0.06494151055812836, -0.031490977853536606, 0.026991359889507294, -0.04239301756024361, 0.004276996944099665, 0.1287386417388916, 0.11800841987133026, -0.06982634216547012, 0.14693941175937653, 0.13136978447437286, -0.0891217440366745, 0.15249906480312347, -0.03497766703367233, -0.05877610668540001, -0.02403487078845501, -0.045619092881679535, -0.01798650063574314, 0.10396979749202728, -0.18228667974472046, -0.012118436396121979, 0.0260163526982069, 0.005726987961679697, 0.007428900804370642, -0.21971000730991364, -0.04791821911931038, 0.04595760256052017, -0.03812717646360397, -0.010418609715998173, -0.009262105450034142, 0.006111920345574617, 0.10368035733699799, 0.001138293300755322, -0.08149299025535583, 0.03558086231350899, 0.0011295531876385212, -0.08863750845193863, 0.2055307924747467, -0.08933070302009583, -0.17410141229629517, -0.10471027344465256, -0.07815846055746078, -0.043997522443532944, 0.006574671249836683, 0.07453528046607971, -0.10984637588262558, -0.02622349001467228, -0.07987094670534134, 0.01593250408768654, 0.009252005256712437, 0.024781929329037666, 0.036951471120119095, -0.00465792091563344, 0.048271771520376205, -0.10302270203828812, -0.02403036691248417, -0.06304781883955002, -0.03993484005331993, 0.05265017971396446, 0.02005668729543686, 0.118043452501297, 0.16297343373298645, -0.0076253884471952915, 0.01597556471824646, -0.03907688334584236, 0.22747467458248138, -0.07208378612995148, -0.020123520866036415, 0.1348801553249359, -0.012867340818047523, 0.05217314139008522, 0.12073347717523575, 0.062393803149461746, -0.09354939311742783, 0.014609823934733868, 0.03963443264365196, -0.03961718827486038, -0.2182883620262146, -0.041471026837825775, -0.054045043885707855, 0.01904810592532158, 0.07290061563253403, 0.023992260918021202, 0.043753448873758316, 0.07843822985887527, 0.04238804057240486, 0.05585741251707077, -0.05172137916088104, 0.060923103243112564, 0.12870679795742035, 0.02477360889315605, 0.10340405255556107, -0.039904434233903885, -0.051694296300411224, 0.05727382376790047, -0.0235836673527956, 0.213295117020607, -0.0046312324702739716, 0.14205609261989594, 0.05248811095952988, 0.16770078241825104, -0.02623376064002514, 0.07764134556055069, -0.018527843058109283, -0.04362728074193001, -0.029597122222185135, -0.02704855240881443, -0.061481259763240814, 0.037875134497880936, -0.06760066747665405, 0.08125722408294678, -0.13951994478702545, 0.016720419749617577, 0.06496018171310425, 0.28609931468963623, 0.03024904616177082, -0.3238048255443573, -0.1145019680261612, 0.006392969749867916, -0.04281984642148018, -0.012938925065100193, 0.02482636086642742, 0.08696186542510986, -0.09557933360338211, 0.04103221744298935, -0.06149192899465561, 0.08659522235393524, -0.062083423137664795, 0.06185540556907654, 0.04686061665415764, 0.067520372569561, 0.011607197113335133, 0.0879162922501564, -0.2901266813278198, 0.26659315824508667, -0.009660146199166775, 0.06638708710670471, -0.09171168506145477, 0.0015390677144750953, 0.057999737560749054, 0.0645095482468605, 0.07839592546224594, -0.008353786543011665, -0.025936177000403404, -0.17033188045024872, -0.03941094130277634, 0.030702056363224983, 0.05801006406545639, -0.02464820072054863, 0.09037021547555923, -0.024266205728054047, 0.007068659644573927, 0.07367045432329178, 0.036816757172346115, -0.04217315465211868, -0.1023501306772232, -0.013262004591524601, 0.03541959077119827, -0.057665735483169556, -0.05188718065619469, -0.12367169559001923, -0.10359145700931549, 0.15542557835578918, -0.00006500956806121394, -0.027459781616926193, -0.1068275198340416, 0.08591251820325851, 0.038172826170921326, -0.08906199038028717, 0.028833167627453804, 0.007926978170871735, 0.08698344230651855, 0.020338594913482666, -0.07427806407213211, 0.10831718146800995, -0.07868301123380661, -0.1688513159751892, -0.06764310598373413, 0.09617795050144196, 0.04899711534380913, 0.07385817915201187, -0.0006031826487742364, -0.004917136859148741, -0.05156872048974037, -0.08633923530578613, 0.0346834622323513, 0.027141401544213295, 0.071261927485466, 0.004864595830440521, -0.04629438370466232, 0.005747415591031313, -0.06478627026081085, -0.03439803794026375, 0.20143994688987732, 0.22080206871032715, -0.09110598266124725, 0.03254473954439163, 0.0239409152418375, -0.07410942763090134, -0.19310620427131653, 0.047012005001306534, 0.06272011250257492, 0.011241049505770206, 0.03201361373066902, -0.18438269197940826, 0.13110940158367157, 0.0807967260479927, -0.012686248868703842, 0.09494052082300186, -0.2900375425815582, -0.11540846526622772, 0.13636305928230286, 0.13736146688461304, 0.13213872909545898, -0.13606145977973938, -0.000282821012660861, -0.0331534817814827, -0.12705792486667633, 0.11077027767896652, -0.07835882902145386, 0.1183292344212532, -0.023655373603105545, 0.12300385534763336, 0.008950582705438137, -0.04902263730764389, 0.1094827726483345, 0.026648862287402153, 0.09621351957321167, -0.0742063969373703, -0.031891871243715286, 0.021660272032022476, -0.046041831374168396, 0.037089988589286804, -0.09613772481679916, 0.019534418359398842, -0.12541505694389343, -0.0347626730799675, -0.08580275624990463, 0.03547784313559532, -0.03688618168234825, -0.06766413897275925, -0.05050470307469368, 0.025199441239237785, 0.08290276676416397, -0.003742208005860448, 0.09785968065261841, 0.021963901817798615, 0.10942701995372772, 0.10009158402681351, 0.09949485957622528, -0.0653558224439621, -0.0665293037891388, -0.018882058560848236, -0.010290192440152168, 0.046408869326114655, -0.154057115316391, 0.019539862871170044, 0.14107957482337952, 0.018524620682001114, 0.15923410654067993, 0.086464524269104, -0.03522064536809921, 0.019331954419612885, 0.06194582208991051, -0.1536843329668045, -0.08088555186986923, -0.01619407907128334, -0.06440259516239166, -0.12118636071681976, 0.030513474717736244, 0.08062941581010818, -0.07233089953660965, -0.002700845478102565, -0.017017927020788193, 0.019046444445848465, -0.04211467504501343, 0.15935401618480682, 0.042615655809640884, 0.028050988912582397, -0.10636944323778152, 0.07200022786855698, 0.02104838751256466, -0.11235780268907547, 0.035800471901893616, 0.07812155783176422, -0.07911717146635056, -0.056450918316841125, 0.07246264815330505, 0.20851120352745056, -0.0609748400747776, -0.051515739411115646, -0.14380614459514618, -0.1296641081571579, 0.09157031029462814, 0.1478157788515091, 0.11339854449033737, 0.008251185528934002, -0.08405079692602158, 0.02118947170674801, -0.12219466269016266, 0.08870178461074829, 0.060448646545410156, 0.04329829663038254, -0.1362001597881317, 0.11675106734037399, 0.0057970015332102776, 0.04512380063533783, -0.02142210863530636, 0.01621556468307972, -0.09014339745044708, 0.008532247506082058, -0.12278182059526443, -0.01684640347957611, -0.04931967332959175, 0.010625757277011871, 0.0019121913937851787, -0.042344022542238235, -0.049806080758571625, 0.008135498501360416, -0.11552951484918594, -0.013957532122731209, 0.03357489034533501, 0.07033564150333405, -0.11021576821804047, -0.03861508145928383, 0.02313329093158245, -0.06658323854207993, 0.09209239482879639, 0.06735558807849884, 0.012549255974590778, 0.05525312200188637, -0.1553274542093277, 0.02430122159421444, 0.09489823132753372, 0.012762150727212429, 0.05802254378795624, -0.08479415625333786, -0.008534411899745464, -0.00010694751108530909, 0.03706943988800049, 0.016222532838582993, 0.07832875102758408, -0.12882113456726074, 0.016799401491880417, 0.008114504627883434, -0.08316964656114578, -0.06917650997638702, 0.03155684471130371, 0.08236025273799896, 0.008819040842354298, 0.19790464639663696, -0.07840058207511902, 0.04377833008766174, -0.21245789527893066, 0.007146566640585661, -0.0014933281345292926, -0.10025528073310852, -0.12733981013298035, -0.07039541751146317, 0.05881955474615097, -0.05410310998558998, 0.13589723408222198, 0.045999959111213684, 0.01235200371593237, 0.014530939981341362, -0.012251087464392185, 0.02399143949151039, 0.005510806571692228, 0.18603813648223877, 0.027695367112755775, -0.05274145305156708, 0.06411328911781311, 0.05231228470802307, 0.11989478021860123, 0.13339386880397797, 0.20230893790721893, 0.13969458639621735, 0.033963028341531754, 0.11575202643871307, 0.02543461136519909, -0.03262630105018616, -0.15815185010433197, 0.024341994896531105, -0.05765404924750328, 0.11692982167005539, -0.0167445819824934, 0.2357674241065979, 0.0678008496761322, -0.15977829694747925, 0.059805046766996384, -0.0666084736585617, -0.07921454310417175, -0.1022128239274025, -0.07239903509616852, -0.08356468379497528, -0.1417270004749298, 0.006583749316632748, -0.13647694885730743, 0.007792337331920862, 0.08786148577928543, 0.011358031071722507, -0.04143144190311432, 0.14075921475887299, 0.011778234504163265, 0.023106886073946953, 0.09100471436977386, 0.008729695342481136, -0.06217772141098976, -0.11704227328300476, -0.05014779418706894, -0.01657717674970627, -0.023305591195821762, 0.04358667880296707, -0.048993438482284546, -0.0553666353225708, 0.025841066613793373, -0.0172811858355999, -0.09646714478731155, 0.006504023913294077, 0.012089506722986698, 0.06697583943605423, 0.04862723872065544, 0.002103988314047456, 0.022446153685450554, -0.0012293654726818204, 0.18963707983493805, -0.07616747915744781, -0.026641009375452995, -0.11109642684459686, 0.22364294528961182, 0.02844659984111786, -0.018694207072257996, 0.030168691650032997, -0.07148570567369461, -0.004298421088606119, 0.25087398290634155, 0.20104657113552094, -0.07867487519979477, -0.006430341396480799, -0.001906919525936246, 0.002854718128219247, -0.04296019300818443, 0.0966230109333992, 0.15746144950389862, 0.03463737294077873, -0.09859860688447952, -0.031270258128643036, -0.05984746292233467, -0.02341749146580696, -0.023579400032758713, 0.06165848299860954, 0.057010408490896225, 0.009236941114068031, -0.040890660136938095, 0.0482877753674984, -0.08954156190156937, -0.10071983933448792, 0.07293747365474701, -0.21676287055015564, -0.15200334787368774, -0.010801189579069614, 0.09315329790115356, 0.030188802629709244, 0.07307171821594238, -0.01563802920281887, -0.006410101894289255, 0.11621510982513428, -0.020048778504133224, -0.11753543466329575, -0.06383446604013443, 0.09692142903804779, -0.1351519227027893, 0.2077455222606659, -0.06165296211838722, 0.03952718898653984, 0.12620560824871063, 0.07369670271873474, -0.06323783099651337, 0.0695536807179451, 0.04448116943240166, -0.05124595761299133, 0.012946334667503834, 0.10566786676645279, -0.032710567116737366, 0.06821645051240921, 0.04730750992894173, -0.15438665449619293, 0.020901495590806007, -0.046528562903404236, -0.059128664433956146, -0.0503077358007431, -0.008768591098487377, -0.06569826602935791, 0.12388360500335693, 0.2201795130968094, -0.027535736560821533, -0.0036572322715073824, -0.06962022930383682, 0.0093183983117342, 0.04277172312140465, 0.008951366879045963, -0.05614110827445984, -0.20786675810813904, 0.01562237087637186, 0.07017044723033905, -0.014551161788403988, -0.25191476941108704, -0.10240420699119568, 0.003093148348852992, -0.07040718197822571, -0.09217037260532379, 0.061117835342884064, 0.06715869903564453, 0.05661793053150177, -0.0508190281689167, -0.05060721933841705, -0.061116866767406464, 0.1666710376739502, -0.1338857114315033, -0.08686347305774689 ]
null
null
transformers
# SciBERT finetuned on JNLPA for NER downstream task ## Language Model [SciBERT](https://arxiv.org/pdf/1903.10676.pdf) is a pretrained language model based on BERT and trained by the [Allen Institute for AI](https://allenai.org/) on papers from the corpus of [Semantic Scholar](https://www.semanticscholar.org/). Corpus size is 1.14M papers, 3.1B tokens. SciBERT has its own vocabulary (scivocab) that's built to best match the training corpus. ## Downstream task [`allenai/scibert_scivocab_cased`](https://huggingface.co/allenai/scibert_scivocab_cased#) has been finetuned for Named Entity Recognition (NER) dowstream task. The code to train the NER can be found [here](https://github.com/fran-martinez/bio_ner_bert). ### Data The corpus used to fine-tune the NER is [BioNLP / JNLPBA shared task](http://www.geniaproject.org/shared-tasks/bionlp-jnlpba-shared-task-2004). - Training data consist of 2,000 PubMed abstracts with term/word annotation. This corresponds to 18,546 samples (senteces). - Evaluation data consist of 404 PubMed abstracts with term/word annotation. This corresponds to 3,856 samples (sentences). The classes (at word level) and its distribution (number of examples for each class) for training and evaluation datasets are shown below: | Class Label | # training examples| # evaluation examples| |:--------------|--------------:|----------------:| |O | 382,963 | 81,647 | |B-protein | 30,269 | 5,067 | |I-protein | 24,848 | 4,774 | |B-cell_type | 6,718 | 1,921 | |I-cell_type | 8,748 | 2,991 | |B-DNA | 9,533 | 1,056 | |I-DNA | 15,774 | 1,789 | |B-cell_line | 3,830 | 500 | |I-cell_line | 7,387 | 9,89 | |B-RNA | 951 | 118 | |I-RNA | 1,530 | 187 | ### Model An exhaustive hyperparameter search was done. The hyperparameters that provided the best results are: - Max length sequence: 128 - Number of epochs: 6 - Batch size: 32 - Dropout: 0.3 - Optimizer: Adam The used learning rate was 5e-5 with a decreasing linear schedule. A warmup was used at the beggining of the training with a ratio of steps equal to 0.1 from the total training steps. The model from the epoch with the best F1-score was selected, in this case, the model from epoch 5. ### Evaluation The following table shows the evaluation metrics calculated at span/entity level: | | precision| recall| f1-score| |:---------|-----------:|---------:|---------:| cell_line | 0.5205 | 0.7100 | 0.6007 | cell_type | 0.7736 | 0.7422 | 0.7576 | protein | 0.6953 | 0.8459 | 0.7633 | DNA | 0.6997 | 0.7894 | 0.7419 | RNA | 0.6985 | 0.8051 | 0.7480 | | | | | **micro avg** | 0.6984 | 0.8076 | 0.7490| **macro avg** | 0.7032 | 0.8076 | 0.7498 | The macro F1-score is equal to 0.7498, compared to the value provided by the Allen Institute for AI in their [paper](https://arxiv.org/pdf/1903.10676.pdf), which is equal to 0.7728. This drop in performance could be due to several reasons, but one hypothesis could be the fact that the authors used an additional conditional random field, while this model uses a regular classification layer with softmax activation on top of SciBERT model. At word level, this model achieves a precision of 0.7742, a recall of 0.8536 and a F1-score of 0.8093. ### Model usage in inference Use the pipeline: ````python from transformers import pipeline text = "Mouse thymus was used as a source of glucocorticoid receptor from normal CS lymphocytes." nlp_ner = pipeline("ner", model='fran-martinez/scibert_scivocab_cased_ner_jnlpba', tokenizer='fran-martinez/scibert_scivocab_cased_ner_jnlpba') nlp_ner(text) """ Output: --------------------------- [ {'word': 'glucocorticoid', 'score': 0.9894881248474121, 'entity': 'B-protein'}, {'word': 'receptor', 'score': 0.989505410194397, 'entity': 'I-protein'}, {'word': 'normal', 'score': 0.7680378556251526, 'entity': 'B-cell_type'}, {'word': 'cs', 'score': 0.5176806449890137, 'entity': 'I-cell_type'}, {'word': 'lymphocytes', 'score': 0.9898491501808167, 'entity': 'I-cell_type'} ] """ ```` Or load model and tokenizer as follows: ````python import torch from transformers import AutoTokenizer, AutoModelForTokenClassification # Example text = "Mouse thymus was used as a source of glucocorticoid receptor from normal CS lymphocytes." # Load model tokenizer = AutoTokenizer.from_pretrained("fran-martinez/scibert_scivocab_cased_ner_jnlpba") model = AutoModelForTokenClassification.from_pretrained("fran-martinez/scibert_scivocab_cased_ner_jnlpba") # Get input for BERT input_ids = torch.tensor(tokenizer.encode(text)).unsqueeze(0) # Predict with torch.no_grad(): outputs = model(input_ids) # From the output let's take the first element of the tuple. # Then, let's get rid of [CLS] and [SEP] tokens (first and last) predictions = outputs[0].argmax(axis=-1)[0][1:-1] # Map label class indexes to string labels. for token, pred in zip(tokenizer.tokenize(text), predictions): print(token, '->', model.config.id2label[pred.numpy().item()]) """ Output: --------------------------- mouse -> O thymus -> O was -> O used -> O as -> O a -> O source -> O of -> O glucocorticoid -> B-protein receptor -> I-protein from -> O normal -> B-cell_type cs -> I-cell_type lymphocytes -> I-cell_type . -> O """ ````
{"language": "scientific english"}
token-classification
fran-martinez/scibert_scivocab_cased_ner_jnlpba
[ "transformers", "pytorch", "jax", "bert", "token-classification", "arxiv:1903.10676", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[ "1903.10676" ]
[ "scientific english" ]
TAGS #transformers #pytorch #jax #bert #token-classification #arxiv-1903.10676 #autotrain_compatible #endpoints_compatible #region-us
SciBERT finetuned on JNLPA for NER downstream task ================================================== Language Model -------------- SciBERT is a pretrained language model based on BERT and trained by the Allen Institute for AI on papers from the corpus of Semantic Scholar. Corpus size is 1.14M papers, 3.1B tokens. SciBERT has its own vocabulary (scivocab) that's built to best match the training corpus. Downstream task --------------- 'allenai/scibert\_scivocab\_cased' has been finetuned for Named Entity Recognition (NER) dowstream task. The code to train the NER can be found here. ### Data The corpus used to fine-tune the NER is BioNLP / JNLPBA shared task. * Training data consist of 2,000 PubMed abstracts with term/word annotation. This corresponds to 18,546 samples (senteces). * Evaluation data consist of 404 PubMed abstracts with term/word annotation. This corresponds to 3,856 samples (sentences). The classes (at word level) and its distribution (number of examples for each class) for training and evaluation datasets are shown below: ### Model An exhaustive hyperparameter search was done. The hyperparameters that provided the best results are: * Max length sequence: 128 * Number of epochs: 6 * Batch size: 32 * Dropout: 0.3 * Optimizer: Adam The used learning rate was 5e-5 with a decreasing linear schedule. A warmup was used at the beggining of the training with a ratio of steps equal to 0.1 from the total training steps. The model from the epoch with the best F1-score was selected, in this case, the model from epoch 5. ### Evaluation The following table shows the evaluation metrics calculated at span/entity level: The macro F1-score is equal to 0.7498, compared to the value provided by the Allen Institute for AI in their paper, which is equal to 0.7728. This drop in performance could be due to several reasons, but one hypothesis could be the fact that the authors used an additional conditional random field, while this model uses a regular classification layer with softmax activation on top of SciBERT model. At word level, this model achieves a precision of 0.7742, a recall of 0.8536 and a F1-score of 0.8093. ### Model usage in inference Use the pipeline: ' Or load model and tokenizer as follows: '
[ "### Data\n\n\nThe corpus used to fine-tune the NER is BioNLP / JNLPBA shared task.\n\n\n* Training data consist of 2,000 PubMed abstracts with term/word annotation. This corresponds to 18,546 samples (senteces).\n* Evaluation data consist of 404 PubMed abstracts with term/word annotation. This corresponds to 3,856 samples (sentences).\n\n\nThe classes (at word level) and its distribution (number of examples for each class) for training and evaluation datasets are shown below:", "### Model\n\n\nAn exhaustive hyperparameter search was done.\nThe hyperparameters that provided the best results are:\n\n\n* Max length sequence: 128\n* Number of epochs: 6\n* Batch size: 32\n* Dropout: 0.3\n* Optimizer: Adam\n\n\nThe used learning rate was 5e-5 with a decreasing linear schedule. A warmup was used at the beggining of the training\nwith a ratio of steps equal to 0.1 from the total training steps.\n\n\nThe model from the epoch with the best F1-score was selected, in this case, the model from epoch 5.", "### Evaluation\n\n\nThe following table shows the evaluation metrics calculated at span/entity level:\n\n\n\nThe macro F1-score is equal to 0.7498, compared to the value provided by the Allen Institute for AI in their\npaper, which is equal to 0.7728. This drop in performance could be due to\nseveral reasons, but one hypothesis could be the fact that the authors used an additional conditional random field,\nwhile this model uses a regular classification layer with softmax activation on top of SciBERT model.\n\n\nAt word level, this model achieves a precision of 0.7742, a recall of 0.8536 and a F1-score of 0.8093.", "### Model usage in inference\n\n\nUse the pipeline:\n'\nOr load model and tokenizer as follows:\n'" ]
[ "TAGS\n#transformers #pytorch #jax #bert #token-classification #arxiv-1903.10676 #autotrain_compatible #endpoints_compatible #region-us \n", "### Data\n\n\nThe corpus used to fine-tune the NER is BioNLP / JNLPBA shared task.\n\n\n* Training data consist of 2,000 PubMed abstracts with term/word annotation. This corresponds to 18,546 samples (senteces).\n* Evaluation data consist of 404 PubMed abstracts with term/word annotation. This corresponds to 3,856 samples (sentences).\n\n\nThe classes (at word level) and its distribution (number of examples for each class) for training and evaluation datasets are shown below:", "### Model\n\n\nAn exhaustive hyperparameter search was done.\nThe hyperparameters that provided the best results are:\n\n\n* Max length sequence: 128\n* Number of epochs: 6\n* Batch size: 32\n* Dropout: 0.3\n* Optimizer: Adam\n\n\nThe used learning rate was 5e-5 with a decreasing linear schedule. A warmup was used at the beggining of the training\nwith a ratio of steps equal to 0.1 from the total training steps.\n\n\nThe model from the epoch with the best F1-score was selected, in this case, the model from epoch 5.", "### Evaluation\n\n\nThe following table shows the evaluation metrics calculated at span/entity level:\n\n\n\nThe macro F1-score is equal to 0.7498, compared to the value provided by the Allen Institute for AI in their\npaper, which is equal to 0.7728. This drop in performance could be due to\nseveral reasons, but one hypothesis could be the fact that the authors used an additional conditional random field,\nwhile this model uses a regular classification layer with softmax activation on top of SciBERT model.\n\n\nAt word level, this model achieves a precision of 0.7742, a recall of 0.8536 and a F1-score of 0.8093.", "### Model usage in inference\n\n\nUse the pipeline:\n'\nOr load model and tokenizer as follows:\n'" ]
[ 48, 118, 130, 146, 25 ]
[ "passage: TAGS\n#transformers #pytorch #jax #bert #token-classification #arxiv-1903.10676 #autotrain_compatible #endpoints_compatible #region-us \n### Data\n\n\nThe corpus used to fine-tune the NER is BioNLP / JNLPBA shared task.\n\n\n* Training data consist of 2,000 PubMed abstracts with term/word annotation. This corresponds to 18,546 samples (senteces).\n* Evaluation data consist of 404 PubMed abstracts with term/word annotation. This corresponds to 3,856 samples (sentences).\n\n\nThe classes (at word level) and its distribution (number of examples for each class) for training and evaluation datasets are shown below:### Model\n\n\nAn exhaustive hyperparameter search was done.\nThe hyperparameters that provided the best results are:\n\n\n* Max length sequence: 128\n* Number of epochs: 6\n* Batch size: 32\n* Dropout: 0.3\n* Optimizer: Adam\n\n\nThe used learning rate was 5e-5 with a decreasing linear schedule. A warmup was used at the beggining of the training\nwith a ratio of steps equal to 0.1 from the total training steps.\n\n\nThe model from the epoch with the best F1-score was selected, in this case, the model from epoch 5.### Evaluation\n\n\nThe following table shows the evaluation metrics calculated at span/entity level:\n\n\n\nThe macro F1-score is equal to 0.7498, compared to the value provided by the Allen Institute for AI in their\npaper, which is equal to 0.7728. This drop in performance could be due to\nseveral reasons, but one hypothesis could be the fact that the authors used an additional conditional random field,\nwhile this model uses a regular classification layer with softmax activation on top of SciBERT model.\n\n\nAt word level, this model achieves a precision of 0.7742, a recall of 0.8536 and a F1-score of 0.8093.### Model usage in inference\n\n\nUse the pipeline:\n'\nOr load model and tokenizer as follows:\n'" ]
[ -0.12597602605819702, 0.06474966555833817, -0.003570741042494774, 0.07692768424749374, 0.07493196427822113, 0.02425556257367134, 0.07119739800691605, 0.049881357699632645, 0.012374641373753548, 0.05609932169318199, 0.08052470535039902, 0.10963527858257294, 0.03533012792468071, 0.1682380884885788, -0.04713379964232445, -0.18060781061649323, 0.048795148730278015, -0.030439402908086777, 0.026196101680397987, 0.0857415646314621, 0.08219288289546967, -0.09150290489196777, 0.04991947114467621, 0.051402121782302856, -0.045934904366731644, -0.03118733875453472, -0.0024566773790866137, -0.017954617738723755, 0.10057353973388672, 0.06564468890428543, 0.04857383295893669, -0.0034920121543109417, 0.07704247534275055, -0.12611058354377747, 0.006485951133072376, 0.027116985991597176, 0.02079235203564167, 0.07914552837610245, 0.035140324383974075, 0.028488168492913246, 0.17835968732833862, -0.019802521914243698, 0.055370770394802094, 0.033453818410634995, -0.09246863424777985, -0.09810128808021545, -0.08847548067569733, 0.03698486089706421, 0.1262093186378479, 0.074061319231987, -0.023691702634096146, 0.15990333259105682, -0.06351157277822495, 0.0603179857134819, 0.03596821054816246, -0.2788413166999817, -0.01736585982143879, 0.014777668751776218, 0.009789758361876011, -0.000009931687600328587, -0.06725354492664337, -0.007361038122326136, 0.04071886092424393, -0.00015830840857233852, 0.1488233059644699, 0.006216283421963453, 0.11424298584461212, -0.018687739968299866, -0.14431925117969513, -0.048305291682481766, 0.16467024385929108, 0.06393631547689438, -0.10336960852146149, -0.1429201066493988, -0.013265425339341164, -0.04749966040253639, 0.02176135592162609, -0.08502741903066635, 0.02171805314719677, 0.003917612601071596, 0.06890016049146652, -0.01308548916131258, -0.11095710843801498, 0.0017780301859602332, -0.052407991141080856, 0.21783272922039032, 0.022054603323340416, 0.05388930067420006, 0.04672124981880188, 0.09025835990905762, -0.05375982075929642, -0.03892780467867851, -0.06032857298851013, -0.017702996730804443, -0.1231130063533783, -0.04789239168167114, -0.026773270219564438, -0.06290264427661896, -0.08960888534784317, 0.0910121500492096, -0.011392638087272644, 0.013803066685795784, 0.18070033192634583, -0.00011313496361253783, 0.07749355584383011, 0.16142931580543518, -0.0016153425676748157, -0.10209038108587265, 0.023872924968600273, 0.06602723896503448, 0.018159911036491394, -0.024071795865893364, -0.027433166280388832, 0.020152678713202477, 0.09932844340801239, -0.011953173205256462, -0.041957221925258636, -0.00515252398326993, -0.054131947457790375, -0.06307610124349594, 0.13758690655231476, -0.0723101794719696, -0.02013995498418808, 0.005411788821220398, -0.12712493538856506, 0.05107937380671501, 0.005106824915856123, -0.01441729161888361, -0.0681723803281784, 0.05629732832312584, -0.10518181324005127, -0.04550861194729805, -0.0668783187866211, -0.07534950971603394, -0.026729397475719452, -0.08835399895906448, 0.002621166408061981, -0.06862150132656097, -0.19634537398815155, -0.05693691968917847, 0.06972686201334, -0.01596638560295105, -0.057918731123209, -0.06576216220855713, 0.009074182249605656, -0.01727546751499176, -0.013423655182123184, 0.04314219951629639, -0.04993825778365135, 0.024608412757515907, -0.006184500642120838, 0.008246786892414093, -0.06011318042874336, 0.01963827945291996, -0.0723085030913353, 0.0023843857925385237, -0.10413039475679398, 0.12217573821544647, 0.03980034962296486, 0.0013336763950064778, -0.07193208485841751, -0.08676847070455551, 0.007841536775231361, 0.019444623962044716, 0.029991205781698227, 0.12936921417713165, -0.11752795428037643, -0.058906957507133484, -0.033344823867082596, -0.0876869410276413, -0.05061669275164604, 0.09657718241214752, -0.08322704583406448, 0.04378389194607735, 0.10371514409780502, 0.08188214898109436, 0.05249687656760216, -0.07823200523853302, -0.1331290900707245, -0.026411928236484528, -0.06212607026100159, -0.00011753640865208581, 0.053273241966962814, 0.04656442254781723, 0.0437307208776474, 0.016042247414588928, -0.09235738962888718, 0.018477773293852806, -0.03742409124970436, -0.04542611539363861, -0.004737331997603178, -0.0796889215707779, -0.02279370091855526, -0.0021131192333996296, 0.04874161630868912, -0.02062850445508957, -0.09046392887830734, 0.11973509192466736, 0.10849271714687347, -0.04194483906030655, -0.02311720885336399, -0.07147205621004105, 0.0838543251156807, -0.09197936207056046, -0.03806299343705177, -0.17853683233261108, -0.043953731656074524, 0.05018769949674606, -0.06566774845123291, 0.036912739276885986, 0.06215554475784302, 0.0571134127676487, 0.08263400197029114, -0.051127661019563675, -0.01811579428613186, -0.029680589213967323, -0.042779166251420975, -0.13541561365127563, -0.09156721085309982, -0.083815798163414, -0.025834575295448303, 0.07522116601467133, -0.21062982082366943, -0.021824795752763748, -0.07246691733598709, 0.058680664747953415, 0.014708439819514751, -0.10968725383281708, 0.01975497044622898, -0.04289514943957329, -0.031172677874565125, -0.04458807408809662, 0.013371134176850319, 0.041437823325395584, -0.11659049987792969, -0.03867639973759651, -0.17031118273735046, 0.006627308204770088, 0.039466824382543564, 0.0535290502011776, -0.03100646287202835, -0.04448200389742851, -0.05958065763115883, -0.012924461625516415, -0.09000098705291748, 0.029668889939785004, 0.3293215036392212, 0.008300657384097576, 0.08549219369888306, -0.08866890519857407, -0.0584903210401535, -0.011605240404605865, 0.035646211355924606, -0.016154006123542786, 0.08730344474315643, -0.04209943488240242, -0.18765148520469666, 0.013328458182513714, -0.01751030795276165, 0.017510084435343742, 0.13399440050125122, -0.012986193411052227, -0.09534227848052979, -0.06082037091255188, 0.014755060896277428, -0.015354197472333908, 0.1316920667886734, -0.010119589976966381, 0.021337095648050308, 0.03594207391142845, 0.049269627779722214, 0.008834846317768097, -0.11295193433761597, 0.04014419764280319, 0.04701995104551315, -0.019043799489736557, 0.0027894428931176662, -0.03838255628943443, -0.03728943690657616, 0.07883880287408829, 0.01107823196798563, -0.04373855143785477, -0.022551605477929115, -0.018545541912317276, -0.0886949747800827, 0.2034698873758316, -0.023432532325387, -0.1551995724439621, -0.09220030158758163, 0.11732319742441177, -0.0571465827524662, -0.010856343433260918, -0.03605241701006889, -0.01969090662896633, -0.09196937084197998, -0.10248818248510361, -0.018136782571673393, 0.0013428796082735062, 0.0028274841606616974, 0.004359617829322815, -0.05275455862283707, 0.026066266000270844, -0.13079333305358887, 0.0004598578962031752, -0.09673653542995453, 0.023092661052942276, -0.01654485985636711, 0.04492838680744171, 0.022855330258607864, 0.10748649388551712, -0.007540855091065168, 0.011374817229807377, -0.0007415079162456095, 0.2204110324382782, -0.08273795992136002, 0.011511414311826229, 0.11220672726631165, 0.004026338923722506, 0.006030363030731678, -0.005036965478211641, 0.0012968659866601229, -0.08779251575469971, 0.020901422947645187, 0.026569431647658348, -0.049599744379520416, -0.18078088760375977, -0.06070869788527489, -0.03967270627617836, -0.12620790302753448, 0.07439630478620529, 0.018198862671852112, -0.02916749194264412, 0.008618676103651524, -0.011617200449109077, 0.02161160483956337, -0.011715185828506947, 0.04041367769241333, 0.027024060487747192, 0.054229818284511566, 0.09617388993501663, -0.01966729573905468, -0.016928229480981827, 0.11660043150186539, -0.05334746837615967, 0.21792572736740112, -0.08065684884786606, 0.09819120168685913, 0.011685259640216827, 0.058936707675457, 0.0002500600821804255, 0.10754860937595367, 0.0021017666440457106, -0.008942492306232452, -0.022949418053030968, -0.02681036666035652, -0.0560990534722805, 0.08900262415409088, 0.0383804626762867, 0.057059671729803085, -0.08581240475177765, 0.0491463765501976, 0.044987332075834274, 0.2128441035747528, 0.09235749393701553, -0.258683443069458, -0.1352659910917282, 0.010241271927952766, -0.07646280527114868, -0.07453397661447525, -0.01495853066444397, 0.08544614911079407, -0.06685945391654968, 0.02403978630900383, -0.045950498431921005, 0.05991438403725624, -0.15759143233299255, 0.0008051255135796964, -0.03452995419502258, 0.08163529634475708, -0.02273399755358696, 0.019219035282731056, -0.10926515609025955, 0.11932599544525146, 0.010252781212329865, 0.16360683739185333, -0.0684964582324028, 0.007056249305605888, 0.06787610054016113, -0.022846123203635216, 0.08705379068851471, 0.03541463986039162, -0.050119783729314804, -0.07040022313594818, -0.14086243510246277, 0.04012663662433624, 0.009610187262296677, -0.06744871288537979, 0.09849479794502258, -0.004691931884735823, 0.03402739390730858, 0.007145007606595755, 0.03491248935461044, -0.02432369254529476, -0.08707962930202484, 0.057661715894937515, -0.03303917869925499, -0.016509773209691048, -0.019556894898414612, -0.07603850960731506, -0.01779443398118019, 0.15171945095062256, -0.042090434581041336, -0.07882040739059448, -0.15614233911037445, 0.048576753586530685, 0.0944371446967125, -0.05806002393364906, 0.026027953252196312, 0.059164728969335556, 0.07027856260538101, 0.012815785594284534, -0.07304582744836807, 0.03689897805452347, -0.04186279699206352, -0.14100636541843414, -0.011465035378932953, 0.04534529894590378, 0.1359092742204666, 0.06287092715501785, 0.033047422766685486, 0.036604929715394974, 0.0013907974353060126, -0.10116510093212128, 0.0315893329679966, 0.037205614149570465, 0.05701563507318497, 0.0512223094701767, 0.012899665161967278, -0.004816717468202114, -0.0643886998295784, 0.022659340873360634, 0.05926837399601936, 0.24200217425823212, -0.030484577640891075, 0.028097348287701607, 0.0896594226360321, -0.06755371391773224, -0.07586885243654251, -0.019578419625759125, 0.07610860466957092, 0.08539868146181107, 0.025824109092354774, -0.12441282719373703, 0.09228316694498062, 0.1102004200220108, -0.028136830776929855, 0.08917849510908127, -0.18442347645759583, -0.11123091727495193, 0.09801256656646729, 0.08257821947336197, 0.2472020983695984, -0.06727689504623413, 0.006674598902463913, 0.02294338308274746, 0.014404138550162315, 0.13053575158119202, 0.08550142496824265, 0.09894785284996033, -0.020493987947702408, -0.02361290715634823, 0.04763612523674965, -0.023574788123369217, 0.1190452054142952, 0.019299982115626335, 0.10267027467489243, 0.0013080601347610354, 0.022451400756835938, -0.06192776933312416, -0.07307670265436172, 0.15241502225399017, -0.07278907299041748, 0.052292026579380035, -0.18450549244880676, -0.0809895247220993, -0.03963007405400276, 0.05291470140218735, -0.005376865621656179, -0.0735253095626831, -0.04763494059443474, 0.06369395554065704, 0.07481550425291061, 0.027055345475673676, 0.035643044859170914, 0.008390191942453384, 0.0006005481700412929, 0.09808878600597382, 0.11969626694917679, 0.011132900603115559, -0.129691943526268, -0.02687322162091732, 0.02703341655433178, 0.04504189267754555, -0.1398509442806244, 0.028013339266180992, 0.1433340609073639, 0.006078710313886404, 0.17051686346530914, 0.013023299165070057, -0.09886223077774048, 0.03841964900493622, 0.02650664746761322, -0.09530536085367203, -0.15000836551189423, -0.018059788271784782, -0.10347304493188858, -0.12420640140771866, 0.027499815449118614, 0.13474687933921814, -0.07578302174806595, -0.011546480469405651, -0.02450510300695896, 0.04595053195953369, 0.013550923205912113, 0.15852132439613342, -0.02749336138367653, 0.045268766582012177, -0.07580417394638062, 0.10597702115774155, 0.009382822550833225, -0.012917581014335155, 0.05098896473646164, 0.011831190437078476, -0.06002606451511383, -0.017263786867260933, 0.0004540801455732435, 0.04754069074988365, -0.0503576397895813, -0.019443437457084656, -0.10911598056554794, -0.10922415554523468, 0.06595323234796524, 0.04939538612961769, 0.06707477569580078, 0.04306810349225998, -0.0784289687871933, -0.009587838314473629, -0.08427134156227112, 0.03593738377094269, 0.09062357246875763, -0.02868753857910633, -0.07116080820560455, 0.09537985175848007, -0.01567181386053562, -0.04623587056994438, -0.023624619469046593, -0.04800030216574669, -0.0651877224445343, -0.038385212421417236, -0.07321397960186005, -0.003145687747746706, -0.03592585772275925, 0.011365133337676525, -0.019870955497026443, -0.03808293491601944, -0.03346296772360802, 0.04902034252882004, -0.06152588129043579, -0.012078824453055859, 0.04061412811279297, 0.017887167632579803, -0.043469566851854324, -0.034264352172613144, -0.0030956296250224113, -0.08572544157505035, 0.10506092011928558, 0.05574000999331474, 0.017159637063741684, 0.06099865958094597, -0.017646264284849167, 0.06465590000152588, 0.0482807494699955, 0.025613190606236458, 0.04839041456580162, -0.13161055743694305, 0.022123200818896294, 0.019675126299262047, 0.02730369195342064, 0.003882994409650564, 0.011223584413528442, -0.050038453191518784, -0.07275824248790741, -0.012609980069100857, 0.027862923219799995, -0.08757241070270538, 0.008167078718543053, 0.0807105153799057, 0.06516045331954956, 0.16408851742744446, 0.0110150882974267, -0.0011961524141952395, -0.187001034617424, 0.0006514273700304329, 0.03358599916100502, -0.06346870958805084, -0.048070866614580154, -0.05853721499443054, 0.052954208105802536, -0.020767290145158768, 0.09377594292163849, -0.06044219806790352, -0.007338143885135651, 0.016591422259807587, 0.05966655910015106, -0.0005764930392615497, -0.010883127339184284, 0.07535766810178757, 0.04285430163145065, -0.0098874531686306, 0.0648704320192337, 0.05335553362965584, 0.06481746584177017, 0.04665528982877731, 0.1582670956850052, 0.0866302102804184, -0.031407199800014496, 0.14958058297634125, -0.04829370230436325, -0.09823240339756012, -0.10703551769256592, 0.058186665177345276, -0.08006305247545242, 0.09720293432474136, 0.028208870440721512, 0.08188756555318832, 0.076216921210289, -0.17459353804588318, 0.07559318095445633, 0.006010797340422869, -0.08116573095321655, -0.07679256051778793, -0.14176225662231445, -0.02389567531645298, -0.021452711895108223, 0.009153592400252819, -0.122569240629673, -0.011192617937922478, 0.05832625925540924, 0.029960833489894867, -0.02896411158144474, 0.014707601629197598, -0.08914364129304886, -0.00901141855865717, 0.12732155621051788, -0.028094230219721794, -0.029935268685221672, -0.025226691737771034, -0.03126870468258858, 0.003656017826870084, -0.03431006520986557, 0.09866665303707123, -0.038689155131578445, 0.02651332877576351, 0.049666453152894974, 0.07694632560014725, -0.08996909856796265, -0.01180528849363327, -0.027972262352705002, 0.05625121667981148, 0.11634650081396103, 0.040082670748233795, -0.02793877385556698, -0.02295266091823578, 0.1597501039505005, -0.02519000694155693, 0.03140747547149658, -0.14118210971355438, 0.1556297391653061, 0.04004844278097153, -0.027369702234864235, 0.050857942551374435, -0.0658007562160492, 0.02983713522553444, 0.16400961577892303, 0.032813604921102524, -0.02508663199841976, -0.040365833789110184, -0.0371629074215889, -0.027324456721544266, 0.002144000492990017, 0.05583753436803818, -0.0058692870661616325, 0.183821439743042, -0.04191023111343384, 0.09058500081300735, -0.057999733835458755, -0.0335191935300827, 0.07782388478517532, 0.07119406759738922, 0.019560137763619423, 0.03463662788271904, -0.05408277362585068, 0.033068835735321045, -0.04568396508693695, -0.1842649132013321, 0.04681855067610741, -0.07819947600364685, -0.13108016550540924, -0.01960238814353943, -0.08424514532089233, 0.019367193803191185, 0.12285536527633667, 0.01603972166776657, 0.006906281691044569, 0.07625038921833038, -0.01364207360893488, -0.11479777842760086, -0.08001720160245895, 0.08113852143287659, 0.025120120495557785, 0.1764397919178009, 0.025507882237434387, 0.07518763095140457, 0.06988540291786194, 0.01386006735265255, -0.10738012194633484, 0.08132979273796082, -0.022022614255547523, -0.0824161246418953, 0.061574164777994156, 0.11559323966503143, 0.002416865434497595, 0.11010655760765076, 0.032546985894441605, -0.02708740346133709, 0.0075780549086630344, -0.09200163185596466, -0.06904453784227371, -0.05015934258699417, 0.009020001627504826, -0.046808283776044846, 0.17930740118026733, 0.19036182761192322, -0.011459089815616608, -0.02319762483239174, -0.0321631133556366, 0.08815430849790573, 0.0369567796587944, 0.042821913957595825, 0.0011498979292809963, -0.20268985629081726, 0.04224253073334694, -0.061749398708343506, -0.024268468841910362, -0.15390846133232117, -0.06878798454999924, -0.021891692653298378, -0.10245250165462494, 0.010121961124241352, 0.0884474590420723, 0.0773111954331398, 0.04461011290550232, -0.04434199258685112, 0.073210708796978, -0.03315715864300728, 0.052493706345558167, -0.053305331617593765, -0.08046308904886246 ]
null
null
transformers
**[`microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext`](https://huggingface.co/microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext)** fine-tuned on **[`SQuAD V2`](https://rajpurkar.github.io/SQuAD-explorer/)** using **[`run_qa.py`](https://github.com/huggingface/transformers/blob/master/examples/pytorch/question-answering/run_qa.py)** Tunning script: ```bash BASE_MODEL=microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext OUTPUT_DIR=~/Documents/projects/tunned_models/ms_pubmed_bert_squadv2/ python run_qa.py \ --model_name_or_path $BASE_MODEL\ --dataset_name squad_v2 \ --do_train \ --do_eval \ --version_2_with_negative \ --per_device_train_batch_size 12 \ --learning_rate 3e-5 \ --num_train_epochs 2 \ --max_seq_length 384 \ --doc_stride 128 \ --output_dir $OUTPUT_DIR ```
{}
question-answering
franklu/pubmed_bert_squadv2
[ "transformers", "pytorch", "bert", "question-answering", "endpoints_compatible", "has_space", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #bert #question-answering #endpoints_compatible #has_space #region-us
'microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext' fine-tuned on 'SQuAD V2' using 'run_qa.py' Tunning script:
[]
[ "TAGS\n#transformers #pytorch #bert #question-answering #endpoints_compatible #has_space #region-us \n" ]
[ 33 ]
[ "passage: TAGS\n#transformers #pytorch #bert #question-answering #endpoints_compatible #has_space #region-us \n" ]
[ 0.028641704469919205, 0.02023528516292572, -0.008305855095386505, -0.013453598134219646, 0.052615392953157425, 0.02261492609977722, 0.023862462490797043, 0.11331193149089813, 0.11287842690944672, 0.0557795986533165, 0.18235570192337036, 0.1223069280385971, -0.08246519416570663, -0.032491594552993774, -0.06422608345746994, -0.21332383155822754, 0.05727168545126915, 0.05724051222205162, -0.06036756560206413, 0.10681156069040298, 0.029978977516293526, -0.1528063267469406, 0.035396695137023926, -0.0264067854732275, -0.06360721588134766, 0.06318709999322891, -0.021339772269129753, -0.05281760171055794, 0.13498277962207794, -0.00032954724156297743, 0.17833074927330017, 0.03908061981201172, -0.11864163726568222, -0.1306927502155304, 0.04004734754562378, -0.004878498148173094, -0.06482112407684326, 0.04957139864563942, 0.0010909970151260495, -0.07045625895261765, 0.0048000141978263855, 0.0009993386920541525, -0.001989399315789342, 0.020723838359117508, -0.17192408442497253, -0.18879008293151855, -0.06779136508703232, 0.004248274490237236, -0.00921912956982851, 0.08354418724775314, -0.04097416251897812, 0.17867131531238556, -0.1965058594942093, 0.06559012830257416, 0.23197400569915771, -0.352464884519577, -0.016779696568846703, 0.17321348190307617, 0.15662582218647003, 0.07208806276321411, -0.040375061333179474, 0.09815061837434769, 0.052515435963869095, 0.012904314324259758, -0.01637287065386772, -0.09187814593315125, -0.05609389767050743, 0.13098911941051483, -0.12248574197292328, -0.10625389218330383, 0.23859122395515442, -0.016637593507766724, 0.07854177057743073, 0.0036476205568760633, -0.09594347327947617, -0.036593470722436905, 0.050246432423591614, -0.011881813406944275, -0.002087575849145651, 0.021512243896722794, 0.004886094015091658, -0.04916087165474892, -0.14699463546276093, 0.03487745672464371, -0.22139744460582733, 0.21098396182060242, 0.0036723664961755276, 0.08606596291065216, -0.2097139060497284, 0.06616614013910294, -0.0499454103410244, -0.08898760378360748, 0.03456602990627289, -0.09109439700841904, 0.002052832394838333, 0.0274958573281765, -0.11893651634454727, 0.07052900642156601, 0.051262252032756805, 0.15392275154590607, -0.025356343016028404, 0.0058522713370621204, 0.03710735961794853, 0.10869840532541275, 0.07381509989500046, 0.10992635041475296, -0.058776985853910446, -0.015664873644709587, -0.06644060462713242, -0.08784998953342438, -0.0187784843146801, -0.06169469282031059, -0.10963042825460434, -0.08278761804103851, 0.00979439914226532, 0.08014523237943649, 0.1168283149600029, 0.02038281224668026, -0.0283750519156456, 0.03346683457493782, -0.01758994720876217, -0.016401715576648712, 0.007827580906450748, -0.008804825134575367, 0.0336495004594326, 0.12008561193943024, -0.037686798721551895, 0.015156401321291924, 0.025252237915992737, 0.047784678637981415, -0.08906958997249603, -0.012547565624117851, -0.03409154713153839, -0.07364542037248611, 0.05946425348520279, -0.11599152535200119, 0.05056403949856758, -0.13857564330101013, 0.0403558649122715, -0.009907146915793419, 0.044145308434963226, -0.023027274757623672, 0.004669283051043749, 0.07416504621505737, -0.07638192921876907, 0.02282637730240822, -0.06024695187807083, 0.005249826703220606, -0.06470440328121185, 0.08853676915168762, -0.015022986568510532, 0.11630389839410782, -0.10546484589576721, 0.06228712946176529, -0.05587564408779144, 0.05300292372703552, -0.07108756899833679, -0.05432799085974693, -0.029197724536061287, 0.09810204803943634, 0.0043332320638000965, -0.08944562822580338, -0.13806071877479553, 0.061631474643945694, -0.02844962291419506, 0.1301589459180832, -0.06582362949848175, -0.02232680842280388, 0.14200691878795624, -0.010198823176324368, -0.19916757941246033, 0.07715640962123871, -0.0084585165604949, -0.012665102258324623, -0.022589832544326782, 0.24483856558799744, -0.03307337313890457, -0.09004342555999756, -0.00862483587116003, 0.11597580462694168, -0.08379429578781128, -0.028129370883107185, 0.06614653766155243, -0.016454707831144333, -0.039400190114974976, -0.005318791139870882, 0.0019416152499616146, 0.02342931367456913, -0.07802563160657883, -0.04796881228685379, -0.04944846034049988, -0.005338022951036692, 0.10709980130195618, 0.05379393324255943, 0.08136478811502457, -0.09562724083662033, -0.02825159952044487, 0.011530769988894463, -0.025090252980589867, 0.07206360995769501, 0.04562275856733322, -0.022008804604411125, 0.16759449243545532, -0.13292478024959564, -0.017357241362333298, -0.20490780472755432, -0.11459586769342422, -0.05629625916481018, 0.10701287537813187, -0.009830659255385399, 0.3459521234035492, 0.0783998891711235, -0.1558152735233307, -0.023076901212334633, -0.03623494878411293, 0.07112863659858704, 0.040625810623168945, -0.05470621958374977, -0.0324874073266983, -0.004300794564187527, -0.09255512058734894, -0.0972311720252037, -0.025128211826086044, 0.01233888603746891, 0.09498517215251923, 0.1155402883887291, -0.02459999918937683, 0.06770480424165726, 0.007237904705107212, 0.04207361117005348, -0.022407684475183487, 0.02650793455541134, 0.07476351410150528, -0.046728115528821945, -0.07057648152112961, 0.14601638913154602, -0.12107483297586441, 0.30033862590789795, 0.20942100882530212, -0.30084067583084106, 0.004478742368519306, 0.01237719040364027, -0.06003216654062271, 0.04531586915254593, 0.044898875057697296, -0.03603702411055565, 0.030291195958852768, -0.01819690503180027, 0.05898982658982277, -0.027005087584257126, -0.06787692755460739, -0.03871983289718628, -0.06794825196266174, -0.07464250177145004, 0.08719445019960403, 0.0201493538916111, -0.13801127672195435, 0.18713250756263733, 0.3951479494571686, -0.0004183686396572739, 0.10610802471637726, -0.012284625321626663, -0.03640790656208992, -0.022030269727110863, -0.012001165188848972, -0.08557818830013275, 0.0884086936712265, -0.2555142641067505, -0.055977072566747665, 0.10062441974878311, 0.010629248805344105, 0.07721445709466934, -0.13307783007621765, -0.08835024386644363, 0.030008483678102493, 0.05965900421142578, -0.10150077939033508, 0.1472359299659729, 0.0723249614238739, 0.09595911204814911, 0.044287193566560745, -0.021694213151931763, 0.06221882253885269, -0.011878587305545807, -0.018740925937891006, 0.1085626631975174, -0.08878327906131744, -0.21963635087013245, -0.011727945879101753, -0.05589006468653679, 0.018400778993964195, -0.0023969323374330997, 0.10405591875314713, -0.07581241428852081, 0.012037433683872223, 0.04396369308233261, 0.02349206805229187, -0.19797295331954956, 0.030562568455934525, -0.07165749371051788, 0.010811160318553448, -0.0934496596455574, -0.07782158255577087, -0.07827120274305344, -0.06856789439916611, -0.07185117900371552, 0.13287371397018433, -0.03459933027625084, 0.10810165107250214, 0.11851541697978973, 0.016825657337903976, 0.04362141340970993, -0.024311941117048264, 0.2680497169494629, -0.11867261677980423, -0.01451937761157751, 0.16904696822166443, 0.020496200770139694, 0.08219729363918304, 0.1639331877231598, 0.03637241572141647, -0.05292202904820442, 0.009755921550095081, -0.0004806446086149663, -0.09075108170509338, -0.16605627536773682, -0.06828929483890533, -0.13562946021556854, 0.012890483252704144, -0.01821915991604328, 0.04425152391195297, 0.0926651805639267, 0.041356317698955536, 0.02889275550842285, -0.13227811455726624, -0.09994542598724365, 0.049105096608400345, 0.23933276534080505, -0.09307945519685745, 0.13276860117912292, -0.03862249478697777, -0.11538369208574295, 0.053216636180877686, 0.1083221286535263, 0.10079862922430038, 0.11090066283941269, -0.05796963348984718, 0.09900862723588943, 0.18806156516075134, 0.13408516347408295, 0.050012268126010895, -0.0035449580755084753, -0.059535734355449677, -0.04179368540644646, -0.008168677799403667, -0.015169022604823112, 0.08701004832983017, 0.22983801364898682, -0.14744310081005096, -0.026111822575330734, -0.2543432414531708, 0.09571106731891632, 0.022691382095217705, 0.10404760390520096, -0.061400845646858215, 0.021915461868047714, 0.11083897948265076, -0.014873456209897995, -0.027481604367494583, 0.07626368850469589, 0.1274799257516861, -0.11375987529754639, -0.01790372096002102, 0.013921963050961494, 0.12495129555463791, 0.1061459332704544, 0.1083468347787857, -0.10120967775583267, -0.2187497615814209, 0.03969380632042885, 0.06637531518936157, -0.25845757126808167, 0.28471457958221436, -0.016194265335798264, -0.1600424349308014, -0.04200153797864914, -0.05453067272901535, -0.009838664904236794, 0.12020561844110489, 0.13895799219608307, 0.035222265869379044, -0.07509000599384308, -0.08133567124605179, 0.1025431901216507, 0.02236170694231987, 0.13185256719589233, -0.055296022444963455, 0.005514450836926699, -0.0032803150825202465, 0.030786527320742607, -0.007592587731778622, 0.23403899371623993, 0.044799141585826874, -0.11799971759319305, 0.0635385662317276, 0.013626915402710438, -0.020162349566817284, -0.016242343932390213, -0.03493589162826538, -0.15130336582660675, 0.072281613945961, 0.004957307130098343, -0.022486818954348564, -0.08212685585021973, -0.11801522225141525, 0.16563838720321655, -0.05409945547580719, 0.032696399837732315, -0.059584327042102814, -0.07070671021938324, -0.0770844891667366, -0.10462285578250885, 0.13742153346538544, -0.08227157592773438, -0.006330243777483702, -0.03245343640446663, 0.14152087271213531, -0.1138075590133667, 0.06640162318944931, -0.005248386412858963, 0.09757526218891144, -0.20767521858215332, -0.10292565077543259, 0.04834993928670883, -0.10104452818632126, 0.09971966594457626, 0.039611101150512695, 0.006312994286417961, 0.1039416715502739, 0.05741740018129349, 0.05117253214120865, 0.21797437965869904, 0.20387539267539978, -0.09963090717792511, 0.08741676062345505, 0.07728763669729233, 0.0232711024582386, -0.28921273350715637, -0.04188835248351097, -0.17557163536548615, -0.03596534952521324, 0.04383648931980133, -0.035775039345026016, 0.07700215280056, -0.00578467920422554, -0.07555031031370163, 0.043621886521577835, -0.2228745073080063, -0.04244578629732132, 0.1232663244009018, -0.05929897353053093, 0.46111783385276794, -0.14265049993991852, -0.05045749619603157, 0.05002274736762047, -0.2306341975927353, 0.10241606831550598, -0.050340697169303894, 0.07135145366191864, -0.03203010931611061, 0.10003495216369629, 0.04181680828332901, -0.08924002200365067, 0.18013004958629608, -0.029255766421556473, 0.011791633442044258, -0.0788058489561081, -0.17975127696990967, 0.06763770431280136, -0.03368663415312767, -0.01875864528119564, 0.004333396442234516, 0.02026548981666565, -0.2085239589214325, 0.027117829769849777, -0.1677195131778717, 0.0807153731584549, -0.005277292802929878, -0.050762951374053955, -0.0722011998295784, -0.0025612066965550184, 0.012648671865463257, 0.011067075654864311, 0.279743492603302, -0.07949410378932953, 0.21450495719909668, 0.04201117157936096, 0.055992938578128815, -0.16912831366062164, -0.10141179710626602, 0.022060273215174675, -0.04100387170910835, 0.10762691497802734, -0.11890658736228943, 0.035106539726257324, 0.14487695693969727, -0.020321756601333618, 0.016525905579328537, 0.12048502266407013, 0.02440999448299408, -0.008481708355247974, 0.11553236097097397, -0.2108369767665863, -0.16542115807533264, -0.013552875258028507, -0.031216342002153397, 0.059641316533088684, 0.04458390548825264, 0.07684425264596939, 0.0661812499165535, -0.023217741400003433, 0.01611611247062683, -0.05570003762841225, -0.06839383393526077, -0.018385473638772964, 0.10767343640327454, 0.06915290653705597, -0.07384251058101654, 0.010082356631755829, 0.019727397710084915, -0.2243271917104721, -0.02651735208928585, 0.06636926531791687, -0.046370673924684525, -0.15894365310668945, -0.1339006870985031, -0.026890946552157402, -0.11073534935712814, 0.012491635978221893, 0.013720512390136719, -0.0900292843580246, 0.032838124781847, 0.198047935962677, 0.1054874062538147, 0.053604260087013245, 0.012314865365624428, -0.016874033957719803, 0.09728541225194931, -0.028692619875073433, -0.05339480936527252, 0.014565527439117432, -0.059237197041511536, -0.017832225188612938, -0.03419492766261101, 0.1878274381160736, -0.09350574761629105, -0.05126237869262695, -0.17624926567077637, 0.03941213712096214, -0.13241079449653625, -0.14789918065071106, -0.10782664269208908, -0.10386683791875839, 0.011101062409579754, -0.1453453004360199, -0.05377018824219704, -0.04043861851096153, -0.1476110965013504, 0.038126200437545776, 0.031253669410943985, 0.05469880253076553, -0.10025851428508759, -0.041552379727363586, 0.15102867782115936, -0.029222166165709496, 0.08213281631469727, 0.11117527633905411, -0.09069839864969254, 0.05415499582886696, -0.0408017635345459, -0.16723492741584778, 0.042297542095184326, 0.015574123710393906, 0.08020937442779541, 0.045825183391571045, -0.03605237230658531, 0.016967635601758957, 0.08305924385786057, 0.07189524918794632, -0.04885087534785271, -0.07307285815477371, 0.017793716862797737, 0.022801803424954414, -0.1636313945055008, -0.007604134269058704, -0.11097021400928497, 0.12731631100177765, 0.030135490000247955, 0.05314647778868675, 0.03916415199637413, 0.09195225685834885, -0.07949955761432648, 0.0281930323690176, -0.022037098184227943, -0.15160246193408966, 0.05191952735185623, -0.04860731214284897, 0.03382440283894539, -0.026031292974948883, 0.2769553065299988, -0.021026836708188057, 0.01507521327584982, 0.053798362612724304, 0.08555770665407181, 0.041300904005765915, -0.001647463534027338, 0.1843649446964264, 0.08871262520551682, -0.07690904289484024, -0.07419527322053909, 0.07246056199073792, -0.0486849769949913, -0.034091562032699585, 0.12420468777418137, 0.18227548897266388, 0.13213281333446503, 0.0836532860994339, 0.011984532698988914, 0.007991399616003036, -0.0828685462474823, -0.20533612370491028, 0.02794930711388588, 0.02989857643842697, -0.07305004447698593, 0.044203925877809525, 0.1480218768119812, -0.03672251105308533, 0.07839605212211609, -0.07702262699604034, 0.02712063491344452, -0.12362361699342728, -0.044687025249004364, -0.03462943807244301, -0.10125651210546494, 0.007229356560856104, -0.09888865053653717, 0.026903459802269936, 0.1840762495994568, 0.051069475710392, -0.017841951921582222, 0.13398604094982147, 0.03828863054513931, -0.04255344346165657, 0.00008009857265278697, 0.020572604611516, 0.11005823314189911, -0.01722220703959465, 0.04442085325717926, -0.1054648831486702, -0.06426437199115753, -0.05146107077598572, 0.04279885068535805, -0.12877202033996582, -0.066754050552845, -0.13331204652786255, -0.08982452005147934, -0.08809585124254227, 0.073927141726017, -0.027931302785873413, 0.1746222823858261, -0.020499922335147858, 0.04546436667442322, -0.01599176973104477, 0.28086692094802856, -0.13260236382484436, -0.004132631700485945, -0.01191368792206049, 0.15186233818531036, 0.007710141129791737, 0.10306168347597122, -0.041452862322330475, 0.0013137280475348234, -0.1206393614411354, 0.24667266011238098, 0.2794508635997772, -0.09926029294729233, 0.08749913424253464, 0.0910513624548912, 0.03742379695177078, 0.0768221765756607, -0.012965700589120388, 0.12447807192802429, 0.2360585629940033, -0.1141129732131958, -0.016465917229652405, -0.037802085280418396, 0.005405513569712639, -0.030435124412178993, 0.05357780307531357, 0.06594614684581757, -0.0890134871006012, -0.0675276666879654, 0.06108339503407478, -0.1281622350215912, 0.07053118944168091, 0.0581144243478775, -0.26296359300613403, -0.06237475946545601, 0.017691418528556824, 0.22228728234767914, -0.051736120134592056, 0.13793587684631348, -0.04223041236400604, -0.11220144480466843, 0.0031467610970139503, 0.022387899458408356, -0.16469664871692657, -0.03398870304226875, 0.16980813443660736, 0.007585189770907164, 0.012311160564422607, -0.02521430142223835, 0.0023016848135739565, 0.10093799233436584, 0.047748468816280365, -0.03800211846828461, 0.028459938243031502, 0.10995965451002121, -0.1324981451034546, -0.14013095200061798, 0.0004068629059474915, 0.04496366158127785, -0.08253134042024612, 0.12253602594137192, -0.2294178307056427, 0.05045977979898453, 0.03645137697458267, 0.011230742558836937, -0.04413529485464096, 0.010829386301338673, -0.04757727310061455, 0.04384390264749527, 0.06607715785503387, -0.022106314077973366, -0.04290756583213806, -0.008548798970878124, -0.04139992967247963, 0.042644988745450974, -0.052309002727270126, -0.1766660511493683, 0.014903297647833824, -0.038176920264959335, 0.046380627900362015, -0.03207212686538696, -0.0609755702316761, -0.055980972945690155, 0.04062288999557495, 0.08386347442865372, -0.02964198589324951, 0.005953558254987001, 0.06521865725517273, 0.023121457546949387, 0.004171831998974085, -0.10593096911907196, 0.02666141279041767, 0.06666286289691925, -0.13685345649719238, -0.0373920314013958 ]
null
null
transformers
# CSP-Darknet-53 model Pretrained on [ImageNette](https://github.com/fastai/imagenette). The CSP-Darknet-53 architecture was introduced in [this paper](https://arxiv.org/pdf/1911.11929.pdf). ## Model description The core idea of the author is to change the convolutional stage by adding cross stage partial blocks in the architecture. ## Installation ### Prerequisites Python 3.6 (or higher) and [pip](https://pip.pypa.io/en/stable/)/[conda](https://docs.conda.io/en/latest/miniconda.html) are required to install Holocron. ### Latest stable release You can install the last stable release of the package using [pypi](https://pypi.org/project/pylocron/) as follows: ```shell pip install pylocron ``` or using [conda](https://anaconda.org/frgfm/pylocron): ```shell conda install -c frgfm pylocron ``` ### Developer mode Alternatively, if you wish to use the latest features of the project that haven't made their way to a release yet, you can install the package from source *(install [Git](https://git-scm.com/book/en/v2/Getting-Started-Installing-Git) first)*: ```shell git clone https://github.com/frgfm/Holocron.git pip install -e Holocron/. ``` ## Usage instructions ```python from PIL import Image from torchvision.transforms import Compose, ConvertImageDtype, Normalize, PILToTensor, Resize from torchvision.transforms.functional import InterpolationMode from holocron.models import model_from_hf_hub model = model_from_hf_hub("frgfm/cspdarknet53").eval() img = Image.open(path_to_an_image).convert("RGB") # Preprocessing config = model.default_cfg transform = Compose([ Resize(config['input_shape'][1:], interpolation=InterpolationMode.BILINEAR), PILToTensor(), ConvertImageDtype(torch.float32), Normalize(config['mean'], config['std']) ]) input_tensor = transform(img).unsqueeze(0) # Inference with torch.inference_mode(): output = model(input_tensor) probs = output.squeeze(0).softmax(dim=0) ``` ## Citation Original paper ```bibtex @article{DBLP:journals/corr/abs-1911-11929, author = {Chien{-}Yao Wang and Hong{-}Yuan Mark Liao and I{-}Hau Yeh and Yueh{-}Hua Wu and Ping{-}Yang Chen and Jun{-}Wei Hsieh}, title = {CSPNet: {A} New Backbone that can Enhance Learning Capability of {CNN}}, journal = {CoRR}, volume = {abs/1911.11929}, year = {2019}, url = {http://arxiv.org/abs/1911.11929}, eprinttype = {arXiv}, eprint = {1911.11929}, timestamp = {Tue, 03 Dec 2019 20:41:07 +0100}, biburl = {https://dblp.org/rec/journals/corr/abs-1911-11929.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } ``` Source of this implementation ```bibtex @software{Fernandez_Holocron_2020, author = {Fernandez, François-Guillaume}, month = {5}, title = {{Holocron}}, url = {https://github.com/frgfm/Holocron}, year = {2020} } ```
{"license": "apache-2.0", "tags": ["image-classification", "pytorch"], "datasets": ["frgfm/imagenette"]}
image-classification
frgfm/cspdarknet53
[ "transformers", "pytorch", "image-classification", "dataset:frgfm/imagenette", "arxiv:1911.11929", "license:apache-2.0", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[ "1911.11929" ]
[]
TAGS #transformers #pytorch #image-classification #dataset-frgfm/imagenette #arxiv-1911.11929 #license-apache-2.0 #endpoints_compatible #region-us
# CSP-Darknet-53 model Pretrained on ImageNette. The CSP-Darknet-53 architecture was introduced in this paper. ## Model description The core idea of the author is to change the convolutional stage by adding cross stage partial blocks in the architecture. ## Installation ### Prerequisites Python 3.6 (or higher) and pip/conda are required to install Holocron. ### Latest stable release You can install the last stable release of the package using pypi as follows: or using conda: ### Developer mode Alternatively, if you wish to use the latest features of the project that haven't made their way to a release yet, you can install the package from source *(install Git first)*: ## Usage instructions Original paper Source of this implementation
[ "# CSP-Darknet-53 model\n\nPretrained on ImageNette. The CSP-Darknet-53 architecture was introduced in this paper.", "## Model description\n\nThe core idea of the author is to change the convolutional stage by adding cross stage partial blocks in the architecture.", "## Installation", "### Prerequisites\n\nPython 3.6 (or higher) and pip/conda are required to install Holocron.", "### Latest stable release\n\nYou can install the last stable release of the package using pypi as follows:\n\n\n\nor using conda:", "### Developer mode\n\nAlternatively, if you wish to use the latest features of the project that haven't made their way to a release yet, you can install the package from source *(install Git first)*:", "## Usage instructions\n\n\n\n\nOriginal paper\n\n\n\nSource of this implementation" ]
[ "TAGS\n#transformers #pytorch #image-classification #dataset-frgfm/imagenette #arxiv-1911.11929 #license-apache-2.0 #endpoints_compatible #region-us \n", "# CSP-Darknet-53 model\n\nPretrained on ImageNette. The CSP-Darknet-53 architecture was introduced in this paper.", "## Model description\n\nThe core idea of the author is to change the convolutional stage by adding cross stage partial blocks in the architecture.", "## Installation", "### Prerequisites\n\nPython 3.6 (or higher) and pip/conda are required to install Holocron.", "### Latest stable release\n\nYou can install the last stable release of the package using pypi as follows:\n\n\n\nor using conda:", "### Developer mode\n\nAlternatively, if you wish to use the latest features of the project that haven't made their way to a release yet, you can install the package from source *(install Git first)*:", "## Usage instructions\n\n\n\n\nOriginal paper\n\n\n\nSource of this implementation" ]
[ 54, 36, 30, 2, 27, 27, 46, 10 ]
[ "passage: TAGS\n#transformers #pytorch #image-classification #dataset-frgfm/imagenette #arxiv-1911.11929 #license-apache-2.0 #endpoints_compatible #region-us \n# CSP-Darknet-53 model\n\nPretrained on ImageNette. The CSP-Darknet-53 architecture was introduced in this paper.## Model description\n\nThe core idea of the author is to change the convolutional stage by adding cross stage partial blocks in the architecture.## Installation### Prerequisites\n\nPython 3.6 (or higher) and pip/conda are required to install Holocron.### Latest stable release\n\nYou can install the last stable release of the package using pypi as follows:\n\n\n\nor using conda:### Developer mode\n\nAlternatively, if you wish to use the latest features of the project that haven't made their way to a release yet, you can install the package from source *(install Git first)*:## Usage instructions\n\n\n\n\nOriginal paper\n\n\n\nSource of this implementation" ]
[ -0.04365096613764763, 0.1909085363149643, -0.0002041153347818181, -0.062197864055633545, 0.06339059770107269, 0.0021461627911776304, 0.0230079498142004, 0.07426035404205322, -0.060098614543676376, 0.04190697520971298, 0.11113312095403671, 0.12548038363456726, 0.08514893054962158, 0.1600957065820694, 0.01901354268193245, -0.23478052020072937, -0.009899471886456013, 0.07046626508235931, 0.07021907716989517, 0.09283086657524109, 0.07742127031087875, -0.05114305764436722, 0.04916731268167496, 0.054911985993385315, -0.12502266466617584, -0.031623613089323044, -0.09667637944221497, -0.03682904317975044, 0.03665447235107422, 0.0066263736225664616, 0.05678491294384003, 0.03911439701914787, 0.07843629270792007, -0.004127663094550371, 0.010000094771385193, 0.08542272448539734, 0.019141636788845062, 0.06637123972177505, 0.09225209057331085, -0.018464475870132446, 0.16742470860481262, -0.09256451576948166, -0.01756233349442482, -0.014219841919839382, 0.013641592115163803, -0.14208005368709564, -0.11245700716972351, 0.14243867993354797, 0.09104765951633453, 0.08987630903720856, 0.02536798268556595, 0.17337840795516968, 0.0963318720459938, 0.047646619379520416, 0.14947429299354553, -0.170518159866333, -0.0644470751285553, 0.0814160704612732, -0.01213911548256874, 0.08757144212722778, 0.02856414020061493, -0.00599225889891386, 0.05940435454249382, 0.0558759979903698, 0.02626083977520466, -0.025909611955285072, -0.059710342437028885, -0.07364561408758163, -0.19108645617961884, -0.03146273270249367, 0.20966213941574097, -0.038677386939525604, -0.07087600976228714, -0.005416635423898697, -0.09466525912284851, -0.04882713779807091, 0.02474905550479889, 0.04341240972280502, 0.03104350157082081, 0.016109352931380272, 0.06589721143245697, -0.19948799908161163, -0.13843606412410736, 0.016096560284495354, -0.03151180222630501, 0.22647106647491455, 0.0508541502058506, 0.07305052876472473, 0.043426454067230225, 0.1329667866230011, -0.11137479543685913, -0.05020320788025856, -0.07222708314657211, -0.03411530330777168, 0.06935698539018631, -0.0032387031242251396, 0.03466618433594704, -0.13438785076141357, 0.015494517982006073, 0.08355741947889328, -0.07574569433927536, -0.03012172132730484, -0.007246281486004591, 0.0727563425898552, 0.02774205431342125, 0.110993392765522, -0.10143959522247314, 0.09505954384803772, 0.1036803275346756, -0.06116075441241264, 0.13395994901657104, 0.008904851973056793, -0.08487676829099655, -0.014660755172371864, 0.005434867460280657, -0.0035982774570584297, 0.05524929612874985, 0.05145779997110367, 0.06970188021659851, -0.019535893574357033, 0.18413639068603516, -0.06551078706979752, -0.026167787611484528, -0.06482543796300888, -0.012095192447304726, 0.10033885389566422, 0.15298116207122803, 0.010920177213847637, -0.047707147896289825, 0.07380177080631256, -0.0018154855351895094, -0.025329647585749626, -0.0703662633895874, -0.02565891668200493, 0.043207913637161255, -0.13128170371055603, -0.008353188633918762, -0.16193681955337524, -0.1613120585680008, 0.002105054445564747, 0.09361618757247925, 0.010312926955521107, -0.022426815703511238, 0.14802376925945282, -0.039480723440647125, -0.059280067682266235, -0.006935125682502985, -0.03658032417297363, -0.060960762202739716, 0.05670815333724022, -0.030956344678997993, -0.01140278484672308, -0.1976328343153, 0.001968178665265441, -0.06434746086597443, 0.0707661435008049, -0.20977459847927094, -0.03246288001537323, -0.003985941875725985, 0.052375342696905136, -0.06323163211345673, -0.11306340247392654, -0.024024324491620064, -0.026751622557640076, 0.008777182549238205, 0.07603060454130173, -0.0014756276505067945, 0.007239626254886389, 0.051749181002378464, -0.19015246629714966, -0.04266718029975891, 0.04810100793838501, 0.050947628915309906, 0.08824870735406876, 0.0027392376214265823, 0.013649309054017067, 0.12300879508256912, -0.26581871509552, -0.047629464417696, 0.10221894830465317, -0.056042805314064026, -0.04509476572275162, 0.07998187094926834, 0.027661839500069618, -0.02779996581375599, 0.010191930457949638, -0.18376658856868744, 0.0897921621799469, -0.010586149990558624, -0.03254014998674393, -0.05815473943948746, -0.07555453479290009, -0.11318766325712204, 0.08430387824773788, 0.024402497336268425, 0.059300318360328674, -0.05433891341090202, -0.0471528097987175, 0.1541702151298523, -0.07373093068599701, -0.004607469774782658, -0.01008123904466629, 0.13574792444705963, -0.0938873440027237, -0.04653344675898552, -0.06865864992141724, -0.001243783044628799, 0.07661067694425583, -0.02373415045440197, -0.006675912532955408, -0.053207430988550186, 0.03807445615530014, 0.12039352208375931, 0.011337916366755962, -0.011086738668382168, 0.10084723681211472, -0.06902673840522766, -0.011966446414589882, -0.05590201914310455, -0.07355320453643799, -0.02270178683102131, 0.2965458333492279, -0.1279226392507553, 0.038042038679122925, 0.08008719235658646, 0.09780991822481155, -0.07064878940582275, -0.05969524383544922, 0.04528200998902321, -0.09450797736644745, -0.04371566325426102, -0.09309011697769165, 0.03813330456614494, 0.12453048676252365, -0.015051806345582008, 0.020065970718860626, -0.05241050198674202, -0.15764707326889038, 0.11110054701566696, -0.020261187106370926, -0.04883534088730812, -0.006674628239125013, -0.11684871464967728, -0.03828642889857292, 0.0013367742067202926, -0.03716346621513367, 0.04068220779299736, -0.029546372592449188, 0.07640818506479263, -0.0591413713991642, -0.07004712522029877, 0.046645183116197586, -0.057594384998083115, -0.05737096816301346, -0.0001705071044852957, 0.1070263683795929, -0.11272896826267242, 0.0803416296839714, -0.023697663098573685, -0.2068653702735901, 0.06306957453489304, 0.012398283928632736, -0.08079233765602112, 0.01202908344566822, 0.12736275792121887, 0.039123136550188065, 0.11817224323749542, -0.08897371590137482, -0.05106433480978012, 0.04548054188489914, -0.16040343046188354, 0.09283888339996338, -0.14651775360107422, 0.03026534430682659, -0.03934025764465332, 0.0007885441300459206, 0.15158501267433167, -0.00035749099333770573, -0.0573960617184639, 0.0362112857401371, 0.031357306987047195, 0.0446501262485981, -0.006925468798726797, 0.028248706832528114, -0.10569357126951218, 0.11841190606355667, -0.0868908017873764, -0.2138364315032959, -0.13481909036636353, 0.0153735913336277, -0.05449269339442253, 0.04566227272152901, 0.0017319362377747893, -0.03624465689063072, -0.05385288968682289, -0.050477683544158936, -0.05528680980205536, -0.10451663285493851, -0.03052387200295925, -0.06462237983942032, -0.021487178280949593, -0.030452894046902657, -0.038535960018634796, -0.03595629706978798, 0.01010286994278431, -0.09712349623441696, 0.08787897229194641, -0.07834454625844955, 0.09065317362546921, 0.15301966667175293, -0.03626951202750206, 0.03680960088968277, 0.03756048157811165, 0.0929822027683258, -0.07817036658525467, 0.07263412326574326, 0.20256249606609344, 0.013842145912349224, 0.03341404348611832, 0.058837320655584335, -0.004972638096660376, 0.015530851669609547, -0.031101340427994728, -0.047731392085552216, -0.11364663392305374, -0.14407646656036377, -0.06670037657022476, -0.029379507526755333, -0.02137093059718609, 0.10592839866876602, 0.09629228711128235, 0.05273313820362091, 0.16176854074001312, -0.10298728197813034, -0.005993493366986513, 0.024136904627084732, 0.15414735674858093, -0.003986071795225143, -0.031147241592407227, 0.007079435512423515, -0.011752133257687092, -0.011599643155932426, 0.12436272203922272, 0.0495184101164341, 0.10374526679515839, -0.11658613383769989, 0.02230994962155819, 0.04081223905086517, 0.15756738185882568, -0.010766307823359966, 0.05798497423529625, 0.007738299202173948, 0.0692133978009224, 0.020290222018957138, -0.12518543004989624, -0.023007355630397797, 0.09420150518417358, -0.08313896507024765, -0.05517391487956047, 0.08170739561319351, -0.003923834301531315, -0.018398718908429146, 0.2875995934009552, -0.04614774510264397, -0.2747230529785156, -0.007170503959059715, -0.02294192463159561, 0.0603395476937294, -0.14525550603866577, -0.00629577599465847, 0.010666146874427795, -0.07697835564613342, 0.1359821856021881, -0.06309716403484344, 0.026005558669567108, -0.1254923939704895, -0.09020224958658218, 0.10315104573965073, 0.08194752782583237, 0.06240316852927208, 0.05862405523657799, -0.020119069144129753, 0.0519028939306736, 0.023041781038045883, 0.03530719876289368, -0.07717453688383102, 0.05867796018719673, 0.0021233074367046356, 0.1412961483001709, 0.11632075905799866, 0.025911634787917137, 0.09307145327329636, -0.004079715348780155, -0.045048728585243225, -0.005985592026263475, 0.02584417723119259, -0.04819635674357414, 0.028965821489691734, -0.00438759895041585, -0.043206751346588135, -0.046384334564208984, -0.10733486711978912, -0.02034566178917885, -0.07974664866924286, 0.13164189457893372, 0.00482780858874321, -0.013874633237719536, -0.10715990513563156, -0.03022865764796734, -0.0411376953125, 0.2620033621788025, -0.02812846563756466, -0.1432744562625885, -0.08464104682207108, 0.027680570259690285, 0.04152815788984299, 0.008377456106245518, 0.03464425727725029, -0.14165355265140533, 0.11561219394207001, -0.06267844885587692, -0.07231798768043518, -0.07775392383337021, -0.10687211900949478, -0.06698291748762131, 0.0505133718252182, 0.14827822148799896, 0.03605988621711731, -0.00680892588570714, -0.012751755304634571, 0.02239210344851017, -0.07539886981248856, -0.053553368896245956, -0.017414553090929985, 0.15401111543178558, 0.18411371111869812, 0.010808385908603668, -0.028622692450881004, 0.034043800085783005, -0.025293506681919098, -0.04867784306406975, 0.07464662939310074, 0.11767500638961792, -0.06463636457920074, -0.011069093830883503, 0.11408455669879913, -0.0754919946193695, -0.1800238937139511, 0.003961315378546715, 0.09143105894327164, -0.07100961357355118, -0.19672290980815887, -0.1413661688566208, 0.11005810648202896, 0.12888073921203613, -0.05458609759807587, 0.09398506581783295, -0.1592274010181427, -0.02351493388414383, 0.05588952824473381, 0.03385433554649353, 0.07742492109537125, -0.1974492222070694, -0.01777988113462925, -0.03381636366248131, -0.16418568789958954, 0.05154469236731529, -0.07001462578773499, 0.0514652393758297, -0.004223869647830725, -0.012201394885778427, 0.052745234221220016, -0.10010366886854172, 0.09886724501848221, -0.09375301748514175, -0.03238643333315849, -0.048252299427986145, 0.025403711944818497, 0.08882518857717514, -0.03925658389925957, 0.15104106068611145, 0.0848236009478569, 0.03403892740607262, -0.033434297889471054, -0.0242308359593153, -0.0962003543972969, 0.14877323806285858, -0.018963566049933434, -0.07027338445186615, -0.10820918530225754, -0.0003840822319034487, 0.05373390018939972, 0.01182306744158268, 0.07899899035692215, 0.023076370358467102, 0.04744074121117592, 0.12283267825841904, -0.016367515549063683, 0.008738506585359573, -0.06082144007086754, -0.01543418224900961, -0.030161013826727867, 0.03824738785624504, -0.04822833836078644, -0.05244026333093643, 0.07369504868984222, 0.07540687918663025, 0.04687562212347984, -0.013708052225410938, -0.1358933001756668, -0.06891889125108719, 0.038549553602933884, -0.23109377920627594, -0.004148908890783787, -0.05803796648979187, 0.1102500632405281, 0.046044111251831055, 0.042909298092126846, 0.1254953145980835, -0.07937393337488174, -0.03836048021912575, 0.04748846963047981, 0.023338036611676216, -0.04223432019352913, 0.03241821750998497, 0.03480798378586769, -0.03329385071992874, -0.0755595937371254, 0.08191139250993729, 0.09209918230772018, 0.0031356154941022396, -0.04441571608185768, 0.1180691123008728, -0.09838369488716125, -0.05484994128346443, 0.047329265624284744, -0.16401445865631104, -0.07396909594535828, -0.09602529555559158, 0.028100816532969475, 0.006223578937351704, -0.04492770507931709, 0.11747615784406662, 0.03458984196186066, -0.02142578549683094, 0.08427995443344116, 0.07325534522533417, -0.11187305301427841, 0.02703900635242462, -0.04125833511352539, 0.08834826201200485, -0.15060041844844818, 0.16039526462554932, 0.035383425652980804, 0.08971717208623886, -0.038980018347501755, 0.0026779603213071823, -0.018616288900375366, -0.018031619489192963, -0.029276875779032707, 0.09116455167531967, -0.09253175556659698, -0.03438306972384453, 0.032830994576215744, 0.008489001542329788, -0.015574214980006218, 0.04770204424858093, -0.050022415816783905, 0.0060379886999726295, -0.045077599585056305, -0.02310367487370968, -0.016226258128881454, -0.035699088126420975, -0.0064392839558422565, -0.08209093660116196, 0.0646623969078064, 0.10881559550762177, -0.023827632889151573, -0.04779580608010292, -0.06165951117873192, -0.00630459189414978, 0.09125920385122299, 0.03367563709616661, -0.04767495021224022, -0.04728006571531296, 0.040026091039180756, 0.04570627212524414, -0.0699758380651474, -0.022793123498558998, 0.15178585052490234, -0.07613391429185867, 0.009327198378741741, -0.009738019667565823, -0.004116589669138193, -0.08421433717012405, 0.05750197917222977, 0.04923320934176445, 0.13347476720809937, -0.02592538855969906, -0.04284996911883354, 0.026368161663413048, -0.047837283462285995, -0.023593129590153694, -0.025103600695729256, -0.05821399763226509, 0.07451112568378448, 0.019142700359225273, -0.005997799802571535, 0.04052277281880379, 0.15256936848163605, 0.033823639154434204, 0.01500050537288189, -0.004847477190196514, 0.06515003740787506, 0.06079743430018425, -0.003224459709599614, 0.060510002076625824, -0.024179695174098015, 0.043581150472164154, 0.025532515719532967, 0.04996247589588165, 0.042426273226737976, -0.13041910529136658, 0.03141926974058151, -0.015746857970952988, 0.06279680132865906, 0.06577610969543457, 0.03182639926671982, -0.05998324230313301, -0.1473187357187271, -0.04784059524536133, 0.01637423224747181, 0.11325787752866745, -0.13734328746795654, 0.19597750902175903, 0.13239875435829163, -0.10604948550462723, -0.05931200459599495, 0.04484301060438156, -0.04903454706072807, -0.09059935063123703, -0.1789226531982422, -0.03257469832897186, -0.0810132622718811, 0.0323575884103775, -0.020820049569010735, 0.006219437345862389, 0.015795869752764702, 0.02790573611855507, -0.03517903760075569, 0.10536032170057297, 0.018038282170891762, -0.1456620991230011, 0.0273138377815485, 0.05341644957661629, 0.036032289266586304, -0.07017447054386139, -0.045079562813043594, 0.10027261823415756, 0.014552399516105652, 0.08810406923294067, 0.031772833317518234, 0.15724509954452515, 0.07468204200267792, -0.006126682739704847, -0.03391427546739578, -0.010873617604374886, 0.05982531979680061, 0.05594860389828682, 0.10953285545110703, -0.05071360245347023, -0.016810355708003044, -0.005730276927351952, 0.10163992643356323, -0.031015872955322266, -0.023983554914593697, -0.08011884987354279, 0.21923121809959412, -0.122937873005867, -0.11356686055660248, 0.06586696952581406, -0.08098893612623215, -0.017626315355300903, 0.2631123960018158, 0.0513024739921093, 0.1311584860086441, -0.012406076304614544, 0.056684188544750214, -0.012544718571007252, -0.03591059520840645, 0.008196611888706684, 0.11442051827907562, 0.24512538313865662, -0.03627819940447807, -0.026828043162822723, -0.03719192370772362, 0.018396224826574326, -0.15537656843662262, -0.048375602811574936, -0.033302031457424164, -0.03764377534389496, 0.0028640294913202524, 0.053560543805360794, 0.013104544021189213, -0.25359296798706055, -0.00007394720159936696, -0.042715463787317276, -0.03174169361591339, 0.04221154376864433, -0.049119044095277786, -0.07780344039201736, 0.010079405270516872, -0.05823684111237526, -0.06345321238040924, 0.040233973413705826, 0.01918136142194271, -0.11526575684547424, 0.015090163797140121, 0.08198639005422592, -0.11781784147024155, 0.24235333502292633, -0.05251815542578697, 0.06651344895362854, 0.06885187327861786, -0.033760830760002136, -0.13636063039302826, -0.004157620016485453, -0.0005282382480800152, -0.1760062575340271, -0.022825079038739204, 0.1195557564496994, -0.081721231341362, -0.0017695078859105706, 0.020784873515367508, -0.07283970713615417, -0.05360428988933563, 0.07137660682201385, 0.04356773570179939, -0.10578667372465134, 0.027394777163863182, -0.16791962087154388, 0.124085433781147, 0.08879011124372482, -0.014920666813850403, -0.025294607505202293, -0.14745238423347473, 0.01641009747982025, 0.05131969228386879, 0.008711609058082104, 0.07670049369335175, -0.107307568192482, -0.038617368787527084, -0.13324213027954102, 0.07867895811796188, -0.0612095482647419, 0.019294099882245064, -0.015947461128234863, -0.038524236530065536, -0.07683133333921432, 0.019158272072672844, -0.0020577923860400915, -0.012748368084430695, -0.030328450724482536, 0.10028383135795593, -0.04128727689385414, 0.009183160029351711, -0.1860532909631729, -0.04313841089606285 ]
null
null
transformers
# CSP-Darknet-53 Mish model Pretrained on [ImageNette](https://github.com/fastai/imagenette). The CSP-Darknet-53 Mish architecture was introduced in [this paper](https://arxiv.org/pdf/1911.11929.pdf). ## Model description The core idea of the author is to change the convolutional stage by adding cross stage partial blocks in the architecture and replace activations with Mish. ## Installation ### Prerequisites Python 3.6 (or higher) and [pip](https://pip.pypa.io/en/stable/)/[conda](https://docs.conda.io/en/latest/miniconda.html) are required to install Holocron. ### Latest stable release You can install the last stable release of the package using [pypi](https://pypi.org/project/pylocron/) as follows: ```shell pip install pylocron ``` or using [conda](https://anaconda.org/frgfm/pylocron): ```shell conda install -c frgfm pylocron ``` ### Developer mode Alternatively, if you wish to use the latest features of the project that haven't made their way to a release yet, you can install the package from source *(install [Git](https://git-scm.com/book/en/v2/Getting-Started-Installing-Git) first)*: ```shell git clone https://github.com/frgfm/Holocron.git pip install -e Holocron/. ``` ## Usage instructions ```python from PIL import Image from torchvision.transforms import Compose, ConvertImageDtype, Normalize, PILToTensor, Resize from torchvision.transforms.functional import InterpolationMode from holocron.models import model_from_hf_hub model = model_from_hf_hub("frgfm/cspdarknet53_mish").eval() img = Image.open(path_to_an_image).convert("RGB") # Preprocessing config = model.default_cfg transform = Compose([ Resize(config['input_shape'][1:], interpolation=InterpolationMode.BILINEAR), PILToTensor(), ConvertImageDtype(torch.float32), Normalize(config['mean'], config['std']) ]) input_tensor = transform(img).unsqueeze(0) # Inference with torch.inference_mode(): output = model(input_tensor) probs = output.squeeze(0).softmax(dim=0) ``` ## Citation Original paper ```bibtex @article{DBLP:journals/corr/abs-1911-11929, author = {Chien{-}Yao Wang and Hong{-}Yuan Mark Liao and I{-}Hau Yeh and Yueh{-}Hua Wu and Ping{-}Yang Chen and Jun{-}Wei Hsieh}, title = {CSPNet: {A} New Backbone that can Enhance Learning Capability of {CNN}}, journal = {CoRR}, volume = {abs/1911.11929}, year = {2019}, url = {http://arxiv.org/abs/1911.11929}, eprinttype = {arXiv}, eprint = {1911.11929}, timestamp = {Tue, 03 Dec 2019 20:41:07 +0100}, biburl = {https://dblp.org/rec/journals/corr/abs-1911-11929.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } ``` Source of this implementation ```bibtex @software{Fernandez_Holocron_2020, author = {Fernandez, François-Guillaume}, month = {5}, title = {{Holocron}}, url = {https://github.com/frgfm/Holocron}, year = {2020} } ```
{"license": "apache-2.0", "tags": ["image-classification", "pytorch"], "datasets": ["frgfm/imagenette"]}
image-classification
frgfm/cspdarknet53_mish
[ "transformers", "pytorch", "image-classification", "dataset:frgfm/imagenette", "arxiv:1911.11929", "license:apache-2.0", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[ "1911.11929" ]
[]
TAGS #transformers #pytorch #image-classification #dataset-frgfm/imagenette #arxiv-1911.11929 #license-apache-2.0 #endpoints_compatible #region-us
# CSP-Darknet-53 Mish model Pretrained on ImageNette. The CSP-Darknet-53 Mish architecture was introduced in this paper. ## Model description The core idea of the author is to change the convolutional stage by adding cross stage partial blocks in the architecture and replace activations with Mish. ## Installation ### Prerequisites Python 3.6 (or higher) and pip/conda are required to install Holocron. ### Latest stable release You can install the last stable release of the package using pypi as follows: or using conda: ### Developer mode Alternatively, if you wish to use the latest features of the project that haven't made their way to a release yet, you can install the package from source *(install Git first)*: ## Usage instructions Original paper Source of this implementation
[ "# CSP-Darknet-53 Mish model\n\nPretrained on ImageNette. The CSP-Darknet-53 Mish architecture was introduced in this paper.", "## Model description\n\nThe core idea of the author is to change the convolutional stage by adding cross stage partial blocks in the architecture and replace activations with Mish.", "## Installation", "### Prerequisites\n\nPython 3.6 (or higher) and pip/conda are required to install Holocron.", "### Latest stable release\n\nYou can install the last stable release of the package using pypi as follows:\n\n\n\nor using conda:", "### Developer mode\n\nAlternatively, if you wish to use the latest features of the project that haven't made their way to a release yet, you can install the package from source *(install Git first)*:", "## Usage instructions\n\n\n\n\nOriginal paper\n\n\n\nSource of this implementation" ]
[ "TAGS\n#transformers #pytorch #image-classification #dataset-frgfm/imagenette #arxiv-1911.11929 #license-apache-2.0 #endpoints_compatible #region-us \n", "# CSP-Darknet-53 Mish model\n\nPretrained on ImageNette. The CSP-Darknet-53 Mish architecture was introduced in this paper.", "## Model description\n\nThe core idea of the author is to change the convolutional stage by adding cross stage partial blocks in the architecture and replace activations with Mish.", "## Installation", "### Prerequisites\n\nPython 3.6 (or higher) and pip/conda are required to install Holocron.", "### Latest stable release\n\nYou can install the last stable release of the package using pypi as follows:\n\n\n\nor using conda:", "### Developer mode\n\nAlternatively, if you wish to use the latest features of the project that haven't made their way to a release yet, you can install the package from source *(install Git first)*:", "## Usage instructions\n\n\n\n\nOriginal paper\n\n\n\nSource of this implementation" ]
[ 54, 40, 37, 2, 27, 27, 46, 10 ]
[ "passage: TAGS\n#transformers #pytorch #image-classification #dataset-frgfm/imagenette #arxiv-1911.11929 #license-apache-2.0 #endpoints_compatible #region-us \n# CSP-Darknet-53 Mish model\n\nPretrained on ImageNette. The CSP-Darknet-53 Mish architecture was introduced in this paper.## Model description\n\nThe core idea of the author is to change the convolutional stage by adding cross stage partial blocks in the architecture and replace activations with Mish.## Installation### Prerequisites\n\nPython 3.6 (or higher) and pip/conda are required to install Holocron.### Latest stable release\n\nYou can install the last stable release of the package using pypi as follows:\n\n\n\nor using conda:### Developer mode\n\nAlternatively, if you wish to use the latest features of the project that haven't made their way to a release yet, you can install the package from source *(install Git first)*:## Usage instructions\n\n\n\n\nOriginal paper\n\n\n\nSource of this implementation" ]
[ -0.052257806062698364, 0.1528134047985077, 0.00046544717042706907, -0.04419182613492012, 0.05445384234189987, 0.050086796283721924, 0.020820271223783493, 0.06948389858007431, -0.005087936297059059, 0.038411568850278854, 0.07495197653770447, 0.11857672780752182, 0.07274235039949417, 0.12957718968391418, 0.017231827601790428, -0.19626209139823914, -0.040300026535987854, 0.01342028472572565, 0.0023403356317430735, 0.06183021143078804, 0.08054473996162415, -0.02601548470556736, 0.04754241928458214, 0.05327458679676056, -0.08810428529977798, -0.04059184715151787, -0.0726313367486, -0.026259589940309525, 0.04333123937249184, 0.04458240047097206, 0.05021313205361366, 0.013479302637279034, 0.06468114256858826, -0.012121693231165409, 0.011182899586856365, 0.07747704535722733, 0.03487250953912735, 0.07232960313558578, 0.08548826724290848, -0.04151671379804611, 0.08204038441181183, -0.11937716603279114, -0.04872775450348854, 0.02295842207968235, 0.038264285773038864, -0.1520194411277771, -0.1411111205816269, 0.14374952018260956, 0.07213108241558075, 0.08876613527536392, 0.024252532050013542, 0.15971198678016663, 0.09819649904966354, 0.038567591458559036, 0.18778111040592194, -0.1664956510066986, -0.0637541115283966, 0.06382398307323456, -0.01773983985185623, 0.10777052491903305, -0.0026234055403620005, 0.005945616867393255, 0.09112163633108139, 0.06316724419593811, -0.013990363106131554, -0.028879068791866302, -0.022828103974461555, -0.0713023766875267, -0.1968587040901184, 0.010601086542010307, 0.24133160710334778, -0.02930251881480217, -0.07974886149168015, -0.018773693591356277, -0.0866081640124321, -0.015364738181233406, 0.04251477122306824, 0.06872895359992981, 0.023173270747065544, 0.02769131027162075, 0.07081617414951324, -0.2045961618423462, -0.14035844802856445, 0.009007662534713745, -0.0352097824215889, 0.21944792568683624, 0.04483720287680626, 0.07886888086795807, 0.027955619618296623, 0.11493506282567978, -0.11344049125909805, -0.03219543397426605, -0.06619007885456085, -0.053159199655056, 0.050302986055612564, -0.012145372107625008, -0.022029301151633263, -0.1343473494052887, 0.012586137279868126, 0.10316169261932373, -0.14708957076072693, 0.007779580540955067, -0.016214776784181595, 0.07013041526079178, 0.05005824193358421, 0.05607421323657036, -0.1039128229022026, 0.06141197308897972, 0.09311377257108688, -0.058831196278333664, 0.14697565138339996, 0.048387300223112106, -0.050299596041440964, -0.030399704352021217, -0.04606812819838524, 0.014792858622968197, 0.021516619250178337, 0.028887975960969925, 0.030996784567832947, -0.05730096995830536, 0.23357367515563965, -0.03987574949860573, -0.07387954741716385, -0.046266552060842514, -0.03957681357860565, 0.1036190390586853, 0.14746755361557007, -0.0006067253416404128, 0.0016374503029510379, 0.07555756717920303, -0.03616034984588623, -0.041742850095033646, -0.06194398179650307, -0.038064394146203995, 0.04105677828192711, -0.0725468322634697, -0.019060639664530754, -0.14642472565174103, -0.1944204568862915, 0.04867793619632721, 0.08988326042890549, 0.008728512562811375, 0.013211739249527454, 0.1371871829032898, -0.03684753179550171, -0.028364719823002815, -0.011844013817608356, 0.018592191860079765, -0.04569976404309273, 0.036197055131196976, -0.009735568426549435, 0.0213363915681839, -0.16677188873291016, -0.008292118087410927, -0.04449690505862236, 0.07346615940332413, -0.15532884001731873, -0.03559034317731857, -0.022058410570025444, 0.046404458582401276, -0.08281777054071426, -0.10176843404769897, 0.011129701510071754, -0.019615832716226578, 0.01226828247308731, 0.06404400616884232, 0.000746373669244349, -0.008921214379370213, 0.05770736187696457, -0.155777707695961, -0.035450004041194916, 0.06468210369348526, 0.06901644915342331, 0.04831711947917938, -0.014823876321315765, -0.005108291748911142, 0.15659482777118683, -0.25494396686553955, -0.061413731426000595, 0.1143464744091034, -0.06458457559347153, -0.008667965419590473, 0.08530069142580032, 0.04204530641436577, -0.011995413340628147, 0.02980019897222519, -0.11344181001186371, 0.10849451273679733, -0.018820980563759804, -0.029792342334985733, -0.06162154674530029, -0.10157608985900879, -0.0545843131840229, 0.035579074174165726, 0.008255288936197758, 0.08624269813299179, -0.044291701167821884, -0.01716180518269539, 0.21643121540546417, -0.031735941767692566, -0.006356468889862299, -0.015462396666407585, 0.1128750815987587, -0.07227279990911484, -0.06400837749242783, -0.09392151981592178, 0.010879294946789742, 0.0731269046664238, -0.07657593488693237, -0.002945526735857129, 0.01648297719657421, 0.020032983273267746, 0.12637409567832947, 0.002378105651587248, 0.019689781591296196, 0.12946826219558716, -0.07245060056447983, -0.0158841572701931, -0.08690626174211502, -0.041815150529146194, -0.020509473979473114, 0.3470281660556793, -0.08747749030590057, 0.008345245383679867, 0.04177629575133324, 0.1137414202094078, -0.09387087821960449, -0.0398247092962265, 0.05204587057232857, -0.1104734018445015, -0.048472385853528976, -0.07532157003879547, 0.03509564697742462, 0.07988839596509933, -0.007278532721102238, -0.018276246264576912, -0.03633083030581474, -0.29452410340309143, 0.09955250471830368, 0.043843258172273636, -0.030673541128635406, 0.00009359169052913785, -0.09049049019813538, -0.03877823427319527, 0.018869120627641678, -0.022262057289481163, 0.049253854900598526, 0.010707609355449677, 0.09551253914833069, -0.042221736162900925, -0.0694427639245987, 0.0449562668800354, -0.05584363639354706, -0.08439303189516068, -0.012921133078634739, -0.03388427197933197, -0.17310534417629242, 0.07045236229896545, 0.04337324947118759, -0.20044764876365662, 0.09843338280916214, 0.046160370111465454, -0.05305129289627075, -0.04635133966803551, 0.12160208821296692, 0.02457495592534542, 0.10201471298933029, -0.044105347245931625, -0.03491539880633354, 0.02394902892410755, -0.1273580938577652, 0.0825556218624115, -0.10472358763217926, 0.04691305384039879, -0.0448865108191967, 0.021431338042020798, 0.12623974680900574, 0.04145173728466034, -0.06818342208862305, 0.012477226555347443, 0.06572580337524414, 0.08216378837823868, -0.017730077728629112, -0.012124639935791492, -0.08544136583805084, 0.10927142947912216, -0.161393940448761, -0.20664381980895996, -0.13795305788516998, 0.01892094872891903, -0.09530899673700333, 0.010703218169510365, 0.012500932440161705, -0.043662045150995255, -0.03880878537893295, -0.007009606808423996, -0.058748845010995865, -0.17535491287708282, -0.048876937478780746, -0.049236737191677094, -0.012944689951837063, -0.025480622425675392, -0.05022202059626579, -0.012893417850136757, 0.006475105881690979, -0.09658580273389816, 0.06888474524021149, -0.05657108873128891, 0.04317544400691986, 0.08761502057313919, 0.006483184173703194, 0.011497505009174347, 0.03813806176185608, 0.1137399896979332, -0.039322443306446075, 0.055373407900333405, 0.18981437385082245, 0.05381973460316658, 0.0410391129553318, 0.007704420946538448, -0.008234974928200245, 0.020726673305034637, -0.014591045677661896, 0.002502452116459608, -0.041631948202848434, -0.16110603511333466, -0.08430586010217667, -0.04021679610013962, -0.03636486455798149, 0.04549558088183403, 0.06522075831890106, 0.0818173810839653, 0.13573023676872253, -0.11384592205286026, 0.006459880620241165, -0.012935061007738113, 0.13895608484745026, 0.06292419135570526, -0.03237752616405487, 0.003493984928354621, -0.01777508109807968, 0.04153420403599739, 0.15470188856124878, 0.04368041083216667, 0.14617472887039185, -0.10889050364494324, 0.11309131979942322, 0.03105495497584343, 0.20144671201705933, -0.009794491343200207, 0.03579121083021164, 0.023016007617115974, 0.046666137874126434, 0.00037349326885305345, -0.10711392760276794, -0.051144037395715714, 0.11227450519800186, -0.039518825709819794, 0.009023518301546574, 0.07297594100236893, -0.030800728127360344, -0.03319675475358963, 0.31991180777549744, -0.044115740805864334, -0.20706772804260254, -0.037635188549757004, 0.01841071806848049, 0.06489375233650208, -0.0895908921957016, 0.004831632599234581, 0.012196488678455353, -0.05914723873138428, 0.16333656013011932, -0.07415058463811874, 0.011671377345919609, -0.10363119095563889, -0.07778045535087585, 0.05554146319627762, 0.11985304951667786, 0.05223527178168297, 0.06783522665500641, -0.02316184528172016, 0.04762376844882965, 0.05699571594595909, 0.014294787310063839, -0.06957656890153885, 0.04790417104959488, 0.02710907533764839, 0.12487932294607162, 0.12268883734941483, 0.027867624536156654, 0.05402175709605217, -0.04683984816074371, -0.0035990530159324408, -0.027971643954515457, 0.05739753693342209, -0.003273420035839081, 0.03128386288881302, -0.03728469833731651, -0.040154531598091125, -0.039998382329940796, -0.008271562866866589, -0.0879662036895752, -0.05491333082318306, 0.12804949283599854, 0.02162075974047184, -0.06031016260385513, -0.09171341359615326, -0.017331479117274284, -0.03074246644973755, 0.21156051754951477, -0.12843917310237885, -0.14040151238441467, -0.08510585874319077, 0.01043875515460968, 0.08605604618787766, -0.01858046092092991, 0.007970556616783142, -0.16217714548110962, 0.13555531203746796, -0.05929183587431908, -0.09613629430532455, -0.0828435868024826, -0.12644881010055542, -0.08950643986463547, 0.019497377797961235, 0.09106698632240295, 0.06308340281248093, -0.00248881452716887, -0.03212811425328255, 0.020719073712825775, -0.09033000469207764, -0.04403028264641762, -0.03495122119784355, 0.19350913166999817, 0.14786410331726074, 0.025428365916013718, -0.08330345153808594, 0.05200160667300224, -0.025217782706022263, -0.06671668589115143, 0.043269600719213486, 0.18523859977722168, -0.06560744345188141, -0.001931787934154272, 0.1534763127565384, -0.05986713990569115, -0.1408417522907257, -0.026630254462361336, 0.10355596244335175, -0.057213276624679565, -0.11548204720020294, -0.14241398870944977, 0.07331206649541855, 0.14030702412128448, -0.052034296095371246, 0.08329392969608307, -0.13914833962917328, -0.011858479119837284, 0.009392169304192066, -0.013127069920301437, 0.02280566841363907, -0.17507879436016083, -0.004687939304858446, -0.07569964975118637, -0.08712426573038101, 0.07447586208581924, -0.07837323099374771, 0.07173483818769455, -0.03469544276595116, 0.05159139260649681, 0.041559990495443344, -0.0866764560341835, 0.0932074785232544, -0.13132283091545105, -0.0063697355799376965, -0.010619201697409153, 0.035720981657505035, 0.1433284878730774, -0.04348009079694748, 0.11286461353302002, 0.04887223243713379, 0.06157461553812027, 0.0003188853443134576, -0.009317123331129551, -0.10581045597791672, 0.1386798471212387, -0.023957310244441032, -0.07446201145648956, -0.10578382760286331, 0.026294197887182236, 0.05041758716106415, -0.011202208697795868, 0.08121320605278015, 0.0641646757721901, 0.02613651752471924, 0.1262446790933609, -0.016088875010609627, 0.053359631448984146, -0.07858184725046158, -0.025340788066387177, -0.01720823347568512, 0.05579809844493866, -0.06228182837367058, -0.05233168974518776, 0.05206560343503952, 0.08272197097539902, 0.04439859092235565, -0.014338329434394836, -0.15849336981773376, -0.03186872974038124, 0.022271757945418358, -0.19177155196666718, 0.0006097545847296715, -0.06139281019568443, 0.12934444844722748, 0.0674985721707344, 0.036045659333467484, 0.15883563458919525, -0.06805389374494553, -0.05472912639379501, 0.036314867436885834, 0.030147317796945572, -0.07707145065069199, 0.06972606480121613, -0.0032792824786156416, -0.024698441848158836, -0.05818375200033188, 0.12525582313537598, 0.05457371845841408, 0.00826017465442419, -0.03726181015372276, 0.095186747610569, -0.1004471629858017, -0.08162091672420502, -0.008166350424289703, -0.18413877487182617, -0.09995021671056747, -0.09926483035087585, 0.04325597733259201, 0.05568496510386467, -0.08060913532972336, 0.09329495579004288, 0.04312781244516373, -0.03721361234784126, 0.06048492714762688, 0.05492622032761574, -0.07479781657457352, 0.03566523641347885, -0.05434444546699524, 0.05535826459527016, -0.15006820857524872, 0.10840209573507309, 0.027350429445505142, 0.060772303491830826, -0.041463036090135574, -0.015256793238222599, 0.0033002623822540045, -0.018100930377840996, -0.12447698414325714, 0.06321671605110168, -0.08429861813783646, -0.03408961743116379, 0.030234122648835182, 0.010796403512358665, -0.017048753798007965, 0.045968618243932724, -0.03990015387535095, -0.011943822726607323, -0.0469110868871212, 0.018266793340444565, -0.04036097973585129, -0.057605013251304626, -0.020655851811170578, -0.04871593788266182, 0.0346880666911602, 0.13369914889335632, -0.005183402914553881, -0.01987457647919655, -0.01718316785991192, -0.025669081136584282, 0.044368498027324677, 0.062039829790592194, -0.031595077365636826, -0.09253136813640594, 0.013051530346274376, 0.014613865874707699, -0.027296271175146103, -0.03928744047880173, 0.12033301591873169, -0.078244149684906, -0.053208861500024796, 0.009317469783127308, 0.027000432834029198, -0.11489308625459671, 0.002896771766245365, 0.0729813203215599, 0.1396690309047699, 0.015138812363147736, -0.03322010487318039, 0.008922247216105461, -0.007146088406443596, -0.03769925609230995, -0.03099013864994049, -0.0381350964307785, 0.016826797276735306, 0.008707555942237377, -0.027952849864959717, 0.032875463366508484, 0.12051555514335632, -0.04415598884224892, 0.04879361018538475, -0.006372631527483463, 0.04289289191365242, -0.00358822220005095, -0.02955023944377899, 0.05726127326488495, 0.0056863524951040745, 0.061420802026987076, 0.02587132528424263, 0.06358948349952698, 0.019002901390194893, -0.13345348834991455, 0.008207478560507298, -0.007080736570060253, 0.03740600869059563, 0.05559403821825981, 0.008789602667093277, -0.08815156668424606, -0.11745308339595795, -0.03119155392050743, -0.0035776442382484674, 0.09564138948917389, -0.12210609018802643, 0.13074111938476562, 0.0984952449798584, -0.11260861158370972, -0.03794725611805916, 0.012295613996684551, -0.025836391374468803, -0.07440801709890366, -0.11157628148794174, -0.011428740806877613, -0.060836877673864365, 0.01644568331539631, -0.04046819731593132, 0.0349862240254879, 0.04875235632061958, 0.03973952680826187, -0.010127855464816093, 0.061984140425920486, -0.017592299729585648, -0.16337920725345612, 0.005544578190892935, 0.06826888769865036, 0.010667210444808006, -0.06117473170161247, -0.03199139982461929, 0.10913032293319702, -0.041936084628105164, 0.049324583262205124, 0.0240432471036911, 0.1079053059220314, 0.07720423489809036, 0.013874719850718975, -0.050262201577425, -0.01662803813815117, 0.07800142467021942, 0.04249507561326027, 0.08498343825340271, -0.04519215226173401, -0.022913912311196327, -0.01408338826149702, 0.10927607864141464, -0.07144815474748611, 0.013671724125742912, -0.06077912822365761, 0.3002043664455414, -0.15091170370578766, -0.07681817561388016, 0.05577440932393074, -0.06507939845323563, -0.04211872071027756, 0.2496577650308609, 0.05283219367265701, 0.08126600831747055, -0.024999042972922325, 0.07911533117294312, -0.019975360482931137, -0.0809435099363327, 0.002213446656242013, 0.09275198727846146, 0.2195730209350586, -0.033719033002853394, 0.054884377866983414, -0.01691429875791073, 0.01649034023284912, -0.14378967881202698, -0.077848419547081, -0.09809603542089462, -0.012874572537839413, 0.012432236224412918, 0.04496191442012787, 0.049916062504053116, -0.24147294461727142, 0.024087686091661453, 0.0008724990766495466, -0.034451741725206375, 0.01682579331099987, -0.014634756371378899, -0.04876960813999176, 0.02735176309943199, -0.05068725347518921, -0.04386774078011513, 0.12624472379684448, -0.02785607986152172, -0.09766899794340134, -0.05666431784629822, 0.09391035884618759, -0.1179925799369812, 0.19347035884857178, -0.04791192710399628, 0.08430641889572144, 0.0827222466468811, -0.04078284651041031, -0.12161342054605484, -0.03812600299715996, 0.027851589024066925, -0.23634399473667145, -0.0244391281157732, 0.1508868783712387, -0.08342868834733963, 0.043590694665908813, 0.011020712554454803, -0.1083860844373703, -0.035146474838256836, 0.1092328205704689, 0.0694112703204155, -0.09755285829305649, 0.054034214466810226, -0.14532031118869781, 0.13825678825378418, 0.09117243438959122, -0.031435415148735046, -0.05284575745463371, -0.14019964635372162, 0.019743075594305992, 0.07336496561765671, 0.06968462467193604, 0.050300344824790955, -0.12120513617992401, -0.020951025187969208, -0.10870127379894257, 0.06904976814985275, -0.06973236054182053, 0.015709778293967247, -0.024990282952785492, -0.04270846024155617, -0.03417689725756645, 0.0206607598811388, -0.04840000718832016, -0.006568173877894878, -0.007365209981799126, 0.07848195731639862, -0.07179322838783264, -0.01768556609749794, -0.1791238933801651, -0.052432022988796234 ]
null
null
transformers
# Darknet-19 model Pretrained on [ImageNette](https://github.com/fastai/imagenette). The Darknet-19 architecture was introduced in [this paper](https://pjreddie.com/media/files/papers/YOLO9000.pdf). ## Model description The core idea of the author is to combine high throughput of a highway net with performance gains using better activations (Leaky ReLU) and batch normalization. This architecture is used as a backbone for YOLOv2. ## Installation ### Prerequisites Python 3.6 (or higher) and [pip](https://pip.pypa.io/en/stable/)/[conda](https://docs.conda.io/en/latest/miniconda.html) are required to install Holocron. ### Latest stable release You can install the last stable release of the package using [pypi](https://pypi.org/project/pylocron/) as follows: ```shell pip install pylocron ``` or using [conda](https://anaconda.org/frgfm/pylocron): ```shell conda install -c frgfm pylocron ``` ### Developer mode Alternatively, if you wish to use the latest features of the project that haven't made their way to a release yet, you can install the package from source *(install [Git](https://git-scm.com/book/en/v2/Getting-Started-Installing-Git) first)*: ```shell git clone https://github.com/frgfm/Holocron.git pip install -e Holocron/. ``` ## Usage instructions ```python from PIL import Image from torchvision.transforms import Compose, ConvertImageDtype, Normalize, PILToTensor, Resize from torchvision.transforms.functional import InterpolationMode from holocron.models import model_from_hf_hub model = model_from_hf_hub("frgfm/darknet19").eval() img = Image.open(path_to_an_image).convert("RGB") # Preprocessing config = model.default_cfg transform = Compose([ Resize(config['input_shape'][1:], interpolation=InterpolationMode.BILINEAR), PILToTensor(), ConvertImageDtype(torch.float32), Normalize(config['mean'], config['std']) ]) input_tensor = transform(img).unsqueeze(0) # Inference with torch.inference_mode(): output = model(input_tensor) probs = output.squeeze(0).softmax(dim=0) ``` ## Citation Original paper ```bibtex @article{DBLP:journals/corr/RedmonF16, author = {Joseph Redmon and Ali Farhadi}, title = {{YOLO9000:} Better, Faster, Stronger}, journal = {CoRR}, volume = {abs/1612.08242}, year = {2016}, url = {http://arxiv.org/abs/1612.08242}, eprinttype = {arXiv}, eprint = {1612.08242}, timestamp = {Mon, 13 Aug 2018 16:48:25 +0200}, biburl = {https://dblp.org/rec/journals/corr/RedmonF16.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } ``` Source of this implementation ```bibtex @software{Fernandez_Holocron_2020, author = {Fernandez, François-Guillaume}, month = {5}, title = {{Holocron}}, url = {https://github.com/frgfm/Holocron}, year = {2020} } ```
{"license": "apache-2.0", "tags": ["image-classification", "pytorch"], "datasets": ["frgfm/imagenette"]}
image-classification
frgfm/darknet19
[ "transformers", "pytorch", "image-classification", "dataset:frgfm/imagenette", "arxiv:1612.08242", "license:apache-2.0", "endpoints_compatible", "has_space", "region:us" ]
2022-03-02T23:29:05+00:00
[ "1612.08242" ]
[]
TAGS #transformers #pytorch #image-classification #dataset-frgfm/imagenette #arxiv-1612.08242 #license-apache-2.0 #endpoints_compatible #has_space #region-us
# Darknet-19 model Pretrained on ImageNette. The Darknet-19 architecture was introduced in this paper. ## Model description The core idea of the author is to combine high throughput of a highway net with performance gains using better activations (Leaky ReLU) and batch normalization. This architecture is used as a backbone for YOLOv2. ## Installation ### Prerequisites Python 3.6 (or higher) and pip/conda are required to install Holocron. ### Latest stable release You can install the last stable release of the package using pypi as follows: or using conda: ### Developer mode Alternatively, if you wish to use the latest features of the project that haven't made their way to a release yet, you can install the package from source *(install Git first)*: ## Usage instructions Original paper Source of this implementation
[ "# Darknet-19 model\n\nPretrained on ImageNette. The Darknet-19 architecture was introduced in this paper.", "## Model description\n\nThe core idea of the author is to combine high throughput of a highway net with performance gains using better activations (Leaky ReLU) and batch normalization. This architecture is used as a backbone for YOLOv2.", "## Installation", "### Prerequisites\n\nPython 3.6 (or higher) and pip/conda are required to install Holocron.", "### Latest stable release\n\nYou can install the last stable release of the package using pypi as follows:\n\n\n\nor using conda:", "### Developer mode\n\nAlternatively, if you wish to use the latest features of the project that haven't made their way to a release yet, you can install the package from source *(install Git first)*:", "## Usage instructions\n\n\n\n\nOriginal paper\n\n\n\nSource of this implementation" ]
[ "TAGS\n#transformers #pytorch #image-classification #dataset-frgfm/imagenette #arxiv-1612.08242 #license-apache-2.0 #endpoints_compatible #has_space #region-us \n", "# Darknet-19 model\n\nPretrained on ImageNette. The Darknet-19 architecture was introduced in this paper.", "## Model description\n\nThe core idea of the author is to combine high throughput of a highway net with performance gains using better activations (Leaky ReLU) and batch normalization. This architecture is used as a backbone for YOLOv2.", "## Installation", "### Prerequisites\n\nPython 3.6 (or higher) and pip/conda are required to install Holocron.", "### Latest stable release\n\nYou can install the last stable release of the package using pypi as follows:\n\n\n\nor using conda:", "### Developer mode\n\nAlternatively, if you wish to use the latest features of the project that haven't made their way to a release yet, you can install the package from source *(install Git first)*:", "## Usage instructions\n\n\n\n\nOriginal paper\n\n\n\nSource of this implementation" ]
[ 59, 26, 55, 2, 27, 27, 46, 10 ]
[ "passage: TAGS\n#transformers #pytorch #image-classification #dataset-frgfm/imagenette #arxiv-1612.08242 #license-apache-2.0 #endpoints_compatible #has_space #region-us \n# Darknet-19 model\n\nPretrained on ImageNette. The Darknet-19 architecture was introduced in this paper.## Model description\n\nThe core idea of the author is to combine high throughput of a highway net with performance gains using better activations (Leaky ReLU) and batch normalization. This architecture is used as a backbone for YOLOv2.## Installation### Prerequisites\n\nPython 3.6 (or higher) and pip/conda are required to install Holocron.### Latest stable release\n\nYou can install the last stable release of the package using pypi as follows:\n\n\n\nor using conda:### Developer mode\n\nAlternatively, if you wish to use the latest features of the project that haven't made their way to a release yet, you can install the package from source *(install Git first)*:## Usage instructions\n\n\n\n\nOriginal paper\n\n\n\nSource of this implementation" ]
[ -0.03821902722120285, 0.22259241342544556, -0.000012362783309072256, -0.03810126334428787, 0.037216916680336, -0.003170345677062869, -0.013863876461982727, 0.10316270589828491, -0.10847656428813934, 0.09720317274332047, 0.12061799317598343, 0.09459661692380905, 0.06866107136011124, 0.12878815829753876, 0.010169950313866138, -0.2102270871400833, -0.04307112470269203, 0.029499217867851257, -0.027396224439144135, 0.08129211515188217, 0.04148870334029198, -0.01835755445063114, 0.03057919442653656, 0.05110692232847214, -0.08871293067932129, -0.03646714612841606, -0.07800386846065521, -0.058501146733760834, 0.028132352977991104, -0.0013749378267675638, 0.041870564222335815, 0.007412262726575136, 0.016509607434272766, -0.004996178206056356, 0.0050674499943852425, 0.10990635305643082, 0.048311032354831696, 0.08972818404436111, 0.07521380484104156, 0.006849557626992464, 0.13092465698719025, -0.11547878384590149, -0.003192389151081443, 0.02462066523730755, 0.012801201082766056, -0.2925466299057007, -0.1455751657485962, 0.12382287532091141, 0.014985906891524792, 0.0579226091504097, 0.02357538416981697, 0.16840068995952606, 0.11251921951770782, 0.03823135793209076, 0.16231846809387207, -0.2127808779478073, -0.08379198610782623, 0.06529687345027924, 0.02217857725918293, 0.06755290180444717, -0.01090162806212902, 0.023487310856580734, 0.09285889565944672, 0.07927452772855759, 0.012942856177687645, 0.024423129856586456, -0.00046139489859342575, -0.09828729927539825, -0.22185270488262177, -0.028322845697402954, 0.17359265685081482, 0.0014869365841150284, -0.07253225147724152, -0.02255445532500744, -0.11414991319179535, -0.022577252238988876, 0.05794630944728851, 0.0012787720188498497, 0.01656343787908554, 0.02239246666431427, 0.032217107713222504, -0.1786164492368698, -0.07741982489824295, -0.009621961042284966, -0.037140630185604095, 0.2736698091030121, 0.08649297803640366, 0.10188926011323929, 0.02142869494855404, 0.07086814939975739, -0.0960981547832489, -0.07402025908231735, -0.021412767469882965, -0.018328171223402023, 0.11639504879713058, 0.07846744358539581, 0.025808043777942657, -0.11406364291906357, 0.0065024420619010925, 0.10681216418743134, -0.08775398880243301, -0.019940529018640518, -0.07865753024816513, 0.07129222899675369, -0.04535277187824249, 0.07764402776956558, -0.09326966851949692, 0.03695118799805641, 0.10505923628807068, -0.05533156916499138, 0.15552856028079987, 0.010863473638892174, -0.06822309643030167, -0.05192427709698677, -0.003117028623819351, 0.03139938786625862, 0.0960359275341034, 0.04900423437356949, 0.03454344719648361, -0.048433344811201096, 0.19356639683246613, -0.025978373363614082, -0.07186679542064667, -0.07818270474672318, -0.10349005460739136, 0.059296321123838425, 0.14875471591949463, -0.01606620103120804, -0.044601235538721085, 0.045063599944114685, -0.010347950272262096, -0.09976185858249664, -0.07300321757793427, -0.030966922640800476, 0.06253188848495483, -0.06887613981962204, -0.04512898251414299, -0.15455467998981476, -0.19794592261314392, 0.05486525967717171, 0.08516740053892136, -0.022671295329928398, -0.010412119328975677, 0.11261597275733948, -0.09243714809417725, 0.03345470502972603, -0.02429606206715107, 0.00021236366592347622, -0.03757829964160919, 0.07128483802080154, 0.02438959665596485, 0.08005272597074509, -0.10161128640174866, 0.006955476012080908, -0.06988324224948883, 0.056091684848070145, -0.15051060914993286, -0.043429065495729446, -0.01580534316599369, 0.054284144192934036, -0.08904074877500534, -0.10554789751768112, -0.017571575939655304, -0.04553404822945595, 0.06022169440984726, 0.09298905730247498, 0.00040752883069217205, -0.026684507727622986, 0.01898033544421196, -0.16640642285346985, -0.039768144488334656, 0.09515751898288727, 0.09037269651889801, -0.002017894759774208, -0.010422454215586185, 0.12191446870565414, 0.0836210697889328, -0.1882736086845398, -0.08921191841363907, 0.05950696021318436, -0.06805763393640518, -0.028778955340385437, 0.10433175414800644, 0.022877417504787445, 0.07560121268033981, 0.01238302979618311, -0.07370258122682571, 0.10049664229154587, -0.044645775109529495, -0.04051852971315384, -0.07627493143081665, -0.10787367820739746, 0.0027761852834373713, 0.04431459307670593, 0.01834752783179283, 0.04257675260305405, -0.09775102883577347, -0.11158767342567444, 0.19614773988723755, 0.004996918141841888, 0.048239532858133316, -0.057375550270080566, 0.13356028497219086, -0.11223842203617096, -0.025838740170001984, -0.06783241778612137, -0.017537109553813934, 0.07382877916097641, -0.0713668018579483, -0.018559830263257027, -0.056091174483299255, -0.0032350439578294754, 0.07175745815038681, 0.006273449864238501, -0.03380650654435158, 0.060880206525325775, -0.08270065486431122, -0.01545747835189104, -0.10980907827615738, -0.034924279898405075, 0.0020337782334536314, 0.14170676469802856, -0.05947950482368469, 0.024661090224981308, 0.04842401668429375, 0.1743198186159134, -0.04590609297156334, -0.06796249747276306, 0.04827935993671417, -0.087747722864151, -0.05912056192755699, -0.07156039774417877, 0.04824749752879143, 0.052522920072078705, -0.07618945091962814, 0.039173536002635956, -0.010634856298565865, -0.12436054646968842, 0.1205572560429573, -0.015074562281370163, 0.017961811274290085, 0.10274854302406311, -0.10355275869369507, -0.057785436511039734, 0.0852852612733841, 0.0242222361266613, -0.005506071727722883, -0.006621700711548328, 0.10723979771137238, -0.05361058562994003, -0.036238234490156174, 0.06898601353168488, -0.059958070516586304, -0.05900691822171211, 0.0102543905377388, -0.04165605083107948, -0.08410254865884781, 0.09555741399526596, 0.08548293262720108, -0.16885004937648773, 0.12554636597633362, 0.04118784889578819, -0.05284268781542778, -0.01198354922235012, 0.1064298152923584, 0.06410706043243408, 0.11620095372200012, -0.08681422472000122, -0.036731839179992676, 0.02049623429775238, -0.04538526386022568, 0.0706641748547554, -0.09898938983678818, 0.03648270294070244, -0.04239455610513687, 0.005615575239062309, 0.1330527812242508, 0.08346421271562576, -0.11576401442289352, 0.06703989207744598, 0.11280304938554764, 0.02887878753244877, 0.010709505528211594, -0.030670149251818657, -0.03396152704954147, 0.07943625748157501, -0.1590280681848526, -0.22079551219940186, -0.09284509718418121, -0.0069162268191576, -0.0853373259305954, 0.013927855528891087, 0.03450292348861694, -0.09360390156507492, -0.040350645780563354, 0.019208259880542755, 0.007423488423228264, -0.1463991403579712, -0.0045370012521743774, 0.005642000585794449, -0.028043584898114204, 0.04757671803236008, -0.05668536201119423, 0.014051856473088264, -0.029415389522910118, -0.1282486915588379, 0.004976230673491955, -0.023493235930800438, 0.08285864442586899, 0.09283449500799179, 0.002178505528718233, -0.003867336083203554, 0.03315737470984459, 0.0922180786728859, -0.06738387793302536, 0.03908134996891022, 0.2398693710565567, 0.06934966146945953, 0.05158596485853195, 0.03395109996199608, -0.009256556630134583, -0.003432145807892084, 0.0015138823073357344, 0.02448181062936783, -0.08151640743017197, -0.19104041159152985, -0.09893324226140976, -0.04367551580071449, 0.03418358415365219, 0.025270380079746246, 0.08715181797742844, 0.056217219680547714, 0.12058315426111221, -0.125206857919693, 0.0002260084729641676, -0.07265737652778625, 0.1683567613363266, 0.14916621148586273, -0.01081590075045824, 0.014286885969340801, -0.017239995300769806, 0.04414752870798111, 0.14151331782341003, 0.0887824222445488, 0.06956735253334045, -0.12160015106201172, 0.09655774384737015, 0.0280596986413002, 0.23343442380428314, 0.021112440153956413, -0.05603611841797829, 0.02290259674191475, 0.048350632190704346, -0.009458765387535095, -0.11024079471826553, -0.0633908361196518, 0.08108246326446533, -0.10509266704320908, 0.041829369962215424, 0.02633751928806305, 0.007280933670699596, -0.010678911581635475, 0.2244403064250946, -0.00620685238391161, -0.21746163070201874, -0.05784173682332039, 0.01248201448470354, -0.004025823902338743, -0.10055723786354065, 0.04469902068376541, 0.03224010393023491, -0.058510180562734604, 0.13893425464630127, -0.0576806403696537, 0.035697199404239655, -0.07669203728437424, -0.05803102254867554, 0.061797089874744415, 0.11922276765108109, 0.05572682246565819, 0.04116416722536087, -0.029527587816119194, 0.047371406108140945, 0.024483192712068558, 0.02714656852185726, -0.03753522410988808, 0.03537987545132637, 0.021551139652729034, 0.11053097248077393, 0.13382601737976074, 0.01911255531013012, 0.0906284973025322, 0.055942244827747345, -0.047397829592227936, -0.014678958803415298, 0.06719031184911728, 0.016660869121551514, 0.02708994783461094, -0.040038108825683594, -0.005338939838111401, -0.015621930360794067, 0.0005526001332327724, -0.03990143537521362, 0.00007494422607123852, 0.09550177305936813, 0.05044655501842499, -0.05635584145784378, -0.09391564875841141, -0.05670739337801933, -0.0064907739870250225, 0.21724623441696167, -0.05338618531823158, -0.1479152888059616, -0.046957921236753464, 0.022090459242463112, 0.08262555301189423, -0.02909543365240097, 0.032099649310112, -0.16347825527191162, 0.09877882897853851, -0.018696242943406105, -0.11227592080831528, -0.04526202008128166, -0.10226744413375854, -0.17403830587863922, -0.027844274416565895, 0.08365290611982346, -0.018870243802666664, 0.0072270408272743225, -0.034395940601825714, 0.04256957769393921, -0.10970161110162735, -0.03339800238609314, 0.035577863454818726, 0.15537311136722565, 0.1443946212530136, 0.0018425558228045702, -0.01747557893395424, 0.08569253236055374, 0.028919171541929245, -0.089076928794384, 0.027089456096291542, 0.19085431098937988, -0.09950875490903854, 0.023171773180365562, 0.1757231503725052, -0.07339204847812653, -0.19983695447444916, -0.02495172806084156, 0.08786322921514511, -0.0504203625023365, -0.14085978269577026, -0.09775710850954056, 0.05237245187163353, 0.12009837478399277, -0.09993960708379745, 0.10180625319480896, -0.19363489747047424, -0.03336896002292633, -0.0295996256172657, 0.001925503253005445, 0.12016759812831879, -0.25042369961738586, -0.02431323006749153, -0.021435873582959175, -0.04323359578847885, 0.030299371108412743, -0.0359920971095562, 0.059409838169813156, -0.0560087151825428, 0.05468481034040451, 0.044712942093610764, -0.07810554653406143, 0.1028779074549675, -0.1449277400970459, -0.04124234616756439, -0.07666319608688354, 0.10208091139793396, 0.12503238022327423, -0.062368277460336685, 0.08726504445075989, 0.056580714881420135, 0.07536320388317108, -0.03066559135913849, 0.00796877034008503, -0.11131374537944794, 0.14282287657260895, -0.017253363505005836, -0.08427570760250092, -0.1388833075761795, 0.04098798334598541, 0.07357759028673172, -0.01328037865459919, 0.13103915750980377, 0.04202696681022644, 0.11948741227388382, 0.1334436684846878, -0.02957550436258316, 0.03254023566842079, -0.07623140513896942, 0.018192727118730545, -0.027996515855193138, 0.12349791824817657, -0.14601466059684753, -0.06102287024259567, 0.07935182005167007, 0.06070651859045029, -0.04150361940264702, -0.01051659882068634, -0.14604930579662323, -0.0010962605010718107, 0.04501664265990257, -0.2135101854801178, -0.006400362588465214, -0.042157504707574844, 0.1049768254160881, 0.06066803261637688, 0.13613639771938324, 0.11855520308017731, -0.1208619773387909, -0.03148003667593002, 0.05314846336841583, 0.048501212149858475, -0.057662516832351685, 0.048243485391139984, 0.08338148891925812, -0.020707258954644203, -0.024574261158704758, 0.13742747902870178, 0.06232495605945587, -0.041594330221414566, 0.023136531934142113, 0.11686990410089493, -0.08437447249889374, -0.04313494637608528, -0.04733981937170029, -0.13840173184871674, -0.07766300439834595, -0.09522922337055206, -0.01350157056003809, 0.0749228373169899, -0.0408712700009346, 0.09192435443401337, 0.05551386624574661, -0.01671391911804676, 0.024555781856179237, 0.05990298092365265, -0.09434325248003006, 0.06253929436206818, -0.084455206990242, 0.023644283413887024, -0.24202780425548553, 0.09194443374872208, 0.05373946949839592, 0.07467348873615265, -0.05825481191277504, -0.030747700482606888, -0.02409140206873417, -0.009825273416936398, -0.09291718900203705, 0.028015896677970886, -0.061920370906591415, -0.004577385261654854, -0.013783374801278114, -0.049652066081762314, -0.04055353254079819, 0.057504281401634216, -0.030232150107622147, -0.02884609065949917, -0.03986677899956703, -0.01830214448273182, -0.05425854027271271, -0.027476780116558075, -0.0248116385191679, -0.028624579310417175, 0.04938830807805061, 0.049572017043828964, 0.01983361691236496, -0.024789944291114807, 0.05162251368165016, -0.02024964429438114, 0.03912706300616264, 0.03178985416889191, -0.023209039121866226, -0.003433559788390994, -0.003861143719404936, 0.023726750165224075, -0.027572015300393105, -0.047131236642599106, 0.12977661192417145, -0.10422409325838089, -0.046589192003011703, 0.0005642757751047611, 0.0729256197810173, -0.10605405271053314, 0.035304028540849686, 0.0435233935713768, 0.194388285279274, 0.024532295763492584, -0.020887259393930435, 0.0030650882981717587, -0.031575076282024384, -0.010949604213237762, -0.0379098542034626, -0.04562002792954445, 0.06012888625264168, 0.07440388202667236, -0.013732523657381535, 0.032150499522686005, 0.07988893240690231, -0.00981304794549942, 0.00937733706086874, 0.005148334428668022, -0.03372134268283844, -0.051048435270786285, -0.04983200132846832, 0.06171473115682602, 0.023871710523962975, 0.051281604915857315, 0.09016028046607971, 0.031440604478120804, 0.016415243968367577, -0.07618042826652527, -0.0043772440403699875, 0.008334444835782051, 0.12285882234573364, 0.08460722863674164, 0.032594818621873856, -0.07116857916116714, -0.2338590770959854, -0.04185035824775696, 0.0005222789477556944, 0.132662832736969, -0.11625084280967712, 0.13753019273281097, 0.1339615136384964, -0.06304200738668442, -0.04709755256772041, 0.012938939034938812, 0.0004805891658179462, -0.11721918731927872, -0.1323002427816391, -0.010805818252265453, -0.14327891170978546, -0.00312185101211071, -0.04437815025448799, 0.047375284135341644, 0.05618887022137642, 0.0246797576546669, -0.030358359217643738, 0.03885963559150696, 0.023448320105671883, -0.13263525068759918, 0.04626448452472687, 0.046583324670791626, -0.00556239252910018, -0.061621055006980896, -0.04951658472418785, 0.05956795811653137, 0.061118174344301224, 0.05207660421729088, 0.0309083741158247, 0.04972146451473236, 0.09331514686346054, -0.013323568738996983, -0.05574560910463333, -0.021915186196565628, 0.11036558449268341, 0.12078893929719925, 0.11194668710231781, -0.05314278602600098, -0.03608180209994316, -0.022570930421352386, 0.1864948272705078, -0.0985732227563858, 0.03198907524347305, -0.0569179430603981, 0.25235897302627563, -0.14214885234832764, -0.11629104614257812, 0.02759774774312973, -0.07394178211688995, -0.06735115498304367, 0.23016579449176788, 0.12283879518508911, 0.08960741758346558, -0.032438330352306366, 0.072725810110569, -0.020056024193763733, -0.09648500382900238, 0.01546226441860199, 0.14118891954421997, 0.2942492961883545, -0.04506312683224678, -0.003165232017636299, -0.04460850730538368, 0.048107679933309555, -0.12539805471897125, -0.0759933590888977, -0.10323171317577362, 0.017491217702627182, -0.037617456167936325, 0.046953655779361725, -0.007906707935035229, -0.27506694197654724, 0.011905252933502197, -0.07903288304805756, -0.0654074028134346, 0.0008552091894671321, 0.05298146978020668, -0.04378299415111542, 0.0286417156457901, -0.03072005696594715, -0.006707365624606609, -0.006738787051290274, -0.020811688154935837, -0.0570235550403595, -0.07851066440343857, 0.10135700553655624, -0.06123412400484085, 0.2614123523235321, -0.03832137957215309, 0.042194824665784836, 0.10824018716812134, -0.01720651611685753, -0.16671013832092285, -0.04476288706064224, 0.03293558210134506, -0.19768498837947845, -0.07163055986166, 0.13460364937782288, -0.06799227744340897, 0.08474403619766235, 0.024685803800821304, -0.11991440504789352, -0.09048222005367279, 0.05572403594851494, 0.06442862749099731, -0.10643959790468216, 0.04510906711220741, -0.14902864396572113, 0.12864328920841217, 0.09012734889984131, -0.04268738999962807, -0.07625021040439606, -0.13575278222560883, 0.01436610147356987, 0.011445757001638412, 0.042458273470401764, 0.09941165894269943, -0.10689081996679306, -0.0150776207447052, -0.09703478962182999, 0.04245477169752121, -0.08190974593162537, -0.011086614802479744, -0.005038918927311897, -0.00352223077788949, -0.04674578085541725, -0.010140488855540752, -0.023677397519350052, -0.03409313037991524, -0.0315341018140316, 0.07399367541074753, -0.06080639362335205, 0.02044707164168358, -0.17722088098526, -0.06894753873348236 ]
null
null
transformers
# Darknet-53 model Pretrained on [ImageNette](https://github.com/fastai/imagenette). The Darknet-53 architecture was introduced in [this paper](https://pjreddie.com/media/files/papers/YOLOv3.pdf). ## Model description The core idea of the author is to increase the depth of the Darknet-19 architecture, and adding shortcut connections to ease the gradient propagation. ## Installation ### Prerequisites Python 3.6 (or higher) and [pip](https://pip.pypa.io/en/stable/)/[conda](https://docs.conda.io/en/latest/miniconda.html) are required to install Holocron. ### Latest stable release You can install the last stable release of the package using [pypi](https://pypi.org/project/pylocron/) as follows: ```shell pip install pylocron ``` or using [conda](https://anaconda.org/frgfm/pylocron): ```shell conda install -c frgfm pylocron ``` ### Developer mode Alternatively, if you wish to use the latest features of the project that haven't made their way to a release yet, you can install the package from source *(install [Git](https://git-scm.com/book/en/v2/Getting-Started-Installing-Git) first)*: ```shell git clone https://github.com/frgfm/Holocron.git pip install -e Holocron/. ``` ## Usage instructions ```python from PIL import Image from torchvision.transforms import Compose, ConvertImageDtype, Normalize, PILToTensor, Resize from torchvision.transforms.functional import InterpolationMode from holocron.models import model_from_hf_hub model = model_from_hf_hub("frgfm/darknet53").eval() img = Image.open(path_to_an_image).convert("RGB") # Preprocessing config = model.default_cfg transform = Compose([ Resize(config['input_shape'][1:], interpolation=InterpolationMode.BILINEAR), PILToTensor(), ConvertImageDtype(torch.float32), Normalize(config['mean'], config['std']) ]) input_tensor = transform(img).unsqueeze(0) # Inference with torch.inference_mode(): output = model(input_tensor) probs = output.squeeze(0).softmax(dim=0) ``` ## Citation Original paper ```bibtex @article{DBLP:journals/corr/abs-1804-02767, author = {Joseph Redmon and Ali Farhadi}, title = {YOLOv3: An Incremental Improvement}, journal = {CoRR}, volume = {abs/1804.02767}, year = {2018}, url = {http://arxiv.org/abs/1804.02767}, eprinttype = {arXiv}, eprint = {1804.02767}, timestamp = {Mon, 13 Aug 2018 16:48:24 +0200}, biburl = {https://dblp.org/rec/journals/corr/abs-1804-02767.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } ``` Source of this implementation ```bibtex @software{Fernandez_Holocron_2020, author = {Fernandez, François-Guillaume}, month = {5}, title = {{Holocron}}, url = {https://github.com/frgfm/Holocron}, year = {2020} } ```
{"license": "apache-2.0", "tags": ["image-classification", "pytorch"], "datasets": ["frgfm/imagenette"]}
image-classification
frgfm/darknet53
[ "transformers", "pytorch", "image-classification", "dataset:frgfm/imagenette", "arxiv:1804.02767", "license:apache-2.0", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[ "1804.02767" ]
[]
TAGS #transformers #pytorch #image-classification #dataset-frgfm/imagenette #arxiv-1804.02767 #license-apache-2.0 #endpoints_compatible #region-us
# Darknet-53 model Pretrained on ImageNette. The Darknet-53 architecture was introduced in this paper. ## Model description The core idea of the author is to increase the depth of the Darknet-19 architecture, and adding shortcut connections to ease the gradient propagation. ## Installation ### Prerequisites Python 3.6 (or higher) and pip/conda are required to install Holocron. ### Latest stable release You can install the last stable release of the package using pypi as follows: or using conda: ### Developer mode Alternatively, if you wish to use the latest features of the project that haven't made their way to a release yet, you can install the package from source *(install Git first)*: ## Usage instructions Original paper Source of this implementation
[ "# Darknet-53 model\n\nPretrained on ImageNette. The Darknet-53 architecture was introduced in this paper.", "## Model description\n\nThe core idea of the author is to increase the depth of the Darknet-19 architecture, and adding shortcut connections to ease the gradient propagation.", "## Installation", "### Prerequisites\n\nPython 3.6 (or higher) and pip/conda are required to install Holocron.", "### Latest stable release\n\nYou can install the last stable release of the package using pypi as follows:\n\n\n\nor using conda:", "### Developer mode\n\nAlternatively, if you wish to use the latest features of the project that haven't made their way to a release yet, you can install the package from source *(install Git first)*:", "## Usage instructions\n\n\n\n\nOriginal paper\n\n\n\nSource of this implementation" ]
[ "TAGS\n#transformers #pytorch #image-classification #dataset-frgfm/imagenette #arxiv-1804.02767 #license-apache-2.0 #endpoints_compatible #region-us \n", "# Darknet-53 model\n\nPretrained on ImageNette. The Darknet-53 architecture was introduced in this paper.", "## Model description\n\nThe core idea of the author is to increase the depth of the Darknet-19 architecture, and adding shortcut connections to ease the gradient propagation.", "## Installation", "### Prerequisites\n\nPython 3.6 (or higher) and pip/conda are required to install Holocron.", "### Latest stable release\n\nYou can install the last stable release of the package using pypi as follows:\n\n\n\nor using conda:", "### Developer mode\n\nAlternatively, if you wish to use the latest features of the project that haven't made their way to a release yet, you can install the package from source *(install Git first)*:", "## Usage instructions\n\n\n\n\nOriginal paper\n\n\n\nSource of this implementation" ]
[ 53, 28, 38, 2, 27, 27, 46, 10 ]
[ "passage: TAGS\n#transformers #pytorch #image-classification #dataset-frgfm/imagenette #arxiv-1804.02767 #license-apache-2.0 #endpoints_compatible #region-us \n# Darknet-53 model\n\nPretrained on ImageNette. The Darknet-53 architecture was introduced in this paper.## Model description\n\nThe core idea of the author is to increase the depth of the Darknet-19 architecture, and adding shortcut connections to ease the gradient propagation.## Installation### Prerequisites\n\nPython 3.6 (or higher) and pip/conda are required to install Holocron.### Latest stable release\n\nYou can install the last stable release of the package using pypi as follows:\n\n\n\nor using conda:### Developer mode\n\nAlternatively, if you wish to use the latest features of the project that haven't made their way to a release yet, you can install the package from source *(install Git first)*:## Usage instructions\n\n\n\n\nOriginal paper\n\n\n\nSource of this implementation" ]
[ -0.031139999628067017, 0.20099011063575745, -0.00028309045592322946, -0.0551900751888752, 0.03494413569569588, -0.010411695577204227, 0.017176877707242966, 0.06931829452514648, -0.1076703667640686, 0.04845917597413063, 0.10943304747343063, 0.12135227024555206, 0.07113778591156006, 0.12588633596897125, 0.032064151018857956, -0.25243183970451355, -0.018868304789066315, 0.06599097698926926, 0.04785553365945816, 0.09498833119869232, 0.06678804010152817, -0.06567662209272385, 0.024655038490891457, 0.05096222832798958, -0.12218781560659409, -0.013701134361326694, -0.08912571519613266, -0.04172360152006149, 0.03439105302095413, 0.011822663247585297, 0.057514943182468414, 0.02836904302239418, 0.07026298344135284, -0.01557768601924181, 0.016751090064644814, 0.09703508764505386, 0.033366359770298004, 0.0834195539355278, 0.10088685899972916, 0.014719320461153984, 0.1875464767217636, -0.10046359896659851, -0.010388982482254505, -0.023749034851789474, 0.04277614504098892, -0.1725904494524002, -0.08671587705612183, 0.13801690936088562, 0.04747907444834709, 0.09343776106834412, 0.023154057562351227, 0.20190100371837616, 0.08551955968141556, 0.044403061270713806, 0.16414067149162292, -0.1397477686405182, -0.08186352252960205, 0.07673662900924683, -0.04907255247235298, 0.08605458587408066, 0.009194857440888882, 0.0020627679768949747, 0.07327219843864441, 0.04959360137581825, 0.057754866778850555, -0.010465750470757484, -0.03836820647120476, -0.0829576849937439, -0.19397912919521332, -0.014036256819963455, 0.16834650933742523, -0.029334580525755882, -0.05341063067317009, -0.005792707204818726, -0.09747280180454254, -0.0038428385742008686, 0.008608412928879261, 0.042816679924726486, 0.028354551643133163, 0.0017493453342467546, 0.05345072224736214, -0.20102806389331818, -0.12872262299060822, 0.024931499734520912, -0.033489394932985306, 0.2612817585468292, 0.05173802375793457, 0.06986983865499496, 0.04861684888601303, 0.0926026776432991, -0.08441658318042755, -0.072594054043293, -0.042234908789396286, -0.020302971825003624, 0.09192097187042236, 0.022809945046901703, 0.057149384170770645, -0.15156537294387817, 0.046876825392246246, 0.04893152043223381, -0.045932721346616745, -0.017967935651540756, -0.03408672288060188, 0.08335144817829132, 0.004422389902174473, 0.10276146233081818, -0.08578971773386002, 0.07636420428752899, 0.13084708154201508, -0.06579074263572693, 0.17084896564483643, -0.007720508147031069, -0.08289702236652374, -0.03085501864552498, 0.044113244861364365, -0.020856143906712532, 0.08207124471664429, 0.0470040962100029, 0.07364257425069809, -0.026207828894257545, 0.1400645524263382, -0.07492239028215408, -0.009520703926682472, -0.05324290692806244, -0.03186001628637314, 0.08318620175123215, 0.12846465408802032, 0.005514824762940407, -0.07436459511518478, 0.07784047722816467, -0.006368848029524088, -0.039766453206539154, -0.07868517935276031, -0.026954205706715584, 0.06160930544137955, -0.0408257395029068, -0.00749499537050724, -0.1680568903684616, -0.14387252926826477, -0.003678062465041876, 0.11892443150281906, 0.007627070415765047, -0.03874308988451958, 0.12917983531951904, -0.046002067625522614, -0.03992398828268051, -0.012118986807763577, -0.004116581752896309, -0.060884300619363785, 0.06252072006464005, -0.02798902802169323, -0.004450857173651457, -0.19725018739700317, 0.0013855504803359509, -0.057113613933324814, 0.06567812711000443, -0.2718314230442047, -0.03893091157078743, -0.023927759379148483, 0.08355403691530228, -0.07497894763946533, -0.13310585916042328, -0.04055052250623703, -0.043413739651441574, 0.03390549123287201, 0.07121457904577255, 0.039523571729660034, -0.008835779502987862, -0.0013593516778200865, -0.20155097544193268, -0.03173048421740532, 0.0891033485531807, 0.03268319368362427, 0.09888682514429092, 0.002139112213626504, 0.08069821447134018, 0.14260844886302948, -0.24231471121311188, -0.03800332173705101, 0.09158851951360703, -0.060817401856184006, -0.03376041725277901, 0.05613906309008598, 0.037320319563150406, -0.03342188522219658, -0.010267434641718864, -0.14192667603492737, 0.09851336479187012, -0.004570069257169962, -0.03377680107951164, -0.034489087760448456, -0.05497634410858154, -0.08629193156957626, 0.09421141445636749, 0.03282849118113518, 0.0475999116897583, -0.06023332476615906, -0.04429761320352554, 0.17330481112003326, -0.08535999059677124, 0.003920275717973709, -0.012895632535219193, 0.12903203070163727, -0.09096405655145645, -0.03518043830990791, -0.041102830320596695, 0.002551537472754717, 0.07414454966783524, -0.06150827184319496, 0.0008107729954645038, -0.104008249938488, 0.04236004874110222, 0.1160823330283165, -0.0022019639145582914, -0.018561257049441338, 0.0940253809094429, -0.06946824491024017, -0.007686988450586796, -0.0831991657614708, -0.06592836230993271, 0.00299716810695827, 0.2760433554649353, -0.16626162827014923, 0.022387860342860222, 0.0632636621594429, 0.0832427516579628, -0.06454922258853912, -0.05553537979722023, 0.04435761645436287, -0.10781461745500565, -0.028444549068808556, -0.08216846734285355, 0.02958773262798786, 0.12128347158432007, -0.04712719842791557, -0.0009620326454751194, -0.03524858132004738, -0.11185102164745331, 0.11495642364025116, -0.10418116301298141, -0.014203683473169804, -0.011480987071990967, -0.10513999313116074, -0.06032191589474678, 0.01090975385159254, -0.03266437351703644, 0.04452582076191902, -0.03080790489912033, 0.04641611874103546, -0.07097607105970383, -0.07235110551118851, 0.05237746611237526, -0.062293943017721176, -0.053645964711904526, 0.017553599551320076, 0.08236965537071228, -0.1481262594461441, 0.06602340191602707, -0.024212049320340157, -0.22884753346443176, 0.05607026442885399, 0.010493196547031403, -0.07531540095806122, 0.02200966514647007, 0.12250879406929016, 0.04588846489787102, 0.12398648262023926, -0.10785210877656937, -0.04029979929327965, 0.023740723729133606, -0.15074290335178375, 0.09696497768163681, -0.1355953812599182, 0.03153933212161064, -0.05555553361773491, 0.011677425354719162, 0.15364736318588257, -0.03223060816526413, -0.06418336182832718, 0.041270509362220764, 0.060942281037569046, 0.013173085637390614, -0.004543264862149954, 0.004404988139867783, -0.09185796976089478, 0.10565648227930069, -0.08966226130723953, -0.2006053477525711, -0.12577155232429504, 0.030439171940088272, -0.068780317902565, 0.020427504554390907, -0.013379653915762901, -0.04408291354775429, -0.05366138741374016, -0.04356454312801361, -0.027683651074767113, -0.12204471975564957, -0.029394591227173805, -0.031044896692037582, -0.008310011588037014, -0.03326437249779701, -0.037642952054739, -0.03375167027115822, -0.00782205630093813, -0.06528367102146149, 0.08566576987504959, -0.09024737775325775, 0.08865813165903091, 0.14206869900226593, -0.0399504080414772, 0.02493995986878872, 0.038649242371320724, 0.06846925616264343, -0.09618645161390305, 0.07643210887908936, 0.18323975801467896, 0.017980875447392464, 0.036131810396909714, 0.06730079650878906, 0.0033377420622855425, 0.02149023301899433, -0.017838766798377037, -0.045326363295316696, -0.08759871125221252, -0.11455503106117249, -0.08088633418083191, -0.035887885838747025, -0.021675636991858482, 0.11536817252635956, 0.09440433233976364, 0.042503565549850464, 0.14244037866592407, -0.08638054132461548, -0.03221474215388298, 0.06434571743011475, 0.16248881816864014, 0.046500809490680695, -0.01192699559032917, -0.004125384613871574, -0.010173396207392216, -0.015495405532419682, 0.12741993367671967, 0.02016889490187168, 0.10755205154418945, -0.14645497500896454, 0.05576452985405922, 0.02255900204181671, 0.20319558680057526, -0.004544571507722139, 0.07654856145381927, -0.005152540281414986, 0.07124925404787064, 0.031664665788412094, -0.1410270631313324, -0.0541459396481514, 0.07467705011367798, -0.1330457627773285, -0.04291389882564545, 0.08971217274665833, 0.007380134426057339, -0.01699516549706459, 0.26214757561683655, -0.03923893719911575, -0.26225966215133667, -0.025612294673919678, -0.024452239274978638, 0.03351463004946709, -0.14119787514209747, -0.0001942105736816302, 0.03685862943530083, -0.059739723801612854, 0.14488328993320465, -0.06958424299955368, 0.026821453124284744, -0.12142444401979446, -0.07972168922424316, 0.042468879371881485, 0.11431214958429337, 0.04708025977015495, 0.07716372609138489, -0.030176056548953056, 0.046317003667354584, 0.012688571587204933, 0.04751873388886452, -0.08206509798765182, 0.02999916672706604, 0.008201313205063343, 0.12086575478315353, 0.0875404104590416, 0.027352336794137955, 0.10724891722202301, 0.026573700830340385, -0.07344222068786621, 0.005887594539672136, 0.020828256383538246, -0.005788138601928949, 0.02373802848160267, -0.005685062613338232, -0.04341348633170128, -0.029548903927206993, -0.09705900400876999, -0.004863035399466753, -0.08390103280544281, 0.10385292768478394, 0.001747027155943215, -0.0340811088681221, -0.11936140805482864, -0.04349914565682411, 0.017702754586935043, 0.25000831484794617, 0.03259690850973129, -0.1402786374092102, -0.06851551681756973, 0.07182706147432327, 0.02951893024146557, -0.0017061859834939241, 0.01886173151433468, -0.12589243054389954, 0.12254482507705688, -0.043822772800922394, -0.08524694293737411, -0.05931934714317322, -0.09205888956785202, -0.06113563850522041, 0.06977702677249908, 0.12851901352405548, 0.04708775505423546, 0.009985208511352539, -0.005111983977258205, 0.022766126319766045, -0.07455475628376007, -0.05777855962514877, -0.031201904639601707, 0.13530363142490387, 0.17218974232673645, -0.000054179923608899117, -0.0041138725355267525, 0.020728792995214462, -0.024577457457780838, -0.045622266829013824, 0.08450813591480255, 0.08468366414308548, -0.05604340508580208, -0.031160825863480568, 0.16062815487384796, -0.08558384329080582, -0.19707132875919342, 0.016579272225499153, 0.08941687643527985, -0.0971534475684166, -0.22232507169246674, -0.14004898071289062, 0.1366088092327118, 0.11438523977994919, -0.054521482437849045, 0.07931496948003769, -0.16965973377227783, -0.022411832585930824, 0.04668758064508438, 0.039968300610780716, 0.0977804958820343, -0.1802232712507248, -0.005431362893432379, -0.05880431458353996, -0.10497318208217621, 0.0403255820274353, -0.06115388125181198, 0.040714822709560394, 0.006554520223289728, 0.013200449757277966, 0.06329245865345001, -0.10210520029067993, 0.07526721805334091, -0.1260523647069931, -0.03311825543642044, -0.06735268980264664, 0.043383922427892685, 0.07541118562221527, -0.0399220809340477, 0.1410498172044754, 0.08853312581777573, 0.014850395731627941, -0.018114114180207253, -0.023734290152788162, -0.09471491724252701, 0.13744695484638214, -0.025225285440683365, -0.07194498926401138, -0.10352516919374466, 0.013974640518426895, 0.08537476509809494, 0.024363316595554352, 0.10436210036277771, 0.03921310976147652, 0.06003512069582939, 0.10645446181297302, 0.004192732274532318, 0.004507704637944698, -0.05463012307882309, 0.011889666318893433, -0.021796276792883873, 0.06170846149325371, -0.03856141120195389, -0.044232044368982315, 0.09002482891082764, 0.06710663437843323, 0.01988394372165203, -0.013794390484690666, -0.1505550891160965, -0.07644135504961014, 0.03783448785543442, -0.22202423214912415, -0.03503039851784706, -0.04618239402770996, 0.14168444275856018, 0.039363082498311996, 0.04883326590061188, 0.1107611134648323, -0.10205907374620438, -0.033154457807540894, 0.05687724053859711, 0.04233730956912041, -0.05334112048149109, 0.038565557450056076, 0.042584292590618134, -0.03305608779191971, -0.06254522502422333, 0.0968347117304802, 0.10269425064325333, -0.003934516105800867, -0.04284181818366051, 0.16325008869171143, -0.08102135360240936, -0.04641938582062721, 0.06506635248661041, -0.1370302140712738, -0.05144631862640381, -0.09826894849538803, 0.027573708444833755, 0.02044614776968956, -0.04523790627717972, 0.0888228490948677, 0.03875146061182022, -0.04556993022561073, 0.07951674610376358, 0.0904383733868599, -0.11932960152626038, 0.03329869732260704, -0.05369892343878746, 0.08551457524299622, -0.14382915198802948, 0.12953579425811768, 0.038533374667167664, 0.0723324567079544, -0.04937772825360298, -0.005405067931860685, -0.030160274356603622, -0.0037833629176020622, -0.026413341984152794, 0.10690011829137802, -0.07827415317296982, -0.014778092503547668, 0.022714469581842422, 0.019108939915895462, -0.015763595700263977, 0.05230657383799553, -0.05118175968527794, 0.00990212056785822, -0.03765580430626869, -0.04760415852069855, -0.017325783148407936, -0.038005974143743515, -0.006229393184185028, -0.0779605358839035, 0.0830313041806221, 0.09796055406332016, -0.010362843051552773, -0.04415365308523178, -0.029285836964845657, -0.017027737572789192, 0.08810010552406311, 0.03853752836585045, -0.05035765469074249, -0.05381491407752037, 0.026052022352814674, 0.0434931255877018, -0.0629759207367897, -0.03199939802289009, 0.17510943114757538, -0.0758521780371666, 0.021738756448030472, -0.023847762495279312, -0.0260369461029768, -0.09038501232862473, 0.057129692286252975, -0.007751544937491417, 0.12366645783185959, -0.013132622465491295, -0.05195284262299538, 0.018350210040807724, -0.03983062878251076, -0.018953565508127213, -0.006266618147492409, -0.06639713048934937, 0.08579229563474655, 0.040743254125118256, 0.00896466989070177, 0.03776617720723152, 0.09504307061433792, 0.031008267775177956, -0.01837204024195671, -0.004983391147106886, 0.027761301025748253, 0.02688772790133953, -0.00685557397082448, 0.06223566085100174, -0.029539646580815315, 0.04082566872239113, 0.0731847733259201, 0.032702814787626266, 0.060256123542785645, -0.07564759999513626, 0.010524241253733635, 0.004491986706852913, 0.09344780445098877, 0.05497867986559868, 0.031170567497611046, -0.04169795289635658, -0.1836889535188675, 0.004490253049880266, 0.027806470170617104, 0.12777607142925262, -0.13763630390167236, 0.18759793043136597, 0.1483844518661499, -0.0874781534075737, -0.05147363618016243, 0.024822717532515526, -0.05750272050499916, -0.09311205893754959, -0.23476311564445496, -0.034819815307855606, -0.10082225501537323, 0.014755268581211567, -0.035357482731342316, -0.006743328180164099, -0.020422438159585, 0.038308706134557724, -0.04173985868692398, 0.10611339658498764, 0.03735409304499626, -0.15584607422351837, 0.0500800721347332, 0.04057957977056503, 0.01734161004424095, -0.05192150920629501, -0.04447915405035019, 0.0914328545331955, 0.05012153461575508, 0.10224170982837677, 0.04793943837285042, 0.14317883551120758, 0.0826932042837143, 0.010160569101572037, -0.0408707857131958, -0.004352949559688568, 0.04694591462612152, 0.072113037109375, 0.12831763923168182, -0.04846261069178581, -0.024745183065533638, -0.017825059592723846, 0.14309656620025635, -0.040745362639427185, -0.0316203273832798, -0.05586470291018486, 0.20716705918312073, -0.15005095303058624, -0.11025538295507431, 0.051268696784973145, -0.07994469255208969, -0.03284093737602234, 0.2566371560096741, 0.08752449601888657, 0.12382327020168304, -0.013709977269172668, 0.05148407816886902, -0.011990755796432495, -0.05477777495980263, 0.03033093363046646, 0.1332710087299347, 0.24311980605125427, -0.03468881919980049, -0.023449255153536797, -0.04658108949661255, 0.035425521433353424, -0.17903412878513336, -0.08247730135917664, -0.012720487080514431, -0.013116084039211273, -0.020899074152112007, 0.0709996297955513, 0.011358453892171383, -0.3134036064147949, -0.03005392849445343, -0.06176482513546944, -0.045834533870220184, 0.047102149575948715, -0.019594766199588776, -0.07231036573648453, 0.02636224776506424, -0.04363250359892845, -0.03987511247396469, -0.03802114352583885, 0.027102624997496605, -0.10355158150196075, 0.0026200839783996344, 0.10587563365697861, -0.0940711572766304, 0.2715320289134979, -0.04185491055250168, 0.04206710308790207, 0.07882384955883026, -0.04825355485081673, -0.15275077521800995, -0.0004340530722402036, 0.006548744160681963, -0.1925576627254486, -0.032437097281217575, 0.13045749068260193, -0.07690813392400742, 0.021630216389894485, 0.03437625989317894, -0.05236990377306938, -0.08282237499952316, 0.04409272223711014, 0.059193968772888184, -0.0890030562877655, 0.015514224767684937, -0.18137049674987793, 0.10515309125185013, 0.0873936116695404, -0.019060935825109482, -0.035138752311468124, -0.1599770188331604, -0.01274492871016264, 0.03772236779332161, 0.006286860443651676, 0.08187408745288849, -0.10562469065189362, -0.04751073196530342, -0.1636255830526352, 0.07654121518135071, -0.07228866964578629, 0.04373113065958023, -0.008644329383969307, -0.02851015143096447, -0.08207301050424576, 0.01703418232500553, -0.0024959335569292307, -0.028649087995290756, -0.03477156162261963, 0.030689310282468796, -0.05147732421755791, 0.006333321798592806, -0.18104076385498047, -0.030627014115452766 ]
null
null
transformers
# RepVGG-A0 model Pretrained on [ImageNette](https://github.com/fastai/imagenette). The RepVGG architecture was introduced in [this paper](https://arxiv.org/pdf/2101.03697.pdf). ## Model description The core idea of the author is to distinguish the training architecture (with shortcut connections), from the inference one (a pure highway network). By designing the residual block, the training architecture can be reparametrized into a simple sequence of convolutions and non-linear activations. ## Installation ### Prerequisites Python 3.6 (or higher) and [pip](https://pip.pypa.io/en/stable/)/[conda](https://docs.conda.io/en/latest/miniconda.html) are required to install Holocron. ### Latest stable release You can install the last stable release of the package using [pypi](https://pypi.org/project/pylocron/) as follows: ```shell pip install pylocron ``` or using [conda](https://anaconda.org/frgfm/pylocron): ```shell conda install -c frgfm pylocron ``` ### Developer mode Alternatively, if you wish to use the latest features of the project that haven't made their way to a release yet, you can install the package from source *(install [Git](https://git-scm.com/book/en/v2/Getting-Started-Installing-Git) first)*: ```shell git clone https://github.com/frgfm/Holocron.git pip install -e Holocron/. ``` ## Usage instructions ```python from PIL import Image from torchvision.transforms import Compose, ConvertImageDtype, Normalize, PILToTensor, Resize from torchvision.transforms.functional import InterpolationMode from holocron.models import model_from_hf_hub model = model_from_hf_hub("frgfm/repvgg_a0").eval() img = Image.open(path_to_an_image).convert("RGB") # Preprocessing config = model.default_cfg transform = Compose([ Resize(config['input_shape'][1:], interpolation=InterpolationMode.BILINEAR), PILToTensor(), ConvertImageDtype(torch.float32), Normalize(config['mean'], config['std']) ]) input_tensor = transform(img).unsqueeze(0) # Inference with torch.inference_mode(): output = model(input_tensor) probs = output.squeeze(0).softmax(dim=0) ``` ## Citation Original paper ```bibtex @article{DBLP:journals/corr/abs-2101-03697, author = {Xiaohan Ding and Xiangyu Zhang and Ningning Ma and Jungong Han and Guiguang Ding and Jian Sun}, title = {RepVGG: Making VGG-style ConvNets Great Again}, journal = {CoRR}, volume = {abs/2101.03697}, year = {2021}, url = {https://arxiv.org/abs/2101.03697}, eprinttype = {arXiv}, eprint = {2101.03697}, timestamp = {Tue, 09 Feb 2021 15:29:34 +0100}, biburl = {https://dblp.org/rec/journals/corr/abs-2101-03697.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } ``` Source of this implementation ```bibtex @software{Fernandez_Holocron_2020, author = {Fernandez, François-Guillaume}, month = {5}, title = {{Holocron}}, url = {https://github.com/frgfm/Holocron}, year = {2020} } ```
{"license": "apache-2.0", "tags": ["image-classification", "pytorch", "onnx"], "datasets": ["frgfm/imagenette"]}
image-classification
frgfm/repvgg_a0
[ "transformers", "pytorch", "onnx", "image-classification", "dataset:frgfm/imagenette", "arxiv:2101.03697", "license:apache-2.0", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[ "2101.03697" ]
[]
TAGS #transformers #pytorch #onnx #image-classification #dataset-frgfm/imagenette #arxiv-2101.03697 #license-apache-2.0 #endpoints_compatible #region-us
# RepVGG-A0 model Pretrained on ImageNette. The RepVGG architecture was introduced in this paper. ## Model description The core idea of the author is to distinguish the training architecture (with shortcut connections), from the inference one (a pure highway network). By designing the residual block, the training architecture can be reparametrized into a simple sequence of convolutions and non-linear activations. ## Installation ### Prerequisites Python 3.6 (or higher) and pip/conda are required to install Holocron. ### Latest stable release You can install the last stable release of the package using pypi as follows: or using conda: ### Developer mode Alternatively, if you wish to use the latest features of the project that haven't made their way to a release yet, you can install the package from source *(install Git first)*: ## Usage instructions Original paper Source of this implementation
[ "# RepVGG-A0 model\n\nPretrained on ImageNette. The RepVGG architecture was introduced in this paper.", "## Model description\n\nThe core idea of the author is to distinguish the training architecture (with shortcut connections), from the inference one (a pure highway network). By designing the residual block, the training architecture can be reparametrized into a simple sequence of convolutions and non-linear activations.", "## Installation", "### Prerequisites\n\nPython 3.6 (or higher) and pip/conda are required to install Holocron.", "### Latest stable release\n\nYou can install the last stable release of the package using pypi as follows:\n\n\n\nor using conda:", "### Developer mode\n\nAlternatively, if you wish to use the latest features of the project that haven't made their way to a release yet, you can install the package from source *(install Git first)*:", "## Usage instructions\n\n\n\n\nOriginal paper\n\n\n\nSource of this implementation" ]
[ "TAGS\n#transformers #pytorch #onnx #image-classification #dataset-frgfm/imagenette #arxiv-2101.03697 #license-apache-2.0 #endpoints_compatible #region-us \n", "# RepVGG-A0 model\n\nPretrained on ImageNette. The RepVGG architecture was introduced in this paper.", "## Model description\n\nThe core idea of the author is to distinguish the training architecture (with shortcut connections), from the inference one (a pure highway network). By designing the residual block, the training architecture can be reparametrized into a simple sequence of convolutions and non-linear activations.", "## Installation", "### Prerequisites\n\nPython 3.6 (or higher) and pip/conda are required to install Holocron.", "### Latest stable release\n\nYou can install the last stable release of the package using pypi as follows:\n\n\n\nor using conda:", "### Developer mode\n\nAlternatively, if you wish to use the latest features of the project that haven't made their way to a release yet, you can install the package from source *(install Git first)*:", "## Usage instructions\n\n\n\n\nOriginal paper\n\n\n\nSource of this implementation" ]
[ 58, 29, 71, 2, 27, 27, 46, 10 ]
[ "passage: TAGS\n#transformers #pytorch #onnx #image-classification #dataset-frgfm/imagenette #arxiv-2101.03697 #license-apache-2.0 #endpoints_compatible #region-us \n# RepVGG-A0 model\n\nPretrained on ImageNette. The RepVGG architecture was introduced in this paper.## Model description\n\nThe core idea of the author is to distinguish the training architecture (with shortcut connections), from the inference one (a pure highway network). By designing the residual block, the training architecture can be reparametrized into a simple sequence of convolutions and non-linear activations.## Installation### Prerequisites\n\nPython 3.6 (or higher) and pip/conda are required to install Holocron.### Latest stable release\n\nYou can install the last stable release of the package using pypi as follows:\n\n\n\nor using conda:### Developer mode\n\nAlternatively, if you wish to use the latest features of the project that haven't made their way to a release yet, you can install the package from source *(install Git first)*:## Usage instructions\n\n\n\n\nOriginal paper\n\n\n\nSource of this implementation" ]
[ -0.0706363245844841, 0.19810384511947632, -0.002193402498960495, 0.006016337312757969, 0.11547623574733734, -0.01166048739105463, 0.06750918924808502, 0.07169146835803986, -0.11693471670150757, 0.05094977840781212, 0.1060677096247673, 0.13798314332962036, 0.07465779036283493, 0.1118830069899559, -0.003776754718273878, -0.22307510673999786, -0.018940838053822517, 0.0361090786755085, 0.0829404667019844, 0.07105161994695663, 0.08711656183004379, -0.06344663351774216, 0.08080603182315826, 0.0487181730568409, -0.1437082290649414, -0.03465820476412773, -0.04445208981633186, -0.039961911737918854, 0.08338785916566849, 0.049499668180942535, 0.11490298807621002, 0.0006070233648642898, 0.05415354669094086, -0.09403608739376068, 0.018457287922501564, 0.12534935772418976, -0.0012687540147453547, 0.06492310017347336, 0.13360244035720825, -0.015325133688747883, 0.10554740577936172, 0.012869318015873432, -0.034988850355148315, 0.040536895394325256, -0.0374407097697258, -0.19853143393993378, -0.07952630519866943, 0.08893196284770966, 0.07620562613010406, 0.08491064608097076, 0.03468965366482735, 0.08601901680231094, 0.06868186593055725, 0.09831833839416504, 0.07189004868268967, -0.17667266726493835, -0.08197802305221558, 0.1342635452747345, -0.0008767191902734339, 0.0714213103055954, -0.03158695250749588, -0.024204999208450317, -0.005965776741504669, 0.06859279423952103, 0.05014399439096451, -0.04183223843574524, -0.07614681124687195, -0.07351228594779968, -0.1460960954427719, -0.029937122017145157, 0.20283243060112, -0.02859654277563095, -0.03422456234693527, -0.04468490555882454, -0.12947817146778107, -0.001960938796401024, 0.041727595031261444, 0.004387198947370052, 0.000839117681607604, 0.051633041352033615, -0.0048862360417842865, -0.2137346714735031, -0.11594830453395844, -0.02550564520061016, -0.016592063009738922, 0.15304772555828094, 0.041710954159498215, 0.08835385739803314, -0.05283384770154953, 0.14921580255031586, -0.09455139935016632, -0.058937523514032364, -0.06904920935630798, -0.11761713773012161, -0.012773274444043636, -0.008484435267746449, -0.0108085498213768, -0.1782936006784439, -0.03349600359797478, 0.14747200906276703, -0.07635024189949036, -0.0033996175043284893, -0.037921153008937836, 0.060299087315797806, 0.00266958586871624, 0.10813529789447784, -0.10656479746103287, 0.07208128273487091, 0.058822616934776306, -0.03732973337173462, -0.0060473112389445305, 0.010272113606333733, -0.10351809859275818, -0.04039021581411362, 0.015158679336309433, 0.005601821932941675, -0.006131195463240147, 0.0727292150259018, 0.021326614543795586, -0.07513654977083206, 0.0724848136305809, -0.07390547543764114, -0.046598151326179504, -0.055190008133649826, -0.02160050719976425, 0.09457558393478394, 0.13691118359565735, -0.05764536187052727, -0.02564726024866104, -0.014402391389012337, -0.041096266359090805, -0.0479404553771019, -0.12909027934074402, -0.06737937033176422, -0.009892190806567669, -0.1068660244345665, -0.0190611332654953, -0.1651991903781891, -0.20446348190307617, -0.019690359011292458, 0.11293716728687286, -0.003545799758285284, 0.03321695327758789, 0.04901554062962532, -0.0631987601518631, -0.07872272282838821, -0.025887588039040565, -0.009238938800990582, -0.012138360179960728, 0.045732446014881134, 0.014380203559994698, 0.03761905059218407, -0.13467839360237122, 0.06136652082204819, -0.056039728224277496, 0.031296733766794205, -0.191277414560318, 0.054162707179784775, -0.028189541772007942, 0.053533874452114105, -0.0576290562748909, -0.07542233169078827, -0.018913540989160538, -0.03886397182941437, 0.023807741701602936, 0.052304740995168686, -0.09545820206403732, -0.013927019201219082, 0.1881788671016693, -0.1609126180410385, -0.03617523983120918, 0.03391104191541672, -0.004570726305246353, 0.14345934987068176, 0.03248051926493645, -0.05319434404373169, 0.22897762060165405, -0.13598386943340302, -0.04626879468560219, 0.07307792454957962, -0.08611965924501419, -0.06862898170948029, 0.03477812185883522, 0.06748079508543015, 0.009018734097480774, 0.051707759499549866, -0.10547541081905365, 0.09738773852586746, -0.00901402160525322, -0.029772162437438965, -0.03644818812608719, -0.0705501139163971, -0.07517021149396896, 0.05697254091501236, 0.018340354785323143, 0.1056293174624443, -0.0784858837723732, -0.06405600160360336, 0.14153097569942474, -0.08515099436044693, -0.00018165342044085264, -0.06611791253089905, 0.10595669597387314, -0.08546876907348633, -0.01572166010737419, -0.17886759340763092, -0.036334455013275146, 0.054781652987003326, -0.00158612837549299, -0.021085867658257484, 0.10719995200634003, 0.0519634485244751, 0.0898938775062561, 0.018254797905683517, -0.021485311910510063, 0.011724707670509815, -0.07266706973314285, -0.012357929721474648, -0.0408082976937294, -0.07730182260274887, -0.07987113296985626, 0.16195960342884064, -0.12050936371088028, 0.04622989147901535, 0.09450988471508026, 0.10587253421545029, 0.011243377812206745, -0.050223104655742645, -0.008039653301239014, -0.04390794411301613, -0.0565747432410717, -0.08168651163578033, 0.05802708864212036, 0.08236212283372879, 0.009069238789379597, 0.023749221116304398, -0.06773718446493149, -0.1442456692457199, 0.07643227279186249, -0.05392253398895264, -0.026865817606449127, -0.03740890324115753, -0.09588813781738281, 0.015066475607454777, -0.02380099520087242, 0.005457363091409206, 0.17625649273395538, 0.035985514521598816, 0.13936254382133484, -0.0766984075307846, -0.024111619219183922, 0.03633536025881767, -0.04611971601843834, -0.007999652065336704, 0.009178255684673786, 0.12792684137821198, -0.07587360590696335, 0.08890693634748459, -0.0027739510405808687, -0.16357050836086273, 0.09295812994241714, 0.05935317277908325, -0.06260113418102264, -0.014102602377533913, 0.08617294579744339, 0.03717315196990967, 0.06768849492073059, -0.05834382027387619, -0.04740530252456665, 0.05380919575691223, -0.08432178944349289, 0.08911509811878204, -0.11826352030038834, 0.05910686030983925, -0.01856236904859543, -0.0015466393670067191, 0.15845733880996704, 0.011317666620016098, -0.012762976810336113, 0.03347538411617279, 0.009427126497030258, 0.0037823219317942858, 0.02371564880013466, -0.009858746081590652, -0.030971402302384377, 0.1346510946750641, -0.13301724195480347, -0.2766231298446655, -0.18506847321987152, -0.12333328276872635, -0.1014082133769989, 0.04658310487866402, 0.003681111615151167, -0.08489172160625458, -0.0667533352971077, 0.00034343989682383835, -0.011747753247618675, -0.09637662023305893, -0.05584682524204254, -0.0796453133225441, 0.06645537912845612, -0.01801474206149578, -0.08037503063678741, -0.007965200580656528, 0.0030119726434350014, -0.17097562551498413, 0.10838586837053299, -0.017459016293287277, 0.009070775471627712, 0.10216580331325531, -0.010831763967871666, 0.037781018763780594, 0.012209434993565083, 0.07553275674581528, -0.0517507866024971, 0.04002680256962776, 0.2703193724155426, 0.010016309097409248, 0.0735035091638565, 0.07409145683050156, -0.005278379190713167, -0.07131660729646683, 0.027056589722633362, -0.031408440321683884, -0.07327885925769806, -0.17430458962917328, -0.07695415616035461, -0.06179839372634888, -0.017262015491724014, 0.10135222971439362, 0.05992359668016434, 0.1091233640909195, 0.1532558798789978, -0.05555576831102371, 0.037850674241781235, -0.001432376797311008, 0.1427607238292694, 0.1025555431842804, -0.04488915950059891, 0.07160194963216782, -0.009839776903390884, 0.020174594596028328, 0.11278261989355087, 0.0979771837592125, 0.23954227566719055, -0.1037738248705864, -0.028507761657238007, 0.0790698230266571, 0.11542442440986633, 0.03172622621059418, 0.03953171148896217, -0.03226711228489876, 0.03767991065979004, -0.019289517775177956, -0.0791768729686737, -0.09155697375535965, 0.13814999163150787, -0.04053455591201782, -0.04689336568117142, 0.049921806901693344, 0.02398284524679184, -0.02240700088441372, 0.22435139119625092, -0.0007523174281232059, -0.2942553460597992, -0.06318094581365585, -0.007804573979228735, -0.006820836570113897, -0.13693867623806, 0.014600511640310287, 0.10827464610338211, -0.09915042668581009, 0.03369138389825821, -0.10848485678434372, 0.08906806260347366, -0.15125592052936554, -0.03147652745246887, 0.09356812387704849, 0.14806661009788513, 0.057643990963697433, 0.07359860092401505, -0.1395266354084015, 0.09644520282745361, 0.024436555802822113, 0.03530430793762207, -0.08528273552656174, 0.09913907200098038, 0.015537133440375328, 0.12117654830217361, 0.11602914333343506, -0.016774911433458328, 0.04407509043812752, 0.012027948163449764, -0.000011393704880902078, 0.012672883458435535, 0.06470569968223572, -0.02722555212676525, 0.04588232934474945, -0.02299358695745468, -0.001519329845905304, -0.05868097394704819, -0.0584622323513031, -0.046618543565273285, -0.12153654545545578, 0.09077098220586777, 0.019725944846868515, 0.033523574471473694, -0.08703693747520447, 0.015476224943995476, 0.012298966757953167, 0.23715463280677795, -0.039075154811143875, -0.07293285429477692, -0.12022553384304047, 0.0271717831492424, 0.059687431901693344, -0.029366420581936836, 0.05821714922785759, -0.1293165236711502, 0.12654908001422882, -0.035306721925735474, -0.0900440663099289, -0.04083661735057831, -0.12056264281272888, -0.033821508288383484, -0.009861637838184834, 0.020978258922696114, 0.08415811508893967, -0.037652645260095596, 0.0006150043336674571, -0.00028195997583679855, -0.1202281191945076, -0.06827671825885773, -0.052983757108449936, 0.18818366527557373, 0.13885869085788727, -0.011383220553398132, -0.09199656546115875, -0.04692193120718002, -0.029954340308904648, 0.0329040065407753, 0.07312849164009094, 0.11737734079360962, -0.056982431560754776, 0.01950790546834469, 0.16499866545200348, -0.05182003974914551, -0.2073652446269989, -0.01293252594769001, 0.07712972164154053, -0.011276448145508766, -0.09713239222764969, -0.2535710632801056, 0.10784967988729477, 0.08489185571670532, -0.03596492484211922, 0.04027852416038513, -0.15496434271335602, -0.020201602950692177, 0.06104986369609833, 0.05305420234799385, 0.06691194325685501, -0.1070280596613884, -0.02541702426970005, -0.01521532516926527, -0.119721919298172, 0.07417500764131546, -0.07198350131511688, 0.09510394930839539, -0.030641360208392143, 0.0440899059176445, 0.028622731566429138, -0.07433158159255981, 0.04866183549165726, -0.04373622313141823, 0.03273449465632439, -0.022078007459640503, 0.09556660801172256, 0.1622992902994156, -0.05921615660190582, 0.07622447609901428, 0.0836937427520752, 0.07934936136007309, -0.13471920788288116, -0.04780220985412598, -0.07191234827041626, 0.12916795909404755, 0.013666316866874695, -0.09770873188972473, -0.047307223081588745, 0.06836337596178055, 0.019896484911441803, 0.033239323645830154, 0.024999774992465973, -0.03628597781062126, 0.06451934576034546, 0.17851026356220245, 0.030511118471622467, -0.012765403836965561, -0.040839556604623795, -0.030582094565033913, 0.01917511411011219, 0.09633959829807281, -0.11441335082054138, -0.013509008102118969, 0.047544367611408234, 0.01957925409078598, 0.05553058534860611, 0.03846701607108116, -0.10890807956457138, -0.005961927119642496, 0.034387409687042236, -0.1849466860294342, 0.009587905369699001, -0.03620290011167526, 0.13382022082805634, -0.000818737898953259, 0.09372842311859131, 0.1370440125465393, -0.027185752987861633, -0.0046121603809297085, 0.014006203971803188, 0.01290055736899376, -0.03409869596362114, -0.019185077399015427, 0.019626714289188385, -0.025815019384026527, -0.03331835940480232, 0.07118382304906845, 0.08617600053548813, -0.06090410426259041, -0.04624079540371895, 0.04825374856591225, -0.0923864096403122, -0.08638040721416473, -0.0766887366771698, -0.10410498827695847, -0.03132536634802818, -0.08139625936746597, -0.0032622877042740583, 0.03783610090613365, -0.006099345628172159, 0.12511885166168213, 0.028281323611736298, -0.004401973448693752, -0.03585439920425415, 0.02763671800494194, -0.12902043759822845, 0.049090418964624405, -0.07829220592975616, 0.06275451183319092, -0.14524653553962708, 0.12381843477487564, 0.030659139156341553, 0.04524154216051102, -0.043799083679914474, -0.021027570590376854, -0.05626215040683746, 0.00812351331114769, -0.05090171471238136, 0.003755568992346525, -0.08724312484264374, -0.016106650233268738, 0.012743009254336357, -0.009774759411811829, -0.0386480838060379, 0.042693763971328735, -0.06953977048397064, 0.0340980663895607, -0.018732162192463875, 0.024032261222600937, -0.05477454885840416, -0.004398494027554989, -0.0030160953756421804, -0.08621441572904587, 0.10399849712848663, 0.027012450620532036, -0.05752777308225632, -0.012523505836725235, -0.0750826895236969, -0.04526963084936142, 0.024540601298213005, 0.08513393998146057, 0.004228606354445219, -0.0023819277994334698, 0.06996355205774307, 0.01868291199207306, -0.022684387862682343, -0.03760048374533653, 0.08171968907117844, -0.07634572684764862, 0.04407932981848717, 0.03268733248114586, 0.006788815837353468, -0.09540564566850662, 0.07302582263946533, 0.06408100575208664, 0.12116684019565582, 0.03842894360423088, -0.02065563015639782, 0.0659882053732872, -0.06139565259218216, -0.003071288578212261, 0.010819840244948864, -0.050228435546159744, 0.11462746560573578, -0.081644207239151, 0.011068264953792095, 0.014394390396773815, 0.16033798456192017, 0.02880460023880005, 0.0005720105255022645, -0.007414683699607849, 0.017997372895479202, -0.06307175010442734, -0.037637412548065186, 0.05688752606511116, 0.07930150628089905, 0.06686406582593918, 0.02677079662680626, 0.07003158330917358, 0.007326847407966852, -0.05104120075702667, 0.1009996309876442, 0.04715098440647125, 0.0427846759557724, 0.058182183653116226, 0.048607803881168365, -0.05642649903893471, -0.11743517965078354, 0.049860257655382156, -0.045715730637311935, 0.09604580700397491, -0.15526869893074036, 0.12255355715751648, 0.11552134901285172, -0.04320921003818512, 0.045853305608034134, 0.07626514881849289, -0.033360689878463745, -0.10453250259160995, -0.1536732167005539, -0.03186600282788277, -0.11423597484827042, 0.023116787895560265, -0.05547014996409416, 0.004687315318733454, 0.06708701699972153, 0.0009310344466939569, -0.036947522312402725, 0.08759567141532898, 0.012545403093099594, -0.12036319077014923, 0.05223117768764496, 0.00963176041841507, 0.061938319355249405, -0.08745360374450684, -0.03630245104432106, 0.05653860792517662, 0.056580621749162674, 0.07163994759321213, 0.022557538002729416, 0.10864704102277756, 0.0431990884244442, -0.01400793343782425, -0.03340412303805351, -0.046220533549785614, 0.05203689634799957, -0.0638628825545311, 0.12176334112882614, -0.06145826727151871, -0.06199841573834419, 0.006025433074682951, 0.15551696717739105, -0.0894634947180748, -0.004094757605344057, -0.14620915055274963, 0.28154101967811584, -0.042075179517269135, -0.05327187106013298, 0.03345656022429466, -0.048380013555288315, -0.006031355820596218, 0.23008067905902863, 0.059917617589235306, 0.038654815405607224, 0.0007173555204644799, 0.14997698366641998, -0.011920275166630745, -0.08161978423595428, 0.05763787776231766, 0.07930738478899002, 0.2562432587146759, -0.017770271748304367, -0.0404207743704319, 0.02027072012424469, -0.006832549814134836, -0.062384236603975296, -0.09628797322511673, -0.0686786025762558, -0.02017177827656269, 0.005931887309998274, 0.05439230427145958, -0.05553796887397766, -0.14449447393417358, 0.08829331398010254, 0.019185509532690048, -0.07931826263666153, -0.019328230991959572, 0.021021811291575432, -0.08237149566411972, 0.05303763970732689, -0.051311589777469635, -0.034632183611392975, 0.21993505954742432, -0.025020349770784378, -0.039640359580516815, -0.04346945136785507, 0.09779085963964462, -0.111745186150074, 0.1790449023246765, -0.058949973434209824, 0.0050899069756269455, 0.09835144877433777, -0.04614347591996193, -0.0992162749171257, 0.0287539754062891, -0.020919345319271088, -0.1657141000032425, -0.03334111347794533, 0.09514502435922623, -0.08460277318954468, 0.1176716610789299, 0.00963806826621294, -0.13191720843315125, 0.007794190663844347, 0.0657457485795021, 0.010060853324830532, -0.07840877771377563, 0.04335205256938934, -0.1165279895067215, 0.10473795235157013, 0.12731212377548218, 0.005068715661764145, -0.049036480486392975, -0.13791556656360626, 0.08044519275426865, 0.021256694570183754, 0.049511756747961044, -0.016771314665675163, -0.0938328430056572, -0.058383453637361526, -0.07925421744585037, 0.06276170164346695, -0.16765375435352325, 0.005206974223256111, 0.04287726432085037, -0.03844483941793442, -0.09837736934423447, 0.027225835248827934, 0.01909567043185234, 0.02390657179057598, -0.011339825578033924, 0.11044157296419144, -0.05600179359316826, -0.021296944469213486, -0.1941949725151062, -0.05058296397328377 ]
null
null
transformers
# RepVGG-A1 model Pretrained on [ImageNette](https://github.com/fastai/imagenette). The RepVGG architecture was introduced in [this paper](https://arxiv.org/pdf/2101.03697.pdf). ## Model description The core idea of the author is to distinguish the training architecture (with shortcut connections), from the inference one (a pure highway network). By designing the residual block, the training architecture can be reparametrized into a simple sequence of convolutions and non-linear activations. ## Installation ### Prerequisites Python 3.6 (or higher) and [pip](https://pip.pypa.io/en/stable/)/[conda](https://docs.conda.io/en/latest/miniconda.html) are required to install Holocron. ### Latest stable release You can install the last stable release of the package using [pypi](https://pypi.org/project/pylocron/) as follows: ```shell pip install pylocron ``` or using [conda](https://anaconda.org/frgfm/pylocron): ```shell conda install -c frgfm pylocron ``` ### Developer mode Alternatively, if you wish to use the latest features of the project that haven't made their way to a release yet, you can install the package from source *(install [Git](https://git-scm.com/book/en/v2/Getting-Started-Installing-Git) first)*: ```shell git clone https://github.com/frgfm/Holocron.git pip install -e Holocron/. ``` ## Usage instructions ```python from PIL import Image from torchvision.transforms import Compose, ConvertImageDtype, Normalize, PILToTensor, Resize from torchvision.transforms.functional import InterpolationMode from holocron.models import model_from_hf_hub model = model_from_hf_hub("frgfm/repvgg_a1").eval() img = Image.open(path_to_an_image).convert("RGB") # Preprocessing config = model.default_cfg transform = Compose([ Resize(config['input_shape'][1:], interpolation=InterpolationMode.BILINEAR), PILToTensor(), ConvertImageDtype(torch.float32), Normalize(config['mean'], config['std']) ]) input_tensor = transform(img).unsqueeze(0) # Inference with torch.inference_mode(): output = model(input_tensor) probs = output.squeeze(0).softmax(dim=0) ``` ## Citation Original paper ```bibtex @article{DBLP:journals/corr/abs-2101-03697, author = {Xiaohan Ding and Xiangyu Zhang and Ningning Ma and Jungong Han and Guiguang Ding and Jian Sun}, title = {RepVGG: Making VGG-style ConvNets Great Again}, journal = {CoRR}, volume = {abs/2101.03697}, year = {2021}, url = {https://arxiv.org/abs/2101.03697}, eprinttype = {arXiv}, eprint = {2101.03697}, timestamp = {Tue, 09 Feb 2021 15:29:34 +0100}, biburl = {https://dblp.org/rec/journals/corr/abs-2101-03697.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } ``` Source of this implementation ```bibtex @software{Fernandez_Holocron_2020, author = {Fernandez, François-Guillaume}, month = {5}, title = {{Holocron}}, url = {https://github.com/frgfm/Holocron}, year = {2020} } ```
{"license": "apache-2.0", "tags": ["image-classification", "pytorch", "onnx"], "datasets": ["frgfm/imagenette"]}
image-classification
frgfm/repvgg_a1
[ "transformers", "pytorch", "onnx", "image-classification", "dataset:frgfm/imagenette", "arxiv:2101.03697", "license:apache-2.0", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[ "2101.03697" ]
[]
TAGS #transformers #pytorch #onnx #image-classification #dataset-frgfm/imagenette #arxiv-2101.03697 #license-apache-2.0 #endpoints_compatible #region-us
# RepVGG-A1 model Pretrained on ImageNette. The RepVGG architecture was introduced in this paper. ## Model description The core idea of the author is to distinguish the training architecture (with shortcut connections), from the inference one (a pure highway network). By designing the residual block, the training architecture can be reparametrized into a simple sequence of convolutions and non-linear activations. ## Installation ### Prerequisites Python 3.6 (or higher) and pip/conda are required to install Holocron. ### Latest stable release You can install the last stable release of the package using pypi as follows: or using conda: ### Developer mode Alternatively, if you wish to use the latest features of the project that haven't made their way to a release yet, you can install the package from source *(install Git first)*: ## Usage instructions Original paper Source of this implementation
[ "# RepVGG-A1 model\n\nPretrained on ImageNette. The RepVGG architecture was introduced in this paper.", "## Model description\n\nThe core idea of the author is to distinguish the training architecture (with shortcut connections), from the inference one (a pure highway network). By designing the residual block, the training architecture can be reparametrized into a simple sequence of convolutions and non-linear activations.", "## Installation", "### Prerequisites\n\nPython 3.6 (or higher) and pip/conda are required to install Holocron.", "### Latest stable release\n\nYou can install the last stable release of the package using pypi as follows:\n\n\n\nor using conda:", "### Developer mode\n\nAlternatively, if you wish to use the latest features of the project that haven't made their way to a release yet, you can install the package from source *(install Git first)*:", "## Usage instructions\n\n\n\n\nOriginal paper\n\n\n\nSource of this implementation" ]
[ "TAGS\n#transformers #pytorch #onnx #image-classification #dataset-frgfm/imagenette #arxiv-2101.03697 #license-apache-2.0 #endpoints_compatible #region-us \n", "# RepVGG-A1 model\n\nPretrained on ImageNette. The RepVGG architecture was introduced in this paper.", "## Model description\n\nThe core idea of the author is to distinguish the training architecture (with shortcut connections), from the inference one (a pure highway network). By designing the residual block, the training architecture can be reparametrized into a simple sequence of convolutions and non-linear activations.", "## Installation", "### Prerequisites\n\nPython 3.6 (or higher) and pip/conda are required to install Holocron.", "### Latest stable release\n\nYou can install the last stable release of the package using pypi as follows:\n\n\n\nor using conda:", "### Developer mode\n\nAlternatively, if you wish to use the latest features of the project that haven't made their way to a release yet, you can install the package from source *(install Git first)*:", "## Usage instructions\n\n\n\n\nOriginal paper\n\n\n\nSource of this implementation" ]
[ 58, 29, 71, 2, 27, 27, 46, 10 ]
[ "passage: TAGS\n#transformers #pytorch #onnx #image-classification #dataset-frgfm/imagenette #arxiv-2101.03697 #license-apache-2.0 #endpoints_compatible #region-us \n# RepVGG-A1 model\n\nPretrained on ImageNette. The RepVGG architecture was introduced in this paper.## Model description\n\nThe core idea of the author is to distinguish the training architecture (with shortcut connections), from the inference one (a pure highway network). By designing the residual block, the training architecture can be reparametrized into a simple sequence of convolutions and non-linear activations.## Installation### Prerequisites\n\nPython 3.6 (or higher) and pip/conda are required to install Holocron.### Latest stable release\n\nYou can install the last stable release of the package using pypi as follows:\n\n\n\nor using conda:### Developer mode\n\nAlternatively, if you wish to use the latest features of the project that haven't made their way to a release yet, you can install the package from source *(install Git first)*:## Usage instructions\n\n\n\n\nOriginal paper\n\n\n\nSource of this implementation" ]
[ -0.0705660730600357, 0.19776560366153717, -0.002187055069953203, 0.006095583084970713, 0.11536284536123276, -0.011144391261041164, 0.0679568499326706, 0.07135036587715149, -0.11546134948730469, 0.049879662692546844, 0.1057216078042984, 0.13638564944267273, 0.07501144707202911, 0.11251770704984665, -0.0034493468701839447, -0.2227197140455246, -0.019103804603219032, 0.03553491830825806, 0.08292972296476364, 0.07140055298805237, 0.08689646422863007, -0.06337527930736542, 0.08031334728002548, 0.04950606822967529, -0.14255186915397644, -0.034528203308582306, -0.04470747336745262, -0.04068679362535477, 0.08415909111499786, 0.04937439411878586, 0.1157456561923027, 0.0010298010893166065, 0.05490609258413315, -0.09473435580730438, 0.01821543276309967, 0.12501052021980286, -0.0009695783373899758, 0.06499208509922028, 0.1334926038980484, -0.014536721631884575, 0.10413838177919388, 0.014575500972568989, -0.03440355136990547, 0.040902454406023026, -0.03815014287829399, -0.19899806380271912, -0.07903416454792023, 0.08936076611280441, 0.07678472250699997, 0.08477072417736053, 0.03420069068670273, 0.08543768525123596, 0.06786801666021347, 0.09733518213033676, 0.07048735022544861, -0.17755647003650665, -0.08109749853610992, 0.1328420639038086, -0.002096243668347597, 0.072076216340065, -0.03120759315788746, -0.024724017828702927, -0.005380237940698862, 0.06846560537815094, 0.04999653622508049, -0.04167475551366806, -0.07470706850290298, -0.0732518807053566, -0.14613288640975952, -0.030840734019875526, 0.20391900837421417, -0.02888675592839718, -0.03423155099153519, -0.044072240591049194, -0.12960290908813477, -0.0024729801807552576, 0.04206736013293266, 0.004128183703869581, 0.0004936581826768816, 0.05222085863351822, -0.00447511300444603, -0.2139560729265213, -0.11675753444433212, -0.025370901450514793, -0.01677282527089119, 0.15202417969703674, 0.041879329830408096, 0.08860943466424942, -0.05201943591237068, 0.15029875934123993, -0.0944528579711914, -0.05940801277756691, -0.06833914667367935, -0.11760825663805008, -0.01272993627935648, -0.008417936973273754, -0.010597285814583302, -0.1779690384864807, -0.03377694636583328, 0.14729030430316925, -0.07555931061506271, -0.003861975157633424, -0.03860251232981682, 0.060315780341625214, 0.003238038858398795, 0.10889940708875656, -0.10601883381605148, 0.07279516011476517, 0.05895540863275528, -0.036762744188308716, -0.006044082809239626, 0.010553666390478611, -0.10383039712905884, -0.039915286004543304, 0.016106586903333664, 0.006647742819041014, -0.006545884069055319, 0.07224022597074509, 0.02052455209195614, -0.07498915493488312, 0.07269714027643204, -0.07386614382266998, -0.0470271036028862, -0.05524902790784836, -0.021602431312203407, 0.0934903621673584, 0.13703420758247375, -0.05731740593910217, -0.025338655337691307, -0.013795426115393639, -0.041620638221502304, -0.04864545911550522, -0.1284315288066864, -0.06694411486387253, -0.010166967287659645, -0.10622821748256683, -0.019116470590233803, -0.16562573611736298, -0.20536421239376068, -0.019316965714097023, 0.11208432912826538, -0.003700708271935582, 0.03193828463554382, 0.04921215772628784, -0.06258101016283035, -0.07813433557748795, -0.02635461464524269, -0.009870178066194057, -0.012016578577458858, 0.04558945074677467, 0.014837481081485748, 0.03749849647283554, -0.13402971625328064, 0.061335161328315735, -0.05703369900584221, 0.03147771954536438, -0.1904456615447998, 0.05394190922379494, -0.028175069019198418, 0.05379075929522514, -0.057940103113651276, -0.07473749667406082, -0.0189402773976326, -0.03925550729036331, 0.023635130375623703, 0.052350983023643494, -0.09531743079423904, -0.013915551826357841, 0.18640705943107605, -0.16205406188964844, -0.03660132363438606, 0.03464494273066521, -0.004031264688819647, 0.1429394781589508, 0.03219093382358551, -0.053322553634643555, 0.22679869830608368, -0.13608454167842865, -0.04671705514192581, 0.07252619415521622, -0.08562231063842773, -0.06863556802272797, 0.035348180681467056, 0.0675257071852684, 0.007731660269200802, 0.05151867866516113, -0.10461015999317169, 0.09785057604312897, -0.00919285137206316, -0.030448103323578835, -0.03680186718702316, -0.07040723413228989, -0.0746539905667305, 0.057093020528554916, 0.018164237961173058, 0.10559162497520447, -0.07942235469818115, -0.06651560217142105, 0.14172221720218658, -0.08453340828418732, -0.00032202061265707016, -0.06635371595621109, 0.1057097390294075, -0.08731327205896378, -0.016079381108283997, -0.178410604596138, -0.03755667433142662, 0.054598405957221985, -0.0008577278349548578, -0.021440589800477028, 0.10852108150720596, 0.05140838772058487, 0.08965275436639786, 0.018121996894478798, -0.02190577983856201, 0.010859831236302853, -0.07229197025299072, -0.012227197177708149, -0.04042783007025719, -0.0771908089518547, -0.08016546815633774, 0.1621120572090149, -0.11950541287660599, 0.04565218463540077, 0.09351951628923416, 0.1053743064403534, 0.011601120233535767, -0.04951107129454613, -0.008048835210502148, -0.043698590248823166, -0.05712972581386566, -0.08123104274272919, 0.057990580797195435, 0.08190053701400757, 0.009261710569262505, 0.024177424609661102, -0.06704096496105194, -0.14439323544502258, 0.0766473039984703, -0.05251241475343704, -0.02705623395740986, -0.03764628246426582, -0.09606034308671951, 0.0150076225399971, -0.023893773555755615, 0.005019075702875853, 0.17711970210075378, 0.0364021398127079, 0.13981486856937408, -0.07660079002380371, -0.023651596158742905, 0.03656110540032387, -0.04623335972428322, -0.008067050017416477, 0.008785969577729702, 0.12922659516334534, -0.07634729892015457, 0.08920376002788544, -0.0020039225928485394, -0.16212113201618195, 0.0926586240530014, 0.05896667018532753, -0.06274726986885071, -0.014077983796596527, 0.08484400808811188, 0.037084516137838364, 0.06806410849094391, -0.05785025283694267, -0.046867504715919495, 0.05369342863559723, -0.0835924744606018, 0.08910194784402847, -0.11853256821632385, 0.05860248580574989, -0.018515631556510925, -0.0014895845670253038, 0.15813300013542175, 0.011033689603209496, -0.012174457311630249, 0.03369849547743797, 0.009050058200955391, 0.0036430018953979015, 0.023623676970601082, -0.009937870316207409, -0.030457722023129463, 0.1343763768672943, -0.13244596123695374, -0.27743127942085266, -0.18493103981018066, -0.12363237887620926, -0.10042371600866318, 0.046946749091148376, 0.0038331537507474422, -0.08598756790161133, -0.0668322741985321, 0.00037641453673131764, -0.010602925904095173, -0.0959857776761055, -0.055900007486343384, -0.0795363187789917, 0.06618096679449081, -0.017591534182429314, -0.08049222826957703, -0.007829706184566021, 0.002605408662930131, -0.17128564417362213, 0.10837110131978989, -0.017719877883791924, 0.00942191295325756, 0.10288521647453308, -0.010432446375489235, 0.03740888461470604, 0.011891502887010574, 0.07578275352716446, -0.05168991908431053, 0.03988594561815262, 0.26975953578948975, 0.009470292367041111, 0.07340650260448456, 0.0748772844672203, -0.005590153392404318, -0.07136588543653488, 0.027241047471761703, -0.03152800351381302, -0.07351064682006836, -0.17471711337566376, -0.0777960792183876, -0.06125451624393463, -0.016928182914853096, 0.10173437744379044, 0.060034286230802536, 0.1082511767745018, 0.1536654382944107, -0.05544482544064522, 0.03694147616624832, -0.0025770983193069696, 0.1420750766992569, 0.10417619347572327, -0.04529748857021332, 0.07180076837539673, -0.009757136926054955, 0.01902548037469387, 0.11280957609415054, 0.09943921864032745, 0.23997119069099426, -0.10359510779380798, -0.028222469612956047, 0.07859810441732407, 0.11471135914325714, 0.03267311304807663, 0.04000268504023552, -0.031858596950769424, 0.03716443106532097, -0.019597120583057404, -0.07862337678670883, -0.09148675948381424, 0.1388496309518814, -0.040550362318754196, -0.046651531010866165, 0.04930174723267555, 0.024610407650470734, -0.022664660587906837, 0.22406919300556183, -0.000008292659003927838, -0.293331503868103, -0.06244051083922386, -0.0074547226540744305, -0.007593972608447075, -0.1365804523229599, 0.0150679936632514, 0.10738179832696915, -0.09894530475139618, 0.03276587277650833, -0.10822704434394836, 0.0895424485206604, -0.15198248624801636, -0.03130192309617996, 0.09325429797172546, 0.1467558592557907, 0.057126663625240326, 0.07392121106386185, -0.1384909749031067, 0.0970536470413208, 0.02416972443461418, 0.0351923368871212, -0.0849679559469223, 0.09921028465032578, 0.015452781692147255, 0.12196773290634155, 0.11674082279205322, -0.016783257946372032, 0.04494120925664902, 0.01067433226853609, -0.0012735411291942, 0.013263391330838203, 0.06291132420301437, -0.027129145339131355, 0.04605874419212341, -0.023354170843958855, -0.0008366259280592203, -0.05835876613855362, -0.056685179471969604, -0.047306373715400696, -0.12178213894367218, 0.09023305773735046, 0.02008463442325592, 0.03272419422864914, -0.08709883689880371, 0.015002118423581123, 0.01305497158318758, 0.23641371726989746, -0.037413109093904495, -0.0732341855764389, -0.12028425186872482, 0.02776172384619713, 0.0606335885822773, -0.02951803430914879, 0.05793524533510208, -0.12906503677368164, 0.12567828595638275, -0.03555389493703842, -0.08969489485025406, -0.04092856124043465, -0.12068354338407516, -0.03461557626724243, -0.010590269230306149, 0.021114876493811607, 0.08372978121042252, -0.037076953798532486, 0.0009608912514522672, -0.00032174555235542357, -0.1205325722694397, -0.06772304326295853, -0.052219197154045105, 0.18703709542751312, 0.13828417658805847, -0.012200236320495605, -0.09201952069997787, -0.046156175434589386, -0.029911570250988007, 0.03196500614285469, 0.07436879724264145, 0.11712636798620224, -0.057386357337236404, 0.020110400393605232, 0.16469304263591766, -0.051940400153398514, -0.2069065123796463, -0.01402935292571783, 0.07734900712966919, -0.010981923900544643, -0.0965283140540123, -0.25381532311439514, 0.10756506025791168, 0.08507014811038971, -0.03667844831943512, 0.04020816087722778, -0.15472234785556793, -0.02028103731572628, 0.06199877709150314, 0.05214778706431389, 0.0680796429514885, -0.10705963522195816, -0.025312114506959915, -0.014831651002168655, -0.12025504559278488, 0.07338698208332062, -0.06956643611192703, 0.09550338983535767, -0.031178541481494904, 0.04465821385383606, 0.028817888349294662, -0.07414395362138748, 0.04855690523982048, -0.04382596164941788, 0.032509107142686844, -0.021924559026956558, 0.09565030038356781, 0.16164948046207428, -0.058627936989068985, 0.07656290382146835, 0.08385172486305237, 0.07952076941728592, -0.13503530621528625, -0.04827709496021271, -0.07145708799362183, 0.12912674248218536, 0.013687864877283573, -0.0986023023724556, -0.04682080075144768, 0.06860310584306717, 0.019451826810836792, 0.03237529471516609, 0.024635760113596916, -0.03622911870479584, 0.06458836048841476, 0.17965167760849, 0.030441617593169212, -0.012882769107818604, -0.04049130529165268, -0.03024601750075817, 0.018820511177182198, 0.09624454379081726, -0.11487269401550293, -0.012848248705267906, 0.04747653752565384, 0.0185666736215353, 0.05547843500971794, 0.038558054715394974, -0.10933561623096466, -0.0049269478768110275, 0.03469284623861313, -0.18442368507385254, 0.009065578691661358, -0.03687888756394386, 0.1337956190109253, -0.0003357267414685339, 0.09330124408006668, 0.13730214536190033, -0.027290398254990578, -0.005017167888581753, 0.01374116726219654, 0.012708481401205063, -0.03342676907777786, -0.019129948690533638, 0.019785244017839432, -0.025334645062685013, -0.03309757262468338, 0.07117054611444473, 0.08680029958486557, -0.06074593588709831, -0.04647412523627281, 0.04809442535042763, -0.09189247339963913, -0.08663653582334518, -0.07735957205295563, -0.10249470919370651, -0.03193262964487076, -0.08143451809883118, -0.003926205914467573, 0.03748834505677223, -0.005984455347061157, 0.12387064099311829, 0.028114914894104004, -0.00439343461766839, -0.03602634370326996, 0.026887312531471252, -0.12924735248088837, 0.0499129444360733, -0.07855884730815887, 0.06224624440073967, -0.14551584422588348, 0.12232471257448196, 0.030582424253225327, 0.04551700875163078, -0.04409914091229439, -0.021404825150966644, -0.05576274171471596, 0.008265681564807892, -0.05307147279381752, 0.0036511991638690233, -0.08619162440299988, -0.0164322592318058, 0.012859183363616467, -0.009836059994995594, -0.03869900107383728, 0.0428827665746212, -0.06927117705345154, 0.03429015725851059, -0.018716881051659584, 0.023768626153469086, -0.054644256830215454, -0.004715547431260347, -0.0030472504440695047, -0.08551936596632004, 0.10455622524023056, 0.025812357664108276, -0.057165224105119705, -0.012561609968543053, -0.07395166158676147, -0.04462920501828194, 0.024895498529076576, 0.08497690409421921, 0.004387181252241135, -0.0026919981464743614, 0.06986542046070099, 0.0183944683521986, -0.02339601144194603, -0.03777286782860756, 0.08352789282798767, -0.07638426125049591, 0.04338984563946724, 0.03392414376139641, 0.005208151414990425, -0.09522390365600586, 0.07259028404951096, 0.06369491666555405, 0.1213858425617218, 0.03890513628721237, -0.020644165575504303, 0.06663022935390472, -0.06165342777967453, -0.0028971685096621513, 0.010525716468691826, -0.0492984838783741, 0.11547423154115677, -0.0816870927810669, 0.010119774378836155, 0.014271155931055546, 0.16090695559978485, 0.029177185148000717, 0.000895418634172529, -0.007164434064179659, 0.018479306250810623, -0.06294999271631241, -0.03775978088378906, 0.0570392943918705, 0.07939647883176804, 0.0666576474905014, 0.026394732296466827, 0.06985491514205933, 0.006947187706828117, -0.05064288526773453, 0.10077878087759018, 0.04536843299865723, 0.04379564896225929, 0.05757145956158638, 0.04876064509153366, -0.056707628071308136, -0.11789277195930481, 0.048669714480638504, -0.045327767729759216, 0.09586775302886963, -0.15438589453697205, 0.12275960296392441, 0.11581578850746155, -0.04253792017698288, 0.04524434357881546, 0.07575350999832153, -0.03301801532506943, -0.1049947440624237, -0.1535249799489975, -0.03212094306945801, -0.11448144912719727, 0.023780398070812225, -0.05545629560947418, 0.004208188038319349, 0.06775783002376556, 0.00082152005052194, -0.037003204226493835, 0.08680707216262817, 0.013425767421722412, -0.12038327008485794, 0.05135174095630646, 0.010076802223920822, 0.062375813722610474, -0.08812804520130157, -0.03480604290962219, 0.05623769387602806, 0.056542567908763885, 0.0704411044716835, 0.022154349833726883, 0.10741832107305527, 0.04351867735385895, -0.014032049104571342, -0.03350960090756416, -0.04701042175292969, 0.05197901651263237, -0.0633065328001976, 0.12200263887643814, -0.06160198152065277, -0.061143163591623306, 0.006019347347319126, 0.1557750105857849, -0.08880817145109177, -0.0037491638213396072, -0.14621873199939728, 0.2825762927532196, -0.0427095852792263, -0.05308786779642105, 0.03388160094618797, -0.048609551042318344, -0.005611422937363386, 0.22951674461364746, 0.06070686876773834, 0.0378161258995533, 0.000796054198872298, 0.14940644800662994, -0.011846287176012993, -0.08205235004425049, 0.05822300165891647, 0.0789220780134201, 0.25654172897338867, -0.018658045679330826, -0.039773110300302505, 0.01956079714000225, -0.00671173632144928, -0.061564527451992035, -0.09469963610172272, -0.06825780868530273, -0.019903574138879776, 0.004981707315891981, 0.05391412228345871, -0.05444956198334694, -0.141863614320755, 0.08817464113235474, 0.019210323691368103, -0.07962431758642197, -0.018966538831591606, 0.021848225966095924, -0.08246529847383499, 0.05315761640667915, -0.051696546375751495, -0.034884851425886154, 0.21966581046581268, -0.02515537664294243, -0.03981252759695053, -0.04326549172401428, 0.09806973487138748, -0.11087483167648315, 0.1799241453409195, -0.05870433524250984, 0.004878119099885225, 0.09815337508916855, -0.04635103419423103, -0.10008759796619415, 0.029200522229075432, -0.02085050754249096, -0.16491948068141937, -0.03294796124100685, 0.09435662627220154, -0.0839611142873764, 0.11810770630836487, 0.009564465843141079, -0.131782665848732, 0.007999440655112267, 0.06534720957279205, 0.009825551882386208, -0.07805056124925613, 0.043468210846185684, -0.11664459854364395, 0.10521250218153, 0.12621691823005676, 0.004740422125905752, -0.04896735027432442, -0.13770829141139984, 0.08033238351345062, 0.02079681307077408, 0.05027603358030319, -0.016262417659163475, -0.09322154521942139, -0.05833412706851959, -0.07762185484170914, 0.0625479593873024, -0.1687772125005722, 0.005183739587664604, 0.04187239333987236, -0.03886568918824196, -0.09894618391990662, 0.027558384463191032, 0.01926637999713421, 0.024327639490365982, -0.011467322707176208, 0.11146055907011032, -0.05556883662939072, -0.022042592987418175, -0.19421187043190002, -0.05071677640080452 ]
null
null
transformers
# RepVGG-A2 model Pretrained on [ImageNette](https://github.com/fastai/imagenette). The RepVGG architecture was introduced in [this paper](https://arxiv.org/pdf/2101.03697.pdf). ## Model description The core idea of the author is to distinguish the training architecture (with shortcut connections), from the inference one (a pure highway network). By designing the residual block, the training architecture can be reparametrized into a simple sequence of convolutions and non-linear activations. ## Installation ### Prerequisites Python 3.6 (or higher) and [pip](https://pip.pypa.io/en/stable/)/[conda](https://docs.conda.io/en/latest/miniconda.html) are required to install Holocron. ### Latest stable release You can install the last stable release of the package using [pypi](https://pypi.org/project/pylocron/) as follows: ```shell pip install pylocron ``` or using [conda](https://anaconda.org/frgfm/pylocron): ```shell conda install -c frgfm pylocron ``` ### Developer mode Alternatively, if you wish to use the latest features of the project that haven't made their way to a release yet, you can install the package from source *(install [Git](https://git-scm.com/book/en/v2/Getting-Started-Installing-Git) first)*: ```shell git clone https://github.com/frgfm/Holocron.git pip install -e Holocron/. ``` ## Usage instructions ```python from PIL import Image from torchvision.transforms import Compose, ConvertImageDtype, Normalize, PILToTensor, Resize from torchvision.transforms.functional import InterpolationMode from holocron.models import model_from_hf_hub model = model_from_hf_hub("frgfm/repvgg_a2").eval() img = Image.open(path_to_an_image).convert("RGB") # Preprocessing config = model.default_cfg transform = Compose([ Resize(config['input_shape'][1:], interpolation=InterpolationMode.BILINEAR), PILToTensor(), ConvertImageDtype(torch.float32), Normalize(config['mean'], config['std']) ]) input_tensor = transform(img).unsqueeze(0) # Inference with torch.inference_mode(): output = model(input_tensor) probs = output.squeeze(0).softmax(dim=0) ``` ## Citation Original paper ```bibtex @article{DBLP:journals/corr/abs-2101-03697, author = {Xiaohan Ding and Xiangyu Zhang and Ningning Ma and Jungong Han and Guiguang Ding and Jian Sun}, title = {RepVGG: Making VGG-style ConvNets Great Again}, journal = {CoRR}, volume = {abs/2101.03697}, year = {2021}, url = {https://arxiv.org/abs/2101.03697}, eprinttype = {arXiv}, eprint = {2101.03697}, timestamp = {Tue, 09 Feb 2021 15:29:34 +0100}, biburl = {https://dblp.org/rec/journals/corr/abs-2101-03697.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } ``` Source of this implementation ```bibtex @software{Fernandez_Holocron_2020, author = {Fernandez, François-Guillaume}, month = {5}, title = {{Holocron}}, url = {https://github.com/frgfm/Holocron}, year = {2020} } ```
{"license": "apache-2.0", "tags": ["image-classification", "pytorch", "onnx"], "datasets": ["frgfm/imagenette"]}
image-classification
frgfm/repvgg_a2
[ "transformers", "pytorch", "onnx", "image-classification", "dataset:frgfm/imagenette", "arxiv:2101.03697", "license:apache-2.0", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[ "2101.03697" ]
[]
TAGS #transformers #pytorch #onnx #image-classification #dataset-frgfm/imagenette #arxiv-2101.03697 #license-apache-2.0 #endpoints_compatible #region-us
# RepVGG-A2 model Pretrained on ImageNette. The RepVGG architecture was introduced in this paper. ## Model description The core idea of the author is to distinguish the training architecture (with shortcut connections), from the inference one (a pure highway network). By designing the residual block, the training architecture can be reparametrized into a simple sequence of convolutions and non-linear activations. ## Installation ### Prerequisites Python 3.6 (or higher) and pip/conda are required to install Holocron. ### Latest stable release You can install the last stable release of the package using pypi as follows: or using conda: ### Developer mode Alternatively, if you wish to use the latest features of the project that haven't made their way to a release yet, you can install the package from source *(install Git first)*: ## Usage instructions Original paper Source of this implementation
[ "# RepVGG-A2 model\n\nPretrained on ImageNette. The RepVGG architecture was introduced in this paper.", "## Model description\n\nThe core idea of the author is to distinguish the training architecture (with shortcut connections), from the inference one (a pure highway network). By designing the residual block, the training architecture can be reparametrized into a simple sequence of convolutions and non-linear activations.", "## Installation", "### Prerequisites\n\nPython 3.6 (or higher) and pip/conda are required to install Holocron.", "### Latest stable release\n\nYou can install the last stable release of the package using pypi as follows:\n\n\n\nor using conda:", "### Developer mode\n\nAlternatively, if you wish to use the latest features of the project that haven't made their way to a release yet, you can install the package from source *(install Git first)*:", "## Usage instructions\n\n\n\n\nOriginal paper\n\n\n\nSource of this implementation" ]
[ "TAGS\n#transformers #pytorch #onnx #image-classification #dataset-frgfm/imagenette #arxiv-2101.03697 #license-apache-2.0 #endpoints_compatible #region-us \n", "# RepVGG-A2 model\n\nPretrained on ImageNette. The RepVGG architecture was introduced in this paper.", "## Model description\n\nThe core idea of the author is to distinguish the training architecture (with shortcut connections), from the inference one (a pure highway network). By designing the residual block, the training architecture can be reparametrized into a simple sequence of convolutions and non-linear activations.", "## Installation", "### Prerequisites\n\nPython 3.6 (or higher) and pip/conda are required to install Holocron.", "### Latest stable release\n\nYou can install the last stable release of the package using pypi as follows:\n\n\n\nor using conda:", "### Developer mode\n\nAlternatively, if you wish to use the latest features of the project that haven't made their way to a release yet, you can install the package from source *(install Git first)*:", "## Usage instructions\n\n\n\n\nOriginal paper\n\n\n\nSource of this implementation" ]
[ 58, 29, 71, 2, 27, 27, 46, 10 ]
[ "passage: TAGS\n#transformers #pytorch #onnx #image-classification #dataset-frgfm/imagenette #arxiv-2101.03697 #license-apache-2.0 #endpoints_compatible #region-us \n# RepVGG-A2 model\n\nPretrained on ImageNette. The RepVGG architecture was introduced in this paper.## Model description\n\nThe core idea of the author is to distinguish the training architecture (with shortcut connections), from the inference one (a pure highway network). By designing the residual block, the training architecture can be reparametrized into a simple sequence of convolutions and non-linear activations.## Installation### Prerequisites\n\nPython 3.6 (or higher) and pip/conda are required to install Holocron.### Latest stable release\n\nYou can install the last stable release of the package using pypi as follows:\n\n\n\nor using conda:### Developer mode\n\nAlternatively, if you wish to use the latest features of the project that haven't made their way to a release yet, you can install the package from source *(install Git first)*:## Usage instructions\n\n\n\n\nOriginal paper\n\n\n\nSource of this implementation" ]
[ -0.06993764638900757, 0.19890254735946655, -0.0022240348625928164, 0.0058550406247377396, 0.11456725001335144, -0.011097491718828678, 0.06805716454982758, 0.07169680297374725, -0.11531148105859756, 0.049723342061042786, 0.1044764295220375, 0.13605082035064697, 0.07574830949306488, 0.11305695027112961, -0.00367108010686934, -0.22278442978858948, -0.019814424216747284, 0.03563018888235092, 0.0820317491889, 0.07166822254657745, 0.08667231351137161, -0.06344526261091232, 0.07996734231710434, 0.049410946667194366, -0.14278052747249603, -0.034313321113586426, -0.044110652059316635, -0.04065544903278351, 0.08410035073757172, 0.04973404482007027, 0.11561348289251328, 0.0007128914585337043, 0.054609641432762146, -0.09481048583984375, 0.018087666481733322, 0.12447082996368408, -0.0008459262899123132, 0.06466889381408691, 0.134093776345253, -0.01401941105723381, 0.10471964627504349, 0.014555670320987701, -0.03456740826368332, 0.04091731831431389, -0.03774053603410721, -0.19928698241710663, -0.07948899269104004, 0.08898209035396576, 0.07721027731895447, 0.08376140147447586, 0.03439561650156975, 0.08579974621534348, 0.06839179247617722, 0.09687227755784988, 0.07090753316879272, -0.17738154530525208, -0.08111394941806793, 0.131551593542099, -0.0011327031534165144, 0.07195376604795456, -0.030695350840687752, -0.02432248741388321, -0.006168966647237539, 0.0686827227473259, 0.05026307329535484, -0.04201731085777283, -0.07609020918607712, -0.07355451583862305, -0.14583012461662292, -0.030921919271349907, 0.20323581993579865, -0.02877565287053585, -0.034430939704179764, -0.04472864791750908, -0.12979090213775635, -0.0003320743271615356, 0.04207984730601311, 0.0036540122237056494, 0.0008972699288278818, 0.051907990127801895, -0.00461851991713047, -0.21504881978034973, -0.11685626208782196, -0.025585541501641273, -0.01609993539750576, 0.1531248241662979, 0.041777659207582474, 0.0886659249663353, -0.052147578448057175, 0.1498171091079712, -0.09414251148700714, -0.059234827756881714, -0.06846265494823456, -0.11797547340393066, -0.012824011966586113, -0.007993897423148155, -0.010989190079271793, -0.17830471694469452, -0.03400484099984169, 0.14774689078330994, -0.07528785616159439, -0.003872921457514167, -0.03876739367842674, 0.06033315509557724, 0.002761222654953599, 0.10846254229545593, -0.10613076388835907, 0.07200772315263748, 0.058998771011829376, -0.03747563809156418, -0.005562798585742712, 0.010040502063930035, -0.10383861511945724, -0.040525589138269424, 0.015225537121295929, 0.006288379430770874, -0.006036568898707628, 0.07090309262275696, 0.020000135526061058, -0.07552527636289597, 0.07166095077991486, -0.07446606457233429, -0.046593762934207916, -0.05511660501360893, -0.021811483427882195, 0.09357932955026627, 0.1371043175458908, -0.05659433454275131, -0.025509709492325783, -0.014002779498696327, -0.040294162929058075, -0.04861704632639885, -0.12860874831676483, -0.06723595410585403, -0.009565604850649834, -0.1060367301106453, -0.018719447776675224, -0.1652783900499344, -0.2042066603899002, -0.01858207955956459, 0.11195048689842224, -0.0036938234698027372, 0.03208186849951744, 0.0498540997505188, -0.06218385323882103, -0.07806156575679779, -0.026511453092098236, -0.010566305369138718, -0.011638710275292397, 0.045732446014881134, 0.015122683718800545, 0.0377437062561512, -0.1346079409122467, 0.06096021831035614, -0.056607719510793686, 0.031710680574178696, -0.19016912579536438, 0.05343160778284073, -0.026754025369882584, 0.05248628556728363, -0.057831138372421265, -0.07495203614234924, -0.01822550594806671, -0.03948969021439552, 0.023689743131399155, 0.05235818028450012, -0.09591752290725708, -0.014224419370293617, 0.18756446242332458, -0.16177208721637726, -0.03664928302168846, 0.034324780106544495, -0.0037585049867630005, 0.14256785809993744, 0.03239617124199867, -0.05372746288776398, 0.22653675079345703, -0.13634683191776276, -0.046476177871227264, 0.07250335812568665, -0.08507987856864929, -0.06839978694915771, 0.036301154643297195, 0.06805698573589325, 0.009477593004703522, 0.05093709006905556, -0.10514354705810547, 0.09794814139604568, -0.008853062987327576, -0.030653251335024834, -0.03608129918575287, -0.07043379545211792, -0.07358063012361526, 0.05691468343138695, 0.01769339106976986, 0.105830118060112, -0.07907808572053909, -0.0641288235783577, 0.14165151119232178, -0.08520995825529099, -0.00020246338681317866, -0.06712989509105682, 0.10590679943561554, -0.08609030395746231, -0.016133304685354233, -0.17783789336681366, -0.03724416717886925, 0.054494209587574005, -0.001572544570080936, -0.021378882229328156, 0.10760178416967392, 0.0517553873360157, 0.090044766664505, 0.01772317662835121, -0.02189071662724018, 0.009474885649979115, -0.07263552397489548, -0.011913696303963661, -0.03976714238524437, -0.07771666347980499, -0.07978104799985886, 0.16248974204063416, -0.11967526376247406, 0.04583271965384483, 0.09504887461662292, 0.10635979473590851, 0.011832978576421738, -0.049922388046979904, -0.00777714466676116, -0.04436317831277847, -0.0567249171435833, -0.08124645799398422, 0.05769166722893715, 0.08200374990701675, 0.008245722390711308, 0.023860041052103043, -0.0672149509191513, -0.14411528408527374, 0.07691413909196854, -0.05229271948337555, -0.025696873664855957, -0.038184136152267456, -0.09588935226202011, 0.01485052052885294, -0.02433333359658718, 0.004499692935496569, 0.17615386843681335, 0.037060994654893875, 0.1394464671611786, -0.07719586789608002, -0.024139853194355965, 0.03625611215829849, -0.04622342064976692, -0.007909056730568409, 0.007893272675573826, 0.12856411933898926, -0.07634097337722778, 0.08884750306606293, -0.001272553694434464, -0.16232407093048096, 0.0931202620267868, 0.059838101267814636, -0.06287873536348343, -0.013904578052461147, 0.08518791198730469, 0.03738842532038689, 0.06798882782459259, -0.056746795773506165, -0.04587816074490547, 0.05402086675167084, -0.08435752987861633, 0.08841614425182343, -0.11834634840488434, 0.05863402783870697, -0.018608540296554565, -0.0016929322155192494, 0.15792731940746307, 0.010371016338467598, -0.012235737405717373, 0.03399914130568504, 0.0098708001896739, 0.004916095640510321, 0.02341732755303383, -0.01020571868866682, -0.03079802170395851, 0.13368546962738037, -0.13249805569648743, -0.2775186002254486, -0.18441101908683777, -0.12302611768245697, -0.09978720545768738, 0.04747769236564636, 0.0034089081455022097, -0.08528230339288712, -0.06613058596849442, 0.0006812158389948308, -0.010803764685988426, -0.09624552726745605, -0.0556282214820385, -0.08006208389997482, 0.06700460612773895, -0.0168404970318079, -0.08010680228471756, -0.007793474476784468, 0.003333127358928323, -0.17133039236068726, 0.10840548574924469, -0.01719137839972973, 0.009632976725697517, 0.10247963666915894, -0.010725565254688263, 0.0371231846511364, 0.011836306191980839, 0.07491160929203033, -0.05235850438475609, 0.0404132679104805, 0.27083146572113037, 0.008314392529428005, 0.07338216155767441, 0.07438358664512634, -0.005792594980448484, -0.07138670980930328, 0.027010099962353706, -0.031626202166080475, -0.0732603445649147, -0.17494718730449677, -0.07753625512123108, -0.061585988849401474, -0.017445525154471397, 0.10135933011770248, 0.059446919709444046, 0.10667731612920761, 0.15297512710094452, -0.05632370710372925, 0.037015076726675034, -0.0016798059223219752, 0.1420247107744217, 0.103450246155262, -0.04508000612258911, 0.07162858545780182, -0.009486895054578781, 0.019253678619861603, 0.11337239295244217, 0.09992421418428421, 0.23807621002197266, -0.10370708256959915, -0.029741011559963226, 0.07821330428123474, 0.11469599604606628, 0.03215394541621208, 0.0400707833468914, -0.03198644891381264, 0.037744950503110886, -0.019603855907917023, -0.0789870172739029, -0.09227527678012848, 0.13952787220478058, -0.03960699215531349, -0.047056470066308975, 0.04952971637248993, 0.02376476302742958, -0.022359631955623627, 0.22436687350273132, 0.0006590299308300018, -0.29340502619743347, -0.06261417269706726, -0.006588891614228487, -0.00763870170339942, -0.13679653406143188, 0.014479978941380978, 0.10933595150709152, -0.09961887449026108, 0.034581661224365234, -0.10867518931627274, 0.08927515149116516, -0.1517612636089325, -0.03170742467045784, 0.09366628527641296, 0.14549137651920319, 0.05798276513814926, 0.07374385744333267, -0.13815060257911682, 0.09550251811742783, 0.024417733773589134, 0.03510262072086334, -0.08495168387889862, 0.09943018108606339, 0.015548521652817726, 0.12043877691030502, 0.11640304327011108, -0.016930725425481796, 0.04459318146109581, 0.010849830694496632, -0.0007296447292901576, 0.01366054080426693, 0.06357422471046448, -0.027288544923067093, 0.04624546319246292, -0.02329365722835064, -0.0007416721200570464, -0.05846674367785454, -0.05743392929434776, -0.046572402119636536, -0.12148861587047577, 0.09056897461414337, 0.019558215513825417, 0.03317815065383911, -0.08680430054664612, 0.015283850952982903, 0.014859654009342194, 0.2374681681394577, -0.039717670530080795, -0.07367740571498871, -0.12028099596500397, 0.02797987312078476, 0.060296185314655304, -0.029334357008337975, 0.05837780982255936, -0.12835490703582764, 0.127452090382576, -0.035536352545022964, -0.08925575017929077, -0.04070747271180153, -0.12043323367834091, -0.03539355844259262, -0.00965145044028759, 0.02138562686741352, 0.08436383306980133, -0.03647312521934509, 0.0010635436046868563, -0.000712134875357151, -0.11945376545190811, -0.06741762906312943, -0.051989130675792694, 0.187811478972435, 0.13902361690998077, -0.012079976499080658, -0.0916721299290657, -0.045602843165397644, -0.029876744374632835, 0.03220609948039055, 0.07448675483465195, 0.11730656027793884, -0.056931495666503906, 0.020434483885765076, 0.1641228199005127, -0.05203931778669357, -0.2067110389471054, -0.014587827026844025, 0.07724709808826447, -0.010364021174609661, -0.09486113488674164, -0.2539893686771393, 0.10665618628263474, 0.08463340997695923, -0.03693525120615959, 0.03858477249741554, -0.15473170578479767, -0.020235182717442513, 0.060503438115119934, 0.052541330456733704, 0.06504357606172562, -0.10671801120042801, -0.02537769079208374, -0.015936514362692833, -0.12009084969758987, 0.07446397095918655, -0.07140437513589859, 0.09498868882656097, -0.03127840906381607, 0.04470982030034065, 0.02914792113006115, -0.073756642639637, 0.04844772070646286, -0.04547370597720146, 0.03179052472114563, -0.02199193276464939, 0.0962703749537468, 0.1616377979516983, -0.05869394913315773, 0.07521381974220276, 0.083002008497715, 0.07897676527500153, -0.13571211695671082, -0.048186689615249634, -0.071110799908638, 0.1291651427745819, 0.013872555457055569, -0.09844308346509933, -0.04689294472336769, 0.0685807541012764, 0.019787192344665527, 0.03327237442135811, 0.024115536361932755, -0.03634989634156227, 0.06394663453102112, 0.17943075299263, 0.0318550281226635, -0.011638090014457703, -0.03983490914106369, -0.030272463336586952, 0.019350288435816765, 0.09619060158729553, -0.11425285041332245, -0.012379947118461132, 0.04714958369731903, 0.018644070252776146, 0.05481841042637825, 0.03847822919487953, -0.10935629904270172, -0.004340701270848513, 0.03468659520149231, -0.18473213911056519, 0.009560388512909412, -0.03670221194624901, 0.1350698173046112, -0.0014087590388953686, 0.0928463339805603, 0.1378248780965805, -0.026763401925563812, -0.005237129982560873, 0.013990386389195919, 0.012980851344764233, -0.03400350734591484, -0.018963320180773735, 0.019762814044952393, -0.025850463658571243, -0.032687850296497345, 0.07118218392133713, 0.08628346771001816, -0.06039946526288986, -0.046132802963256836, 0.04778463765978813, -0.09108598530292511, -0.08608558773994446, -0.07671009004116058, -0.10507989674806595, -0.031533945351839066, -0.08192813396453857, -0.003305828431621194, 0.03812042623758316, -0.006501585245132446, 0.12273649126291275, 0.028235554695129395, -0.004699826240539551, -0.03572703152894974, 0.027079403400421143, -0.12844163179397583, 0.049671776592731476, -0.07840240001678467, 0.06176697835326195, -0.1454157829284668, 0.12296086549758911, 0.030810339376330376, 0.045272860676050186, -0.044148050248622894, -0.020899850875139236, -0.055670116096735, 0.008659018203616142, -0.05213404819369316, 0.0034128183033317327, -0.08593903481960297, -0.016249677166342735, 0.011886092834174633, -0.010244988836348057, -0.03919106349349022, 0.04246766120195389, -0.06888575851917267, 0.03413618728518486, -0.019424913451075554, 0.02338453195989132, -0.055097054690122604, -0.0049816519021987915, -0.002345787826925516, -0.08582962304353714, 0.10491269081830978, 0.025993237271904945, -0.056924015283584595, -0.012342747300863266, -0.07353755086660385, -0.04555166885256767, 0.025136882439255714, 0.08558700978755951, 0.0036735069006681442, -0.0024302382953464985, 0.07019152492284775, 0.018688585609197617, -0.02376912720501423, -0.037878647446632385, 0.0844058021903038, -0.0759713351726532, 0.04310812056064606, 0.03295369818806648, 0.004993727896362543, -0.09513826668262482, 0.07271917164325714, 0.06404199451208115, 0.12188985198736191, 0.038520749658346176, -0.02013503387570381, 0.06645074486732483, -0.06182316318154335, -0.0028247057925909758, 0.010451641865074635, -0.0488385371863842, 0.11511571705341339, -0.08143605291843414, 0.010314113460481167, 0.014444928616285324, 0.16084325313568115, 0.02841990254819393, 0.001759764738380909, -0.006872640457004309, 0.017452577129006386, -0.06267479062080383, -0.03784496709704399, 0.05681983754038811, 0.07913696765899658, 0.06657715886831284, 0.026899192482233047, 0.06915084272623062, 0.00672345794737339, -0.05101972073316574, 0.10117565095424652, 0.04611711949110031, 0.04339602589607239, 0.057657577097415924, 0.049134500324726105, -0.056026868522167206, -0.11951734870672226, 0.04854819178581238, -0.04505417123436928, 0.09548384696245193, -0.15464331209659576, 0.12399418652057648, 0.11619450896978378, -0.04376840591430664, 0.045277561992406845, 0.07592243701219559, -0.03286002203822136, -0.10521417111158371, -0.1529618352651596, -0.03231445327401161, -0.11415069550275803, 0.02332041598856449, -0.05526304244995117, 0.004300557542592287, 0.06756683439016342, 0.000046842942538205534, -0.0374264121055603, 0.0863291546702385, 0.012793724425137043, -0.12079361081123352, 0.05150038003921509, 0.010511868633329868, 0.06266080588102341, -0.08665479719638824, -0.035940077155828476, 0.05657452717423439, 0.05781363695859909, 0.07122407108545303, 0.022242141887545586, 0.10738317668437958, 0.04316021874547005, -0.014185571111738682, -0.033411260694265366, -0.04686811938881874, 0.05211968347430229, -0.062358006834983826, 0.12030427157878876, -0.06159864366054535, -0.06146099045872688, 0.006106211803853512, 0.15559077262878418, -0.08951602131128311, -0.003779121208935976, -0.14573845267295837, 0.2813819646835327, -0.0422334186732769, -0.05280664935708046, 0.03422673046588898, -0.048637326806783676, -0.006393888033926487, 0.22879059612751007, 0.059437744319438934, 0.037290021777153015, 0.0007188713061623275, 0.1494150459766388, -0.011586765758693218, -0.08192741125822067, 0.058245234191417694, 0.07881820201873779, 0.25713446736335754, -0.018184637650847435, -0.03998896852135658, 0.019898485392332077, -0.007000801153481007, -0.06116434186697006, -0.09411134570837021, -0.06932646781206131, -0.019977783784270287, 0.005619775503873825, 0.05459838733077049, -0.053742654621601105, -0.14255663752555847, 0.08793525397777557, 0.01898839883506298, -0.07981204986572266, -0.018334470689296722, 0.0212683267891407, -0.08262220025062561, 0.05311380699276924, -0.051780954003334045, -0.03522040322422981, 0.21923941373825073, -0.024451659992337227, -0.03975926712155342, -0.042466096580028534, 0.0986856073141098, -0.11167004704475403, 0.18001891672611237, -0.05858480557799339, 0.005563284736126661, 0.09806623309850693, -0.04621581360697746, -0.0991317480802536, 0.028555532917380333, -0.020088696852326393, -0.165099635720253, -0.032564956694841385, 0.09556371718645096, -0.08467888832092285, 0.11795327812433243, 0.01038508303463459, -0.13136646151542664, 0.007576243951916695, 0.06430639326572418, 0.010092983953654766, -0.07809054851531982, 0.04342283308506012, -0.11727423220872879, 0.10482931137084961, 0.1258229911327362, 0.004367078188806772, -0.04886366426944733, -0.1378803849220276, 0.08069974929094315, 0.02128208428621292, 0.05108269676566124, -0.016032865270972252, -0.09348370134830475, -0.05871681496500969, -0.07825720310211182, 0.06261838227510452, -0.16746750473976135, 0.0053226095624268055, 0.0418187752366066, -0.03885858133435249, -0.09905681759119034, 0.02815895341336727, 0.018725991249084473, 0.02280808985233307, -0.011579741723835468, 0.1099848672747612, -0.05580437555909157, -0.02202955074608326, -0.19457486271858215, -0.050441209226846695 ]
null
null
transformers
# ResNet-18 model Pretrained on [ImageNette](https://github.com/fastai/imagenette). The ResNet architecture was introduced in [this paper](https://arxiv.org/pdf/1512.03385.pdf). ## Model description The core idea of the author is to help the gradient propagation through numerous layers by adding a skip connection. ## Installation ### Prerequisites Python 3.6 (or higher) and [pip](https://pip.pypa.io/en/stable/)/[conda](https://docs.conda.io/en/latest/miniconda.html) are required to install Holocron. ### Latest stable release You can install the last stable release of the package using [pypi](https://pypi.org/project/pylocron/) as follows: ```shell pip install pylocron ``` or using [conda](https://anaconda.org/frgfm/pylocron): ```shell conda install -c frgfm pylocron ``` ### Developer mode Alternatively, if you wish to use the latest features of the project that haven't made their way to a release yet, you can install the package from source *(install [Git](https://git-scm.com/book/en/v2/Getting-Started-Installing-Git) first)*: ```shell git clone https://github.com/frgfm/Holocron.git pip install -e Holocron/. ``` ## Usage instructions ```python from PIL import Image from torchvision.transforms import Compose, ConvertImageDtype, Normalize, PILToTensor, Resize from torchvision.transforms.functional import InterpolationMode from holocron.models import model_from_hf_hub model = model_from_hf_hub("frgfm/resnet18").eval() img = Image.open(path_to_an_image).convert("RGB") # Preprocessing config = model.default_cfg transform = Compose([ Resize(config['input_shape'][1:], interpolation=InterpolationMode.BILINEAR), PILToTensor(), ConvertImageDtype(torch.float32), Normalize(config['mean'], config['std']) ]) input_tensor = transform(img).unsqueeze(0) # Inference with torch.inference_mode(): output = model(input_tensor) probs = output.squeeze(0).softmax(dim=0) ``` ## Citation Original paper ```bibtex @article{DBLP:journals/corr/HeZRS15, author = {Kaiming He and Xiangyu Zhang and Shaoqing Ren and Jian Sun}, title = {Deep Residual Learning for Image Recognition}, journal = {CoRR}, volume = {abs/1512.03385}, year = {2015}, url = {http://arxiv.org/abs/1512.03385}, eprinttype = {arXiv}, eprint = {1512.03385}, timestamp = {Wed, 17 Apr 2019 17:23:45 +0200}, biburl = {https://dblp.org/rec/journals/corr/HeZRS15.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } ``` Source of this implementation ```bibtex @software{Fernandez_Holocron_2020, author = {Fernandez, François-Guillaume}, month = {5}, title = {{Holocron}}, url = {https://github.com/frgfm/Holocron}, year = {2020} } ```
{"license": "apache-2.0", "tags": ["image-classification", "pytorch", "onnx"], "datasets": ["frgfm/imagenette"]}
image-classification
frgfm/resnet18
[ "transformers", "pytorch", "onnx", "image-classification", "dataset:frgfm/imagenette", "arxiv:1512.03385", "license:apache-2.0", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[ "1512.03385" ]
[]
TAGS #transformers #pytorch #onnx #image-classification #dataset-frgfm/imagenette #arxiv-1512.03385 #license-apache-2.0 #endpoints_compatible #region-us
# ResNet-18 model Pretrained on ImageNette. The ResNet architecture was introduced in this paper. ## Model description The core idea of the author is to help the gradient propagation through numerous layers by adding a skip connection. ## Installation ### Prerequisites Python 3.6 (or higher) and pip/conda are required to install Holocron. ### Latest stable release You can install the last stable release of the package using pypi as follows: or using conda: ### Developer mode Alternatively, if you wish to use the latest features of the project that haven't made their way to a release yet, you can install the package from source *(install Git first)*: ## Usage instructions Original paper Source of this implementation
[ "# ResNet-18 model\n\nPretrained on ImageNette. The ResNet architecture was introduced in this paper.", "## Model description\n\nThe core idea of the author is to help the gradient propagation through numerous layers by adding a skip connection.", "## Installation", "### Prerequisites\n\nPython 3.6 (or higher) and pip/conda are required to install Holocron.", "### Latest stable release\n\nYou can install the last stable release of the package using pypi as follows:\n\n\n\nor using conda:", "### Developer mode\n\nAlternatively, if you wish to use the latest features of the project that haven't made their way to a release yet, you can install the package from source *(install Git first)*:", "## Usage instructions\n\n\n\n\nOriginal paper\n\n\n\nSource of this implementation" ]
[ "TAGS\n#transformers #pytorch #onnx #image-classification #dataset-frgfm/imagenette #arxiv-1512.03385 #license-apache-2.0 #endpoints_compatible #region-us \n", "# ResNet-18 model\n\nPretrained on ImageNette. The ResNet architecture was introduced in this paper.", "## Model description\n\nThe core idea of the author is to help the gradient propagation through numerous layers by adding a skip connection.", "## Installation", "### Prerequisites\n\nPython 3.6 (or higher) and pip/conda are required to install Holocron.", "### Latest stable release\n\nYou can install the last stable release of the package using pypi as follows:\n\n\n\nor using conda:", "### Developer mode\n\nAlternatively, if you wish to use the latest features of the project that haven't made their way to a release yet, you can install the package from source *(install Git first)*:", "## Usage instructions\n\n\n\n\nOriginal paper\n\n\n\nSource of this implementation" ]
[ 58, 25, 27, 2, 27, 27, 46, 10 ]
[ "passage: TAGS\n#transformers #pytorch #onnx #image-classification #dataset-frgfm/imagenette #arxiv-1512.03385 #license-apache-2.0 #endpoints_compatible #region-us \n# ResNet-18 model\n\nPretrained on ImageNette. The ResNet architecture was introduced in this paper.## Model description\n\nThe core idea of the author is to help the gradient propagation through numerous layers by adding a skip connection.## Installation### Prerequisites\n\nPython 3.6 (or higher) and pip/conda are required to install Holocron.### Latest stable release\n\nYou can install the last stable release of the package using pypi as follows:\n\n\n\nor using conda:### Developer mode\n\nAlternatively, if you wish to use the latest features of the project that haven't made their way to a release yet, you can install the package from source *(install Git first)*:## Usage instructions\n\n\n\n\nOriginal paper\n\n\n\nSource of this implementation" ]
[ -0.07714769244194031, 0.16740460693836212, -0.0002985057944897562, -0.04125296697020531, 0.14192017912864685, 0.0035699335858225822, 0.07314560562372208, 0.0762430801987648, -0.09842231124639511, 0.05683145299553871, 0.11963675171136856, 0.13302792608737946, 0.0658361166715622, 0.11655215173959732, -0.00605243444442749, -0.2196572870016098, -0.010374028235673904, 0.05060442537069321, 0.07235796004533768, 0.09315475821495056, 0.06942854821681976, -0.04519662261009216, 0.09515233337879181, 0.08646564930677414, -0.1317647099494934, -0.03480374813079834, -0.04629287123680115, -0.03799062967300415, 0.04706910252571106, 0.03788207471370697, 0.0939159169793129, 0.006637464743107557, 0.0917416363954544, -0.047989025712013245, 0.02699362114071846, 0.0963679626584053, 0.004615199286490679, 0.0744979977607727, 0.09170887619256973, -0.038238830864429474, 0.2194637507200241, -0.034675054252147675, -0.06795000284910202, 0.02363751083612442, 0.014913187362253666, -0.10528838634490967, -0.10505963116884232, 0.10786688327789307, 0.0255642831325531, 0.07621398568153381, 0.054661285132169724, 0.13814689218997955, 0.10861281305551529, 0.06655879318714142, 0.1926063746213913, -0.15555132925510406, -0.047365423291921616, 0.06354957073926926, -0.023893751204013824, 0.05371954292058945, -0.0020829560235142708, -0.016001420095562935, 0.03197593241930008, 0.04459451884031296, 0.023151515051722527, -0.0543646439909935, -0.005024868529289961, -0.07466665655374527, -0.16089603304862976, -0.02711932547390461, 0.19127535820007324, 0.010342826135456562, -0.08192317932844162, 0.030694596469402313, -0.14363454282283783, 0.021901577711105347, -0.009012351743876934, 0.0625496432185173, 0.009365146979689598, 0.0021721560042351484, 0.05841189622879028, -0.19183087348937988, -0.14309237897396088, -0.012388979084789753, 0.02100704424083233, 0.21511472761631012, 0.04954494163393974, 0.10901692509651184, -0.012822741642594337, 0.11408204585313797, -0.08428996801376343, -0.04682808369398117, -0.03734211251139641, -0.06300602108240128, 0.10581892728805542, 0.04686703160405159, 0.016548123210668564, -0.20289777219295502, -0.004186731297522783, 0.05238209292292595, -0.09304986149072647, -0.023375429213047028, 0.04328892007470131, 0.08256813138723373, 0.02797010727226734, 0.11577548831701279, -0.11542636156082153, 0.09892763942480087, 0.10884349048137665, -0.053555022925138474, 0.09576718509197235, -0.009562045335769653, -0.09754805266857147, 0.014979081228375435, 0.03756306692957878, -0.0449877493083477, 0.032408706843853, 0.03467446565628052, 0.04601355642080307, -0.062276843935251236, 0.20725157856941223, -0.05902606248855591, -0.05883190408349037, -0.03065492957830429, -0.03998526558279991, 0.15608789026737213, 0.1777787059545517, -0.042955949902534485, -0.06655792891979218, 0.057444751262664795, -0.047474220395088196, -0.020327351987361908, -0.0834982618689537, -0.05900217220187187, 0.018142014741897583, -0.11062126606702805, 0.029773026704788208, -0.17057541012763977, -0.20859946310520172, -0.0347297266125679, 0.06938827782869339, 0.01906409300863743, -0.005683378782123327, 0.09382569789886475, -0.03063368983566761, -0.06244688853621483, 0.0027756248600780964, -0.0905870571732521, -0.0496392548084259, 0.07242650538682938, -0.046347521245479584, -0.014851989224553108, -0.2128441333770752, 0.057974524796009064, -0.05601317062973976, 0.02153884433209896, -0.15093331038951874, -0.015668606385588646, -0.01227148249745369, 0.08751916140317917, -0.054529450833797455, -0.13669085502624512, -0.0062679084949195385, -0.04627622291445732, 0.04091612249612808, 0.0900830626487732, -0.07317949831485748, -0.037227485328912735, 0.11362656950950623, -0.20541027188301086, -0.045639991760253906, 0.02190198004245758, 0.04089988023042679, 0.11027557402849197, 0.005787544883787632, -0.030399682000279427, 0.16015832126140594, -0.2576994299888611, -0.033182863146066666, 0.06803496181964874, -0.0880318433046341, -0.14445582032203674, 0.05674203857779503, 0.03241066634654999, 0.027706235647201538, 0.03517359867691994, -0.1106487438082695, 0.09357079118490219, -0.024262523278594017, -0.03369788080453873, -0.06706946343183517, -0.07050231099128723, -0.14752297103405, 0.07804557681083679, 0.024959621950984, 0.09074315428733826, -0.05848950147628784, 0.015538949519395828, 0.1577460765838623, -0.07885068655014038, 0.022311652079224586, 0.007122468203306198, 0.20313376188278198, -0.07646554708480835, -0.015684816986322403, -0.09282353520393372, -0.021028481423854828, 0.03446069732308388, -0.12489525973796844, -0.004443056415766478, -0.0540359765291214, 0.028078200295567513, 0.10410215705633163, 0.01847243495285511, -0.009903932921588421, 0.0062775383703410625, -0.055760979652404785, -0.02251472696661949, -0.034250300377607346, -0.058074869215488434, -0.026514185592532158, 0.1761641651391983, -0.17147983610630035, 0.03909932076931, 0.05882054567337036, 0.06343459337949753, -0.05320155993103981, -0.051849037408828735, 0.04406831040978432, -0.05018964782357216, -0.04910369589924812, -0.07872852683067322, 0.07030695676803589, 0.11712013185024261, -0.001585198799148202, 0.026245974004268646, -0.07246938347816467, -0.10008921474218369, 0.10556317120790482, -0.07039691507816315, 0.001584751415066421, -0.014396420679986477, -0.10269424319267273, -0.02172740548849106, -0.010057083331048489, 0.009463613852858543, 0.06223081052303314, 0.009541413746774197, 0.11406038701534271, -0.0766255110502243, 0.0245472751557827, 0.08405137062072754, -0.0761852040886879, -0.035334404557943344, 0.025374997407197952, 0.11960667371749878, -0.10094847530126572, 0.08142554759979248, 0.04892073571681976, -0.18465948104858398, 0.0800347700715065, 0.01885593682527542, -0.1227714791893959, 0.001212571281939745, 0.08713477849960327, 0.042336493730545044, 0.08352183550596237, -0.030100205913186073, -0.04600023850798607, 0.05276605486869812, -0.13607783615589142, 0.08735904842615128, -0.13248974084854126, 0.039247795939445496, -0.02879173867404461, 0.023305149748921394, 0.07435168325901031, 0.0028928869869560003, -0.06365089863538742, 0.04685482382774353, 0.01569785736501217, -0.00493984529748559, -0.02742079086601734, 0.029215913265943527, -0.07332310825586319, 0.13321104645729065, -0.09754090756177902, -0.22241465747356415, -0.20028994977474213, -0.032674238085746765, -0.1186152920126915, 0.011720234528183937, 0.014955963008105755, -0.0646260529756546, -0.04749683290719986, -0.01638764888048172, -0.04724565148353577, -0.05399540066719055, -0.04340421035885811, -0.08316947519779205, 0.03170504793524742, -0.012007263489067554, -0.06609223037958145, -0.0319698229432106, -0.034251753240823746, -0.11745580285787582, 0.10594501346349716, -0.017565013840794563, 0.06876374036073685, 0.1356450915336609, -0.015928110107779503, 0.020714718848466873, 0.04049951955676079, 0.08396606147289276, -0.04615621268749237, 0.04716215655207634, 0.21594561636447906, 0.010777457617223263, 0.06293359398841858, -0.002971294801682234, 0.015042316168546677, -0.020548062399029732, -0.01250480953603983, -0.04035841301083565, -0.09756889194250107, -0.15362189710140228, -0.10424027591943741, -0.036443211138248444, -0.03367603197693825, 0.07636971026659012, 0.08722583204507828, 0.08406049758195877, 0.13782815635204315, -0.03012837842106819, -0.029680058360099792, -0.02143806964159012, 0.13518626987934113, 0.04075885936617851, -0.01958579011261463, 0.03292018920183182, -0.043016113340854645, 0.040506575256586075, 0.1286868005990982, 0.059526845812797546, 0.1633203774690628, -0.10170820355415344, 0.025502318516373634, 0.07287506759166718, 0.1278083473443985, 0.023358047008514404, 0.11648550629615784, 0.0064044855535030365, 0.0641472339630127, -0.00032553321216255426, -0.10491424798965454, -0.0713396742939949, 0.12023512274026871, -0.10215931385755539, -0.051400575786828995, 0.047711554914712906, -0.01343265175819397, -0.03611701354384422, 0.268072247505188, -0.021821893751621246, -0.2601747214794159, -0.054714806377887726, -0.018818281590938568, 0.05519724637269974, -0.09389442205429077, 0.011154208332300186, 0.0247640497982502, -0.10104753077030182, 0.11620552837848663, -0.0760153979063034, 0.08928553760051727, -0.12629733979701996, -0.06286279857158661, 0.06932133436203003, 0.12240957468748093, 0.058144062757492065, 0.04577695205807686, -0.04869456589221954, 0.10774422436952591, 0.015586967580020428, -0.0005767631810158491, -0.03986991569399834, 0.04053039103746414, 0.02124624326825142, 0.10820858180522919, 0.1161118894815445, 0.02087436616420746, 0.09031743556261063, 0.025316016748547554, -0.022071022540330887, 0.009716733358800411, 0.007133426610380411, 0.02584911696612835, 0.0028714893851429224, -0.008422523736953735, -0.030174775049090385, -0.026528408750891685, -0.06674958020448685, -0.003261891659349203, -0.07189573347568512, 0.10128215700387955, 0.023741966113448143, -0.08928363770246506, -0.07472233474254608, -0.039952173829078674, -0.047244664281606674, 0.2158428281545639, -0.001439270214177668, -0.11241117864847183, -0.10361514985561371, 0.03945787996053696, 0.02024252898991108, -0.0432184673845768, 0.033475883305072784, -0.15311166644096375, 0.07586999982595444, -0.0365007221698761, -0.0881962925195694, -0.0660644993185997, -0.09670543670654297, -0.061202388256788254, 0.049362245947122574, 0.08133947104215622, 0.0600486621260643, -0.03716978058218956, -0.04983139410614967, 0.014347489923238754, -0.13916923105716705, -0.08922131359577179, -0.0305255688726902, 0.22545410692691803, 0.15876519680023193, -0.01812923513352871, -0.08116193860769272, -0.01142643578350544, -0.03411390632390976, 0.016089679673314095, 0.07307440042495728, 0.11581623554229736, -0.05550298094749451, -0.020134517922997475, 0.17127087712287903, -0.07187298685312271, -0.19497297704219818, -0.06783158332109451, 0.05285244807600975, -0.05502468720078468, -0.1434517204761505, -0.132755309343338, 0.10621321201324463, 0.12584830820560455, -0.0418144129216671, 0.11810195446014404, -0.10224797576665878, -0.03053908422589302, 0.10472266376018524, 0.054832614958286285, 0.14979426562786102, -0.1636902242898941, -0.008528684265911579, -0.015558382496237755, -0.13009598851203918, 0.020749524235725403, -0.057591747492551804, 0.04991104081273079, -0.019472012296319008, 0.04868660867214203, 0.032684992998838425, -0.08357863128185272, 0.059456177055835724, -0.08304878324270248, -0.03596395626664162, -0.03994308039546013, 0.06961949169635773, 0.12576091289520264, -0.0456109456717968, 0.11170977354049683, 0.05916265398263931, 0.07143624126911163, -0.0788983404636383, -0.016025885939598083, -0.07109202444553375, 0.15865445137023926, -0.001601291703991592, -0.053833670914173126, -0.06461060047149658, 0.0050546275451779366, 0.03385740518569946, 0.018911026418209076, 0.1203710064291954, 0.006892583332955837, 0.05178956314921379, 0.2189713716506958, -0.07274746894836426, -0.04304135963320732, -0.07860876619815826, -0.04870990663766861, -0.00793998409062624, 0.039860449731349945, -0.07546934485435486, -0.06649439036846161, 0.08845759928226471, 0.051977336406707764, 0.029095061123371124, -0.009119647555053234, -0.12590566277503967, -0.012201552279293537, 0.03743144869804382, -0.21788202226161957, 0.02172848954796791, -0.05767286941409111, 0.07561393827199936, 0.01610421948134899, 0.0867358073592186, 0.12477204948663712, -0.0884837731719017, -0.017483480274677277, 0.008214467205107212, 0.04819516837596893, -0.07850329577922821, 0.033221352845430374, 0.06469380855560303, -0.04135661572217941, -0.0752248540520668, 0.10297093540430069, 0.08738429099321365, -0.009438576176762581, -0.05134055018424988, 0.05917196348309517, -0.10128254443407059, -0.07183393836021423, 0.013234523124992847, -0.143133282661438, -0.10589548945426941, -0.12150467932224274, -0.008913669735193253, 0.05358787626028061, -0.022644033655524254, 0.13853678107261658, 0.06833932548761368, -0.023951323702931404, 0.032449860125780106, 0.02851559966802597, -0.12045563757419586, 0.0087619973346591, -0.03645619750022888, 0.042839158326387405, -0.17097525298595428, 0.05549749732017517, 0.06620227545499802, 0.12675079703330994, -0.052453748881816864, -0.01716022565960884, -0.04744978994131088, -0.03492427244782448, 0.0060849664732813835, 0.04375547170639038, -0.10522764921188354, -0.02006109245121479, -0.000419377553043887, -0.03866522014141083, -0.03852670267224312, 0.06089391931891441, -0.04995910823345184, 0.0057878876104950905, -0.018203500658273697, -0.006070622242987156, -0.056702326983213425, -0.013320348225533962, 0.002500537782907486, -0.04423266276717186, 0.06246325373649597, 0.13358105719089508, -0.06116844713687897, 0.017196739092469215, -0.05973580852150917, -0.001066077733412385, 0.09489569813013077, 0.04348735883831978, -0.0010411636903882027, -0.021707836538553238, 0.06306830793619156, 0.04181568697094917, -0.037209078669548035, -0.06829666346311569, 0.09980825334787369, -0.06829259544610977, 0.038880784064531326, 0.01640661060810089, -0.0003384338633622974, -0.09316067397594452, 0.014120801351964474, 0.024727296084165573, 0.1462157815694809, 0.014771366491913795, -0.02151813916862011, 0.06092396005988121, -0.03489558771252632, -0.01019937451928854, -0.014008105732500553, -0.08374106138944626, 0.09387632459402084, -0.017368055880069733, -0.013946915976703167, 0.04490417614579201, 0.16538122296333313, -0.0012087019858881831, 0.00491627212613821, 0.0034030836541205645, 0.08990248292684555, -0.041386108845472336, -0.029321178793907166, 0.06308311223983765, 0.0267623383551836, 0.06875849515199661, 0.0033918677363544703, 0.0684133768081665, 0.031578194350004196, -0.1212473064661026, 0.05186128243803978, 0.03537741303443909, -0.0072629451751708984, 0.08112913370132446, 0.028794599696993828, -0.025723621249198914, -0.13976870477199554, -0.05046195536851883, -0.03128846362233162, 0.11584319174289703, -0.14885100722312927, 0.20142188668251038, 0.14503000676631927, -0.047404203563928604, -0.0011686929501593113, 0.07407751679420471, -0.03869904205203056, -0.11503221839666367, -0.12991857528686523, -0.04879177734255791, -0.12223397195339203, 0.008045550435781479, 0.002636560471728444, 0.0018617891473695636, 0.03925158083438873, -0.014277977868914604, -0.0511171855032444, 0.08549866825342178, 0.04076226055622101, -0.12147212773561478, 0.028952067717909813, 0.05405731126666069, -0.0110930809751153, -0.0709977075457573, -0.007768186740577221, 0.07501650601625443, 0.03658606857061386, 0.08044333010911942, 0.0397273413836956, 0.15112723410129547, 0.10785236954689026, -0.029128117486834526, -0.02510528638958931, -0.021418221294879913, 0.07632343471050262, -0.0247733686119318, 0.049979325383901596, -0.04204966500401497, -0.023901043459773064, -0.0056037199683487415, 0.1475292295217514, -0.03782741725444794, 0.007760265842080116, -0.08244141936302185, 0.2831275463104248, -0.036866895854473114, -0.08096446841955185, 0.03602350875735283, -0.05590809881687164, -0.022813675925135612, 0.2323736548423767, 0.10662083327770233, 0.11959372460842133, -0.0002196626301156357, 0.07454077899456024, -0.001192950876429677, -0.04396217316389084, 0.03942594304680824, 0.10785853862762451, 0.24338653683662415, 0.009419389069080353, -0.047758400440216064, -0.052496787160634995, 0.01468255277723074, -0.128107950091362, -0.08969084173440933, -0.048269618302583694, -0.037849895656108856, 0.010282319039106369, 0.07129336148500443, -0.040870290249586105, -0.2297620326280594, -0.006997669581323862, -0.029966814443469048, -0.03430459275841713, 0.009280324913561344, -0.03738245368003845, -0.041972242295742035, 0.04455867037177086, -0.05561482161283493, -0.05786434933543205, 0.13904979825019836, 0.0005757108447141945, -0.08917509764432907, -0.031197071075439453, 0.055465467274188995, -0.16289828717708588, 0.20210203528404236, -0.05531206727027893, -0.021714717149734497, 0.06384139508008957, 0.0018738043727353215, -0.1205947995185852, 0.047381140291690826, -0.042175110429525375, -0.1944374442100525, -0.023251915350556374, 0.06602717190980911, -0.08403772115707397, -0.034809473901987076, -0.011880586855113506, -0.0957130566239357, -0.04277225211262703, 0.04329884052276611, 0.054475780576467514, -0.036259546875953674, 0.04363381117582321, -0.1518271267414093, 0.10209765285253525, 0.06380101293325424, -0.019710615277290344, -0.03354557603597641, -0.16089121997356415, 0.06095527485013008, 0.046048786491155624, -0.0030483445152640343, 0.07894148677587509, -0.09970264881849289, -0.032688360661268234, -0.20706284046173096, 0.08263208717107773, -0.10058485716581345, 0.05219285935163498, 0.031242677941918373, -0.04584391042590141, -0.06259897351264954, 0.011839899234473705, -0.03506165370345116, -0.014913869090378284, -0.034338612109422684, 0.1346176564693451, -0.05761024355888367, 0.018233763054013252, -0.1784965693950653, -0.08272984623908997 ]
null
null
transformers
# ResNet-34 model Pretrained on [ImageNette](https://github.com/fastai/imagenette). The ResNet architecture was introduced in [this paper](https://arxiv.org/pdf/1512.03385.pdf). ## Model description The core idea of the author is to help the gradient propagation through numerous layers by adding a skip connection. ## Installation ### Prerequisites Python 3.6 (or higher) and [pip](https://pip.pypa.io/en/stable/)/[conda](https://docs.conda.io/en/latest/miniconda.html) are required to install Holocron. ### Latest stable release You can install the last stable release of the package using [pypi](https://pypi.org/project/pylocron/) as follows: ```shell pip install pylocron ``` or using [conda](https://anaconda.org/frgfm/pylocron): ```shell conda install -c frgfm pylocron ``` ### Developer mode Alternatively, if you wish to use the latest features of the project that haven't made their way to a release yet, you can install the package from source *(install [Git](https://git-scm.com/book/en/v2/Getting-Started-Installing-Git) first)*: ```shell git clone https://github.com/frgfm/Holocron.git pip install -e Holocron/. ``` ## Usage instructions ```python from PIL import Image from torchvision.transforms import Compose, ConvertImageDtype, Normalize, PILToTensor, Resize from torchvision.transforms.functional import InterpolationMode from holocron.models import model_from_hf_hub model = model_from_hf_hub("frgfm/resnet34").eval() img = Image.open(path_to_an_image).convert("RGB") # Preprocessing config = model.default_cfg transform = Compose([ Resize(config['input_shape'][1:], interpolation=InterpolationMode.BILINEAR), PILToTensor(), ConvertImageDtype(torch.float32), Normalize(config['mean'], config['std']) ]) input_tensor = transform(img).unsqueeze(0) # Inference with torch.inference_mode(): output = model(input_tensor) probs = output.squeeze(0).softmax(dim=0) ``` ## Citation Original paper ```bibtex @article{DBLP:journals/corr/HeZRS15, author = {Kaiming He and Xiangyu Zhang and Shaoqing Ren and Jian Sun}, title = {Deep Residual Learning for Image Recognition}, journal = {CoRR}, volume = {abs/1512.03385}, year = {2015}, url = {http://arxiv.org/abs/1512.03385}, eprinttype = {arXiv}, eprint = {1512.03385}, timestamp = {Wed, 17 Apr 2019 17:23:45 +0200}, biburl = {https://dblp.org/rec/journals/corr/HeZRS15.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } ``` Source of this implementation ```bibtex @software{Fernandez_Holocron_2020, author = {Fernandez, François-Guillaume}, month = {5}, title = {{Holocron}}, url = {https://github.com/frgfm/Holocron}, year = {2020} } ```
{"license": "apache-2.0", "tags": ["image-classification", "pytorch", "onnx"], "datasets": ["frgfm/imagenette"]}
image-classification
frgfm/resnet34
[ "transformers", "pytorch", "onnx", "image-classification", "dataset:frgfm/imagenette", "arxiv:1512.03385", "license:apache-2.0", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[ "1512.03385" ]
[]
TAGS #transformers #pytorch #onnx #image-classification #dataset-frgfm/imagenette #arxiv-1512.03385 #license-apache-2.0 #endpoints_compatible #region-us
# ResNet-34 model Pretrained on ImageNette. The ResNet architecture was introduced in this paper. ## Model description The core idea of the author is to help the gradient propagation through numerous layers by adding a skip connection. ## Installation ### Prerequisites Python 3.6 (or higher) and pip/conda are required to install Holocron. ### Latest stable release You can install the last stable release of the package using pypi as follows: or using conda: ### Developer mode Alternatively, if you wish to use the latest features of the project that haven't made their way to a release yet, you can install the package from source *(install Git first)*: ## Usage instructions Original paper Source of this implementation
[ "# ResNet-34 model\n\nPretrained on ImageNette. The ResNet architecture was introduced in this paper.", "## Model description\n\nThe core idea of the author is to help the gradient propagation through numerous layers by adding a skip connection.", "## Installation", "### Prerequisites\n\nPython 3.6 (or higher) and pip/conda are required to install Holocron.", "### Latest stable release\n\nYou can install the last stable release of the package using pypi as follows:\n\n\n\nor using conda:", "### Developer mode\n\nAlternatively, if you wish to use the latest features of the project that haven't made their way to a release yet, you can install the package from source *(install Git first)*:", "## Usage instructions\n\n\n\n\nOriginal paper\n\n\n\nSource of this implementation" ]
[ "TAGS\n#transformers #pytorch #onnx #image-classification #dataset-frgfm/imagenette #arxiv-1512.03385 #license-apache-2.0 #endpoints_compatible #region-us \n", "# ResNet-34 model\n\nPretrained on ImageNette. The ResNet architecture was introduced in this paper.", "## Model description\n\nThe core idea of the author is to help the gradient propagation through numerous layers by adding a skip connection.", "## Installation", "### Prerequisites\n\nPython 3.6 (or higher) and pip/conda are required to install Holocron.", "### Latest stable release\n\nYou can install the last stable release of the package using pypi as follows:\n\n\n\nor using conda:", "### Developer mode\n\nAlternatively, if you wish to use the latest features of the project that haven't made their way to a release yet, you can install the package from source *(install Git first)*:", "## Usage instructions\n\n\n\n\nOriginal paper\n\n\n\nSource of this implementation" ]
[ 58, 25, 27, 2, 27, 27, 46, 10 ]
[ "passage: TAGS\n#transformers #pytorch #onnx #image-classification #dataset-frgfm/imagenette #arxiv-1512.03385 #license-apache-2.0 #endpoints_compatible #region-us \n# ResNet-34 model\n\nPretrained on ImageNette. The ResNet architecture was introduced in this paper.## Model description\n\nThe core idea of the author is to help the gradient propagation through numerous layers by adding a skip connection.## Installation### Prerequisites\n\nPython 3.6 (or higher) and pip/conda are required to install Holocron.### Latest stable release\n\nYou can install the last stable release of the package using pypi as follows:\n\n\n\nor using conda:### Developer mode\n\nAlternatively, if you wish to use the latest features of the project that haven't made their way to a release yet, you can install the package from source *(install Git first)*:## Usage instructions\n\n\n\n\nOriginal paper\n\n\n\nSource of this implementation" ]
[ -0.07637602090835571, 0.16934417188167572, -0.00026979748508892953, -0.041246816515922546, 0.1409674882888794, 0.004677826538681984, 0.07411742955446243, 0.07608246058225632, -0.09992839395999908, 0.056827202439308167, 0.11965414136648178, 0.13310275971889496, 0.06486155837774277, 0.11915597319602966, -0.006195361725986004, -0.22135277092456818, -0.012210305780172348, 0.05063113942742348, 0.07164325565099716, 0.09307379275560379, 0.0689539760351181, -0.044834528118371964, 0.09504042565822601, 0.08562113344669342, -0.1312677562236786, -0.03364916890859604, -0.046818554401397705, -0.03757357969880104, 0.047033317387104034, 0.03712188079953194, 0.09356512874364853, 0.006101158447563648, 0.09301365166902542, -0.04840921610593796, 0.02694215625524521, 0.0945732370018959, 0.004662848077714443, 0.07429636269807816, 0.09011058509349823, -0.03756248578429222, 0.21932995319366455, -0.03634243085980415, -0.06923338770866394, 0.02295498177409172, 0.015194639563560486, -0.10860488563776016, -0.10608075559139252, 0.1088239774107933, 0.023276373744010925, 0.07611947506666183, 0.055006928741931915, 0.1410398930311203, 0.10827123373746872, 0.06704548001289368, 0.19104304909706116, -0.15862511098384857, -0.046760886907577515, 0.06459487229585648, -0.024428460747003555, 0.05229707807302475, -0.0032207686454057693, -0.01564253866672516, 0.031887345016002655, 0.04388967901468277, 0.02081524394452572, -0.05553905665874481, -0.00202650367282331, -0.07501795142889023, -0.1608508825302124, -0.025631941854953766, 0.19414784014225006, 0.011149975471198559, -0.0820307582616806, 0.031247340142726898, -0.1436767578125, 0.02401873841881752, -0.008886040188372135, 0.06405811756849289, 0.009994481690227985, 0.002043022308498621, 0.056428976356983185, -0.19031116366386414, -0.14265067875385284, -0.011976546607911587, 0.02047865279018879, 0.21535919606685638, 0.04945393279194832, 0.10930448025465012, -0.012316838838160038, 0.11492639034986496, -0.08434402942657471, -0.0477217435836792, -0.03692353144288063, -0.06301984190940857, 0.10857308655977249, 0.04647944122552872, 0.016275646165013313, -0.20025910437107086, -0.0040359641425311565, 0.05589815974235535, -0.09182323515415192, -0.02299610525369644, 0.044189177453517914, 0.08183874189853668, 0.02789398655295372, 0.11547509580850601, -0.11327574402093887, 0.09332020580768585, 0.11043713241815567, -0.05346210300922394, 0.09730277210474014, -0.008579746820032597, -0.09716001898050308, 0.01479865051805973, 0.03659201040863991, -0.04464733600616455, 0.03235867619514465, 0.03601720929145813, 0.046788569539785385, -0.06124913692474365, 0.20550745725631714, -0.06001640856266022, -0.0579957515001297, -0.03004319779574871, -0.04075014963746071, 0.15607605874538422, 0.17846077680587769, -0.04461459442973137, -0.06615298241376877, 0.0543857216835022, -0.04708830639719963, -0.020298007875680923, -0.08347257226705551, -0.05986090376973152, 0.018374083563685417, -0.1103307455778122, 0.029965827241539955, -0.17099791765213013, -0.2083437591791153, -0.03503727167844772, 0.0685887336730957, 0.019225550815463066, -0.004879068583250046, 0.0927359014749527, -0.030550865456461906, -0.06117653474211693, 0.0030280218925327063, -0.08879566937685013, -0.0498555451631546, 0.07314982265233994, -0.04368485137820244, -0.013602126389741898, -0.21484866738319397, 0.0571792833507061, -0.055704742670059204, 0.02109145000576973, -0.1494418829679489, -0.01647758111357689, -0.01204706635326147, 0.08605179190635681, -0.05416686460375786, -0.1372104436159134, -0.005151187535375357, -0.0473499521613121, 0.04034687951207161, 0.0898577943444252, -0.07078690826892853, -0.03708775341510773, 0.1143169030547142, -0.20477774739265442, -0.043702997267246246, 0.020234515890479088, 0.04056556522846222, 0.1116631031036377, 0.0058336202055215836, -0.03118985891342163, 0.15973839163780212, -0.2572305202484131, -0.03329004719853401, 0.06900843232870102, -0.08814481645822525, -0.1443370282649994, 0.05649925395846367, 0.03311895579099655, 0.02760263904929161, 0.03510249778628349, -0.11072472482919693, 0.09451636672019958, -0.023983189836144447, -0.0335029661655426, -0.06621488928794861, -0.06986680626869202, -0.14828063547611237, 0.07780314981937408, 0.026126256212592125, 0.09017027169466019, -0.058210913091897964, 0.015895290300250053, 0.15782664716243744, -0.07968544214963913, 0.02162904106080532, 0.007108631543815136, 0.2034527212381363, -0.07656897604465485, -0.015249076299369335, -0.09279503673315048, -0.021776702255010605, 0.034312669187784195, -0.12428376823663712, -0.0038544421549886465, -0.051305558532476425, 0.02909122407436371, 0.10523863881826401, 0.017600398510694504, -0.010138231329619884, 0.005775945261120796, -0.056275371462106705, -0.022126806899905205, -0.034425362944602966, -0.05841945484280586, -0.02722841314971447, 0.17686164379119873, -0.1706494241952896, 0.03845265135169029, 0.059922926127910614, 0.06413877010345459, -0.05331971496343613, -0.051752980798482895, 0.04440949484705925, -0.04874759539961815, -0.048780035227537155, -0.0785754919052124, 0.0717817097902298, 0.11687101423740387, -0.0016121197259053588, 0.025136712938547134, -0.07449831068515778, -0.100114606320858, 0.10659510642290115, -0.07095666229724884, 0.0015202820068225265, -0.015228582546114922, -0.10258425772190094, -0.021953536197543144, -0.008481256663799286, 0.008649150840938091, 0.06171764060854912, 0.008400954306125641, 0.1145363375544548, -0.07606220245361328, 0.023574672639369965, 0.082276850938797, -0.0762752890586853, -0.03420562297105789, 0.02558828890323639, 0.11854962259531021, -0.1045779436826706, 0.08182451128959656, 0.0482170395553112, -0.18447883427143097, 0.08163250982761383, 0.018142662942409515, -0.12303765118122101, 0.00006196001777425408, 0.08681128174066544, 0.042247988283634186, 0.08436650782823563, -0.029840847477316856, -0.0460466668009758, 0.05300476774573326, -0.13659293949604034, 0.08629698306322098, -0.13305583596229553, 0.0395456962287426, -0.029640894383192062, 0.023104064166545868, 0.06981996446847916, 0.0031832652166485786, -0.06358037143945694, 0.046544626355171204, 0.01669161580502987, -0.004925472661852837, -0.027709681540727615, 0.028893031179904938, -0.07261774688959122, 0.13237109780311584, -0.09780726581811905, -0.22209982573986053, -0.2013724446296692, -0.03477570414543152, -0.11782115697860718, 0.011310155503451824, 0.014297026209533215, -0.0634397640824318, -0.04828764125704765, -0.015380080789327621, -0.04468449577689171, -0.052725404500961304, -0.04320951923727989, -0.08249662816524506, 0.032559413462877274, -0.011098474264144897, -0.06704345345497131, -0.031800638884305954, -0.03513169661164284, -0.11718801409006119, 0.10613013803958893, -0.018152518197894096, 0.06862303614616394, 0.13273903727531433, -0.01562957651913166, 0.020989008247852325, 0.040954332798719406, 0.08395542204380035, -0.04593648016452789, 0.04814290627837181, 0.21593572199344635, 0.01097929012030363, 0.06267855316400528, -0.0043441238813102245, 0.015762237831950188, -0.02098720334470272, -0.012490678578615189, -0.04048607125878334, -0.09701665490865707, -0.151380717754364, -0.10317273437976837, -0.036906033754348755, -0.0341608002781868, 0.07710658758878708, 0.0865948498249054, 0.08192937821149826, 0.13700035214424133, -0.029127301648259163, -0.02791992574930191, -0.020739462226629257, 0.13574902713298798, 0.043008141219615936, -0.020562373101711273, 0.03316468745470047, -0.04427110776305199, 0.03865634277462959, 0.1287786066532135, 0.0596582405269146, 0.16141004860401154, -0.10184525698423386, 0.025937512516975403, 0.07167724519968033, 0.12914463877677917, 0.023335853591561317, 0.11833865940570831, 0.0067655122838914394, 0.06493624299764633, -0.0006746514700353146, -0.10552017390727997, -0.07103338837623596, 0.12037397921085358, -0.09875393658876419, -0.05093710497021675, 0.048738885670900345, -0.016358600929379463, -0.037099894136190414, 0.2672366797924042, -0.020659063011407852, -0.2614452838897705, -0.054376862943172455, -0.018472135066986084, 0.05538893863558769, -0.09315338730812073, 0.010392735712230206, 0.024746349081397057, -0.10134478658437729, 0.11804505437612534, -0.07499994337558746, 0.08893358707427979, -0.1263730376958847, -0.06347177177667618, 0.06916289031505585, 0.12245748192071915, 0.059038836508989334, 0.0455402173101902, -0.04509998485445976, 0.10639601945877075, 0.01609419472515583, -0.0009126787190325558, -0.039229970425367355, 0.04138192906975746, 0.023154815658926964, 0.10770224034786224, 0.11513272672891617, 0.020837051793932915, 0.09476694464683533, 0.022672833874821663, -0.023597650229930878, 0.009528770111501217, 0.008863024413585663, 0.025541769340634346, 0.004556829109787941, -0.009179933927953243, -0.031090212985873222, -0.026712562888860703, -0.06919172406196594, -0.0026056501083076, -0.07130571454763412, 0.10070522129535675, 0.02443048171699047, -0.08845380693674088, -0.07413807511329651, -0.04055863246321678, -0.04797393083572388, 0.216727614402771, -0.0011811862932518125, -0.11173846572637558, -0.10324249416589737, 0.04103218391537666, 0.0206158347427845, -0.04302269220352173, 0.03273738548159599, -0.15315119922161102, 0.0737137719988823, -0.035138316452503204, -0.08846701681613922, -0.06645206362009048, -0.09522976726293564, -0.06143636628985405, 0.049019552767276764, 0.08229232579469681, 0.05807222053408623, -0.03746481239795685, -0.04912020266056061, 0.014859364368021488, -0.13951291143894196, -0.08971038460731506, -0.03084716573357582, 0.22356295585632324, 0.16125306487083435, -0.017567522823810577, -0.08408401161432266, -0.010176299139857292, -0.03271102532744408, 0.018064647912979126, 0.07411351799964905, 0.11769483238458633, -0.05527333542704582, -0.020741358399391174, 0.1693735271692276, -0.07144059240818024, -0.19633135199546814, -0.06790617108345032, 0.052435003221035004, -0.05427964776754379, -0.14502377808094025, -0.13290835916996002, 0.10628392547369003, 0.12433966994285583, -0.04079859331250191, 0.1197979673743248, -0.10061126947402954, -0.030035318806767464, 0.10354478657245636, 0.056105099618434906, 0.15057837963104248, -0.16358523070812225, -0.008790077641606331, -0.015241473913192749, -0.13165231049060822, 0.019719388335943222, -0.05745309218764305, 0.05154012516140938, -0.019881784915924072, 0.04914303869009018, 0.03204508498311043, -0.0838976800441742, 0.059958893805742264, -0.08429478108882904, -0.03585430607199669, -0.04062996804714203, 0.06933601200580597, 0.12886638939380646, -0.04514847695827484, 0.11226233839988708, 0.05963772535324097, 0.07123103737831116, -0.07919774204492569, -0.01638104021549225, -0.07122708857059479, 0.15893018245697021, -0.0016989755677059293, -0.053000353276729584, -0.06333929300308228, 0.004379250109195709, 0.0335526205599308, 0.017866073176264763, 0.11941351741552353, 0.006992718670517206, 0.04998331144452095, 0.21928146481513977, -0.0732789859175682, -0.03960513696074486, -0.07874613255262375, -0.04843554273247719, -0.008717280812561512, 0.039235156029462814, -0.0732593908905983, -0.06688884645700455, 0.08807562291622162, 0.052756428718566895, 0.028959626331925392, -0.00868995301425457, -0.12382840365171432, -0.012124263681471348, 0.038737379014492035, -0.21767805516719818, 0.023170700296759605, -0.05728154629468918, 0.07034894824028015, 0.016498809680342674, 0.08642150461673737, 0.12592893838882446, -0.08733051270246506, -0.016984013840556145, 0.009010386653244495, 0.04684586077928543, -0.07916711270809174, 0.033333756029605865, 0.06484919786453247, -0.041510965675115585, -0.07534442096948624, 0.10265236347913742, 0.08627182245254517, -0.007597975432872772, -0.05209372565150261, 0.0602094940841198, -0.10257115960121155, -0.07120434939861298, 0.01381816528737545, -0.14102818071842194, -0.10523048043251038, -0.12040261179208755, -0.011066651903092861, 0.05379987135529518, -0.02275177463889122, 0.13990569114685059, 0.06848230957984924, -0.023467842489480972, 0.03064112178981304, 0.028801877051591873, -0.12064488232135773, 0.008166925981640816, -0.03690996766090393, 0.04220292344689369, -0.16938821971416473, 0.05786985531449318, 0.06577667593955994, 0.12513060867786407, -0.05305502191185951, -0.01777614653110504, -0.048347197473049164, -0.03575289621949196, 0.007479869294911623, 0.04356643557548523, -0.10559909045696259, -0.019225141033530235, -0.00123056978918612, -0.038605764508247375, -0.038390982896089554, 0.06166435033082962, -0.050232335925102234, 0.00467959139496088, -0.01806751824915409, -0.006662272848188877, -0.057267166674137115, -0.013779943808913231, 0.002530511235818267, -0.04435686767101288, 0.06242072954773903, 0.1344308853149414, -0.0608968548476696, 0.016959235072135925, -0.0580829419195652, -0.0016513012815266848, 0.09620598703622818, 0.044479697942733765, -0.002004912355914712, -0.023426610976457596, 0.06319079548120499, 0.0417897030711174, -0.035913728177547455, -0.0677265077829361, 0.10344185680150986, -0.06817212700843811, 0.0385897234082222, 0.014836102724075317, -0.0011578128905966878, -0.09322623163461685, 0.013948837295174599, 0.024851148948073387, 0.1460951864719391, 0.015093851834535599, -0.021827762946486473, 0.059537410736083984, -0.03485792875289917, -0.010170537047088146, -0.01374146156013012, -0.08526523411273956, 0.09170794486999512, -0.017863381654024124, -0.013322541490197182, 0.04552958905696869, 0.1651347130537033, -0.0036566006019711494, 0.0026465621776878834, 0.002956664189696312, 0.08988406509160995, -0.04021736606955528, -0.030430201441049576, 0.06616580486297607, 0.027202876284718513, 0.06851807236671448, 0.003755194367840886, 0.069903664290905, 0.03175551816821098, -0.1240578219294548, 0.05071904882788658, 0.03606269881129265, -0.004307958297431469, 0.08125084638595581, 0.028624314814805984, -0.026446351781487465, -0.1394951045513153, -0.050043750554323196, -0.030547751113772392, 0.1160883754491806, -0.14993569254875183, 0.20192600786685944, 0.1418856680393219, -0.04753345623612404, -0.0023788108956068754, 0.0741627961397171, -0.038794539868831635, -0.11461339890956879, -0.12892059981822968, -0.04930427670478821, -0.12069403380155563, 0.008484316058456898, 0.0032356176525354385, 0.0016034323489293456, 0.03615584596991539, -0.014518365263938904, -0.0510966032743454, 0.08445185422897339, 0.0359770692884922, -0.12282358855009079, 0.02846425212919712, 0.054874684661626816, -0.01256495900452137, -0.07022763788700104, -0.00823136791586876, 0.07453420013189316, 0.03548730909824371, 0.08026164770126343, 0.04009820148348808, 0.1515849530696869, 0.10751984268426895, -0.02930128015577793, -0.02493555285036564, -0.021589409559965134, 0.07801667600870132, -0.022682098671793938, 0.0501120500266552, -0.04211888834834099, -0.024036645889282227, -0.006099246442317963, 0.1459614634513855, -0.03802035376429558, 0.006432493682950735, -0.08228664845228195, 0.2841127812862396, -0.037275563925504684, -0.08103293925523758, 0.0361214280128479, -0.05576346442103386, -0.021965578198432922, 0.2313750982284546, 0.10894563049077988, 0.11940067261457443, -0.00022825098130851984, 0.0756528303027153, -0.001071993145160377, -0.042607381939888, 0.03952961042523384, 0.10826907306909561, 0.24264508485794067, 0.00987114105373621, -0.048783548176288605, -0.05251683294773102, 0.01520444080233574, -0.1273382306098938, -0.09041348099708557, -0.04872916266322136, -0.039330095052719116, 0.008538180962204933, 0.07003270834684372, -0.03962124511599541, -0.22867055237293243, -0.003647632896900177, -0.03140060603618622, -0.034940071403980255, 0.009808757342398167, -0.037354156374931335, -0.04239986091852188, 0.043758414685726166, -0.05515941232442856, -0.05653590336441994, 0.1412750482559204, 0.0003750224714167416, -0.0906544104218483, -0.03205611929297447, 0.055626653134822845, -0.16319890320301056, 0.1999356746673584, -0.05548005551099777, -0.02051297202706337, 0.06470709294080734, 0.0012975168647244573, -0.11913975328207016, 0.0488194115459919, -0.04183882474899292, -0.19704966247081757, -0.02361045405268669, 0.06514638662338257, -0.08453840017318726, -0.03202780708670616, -0.013644873164594173, -0.09407050162553787, -0.042094212025403976, 0.04561964422464371, 0.05304468050599098, -0.037047598510980606, 0.04281848296523094, -0.1529945284128189, 0.1027822494506836, 0.0653987005352974, -0.018970249220728874, -0.03390546888113022, -0.16062608361244202, 0.061770208179950714, 0.047437552362680435, -0.0072748782113194466, 0.07782089710235596, -0.09919619560241699, -0.03384903818368912, -0.2090645581483841, 0.08313045650720596, -0.10018570721149445, 0.050304729491472244, 0.029594188556075096, -0.045041367411613464, -0.0632096454501152, 0.012070942670106888, -0.03708147257566452, -0.01426546461880207, -0.03411627560853958, 0.12960202991962433, -0.056926850229501724, 0.017711006104946136, -0.17968016862869263, -0.08383741974830627 ]
null
null
transformers
# ReXNet-1.0x model Pretrained on [ImageNette](https://github.com/fastai/imagenette). The ReXNet architecture was introduced in [this paper](https://arxiv.org/pdf/2007.00992.pdf). ## Model description The core idea of the author is to add a customized Squeeze-Excitation layer in the residual blocks that will prevent channel redundancy. ## Installation ### Prerequisites Python 3.6 (or higher) and [pip](https://pip.pypa.io/en/stable/)/[conda](https://docs.conda.io/en/latest/miniconda.html) are required to install Holocron. ### Latest stable release You can install the last stable release of the package using [pypi](https://pypi.org/project/pylocron/) as follows: ```shell pip install pylocron ``` or using [conda](https://anaconda.org/frgfm/pylocron): ```shell conda install -c frgfm pylocron ``` ### Developer mode Alternatively, if you wish to use the latest features of the project that haven't made their way to a release yet, you can install the package from source *(install [Git](https://git-scm.com/book/en/v2/Getting-Started-Installing-Git) first)*: ```shell git clone https://github.com/frgfm/Holocron.git pip install -e Holocron/. ``` ## Usage instructions ```python from PIL import Image from torchvision.transforms import Compose, ConvertImageDtype, Normalize, PILToTensor, Resize from torchvision.transforms.functional import InterpolationMode from holocron.models import model_from_hf_hub model = model_from_hf_hub("frgfm/rexnet1_0x").eval() img = Image.open(path_to_an_image).convert("RGB") # Preprocessing config = model.default_cfg transform = Compose([ Resize(config['input_shape'][1:], interpolation=InterpolationMode.BILINEAR), PILToTensor(), ConvertImageDtype(torch.float32), Normalize(config['mean'], config['std']) ]) input_tensor = transform(img).unsqueeze(0) # Inference with torch.inference_mode(): output = model(input_tensor) probs = output.squeeze(0).softmax(dim=0) ``` ## Citation Original paper ```bibtex @article{DBLP:journals/corr/abs-2007-00992, author = {Dongyoon Han and Sangdoo Yun and Byeongho Heo and Young Joon Yoo}, title = {ReXNet: Diminishing Representational Bottleneck on Convolutional Neural Network}, journal = {CoRR}, volume = {abs/2007.00992}, year = {2020}, url = {https://arxiv.org/abs/2007.00992}, eprinttype = {arXiv}, eprint = {2007.00992}, timestamp = {Mon, 06 Jul 2020 15:26:01 +0200}, biburl = {https://dblp.org/rec/journals/corr/abs-2007-00992.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } ``` Source of this implementation ```bibtex @software{Fernandez_Holocron_2020, author = {Fernandez, François-Guillaume}, month = {5}, title = {{Holocron}}, url = {https://github.com/frgfm/Holocron}, year = {2020} } ```
{"license": "apache-2.0", "tags": ["image-classification", "pytorch", "onnx"], "datasets": ["frgfm/imagenette"]}
image-classification
frgfm/rexnet1_0x
[ "transformers", "pytorch", "onnx", "image-classification", "dataset:frgfm/imagenette", "arxiv:2007.00992", "license:apache-2.0", "endpoints_compatible", "has_space", "region:us" ]
2022-03-02T23:29:05+00:00
[ "2007.00992" ]
[]
TAGS #transformers #pytorch #onnx #image-classification #dataset-frgfm/imagenette #arxiv-2007.00992 #license-apache-2.0 #endpoints_compatible #has_space #region-us
# ReXNet-1.0x model Pretrained on ImageNette. The ReXNet architecture was introduced in this paper. ## Model description The core idea of the author is to add a customized Squeeze-Excitation layer in the residual blocks that will prevent channel redundancy. ## Installation ### Prerequisites Python 3.6 (or higher) and pip/conda are required to install Holocron. ### Latest stable release You can install the last stable release of the package using pypi as follows: or using conda: ### Developer mode Alternatively, if you wish to use the latest features of the project that haven't made their way to a release yet, you can install the package from source *(install Git first)*: ## Usage instructions Original paper Source of this implementation
[ "# ReXNet-1.0x model\n\nPretrained on ImageNette. The ReXNet architecture was introduced in this paper.", "## Model description\n\nThe core idea of the author is to add a customized Squeeze-Excitation layer in the residual blocks that will prevent channel redundancy.", "## Installation", "### Prerequisites\n\nPython 3.6 (or higher) and pip/conda are required to install Holocron.", "### Latest stable release\n\nYou can install the last stable release of the package using pypi as follows:\n\n\n\nor using conda:", "### Developer mode\n\nAlternatively, if you wish to use the latest features of the project that haven't made their way to a release yet, you can install the package from source *(install Git first)*:", "## Usage instructions\n\n\n\n\nOriginal paper\n\n\n\nSource of this implementation" ]
[ "TAGS\n#transformers #pytorch #onnx #image-classification #dataset-frgfm/imagenette #arxiv-2007.00992 #license-apache-2.0 #endpoints_compatible #has_space #region-us \n", "# ReXNet-1.0x model\n\nPretrained on ImageNette. The ReXNet architecture was introduced in this paper.", "## Model description\n\nThe core idea of the author is to add a customized Squeeze-Excitation layer in the residual blocks that will prevent channel redundancy.", "## Installation", "### Prerequisites\n\nPython 3.6 (or higher) and pip/conda are required to install Holocron.", "### Latest stable release\n\nYou can install the last stable release of the package using pypi as follows:\n\n\n\nor using conda:", "### Developer mode\n\nAlternatively, if you wish to use the latest features of the project that haven't made their way to a release yet, you can install the package from source *(install Git first)*:", "## Usage instructions\n\n\n\n\nOriginal paper\n\n\n\nSource of this implementation" ]
[ 61, 29, 37, 2, 27, 27, 46, 10 ]
[ "passage: TAGS\n#transformers #pytorch #onnx #image-classification #dataset-frgfm/imagenette #arxiv-2007.00992 #license-apache-2.0 #endpoints_compatible #has_space #region-us \n# ReXNet-1.0x model\n\nPretrained on ImageNette. The ReXNet architecture was introduced in this paper.## Model description\n\nThe core idea of the author is to add a customized Squeeze-Excitation layer in the residual blocks that will prevent channel redundancy.## Installation### Prerequisites\n\nPython 3.6 (or higher) and pip/conda are required to install Holocron.### Latest stable release\n\nYou can install the last stable release of the package using pypi as follows:\n\n\n\nor using conda:### Developer mode\n\nAlternatively, if you wish to use the latest features of the project that haven't made their way to a release yet, you can install the package from source *(install Git first)*:## Usage instructions\n\n\n\n\nOriginal paper\n\n\n\nSource of this implementation" ]
[ -0.028809422627091408, 0.15918684005737305, -0.0010271717328578234, -0.04532593861222267, 0.09117086231708527, 0.010894190520048141, 0.020626839250326157, 0.10045253485441208, -0.07606831938028336, 0.007266443222761154, 0.1037306860089302, 0.1444094479084015, 0.0718761533498764, 0.13220877945423126, -0.009127581492066383, -0.2033269852399826, -0.045305345207452774, 0.042801838368177414, 0.10480573773384094, 0.08320560306310654, 0.08943040668964386, -0.021430399268865585, 0.0557355061173439, 0.05481560155749321, -0.12769672274589539, 0.001513920957222581, -0.01766001619398594, -0.041321415454149246, 0.012650183402001858, 0.02148159220814705, 0.08240800350904465, 0.034103669226169586, 0.0867631807923317, -0.0542227141559124, 0.012616602703928947, 0.12889364361763, -0.008111994713544846, 0.03630271553993225, 0.10386005789041519, -0.04602917656302452, 0.10555564612150192, -0.10908357053995132, -0.029930274933576584, 0.032170917838811874, -0.006621976848691702, -0.112311452627182, -0.1069282591342926, 0.0769687220454216, 0.07539425790309906, 0.07792950421571732, 0.03191312029957771, 0.17185471951961517, 0.10205525159835815, 0.06866815686225891, 0.11954890936613083, -0.16294263303279877, -0.06106807291507721, 0.04322317987680435, 0.001459675026126206, 0.11398881673812866, 0.00634392024949193, -0.010681099258363247, 0.023415662348270416, 0.0631299540400505, 0.026687856763601303, -0.05931221321225166, -0.12182745337486267, -0.09686212241649628, -0.1779329478740692, 0.0005938771064393222, 0.16824372112751007, -0.01317397691309452, -0.09117773175239563, 0.018036140128970146, -0.11986760050058365, -0.041427530348300934, 0.04982883110642433, 0.07204899936914444, 0.020726153627038002, 0.014476406387984753, 0.028247859328985214, -0.19472603499889374, -0.1338706612586975, 0.010239075869321823, -0.033503543585538864, 0.23277302086353302, 0.04214373603463173, 0.09680959582328796, -0.00931198988109827, 0.12595507502555847, -0.06691496074199677, -0.051365066319704056, -0.09197761863470078, -0.06455949693918228, 0.011994274333119392, 0.002816061256453395, 0.0065396749414503574, -0.15619777143001556, -0.03198155388236046, 0.13869687914848328, -0.11954812705516815, -0.01171504519879818, -0.009975794702768326, 0.0417686402797699, 0.06197308376431465, 0.10602325201034546, -0.13419154286384583, 0.10790319740772247, 0.12135329842567444, -0.08353105187416077, 0.08812493085861206, 0.02084754966199398, -0.068076491355896, 0.006401731166988611, -0.005118412896990776, -0.013587944209575653, 0.049668774008750916, 0.037641964852809906, 0.05967818200588226, -0.04205077886581421, 0.1480940729379654, -0.04177682101726532, -0.025396183133125305, -0.06180577352643013, -0.042351193726062775, 0.10350269079208374, 0.15644027292728424, -0.002845882438123226, -0.014746400527656078, 0.033012282103300095, -0.005486731883138418, -0.023656591773033142, -0.059308573603630066, -0.07032497972249985, 0.021734237670898438, -0.15892848372459412, 0.02014067955315113, -0.20486801862716675, -0.11504140496253967, -0.007733470760285854, 0.08676777780056, -0.0011658871080726385, 0.01325354352593422, 0.16163736581802368, -0.035534072667360306, -0.05383537709712982, -0.006984896957874298, -0.041704483330249786, -0.03633396327495575, 0.04160558432340622, -0.01338939182460308, -0.01776154898107052, -0.16085581481456757, 0.028493445366621017, -0.050873592495918274, 0.042884401977062225, -0.18042169511318207, -0.009004997089505196, -0.012557899579405785, 0.05077802389860153, -0.07500462234020233, -0.09010611474514008, -0.008083740249276161, -0.05050799995660782, 0.02170918695628643, 0.06809031963348389, -0.06800462305545807, 0.02045290917158127, 0.04271996393799782, -0.1590368002653122, 0.010482984595000744, 0.005437468644231558, 0.036291204392910004, 0.10003051906824112, -0.00911550410091877, -0.01432332769036293, 0.21418164670467377, -0.28226181864738464, -0.08886277675628662, 0.10058678686618805, -0.0915343388915062, -0.043626297265291214, 0.06830195337533951, 0.08760373294353485, 0.03465912491083145, -0.00501741049811244, -0.1101948693394661, 0.11630219221115112, 0.0083821602165699, -0.021006185561418533, -0.04992204159498215, -0.08831241726875305, -0.1781916320323944, 0.07514945417642593, 0.0034507003147155046, 0.08928287774324417, -0.07477075606584549, -0.05385972559452057, 0.13118715584278107, -0.032883234322071075, 0.021589452400803566, -0.020290590822696686, 0.0807037353515625, -0.08689772337675095, -0.030376285314559937, -0.07741519063711166, -0.013590294867753983, 0.08021273463964462, -0.05858653038740158, 0.010253849439322948, -0.07083644717931747, 0.04007018357515335, 0.08530151098966599, 0.01608731970191002, -0.01459668017923832, 0.08088760077953339, -0.05255546420812607, 0.004588837269693613, -0.02569689229130745, -0.05272183194756508, -0.05112782120704651, 0.28034383058547974, -0.08076257258653641, 0.01634707860648632, 0.10567481070756912, 0.0791197419166565, -0.04975160211324692, -0.057980820536613464, 0.056649934500455856, -0.1255519688129425, -0.05408742278814316, -0.07939823716878891, 0.013444186188280582, 0.10805962979793549, 0.02277626283466816, 0.040207136422395706, -0.03732113540172577, -0.19635243713855743, 0.07902248948812485, -0.03429558128118515, -0.04882537201046944, 0.02159697748720646, -0.10630166530609131, -0.015725623816251755, 0.0003699962981045246, -0.02401980571448803, 0.08686652779579163, -0.013687405735254288, 0.07611872255802155, -0.045524511486291885, -0.046462204307317734, 0.083495132625103, -0.056118473410606384, -0.04156745225191116, -0.01209930144250393, 0.0797039270401001, -0.14855356514453888, 0.03298468142747879, -0.010723255574703217, -0.18678081035614014, 0.02905101701617241, 0.050671085715293884, -0.06895677000284195, -0.016791867092251778, 0.08208926022052765, 0.04757555574178696, 0.0881357342004776, 0.03184547275304794, -0.04586805775761604, 0.032846104353666306, -0.12641355395317078, 0.06485443562269211, -0.11508972942829132, 0.022805126383900642, -0.02317131869494915, 0.01308399997651577, 0.05732697620987892, -0.007795308250933886, -0.05132054165005684, 0.012265331111848354, 0.007805812172591686, 0.038399599492549896, -0.007511046715080738, 0.012031870894134045, -0.07582532614469528, 0.11249732226133347, -0.1053844466805458, -0.22584868967533112, -0.13038350641727448, -0.08252198994159698, -0.07913286238908768, 0.027269946411252022, 0.023623177781701088, -0.0710909441113472, -0.028467005118727684, -0.00943001639097929, -0.05075647309422493, -0.14410805702209473, -0.039410077035427094, -0.12743496894836426, 0.013951919972896576, 0.005347682163119316, -0.05457228049635887, -0.011683136224746704, 0.0046379584819078445, -0.13524673879146576, 0.11904756724834442, -0.009487600065767765, 0.06733091175556183, 0.1021280512213707, -0.04694386199116707, 0.023558611050248146, 0.02360948920249939, 0.12988370656967163, -0.04695584625005722, 0.09969566762447357, 0.17903901636600494, 0.014153225347399712, 0.032229650765657425, 0.06615416705608368, 0.000905676162801683, 0.0016201888211071491, -0.011862729676067829, -0.007759660482406616, -0.09361772239208221, -0.18726542592048645, -0.025926779955625534, -0.025296518579125404, -0.05926060304045677, 0.10892139375209808, 0.08210153877735138, 0.06834975630044937, 0.14302505552768707, -0.07699823379516602, 0.004334094002842903, 0.030966252088546753, 0.127976655960083, 0.021522371098399162, -0.031909920275211334, 0.038483619689941406, -0.005510338116437197, 0.02070903778076172, 0.12410903722047806, 0.12399039417505264, 0.1360042691230774, -0.08317726105451584, -0.00639741588383913, 0.06317578256130219, 0.09877613931894302, -0.007007971405982971, 0.06788405030965805, 0.02008099853992462, 0.0797114297747612, 0.007657637819647789, -0.09636453539133072, 0.026891537010669708, 0.09678798168897629, -0.05520865321159363, -0.08539688587188721, 0.06174587458372116, -0.017147568985819817, -0.04279473423957825, 0.2637006938457489, -0.045557402074337006, -0.20546871423721313, 0.0310372281819582, -0.01872740499675274, 0.025578446686267853, -0.1131533682346344, 0.013785318471491337, -0.0060713342390954494, -0.06739621609449387, 0.14534585177898407, -0.06844761967658997, 0.043361157178878784, -0.12520454823970795, -0.07716013491153717, 0.14330291748046875, 0.09867702424526215, 0.0686601847410202, 0.032714854925870895, -0.0700928345322609, 0.04459059238433838, 0.04435770586133003, 0.008026561699807644, -0.04127545654773712, 0.047985613346099854, -0.0027514584362506866, 0.09670733660459518, 0.13438165187835693, 0.023107536137104034, 0.022171830758452415, 0.01441325806081295, 0.023462099954485893, -0.012937487103044987, 0.04257209599018097, -0.008171896450221539, 0.03128127381205559, -0.02248762734234333, -0.043508853763341904, -0.018744437023997307, -0.06400395184755325, -0.08045829087495804, -0.08810793608427048, 0.09523903578519821, 0.027866622433066368, -0.09919781237840652, -0.07641094923019409, 0.005132557824254036, -0.04192434251308441, 0.1872616410255432, -0.08005686104297638, -0.10507459938526154, -0.07225075364112854, 0.018050294369459152, 0.03327722102403641, -0.007271545473486185, 0.00979616679251194, -0.15987661480903625, 0.08343954384326935, -0.07013985514640808, -0.0931701809167862, -0.09201738983392715, -0.11448509246110916, -0.003751057665795088, 0.00794225838035345, 0.06967336684465408, 0.0448184534907341, -0.020441755652427673, -0.031171683222055435, 0.034576576203107834, -0.11131788045167923, -0.04385092854499817, -0.004872019402682781, 0.14810194075107574, 0.10763289779424667, 0.01195314060896635, -0.08008561283349991, 0.04490060359239578, -0.0674804151058197, 0.014046119526028633, 0.04039314016699791, 0.14119650423526764, -0.0956394150853157, -0.035185307264328, 0.11129463464021683, -0.06062806770205498, -0.17662736773490906, -0.020445004105567932, 0.08281049132347107, -0.08364973217248917, -0.15079791843891144, -0.1758449524641037, 0.08668717741966248, 0.11397521942853928, -0.028274092823266983, 0.11496846377849579, -0.09657958894968033, 0.008788126520812511, 0.033334292471408844, -0.017184797674417496, 0.0984010100364685, -0.16194838285446167, 0.007669834420084953, -0.022722773253917694, -0.08969397842884064, 0.06672180444002151, -0.10337002575397491, 0.06778629869222641, 0.006904488429427147, 0.01920892484486103, 0.029061611741781235, -0.07442942261695862, 0.052672211080789566, -0.07401937246322632, -0.039962947368621826, -0.021963879466056824, 0.050581950694322586, 0.10791268199682236, -0.07196246832609177, 0.09218684583902359, 0.06609074771404266, 0.041153792291879654, -0.05632249265909195, -0.004075819160789251, -0.07283161580562592, 0.15538173913955688, -0.011561619117856026, -0.05944037809967995, -0.08055081963539124, -0.009660339914262295, 0.05793559551239014, 0.0038137396331876516, 0.0765671357512474, 0.02292100340127945, 0.023432817310094833, 0.19854705035686493, -0.06853204220533371, 0.011565983295440674, -0.09796035289764404, -0.021859943866729736, -0.024162158370018005, 0.0398549847304821, -0.04588336870074272, -0.040642254054546356, 0.056286368519067764, 0.07290405035018921, 0.01652621664106846, -0.004930396098643541, -0.13635887205600739, -0.05016673356294632, 0.03044934943318367, -0.17980720102787018, 0.05697272717952728, -0.04784016311168671, 0.12474866956472397, 0.03385477513074875, 0.013023401610553265, 0.14777959883213043, -0.06239524856209755, -0.025126801803708076, 0.038314178586006165, 0.038439687341451645, -0.0762726292014122, 0.05953703820705414, 0.05258195847272873, -0.048399150371551514, -0.06369368731975555, 0.11878284066915512, 0.12080966681241989, 0.028021465986967087, -0.05784021317958832, 0.09732113033533096, -0.07481762766838074, -0.08829765021800995, -0.04188742861151695, -0.2157737761735916, -0.08927799761295319, -0.07283759862184525, 0.04763372987508774, 0.048653002828359604, -0.05901799350976944, 0.12225140631198883, 0.010373231023550034, -0.022241661325097084, 0.0591205395758152, 0.055293165147304535, -0.11392605304718018, 0.035044509917497635, -0.052791446447372437, 0.07688204944133759, -0.18363921344280243, 0.05472967401146889, 0.04292215779423714, 0.12914146482944489, -0.03955109044909477, 0.018645137548446655, -0.028314944356679916, -0.023070015013217926, -0.011599907651543617, 0.08503719419240952, -0.03319178521633148, 0.0006354849901981652, 0.023873617872595787, -0.006663101725280285, -0.05385375767946243, 0.054908137768507004, -0.02636750042438507, -0.00864816177636385, -0.020953943952918053, -0.010594562627375126, -0.019592298194766045, -0.07368156313896179, -0.023775385692715645, -0.07750749588012695, 0.05530137941241264, 0.10452400892972946, -0.0525793731212616, -0.057370323687791824, -0.019491925835609436, -0.04305875673890114, 0.04414109140634537, 0.04221104457974434, -0.021773939952254295, -0.06438878178596497, 0.09018471837043762, 0.02012426219880581, -0.040650900453329086, -0.04762577265501022, 0.08393871784210205, -0.06922979652881622, 0.019629521295428276, -0.020586570724844933, -0.004670409485697746, -0.10088563710451126, 0.015676157549023628, 0.05058521404862404, 0.1461668312549591, 0.025245804339647293, -0.01327971275895834, 0.05672100558876991, -0.056259769946336746, -0.008020337671041489, -0.02656291238963604, -0.08166779577732086, 0.07284682244062424, 0.000659152923617512, -0.017260845750570297, 0.05307787284255028, 0.16993951797485352, 0.06306914240121841, 0.009126567281782627, 0.014733735471963882, 0.054274704307317734, -0.029391735792160034, -0.0008417198550887406, 0.039775215089321136, 0.007132621947675943, 0.0382251963019371, -0.02657296136021614, 0.034800224006175995, 0.041157737374305725, -0.13300561904907227, -0.01862345263361931, 0.032100386917591095, 0.04477326571941376, 0.047020990401506424, 0.03874659910798073, -0.09260140359401703, -0.09896020591259003, -0.01180346217006445, 0.010441267862915993, 0.06777528673410416, -0.15949681401252747, 0.12464398145675659, 0.1261570155620575, -0.061951469630002975, -0.03722644969820976, 0.07009383291006088, -0.0318274162709713, -0.11904449760913849, -0.08886941522359848, -0.03692832216620445, -0.0955611988902092, 0.03148214519023895, -0.01002588402479887, 0.03890503570437431, -0.00920786987990141, 0.0015227781841531396, -0.02859693020582199, 0.08877091109752655, 0.029362978413701057, -0.14430424571037292, 0.029472939670085907, 0.057118866592645645, 0.023191282525658607, -0.024196913465857506, 0.005481503903865814, 0.1374385803937912, 0.015040872618556023, 0.07016020268201828, 0.018896374851465225, 0.15761075913906097, 0.09396865218877792, -0.03558128699660301, -0.03305117040872574, -0.049530938267707825, 0.08378268033266068, 0.001026253099553287, 0.17033541202545166, -0.02962309494614601, -0.023557577282190323, -0.0015447629848495126, 0.12325020879507065, -0.04215339198708534, 0.00872804131358862, -0.08397091925144196, 0.3242841362953186, -0.07868778705596924, -0.06924764066934586, 0.02505686692893505, -0.08949468284845352, -0.04276421293616295, 0.2435988485813141, 0.05413178727030754, 0.132220059633255, -0.021108563989400864, 0.07698632776737213, -0.00876354519277811, -0.03169858828186989, 0.0380190871655941, 0.12647539377212524, 0.22046799957752228, -0.006583577953279018, -0.00580374151468277, -0.004627868998795748, 0.03521760180592537, -0.13252650201320648, -0.0763535276055336, -0.039578188210725784, -0.017343195155262947, 0.02055090107023716, 0.07036393880844116, 0.00883923377841711, -0.22324493527412415, -0.008397367782890797, -0.022591421380639076, 0.005987484939396381, 0.019522137939929962, -0.018501194193959236, -0.07762295752763748, 0.02313452772796154, -0.07143726944923401, -0.061090342700481415, 0.08027653396129608, 0.0036323789972811937, -0.05713369697332382, -0.002580114407464862, 0.08586675673723221, -0.1772608906030655, 0.24083609879016876, -0.07335130870342255, 0.03897850960493088, 0.07769019156694412, -0.03670920804142952, -0.1526232808828354, 0.011215395294129848, -0.04591609537601471, -0.2320922315120697, -0.04431481286883354, 0.16237705945968628, -0.09755843877792358, 0.009138884022831917, -0.004205541685223579, -0.09083619713783264, -0.04688795655965805, 0.08078020811080933, 0.07589537650346756, -0.10199078172445297, 0.0510539710521698, -0.13290712237358093, 0.1194974035024643, 0.07784666121006012, -0.016934223473072052, 0.004251878708600998, -0.18454432487487793, 0.001659089932218194, 0.07821718603372574, 0.03088376484811306, 0.07704919576644897, -0.07775300741195679, -0.028207192197442055, -0.11193493753671646, 0.10345504432916641, -0.07240115851163864, 0.039553746581077576, 0.03395916894078255, -0.05577613413333893, -0.060283828526735306, 0.029149040579795837, -0.009305867366492748, 0.01119967084378004, -0.03002370148897171, 0.05989983305335045, -0.04571697115898132, -0.005093553103506565, -0.18491259217262268, -0.04474829137325287 ]
null
null
transformers
# ReXNet-1.3x model Pretrained on [ImageNette](https://github.com/fastai/imagenette). The ReXNet architecture was introduced in [this paper](https://arxiv.org/pdf/2007.00992.pdf). ## Model description The core idea of the author is to add a customized Squeeze-Excitation layer in the residual blocks that will prevent channel redundancy. ## Installation ### Prerequisites Python 3.6 (or higher) and [pip](https://pip.pypa.io/en/stable/)/[conda](https://docs.conda.io/en/latest/miniconda.html) are required to install Holocron. ### Latest stable release You can install the last stable release of the package using [pypi](https://pypi.org/project/pylocron/) as follows: ```shell pip install pylocron ``` or using [conda](https://anaconda.org/frgfm/pylocron): ```shell conda install -c frgfm pylocron ``` ### Developer mode Alternatively, if you wish to use the latest features of the project that haven't made their way to a release yet, you can install the package from source *(install [Git](https://git-scm.com/book/en/v2/Getting-Started-Installing-Git) first)*: ```shell git clone https://github.com/frgfm/Holocron.git pip install -e Holocron/. ``` ## Usage instructions ```python from PIL import Image from torchvision.transforms import Compose, ConvertImageDtype, Normalize, PILToTensor, Resize from torchvision.transforms.functional import InterpolationMode from holocron.models import model_from_hf_hub model = model_from_hf_hub("frgfm/rexnet1_3x").eval() img = Image.open(path_to_an_image).convert("RGB") # Preprocessing config = model.default_cfg transform = Compose([ Resize(config['input_shape'][1:], interpolation=InterpolationMode.BILINEAR), PILToTensor(), ConvertImageDtype(torch.float32), Normalize(config['mean'], config['std']) ]) input_tensor = transform(img).unsqueeze(0) # Inference with torch.inference_mode(): output = model(input_tensor) probs = output.squeeze(0).softmax(dim=0) ``` ## Citation Original paper ```bibtex @article{DBLP:journals/corr/abs-2007-00992, author = {Dongyoon Han and Sangdoo Yun and Byeongho Heo and Young Joon Yoo}, title = {ReXNet: Diminishing Representational Bottleneck on Convolutional Neural Network}, journal = {CoRR}, volume = {abs/2007.00992}, year = {2020}, url = {https://arxiv.org/abs/2007.00992}, eprinttype = {arXiv}, eprint = {2007.00992}, timestamp = {Mon, 06 Jul 2020 15:26:01 +0200}, biburl = {https://dblp.org/rec/journals/corr/abs-2007-00992.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } ``` Source of this implementation ```bibtex @software{Fernandez_Holocron_2020, author = {Fernandez, François-Guillaume}, month = {5}, title = {{Holocron}}, url = {https://github.com/frgfm/Holocron}, year = {2020} } ```
{"license": "apache-2.0", "tags": ["image-classification", "pytorch", "onnx"], "datasets": ["frgfm/imagenette"]}
image-classification
frgfm/rexnet1_3x
[ "transformers", "pytorch", "onnx", "image-classification", "dataset:frgfm/imagenette", "arxiv:2007.00992", "license:apache-2.0", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[ "2007.00992" ]
[]
TAGS #transformers #pytorch #onnx #image-classification #dataset-frgfm/imagenette #arxiv-2007.00992 #license-apache-2.0 #endpoints_compatible #region-us
# ReXNet-1.3x model Pretrained on ImageNette. The ReXNet architecture was introduced in this paper. ## Model description The core idea of the author is to add a customized Squeeze-Excitation layer in the residual blocks that will prevent channel redundancy. ## Installation ### Prerequisites Python 3.6 (or higher) and pip/conda are required to install Holocron. ### Latest stable release You can install the last stable release of the package using pypi as follows: or using conda: ### Developer mode Alternatively, if you wish to use the latest features of the project that haven't made their way to a release yet, you can install the package from source *(install Git first)*: ## Usage instructions Original paper Source of this implementation
[ "# ReXNet-1.3x model\n\nPretrained on ImageNette. The ReXNet architecture was introduced in this paper.", "## Model description\n\nThe core idea of the author is to add a customized Squeeze-Excitation layer in the residual blocks that will prevent channel redundancy.", "## Installation", "### Prerequisites\n\nPython 3.6 (or higher) and pip/conda are required to install Holocron.", "### Latest stable release\n\nYou can install the last stable release of the package using pypi as follows:\n\n\n\nor using conda:", "### Developer mode\n\nAlternatively, if you wish to use the latest features of the project that haven't made their way to a release yet, you can install the package from source *(install Git first)*:", "## Usage instructions\n\n\n\n\nOriginal paper\n\n\n\nSource of this implementation" ]
[ "TAGS\n#transformers #pytorch #onnx #image-classification #dataset-frgfm/imagenette #arxiv-2007.00992 #license-apache-2.0 #endpoints_compatible #region-us \n", "# ReXNet-1.3x model\n\nPretrained on ImageNette. The ReXNet architecture was introduced in this paper.", "## Model description\n\nThe core idea of the author is to add a customized Squeeze-Excitation layer in the residual blocks that will prevent channel redundancy.", "## Installation", "### Prerequisites\n\nPython 3.6 (or higher) and pip/conda are required to install Holocron.", "### Latest stable release\n\nYou can install the last stable release of the package using pypi as follows:\n\n\n\nor using conda:", "### Developer mode\n\nAlternatively, if you wish to use the latest features of the project that haven't made their way to a release yet, you can install the package from source *(install Git first)*:", "## Usage instructions\n\n\n\n\nOriginal paper\n\n\n\nSource of this implementation" ]
[ 57, 29, 37, 2, 27, 27, 46, 10 ]
[ "passage: TAGS\n#transformers #pytorch #onnx #image-classification #dataset-frgfm/imagenette #arxiv-2007.00992 #license-apache-2.0 #endpoints_compatible #region-us \n# ReXNet-1.3x model\n\nPretrained on ImageNette. The ReXNet architecture was introduced in this paper.## Model description\n\nThe core idea of the author is to add a customized Squeeze-Excitation layer in the residual blocks that will prevent channel redundancy.## Installation### Prerequisites\n\nPython 3.6 (or higher) and pip/conda are required to install Holocron.### Latest stable release\n\nYou can install the last stable release of the package using pypi as follows:\n\n\n\nor using conda:### Developer mode\n\nAlternatively, if you wish to use the latest features of the project that haven't made their way to a release yet, you can install the package from source *(install Git first)*:## Usage instructions\n\n\n\n\nOriginal paper\n\n\n\nSource of this implementation" ]
[ -0.028494538739323616, 0.15134884417057037, -0.0013024845393374562, -0.0424310527741909, 0.10172351449728012, -0.002110706176608801, 0.023669786751270294, 0.09814725816249847, -0.08099750429391861, 0.011662345379590988, 0.12336800247430801, 0.15480542182922363, 0.07619763910770416, 0.13173848390579224, -0.019038556143641472, -0.20595581829547882, -0.03207197040319443, 0.047172147780656815, 0.13067764043807983, 0.08298900723457336, 0.09475026279687881, -0.022441759705543518, 0.06670758873224258, 0.045125748962163925, -0.13234098255634308, -0.00690614664927125, -0.027644317597150803, -0.026835346594452858, 0.023059528321027756, 0.012388932518661022, 0.07533019781112671, 0.03237767890095711, 0.08965110033750534, -0.06624659150838852, 0.0160883367061615, 0.12007005512714386, -0.00924132764339447, 0.041361916810274124, 0.09793512523174286, -0.026375768706202507, 0.12925012409687042, -0.12725719809532166, -0.030114080756902695, 0.02558109723031521, -0.006000220309942961, -0.08042854070663452, -0.11269470304250717, 0.08842234313488007, 0.09343621879816055, 0.07250389456748962, 0.03545369952917099, 0.17264492809772491, 0.10561710596084595, 0.07682719081640244, 0.14029142260551453, -0.1520479917526245, -0.061627455055713654, 0.06670864671468735, 0.011217206716537476, 0.10395530611276627, 0.01092735305428505, -0.015162864699959755, 0.03011896274983883, 0.07008198648691177, 0.008194798603653908, -0.06248847395181656, -0.10266733169555664, -0.10022851079702377, -0.17632044851779938, -0.010424510575830936, 0.17807883024215698, -0.0030692515429109335, -0.07913089543581009, 0.017595788463950157, -0.12073812633752823, -0.04004901275038719, 0.04122680425643921, 0.06086229905486107, 0.016848647966980934, 0.008830836974084377, 0.04001258313655853, -0.19697025418281555, -0.14014485478401184, 0.021252645179629326, -0.017845360562205315, 0.19974800944328308, 0.04604222998023033, 0.09144128113985062, -0.0054387678392231464, 0.13152308762073517, -0.062199220061302185, -0.0490199513733387, -0.08292403072118759, -0.0629880353808403, 0.03185690566897392, 0.007497102487832308, 0.03147130087018013, -0.1471666842699051, -0.011166205629706383, 0.11668411642313004, -0.11594578623771667, -0.010876502841711044, -0.0018425105372443795, 0.05182117223739624, 0.060615088790655136, 0.10622431337833405, -0.11575915664434433, 0.108693428337574, 0.1324770748615265, -0.07339905202388763, 0.07586166262626648, 0.011019323952496052, -0.07814868539571762, 0.017170516774058342, 0.03200666233897209, -0.009577291086316109, 0.055194977670907974, 0.04053608700633049, 0.0731404572725296, -0.030321385711431503, 0.13904359936714172, -0.0537518747150898, -0.019835567101836205, -0.07055975496768951, -0.023874791339039803, 0.09804265946149826, 0.15335851907730103, 0.007926997728645802, -0.030423395335674286, 0.02410872094333172, -0.006407941225916147, -0.029718434438109398, -0.05276454612612724, -0.04990271478891373, 0.02789531648159027, -0.16893132030963898, 0.02081649750471115, -0.20140111446380615, -0.13314639031887054, -0.026761991903185844, 0.0880238488316536, -0.0005531762144528329, -0.004449172876775265, 0.13638344407081604, -0.044545020908117294, -0.061334896832704544, -0.0009471364901401103, -0.04026774317026138, -0.038193054497241974, 0.04684188589453697, -0.03220668062567711, -0.04043004661798477, -0.18218059837818146, 0.024152694270014763, -0.04723363742232323, 0.05379471555352211, -0.169574573636055, -0.013778185471892357, -0.004001072142273188, 0.06659993529319763, -0.06878593564033508, -0.09888265281915665, -0.011958638206124306, -0.050957489758729935, 0.022854801267385483, 0.07460829615592957, -0.0979895070195198, 0.023930611088871956, 0.0459296889603138, -0.1599477380514145, 0.008207208476960659, 0.021940339356660843, 0.01400455366820097, 0.12412916123867035, 0.0037050056271255016, -0.01384666096419096, 0.1850639283657074, -0.2717897593975067, -0.06708043813705444, 0.08594755828380585, -0.10311950743198395, -0.041621994227170944, 0.0577223040163517, 0.07427144795656204, 0.036811552941799164, 0.003413186874240637, -0.10169779509305954, 0.09044301509857178, -0.0032504682894796133, -0.025190692394971848, -0.05663949251174927, -0.07052646577358246, -0.21228089928627014, 0.0763629600405693, -0.002907822374254465, 0.08038606494665146, -0.06828761845827103, -0.0685851201415062, 0.12590569257736206, -0.043232183903455734, 0.021765215322375298, -0.017735693603754044, 0.0981379821896553, -0.07108636200428009, -0.025100233033299446, -0.06659425050020218, -0.015967464074492455, 0.07581613212823868, -0.05833905190229416, 0.008139226585626602, -0.05568116530776024, 0.03760094940662384, 0.0857427716255188, 0.026956545189023018, -0.006972332019358873, 0.08477587252855301, -0.044955696910619736, -0.013912619091570377, -0.036885954439640045, -0.048841193318367004, -0.04064163565635681, 0.26919299364089966, -0.12044548988342285, 0.014790725894272327, 0.09684036672115326, 0.08585134148597717, -0.056130025535821915, -0.05345511808991432, 0.03750770539045334, -0.11197961866855621, -0.05511639639735222, -0.08418670296669006, 0.019439224153757095, 0.11475678533315659, 0.021983567625284195, 0.03705070912837982, -0.045625392347574234, -0.2038867324590683, 0.07575860619544983, -0.04332982376217842, -0.0480036623775959, 0.009190867654979229, -0.116065114736557, -0.021656252443790436, 0.013549472205340862, -0.021405408158898354, 0.09221035987138748, -0.015844810754060745, 0.07929021120071411, -0.047316040843725204, -0.050545331090688705, 0.0861993208527565, -0.062206756323575974, -0.03961438313126564, 0.01344086043536663, 0.10087846964597702, -0.18393148481845856, 0.03588220104575157, -0.033200036734342575, -0.181792214512825, 0.025524169206619263, 0.0357094369828701, -0.0690048560500145, -0.011108210310339928, 0.09575668722391129, 0.040497373789548874, 0.09128504246473312, 0.01754024066030979, -0.05031074211001396, 0.035160958766937256, -0.12828849256038666, 0.07669232040643692, -0.12027087807655334, 0.02582848072052002, -0.032920967787504196, 0.020736606791615486, 0.07624402642250061, -0.012818826362490654, -0.04252779483795166, 0.02694106660783291, 0.017637670040130615, 0.008628192357718945, 0.0021885253954678774, 0.010268929414451122, -0.08201471716165543, 0.11470747739076614, -0.09229995310306549, -0.2157878428697586, -0.12655839323997498, -0.07627473771572113, -0.07772032916545868, 0.023314131423830986, 0.025797808542847633, -0.06615207344293594, -0.031574882566928864, -0.028190070763230324, -0.08242051303386688, -0.12583015859127045, -0.046852536499500275, -0.10727847367525101, 0.012276705354452133, -0.010761760175228119, -0.05392417684197426, -0.025132521986961365, -0.005128124728798866, -0.12724579870700836, 0.11854500323534012, -0.031001148745417595, 0.07660266757011414, 0.11758017539978027, -0.049157314002513885, 0.033836573362350464, 0.028008360415697098, 0.12813451886177063, -0.04497953876852989, 0.09311568737030029, 0.17043885588645935, 0.00026528231683187187, 0.03638315573334694, 0.07369682192802429, -0.005208732560276985, -0.0060669719241559505, -0.013922050595283508, -0.012689301744103432, -0.10108558088541031, -0.18577514588832855, -0.026294296607375145, -0.024422092363238335, -0.04716856777667999, 0.10317745804786682, 0.09261859208345413, 0.08675708621740341, 0.13674387335777283, -0.07240942120552063, 0.005536600016057491, 0.03970480337738991, 0.13677577674388885, 0.00795668549835682, -0.027511509135365486, 0.021018890663981438, -0.005156654864549637, 0.006527910940349102, 0.1253332942724228, 0.11248655617237091, 0.13817740976810455, -0.0783434510231018, -0.009821905754506588, 0.0687287226319313, 0.0882628858089447, -0.021243175491690636, 0.06741663068532944, 0.015030359849333763, 0.08341726660728455, 0.005954171530902386, -0.09454666823148727, 0.013277971185743809, 0.10193656384944916, -0.055189333856105804, -0.09728091210126877, 0.05885733291506767, 0.02989819087088108, -0.032644838094711304, 0.26645219326019287, -0.04677772521972656, -0.21393096446990967, 0.032883480191230774, -0.016746239736676216, 0.020049218088388443, -0.1332957148551941, 0.019411824643611908, -0.004992833361029625, -0.08139058947563171, 0.1239284947514534, -0.06043864041566849, 0.05154246464371681, -0.13858109712600708, -0.07159508764743805, 0.13344532251358032, 0.090205617249012, 0.07304411381483078, 0.036486029624938965, -0.07931073009967804, 0.055531132966279984, 0.031391240656375885, 0.013880754821002483, -0.05321720987558365, 0.04610319808125496, -0.019278449937701225, 0.07441344112157822, 0.14688709378242493, 0.022855956107378006, 0.0019347392953932285, 0.021441197022795677, 0.0015139260794967413, -0.0038191876374185085, 0.041814740747213364, -0.010323614813387394, 0.033372294157743454, -0.02528962306678295, -0.0461166687309742, -0.022640202194452286, -0.09323141723871231, -0.0721246600151062, -0.08711548894643784, 0.1028359979391098, 0.026111120358109474, -0.09478164464235306, -0.07632772624492645, 0.003208985086530447, -0.042779743671417236, 0.20807041227817535, -0.07253342121839523, -0.10854954272508621, -0.07836578041315079, 0.02020181156694889, 0.03161114454269409, -0.0023527436424046755, 0.014052740298211575, -0.15556283295154572, 0.08257963508367538, -0.0661352202296257, -0.09020992368459702, -0.08532994240522385, -0.10826925933361053, -0.017821641638875008, 0.018166162073612213, 0.09631668776273727, 0.04867509752511978, -0.026999661698937416, -0.018676113337278366, 0.030711473897099495, -0.11720065027475357, -0.049506139010190964, 0.0003380670677870512, 0.12882553040981293, 0.13055852055549622, 0.0003745066933333874, -0.07884907722473145, 0.03636515140533447, -0.0737277939915657, 0.005223404616117477, 0.06164197251200676, 0.14032305777072906, -0.08327681571245193, -0.036888618022203445, 0.11232638359069824, -0.07281330227851868, -0.17932669818401337, -0.029870765283703804, 0.08173149824142456, -0.09480015188455582, -0.17753444612026215, -0.1511164903640747, 0.08642801642417908, 0.10913553088903427, -0.028759922832250595, 0.13023293018341064, -0.10302242636680603, -0.0017619178397580981, 0.04932473972439766, -0.01018952764570713, 0.13570430874824524, -0.1757403165102005, 0.005289106629788876, -0.02149658091366291, -0.12868328392505646, 0.05986165627837181, -0.08444171398878098, 0.0631244108080864, 0.011731291189789772, 0.02340875379741192, 0.02709689550101757, -0.0805392861366272, 0.05587451905012131, -0.0607110969722271, -0.03928424417972565, -0.03931267559528351, 0.012443207204341888, 0.08192389458417892, -0.07705888152122498, 0.10120784491300583, 0.08522351086139679, 0.04195669665932655, -0.06930215656757355, -0.0025077678728848696, -0.07738567143678665, 0.15428180992603302, -0.015777425840497017, -0.05870065838098526, -0.07305093854665756, 0.0004559271619655192, 0.06637345999479294, 0.018254345282912254, 0.09061319380998611, 0.015226591378450394, 0.022933438420295715, 0.18066725134849548, -0.05738116055727005, -0.005360090639442205, -0.08007205277681351, -0.02719026617705822, -0.023662647232413292, 0.0262028519064188, -0.020501447841525078, -0.04471374675631523, 0.0704893097281456, 0.06578313559293747, 0.02893417328596115, -0.003464528126642108, -0.13441559672355652, -0.05667676776647568, 0.02643958106637001, -0.1991398185491562, 0.045926474034786224, -0.04783958941698074, 0.12626923620700836, 0.034525834023952484, 0.025323105975985527, 0.14620964229106903, -0.06008075550198555, -0.02481822669506073, 0.0257464237511158, 0.04971132427453995, -0.06765498220920563, 0.03414228931069374, 0.054066821932792664, -0.04433877021074295, -0.07023216038942337, 0.10341421514749527, 0.12263365089893341, 0.033769574016332626, -0.04441490024328232, 0.10845902562141418, -0.08292683959007263, -0.0781574696302414, -0.018896151334047318, -0.1787903755903244, -0.094384104013443, -0.08715680986642838, 0.03729736804962158, 0.03395652025938034, -0.048069655895233154, 0.12822790443897247, 0.007846640422940254, -0.01642419397830963, 0.07497844845056534, 0.05350279435515404, -0.12890632450580597, 0.03278461471199989, -0.04149583727121353, 0.07028493285179138, -0.17840531468391418, 0.04279546067118645, 0.03664392605423927, 0.13784922659397125, -0.03957599028944969, 0.02389797940850258, -0.028287244960665703, -0.027647847309708595, -0.0053631956689059734, 0.08258184045553207, -0.031264252960681915, -0.0038934771437197924, 0.03187078237533569, -0.008849008940160275, -0.050358064472675323, 0.06182794272899628, -0.025359515100717545, -0.00891592912375927, -0.023764844983816147, -0.01252146065235138, -0.012989227660000324, -0.06736178696155548, -0.01770094595849514, -0.08069794625043869, 0.06259406358003616, 0.10812778770923615, -0.06157756224274635, -0.05376560240983963, -0.04760665073990822, -0.03691558539867401, 0.051664117723703384, 0.03653227165341377, -0.019529685378074646, -0.07242778688669205, 0.08187959343194962, 0.03518166393041611, -0.04017780348658562, -0.049870867282152176, 0.07424463331699371, -0.07070983201265335, 0.02965562790632248, -0.019410409033298492, -0.01617507077753544, -0.09339822828769684, 0.01686006784439087, 0.034028060734272, 0.1456861048936844, 0.018111219629645348, -0.02001967839896679, 0.05927565321326256, -0.05667904019355774, -0.014261109754443169, -0.010795647278428078, -0.08689968287944794, 0.09575510025024414, -0.005542431026697159, -0.012386307120323181, 0.0558936707675457, 0.16366170346736908, 0.061181943863630295, -0.0054642572067677975, 0.014144298620522022, 0.05416672304272652, -0.03441925346851349, 0.0034849001094698906, 0.038230668753385544, 0.0009026327752508223, 0.03659641742706299, -0.02875983715057373, 0.031579840928316116, 0.051380179822444916, -0.155385360121727, 0.018658244982361794, 0.026897111907601357, 0.06349020451307297, 0.055053070187568665, 0.051843635737895966, -0.08904516696929932, -0.09629864245653152, 0.002052548574283719, 0.005838468205183744, 0.07640033960342407, -0.16488124430179596, 0.12972964346408844, 0.14152219891548157, -0.06145986542105675, -0.04184187576174736, 0.05586447939276695, -0.03605193272233009, -0.12101873010396957, -0.10157510638237, -0.0495893768966198, -0.08010666072368622, 0.03193913400173187, -0.010183190926909447, 0.03235786780714989, -0.005940591916441917, 0.009625635109841824, -0.03813543915748596, 0.08221922814846039, 0.04318299517035484, -0.129171684384346, 0.03393726795911789, 0.052261870354413986, 0.020593956112861633, -0.041788846254348755, 0.0011069857282564044, 0.12245377898216248, 0.023976486176252365, 0.08586851507425308, 0.02610129863023758, 0.17018455266952515, 0.09256080538034439, -0.034400537610054016, -0.03127186372876167, -0.04344749078154564, 0.08124934136867523, -0.0022361113224178553, 0.16965772211551666, -0.024842938408255577, -0.019106868654489517, 0.0067608971148729324, 0.10592665523290634, -0.02784883975982666, -0.012231781147420406, -0.08223620802164078, 0.30678874254226685, -0.06767068058252335, -0.07741458714008331, 0.03022356517612934, -0.09264316409826279, -0.02006690949201584, 0.24074944853782654, 0.0580696277320385, 0.13039305806159973, -0.025065748021006584, 0.07812398672103882, -0.0027033640071749687, -0.03530852496623993, 0.029384639114141464, 0.1290426254272461, 0.23188848793506622, -0.009336519986391068, -0.011660144664347172, -0.009148773737251759, 0.03032350167632103, -0.14741037786006927, -0.09267252683639526, -0.024470966309309006, -0.010237567126750946, 0.02314273826777935, 0.0701189786195755, -0.015062132850289345, -0.2448200285434723, -0.03119731694459915, -0.031910981982946396, 0.005678783170878887, 0.03020125813782215, -0.010492210276424885, -0.08470618724822998, 0.02220342494547367, -0.07708849757909775, -0.06099157780408859, 0.08105465024709702, 0.001357250614091754, -0.05146684870123863, 0.020336629822850227, 0.08127418160438538, -0.1754366159439087, 0.25339561700820923, -0.0731617659330368, 0.05452447012066841, 0.07559168338775635, -0.04268445447087288, -0.147968590259552, 0.01703907549381256, -0.03349392116069794, -0.19942857325077057, -0.04355311393737793, 0.15242579579353333, -0.09513594210147858, -0.012226042337715626, 0.008058314211666584, -0.07518290728330612, -0.053113482892513275, 0.07702022790908813, 0.06860260665416718, -0.09524626284837723, 0.06337110698223114, -0.14643163979053497, 0.11690719425678253, 0.06915293633937836, -0.01833183877170086, 0.012631664983928204, -0.18751589953899384, 0.008290999568998814, 0.06627276539802551, 0.02224287949502468, 0.07818734645843506, -0.08180759847164154, -0.017559252679347992, -0.12094900012016296, 0.10864761471748352, -0.07565372437238693, 0.033638473600149155, 0.02865837886929512, -0.049835577607154846, -0.07225687056779861, 0.029998743906617165, 0.0021163334604352713, 0.0058858455158770084, -0.03623304143548012, 0.0692044124007225, -0.04945036768913269, 0.0028185180854052305, -0.17142106592655182, -0.042641639709472656 ]
null
null
transformers
# ReXNet-1.5x model Pretrained on [ImageNette](https://github.com/fastai/imagenette). The ReXNet architecture was introduced in [this paper](https://arxiv.org/pdf/2007.00992.pdf). ## Model description The core idea of the author is to add a customized Squeeze-Excitation layer in the residual blocks that will prevent channel redundancy. ## Installation ### Prerequisites Python 3.6 (or higher) and [pip](https://pip.pypa.io/en/stable/)/[conda](https://docs.conda.io/en/latest/miniconda.html) are required to install Holocron. ### Latest stable release You can install the last stable release of the package using [pypi](https://pypi.org/project/pylocron/) as follows: ```shell pip install pylocron ``` or using [conda](https://anaconda.org/frgfm/pylocron): ```shell conda install -c frgfm pylocron ``` ### Developer mode Alternatively, if you wish to use the latest features of the project that haven't made their way to a release yet, you can install the package from source *(install [Git](https://git-scm.com/book/en/v2/Getting-Started-Installing-Git) first)*: ```shell git clone https://github.com/frgfm/Holocron.git pip install -e Holocron/. ``` ## Usage instructions ```python from PIL import Image from torchvision.transforms import Compose, ConvertImageDtype, Normalize, PILToTensor, Resize from torchvision.transforms.functional import InterpolationMode from holocron.models import model_from_hf_hub model = model_from_hf_hub("frgfm/rexnet1_5x").eval() img = Image.open(path_to_an_image).convert("RGB") # Preprocessing config = model.default_cfg transform = Compose([ Resize(config['input_shape'][1:], interpolation=InterpolationMode.BILINEAR), PILToTensor(), ConvertImageDtype(torch.float32), Normalize(config['mean'], config['std']) ]) input_tensor = transform(img).unsqueeze(0) # Inference with torch.inference_mode(): output = model(input_tensor) probs = output.squeeze(0).softmax(dim=0) ``` ## Citation Original paper ```bibtex @article{DBLP:journals/corr/abs-2007-00992, author = {Dongyoon Han and Sangdoo Yun and Byeongho Heo and Young Joon Yoo}, title = {ReXNet: Diminishing Representational Bottleneck on Convolutional Neural Network}, journal = {CoRR}, volume = {abs/2007.00992}, year = {2020}, url = {https://arxiv.org/abs/2007.00992}, eprinttype = {arXiv}, eprint = {2007.00992}, timestamp = {Mon, 06 Jul 2020 15:26:01 +0200}, biburl = {https://dblp.org/rec/journals/corr/abs-2007-00992.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } ``` Source of this implementation ```bibtex @software{Fernandez_Holocron_2020, author = {Fernandez, François-Guillaume}, month = {5}, title = {{Holocron}}, url = {https://github.com/frgfm/Holocron}, year = {2020} } ```
{"license": "apache-2.0", "tags": ["image-classification", "pytorch", "onnx"], "datasets": ["frgfm/imagenette"]}
image-classification
frgfm/rexnet1_5x
[ "transformers", "pytorch", "onnx", "image-classification", "dataset:frgfm/imagenette", "arxiv:2007.00992", "license:apache-2.0", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[ "2007.00992" ]
[]
TAGS #transformers #pytorch #onnx #image-classification #dataset-frgfm/imagenette #arxiv-2007.00992 #license-apache-2.0 #endpoints_compatible #region-us
# ReXNet-1.5x model Pretrained on ImageNette. The ReXNet architecture was introduced in this paper. ## Model description The core idea of the author is to add a customized Squeeze-Excitation layer in the residual blocks that will prevent channel redundancy. ## Installation ### Prerequisites Python 3.6 (or higher) and pip/conda are required to install Holocron. ### Latest stable release You can install the last stable release of the package using pypi as follows: or using conda: ### Developer mode Alternatively, if you wish to use the latest features of the project that haven't made their way to a release yet, you can install the package from source *(install Git first)*: ## Usage instructions Original paper Source of this implementation
[ "# ReXNet-1.5x model\n\nPretrained on ImageNette. The ReXNet architecture was introduced in this paper.", "## Model description\n\nThe core idea of the author is to add a customized Squeeze-Excitation layer in the residual blocks that will prevent channel redundancy.", "## Installation", "### Prerequisites\n\nPython 3.6 (or higher) and pip/conda are required to install Holocron.", "### Latest stable release\n\nYou can install the last stable release of the package using pypi as follows:\n\n\n\nor using conda:", "### Developer mode\n\nAlternatively, if you wish to use the latest features of the project that haven't made their way to a release yet, you can install the package from source *(install Git first)*:", "## Usage instructions\n\n\n\n\nOriginal paper\n\n\n\nSource of this implementation" ]
[ "TAGS\n#transformers #pytorch #onnx #image-classification #dataset-frgfm/imagenette #arxiv-2007.00992 #license-apache-2.0 #endpoints_compatible #region-us \n", "# ReXNet-1.5x model\n\nPretrained on ImageNette. The ReXNet architecture was introduced in this paper.", "## Model description\n\nThe core idea of the author is to add a customized Squeeze-Excitation layer in the residual blocks that will prevent channel redundancy.", "## Installation", "### Prerequisites\n\nPython 3.6 (or higher) and pip/conda are required to install Holocron.", "### Latest stable release\n\nYou can install the last stable release of the package using pypi as follows:\n\n\n\nor using conda:", "### Developer mode\n\nAlternatively, if you wish to use the latest features of the project that haven't made their way to a release yet, you can install the package from source *(install Git first)*:", "## Usage instructions\n\n\n\n\nOriginal paper\n\n\n\nSource of this implementation" ]
[ 57, 29, 37, 2, 27, 27, 46, 10 ]
[ "passage: TAGS\n#transformers #pytorch #onnx #image-classification #dataset-frgfm/imagenette #arxiv-2007.00992 #license-apache-2.0 #endpoints_compatible #region-us \n# ReXNet-1.5x model\n\nPretrained on ImageNette. The ReXNet architecture was introduced in this paper.## Model description\n\nThe core idea of the author is to add a customized Squeeze-Excitation layer in the residual blocks that will prevent channel redundancy.## Installation### Prerequisites\n\nPython 3.6 (or higher) and pip/conda are required to install Holocron.### Latest stable release\n\nYou can install the last stable release of the package using pypi as follows:\n\n\n\nor using conda:### Developer mode\n\nAlternatively, if you wish to use the latest features of the project that haven't made their way to a release yet, you can install the package from source *(install Git first)*:## Usage instructions\n\n\n\n\nOriginal paper\n\n\n\nSource of this implementation" ]
[ -0.029784157872200012, 0.1521335244178772, -0.0013115676119923592, -0.04264432564377785, 0.10172899067401886, -0.0020145473536103964, 0.023260116577148438, 0.0982571467757225, -0.08017928898334503, 0.012722183018922806, 0.12367327511310577, 0.15377891063690186, 0.07669700682163239, 0.13316643238067627, -0.019152648746967316, -0.20577755570411682, -0.03230400010943413, 0.047849141061306, 0.13038457930088043, 0.08287882059812546, 0.09410914778709412, -0.023075977340340614, 0.0664844959974289, 0.04512631520628929, -0.13355813920497894, -0.007221436593681574, -0.027088405564427376, -0.026778975501656532, 0.023312756791710854, 0.01266040001064539, 0.07427159696817398, 0.03184451162815094, 0.08884206414222717, -0.06608990579843521, 0.016120482236146927, 0.12047025561332703, -0.009099929593503475, 0.04182922840118408, 0.0980585515499115, -0.026011498644948006, 0.12979984283447266, -0.12843739986419678, -0.031178230419754982, 0.0253954716026783, -0.005728392396122217, -0.08144641667604446, -0.1122361272573471, 0.08839771896600723, 0.09326089173555374, 0.0723172053694725, 0.035019297152757645, 0.17237167060375214, 0.10574036091566086, 0.07711946219205856, 0.1398104876279831, -0.1531010866165161, -0.06128159910440445, 0.0661034807562828, 0.010545963421463966, 0.10391373187303543, 0.01001825276762247, -0.015200326219201088, 0.030740294605493546, 0.06897447258234024, 0.008510027080774307, -0.062160395085811615, -0.10254602879285812, -0.10037565976381302, -0.17583709955215454, -0.010889850556850433, 0.17813792824745178, -0.0022972538135945797, -0.07932888716459274, 0.017353840172290802, -0.1211053803563118, -0.03995160758495331, 0.04110842943191528, 0.06125679239630699, 0.017170105129480362, 0.009153285063803196, 0.04088377207517624, -0.19605383276939392, -0.14000765979290009, 0.02159719541668892, -0.018243007361888885, 0.19925756752490997, 0.046222396194934845, 0.09160659462213516, -0.005997856147587299, 0.1312790960073471, -0.06464099138975143, -0.049491532146930695, -0.0828385204076767, -0.06251325458288193, 0.031806737184524536, 0.007578243501484394, 0.03135508671402931, -0.1476014107465744, -0.011252541095018387, 0.11582723259925842, -0.1159345880150795, -0.011190378107130527, -0.0017199066933244467, 0.051472533494234085, 0.06093299761414528, 0.10604454576969147, -0.11546280235052109, 0.10782060027122498, 0.13258540630340576, -0.07356006652116776, 0.07526804506778717, 0.010942281223833561, -0.07732827961444855, 0.016032114624977112, 0.03258320689201355, -0.010566607117652893, 0.05517147481441498, 0.04033033549785614, 0.07307635992765427, -0.029716569930315018, 0.13769486546516418, -0.05367489904165268, -0.01939224824309349, -0.07021632790565491, -0.023966694250702858, 0.0979359894990921, 0.15321284532546997, 0.0070573873817920685, -0.031207077205181122, 0.02471153438091278, -0.006922260392457247, -0.029959900304675102, -0.05315908417105675, -0.04999819025397301, 0.02763793058693409, -0.17007069289684296, 0.02115722931921482, -0.2009938657283783, -0.13247482478618622, -0.02714540809392929, 0.08732932806015015, -0.0006278391811065376, -0.00451328419148922, 0.13564912974834442, -0.04491298645734787, -0.061377886682748795, -0.0009731994359754026, -0.03966964781284332, -0.03829651698470116, 0.047633714973926544, -0.03215624764561653, -0.03956609591841698, -0.18136148154735565, 0.024250011891126633, -0.04765712469816208, 0.05358517915010452, -0.16949370503425598, -0.013597125187516212, -0.0032874979078769684, 0.06685139983892441, -0.06891223043203354, -0.09881697595119476, -0.012896377593278885, -0.05140221118927002, 0.02330043539404869, 0.07552141696214676, -0.09785110503435135, 0.023130003362894058, 0.04754830524325371, -0.1595650613307953, 0.008106638677418232, 0.022304397076368332, 0.013693428598344326, 0.12459155917167664, 0.004167389124631882, -0.01311950758099556, 0.1852676272392273, -0.2714080512523651, -0.0686812698841095, 0.08602717518806458, -0.1029864028096199, -0.04215073585510254, 0.05730791389942169, 0.07429338246583939, 0.03653815761208534, 0.0036252043209969997, -0.1008700430393219, 0.09107939153909683, -0.0036529821809381247, -0.024771204218268394, -0.05763968825340271, -0.07037962228059769, -0.2119690626859665, 0.07694593071937561, -0.002275995211675763, 0.08069121837615967, -0.06824986636638641, -0.06824558973312378, 0.1259106546640396, -0.04266684129834175, 0.02138374373316765, -0.017829550430178642, 0.09873532503843307, -0.07201977074146271, -0.02417302317917347, -0.06775830686092377, -0.014632969163358212, 0.07599620521068573, -0.06017013266682625, 0.007943809032440186, -0.05656113848090172, 0.03770194947719574, 0.08539075404405594, 0.027379456907510757, -0.007154907565563917, 0.08464011549949646, -0.0452827624976635, -0.015151668339967728, -0.03765690699219704, -0.04856685921549797, -0.040347155183553696, 0.26928970217704773, -0.12138232588768005, 0.014827185310423374, 0.09763716161251068, 0.08665531873703003, -0.05589141324162483, -0.05409717187285423, 0.037614867091178894, -0.11180587112903595, -0.05496774613857269, -0.08369859308004379, 0.019199419766664505, 0.11473136395215988, 0.022315872833132744, 0.03626580908894539, -0.04538198187947273, -0.203174889087677, 0.07646564394235611, -0.042446069419384, -0.04728839173913002, 0.009464302100241184, -0.11562132835388184, -0.021919356659054756, 0.013144250027835369, -0.020534563809633255, 0.09084174782037735, -0.01626642607152462, 0.07980187237262726, -0.04753416031599045, -0.0503087192773819, 0.08694738894701004, -0.061755213886499405, -0.03890807554125786, 0.014245284721255302, 0.1002940908074379, -0.1827533096075058, 0.036116406321525574, -0.03292104974389076, -0.18119974434375763, 0.02626021020114422, 0.035140980035066605, -0.07012345641851425, -0.011191676370799541, 0.09584140032529831, 0.04010980948805809, 0.09187020361423492, 0.016205957159399986, -0.050882864743471146, 0.03563918173313141, -0.12860088050365448, 0.0762312114238739, -0.12029922008514404, 0.026677262037992477, -0.032931312918663025, 0.02124948799610138, 0.07511696219444275, -0.012531484477221966, -0.04218635335564613, 0.02699531614780426, 0.01769893430173397, 0.009387314319610596, 0.0018340364331379533, 0.010567381978034973, -0.08158602565526962, 0.11486674845218658, -0.09176142513751984, -0.21582014858722687, -0.1258688122034073, -0.07504250109195709, -0.07726258784532547, 0.02279178611934185, 0.026029299944639206, -0.06650764495134354, -0.031555164605379105, -0.02744963765144348, -0.08235891163349152, -0.12521938979625702, -0.045734573155641556, -0.10772582143545151, 0.012512643821537495, -0.010713746771216393, -0.053511906415224075, -0.024606404826045036, -0.005206409376114607, -0.12635572254657745, 0.11833506077528, -0.030043380334973335, 0.0764857828617096, 0.11712519824504852, -0.04938574880361557, 0.034007567912340164, 0.028241021558642387, 0.12883350253105164, -0.04573793336749077, 0.09296231716871262, 0.17092131078243256, 0.0006780195399187505, 0.0359179861843586, 0.07364311069250107, -0.005420509725809097, -0.005809427704662085, -0.014302359893918037, -0.012837247923016548, -0.1005815789103508, -0.18553438782691956, -0.0265656691044569, -0.024939393624663353, -0.04664121940732002, 0.104083351790905, 0.09264622628688812, 0.08714261651039124, 0.1365024745464325, -0.07220674306154251, 0.006786678917706013, 0.038814373314380646, 0.13680881261825562, 0.007531172130256891, -0.027543116360902786, 0.02058500237762928, -0.005606488790363073, 0.006797856651246548, 0.12498006969690323, 0.11083707958459854, 0.13922782242298126, -0.07851548492908478, -0.009182608686387539, 0.06751570105552673, 0.08992203325033188, -0.02116873487830162, 0.06739034503698349, 0.014777649194002151, 0.08332165330648422, 0.006381924729794264, -0.09460263699293137, 0.013205115683376789, 0.1023467630147934, -0.0553458072245121, -0.0970119908452034, 0.05821964889764786, 0.028602441772818565, -0.03252266347408295, 0.2667122185230255, -0.04615519940853119, -0.21373550593852997, 0.03209667652845383, -0.017211439087986946, 0.019388457760214806, -0.13451580703258514, 0.018673568964004517, -0.004347185604274273, -0.0809587612748146, 0.12328079342842102, -0.06066565960645676, 0.05205266922712326, -0.13810303807258606, -0.07111931592226028, 0.13236017525196075, 0.09013938158750534, 0.0725182294845581, 0.03627642244100571, -0.07972204685211182, 0.056246355175971985, 0.031791802495718, 0.014421477913856506, -0.05373488366603851, 0.04601911082863808, -0.019605576992034912, 0.07431067526340485, 0.1469443142414093, 0.022856153547763824, 0.0015496622072532773, 0.021692218258976936, 0.001342865638434887, -0.003942488227039576, 0.0421089306473732, -0.010394861921668053, 0.03317921981215477, -0.024913718923926353, -0.046254709362983704, -0.022931326180696487, -0.09417863190174103, -0.07174612581729889, -0.08659233152866364, 0.10282131284475327, 0.02637365087866783, -0.09346257150173187, -0.07600779831409454, 0.003393043065443635, -0.04220038652420044, 0.2072310894727707, -0.07428261637687683, -0.10815528780221939, -0.0783952921628952, 0.022270824760198593, 0.0312645398080349, -0.002541513415053487, 0.014699812047183514, -0.1555362343788147, 0.08278703689575195, -0.0658332109451294, -0.0900406688451767, -0.08475591987371445, -0.10782019048929214, -0.017882589250802994, 0.01828308030962944, 0.09660231322050095, 0.04843384400010109, -0.02745397388935089, -0.018982572481036186, 0.030755741521716118, -0.11786900460720062, -0.04936765879392624, 0.00036663838545791805, 0.12900309264659882, 0.13045673072338104, 0.00031536287860944867, -0.07823935151100159, 0.03465285897254944, -0.07352378219366074, 0.004841293673962355, 0.06064041331410408, 0.14118658006191254, -0.08367589861154556, -0.037230879068374634, 0.11248371750116348, -0.07299172878265381, -0.17901606857776642, -0.028819773346185684, 0.0818629190325737, -0.09408673644065857, -0.17846496403217316, -0.15096020698547363, 0.08701791614294052, 0.1087728887796402, -0.02859656512737274, 0.13129346072673798, -0.10335657000541687, -0.0020876594353467226, 0.049501169472932816, -0.011125911958515644, 0.1380573809146881, -0.17564710974693298, 0.0047070542350411415, -0.02153330296278, -0.12915220856666565, 0.05933430418372154, -0.08504364639520645, 0.06281333416700363, 0.011338265612721443, 0.022651584818959236, 0.027494700625538826, -0.0806243047118187, 0.05606143921613693, -0.06047637388110161, -0.038701917976140976, -0.03879862651228905, 0.01239833515137434, 0.08130615949630737, -0.07708053290843964, 0.10171619802713394, 0.08522164821624756, 0.04216507449746132, -0.06986317783594131, -0.0025179286021739244, -0.07739777117967606, 0.15465566515922546, -0.015621034428477287, -0.05813083052635193, -0.07319658994674683, 0.00011459329834906384, 0.06623070687055588, 0.018411463126540184, 0.09077578783035278, 0.015553354285657406, 0.022782402113080025, 0.1808542162179947, -0.058666910976171494, -0.00523223215714097, -0.08050793409347534, -0.02659398689866066, -0.0235272329300642, 0.02721310406923294, -0.02291768230497837, -0.044572461396455765, 0.07089684903621674, 0.06679295003414154, 0.02881759963929653, -0.003907597623765469, -0.13433703780174255, -0.05719323456287384, 0.026541318744421005, -0.20005753636360168, 0.04408019781112671, -0.047512780874967575, 0.12614279985427856, 0.034481484442949295, 0.02545752190053463, 0.14619633555412292, -0.06095269322395325, -0.02495046705007553, 0.025461679324507713, 0.04949817806482315, -0.06736185401678085, 0.034962791949510574, 0.053263723850250244, -0.04432106018066406, -0.07064008712768555, 0.1035926416516304, 0.12294541299343109, 0.03176440671086311, -0.0445854477584362, 0.10801991820335388, -0.08365607261657715, -0.07772284001111984, -0.018264371901750565, -0.1785658746957779, -0.09331773966550827, -0.08705303072929382, 0.037295132875442505, 0.0342247374355793, -0.047631680965423584, 0.12918595969676971, 0.007730362005531788, -0.01618170365691185, 0.07501523941755295, 0.05390511080622673, -0.12970028817653656, 0.03291914239525795, -0.040417347103357315, 0.07053451240062714, -0.17816485464572906, 0.04424598067998886, 0.03668319433927536, 0.13756310939788818, -0.0395173542201519, 0.023881664499640465, -0.028646769002079964, -0.027883362025022507, -0.004021503962576389, 0.08269554376602173, -0.03134213760495186, -0.004220596980303526, 0.03169187530875206, -0.009193656966090202, -0.049916137009859085, 0.0617564395070076, -0.025687728077173233, -0.009016800671815872, -0.023874495178461075, -0.0122530497610569, -0.012899506837129593, -0.06737043708562851, -0.01739513874053955, -0.08090415596961975, 0.06289949268102646, 0.1089455783367157, -0.06115666404366493, -0.053550273180007935, -0.04706428200006485, -0.036271438002586365, 0.05177167057991028, 0.03676994517445564, -0.019241804257035255, -0.07177820056676865, 0.08241976797580719, 0.03512207791209221, -0.04001495614647865, -0.05015895143151283, 0.0739145502448082, -0.07125263661146164, 0.029030364006757736, -0.019928500056266785, -0.015392076224088669, -0.09380250424146652, 0.0168038010597229, 0.03360799327492714, 0.14539355039596558, 0.017788782715797424, -0.019723201170563698, 0.05875635892152786, -0.05742836743593216, -0.014168097637593746, -0.01119124237447977, -0.08797938376665115, 0.09604863077402115, -0.0058669340796768665, -0.011413618922233582, 0.055533260107040405, 0.16276289522647858, 0.061189066618680954, -0.004952235613018274, 0.014188798144459724, 0.05413324758410454, -0.03582390025258064, 0.0034520530607551336, 0.039238110184669495, 0.0012621924979612231, 0.03662250563502312, -0.028656193986535072, 0.032396428287029266, 0.051499951630830765, -0.15400542318820953, 0.018218472599983215, 0.027224179357290268, 0.06351350992918015, 0.055733367800712585, 0.051200803369283676, -0.0892999991774559, -0.09700562059879303, 0.004108163993805647, 0.005010740365833044, 0.07784289121627808, -0.1651286631822586, 0.13045944273471832, 0.14170558750629425, -0.061420928686857224, -0.04101714864373207, 0.0563637875020504, -0.035908155143260956, -0.12057365477085114, -0.10103258490562439, -0.04980487376451492, -0.08091968297958374, 0.03188949078321457, -0.01010978501290083, 0.03285533934831619, -0.0061849141493439674, 0.009140966460108757, -0.038615476340055466, 0.08298029750585556, 0.043459873646497726, -0.12928727269172668, 0.03548518568277359, 0.05188861861824989, 0.019648894667625427, -0.042140714824199677, 0.0010917704785242677, 0.12292983382940292, 0.02319466695189476, 0.08570089936256409, 0.02590777724981308, 0.17000290751457214, 0.09259099513292313, -0.03365851938724518, -0.03088720329105854, -0.04308858886361122, 0.08118201792240143, -0.002900980180129409, 0.16968636214733124, -0.024732360616326332, -0.018995376303792, 0.006189934443682432, 0.10681969672441483, -0.028267407789826393, -0.011235387064516544, -0.08207208663225174, 0.305858850479126, -0.06682361662387848, -0.07764314115047455, 0.030228151008486748, -0.09311776608228683, -0.01960742473602295, 0.24061481654644012, 0.0558939091861248, 0.13113529980182648, -0.02520790696144104, 0.07800696045160294, -0.0030333073809742928, -0.035181108862161636, 0.029198965057730675, 0.12942372262477875, 0.23202084004878998, -0.009081101976335049, -0.010957546532154083, -0.008881564252078533, 0.030065983533859253, -0.14724090695381165, -0.09170998632907867, -0.025089481845498085, -0.01088227890431881, 0.023225458338856697, 0.06992390006780624, -0.014077522791922092, -0.24566446244716644, -0.030382486060261726, -0.03222382441163063, 0.00539168156683445, 0.029951348900794983, -0.01037707831710577, -0.08404066413640976, 0.021941766142845154, -0.07706780731678009, -0.0606691874563694, 0.08120891451835632, 0.0012694929027929902, -0.05152648687362671, 0.01873055100440979, 0.08051011711359024, -0.177208811044693, 0.2532268166542053, -0.07287518680095673, 0.053875867277383804, 0.07554417848587036, -0.042518164962530136, -0.1484868824481964, 0.016168955713510513, -0.034025903791189194, -0.1997516006231308, -0.04362140968441963, 0.15334026515483856, -0.09485749900341034, -0.012602181173861027, 0.007844035513699055, -0.07495179772377014, -0.05353311076760292, 0.07647643983364105, 0.06867187470197678, -0.09577318280935287, 0.06350385397672653, -0.14592449367046356, 0.11653453856706619, 0.06932516396045685, -0.018319061025977135, 0.0127355195581913, -0.1877995729446411, 0.008516223169863224, 0.06617438793182373, 0.023247601464390755, 0.07831524312496185, -0.0814938172698021, -0.016747308894991875, -0.12046144902706146, 0.10899226367473602, -0.07492876797914505, 0.033628012984991074, 0.028035495430231094, -0.049817416816949844, -0.07206834107637405, 0.030269773676991463, 0.003148564836010337, 0.005936680361628532, -0.03648228198289871, 0.06686759740114212, -0.04893907532095909, 0.0034044766798615456, -0.17083977162837982, -0.04291939362883568 ]
null
null
transformers
# ReXNet-2.0x model Pretrained on [ImageNette](https://github.com/fastai/imagenette). The ReXNet architecture was introduced in [this paper](https://arxiv.org/pdf/2007.00992.pdf). ## Model description The core idea of the author is to add a customized Squeeze-Excitation layer in the residual blocks that will prevent channel redundancy. ## Installation ### Prerequisites Python 3.6 (or higher) and [pip](https://pip.pypa.io/en/stable/)/[conda](https://docs.conda.io/en/latest/miniconda.html) are required to install Holocron. ### Latest stable release You can install the last stable release of the package using [pypi](https://pypi.org/project/pylocron/) as follows: ```shell pip install pylocron ``` or using [conda](https://anaconda.org/frgfm/pylocron): ```shell conda install -c frgfm pylocron ``` ### Developer mode Alternatively, if you wish to use the latest features of the project that haven't made their way to a release yet, you can install the package from source *(install [Git](https://git-scm.com/book/en/v2/Getting-Started-Installing-Git) first)*: ```shell git clone https://github.com/frgfm/Holocron.git pip install -e Holocron/. ``` ## Usage instructions ```python from PIL import Image from torchvision.transforms import Compose, ConvertImageDtype, Normalize, PILToTensor, Resize from torchvision.transforms.functional import InterpolationMode from holocron.models import model_from_hf_hub model = model_from_hf_hub("frgfm/rexnet2_0x").eval() img = Image.open(path_to_an_image).convert("RGB") # Preprocessing config = model.default_cfg transform = Compose([ Resize(config['input_shape'][1:], interpolation=InterpolationMode.BILINEAR), PILToTensor(), ConvertImageDtype(torch.float32), Normalize(config['mean'], config['std']) ]) input_tensor = transform(img).unsqueeze(0) # Inference with torch.inference_mode(): output = model(input_tensor) probs = output.squeeze(0).softmax(dim=0) ``` ## Citation Original paper ```bibtex @article{DBLP:journals/corr/abs-2007-00992, author = {Dongyoon Han and Sangdoo Yun and Byeongho Heo and Young Joon Yoo}, title = {ReXNet: Diminishing Representational Bottleneck on Convolutional Neural Network}, journal = {CoRR}, volume = {abs/2007.00992}, year = {2020}, url = {https://arxiv.org/abs/2007.00992}, eprinttype = {arXiv}, eprint = {2007.00992}, timestamp = {Mon, 06 Jul 2020 15:26:01 +0200}, biburl = {https://dblp.org/rec/journals/corr/abs-2007-00992.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } ``` Source of this implementation ```bibtex @software{Fernandez_Holocron_2020, author = {Fernandez, François-Guillaume}, month = {5}, title = {{Holocron}}, url = {https://github.com/frgfm/Holocron}, year = {2020} } ```
{"license": "apache-2.0", "tags": ["image-classification", "pytorch", "onnx"], "datasets": ["frgfm/imagenette"]}
image-classification
frgfm/rexnet2_0x
[ "transformers", "pytorch", "onnx", "image-classification", "dataset:frgfm/imagenette", "arxiv:2007.00992", "license:apache-2.0", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[ "2007.00992" ]
[]
TAGS #transformers #pytorch #onnx #image-classification #dataset-frgfm/imagenette #arxiv-2007.00992 #license-apache-2.0 #endpoints_compatible #region-us
# ReXNet-2.0x model Pretrained on ImageNette. The ReXNet architecture was introduced in this paper. ## Model description The core idea of the author is to add a customized Squeeze-Excitation layer in the residual blocks that will prevent channel redundancy. ## Installation ### Prerequisites Python 3.6 (or higher) and pip/conda are required to install Holocron. ### Latest stable release You can install the last stable release of the package using pypi as follows: or using conda: ### Developer mode Alternatively, if you wish to use the latest features of the project that haven't made their way to a release yet, you can install the package from source *(install Git first)*: ## Usage instructions Original paper Source of this implementation
[ "# ReXNet-2.0x model\n\nPretrained on ImageNette. The ReXNet architecture was introduced in this paper.", "## Model description\n\nThe core idea of the author is to add a customized Squeeze-Excitation layer in the residual blocks that will prevent channel redundancy.", "## Installation", "### Prerequisites\n\nPython 3.6 (or higher) and pip/conda are required to install Holocron.", "### Latest stable release\n\nYou can install the last stable release of the package using pypi as follows:\n\n\n\nor using conda:", "### Developer mode\n\nAlternatively, if you wish to use the latest features of the project that haven't made their way to a release yet, you can install the package from source *(install Git first)*:", "## Usage instructions\n\n\n\n\nOriginal paper\n\n\n\nSource of this implementation" ]
[ "TAGS\n#transformers #pytorch #onnx #image-classification #dataset-frgfm/imagenette #arxiv-2007.00992 #license-apache-2.0 #endpoints_compatible #region-us \n", "# ReXNet-2.0x model\n\nPretrained on ImageNette. The ReXNet architecture was introduced in this paper.", "## Model description\n\nThe core idea of the author is to add a customized Squeeze-Excitation layer in the residual blocks that will prevent channel redundancy.", "## Installation", "### Prerequisites\n\nPython 3.6 (or higher) and pip/conda are required to install Holocron.", "### Latest stable release\n\nYou can install the last stable release of the package using pypi as follows:\n\n\n\nor using conda:", "### Developer mode\n\nAlternatively, if you wish to use the latest features of the project that haven't made their way to a release yet, you can install the package from source *(install Git first)*:", "## Usage instructions\n\n\n\n\nOriginal paper\n\n\n\nSource of this implementation" ]
[ 57, 29, 37, 2, 27, 27, 46, 10 ]
[ "passage: TAGS\n#transformers #pytorch #onnx #image-classification #dataset-frgfm/imagenette #arxiv-2007.00992 #license-apache-2.0 #endpoints_compatible #region-us \n# ReXNet-2.0x model\n\nPretrained on ImageNette. The ReXNet architecture was introduced in this paper.## Model description\n\nThe core idea of the author is to add a customized Squeeze-Excitation layer in the residual blocks that will prevent channel redundancy.## Installation### Prerequisites\n\nPython 3.6 (or higher) and pip/conda are required to install Holocron.### Latest stable release\n\nYou can install the last stable release of the package using pypi as follows:\n\n\n\nor using conda:### Developer mode\n\nAlternatively, if you wish to use the latest features of the project that haven't made their way to a release yet, you can install the package from source *(install Git first)*:## Usage instructions\n\n\n\n\nOriginal paper\n\n\n\nSource of this implementation" ]
[ -0.02865428477525711, 0.15608985722064972, -0.0013841195032000542, -0.042580727487802505, 0.09938549250364304, -0.0017116673989221454, 0.02434123121201992, 0.09884262830018997, -0.080714151263237, 0.011523352935910225, 0.1229638159275055, 0.1541639119386673, 0.07684987783432007, 0.13250379264354706, -0.01919432356953621, -0.20588108897209167, -0.03346649929881096, 0.047225967049598694, 0.12895241379737854, 0.08320507407188416, 0.0944160744547844, -0.022346749901771545, 0.06568421423435211, 0.04572194814682007, -0.13360612094402313, -0.007395836524665356, -0.025353144854307175, -0.02658035419881344, 0.02311328426003456, 0.012205091305077076, 0.07437770068645477, 0.0332825668156147, 0.08954476565122604, -0.06644091010093689, 0.015812432393431664, 0.1195814311504364, -0.009280888363718987, 0.042438212782144547, 0.09813989698886871, -0.026815498247742653, 0.13087528944015503, -0.1279907077550888, -0.03108157217502594, 0.02490834891796112, -0.005566615145653486, -0.08223100006580353, -0.11312878876924515, 0.08948441594839096, 0.0932932049036026, 0.07052543014287949, 0.03524630889296532, 0.1728096306324005, 0.10615209490060806, 0.07610256969928741, 0.13801537454128265, -0.15295274555683136, -0.06186395138502121, 0.0637044608592987, 0.011636543087661266, 0.10449181497097015, 0.010494782589375973, -0.01465394627302885, 0.029989920556545258, 0.06862080097198486, 0.008412739261984825, -0.0630318745970726, -0.10397688299417496, -0.10012751072645187, -0.17576634883880615, -0.01069179642945528, 0.176158145070076, -0.0035194363445043564, -0.07993488013744354, 0.01837749220430851, -0.12140294164419174, -0.0367998443543911, 0.04150418937206268, 0.05966150760650635, 0.0174435805529356, 0.00901599507778883, 0.04041086137294769, -0.19913288950920105, -0.14042995870113373, 0.019746439531445503, -0.017740419134497643, 0.20162981748580933, 0.045763008296489716, 0.09221527725458145, -0.006580369081348181, 0.13097119331359863, -0.0634816512465477, -0.04968232288956642, -0.0827774703502655, -0.06309275329113007, 0.03153723105788231, 0.008999851532280445, 0.03161732107400894, -0.14655372500419617, -0.011124709621071815, 0.11511064320802689, -0.1161838248372078, -0.011898950673639774, -0.003140638815239072, 0.05214819312095642, 0.059448253363370895, 0.10592849552631378, -0.11482533067464828, 0.10896174609661102, 0.13239650428295135, -0.07401130348443985, 0.07602698355913162, 0.010843316093087196, -0.0783843994140625, 0.01598372869193554, 0.031271953135728836, -0.00938301533460617, 0.05677022039890289, 0.03888029605150223, 0.07266908884048462, -0.03036629594862461, 0.13757139444351196, -0.0539192371070385, -0.018056362867355347, -0.0696580708026886, -0.02362457849085331, 0.09780091792345047, 0.15325260162353516, 0.00928348395973444, -0.030303359031677246, 0.023266633972525597, -0.005546921864151955, -0.029537314549088478, -0.05259373411536217, -0.049714963883161545, 0.02827565371990204, -0.1679084599018097, 0.020515285432338715, -0.20128583908081055, -0.13199280202388763, -0.02584642730653286, 0.08770128339529037, -0.0008303240756504238, -0.004634985700249672, 0.13630996644496918, -0.04440195858478546, -0.06105563044548035, -0.001321278396062553, -0.0405169315636158, -0.037688247859478, 0.04752429574728012, -0.03267340734601021, -0.03977297246456146, -0.1821693331003189, 0.023335661739110947, -0.047556668519973755, 0.05423492193222046, -0.16702085733413696, -0.013806031085550785, -0.002693495713174343, 0.06404124200344086, -0.06901996582746506, -0.09838785231113434, -0.012676802463829517, -0.05133875831961632, 0.022721288725733757, 0.07613398879766464, -0.10004369914531708, 0.023152993991971016, 0.049826186150312424, -0.16035343706607819, 0.00869040098041296, 0.021604865789413452, 0.014066440053284168, 0.12515898048877716, 0.004735453985631466, -0.013772665522992611, 0.18527741730213165, -0.2707849144935608, -0.06670859456062317, 0.08573494851589203, -0.10317347198724747, -0.039446234703063965, 0.05907963216304779, 0.07409493625164032, 0.03804850950837135, 0.0024418612010776997, -0.10295134782791138, 0.08954884856939316, -0.002938783261924982, -0.02550576813519001, -0.05646664276719093, -0.0702604427933693, -0.20808695256710052, 0.07632040232419968, -0.003233246272429824, 0.08097991347312927, -0.06939701735973358, -0.06615608930587769, 0.12591704726219177, -0.042847927659749985, 0.02217179909348488, -0.018718808889389038, 0.09695156663656235, -0.07047148048877716, -0.024924658238887787, -0.06647045165300369, -0.01448605116456747, 0.076274074614048, -0.0598924495279789, 0.008166301995515823, -0.055173132568597794, 0.03801922872662544, 0.08657947182655334, 0.02682177908718586, -0.007463939022272825, 0.08253262937068939, -0.04494965448975563, -0.01501925103366375, -0.03748786076903343, -0.047738395631313324, -0.04028976708650589, 0.2716406583786011, -0.12277960777282715, 0.014891969971358776, 0.09957391023635864, 0.08673354983329773, -0.05502743273973465, -0.05364053696393967, 0.03686046972870827, -0.11273268610239029, -0.055445726960897446, -0.08340534567832947, 0.019599514082074165, 0.11445771157741547, 0.02073446288704872, 0.038358476012945175, -0.04469633474946022, -0.20426735281944275, 0.07633943110704422, -0.04197364300489426, -0.04576542228460312, 0.009825999848544598, -0.11636684089899063, -0.02164744958281517, 0.013596142642199993, -0.021139364689588547, 0.09199412167072296, -0.0155187351629138, 0.07902974635362625, -0.04773474484682083, -0.05057868734002113, 0.08600570261478424, -0.06326117366552353, -0.039116956293582916, 0.01268837321549654, 0.0995885580778122, -0.18332739174365997, 0.03582292050123215, -0.03213673084974289, -0.18193890154361725, 0.02565334364771843, 0.0365912988781929, -0.06922158598899841, -0.012315590865910053, 0.09531795233488083, 0.0414750874042511, 0.09125842154026031, 0.018810611218214035, -0.05009026452898979, 0.03579435870051384, -0.1289910525083542, 0.07597395777702332, -0.12104301154613495, 0.026544081047177315, -0.033230386674404144, 0.020143937319517136, 0.07575401663780212, -0.013454701751470566, -0.04266782104969025, 0.02818967029452324, 0.018171651288866997, 0.010904251597821712, 0.001718173618428409, 0.010077829472720623, -0.08317836374044418, 0.11269744485616684, -0.0924139991402626, -0.21598146855831146, -0.12565602362155914, -0.07284500449895859, -0.07620350271463394, 0.02404382824897766, 0.0253511443734169, -0.0647657960653305, -0.030041659250855446, -0.027561703696846962, -0.08345084637403488, -0.12538188695907593, -0.04572572559118271, -0.10833344608545303, 0.01370524987578392, -0.009840989485383034, -0.05268130078911781, -0.0248882919549942, -0.004523195326328278, -0.1272665113210678, 0.11784141510725021, -0.02965492755174637, 0.07638239115476608, 0.11727076768875122, -0.049973659217357635, 0.033149562776088715, 0.0281973984092474, 0.12585729360580444, -0.045816533267498016, 0.09406018257141113, 0.1719418615102768, -0.0013122131349518895, 0.03673797845840454, 0.07324112951755524, -0.0056749614886939526, -0.0053854831494390965, -0.014628967270255089, -0.013627328909933567, -0.10056494176387787, -0.1867971271276474, -0.025942765176296234, -0.02462083473801613, -0.04721721634268761, 0.10247141867876053, 0.09210246801376343, 0.08624660223722458, 0.1362277716398239, -0.07290847599506378, 0.006189177744090557, 0.04015161842107773, 0.13632196187973022, 0.005641425959765911, -0.02724730409681797, 0.02017584815621376, -0.004887760151177645, 0.007177443243563175, 0.12653222680091858, 0.11125405877828598, 0.13705730438232422, -0.07831817865371704, -0.00945095345377922, 0.06870393455028534, 0.08877559751272202, -0.0207968782633543, 0.06547874957323074, 0.015055850148200989, 0.08453592658042908, 0.005844342056661844, -0.09554257243871689, 0.01187865249812603, 0.10397902876138687, -0.05356358364224434, -0.09647998958826065, 0.05929229408502579, 0.029833577573299408, -0.03168582543730736, 0.2660295069217682, -0.04540368914604187, -0.21276046335697174, 0.032046932727098465, -0.015064237639307976, 0.020395802333950996, -0.1334831267595291, 0.01826331950724125, -0.002485646866261959, -0.08216442167758942, 0.12421143800020218, -0.060475002974271774, 0.05130387842655182, -0.1386536806821823, -0.07181208580732346, 0.13061527907848358, 0.08862750232219696, 0.07394421100616455, 0.03709900751709938, -0.07891345024108887, 0.05605902150273323, 0.03180849179625511, 0.01346550602465868, -0.05293842777609825, 0.04652455076575279, -0.01922021061182022, 0.07385072112083435, 0.14721161127090454, 0.02323324978351593, -0.0000474891894555185, 0.023676447570323944, 0.0015747385332360864, -0.004088161047548056, 0.04251223802566528, -0.01187490951269865, 0.0330614410340786, -0.02529270574450493, -0.046531692147254944, -0.022843293845653534, -0.09488076716661453, -0.07234695553779602, -0.0861440896987915, 0.1034405454993248, 0.025224460288882256, -0.09373482316732407, -0.07664534449577332, 0.0032354798167943954, -0.038596898317337036, 0.21015863120555878, -0.07644131034612656, -0.10853338986635208, -0.07833482325077057, 0.020844563841819763, 0.030715415254235268, -0.002815358806401491, 0.013709302060306072, -0.1549035757780075, 0.08666328340768814, -0.06569991260766983, -0.08925291895866394, -0.08540029078722, -0.10736623406410217, -0.020316937938332558, 0.01772012747824192, 0.09802604466676712, 0.04905587434768677, -0.026152046397328377, -0.018263885751366615, 0.031314097344875336, -0.11613412946462631, -0.049039918929338455, 0.0013104185927659273, 0.13150136172771454, 0.13051842153072357, -0.0004850002587772906, -0.07783687859773636, 0.0354778952896595, -0.07335856556892395, 0.004965018015354872, 0.061464156955480576, 0.1417696475982666, -0.08445512503385544, -0.0345953144133091, 0.11247912049293518, -0.07412641495466232, -0.17997106909751892, -0.030334891751408577, 0.08223342150449753, -0.09379211068153381, -0.1769014149904251, -0.15092000365257263, 0.08461598306894302, 0.10884315520524979, -0.029165415093302727, 0.12901608645915985, -0.10338502377271652, -0.002243154216557741, 0.04697046056389809, -0.011048385873436928, 0.13409946858882904, -0.17506416141986847, 0.003792276605963707, -0.022918935865163803, -0.12762999534606934, 0.06120256334543228, -0.08721120655536652, 0.06104854494333267, 0.011843089014291763, 0.023257697001099586, 0.02784532494843006, -0.0797746554017067, 0.05702449753880501, -0.062178149819374084, -0.04074661806225777, -0.03888700157403946, 0.010537497699260712, 0.0825338140130043, -0.07704722136259079, 0.09960917383432388, 0.08477380126714706, 0.04230548068881035, -0.06911680847406387, -0.0020606277976185083, -0.07711216062307358, 0.15440884232521057, -0.016292164102196693, -0.058801040053367615, -0.07343120127916336, 0.0000061918999563204125, 0.06639685481786728, 0.019139012321829796, 0.0886896401643753, 0.015471098944544792, 0.022114399820566177, 0.18199948966503143, -0.05584394931793213, -0.002242575166746974, -0.07898328453302383, -0.02724972926080227, -0.023326272144913673, 0.026802605018019676, -0.022763166576623917, -0.04311870038509369, 0.07041792571544647, 0.06683987379074097, 0.028685366734862328, -0.004510221537202597, -0.13496695458889008, -0.05564304441213608, 0.025968728587031364, -0.20001937448978424, 0.04438074678182602, -0.04757622629404068, 0.12807676196098328, 0.03430866077542305, 0.02417767606675625, 0.14696349203586578, -0.06094658002257347, -0.025218423455953598, 0.025682438164949417, 0.05019611120223999, -0.06853033602237701, 0.03352837264537811, 0.0535285584628582, -0.044793806970119476, -0.06955202668905258, 0.10263833403587341, 0.12273616343736649, 0.033891428261995316, -0.04385288059711456, 0.10680432617664337, -0.0817350447177887, -0.07770878821611404, -0.018167247995734215, -0.18025760352611542, -0.09163590520620346, -0.08836427330970764, 0.038604237139225006, 0.03467681258916855, -0.04901309683918953, 0.12656788527965546, 0.007441464811563492, -0.015079229138791561, 0.0753108561038971, 0.0538211353123188, -0.1283147633075714, 0.03335457295179367, -0.04098190367221832, 0.06974602490663528, -0.17817439138889313, 0.045525938272476196, 0.03738859295845032, 0.1376286894083023, -0.03970477730035782, 0.024024764075875282, -0.027870941907167435, -0.02780367247760296, -0.004950004164129496, 0.08433157950639725, -0.030552685260772705, -0.004469278734177351, 0.03133207559585571, -0.010764054954051971, -0.05075635761022568, 0.061338599771261215, -0.025646401569247246, -0.008954253979027271, -0.024923179298639297, -0.012362818233668804, -0.013957996852695942, -0.06776006519794464, -0.016544461250305176, -0.08086509257555008, 0.06277834624052048, 0.1091831848025322, -0.06053253263235092, -0.052584968507289886, -0.04717433080077171, -0.03625442832708359, 0.051226045936346054, 0.03748573362827301, -0.01972910761833191, -0.07339216023683548, 0.08210528641939163, 0.035466574132442474, -0.04053307697176933, -0.049968961626291275, 0.0754852145910263, -0.07046571373939514, 0.0292701106518507, -0.019674919545650482, -0.016686441376805305, -0.09358235448598862, 0.017229648306965828, 0.03385123983025551, 0.14545133709907532, 0.01838243566453457, -0.01972947083413601, 0.059215545654296875, -0.057314448058605194, -0.01378151960670948, -0.01104239746928215, -0.08621422946453094, 0.09583771228790283, -0.00579407112672925, -0.012163261882960796, 0.0560428649187088, 0.16223253309726715, 0.061307232826948166, -0.004437372554093599, 0.014389882795512676, 0.051358841359615326, -0.0352715365588665, 0.004265263676643372, 0.037688255310058594, 0.0014946154551580548, 0.03710540756583214, -0.029509522020816803, 0.03036663495004177, 0.05058703571557999, -0.1563192754983902, 0.01915775239467621, 0.02677387371659279, 0.06500043720006943, 0.05557037144899368, 0.05261308327317238, -0.087761290371418, -0.09941056370735168, 0.002345403889194131, 0.004377701319754124, 0.07617146521806717, -0.165194571018219, 0.13203781843185425, 0.14229439198970795, -0.06317967921495438, -0.04131597280502319, 0.056193962693214417, -0.03622681647539139, -0.12137503176927567, -0.10097008943557739, -0.05061433091759682, -0.07941867411136627, 0.030835794284939766, -0.009686043485999107, 0.032560646533966064, -0.007355327717959881, 0.007890326902270317, -0.03859832510352135, 0.08063428848981857, 0.04221109673380852, -0.12968051433563232, 0.03408391401171684, 0.052615683525800705, 0.02066425047814846, -0.04100335016846657, 0.0006154650473035872, 0.12306024134159088, 0.025726525112986565, 0.086790069937706, 0.026578880846500397, 0.1705394834280014, 0.09161754697561264, -0.03475242853164673, -0.031417857855558395, -0.04302475228905678, 0.08090651035308838, -0.0009693974279798567, 0.16641540825366974, -0.02377103827893734, -0.019206389784812927, 0.006985255982726812, 0.1064610406756401, -0.028750184923410416, -0.012043029069900513, -0.08178897947072983, 0.3065345287322998, -0.0677182748913765, -0.07639622688293457, 0.030820058658719063, -0.09342146664857864, -0.02074676752090454, 0.23947541415691376, 0.05657927691936493, 0.12991459667682648, -0.024983126670122147, 0.0778738334774971, -0.0025704829022288322, -0.035549964755773544, 0.029866421595215797, 0.12837930023670197, 0.23227697610855103, -0.008417489938437939, -0.011835450306534767, -0.008650165051221848, 0.03056105226278305, -0.14716534316539764, -0.08971007913351059, -0.027262214571237564, -0.010126473382115364, 0.023013770580291748, 0.0705365389585495, -0.012688042595982552, -0.24834690988063812, -0.03121889941394329, -0.0330052524805069, 0.004707948304712772, 0.03174208477139473, -0.009393318556249142, -0.08417725563049316, 0.022335056215524673, -0.07727980613708496, -0.06159401684999466, 0.08133883774280548, 0.0019218907691538334, -0.05082961916923523, 0.0220828577876091, 0.08137337863445282, -0.17908839881420135, 0.25476592779159546, -0.07343681901693344, 0.055819906294345856, 0.07533939927816391, -0.04313009977340698, -0.14812032878398895, 0.01608314923942089, -0.03243682533502579, -0.20026838779449463, -0.04344913363456726, 0.15406277775764465, -0.09570134431123734, -0.013426616787910461, 0.010436470620334148, -0.07463216781616211, -0.05432871729135513, 0.07605525106191635, 0.0674603059887886, -0.0947834700345993, 0.0633615255355835, -0.14667731523513794, 0.11542368680238724, 0.0684288889169693, -0.019122861325740814, 0.013164595700800419, -0.1875489205121994, 0.008494109846651554, 0.06594912707805634, 0.023974711075425148, 0.07902830839157104, -0.08120299130678177, -0.017955834046006203, -0.11999762803316116, 0.10998965799808502, -0.07475687563419342, 0.03359147906303406, 0.027724649757146835, -0.04946833476424217, -0.07172992825508118, 0.030523670837283134, 0.0018228369299322367, 0.004703544545918703, -0.036187946796417236, 0.06495905667543411, -0.04956559091806412, 0.003156821010634303, -0.17071233689785004, -0.04217201843857765 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ted_mt-Spanish-to-Italian This model is a fine-tuned version of [Helsinki-NLP/opus-mt-es-it](https://huggingface.co/Helsinki-NLP/opus-mt-es-it) on the new_dataset dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Sacrebleu | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:---------:|:-------:| | No log | 1.0 | 46 | 1.4873 | 29.6133 | 26.9081 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.11.0 - Datasets 2.0.0 - Tokenizers 0.11.6
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["new_dataset"], "model-index": [{"name": "ted_mt-Spanish-to-Italian", "results": []}]}
text2text-generation
frtna/ted_mt-Spanish-to-Italian
[ "transformers", "pytorch", "tensorboard", "marian", "text2text-generation", "generated_from_trainer", "dataset:new_dataset", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #marian #text2text-generation #generated_from_trainer #dataset-new_dataset #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
ted\_mt-Spanish-to-Italian ========================== This model is a fine-tuned version of Helsinki-NLP/opus-mt-es-it on the new\_dataset dataset. Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 64 * eval\_batch\_size: 64 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 1 * mixed\_precision\_training: Native AMP ### Training results ### Framework versions * Transformers 4.17.0 * Pytorch 1.11.0 * Datasets 2.0.0 * Tokenizers 0.11.6
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 1\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.17.0\n* Pytorch 1.11.0\n* Datasets 2.0.0\n* Tokenizers 0.11.6" ]
[ "TAGS\n#transformers #pytorch #tensorboard #marian #text2text-generation #generated_from_trainer #dataset-new_dataset #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 1\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.17.0\n* Pytorch 1.11.0\n* Datasets 2.0.0\n* Tokenizers 0.11.6" ]
[ 66, 113, 4, 30 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #marian #text2text-generation #generated_from_trainer #dataset-new_dataset #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 1\n* mixed\\_precision\\_training: Native AMP### Training results### Framework versions\n\n\n* Transformers 4.17.0\n* Pytorch 1.11.0\n* Datasets 2.0.0\n* Tokenizers 0.11.6" ]
[ -0.08567143976688385, 0.08911210298538208, -0.0030790939927101135, 0.10211808234453201, 0.14356975257396698, 0.019197454676032066, 0.13002382218837738, 0.13328248262405396, -0.11453045159578323, 0.022442232817411423, 0.11855033785104752, 0.13715891540050507, 0.02830309234559536, 0.10014934092760086, -0.040360432118177414, -0.27508533000946045, -0.003942111041396856, 0.038372620940208435, -0.08901078253984451, 0.13019531965255737, 0.09070563316345215, -0.12081572413444519, 0.09073293209075928, 0.01609119400382042, -0.15971305966377258, 0.022996578365564346, -0.0004114918992854655, -0.04860512167215347, 0.1391158401966095, 0.037928834557533264, 0.11447412520647049, 0.010845579206943512, 0.08489177376031876, -0.20474112033843994, 0.012368534691631794, 0.06081182509660721, 0.006867171265184879, 0.08986523002386093, 0.07764081656932831, 0.017969725653529167, 0.1642114520072937, -0.07039013504981995, 0.04496964439749718, 0.02890603058040142, -0.12279314547777176, -0.24254068732261658, -0.09797552227973938, 0.023268144577741623, 0.07034090906381607, 0.11435234546661377, -0.008525358512997627, 0.11288720369338989, -0.0779239684343338, 0.08678922802209854, 0.2169867902994156, -0.27129387855529785, -0.06549323350191116, 0.0012274779146537185, 0.03636685386300087, 0.0691249817609787, -0.08474843949079514, -0.018389398232102394, 0.03843047097325325, 0.04480922967195511, 0.11167806386947632, -0.02007094956934452, -0.09256026893854141, 0.02379092015326023, -0.14291374385356903, -0.04212121665477753, 0.1744011640548706, 0.043137360364198685, -0.02181417867541313, -0.03959047794342041, -0.06055126339197159, -0.1396726369857788, -0.028760885819792747, -0.01180166658014059, 0.04607914015650749, -0.016688577830791473, -0.07424072921276093, -0.03894224390387535, -0.11512807756662369, -0.06599589437246323, -0.07764235138893127, 0.10492022335529327, 0.03935039043426514, 0.014027190394699574, -0.04197638854384422, 0.09995722025632858, -0.0038818807806819677, -0.12702788412570953, 0.011840559542179108, 0.02692127600312233, 0.0027119803708046675, -0.03275541216135025, -0.06437116116285324, -0.07462017983198166, 0.016561785712838173, 0.1228015199303627, -0.06820875406265259, 0.04401783645153046, 0.011459040455520153, 0.04465198889374733, -0.09158312529325485, 0.15513835847377777, -0.055890318006277084, -0.023198416456580162, 0.0013826232170686126, 0.04640202224254608, 0.03559887781739235, -0.014883234165608883, -0.11244500428438187, 0.012060998938977718, 0.07866398990154266, 0.010538012720644474, -0.03039446473121643, 0.0568881630897522, -0.054254088550806046, -0.028143685311079025, 0.0014516203664243221, -0.08489060401916504, 0.033105868846178055, 0.007864890620112419, -0.08718913048505783, -0.0161049235612154, 0.03087880276143551, 0.029992032796144485, -0.01909416913986206, 0.09591677784919739, -0.07837178558111191, 0.02066461369395256, -0.10336178541183472, -0.11543663591146469, 0.03942697122693062, -0.06676381081342697, 0.023954376578330994, -0.08243971318006516, -0.20243777334690094, -0.012469878420233727, 0.0619213841855526, -0.03911951929330826, -0.058327507227659225, -0.04486943781375885, -0.06625968217849731, 0.0276225246489048, -0.02053968980908394, 0.15771125257015228, -0.0649484246969223, 0.0971498191356659, 0.026380352675914764, 0.05097305029630661, -0.049834638833999634, 0.060067400336265564, -0.10128603130578995, 0.012802517041563988, -0.1273661106824875, 0.04831220954656601, -0.043096426874399185, 0.04858056455850601, -0.09957908093929291, -0.0921846404671669, -0.016391629353165627, 0.003636749926954508, 0.08320402354001999, 0.09485803544521332, -0.18318866193294525, -0.08264556527137756, 0.1432938426733017, -0.0768326073884964, -0.11907194554805756, 0.12327761948108673, -0.054287880659103394, 0.04164756461977959, 0.0537673644721508, 0.16018018126487732, 0.06028788536787033, -0.07350245863199234, 0.01581757143139839, -0.008423715829849243, 0.05695419758558273, -0.05110854282975197, 0.0879833847284317, -0.011842132546007633, 0.024906685575842857, 0.015808643773198128, -0.02671576850116253, 0.06232411041855812, -0.09534204006195068, -0.09741705656051636, -0.04222877696156502, -0.08515043556690216, 0.01880931854248047, 0.06798890978097916, 0.06813155114650726, -0.09652289748191833, -0.09745381027460098, 0.060422852635383606, 0.08637204766273499, -0.0649949386715889, 0.0387713648378849, -0.05920113995671272, 0.06335004419088364, -0.035195041447877884, -0.009100264869630337, -0.1736801117658615, -0.021169466897845268, 0.005075620952993631, -0.020406683906912804, 0.03483017534017563, 0.019840441644191742, 0.07385812699794769, 0.061999090015888214, -0.05651036277413368, -0.01766408421099186, -0.04823126643896103, -0.005370840895920992, -0.11386366188526154, -0.21797636151313782, -0.03287065774202347, -0.01623530313372612, 0.1365046203136444, -0.20742268860340118, 0.03473018482327461, -0.0013682149583473802, 0.0855940654873848, 0.018080931156873703, -0.012493186630308628, -0.04440127685666084, 0.08242858946323395, -0.0518781915307045, -0.044113889336586, 0.07333703339099884, 0.014474764466285706, -0.10505690425634384, -0.015604502521455288, -0.11821835488080978, 0.13359296321868896, 0.1308431625366211, -0.1256757229566574, -0.048881907016038895, -0.009326785802841187, -0.058520037680864334, -0.045563869178295135, -0.03852555528283119, 0.02567913383245468, 0.16397179663181305, -0.005795055069029331, 0.14726148545742035, -0.07331954687833786, -0.03499966859817505, 0.020494231954216957, -0.0284749586135149, 0.006031411699950695, 0.13131096959114075, 0.12533949315547943, -0.08442942798137665, 0.14728020131587982, 0.16316546499729156, -0.08710052073001862, 0.15186262130737305, -0.04450177401304245, -0.09280466288328171, -0.025799928233027458, -0.025202015414834023, 0.0007264798623509705, 0.09201869368553162, -0.15327613055706024, 0.014856880530714989, 0.03110656514763832, 0.02413242682814598, 0.032705169171094894, -0.22108130156993866, -0.031499311327934265, 0.04233650490641594, -0.052089039236307144, -0.026126153767108917, -0.012245165184140205, 0.005560975521802902, 0.1039833128452301, -0.005390121601521969, -0.06554502993822098, 0.03876218572258949, -0.0011207778006792068, -0.07613790035247803, 0.201332688331604, -0.08807197958230972, -0.15893007814884186, -0.13684579730033875, -0.07077920436859131, -0.04836524277925491, 0.007941189222037792, 0.0695500448346138, -0.08232857286930084, -0.02849140390753746, -0.0796516090631485, 0.04313501715660095, -0.030952347442507744, 0.011982915922999382, 0.0028303645085543394, 0.007392482832074165, 0.07575064897537231, -0.10962069034576416, 0.0018491212977096438, -0.0439043790102005, -0.06374168395996094, 0.035403650254011154, 0.04651492089033127, 0.11982598155736923, 0.13466434180736542, -0.005373615305870771, 0.007267935201525688, -0.02488902024924755, 0.20471972227096558, -0.07125797122716904, -0.021413933485746384, 0.16082030534744263, -0.0011495758080855012, 0.048337824642658234, 0.11169613152742386, 0.06700176000595093, -0.07014162838459015, 0.0010419507743790746, 0.04984152689576149, -0.036643825471401215, -0.24663347005844116, -0.04942737892270088, -0.05695939436554909, 0.0067846886813640594, 0.08685660362243652, 0.02665593847632408, 0.03525127097964287, 0.05952960625290871, 0.015956128016114235, 0.05246985703706741, -0.028358692303299904, 0.06179799884557724, 0.14615605771541595, 0.034973107278347015, 0.1355043202638626, -0.047266628593206406, -0.048766955733299255, 0.05391369014978409, 0.0019748304039239883, 0.22742508351802826, 0.009106802754104137, 0.16164885461330414, 0.066280297935009, 0.1672438383102417, -0.008329502306878567, 0.05753546953201294, 0.01128694973886013, -0.03185799717903137, -0.017649684101343155, -0.045064665377140045, -0.023802079260349274, 0.03171665593981743, -0.058537453413009644, 0.044939860701560974, -0.12042348831892014, 0.009462187997996807, 0.03419504687190056, 0.25772807002067566, 0.038055866956710815, -0.3114680051803589, -0.08898702263832092, 0.014476671814918518, -0.033007942140102386, -0.018806003034114838, 0.030405016615986824, 0.09875030815601349, -0.07318136096000671, 0.04604300484061241, -0.07386485487222672, 0.10754526406526566, -0.044418174773454666, 0.04007589817047119, 0.07709367573261261, 0.09561771899461746, 0.00959445908665657, 0.09649187326431274, -0.30162227153778076, 0.28312480449676514, 0.005359061993658543, 0.0637504830956459, -0.07313608378171921, 0.012329678982496262, 0.027215758338570595, 0.0437886118888855, 0.061833251267671585, -0.020669424906373024, -0.08428142219781876, -0.16575577855110168, -0.06837394088506699, 0.0236801914870739, 0.08199765533208847, -0.01986955665051937, 0.10199400782585144, -0.036164697259664536, 0.014320665039122105, 0.07784091681241989, 0.0164711382240057, -0.09126365184783936, -0.12158484011888504, 0.002268454758450389, 0.03679278492927551, -0.04064859077334404, -0.07308637350797653, -0.11226636171340942, -0.092619888484478, 0.15079575777053833, -0.028827950358390808, -0.024031976237893105, -0.10738624632358551, 0.10191319137811661, 0.09194425493478775, -0.08804955333471298, 0.02876422554254532, 0.008364035747945309, 0.07431677728891373, 0.034952543675899506, -0.07124904543161392, 0.1091184988617897, -0.07575993239879608, -0.16950637102127075, -0.06242040544748306, 0.10419952869415283, 0.037882428616285324, 0.06975997239351273, -0.017664076760411263, 0.01995413564145565, -0.05114331468939781, -0.07535181194543839, 0.02898172289133072, -0.001334956381469965, 0.07168538123369217, 0.0200875885784626, -0.06268850713968277, 0.026347385719418526, -0.04989498481154442, -0.06325311213731766, 0.1907031089067459, 0.23584139347076416, -0.0878685712814331, 0.03676975890994072, 0.041679851710796356, -0.08508756011724472, -0.1973976194858551, 0.025061797350645065, 0.05507127195596695, 0.00639928737655282, 0.050675198435783386, -0.2179742008447647, 0.09477967023849487, 0.11651479452848434, -0.018253019079566002, 0.09109945595264435, -0.34528085589408875, -0.1256958693265915, 0.11241132020950317, 0.12213955074548721, 0.09986262768507004, -0.16129422187805176, -0.029247760772705078, -0.026370050385594368, -0.10701671242713928, 0.12891414761543274, -0.10927855968475342, 0.12091042101383209, -0.02807943895459175, 0.08864843100309372, 0.0076501257717609406, -0.05699780583381653, 0.12596143782138824, -0.021593179553747177, 0.0840369313955307, -0.064651258289814, 0.020181437954306602, 0.054989274591207504, -0.03563272953033447, 0.010335021652281284, -0.09814638644456863, 0.02101060375571251, -0.09795936197042465, -0.023805584758520126, -0.07655282318592072, 0.0393928587436676, -0.0369395911693573, -0.05579627305269241, -0.03773391619324684, 0.015731094405055046, 0.05009271204471588, -0.008472220972180367, 0.16705526411533356, 0.012034039944410324, 0.14483846724033356, 0.11287696659564972, 0.08446025103330612, -0.05031030252575874, -0.04765957221388817, -0.02598024718463421, -0.018792573362588882, 0.05402034521102905, -0.143036887049675, 0.025462549179792404, 0.13954679667949677, 0.01497570239007473, 0.13921469449996948, 0.07733311504125595, -0.046479202806949615, 0.01964014396071434, 0.06598541885614395, -0.15058229863643646, -0.12665024399757385, -0.020918337628245354, -0.017149992287158966, -0.10973533987998962, 0.038451630622148514, 0.11528144776821136, -0.06496904790401459, -0.006863335147500038, -0.0030458117835223675, 0.02145790494978428, -0.05344672501087189, 0.1966734081506729, 0.03743714466691017, 0.03473365306854248, -0.09743290394544601, 0.09660428762435913, 0.05373414605855942, -0.10279689729213715, 0.02240167371928692, 0.08402411639690399, -0.05467366427183151, -0.0499611422419548, 0.058707498013973236, 0.1766161322593689, -0.07825684547424316, -0.0662948414683342, -0.14032267034053802, -0.12086928635835648, 0.09199929237365723, 0.12754708528518677, 0.08570756018161774, 0.013212715275585651, -0.05497477203607559, 0.011558783240616322, -0.1135038509964943, 0.10013643652200699, 0.04964207485318184, 0.05853238329291344, -0.13960757851600647, 0.13752669095993042, 0.006758582312613726, 0.026839569211006165, -0.014005918987095356, 0.0232718326151371, -0.0850861519575119, 0.007685297634452581, -0.14648732542991638, -0.03419286012649536, -0.02614700421690941, -0.005472875665873289, -0.005072442814707756, -0.05257437378168106, -0.07027187943458557, 0.01943342760205269, -0.11067284643650055, -0.028241893276572227, 0.01650325395166874, 0.06131312623620033, -0.12226802110671997, -0.029617365449666977, 0.028773494064807892, -0.05639290437102318, 0.06543188542127609, 0.04559648782014847, 0.02765548788011074, 0.04498003050684929, -0.13507263362407684, 0.015841877087950706, 0.05013777315616608, 0.024245956912636757, 0.0487821139395237, -0.10251783579587936, -0.012995029799640179, 0.009312240406870842, 0.03983465954661369, 0.00385311059653759, 0.057012561708688736, -0.12904277443885803, -0.006683154962956905, -0.008985843509435654, -0.08757496625185013, -0.05909719318151474, 0.03949622064828873, 0.07451635599136353, 0.027768779546022415, 0.1977141946554184, -0.07717231661081314, 0.039534781128168106, -0.2184903472661972, 0.01952374540269375, -0.00535153690725565, -0.10427642613649368, -0.11256095767021179, -0.06417489796876907, 0.06287983059883118, -0.05376601964235306, 0.13792996108531952, 0.022628020495176315, 0.0394960455596447, 0.03258620947599411, -0.027409307658672333, 0.030876390635967255, 0.01863565295934677, 0.22746716439723969, 0.03601986542344093, -0.033794645220041275, 0.06046478450298309, 0.04384343698620796, 0.0987551137804985, 0.1503770351409912, 0.192386656999588, 0.1555105745792389, 0.012348784133791924, 0.09144537150859833, 0.050419922918081284, -0.07262274622917175, -0.1478084772825241, 0.05273537337779999, -0.025074630975723267, 0.11778655648231506, -0.02522580511868, 0.22383776307106018, 0.08666433393955231, -0.16617491841316223, 0.044026825577020645, -0.05846592038869858, -0.07631802558898926, -0.12238883227109909, -0.07157959789037704, -0.08749330043792725, -0.14931169152259827, -0.003593419212847948, -0.12480127066373825, 0.04032707214355469, 0.09668843448162079, 0.009814955294132233, -0.02858041413128376, 0.12228147685527802, 0.03275302052497864, 0.006666102446615696, 0.04253920912742615, 0.005382074508816004, -0.020803721621632576, -0.09287754446268082, -0.07878227531909943, 0.010783758014440536, -0.014676040038466454, 0.02956356480717659, -0.042119670659303665, -0.05077492445707321, 0.04821283370256424, -0.025379065424203873, -0.1004440113902092, 0.007322460412979126, 0.012816352769732475, 0.08404912054538727, 0.06655565649271011, 0.0045003085397183895, 0.013392035849392414, -0.0023911315947771072, 0.24023565649986267, -0.07588217407464981, -0.06236574798822403, -0.09344492107629776, 0.237497940659523, 0.030077017843723297, -0.016209889203310013, 0.030088193714618683, -0.06424504518508911, -0.0033573987893760204, 0.23332315683364868, 0.20616784691810608, -0.07862715423107147, -0.023062588647007942, 0.014657939784228802, -0.007774695288389921, -0.03179045394062996, 0.0992472767829895, 0.12996408343315125, 0.052575163543224335, -0.09250548481941223, -0.03762631490826607, -0.05849814787507057, -0.000481631577713415, -0.04966617003083229, 0.0864274725317955, 0.03715791180729866, -0.006368535105139017, -0.021452628076076508, 0.06225411221385002, -0.055929191410541534, -0.08409774303436279, 0.028798365965485573, -0.20507243275642395, -0.1617303341627121, -0.019356774166226387, 0.13169598579406738, 0.008151305839419365, 0.05662336200475693, -0.028961075469851494, 0.012167651206254959, 0.07606609165668488, -0.016562940552830696, -0.10205195844173431, -0.08486488461494446, 0.09628359228372574, -0.11032989621162415, 0.21549886465072632, -0.0440208874642849, 0.048547934740781784, 0.12932685017585754, 0.054075222462415695, -0.08821017295122147, 0.06208884343504906, 0.04751833155751228, -0.0702761635184288, 0.03319386765360832, 0.09758599102497101, -0.03324268013238907, 0.08162754029035568, 0.05599796772003174, -0.12070512771606445, 0.018583213910460472, -0.06274378299713135, -0.0635015144944191, -0.024287620559334755, -0.02686757780611515, -0.06305022537708282, 0.1311420351266861, 0.20876553654670715, -0.03727833926677704, -0.0033514779061079025, -0.07698041200637817, 0.013133957982063293, 0.060956403613090515, 0.063326396048069, -0.04233913868665695, -0.22119292616844177, 0.006220120005309582, 0.04978521540760994, -0.007085227407515049, -0.25862541794776917, -0.08655191212892532, 0.009950385428965092, -0.07314351946115494, -0.09798078238964081, 0.07726495712995529, 0.09928251057863235, 0.03905368968844414, -0.05394226312637329, -0.058847587555646896, -0.0659608468413353, 0.14832429587841034, -0.13646464049816132, -0.0760493278503418 ]
null
null
null
# Fasttext 2 million word vectors trained with subword information on Common Crawl (600B tokens). Read more: * https://fasttext.cc/docs/en/english-vectors.html
{"tags": ["glove", "gensim", "fse"]}
null
fse/fasttext-crawl-subwords-300
[ "glove", "gensim", "fse", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #glove #gensim #fse #region-us
# Fasttext 2 million word vectors trained with subword information on Common Crawl (600B tokens). Read more: * URL
[ "# Fasttext\n\n2 million word vectors trained with subword information on Common Crawl (600B tokens).\n\nRead more:\n* URL" ]
[ "TAGS\n#glove #gensim #fse #region-us \n", "# Fasttext\n\n2 million word vectors trained with subword information on Common Crawl (600B tokens).\n\nRead more:\n* URL" ]
[ 15, 29 ]
[ "passage: TAGS\n#glove #gensim #fse #region-us \n# Fasttext\n\n2 million word vectors trained with subword information on Common Crawl (600B tokens).\n\nRead more:\n* URL" ]
[ 0.04040592536330223, -0.026463652029633522, -0.007286855485290289, 0.026165863499045372, 0.11191421747207642, 0.033586397767066956, 0.047544095665216446, 0.11526554822921753, 0.010344949550926685, 0.045037250965833664, 0.11120890825986862, -0.010918725281953812, -0.00023047563445288688, 0.09569842368364334, -0.0029527584556490183, -0.16225995123386383, 0.11100200563669205, -0.025770144537091255, -0.04584945738315582, 0.05091170594096184, -0.006094586104154587, -0.056459542363882065, 0.010408083908259869, -0.04618135094642639, -0.2059147208929062, 0.09921123832464218, 0.0329175628721714, -0.05929827690124512, 0.02944452129304409, 0.023379841819405556, 0.028238289058208466, -0.009980017319321632, -0.04710785672068596, -0.05817117914557457, 0.031943853944540024, 0.021373780444264412, -0.06446901708841324, -0.00426705926656723, -0.05020764470100403, -0.040480270981788635, -0.00016612280160188675, -0.005754376295953989, -0.032964933663606644, 0.04875003919005394, -0.11558810621500015, -0.1260877251625061, 0.013927514664828777, -0.08663126081228256, 0.03779790922999382, 0.025203196331858635, -0.04635786637663841, 0.05785466358065605, -0.12260237336158752, 0.055941324681043625, 0.183431938290596, -0.4045008718967438, -0.050166815519332886, 0.11347967386245728, -0.08533678203821182, 0.08419805765151978, -0.07187218219041824, 0.13151483237743378, 0.06290384382009506, -0.033148933202028275, -0.06490349769592285, -0.03997335955500603, -0.02982170879840851, 0.02597818709909916, -0.10513149946928024, 0.03709687292575836, 0.07026785612106323, 0.026223471388220787, 0.05544568970799446, -0.06851494312286377, -0.06253235787153244, 0.04532325267791748, -0.09662667661905289, 0.019934969022870064, 0.03656501695513725, 0.08768697828054428, -0.031049633398652077, -0.08540468662977219, -0.03274264559149742, -0.10070160776376724, -0.131717249751091, 0.18181268870830536, 0.006976557895541191, 0.10221611708402634, -0.0878458321094513, -0.06555455923080444, -0.04835883900523186, -0.10335766524076462, -0.008694744668900967, -0.03856721520423889, -0.026151159778237343, 0.038307469338178635, -0.0703653022646904, -0.09283551573753357, 0.2417399287223816, -0.058791324496269226, 0.1132194772362709, 0.0969126895070076, -0.07022766023874283, 0.06888824701309204, 0.03552405163645744, -0.05916060879826546, -0.08576562255620956, 0.011696641333401203, 0.06319710612297058, -0.10481098294258118, 0.05682713910937309, -0.085328608751297, -0.12733615934848785, 0.08073974400758743, -0.040077369660139084, 0.05755622312426567, -0.033157117664813995, -0.004801833536475897, -0.014824965037405491, 0.04974742233753204, -0.136809840798378, -0.08941283077001572, 0.028569847345352173, 0.05405602231621742, -0.08120755106210709, 0.05038532242178917, -0.13739997148513794, -0.006723951548337936, -0.02436576783657074, -0.05762176588177681, -0.07580000162124634, -0.0014687537914142013, -0.027046561241149902, -0.0692257210612297, -0.009106281213462353, -0.0029529419261962175, 0.009222429245710373, -0.11450952291488647, -0.128767192363739, -0.03060111589729786, -0.04203240945935249, -0.06169120594859123, 0.034312646836042404, -0.16135956346988678, -0.02184254489839077, 0.039274316281080246, 0.010893955826759338, -0.017459141090512276, -0.07260800153017044, 0.07316222786903381, -0.03672235831618309, 0.12118943780660629, -0.08839994668960571, -0.01569296419620514, -0.11762071400880814, -0.04604388400912285, -0.09882821887731552, 0.16010528802871704, -0.09418366104364395, 0.1627747267484665, -0.025825083255767822, 0.026063650846481323, -0.18437491357326508, -0.022103631868958473, 0.02001829445362091, 0.18030063807964325, -0.10226026177406311, -0.08966464549303055, 0.32903727889060974, -0.04118216410279274, -0.006492501124739647, 0.16382069885730743, 0.008244119584560394, -0.09324566274881363, 0.13974851369857788, 0.40649911761283875, 0.000017989426851272583, 0.14761453866958618, 0.01179142203181982, 0.14673425257205963, -0.10447625070810318, -0.061385516077280045, 0.03920998051762581, 0.017571160569787025, 0.0034651097375899553, 0.02133985422551632, 0.22056500613689423, 0.07787078619003296, -0.06432812660932541, -0.0401601679623127, 0.0018017994007095695, -0.0631265789270401, 0.06403691321611404, -0.004866006318479776, 0.08438435196876526, -0.09668631106615067, 0.002363053383305669, -0.03634314611554146, 0.05244091525673866, -0.014587867073714733, 0.012789399363100529, -0.0740928202867508, 0.125150665640831, -0.008554135449230671, 0.10514459758996964, -0.14393848180770874, -0.13454033434391022, -0.0032480310183018446, 0.1501937359571457, 0.07062975317239761, 0.05943294242024422, 0.0706072673201561, -0.07185224443674088, 0.004334877710789442, 0.04862440750002861, 0.06496509909629822, -0.03771805390715599, -0.08168698847293854, -0.09913704544305801, 0.08545786142349243, -0.06833720207214355, 0.08601948618888855, -0.06709954887628555, 0.0491626150906086, 0.16199810802936554, 0.09150800108909607, -0.02377924881875515, -0.0413309670984745, 0.05016033351421356, -0.03286062553524971, 0.03219284489750862, -0.04082852229475975, 0.03766140341758728, 0.024660572409629822, -0.1473545879125595, 0.016659004613757133, 0.009036239236593246, 0.1505746990442276, 0.13095545768737793, -0.10293969511985779, 0.03202073276042938, 0.052348870784044266, 0.05717239901423454, 0.05050333961844444, -0.027013471350073814, -0.08801156282424927, 0.17306844890117645, -0.00628620246425271, 0.0906340479850769, -0.055899009108543396, -0.009780998341739178, 0.003775193588808179, 0.0063311271369457245, 0.021901721134781837, 0.12083100527524948, -0.06876671314239502, -0.2769714295864105, 0.1368613839149475, 0.08992461115121841, 0.07713238894939423, 0.15613941848278046, -0.04521183297038078, -0.011986621655523777, 0.057707030326128006, 0.04769967868924141, -0.02681809850037098, -0.04331652820110321, -0.05808381736278534, -0.03571390360593796, 0.002198369475081563, 0.033405739814043045, 0.052883315831422806, -0.08567363768815994, -0.05721651390194893, -0.04911574721336365, -0.07189828157424927, 0.021382415667176247, -0.011530936695635319, -0.05569395422935486, 0.1060565635561943, 0.03285409137606621, -0.04701636731624603, 0.045035045593976974, -0.041345540434122086, -0.04359306022524834, 0.15888570249080658, -0.1015327200293541, -0.16001702845096588, -0.011683754622936249, -0.06339719146490097, -0.03978979215025902, 0.008559041656553745, 0.06586312502622604, -0.2124929577112198, 0.021266991272568703, -0.0009993687272071838, -0.041226550936698914, -0.05025947093963623, 0.05700193718075752, 0.13138388097286224, -0.009336530230939388, -0.052793875336647034, -0.1343878209590912, -0.031592752784490585, -0.1439967304468155, -0.01601727493107319, 0.036591339856386185, -0.06950952857732773, 0.058728981763124466, 0.16339214146137238, 0.04084591194987297, 0.027648011222481728, -0.06194843724370003, 0.18655095994472504, -0.06570186465978622, -0.1173480972647667, 0.054653599858284, 0.005330200772732496, 0.03905418515205383, 0.023041732609272003, 0.0626806914806366, -0.17578266561031342, 0.012258224189281464, 0.05069195106625557, -0.11262625455856323, -0.1563035398721695, -0.05420675501227379, -0.07388278841972351, 0.036640021950006485, -0.07140294462442398, 0.09698186069726944, -0.13669933378696442, -0.0442727692425251, 0.04159534350037575, 0.023011615499854088, 0.030345618724822998, -0.02668188326060772, 0.11949994415044785, -0.003338569076731801, 0.06614886969327927, -0.05554073676466942, -0.08239095658063889, 0.07067063450813293, -0.09832510352134705, 0.12335895746946335, 0.11916584521532059, 0.17036062479019165, -0.0681353434920311, -0.039168018847703934, 0.08425730466842651, 0.05560645833611488, -0.010317196138203144, -0.04420353099703789, -0.016530342400074005, -0.017314141616225243, -0.01047460362315178, 0.0003094781714025885, 0.027761360630393028, -0.0496097207069397, 0.013921085745096207, 0.05379052087664604, 0.18685825169086456, 0.10994503647089005, 0.08006048947572708, -0.05655403062701225, 0.055883318185806274, 0.06440943479537964, -0.09465537220239639, -0.004963777959346771, 0.09050377458333969, 0.06003095209598541, -0.025906285271048546, 0.03750724717974663, 0.055437635630369186, 0.13549119234085083, -0.01720200851559639, 0.06786251813173294, -0.21135544776916504, -0.03294898942112923, -0.020333437249064445, 0.06655503809452057, -0.1863289326429367, 0.07394178211688995, 0.03582535311579704, 0.020688295364379883, -0.05144096910953522, -0.038538988679647446, 0.04774859920144081, -0.03183755651116371, 0.11877603083848953, -0.0013753119856119156, -0.07035642862319946, -0.040745798498392105, -0.15190379321575165, 0.027363834902644157, 0.14974848926067352, -0.007166087161749601, -0.02912563644349575, 0.06176586076617241, 0.007899276912212372, -0.018225252628326416, -0.06939464807510376, -0.0032473586034029722, -0.05321776494383812, -0.012883019633591175, 0.08210238814353943, -0.034693632274866104, 0.018718989565968513, -0.024988263845443726, -0.09929897636175156, 0.21661977469921112, -0.06928536295890808, -0.06631704419851303, -0.09179657697677612, 0.18080680072307587, -0.051880042999982834, -0.014936736784875393, 0.0029913305770605803, 0.020455827936530113, -0.006735160946846008, -0.027796074748039246, -0.13387258350849152, 0.14641664922237396, 0.0056018526665866375, 0.026507345959544182, -0.02653714083135128, 0.14287064969539642, -0.06592046469449997, 0.08652213960886002, 0.005313581321388483, 0.02242410182952881, 0.08161245286464691, -0.09734996408224106, 0.11673339456319809, -0.10860057920217514, -0.12821824848651886, 0.05836082622408867, -0.012295334599912167, 0.05480599030852318, -0.05825992301106453, 0.05961920693516731, 0.35327398777008057, 0.2867809236049652, -0.041899051517248154, 0.10081320255994797, 0.1707669496536255, -0.034454893320798874, -0.2944996654987335, 0.0004651282215490937, -0.06029115244746208, 0.011166412383317947, -0.08963064104318619, -0.2389863282442093, 0.1345396339893341, 0.15506644546985626, -0.014897942543029785, 0.20159150660037994, -0.26327237486839294, -0.0753166452050209, 0.035387907177209854, -0.014408509247004986, 0.47476398944854736, -0.17552514374256134, -0.07796759158372879, -0.06766542047262192, -0.03056200034916401, 0.03798751160502434, -0.21998180449008942, 0.10075376182794571, 0.051617030054330826, -0.0565858818590641, 0.02190881036221981, 0.018018456175923347, 0.08710066229104996, -0.012862096540629864, 0.09428320080041885, -0.038616739213466644, -0.003241869853809476, 0.1345014125108719, 0.07139402627944946, -0.028005845844745636, -0.12052633613348007, -0.04212276265025139, -0.11734867841005325, 0.025500977411866188, 0.020818309858441353, 0.005983880255371332, 0.1006937250494957, -0.0014428006252273917, -0.02809170074760914, -0.04242308810353279, -0.023152969777584076, 0.04330538585782051, 0.25896456837654114, -0.0694912001490593, 0.08276831358671188, 0.03707638755440712, 0.06443671137094498, -0.23251371085643768, 0.09229815751314163, -0.015980314463377, -0.0339541882276535, 0.10657443851232529, -0.2151745706796646, 0.042623430490493774, 0.09348800033330917, 0.06109434366226196, -0.0029651105869561434, 0.11224731057882309, -0.04354215785861015, 0.08179974555969238, 0.14123408496379852, -0.16115961968898773, -0.21264970302581787, 0.000782690302003175, -0.061676640063524246, 0.021599173545837402, 0.05319177731871605, 0.0649295225739479, 0.03531096875667572, -0.03545718267560005, 0.025634197518229485, -0.0016846390208229423, -0.07191475480794907, 0.12460628896951675, 0.06678653508424759, 0.05242617428302765, -0.19375848770141602, 0.09916410595178604, 0.04119976982474327, -0.05237988755106926, 0.04965007305145264, 0.16287553310394287, -0.0854080393910408, -0.07653377205133438, -0.004530871752649546, 0.24580784142017365, 0.15520457923412323, 0.029130904003977776, -0.10106923431158066, -0.09710169583559036, 0.0228826105594635, 0.16354523599147797, 0.07097943127155304, 0.06132982298731804, 0.030403651297092438, 0.015281633473932743, 0.014546656049787998, 0.02869010716676712, -0.028285479173064232, -0.026471083983778954, -0.019169379025697708, -0.09186918288469315, -0.01339042093604803, 0.115419901907444, -0.11675455421209335, -0.031141506507992744, -0.17738677561283112, 0.05281994864344597, 0.002524976385757327, -0.033812716603279114, -0.0037545959930866957, 0.0022454001009464264, -0.011081290431320667, 0.018540559336543083, -0.07297064363956451, 0.006342725828289986, -0.09226065874099731, -0.015300550498068333, 0.013150754384696484, -0.027224615216255188, -0.07384870201349258, -0.06222734972834587, -0.01676301099359989, 0.016860194504261017, 0.14079312980175018, 0.15747834742069244, -0.0035709815565496683, 0.13130611181259155, -0.01629600115120411, -0.14485013484954834, 0.1448601484298706, 0.0266284067183733, 0.0032079319935292006, 0.148067906498909, 0.01124949473887682, -0.02963969111442566, 0.025157568976283073, 0.08359169214963913, -0.003093179315328598, -0.0633939877152443, 0.04762730374932289, -0.1766396015882492, -0.04868747293949127, -0.03668472543358803, -0.06458983570337296, 0.11877888441085815, 0.10325857251882553, 0.13636620342731476, -0.034394558519124985, 0.010430503636598587, 0.008038374595344067, 0.017238376662135124, 0.0030170315876603127, -0.19150926172733307, -0.01228775829076767, -0.03717570751905441, 0.07119494676589966, -0.08106483519077301, 0.16567502915859222, -0.012226271443068981, -0.06910689920186996, 0.058613281697034836, 0.0913151204586029, -0.008100472390651703, 0.04295928776264191, 0.15728239715099335, 0.20274074375629425, -0.07770512253046036, -0.017462367191910744, 0.05851845443248749, 0.11328180879354477, 0.1314452737569809, 0.07054838538169861, 0.03321288526058197, 0.09518471360206604, 0.11498147249221802, -0.005433700513094664, 0.044549088925123215, 0.01663455367088318, 0.14771784842014313, -0.05216163024306297, 0.01275212224572897, 0.03141379728913307, -0.0009272179449908435, 0.16064099967479706, 0.04121793434023857, 0.01488369982689619, 0.006287868600338697, 0.00027111932286061347, -0.16439799964427948, -0.022503703832626343, -0.07835377007722855, -0.14467854797840118, 0.05897469446063042, -0.09975538402795792, -0.010885282419621944, 0.13792629539966583, 0.06594572216272354, 0.06075004115700722, 0.058313120156526566, -0.004842808470129967, -0.013894987292587757, 0.13001582026481628, -0.1204073429107666, -0.06591163575649261, 0.010303669609129429, -0.07397440075874329, 0.04265740141272545, -0.03879782184958458, -0.03397753834724426, 0.03933702036738396, 0.0028931412380188704, 0.01673179306089878, -0.20552067458629608, -0.11346539855003357, -0.0203546229749918, 0.04392613098025322, -0.042580027133226395, -0.04260048270225525, 0.08216974884271622, -0.09025651961565018, -0.0033211566042155027, 0.1233675554394722, -0.02276007831096649, 0.005451425909996033, -0.0243875402957201, 0.05761239305138588, 0.018779577687382698, 0.1432286947965622, -0.1141565814614296, -0.1076980009675026, -0.0547097809612751, 0.18703913688659668, 0.1487300992012024, -0.1160973533987999, 0.03986046090722084, 0.01236744225025177, 0.02482302486896515, 0.10833686590194702, 0.09769279509782791, 0.0836338922381401, 0.04266929253935814, -0.06909772008657455, -0.11890391260385513, -0.03062567114830017, -0.07756497710943222, -0.21093399822711945, 0.038227759301662445, 0.08940242975950241, 0.018289001658558846, -0.08397706598043442, 0.08020737767219543, -0.2207774966955185, 0.1676493138074875, -0.028471915051341057, -0.14075787365436554, -0.09324672073125839, -0.05708010122179985, -0.06343253701925278, 0.12659738957881927, 0.11748123168945312, -0.02062438614666462, -0.03444648161530495, -0.1637306660413742, 0.018302978947758675, -0.21300427615642548, -0.11845668405294418, 0.0028345035389065742, -0.12077241390943527, -0.011794548481702805, -0.0352635383605957, 0.05204169452190399, 0.054062921553850174, 0.0011956952512264252, -0.01596478559076786, 0.033807750791311264, 0.0018256554612889886, -0.02763054333627224, -0.028643717989325523, 0.03409028425812721, -0.020337412133812904, -0.05091293528676033, 0.10815834999084473, -0.011144272983074188, -0.044680505990982056, 0.01344685722142458, 0.023061996325850487, -0.005607022438198328, 0.030253911390900612, -0.05398372933268547, 0.002625243039801717, 0.029220813885331154, -0.016152529045939445, 0.018365750089287758, 0.016577495262026787, -0.04632880166172981, 0.025088975206017494, -0.023722775280475616, -0.1490364819765091, -0.20188529789447784, -0.07219956815242767, 0.12337557226419449, -0.05445220693945885, -0.061654865741729736, -0.0009459846769459546, -0.12720853090286255, 0.10843494534492493, -0.06628254801034927, 0.09948495775461197, 0.20966999232769012, -0.03969765454530716, -0.02962755598127842, -0.3111197054386139, 0.07841995358467102, 0.08844979852437973, -0.04827602580189705, -0.08157885819673538 ]
null
null
null
# Fasttext 1 million word vectors trained on Wikipedia 2017, UMBC webbase corpus and statmt.org news dataset (16B tokens). Read more: * https://fasttext.cc/docs/en/english-vectors.html
{"tags": ["glove", "gensim", "fse"]}
null
fse/fasttext-wiki-news-subwords-300
[ "glove", "gensim", "fse", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #glove #gensim #fse #region-us
# Fasttext 1 million word vectors trained on Wikipedia 2017, UMBC webbase corpus and URL news dataset (16B tokens). Read more: * URL
[ "# Fasttext\n\n1 million word vectors trained on Wikipedia 2017, UMBC webbase corpus and URL news dataset (16B tokens).\n\nRead more:\n* URL" ]
[ "TAGS\n#glove #gensim #fse #region-us \n", "# Fasttext\n\n1 million word vectors trained on Wikipedia 2017, UMBC webbase corpus and URL news dataset (16B tokens).\n\nRead more:\n* URL" ]
[ 15, 34 ]
[ "passage: TAGS\n#glove #gensim #fse #region-us \n# Fasttext\n\n1 million word vectors trained on Wikipedia 2017, UMBC webbase corpus and URL news dataset (16B tokens).\n\nRead more:\n* URL" ]
[ 0.01463540643453598, -0.011243696324527264, -0.006474863737821579, 0.008545942604541779, 0.13326357305049896, 0.07544957101345062, 0.10290608555078506, 0.09464089572429657, 0.01819835975766182, -0.03320684656500816, 0.14917249977588654, 0.009525085799396038, -0.009251545183360577, 0.03215927630662918, 0.008773492649197578, -0.09793275594711304, 0.12481189519166946, -0.037435874342918396, -0.05856221914291382, 0.04070943221449852, 0.004470319952815771, -0.02708994224667549, 0.013604973442852497, -0.043817345052957535, -0.1614273339509964, 0.09427717328071594, 0.04689909517765045, -0.08174514025449753, 0.0370500274002552, 0.06652006506919861, -0.018427476286888123, 0.03301681578159332, -0.0535074844956398, -0.13174377381801605, 0.03181885927915573, 0.023491069674491882, -0.07382446527481079, 0.013489970937371254, -0.07266819477081299, -0.028573133051395416, 0.0012273944448679686, -0.03074430115520954, -0.06382311880588531, 0.03491754084825516, -0.12192222476005554, -0.07920712232589722, -0.017598256468772888, -0.1052289605140686, -0.08881430327892303, 0.04419850930571556, -0.036841776221990585, 0.0689605101943016, -0.11569672077894211, 0.04792114347219467, 0.10764332860708237, -0.23893049359321594, -0.03871932253241539, -0.0038889371789991856, -0.08985823392868042, 0.12025579065084457, -0.08349228650331497, 0.13788649439811707, 0.0698108822107315, -0.02040991745889187, 0.009303081780672073, -0.04379850998520851, -0.07003282010555267, 0.029903564602136612, -0.06146083399653435, 0.012554343789815903, 0.10176242887973785, 0.07307225465774536, 0.056118469685316086, -0.02177421934902668, -0.031185053288936615, 0.11701873689889908, -0.08229685574769974, 0.03690432757139206, 0.032255105674266815, 0.05176497995853424, -0.09010055661201477, -0.10636855661869049, -0.05238955095410347, -0.01888430491089821, -0.10081417858600616, 0.1831478625535965, 0.034205228090286255, 0.1462540626525879, -0.08945529907941818, -0.09552808851003647, -0.027433983981609344, -0.12048735469579697, -0.007321290206164122, -0.04893616959452629, 0.06750593334436417, 0.02057819254696369, -0.03695674240589142, -0.06302982568740845, 0.24884183704853058, -0.1243889182806015, -0.02888643555343151, 0.011760496534407139, -0.0755581483244896, 0.07242049276828766, 0.07742439955472946, -0.09721753001213074, -0.1425916701555252, 0.019763730466365814, 0.1375381201505661, -0.08056711405515671, 0.01996004581451416, -0.03191864490509033, -0.03516210988163948, 0.057464420795440674, -0.021556364372372627, 0.05995888635516167, -0.06227676942944527, 0.00006834769010310993, 0.019033100455999374, 0.046387799084186554, -0.07121432572603226, -0.04685957357287407, -0.0019993516616523266, 0.08142523467540741, -0.11772961169481277, 0.09025252610445023, -0.07080629467964172, -0.034252818673849106, -0.05317952111363411, -0.07740466296672821, -0.09534047544002533, 0.012839816510677338, 0.0031825085170567036, -0.08168896287679672, 0.036353420466184616, 0.017563415691256523, 0.040024880319833755, -0.10597936809062958, -0.16113688051700592, -0.04722040146589279, -0.039504311978816986, -0.03259110078215599, 0.09284811466932297, -0.12860386073589325, -0.019181204959750175, 0.0796801969408989, 0.005195376928895712, -0.018402783200144768, -0.1067211776971817, 0.10075169801712036, -0.04049689695239067, 0.0896819606423378, -0.12902036309242249, 0.017559006810188293, -0.10089931637048721, -0.0890524685382843, -0.05194646865129471, 0.15728387236595154, -0.09516705572605133, 0.1472642868757248, -0.011074306443333626, 0.007796182297170162, -0.16815102100372314, 0.004485171753913164, 0.05628301948308945, 0.2270096242427826, -0.10292110592126846, -0.08442758768796921, 0.24777545034885406, 0.02315145544707775, -0.000030441526178037748, 0.16241471469402313, -0.03043690323829651, -0.0363142155110836, 0.14561673998832703, 0.2674582004547119, -0.05882010981440544, 0.11860997974872589, -0.013888330198824406, 0.08104366064071655, -0.02834794670343399, -0.09442213922739029, 0.003612678498029709, 0.05726676434278488, -0.025452613830566406, 0.041689932346343994, 0.21612994372844696, 0.10603325068950653, -0.0936894565820694, -0.0218223724514246, -0.010362169705331326, -0.06361827999353409, 0.007900518365204334, -0.03155083954334259, 0.07268922030925751, -0.07779201120138168, 0.016810309141874313, 0.07871094346046448, 0.045708004385232925, -0.05502196028828621, 0.013794992119073868, -0.008476633578538895, 0.07390698790550232, -0.05011235550045967, 0.11276651918888092, -0.09658753126859665, -0.10674827545881271, -0.029912283644080162, 0.16727818548679352, 0.08337420225143433, -0.02475397102534771, 0.03358525037765503, -0.0761510357260704, -0.004428702872246504, 0.07227686047554016, 0.0190581064671278, -0.03886391967535019, -0.02661079913377762, -0.1097523644566536, 0.1494075357913971, -0.021614303812384605, 0.0061691924929618835, -0.12004678696393967, 0.004274620674550533, 0.07818957418203354, 0.04194458946585655, -0.003926130011677742, -0.03282323479652405, 0.08435751497745514, -0.007920149713754654, 0.007918800227344036, -0.014703781343996525, 0.008645650930702686, -0.015139606781303883, -0.07861754298210144, 0.07996494323015213, 0.11615827679634094, 0.14873290061950684, 0.15804721415042877, -0.1276015192270279, 0.02263653092086315, 0.1217121109366417, 0.06892009824514389, 0.0585547499358654, -0.048301175236701965, -0.01362418569624424, 0.07701721042394638, -0.04034428298473358, 0.10078468918800354, -0.07817920297384262, 0.012240615673363209, 0.042546581476926804, 0.010758887976408005, 0.0038292708341032267, 0.12976105511188507, 0.017588939517736435, -0.19443511962890625, 0.09924831986427307, 0.08691361546516418, 0.021363520994782448, 0.1997576653957367, -0.03490776568651199, -0.04005902633070946, 0.05034724250435829, 0.006578543223440647, -0.06333606690168381, -0.006081446073949337, -0.15617844462394714, -0.027829190716147423, -0.007386781275272369, 0.000498225970659405, 0.06134994700551033, -0.08549472689628601, -0.061225343495607376, -0.07117922604084015, -0.08253064006567001, -0.05554210767149925, -0.021334627643227577, -0.011062049306929111, 0.10100467503070831, -0.007590143010020256, -0.008293909952044487, 0.04419344291090965, -0.0456804521381855, -0.052892424166202545, 0.1616213470697403, -0.08282013982534409, -0.244302898645401, -0.020031649619340897, -0.048359401524066925, -0.05663235858082771, -0.01444178819656372, 0.04902619123458862, -0.1647012084722519, 0.010169275104999542, -0.007144599687308073, -0.0048613352701067924, 0.021282564848661423, 0.06261147558689117, 0.14557014405727386, 0.03323569521307945, -0.023476306349039078, -0.12934888899326324, -0.014453444629907608, -0.1433429718017578, -0.0016793233808130026, 0.030219320207834244, 0.004365109372884035, 0.07593146711587906, 0.027401868253946304, 0.023038677871227264, -0.01033155620098114, -0.030870353803038597, 0.28029388189315796, -0.08665923029184341, -0.11295673251152039, 0.07580365240573883, 0.0023850444704294205, -0.007103640120476484, 0.05260229855775833, 0.10099934786558151, -0.14613007009029388, 0.011240375228226185, 0.0384245440363884, -0.053147319704294205, -0.20401449501514435, -0.020307142287492752, -0.05176156014204025, -0.08319038897752762, -0.10776332020759583, 0.07514109462499619, -0.14577890932559967, -0.01809549145400524, 0.013825000263750553, 0.08611634373664856, 0.00400876346975565, -0.05239369347691536, 0.14783653616905212, -0.00018098724831361324, 0.01717972382903099, -0.08095178008079529, -0.06811860203742981, 0.10502620786428452, -0.03598449379205704, 0.14027827978134155, 0.06674366444349289, 0.18495091795921326, -0.01035364530980587, -0.004758193623274565, 0.09255868196487427, 0.022279880940914154, 0.004926619119942188, -0.06807224452495575, -0.018251700326800346, -0.0270912554115057, -0.014868049882352352, -0.004013081546872854, -0.027306945994496346, -0.03918265923857689, 0.029842514544725418, 0.016975251957774162, 0.16803747415542603, 0.10733499377965927, 0.07029048353433609, -0.09996277093887329, 0.01736399531364441, 0.04190702363848686, -0.12911099195480347, -0.03353242203593254, 0.09045977890491486, 0.0928940698504448, 0.004308813717216253, 0.0110396146774292, 0.1142021045088768, 0.12294172495603561, -0.11325861513614655, 0.029760142788290977, -0.16954541206359863, -0.0037853471003472805, -0.034230705350637436, 0.0679285004734993, -0.24123354256153107, 0.12204321473836899, 0.0273278821259737, 0.04741229489445686, -0.05269888788461685, -0.05257280543446541, 0.04624275863170624, -0.030873743817210197, 0.07349756360054016, 0.0199813861399889, -0.0015376379014924169, -0.047714103013277054, -0.1411040872335434, 0.06541786342859268, 0.09201959520578384, 0.10740996152162552, -0.03383515775203705, 0.06835830211639404, 0.014264291152358055, -0.004459961783140898, -0.09266316890716553, -0.15814867615699768, -0.06367848068475723, -0.04697823151946068, 0.10309595614671707, -0.01232265867292881, 0.023541301488876343, -0.03684472665190697, -0.06455530226230621, 0.17705190181732178, -0.020383166149258614, -0.05669528990983963, -0.10870452970266342, 0.20353248715400696, -0.004622948355972767, -0.021436812356114388, -0.0161499734967947, 0.022067956626415253, -0.015221268869936466, -0.02524707466363907, -0.11762414872646332, 0.08594062924385071, -0.017732420936226845, 0.03703223168849945, -0.06199195235967636, 0.09112921357154846, -0.034829068928956985, 0.03476353734731674, 0.0119896549731493, -0.025905698537826538, 0.07870519161224365, -0.10288402438163757, 0.10841907560825348, -0.09140360355377197, -0.1732979714870453, 0.02874966897070408, -0.052019331604242325, -0.07862047851085663, -0.05746521055698395, -0.030280133709311485, 0.3053535521030426, 0.23150692880153656, -0.008558438159525394, 0.04610518366098404, 0.29681193828582764, -0.04562526196241379, -0.2780067026615143, -0.0009770800825208426, -0.03405430167913437, -0.0026139088440686464, -0.14563842117786407, -0.28020042181015015, 0.13468830287456512, 0.1674853265285492, 0.015209984965622425, 0.2696687877178192, -0.25871968269348145, -0.09526984393596649, 0.05200280249118805, 0.02373865433037281, 0.47365880012512207, -0.1732296198606491, -0.07968713343143463, -0.1104804053902626, -0.0012156974989920855, 0.150738924741745, -0.1684177666902542, 0.11496094614267349, 0.030211761593818665, 0.03109392523765564, -0.006058934144675732, 0.024290364235639572, 0.08779901266098022, -0.0249886866658926, 0.08357757329940796, -0.034937452524900436, 0.040616657584905624, 0.11709734797477722, 0.05913866311311722, 0.022712426260113716, -0.016051603481173515, -0.03539055213332176, -0.10406744480133057, -0.009555041790008545, -0.038398247212171555, 0.019276713952422142, 0.07460737973451614, 0.0374239906668663, -0.01003351341933012, -0.04086750000715256, -0.016428733244538307, 0.015115839429199696, 0.16918011009693146, -0.023263486102223396, -0.01256257388740778, -0.03014189377427101, -0.009496818296611309, -0.21639183163642883, 0.13726557791233063, -0.0009518350125290453, -0.03631368279457092, 0.1002848744392395, -0.2365047037601471, 0.027486609295010567, 0.0475662462413311, 0.048298053443431854, 0.03048917092382908, 0.044598713517189026, -0.07566552609205246, 0.07154101133346558, 0.1350221335887909, -0.18372726440429688, -0.13035202026367188, -0.022485073655843735, -0.09958785772323608, 0.049022167921066284, 0.009559761732816696, 0.17783164978027344, -0.009182306006550789, -0.040526434779167175, -0.01085065770894289, 0.011677497066557407, -0.04764435812830925, 0.157255157828331, 0.08487889170646667, -0.004228296224027872, -0.207175150513649, 0.13446882367134094, 0.05021237954497337, -0.00013328947534319013, 0.03633677214384079, 0.20122449100017548, -0.07426299154758453, -0.07026230543851852, -0.04567935690283775, 0.15031705796718597, 0.06251268088817596, -0.014617557637393475, -0.08994144201278687, -0.059988778084516525, 0.03681623563170433, 0.2438203990459442, 0.0023919844534248114, 0.05839017778635025, 0.04439802095293999, -0.02814645878970623, 0.02154100127518177, 0.020347921177744865, -0.046532124280929565, -0.06790599972009659, 0.025621404871344566, -0.1615561693906784, -0.012121392413973808, 0.1164199560880661, -0.1070520281791687, -0.027712088078260422, -0.16208475828170776, 0.051271453499794006, -0.12523825466632843, 0.03025801293551922, 0.01833447813987732, 0.010553554631769657, -0.036336030811071396, -0.02212468720972538, -0.08005532622337341, 0.00038321345346048474, -0.08408646285533905, -0.02536758780479431, 0.049271468073129654, 0.011344448663294315, -0.14066272974014282, -0.03740227594971657, -0.024160638451576233, 0.02429446391761303, 0.16317637264728546, 0.15274548530578613, -0.04510094225406647, 0.1388189047574997, -0.14352749288082123, -0.1506471335887909, 0.14558707177639008, -0.0025942150969058275, 0.018528634682297707, 0.1320963203907013, 0.05997319146990776, 0.017177656292915344, 0.05764998123049736, 0.06989093869924545, -0.035906292498111725, -0.08327220380306244, -0.03918364644050598, -0.1433219313621521, -0.041200362145900726, 0.002856805454939604, -0.03323037177324295, 0.13740460574626923, 0.034430667757987976, 0.12903441488742828, -0.05287470296025276, -0.029937829822301865, -0.018282484263181686, 0.028800437226891518, 0.007162792608141899, -0.2061711549758911, -0.12481903284788132, 0.0033046354074031115, 0.08131004124879837, -0.06059486046433449, 0.27355948090553284, -0.02854062244296074, -0.0646694079041481, 0.04048407822847366, 0.08672650903463364, -0.14698360860347748, 0.025159727782011032, 0.11361593753099442, 0.19130180776119232, -0.06057697534561157, -0.10553141683340073, 0.023173680528998375, 0.11571648716926575, 0.0672888234257698, 0.04667305201292038, 0.08135861903429031, 0.19732090830802917, 0.13253964483737946, 0.04529153183102608, 0.052680544555187225, 0.17110952734947205, 0.10644536465406418, -0.08537749201059341, 0.049215979874134064, 0.010131428949534893, 0.00944007933139801, 0.14089612662792206, 0.043480053544044495, -0.010926714166998863, 0.010657190345227718, -0.02211245708167553, -0.14430107176303864, -0.02931215614080429, -0.08838561177253723, -0.10497020184993744, 0.09937626123428345, -0.14092764258384705, 0.018715405836701393, 0.15138037502765656, 0.103268563747406, -0.004988760221749544, -0.03488769009709358, 0.15798166394233704, -0.07523516565561295, 0.1817127764225006, -0.0879722535610199, -0.032703105360269547, -0.02491171471774578, -0.08430806547403336, 0.08003686368465424, 0.005925468634814024, -0.026403924450278282, 0.07066855579614639, 0.03557252138853073, 0.058159783482551575, -0.2117575854063034, -0.09801669418811798, -0.021988365799188614, 0.0684739500284195, -0.033936671912670135, -0.0056929620914161205, 0.0775970071554184, -0.06935960054397583, 0.027430769056081772, 0.12104521691799164, 0.05375766009092331, -0.015395852737128735, -0.05545175448060036, -0.04195735231041908, -0.010804754681885242, 0.1267152726650238, -0.11960897594690323, -0.11133328080177307, -0.036955319344997406, 0.24528875946998596, 0.19317734241485596, -0.1479090452194214, 0.02045789361000061, -0.006253530271351337, 0.011626822873950005, 0.07854975759983063, 0.12407966703176498, 0.10365389287471771, 0.0478653609752655, -0.04311817139387131, -0.15048249065876007, -0.018504589796066284, -0.04505918547511101, -0.13041973114013672, 0.047890834510326385, 0.06251486390829086, 0.034489355981349945, -0.1079128086566925, 0.0694771260023117, -0.24064888060092926, -0.02835991606116295, -0.07608415186405182, -0.07892461121082306, -0.10019592940807343, -0.09425212442874908, -0.14384639263153076, 0.14529302716255188, 0.03843268007040024, -0.00365627883002162, -0.028000768274068832, -0.08447661250829697, -0.013509392738342285, -0.1774352788925171, -0.10841991007328033, 0.008687763474881649, -0.033304981887340546, 0.01184149831533432, -0.022852333262562752, 0.07508014142513275, 0.027121897786855698, 0.0021557568106800318, -0.042130522429943085, 0.06083414703607559, -0.017401762306690216, 0.011571682058274746, -0.009189488366246223, 0.06654634326696396, 0.016442930325865746, -0.057359032332897186, 0.13784080743789673, 0.1013123169541359, -0.034129798412323, -0.09539743512868881, -0.05881474167108536, -0.005765560083091259, -0.004075753502547741, -0.03619524836540222, -0.017289921641349792, 0.1009608581662178, -0.03084230236709118, 0.04984469711780548, -0.038587477058172226, -0.0062093972228467464, 0.02758249267935753, -0.07437726855278015, -0.09504516422748566, -0.20656955242156982, -0.017950043082237244, 0.12671202421188354, -0.03711549565196037, -0.1151079535484314, 0.04618881642818451, -0.1375693678855896, 0.06534029543399811, -0.024830257520079613, 0.11305270344018936, 0.20183522999286652, 0.02488899417221546, -0.03659971430897713, -0.2242346554994583, 0.09355123341083527, 0.03634314984083176, -0.007623763754963875, -0.08487901091575623 ]
null
null
null
# Glove Twitter Pre-trained glove vectors based on 2B tweets, 27B tokens, 1.2M vocab, uncased. Read more: * https://nlp.stanford.edu/projects/glove/ * https://nlp.stanford.edu/pubs/glove.pdf
{"tags": ["glove", "gensim", "fse"]}
null
fse/glove-twitter-100
[ "glove", "gensim", "fse", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #glove #gensim #fse #region-us
# Glove Twitter Pre-trained glove vectors based on 2B tweets, 27B tokens, 1.2M vocab, uncased. Read more: * URL * URL
[ "# Glove Twitter \n\nPre-trained glove vectors based on 2B tweets, 27B tokens, 1.2M vocab, uncased.\n\nRead more:\n* URL\n* URL" ]
[ "TAGS\n#glove #gensim #fse #region-us \n", "# Glove Twitter \n\nPre-trained glove vectors based on 2B tweets, 27B tokens, 1.2M vocab, uncased.\n\nRead more:\n* URL\n* URL" ]
[ 15, 40 ]
[ "passage: TAGS\n#glove #gensim #fse #region-us \n# Glove Twitter \n\nPre-trained glove vectors based on 2B tweets, 27B tokens, 1.2M vocab, uncased.\n\nRead more:\n* URL\n* URL" ]
[ 0.04894852265715599, -0.0328078418970108, -0.004684979096055031, 0.02913224883377552, 0.0714021623134613, 0.02704455703496933, 0.19776712357997894, 0.13419803977012634, 0.07368900626897812, 0.022140422835946083, 0.16020101308822632, -0.010427804663777351, -0.029329420998692513, 0.23329991102218628, 0.0746946632862091, -0.18358445167541504, -0.005524648353457451, -0.04391488432884216, -0.2078271359205246, 0.12185167521238327, 0.07311175763607025, -0.02320607379078865, 0.028077812865376472, -0.0005515601951628923, -0.17948397994041443, 0.08024781942367554, 0.11575629562139511, -0.07105755060911179, 0.06063306704163551, -0.02238219417631626, 0.05326565355062485, 0.011501848697662354, -0.006281987298280001, -0.1461115926504135, 0.03498479351401329, 0.05165401101112366, -0.03343447670340538, 0.016176143661141396, 0.04922809451818466, -0.03596518561244011, 0.1235768273472786, -0.018393278121948242, 0.0694499984383583, 0.09167106449604034, -0.1358039379119873, -0.14806914329528809, -0.017337504774332047, -0.04249589890241623, 0.019662922248244286, 0.00036597769940271974, -0.008757412433624268, 0.21413902938365936, -0.09379956126213074, 0.05819331109523773, 0.009460296481847763, -0.26331788301467896, -0.03316422179341316, -0.07407771795988083, -0.0888829454779625, 0.06307151168584824, -0.015356133691966534, 0.12257486581802368, 0.08332958817481995, -0.017511775717139244, 0.01575668342411518, -0.04791736230254173, 0.011321852914988995, 0.01652825064957142, -0.050087105482816696, 0.0019820185843855143, 0.10772190243005753, 0.025218632072210312, -0.011986631900072098, 0.0009925041813403368, -0.0009977875743061304, -0.01507103443145752, -0.03376688063144684, -0.018771829083561897, 0.008739093318581581, 0.0320163331925869, -0.15420040488243103, -0.061620455235242844, -0.07291978597640991, -0.04333724454045296, -0.05741991475224495, 0.18551093339920044, -0.018376246094703674, 0.0993008017539978, -0.21035517752170563, -0.027967117726802826, -0.07378590106964111, -0.09060714393854141, 0.04985157027840614, -0.005598620045930147, -0.01948537304997444, -0.02526410110294819, -0.043207041919231415, -0.13064949214458466, 0.1000252291560173, 0.1375923454761505, 0.16868451237678528, 0.044572677463293076, -0.00858236476778984, -0.01861909218132496, 0.10796897113323212, -0.2203933596611023, -0.07681035250425339, 0.03134660795331001, 0.07103633135557175, -0.1509532928466797, 0.04412223398685455, -0.08679279685020447, 0.022011280059814453, 0.036276064813137054, 0.03408206254243851, 0.05402447655797005, -0.0024538030847907066, 0.003938346169888973, 0.015258420258760452, -0.013656282797455788, 0.003193497657775879, -0.08451565355062485, 0.011561186984181404, -0.013395726680755615, -0.0923505648970604, -0.08215472847223282, -0.09113386273384094, 0.05729106813669205, -0.008595765568315983, -0.018596889451146126, -0.17954251170158386, 0.02308349311351776, 0.05726984143257141, -0.07447466254234314, 0.03348621726036072, -0.0779281035065651, 0.019614621996879578, -0.12384402006864548, -0.017333870753645897, 0.025202549993991852, -0.0249550212174654, -0.015004020184278488, 0.042156171053647995, -0.06109524518251419, -0.0006914184195920825, 0.09596890211105347, 0.03511882945895195, -0.08306702971458435, -0.05437031015753746, 0.11373171210289001, -0.0435064360499382, 0.0484626479446888, -0.16841495037078857, 0.01543460600078106, -0.1543305218219757, -0.04165785014629364, -0.1719130426645279, 0.03652413561940193, -0.14534679055213928, 0.10794869810342789, -0.08774764090776443, -0.06503884494304657, -0.024157706648111343, -0.025633854791522026, 0.02739625610411167, 0.13585257530212402, -0.10637251287698746, -0.10564210265874863, 0.20583243668079376, -0.06410826742649078, 0.022128909826278687, 0.1086474284529686, -0.00940252747386694, -0.05225810408592224, 0.0642142966389656, 0.3876175284385681, 0.07102243602275848, -0.05603765323758125, 0.10856752842664719, 0.04449518024921417, 0.0018229726701974869, -0.06642135232686996, 0.05611414834856987, -0.0368155837059021, -0.05055789649486542, 0.023563668131828308, 0.05944669619202614, 0.09969673305749893, -0.10560297220945358, -0.04459984600543976, 0.02243085950613022, -0.05195503309369087, 0.07766684144735336, -0.029866211116313934, 0.0884346067905426, -0.1475202590227127, -0.0007349906954914331, -0.05144156515598297, 0.054920461028814316, 0.02113933116197586, -0.00020147557370364666, -0.12847425043582916, -0.01288729440420866, 0.029091952368617058, -0.006349635776132345, -0.05012967810034752, -0.18676045536994934, 0.02854643203318119, 0.004969166591763496, 0.1336394101381302, 0.022855885326862335, 0.05615011975169182, 0.01424853503704071, -0.020415298640727997, 0.07869850099086761, -0.01712128333747387, -0.013518244959414005, -0.06113235279917717, -0.10703759640455246, 0.03373486548662186, -0.06625906378030777, 0.128549262881279, 0.05107485502958298, 0.011464065872132778, 0.09694194793701172, 0.12441983819007874, 0.04683378338813782, -0.13025803864002228, 0.07073751091957092, -0.005656879395246506, 0.030407743528485298, -0.0776820182800293, 0.030529245734214783, -0.005517615936696529, -0.10788518935441971, 0.038395028561353683, -0.07761377841234207, 0.12524983286857605, 0.130556121468544, 0.0053245979361236095, -0.08952538669109344, 0.05921848863363266, 0.0016544221434742212, 0.017839903011918068, 0.02135634422302246, 0.06391530483961105, 0.10980871319770813, -0.06337893754243851, 0.058358896523714066, -0.022105442360043526, -0.029480360448360443, 0.09050016105175018, -0.07907761633396149, -0.061694927513599396, -0.019290896132588387, 0.04652206599712372, -0.3609199523925781, 0.07964538037776947, 0.03963799402117729, 0.1463630497455597, 0.16969795525074005, 0.011879488825798035, 0.027187934145331383, -0.004369541071355343, 0.00994914025068283, -0.03327728062868118, 0.06284024566411972, -0.18850009143352509, -0.025113508105278015, -0.022224783897399902, -0.0333385095000267, 0.006760250777006149, -0.03931940346956253, -0.0836285725235939, -0.003633406711742282, -0.06866595149040222, -0.20530371367931366, 0.020772524178028107, -0.07768850773572922, 0.07992082089185715, -0.012696205638349056, 0.01959690824151039, 0.06727391481399536, 0.037252847105264664, -0.15747322142124176, 0.12213947623968124, -0.21295993030071259, -0.11059382557868958, -0.03971680998802185, -0.004838089924305677, -0.0030313110910356045, 0.02440093271434307, 0.06731613725423813, -0.14456699788570404, 0.009461265057325363, -0.021480653434991837, -0.07448934018611908, -0.05110885202884674, 0.08199633657932281, 0.054269369691610336, -0.04134147986769676, 0.06388294696807861, -0.08220745623111725, -0.008458436466753483, -0.08372554183006287, -0.07724102586507797, 0.07778175920248032, 0.059629298746585846, 0.06191543862223625, 0.10498296469449997, -0.029829835519194603, 0.02788045071065426, -0.07284434884786606, 0.1909581869840622, -0.042848728597164154, -0.010139422491192818, 0.052511442452669144, 0.05721886828541756, 0.026708565652370453, 0.04091714322566986, 0.028714308515191078, -0.10947714745998383, 0.03193545714020729, 0.07743846625089645, -0.10786985605955124, -0.1715102642774582, -0.0902632549405098, -0.010448729619383812, 0.03405855968594551, 0.05336863175034523, 0.06720428913831711, 0.028754472732543945, -0.01723024807870388, 0.01761803589761257, 0.007790151983499527, -0.027398480102419853, -0.03141401335597038, -0.051563963294029236, 0.08749659359455109, 0.046688418835401535, -0.015441175550222397, -0.025289883837103844, 0.12727601826190948, -0.11168934404850006, 0.02261456474661827, 0.04099094495177269, 0.02813359908759594, -0.000995589536614716, 0.1444556713104248, 0.05969495326280594, 0.05635363608598709, 0.07694345712661743, -0.008545155636966228, -0.05152398720383644, -0.003908721264451742, -0.044937990605831146, -0.022000785917043686, 0.017755769193172455, -0.13044525682926178, -0.06473860144615173, 0.0468849241733551, 0.07112114876508713, 0.10445404052734375, 0.10152587294578552, -0.12584251165390015, -0.006531680002808571, 0.007364725228399038, -0.1102788969874382, -0.0048168618232011795, 0.07623212784528732, 0.184060201048851, -0.04087113216519356, 0.17465583980083466, 0.03519255295395851, 0.006217147223651409, 0.11247657239437103, 0.05844268202781677, 0.08115687966346741, -0.05833626538515091, -0.05490012839436531, 0.06539379060268402, -0.21518127620220184, 0.11432380974292755, -0.008743355982005596, 0.02039574831724167, -0.045614615082740784, -0.08399637043476105, 0.0023677682038396597, -0.08689373731613159, 0.10698868334293365, 0.06689220666885376, 0.0529615581035614, -0.08957100659608841, -0.14002373814582825, 0.018526367843151093, 0.19910427927970886, 0.03406256437301636, -0.013773825019598007, 0.027789084240794182, 0.038624539971351624, 0.021593816578388214, -0.07165861874818802, -0.18502114713191986, -0.00035852723522111773, 0.046097755432128906, 0.0015140277100726962, -0.10314007103443146, -0.01930815540254116, -0.0029195966199040413, 0.09957830607891083, 0.09349752217531204, 0.026192978024482727, -0.033111199736595154, -0.15781578421592712, 0.21086826920509338, -0.0007580550154671073, -0.07637994736433029, 0.054245058447122574, 0.03590993583202362, -0.04381703585386276, 0.014768474735319614, -0.10369623452425003, 0.10106556862592697, 0.0027518998831510544, 0.0335112065076828, -0.04812711849808693, 0.08753004670143127, 0.013191408477723598, 0.02309567481279373, 0.04458661004900932, -0.040858857333660126, 0.13123449683189392, -0.08453691005706787, 0.14084376394748688, -0.2235163003206253, -0.2410953938961029, -0.023644331842660904, 0.11572200804948807, -0.03562122583389282, -0.058514125645160675, 0.02705034241080284, 0.21706660091876984, 0.2227238118648529, -0.03836442902684212, 0.2014477252960205, 0.11166267842054367, 0.0016654105857014656, -0.28562334179878235, -0.03269001841545105, -0.00998208299279213, -0.04790126904845238, -0.00980465393513441, -0.21156078577041626, 0.09438293427228928, 0.08801575750112534, 0.03046540915966034, 0.1792079210281372, -0.12726043164730072, -0.08587159961462021, 0.03330701217055321, 0.03933939337730408, 0.3865099549293518, -0.12832796573638916, -0.12045055627822876, 0.00920405425131321, -0.05022319778800011, 0.16375240683555603, -0.12524563074111938, 0.08628885447978973, 0.008869540877640247, 0.03758038207888603, 0.0227085929363966, -0.011297080665826797, 0.09296929091215134, 0.06960827857255936, 0.06566627323627472, -0.055833276361227036, -0.08471585065126419, 0.06983296573162079, 0.05363783612847328, -0.05483359843492508, 0.04484504833817482, -0.006722207646816969, -0.13434739410877228, 0.006648148410022259, -0.04811810329556465, 0.07370280474424362, 0.0336574912071228, -0.03302806615829468, 0.02961370348930359, -0.04149443656206131, -0.02409195899963379, -0.04729575663805008, 0.06284266710281372, -0.03230346739292145, 0.15304070711135864, 0.06111002713441849, 0.038889359682798386, -0.11289571970701218, 0.09837373346090317, -0.004179968032985926, -0.05216679349541664, 0.04735877737402916, -0.19000250101089478, 0.026107734069228172, 0.03211815655231476, 0.12294269353151321, -0.03646175563335419, 0.02159465290606022, -0.04565437510609627, 0.13192352652549744, 0.13886122405529022, -0.21290116012096405, -0.044202327728271484, -0.007405159994959831, -0.05808030068874359, 0.06034225597977638, 0.03792340308427811, 0.15873806178569794, -0.017635703086853027, -0.042947206646203995, -0.04749298095703125, 0.014988848008215427, -0.09049255400896072, 0.18785780668258667, 0.11768113076686859, -0.01090928353369236, -0.13438677787780762, 0.10118797421455383, -0.004777177702635527, 0.02167479135096073, 0.07621809095144272, 0.12859895825386047, -0.15263134241104126, -0.0818672776222229, -0.05402388051152229, 0.06959345191717148, 0.01821841299533844, 0.06184397637844086, -0.032105766236782074, -0.04011226445436478, -0.007185091730207205, 0.1670805662870407, -0.03314850851893425, 0.0338253527879715, -0.012127159163355827, 0.0020193790551275015, -0.03596591204404831, -0.04494275897741318, 0.0493776760995388, -0.03282695263624191, -0.023515909910202026, 0.14760182797908783, -0.05951014161109924, 0.09936296194791794, -0.08711402863264084, 0.0009671139996498823, -0.08713581413030624, -0.029223762452602386, 0.08322049677371979, -0.057528428733348846, 0.028132276609539986, -0.04241550713777542, 0.05314720422029495, -0.07937484979629517, -0.02168712019920349, -0.020229000598192215, -0.08765141665935516, -0.018056772649288177, 0.012624608352780342, -0.03243612125515938, -0.11193130165338516, -0.03909402713179588, 0.03398286923766136, 0.0272013358771801, 0.16085240244865417, 0.20348034799098969, -0.00485646165907383, 0.06387131661176682, -0.20185697078704834, -0.11052572727203369, 0.01686161942780018, -0.024907151237130165, 0.018646717071533203, 0.08378037810325623, 0.046487875282764435, -0.04967816546559334, 0.035186827182769775, 0.038328684866428375, 0.09378819912672043, -0.04397944360971451, -0.02236795611679554, -0.059943217784166336, -0.09659799933433533, -0.10908536612987518, -0.02757444977760315, 0.12126810103654861, 0.014230567961931229, 0.05826656520366669, -0.031790561974048615, 0.007066820282489061, -0.0624426044523716, -0.007085607387125492, -0.026690199971199036, -0.05536923184990883, -0.21835513412952423, 0.08590047806501389, 0.05535685271024704, -0.022449206560850143, -0.00671549653634429, 0.050612371414899826, -0.1342192441225052, 0.03712020069360733, -0.0015174251748248935, 0.025951070711016655, 0.0069052595645189285, 0.16432532668113708, 0.07774990797042847, -0.07452160865068436, -0.014840764924883842, -0.0013723464217036963, -0.014380316250026226, -0.07885454595088959, 0.11999177932739258, 0.03360775485634804, -0.004729493986815214, 0.0002145156031474471, -0.05805940181016922, -0.059230200946331024, -0.0020064348354935646, 0.0912749171257019, 0.01830447092652321, 0.04184897243976593, 0.053054362535476685, 0.05527254939079285, 0.13328951597213745, -0.1015004888176918, -0.016481932252645493, 0.0048039937391877174, -0.025302795693278313, -0.12657225131988525, -0.07658340036869049, -0.035990335047245026, -0.18249644339084625, 0.06613606214523315, -0.09918439388275146, 0.05650129169225693, 0.044044941663742065, 0.06464003771543503, 0.035270415246486664, 0.02650887332856655, -0.0721423402428627, -0.05572943389415741, 0.1285300999879837, -0.0031838316936045885, -0.08522564172744751, 0.01844177395105362, -0.08589565753936768, -0.03017391823232174, 0.051759298890829086, -0.02082713693380356, -0.02871161885559559, 0.008460676297545433, 0.03852972388267517, -0.17597809433937073, -0.09666608273983002, -0.019076412543654442, 0.002153016161173582, -0.031090671196579933, -0.03725443035364151, 0.043616797775030136, -0.010059406980872154, -0.033799540251493454, 0.2187386304140091, 0.03671250119805336, -0.05455625802278519, -0.056165795773267746, 0.12240789830684662, 0.013258402235805988, 0.11226514726877213, -0.026954026892781258, -0.06638732552528381, 0.017533795908093452, 0.0815485268831253, 0.17327189445495605, -0.023792559280991554, 0.03115333802998066, -0.07983935624361038, 0.013161477632820606, 0.11522310227155685, 0.17528975009918213, -0.007312495727092028, -0.009801210835576057, -0.05348728224635124, -0.025779027491807938, -0.027772827073931694, -0.028294019401073456, -0.10128727555274963, 0.02237747237086296, 0.07264263927936554, 0.031421858817338943, -0.03767424076795578, 0.06698095053434372, -0.09484995901584625, 0.011989807710051537, 0.10290148854255676, -0.02980796992778778, -0.025425376370549202, 0.014168302528560162, -0.09640686213970184, 0.0997517928481102, 0.15403732657432556, -0.022949937731027603, 0.03255986422300339, 0.0003859504358842969, 0.09166833758354187, -0.23957690596580505, -0.0952666848897934, 0.051803093403577805, -0.15268513560295105, 0.11633360385894775, -0.05328555405139923, 0.12131544202566147, 0.058498725295066833, -0.01038106344640255, -0.029300078749656677, 0.012353242374956608, 0.04635747894644737, 0.10805986821651459, -0.059105224907398224, 0.07440680265426636, -0.0017889667069539428, -0.0040437388233840466, 0.041378505527973175, -0.026015909388661385, -0.061976589262485504, 0.031104451045393944, -0.0016120465006679296, 0.03474830463528633, 0.051574889570474625, -0.033430762588977814, 0.06904270499944687, 0.020647887140512466, -0.1090097725391388, 0.012339557521045208, -0.011256546713411808, -0.04375698044896126, 0.06758178025484085, -0.02435167320072651, -0.033227041363716125, -0.17742742598056793, -0.04927656054496765, -0.00438616331666708, -0.022156914696097374, -0.18047359585762024, 0.04605915769934654, -0.14209970831871033, 0.029783565551042557, -0.05393018573522568, 0.1316830962896347, 0.10068897157907486, -0.029957400634884834, -0.05562002211809158, 0.006948413327336311, 0.06974008679389954, 0.12470133602619171, -0.01636156626045704, -0.029247259721159935 ]
null
null
null
# Glove Twitter Pre-trained glove vectors based on 2B tweets, 27B tokens, 1.2M vocab, uncased. Read more: * https://nlp.stanford.edu/projects/glove/ * https://nlp.stanford.edu/pubs/glove.pdf
{"tags": ["glove", "gensim", "fse"]}
null
fse/glove-twitter-200
[ "glove", "gensim", "fse", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #glove #gensim #fse #region-us
# Glove Twitter Pre-trained glove vectors based on 2B tweets, 27B tokens, 1.2M vocab, uncased. Read more: * URL * URL
[ "# Glove Twitter \n\nPre-trained glove vectors based on 2B tweets, 27B tokens, 1.2M vocab, uncased.\n\nRead more:\n* URL\n* URL" ]
[ "TAGS\n#glove #gensim #fse #region-us \n", "# Glove Twitter \n\nPre-trained glove vectors based on 2B tweets, 27B tokens, 1.2M vocab, uncased.\n\nRead more:\n* URL\n* URL" ]
[ 15, 40 ]
[ "passage: TAGS\n#glove #gensim #fse #region-us \n# Glove Twitter \n\nPre-trained glove vectors based on 2B tweets, 27B tokens, 1.2M vocab, uncased.\n\nRead more:\n* URL\n* URL" ]
[ 0.04894852265715599, -0.0328078418970108, -0.004684979096055031, 0.02913224883377552, 0.0714021623134613, 0.02704455703496933, 0.19776712357997894, 0.13419803977012634, 0.07368900626897812, 0.022140422835946083, 0.16020101308822632, -0.010427804663777351, -0.029329420998692513, 0.23329991102218628, 0.0746946632862091, -0.18358445167541504, -0.005524648353457451, -0.04391488432884216, -0.2078271359205246, 0.12185167521238327, 0.07311175763607025, -0.02320607379078865, 0.028077812865376472, -0.0005515601951628923, -0.17948397994041443, 0.08024781942367554, 0.11575629562139511, -0.07105755060911179, 0.06063306704163551, -0.02238219417631626, 0.05326565355062485, 0.011501848697662354, -0.006281987298280001, -0.1461115926504135, 0.03498479351401329, 0.05165401101112366, -0.03343447670340538, 0.016176143661141396, 0.04922809451818466, -0.03596518561244011, 0.1235768273472786, -0.018393278121948242, 0.0694499984383583, 0.09167106449604034, -0.1358039379119873, -0.14806914329528809, -0.017337504774332047, -0.04249589890241623, 0.019662922248244286, 0.00036597769940271974, -0.008757412433624268, 0.21413902938365936, -0.09379956126213074, 0.05819331109523773, 0.009460296481847763, -0.26331788301467896, -0.03316422179341316, -0.07407771795988083, -0.0888829454779625, 0.06307151168584824, -0.015356133691966534, 0.12257486581802368, 0.08332958817481995, -0.017511775717139244, 0.01575668342411518, -0.04791736230254173, 0.011321852914988995, 0.01652825064957142, -0.050087105482816696, 0.0019820185843855143, 0.10772190243005753, 0.025218632072210312, -0.011986631900072098, 0.0009925041813403368, -0.0009977875743061304, -0.01507103443145752, -0.03376688063144684, -0.018771829083561897, 0.008739093318581581, 0.0320163331925869, -0.15420040488243103, -0.061620455235242844, -0.07291978597640991, -0.04333724454045296, -0.05741991475224495, 0.18551093339920044, -0.018376246094703674, 0.0993008017539978, -0.21035517752170563, -0.027967117726802826, -0.07378590106964111, -0.09060714393854141, 0.04985157027840614, -0.005598620045930147, -0.01948537304997444, -0.02526410110294819, -0.043207041919231415, -0.13064949214458466, 0.1000252291560173, 0.1375923454761505, 0.16868451237678528, 0.044572677463293076, -0.00858236476778984, -0.01861909218132496, 0.10796897113323212, -0.2203933596611023, -0.07681035250425339, 0.03134660795331001, 0.07103633135557175, -0.1509532928466797, 0.04412223398685455, -0.08679279685020447, 0.022011280059814453, 0.036276064813137054, 0.03408206254243851, 0.05402447655797005, -0.0024538030847907066, 0.003938346169888973, 0.015258420258760452, -0.013656282797455788, 0.003193497657775879, -0.08451565355062485, 0.011561186984181404, -0.013395726680755615, -0.0923505648970604, -0.08215472847223282, -0.09113386273384094, 0.05729106813669205, -0.008595765568315983, -0.018596889451146126, -0.17954251170158386, 0.02308349311351776, 0.05726984143257141, -0.07447466254234314, 0.03348621726036072, -0.0779281035065651, 0.019614621996879578, -0.12384402006864548, -0.017333870753645897, 0.025202549993991852, -0.0249550212174654, -0.015004020184278488, 0.042156171053647995, -0.06109524518251419, -0.0006914184195920825, 0.09596890211105347, 0.03511882945895195, -0.08306702971458435, -0.05437031015753746, 0.11373171210289001, -0.0435064360499382, 0.0484626479446888, -0.16841495037078857, 0.01543460600078106, -0.1543305218219757, -0.04165785014629364, -0.1719130426645279, 0.03652413561940193, -0.14534679055213928, 0.10794869810342789, -0.08774764090776443, -0.06503884494304657, -0.024157706648111343, -0.025633854791522026, 0.02739625610411167, 0.13585257530212402, -0.10637251287698746, -0.10564210265874863, 0.20583243668079376, -0.06410826742649078, 0.022128909826278687, 0.1086474284529686, -0.00940252747386694, -0.05225810408592224, 0.0642142966389656, 0.3876175284385681, 0.07102243602275848, -0.05603765323758125, 0.10856752842664719, 0.04449518024921417, 0.0018229726701974869, -0.06642135232686996, 0.05611414834856987, -0.0368155837059021, -0.05055789649486542, 0.023563668131828308, 0.05944669619202614, 0.09969673305749893, -0.10560297220945358, -0.04459984600543976, 0.02243085950613022, -0.05195503309369087, 0.07766684144735336, -0.029866211116313934, 0.0884346067905426, -0.1475202590227127, -0.0007349906954914331, -0.05144156515598297, 0.054920461028814316, 0.02113933116197586, -0.00020147557370364666, -0.12847425043582916, -0.01288729440420866, 0.029091952368617058, -0.006349635776132345, -0.05012967810034752, -0.18676045536994934, 0.02854643203318119, 0.004969166591763496, 0.1336394101381302, 0.022855885326862335, 0.05615011975169182, 0.01424853503704071, -0.020415298640727997, 0.07869850099086761, -0.01712128333747387, -0.013518244959414005, -0.06113235279917717, -0.10703759640455246, 0.03373486548662186, -0.06625906378030777, 0.128549262881279, 0.05107485502958298, 0.011464065872132778, 0.09694194793701172, 0.12441983819007874, 0.04683378338813782, -0.13025803864002228, 0.07073751091957092, -0.005656879395246506, 0.030407743528485298, -0.0776820182800293, 0.030529245734214783, -0.005517615936696529, -0.10788518935441971, 0.038395028561353683, -0.07761377841234207, 0.12524983286857605, 0.130556121468544, 0.0053245979361236095, -0.08952538669109344, 0.05921848863363266, 0.0016544221434742212, 0.017839903011918068, 0.02135634422302246, 0.06391530483961105, 0.10980871319770813, -0.06337893754243851, 0.058358896523714066, -0.022105442360043526, -0.029480360448360443, 0.09050016105175018, -0.07907761633396149, -0.061694927513599396, -0.019290896132588387, 0.04652206599712372, -0.3609199523925781, 0.07964538037776947, 0.03963799402117729, 0.1463630497455597, 0.16969795525074005, 0.011879488825798035, 0.027187934145331383, -0.004369541071355343, 0.00994914025068283, -0.03327728062868118, 0.06284024566411972, -0.18850009143352509, -0.025113508105278015, -0.022224783897399902, -0.0333385095000267, 0.006760250777006149, -0.03931940346956253, -0.0836285725235939, -0.003633406711742282, -0.06866595149040222, -0.20530371367931366, 0.020772524178028107, -0.07768850773572922, 0.07992082089185715, -0.012696205638349056, 0.01959690824151039, 0.06727391481399536, 0.037252847105264664, -0.15747322142124176, 0.12213947623968124, -0.21295993030071259, -0.11059382557868958, -0.03971680998802185, -0.004838089924305677, -0.0030313110910356045, 0.02440093271434307, 0.06731613725423813, -0.14456699788570404, 0.009461265057325363, -0.021480653434991837, -0.07448934018611908, -0.05110885202884674, 0.08199633657932281, 0.054269369691610336, -0.04134147986769676, 0.06388294696807861, -0.08220745623111725, -0.008458436466753483, -0.08372554183006287, -0.07724102586507797, 0.07778175920248032, 0.059629298746585846, 0.06191543862223625, 0.10498296469449997, -0.029829835519194603, 0.02788045071065426, -0.07284434884786606, 0.1909581869840622, -0.042848728597164154, -0.010139422491192818, 0.052511442452669144, 0.05721886828541756, 0.026708565652370453, 0.04091714322566986, 0.028714308515191078, -0.10947714745998383, 0.03193545714020729, 0.07743846625089645, -0.10786985605955124, -0.1715102642774582, -0.0902632549405098, -0.010448729619383812, 0.03405855968594551, 0.05336863175034523, 0.06720428913831711, 0.028754472732543945, -0.01723024807870388, 0.01761803589761257, 0.007790151983499527, -0.027398480102419853, -0.03141401335597038, -0.051563963294029236, 0.08749659359455109, 0.046688418835401535, -0.015441175550222397, -0.025289883837103844, 0.12727601826190948, -0.11168934404850006, 0.02261456474661827, 0.04099094495177269, 0.02813359908759594, -0.000995589536614716, 0.1444556713104248, 0.05969495326280594, 0.05635363608598709, 0.07694345712661743, -0.008545155636966228, -0.05152398720383644, -0.003908721264451742, -0.044937990605831146, -0.022000785917043686, 0.017755769193172455, -0.13044525682926178, -0.06473860144615173, 0.0468849241733551, 0.07112114876508713, 0.10445404052734375, 0.10152587294578552, -0.12584251165390015, -0.006531680002808571, 0.007364725228399038, -0.1102788969874382, -0.0048168618232011795, 0.07623212784528732, 0.184060201048851, -0.04087113216519356, 0.17465583980083466, 0.03519255295395851, 0.006217147223651409, 0.11247657239437103, 0.05844268202781677, 0.08115687966346741, -0.05833626538515091, -0.05490012839436531, 0.06539379060268402, -0.21518127620220184, 0.11432380974292755, -0.008743355982005596, 0.02039574831724167, -0.045614615082740784, -0.08399637043476105, 0.0023677682038396597, -0.08689373731613159, 0.10698868334293365, 0.06689220666885376, 0.0529615581035614, -0.08957100659608841, -0.14002373814582825, 0.018526367843151093, 0.19910427927970886, 0.03406256437301636, -0.013773825019598007, 0.027789084240794182, 0.038624539971351624, 0.021593816578388214, -0.07165861874818802, -0.18502114713191986, -0.00035852723522111773, 0.046097755432128906, 0.0015140277100726962, -0.10314007103443146, -0.01930815540254116, -0.0029195966199040413, 0.09957830607891083, 0.09349752217531204, 0.026192978024482727, -0.033111199736595154, -0.15781578421592712, 0.21086826920509338, -0.0007580550154671073, -0.07637994736433029, 0.054245058447122574, 0.03590993583202362, -0.04381703585386276, 0.014768474735319614, -0.10369623452425003, 0.10106556862592697, 0.0027518998831510544, 0.0335112065076828, -0.04812711849808693, 0.08753004670143127, 0.013191408477723598, 0.02309567481279373, 0.04458661004900932, -0.040858857333660126, 0.13123449683189392, -0.08453691005706787, 0.14084376394748688, -0.2235163003206253, -0.2410953938961029, -0.023644331842660904, 0.11572200804948807, -0.03562122583389282, -0.058514125645160675, 0.02705034241080284, 0.21706660091876984, 0.2227238118648529, -0.03836442902684212, 0.2014477252960205, 0.11166267842054367, 0.0016654105857014656, -0.28562334179878235, -0.03269001841545105, -0.00998208299279213, -0.04790126904845238, -0.00980465393513441, -0.21156078577041626, 0.09438293427228928, 0.08801575750112534, 0.03046540915966034, 0.1792079210281372, -0.12726043164730072, -0.08587159961462021, 0.03330701217055321, 0.03933939337730408, 0.3865099549293518, -0.12832796573638916, -0.12045055627822876, 0.00920405425131321, -0.05022319778800011, 0.16375240683555603, -0.12524563074111938, 0.08628885447978973, 0.008869540877640247, 0.03758038207888603, 0.0227085929363966, -0.011297080665826797, 0.09296929091215134, 0.06960827857255936, 0.06566627323627472, -0.055833276361227036, -0.08471585065126419, 0.06983296573162079, 0.05363783612847328, -0.05483359843492508, 0.04484504833817482, -0.006722207646816969, -0.13434739410877228, 0.006648148410022259, -0.04811810329556465, 0.07370280474424362, 0.0336574912071228, -0.03302806615829468, 0.02961370348930359, -0.04149443656206131, -0.02409195899963379, -0.04729575663805008, 0.06284266710281372, -0.03230346739292145, 0.15304070711135864, 0.06111002713441849, 0.038889359682798386, -0.11289571970701218, 0.09837373346090317, -0.004179968032985926, -0.05216679349541664, 0.04735877737402916, -0.19000250101089478, 0.026107734069228172, 0.03211815655231476, 0.12294269353151321, -0.03646175563335419, 0.02159465290606022, -0.04565437510609627, 0.13192352652549744, 0.13886122405529022, -0.21290116012096405, -0.044202327728271484, -0.007405159994959831, -0.05808030068874359, 0.06034225597977638, 0.03792340308427811, 0.15873806178569794, -0.017635703086853027, -0.042947206646203995, -0.04749298095703125, 0.014988848008215427, -0.09049255400896072, 0.18785780668258667, 0.11768113076686859, -0.01090928353369236, -0.13438677787780762, 0.10118797421455383, -0.004777177702635527, 0.02167479135096073, 0.07621809095144272, 0.12859895825386047, -0.15263134241104126, -0.0818672776222229, -0.05402388051152229, 0.06959345191717148, 0.01821841299533844, 0.06184397637844086, -0.032105766236782074, -0.04011226445436478, -0.007185091730207205, 0.1670805662870407, -0.03314850851893425, 0.0338253527879715, -0.012127159163355827, 0.0020193790551275015, -0.03596591204404831, -0.04494275897741318, 0.0493776760995388, -0.03282695263624191, -0.023515909910202026, 0.14760182797908783, -0.05951014161109924, 0.09936296194791794, -0.08711402863264084, 0.0009671139996498823, -0.08713581413030624, -0.029223762452602386, 0.08322049677371979, -0.057528428733348846, 0.028132276609539986, -0.04241550713777542, 0.05314720422029495, -0.07937484979629517, -0.02168712019920349, -0.020229000598192215, -0.08765141665935516, -0.018056772649288177, 0.012624608352780342, -0.03243612125515938, -0.11193130165338516, -0.03909402713179588, 0.03398286923766136, 0.0272013358771801, 0.16085240244865417, 0.20348034799098969, -0.00485646165907383, 0.06387131661176682, -0.20185697078704834, -0.11052572727203369, 0.01686161942780018, -0.024907151237130165, 0.018646717071533203, 0.08378037810325623, 0.046487875282764435, -0.04967816546559334, 0.035186827182769775, 0.038328684866428375, 0.09378819912672043, -0.04397944360971451, -0.02236795611679554, -0.059943217784166336, -0.09659799933433533, -0.10908536612987518, -0.02757444977760315, 0.12126810103654861, 0.014230567961931229, 0.05826656520366669, -0.031790561974048615, 0.007066820282489061, -0.0624426044523716, -0.007085607387125492, -0.026690199971199036, -0.05536923184990883, -0.21835513412952423, 0.08590047806501389, 0.05535685271024704, -0.022449206560850143, -0.00671549653634429, 0.050612371414899826, -0.1342192441225052, 0.03712020069360733, -0.0015174251748248935, 0.025951070711016655, 0.0069052595645189285, 0.16432532668113708, 0.07774990797042847, -0.07452160865068436, -0.014840764924883842, -0.0013723464217036963, -0.014380316250026226, -0.07885454595088959, 0.11999177932739258, 0.03360775485634804, -0.004729493986815214, 0.0002145156031474471, -0.05805940181016922, -0.059230200946331024, -0.0020064348354935646, 0.0912749171257019, 0.01830447092652321, 0.04184897243976593, 0.053054362535476685, 0.05527254939079285, 0.13328951597213745, -0.1015004888176918, -0.016481932252645493, 0.0048039937391877174, -0.025302795693278313, -0.12657225131988525, -0.07658340036869049, -0.035990335047245026, -0.18249644339084625, 0.06613606214523315, -0.09918439388275146, 0.05650129169225693, 0.044044941663742065, 0.06464003771543503, 0.035270415246486664, 0.02650887332856655, -0.0721423402428627, -0.05572943389415741, 0.1285300999879837, -0.0031838316936045885, -0.08522564172744751, 0.01844177395105362, -0.08589565753936768, -0.03017391823232174, 0.051759298890829086, -0.02082713693380356, -0.02871161885559559, 0.008460676297545433, 0.03852972388267517, -0.17597809433937073, -0.09666608273983002, -0.019076412543654442, 0.002153016161173582, -0.031090671196579933, -0.03725443035364151, 0.043616797775030136, -0.010059406980872154, -0.033799540251493454, 0.2187386304140091, 0.03671250119805336, -0.05455625802278519, -0.056165795773267746, 0.12240789830684662, 0.013258402235805988, 0.11226514726877213, -0.026954026892781258, -0.06638732552528381, 0.017533795908093452, 0.0815485268831253, 0.17327189445495605, -0.023792559280991554, 0.03115333802998066, -0.07983935624361038, 0.013161477632820606, 0.11522310227155685, 0.17528975009918213, -0.007312495727092028, -0.009801210835576057, -0.05348728224635124, -0.025779027491807938, -0.027772827073931694, -0.028294019401073456, -0.10128727555274963, 0.02237747237086296, 0.07264263927936554, 0.031421858817338943, -0.03767424076795578, 0.06698095053434372, -0.09484995901584625, 0.011989807710051537, 0.10290148854255676, -0.02980796992778778, -0.025425376370549202, 0.014168302528560162, -0.09640686213970184, 0.0997517928481102, 0.15403732657432556, -0.022949937731027603, 0.03255986422300339, 0.0003859504358842969, 0.09166833758354187, -0.23957690596580505, -0.0952666848897934, 0.051803093403577805, -0.15268513560295105, 0.11633360385894775, -0.05328555405139923, 0.12131544202566147, 0.058498725295066833, -0.01038106344640255, -0.029300078749656677, 0.012353242374956608, 0.04635747894644737, 0.10805986821651459, -0.059105224907398224, 0.07440680265426636, -0.0017889667069539428, -0.0040437388233840466, 0.041378505527973175, -0.026015909388661385, -0.061976589262485504, 0.031104451045393944, -0.0016120465006679296, 0.03474830463528633, 0.051574889570474625, -0.033430762588977814, 0.06904270499944687, 0.020647887140512466, -0.1090097725391388, 0.012339557521045208, -0.011256546713411808, -0.04375698044896126, 0.06758178025484085, -0.02435167320072651, -0.033227041363716125, -0.17742742598056793, -0.04927656054496765, -0.00438616331666708, -0.022156914696097374, -0.18047359585762024, 0.04605915769934654, -0.14209970831871033, 0.029783565551042557, -0.05393018573522568, 0.1316830962896347, 0.10068897157907486, -0.029957400634884834, -0.05562002211809158, 0.006948413327336311, 0.06974008679389954, 0.12470133602619171, -0.01636156626045704, -0.029247259721159935 ]
null
null
null
# Glove Twitter Pre-trained glove vectors based on 2B tweets, 27B tokens, 1.2M vocab, uncased. Read more: * https://nlp.stanford.edu/projects/glove/ * https://nlp.stanford.edu/pubs/glove.pdf
{"tags": ["glove", "gensim", "fse"]}
null
fse/glove-twitter-25
[ "glove", "gensim", "fse", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #glove #gensim #fse #region-us
# Glove Twitter Pre-trained glove vectors based on 2B tweets, 27B tokens, 1.2M vocab, uncased. Read more: * URL * URL
[ "# Glove Twitter \n\nPre-trained glove vectors based on 2B tweets, 27B tokens, 1.2M vocab, uncased.\n\nRead more:\n* URL\n* URL" ]
[ "TAGS\n#glove #gensim #fse #region-us \n", "# Glove Twitter \n\nPre-trained glove vectors based on 2B tweets, 27B tokens, 1.2M vocab, uncased.\n\nRead more:\n* URL\n* URL" ]
[ 15, 40 ]
[ "passage: TAGS\n#glove #gensim #fse #region-us \n# Glove Twitter \n\nPre-trained glove vectors based on 2B tweets, 27B tokens, 1.2M vocab, uncased.\n\nRead more:\n* URL\n* URL" ]
[ 0.04894852265715599, -0.0328078418970108, -0.004684979096055031, 0.02913224883377552, 0.0714021623134613, 0.02704455703496933, 0.19776712357997894, 0.13419803977012634, 0.07368900626897812, 0.022140422835946083, 0.16020101308822632, -0.010427804663777351, -0.029329420998692513, 0.23329991102218628, 0.0746946632862091, -0.18358445167541504, -0.005524648353457451, -0.04391488432884216, -0.2078271359205246, 0.12185167521238327, 0.07311175763607025, -0.02320607379078865, 0.028077812865376472, -0.0005515601951628923, -0.17948397994041443, 0.08024781942367554, 0.11575629562139511, -0.07105755060911179, 0.06063306704163551, -0.02238219417631626, 0.05326565355062485, 0.011501848697662354, -0.006281987298280001, -0.1461115926504135, 0.03498479351401329, 0.05165401101112366, -0.03343447670340538, 0.016176143661141396, 0.04922809451818466, -0.03596518561244011, 0.1235768273472786, -0.018393278121948242, 0.0694499984383583, 0.09167106449604034, -0.1358039379119873, -0.14806914329528809, -0.017337504774332047, -0.04249589890241623, 0.019662922248244286, 0.00036597769940271974, -0.008757412433624268, 0.21413902938365936, -0.09379956126213074, 0.05819331109523773, 0.009460296481847763, -0.26331788301467896, -0.03316422179341316, -0.07407771795988083, -0.0888829454779625, 0.06307151168584824, -0.015356133691966534, 0.12257486581802368, 0.08332958817481995, -0.017511775717139244, 0.01575668342411518, -0.04791736230254173, 0.011321852914988995, 0.01652825064957142, -0.050087105482816696, 0.0019820185843855143, 0.10772190243005753, 0.025218632072210312, -0.011986631900072098, 0.0009925041813403368, -0.0009977875743061304, -0.01507103443145752, -0.03376688063144684, -0.018771829083561897, 0.008739093318581581, 0.0320163331925869, -0.15420040488243103, -0.061620455235242844, -0.07291978597640991, -0.04333724454045296, -0.05741991475224495, 0.18551093339920044, -0.018376246094703674, 0.0993008017539978, -0.21035517752170563, -0.027967117726802826, -0.07378590106964111, -0.09060714393854141, 0.04985157027840614, -0.005598620045930147, -0.01948537304997444, -0.02526410110294819, -0.043207041919231415, -0.13064949214458466, 0.1000252291560173, 0.1375923454761505, 0.16868451237678528, 0.044572677463293076, -0.00858236476778984, -0.01861909218132496, 0.10796897113323212, -0.2203933596611023, -0.07681035250425339, 0.03134660795331001, 0.07103633135557175, -0.1509532928466797, 0.04412223398685455, -0.08679279685020447, 0.022011280059814453, 0.036276064813137054, 0.03408206254243851, 0.05402447655797005, -0.0024538030847907066, 0.003938346169888973, 0.015258420258760452, -0.013656282797455788, 0.003193497657775879, -0.08451565355062485, 0.011561186984181404, -0.013395726680755615, -0.0923505648970604, -0.08215472847223282, -0.09113386273384094, 0.05729106813669205, -0.008595765568315983, -0.018596889451146126, -0.17954251170158386, 0.02308349311351776, 0.05726984143257141, -0.07447466254234314, 0.03348621726036072, -0.0779281035065651, 0.019614621996879578, -0.12384402006864548, -0.017333870753645897, 0.025202549993991852, -0.0249550212174654, -0.015004020184278488, 0.042156171053647995, -0.06109524518251419, -0.0006914184195920825, 0.09596890211105347, 0.03511882945895195, -0.08306702971458435, -0.05437031015753746, 0.11373171210289001, -0.0435064360499382, 0.0484626479446888, -0.16841495037078857, 0.01543460600078106, -0.1543305218219757, -0.04165785014629364, -0.1719130426645279, 0.03652413561940193, -0.14534679055213928, 0.10794869810342789, -0.08774764090776443, -0.06503884494304657, -0.024157706648111343, -0.025633854791522026, 0.02739625610411167, 0.13585257530212402, -0.10637251287698746, -0.10564210265874863, 0.20583243668079376, -0.06410826742649078, 0.022128909826278687, 0.1086474284529686, -0.00940252747386694, -0.05225810408592224, 0.0642142966389656, 0.3876175284385681, 0.07102243602275848, -0.05603765323758125, 0.10856752842664719, 0.04449518024921417, 0.0018229726701974869, -0.06642135232686996, 0.05611414834856987, -0.0368155837059021, -0.05055789649486542, 0.023563668131828308, 0.05944669619202614, 0.09969673305749893, -0.10560297220945358, -0.04459984600543976, 0.02243085950613022, -0.05195503309369087, 0.07766684144735336, -0.029866211116313934, 0.0884346067905426, -0.1475202590227127, -0.0007349906954914331, -0.05144156515598297, 0.054920461028814316, 0.02113933116197586, -0.00020147557370364666, -0.12847425043582916, -0.01288729440420866, 0.029091952368617058, -0.006349635776132345, -0.05012967810034752, -0.18676045536994934, 0.02854643203318119, 0.004969166591763496, 0.1336394101381302, 0.022855885326862335, 0.05615011975169182, 0.01424853503704071, -0.020415298640727997, 0.07869850099086761, -0.01712128333747387, -0.013518244959414005, -0.06113235279917717, -0.10703759640455246, 0.03373486548662186, -0.06625906378030777, 0.128549262881279, 0.05107485502958298, 0.011464065872132778, 0.09694194793701172, 0.12441983819007874, 0.04683378338813782, -0.13025803864002228, 0.07073751091957092, -0.005656879395246506, 0.030407743528485298, -0.0776820182800293, 0.030529245734214783, -0.005517615936696529, -0.10788518935441971, 0.038395028561353683, -0.07761377841234207, 0.12524983286857605, 0.130556121468544, 0.0053245979361236095, -0.08952538669109344, 0.05921848863363266, 0.0016544221434742212, 0.017839903011918068, 0.02135634422302246, 0.06391530483961105, 0.10980871319770813, -0.06337893754243851, 0.058358896523714066, -0.022105442360043526, -0.029480360448360443, 0.09050016105175018, -0.07907761633396149, -0.061694927513599396, -0.019290896132588387, 0.04652206599712372, -0.3609199523925781, 0.07964538037776947, 0.03963799402117729, 0.1463630497455597, 0.16969795525074005, 0.011879488825798035, 0.027187934145331383, -0.004369541071355343, 0.00994914025068283, -0.03327728062868118, 0.06284024566411972, -0.18850009143352509, -0.025113508105278015, -0.022224783897399902, -0.0333385095000267, 0.006760250777006149, -0.03931940346956253, -0.0836285725235939, -0.003633406711742282, -0.06866595149040222, -0.20530371367931366, 0.020772524178028107, -0.07768850773572922, 0.07992082089185715, -0.012696205638349056, 0.01959690824151039, 0.06727391481399536, 0.037252847105264664, -0.15747322142124176, 0.12213947623968124, -0.21295993030071259, -0.11059382557868958, -0.03971680998802185, -0.004838089924305677, -0.0030313110910356045, 0.02440093271434307, 0.06731613725423813, -0.14456699788570404, 0.009461265057325363, -0.021480653434991837, -0.07448934018611908, -0.05110885202884674, 0.08199633657932281, 0.054269369691610336, -0.04134147986769676, 0.06388294696807861, -0.08220745623111725, -0.008458436466753483, -0.08372554183006287, -0.07724102586507797, 0.07778175920248032, 0.059629298746585846, 0.06191543862223625, 0.10498296469449997, -0.029829835519194603, 0.02788045071065426, -0.07284434884786606, 0.1909581869840622, -0.042848728597164154, -0.010139422491192818, 0.052511442452669144, 0.05721886828541756, 0.026708565652370453, 0.04091714322566986, 0.028714308515191078, -0.10947714745998383, 0.03193545714020729, 0.07743846625089645, -0.10786985605955124, -0.1715102642774582, -0.0902632549405098, -0.010448729619383812, 0.03405855968594551, 0.05336863175034523, 0.06720428913831711, 0.028754472732543945, -0.01723024807870388, 0.01761803589761257, 0.007790151983499527, -0.027398480102419853, -0.03141401335597038, -0.051563963294029236, 0.08749659359455109, 0.046688418835401535, -0.015441175550222397, -0.025289883837103844, 0.12727601826190948, -0.11168934404850006, 0.02261456474661827, 0.04099094495177269, 0.02813359908759594, -0.000995589536614716, 0.1444556713104248, 0.05969495326280594, 0.05635363608598709, 0.07694345712661743, -0.008545155636966228, -0.05152398720383644, -0.003908721264451742, -0.044937990605831146, -0.022000785917043686, 0.017755769193172455, -0.13044525682926178, -0.06473860144615173, 0.0468849241733551, 0.07112114876508713, 0.10445404052734375, 0.10152587294578552, -0.12584251165390015, -0.006531680002808571, 0.007364725228399038, -0.1102788969874382, -0.0048168618232011795, 0.07623212784528732, 0.184060201048851, -0.04087113216519356, 0.17465583980083466, 0.03519255295395851, 0.006217147223651409, 0.11247657239437103, 0.05844268202781677, 0.08115687966346741, -0.05833626538515091, -0.05490012839436531, 0.06539379060268402, -0.21518127620220184, 0.11432380974292755, -0.008743355982005596, 0.02039574831724167, -0.045614615082740784, -0.08399637043476105, 0.0023677682038396597, -0.08689373731613159, 0.10698868334293365, 0.06689220666885376, 0.0529615581035614, -0.08957100659608841, -0.14002373814582825, 0.018526367843151093, 0.19910427927970886, 0.03406256437301636, -0.013773825019598007, 0.027789084240794182, 0.038624539971351624, 0.021593816578388214, -0.07165861874818802, -0.18502114713191986, -0.00035852723522111773, 0.046097755432128906, 0.0015140277100726962, -0.10314007103443146, -0.01930815540254116, -0.0029195966199040413, 0.09957830607891083, 0.09349752217531204, 0.026192978024482727, -0.033111199736595154, -0.15781578421592712, 0.21086826920509338, -0.0007580550154671073, -0.07637994736433029, 0.054245058447122574, 0.03590993583202362, -0.04381703585386276, 0.014768474735319614, -0.10369623452425003, 0.10106556862592697, 0.0027518998831510544, 0.0335112065076828, -0.04812711849808693, 0.08753004670143127, 0.013191408477723598, 0.02309567481279373, 0.04458661004900932, -0.040858857333660126, 0.13123449683189392, -0.08453691005706787, 0.14084376394748688, -0.2235163003206253, -0.2410953938961029, -0.023644331842660904, 0.11572200804948807, -0.03562122583389282, -0.058514125645160675, 0.02705034241080284, 0.21706660091876984, 0.2227238118648529, -0.03836442902684212, 0.2014477252960205, 0.11166267842054367, 0.0016654105857014656, -0.28562334179878235, -0.03269001841545105, -0.00998208299279213, -0.04790126904845238, -0.00980465393513441, -0.21156078577041626, 0.09438293427228928, 0.08801575750112534, 0.03046540915966034, 0.1792079210281372, -0.12726043164730072, -0.08587159961462021, 0.03330701217055321, 0.03933939337730408, 0.3865099549293518, -0.12832796573638916, -0.12045055627822876, 0.00920405425131321, -0.05022319778800011, 0.16375240683555603, -0.12524563074111938, 0.08628885447978973, 0.008869540877640247, 0.03758038207888603, 0.0227085929363966, -0.011297080665826797, 0.09296929091215134, 0.06960827857255936, 0.06566627323627472, -0.055833276361227036, -0.08471585065126419, 0.06983296573162079, 0.05363783612847328, -0.05483359843492508, 0.04484504833817482, -0.006722207646816969, -0.13434739410877228, 0.006648148410022259, -0.04811810329556465, 0.07370280474424362, 0.0336574912071228, -0.03302806615829468, 0.02961370348930359, -0.04149443656206131, -0.02409195899963379, -0.04729575663805008, 0.06284266710281372, -0.03230346739292145, 0.15304070711135864, 0.06111002713441849, 0.038889359682798386, -0.11289571970701218, 0.09837373346090317, -0.004179968032985926, -0.05216679349541664, 0.04735877737402916, -0.19000250101089478, 0.026107734069228172, 0.03211815655231476, 0.12294269353151321, -0.03646175563335419, 0.02159465290606022, -0.04565437510609627, 0.13192352652549744, 0.13886122405529022, -0.21290116012096405, -0.044202327728271484, -0.007405159994959831, -0.05808030068874359, 0.06034225597977638, 0.03792340308427811, 0.15873806178569794, -0.017635703086853027, -0.042947206646203995, -0.04749298095703125, 0.014988848008215427, -0.09049255400896072, 0.18785780668258667, 0.11768113076686859, -0.01090928353369236, -0.13438677787780762, 0.10118797421455383, -0.004777177702635527, 0.02167479135096073, 0.07621809095144272, 0.12859895825386047, -0.15263134241104126, -0.0818672776222229, -0.05402388051152229, 0.06959345191717148, 0.01821841299533844, 0.06184397637844086, -0.032105766236782074, -0.04011226445436478, -0.007185091730207205, 0.1670805662870407, -0.03314850851893425, 0.0338253527879715, -0.012127159163355827, 0.0020193790551275015, -0.03596591204404831, -0.04494275897741318, 0.0493776760995388, -0.03282695263624191, -0.023515909910202026, 0.14760182797908783, -0.05951014161109924, 0.09936296194791794, -0.08711402863264084, 0.0009671139996498823, -0.08713581413030624, -0.029223762452602386, 0.08322049677371979, -0.057528428733348846, 0.028132276609539986, -0.04241550713777542, 0.05314720422029495, -0.07937484979629517, -0.02168712019920349, -0.020229000598192215, -0.08765141665935516, -0.018056772649288177, 0.012624608352780342, -0.03243612125515938, -0.11193130165338516, -0.03909402713179588, 0.03398286923766136, 0.0272013358771801, 0.16085240244865417, 0.20348034799098969, -0.00485646165907383, 0.06387131661176682, -0.20185697078704834, -0.11052572727203369, 0.01686161942780018, -0.024907151237130165, 0.018646717071533203, 0.08378037810325623, 0.046487875282764435, -0.04967816546559334, 0.035186827182769775, 0.038328684866428375, 0.09378819912672043, -0.04397944360971451, -0.02236795611679554, -0.059943217784166336, -0.09659799933433533, -0.10908536612987518, -0.02757444977760315, 0.12126810103654861, 0.014230567961931229, 0.05826656520366669, -0.031790561974048615, 0.007066820282489061, -0.0624426044523716, -0.007085607387125492, -0.026690199971199036, -0.05536923184990883, -0.21835513412952423, 0.08590047806501389, 0.05535685271024704, -0.022449206560850143, -0.00671549653634429, 0.050612371414899826, -0.1342192441225052, 0.03712020069360733, -0.0015174251748248935, 0.025951070711016655, 0.0069052595645189285, 0.16432532668113708, 0.07774990797042847, -0.07452160865068436, -0.014840764924883842, -0.0013723464217036963, -0.014380316250026226, -0.07885454595088959, 0.11999177932739258, 0.03360775485634804, -0.004729493986815214, 0.0002145156031474471, -0.05805940181016922, -0.059230200946331024, -0.0020064348354935646, 0.0912749171257019, 0.01830447092652321, 0.04184897243976593, 0.053054362535476685, 0.05527254939079285, 0.13328951597213745, -0.1015004888176918, -0.016481932252645493, 0.0048039937391877174, -0.025302795693278313, -0.12657225131988525, -0.07658340036869049, -0.035990335047245026, -0.18249644339084625, 0.06613606214523315, -0.09918439388275146, 0.05650129169225693, 0.044044941663742065, 0.06464003771543503, 0.035270415246486664, 0.02650887332856655, -0.0721423402428627, -0.05572943389415741, 0.1285300999879837, -0.0031838316936045885, -0.08522564172744751, 0.01844177395105362, -0.08589565753936768, -0.03017391823232174, 0.051759298890829086, -0.02082713693380356, -0.02871161885559559, 0.008460676297545433, 0.03852972388267517, -0.17597809433937073, -0.09666608273983002, -0.019076412543654442, 0.002153016161173582, -0.031090671196579933, -0.03725443035364151, 0.043616797775030136, -0.010059406980872154, -0.033799540251493454, 0.2187386304140091, 0.03671250119805336, -0.05455625802278519, -0.056165795773267746, 0.12240789830684662, 0.013258402235805988, 0.11226514726877213, -0.026954026892781258, -0.06638732552528381, 0.017533795908093452, 0.0815485268831253, 0.17327189445495605, -0.023792559280991554, 0.03115333802998066, -0.07983935624361038, 0.013161477632820606, 0.11522310227155685, 0.17528975009918213, -0.007312495727092028, -0.009801210835576057, -0.05348728224635124, -0.025779027491807938, -0.027772827073931694, -0.028294019401073456, -0.10128727555274963, 0.02237747237086296, 0.07264263927936554, 0.031421858817338943, -0.03767424076795578, 0.06698095053434372, -0.09484995901584625, 0.011989807710051537, 0.10290148854255676, -0.02980796992778778, -0.025425376370549202, 0.014168302528560162, -0.09640686213970184, 0.0997517928481102, 0.15403732657432556, -0.022949937731027603, 0.03255986422300339, 0.0003859504358842969, 0.09166833758354187, -0.23957690596580505, -0.0952666848897934, 0.051803093403577805, -0.15268513560295105, 0.11633360385894775, -0.05328555405139923, 0.12131544202566147, 0.058498725295066833, -0.01038106344640255, -0.029300078749656677, 0.012353242374956608, 0.04635747894644737, 0.10805986821651459, -0.059105224907398224, 0.07440680265426636, -0.0017889667069539428, -0.0040437388233840466, 0.041378505527973175, -0.026015909388661385, -0.061976589262485504, 0.031104451045393944, -0.0016120465006679296, 0.03474830463528633, 0.051574889570474625, -0.033430762588977814, 0.06904270499944687, 0.020647887140512466, -0.1090097725391388, 0.012339557521045208, -0.011256546713411808, -0.04375698044896126, 0.06758178025484085, -0.02435167320072651, -0.033227041363716125, -0.17742742598056793, -0.04927656054496765, -0.00438616331666708, -0.022156914696097374, -0.18047359585762024, 0.04605915769934654, -0.14209970831871033, 0.029783565551042557, -0.05393018573522568, 0.1316830962896347, 0.10068897157907486, -0.029957400634884834, -0.05562002211809158, 0.006948413327336311, 0.06974008679389954, 0.12470133602619171, -0.01636156626045704, -0.029247259721159935 ]
null
null
null
# Glove Twitter Pre-trained glove vectors based on 2B tweets, 27B tokens, 1.2M vocab, uncased. Read more: * https://nlp.stanford.edu/projects/glove/ * https://nlp.stanford.edu/pubs/glove.pdf
{"tags": ["glove", "gensim", "fse"]}
null
fse/glove-twitter-50
[ "glove", "gensim", "fse", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #glove #gensim #fse #region-us
# Glove Twitter Pre-trained glove vectors based on 2B tweets, 27B tokens, 1.2M vocab, uncased. Read more: * URL * URL
[ "# Glove Twitter \n\nPre-trained glove vectors based on 2B tweets, 27B tokens, 1.2M vocab, uncased.\n\nRead more:\n* URL\n* URL" ]
[ "TAGS\n#glove #gensim #fse #region-us \n", "# Glove Twitter \n\nPre-trained glove vectors based on 2B tweets, 27B tokens, 1.2M vocab, uncased.\n\nRead more:\n* URL\n* URL" ]
[ 15, 40 ]
[ "passage: TAGS\n#glove #gensim #fse #region-us \n# Glove Twitter \n\nPre-trained glove vectors based on 2B tweets, 27B tokens, 1.2M vocab, uncased.\n\nRead more:\n* URL\n* URL" ]
[ 0.04894852265715599, -0.0328078418970108, -0.004684979096055031, 0.02913224883377552, 0.0714021623134613, 0.02704455703496933, 0.19776712357997894, 0.13419803977012634, 0.07368900626897812, 0.022140422835946083, 0.16020101308822632, -0.010427804663777351, -0.029329420998692513, 0.23329991102218628, 0.0746946632862091, -0.18358445167541504, -0.005524648353457451, -0.04391488432884216, -0.2078271359205246, 0.12185167521238327, 0.07311175763607025, -0.02320607379078865, 0.028077812865376472, -0.0005515601951628923, -0.17948397994041443, 0.08024781942367554, 0.11575629562139511, -0.07105755060911179, 0.06063306704163551, -0.02238219417631626, 0.05326565355062485, 0.011501848697662354, -0.006281987298280001, -0.1461115926504135, 0.03498479351401329, 0.05165401101112366, -0.03343447670340538, 0.016176143661141396, 0.04922809451818466, -0.03596518561244011, 0.1235768273472786, -0.018393278121948242, 0.0694499984383583, 0.09167106449604034, -0.1358039379119873, -0.14806914329528809, -0.017337504774332047, -0.04249589890241623, 0.019662922248244286, 0.00036597769940271974, -0.008757412433624268, 0.21413902938365936, -0.09379956126213074, 0.05819331109523773, 0.009460296481847763, -0.26331788301467896, -0.03316422179341316, -0.07407771795988083, -0.0888829454779625, 0.06307151168584824, -0.015356133691966534, 0.12257486581802368, 0.08332958817481995, -0.017511775717139244, 0.01575668342411518, -0.04791736230254173, 0.011321852914988995, 0.01652825064957142, -0.050087105482816696, 0.0019820185843855143, 0.10772190243005753, 0.025218632072210312, -0.011986631900072098, 0.0009925041813403368, -0.0009977875743061304, -0.01507103443145752, -0.03376688063144684, -0.018771829083561897, 0.008739093318581581, 0.0320163331925869, -0.15420040488243103, -0.061620455235242844, -0.07291978597640991, -0.04333724454045296, -0.05741991475224495, 0.18551093339920044, -0.018376246094703674, 0.0993008017539978, -0.21035517752170563, -0.027967117726802826, -0.07378590106964111, -0.09060714393854141, 0.04985157027840614, -0.005598620045930147, -0.01948537304997444, -0.02526410110294819, -0.043207041919231415, -0.13064949214458466, 0.1000252291560173, 0.1375923454761505, 0.16868451237678528, 0.044572677463293076, -0.00858236476778984, -0.01861909218132496, 0.10796897113323212, -0.2203933596611023, -0.07681035250425339, 0.03134660795331001, 0.07103633135557175, -0.1509532928466797, 0.04412223398685455, -0.08679279685020447, 0.022011280059814453, 0.036276064813137054, 0.03408206254243851, 0.05402447655797005, -0.0024538030847907066, 0.003938346169888973, 0.015258420258760452, -0.013656282797455788, 0.003193497657775879, -0.08451565355062485, 0.011561186984181404, -0.013395726680755615, -0.0923505648970604, -0.08215472847223282, -0.09113386273384094, 0.05729106813669205, -0.008595765568315983, -0.018596889451146126, -0.17954251170158386, 0.02308349311351776, 0.05726984143257141, -0.07447466254234314, 0.03348621726036072, -0.0779281035065651, 0.019614621996879578, -0.12384402006864548, -0.017333870753645897, 0.025202549993991852, -0.0249550212174654, -0.015004020184278488, 0.042156171053647995, -0.06109524518251419, -0.0006914184195920825, 0.09596890211105347, 0.03511882945895195, -0.08306702971458435, -0.05437031015753746, 0.11373171210289001, -0.0435064360499382, 0.0484626479446888, -0.16841495037078857, 0.01543460600078106, -0.1543305218219757, -0.04165785014629364, -0.1719130426645279, 0.03652413561940193, -0.14534679055213928, 0.10794869810342789, -0.08774764090776443, -0.06503884494304657, -0.024157706648111343, -0.025633854791522026, 0.02739625610411167, 0.13585257530212402, -0.10637251287698746, -0.10564210265874863, 0.20583243668079376, -0.06410826742649078, 0.022128909826278687, 0.1086474284529686, -0.00940252747386694, -0.05225810408592224, 0.0642142966389656, 0.3876175284385681, 0.07102243602275848, -0.05603765323758125, 0.10856752842664719, 0.04449518024921417, 0.0018229726701974869, -0.06642135232686996, 0.05611414834856987, -0.0368155837059021, -0.05055789649486542, 0.023563668131828308, 0.05944669619202614, 0.09969673305749893, -0.10560297220945358, -0.04459984600543976, 0.02243085950613022, -0.05195503309369087, 0.07766684144735336, -0.029866211116313934, 0.0884346067905426, -0.1475202590227127, -0.0007349906954914331, -0.05144156515598297, 0.054920461028814316, 0.02113933116197586, -0.00020147557370364666, -0.12847425043582916, -0.01288729440420866, 0.029091952368617058, -0.006349635776132345, -0.05012967810034752, -0.18676045536994934, 0.02854643203318119, 0.004969166591763496, 0.1336394101381302, 0.022855885326862335, 0.05615011975169182, 0.01424853503704071, -0.020415298640727997, 0.07869850099086761, -0.01712128333747387, -0.013518244959414005, -0.06113235279917717, -0.10703759640455246, 0.03373486548662186, -0.06625906378030777, 0.128549262881279, 0.05107485502958298, 0.011464065872132778, 0.09694194793701172, 0.12441983819007874, 0.04683378338813782, -0.13025803864002228, 0.07073751091957092, -0.005656879395246506, 0.030407743528485298, -0.0776820182800293, 0.030529245734214783, -0.005517615936696529, -0.10788518935441971, 0.038395028561353683, -0.07761377841234207, 0.12524983286857605, 0.130556121468544, 0.0053245979361236095, -0.08952538669109344, 0.05921848863363266, 0.0016544221434742212, 0.017839903011918068, 0.02135634422302246, 0.06391530483961105, 0.10980871319770813, -0.06337893754243851, 0.058358896523714066, -0.022105442360043526, -0.029480360448360443, 0.09050016105175018, -0.07907761633396149, -0.061694927513599396, -0.019290896132588387, 0.04652206599712372, -0.3609199523925781, 0.07964538037776947, 0.03963799402117729, 0.1463630497455597, 0.16969795525074005, 0.011879488825798035, 0.027187934145331383, -0.004369541071355343, 0.00994914025068283, -0.03327728062868118, 0.06284024566411972, -0.18850009143352509, -0.025113508105278015, -0.022224783897399902, -0.0333385095000267, 0.006760250777006149, -0.03931940346956253, -0.0836285725235939, -0.003633406711742282, -0.06866595149040222, -0.20530371367931366, 0.020772524178028107, -0.07768850773572922, 0.07992082089185715, -0.012696205638349056, 0.01959690824151039, 0.06727391481399536, 0.037252847105264664, -0.15747322142124176, 0.12213947623968124, -0.21295993030071259, -0.11059382557868958, -0.03971680998802185, -0.004838089924305677, -0.0030313110910356045, 0.02440093271434307, 0.06731613725423813, -0.14456699788570404, 0.009461265057325363, -0.021480653434991837, -0.07448934018611908, -0.05110885202884674, 0.08199633657932281, 0.054269369691610336, -0.04134147986769676, 0.06388294696807861, -0.08220745623111725, -0.008458436466753483, -0.08372554183006287, -0.07724102586507797, 0.07778175920248032, 0.059629298746585846, 0.06191543862223625, 0.10498296469449997, -0.029829835519194603, 0.02788045071065426, -0.07284434884786606, 0.1909581869840622, -0.042848728597164154, -0.010139422491192818, 0.052511442452669144, 0.05721886828541756, 0.026708565652370453, 0.04091714322566986, 0.028714308515191078, -0.10947714745998383, 0.03193545714020729, 0.07743846625089645, -0.10786985605955124, -0.1715102642774582, -0.0902632549405098, -0.010448729619383812, 0.03405855968594551, 0.05336863175034523, 0.06720428913831711, 0.028754472732543945, -0.01723024807870388, 0.01761803589761257, 0.007790151983499527, -0.027398480102419853, -0.03141401335597038, -0.051563963294029236, 0.08749659359455109, 0.046688418835401535, -0.015441175550222397, -0.025289883837103844, 0.12727601826190948, -0.11168934404850006, 0.02261456474661827, 0.04099094495177269, 0.02813359908759594, -0.000995589536614716, 0.1444556713104248, 0.05969495326280594, 0.05635363608598709, 0.07694345712661743, -0.008545155636966228, -0.05152398720383644, -0.003908721264451742, -0.044937990605831146, -0.022000785917043686, 0.017755769193172455, -0.13044525682926178, -0.06473860144615173, 0.0468849241733551, 0.07112114876508713, 0.10445404052734375, 0.10152587294578552, -0.12584251165390015, -0.006531680002808571, 0.007364725228399038, -0.1102788969874382, -0.0048168618232011795, 0.07623212784528732, 0.184060201048851, -0.04087113216519356, 0.17465583980083466, 0.03519255295395851, 0.006217147223651409, 0.11247657239437103, 0.05844268202781677, 0.08115687966346741, -0.05833626538515091, -0.05490012839436531, 0.06539379060268402, -0.21518127620220184, 0.11432380974292755, -0.008743355982005596, 0.02039574831724167, -0.045614615082740784, -0.08399637043476105, 0.0023677682038396597, -0.08689373731613159, 0.10698868334293365, 0.06689220666885376, 0.0529615581035614, -0.08957100659608841, -0.14002373814582825, 0.018526367843151093, 0.19910427927970886, 0.03406256437301636, -0.013773825019598007, 0.027789084240794182, 0.038624539971351624, 0.021593816578388214, -0.07165861874818802, -0.18502114713191986, -0.00035852723522111773, 0.046097755432128906, 0.0015140277100726962, -0.10314007103443146, -0.01930815540254116, -0.0029195966199040413, 0.09957830607891083, 0.09349752217531204, 0.026192978024482727, -0.033111199736595154, -0.15781578421592712, 0.21086826920509338, -0.0007580550154671073, -0.07637994736433029, 0.054245058447122574, 0.03590993583202362, -0.04381703585386276, 0.014768474735319614, -0.10369623452425003, 0.10106556862592697, 0.0027518998831510544, 0.0335112065076828, -0.04812711849808693, 0.08753004670143127, 0.013191408477723598, 0.02309567481279373, 0.04458661004900932, -0.040858857333660126, 0.13123449683189392, -0.08453691005706787, 0.14084376394748688, -0.2235163003206253, -0.2410953938961029, -0.023644331842660904, 0.11572200804948807, -0.03562122583389282, -0.058514125645160675, 0.02705034241080284, 0.21706660091876984, 0.2227238118648529, -0.03836442902684212, 0.2014477252960205, 0.11166267842054367, 0.0016654105857014656, -0.28562334179878235, -0.03269001841545105, -0.00998208299279213, -0.04790126904845238, -0.00980465393513441, -0.21156078577041626, 0.09438293427228928, 0.08801575750112534, 0.03046540915966034, 0.1792079210281372, -0.12726043164730072, -0.08587159961462021, 0.03330701217055321, 0.03933939337730408, 0.3865099549293518, -0.12832796573638916, -0.12045055627822876, 0.00920405425131321, -0.05022319778800011, 0.16375240683555603, -0.12524563074111938, 0.08628885447978973, 0.008869540877640247, 0.03758038207888603, 0.0227085929363966, -0.011297080665826797, 0.09296929091215134, 0.06960827857255936, 0.06566627323627472, -0.055833276361227036, -0.08471585065126419, 0.06983296573162079, 0.05363783612847328, -0.05483359843492508, 0.04484504833817482, -0.006722207646816969, -0.13434739410877228, 0.006648148410022259, -0.04811810329556465, 0.07370280474424362, 0.0336574912071228, -0.03302806615829468, 0.02961370348930359, -0.04149443656206131, -0.02409195899963379, -0.04729575663805008, 0.06284266710281372, -0.03230346739292145, 0.15304070711135864, 0.06111002713441849, 0.038889359682798386, -0.11289571970701218, 0.09837373346090317, -0.004179968032985926, -0.05216679349541664, 0.04735877737402916, -0.19000250101089478, 0.026107734069228172, 0.03211815655231476, 0.12294269353151321, -0.03646175563335419, 0.02159465290606022, -0.04565437510609627, 0.13192352652549744, 0.13886122405529022, -0.21290116012096405, -0.044202327728271484, -0.007405159994959831, -0.05808030068874359, 0.06034225597977638, 0.03792340308427811, 0.15873806178569794, -0.017635703086853027, -0.042947206646203995, -0.04749298095703125, 0.014988848008215427, -0.09049255400896072, 0.18785780668258667, 0.11768113076686859, -0.01090928353369236, -0.13438677787780762, 0.10118797421455383, -0.004777177702635527, 0.02167479135096073, 0.07621809095144272, 0.12859895825386047, -0.15263134241104126, -0.0818672776222229, -0.05402388051152229, 0.06959345191717148, 0.01821841299533844, 0.06184397637844086, -0.032105766236782074, -0.04011226445436478, -0.007185091730207205, 0.1670805662870407, -0.03314850851893425, 0.0338253527879715, -0.012127159163355827, 0.0020193790551275015, -0.03596591204404831, -0.04494275897741318, 0.0493776760995388, -0.03282695263624191, -0.023515909910202026, 0.14760182797908783, -0.05951014161109924, 0.09936296194791794, -0.08711402863264084, 0.0009671139996498823, -0.08713581413030624, -0.029223762452602386, 0.08322049677371979, -0.057528428733348846, 0.028132276609539986, -0.04241550713777542, 0.05314720422029495, -0.07937484979629517, -0.02168712019920349, -0.020229000598192215, -0.08765141665935516, -0.018056772649288177, 0.012624608352780342, -0.03243612125515938, -0.11193130165338516, -0.03909402713179588, 0.03398286923766136, 0.0272013358771801, 0.16085240244865417, 0.20348034799098969, -0.00485646165907383, 0.06387131661176682, -0.20185697078704834, -0.11052572727203369, 0.01686161942780018, -0.024907151237130165, 0.018646717071533203, 0.08378037810325623, 0.046487875282764435, -0.04967816546559334, 0.035186827182769775, 0.038328684866428375, 0.09378819912672043, -0.04397944360971451, -0.02236795611679554, -0.059943217784166336, -0.09659799933433533, -0.10908536612987518, -0.02757444977760315, 0.12126810103654861, 0.014230567961931229, 0.05826656520366669, -0.031790561974048615, 0.007066820282489061, -0.0624426044523716, -0.007085607387125492, -0.026690199971199036, -0.05536923184990883, -0.21835513412952423, 0.08590047806501389, 0.05535685271024704, -0.022449206560850143, -0.00671549653634429, 0.050612371414899826, -0.1342192441225052, 0.03712020069360733, -0.0015174251748248935, 0.025951070711016655, 0.0069052595645189285, 0.16432532668113708, 0.07774990797042847, -0.07452160865068436, -0.014840764924883842, -0.0013723464217036963, -0.014380316250026226, -0.07885454595088959, 0.11999177932739258, 0.03360775485634804, -0.004729493986815214, 0.0002145156031474471, -0.05805940181016922, -0.059230200946331024, -0.0020064348354935646, 0.0912749171257019, 0.01830447092652321, 0.04184897243976593, 0.053054362535476685, 0.05527254939079285, 0.13328951597213745, -0.1015004888176918, -0.016481932252645493, 0.0048039937391877174, -0.025302795693278313, -0.12657225131988525, -0.07658340036869049, -0.035990335047245026, -0.18249644339084625, 0.06613606214523315, -0.09918439388275146, 0.05650129169225693, 0.044044941663742065, 0.06464003771543503, 0.035270415246486664, 0.02650887332856655, -0.0721423402428627, -0.05572943389415741, 0.1285300999879837, -0.0031838316936045885, -0.08522564172744751, 0.01844177395105362, -0.08589565753936768, -0.03017391823232174, 0.051759298890829086, -0.02082713693380356, -0.02871161885559559, 0.008460676297545433, 0.03852972388267517, -0.17597809433937073, -0.09666608273983002, -0.019076412543654442, 0.002153016161173582, -0.031090671196579933, -0.03725443035364151, 0.043616797775030136, -0.010059406980872154, -0.033799540251493454, 0.2187386304140091, 0.03671250119805336, -0.05455625802278519, -0.056165795773267746, 0.12240789830684662, 0.013258402235805988, 0.11226514726877213, -0.026954026892781258, -0.06638732552528381, 0.017533795908093452, 0.0815485268831253, 0.17327189445495605, -0.023792559280991554, 0.03115333802998066, -0.07983935624361038, 0.013161477632820606, 0.11522310227155685, 0.17528975009918213, -0.007312495727092028, -0.009801210835576057, -0.05348728224635124, -0.025779027491807938, -0.027772827073931694, -0.028294019401073456, -0.10128727555274963, 0.02237747237086296, 0.07264263927936554, 0.031421858817338943, -0.03767424076795578, 0.06698095053434372, -0.09484995901584625, 0.011989807710051537, 0.10290148854255676, -0.02980796992778778, -0.025425376370549202, 0.014168302528560162, -0.09640686213970184, 0.0997517928481102, 0.15403732657432556, -0.022949937731027603, 0.03255986422300339, 0.0003859504358842969, 0.09166833758354187, -0.23957690596580505, -0.0952666848897934, 0.051803093403577805, -0.15268513560295105, 0.11633360385894775, -0.05328555405139923, 0.12131544202566147, 0.058498725295066833, -0.01038106344640255, -0.029300078749656677, 0.012353242374956608, 0.04635747894644737, 0.10805986821651459, -0.059105224907398224, 0.07440680265426636, -0.0017889667069539428, -0.0040437388233840466, 0.041378505527973175, -0.026015909388661385, -0.061976589262485504, 0.031104451045393944, -0.0016120465006679296, 0.03474830463528633, 0.051574889570474625, -0.033430762588977814, 0.06904270499944687, 0.020647887140512466, -0.1090097725391388, 0.012339557521045208, -0.011256546713411808, -0.04375698044896126, 0.06758178025484085, -0.02435167320072651, -0.033227041363716125, -0.17742742598056793, -0.04927656054496765, -0.00438616331666708, -0.022156914696097374, -0.18047359585762024, 0.04605915769934654, -0.14209970831871033, 0.029783565551042557, -0.05393018573522568, 0.1316830962896347, 0.10068897157907486, -0.029957400634884834, -0.05562002211809158, 0.006948413327336311, 0.06974008679389954, 0.12470133602619171, -0.01636156626045704, -0.029247259721159935 ]
null
null
null
# Glove Twitter Pre-trained glove vectors based on 2B tweets, 27B tokens, 1.2M vocab, uncased. Read more: * https://nlp.stanford.edu/projects/glove/ * https://nlp.stanford.edu/pubs/glove.pdf
{"tags": ["glove", "gensim", "fse"]}
null
fse/glove-wiki-gigaword-100
[ "glove", "gensim", "fse", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #glove #gensim #fse #region-us
# Glove Twitter Pre-trained glove vectors based on 2B tweets, 27B tokens, 1.2M vocab, uncased. Read more: * URL * URL
[ "# Glove Twitter \n\nPre-trained glove vectors based on 2B tweets, 27B tokens, 1.2M vocab, uncased.\n\nRead more:\n* URL\n* URL" ]
[ "TAGS\n#glove #gensim #fse #region-us \n", "# Glove Twitter \n\nPre-trained glove vectors based on 2B tweets, 27B tokens, 1.2M vocab, uncased.\n\nRead more:\n* URL\n* URL" ]
[ 15, 40 ]
[ "passage: TAGS\n#glove #gensim #fse #region-us \n# Glove Twitter \n\nPre-trained glove vectors based on 2B tweets, 27B tokens, 1.2M vocab, uncased.\n\nRead more:\n* URL\n* URL" ]
[ 0.04894852265715599, -0.0328078418970108, -0.004684979096055031, 0.02913224883377552, 0.0714021623134613, 0.02704455703496933, 0.19776712357997894, 0.13419803977012634, 0.07368900626897812, 0.022140422835946083, 0.16020101308822632, -0.010427804663777351, -0.029329420998692513, 0.23329991102218628, 0.0746946632862091, -0.18358445167541504, -0.005524648353457451, -0.04391488432884216, -0.2078271359205246, 0.12185167521238327, 0.07311175763607025, -0.02320607379078865, 0.028077812865376472, -0.0005515601951628923, -0.17948397994041443, 0.08024781942367554, 0.11575629562139511, -0.07105755060911179, 0.06063306704163551, -0.02238219417631626, 0.05326565355062485, 0.011501848697662354, -0.006281987298280001, -0.1461115926504135, 0.03498479351401329, 0.05165401101112366, -0.03343447670340538, 0.016176143661141396, 0.04922809451818466, -0.03596518561244011, 0.1235768273472786, -0.018393278121948242, 0.0694499984383583, 0.09167106449604034, -0.1358039379119873, -0.14806914329528809, -0.017337504774332047, -0.04249589890241623, 0.019662922248244286, 0.00036597769940271974, -0.008757412433624268, 0.21413902938365936, -0.09379956126213074, 0.05819331109523773, 0.009460296481847763, -0.26331788301467896, -0.03316422179341316, -0.07407771795988083, -0.0888829454779625, 0.06307151168584824, -0.015356133691966534, 0.12257486581802368, 0.08332958817481995, -0.017511775717139244, 0.01575668342411518, -0.04791736230254173, 0.011321852914988995, 0.01652825064957142, -0.050087105482816696, 0.0019820185843855143, 0.10772190243005753, 0.025218632072210312, -0.011986631900072098, 0.0009925041813403368, -0.0009977875743061304, -0.01507103443145752, -0.03376688063144684, -0.018771829083561897, 0.008739093318581581, 0.0320163331925869, -0.15420040488243103, -0.061620455235242844, -0.07291978597640991, -0.04333724454045296, -0.05741991475224495, 0.18551093339920044, -0.018376246094703674, 0.0993008017539978, -0.21035517752170563, -0.027967117726802826, -0.07378590106964111, -0.09060714393854141, 0.04985157027840614, -0.005598620045930147, -0.01948537304997444, -0.02526410110294819, -0.043207041919231415, -0.13064949214458466, 0.1000252291560173, 0.1375923454761505, 0.16868451237678528, 0.044572677463293076, -0.00858236476778984, -0.01861909218132496, 0.10796897113323212, -0.2203933596611023, -0.07681035250425339, 0.03134660795331001, 0.07103633135557175, -0.1509532928466797, 0.04412223398685455, -0.08679279685020447, 0.022011280059814453, 0.036276064813137054, 0.03408206254243851, 0.05402447655797005, -0.0024538030847907066, 0.003938346169888973, 0.015258420258760452, -0.013656282797455788, 0.003193497657775879, -0.08451565355062485, 0.011561186984181404, -0.013395726680755615, -0.0923505648970604, -0.08215472847223282, -0.09113386273384094, 0.05729106813669205, -0.008595765568315983, -0.018596889451146126, -0.17954251170158386, 0.02308349311351776, 0.05726984143257141, -0.07447466254234314, 0.03348621726036072, -0.0779281035065651, 0.019614621996879578, -0.12384402006864548, -0.017333870753645897, 0.025202549993991852, -0.0249550212174654, -0.015004020184278488, 0.042156171053647995, -0.06109524518251419, -0.0006914184195920825, 0.09596890211105347, 0.03511882945895195, -0.08306702971458435, -0.05437031015753746, 0.11373171210289001, -0.0435064360499382, 0.0484626479446888, -0.16841495037078857, 0.01543460600078106, -0.1543305218219757, -0.04165785014629364, -0.1719130426645279, 0.03652413561940193, -0.14534679055213928, 0.10794869810342789, -0.08774764090776443, -0.06503884494304657, -0.024157706648111343, -0.025633854791522026, 0.02739625610411167, 0.13585257530212402, -0.10637251287698746, -0.10564210265874863, 0.20583243668079376, -0.06410826742649078, 0.022128909826278687, 0.1086474284529686, -0.00940252747386694, -0.05225810408592224, 0.0642142966389656, 0.3876175284385681, 0.07102243602275848, -0.05603765323758125, 0.10856752842664719, 0.04449518024921417, 0.0018229726701974869, -0.06642135232686996, 0.05611414834856987, -0.0368155837059021, -0.05055789649486542, 0.023563668131828308, 0.05944669619202614, 0.09969673305749893, -0.10560297220945358, -0.04459984600543976, 0.02243085950613022, -0.05195503309369087, 0.07766684144735336, -0.029866211116313934, 0.0884346067905426, -0.1475202590227127, -0.0007349906954914331, -0.05144156515598297, 0.054920461028814316, 0.02113933116197586, -0.00020147557370364666, -0.12847425043582916, -0.01288729440420866, 0.029091952368617058, -0.006349635776132345, -0.05012967810034752, -0.18676045536994934, 0.02854643203318119, 0.004969166591763496, 0.1336394101381302, 0.022855885326862335, 0.05615011975169182, 0.01424853503704071, -0.020415298640727997, 0.07869850099086761, -0.01712128333747387, -0.013518244959414005, -0.06113235279917717, -0.10703759640455246, 0.03373486548662186, -0.06625906378030777, 0.128549262881279, 0.05107485502958298, 0.011464065872132778, 0.09694194793701172, 0.12441983819007874, 0.04683378338813782, -0.13025803864002228, 0.07073751091957092, -0.005656879395246506, 0.030407743528485298, -0.0776820182800293, 0.030529245734214783, -0.005517615936696529, -0.10788518935441971, 0.038395028561353683, -0.07761377841234207, 0.12524983286857605, 0.130556121468544, 0.0053245979361236095, -0.08952538669109344, 0.05921848863363266, 0.0016544221434742212, 0.017839903011918068, 0.02135634422302246, 0.06391530483961105, 0.10980871319770813, -0.06337893754243851, 0.058358896523714066, -0.022105442360043526, -0.029480360448360443, 0.09050016105175018, -0.07907761633396149, -0.061694927513599396, -0.019290896132588387, 0.04652206599712372, -0.3609199523925781, 0.07964538037776947, 0.03963799402117729, 0.1463630497455597, 0.16969795525074005, 0.011879488825798035, 0.027187934145331383, -0.004369541071355343, 0.00994914025068283, -0.03327728062868118, 0.06284024566411972, -0.18850009143352509, -0.025113508105278015, -0.022224783897399902, -0.0333385095000267, 0.006760250777006149, -0.03931940346956253, -0.0836285725235939, -0.003633406711742282, -0.06866595149040222, -0.20530371367931366, 0.020772524178028107, -0.07768850773572922, 0.07992082089185715, -0.012696205638349056, 0.01959690824151039, 0.06727391481399536, 0.037252847105264664, -0.15747322142124176, 0.12213947623968124, -0.21295993030071259, -0.11059382557868958, -0.03971680998802185, -0.004838089924305677, -0.0030313110910356045, 0.02440093271434307, 0.06731613725423813, -0.14456699788570404, 0.009461265057325363, -0.021480653434991837, -0.07448934018611908, -0.05110885202884674, 0.08199633657932281, 0.054269369691610336, -0.04134147986769676, 0.06388294696807861, -0.08220745623111725, -0.008458436466753483, -0.08372554183006287, -0.07724102586507797, 0.07778175920248032, 0.059629298746585846, 0.06191543862223625, 0.10498296469449997, -0.029829835519194603, 0.02788045071065426, -0.07284434884786606, 0.1909581869840622, -0.042848728597164154, -0.010139422491192818, 0.052511442452669144, 0.05721886828541756, 0.026708565652370453, 0.04091714322566986, 0.028714308515191078, -0.10947714745998383, 0.03193545714020729, 0.07743846625089645, -0.10786985605955124, -0.1715102642774582, -0.0902632549405098, -0.010448729619383812, 0.03405855968594551, 0.05336863175034523, 0.06720428913831711, 0.028754472732543945, -0.01723024807870388, 0.01761803589761257, 0.007790151983499527, -0.027398480102419853, -0.03141401335597038, -0.051563963294029236, 0.08749659359455109, 0.046688418835401535, -0.015441175550222397, -0.025289883837103844, 0.12727601826190948, -0.11168934404850006, 0.02261456474661827, 0.04099094495177269, 0.02813359908759594, -0.000995589536614716, 0.1444556713104248, 0.05969495326280594, 0.05635363608598709, 0.07694345712661743, -0.008545155636966228, -0.05152398720383644, -0.003908721264451742, -0.044937990605831146, -0.022000785917043686, 0.017755769193172455, -0.13044525682926178, -0.06473860144615173, 0.0468849241733551, 0.07112114876508713, 0.10445404052734375, 0.10152587294578552, -0.12584251165390015, -0.006531680002808571, 0.007364725228399038, -0.1102788969874382, -0.0048168618232011795, 0.07623212784528732, 0.184060201048851, -0.04087113216519356, 0.17465583980083466, 0.03519255295395851, 0.006217147223651409, 0.11247657239437103, 0.05844268202781677, 0.08115687966346741, -0.05833626538515091, -0.05490012839436531, 0.06539379060268402, -0.21518127620220184, 0.11432380974292755, -0.008743355982005596, 0.02039574831724167, -0.045614615082740784, -0.08399637043476105, 0.0023677682038396597, -0.08689373731613159, 0.10698868334293365, 0.06689220666885376, 0.0529615581035614, -0.08957100659608841, -0.14002373814582825, 0.018526367843151093, 0.19910427927970886, 0.03406256437301636, -0.013773825019598007, 0.027789084240794182, 0.038624539971351624, 0.021593816578388214, -0.07165861874818802, -0.18502114713191986, -0.00035852723522111773, 0.046097755432128906, 0.0015140277100726962, -0.10314007103443146, -0.01930815540254116, -0.0029195966199040413, 0.09957830607891083, 0.09349752217531204, 0.026192978024482727, -0.033111199736595154, -0.15781578421592712, 0.21086826920509338, -0.0007580550154671073, -0.07637994736433029, 0.054245058447122574, 0.03590993583202362, -0.04381703585386276, 0.014768474735319614, -0.10369623452425003, 0.10106556862592697, 0.0027518998831510544, 0.0335112065076828, -0.04812711849808693, 0.08753004670143127, 0.013191408477723598, 0.02309567481279373, 0.04458661004900932, -0.040858857333660126, 0.13123449683189392, -0.08453691005706787, 0.14084376394748688, -0.2235163003206253, -0.2410953938961029, -0.023644331842660904, 0.11572200804948807, -0.03562122583389282, -0.058514125645160675, 0.02705034241080284, 0.21706660091876984, 0.2227238118648529, -0.03836442902684212, 0.2014477252960205, 0.11166267842054367, 0.0016654105857014656, -0.28562334179878235, -0.03269001841545105, -0.00998208299279213, -0.04790126904845238, -0.00980465393513441, -0.21156078577041626, 0.09438293427228928, 0.08801575750112534, 0.03046540915966034, 0.1792079210281372, -0.12726043164730072, -0.08587159961462021, 0.03330701217055321, 0.03933939337730408, 0.3865099549293518, -0.12832796573638916, -0.12045055627822876, 0.00920405425131321, -0.05022319778800011, 0.16375240683555603, -0.12524563074111938, 0.08628885447978973, 0.008869540877640247, 0.03758038207888603, 0.0227085929363966, -0.011297080665826797, 0.09296929091215134, 0.06960827857255936, 0.06566627323627472, -0.055833276361227036, -0.08471585065126419, 0.06983296573162079, 0.05363783612847328, -0.05483359843492508, 0.04484504833817482, -0.006722207646816969, -0.13434739410877228, 0.006648148410022259, -0.04811810329556465, 0.07370280474424362, 0.0336574912071228, -0.03302806615829468, 0.02961370348930359, -0.04149443656206131, -0.02409195899963379, -0.04729575663805008, 0.06284266710281372, -0.03230346739292145, 0.15304070711135864, 0.06111002713441849, 0.038889359682798386, -0.11289571970701218, 0.09837373346090317, -0.004179968032985926, -0.05216679349541664, 0.04735877737402916, -0.19000250101089478, 0.026107734069228172, 0.03211815655231476, 0.12294269353151321, -0.03646175563335419, 0.02159465290606022, -0.04565437510609627, 0.13192352652549744, 0.13886122405529022, -0.21290116012096405, -0.044202327728271484, -0.007405159994959831, -0.05808030068874359, 0.06034225597977638, 0.03792340308427811, 0.15873806178569794, -0.017635703086853027, -0.042947206646203995, -0.04749298095703125, 0.014988848008215427, -0.09049255400896072, 0.18785780668258667, 0.11768113076686859, -0.01090928353369236, -0.13438677787780762, 0.10118797421455383, -0.004777177702635527, 0.02167479135096073, 0.07621809095144272, 0.12859895825386047, -0.15263134241104126, -0.0818672776222229, -0.05402388051152229, 0.06959345191717148, 0.01821841299533844, 0.06184397637844086, -0.032105766236782074, -0.04011226445436478, -0.007185091730207205, 0.1670805662870407, -0.03314850851893425, 0.0338253527879715, -0.012127159163355827, 0.0020193790551275015, -0.03596591204404831, -0.04494275897741318, 0.0493776760995388, -0.03282695263624191, -0.023515909910202026, 0.14760182797908783, -0.05951014161109924, 0.09936296194791794, -0.08711402863264084, 0.0009671139996498823, -0.08713581413030624, -0.029223762452602386, 0.08322049677371979, -0.057528428733348846, 0.028132276609539986, -0.04241550713777542, 0.05314720422029495, -0.07937484979629517, -0.02168712019920349, -0.020229000598192215, -0.08765141665935516, -0.018056772649288177, 0.012624608352780342, -0.03243612125515938, -0.11193130165338516, -0.03909402713179588, 0.03398286923766136, 0.0272013358771801, 0.16085240244865417, 0.20348034799098969, -0.00485646165907383, 0.06387131661176682, -0.20185697078704834, -0.11052572727203369, 0.01686161942780018, -0.024907151237130165, 0.018646717071533203, 0.08378037810325623, 0.046487875282764435, -0.04967816546559334, 0.035186827182769775, 0.038328684866428375, 0.09378819912672043, -0.04397944360971451, -0.02236795611679554, -0.059943217784166336, -0.09659799933433533, -0.10908536612987518, -0.02757444977760315, 0.12126810103654861, 0.014230567961931229, 0.05826656520366669, -0.031790561974048615, 0.007066820282489061, -0.0624426044523716, -0.007085607387125492, -0.026690199971199036, -0.05536923184990883, -0.21835513412952423, 0.08590047806501389, 0.05535685271024704, -0.022449206560850143, -0.00671549653634429, 0.050612371414899826, -0.1342192441225052, 0.03712020069360733, -0.0015174251748248935, 0.025951070711016655, 0.0069052595645189285, 0.16432532668113708, 0.07774990797042847, -0.07452160865068436, -0.014840764924883842, -0.0013723464217036963, -0.014380316250026226, -0.07885454595088959, 0.11999177932739258, 0.03360775485634804, -0.004729493986815214, 0.0002145156031474471, -0.05805940181016922, -0.059230200946331024, -0.0020064348354935646, 0.0912749171257019, 0.01830447092652321, 0.04184897243976593, 0.053054362535476685, 0.05527254939079285, 0.13328951597213745, -0.1015004888176918, -0.016481932252645493, 0.0048039937391877174, -0.025302795693278313, -0.12657225131988525, -0.07658340036869049, -0.035990335047245026, -0.18249644339084625, 0.06613606214523315, -0.09918439388275146, 0.05650129169225693, 0.044044941663742065, 0.06464003771543503, 0.035270415246486664, 0.02650887332856655, -0.0721423402428627, -0.05572943389415741, 0.1285300999879837, -0.0031838316936045885, -0.08522564172744751, 0.01844177395105362, -0.08589565753936768, -0.03017391823232174, 0.051759298890829086, -0.02082713693380356, -0.02871161885559559, 0.008460676297545433, 0.03852972388267517, -0.17597809433937073, -0.09666608273983002, -0.019076412543654442, 0.002153016161173582, -0.031090671196579933, -0.03725443035364151, 0.043616797775030136, -0.010059406980872154, -0.033799540251493454, 0.2187386304140091, 0.03671250119805336, -0.05455625802278519, -0.056165795773267746, 0.12240789830684662, 0.013258402235805988, 0.11226514726877213, -0.026954026892781258, -0.06638732552528381, 0.017533795908093452, 0.0815485268831253, 0.17327189445495605, -0.023792559280991554, 0.03115333802998066, -0.07983935624361038, 0.013161477632820606, 0.11522310227155685, 0.17528975009918213, -0.007312495727092028, -0.009801210835576057, -0.05348728224635124, -0.025779027491807938, -0.027772827073931694, -0.028294019401073456, -0.10128727555274963, 0.02237747237086296, 0.07264263927936554, 0.031421858817338943, -0.03767424076795578, 0.06698095053434372, -0.09484995901584625, 0.011989807710051537, 0.10290148854255676, -0.02980796992778778, -0.025425376370549202, 0.014168302528560162, -0.09640686213970184, 0.0997517928481102, 0.15403732657432556, -0.022949937731027603, 0.03255986422300339, 0.0003859504358842969, 0.09166833758354187, -0.23957690596580505, -0.0952666848897934, 0.051803093403577805, -0.15268513560295105, 0.11633360385894775, -0.05328555405139923, 0.12131544202566147, 0.058498725295066833, -0.01038106344640255, -0.029300078749656677, 0.012353242374956608, 0.04635747894644737, 0.10805986821651459, -0.059105224907398224, 0.07440680265426636, -0.0017889667069539428, -0.0040437388233840466, 0.041378505527973175, -0.026015909388661385, -0.061976589262485504, 0.031104451045393944, -0.0016120465006679296, 0.03474830463528633, 0.051574889570474625, -0.033430762588977814, 0.06904270499944687, 0.020647887140512466, -0.1090097725391388, 0.012339557521045208, -0.011256546713411808, -0.04375698044896126, 0.06758178025484085, -0.02435167320072651, -0.033227041363716125, -0.17742742598056793, -0.04927656054496765, -0.00438616331666708, -0.022156914696097374, -0.18047359585762024, 0.04605915769934654, -0.14209970831871033, 0.029783565551042557, -0.05393018573522568, 0.1316830962896347, 0.10068897157907486, -0.029957400634884834, -0.05562002211809158, 0.006948413327336311, 0.06974008679389954, 0.12470133602619171, -0.01636156626045704, -0.029247259721159935 ]
null
null
null
# Glove Twitter Pre-trained glove vectors based on 2B tweets, 27B tokens, 1.2M vocab, uncased. Read more: * https://nlp.stanford.edu/projects/glove/ * https://nlp.stanford.edu/pubs/glove.pdf
{"tags": ["glove", "gensim", "fse"]}
null
fse/glove-wiki-gigaword-200
[ "glove", "gensim", "fse", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #glove #gensim #fse #region-us
# Glove Twitter Pre-trained glove vectors based on 2B tweets, 27B tokens, 1.2M vocab, uncased. Read more: * URL * URL
[ "# Glove Twitter \n\nPre-trained glove vectors based on 2B tweets, 27B tokens, 1.2M vocab, uncased.\n\nRead more:\n* URL\n* URL" ]
[ "TAGS\n#glove #gensim #fse #region-us \n", "# Glove Twitter \n\nPre-trained glove vectors based on 2B tweets, 27B tokens, 1.2M vocab, uncased.\n\nRead more:\n* URL\n* URL" ]
[ 15, 40 ]
[ "passage: TAGS\n#glove #gensim #fse #region-us \n# Glove Twitter \n\nPre-trained glove vectors based on 2B tweets, 27B tokens, 1.2M vocab, uncased.\n\nRead more:\n* URL\n* URL" ]
[ 0.04894852265715599, -0.0328078418970108, -0.004684979096055031, 0.02913224883377552, 0.0714021623134613, 0.02704455703496933, 0.19776712357997894, 0.13419803977012634, 0.07368900626897812, 0.022140422835946083, 0.16020101308822632, -0.010427804663777351, -0.029329420998692513, 0.23329991102218628, 0.0746946632862091, -0.18358445167541504, -0.005524648353457451, -0.04391488432884216, -0.2078271359205246, 0.12185167521238327, 0.07311175763607025, -0.02320607379078865, 0.028077812865376472, -0.0005515601951628923, -0.17948397994041443, 0.08024781942367554, 0.11575629562139511, -0.07105755060911179, 0.06063306704163551, -0.02238219417631626, 0.05326565355062485, 0.011501848697662354, -0.006281987298280001, -0.1461115926504135, 0.03498479351401329, 0.05165401101112366, -0.03343447670340538, 0.016176143661141396, 0.04922809451818466, -0.03596518561244011, 0.1235768273472786, -0.018393278121948242, 0.0694499984383583, 0.09167106449604034, -0.1358039379119873, -0.14806914329528809, -0.017337504774332047, -0.04249589890241623, 0.019662922248244286, 0.00036597769940271974, -0.008757412433624268, 0.21413902938365936, -0.09379956126213074, 0.05819331109523773, 0.009460296481847763, -0.26331788301467896, -0.03316422179341316, -0.07407771795988083, -0.0888829454779625, 0.06307151168584824, -0.015356133691966534, 0.12257486581802368, 0.08332958817481995, -0.017511775717139244, 0.01575668342411518, -0.04791736230254173, 0.011321852914988995, 0.01652825064957142, -0.050087105482816696, 0.0019820185843855143, 0.10772190243005753, 0.025218632072210312, -0.011986631900072098, 0.0009925041813403368, -0.0009977875743061304, -0.01507103443145752, -0.03376688063144684, -0.018771829083561897, 0.008739093318581581, 0.0320163331925869, -0.15420040488243103, -0.061620455235242844, -0.07291978597640991, -0.04333724454045296, -0.05741991475224495, 0.18551093339920044, -0.018376246094703674, 0.0993008017539978, -0.21035517752170563, -0.027967117726802826, -0.07378590106964111, -0.09060714393854141, 0.04985157027840614, -0.005598620045930147, -0.01948537304997444, -0.02526410110294819, -0.043207041919231415, -0.13064949214458466, 0.1000252291560173, 0.1375923454761505, 0.16868451237678528, 0.044572677463293076, -0.00858236476778984, -0.01861909218132496, 0.10796897113323212, -0.2203933596611023, -0.07681035250425339, 0.03134660795331001, 0.07103633135557175, -0.1509532928466797, 0.04412223398685455, -0.08679279685020447, 0.022011280059814453, 0.036276064813137054, 0.03408206254243851, 0.05402447655797005, -0.0024538030847907066, 0.003938346169888973, 0.015258420258760452, -0.013656282797455788, 0.003193497657775879, -0.08451565355062485, 0.011561186984181404, -0.013395726680755615, -0.0923505648970604, -0.08215472847223282, -0.09113386273384094, 0.05729106813669205, -0.008595765568315983, -0.018596889451146126, -0.17954251170158386, 0.02308349311351776, 0.05726984143257141, -0.07447466254234314, 0.03348621726036072, -0.0779281035065651, 0.019614621996879578, -0.12384402006864548, -0.017333870753645897, 0.025202549993991852, -0.0249550212174654, -0.015004020184278488, 0.042156171053647995, -0.06109524518251419, -0.0006914184195920825, 0.09596890211105347, 0.03511882945895195, -0.08306702971458435, -0.05437031015753746, 0.11373171210289001, -0.0435064360499382, 0.0484626479446888, -0.16841495037078857, 0.01543460600078106, -0.1543305218219757, -0.04165785014629364, -0.1719130426645279, 0.03652413561940193, -0.14534679055213928, 0.10794869810342789, -0.08774764090776443, -0.06503884494304657, -0.024157706648111343, -0.025633854791522026, 0.02739625610411167, 0.13585257530212402, -0.10637251287698746, -0.10564210265874863, 0.20583243668079376, -0.06410826742649078, 0.022128909826278687, 0.1086474284529686, -0.00940252747386694, -0.05225810408592224, 0.0642142966389656, 0.3876175284385681, 0.07102243602275848, -0.05603765323758125, 0.10856752842664719, 0.04449518024921417, 0.0018229726701974869, -0.06642135232686996, 0.05611414834856987, -0.0368155837059021, -0.05055789649486542, 0.023563668131828308, 0.05944669619202614, 0.09969673305749893, -0.10560297220945358, -0.04459984600543976, 0.02243085950613022, -0.05195503309369087, 0.07766684144735336, -0.029866211116313934, 0.0884346067905426, -0.1475202590227127, -0.0007349906954914331, -0.05144156515598297, 0.054920461028814316, 0.02113933116197586, -0.00020147557370364666, -0.12847425043582916, -0.01288729440420866, 0.029091952368617058, -0.006349635776132345, -0.05012967810034752, -0.18676045536994934, 0.02854643203318119, 0.004969166591763496, 0.1336394101381302, 0.022855885326862335, 0.05615011975169182, 0.01424853503704071, -0.020415298640727997, 0.07869850099086761, -0.01712128333747387, -0.013518244959414005, -0.06113235279917717, -0.10703759640455246, 0.03373486548662186, -0.06625906378030777, 0.128549262881279, 0.05107485502958298, 0.011464065872132778, 0.09694194793701172, 0.12441983819007874, 0.04683378338813782, -0.13025803864002228, 0.07073751091957092, -0.005656879395246506, 0.030407743528485298, -0.0776820182800293, 0.030529245734214783, -0.005517615936696529, -0.10788518935441971, 0.038395028561353683, -0.07761377841234207, 0.12524983286857605, 0.130556121468544, 0.0053245979361236095, -0.08952538669109344, 0.05921848863363266, 0.0016544221434742212, 0.017839903011918068, 0.02135634422302246, 0.06391530483961105, 0.10980871319770813, -0.06337893754243851, 0.058358896523714066, -0.022105442360043526, -0.029480360448360443, 0.09050016105175018, -0.07907761633396149, -0.061694927513599396, -0.019290896132588387, 0.04652206599712372, -0.3609199523925781, 0.07964538037776947, 0.03963799402117729, 0.1463630497455597, 0.16969795525074005, 0.011879488825798035, 0.027187934145331383, -0.004369541071355343, 0.00994914025068283, -0.03327728062868118, 0.06284024566411972, -0.18850009143352509, -0.025113508105278015, -0.022224783897399902, -0.0333385095000267, 0.006760250777006149, -0.03931940346956253, -0.0836285725235939, -0.003633406711742282, -0.06866595149040222, -0.20530371367931366, 0.020772524178028107, -0.07768850773572922, 0.07992082089185715, -0.012696205638349056, 0.01959690824151039, 0.06727391481399536, 0.037252847105264664, -0.15747322142124176, 0.12213947623968124, -0.21295993030071259, -0.11059382557868958, -0.03971680998802185, -0.004838089924305677, -0.0030313110910356045, 0.02440093271434307, 0.06731613725423813, -0.14456699788570404, 0.009461265057325363, -0.021480653434991837, -0.07448934018611908, -0.05110885202884674, 0.08199633657932281, 0.054269369691610336, -0.04134147986769676, 0.06388294696807861, -0.08220745623111725, -0.008458436466753483, -0.08372554183006287, -0.07724102586507797, 0.07778175920248032, 0.059629298746585846, 0.06191543862223625, 0.10498296469449997, -0.029829835519194603, 0.02788045071065426, -0.07284434884786606, 0.1909581869840622, -0.042848728597164154, -0.010139422491192818, 0.052511442452669144, 0.05721886828541756, 0.026708565652370453, 0.04091714322566986, 0.028714308515191078, -0.10947714745998383, 0.03193545714020729, 0.07743846625089645, -0.10786985605955124, -0.1715102642774582, -0.0902632549405098, -0.010448729619383812, 0.03405855968594551, 0.05336863175034523, 0.06720428913831711, 0.028754472732543945, -0.01723024807870388, 0.01761803589761257, 0.007790151983499527, -0.027398480102419853, -0.03141401335597038, -0.051563963294029236, 0.08749659359455109, 0.046688418835401535, -0.015441175550222397, -0.025289883837103844, 0.12727601826190948, -0.11168934404850006, 0.02261456474661827, 0.04099094495177269, 0.02813359908759594, -0.000995589536614716, 0.1444556713104248, 0.05969495326280594, 0.05635363608598709, 0.07694345712661743, -0.008545155636966228, -0.05152398720383644, -0.003908721264451742, -0.044937990605831146, -0.022000785917043686, 0.017755769193172455, -0.13044525682926178, -0.06473860144615173, 0.0468849241733551, 0.07112114876508713, 0.10445404052734375, 0.10152587294578552, -0.12584251165390015, -0.006531680002808571, 0.007364725228399038, -0.1102788969874382, -0.0048168618232011795, 0.07623212784528732, 0.184060201048851, -0.04087113216519356, 0.17465583980083466, 0.03519255295395851, 0.006217147223651409, 0.11247657239437103, 0.05844268202781677, 0.08115687966346741, -0.05833626538515091, -0.05490012839436531, 0.06539379060268402, -0.21518127620220184, 0.11432380974292755, -0.008743355982005596, 0.02039574831724167, -0.045614615082740784, -0.08399637043476105, 0.0023677682038396597, -0.08689373731613159, 0.10698868334293365, 0.06689220666885376, 0.0529615581035614, -0.08957100659608841, -0.14002373814582825, 0.018526367843151093, 0.19910427927970886, 0.03406256437301636, -0.013773825019598007, 0.027789084240794182, 0.038624539971351624, 0.021593816578388214, -0.07165861874818802, -0.18502114713191986, -0.00035852723522111773, 0.046097755432128906, 0.0015140277100726962, -0.10314007103443146, -0.01930815540254116, -0.0029195966199040413, 0.09957830607891083, 0.09349752217531204, 0.026192978024482727, -0.033111199736595154, -0.15781578421592712, 0.21086826920509338, -0.0007580550154671073, -0.07637994736433029, 0.054245058447122574, 0.03590993583202362, -0.04381703585386276, 0.014768474735319614, -0.10369623452425003, 0.10106556862592697, 0.0027518998831510544, 0.0335112065076828, -0.04812711849808693, 0.08753004670143127, 0.013191408477723598, 0.02309567481279373, 0.04458661004900932, -0.040858857333660126, 0.13123449683189392, -0.08453691005706787, 0.14084376394748688, -0.2235163003206253, -0.2410953938961029, -0.023644331842660904, 0.11572200804948807, -0.03562122583389282, -0.058514125645160675, 0.02705034241080284, 0.21706660091876984, 0.2227238118648529, -0.03836442902684212, 0.2014477252960205, 0.11166267842054367, 0.0016654105857014656, -0.28562334179878235, -0.03269001841545105, -0.00998208299279213, -0.04790126904845238, -0.00980465393513441, -0.21156078577041626, 0.09438293427228928, 0.08801575750112534, 0.03046540915966034, 0.1792079210281372, -0.12726043164730072, -0.08587159961462021, 0.03330701217055321, 0.03933939337730408, 0.3865099549293518, -0.12832796573638916, -0.12045055627822876, 0.00920405425131321, -0.05022319778800011, 0.16375240683555603, -0.12524563074111938, 0.08628885447978973, 0.008869540877640247, 0.03758038207888603, 0.0227085929363966, -0.011297080665826797, 0.09296929091215134, 0.06960827857255936, 0.06566627323627472, -0.055833276361227036, -0.08471585065126419, 0.06983296573162079, 0.05363783612847328, -0.05483359843492508, 0.04484504833817482, -0.006722207646816969, -0.13434739410877228, 0.006648148410022259, -0.04811810329556465, 0.07370280474424362, 0.0336574912071228, -0.03302806615829468, 0.02961370348930359, -0.04149443656206131, -0.02409195899963379, -0.04729575663805008, 0.06284266710281372, -0.03230346739292145, 0.15304070711135864, 0.06111002713441849, 0.038889359682798386, -0.11289571970701218, 0.09837373346090317, -0.004179968032985926, -0.05216679349541664, 0.04735877737402916, -0.19000250101089478, 0.026107734069228172, 0.03211815655231476, 0.12294269353151321, -0.03646175563335419, 0.02159465290606022, -0.04565437510609627, 0.13192352652549744, 0.13886122405529022, -0.21290116012096405, -0.044202327728271484, -0.007405159994959831, -0.05808030068874359, 0.06034225597977638, 0.03792340308427811, 0.15873806178569794, -0.017635703086853027, -0.042947206646203995, -0.04749298095703125, 0.014988848008215427, -0.09049255400896072, 0.18785780668258667, 0.11768113076686859, -0.01090928353369236, -0.13438677787780762, 0.10118797421455383, -0.004777177702635527, 0.02167479135096073, 0.07621809095144272, 0.12859895825386047, -0.15263134241104126, -0.0818672776222229, -0.05402388051152229, 0.06959345191717148, 0.01821841299533844, 0.06184397637844086, -0.032105766236782074, -0.04011226445436478, -0.007185091730207205, 0.1670805662870407, -0.03314850851893425, 0.0338253527879715, -0.012127159163355827, 0.0020193790551275015, -0.03596591204404831, -0.04494275897741318, 0.0493776760995388, -0.03282695263624191, -0.023515909910202026, 0.14760182797908783, -0.05951014161109924, 0.09936296194791794, -0.08711402863264084, 0.0009671139996498823, -0.08713581413030624, -0.029223762452602386, 0.08322049677371979, -0.057528428733348846, 0.028132276609539986, -0.04241550713777542, 0.05314720422029495, -0.07937484979629517, -0.02168712019920349, -0.020229000598192215, -0.08765141665935516, -0.018056772649288177, 0.012624608352780342, -0.03243612125515938, -0.11193130165338516, -0.03909402713179588, 0.03398286923766136, 0.0272013358771801, 0.16085240244865417, 0.20348034799098969, -0.00485646165907383, 0.06387131661176682, -0.20185697078704834, -0.11052572727203369, 0.01686161942780018, -0.024907151237130165, 0.018646717071533203, 0.08378037810325623, 0.046487875282764435, -0.04967816546559334, 0.035186827182769775, 0.038328684866428375, 0.09378819912672043, -0.04397944360971451, -0.02236795611679554, -0.059943217784166336, -0.09659799933433533, -0.10908536612987518, -0.02757444977760315, 0.12126810103654861, 0.014230567961931229, 0.05826656520366669, -0.031790561974048615, 0.007066820282489061, -0.0624426044523716, -0.007085607387125492, -0.026690199971199036, -0.05536923184990883, -0.21835513412952423, 0.08590047806501389, 0.05535685271024704, -0.022449206560850143, -0.00671549653634429, 0.050612371414899826, -0.1342192441225052, 0.03712020069360733, -0.0015174251748248935, 0.025951070711016655, 0.0069052595645189285, 0.16432532668113708, 0.07774990797042847, -0.07452160865068436, -0.014840764924883842, -0.0013723464217036963, -0.014380316250026226, -0.07885454595088959, 0.11999177932739258, 0.03360775485634804, -0.004729493986815214, 0.0002145156031474471, -0.05805940181016922, -0.059230200946331024, -0.0020064348354935646, 0.0912749171257019, 0.01830447092652321, 0.04184897243976593, 0.053054362535476685, 0.05527254939079285, 0.13328951597213745, -0.1015004888176918, -0.016481932252645493, 0.0048039937391877174, -0.025302795693278313, -0.12657225131988525, -0.07658340036869049, -0.035990335047245026, -0.18249644339084625, 0.06613606214523315, -0.09918439388275146, 0.05650129169225693, 0.044044941663742065, 0.06464003771543503, 0.035270415246486664, 0.02650887332856655, -0.0721423402428627, -0.05572943389415741, 0.1285300999879837, -0.0031838316936045885, -0.08522564172744751, 0.01844177395105362, -0.08589565753936768, -0.03017391823232174, 0.051759298890829086, -0.02082713693380356, -0.02871161885559559, 0.008460676297545433, 0.03852972388267517, -0.17597809433937073, -0.09666608273983002, -0.019076412543654442, 0.002153016161173582, -0.031090671196579933, -0.03725443035364151, 0.043616797775030136, -0.010059406980872154, -0.033799540251493454, 0.2187386304140091, 0.03671250119805336, -0.05455625802278519, -0.056165795773267746, 0.12240789830684662, 0.013258402235805988, 0.11226514726877213, -0.026954026892781258, -0.06638732552528381, 0.017533795908093452, 0.0815485268831253, 0.17327189445495605, -0.023792559280991554, 0.03115333802998066, -0.07983935624361038, 0.013161477632820606, 0.11522310227155685, 0.17528975009918213, -0.007312495727092028, -0.009801210835576057, -0.05348728224635124, -0.025779027491807938, -0.027772827073931694, -0.028294019401073456, -0.10128727555274963, 0.02237747237086296, 0.07264263927936554, 0.031421858817338943, -0.03767424076795578, 0.06698095053434372, -0.09484995901584625, 0.011989807710051537, 0.10290148854255676, -0.02980796992778778, -0.025425376370549202, 0.014168302528560162, -0.09640686213970184, 0.0997517928481102, 0.15403732657432556, -0.022949937731027603, 0.03255986422300339, 0.0003859504358842969, 0.09166833758354187, -0.23957690596580505, -0.0952666848897934, 0.051803093403577805, -0.15268513560295105, 0.11633360385894775, -0.05328555405139923, 0.12131544202566147, 0.058498725295066833, -0.01038106344640255, -0.029300078749656677, 0.012353242374956608, 0.04635747894644737, 0.10805986821651459, -0.059105224907398224, 0.07440680265426636, -0.0017889667069539428, -0.0040437388233840466, 0.041378505527973175, -0.026015909388661385, -0.061976589262485504, 0.031104451045393944, -0.0016120465006679296, 0.03474830463528633, 0.051574889570474625, -0.033430762588977814, 0.06904270499944687, 0.020647887140512466, -0.1090097725391388, 0.012339557521045208, -0.011256546713411808, -0.04375698044896126, 0.06758178025484085, -0.02435167320072651, -0.033227041363716125, -0.17742742598056793, -0.04927656054496765, -0.00438616331666708, -0.022156914696097374, -0.18047359585762024, 0.04605915769934654, -0.14209970831871033, 0.029783565551042557, -0.05393018573522568, 0.1316830962896347, 0.10068897157907486, -0.029957400634884834, -0.05562002211809158, 0.006948413327336311, 0.06974008679389954, 0.12470133602619171, -0.01636156626045704, -0.029247259721159935 ]
null
null
null
# Glove Twitter Pre-trained glove vectors based on 2B tweets, 27B tokens, 1.2M vocab, uncased. Read more: * https://nlp.stanford.edu/projects/glove/ * https://nlp.stanford.edu/pubs/glove.pdf
{"tags": ["glove", "gensim", "fse"]}
null
fse/glove-wiki-gigaword-300
[ "glove", "gensim", "fse", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #glove #gensim #fse #region-us
# Glove Twitter Pre-trained glove vectors based on 2B tweets, 27B tokens, 1.2M vocab, uncased. Read more: * URL * URL
[ "# Glove Twitter \n\nPre-trained glove vectors based on 2B tweets, 27B tokens, 1.2M vocab, uncased.\n\nRead more:\n* URL\n* URL" ]
[ "TAGS\n#glove #gensim #fse #region-us \n", "# Glove Twitter \n\nPre-trained glove vectors based on 2B tweets, 27B tokens, 1.2M vocab, uncased.\n\nRead more:\n* URL\n* URL" ]
[ 15, 40 ]
[ "passage: TAGS\n#glove #gensim #fse #region-us \n# Glove Twitter \n\nPre-trained glove vectors based on 2B tweets, 27B tokens, 1.2M vocab, uncased.\n\nRead more:\n* URL\n* URL" ]
[ 0.04894852265715599, -0.0328078418970108, -0.004684979096055031, 0.02913224883377552, 0.0714021623134613, 0.02704455703496933, 0.19776712357997894, 0.13419803977012634, 0.07368900626897812, 0.022140422835946083, 0.16020101308822632, -0.010427804663777351, -0.029329420998692513, 0.23329991102218628, 0.0746946632862091, -0.18358445167541504, -0.005524648353457451, -0.04391488432884216, -0.2078271359205246, 0.12185167521238327, 0.07311175763607025, -0.02320607379078865, 0.028077812865376472, -0.0005515601951628923, -0.17948397994041443, 0.08024781942367554, 0.11575629562139511, -0.07105755060911179, 0.06063306704163551, -0.02238219417631626, 0.05326565355062485, 0.011501848697662354, -0.006281987298280001, -0.1461115926504135, 0.03498479351401329, 0.05165401101112366, -0.03343447670340538, 0.016176143661141396, 0.04922809451818466, -0.03596518561244011, 0.1235768273472786, -0.018393278121948242, 0.0694499984383583, 0.09167106449604034, -0.1358039379119873, -0.14806914329528809, -0.017337504774332047, -0.04249589890241623, 0.019662922248244286, 0.00036597769940271974, -0.008757412433624268, 0.21413902938365936, -0.09379956126213074, 0.05819331109523773, 0.009460296481847763, -0.26331788301467896, -0.03316422179341316, -0.07407771795988083, -0.0888829454779625, 0.06307151168584824, -0.015356133691966534, 0.12257486581802368, 0.08332958817481995, -0.017511775717139244, 0.01575668342411518, -0.04791736230254173, 0.011321852914988995, 0.01652825064957142, -0.050087105482816696, 0.0019820185843855143, 0.10772190243005753, 0.025218632072210312, -0.011986631900072098, 0.0009925041813403368, -0.0009977875743061304, -0.01507103443145752, -0.03376688063144684, -0.018771829083561897, 0.008739093318581581, 0.0320163331925869, -0.15420040488243103, -0.061620455235242844, -0.07291978597640991, -0.04333724454045296, -0.05741991475224495, 0.18551093339920044, -0.018376246094703674, 0.0993008017539978, -0.21035517752170563, -0.027967117726802826, -0.07378590106964111, -0.09060714393854141, 0.04985157027840614, -0.005598620045930147, -0.01948537304997444, -0.02526410110294819, -0.043207041919231415, -0.13064949214458466, 0.1000252291560173, 0.1375923454761505, 0.16868451237678528, 0.044572677463293076, -0.00858236476778984, -0.01861909218132496, 0.10796897113323212, -0.2203933596611023, -0.07681035250425339, 0.03134660795331001, 0.07103633135557175, -0.1509532928466797, 0.04412223398685455, -0.08679279685020447, 0.022011280059814453, 0.036276064813137054, 0.03408206254243851, 0.05402447655797005, -0.0024538030847907066, 0.003938346169888973, 0.015258420258760452, -0.013656282797455788, 0.003193497657775879, -0.08451565355062485, 0.011561186984181404, -0.013395726680755615, -0.0923505648970604, -0.08215472847223282, -0.09113386273384094, 0.05729106813669205, -0.008595765568315983, -0.018596889451146126, -0.17954251170158386, 0.02308349311351776, 0.05726984143257141, -0.07447466254234314, 0.03348621726036072, -0.0779281035065651, 0.019614621996879578, -0.12384402006864548, -0.017333870753645897, 0.025202549993991852, -0.0249550212174654, -0.015004020184278488, 0.042156171053647995, -0.06109524518251419, -0.0006914184195920825, 0.09596890211105347, 0.03511882945895195, -0.08306702971458435, -0.05437031015753746, 0.11373171210289001, -0.0435064360499382, 0.0484626479446888, -0.16841495037078857, 0.01543460600078106, -0.1543305218219757, -0.04165785014629364, -0.1719130426645279, 0.03652413561940193, -0.14534679055213928, 0.10794869810342789, -0.08774764090776443, -0.06503884494304657, -0.024157706648111343, -0.025633854791522026, 0.02739625610411167, 0.13585257530212402, -0.10637251287698746, -0.10564210265874863, 0.20583243668079376, -0.06410826742649078, 0.022128909826278687, 0.1086474284529686, -0.00940252747386694, -0.05225810408592224, 0.0642142966389656, 0.3876175284385681, 0.07102243602275848, -0.05603765323758125, 0.10856752842664719, 0.04449518024921417, 0.0018229726701974869, -0.06642135232686996, 0.05611414834856987, -0.0368155837059021, -0.05055789649486542, 0.023563668131828308, 0.05944669619202614, 0.09969673305749893, -0.10560297220945358, -0.04459984600543976, 0.02243085950613022, -0.05195503309369087, 0.07766684144735336, -0.029866211116313934, 0.0884346067905426, -0.1475202590227127, -0.0007349906954914331, -0.05144156515598297, 0.054920461028814316, 0.02113933116197586, -0.00020147557370364666, -0.12847425043582916, -0.01288729440420866, 0.029091952368617058, -0.006349635776132345, -0.05012967810034752, -0.18676045536994934, 0.02854643203318119, 0.004969166591763496, 0.1336394101381302, 0.022855885326862335, 0.05615011975169182, 0.01424853503704071, -0.020415298640727997, 0.07869850099086761, -0.01712128333747387, -0.013518244959414005, -0.06113235279917717, -0.10703759640455246, 0.03373486548662186, -0.06625906378030777, 0.128549262881279, 0.05107485502958298, 0.011464065872132778, 0.09694194793701172, 0.12441983819007874, 0.04683378338813782, -0.13025803864002228, 0.07073751091957092, -0.005656879395246506, 0.030407743528485298, -0.0776820182800293, 0.030529245734214783, -0.005517615936696529, -0.10788518935441971, 0.038395028561353683, -0.07761377841234207, 0.12524983286857605, 0.130556121468544, 0.0053245979361236095, -0.08952538669109344, 0.05921848863363266, 0.0016544221434742212, 0.017839903011918068, 0.02135634422302246, 0.06391530483961105, 0.10980871319770813, -0.06337893754243851, 0.058358896523714066, -0.022105442360043526, -0.029480360448360443, 0.09050016105175018, -0.07907761633396149, -0.061694927513599396, -0.019290896132588387, 0.04652206599712372, -0.3609199523925781, 0.07964538037776947, 0.03963799402117729, 0.1463630497455597, 0.16969795525074005, 0.011879488825798035, 0.027187934145331383, -0.004369541071355343, 0.00994914025068283, -0.03327728062868118, 0.06284024566411972, -0.18850009143352509, -0.025113508105278015, -0.022224783897399902, -0.0333385095000267, 0.006760250777006149, -0.03931940346956253, -0.0836285725235939, -0.003633406711742282, -0.06866595149040222, -0.20530371367931366, 0.020772524178028107, -0.07768850773572922, 0.07992082089185715, -0.012696205638349056, 0.01959690824151039, 0.06727391481399536, 0.037252847105264664, -0.15747322142124176, 0.12213947623968124, -0.21295993030071259, -0.11059382557868958, -0.03971680998802185, -0.004838089924305677, -0.0030313110910356045, 0.02440093271434307, 0.06731613725423813, -0.14456699788570404, 0.009461265057325363, -0.021480653434991837, -0.07448934018611908, -0.05110885202884674, 0.08199633657932281, 0.054269369691610336, -0.04134147986769676, 0.06388294696807861, -0.08220745623111725, -0.008458436466753483, -0.08372554183006287, -0.07724102586507797, 0.07778175920248032, 0.059629298746585846, 0.06191543862223625, 0.10498296469449997, -0.029829835519194603, 0.02788045071065426, -0.07284434884786606, 0.1909581869840622, -0.042848728597164154, -0.010139422491192818, 0.052511442452669144, 0.05721886828541756, 0.026708565652370453, 0.04091714322566986, 0.028714308515191078, -0.10947714745998383, 0.03193545714020729, 0.07743846625089645, -0.10786985605955124, -0.1715102642774582, -0.0902632549405098, -0.010448729619383812, 0.03405855968594551, 0.05336863175034523, 0.06720428913831711, 0.028754472732543945, -0.01723024807870388, 0.01761803589761257, 0.007790151983499527, -0.027398480102419853, -0.03141401335597038, -0.051563963294029236, 0.08749659359455109, 0.046688418835401535, -0.015441175550222397, -0.025289883837103844, 0.12727601826190948, -0.11168934404850006, 0.02261456474661827, 0.04099094495177269, 0.02813359908759594, -0.000995589536614716, 0.1444556713104248, 0.05969495326280594, 0.05635363608598709, 0.07694345712661743, -0.008545155636966228, -0.05152398720383644, -0.003908721264451742, -0.044937990605831146, -0.022000785917043686, 0.017755769193172455, -0.13044525682926178, -0.06473860144615173, 0.0468849241733551, 0.07112114876508713, 0.10445404052734375, 0.10152587294578552, -0.12584251165390015, -0.006531680002808571, 0.007364725228399038, -0.1102788969874382, -0.0048168618232011795, 0.07623212784528732, 0.184060201048851, -0.04087113216519356, 0.17465583980083466, 0.03519255295395851, 0.006217147223651409, 0.11247657239437103, 0.05844268202781677, 0.08115687966346741, -0.05833626538515091, -0.05490012839436531, 0.06539379060268402, -0.21518127620220184, 0.11432380974292755, -0.008743355982005596, 0.02039574831724167, -0.045614615082740784, -0.08399637043476105, 0.0023677682038396597, -0.08689373731613159, 0.10698868334293365, 0.06689220666885376, 0.0529615581035614, -0.08957100659608841, -0.14002373814582825, 0.018526367843151093, 0.19910427927970886, 0.03406256437301636, -0.013773825019598007, 0.027789084240794182, 0.038624539971351624, 0.021593816578388214, -0.07165861874818802, -0.18502114713191986, -0.00035852723522111773, 0.046097755432128906, 0.0015140277100726962, -0.10314007103443146, -0.01930815540254116, -0.0029195966199040413, 0.09957830607891083, 0.09349752217531204, 0.026192978024482727, -0.033111199736595154, -0.15781578421592712, 0.21086826920509338, -0.0007580550154671073, -0.07637994736433029, 0.054245058447122574, 0.03590993583202362, -0.04381703585386276, 0.014768474735319614, -0.10369623452425003, 0.10106556862592697, 0.0027518998831510544, 0.0335112065076828, -0.04812711849808693, 0.08753004670143127, 0.013191408477723598, 0.02309567481279373, 0.04458661004900932, -0.040858857333660126, 0.13123449683189392, -0.08453691005706787, 0.14084376394748688, -0.2235163003206253, -0.2410953938961029, -0.023644331842660904, 0.11572200804948807, -0.03562122583389282, -0.058514125645160675, 0.02705034241080284, 0.21706660091876984, 0.2227238118648529, -0.03836442902684212, 0.2014477252960205, 0.11166267842054367, 0.0016654105857014656, -0.28562334179878235, -0.03269001841545105, -0.00998208299279213, -0.04790126904845238, -0.00980465393513441, -0.21156078577041626, 0.09438293427228928, 0.08801575750112534, 0.03046540915966034, 0.1792079210281372, -0.12726043164730072, -0.08587159961462021, 0.03330701217055321, 0.03933939337730408, 0.3865099549293518, -0.12832796573638916, -0.12045055627822876, 0.00920405425131321, -0.05022319778800011, 0.16375240683555603, -0.12524563074111938, 0.08628885447978973, 0.008869540877640247, 0.03758038207888603, 0.0227085929363966, -0.011297080665826797, 0.09296929091215134, 0.06960827857255936, 0.06566627323627472, -0.055833276361227036, -0.08471585065126419, 0.06983296573162079, 0.05363783612847328, -0.05483359843492508, 0.04484504833817482, -0.006722207646816969, -0.13434739410877228, 0.006648148410022259, -0.04811810329556465, 0.07370280474424362, 0.0336574912071228, -0.03302806615829468, 0.02961370348930359, -0.04149443656206131, -0.02409195899963379, -0.04729575663805008, 0.06284266710281372, -0.03230346739292145, 0.15304070711135864, 0.06111002713441849, 0.038889359682798386, -0.11289571970701218, 0.09837373346090317, -0.004179968032985926, -0.05216679349541664, 0.04735877737402916, -0.19000250101089478, 0.026107734069228172, 0.03211815655231476, 0.12294269353151321, -0.03646175563335419, 0.02159465290606022, -0.04565437510609627, 0.13192352652549744, 0.13886122405529022, -0.21290116012096405, -0.044202327728271484, -0.007405159994959831, -0.05808030068874359, 0.06034225597977638, 0.03792340308427811, 0.15873806178569794, -0.017635703086853027, -0.042947206646203995, -0.04749298095703125, 0.014988848008215427, -0.09049255400896072, 0.18785780668258667, 0.11768113076686859, -0.01090928353369236, -0.13438677787780762, 0.10118797421455383, -0.004777177702635527, 0.02167479135096073, 0.07621809095144272, 0.12859895825386047, -0.15263134241104126, -0.0818672776222229, -0.05402388051152229, 0.06959345191717148, 0.01821841299533844, 0.06184397637844086, -0.032105766236782074, -0.04011226445436478, -0.007185091730207205, 0.1670805662870407, -0.03314850851893425, 0.0338253527879715, -0.012127159163355827, 0.0020193790551275015, -0.03596591204404831, -0.04494275897741318, 0.0493776760995388, -0.03282695263624191, -0.023515909910202026, 0.14760182797908783, -0.05951014161109924, 0.09936296194791794, -0.08711402863264084, 0.0009671139996498823, -0.08713581413030624, -0.029223762452602386, 0.08322049677371979, -0.057528428733348846, 0.028132276609539986, -0.04241550713777542, 0.05314720422029495, -0.07937484979629517, -0.02168712019920349, -0.020229000598192215, -0.08765141665935516, -0.018056772649288177, 0.012624608352780342, -0.03243612125515938, -0.11193130165338516, -0.03909402713179588, 0.03398286923766136, 0.0272013358771801, 0.16085240244865417, 0.20348034799098969, -0.00485646165907383, 0.06387131661176682, -0.20185697078704834, -0.11052572727203369, 0.01686161942780018, -0.024907151237130165, 0.018646717071533203, 0.08378037810325623, 0.046487875282764435, -0.04967816546559334, 0.035186827182769775, 0.038328684866428375, 0.09378819912672043, -0.04397944360971451, -0.02236795611679554, -0.059943217784166336, -0.09659799933433533, -0.10908536612987518, -0.02757444977760315, 0.12126810103654861, 0.014230567961931229, 0.05826656520366669, -0.031790561974048615, 0.007066820282489061, -0.0624426044523716, -0.007085607387125492, -0.026690199971199036, -0.05536923184990883, -0.21835513412952423, 0.08590047806501389, 0.05535685271024704, -0.022449206560850143, -0.00671549653634429, 0.050612371414899826, -0.1342192441225052, 0.03712020069360733, -0.0015174251748248935, 0.025951070711016655, 0.0069052595645189285, 0.16432532668113708, 0.07774990797042847, -0.07452160865068436, -0.014840764924883842, -0.0013723464217036963, -0.014380316250026226, -0.07885454595088959, 0.11999177932739258, 0.03360775485634804, -0.004729493986815214, 0.0002145156031474471, -0.05805940181016922, -0.059230200946331024, -0.0020064348354935646, 0.0912749171257019, 0.01830447092652321, 0.04184897243976593, 0.053054362535476685, 0.05527254939079285, 0.13328951597213745, -0.1015004888176918, -0.016481932252645493, 0.0048039937391877174, -0.025302795693278313, -0.12657225131988525, -0.07658340036869049, -0.035990335047245026, -0.18249644339084625, 0.06613606214523315, -0.09918439388275146, 0.05650129169225693, 0.044044941663742065, 0.06464003771543503, 0.035270415246486664, 0.02650887332856655, -0.0721423402428627, -0.05572943389415741, 0.1285300999879837, -0.0031838316936045885, -0.08522564172744751, 0.01844177395105362, -0.08589565753936768, -0.03017391823232174, 0.051759298890829086, -0.02082713693380356, -0.02871161885559559, 0.008460676297545433, 0.03852972388267517, -0.17597809433937073, -0.09666608273983002, -0.019076412543654442, 0.002153016161173582, -0.031090671196579933, -0.03725443035364151, 0.043616797775030136, -0.010059406980872154, -0.033799540251493454, 0.2187386304140091, 0.03671250119805336, -0.05455625802278519, -0.056165795773267746, 0.12240789830684662, 0.013258402235805988, 0.11226514726877213, -0.026954026892781258, -0.06638732552528381, 0.017533795908093452, 0.0815485268831253, 0.17327189445495605, -0.023792559280991554, 0.03115333802998066, -0.07983935624361038, 0.013161477632820606, 0.11522310227155685, 0.17528975009918213, -0.007312495727092028, -0.009801210835576057, -0.05348728224635124, -0.025779027491807938, -0.027772827073931694, -0.028294019401073456, -0.10128727555274963, 0.02237747237086296, 0.07264263927936554, 0.031421858817338943, -0.03767424076795578, 0.06698095053434372, -0.09484995901584625, 0.011989807710051537, 0.10290148854255676, -0.02980796992778778, -0.025425376370549202, 0.014168302528560162, -0.09640686213970184, 0.0997517928481102, 0.15403732657432556, -0.022949937731027603, 0.03255986422300339, 0.0003859504358842969, 0.09166833758354187, -0.23957690596580505, -0.0952666848897934, 0.051803093403577805, -0.15268513560295105, 0.11633360385894775, -0.05328555405139923, 0.12131544202566147, 0.058498725295066833, -0.01038106344640255, -0.029300078749656677, 0.012353242374956608, 0.04635747894644737, 0.10805986821651459, -0.059105224907398224, 0.07440680265426636, -0.0017889667069539428, -0.0040437388233840466, 0.041378505527973175, -0.026015909388661385, -0.061976589262485504, 0.031104451045393944, -0.0016120465006679296, 0.03474830463528633, 0.051574889570474625, -0.033430762588977814, 0.06904270499944687, 0.020647887140512466, -0.1090097725391388, 0.012339557521045208, -0.011256546713411808, -0.04375698044896126, 0.06758178025484085, -0.02435167320072651, -0.033227041363716125, -0.17742742598056793, -0.04927656054496765, -0.00438616331666708, -0.022156914696097374, -0.18047359585762024, 0.04605915769934654, -0.14209970831871033, 0.029783565551042557, -0.05393018573522568, 0.1316830962896347, 0.10068897157907486, -0.029957400634884834, -0.05562002211809158, 0.006948413327336311, 0.06974008679389954, 0.12470133602619171, -0.01636156626045704, -0.029247259721159935 ]
null
null
null
# Glove Twitter Pre-trained glove vectors based on 2B tweets, 27B tokens, 1.2M vocab, uncased. Read more: * https://nlp.stanford.edu/projects/glove/ * https://nlp.stanford.edu/pubs/glove.pdf
{"tags": ["glove", "gensim", "fse"]}
null
fse/glove-wiki-gigaword-50
[ "glove", "gensim", "fse", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #glove #gensim #fse #region-us
# Glove Twitter Pre-trained glove vectors based on 2B tweets, 27B tokens, 1.2M vocab, uncased. Read more: * URL * URL
[ "# Glove Twitter \n\nPre-trained glove vectors based on 2B tweets, 27B tokens, 1.2M vocab, uncased.\n\nRead more:\n* URL\n* URL" ]
[ "TAGS\n#glove #gensim #fse #region-us \n", "# Glove Twitter \n\nPre-trained glove vectors based on 2B tweets, 27B tokens, 1.2M vocab, uncased.\n\nRead more:\n* URL\n* URL" ]
[ 15, 40 ]
[ "passage: TAGS\n#glove #gensim #fse #region-us \n# Glove Twitter \n\nPre-trained glove vectors based on 2B tweets, 27B tokens, 1.2M vocab, uncased.\n\nRead more:\n* URL\n* URL" ]
[ 0.04894852265715599, -0.0328078418970108, -0.004684979096055031, 0.02913224883377552, 0.0714021623134613, 0.02704455703496933, 0.19776712357997894, 0.13419803977012634, 0.07368900626897812, 0.022140422835946083, 0.16020101308822632, -0.010427804663777351, -0.029329420998692513, 0.23329991102218628, 0.0746946632862091, -0.18358445167541504, -0.005524648353457451, -0.04391488432884216, -0.2078271359205246, 0.12185167521238327, 0.07311175763607025, -0.02320607379078865, 0.028077812865376472, -0.0005515601951628923, -0.17948397994041443, 0.08024781942367554, 0.11575629562139511, -0.07105755060911179, 0.06063306704163551, -0.02238219417631626, 0.05326565355062485, 0.011501848697662354, -0.006281987298280001, -0.1461115926504135, 0.03498479351401329, 0.05165401101112366, -0.03343447670340538, 0.016176143661141396, 0.04922809451818466, -0.03596518561244011, 0.1235768273472786, -0.018393278121948242, 0.0694499984383583, 0.09167106449604034, -0.1358039379119873, -0.14806914329528809, -0.017337504774332047, -0.04249589890241623, 0.019662922248244286, 0.00036597769940271974, -0.008757412433624268, 0.21413902938365936, -0.09379956126213074, 0.05819331109523773, 0.009460296481847763, -0.26331788301467896, -0.03316422179341316, -0.07407771795988083, -0.0888829454779625, 0.06307151168584824, -0.015356133691966534, 0.12257486581802368, 0.08332958817481995, -0.017511775717139244, 0.01575668342411518, -0.04791736230254173, 0.011321852914988995, 0.01652825064957142, -0.050087105482816696, 0.0019820185843855143, 0.10772190243005753, 0.025218632072210312, -0.011986631900072098, 0.0009925041813403368, -0.0009977875743061304, -0.01507103443145752, -0.03376688063144684, -0.018771829083561897, 0.008739093318581581, 0.0320163331925869, -0.15420040488243103, -0.061620455235242844, -0.07291978597640991, -0.04333724454045296, -0.05741991475224495, 0.18551093339920044, -0.018376246094703674, 0.0993008017539978, -0.21035517752170563, -0.027967117726802826, -0.07378590106964111, -0.09060714393854141, 0.04985157027840614, -0.005598620045930147, -0.01948537304997444, -0.02526410110294819, -0.043207041919231415, -0.13064949214458466, 0.1000252291560173, 0.1375923454761505, 0.16868451237678528, 0.044572677463293076, -0.00858236476778984, -0.01861909218132496, 0.10796897113323212, -0.2203933596611023, -0.07681035250425339, 0.03134660795331001, 0.07103633135557175, -0.1509532928466797, 0.04412223398685455, -0.08679279685020447, 0.022011280059814453, 0.036276064813137054, 0.03408206254243851, 0.05402447655797005, -0.0024538030847907066, 0.003938346169888973, 0.015258420258760452, -0.013656282797455788, 0.003193497657775879, -0.08451565355062485, 0.011561186984181404, -0.013395726680755615, -0.0923505648970604, -0.08215472847223282, -0.09113386273384094, 0.05729106813669205, -0.008595765568315983, -0.018596889451146126, -0.17954251170158386, 0.02308349311351776, 0.05726984143257141, -0.07447466254234314, 0.03348621726036072, -0.0779281035065651, 0.019614621996879578, -0.12384402006864548, -0.017333870753645897, 0.025202549993991852, -0.0249550212174654, -0.015004020184278488, 0.042156171053647995, -0.06109524518251419, -0.0006914184195920825, 0.09596890211105347, 0.03511882945895195, -0.08306702971458435, -0.05437031015753746, 0.11373171210289001, -0.0435064360499382, 0.0484626479446888, -0.16841495037078857, 0.01543460600078106, -0.1543305218219757, -0.04165785014629364, -0.1719130426645279, 0.03652413561940193, -0.14534679055213928, 0.10794869810342789, -0.08774764090776443, -0.06503884494304657, -0.024157706648111343, -0.025633854791522026, 0.02739625610411167, 0.13585257530212402, -0.10637251287698746, -0.10564210265874863, 0.20583243668079376, -0.06410826742649078, 0.022128909826278687, 0.1086474284529686, -0.00940252747386694, -0.05225810408592224, 0.0642142966389656, 0.3876175284385681, 0.07102243602275848, -0.05603765323758125, 0.10856752842664719, 0.04449518024921417, 0.0018229726701974869, -0.06642135232686996, 0.05611414834856987, -0.0368155837059021, -0.05055789649486542, 0.023563668131828308, 0.05944669619202614, 0.09969673305749893, -0.10560297220945358, -0.04459984600543976, 0.02243085950613022, -0.05195503309369087, 0.07766684144735336, -0.029866211116313934, 0.0884346067905426, -0.1475202590227127, -0.0007349906954914331, -0.05144156515598297, 0.054920461028814316, 0.02113933116197586, -0.00020147557370364666, -0.12847425043582916, -0.01288729440420866, 0.029091952368617058, -0.006349635776132345, -0.05012967810034752, -0.18676045536994934, 0.02854643203318119, 0.004969166591763496, 0.1336394101381302, 0.022855885326862335, 0.05615011975169182, 0.01424853503704071, -0.020415298640727997, 0.07869850099086761, -0.01712128333747387, -0.013518244959414005, -0.06113235279917717, -0.10703759640455246, 0.03373486548662186, -0.06625906378030777, 0.128549262881279, 0.05107485502958298, 0.011464065872132778, 0.09694194793701172, 0.12441983819007874, 0.04683378338813782, -0.13025803864002228, 0.07073751091957092, -0.005656879395246506, 0.030407743528485298, -0.0776820182800293, 0.030529245734214783, -0.005517615936696529, -0.10788518935441971, 0.038395028561353683, -0.07761377841234207, 0.12524983286857605, 0.130556121468544, 0.0053245979361236095, -0.08952538669109344, 0.05921848863363266, 0.0016544221434742212, 0.017839903011918068, 0.02135634422302246, 0.06391530483961105, 0.10980871319770813, -0.06337893754243851, 0.058358896523714066, -0.022105442360043526, -0.029480360448360443, 0.09050016105175018, -0.07907761633396149, -0.061694927513599396, -0.019290896132588387, 0.04652206599712372, -0.3609199523925781, 0.07964538037776947, 0.03963799402117729, 0.1463630497455597, 0.16969795525074005, 0.011879488825798035, 0.027187934145331383, -0.004369541071355343, 0.00994914025068283, -0.03327728062868118, 0.06284024566411972, -0.18850009143352509, -0.025113508105278015, -0.022224783897399902, -0.0333385095000267, 0.006760250777006149, -0.03931940346956253, -0.0836285725235939, -0.003633406711742282, -0.06866595149040222, -0.20530371367931366, 0.020772524178028107, -0.07768850773572922, 0.07992082089185715, -0.012696205638349056, 0.01959690824151039, 0.06727391481399536, 0.037252847105264664, -0.15747322142124176, 0.12213947623968124, -0.21295993030071259, -0.11059382557868958, -0.03971680998802185, -0.004838089924305677, -0.0030313110910356045, 0.02440093271434307, 0.06731613725423813, -0.14456699788570404, 0.009461265057325363, -0.021480653434991837, -0.07448934018611908, -0.05110885202884674, 0.08199633657932281, 0.054269369691610336, -0.04134147986769676, 0.06388294696807861, -0.08220745623111725, -0.008458436466753483, -0.08372554183006287, -0.07724102586507797, 0.07778175920248032, 0.059629298746585846, 0.06191543862223625, 0.10498296469449997, -0.029829835519194603, 0.02788045071065426, -0.07284434884786606, 0.1909581869840622, -0.042848728597164154, -0.010139422491192818, 0.052511442452669144, 0.05721886828541756, 0.026708565652370453, 0.04091714322566986, 0.028714308515191078, -0.10947714745998383, 0.03193545714020729, 0.07743846625089645, -0.10786985605955124, -0.1715102642774582, -0.0902632549405098, -0.010448729619383812, 0.03405855968594551, 0.05336863175034523, 0.06720428913831711, 0.028754472732543945, -0.01723024807870388, 0.01761803589761257, 0.007790151983499527, -0.027398480102419853, -0.03141401335597038, -0.051563963294029236, 0.08749659359455109, 0.046688418835401535, -0.015441175550222397, -0.025289883837103844, 0.12727601826190948, -0.11168934404850006, 0.02261456474661827, 0.04099094495177269, 0.02813359908759594, -0.000995589536614716, 0.1444556713104248, 0.05969495326280594, 0.05635363608598709, 0.07694345712661743, -0.008545155636966228, -0.05152398720383644, -0.003908721264451742, -0.044937990605831146, -0.022000785917043686, 0.017755769193172455, -0.13044525682926178, -0.06473860144615173, 0.0468849241733551, 0.07112114876508713, 0.10445404052734375, 0.10152587294578552, -0.12584251165390015, -0.006531680002808571, 0.007364725228399038, -0.1102788969874382, -0.0048168618232011795, 0.07623212784528732, 0.184060201048851, -0.04087113216519356, 0.17465583980083466, 0.03519255295395851, 0.006217147223651409, 0.11247657239437103, 0.05844268202781677, 0.08115687966346741, -0.05833626538515091, -0.05490012839436531, 0.06539379060268402, -0.21518127620220184, 0.11432380974292755, -0.008743355982005596, 0.02039574831724167, -0.045614615082740784, -0.08399637043476105, 0.0023677682038396597, -0.08689373731613159, 0.10698868334293365, 0.06689220666885376, 0.0529615581035614, -0.08957100659608841, -0.14002373814582825, 0.018526367843151093, 0.19910427927970886, 0.03406256437301636, -0.013773825019598007, 0.027789084240794182, 0.038624539971351624, 0.021593816578388214, -0.07165861874818802, -0.18502114713191986, -0.00035852723522111773, 0.046097755432128906, 0.0015140277100726962, -0.10314007103443146, -0.01930815540254116, -0.0029195966199040413, 0.09957830607891083, 0.09349752217531204, 0.026192978024482727, -0.033111199736595154, -0.15781578421592712, 0.21086826920509338, -0.0007580550154671073, -0.07637994736433029, 0.054245058447122574, 0.03590993583202362, -0.04381703585386276, 0.014768474735319614, -0.10369623452425003, 0.10106556862592697, 0.0027518998831510544, 0.0335112065076828, -0.04812711849808693, 0.08753004670143127, 0.013191408477723598, 0.02309567481279373, 0.04458661004900932, -0.040858857333660126, 0.13123449683189392, -0.08453691005706787, 0.14084376394748688, -0.2235163003206253, -0.2410953938961029, -0.023644331842660904, 0.11572200804948807, -0.03562122583389282, -0.058514125645160675, 0.02705034241080284, 0.21706660091876984, 0.2227238118648529, -0.03836442902684212, 0.2014477252960205, 0.11166267842054367, 0.0016654105857014656, -0.28562334179878235, -0.03269001841545105, -0.00998208299279213, -0.04790126904845238, -0.00980465393513441, -0.21156078577041626, 0.09438293427228928, 0.08801575750112534, 0.03046540915966034, 0.1792079210281372, -0.12726043164730072, -0.08587159961462021, 0.03330701217055321, 0.03933939337730408, 0.3865099549293518, -0.12832796573638916, -0.12045055627822876, 0.00920405425131321, -0.05022319778800011, 0.16375240683555603, -0.12524563074111938, 0.08628885447978973, 0.008869540877640247, 0.03758038207888603, 0.0227085929363966, -0.011297080665826797, 0.09296929091215134, 0.06960827857255936, 0.06566627323627472, -0.055833276361227036, -0.08471585065126419, 0.06983296573162079, 0.05363783612847328, -0.05483359843492508, 0.04484504833817482, -0.006722207646816969, -0.13434739410877228, 0.006648148410022259, -0.04811810329556465, 0.07370280474424362, 0.0336574912071228, -0.03302806615829468, 0.02961370348930359, -0.04149443656206131, -0.02409195899963379, -0.04729575663805008, 0.06284266710281372, -0.03230346739292145, 0.15304070711135864, 0.06111002713441849, 0.038889359682798386, -0.11289571970701218, 0.09837373346090317, -0.004179968032985926, -0.05216679349541664, 0.04735877737402916, -0.19000250101089478, 0.026107734069228172, 0.03211815655231476, 0.12294269353151321, -0.03646175563335419, 0.02159465290606022, -0.04565437510609627, 0.13192352652549744, 0.13886122405529022, -0.21290116012096405, -0.044202327728271484, -0.007405159994959831, -0.05808030068874359, 0.06034225597977638, 0.03792340308427811, 0.15873806178569794, -0.017635703086853027, -0.042947206646203995, -0.04749298095703125, 0.014988848008215427, -0.09049255400896072, 0.18785780668258667, 0.11768113076686859, -0.01090928353369236, -0.13438677787780762, 0.10118797421455383, -0.004777177702635527, 0.02167479135096073, 0.07621809095144272, 0.12859895825386047, -0.15263134241104126, -0.0818672776222229, -0.05402388051152229, 0.06959345191717148, 0.01821841299533844, 0.06184397637844086, -0.032105766236782074, -0.04011226445436478, -0.007185091730207205, 0.1670805662870407, -0.03314850851893425, 0.0338253527879715, -0.012127159163355827, 0.0020193790551275015, -0.03596591204404831, -0.04494275897741318, 0.0493776760995388, -0.03282695263624191, -0.023515909910202026, 0.14760182797908783, -0.05951014161109924, 0.09936296194791794, -0.08711402863264084, 0.0009671139996498823, -0.08713581413030624, -0.029223762452602386, 0.08322049677371979, -0.057528428733348846, 0.028132276609539986, -0.04241550713777542, 0.05314720422029495, -0.07937484979629517, -0.02168712019920349, -0.020229000598192215, -0.08765141665935516, -0.018056772649288177, 0.012624608352780342, -0.03243612125515938, -0.11193130165338516, -0.03909402713179588, 0.03398286923766136, 0.0272013358771801, 0.16085240244865417, 0.20348034799098969, -0.00485646165907383, 0.06387131661176682, -0.20185697078704834, -0.11052572727203369, 0.01686161942780018, -0.024907151237130165, 0.018646717071533203, 0.08378037810325623, 0.046487875282764435, -0.04967816546559334, 0.035186827182769775, 0.038328684866428375, 0.09378819912672043, -0.04397944360971451, -0.02236795611679554, -0.059943217784166336, -0.09659799933433533, -0.10908536612987518, -0.02757444977760315, 0.12126810103654861, 0.014230567961931229, 0.05826656520366669, -0.031790561974048615, 0.007066820282489061, -0.0624426044523716, -0.007085607387125492, -0.026690199971199036, -0.05536923184990883, -0.21835513412952423, 0.08590047806501389, 0.05535685271024704, -0.022449206560850143, -0.00671549653634429, 0.050612371414899826, -0.1342192441225052, 0.03712020069360733, -0.0015174251748248935, 0.025951070711016655, 0.0069052595645189285, 0.16432532668113708, 0.07774990797042847, -0.07452160865068436, -0.014840764924883842, -0.0013723464217036963, -0.014380316250026226, -0.07885454595088959, 0.11999177932739258, 0.03360775485634804, -0.004729493986815214, 0.0002145156031474471, -0.05805940181016922, -0.059230200946331024, -0.0020064348354935646, 0.0912749171257019, 0.01830447092652321, 0.04184897243976593, 0.053054362535476685, 0.05527254939079285, 0.13328951597213745, -0.1015004888176918, -0.016481932252645493, 0.0048039937391877174, -0.025302795693278313, -0.12657225131988525, -0.07658340036869049, -0.035990335047245026, -0.18249644339084625, 0.06613606214523315, -0.09918439388275146, 0.05650129169225693, 0.044044941663742065, 0.06464003771543503, 0.035270415246486664, 0.02650887332856655, -0.0721423402428627, -0.05572943389415741, 0.1285300999879837, -0.0031838316936045885, -0.08522564172744751, 0.01844177395105362, -0.08589565753936768, -0.03017391823232174, 0.051759298890829086, -0.02082713693380356, -0.02871161885559559, 0.008460676297545433, 0.03852972388267517, -0.17597809433937073, -0.09666608273983002, -0.019076412543654442, 0.002153016161173582, -0.031090671196579933, -0.03725443035364151, 0.043616797775030136, -0.010059406980872154, -0.033799540251493454, 0.2187386304140091, 0.03671250119805336, -0.05455625802278519, -0.056165795773267746, 0.12240789830684662, 0.013258402235805988, 0.11226514726877213, -0.026954026892781258, -0.06638732552528381, 0.017533795908093452, 0.0815485268831253, 0.17327189445495605, -0.023792559280991554, 0.03115333802998066, -0.07983935624361038, 0.013161477632820606, 0.11522310227155685, 0.17528975009918213, -0.007312495727092028, -0.009801210835576057, -0.05348728224635124, -0.025779027491807938, -0.027772827073931694, -0.028294019401073456, -0.10128727555274963, 0.02237747237086296, 0.07264263927936554, 0.031421858817338943, -0.03767424076795578, 0.06698095053434372, -0.09484995901584625, 0.011989807710051537, 0.10290148854255676, -0.02980796992778778, -0.025425376370549202, 0.014168302528560162, -0.09640686213970184, 0.0997517928481102, 0.15403732657432556, -0.022949937731027603, 0.03255986422300339, 0.0003859504358842969, 0.09166833758354187, -0.23957690596580505, -0.0952666848897934, 0.051803093403577805, -0.15268513560295105, 0.11633360385894775, -0.05328555405139923, 0.12131544202566147, 0.058498725295066833, -0.01038106344640255, -0.029300078749656677, 0.012353242374956608, 0.04635747894644737, 0.10805986821651459, -0.059105224907398224, 0.07440680265426636, -0.0017889667069539428, -0.0040437388233840466, 0.041378505527973175, -0.026015909388661385, -0.061976589262485504, 0.031104451045393944, -0.0016120465006679296, 0.03474830463528633, 0.051574889570474625, -0.033430762588977814, 0.06904270499944687, 0.020647887140512466, -0.1090097725391388, 0.012339557521045208, -0.011256546713411808, -0.04375698044896126, 0.06758178025484085, -0.02435167320072651, -0.033227041363716125, -0.17742742598056793, -0.04927656054496765, -0.00438616331666708, -0.022156914696097374, -0.18047359585762024, 0.04605915769934654, -0.14209970831871033, 0.029783565551042557, -0.05393018573522568, 0.1316830962896347, 0.10068897157907486, -0.029957400634884834, -0.05562002211809158, 0.006948413327336311, 0.06974008679389954, 0.12470133602619171, -0.01636156626045704, -0.029247259721159935 ]
null
null
null
# Paragram Embeddings Towards Universal Paraphrastic Sentence Embeddings (25 dimensions) Read more: * https://www.cs.cmu.edu/~jwieting/ * https://www.cs.cmu.edu/~jwieting/wieting2016ICLR.pdf
{"tags": ["glove", "gensim", "fse"]}
null
fse/paragram-25
[ "glove", "gensim", "fse", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #glove #gensim #fse #region-us
# Paragram Embeddings Towards Universal Paraphrastic Sentence Embeddings (25 dimensions) Read more: * URL * URL
[ "# Paragram Embeddings \n\nTowards Universal Paraphrastic Sentence Embeddings (25 dimensions)\n\nRead more:\n* URL\n* URL" ]
[ "TAGS\n#glove #gensim #fse #region-us \n", "# Paragram Embeddings \n\nTowards Universal Paraphrastic Sentence Embeddings (25 dimensions)\n\nRead more:\n* URL\n* URL" ]
[ 15, 30 ]
[ "passage: TAGS\n#glove #gensim #fse #region-us \n# Paragram Embeddings \n\nTowards Universal Paraphrastic Sentence Embeddings (25 dimensions)\n\nRead more:\n* URL\n* URL" ]
[ 0.05939606577157974, -0.03291591256856918, -0.009930035099387169, -0.024038106203079224, 0.15010403096675873, 0.03601070120930672, 0.09310105443000793, 0.044176116585731506, 0.009475378319621086, 0.06506205350160599, 0.14691051840782166, 0.09687665849924088, -0.045606404542922974, -0.1239636167883873, 0.07782835513353348, -0.39380913972854614, -0.026747772470116615, 0.004627406131476164, -0.08056119829416275, 0.0706363394856453, 0.0043808333575725555, -0.06555129587650299, 0.07131259888410568, -0.02313908189535141, -0.048951297998428345, 0.08522824943065643, -0.04487857222557068, 0.05160018801689148, 0.049008794128894806, 0.04563506692647934, -0.0004703772137872875, -0.08516757190227509, -0.05110044404864311, -0.22077234089374542, 0.02661919593811035, 0.01170289609581232, -0.06016084924340248, 0.035095684230327606, 0.015856673941016197, -0.08296585828065872, 0.1040896475315094, -0.01742996834218502, -0.010195065289735794, 0.02886904776096344, -0.1470128297805786, -0.05021221935749054, 0.040455155074596405, -0.10645437985658646, 0.015400361269712448, 0.034536417573690414, -0.06505828350782394, 0.016136543825268745, -0.08249768614768982, 0.06396764516830444, 0.21044623851776123, -0.29671990871429443, -0.02770652063190937, 0.02155368961393833, -0.02428421936929226, 0.08669617027044296, -0.08078188449144363, 0.0909547507762909, 0.07340984791517258, 0.00010066019603982568, -0.07218876481056213, -0.09188411384820938, 0.031048981472849846, 0.030603673309087753, -0.10950116068124771, -0.010312720201909542, 0.25109171867370605, 0.048664748668670654, 0.03215526416897774, -0.002303187269717455, -0.13584838807582855, 0.01275813952088356, -0.08335858583450317, 0.029935235157608986, 0.06319191306829453, 0.08868458122015, 0.019317621365189552, -0.0950966626405716, -0.11422350257635117, -0.02279401756823063, -0.1927703619003296, 0.09848755598068237, 0.021798886358737946, 0.03571147844195366, -0.04277549311518669, -0.04732188954949379, -0.0706469938158989, -0.022271357476711273, 0.061725787818431854, -0.08694329857826233, 0.06832212954759598, 0.11248083412647247, -0.06331878155469894, -0.08309748023748398, 0.09137286990880966, 0.09266096353530884, 0.125266432762146, 0.045733481645584106, -0.0023627723567187786, 0.12193340808153152, 0.07348854839801788, 0.04188003018498421, -0.11639755964279175, 0.02780567854642868, -0.07037878781557083, -0.09914185851812363, 0.09828555583953857, -0.04821791499853134, -0.13623028993606567, 0.10055951774120331, -0.0753004178404808, 0.04570776969194412, -0.13264870643615723, -0.003803863422945142, -0.02954578958451748, 0.06051664426922798, 0.053790077567100525, -0.02303238958120346, 0.00972056109458208, -0.05682766065001488, 0.08549830317497253, 0.06608819961547852, -0.08921579271554947, 0.01887873001396656, -0.04677330330014229, 0.024568475782871246, -0.13706859946250916, 0.05655895918607712, 0.009426042437553406, 0.02523825317621231, -0.012085004709661007, 0.07062229514122009, 0.08823517709970474, -0.06635274738073349, 0.12165416777133942, 0.01413863804191351, -0.05233713239431381, -0.05436285212635994, 0.08529013395309448, -0.024226440116763115, 0.027349382638931274, -0.008601897396147251, -0.014582411386072636, -0.01426905021071434, -0.0356949158012867, 0.08168303966522217, -0.008011393249034882, 0.05303778126835823, -0.1408637911081314, 0.022720225155353546, -0.14479178190231323, -0.002057283418253064, -0.11862081289291382, 0.040561188012361526, -0.019998719915747643, 0.0526806004345417, 0.04982415586709976, -0.041550058871507645, -0.15673235058784485, 0.03363331779837608, -0.023780418559908867, 0.08667261898517609, -0.13416089117527008, -0.10657686740159988, 0.3359798789024353, -0.015575406141579151, -0.05500410869717598, 0.08864282816648483, 0.036904528737068176, -0.11832711845636368, 0.005407148506492376, 0.3296838104724884, -0.17777660489082336, -0.0008342202054336667, 0.08397938311100006, 0.11238501965999603, -0.03797702491283417, 0.1079656183719635, 0.058236755430698395, -0.1358683556318283, 0.030704233795404434, 0.030812567099928856, 0.1601482480764389, 0.06349305063486099, -0.04720994830131531, -0.025792576372623444, 0.013765739277005196, 0.011591600254178047, 0.010338393971323967, 0.0702228769659996, 0.039542410522699356, -0.12788420915603638, -0.007060364820063114, 0.04016837477684021, 0.02396474778652191, -0.011326673440635204, 0.005868514534085989, 0.042041175067424774, 0.07489150762557983, -0.032138433307409286, 0.02992972545325756, -0.13189084827899933, -0.05585767328739166, -0.010708613321185112, 0.217869833111763, 0.15046426653862, 0.11893399059772491, 0.0635010302066803, 0.034694112837314606, -0.0286563653498888, 0.04476393386721611, 0.028980066999793053, -0.03601979836821556, -0.08078859746456146, -0.03721842169761658, 0.13086983561515808, -0.03966899588704109, -0.0034232093021273613, 0.010059542953968048, -0.007463973481208086, 0.01887401193380356, 0.09348955005407333, 0.013008802197873592, -0.06365198642015457, 0.015803825110197067, -0.0021258178167045116, 0.015941625460982323, 0.01082775741815567, 0.06478726863861084, -0.05258507281541824, -0.03073893114924431, 0.06130226328969002, -0.17476338148117065, 0.09463472664356232, 0.12769341468811035, -0.3240702748298645, 0.012451371178030968, -0.10704898834228516, -0.07466361671686172, 0.08774901181459427, 0.03542226925492287, -0.10398560017347336, 0.11392151564359665, -0.06159297376871109, 0.09334900975227356, -0.09072494506835938, 0.0020211576484143734, 0.001504511572420597, -0.0941346064209938, -0.06898337602615356, 0.1371850222349167, 0.0756724402308464, -0.2588619589805603, 0.128146693110466, 0.27823877334594727, 0.0944674164056778, 0.16982518136501312, -0.005553058348596096, -0.07504215836524963, 0.004416956566274166, 0.016587629914283752, -0.07894173264503479, 0.07464729994535446, -0.293244332075119, -0.0002889500465244055, -0.004988467786461115, -0.02066790871322155, 0.061857324093580246, -0.14994613826274872, -0.055292561650276184, -0.04779963195323944, 0.011017977260053158, 0.1184861809015274, 0.0510469451546669, -0.024115126579999924, 0.05900418385863304, -0.03131323307752609, -0.024247122928500175, -0.013179303146898746, 0.007457361556589603, -0.06144584342837334, 0.12506869435310364, -0.17643901705741882, -0.1439761221408844, -0.045875184237957, -0.005220592021942139, -0.05275142937898636, 0.02352476678788662, 0.09645441919565201, -0.1483849734067917, 0.012372135184705257, -0.035569943487644196, 0.003352230414748192, -0.07120122015476227, -0.006461417768150568, -0.023937830701470375, 0.04067695513367653, -0.048859480768442154, -0.039731282740831375, -0.04273213818669319, -0.1629391461610794, -0.05559500306844711, 0.01652519963681698, -0.08086790889501572, 0.08531545847654343, 0.16288357973098755, 0.07635378837585449, 0.030945418402552605, -0.027617119252681732, 0.2965916097164154, -0.09782896190881729, -0.10288460552692413, 0.08607801795005798, 0.03006422333419323, 0.07745711505413055, 0.01994551159441471, 0.09946111589670181, -0.13277612626552582, -0.01205084752291441, 0.12604522705078125, -0.08019952476024628, -0.05232096090912819, -0.08256905525922775, -0.12149301916360855, 0.03517502546310425, 0.01205930020660162, 0.06414498388767242, -0.0627482458949089, 0.023502860218286514, -0.00989097636193037, -0.018725110217928886, -0.018961606547236443, -0.007109314203262329, 0.08536943048238754, -0.12917496263980865, 0.036176662892103195, -0.025417644530534744, -0.24346184730529785, 0.05415042117238045, 0.03148271143436432, 0.03330513834953308, 0.15157653391361237, -0.058544665575027466, 0.040603116154670715, -0.029795385897159576, -0.03490321338176727, -0.000029169175832066685, -0.058569420129060745, -0.08640053868293762, -0.07002522051334381, -0.0700453370809555, -0.02096134051680565, 0.07392655313014984, 0.11873117834329605, -0.13396722078323364, -0.015271042473614216, -0.09797907620668411, 0.16314908862113953, -0.034075770527124405, 0.15363828837871552, 0.05257850140333176, 0.12707345187664032, 0.07864628732204437, -0.024146730080246925, -0.08222644031047821, 0.10628948360681534, 0.060255516320466995, -0.05513175204396248, 0.0752396509051323, 0.021728403866291046, 0.06517022848129272, -0.06116943806409836, 0.10909106582403183, -0.1406434178352356, -0.05089446157217026, 0.039448220282793045, 0.0673627257347107, -0.14302565157413483, 0.16719979047775269, 0.04117663577198982, -0.14146113395690918, -0.07821036130189896, -0.005139009561389685, 0.026531720533967018, 0.019404739141464233, 0.13279485702514648, 0.050706133246421814, 0.009890551678836346, -0.08521853387355804, 0.03996351733803749, 0.010507349856197834, 0.3003160059452057, -0.05617166683077812, -0.08410222083330154, -0.03976192697882652, 0.02340586483478546, -0.01713041588664055, 0.07814887166023254, -0.02398991398513317, -0.18022608757019043, 0.011829585768282413, -0.030214963480830193, -0.1833833009004593, 0.006345605477690697, 0.03103783167898655, -0.09187177568674088, 0.08656448870897293, -0.08266045898199081, -0.038444582372903824, -0.0028396649286150932, -0.009013022296130657, 0.06981699913740158, -0.03039022907614708, -0.03065728209912777, -0.09617801755666733, -0.014468236826360226, -0.06873545795679092, -0.09556493908166885, 0.13819923996925354, -0.016782157123088837, -0.011564490385353565, -0.07885609567165375, 0.22944846749305725, -0.14770592749118805, 0.025073688477277756, -0.0273521076887846, 0.0063400547951459885, -0.042573779821395874, -0.1363215297460556, 0.12396980077028275, -0.17517781257629395, 0.026420868933200836, 0.14634376764297485, -0.17380239069461823, 0.24759764969348907, -0.027199117466807365, 0.019052419811487198, 0.2529863119125366, 0.19203484058380127, 0.013577680103480816, -0.03339248150587082, 0.07134028524160385, -0.006461617071181536, -0.2693682312965393, -0.14876921474933624, -0.09697020798921585, -0.06495757400989532, 0.06908795982599258, -0.12886732816696167, 0.05186666175723076, 0.139800563454628, 0.010182428173720837, 0.14162993431091309, -0.18590334057807922, -0.07650768011808395, 0.09930071234703064, 0.035186123102903366, 0.30251023173332214, -0.16029828786849976, -0.09160547703504562, -0.041728585958480835, 0.1132073700428009, 0.06822063773870468, -0.0007711356738582253, 0.17130528390407562, 0.03714118152856827, -0.04113695025444031, 0.009382885880768299, 0.022083306685090065, 0.1504250317811966, -0.03335946425795555, 0.06484918296337128, -0.03109595738351345, -0.08513844013214111, 0.0678587555885315, 0.08232593536376953, -0.07938234508037567, -0.1402379870414734, -0.027063602581620216, -0.06779395043849945, 0.025786971673369408, -0.044758547097444534, -0.06198246777057648, 0.02890380099415779, -0.10048098117113113, -0.1057426780462265, -0.021616986021399498, -0.06878915429115295, 0.010547619313001633, 0.2527298033237457, -0.1329958736896515, 0.05712815746665001, 0.1222086176276207, -0.03827377408742905, -0.19399259984493256, -0.06846926361322403, -0.060736168175935745, -0.016216915100812912, 0.03517930582165718, -0.09219347685575485, 0.040032923221588135, 0.0810268223285675, 0.0022529689595103264, 0.052259232848882675, 0.07308941334486008, -0.03732777014374733, 0.006124442908912897, 0.10420472919940948, -0.13873335719108582, -0.24606598913669586, -0.05119883641600609, -0.05838168412446976, 0.09369127452373505, 0.09721381217241287, 0.07810262590646744, 0.09536082297563553, -0.01834551990032196, 0.038419827818870544, 0.000708982115611434, -0.06307477504014969, 0.020926866680383682, 0.10226745903491974, -0.0028086986858397722, -0.11373791098594666, 0.04023655876517296, -0.03773874789476395, 0.018001075834035873, -0.01082414761185646, 0.11324847489595413, -0.03237336874008179, -0.05136360600590706, -0.1775205433368683, 0.10501383990049362, -0.07877179235219955, 0.042358506470918655, -0.03639237582683563, -0.062031034380197525, -0.0025766638573259115, -0.032180238515138626, 0.08931837975978851, 0.02496914751827717, -0.03426770865917206, 0.02777371183037758, 0.040738917887210846, 0.027742713689804077, -0.11654306948184967, 0.0272216796875, 0.008370917290449142, -0.13855966925621033, -0.003177831880748272, 0.16999287903308868, -0.081362783908844, -0.048734575510025024, -0.10664370656013489, -0.0026976442895829678, 0.03185667097568512, -0.14078965783119202, -0.06487379968166351, -0.06437218934297562, 0.07998133450746536, 0.031074728816747665, -0.007043824531137943, -0.03384329006075859, -0.03936956450343132, -0.006067611742764711, 0.02620506100356579, 0.06290444731712341, -0.05353319272398949, 0.011902050115168095, 0.07667414844036102, -0.0030111430678516626, 0.08931206911802292, 0.012574352324008942, 0.007491771597415209, 0.11561736464500427, -0.10616379231214523, -0.05816683545708656, 0.16117508709430695, 0.02318904548883438, 0.01078184787184, 0.21796654164791107, -0.06437226384878159, -0.0566769540309906, 0.061484444886446, 0.047672584652900696, 0.07241439819335938, -0.10506909340620041, 0.03768874332308769, -0.07900764793157578, -0.19656606018543243, -0.0034904289059340954, -0.03989024460315704, -0.08255171030759811, 0.0004862355417571962, -0.013559604994952679, -0.040867093950510025, 0.038335081189870834, -0.07323914021253586, 0.04654613137245178, 0.026983637362718582, -0.12960277497768402, 0.09427504986524582, -0.048587050288915634, -0.030680274590849876, 0.019400738179683685, 0.34789368510246277, -0.018195021897554398, 0.08231780678033829, 0.021813519299030304, 0.20031863451004028, 0.19407622516155243, 0.026058077812194824, 0.10725270211696625, 0.10068518668413162, -0.11813347786664963, -0.21292336285114288, 0.06223103776574135, 0.08761640638113022, 0.0335594080388546, 0.038159821182489395, 0.015758337453007698, 0.006037950981408358, 0.05775190889835358, 0.03233565017580986, 0.01748858205974102, -0.00015870026254560798, -0.019900821149349213, 0.21418532729148865, 0.055506255477666855, -0.014825491234660149, 0.020108921453356743, 0.20774264633655548, 0.0036341992672532797, 0.05221761390566826, 0.04766823723912239, -0.014713463373482227, -0.10567742586135864, -0.028269926086068153, 0.001083456794731319, -0.14102625846862793, 0.04905659705400467, -0.08665885776281357, -0.04775768518447876, 0.04789333418011665, 0.034962981939315796, -0.019090555608272552, 0.0994228795170784, 0.08861930668354034, -0.08191538602113724, 0.032908204942941666, 0.022745154798030853, 0.06154664605855942, 0.028010426089167595, -0.06448157131671906, -0.02738349139690399, -0.06826955080032349, 0.004108174704015255, 0.0024502065498381853, -0.04122450575232506, -0.06922347843647003, -0.13792367279529572, -0.04531724005937576, -0.025809701532125473, 0.013581492006778717, -0.07125543057918549, 0.0644034743309021, 0.029483137652277946, -0.023053687065839767, -0.020434781908988953, 0.1004989892244339, -0.0870288610458374, 0.09621790796518326, 0.00820994097739458, 0.11286914348602295, 0.01745307818055153, 0.24756979942321777, -0.08653547614812851, -0.08663418889045715, -0.08556225895881653, 0.21126213669776917, 0.22451984882354736, -0.21012134850025177, 0.0007483107619918883, 0.11322475224733353, 0.03549947589635849, 0.09947855770587921, 0.04740147292613983, 0.07029246538877487, 0.21844646334648132, -0.05151094123721123, -0.041877973824739456, -0.005539192818105221, 0.016194647178053856, -0.12839297950267792, 0.011377044022083282, 0.2001887708902359, 0.013297867961227894, -0.01840985007584095, 0.09049413353204727, -0.15025076270103455, 0.21144795417785645, 0.059158097952604294, -0.13556386530399323, -0.062385596334934235, 0.0049204290844500065, 0.05930672958493233, 0.04244573414325714, 0.1363905370235443, 0.0023600109852850437, -0.09434683620929718, -0.03538386523723602, 0.05417526513338089, -0.21525797247886658, -0.048350270837545395, -0.06837780773639679, -0.0835375040769577, 0.0667145624756813, -0.036134421825408936, -0.05852586403489113, 0.05774398893117905, 0.02858634851872921, 0.11973768472671509, 0.07198034226894379, 0.03546251356601715, 0.03840099647641182, -0.07986166328191757, 0.010215748101472855, 0.04839250445365906, -0.1721859574317932, 0.10379151999950409, -0.08010347187519073, 0.026118174195289612, 0.031455881893634796, -0.06492909044027328, 0.020881615579128265, 0.05508718639612198, -0.17561709880828857, -0.013822248205542564, 0.04533156752586365, 0.06891955435276031, -0.038774117827415466, 0.0030403900891542435, -0.07656078785657883, 0.05155223235487938, 0.041239578276872635, -0.06735002994537354, 0.015729786828160286, -0.06821098178625107, 0.2097920924425125, -0.0875433012843132, -0.17619216442108154, -0.02111484855413437, -0.019240843132138252, 0.11895754933357239, -0.0506635345518589, 0.07487769424915314, 0.09794803708791733, -0.0325804278254509, -0.02726014330983162, -0.3173161447048187, 0.07685273885726929, 0.05781979486346245, -0.05693981051445007, 0.0014710332034155726 ]
null
null
null
# Paragram Embeddings 300 dimensional Paragram embeddings tuned on SimLex999 dataset Read more: * https://www.cs.cmu.edu/~jwieting/
{"tags": ["glove", "gensim", "fse"]}
null
fse/paragram-300-sl999
[ "glove", "gensim", "fse", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #glove #gensim #fse #region-us
# Paragram Embeddings 300 dimensional Paragram embeddings tuned on SimLex999 dataset Read more: * URL
[ "# Paragram Embeddings \n\n300 dimensional Paragram embeddings tuned on SimLex999 dataset\n\nRead more:\n* URL" ]
[ "TAGS\n#glove #gensim #fse #region-us \n", "# Paragram Embeddings \n\n300 dimensional Paragram embeddings tuned on SimLex999 dataset\n\nRead more:\n* URL" ]
[ 15, 30 ]
[ "passage: TAGS\n#glove #gensim #fse #region-us \n# Paragram Embeddings \n\n300 dimensional Paragram embeddings tuned on SimLex999 dataset\n\nRead more:\n* URL" ]
[ -0.0280894972383976, -0.04679194837808609, -0.005618330556899309, 0.02761818841099739, 0.1246778815984726, 0.04710853472352028, 0.1732642501592636, 0.06425133347511292, 0.054447147995233536, 0.030817294493317604, 0.13571606576442719, 0.21376372873783112, 0.03058130480349064, 0.12375389039516449, 0.05082257464528084, -0.3147147297859192, 0.006300546228885651, 0.0331922248005867, -0.03815419226884842, 0.049334317445755005, 0.059285275638103485, -0.06517384201288223, 0.1246689185500145, -0.025953935459256172, -0.13119155168533325, 0.04682496562600136, -0.022959602996706963, -0.0234982967376709, 0.045147448778152466, 0.025074681267142296, 0.03511423617601395, -0.0700545385479927, 0.035449787974357605, -0.1327219158411026, 0.03255360946059227, 0.031163528561592102, -0.07359608262777328, 0.06681331992149353, 0.02178458869457245, -0.001978385727852583, 0.15527421236038208, -0.0059499191120266914, 0.04331403225660324, -0.001563476980663836, -0.1403568685054779, -0.0690416544675827, -0.08357252180576324, -0.08599488437175751, 0.13923943042755127, -0.01469946838915348, -0.013064542785286903, 0.07525099813938141, -0.03467607870697975, 0.06259425729513168, 0.18523845076560974, -0.18494091928005219, -0.014551444910466671, 0.05580364540219307, -0.06966277956962585, 0.020861977711319923, -0.0588107593357563, 0.09834761172533035, 0.0491524264216423, -0.03762798011302948, -0.027544355019927025, -0.06817676872015, 0.012588150799274445, -0.03425251692533493, -0.09911981225013733, -0.021522514522075653, 0.26459285616874695, 0.051661938428878784, 0.01938197761774063, -0.0868450477719307, -0.13209903240203857, 0.052795231342315674, -0.06584122031927109, -0.017670243978500366, 0.050824884325265884, 0.01764841005206108, 0.029261747375130653, -0.07264453917741776, -0.06404237449169159, -0.04688119888305664, -0.0718592032790184, -0.054506827145814896, 0.013670040294528008, 0.09557212889194489, -0.12789097428321838, -0.011949296109378338, -0.013334476388990879, -0.04482124745845795, 0.06245320662856102, -0.11967599391937256, 0.04421280324459076, 0.08402684330940247, -0.028560331091284752, -0.06212061643600464, 0.017347034066915512, 0.14956912398338318, 0.16896311938762665, 0.11579590290784836, 0.07972333580255508, 0.10599743574857712, 0.07934144884347916, 0.010737148113548756, -0.09752213209867477, -0.05137035623192787, 0.007727837655693293, -0.09200353175401688, 0.10972589999437332, -0.10200317203998566, -0.13219845294952393, 0.11294618993997574, -0.06752146780490875, 0.017122019082307816, -0.13030005991458893, -0.04109659045934677, -0.07281458377838135, 0.011446472257375717, 0.12968431413173676, -0.028952544555068016, 0.052589260041713715, -0.10511383414268494, 0.07699292153120041, 0.08688853681087494, 0.013600529171526432, 0.017208851873874664, 0.006638112012296915, 0.0679340586066246, -0.10855423659086227, 0.049992818385362625, -0.02868976630270481, 0.021163910627365112, -0.03179800510406494, 0.005671542137861252, 0.09415668249130249, -0.050327058881521225, 0.0071693891659379005, 0.004360720049589872, 0.00925541017204523, -0.03602816164493561, 0.15605899691581726, 0.02059897407889366, 0.003694958286359906, 0.012803290970623493, 0.015398919582366943, 0.0038874817546457052, 0.0026848725974559784, 0.020820649340748787, 0.030566485598683357, 0.11749573796987534, -0.1971663236618042, -0.005591008346527815, -0.08271098881959915, 0.017851486802101135, -0.1310049146413803, 0.07194504141807556, -0.04138369858264923, -0.004922228865325451, 0.05611011013388634, -0.036151058971881866, -0.08008390665054321, -0.00007403147901641205, 0.05452542379498482, 0.06680607050657272, -0.23843920230865479, -0.05574933439493179, 0.2879100739955902, -0.09547338634729385, -0.09431309252977371, 0.0029291389510035515, -0.02028435654938221, -0.12488997727632523, 0.03668886423110962, 0.24595077335834503, -0.12029656767845154, -0.050189319998025894, 0.034608446061611176, 0.0705161988735199, -0.039670925587415695, -0.0003881528973579407, 0.029445789754390717, -0.05487179756164551, -0.017074566334486008, 0.035190895199775696, 0.11439745128154755, 0.05063484236598015, -0.05941184237599373, -0.03606588393449783, 0.017024796456098557, -0.03126491233706474, 0.0032885773107409477, 0.08635583519935608, 0.034306690096855164, -0.09580013900995255, 0.025361094623804092, -0.005697653628885746, 0.05335172265768051, -0.0005199615843594074, -0.037140365689992905, 0.015182124450802803, 0.06636801362037659, -0.05448432266712189, -0.005421948153525591, -0.12001796811819077, -0.12944947183132172, -0.008299823850393295, 0.15826727449893951, 0.06930253654718399, 0.03948482871055603, 0.07925600558519363, 0.10169576853513718, 0.004218689631670713, 0.025912681594491005, -0.02474825643002987, -0.01074277050793171, -0.0819053053855896, -0.025559084489941597, 0.022133812308311462, -0.06608013063669205, 0.0567500926554203, 0.04512440785765648, -0.06367307901382446, -0.0692659467458725, 0.14048030972480774, 0.05161212757229805, -0.13053762912750244, 0.03218252211809158, -0.027438316494226456, -0.012451493181288242, -0.05995313450694084, 0.049754511564970016, -0.05894007161259651, 0.06885074824094772, -0.02652263455092907, -0.1562187820672989, 0.035082586109638214, 0.12858591973781586, -0.21247652173042297, -0.040427010506391525, -0.07328304648399353, 0.007133838254958391, 0.0884186178445816, 0.006215133238583803, -0.08902332931756973, 0.04242173582315445, -0.08527848869562149, 0.06633060425519943, -0.06607307493686676, 0.015981435775756836, 0.024950146675109863, -0.0749446302652359, -0.12161906063556671, 0.03581327572464943, 0.21532391011714935, -0.23216372728347778, 0.07351149618625641, 0.24467892944812775, 0.13729101419448853, 0.09632805734872818, 0.0049398415721952915, -0.07661035656929016, -0.029744155704975128, -0.06647545844316483, -0.03244942054152489, 0.19685013592243195, -0.29897478222846985, -0.021105684340000153, 0.01993658021092415, -0.050434425473213196, 0.050602514296770096, -0.14589247107505798, -0.016083547845482826, -0.01819835789501667, 0.027991874143481255, 0.10516200959682465, 0.05039388686418533, -0.061724234372377396, 0.06859774887561798, -0.11773496121168137, -0.012375911697745323, -0.027292292565107346, -0.011610790155827999, -0.04524559527635574, 0.11497363448143005, -0.16554684937000275, -0.16409312188625336, -0.008728234097361565, -0.06243995577096939, -0.0625944659113884, 0.06547688692808151, 0.057804375886917114, -0.13268794119358063, -0.0342264249920845, -0.04068949446082115, -0.087218277156353, -0.025906819850206375, 0.019323665648698807, 0.08427431434392929, -0.023310234770178795, -0.012887719087302685, -0.09262378513813019, -0.03539063036441803, -0.1834486573934555, 0.06276314705610275, 0.05257197469472885, -0.038994576781988144, 0.12728117406368256, 0.12880456447601318, 0.027101049199700356, 0.09976379573345184, 0.01447865180671215, 0.33232957124710083, -0.05621730536222458, -0.03973190113902092, 0.15752623975276947, 0.026646660640835762, 0.060384925454854965, -0.06427451968193054, 0.07937987893819809, -0.2191014438867569, -0.022869346663355827, 0.07616633921861649, -0.1638663113117218, -0.04026562720537186, -0.11247715353965759, -0.12215957045555115, -0.044929634779691696, 0.05652303993701935, 0.015788111835718155, -0.134889617562294, 0.11527548730373383, 0.010333828628063202, 0.05302559956908226, -0.030547237023711205, -0.06484800577163696, -0.06547094136476517, -0.09877890348434448, 0.036904219537973404, -0.03352731466293335, -0.16182659566402435, 0.08648461103439331, 0.0374186672270298, 0.07655353844165802, 0.09168919920921326, -0.11150376498699188, 0.02744201011955738, 0.028053099289536476, -0.0341353677213192, 0.07687187939882278, -0.011415164917707443, -0.06941277533769608, -0.07523604482412338, -0.04184676334261894, -0.11360645294189453, 0.04011552035808563, 0.11772413551807404, -0.1382567435503006, -0.044451870024204254, 0.047459445893764496, 0.05725010484457016, -0.1486055552959442, 0.15545664727687836, -0.14489521086215973, 0.12584038078784943, 0.06552384048700333, 0.07369381189346313, -0.09177439659833908, 0.061623141169548035, 0.027422472834587097, -0.05698011443018913, 0.13617491722106934, -0.015554340556263924, 0.04870310425758362, -0.149769127368927, -0.0046580759808421135, -0.1137520894408226, 0.03325166925787926, 0.06314525008201599, 0.05312412977218628, -0.11836890131235123, 0.08249759674072266, 0.033317066729068756, -0.054691992700099945, -0.13353049755096436, 0.03512417525053024, 0.027628300711512566, -0.05549588426947594, 0.14826244115829468, 0.0546400249004364, -0.10424061119556427, -0.12274646759033203, -0.026403972879052162, -0.017448315396904945, 0.20078454911708832, 0.0035547176375985146, -0.0773303285241127, -0.005883748643100262, -0.006038869731128216, 0.006115192547440529, 0.020000692456960678, -0.14135420322418213, -0.22547036409378052, 0.01771445944905281, 0.004978772718459368, -0.2796612083911896, -0.007829231210052967, 0.009031657129526138, -0.013519913889467716, 0.07477962225675583, 0.1389455795288086, -0.0731913298368454, -0.0571596622467041, 0.029257895424962044, 0.08470628410577774, -0.02601459063589573, -0.0038195946253836155, -0.06216087192296982, 0.04052986204624176, -0.02018611505627632, -0.13910041749477386, 0.1528555005788803, -0.09670817106962204, 0.026854228228330612, -0.16040034592151642, 0.182380810379982, -0.06794443726539612, -0.0443384163081646, 0.05018308758735657, 0.0051305415108799934, 0.024963710457086563, -0.1408698558807373, 0.1895080804824829, -0.010580556467175484, -0.04192309081554413, 0.1724545955657959, -0.09370593726634979, 0.23506420850753784, 0.04551079869270325, 0.08753610402345657, 0.20496399700641632, 0.16187720000743866, -0.015065416693687439, 0.04050232842564583, 0.008993440307676792, -0.018856516107916832, -0.28007522225379944, -0.10598204284906387, -0.05971119925379753, -0.03840218111872673, 0.09026215225458145, -0.13738685846328735, 0.10561682283878326, 0.10917285829782486, 0.0006053398246876895, 0.16658638417720795, -0.24925543367862701, -0.05422918125987053, 0.13614892959594727, 0.15460556745529175, 0.26633596420288086, -0.14217756688594818, -0.0628754049539566, -0.07864272594451904, 0.030501874163746834, 0.1236361414194107, -0.02049412578344345, 0.13054341077804565, 0.005826870445162058, -0.08528436720371246, 0.0015820662956684828, 0.0012989591341465712, 0.14796902239322662, 0.013802392408251762, 0.0878196433186531, -0.10345739126205444, 0.012017552740871906, 0.1751815229654312, 0.05122804641723633, -0.051558587700128555, -0.04224381968379021, 0.027329228818416595, -0.17169280350208282, 0.028501616790890694, -0.005375653970986605, -0.0368475578725338, 0.031142303720116615, -0.0586162768304348, -0.10850250720977783, -0.06267940998077393, -0.028815748170018196, 0.018244124948978424, 0.14083030819892883, 0.04397120326757431, 0.013355189003050327, 0.06883739680051804, -0.05400891602039337, -0.23011158406734467, -0.18640027940273285, -0.08734912425279617, 0.010422938503324986, 0.01840146631002426, -0.009235583245754242, 0.028150469064712524, 0.04060499370098114, 0.044493354856967926, 0.005275497678667307, 0.07737056165933609, -0.04848918318748474, 0.052843980491161346, 0.12354402989149094, -0.1484527438879013, -0.11769460141658783, -0.010496233589947224, -0.05585617572069168, 0.11666403710842133, 0.11963221430778503, 0.061991576105356216, 0.12568652629852295, -0.015837935730814934, -0.028091877698898315, 0.0765686109662056, -0.04521890729665756, 0.12301593273878098, 0.11821181327104568, -0.041838858276605606, -0.16710607707500458, 0.09960711747407913, -0.059196729212999344, 0.1107245683670044, 0.039670806378126144, 0.07769162207841873, -0.058896973729133606, -0.04181322827935219, -0.10460386425256729, 0.23025457561016083, -0.09747232496738434, 0.010964225977659225, -0.01792857050895691, -0.05079788714647293, -0.011019885540008545, -0.19128257036209106, 0.0826064795255661, -0.029277151450514793, -0.03478461876511574, -0.006982970051467419, -0.06663434207439423, -0.018075980246067047, -0.05034967511892319, 0.08511997759342194, -0.04543447867035866, -0.20895856618881226, -0.012743623927235603, 0.13735264539718628, -0.09517595916986465, -0.036929335445165634, -0.07288642227649689, -0.014726947993040085, 0.0024562878534197807, -0.04195009917020798, -0.07046931982040405, -0.045628003776073456, 0.07701319456100464, 0.05526861920952797, -0.007651629392057657, 0.029612146317958832, -0.04951513931155205, -0.04417569935321808, 0.015341231599450111, 0.005816119257360697, -0.07585669308900833, -0.0026327657978981733, 0.04214535281062126, -0.029088949784636497, 0.0872834250330925, 0.018505368381738663, 0.026491865515708923, 0.0673922672867775, -0.14200550317764282, -0.14756962656974792, 0.15605919063091278, 0.07155119627714157, 0.03248055279254913, 0.10234498977661133, -0.00899602472782135, -0.010786451399326324, 0.03710604086518288, -0.001388999866321683, 0.14148560166358948, -0.0830339714884758, -0.0533827506005764, -0.1595073938369751, -0.16483917832374573, 0.017681274563074112, 0.04705604910850525, 0.03548266366124153, -0.004659013357013464, 0.006055086385458708, -0.005687769968062639, 0.043538182973861694, -0.12149720638990402, 0.01982264406979084, 0.032226331532001495, -0.09916651993989944, 0.12424834072589874, -0.025064196437597275, 0.039331041276454926, -0.009409199468791485, 0.37257838249206543, 0.04551544785499573, 0.039513397961854935, -0.037417035549879074, 0.1686234176158905, 0.16461549699306488, 0.015585911460220814, 0.2064349353313446, 0.041686657816171646, -0.07907876372337341, -0.10678456723690033, 0.10119287669658661, 0.12295261025428772, 0.061394765973091125, 0.14380501210689545, -0.07072038948535919, -0.0862748995423317, 0.04288780316710472, 0.01627231575548649, -0.010541916824877262, -0.09793549031019211, -0.06486351788043976, 0.11882069706916809, 0.04915793240070343, 0.025680121034383774, -0.12748786807060242, 0.08562583476305008, -0.021758081391453743, 0.03628065064549446, 0.056094009429216385, -0.061314985156059265, -0.11310748010873795, -0.01879924349486828, -0.059206847101449966, -0.1334867924451828, 0.059719350188970566, -0.10631808638572693, -0.0554206408560276, 0.07973814755678177, 0.0006347829475998878, -0.008287434466183186, 0.11028213053941727, 0.008959352038800716, -0.02591896243393421, 0.01730501838028431, 0.05735703557729721, -0.032908905297517776, 0.046421926468610764, -0.055694516748189926, -0.044756174087524414, -0.046204421669244766, 0.0047369832172989845, -0.04527202248573303, -0.07100473344326019, 0.008844812400639057, -0.030525939539074898, -0.04249561205506325, -0.05917734652757645, -0.026516834273934364, -0.01594734936952591, 0.08137665688991547, 0.03975093364715576, 0.015447648242115974, -0.035926274955272675, -0.018074071034789085, -0.0503305159509182, 0.14183910191059113, -0.006158897653222084, 0.05940636247396469, -0.029334209859371185, 0.1887543797492981, -0.058793239295482635, -0.06411682814359665, -0.05350566282868385, 0.18834583461284637, 0.23664428293704987, -0.17275916039943695, 0.008524085395038128, 0.027274005115032196, 0.014116899110376835, 0.0295781958848238, 0.1757848709821701, 0.025934403762221336, 0.18819299340248108, -0.007518287748098373, -0.05028074234724045, -0.000870024086907506, 0.0009399967966601253, -0.13667328655719757, 0.032304778695106506, 0.16051839292049408, -0.0157986618578434, -0.011586769483983517, 0.08434450626373291, -0.05339537933468819, 0.06788846850395203, 0.18611839413642883, -0.15432727336883545, -0.08659245818853378, 0.01886170171201229, 0.002064549131318927, 0.07713526487350464, 0.12721368670463562, -0.03930662199854851, -0.03353866934776306, 0.09658107161521912, 0.06127295643091202, -0.2844224274158478, -0.05386969819664955, -0.11859267204999924, -0.16372783482074738, 0.21068605780601501, -0.01722469925880432, -0.009833398275077343, 0.06330365687608719, 0.018943648785352707, 0.03960997238755226, 0.07595665752887726, -0.002721671015024185, 0.10289239138364792, -0.020315267145633698, 0.06803841143846512, -0.015349887311458588, -0.1608709841966629, 0.044457804411649704, -0.0635111927986145, -0.024687813594937325, 0.054298024624586105, -0.03726576268672943, 0.021971620619297028, 0.046713922172784805, -0.1615021973848343, 0.08276264369487762, 0.018102871254086494, 0.027550475671887398, -0.015910446643829346, 0.03858546167612076, 0.009893874637782574, 0.037792645394802094, -0.0041866060346364975, -0.0812094658613205, -0.0013474459992721677, -0.09949439764022827, 0.11152031272649765, -0.042598236352205276, -0.052889034152030945, -0.018963882699608803, -0.12617570161819458, 0.010779216885566711, -0.04048985242843628, 0.08761768788099289, 0.1016005426645279, -0.0065129161812365055, -0.02273603528738022, -0.07361675053834915, 0.037235844880342484, 0.09199243038892746, -0.08367906510829926, -0.044614680111408234 ]
null
null
null
# Paragram Embeddings 300 dimensional Paragram embeddings tuned on WordSim353 dataset Read more: * https://www.cs.cmu.edu/~jwieting/
{"tags": ["glove", "gensim", "fse"]}
null
fse/paragram-300-ws353
[ "glove", "gensim", "fse", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #glove #gensim #fse #region-us
# Paragram Embeddings 300 dimensional Paragram embeddings tuned on WordSim353 dataset Read more: * URL
[ "# Paragram Embeddings \n\n300 dimensional Paragram embeddings tuned on WordSim353 dataset\n\nRead more:\n* URL" ]
[ "TAGS\n#glove #gensim #fse #region-us \n", "# Paragram Embeddings \n\n300 dimensional Paragram embeddings tuned on WordSim353 dataset\n\nRead more:\n* URL" ]
[ 15, 29 ]
[ "passage: TAGS\n#glove #gensim #fse #region-us \n# Paragram Embeddings \n\n300 dimensional Paragram embeddings tuned on WordSim353 dataset\n\nRead more:\n* URL" ]
[ -0.03123144805431366, -0.0005106230382807553, -0.006422126200050116, 0.03674919158220291, 0.12711600959300995, 0.013015440665185452, 0.13511623442173004, 0.05760008096694946, -0.015326395630836487, 0.0560770146548748, 0.1480032354593277, 0.1823936253786087, 0.012934396974742413, 0.09862054139375687, 0.041819702833890915, -0.34958091378211975, 0.023363685235381126, 0.018167978152632713, -0.062352824956178665, 0.06888208538293839, 0.04482785984873772, -0.03970487043261528, 0.10446208715438843, -0.028064435347914696, -0.1750449687242508, 0.059831101447343826, -0.04535554721951485, -0.02494105137884617, 0.035075560212135315, 0.044604748487472534, 0.003104300005361438, -0.06659428030252457, 0.010301711969077587, -0.10565230995416641, 0.031218944117426872, 0.024626320227980614, -0.07414904236793518, 0.05217060074210167, -0.005919737741351128, -0.01138389389961958, 0.11150196939706802, -0.04305041953921318, 0.025068631395697594, -0.0026287732180207968, -0.13355019688606262, -0.0695149302482605, -0.030897876247763634, -0.11734504252672195, 0.1260278970003128, 0.01954175904393196, -0.03833790495991707, 0.08748572319746017, -0.03142697736620903, 0.06860027462244034, 0.19719886779785156, -0.207688108086586, -0.027065381407737732, 0.03889000043272972, -0.08542448282241821, 0.06124912202358246, -0.066437728703022, 0.09103425592184067, 0.04810697212815285, -0.011992353945970535, -0.023324118927121162, -0.043496351689100266, 0.08683719485998154, -0.025242207571864128, -0.11174456030130386, -0.011977010406553745, 0.28744933009147644, 0.059894513338804245, 0.029322519898414612, -0.1360825151205063, -0.13705652952194214, 0.08858271688222885, -0.0700952485203743, 0.003394813509657979, 0.02600560523569584, 0.03922976925969124, 0.0038945458363741636, -0.08365044742822647, -0.08710283786058426, -0.031044499948620796, -0.09531708806753159, 0.001428067684173584, 0.004184140358120203, 0.08564893156290054, -0.13152073323726654, -0.023793548345565796, -0.0009706367854960263, -0.06516513973474503, 0.043755874037742615, -0.13162527978420258, 0.07308311015367508, 0.11524935811758041, -0.05089752748608589, -0.038859281688928604, 0.05357911065220833, 0.03628532961010933, 0.14071977138519287, 0.09492737799882889, 0.056109923869371414, 0.11143062263727188, 0.06848686188459396, -0.009770430624485016, -0.05634124204516411, -0.020151713863015175, 0.001896593370474875, -0.08557676523923874, 0.09585057944059372, -0.08916351199150085, -0.14471781253814697, 0.11106699705123901, -0.07106584310531616, -0.0036722004879266024, -0.11288736015558243, -0.03801356628537178, -0.05684489384293556, 0.01711347885429859, 0.12432042509317398, -0.04997292533516884, 0.04548540338873863, -0.09225324541330338, 0.06621333211660385, 0.05657145753502846, 0.01699964702129364, 0.008872526697814465, -0.01018937211483717, 0.02896394580602646, -0.10773909091949463, 0.039197374135255814, -0.017245672643184662, 0.01860320195555687, -0.015339680016040802, 0.04691333696246147, 0.09194029122591019, -0.0786605104804039, -0.008406274020671844, -0.006720921490341425, -0.04090873897075653, -0.01830231584608555, 0.15406793355941772, -0.012510108761489391, 0.005640352610498667, 0.026357226073741913, 0.010217447765171528, 0.014917034655809402, -0.00013433955609798431, 0.04626639559864998, 0.01841079816222191, 0.11855697631835938, -0.19236741960048676, -0.0025835009291768074, -0.10974877327680588, -0.000005416572093963623, -0.04952973127365112, 0.1028236672282219, -0.0245134849101305, 0.005654983688145876, 0.04894217848777771, -0.04882208630442619, -0.1605718731880188, 0.009867527522146702, 0.03673543781042099, 0.11625812202692032, -0.2637089490890503, -0.11083832383155823, 0.3264147937297821, -0.09303507953882217, -0.06494706869125366, 0.013619735836982727, -0.012072178535163403, -0.10682746022939682, 0.05734032392501831, 0.25669094920158386, -0.14691723883152008, -0.00005993371087242849, 0.03209620341658592, 0.0454043410718441, -0.045211613178253174, 0.02917156182229519, 0.025148818269371986, -0.030527150258421898, 0.012540689669549465, 0.043735768646001816, 0.15152253210544586, 0.04059535637497902, -0.06428045779466629, -0.033396050333976746, 0.003569571068510413, -0.02051766961812973, 0.0009253127500414848, 0.06311491876840591, 0.030094189569354057, -0.11158114671707153, 0.007783434819430113, 0.0397614985704422, 0.021547356620430946, -0.01760743372142315, -0.007964680902659893, 0.016247376799583435, -0.00026851147413253784, -0.01343639474362135, 0.01504332572221756, -0.13571123778820038, -0.11811524629592896, -0.009540305472910404, 0.1453469693660736, 0.11347220093011856, 0.03905898705124855, 0.07646504044532776, 0.09767255932092667, 0.0017450718441978097, 0.03219916298985481, -0.016736559569835663, -0.0196871068328619, -0.06284507364034653, -0.04444257542490959, 0.06806214898824692, -0.05913207307457924, 0.09513700753450394, -0.005889585707336664, -0.04325982555747032, 0.001041326322592795, 0.12575089931488037, 0.040304530411958694, -0.131351500749588, 0.04354945942759514, -0.025104353204369545, -0.007145991083234549, -0.038550566881895065, 0.04035766050219536, -0.03606729954481125, 0.0045552910305559635, -0.01585533283650875, -0.1574992686510086, 0.05608360096812248, 0.12905417382717133, -0.163965106010437, -0.005508833099156618, -0.11205679923295975, -0.022763585671782494, 0.07109301537275314, -0.021657774224877357, -0.11433207988739014, 0.04184551164507866, -0.0765821635723114, 0.06128521263599396, -0.06688349694013596, 0.016511455178260803, 0.01784522645175457, -0.09248929470777512, -0.1449926346540451, 0.06444822996854782, 0.08457910269498825, -0.2554301917552948, 0.10063936561346054, 0.24492251873016357, 0.11011386662721634, 0.15359924733638763, 0.01352547388523817, -0.07156643271446228, -0.007261638063937426, -0.06112651899456978, -0.02993430197238922, 0.1171717718243599, -0.2573792636394501, -0.019038001075387, 0.040168389678001404, -0.02854575216770172, 0.07013164460659027, -0.14229826629161835, -0.03099682368338108, -0.023861989378929138, 0.04592214152216911, 0.13514317572116852, 0.05615104362368584, -0.04265652224421501, 0.08492022752761841, -0.10473895817995071, 0.010416320525109768, -0.023768307641148567, -0.01795494742691517, -0.06664454936981201, 0.1213250532746315, -0.18699173629283905, -0.26880183815956116, -0.04879051446914673, -0.05711439624428749, -0.07894106954336166, 0.056088317185640335, 0.08908502012491226, -0.18151605129241943, -0.020121781155467033, -0.04800499975681305, -0.0440099835395813, 0.014393785037100315, 0.021963519975543022, 0.08191992342472076, -0.004399648401886225, -0.031175881624221802, -0.08066007494926453, -0.03662828356027603, -0.17248475551605225, 0.07605362683534622, 0.0791095495223999, -0.07510001212358475, 0.11021092534065247, 0.1381412297487259, 0.07064370065927505, 0.10314127057790756, 0.012274585664272308, 0.38731133937835693, -0.0691756084561348, -0.04650888964533806, 0.14932239055633545, 0.03624459356069565, 0.06503283232450485, -0.056765954941511154, 0.07338371127843857, -0.22805875539779663, 0.0035965510178357363, 0.05202913284301758, -0.17293445765972137, -0.031067585572600365, -0.12599270045757294, -0.12083995342254639, -0.07599564641714096, 0.07354684919118881, 0.046871159225702286, -0.12097205966711044, 0.09367387741804123, 0.00009035699622472748, 0.029252178966999054, -0.0019370861118659377, -0.028164217248558998, -0.023038944229483604, -0.09229973703622818, 0.05548495426774025, -0.0374789796769619, -0.17300182580947876, 0.09169206023216248, 0.04515473544597626, 0.07142799347639084, 0.11246999353170395, -0.08395997434854507, 0.03433949872851372, -0.01845492236316204, 0.01821312867105007, 0.07392432540655136, 0.011466330848634243, -0.07083680480718613, -0.06518598645925522, -0.0781119093298912, -0.1011594757437706, 0.07435491681098938, 0.07316025346517563, -0.1369108259677887, -0.016364162787795067, 0.037750083953142166, 0.07097410410642624, -0.1224563717842102, 0.14608734846115112, -0.1525031179189682, 0.09905385971069336, 0.06842964887619019, 0.052538130432367325, -0.09836453944444656, 0.05303347483277321, 0.04469973221421242, -0.030934445559978485, 0.11710166931152344, 0.006794965360313654, 0.06635162979364395, -0.09915714710950851, 0.014263003133237362, -0.16034767031669617, -0.0033968163188546896, 0.04823073372244835, 0.04862850904464722, -0.11512287706136703, 0.10557546466588974, 0.03453237935900688, -0.08320529013872147, -0.13658474385738373, 0.028931638225913048, 0.0003814571537077427, -0.048647452145814896, 0.14234662055969238, 0.052336037158966064, -0.09147229790687561, -0.06600052863359451, -0.03691362962126732, -0.021364139392971992, 0.22186847031116486, -0.01878765970468521, -0.07555438578128815, 0.026984989643096924, 0.004912776406854391, -0.0028779793065041304, 0.0383002795279026, -0.10166967660188675, -0.22799193859100342, 0.019323160871863365, 0.05132293701171875, -0.24037881195545197, -0.012267068028450012, -0.009829693473875523, -0.02930382452905178, 0.10626295953989029, 0.048203881829977036, -0.07338611036539078, -0.055727314203977585, 0.08628406375646591, 0.05840234085917473, -0.032097216695547104, -0.01436662022024393, -0.054858963936567307, 0.08699528127908707, -0.0508495569229126, -0.15695907175540924, 0.14487434923648834, -0.06898230314254761, 0.0338929146528244, -0.12764166295528412, 0.22083552181720734, -0.04502922296524048, -0.03181815147399902, 0.036934252828359604, 0.0012918519787490368, 0.013659264892339706, -0.12509162724018097, 0.18897484242916107, 0.02158522419631481, -0.023504378274083138, 0.15088610351085663, -0.08608490228652954, 0.21365781128406525, 0.01733572781085968, 0.05991457402706146, 0.22504203021526337, 0.17015500366687775, -0.006445573177188635, 0.02203204296529293, 0.02249944768846035, -0.007012147922068834, -0.2576870918273926, -0.086086206138134, -0.03015625663101673, -0.018329061567783356, 0.05960286036133766, -0.15584272146224976, 0.11753173917531967, 0.1524202525615692, -0.0029459844809025526, 0.18742096424102783, -0.23535270988941193, -0.07866157591342926, 0.12935592234134674, 0.12216103821992874, 0.27260521054267883, -0.14297038316726685, -0.06970952451229095, -0.09014453738927841, 0.014768029563128948, 0.12826122343540192, 0.0017659813165664673, 0.1442037969827652, 0.028948143124580383, -0.023895880207419395, 0.005817051511257887, 0.009126403369009495, 0.15401537716388702, 0.02413582056760788, 0.07525353878736496, -0.10099656134843826, 0.028141982853412628, 0.11904139071702957, 0.06097329780459404, -0.04081501439213753, -0.017444683238863945, 0.01625700853765011, -0.09821969270706177, 0.018005140125751495, -0.03984197601675987, -0.045553356409072876, 0.03473755344748497, -0.07580056041479111, -0.10114854574203491, -0.04661822319030762, -0.027840176597237587, 0.010293571278452873, 0.14212413132190704, -0.025206059217453003, 0.017705107107758522, 0.11226404458284378, -0.05022813752293587, -0.2180759459733963, -0.12842431664466858, -0.09255107492208481, -0.004577962681651115, 0.047936853021383286, -0.07838462293148041, 0.03968006744980812, 0.045804958790540695, 0.03719991818070412, 0.026534507051110268, 0.06532299518585205, -0.06427978724241257, 0.008958493359386921, 0.14696189761161804, -0.14756911993026733, -0.13249652087688446, -0.047907132655382156, 0.036300722509622574, 0.1165754422545433, 0.09531954675912857, 0.07813729345798492, 0.11774764209985733, -0.020813344046473503, -0.011927825398743153, 0.05293657258152962, -0.050996530801057816, 0.13081037998199463, 0.10000383108854294, -0.015399456024169922, -0.1804838925600052, 0.08556834608316422, -0.07937965542078018, 0.07237304002046585, 0.048336490988731384, 0.11683201044797897, -0.05049878731369972, -0.029359912499785423, -0.11799997836351395, 0.16106171905994415, -0.07631085067987442, 0.00976767297834158, 0.0099825793877244, -0.05751557648181915, 0.006944925058633089, -0.14100389182567596, 0.08424309641122818, 0.004716267343610525, -0.03581874817609787, 0.00439497223123908, -0.03532838821411133, -0.0366312600672245, -0.05485948920249939, 0.06427270919084549, -0.038352783769369125, -0.20416636765003204, -0.01721629500389099, 0.13300055265426636, -0.10659464448690414, -0.06038365885615349, -0.06916099041700363, -0.00004404100400279276, 0.04137110337615013, -0.03344273567199707, -0.06948833167552948, -0.05721712112426758, 0.04834090545773506, 0.04683433100581169, -0.016394799575209618, 0.03386679291725159, -0.04752884805202484, -0.032001182436943054, -0.0140216164290905, -0.0054460857063531876, -0.06823106855154037, 0.0014246409991756082, 0.042099785059690475, -0.031587328761816025, 0.0906348004937172, 0.04977652430534363, -0.014193176291882992, 0.10427820682525635, -0.0942755714058876, -0.11942634731531143, 0.22428017854690552, 0.05625094845890999, 0.025152837857604027, 0.13680677115917206, -0.028403423726558685, -0.0021329603623598814, 0.034829795360565186, 0.020069139078259468, 0.12081915140151978, -0.07546621561050415, -0.0388023741543293, -0.14035218954086304, -0.15736790001392365, -0.006424715276807547, 0.017373550683259964, 0.04078041762113571, 0.014729469083249569, 0.01328631117939949, -0.02182643674314022, 0.03159499540925026, -0.11367221921682358, 0.015820255503058434, 0.04505510255694389, -0.13301126658916473, 0.19223029911518097, -0.02912726439535618, 0.03776538744568825, -0.01181637030094862, 0.3729095458984375, -0.0006658434867858887, 0.007005659397691488, -0.011755960993468761, 0.2021583765745163, 0.1314077526330948, 0.016042659059166908, 0.1970546990633011, 0.07435702532529831, -0.08234859257936478, -0.0893891230225563, 0.08429112285375595, 0.13805963099002838, 0.13391052186489105, 0.12155509740114212, -0.055043626576662064, -0.014892498962581158, 0.07338383048772812, 0.034346990287303925, 0.048237960785627365, -0.10761430859565735, -0.049266934394836426, 0.1213235855102539, 0.052768170833587646, 0.011112851090729237, -0.18716250360012054, 0.13752396404743195, -0.019551141187548637, 0.0416257418692112, 0.05345560237765312, -0.051182594150304794, -0.12420105934143066, -0.11062878370285034, -0.07187923789024353, -0.11179526895284653, 0.05296611785888672, -0.12182626873254776, -0.06007377803325653, 0.023052440956234932, 0.01748773641884327, 0.0090812211856246, 0.13327644765377045, 0.03633063659071922, -0.05415103957056999, 0.02540547586977482, 0.015634695068001747, -0.035420503467321396, 0.06029136851429939, -0.0563635528087616, -0.0006043041939847171, -0.011013074778020382, 0.01093826349824667, -0.025051714852452278, -0.048338085412979126, -0.0048485565930604935, -0.09297993779182434, -0.047332778573036194, -0.07715919613838196, -0.002954107476398349, -0.047762081027030945, 0.05801059678196907, 0.06434765458106995, -0.022231334820389748, -0.023562347516417503, 0.00851155910640955, -0.04112602770328522, 0.0878414437174797, -0.012816138565540314, 0.015183116309344769, -0.023536721244454384, 0.18415486812591553, -0.07975325733423233, -0.06592800468206406, -0.06271722912788391, 0.15584947168827057, 0.24962520599365234, -0.16898179054260254, 0.012580501846969128, 0.030641427263617516, 0.03085625171661377, 0.018073027953505516, 0.16271105408668518, 0.06228093430399895, 0.22547680139541626, -0.010471224784851074, -0.07128298282623291, -0.03209603205323219, -0.017535937950015068, -0.1401795595884323, 0.020468762144446373, 0.17343296110630035, -0.018096091225743294, -0.03141042962670326, 0.10178451985120773, -0.08550656586885452, 0.12614154815673828, 0.09836690872907639, -0.15948539972305298, -0.0962684154510498, 0.023462502285838127, -0.03196125477552414, 0.0721668228507042, 0.13091857731342316, -0.024451613426208496, -0.04561009630560875, 0.01821746490895748, 0.05204355716705322, -0.24873630702495575, -0.0379728302359581, -0.10642557591199875, -0.17016059160232544, 0.1328050196170807, -0.0035733215045183897, -0.007582343649119139, 0.04354071244597435, 0.03695930168032646, 0.04946088790893555, 0.11728986352682114, -0.01794520951807499, 0.08634418249130249, -0.033198557794094086, 0.09672326594591141, -0.013450060971081257, -0.15877795219421387, 0.06297024339437485, -0.09170353412628174, -0.040645577013492584, 0.06084263324737549, -0.02197323553264141, 0.0221627876162529, 0.059028562158346176, -0.15553317964076996, 0.06512914597988129, 0.00527978828176856, 0.0273586418479681, -0.018878059461712837, 0.03153108432888985, 0.006301566958427429, 0.04016027972102165, 0.015647662803530693, -0.07322978973388672, -0.038484442979097366, -0.10609954595565796, 0.11021387577056885, -0.06144309416413307, -0.07859540730714798, -0.04238520935177803, -0.10387996584177017, 0.022025587037205696, -0.04646658897399902, 0.10389536619186401, 0.10573037713766098, -0.02120550535619259, -0.01193623524159193, -0.1835109442472458, 0.06861229985952377, 0.09273221343755722, -0.07885802537202835, -0.05889081582427025 ]
null
null
null
# Paragram Embeddings Pushing the Limits of Paraphrastic Sentence Embeddings with Millions of Machine Translations (300 dimensions) Read more: * https://www.cs.cmu.edu/~jwieting/ * https://www.cs.cmu.edu/~jwieting/wieting2017Millions.pdf
{"tags": ["glove", "gensim", "fse"]}
null
fse/paranmt-300
[ "glove", "gensim", "fse", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #glove #gensim #fse #region-us
# Paragram Embeddings Pushing the Limits of Paraphrastic Sentence Embeddings with Millions of Machine Translations (300 dimensions) Read more: * URL * URL
[ "# Paragram Embeddings \n\nPushing the Limits of Paraphrastic Sentence Embeddings with Millions of Machine Translations (300 dimensions)\n\nRead more:\n* URL\n* URL" ]
[ "TAGS\n#glove #gensim #fse #region-us \n", "# Paragram Embeddings \n\nPushing the Limits of Paraphrastic Sentence Embeddings with Millions of Machine Translations (300 dimensions)\n\nRead more:\n* URL\n* URL" ]
[ 15, 40 ]
[ "passage: TAGS\n#glove #gensim #fse #region-us \n# Paragram Embeddings \n\nPushing the Limits of Paraphrastic Sentence Embeddings with Millions of Machine Translations (300 dimensions)\n\nRead more:\n* URL\n* URL" ]
[ 0.07010877132415771, -0.03888993337750435, -0.008442448452115059, -0.014659281820058823, 0.13171055912971497, 0.03295234218239784, 0.11887555569410324, 0.05849437043070793, 0.02653076872229576, 0.051125697791576385, 0.1640438437461853, 0.15301209688186646, -0.026317713782191277, -0.037126991897821426, 0.10802415758371353, -0.3238089382648468, 0.023321382701396942, -0.000857035513035953, -0.060626186430454254, 0.07162302732467651, 0.03215692192316055, -0.05507645010948181, 0.11135045439004898, -0.00315163959749043, -0.04181784763932228, 0.0535583570599556, -0.00696319667622447, 0.024915622547268867, 0.04703785851597786, 0.042556677013635635, -0.05166596546769142, -0.10751508921384811, -0.03426493704319, -0.0806342288851738, 0.022607935592532158, -0.008988986723124981, -0.06159699335694313, 0.044354718178510666, -0.028170514851808548, -0.051341719925403595, 0.10585957020521164, -0.007443672511726618, -0.02888910286128521, 0.025235919281840324, -0.11014114320278168, -0.023757101967930794, 0.03415576368570328, -0.1712263822555542, 0.03230070695281029, 0.056997768580913544, -0.07233617454767227, 0.08503416925668716, -0.06867896765470505, 0.052534155547618866, 0.20275725424289703, -0.285703182220459, -0.024013299494981766, 0.007524115964770317, 0.052077751606702805, 0.05193503201007843, -0.06582511216402054, 0.12834376096725464, 0.09427838772535324, -0.015053212642669678, -0.11553261429071426, -0.10308369249105453, 0.07213788479566574, -0.026079637929797173, -0.1095990389585495, 0.015260973945260048, 0.18423084914684296, 0.030340267345309258, 0.0015456153778359294, -0.05816444382071495, -0.13751739263534546, 0.009548219852149487, -0.04767546430230141, 0.049823325127363205, 0.02674540877342224, 0.061183132231235504, 0.01392521895468235, -0.1245364099740982, -0.08024316281080246, -0.06659006327390671, -0.2024410516023636, 0.019700689241290092, 0.02133091539144516, 0.027677299454808235, 0.0015753027983009815, -0.01935960166156292, -0.029636260122060776, -0.02487064152956009, 0.042190566658973694, -0.12225113064050674, 0.03698999434709549, 0.129350483417511, -0.0532630980014801, -0.06485798954963684, 0.1094561293721199, 0.05436204746365547, 0.1299651563167572, 0.06742732226848602, -0.01370239444077015, 0.1575314998626709, 0.05271952971816063, 0.03182239085435867, -0.1594773381948471, -0.030490418896079063, -0.02375936321914196, -0.06881257146596909, 0.07208986580371857, -0.050615306943655014, -0.1406141072511673, 0.049632031470537186, -0.06553595513105392, 0.04374982416629791, -0.10597162693738937, 0.04760454222559929, -0.014085314236581326, 0.048080433160066605, -0.03433586657047272, -0.021050969138741493, 0.0034007576759904623, -0.043002501130104065, 0.01428898237645626, 0.013216127641499043, -0.07912104576826096, 0.04145955294370651, -0.0524328239262104, -0.023566974326968193, -0.1354602426290512, 0.05356307700276375, -0.04359559714794159, -0.0006215524626895785, 0.00465116323903203, 0.08297501504421234, 0.06279724836349487, -0.07715260237455368, 0.0669538825750351, 0.0021486645564436913, -0.024016818031668663, -0.049912530928850174, 0.11313866823911667, -0.025567518547177315, 0.048194028437137604, 0.012453154660761356, -0.037524014711380005, 0.05120385065674782, -0.027174392715096474, 0.08770100027322769, -0.02894730120897293, 0.08475709706544876, -0.14431406557559967, 0.011117006652057171, -0.16392172873020172, -0.020624913275241852, -0.1797381490468979, 0.05691790580749512, -0.022021237760782242, 0.06837969273328781, 0.02213519997894764, -0.018972262740135193, -0.13993535935878754, 0.06871376931667328, -0.05056092143058777, 0.10927989333868027, -0.22103384137153625, -0.0602632574737072, 0.29136204719543457, 0.035926587879657745, -0.0710064247250557, 0.12087034434080124, -0.008311946876347065, -0.036523737013339996, 0.01973470114171505, 0.28281399607658386, -0.23461349308490753, 0.0119722168892622, 0.12278219312429428, 0.07123851776123047, -0.04442930221557617, 0.1449878215789795, 0.061729807406663895, -0.1552821844816208, 0.027516603469848633, 0.02134954370558262, 0.11806447803974152, 0.043715961277484894, -0.033978428691625595, -0.024465305730700493, 0.05371208116412163, 0.001940435729920864, -0.004374498035758734, 0.024889007210731506, 0.05340384319424629, -0.11661845445632935, -0.015397028997540474, 0.005273829679936171, -0.0017636714037507772, -0.015475806780159473, 0.01873161271214485, -0.0019827343057841063, 0.003696113359183073, 0.03891622647643089, 0.0772332176566124, -0.14059613645076752, -0.010225183330476284, -0.009159599430859089, 0.12377256900072098, 0.19416406750679016, 0.11695842444896698, 0.04903721809387207, 0.04859461635351181, 0.008511470630764961, 0.07173237204551697, 0.05193125084042549, -0.03761034831404686, -0.067889004945755, -0.034045781940221786, 0.15763689577579498, -0.013942446559667587, 0.03381372615695, 0.03223093971610069, -0.011250374838709831, 0.018063984811306, 0.057095739990472794, -0.004637839272618294, -0.06453952938318253, 0.03787468373775482, -0.005150638520717621, -0.047669775784015656, -0.004148886073380709, 0.07634399831295013, -0.08993658423423767, -0.055258188396692276, 0.10374698787927628, -0.2196774184703827, 0.13156718015670776, 0.19286121428012848, -0.2848944365978241, -0.002006425289437175, -0.08284635841846466, -0.013392237946391106, 0.062145818024873734, 0.03163815289735794, -0.18431006371974945, 0.1568332016468048, -0.07393376529216766, 0.10297087579965591, -0.097032830119133, 0.033799488097429276, 0.00029149651527404785, -0.08387256413698196, -0.08387501537799835, 0.12924724817276, 0.0927283838391304, -0.29869377613067627, 0.14074638485908508, 0.2722795307636261, 0.033402979373931885, 0.2214408963918686, 0.03683091700077057, -0.03109298273921013, -0.010952897369861603, 0.022994551807641983, -0.047244783490896225, 0.03894016146659851, -0.31187769770622253, -0.023632870987057686, 0.028312046080827713, 0.013282214291393757, 0.045378271490335464, -0.12192075699567795, -0.06203652173280716, -0.07383377850055695, 0.015837298706173897, 0.17434246838092804, 0.04728861153125763, -0.004172891844063997, 0.0751267820596695, -0.033959243446588516, -0.03965679183602333, 0.00923304446041584, -0.0026620076969265938, -0.040006913244724274, 0.12036781013011932, -0.17819297313690186, -0.21893475949764252, -0.06520688533782959, -0.022875264286994934, -0.06186964735388756, 0.05156821757555008, 0.06333424896001816, -0.12514105439186096, 0.0006676972843706608, -0.04832887277007103, 0.05186447128653526, -0.0514121912419796, -0.027881741523742676, 0.02072056010365486, 0.03284227475523949, -0.0016705484595149755, -0.0660223588347435, -0.04027128964662552, -0.1298830211162567, -0.09547865390777588, 0.028748048469424248, -0.06259569525718689, 0.12230758368968964, 0.11258842796087265, 0.04661279544234276, 0.051914434880018234, -0.015765123069286346, 0.31408724188804626, -0.10585089772939682, -0.10875064879655838, 0.09092742949724197, 0.022555891424417496, 0.024792173877358437, 0.023586662486195564, 0.061430368572473526, -0.15681515634059906, 0.036330413073301315, 0.11072120815515518, -0.1139540895819664, -0.05729842558503151, -0.05251144617795944, -0.0905352383852005, 0.0650985836982727, 0.03754396736621857, 0.05443640798330307, -0.04978922754526138, 0.029879577457904816, -0.01811186410486698, 0.037470489740371704, 0.013568722642958164, -0.027903059497475624, 0.03456247225403786, -0.1206125020980835, 0.05028313770890236, 0.004041739739477634, -0.2141095995903015, 0.07244805991649628, 0.02293284982442856, 0.035842038691043854, 0.12282315641641617, 0.0001534719776827842, 0.03729073330760002, -0.026638884097337723, -0.0015530616510659456, 0.07967803627252579, -0.025089310482144356, -0.06582637876272202, -0.08465292304754257, -0.07188110798597336, -0.066362664103508, 0.07846402376890182, 0.14080265164375305, -0.10923398286104202, 0.023329216986894608, -0.03535199537873268, 0.15100760757923126, -0.08396419882774353, 0.10401580482721329, -0.020426930859684944, 0.15048274397850037, 0.07172100991010666, -0.046142928302288055, -0.07593902200460434, 0.12161542475223541, 0.06661059707403183, -0.06199435517191887, 0.07620535790920258, 0.002025226829573512, 0.054730139672756195, -0.0988541916012764, 0.10685886442661285, -0.14762328565120697, -0.03959207236766815, 0.041132889688014984, 0.07763310521841049, -0.2152017503976822, 0.1430329531431198, 0.035255733877420425, -0.09605430066585541, -0.12861640751361847, -0.02968902513384819, 0.044170230627059937, -0.11111544072628021, 0.14507077634334564, 0.010263950563967228, -0.012723060324788094, -0.10747402161359787, -0.012655666097998619, -0.021606530994176865, 0.2492290884256363, -0.052768535912036896, -0.06149861589074135, -0.031106144189834595, 0.014149348251521587, -0.043909188359975815, 0.16558119654655457, -0.10174335539340973, -0.18417209386825562, -0.00005845018313266337, -0.01300050038844347, -0.10109695047140121, 0.011931236833333969, 0.011499803513288498, -0.05370792746543884, 0.10740778595209122, -0.0902068167924881, -0.0222997535020113, -0.005454879254102707, 0.016448449343442917, 0.11491473764181137, -0.03668362274765968, -0.02048472687602043, -0.10950057953596115, -0.03449130058288574, -0.07172300666570663, -0.09996245056390762, 0.1736888289451599, -0.021042337641119957, -0.04125462472438812, -0.08770173788070679, 0.1718389242887497, -0.10008233785629272, 0.05805479735136032, 0.01330565381795168, -0.028150184080004692, 0.00042023748392239213, -0.14209526777267456, 0.08819740265607834, -0.06501738727092743, 0.011241544969379902, 0.11351919174194336, -0.1569472700357437, 0.18061862885951996, -0.029610468074679375, -0.008637778460979462, 0.2701081931591034, 0.2037145048379898, 0.02247733809053898, -0.011566505767405033, 0.10801398009061813, -0.029414432123303413, -0.2857684791088104, -0.14626774191856384, -0.07533638924360275, -0.051564548164606094, 0.05316547304391861, -0.08582314848899841, -0.007973488420248032, 0.17947113513946533, 0.015613524243235588, 0.1485518366098404, -0.21408362686634064, -0.10889178514480591, 0.10331840813159943, 0.03947830572724342, 0.4229336977005005, -0.20109966397285461, -0.07562495768070221, -0.08450330793857574, 0.06410086154937744, 0.1443154662847519, -0.015654176473617554, 0.18466779589653015, 0.08302568644285202, -0.0231146439909935, 0.0021134039852768183, 0.012759696692228317, 0.15506598353385925, -0.07612068206071854, 0.029550906270742416, -0.06920382380485535, -0.0927676185965538, 0.06065993756055832, 0.11221255362033844, -0.035256482660770416, -0.14538800716400146, -0.09852177649736404, -0.04432220757007599, 0.0021043468732386827, -0.03381262347102165, -0.03138909861445427, 0.00912925973534584, -0.10712236911058426, -0.10205841064453125, -0.007746516261249781, -0.10287874937057495, 0.034403808414936066, 0.22071456909179688, -0.10926582664251328, 0.023866727948188782, 0.13847166299819946, 0.0438816137611866, -0.1839475929737091, -0.0009718688670545816, -0.0063825794495642185, -0.016496354714035988, 0.0530133917927742, -0.04436739534139633, 0.04665457829833031, 0.07169652730226517, -0.01567942090332508, 0.061081722378730774, 0.035643354058265686, -0.06730014830827713, 0.061831917613744736, 0.09817231446504593, -0.1355447918176651, -0.23690563440322876, -0.008560656569898129, 0.0027936554979532957, 0.1381932646036148, 0.05360768735408783, 0.09801537543535233, 0.07894765585660934, -0.03890836983919144, 0.024917276576161385, 0.008666428737342358, -0.04463770613074303, 0.13834843039512634, 0.04512442648410797, -0.00007267246110131964, -0.14425498247146606, 0.08434198796749115, -0.044404562562704086, 0.0013174040941521525, 0.040036387741565704, 0.13781265914440155, -0.03325185179710388, -0.07061079889535904, -0.21068799495697021, 0.09400751441717148, -0.06932102888822556, 0.05235603451728821, -0.044007912278175354, -0.08756984025239944, -0.02702183648943901, -0.0842449739575386, 0.09410006552934647, 0.03162592649459839, -0.022440489381551743, 0.017457475885748863, 0.09122085571289062, 0.0018524536862969398, -0.07660800963640213, 0.00445934571325779, 0.0414653979241848, -0.11599970608949661, 0.011615097522735596, 0.11661141365766525, -0.08697469532489777, -0.018796315416693687, -0.11031284928321838, -0.006109269801527262, -0.015163428150117397, -0.11593427509069443, -0.05810819938778877, -0.0834408551454544, 0.07004211843013763, 0.03719421103596687, -0.012739601545035839, -0.05435487627983093, -0.07960239797830582, -0.0438695028424263, -0.005888715852051973, 0.041489776223897934, -0.023198988288640976, 0.0026390308048576117, 0.06801307946443558, 0.02654079720377922, 0.08201021701097488, 0.027325589209794998, -0.019644493237137794, 0.07053784281015396, -0.12990936636924744, -0.0739605650305748, 0.13096845149993896, 0.02682931162416935, 0.01609855517745018, 0.2326233983039856, -0.03311993181705475, -0.01872655749320984, 0.11737629026174545, 0.027521271258592606, 0.05845898389816284, -0.09671314805746078, 0.019186927005648613, -0.04327421635389328, -0.16480652987957, -0.017514823004603386, -0.026270221918821335, 0.006366611458361149, 0.015260760672390461, 0.0240499097853899, -0.037124183028936386, 0.03848282992839813, -0.020867424085736275, 0.04147065803408623, 0.026709098368883133, -0.15632720291614532, 0.10434789955615997, -0.04723832383751869, 0.0017878953367471695, 0.02516106888651848, 0.35743448138237, 0.0011181533336639404, 0.05827541649341583, 0.007687747944146395, 0.15726225078105927, 0.13081765174865723, 0.027064021676778793, 0.09834297746419907, 0.06835176795721054, -0.04403394088149071, -0.20868359506130219, 0.08326343446969986, 0.11615973711013794, 0.03287982568144798, 0.04821090027689934, 0.002493336098268628, 0.06692656874656677, 0.0702429786324501, 0.05401043966412544, 0.03232714161276817, -0.07403647154569626, 0.04854504019021988, 0.17038364708423615, 0.04329526051878929, -0.04760977625846863, -0.015773830935359, 0.20248490571975708, 0.014852852560579777, 0.0010250387713313103, 0.005197381135076284, -0.06255024671554565, -0.11586024612188339, -0.08035056293010712, -0.01999526470899582, -0.09112867712974548, 0.04308386147022247, -0.08678653091192245, -0.025901183485984802, 0.0411485880613327, 0.03798069804906845, -0.04694177210330963, 0.1393871158361435, 0.017615290358662605, -0.1370604932308197, 0.026210030540823936, 0.030663562938570976, 0.04152199998497963, 0.03494967892765999, -0.10190045833587646, -0.0628429502248764, -0.060654159635305405, 0.02304973267018795, 0.012296004220843315, -0.06013237684965134, -0.04138657823204994, -0.11836455017328262, -0.027014516294002533, -0.05371185764670372, -0.011966519057750702, -0.06295222043991089, 0.11272833496332169, 0.06636969745159149, -0.06319741159677505, -0.026067860424518585, 0.0187947079539299, -0.04685575142502785, 0.0904533788561821, 0.009056927636265755, 0.147865429520607, -0.030215222388505936, 0.24598389863967896, -0.11356507241725922, -0.03838392347097397, -0.11403090506792068, 0.2736475169658661, 0.28170838952064514, -0.25349855422973633, -0.022438809275627136, 0.08432163298130035, 0.03937508538365364, 0.022484859451651573, 0.11448603123426437, 0.09277476370334625, 0.22155937552452087, -0.003288712352514267, -0.0014643012546002865, 0.002564746420830488, -0.0003160970809403807, -0.1906452625989914, -0.015116831287741661, 0.15496808290481567, 0.040031131356954575, -0.02189464122056961, 0.07841592282056808, -0.1813911497592926, 0.06449304521083832, -0.014428246766328812, -0.12398520857095718, -0.06363341957330704, 0.027005059644579887, 0.05923203378915787, 0.08598164469003677, 0.12704139947891235, 0.003191470168530941, -0.029337307438254356, -0.13545052707195282, 0.050497863441705704, -0.22562764585018158, -0.014357578940689564, -0.0784861370921135, -0.08283834904432297, 0.1421438753604889, -0.049010276794433594, -0.06749947369098663, 0.05678386241197586, 0.008069164119660854, 0.096858449280262, 0.13111816346645355, 0.040826741605997086, 0.028701933100819588, -0.029358074069023132, 0.0008134240633808076, 0.051325660198926926, -0.09011280536651611, 0.09187448769807816, -0.04687241464853287, 0.04394269362092018, 0.02565295435488224, -0.04306286945939064, 0.011123324744403362, 0.09256793558597565, -0.18688228726387024, 0.03555936738848686, 0.06280802190303802, 0.03116418421268463, -0.022367777302861214, -0.0017507048323750496, -0.04387999325990677, -0.006080947816371918, -0.007675529923290014, -0.12497025728225708, -0.06457053124904633, -0.0787392184138298, 0.14470958709716797, -0.08555218577384949, -0.13356803357601166, -0.02508695423603058, -0.06981102377176285, 0.10134270042181015, -0.08856523782014847, 0.09170729666948318, 0.076549232006073, -0.02719213254749775, 0.01043824851512909, -0.33387649059295654, 0.06581877917051315, 0.06549302488565445, -0.07821401208639145, -0.03508305177092552 ]
null
null
null
# Word2Vec Pre-trained vectors trained on a part of the Google News dataset (about 100 billion words). The model contains 300-dimensional vectors for 3 million words and phrases. The phrases were obtained using a simple data-driven approach described in 'Distributed Representations of Words and Phrases and their Compositionality' Read more: * https://code.google.com/archive/p/word2vec/ * https://arxiv.org/abs/1301.3781 * https://arxiv.org/abs/1310.4546 * https://www.microsoft.com/en-us/research/publication/linguistic-regularities-in-continuous-space-word-representations/?from=http%3A%2F%2Fresearch.microsoft.com%2Fpubs%2F189726%2Frvecs.pdf
{"tags": ["glove", "gensim", "fse"]}
null
fse/word2vec-google-news-300
[ "glove", "gensim", "fse", "arxiv:1301.3781", "arxiv:1310.4546", "has_space", "region:us" ]
2022-03-02T23:29:05+00:00
[ "1301.3781", "1310.4546" ]
[]
TAGS #glove #gensim #fse #arxiv-1301.3781 #arxiv-1310.4546 #has_space #region-us
# Word2Vec Pre-trained vectors trained on a part of the Google News dataset (about 100 billion words). The model contains 300-dimensional vectors for 3 million words and phrases. The phrases were obtained using a simple data-driven approach described in 'Distributed Representations of Words and Phrases and their Compositionality' Read more: * URL * URL * URL * URL
[ "# Word2Vec \n\nPre-trained vectors trained on a part of the Google News dataset (about 100 billion words). The model contains 300-dimensional vectors for 3 million words and phrases. The phrases were obtained using a simple data-driven approach described in 'Distributed Representations of Words and Phrases and their Compositionality' \n\nRead more:\n* URL\n* URL\n* URL\n* URL" ]
[ "TAGS\n#glove #gensim #fse #arxiv-1301.3781 #arxiv-1310.4546 #has_space #region-us \n", "# Word2Vec \n\nPre-trained vectors trained on a part of the Google News dataset (about 100 billion words). The model contains 300-dimensional vectors for 3 million words and phrases. The phrases were obtained using a simple data-driven approach described in 'Distributed Representations of Words and Phrases and their Compositionality' \n\nRead more:\n* URL\n* URL\n* URL\n* URL" ]
[ 36, 91 ]
[ "passage: TAGS\n#glove #gensim #fse #arxiv-1301.3781 #arxiv-1310.4546 #has_space #region-us \n# Word2Vec \n\nPre-trained vectors trained on a part of the Google News dataset (about 100 billion words). The model contains 300-dimensional vectors for 3 million words and phrases. The phrases were obtained using a simple data-driven approach described in 'Distributed Representations of Words and Phrases and their Compositionality' \n\nRead more:\n* URL\n* URL\n* URL\n* URL" ]
[ 0.026666272431612015, 0.03193037584424019, -0.0023028887808322906, 0.03250161185860634, 0.13668011128902435, 0.015264286659657955, 0.14964129030704498, 0.05361315235495567, -0.030009543523192406, 0.05812647566199303, 0.22150087356567383, -0.07222910970449448, -0.07346070557832718, 0.0944792702794075, 0.09800716489553452, -0.23518314957618713, 0.11192112416028976, -0.07582324743270874, -0.11805054545402527, 0.10507916659116745, 0.05389035865664482, -0.013886387459933758, 0.006088240537792444, -0.01231890358030796, -0.20643523335456848, 0.017698585987091064, 0.006475794594734907, -0.07235977053642273, 0.054412443190813065, 0.005718634929507971, -0.01669990085065365, 0.02127455547451973, 0.06340427696704865, -0.09766742587089539, 0.021534088999032974, 0.007357429247349501, -0.06735044717788696, 0.025210749357938766, -0.04572539031505585, 0.04554180055856705, 0.07681914418935776, -0.042987972497940063, -0.04571503773331642, 0.018480584025382996, -0.12628066539764404, -0.1396489143371582, 0.06511546671390533, -0.03419167920947075, 0.003442867426201701, 0.10917174071073532, -0.07465890049934387, 0.043102819472551346, -0.05394784361124039, 0.04106801375746727, 0.13955779373645782, -0.2892138361930847, -0.0489794947206974, 0.2139214128255844, -0.04615771397948265, 0.054949358105659485, -0.012204479426145554, 0.15052473545074463, 0.07508166879415512, 0.0020803280640393496, -0.04671834409236908, 0.009982426650822163, -0.10108503699302673, 0.04573582485318184, -0.1446119099855423, -0.011265771463513374, 0.1719423085451126, 0.08082848787307739, 0.03266747668385506, -0.0797525942325592, -0.046834561973810196, -0.021773964166641235, -0.046901218593120575, -0.0023508104495704174, -0.002479261253029108, 0.025211429223418236, -0.06505066901445389, -0.1038898304104805, -0.10764817148447037, -0.10446193069219589, -0.11768446117639542, 0.16462960839271545, -0.031964968889951706, 0.07357140630483627, -0.08192296326160431, 0.007243336644023657, -0.03685584291815758, -0.07917323708534241, 0.019233202561736107, -0.06522731482982635, 0.05376292020082474, 0.13648222386837006, -0.11915605515241623, -0.04785160720348358, 0.16283662617206573, -0.21808946132659912, 0.09353329986333847, -0.0029929718002676964, 0.08767887204885483, 0.09231913089752197, 0.06596627086400986, 0.05311744660139084, -0.134200781583786, -0.0029858259949833155, -0.010160785168409348, -0.021522117778658867, 0.03297310695052147, -0.058469586074352264, -0.18231503665447235, 0.020916838198900223, 0.0029170135967433453, -0.0226735956966877, -0.011754928156733513, 0.08436596393585205, -0.01895355060696602, 0.03191722184419632, -0.15992532670497894, -0.028299525380134583, 0.038373056799173355, 0.0322825089097023, -0.08805713802576065, 0.0034659786615520716, -0.012524896301329136, 0.018146051093935966, -0.021591974422335625, -0.16150587797164917, -0.1093815341591835, 0.028124798089265823, -0.06551172584295273, -0.095932237803936, 0.038528621196746826, -0.031159400939941406, 0.00811880175024271, -0.15131662786006927, -0.05656275898218155, -0.1119304671883583, -0.030951358377933502, -0.07172546535730362, 0.024366231635212898, -0.2001762092113495, 0.0068468148820102215, 0.04548430070281029, -0.0369868241250515, 0.024697067216038704, -0.072284035384655, 0.0730167031288147, -0.09476780891418457, 0.13581524789333344, -0.1040615513920784, 0.0019332809606567025, -0.07475950568914413, -0.005490497220307589, 0.0729890912771225, 0.14490759372711182, -0.029521077871322632, 0.08634118735790253, -0.050118137151002884, -0.04290318116545677, -0.1458866447210312, 0.03330543264746666, 0.06762351095676422, 0.19233156740665436, -0.19011910259723663, -0.060122352093458176, 0.18733377754688263, 0.04039759188890457, -0.011176345869898796, 0.11593970656394958, -0.032711125910282135, 0.09380239248275757, 0.1041295975446701, 0.3003236651420593, -0.08266930282115936, 0.054760634899139404, 0.04178190231323242, 0.06053891032934189, 0.008198797702789307, -0.0318249948322773, 0.02361258678138256, 0.0044152140617370605, -0.07765847444534302, 0.05055294185876846, 0.10349826514720917, 0.045342013239860535, -0.08740600198507309, -0.041408639401197433, 0.020043132826685905, -0.013602592051029205, 0.06107050180435181, -0.040889058262109756, 0.07707154750823975, -0.05844057351350784, -0.052681922912597656, -0.018306687474250793, 0.026242516934871674, -0.0896269902586937, 0.028036026284098625, -0.015464496798813343, 0.09566017985343933, -0.021008694544434547, 0.10262823104858398, -0.09590355306863785, -0.1543780267238617, -0.007841628976166248, 0.09012239426374435, 0.07628130912780762, 0.1187751367688179, 0.03875923529267311, -0.07578378915786743, 0.026029758155345917, 0.08079257607460022, -0.057592302560806274, -0.010504491627216339, -0.06190232187509537, -0.07313104718923569, 0.06485537439584732, -0.045357391238212585, 0.13944387435913086, -0.12928242981433868, -0.015919988974928856, 0.04576979950070381, -0.015280053950846195, -0.06341475993394852, -0.051761481910943985, 0.07340333610773087, -0.006899314001202583, -0.016089728102087975, 0.003698896849527955, 0.06128142401576042, -0.005663320422172546, -0.10959998518228531, 0.041345711797475815, 0.033734411001205444, 0.0862560048699379, 0.13427460193634033, -0.14045193791389465, 0.010973531752824783, -0.017462341114878654, 0.0023509464226663113, 0.0694507509469986, -0.05210161209106445, -0.05014567822217941, 0.1373736560344696, -0.04758569598197937, 0.05569424852728844, -0.05821464583277702, 0.06411626935005188, 0.060292165726423264, -0.058884814381599426, -0.08175869286060333, 0.12725189328193665, -0.022166961804032326, -0.0803360864520073, 0.09698515385389328, 0.08722732216119766, -0.016497205942869186, 0.14746013283729553, 0.023026222363114357, -0.009256595745682716, -0.0013256841339170933, -0.06146283820271492, -0.09983677417039871, -0.011520910076797009, -0.16317448019981384, -0.05812975764274597, 0.013714534230530262, 0.024804679676890373, 0.04126672074198723, -0.09806957095861435, -0.08223200589418411, -0.04928537830710411, -0.07239539176225662, -0.05451264977455139, 0.020929988473653793, -0.09199519455432892, 0.11347779631614685, 0.06377793848514557, -0.09023580700159073, 0.049661703407764435, -0.031419843435287476, -0.08745641261339188, 0.14439000189304352, -0.06822443008422852, -0.19569356739521027, -0.07033862918615341, 0.05587083846330643, -0.08503711223602295, 0.041825659573078156, 0.002270408207550645, -0.17076462507247925, 0.023721307516098022, -0.08817671984434128, 0.06380758434534073, -0.033895015716552734, 0.052254240959882736, 0.12109117209911346, 0.020600982010364532, -0.0349259078502655, -0.08945678174495697, -0.013789670541882515, -0.1624135971069336, -0.02062646672129631, 0.008107533678412437, -0.06915724277496338, 0.12390901148319244, 0.14740079641342163, 0.07010219246149063, 0.05296754837036133, -0.026009583845734596, 0.3553139567375183, -0.07666989415884018, -0.08211154490709305, 0.02600909397006035, 0.07113667577505112, -0.015042233280837536, 0.09211409091949463, 0.06856802850961685, -0.1104346439242363, 0.05429982393980026, -0.021369118243455887, -0.08321905881166458, -0.14319850504398346, -0.08479078114032745, -0.0004393981653265655, -0.08581064641475677, -0.000669636414386332, 0.09896904230117798, -0.09576581418514252, 0.04234755411744118, 0.05879808962345123, 0.06141979992389679, -0.04212570935487747, -0.04387339949607849, 0.19737300276756287, -0.025485791265964508, 0.04429659992456436, 0.01161392591893673, -0.12579146027565002, 0.04181806370615959, -0.06648768484592438, 0.2106839418411255, 0.08869381248950958, 0.14832843840122223, -0.014636690728366375, -0.01499976683408022, 0.0959797129034996, 0.03400423005223274, 0.04988376423716545, -0.02537609077990055, -0.047769758850336075, -0.04767138510942459, -0.011336530558764935, 0.08998607844114304, 0.08251666277647018, -0.10264289379119873, 0.03759266436100006, -0.024862248450517654, 0.08113845437765121, 0.06662332266569138, 0.14739364385604858, -0.2122384011745453, 0.019136033952236176, 0.035107072442770004, -0.023927897214889526, -0.051357049494981766, 0.1032857596874237, 0.12447064369916916, -0.03237491101026535, 0.007721674162894487, 0.10341672599315643, 0.06966688483953476, -0.05525403842329979, 0.03795400634407997, -0.07542067021131516, -0.162899911403656, -0.02073669619858265, 0.09708504378795624, -0.1981041133403778, 0.2569652497768402, -0.030248984694480896, -0.08830815553665161, -0.0367317795753479, -0.04187684506177902, -0.0377621054649353, -0.0771031305193901, 0.16059263050556183, 0.016022352501749992, 0.056785568594932556, -0.06990430504083633, -0.16754400730133057, 0.02556801028549671, 0.10574010014533997, -0.05552978068590164, 0.029878173023462296, 0.08654790371656418, -0.027694594115018845, 0.003192043397575617, 0.006309301592409611, -0.09689405560493469, -0.05916964262723923, -0.003471655072644353, 0.1614319086074829, 0.10495399683713913, 0.0056070564314723015, -0.1143765076994896, -0.13819217681884766, 0.0032698260620236397, -0.007189825642853975, -0.04118487983942032, -0.07949712872505188, 0.2314116656780243, 0.031585950404405594, 0.001085615367628634, 0.03593830019235611, 0.021954035386443138, 0.003325004130601883, 0.01962372474372387, -0.08424770087003708, 0.12106819450855255, -0.023181650787591934, -0.057300444692373276, -0.043452125042676926, 0.11263259500265121, 0.009902752004563808, 0.057061757892370224, -0.004168309271335602, 0.04537998139858246, -0.011063923127949238, -0.10497059673070908, 0.12862293422222137, -0.04193136468529701, -0.10384213179349899, 0.011652996763586998, -0.03034074418246746, 0.10294980555772781, -0.03840234503149986, -0.014847289770841599, 0.2707001268863678, 0.1451658308506012, -0.10270437598228455, 0.017472829669713974, 0.2084575891494751, -0.049514081329107285, -0.2806423604488373, -0.007829810492694378, 0.0906348004937172, 0.06496524810791016, -0.06805544346570969, -0.19585537910461426, 0.027942927554249763, 0.11765323579311371, -0.03703394532203674, 0.1540054827928543, -0.3116358816623688, -0.12027003616094589, 0.07499056309461594, -0.005436592269688845, 0.4510861039161682, -0.1387045681476593, -0.07188506424427032, -0.05889501795172691, 0.06615426391363144, 0.11516012251377106, -0.04171769320964813, 0.12178067117929459, 0.04868914932012558, 0.04343581199645996, 0.026124102994799614, -0.002433012006804347, 0.13710956275463104, 0.07933694869279861, 0.038583118468523026, -0.06428446620702744, -0.12378201633691788, 0.10683827102184296, 0.046740077435970306, 0.05542620271444321, 0.0852741003036499, -0.018330447375774384, -0.01771426945924759, -0.061515241861343384, -0.06120338290929794, -0.04074012488126755, 0.029581094160676003, -0.03427872434258461, -0.038355737924575806, -0.013188187964260578, -0.027312615886330605, 0.005894336383789778, 0.12005352973937988, -0.07170984148979187, -0.0470007061958313, 0.08709899336099625, -0.02012838050723076, -0.050552427768707275, 0.006909684278070927, 0.06725632399320602, -0.04645111411809921, 0.11158805340528488, -0.20129001140594482, -0.023897290229797363, 0.04682781174778938, 0.024009685963392258, 0.05045334994792938, 0.07907011359930038, -0.05463458225131035, 0.03644568473100662, 0.1061498299241066, -0.14482954144477844, -0.25378578901290894, -0.06767909973859787, -0.1676805019378662, -0.00971283484250307, 0.031024226918816566, 0.15959760546684265, -0.05750957876443863, 0.001205533742904663, -0.013438341207802296, -0.026565449312329292, -0.047416139394044876, 0.15097205340862274, 0.11519258469343185, 0.024575544521212578, -0.15213309228420258, 0.02020847238600254, 0.047938816249370575, 0.02381647378206253, 0.06348364055156708, 0.056270819157361984, -0.09396042674779892, -0.0858350545167923, -0.10397535562515259, 0.08721139281988144, 0.060862913727760315, -0.031133152544498444, -0.030780911445617676, -0.09881290048360825, 0.026192251592874527, 0.019063936546444893, 0.1006559506058693, 0.06883012503385544, -0.0010942673543468118, -0.03085138276219368, 0.0369020439684391, 0.05096185579895973, 0.003422415815293789, -0.06241773068904877, -0.07516442984342575, -0.12441279739141464, -0.009577766060829163, 0.12286505103111267, -0.11201596260070801, -0.08610192686319351, -0.10849171876907349, 0.06900541484355927, -0.009199758991599083, -0.010662397369742393, 0.0035337568260729313, -0.014759941026568413, -0.023214811459183693, -0.04021235927939415, -0.07383990287780762, -0.018137749284505844, -0.07312098145484924, -0.044092997908592224, -0.028291597962379456, 0.019824771210551262, -0.015839820727705956, -0.04891267046332359, -0.016056595370173454, 0.016013186424970627, 0.17248483002185822, 0.11384069174528122, -0.028574233874678612, 0.07452747225761414, -0.15776324272155762, -0.018422743305563927, 0.15239852666854858, 0.015851179137825966, 0.004270398057997227, 0.08366306126117706, 0.0424601286649704, -0.02450372651219368, 0.08149117976427078, 0.038436345756053925, -0.045660022646188736, -0.05915458872914314, -0.03892641142010689, -0.10425933450460434, -0.033872563391923904, -0.015480893664062023, -0.03869358450174332, 0.03436201810836792, 0.09564059227705002, 0.13167338073253632, -0.07239699363708496, 0.0026339066680520773, -0.021753443405032158, 0.03987281396985054, -0.011918087489902973, -0.10686275362968445, -0.09589077532291412, -0.09690675884485245, 0.0720946416258812, -0.035397570580244064, 0.2448313981294632, 0.07865762710571289, -0.07340536266565323, -0.029103267937898636, 0.1153518334031105, -0.016444774344563484, -0.000550354307051748, 0.07917371392250061, 0.20186571776866913, -0.015243856236338615, -0.04264798015356064, 0.08171319216489792, 0.13192987442016602, 0.18346421420574188, -0.017522411420941353, -0.05623546987771988, 0.19083993136882782, 0.18646429479122162, 0.07114158570766449, -0.027182262390851974, 0.044337283819913864, 0.19289445877075195, -0.12296762317419052, 0.07844097912311554, -0.09152332693338394, -0.05222773551940918, 0.06407372653484344, 0.0035515213385224342, -0.02108459733426571, 0.02025432325899601, -0.040001075714826584, -0.10412843525409698, -0.14844341576099396, -0.11903703212738037, -0.2436799257993698, 0.04368956387042999, -0.07608682662248611, -0.03204651176929474, 0.14430780708789825, 0.07501700520515442, 0.0008436038042418659, 0.03322368115186691, 0.10674337297677994, -0.08220852166414261, 0.1681104302406311, -0.08219283819198608, 0.03953032195568085, -0.06399720162153244, -0.04980988800525665, 0.01435215026140213, 0.0163643267005682, -0.0021219076588749886, 0.08516474068164825, 0.024152152240276337, 0.007524203509092331, -0.14212316274642944, -0.06223181262612343, -0.09238901734352112, 0.04286647215485573, -0.05083128437399864, 0.001810337183997035, 0.08405470103025436, -0.09362496435642242, 0.028411749750375748, 0.09028854221105576, 0.03184977173805237, -0.023055654019117355, -0.025516068562865257, -0.10194666683673859, -0.012902564369142056, 0.14149443805217743, -0.12246022373437881, -0.09344276040792465, -0.09761353582143784, 0.21192914247512817, 0.30881500244140625, -0.12467100471258163, -0.0156784076243639, 0.06263339519500732, 0.01001985277980566, 0.05987075716257095, 0.10910618305206299, 0.05357807129621506, 0.20439159870147705, -0.05465000867843628, -0.11430070549249649, -0.05889977514743805, -0.037623174488544464, -0.08854600042104721, -0.008030395023524761, 0.08980505168437958, -0.0016205633291974664, -0.11933865398168564, 0.1147022396326065, -0.21316051483154297, 0.0891626700758934, -0.03207707777619362, -0.12934280931949615, -0.11937544494867325, 0.02562832459807396, -0.06315508484840393, 0.13983042538166046, 0.13003769516944885, -0.05522817000746727, -0.021463308483362198, -0.043658770620822906, -0.020268987864255905, -0.13163231313228607, -0.07640223950147629, 0.05387834459543228, 0.019173050299286842, 0.10564101487398148, -0.04625420272350311, 0.13070730865001678, 0.006895868107676506, -0.005579466000199318, -0.041938360780477524, 0.13414296507835388, 0.022558484226465225, 0.06374349445104599, 0.04305557161569595, -0.0728621780872345, 0.02045629359781742, -0.028756309300661087, 0.08832403272390366, 0.038215965032577515, 0.01898333989083767, 0.0213363915681839, 0.018174145370721817, -0.10007042437791824, 0.0007502725347876549, -0.07461249083280563, 0.048458486795425415, 0.035056669265031815, -0.05968628078699112, -0.04042958840727806, 0.05016155540943146, -0.01357872411608696, -0.04420597106218338, 0.0303978081792593, -0.03077753074467182, -0.13830742239952087, -0.036976929754018784, 0.0534428134560585, -0.0247456394135952, -0.10987305641174316, 0.024990970268845558, -0.04170575365424156, 0.06594613939523697, 0.04864491894841194, 0.07466718554496765, 0.1332496702671051, -0.01939096301794052, -0.0365782231092453, -0.08553677052259445, 0.04799683764576912, 0.08865001052618027, -0.09495032578706741, -0.15168198943138123 ]
null
null
transformers
#Bully Maguire demo bot
{"tags": ["conversational"]}
text-generation
ftnvir/DialoGPT-medium-bullyMaguire
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
#Bully Maguire demo bot
[]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 51 ]
[ "passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ -0.009697278961539268, 0.03208012506365776, -0.007204889785498381, 0.004809224978089333, 0.16726240515708923, 0.014898733235895634, 0.09765533357858658, 0.13672804832458496, -0.007841327227652073, -0.031050153076648712, 0.14490588009357452, 0.20411323010921478, -0.006439372431486845, 0.0661218985915184, -0.07572533935308456, -0.2683109939098358, 0.05759621039032936, 0.046649303287267685, 0.016515716910362244, 0.1200079694390297, 0.08573378622531891, -0.05473608896136284, 0.08714032918214798, -0.014583407901227474, -0.150366872549057, 0.017733458429574966, 0.043394338339567184, -0.12260226160287857, 0.11910516023635864, 0.05462685227394104, 0.07063519209623337, 0.014929565601050854, -0.07541623711585999, -0.1631229966878891, 0.03031250834465027, 0.01425902172923088, -0.0594632662832737, 0.04757995903491974, 0.059961482882499695, -0.10165371745824814, 0.10819483548402786, 0.09530027210712433, -0.013078106567263603, 0.06798283755779266, -0.16849711537361145, -0.020869607105851173, -0.01446688175201416, 0.009899779222905636, 0.05550243332982063, 0.09964893013238907, -0.03413357585668564, 0.10497362166643143, -0.09214533120393753, 0.11017382889986038, 0.10932035744190216, -0.32057443261146545, -0.005767723545432091, 0.09167823940515518, 0.039358653128147125, 0.07352814823389053, -0.04467793554067612, 0.06258884817361832, 0.018015462905168533, 0.017986174672842026, -0.014015024527907372, -0.07283061742782593, -0.11612214148044586, 0.04717336222529411, -0.08668071031570435, -0.059868961572647095, 0.2244078367948532, -0.05464440956711769, 0.06881742179393768, -0.05281897634267807, -0.10522868484258652, -0.04308144748210907, -0.029833965003490448, 0.00475557055324316, -0.07660607248544693, 0.08692064881324768, 0.00869679357856512, -0.09547875821590424, -0.1376667022705078, -0.02496783249080181, -0.1776352822780609, 0.16140350699424744, 0.02465328387916088, 0.05232657864689827, -0.2027255892753601, 0.09623090922832489, 0.017906051129102707, -0.08045592904090881, 0.022091427817940712, -0.10046248883008957, 0.029131146147847176, 0.013760408386588097, -0.04754498973488808, -0.061387211084365845, 0.0843690037727356, 0.11199145019054413, -0.01731434464454651, 0.025486016646027565, -0.039331406354904175, 0.08100687712430954, 0.03553595021367073, 0.09077847748994827, 0.007288969587534666, -0.028338588774204254, 0.025842782109975815, -0.13719046115875244, -0.003647835226729512, -0.07116208970546722, -0.16572439670562744, -0.021088803187012672, 0.02994808368384838, 0.08289173990488052, 0.015449047088623047, 0.11682453751564026, -0.03272046521306038, -0.025152435526251793, 0.03602350503206253, -0.047656361013650894, -0.012649794109165668, 0.016648368909955025, 0.013163427822291851, 0.12399329990148544, -0.0022096503525972366, 0.03235051408410072, -0.13653022050857544, 0.031423524022102356, -0.06793295592069626, -0.003740974934771657, -0.03486552834510803, -0.040637075901031494, 0.009043924510478973, -0.06862333416938782, 0.003486064961180091, -0.15030112862586975, -0.15063877403736115, 0.007587034720927477, -0.007836631499230862, -0.04107699543237686, -0.06370922178030014, -0.06952770054340363, -0.013550350442528725, 0.04251532256603241, -0.07093454152345657, -0.011352915316820145, -0.06403283774852753, 0.11004766076803207, -0.03197755664587021, 0.07921615242958069, -0.11953279376029968, 0.08390819281339645, -0.11260783672332764, -0.02386913076043129, -0.060801517218351364, 0.09317506104707718, -0.0006014376995153725, 0.09549830108880997, -0.006563255097717047, -0.017931854352355003, -0.07981178909540176, 0.06445012241601944, -0.042872510850429535, 0.21701598167419434, -0.0615808479487896, -0.11181682348251343, 0.28781595826148987, -0.052628401666879654, -0.1370542049407959, 0.11647392809391022, 0.008682746440172195, 0.05777018144726753, 0.10703510791063309, 0.19733482599258423, -0.015276194550096989, 0.004040541127324104, 0.09471915662288666, 0.11263324320316315, -0.11276852339506149, -0.033160366117954254, 0.013019153848290443, -0.04081077128648758, -0.10867965966463089, 0.04689536616206169, 0.09810488671064377, 0.07090286910533905, -0.04786505550146103, -0.03377414867281914, -0.01366397924721241, 0.0052589005790650845, 0.08885077387094498, -0.007157256826758385, 0.10962837189435959, -0.05819983780384064, -0.03796621412038803, -0.029282379895448685, -0.012126247398555279, -0.03951939567923546, 0.03137664496898651, -0.043376367539167404, 0.10821941494941711, -0.011204327456653118, 0.06364280730485916, -0.16185984015464783, -0.07691477984189987, -0.017002692446112633, 0.1581239402294159, 0.024538565427064896, 0.09859629720449448, 0.0552486926317215, -0.040398042649030685, -0.0012767292791977525, 0.012792680412530899, 0.15581141412258148, -0.022091681137681007, -0.065607450902462, -0.052166227251291275, 0.08642971515655518, -0.05641226842999458, 0.04504093527793884, -0.05937713757157326, 0.012367865070700645, 0.05064384639263153, 0.10342344641685486, -0.00018274025933351368, 0.03323284164071083, -0.008164864964783192, 0.002145637758076191, -0.058205123990774155, 0.007405933458358049, 0.10799351334571838, 0.00036868182360194623, -0.07365862280130386, 0.22074243426322937, -0.17796069383621216, 0.1765957772731781, 0.1893044263124466, -0.299345999956131, 0.017949223518371582, -0.10759581625461578, -0.04561871662735939, 0.014407722279429436, 0.05567655712366104, -0.0454222597181797, 0.1703362911939621, -0.009871348738670349, 0.18874616920948029, -0.04946064203977585, -0.04464937001466751, -0.0200483538210392, -0.05118836089968681, -0.0024189651012420654, 0.07781197130680084, 0.10685696452856064, -0.13992026448249817, 0.1964332014322281, 0.1621224284172058, 0.048237916082143784, 0.19945049285888672, 0.015346456319093704, -0.011589210480451584, 0.0909530371427536, 0.005220826715230942, -0.058739423751831055, -0.07409929484128952, -0.2594851851463318, -0.030033592134714127, 0.07992640137672424, 0.0422382652759552, 0.1212305948138237, -0.11349532753229141, -0.038956157863140106, -0.01763172075152397, -0.023146281018853188, 0.021672505885362625, 0.0914369598031044, 0.06075398623943329, 0.13201528787612915, -0.001710098935291171, -0.007300339173525572, 0.10524573177099228, 0.01783694699406624, -0.09354141354560852, 0.18308524787425995, -0.13652534782886505, -0.37097251415252686, -0.13911493122577667, -0.18057456612586975, -0.05449081212282181, 0.05712554603815079, 0.11679314076900482, -0.12011238187551498, -0.018752124160528183, 0.01578843593597412, 0.10931742936372757, -0.08449502289295197, 0.0021454424131661654, -0.06880278885364532, 0.0321490578353405, -0.10310184955596924, -0.09194442629814148, -0.055416494607925415, -0.031392451375722885, -0.08001253753900528, 0.1423761546611786, -0.10777941346168518, 0.04476889222860336, 0.20262959599494934, 0.04653622955083847, 0.05625178664922714, -0.044105201959609985, 0.19377262890338898, -0.11264272034168243, -0.01661740615963936, 0.19215328991413116, -0.048360925167798996, 0.07476246356964111, 0.1232115849852562, -0.006348740309476852, -0.08765771239995956, 0.03011748194694519, -0.02085109055042267, -0.07988511025905609, -0.23219464719295502, -0.13938382267951965, -0.12429051846265793, 0.09477275609970093, 0.028005298227071762, 0.056365787982940674, 0.17219258844852448, 0.06577219814062119, -0.038416244089603424, 0.006410336587578058, 0.02959546446800232, 0.08237514644861221, 0.23417828977108002, -0.06035616248846054, 0.1364797055721283, -0.03420931473374367, -0.14982740581035614, 0.08169995993375778, 0.0713929831981659, 0.10213395953178406, 0.06678459793329239, 0.0804823637008667, 0.0149586396291852, 0.06188136339187622, 0.1311223804950714, 0.08191446959972382, 0.019586285576224327, -0.02480296604335308, -0.03388110175728798, -0.025523077696561813, -0.05937909707427025, 0.040128443390131, 0.06589099019765854, -0.16763372719287872, -0.039227183908224106, -0.09338314831256866, 0.09657008945941925, 0.0873042419552803, 0.06609832495450974, -0.1842060089111328, -0.008006223477423191, 0.08488986641168594, -0.03854905813932419, -0.13727426528930664, 0.09535189718008041, 0.01523482333868742, -0.15144726634025574, 0.03139317408204079, -0.04061909019947052, 0.12188644707202911, -0.07804752141237259, 0.09809603542089462, -0.08108244836330414, -0.07448557764291763, 0.02123199962079525, 0.1261177361011505, -0.30527687072753906, 0.20240111649036407, -0.0024993624538183212, -0.06486981362104416, -0.1243603527545929, -0.0032166161108762026, 0.002410882618278265, 0.07357452809810638, 0.10519039630889893, -0.007196315098553896, 0.001897757756523788, -0.06300821900367737, -0.01829923689365387, 0.032471053302288055, 0.13080233335494995, -0.0401318334043026, -0.021158374845981598, -0.050194524228572845, -0.001653497340157628, -0.03173094615340233, -0.06934895366430283, 0.02002747356891632, -0.19509181380271912, 0.08751901984214783, 0.04166261479258537, 0.09648149460554123, 0.029994789510965347, 0.004265148192644119, -0.09651939570903778, 0.24698667228221893, -0.07148019969463348, -0.10072879493236542, -0.10919588059186935, -0.046813901513814926, 0.03569883480668068, -0.05628936365246773, 0.04309194162487984, -0.0788632407784462, 0.028997479006648064, -0.06352769583463669, -0.19235502183437347, 0.12410202622413635, -0.09027006477117538, -0.04412810131907463, -0.02371402643620968, 0.2110891044139862, -0.05598580464720726, 0.010335659608244896, 0.02930437959730625, 0.01208863127976656, -0.11645778268575668, -0.09678568691015244, 0.031018631532788277, -0.007351789623498917, 0.050603240728378296, 0.041841957718133926, -0.05915454775094986, -0.017138581722974777, -0.052199993282556534, -0.022926922887563705, 0.3496883809566498, 0.14231905341148376, -0.043836336582899094, 0.19347235560417175, 0.12347975373268127, -0.07452994585037231, -0.3159443140029907, -0.1066238060593605, -0.10937739163637161, -0.04680149629712105, -0.07012093812227249, -0.2002030611038208, 0.06474938243627548, 0.00662544509395957, -0.013415241613984108, 0.12749312818050385, -0.2561831772327423, -0.07571036368608475, 0.15906259417533875, -0.017980827018618584, 0.3745945692062378, -0.1168576180934906, -0.10926306992769241, -0.03950892388820648, -0.14175476133823395, 0.16968177258968353, -0.01989765651524067, 0.11221715062856674, -0.009765521623194218, 0.14388824999332428, 0.05548359826207161, -0.023479344323277473, 0.08544106781482697, 0.004999885335564613, -0.03290518373250961, -0.10304180532693863, -0.05676887184381485, 0.007092386484146118, 0.02477436140179634, 0.018026655539870262, -0.041834570467472076, 0.02227151393890381, -0.11731979995965958, -0.04657655209302902, -0.08982590585947037, 0.04431166127324104, 0.03899754583835602, -0.07325074821710587, -0.002380647463724017, -0.07165111601352692, -0.012272949330508709, 0.022334342822432518, 0.20356793701648712, -0.08029330521821976, 0.16448934376239777, 0.09239562600851059, 0.12419285625219345, -0.14376309514045715, -0.00019283240544609725, -0.0762530043721199, -0.05611240118741989, 0.07737895101308823, -0.09433035552501678, 0.058893077075481415, 0.10901971161365509, -0.04567738622426987, 0.08828683942556381, 0.10377411544322968, 0.008936077356338501, 0.003213887568563223, 0.10916902124881744, -0.2667325437068939, -0.0296600554138422, -0.07532413303852081, 0.000883326749317348, 0.09092561900615692, 0.08562852442264557, 0.18840822577476501, 0.025361526757478714, -0.04293036088347435, -0.002770674182102084, 0.028597986325621605, -0.039021048694849014, 0.051667019724845886, 0.001123449532315135, 0.01947369985282421, -0.1530752182006836, 0.072522833943367, 0.01490565575659275, -0.15215420722961426, 0.021316176280379295, 0.16572684049606323, -0.11656328290700912, -0.1283872276544571, -0.06520111113786697, 0.08313824236392975, -0.11755692958831787, -0.01578943058848381, -0.03279297426342964, -0.13145680725574493, 0.07992171496152878, 0.12629036605358124, 0.05557859688997269, 0.0972496047616005, -0.06061713397502899, -0.020469192415475845, -0.018721895292401314, -0.014099318534135818, -0.012384648434817791, -0.007667020428925753, -0.055978111922740936, 0.0590752474963665, -0.026677248999476433, 0.1425808072090149, -0.09221141785383224, -0.1037059873342514, -0.16142144799232483, 0.0374140702188015, -0.11013076454401016, -0.08825794607400894, -0.08821134269237518, -0.050188567489385605, 0.002360827289521694, -0.019856395199894905, -0.04037635400891304, -0.05829505994915962, -0.12300454825162888, 0.0338277705013752, -0.040771447122097015, 0.024727050215005875, -0.07512269169092178, 0.015856385231018066, 0.08507686108350754, -0.03285100311040878, 0.15655414760112762, 0.1450488418340683, -0.1006515845656395, 0.10741901397705078, -0.14806775748729706, -0.09138492494821548, 0.11116421222686768, 0.015329592861235142, 0.0449691042304039, 0.09723787009716034, 0.013362943194806576, 0.0635865181684494, 0.032776717096567154, 0.05308786407113075, 0.027619892731308937, -0.11959987878799438, 0.06483134627342224, -0.03626115620136261, -0.14700546860694885, -0.049338050186634064, -0.05282869189977646, 0.01647452637553215, 0.013054544106125832, 0.09622690081596375, -0.05301849544048309, 0.10698331147432327, -0.04055701196193695, 0.0346808135509491, 0.017554637044668198, -0.1730053424835205, -0.03816922754049301, -0.08538098633289337, 0.03681723028421402, 0.014741539023816586, 0.25266793370246887, 0.030072299763560295, 0.012416383251547813, 0.032671261578798294, 0.08285367488861084, 0.03899408504366875, 0.010228337720036507, 0.17482228577136993, 0.1162426546216011, -0.06621865928173065, -0.10445023328065872, 0.0729617029428482, 0.016332454979419708, 0.01286179106682539, 0.13617953658103943, 0.008365051820874214, 0.005795429926365614, 0.08649782836437225, -0.016865963116288185, 0.009968153201043606, -0.10052056610584259, -0.13426925241947174, -0.022176474332809448, 0.05151832848787308, -0.04655967652797699, 0.11727844923734665, 0.1406494379043579, -0.01806013658642769, 0.03222079202532768, -0.021771740168333054, -0.05699979141354561, -0.1683429479598999, -0.1429590880870819, -0.06883849948644638, -0.13416796922683716, 0.00897989235818386, -0.11180389672517776, 0.05395037308335304, 0.06001098081469536, 0.06750501692295074, -0.06899319589138031, 0.10220931470394135, 0.04626858979463577, -0.11440542340278625, 0.06264589726924896, -0.0296088308095932, 0.09430401772260666, -0.02759445086121559, -0.019505485892295837, -0.09039592742919922, 0.014574515633285046, 0.011419114656746387, 0.06245238706469536, -0.04707273095846176, 0.007463190704584122, -0.14696238934993744, -0.08972041308879852, -0.0523175448179245, 0.0718572810292244, -0.050409089773893356, 0.14282815158367157, 0.00775480642914772, -0.0170906875282526, 0.039554283022880554, 0.22787313163280487, -0.07476283609867096, -0.04778539761900902, -0.05269690603017807, 0.20717895030975342, 0.02975541539490223, 0.1171872541308403, -0.022938819602131844, -0.006106364540755749, -0.0919521227478981, 0.3764844834804535, 0.30030161142349243, -0.09031439572572708, 0.011794124729931355, 0.02137952297925949, 0.04502861574292183, 0.1316293478012085, 0.1216534823179245, 0.10318691283464432, 0.3006802201271057, -0.07452366501092911, -0.04653361067175865, -0.012629742734134197, -0.023858042433857918, -0.09059546142816544, 0.1021224707365036, 0.04839762672781944, -0.06382183730602264, -0.03313443064689636, 0.0954432487487793, -0.25862133502960205, 0.1277991235256195, -0.12311873584985733, -0.17578600347042084, -0.06654827296733856, 0.009760108776390553, 0.10465722531080246, 0.015642458572983742, 0.0946015790104866, 0.007128213066607714, -0.11252258718013763, 0.06305865943431854, 0.03397420793771744, -0.22762253880500793, 0.0006893770187161863, 0.06642123311758041, -0.07006710022687912, -0.0024247700348496437, -0.026499588042497635, 0.05657242611050606, 0.0656052976846695, 0.054629553109407425, -0.00971333310008049, 0.03816632181406021, 0.0034184439573436975, -0.0585215799510479, 0.016623929142951965, 0.05121519789099693, 0.02472509816288948, -0.09763528406620026, 0.06927435845136642, -0.1574270874261856, 0.04766253009438515, -0.0030655991286039352, -0.04124255105853081, 0.006064958870410919, 0.008823691867291927, -0.06491616368293762, 0.05165379121899605, 0.07916834205389023, -0.0016257909592241049, -0.0062433634884655476, -0.057178743183612823, -0.02632102556526661, -0.027755750343203545, -0.09291748702526093, -0.10495562851428986, -0.14682936668395996, -0.11640441417694092, 0.09368976950645447, -0.01011267676949501, -0.1848134547472, 0.022154374048113823, -0.08606051653623581, 0.08319322764873505, -0.1670055389404297, 0.08040720224380493, 0.07041648775339127, 0.013038921169936657, -0.0031511052511632442, -0.02002427540719509, 0.054132770746946335, 0.086809903383255, -0.10407156497240067, -0.07400695979595184 ]
null
null
espnet
This model was trained by ftshijt using aishell3/tts1 recipe in <a href="https://github.com/espnet/espnet/">espnet</a>. <p>&nbsp;</p> <ul> <li><strong>Python API</strong><pre><code class="language-python">See https://github.com/espnet/espnet_model_zoo</code></pre></li> <li><strong>Evaluate in the recipe</strong><pre> <code class="language-bash"> See ESPNet repo for how to use pre-trained models </pre></li> <li><strong>Config</strong><pre><code>config: conf/train.yaml print_config: false log_level: INFO dry_run: false iterator_type: sequence output_dir: exp/tts_train_raw_phn_pypinyin_g2p_phone ngpu: 1 seed: 0 num_workers: 1 num_att_plot: 3 dist_backend: nccl dist_init_method: env:// dist_world_size: null dist_rank: null local_rank: 0 dist_master_addr: null dist_master_port: null dist_launcher: null multiprocessing_distributed: false unused_parameters: false sharded_ddp: false cudnn_enabled: true cudnn_benchmark: false cudnn_deterministic: true collect_stats: false write_collected_feats: false max_epoch: 500 patience: null val_scheduler_criterion: - valid - loss early_stopping_criterion: - valid - loss - min best_model_criterion: - - valid - loss - min - - train - loss - min keep_nbest_models: 5 grad_clip: 1.0 grad_clip_type: 2.0 grad_noise: false accum_grad: 1 no_forward_run: false resume: true train_dtype: float32 use_amp: false log_interval: null use_tensorboard: true use_wandb: false wandb_project: null wandb_id: null wandb_entity: null wandb_name: null wandb_model_log_interval: -1 detect_anomaly: false pretrain_path: null init_param: [] ignore_init_mismatch: false freeze_param: [] num_iters_per_epoch: 500 batch_size: 20 valid_batch_size: null batch_bins: 3750000 valid_batch_bins: null train_shape_file: - exp/tts_stats_raw_phn_pypinyin_g2p_phone/train/text_shape.phn - exp/tts_stats_raw_phn_pypinyin_g2p_phone/train/speech_shape valid_shape_file: - exp/tts_stats_raw_phn_pypinyin_g2p_phone/valid/text_shape.phn - exp/tts_stats_raw_phn_pypinyin_g2p_phone/valid/speech_shape batch_type: numel valid_batch_type: null fold_length: - 150 - 240000 sort_in_batch: descending sort_batch: descending multiple_iterator: false chunk_length: 500 chunk_shift_ratio: 0.5 num_cache_chunks: 1024 train_data_path_and_name_and_type: - - dump/raw/train_no_dev/text - text - text - - dump/raw/train_no_dev/wav.scp - speech - sound - - dump/xvector/train_no_dev/xvector.scp - spembs - kaldi_ark valid_data_path_and_name_and_type: - - dump/raw/dev/text - text - text - - dump/raw/dev/wav.scp - speech - sound - - dump/xvector/dev/xvector.scp - spembs - kaldi_ark allow_variable_data_keys: false max_cache_size: 0.0 max_cache_fd: 32 valid_max_cache_size: null optim: adam optim_conf: lr: 0.001 eps: 1.0e-06 weight_decay: 0.0 scheduler: null scheduler_conf: {} token_list: - <blank> - <unk> - '' - d - sh - j - i4 - zh - l - x - e - b - g - i1 - h - q - m - u4 - t - z - ch - i3 - i2 - f - s - n - r - ian4 - e4 - ong1 - en2 - ai4 - k - ing2 - a1 - iou3 - uo3 - ao4 - u3 - ui4 - p - e2 - an1 - eng2 - c - in1 - ai2 - an4 - ian2 - ing1 - ai3 - ang4 - ao3 - ian1 - uo4 - ian3 - iao4 - ang1 - u2 - ü4 - u1 - a4 - eng1 - ing4 - üan2 - ie4 - en1 - iu4 - uei4 - ou4 - er4 - e1 - ei4 - an3 - ong2 - uo2 - ang3 - ou1 - ou3 - ong4 - eng4 - an2 - iang4 - a3 - iang1 - ia1 - iao1 - uan4 - ia4 - iu3 - ang2 - uo1 - ei3 - e3 - in4 - iang3 - ü1 - uan1 - en3 - iao3 - ie3 - ao1 - ai1 - ü2 - ing3 - er2 - ü3 - uan3 - üe4 - in3 - en - ei2 - üe2 - ie2 - en4 - ua4 - in2 - iu2 - uan2 - a2 - ie1 - ou2 - ui1 - iang2 - ong3 - i - uang3 - eng3 - ün4 - uang4 - uai4 - iong4 - v3 - iou2 - ui2 - un1 - üan4 - uang1 - ei1 - uang2 - o2 - a - ao2 - iao2 - ui3 - un4 - o1 - ua2 - un2 - uen2 - iu1 - v4 - ua1 - uei1 - üan3 - ün1 - üe1 - ün2 - uen4 - uei3 - uei2 - un3 - iou4 - o4 - er3 - uen1 - iong3 - iou1 - ia3 - üan1 - ia2 - iong1 - üe3 - uen3 - ve4 - iong2 - uai2 - uai1 - ua3 - ün3 - er - uai3 - ia - o3 - v2 - o - ueng1 - ei - '2' - ua - io1 - <sos/eos> odim: null model_conf: {} use_preprocessor: true token_type: phn bpemodel: null non_linguistic_symbols: null cleaner: null g2p: pypinyin_g2p_phone feats_extract: fbank feats_extract_conf: n_fft: 2048 hop_length: 300 win_length: 1200 fs: 24000 fmin: 80 fmax: 7600 n_mels: 80 normalize: global_mvn normalize_conf: stats_file: exp/tts_stats_raw_phn_pypinyin_g2p_phone/train/feats_stats.npz tts: tacotron2 tts_conf: embed_dim: 512 elayers: 1 eunits: 512 econv_layers: 3 econv_chans: 512 econv_filts: 5 atype: location adim: 512 aconv_chans: 32 aconv_filts: 15 cumulate_att_w: true dlayers: 2 dunits: 1024 prenet_layers: 2 prenet_units: 256 postnet_layers: 5 postnet_chans: 512 postnet_filts: 5 output_activation: null use_batch_norm: true use_concate: true use_residual: false spk_embed_dim: 512 spk_embed_integration_type: add use_gst: true gst_heads: 4 gst_tokens: 16 dropout_rate: 0.5 zoneout_rate: 0.1 reduction_factor: 1 use_masking: true bce_pos_weight: 10.0 use_guided_attn_loss: true guided_attn_loss_sigma: 0.4 guided_attn_loss_lambda: 1.0 pitch_extract: null pitch_extract_conf: {} pitch_normalize: null pitch_normalize_conf: {} energy_extract: null energy_extract_conf: {} energy_normalize: null energy_normalize_conf: {} required: - output_dir - token_list version: 0.10.2a1 distributed: false</code></pre></li> </ul>
{"language": "zh", "license": "cc-by-4.0", "tags": ["espnet", "audio", "text-to-speech"], "datasets": ["aishell3"], "inference": false}
text-to-speech
ftshijt/ESPnet2_pretrained_model_ftshijt_aishell3_tts_train_raw_phn_pypinyin_g2p_phone_train.loss.best
[ "espnet", "audio", "text-to-speech", "zh", "dataset:aishell3", "license:cc-by-4.0", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "zh" ]
TAGS #espnet #audio #text-to-speech #zh #dataset-aishell3 #license-cc-by-4.0 #region-us
This model was trained by ftshijt using aishell3/tts1 recipe in <a href="URL <p>&nbsp;</p> <ul> <li><strong>Python API</strong><pre><code class="language-python">See URL <li><strong>Evaluate in the recipe</strong><pre> <code class="language-bash"> See ESPNet repo for how to use pre-trained models </pre></li> <li><strong>Config</strong><pre><code>config: conf/URL print_config: false log_level: INFO dry_run: false iterator_type: sequence output_dir: exp/tts_train_raw_phn_pypinyin_g2p_phone ngpu: 1 seed: 0 num_workers: 1 num_att_plot: 3 dist_backend: nccl dist_init_method: env:// dist_world_size: null dist_rank: null local_rank: 0 dist_master_addr: null dist_master_port: null dist_launcher: null multiprocessing_distributed: false unused_parameters: false sharded_ddp: false cudnn_enabled: true cudnn_benchmark: false cudnn_deterministic: true collect_stats: false write_collected_feats: false max_epoch: 500 patience: null val_scheduler_criterion: - valid - loss early_stopping_criterion: - valid - loss - min best_model_criterion: - - valid - loss - min - - train - loss - min keep_nbest_models: 5 grad_clip: 1.0 grad_clip_type: 2.0 grad_noise: false accum_grad: 1 no_forward_run: false resume: true train_dtype: float32 use_amp: false log_interval: null use_tensorboard: true use_wandb: false wandb_project: null wandb_id: null wandb_entity: null wandb_name: null wandb_model_log_interval: -1 detect_anomaly: false pretrain_path: null init_param: [] ignore_init_mismatch: false freeze_param: [] num_iters_per_epoch: 500 batch_size: 20 valid_batch_size: null batch_bins: 3750000 valid_batch_bins: null train_shape_file: - exp/tts_stats_raw_phn_pypinyin_g2p_phone/train/text_shape.phn - exp/tts_stats_raw_phn_pypinyin_g2p_phone/train/speech_shape valid_shape_file: - exp/tts_stats_raw_phn_pypinyin_g2p_phone/valid/text_shape.phn - exp/tts_stats_raw_phn_pypinyin_g2p_phone/valid/speech_shape batch_type: numel valid_batch_type: null fold_length: - 150 - 240000 sort_in_batch: descending sort_batch: descending multiple_iterator: false chunk_length: 500 chunk_shift_ratio: 0.5 num_cache_chunks: 1024 train_data_path_and_name_and_type: - - dump/raw/train_no_dev/text - text - text - - dump/raw/train_no_dev/URL - speech - sound - - dump/xvector/train_no_dev/URL - spembs - kaldi_ark valid_data_path_and_name_and_type: - - dump/raw/dev/text - text - text - - dump/raw/dev/URL - speech - sound - - dump/xvector/dev/URL - spembs - kaldi_ark allow_variable_data_keys: false max_cache_size: 0.0 max_cache_fd: 32 valid_max_cache_size: null optim: adam optim_conf: lr: 0.001 eps: 1.0e-06 weight_decay: 0.0 scheduler: null scheduler_conf: {} token_list: - <blank> - <unk> - '' - d - sh - j - i4 - zh - l - x - e - b - g - i1 - h - q - m - u4 - t - z - ch - i3 - i2 - f - s - n - r - ian4 - e4 - ong1 - en2 - ai4 - k - ing2 - a1 - iou3 - uo3 - ao4 - u3 - ui4 - p - e2 - an1 - eng2 - c - in1 - ai2 - an4 - ian2 - ing1 - ai3 - ang4 - ao3 - ian1 - uo4 - ian3 - iao4 - ang1 - u2 - ü4 - u1 - a4 - eng1 - ing4 - üan2 - ie4 - en1 - iu4 - uei4 - ou4 - er4 - e1 - ei4 - an3 - ong2 - uo2 - ang3 - ou1 - ou3 - ong4 - eng4 - an2 - iang4 - a3 - iang1 - ia1 - iao1 - uan4 - ia4 - iu3 - ang2 - uo1 - ei3 - e3 - in4 - iang3 - ü1 - uan1 - en3 - iao3 - ie3 - ao1 - ai1 - ü2 - ing3 - er2 - ü3 - uan3 - üe4 - in3 - en - ei2 - üe2 - ie2 - en4 - ua4 - in2 - iu2 - uan2 - a2 - ie1 - ou2 - ui1 - iang2 - ong3 - i - uang3 - eng3 - ün4 - uang4 - uai4 - iong4 - v3 - iou2 - ui2 - un1 - üan4 - uang1 - ei1 - uang2 - o2 - a - ao2 - iao2 - ui3 - un4 - o1 - ua2 - un2 - uen2 - iu1 - v4 - ua1 - uei1 - üan3 - ün1 - üe1 - ün2 - uen4 - uei3 - uei2 - un3 - iou4 - o4 - er3 - uen1 - iong3 - iou1 - ia3 - üan1 - ia2 - iong1 - üe3 - uen3 - ve4 - iong2 - uai2 - uai1 - ua3 - ün3 - er - uai3 - ia - o3 - v2 - o - ueng1 - ei - '2' - ua - io1 - <sos/eos> odim: null model_conf: {} use_preprocessor: true token_type: phn bpemodel: null non_linguistic_symbols: null cleaner: null g2p: pypinyin_g2p_phone feats_extract: fbank feats_extract_conf: n_fft: 2048 hop_length: 300 win_length: 1200 fs: 24000 fmin: 80 fmax: 7600 n_mels: 80 normalize: global_mvn normalize_conf: stats_file: exp/tts_stats_raw_phn_pypinyin_g2p_phone/train/feats_stats.npz tts: tacotron2 tts_conf: embed_dim: 512 elayers: 1 eunits: 512 econv_layers: 3 econv_chans: 512 econv_filts: 5 atype: location adim: 512 aconv_chans: 32 aconv_filts: 15 cumulate_att_w: true dlayers: 2 dunits: 1024 prenet_layers: 2 prenet_units: 256 postnet_layers: 5 postnet_chans: 512 postnet_filts: 5 output_activation: null use_batch_norm: true use_concate: true use_residual: false spk_embed_dim: 512 spk_embed_integration_type: add use_gst: true gst_heads: 4 gst_tokens: 16 dropout_rate: 0.5 zoneout_rate: 0.1 reduction_factor: 1 use_masking: true bce_pos_weight: 10.0 use_guided_attn_loss: true guided_attn_loss_sigma: 0.4 guided_attn_loss_lambda: 1.0 pitch_extract: null pitch_extract_conf: {} pitch_normalize: null pitch_normalize_conf: {} energy_extract: null energy_extract_conf: {} energy_normalize: null energy_normalize_conf: {} required: - output_dir - token_list version: 0.10.2a1 distributed: false</code></pre></li> </ul>
[]
[ "TAGS\n#espnet #audio #text-to-speech #zh #dataset-aishell3 #license-cc-by-4.0 #region-us \n" ]
[ 38 ]
[ "passage: TAGS\n#espnet #audio #text-to-speech #zh #dataset-aishell3 #license-cc-by-4.0 #region-us \n" ]
[ -0.11207796633243561, 0.016522783786058426, -0.003610979998484254, -0.03877410665154457, 0.012603011913597584, -0.02070016972720623, 0.23107796907424927, 0.023721234872937202, 0.14768442511558533, -0.04433055222034454, 0.09026562422513962, 0.09093949943780899, 0.015407505445182323, 0.051486656069755554, -0.011853043921291828, -0.1350502222776413, 0.05479530990123749, 0.019497493281960487, 0.0695687085390091, 0.04842875152826309, 0.09220050275325775, -0.004413931630551815, 0.022657232359051704, -0.017941920086741447, -0.005034873262047768, 0.0264174435287714, 0.014785075560212135, -0.076963871717453, 0.04086671397089958, -0.009367728605866432, 0.00024434993974864483, 0.10266158729791641, 0.04052286967635155, -0.23219485580921173, 0.0020330867264419794, -0.06306082010269165, -0.11936885118484497, -0.004166493192315102, 0.06848108768463135, 0.02043604478240013, -0.005810189060866833, 0.02137092873454094, -0.11607766151428223, 0.04693280905485153, -0.02729034051299095, -0.09115392714738846, -0.05794001743197441, 0.05144199728965759, 0.08799703419208527, 0.1086861714720726, -0.029310593381524086, 0.12927672266960144, -0.11813102662563324, 0.036172054708004, 0.16270576417446136, -0.31181854009628296, 0.07385668158531189, 0.08244730532169342, 0.11908531188964844, 0.17666947841644287, -0.02505815029144287, 0.06376340240240097, 0.06293002516031265, -0.02429829351603985, -0.09946970641613007, -0.059992533177137375, -0.009821919724345207, 0.06268800795078278, -0.07772351056337357, -0.007656340952962637, 0.42921897768974304, 0.06742019951343536, -0.007919230498373508, 0.014172393828630447, 0.006834424566477537, -0.07563386857509613, 0.010086802765727043, 0.08056529611349106, -0.002938574878498912, 0.09698256850242615, 0.004657188430428505, -0.0010993951000273228, -0.14641545712947845, -0.06682155281305313, -0.13747170567512512, 0.08523589372634888, 0.027609780430793762, 0.08553096652030945, -0.09337443858385086, -0.0407039038836956, 0.04880339652299881, -0.06785017997026443, 0.010544868186116219, -0.058366067707538605, 0.06792642176151276, 0.07005294412374496, -0.007726895157247782, -0.018414003774523735, 0.16001872718334198, 0.05105074867606163, -0.06579023599624634, 0.021250421181321144, 0.012763123959302902, 0.16028039157390594, 0.1069028228521347, -0.10215111076831818, 0.03687853738665581, -0.03824438527226448, 0.04406863823533058, -0.06056836619973183, 0.08121224492788315, -0.08150626718997955, -0.1671372801065445, 0.08634348958730698, -0.0821884274482727, 0.06217881664633751, -0.012645667418837547, -0.08276034891605377, -0.07661110907793045, -0.00852345209568739, 0.14925074577331543, -0.024067146703600883, -0.0055557978339493275, 0.030321013182401657, 0.016133373603224754, 0.02015988714993, -0.028109658509492874, 0.09589861333370209, -0.04611131176352501, 0.05718150734901428, -0.05823763832449913, -0.02430953085422516, 0.02470112405717373, 0.020564749836921692, 0.11481902748346329, 0.0078222481533885, 0.04037615656852722, -0.13752585649490356, -0.10861054062843323, -0.04589487239718437, -0.013574963435530663, 0.07307363301515579, -0.054047126322984695, -0.029095422476530075, 0.030494241043925285, 0.027601441368460655, -0.15633158385753632, -0.12774603068828583, -0.14929986000061035, 0.09623198211193085, -0.12065944075584412, 0.05178705230355263, -0.21256443858146667, 0.04283590987324715, -0.03957612067461014, -0.03586244955658913, 0.10836668312549591, 0.05684904754161835, -0.1339268982410431, -0.0011822059750556946, -0.01609230972826481, -0.05674774944782257, -0.09127527475357056, 0.07056175172328949, -0.04511801525950432, 0.09884952008724213, -0.1749993860721588, -0.06671445816755295, 0.09419112652540207, -0.13186116516590118, -0.12119904905557632, 0.1392514407634735, 0.04601307585835457, -0.09817318618297577, 0.07105987519025803, 0.38098835945129395, -0.06643740087747574, -0.15208028256893158, -0.07656005024909973, 0.155965194106102, -0.015292544849216938, -0.17154929041862488, 0.13949428498744965, -0.06007654219865799, 0.05209726840257645, -0.04895176365971565, 0.03218604251742363, 0.06228703632950783, -0.035356998443603516, -0.05710206180810928, 0.04689943045377731, -0.06720414757728577, 0.016931407153606415, -0.036319952458143234, 0.044585924595594406, -0.03370223939418793, 0.020226892083883286, 0.03714356943964958, 0.1112307608127594, -0.009271092712879181, 0.06337183713912964, -0.1093391478061676, 0.06764109432697296, 0.04203994199633598, -0.029166720807552338, -0.08100948482751846, 0.0471624955534935, -0.043906331062316895, 0.0686674565076828, 0.185066819190979, 0.05899938941001892, -0.023109521716833115, -0.031422898173332214, 0.010300129652023315, -0.0010647197486832738, 0.01954454556107521, 0.04029850289225578, 0.0018424639711156487, -0.2006116658449173, 0.057540275156497955, -0.0012838224647566676, -0.00684344070032239, -0.03213462233543396, -0.08694327622652054, 0.14398294687271118, 0.0140061154961586, -0.06314098834991455, 0.0062809232622385025, -0.01884489692747593, 0.020291414111852646, -0.02166846953332424, 0.07272084802389145, 0.04114674776792526, 0.04089523106813431, -0.10556713491678238, 0.19581229984760284, -0.07352792471647263, 0.1718122512102127, 0.17144329845905304, -0.1965579092502594, 0.14869894087314606, 0.01876247487962246, 0.03615562617778778, -0.029884425923228264, -0.02095012553036213, -0.07704310119152069, 0.12918388843536377, -0.057278960943222046, 0.08819083124399185, -0.08932429552078247, 0.025732040405273438, -0.01103427354246378, -0.11627393960952759, 0.012684409506618977, 0.05355653166770935, 0.05553101375699043, -0.15626287460327148, 0.1522679477930069, 0.18606030941009521, -0.010736746713519096, 0.3292394280433655, -0.07081529498100281, -0.009855504147708416, 0.00047300223377533257, -0.004784849472343922, -0.07648899406194687, 0.15866895020008087, -0.14312589168548584, -0.023899463936686516, 0.052932899445295334, 0.04737958312034607, 0.09932851791381836, -0.1470227986574173, -0.0785033255815506, -0.049899499863386154, -0.08036275953054428, -0.2145776003599167, 0.0072964332066476345, -0.10339891165494919, 0.024199113249778748, -0.081758514046669, -0.13415975868701935, 0.09506422281265259, -0.0830904096364975, -0.16690915822982788, 0.048041682690382004, -0.22398337721824646, -0.16072200238704681, -0.1413048803806305, -0.037896305322647095, -0.0875537171959877, 0.016619279980659485, 0.11033417284488678, -0.0857086330652237, -0.007892277091741562, 0.007627937011420727, -0.08640257269144058, -0.03391815349459648, -0.03547925129532814, 0.06849785894155502, -0.00414682412520051, -0.05857491493225098, -0.14082053303718567, -0.031910426914691925, -0.04995990917086601, 0.016842510551214218, 0.09305168688297272, -0.09135627001523972, 0.07541979849338531, 0.18386876583099365, 0.11410962790250778, 0.012115979567170143, -0.05769852176308632, 0.11311093717813492, -0.08080526441335678, -0.054616861045360565, 0.12706848978996277, -0.0442705936729908, 0.03289090096950531, 0.10704456269741058, 0.1063707247376442, -0.029964599758386612, -0.005648730788379908, -0.053117770701646805, -0.07518695294857025, -0.3023022711277008, -0.18280662596225739, -0.11230872571468353, 0.089985191822052, -0.070161834359169, 0.07010097801685333, 0.1583845019340515, -0.02249736525118351, -0.0066294362768530846, -0.03879651427268982, 0.05856552720069885, -0.005743151530623436, 0.11055495589971542, -0.048764247447252274, 0.03988577798008919, -0.07117412984371185, 0.025753548368811607, 0.15237191319465637, 0.12322711944580078, 0.14566035568714142, 0.19507889449596405, 0.155546635389328, 0.12116971611976624, 0.12445925176143646, 0.1264146864414215, 0.011012670584022999, 0.06154567748308182, 0.013812333345413208, -0.008080978877842426, -0.0806276947259903, 0.024657564237713814, 0.04135676845908165, 0.09142587333917618, -0.21405059099197388, 0.0523800328373909, -0.0760868713259697, 0.05826226994395256, 0.030989034101366997, 0.05152382329106331, -0.0712115615606308, 0.13004013895988464, 0.04471544548869133, 0.027447272092103958, -0.0022437807638198137, 0.14970597624778748, 0.07736270874738693, -0.02105668932199478, 0.12379523366689682, 0.09979259222745895, 0.05042419955134392, -0.07501053810119629, 0.0025163094978779554, -0.009664840996265411, -0.11978498101234436, 0.028896065428853035, 0.08065110445022583, -0.11277929693460464, 0.19492599368095398, 0.029083052650094032, 0.015210170298814774, -0.03730001300573349, -0.05007907748222351, 0.019942108541727066, 0.08425383269786835, 0.12443193048238754, 0.08879135549068451, -0.14203175902366638, -0.014576963149011135, -0.09066265821456909, -0.012666919268667698, 0.12370985746383667, 0.07224596291780472, -0.1764226257801056, 0.03407052159309387, 0.020587684586644173, 0.010670304298400879, -0.059788770973682404, -0.1133958175778389, -0.034686196595430374, 0.021703829988837242, 0.28466179966926575, 0.01579459011554718, -0.042644526809453964, -0.05606073886156082, -0.143157958984375, 0.005442596506327391, -0.21770194172859192, -0.07766608893871307, -0.010229215025901794, -0.17428742349147797, 0.04935823753476143, 0.010310504585504532, 0.03860136494040489, 0.07808862626552582, -0.05502479895949364, -0.13592588901519775, -0.11326465010643005, 0.1125992015004158, -0.10229580849409103, 0.006055546458810568, -0.057040322571992874, 0.22336040437221527, 0.0714477151632309, 0.06974790245294571, -0.010467905551195145, -0.01463355589658022, -0.005058934912085533, -0.12459885329008102, 0.028660902753472328, -0.051303841173648834, -0.048244111239910126, 0.1283310502767563, -0.00875869207084179, -0.18761153519153595, -0.015371926128864288, -0.14032165706157684, 0.17561733722686768, 0.2909473478794098, -0.04152030497789383, 0.18126755952835083, 0.34715884923934937, -0.06541792303323746, -0.27748894691467285, -0.1711002141237259, -0.02009323425590992, -0.03898826614022255, 0.025201186537742615, -0.18494509160518646, 0.0683383122086525, 0.06073335185647011, -0.08532777428627014, 0.13928356766700745, -0.22999507188796997, -0.08480459451675415, 0.1370999813079834, -0.11710155755281448, 0.27796608209609985, -0.11020384728908539, -0.12753860652446747, -0.0904894471168518, -0.0380941703915596, 0.14665667712688446, -0.1145133301615715, 0.10086531937122345, 0.11040076613426208, 0.012449548579752445, -0.04892513155937195, 0.01229960285127163, 0.14878183603286743, 0.1297871172428131, 0.011198204010725021, -0.01357584074139595, -0.020558271557092667, 0.11300748586654663, 0.05810394138097763, -0.002137834904715419, -0.13475386798381805, -0.05666171759366989, -0.1345101147890091, 0.002103449311107397, -0.056304171681404114, 0.023462573066353798, 0.040185920894145966, -0.05626613274216652, -0.05893391743302345, -0.05076838284730911, -0.02626844495534897, 0.018327580764889717, 0.3078770935535431, -0.04190804436802864, -0.0836738720536232, 0.14260897040367126, 0.09250448644161224, -0.1547803431749344, -0.13709895312786102, -0.07833036780357361, -0.10109173506498337, 0.09010741114616394, -0.12289880216121674, 0.017326150089502335, 0.08757172524929047, 0.0027162779588252306, 0.06965659558773041, 0.05468972399830818, -0.10333806276321411, 0.05458518862724304, 0.1507597416639328, -0.11121512949466705, 0.027808135375380516, -0.05587328225374222, 0.1165606826543808, 0.1576903760433197, 0.08345144987106323, 0.14159604907035828, 0.010145763866603374, 0.01878691278398037, 0.006150734610855579, 0.020709319040179253, -0.17273786664009094, 0.14734232425689697, 0.08174818009138107, 0.016576003283262253, -0.16919319331645966, 0.1949988752603531, -0.016974618658423424, 0.05486522242426872, 0.011020934209227562, 0.07036381959915161, -0.0998922735452652, -0.09785216301679611, -0.1296495646238327, -0.004562515765428543, -0.13166749477386475, -0.17050276696681976, -0.0298326276242733, -0.09444242715835571, -0.037697821855545044, 0.08520552515983582, 0.04458029940724373, 0.035684723407030106, 0.04155734181404114, -0.0131718460470438, 0.08055001497268677, -0.033668167889118195, -0.03157802298665047, 0.0359683521091938, -0.1550043374300003, -0.12760420143604279, 0.013046537525951862, 0.09532348066568375, -0.07621756196022034, -0.03813571855425835, -0.06988800317049026, 0.0856812372803688, 0.011245988309383392, 0.04165489599108696, -0.07222509384155273, -0.01973097026348114, 0.018437862396240234, -0.011517442762851715, -0.03154952824115753, 0.05143989995121956, -0.072831891477108, 0.008176920004189014, 0.04400536045432091, 0.06343859434127808, -0.09334588050842285, -0.03473839536309242, 0.021770896390080452, 0.005575430579483509, 0.12163485586643219, 0.15354765951633453, -0.05139213055372238, 0.08765624463558197, -0.24953097105026245, -0.08227956295013428, 0.16272561252117157, 0.08599170297384262, -0.022896746173501015, 0.0536862276494503, -0.032749854028224945, 0.11242103576660156, 0.0011470700846984982, 0.002191227860748768, -0.06837964057922363, -0.07529474794864655, -0.03476171940565109, -0.17779052257537842, -0.031185802072286606, -0.023740600794553757, -0.07486794888973236, 0.19025684893131256, 0.09308185428380966, 0.11193409562110901, -0.017323466017842293, -0.02237367071211338, 0.016516974195837975, 0.04818752780556679, 0.014003463089466095, -0.11752165853977203, -0.08878890424966812, -0.05131363123655319, -0.038767009973526, -0.0748562142252922, 0.26014456152915955, -0.0005079933325760067, -0.1860983967781067, 0.02356833592057228, 0.15428707003593445, -0.009780444204807281, 0.00021970200759824365, 0.2769632637500763, -0.030541714280843735, -0.021258153021335602, -0.17509257793426514, -0.02582182176411152, 0.027711013332009315, 0.018332019448280334, -0.05749928206205368, 0.01755513623356819, 0.07715080678462982, 0.031309574842453, 0.14518053829669952, -0.055336032062768936, -0.13217966258525848, -0.09119272232055664, 0.039515119045972824, 0.0094028664752841, 0.009518364444375038, 0.04550081863999367, 0.10616055130958557, -0.042956240475177765, -0.008456774987280369, 0.0139471972361207, -0.04210581257939339, -0.1689460575580597, -0.14405903220176697, -0.0030698124319314957, -0.1469617486000061, 0.032018911093473434, -0.07284857332706451, 0.043236106634140015, 0.16088508069515228, 0.05376782268285751, -0.006799754686653614, 0.016440173611044884, -0.15529081225395203, -0.11752496659755707, 0.02437906339764595, -0.059692222625017166, -0.005501840263605118, -0.05613638088107109, -0.029778392985463142, 0.12053658068180084, -0.09297198057174683, -0.0015065778279677033, -0.003962863236665726, 0.019125517457723618, 0.05300848186016083, -0.10974869132041931, -0.048386652022600174, -0.04353921860456467, 0.011778139509260654, 0.04025868698954582, 0.275512158870697, 0.0723038837313652, -0.04478226229548454, 0.08720272034406662, 0.06307946890592575, -0.04960358142852783, -0.14587228000164032, 0.016196884214878082, -0.03002268448472023, -0.019424673169851303, 0.09654374420642853, -0.012790016829967499, -0.04326657950878143, -0.0183930192142725, 0.14107373356819153, 0.25304967164993286, -0.09340027719736099, 0.020739903673529625, -0.0396101251244545, 0.04190858080983162, -0.04747869446873665, 0.050712473690509796, 0.05746150016784668, 0.30631184577941895, 0.009216336533427238, 0.014994044788181782, -0.11153379082679749, 0.02236846089363098, -0.08912990242242813, -0.041012462228536606, 0.021494662389159203, -0.14119979739189148, -0.02193344198167324, 0.14154593646526337, -0.22561992704868317, 0.04850374907255173, -0.029026707634329796, -0.06077257916331291, 0.028953753411769867, 0.018673043698072433, 0.16947168111801147, 0.1377546191215515, 0.025172080844640732, -0.07766411453485489, -0.07182778418064117, -0.07306040823459625, 0.01105720829218626, -0.2545994222164154, 0.013493622653186321, 0.0033737902995198965, -0.13042974472045898, 0.08546830713748932, -0.02727368101477623, 0.2674626410007477, -0.032653991132974625, 0.11504851281642914, 0.03293256089091301, 0.18793824315071106, -0.0003495415148790926, -0.11221979558467865, -0.0744219645857811, 0.011294749565422535, -0.04852603003382683, 0.12079893052577972, 0.045398980379104614, 0.030247552320361137, 0.02528897114098072, 0.16288800537586212, -0.05970285087823868, -0.054438188672065735, 0.01632389798760414, -0.1195826530456543, 0.09079859405755997, -0.1880941390991211, -0.011943887919187546, -0.08531959354877472, -0.017832407727837563, -0.022569850087165833, 0.05450927093625069, -0.110181525349617, 0.033974505960941315, -0.06603430211544037, -0.052722908556461334, 0.04683225601911545, 0.06293483823537827, -0.016823487356305122, 0.047323547303676605, -0.13953372836112976, 0.04642396420240402, -0.12800191342830658, -0.015078774653375149, 0.10528839379549026, -0.030261846259236336, -0.0012142360210418701, -0.0648454800248146, 0.06957492232322693, -0.04790286347270012, -0.05434706062078476, -0.11896391957998276 ]
null
null
espnet
This model was trained by ftshijt using thchs30/tts1 recipe in <a href="https://github.com/espnet/espnet/">espnet</a>. <p>&nbsp;</p> <ul> <li><strong>Python API</strong><pre><code class="language-python">See https://github.com/espnet/espnet_model_zoo</code></pre></li> <li><strong>Evaluate in the recipe</strong><pre> <code class="language-bash">Please see ESPNet for how to use pre-trained model </pre></li> <li><strong>Config</strong><pre><code>config: conf/train.yaml print_config: false log_level: INFO dry_run: false iterator_type: sequence output_dir: exp/tts_train_raw_phn_pypinyin_g2p_phone ngpu: 1 seed: 0 num_workers: 1 num_att_plot: 3 dist_backend: nccl dist_init_method: env:// dist_world_size: null dist_rank: null local_rank: 0 dist_master_addr: null dist_master_port: null dist_launcher: null multiprocessing_distributed: false unused_parameters: false sharded_ddp: false cudnn_enabled: true cudnn_benchmark: false cudnn_deterministic: true collect_stats: false write_collected_feats: false max_epoch: 500 patience: null val_scheduler_criterion: - valid - loss early_stopping_criterion: - valid - loss - min best_model_criterion: - - valid - loss - min - - train - loss - min keep_nbest_models: 5 grad_clip: 1.0 grad_clip_type: 2.0 grad_noise: false accum_grad: 1 no_forward_run: false resume: true train_dtype: float32 use_amp: false log_interval: null use_tensorboard: true use_wandb: false wandb_project: null wandb_id: null wandb_entity: null wandb_name: null wandb_model_log_interval: -1 detect_anomaly: false pretrain_path: null init_param: [] ignore_init_mismatch: false freeze_param: [] num_iters_per_epoch: 500 batch_size: 20 valid_batch_size: null batch_bins: 3750000 valid_batch_bins: null train_shape_file: - exp/tts_stats_raw_phn_pypinyin_g2p_phone/train/text_shape.phn - exp/tts_stats_raw_phn_pypinyin_g2p_phone/train/speech_shape valid_shape_file: - exp/tts_stats_raw_phn_pypinyin_g2p_phone/valid/text_shape.phn - exp/tts_stats_raw_phn_pypinyin_g2p_phone/valid/speech_shape batch_type: numel valid_batch_type: null fold_length: - 150 - 204800 sort_in_batch: descending sort_batch: descending multiple_iterator: false chunk_length: 500 chunk_shift_ratio: 0.5 num_cache_chunks: 1024 train_data_path_and_name_and_type: - - dump/raw/train/text - text - text - - dump/raw/train/wav.scp - speech - sound - - dump/xvector/train/xvector.scp - spembs - kaldi_ark valid_data_path_and_name_and_type: - - dump/raw/dev/text - text - text - - dump/raw/dev/wav.scp - speech - sound - - dump/xvector/dev/xvector.scp - spembs - kaldi_ark allow_variable_data_keys: false max_cache_size: 0.0 max_cache_fd: 32 valid_max_cache_size: null optim: adam optim_conf: lr: 0.001 eps: 1.0e-06 weight_decay: 0.0 scheduler: null scheduler_conf: {} token_list: - <blank> - <unk> - '' - d - sh - j - zh - l - i4 - x - b - g - h - e - q - t - m - ch - i1 - z - u4 - i2 - i3 - n - f - s - r - k - c - p - ai4 - e4 - a1 - an4 - ian4 - ing2 - u3 - ian2 - ong1 - e2 - in1 - eng2 - ui4 - ao4 - u2 - iao4 - üan2 - en2 - an1 - u1 - ai2 - ao3 - ing4 - eng1 - iou3 - ü4 - uo4 - üe4 - ong2 - ian1 - ing1 - uo3 - ie4 - ang1 - uei4 - ang4 - an2 - a4 - ou4 - ei4 - uai4 - ie3 - ang3 - ong4 - ai3 - ü2 - uo2 - an3 - ang2 - ou3 - er2 - ou1 - uo1 - en1 - ia1 - ü3 - uan1 - in2 - iong4 - ian3 - iang3 - a3 - iang2 - ia4 - ü1 - uan4 - iao3 - iang4 - uen2 - iang1 - uan3 - ai1 - ie2 - ei3 - uan2 - uang2 - in4 - üe2 - ao1 - eng3 - iu4 - iao1 - er4 - iu2 - in3 - un1 - uang1 - eng4 - a2 - uang3 - en3 - uang4 - ong3 - ing3 - e3 - ei2 - ou2 - ao2 - i - ün4 - uei2 - ua4 - iou4 - ui1 - ua1 - en4 - ün2 - iao2 - ie1 - iou2 - iu3 - ün1 - üan4 - en - ei1 - o2 - un4 - ui3 - iu1 - üan3 - e1 - v3 - ua2 - ia2 - ui2 - un2 - o4 - un3 - er3 - ia3 - iong1 - uei3 - o1 - üe1 - üan1 - iong3 - v4 - iong2 - uen4 - uai2 - uei1 - iou1 - a - ua3 - uen1 - o3 - ueng1 - uai1 - uen3 - üe3 - ou - uai3 - ve4 - er - ün3 - o - ua - ia - ' l =' - <sos/eos> odim: null model_conf: {} use_preprocessor: true token_type: phn bpemodel: null non_linguistic_symbols: null cleaner: null g2p: pypinyin_g2p_phone feats_extract: fbank feats_extract_conf: n_fft: 1024 hop_length: 256 win_length: null fs: 16000 fmin: 80 fmax: 7600 n_mels: 80 normalize: global_mvn normalize_conf: stats_file: exp/tts_stats_raw_phn_pypinyin_g2p_phone/train/feats_stats.npz tts: tacotron2 tts_conf: embed_dim: 512 elayers: 1 eunits: 512 econv_layers: 3 econv_chans: 512 econv_filts: 5 atype: location adim: 512 aconv_chans: 32 aconv_filts: 15 cumulate_att_w: true dlayers: 2 dunits: 1024 prenet_layers: 2 prenet_units: 256 postnet_layers: 5 postnet_chans: 512 postnet_filts: 5 output_activation: null use_batch_norm: true use_concate: true use_residual: false spk_embed_dim: 512 spk_embed_integration_type: add use_gst: true gst_heads: 4 gst_tokens: 16 dropout_rate: 0.5 zoneout_rate: 0.1 reduction_factor: 1 use_masking: true bce_pos_weight: 10.0 use_guided_attn_loss: true guided_attn_loss_sigma: 0.4 guided_attn_loss_lambda: 1.0 pitch_extract: null pitch_extract_conf: {} pitch_normalize: null pitch_normalize_conf: {} energy_extract: null energy_extract_conf: {} energy_normalize: null energy_normalize_conf: {} required: - output_dir - token_list version: 0.10.2a1 distributed: false</code></pre></li> </ul>
{"language": "zh", "license": "cc-by-4.0", "tags": ["espnet", "audio", "text-to-speech"], "datasets": ["thchs30"], "inference": false}
text-to-speech
ftshijt/ESPnet2_pretrained_model_ftshijt_thchs30_tts_train_raw_phn_pypinyin_g2p_phone_train.loss.best
[ "espnet", "audio", "text-to-speech", "zh", "dataset:thchs30", "license:cc-by-4.0", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "zh" ]
TAGS #espnet #audio #text-to-speech #zh #dataset-thchs30 #license-cc-by-4.0 #region-us
This model was trained by ftshijt using thchs30/tts1 recipe in <a href="URL <p>&nbsp;</p> <ul> <li><strong>Python API</strong><pre><code class="language-python">See URL <li><strong>Evaluate in the recipe</strong><pre> <code class="language-bash">Please see ESPNet for how to use pre-trained model </pre></li> <li><strong>Config</strong><pre><code>config: conf/URL print_config: false log_level: INFO dry_run: false iterator_type: sequence output_dir: exp/tts_train_raw_phn_pypinyin_g2p_phone ngpu: 1 seed: 0 num_workers: 1 num_att_plot: 3 dist_backend: nccl dist_init_method: env:// dist_world_size: null dist_rank: null local_rank: 0 dist_master_addr: null dist_master_port: null dist_launcher: null multiprocessing_distributed: false unused_parameters: false sharded_ddp: false cudnn_enabled: true cudnn_benchmark: false cudnn_deterministic: true collect_stats: false write_collected_feats: false max_epoch: 500 patience: null val_scheduler_criterion: - valid - loss early_stopping_criterion: - valid - loss - min best_model_criterion: - - valid - loss - min - - train - loss - min keep_nbest_models: 5 grad_clip: 1.0 grad_clip_type: 2.0 grad_noise: false accum_grad: 1 no_forward_run: false resume: true train_dtype: float32 use_amp: false log_interval: null use_tensorboard: true use_wandb: false wandb_project: null wandb_id: null wandb_entity: null wandb_name: null wandb_model_log_interval: -1 detect_anomaly: false pretrain_path: null init_param: [] ignore_init_mismatch: false freeze_param: [] num_iters_per_epoch: 500 batch_size: 20 valid_batch_size: null batch_bins: 3750000 valid_batch_bins: null train_shape_file: - exp/tts_stats_raw_phn_pypinyin_g2p_phone/train/text_shape.phn - exp/tts_stats_raw_phn_pypinyin_g2p_phone/train/speech_shape valid_shape_file: - exp/tts_stats_raw_phn_pypinyin_g2p_phone/valid/text_shape.phn - exp/tts_stats_raw_phn_pypinyin_g2p_phone/valid/speech_shape batch_type: numel valid_batch_type: null fold_length: - 150 - 204800 sort_in_batch: descending sort_batch: descending multiple_iterator: false chunk_length: 500 chunk_shift_ratio: 0.5 num_cache_chunks: 1024 train_data_path_and_name_and_type: - - dump/raw/train/text - text - text - - dump/raw/train/URL - speech - sound - - dump/xvector/train/URL - spembs - kaldi_ark valid_data_path_and_name_and_type: - - dump/raw/dev/text - text - text - - dump/raw/dev/URL - speech - sound - - dump/xvector/dev/URL - spembs - kaldi_ark allow_variable_data_keys: false max_cache_size: 0.0 max_cache_fd: 32 valid_max_cache_size: null optim: adam optim_conf: lr: 0.001 eps: 1.0e-06 weight_decay: 0.0 scheduler: null scheduler_conf: {} token_list: - <blank> - <unk> - '' - d - sh - j - zh - l - i4 - x - b - g - h - e - q - t - m - ch - i1 - z - u4 - i2 - i3 - n - f - s - r - k - c - p - ai4 - e4 - a1 - an4 - ian4 - ing2 - u3 - ian2 - ong1 - e2 - in1 - eng2 - ui4 - ao4 - u2 - iao4 - üan2 - en2 - an1 - u1 - ai2 - ao3 - ing4 - eng1 - iou3 - ü4 - uo4 - üe4 - ong2 - ian1 - ing1 - uo3 - ie4 - ang1 - uei4 - ang4 - an2 - a4 - ou4 - ei4 - uai4 - ie3 - ang3 - ong4 - ai3 - ü2 - uo2 - an3 - ang2 - ou3 - er2 - ou1 - uo1 - en1 - ia1 - ü3 - uan1 - in2 - iong4 - ian3 - iang3 - a3 - iang2 - ia4 - ü1 - uan4 - iao3 - iang4 - uen2 - iang1 - uan3 - ai1 - ie2 - ei3 - uan2 - uang2 - in4 - üe2 - ao1 - eng3 - iu4 - iao1 - er4 - iu2 - in3 - un1 - uang1 - eng4 - a2 - uang3 - en3 - uang4 - ong3 - ing3 - e3 - ei2 - ou2 - ao2 - i - ün4 - uei2 - ua4 - iou4 - ui1 - ua1 - en4 - ün2 - iao2 - ie1 - iou2 - iu3 - ün1 - üan4 - en - ei1 - o2 - un4 - ui3 - iu1 - üan3 - e1 - v3 - ua2 - ia2 - ui2 - un2 - o4 - un3 - er3 - ia3 - iong1 - uei3 - o1 - üe1 - üan1 - iong3 - v4 - iong2 - uen4 - uai2 - uei1 - iou1 - a - ua3 - uen1 - o3 - ueng1 - uai1 - uen3 - üe3 - ou - uai3 - ve4 - er - ün3 - o - ua - ia - ' l =' - <sos/eos> odim: null model_conf: {} use_preprocessor: true token_type: phn bpemodel: null non_linguistic_symbols: null cleaner: null g2p: pypinyin_g2p_phone feats_extract: fbank feats_extract_conf: n_fft: 1024 hop_length: 256 win_length: null fs: 16000 fmin: 80 fmax: 7600 n_mels: 80 normalize: global_mvn normalize_conf: stats_file: exp/tts_stats_raw_phn_pypinyin_g2p_phone/train/feats_stats.npz tts: tacotron2 tts_conf: embed_dim: 512 elayers: 1 eunits: 512 econv_layers: 3 econv_chans: 512 econv_filts: 5 atype: location adim: 512 aconv_chans: 32 aconv_filts: 15 cumulate_att_w: true dlayers: 2 dunits: 1024 prenet_layers: 2 prenet_units: 256 postnet_layers: 5 postnet_chans: 512 postnet_filts: 5 output_activation: null use_batch_norm: true use_concate: true use_residual: false spk_embed_dim: 512 spk_embed_integration_type: add use_gst: true gst_heads: 4 gst_tokens: 16 dropout_rate: 0.5 zoneout_rate: 0.1 reduction_factor: 1 use_masking: true bce_pos_weight: 10.0 use_guided_attn_loss: true guided_attn_loss_sigma: 0.4 guided_attn_loss_lambda: 1.0 pitch_extract: null pitch_extract_conf: {} pitch_normalize: null pitch_normalize_conf: {} energy_extract: null energy_extract_conf: {} energy_normalize: null energy_normalize_conf: {} required: - output_dir - token_list version: 0.10.2a1 distributed: false</code></pre></li> </ul>
[]
[ "TAGS\n#espnet #audio #text-to-speech #zh #dataset-thchs30 #license-cc-by-4.0 #region-us \n" ]
[ 39 ]
[ "passage: TAGS\n#espnet #audio #text-to-speech #zh #dataset-thchs30 #license-cc-by-4.0 #region-us \n" ]
[ -0.11710260063409805, -0.03616144135594368, -0.0033282304648309946, -0.04356065392494202, -0.00510817626491189, -0.009141022339463234, 0.20589323341846466, 0.02775569073855877, 0.12339167296886444, -0.0353643000125885, 0.09686867892742157, 0.0801495760679245, 0.009594679810106754, 0.057934921234846115, -0.0198990311473608, -0.12650513648986816, 0.048143420368433, 0.02919347956776619, 0.03003336675465107, 0.06632789224386215, 0.08763057738542557, -0.008649582974612713, 0.01988612301647663, -0.040007591247558594, -0.017294179648160934, 0.03492789715528488, 0.028096454218029976, -0.0806417465209961, 0.06665880978107452, -0.013791819103062153, -0.005740232765674591, 0.12318024784326553, 0.05222754180431366, -0.2057071477174759, 0.004514683037996292, -0.04672246798872948, -0.11798875033855438, 0.00992036983370781, 0.044987380504608154, 0.023730216547846794, 0.030910849571228027, 0.013606795109808445, -0.1218242421746254, 0.04214124381542206, -0.03829578310251236, -0.12334844470024109, -0.06439630687236786, 0.06603101640939713, 0.06132584810256958, 0.09398079663515091, -0.031831610947847366, 0.1496647745370865, -0.11688702553510666, 0.031975679099559784, 0.1346260905265808, -0.30200836062431335, 0.0798603817820549, 0.10119535773992538, 0.13440808653831482, 0.17295622825622559, -0.02877178229391575, 0.07577741146087646, 0.07821183651685715, -0.03731386736035347, -0.09350619465112686, -0.07067321985960007, 0.01022465992718935, 0.05784690007567406, -0.08496658504009247, -0.008789023384451866, 0.4168594181537628, 0.07833264768123627, -0.001837354269810021, 0.029591089114546776, -0.017406394705176353, -0.059935834258794785, 0.008672986179590225, 0.06049681827425957, -0.0034910498652607203, 0.09722547978162766, -0.042593613266944885, -0.0016056225867941976, -0.15195327997207642, -0.06220606341958046, -0.14483268558979034, 0.042965006083250046, 0.0247307401150465, 0.0819612517952919, -0.106208436191082, -0.030332453548908234, 0.010299745947122574, -0.06856974214315414, 0.01918700709939003, -0.059870753437280655, 0.06366477161645889, 0.04971146956086159, 0.002633467083796859, -0.006126532796770334, 0.14972281455993652, 0.0710669681429863, -0.06523583084344864, 0.022216694429516792, 0.0033537738490849733, 0.15564198791980743, 0.09450240433216095, -0.13388587534427643, 0.02409663237631321, -0.04968063905835152, 0.03675365447998047, -0.07985114306211472, 0.0766419842839241, -0.08404046297073364, -0.15971705317497253, 0.06442305445671082, -0.08540437370538712, 0.05159571394324303, -0.011133156716823578, -0.07495282590389252, -0.03970462828874588, 0.000014185212421580218, 0.15565527975559235, -0.010340443812310696, -0.006360921077430248, 0.03016538918018341, 0.02788560278713703, 0.05298696458339691, -0.033937301486730576, 0.08658432215452194, -0.037130407989025116, 0.07935968786478043, -0.06605351716279984, -0.03951460123062134, 0.032124824821949005, 0.00974391121417284, 0.1252409666776657, 0.0023477438371628523, 0.03723137453198433, -0.11698900163173676, -0.08505406230688095, -0.04290267080068588, -0.020208342000842094, 0.07584332674741745, -0.03970567509531975, -0.024321498349308968, 0.01581781730055809, 0.03620774671435356, -0.15336695313453674, -0.09674029797315598, -0.1517782360315323, 0.11412504315376282, -0.11184801906347275, 0.05801815912127495, -0.22080785036087036, 0.033669617027044296, -0.03148603439331055, -0.034206125885248184, 0.09081313759088516, 0.032503705471754074, -0.12549252808094025, 0.0010338245192542672, -0.01413255650550127, -0.06669015437364578, -0.11429063975811005, 0.07647556811571121, -0.046636492013931274, 0.09539536386728287, -0.16302593052387238, -0.0778573751449585, 0.15076977014541626, -0.12348492443561554, -0.11289376765489578, 0.1253771185874939, 0.03405817598104477, -0.06421935558319092, 0.08310022205114365, 0.3634790778160095, -0.05719725042581558, -0.17415720224380493, -0.05457237735390663, 0.1687559336423874, -0.022422071546316147, -0.1694580465555191, 0.12343928217887878, -0.05826711654663086, 0.05558602884411812, -0.05608556419610977, 0.04693533480167389, 0.054752204567193985, -0.04852025583386421, -0.04278527572751045, 0.039209600538015366, -0.05882609263062477, 0.007600155659019947, -0.03599299490451813, 0.05432143434882164, -0.050756875425577164, 0.014725510030984879, 0.05702334642410278, 0.11155655980110168, -0.0035928175784647465, 0.06575851887464523, -0.1066606342792511, 0.044701676815748215, 0.04409819841384888, -0.02200550027191639, -0.09534842520952225, 0.08227819204330444, -0.04910103231668472, 0.10370854288339615, 0.19461451470851898, 0.09581949561834335, -0.015235052444040775, -0.055755458772182465, -0.010531455278396606, 0.020232966169714928, 0.03433455526828766, 0.04623587802052498, 0.008851959370076656, -0.22128145396709442, 0.06715653836727142, 0.004488078877329826, 0.0027761112432926893, -0.04774119704961777, -0.09014052897691727, 0.17164303362369537, 0.03244709596037865, -0.06940266489982605, 0.015919549390673637, -0.0365048423409462, 0.015070776455104351, -0.02026938833296299, 0.06861093640327454, 0.0418330579996109, 0.05161213502287865, -0.07610888034105301, 0.19477316737174988, -0.07209008187055588, 0.1541636884212494, 0.19151268899440765, -0.2145892232656479, 0.10588584840297699, 0.04890288785099983, 0.046421848237514496, -0.02908864989876747, -0.014454183168709278, -0.09337956458330154, 0.06587491184473038, -0.0733502209186554, 0.08504147827625275, -0.09318026900291443, 0.003268469125032425, 0.0026549503672868013, -0.1070340946316719, 0.037867430597543716, 0.06080874055624008, 0.093516506254673, -0.1776433289051056, 0.1540175974369049, 0.17372944951057434, 0.0010673237266018987, 0.30323269963264465, -0.08329867571592331, -0.03262830153107643, -0.014148146845400333, -0.005066286772489548, -0.07128135114908218, 0.17608393728733063, -0.13882163166999817, -0.030837202444672585, 0.051779624074697495, 0.047909874469041824, 0.09762600064277649, -0.16430622339248657, -0.06605050712823868, -0.05477147921919823, -0.07595604658126831, -0.23781727254390717, 0.0173325315117836, -0.11066804826259613, 0.03907012566924095, -0.07307969033718109, -0.13356590270996094, 0.08613038808107376, -0.08411750942468643, -0.1681029349565506, 0.04697022959589958, -0.2178615778684616, -0.15270555019378662, -0.1359010487794876, -0.03548574820160866, -0.05975322425365448, 0.019292933866381645, 0.09993784129619598, -0.07722853869199753, -0.011164414696395397, 0.029732344672083855, -0.0781269297003746, -0.05843689292669296, -0.01840089075267315, 0.05901909992098808, 0.017471762374043465, -0.05515789985656738, -0.1351688653230667, -0.026236683130264282, -0.05582375451922417, 0.045830462127923965, 0.09441711753606796, -0.09749440103769302, 0.06627651304006577, 0.198052778840065, 0.10768579691648483, 0.012339268811047077, -0.06588506698608398, 0.09833233803510666, -0.08558820188045502, -0.034899353981018066, 0.11738643795251846, -0.05045182257890701, 0.03253037855029106, 0.09590791165828705, 0.11008697003126144, -0.028782401233911514, 0.00324916560202837, -0.051697731018066406, -0.0821411982178688, -0.29246413707733154, -0.16943423449993134, -0.11515343189239502, 0.08121522516012192, -0.06324786692857742, 0.06579429656267166, 0.1808200478553772, -0.030158553272485733, -0.019225366413593292, -0.027417438104748726, 0.05783013999462128, -0.017713317647576332, 0.13442838191986084, -0.06136206164956093, 0.0312819741666317, -0.09657164663076401, 0.0066056083887815475, 0.15469226241111755, 0.11455623805522919, 0.15657471120357513, 0.2041504830121994, 0.1801833212375641, 0.11748704314231873, 0.11715538799762726, 0.12073523551225662, 0.0201132632791996, 0.06570395827293396, 0.01940654031932354, -0.004828130826354027, -0.08126053214073181, 0.06185034289956093, 0.034145284444093704, 0.09688547998666763, -0.21467004716396332, 0.07666660100221634, -0.09295401722192764, 0.050378311425447464, -0.003467972157523036, 0.06537358462810516, -0.05061207339167595, 0.12435245513916016, 0.02577863819897175, 0.02870720438659191, -0.004889851436018944, 0.1500805914402008, 0.07742519676685333, -0.006457949988543987, 0.12714990973472595, 0.11186511069536209, 0.05626755952835083, -0.06364285200834274, -0.0001591471809661016, -0.02748660370707512, -0.12252689152956009, 0.019590899348258972, 0.08051659911870956, -0.14359037578105927, 0.2117825597524643, 0.0301025602966547, 0.006908940616995096, -0.04598173871636391, -0.05953489989042282, 0.006460082251578569, 0.08777464181184769, 0.13178277015686035, 0.08587884157896042, -0.1525622457265854, 0.01683853380382061, -0.08296524733304977, -0.019054945558309555, 0.15565843880176544, 0.08488620817661285, -0.16157735884189606, 0.02954545058310032, 0.0077085779048502445, 0.039819102734327316, -0.08915485441684723, -0.10392140597105026, -0.013206735253334045, 0.02781495451927185, 0.2487919181585312, -0.03643982857465744, -0.03865673393011093, -0.05513519048690796, -0.15264135599136353, -0.0004594284400809556, -0.22287404537200928, -0.06586019694805145, -0.015157721936702728, -0.17724795639514923, 0.057995423674583435, 0.012527593411505222, 0.047810930758714676, 0.08870318531990051, -0.05424562096595764, -0.13783955574035645, -0.12656110525131226, 0.1350971758365631, -0.08584697544574738, -0.007246747147291899, -0.06221269443631172, 0.23629800975322723, 0.06818404793739319, 0.07834237068891525, -0.01751638576388359, -0.004143319092690945, -0.005967192351818085, -0.12158633023500443, 0.0280173160135746, -0.0969991683959961, -0.059372711926698685, 0.08638618141412735, 0.011499166488647461, -0.1752426028251648, 0.005062751937657595, -0.13900792598724365, 0.169117733836174, 0.30127400159835815, -0.04169846698641777, 0.1800675243139267, 0.3382887840270996, -0.05770157277584076, -0.2970523536205292, -0.13714168965816498, -0.037612296640872955, -0.04625139757990837, -0.010526551865041256, -0.17512385547161102, 0.06259869784116745, 0.05133793503046036, -0.07996591925621033, 0.17745739221572876, -0.24338416755199432, -0.09331044554710388, 0.12585963308811188, -0.13041722774505615, 0.31052371859550476, -0.09592732787132263, -0.13892564177513123, -0.10014893114566803, -0.05843755230307579, 0.15987223386764526, -0.1544273942708969, 0.09042400866746902, 0.1189374029636383, 0.002908923663198948, -0.05213966965675354, 0.014864436350762844, 0.14233961701393127, 0.13344460725784302, 0.009512597694993019, -0.011266999877989292, -0.018412701785564423, 0.16329628229141235, 0.06072959303855896, -0.01956036314368248, -0.12094110995531082, -0.057771265506744385, -0.10946417599916458, -0.006767630577087402, -0.06512922793626785, 0.02839207835495472, 0.02945634350180626, -0.060760580003261566, -0.07470175623893738, -0.06529510766267776, -0.030119789764285088, -0.012935967184603214, 0.2991669178009033, -0.03781632333993912, -0.07181168347597122, 0.12273125350475311, 0.09085815399885178, -0.14769834280014038, -0.1214519515633583, -0.05930916219949722, -0.1141299307346344, 0.09120933711528778, -0.1612424999475479, 0.012061403132975101, 0.09167557209730148, 0.026428289711475372, 0.060956649482250214, 0.05350755155086517, -0.11411960422992706, 0.03233356401324272, 0.16374239325523376, -0.12487325072288513, 0.03922532498836517, -0.0510135143995285, 0.05024067312479019, 0.1719064563512802, 0.09311355650424957, 0.13785111904144287, 0.012421954423189163, 0.022648686543107033, 0.01583600975573063, 0.01612561009824276, -0.1795317828655243, 0.15351995825767517, 0.1065506711602211, 0.015191001817584038, -0.171348437666893, 0.19587111473083496, -0.012975780293345451, 0.04361395165324211, -0.009171021170914173, 0.06367487460374832, -0.11422077566385269, -0.08093254268169403, -0.12095502018928528, -0.031070629134774208, -0.148575097322464, -0.16872231662273407, -0.03055369295179844, -0.09507553279399872, -0.02573852799832821, 0.15198583900928497, 0.038420528173446655, 0.04800983518362045, 0.03556991368532181, 0.005512227304279804, 0.06702566146850586, -0.031691983342170715, -0.031100749969482422, 0.05193521827459335, -0.13896237313747406, -0.07720261812210083, 0.022429924458265305, 0.08294422924518585, -0.08659430593252182, -0.02695428766310215, -0.07746849209070206, 0.09468284994363785, 0.005629877559840679, 0.029773468151688576, -0.07339474558830261, -0.03841698169708252, 0.012847351841628551, -0.013776537962257862, -0.03727355971932411, 0.05574950575828552, -0.08039906620979309, 0.014268144965171814, 0.04896141588687897, 0.059055887162685394, -0.10105617344379425, -0.020231639966368675, 0.02318761870265007, -0.00495841633528471, 0.10648443549871445, 0.161374032497406, -0.054586365818977356, 0.11247973889112473, -0.21148058772087097, -0.07557926326990128, 0.16811126470565796, 0.10027559101581573, -0.020210593938827515, 0.0718308836221695, -0.02956509403884411, 0.10356396436691284, 0.00817437656223774, 0.006187440361827612, -0.10465948283672333, -0.06846266984939575, -0.023412512615323067, -0.19040729105472565, -0.033286456018686295, -0.009660167619585991, -0.07205141335725784, 0.1952650547027588, 0.08809494227170944, 0.09519976377487183, -0.006828684359788895, -0.03753086179494858, 0.010488228872418404, 0.04210501164197922, 0.012689962051808834, -0.13255731761455536, -0.09251420199871063, -0.04518311470746994, -0.034520797431468964, -0.0767187848687172, 0.27066224813461304, -0.03666878119111061, -0.18018563091754913, 0.02034473977982998, 0.1394168883562088, -0.04625726118683815, 0.004362865351140499, 0.3271375298500061, -0.016611279919743538, -0.027266569435596466, -0.20829658210277557, -0.01716027781367302, 0.017589548602700233, -0.033402230590581894, -0.05833890661597252, 0.013063163496553898, 0.09733027964830399, 0.024820372462272644, 0.16017958521842957, -0.05026291683316231, -0.1087527722120285, -0.05870620533823967, 0.025439944118261337, -0.0018481612205505371, 0.01560942642390728, 0.04039858654141426, 0.11503026634454727, -0.033200763165950775, -0.009601018391549587, 0.0003318578819744289, -0.033915214240550995, -0.16690126061439514, -0.12911929190158844, -0.001632347353734076, -0.1549866646528244, 0.03296263515949249, -0.07241512089967728, 0.04349004849791527, 0.16063974797725677, 0.06799004971981049, -0.013810853473842144, 0.01351490244269371, -0.16193681955337524, -0.13805299997329712, 0.037299856543540955, -0.04716012626886368, -0.017538338899612427, -0.06485872715711594, -0.0364568792283535, 0.1316898763179779, -0.07882318645715714, -0.007516016718000174, -0.012448463588953018, 0.022861525416374207, 0.03605782985687256, -0.09874933958053589, -0.027942702174186707, -0.03587092086672783, 0.0253303162753582, 0.03972993418574333, 0.2672021687030792, 0.05852281302213669, -0.04457813501358032, 0.08851064741611481, 0.04148832708597183, -0.06688638031482697, -0.1787680685520172, 0.01780903898179531, -0.007406160701066256, -0.010671448893845081, 0.1086239367723465, -0.005141268018633127, -0.04945167899131775, -0.014518234878778458, 0.14287380874156952, 0.2648022472858429, -0.06899002194404602, 0.032101552933454514, -0.027886582538485527, 0.043133292347192764, -0.027853528037667274, 0.04970280081033707, 0.06077766418457031, 0.2920278012752533, 0.01154019683599472, -0.03483225032687187, -0.10187846422195435, 0.03467205911874771, -0.05482276529073715, -0.033430133014917374, 0.028559915721416473, -0.15285173058509827, -0.024676721543073654, 0.1503714919090271, -0.21667729318141937, -0.005749952048063278, -0.027940994128584862, -0.06167040392756462, 0.03176863491535187, 0.025800300762057304, 0.14290869235992432, 0.13377317786216736, 0.004812621511518955, -0.07731353491544724, -0.06858641654253006, -0.06285521388053894, 0.026613742113113403, -0.26534774899482727, 0.013782191090285778, -0.0021139243617653847, -0.13323980569839478, 0.04845530539751053, -0.03622075915336609, 0.26821646094322205, -0.029231498017907143, 0.11748280376195908, 0.04894829913973808, 0.17724284529685974, 0.015766484662890434, -0.12122244387865067, -0.08801192790269852, -0.00132563931401819, -0.048851583153009415, 0.11225268989801407, 0.04782567545771599, 0.02447613514959812, 0.026514196768403053, 0.18154115974903107, -0.06436112523078918, -0.0734519213438034, 0.0005817856872454286, -0.12267427891492844, 0.09188247472047806, -0.18108168244361877, -0.015113008208572865, -0.07655809074640274, -0.022532831877470016, -0.03610430657863617, 0.07820548117160797, -0.11640328168869019, 0.0331820510327816, -0.08052493631839752, -0.05589020624756813, 0.04418252781033516, 0.07386714220046997, -0.0209053922444582, 0.058228280395269394, -0.12999475002288818, 0.05742739140987396, -0.12024865299463272, -0.014870368875563145, 0.09591390937566757, -0.01902538724243641, 0.000933345640078187, -0.0430464930832386, 0.055711857974529266, -0.03459584712982178, -0.0772736594080925, -0.10744889825582504 ]
null
null
null
https://vrip.unmsm.edu.pe/forum/profile/liexylezzy/ https://vrip.unmsm.edu.pe/forum/profile/ellindanatasya/ https://vrip.unmsm.edu.pe/forum/profile/oploscgv/ https://vrip.unmsm.edu.pe/forum/profile/Zackoplos/ https://vrip.unmsm.edu.pe/forum/profile/unholyzulk/ https://vrip.unmsm.edu.pe/forum/profile/aurorarezash/
{}
null
fullshowbox/DSADAWF
[ "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #region-us
URL URL URL URL URL URL
[]
[ "TAGS\n#region-us \n" ]
[ 6 ]
[ "passage: TAGS\n#region-us \n" ]
[ 0.024608636274933815, -0.026205500587821007, -0.009666500613093376, -0.10395516455173492, 0.08638657629489899, 0.059816278517246246, 0.01882290467619896, 0.020661840215325356, 0.23975107073783875, -0.005599027033895254, 0.1219947561621666, 0.0015615287702530622, -0.037353623658418655, 0.03733762726187706, -0.0035912662278860807, -0.17583473026752472, 0.03876631706953049, -0.018274923786520958, 0.01843859627842903, 0.026470553129911423, -0.07776834815740585, -0.07564429938793182, 0.015296397730708122, -0.10247814655303955, -0.083692267537117, 0.11002834886312485, 0.031466204673051834, -0.019670886918902397, 0.10779199749231339, -0.04243955761194229, 0.18699054419994354, -0.011512263678014278, -0.11213519424200058, -0.2536850869655609, 0.021806683391332626, -0.01765260472893715, -0.08747660368680954, 0.01506110467016697, 0.0665089413523674, -0.09014441072940826, -0.0588928684592247, 0.0795099288225174, -0.01132340170443058, 0.04246443510055542, -0.27593839168548584, -0.12684126198291779, -0.05297930911183357, -0.1421966552734375, 0.08651168644428253, 0.04035491496324539, 0.008764253929257393, 0.15506891906261444, -0.20897391438484192, 0.004104613792151213, 0.08255259692668915, -0.2538507878780365, 0.05591634660959244, 0.17671173810958862, 0.03623908758163452, 0.18037272989749908, 0.0060391901060938835, 0.11029672622680664, 0.0716743916273117, -0.024263937026262283, -0.17590197920799255, -0.08127854019403458, -0.04696211963891983, 0.16642488539218903, -0.06727185100317001, -0.14248386025428772, 0.34701237082481384, 0.00015008423360995948, 0.009657775051891804, 0.16921205818653107, -0.059524230659008026, -0.09972117841243744, 0.07259953022003174, 0.016484731808304787, 0.018492350354790688, 0.1471305936574936, 0.16307872533798218, -0.0458691343665123, -0.13837823271751404, -0.018630273640155792, -0.22798998653888702, 0.17510560154914856, -0.03248048573732376, 0.13137903809547424, -0.27447956800460815, 0.01684025302529335, -0.2570667266845703, 0.0032130838371813297, 0.04178816080093384, -0.06004921346902847, -0.0226522795855999, -0.013265985064208508, -0.08018817007541656, 0.004899587947875261, 0.06192673370242119, 0.1266920566558838, -0.06128726154565811, 0.06128238886594772, -0.09319206327199936, 0.141696035861969, 0.07166698575019836, 0.07868369668722153, 0.13037432730197906, 0.041205424815416336, -0.07187089323997498, -0.21872246265411377, -0.0026476888451725245, -0.06275863200426102, -0.09502086788415909, -0.0020165652967989445, -0.11606067419052124, 0.17244569957256317, -0.030802514404058456, -0.09825427830219269, -0.11208184063434601, 0.09148659557104111, -0.032992321997880936, -0.03437839448451996, -0.03552987426519394, -0.020977836102247238, 0.019381176680326462, 0.04704452306032181, -0.1548958420753479, -0.005131472367793322, 0.07039852440357208, 0.11502562463283539, -0.1346137970685959, -0.003783059772104025, -0.07908964157104492, 0.03039063885807991, 0.07654735445976257, -0.16510222852230072, 0.03158547356724739, -0.1124754324555397, -0.07531405985355377, 0.002912673633545637, -0.015710093080997467, -0.016202643513679504, 0.166526660323143, -0.0020451415330171585, 0.0714716836810112, -0.026345307007431984, -0.05890209600329399, -0.11243434250354767, -0.08489254862070084, 0.05390460044145584, 0.03670717030763626, 0.03266148269176483, -0.2193479984998703, 0.014805203303694725, -0.12762966752052307, 0.1360815018415451, -0.10566820204257965, -0.04705966264009476, -0.022842247039079666, 0.20562705397605896, 0.037286072969436646, 0.08762791007757187, -0.22171171009540558, 0.039756543934345245, -0.05404696613550186, 0.18480908870697021, -0.1502426266670227, -0.0799463614821434, 0.20813211798667908, -0.07964949309825897, -0.10115210711956024, 0.021235812455415726, 0.020391687750816345, 0.026287272572517395, 0.0766737088561058, 0.4564172327518463, -0.09766800701618195, -0.09146861732006073, 0.10178250074386597, 0.17055274546146393, -0.12427149713039398, -0.1827561855316162, 0.06446871906518936, -0.16666454076766968, -0.1973118633031845, 0.0018917324487119913, 0.09222044050693512, 0.038269978016614914, -0.07875611633062363, -0.020746968686580658, 0.06325206160545349, -0.0007678253459744155, 0.09095914661884308, 0.03755716234445572, 0.09034032374620438, -0.08716782182455063, 0.11115926504135132, -0.05017651244997978, 0.004037132486701012, 0.1343354731798172, 0.027325427159667015, -0.03223329409956932, 0.08694463223218918, -0.0485352948307991, 0.05295134335756302, -0.1662379503250122, -0.15068690478801727, 0.03398871049284935, 0.06283251196146011, 0.03186952322721481, 0.1280253529548645, 0.08141885697841644, -0.10732853412628174, 0.022690722718834877, -0.004228927195072174, 0.058398615568876266, 0.03891623765230179, 0.006107209715992212, 0.008764320984482765, 0.0961301177740097, -0.10607069730758667, -0.13589619100093842, -0.07336436957120895, -0.014715781435370445, 0.14371353387832642, -0.0302802175283432, 0.07690227776765823, -0.004240254405885935, 0.00013200697139836848, 0.06930823624134064, 0.08137880265712738, 0.016412746161222458, 0.08971183747053146, -0.05237193778157234, -0.05160155147314072, 0.10863113403320312, -0.13533565402030945, 0.17837053537368774, 0.14053137600421906, -0.20532016456127167, 0.029453208670020103, -0.06838275492191315, 0.03670361638069153, -0.008162540383636951, 0.0975119024515152, -0.08272241055965424, -0.02106042578816414, 0.013134466484189034, 0.0052274600602686405, -0.013007243163883686, 0.017682146281003952, -0.07295988500118256, -0.07787393033504486, -0.10233919322490692, 0.08436838537454605, 0.11562882363796234, -0.10282530635595322, 0.14214380085468292, 0.4384984076023102, 0.11495281755924225, 0.21582984924316406, -0.09581480920314789, -0.0412987545132637, 0.007486371789127588, 0.0001535322517156601, -0.04476691037416458, 0.08031861484050751, -0.15973517298698425, -0.038901735097169876, 0.027348900213837624, 0.07128690183162689, 0.11475157737731934, -0.14959022402763367, -0.09639324247837067, -0.00793045200407505, 0.0022841424215584993, -0.1249532699584961, 0.023905446752905846, -0.03974650055170059, 0.04015624523162842, 0.07232289016246796, -0.021535737439990044, 0.13939237594604492, -0.04166141897439957, -0.0639561116695404, 0.07585346698760986, -0.2017085999250412, -0.23179671168327332, -0.12309670448303223, -0.14680525660514832, 0.04366797208786011, 0.05154111236333847, 0.01726446859538555, -0.17635835707187653, -0.015074856579303741, 0.07706750929355621, 0.07820965349674225, -0.20886357128620148, -0.022814949974417686, -0.004290030337870121, 0.0895976573228836, -0.10227091610431671, -0.0017130117630586028, -0.04419664293527603, -0.10150232166051865, 0.0017003051470965147, 0.07279510796070099, -0.137485533952713, 0.13807645440101624, 0.21589438617229462, 0.07225540280342102, 0.07359948754310608, -0.019093448296189308, 0.09936179965734482, -0.10856141895055771, -0.16549113392829895, 0.08348225057125092, -0.06234746053814888, 0.047262318432331085, 0.17534415423870087, 0.03307317942380905, -0.13904969394207, -0.015682822093367577, -0.0402069091796875, -0.15603256225585938, -0.238995760679245, -0.09178274869918823, -0.1182505264878273, 0.16442428529262543, 0.0009358620154671371, 0.06651917099952698, 0.08258313685655594, -0.022042419761419296, 0.16447891294956207, -0.07379321753978729, -0.07578866183757782, -0.006978808436542749, 0.12375060468912125, -0.056660156697034836, -0.03080669604241848, -0.10566964000463486, -0.008295975625514984, 0.1151021271944046, 0.15304014086723328, 0.12214863300323486, 0.2957419455051422, 0.08268889784812927, 0.026645636186003685, 0.08958091586828232, 0.17622539401054382, 0.09495089203119278, 0.07838419824838638, -0.045413073152303696, -0.014814783819019794, 0.014317171648144722, -0.04022889584302902, 0.010141594335436821, 0.14683100581169128, -0.2679629921913147, -0.006678564939647913, -0.2710230350494385, 0.0965198427438736, -0.10913380235433578, 0.11837165057659149, -0.01015760749578476, 0.10194015502929688, 0.11082887649536133, 0.03233652561903, -0.03858073800802231, 0.16613617539405823, 0.08450309932231903, -0.11277695000171661, 0.001758623169735074, 0.03737903758883476, 0.09715615212917328, -0.02818971499800682, 0.12721189856529236, -0.11048974841833115, -0.1464834064245224, 0.013753619976341724, 0.07152791321277618, -0.15373679995536804, 0.3138748109340668, 0.012069208547472954, -0.13481520116329193, -0.01481647603213787, -0.09957809001207352, -0.006440147757530212, 0.1254177987575531, 0.09333524852991104, 0.07935678958892822, -0.2185502052307129, -0.13339371979236603, 0.05872276425361633, -0.00575496768578887, 0.22408108413219452, -0.034034017473459244, -0.11356475204229355, -0.027013886719942093, 0.04241163283586502, -0.06043251231312752, 0.08524788916110992, 0.023536119610071182, -0.08113526552915573, -0.032957352697849274, 0.05323701351881027, 0.012368366122245789, 0.00524376705288887, 0.09360801428556442, 0.020107939839363098, -0.0009265501867048442, 0.01785753294825554, 0.047885000705718994, -0.0675911232829094, -0.1984109878540039, 0.09357594698667526, -0.05215044692158699, 0.0015536568826064467, -0.08013670891523361, -0.15122665464878082, -0.08837161958217621, -0.16009655594825745, 0.12540200352668762, -0.034406669437885284, 0.12700119614601135, -0.06619787961244583, 0.17341409623622894, -0.07871770113706589, 0.04481020197272301, -0.047349292784929276, 0.050332702696323395, -0.007268077693879604, -0.07756082713603973, 0.16585899889469147, -0.15564003586769104, 0.01809087023139, 0.19572502374649048, -0.018915493041276932, 0.07177707552909851, 0.021322092041373253, -0.0636206790804863, 0.23147478699684143, 0.3014698624610901, 0.008138049393892288, 0.1665448248386383, 0.3018903136253357, -0.07466315478086472, -0.2642788887023926, -0.05505012720823288, -0.2841376066207886, -0.05371501296758652, 0.10716094076633453, -0.22523896396160126, 0.06986407935619354, 0.14383509755134583, -0.06471995264291763, 0.30228954553604126, -0.21825523674488068, 0.012589273042976856, 0.15434536337852478, -0.08868814259767532, 0.5515313148498535, -0.1133413165807724, -0.17677772045135498, -0.008122089318931103, -0.08741296827793121, 0.10602109134197235, -0.0340677872300148, 0.06877441704273224, 0.013465235009789467, 0.04797380417585373, 0.048932258039712906, -0.03111894056200981, 0.22701001167297363, 0.008710170164704323, 0.09015397727489471, -0.07378865778446198, -0.18624304234981537, 0.11639340221881866, -0.04359482601284981, -0.08891059458255768, 0.0849778801202774, -0.05942516401410103, -0.11078983545303345, 0.04663389176130295, -0.07950539886951447, -0.024862350896000862, 0.08423490077257156, -0.04678233340382576, -0.042606171220541, -0.008054176345467567, -0.1618063747882843, -0.0002289071271661669, 0.31360217928886414, -0.07096036523580551, 0.16695955395698547, 0.03677211329340935, 0.00038613268407061696, -0.11027684062719345, 0.030288029462099075, -0.05203165486454964, -0.021576624363660812, 0.09578979015350342, -0.11096979677677155, 0.03204701095819473, 0.14160704612731934, -0.04864364117383957, 0.05846960097551346, 0.09256096184253693, -0.0849417969584465, 0.007583672646433115, 0.17753590643405914, -0.17537221312522888, -0.1273445188999176, -0.006135711446404457, -0.09862716495990753, 0.14055661857128143, 0.04394126310944557, 0.05191568285226822, 0.16669964790344238, 0.03967129811644554, -0.029474308714270592, -0.02817419543862343, -0.1153380498290062, -0.0201893113553524, 0.040153320878744125, 0.00045633706031367183, -0.08791285753250122, 0.2262638509273529, 0.06409153342247009, -0.1328488290309906, -0.051157206296920776, 0.2161225974559784, -0.06805316358804703, -0.04911920800805092, -0.223562553524971, 0.10752306133508682, -0.07112517952919006, -0.0965060144662857, 0.05453834682703018, -0.02270081453025341, 0.005106312222778797, 0.181985542178154, 0.03941008821129799, 0.11070270836353302, 0.03738937899470329, -0.02448922023177147, 0.15798696875572205, -0.142850860953331, -0.14191335439682007, -0.025354057550430298, -0.08757315576076508, -0.13844476640224457, -0.026804137974977493, 0.1617041826248169, -0.09177309274673462, -0.14772607386112213, -0.2621181011199951, 0.10968475043773651, -0.16432365775108337, -0.10192688554525375, -0.03469514101743698, -0.08968492597341537, 0.0696166530251503, 0.030301768332719803, -0.03093348816037178, -0.06706760823726654, -0.18593791127204895, 0.0816768929362297, 0.06349513679742813, 0.045533183962106705, -0.017847947776317596, 0.0067379772663116455, 0.1720137596130371, 0.025955144315958023, 0.10040043294429779, 0.16762186586856842, 0.011397695168852806, 0.2246655523777008, -0.1671202927827835, -0.11496317386627197, 0.1336962729692459, -0.026543032377958298, 0.06762003898620605, 0.16792191565036774, -0.0772583931684494, 0.015526676550507545, -0.028136352077126503, 0.07066910713911057, -0.11003983020782471, -0.105624258518219, 0.007937257178127766, 0.02567129209637642, -0.2755882740020752, -0.005599735304713249, -0.19717298448085785, 0.14788752794265747, 0.02579621411859989, 0.03297143429517746, 0.10257530212402344, 0.10404334217309952, 0.08312062919139862, -0.0017710148822516203, 0.03226327523589134, -0.1176818460226059, 0.02753005363047123, -0.059239376336336136, -0.020663779228925705, 0.017624232918024063, 0.36952024698257446, -0.03603357449173927, -0.046802736818790436, 0.003710439894348383, 0.1307835876941681, -0.02139742486178875, 0.017395347356796265, 0.13209912180900574, 0.12607666850090027, -0.08595693111419678, -0.1504845917224884, 0.04888554662466049, -0.04565655067563057, -0.02836887165904045, 0.1464131623506546, 0.05905961990356445, 0.1050296202301979, 0.0908031314611435, -0.014463032595813274, -0.00318976235575974, 0.012856799177825451, -0.15486004948616028, 0.06223496049642563, -0.010558074340224266, 0.012565906159579754, 0.017934376373887062, 0.15238402783870697, -0.005540105979889631, 0.07739730179309845, -0.09889880567789078, 0.004208535887300968, -0.13498884439468384, -0.07913459837436676, 0.03617347031831741, -0.13393273949623108, 0.04141177982091904, -0.01871878281235695, 0.029611799865961075, 0.30386561155319214, 0.02558239921927452, -0.020639164373278618, 0.12512871623039246, -0.1214587539434433, -0.12050267308950424, -0.001594188273884356, -0.029960084706544876, 0.0791488066315651, -0.02633434161543846, -0.0997740775346756, -0.1001306027173996, -0.15166029334068298, -0.09759195148944855, 0.05182836204767227, -0.04993441700935364, -0.059362251311540604, -0.17634081840515137, -0.05707859992980957, -0.05147340148687363, 0.14025864005088806, -0.12263951450586319, 0.15159130096435547, -0.014490418136119843, 0.004084470681846142, 0.04405883327126503, 0.1950942426919937, -0.03644494712352753, 0.08714226633310318, 0.0154351145029068, 0.1522706001996994, -0.05119588226079941, 0.14720745384693146, -0.10931728035211563, -0.04014137014746666, -0.06710435450077057, 0.21513493359088898, 0.25630924105644226, -0.06136954948306084, -0.008937356993556023, -0.012760217301547527, 0.058654606342315674, 0.1073930487036705, 0.16049085557460785, 0.002326392102986574, 0.2802925705909729, -0.03133585304021835, 0.04815128445625305, 0.02901598811149597, 0.013607407920062542, -0.06336209923028946, 0.03397751972079277, 0.07539387792348862, -0.035039983689785004, -0.1412304788827896, 0.15837742388248444, -0.21980468928813934, 0.18157227337360382, 0.11640069633722305, -0.19996967911720276, -0.013728445395827293, -0.04882071167230606, 0.1689416468143463, -0.0856364443898201, 0.1637246012687683, -0.0903693437576294, -0.2108195722103119, -0.2056000679731369, 0.03867346793413162, -0.34623071551322937, -0.254462867975235, 0.10422009229660034, 0.1488201916217804, 0.04015883058309555, -0.018507536500692368, -0.019967829808592796, -0.018367022275924683, 0.04877542704343796, -0.0067357709631323814, 0.06014643982052803, 0.031397558748722076, -0.02988368645310402, -0.24127542972564697, -0.029804671183228493, 0.023964406922459602, -0.07093082368373871, 0.07464958727359772, -0.06874357163906097, -0.022495782002806664, 0.08059766888618469, -0.03066304884850979, 0.03298592567443848, -0.035373736172914505, -0.16326889395713806, 0.027529051527380943, 0.03900543600320816, 0.036012712866067886, 0.00634160777553916, 0.0008072225609794259, -0.03455270454287529, 0.0644603744149208, -0.16716794669628143, -0.16015739738941193, 0.14140215516090393, -0.06745140254497528, 0.2779497504234314, -0.05812826007604599, -0.0809100940823555, 0.04766704887151718, -0.03426874056458473, 0.1807648241519928, -0.07756473124027252, 0.047254521399736404, 0.12766779959201813, 0.011127962730824947, 0.03121316432952881, -0.3092964291572571, 0.11082969605922699, -0.000795336440205574, -0.006093299947679043, -0.07581598311662674 ]