sha
null
last_modified
null
library_name
stringclasses
154 values
text
stringlengths
1
900k
metadata
stringlengths
2
348k
pipeline_tag
stringclasses
45 values
id
stringlengths
5
122
tags
listlengths
1
1.84k
created_at
stringlengths
25
25
arxiv
listlengths
0
201
languages
listlengths
0
1.83k
tags_str
stringlengths
17
9.34k
text_str
stringlengths
0
389k
text_lists
listlengths
0
722
processed_texts
listlengths
1
723
tokens_length
listlengths
1
723
input_texts
listlengths
1
61
embeddings
listlengths
768
768
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gq-indo-k This model was trained from scratch on an unkown dataset. It achieves the following results on the evaluation set: - Loss: 2.7905 - Rouge1: 22.5734 - Rouge2: 6.555 - Rougel: 20.9491 - Rougelsum: 20.9509 - Gen Len: 12.0767 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 10 - eval_batch_size: 10 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:-------:|:------:|:-------:|:---------:|:-------:| | 2.9355 | 1.0 | 13032 | 2.8563 | 22.4828 | 6.5456 | 20.8782 | 20.8772 | 11.915 | | 2.825 | 2.0 | 26064 | 2.7993 | 22.547 | 6.5815 | 20.8937 | 20.8973 | 12.0886 | | 2.7631 | 3.0 | 39096 | 2.7905 | 22.5734 | 6.555 | 20.9491 | 20.9509 | 12.0767 | ### Framework versions - Transformers 4.6.1 - Pytorch 1.7.0 - Datasets 1.11.0 - Tokenizers 0.10.3
{"metrics": ["rouge"]}
text2text-generation
fadhilarkan/gq-indo-k
[ "transformers", "pytorch", "t5", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #t5 #text2text-generation #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
gq-indo-k ========= This model was trained from scratch on an unkown dataset. It achieves the following results on the evaluation set: * Loss: 2.7905 * Rouge1: 22.5734 * Rouge2: 6.555 * Rougel: 20.9491 * Rougelsum: 20.9509 * Gen Len: 12.0767 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 10 * eval\_batch\_size: 10 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 3 * mixed\_precision\_training: Native AMP ### Training results ### Framework versions * Transformers 4.6.1 * Pytorch 1.7.0 * Datasets 1.11.0 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 10\n* eval\\_batch\\_size: 10\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.6.1\n* Pytorch 1.7.0\n* Datasets 1.11.0\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #t5 #text2text-generation #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 10\n* eval\\_batch\\_size: 10\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.6.1\n* Pytorch 1.7.0\n* Datasets 1.11.0\n* Tokenizers 0.10.3" ]
[ 48, 113, 4, 30 ]
[ "passage: TAGS\n#transformers #pytorch #t5 #text2text-generation #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 10\n* eval\\_batch\\_size: 10\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3\n* mixed\\_precision\\_training: Native AMP### Training results### Framework versions\n\n\n* Transformers 4.6.1\n* Pytorch 1.7.0\n* Datasets 1.11.0\n* Tokenizers 0.10.3" ]
[ -0.07607080787420273, -0.013563286513090134, -0.002247680677101016, 0.07994938641786575, 0.1962406486272812, 0.033163998275995255, 0.10877521336078644, 0.1163998693227768, -0.10711760818958282, 0.017673837020993233, 0.10371947288513184, 0.1687660664319992, 0.023862071335315704, 0.1309463530778885, -0.07679495960474014, -0.29576876759529114, -0.0008280042675323784, 0.03759877383708954, -0.04218148812651634, 0.13654889166355133, 0.09028078615665436, -0.14135611057281494, 0.06768882274627686, -0.014106850139796734, -0.20257961750030518, 0.021518399938941002, 0.020765909925103188, -0.06761875003576279, 0.15842053294181824, 0.027224961668252945, 0.13197971880435944, 0.011888726614415646, 0.08251263946294785, -0.19842588901519775, 0.012603750452399254, 0.0598558634519577, 0.019190028309822083, 0.07126925140619278, 0.07685298472642899, -0.015832826495170593, 0.1336849182844162, -0.08887696266174316, 0.06175364926457405, 0.01854928955435753, -0.1282978504896164, -0.20807531476020813, -0.061591751873493195, -0.0065307882614433765, 0.07455620169639587, 0.10586176812648773, -0.01863286830484867, 0.1488603949546814, -0.10817937552928925, 0.10851150006055832, 0.2256767749786377, -0.26996684074401855, -0.06986203044652939, 0.0005381411174312234, 0.020425764843821526, 0.0996936559677124, -0.0964500904083252, -0.007268013898283243, 0.04748305305838585, 0.06347391754388809, 0.12492667883634567, -0.03128143027424812, -0.10387174040079117, 0.009323234669864178, -0.14908798038959503, -0.027623314410448074, 0.10812649875879288, 0.02125287428498268, -0.027765896171331406, -0.03237587958574295, -0.07236281782388687, -0.1446608603000641, -0.05165869742631912, -0.02580839954316616, 0.03365766257047653, -0.04086707904934883, -0.07330246269702911, 0.0028982022777199745, -0.09215620160102844, -0.061086542904376984, -0.06641647219657898, 0.17244480550289154, 0.046910010278224945, -0.0044032372534275055, -0.043922342360019684, 0.10297852009534836, -0.023699427023530006, -0.13006220757961273, 0.03016970492899418, 0.015935540199279785, -0.027956383302807808, -0.056021712720394135, -0.07906804978847504, -0.09941922128200531, -0.0003716709034051746, 0.08574439585208893, -0.06362020969390869, 0.06955870240926743, -0.004513680003583431, 0.022767115384340286, -0.08706248551607132, 0.1864331066608429, -0.01789449341595173, -0.02823759987950325, 0.005278685595840216, 0.04316416755318642, -0.004165001679211855, -0.020567385479807854, -0.09242549538612366, -0.002207375131547451, 0.12857021391391754, 0.02232552506029606, -0.07196874171495438, 0.07221497595310211, -0.03610645979642868, -0.025497866794466972, -0.047607384622097015, -0.10744781047105789, 0.037943266332149506, -0.013207556679844856, -0.06869842857122421, 0.025413978844881058, 0.012579834088683128, 0.02238752879202366, -0.05181414261460304, 0.14467011392116547, -0.07215702533721924, 0.039199259132146835, -0.10925044864416122, -0.13186310231685638, 0.00578654371201992, -0.041588690131902695, 0.011022612452507019, -0.10970354825258255, -0.16077539324760437, -0.010735590010881424, 0.04557819664478302, -0.03635116666555405, -0.04767296835780144, -0.05533077195286751, -0.06225980073213577, 0.026354044675827026, -0.029204199090600014, 0.17786213755607605, -0.060243360698223114, 0.11486490070819855, 0.06508604437112808, 0.06773161143064499, -0.028826704248785973, 0.05884050950407982, -0.08404890447854996, -0.0019536754116415977, -0.20131640136241913, 0.068593829870224, -0.03304286301136017, 0.07266727834939957, -0.0741066187620163, -0.11483284085988998, -0.00023794779554009438, 0.0029904500115662813, 0.09994425624608994, 0.10812212526798248, -0.1537753939628601, -0.08445598185062408, 0.16975262761116028, -0.06791899353265762, -0.10505039244890213, 0.12421246618032455, -0.05531168356537819, 0.030290061607956886, 0.08172094076871872, 0.16380546987056732, 0.0489153116941452, -0.07348296046257019, 0.03791258484125137, -0.03975621238350868, 0.058985576033592224, -0.0274979081004858, 0.04976091906428337, 0.018220070749521255, -0.0315130241215229, 0.02686489373445511, 0.01014813780784607, 0.06819139420986176, -0.11517205834388733, -0.07518503069877625, -0.04952400177717209, -0.08433584123849869, 0.05249844118952751, 0.06359162926673889, 0.08331246674060822, -0.1211950033903122, -0.07325581461191177, 0.06603802740573883, 0.06255317479372025, -0.060141485184431076, 0.04062121361494064, -0.052310019731521606, 0.051597096025943756, -0.03372154384851456, -0.0022867873776704073, -0.20549526810646057, -0.025324424728751183, 0.00902040209621191, 0.060037486255168915, 0.03235387057065964, 0.00182810437399894, 0.07587983459234238, 0.06485828757286072, -0.06514746695756912, -0.025454988703131676, -0.021265888586640358, -0.005591833032667637, -0.1425565481185913, -0.1770988255739212, -0.013433491811156273, -0.01563936285674572, 0.0971536710858345, -0.20473721623420715, 0.022957218810915947, -0.04061286523938179, 0.0820440948009491, 0.0004541338130366057, 0.004167607054114342, -0.05541536584496498, 0.1006525382399559, -0.031140610575675964, -0.0364094041287899, 0.07606244832277298, -0.004807071760296822, -0.07765941321849823, -0.037030044943094254, -0.13079489767551422, 0.16717205941677094, 0.13472452759742737, -0.16641607880592346, -0.08519388735294342, -0.0040425932966172695, -0.05255390331149101, -0.029362859204411507, -0.052545785903930664, 0.026308616623282433, 0.1892772763967514, -0.0035416653845459223, 0.1557813286781311, -0.06653407216072083, -0.03443305566906929, 0.016880691051483154, -0.03173324465751648, 0.04075681045651436, 0.11439239233732224, 0.09415413439273834, -0.0904109850525856, 0.11145012080669403, 0.14806704223155975, -0.09204049408435822, 0.1351369172334671, -0.025263752788305283, -0.08780592679977417, 0.0051727681420743465, -0.024997880682349205, -0.000048502901336178184, 0.056069668382406235, -0.14208070933818817, -0.0037871194072067738, 0.01895764470100403, 0.04047369584441185, 0.027547260746359825, -0.21967709064483643, -0.028490634635090828, 0.03835808485746384, -0.03057045117020607, -0.030191613361239433, -0.013832617551088333, 0.03682759404182434, 0.12776102125644684, 0.005045967176556587, -0.05765659734606743, 0.01973467320203781, -0.004107972607016563, -0.08765760809183121, 0.20988212525844574, -0.08350735157728195, -0.17302699387073517, -0.0911867544054985, -0.10941782593727112, -0.043793320655822754, 0.008701781742274761, 0.06394117325544357, -0.12099174410104752, -0.0346207432448864, -0.04287249222397804, 0.05585462227463722, -0.01973063126206398, 0.04353219270706177, -0.004395082592964172, -0.0017035488272085786, 0.05823780596256256, -0.09233561903238297, -0.02267676405608654, -0.04870017245411873, -0.06351854652166367, 0.07412707805633545, 0.03571870177984238, 0.10442601889371872, 0.16629460453987122, -0.036748405545949936, 0.02052999474108219, -0.0399746298789978, 0.2208734154701233, -0.0692954882979393, -0.036689020693302155, 0.13879935443401337, -0.0131599185988307, 0.05472249165177345, 0.11439375579357147, 0.051720332354307175, -0.09341534972190857, 0.03700665757060051, 0.03676788881421089, -0.03257877007126808, -0.22207345068454742, -0.041555002331733704, -0.06831363588571548, -0.032549671828746796, 0.08151500672101974, 0.012202536687254906, 0.04332621395587921, 0.05800096318125725, 0.032429974526166916, 0.07159488648176193, -0.0293281227350235, 0.06299678981304169, 0.1471487432718277, 0.044699665158987045, 0.13826905190944672, -0.04314250126481056, -0.08637522161006927, 0.03440821170806885, -0.040654849261045456, 0.22385208308696747, 0.008975345641374588, 0.06449242681264877, 0.03805546462535858, 0.14445602893829346, 0.013655347749590874, 0.10073043406009674, 0.012605218216776848, -0.0526735819876194, -0.010164620354771614, -0.03577004745602608, -0.049588222056627274, 0.014949580654501915, -0.0413145087659359, 0.04088209196925163, -0.14998121559619904, -0.026400556787848473, 0.05494518205523491, 0.24264273047447205, 0.034901201725006104, -0.3164387345314026, -0.07559730857610703, 0.015182435512542725, -0.06897559016942978, -0.027896638959646225, 0.012905371375381947, 0.07298360019922256, -0.11956188082695007, 0.05578659847378731, -0.07464677095413208, 0.10992030799388885, -0.021929273381829262, 0.05887080356478691, 0.032347194850444794, 0.11595527827739716, -0.004129953682422638, 0.07738212496042252, -0.3596982955932617, 0.27405744791030884, 0.0015335573116317391, 0.07097331434488297, -0.0838790237903595, -0.004336530342698097, 0.038455091416835785, 0.04717012122273445, 0.01620294712483883, -0.022460870444774628, -0.05810136720538139, -0.19317001104354858, -0.026287654414772987, 0.04270930588245392, 0.12822304666042328, -0.0069524734281003475, 0.12239804118871689, -0.03889455646276474, 0.010047074407339096, 0.07546644657850266, -0.004015667364001274, -0.10011547058820724, -0.07978228479623795, -0.010091722942888737, 0.019107811152935028, -0.006117724347859621, -0.06066302955150604, -0.11525771766901016, -0.10895603150129318, 0.1618519425392151, 0.047423411160707474, -0.027112113311886787, -0.12732788920402527, 0.1007549911737442, 0.07487193495035172, -0.08238699287176132, 0.03383644297719002, 0.01440745685249567, 0.06696892529726028, 0.027481023222208023, -0.08084505051374435, 0.11695490777492523, -0.07023915648460388, -0.15322592854499817, -0.04961223900318146, 0.11156388372182846, 0.015626350417733192, 0.07338780164718628, -0.017096534371376038, 0.012958195060491562, -0.02426782436668873, -0.08463835716247559, 0.01972782425582409, -0.01949136331677437, 0.06283775717020035, 0.05517655983567238, -0.06787718832492828, 0.00325418240390718, -0.075074203312397, -0.043522775173187256, 0.22474262118339539, 0.2302720546722412, -0.06675481051206589, 0.009693212807178497, 0.02415817603468895, -0.06863187253475189, -0.1815946102142334, 0.0521828792989254, 0.07987102121114731, 0.012899959459900856, 0.03312297910451889, -0.17453500628471375, 0.09634537249803543, 0.07993146032094955, 0.011095317080616951, 0.08894208818674088, -0.31595221161842346, -0.13440482318401337, 0.11172487586736679, 0.15892916917800903, 0.14685370028018951, -0.14238792657852173, -0.013032792136073112, -0.046770043671131134, -0.10964725911617279, 0.10903562605381012, -0.07699589431285858, 0.1293439269065857, -0.017563126981258392, 0.10871568322181702, 0.018058007583022118, -0.048779405653476715, 0.09632205218076706, -0.01143107283860445, 0.08505997806787491, -0.07426762580871582, 0.00536193884909153, 0.012625986710190773, -0.036951933056116104, -0.0009951175889000297, -0.05663459748029709, 0.01770624704658985, -0.09446720033884048, -0.031206009909510612, -0.09181880205869675, 0.022126635536551476, -0.02322087064385414, -0.06467698514461517, -0.01207242626696825, 0.009748827666044235, 0.05603098124265671, -0.02095085196197033, 0.10521657019853592, -0.023703686892986298, 0.17230664193630219, 0.08580638468265533, 0.11108118295669556, -0.08330242335796356, -0.015640661120414734, -0.0052645327523350716, -0.015564103610813618, 0.03442130237817764, -0.12281113862991333, 0.031124956905841827, 0.14833059906959534, 0.005594105459749699, 0.13695460557937622, 0.0986805409193039, -0.016949264332652092, 0.014850330539047718, 0.07738561928272247, -0.16155901551246643, -0.09432064741849899, -0.01757706329226494, -0.04687740281224251, -0.09793063998222351, 0.035780102014541626, 0.10011844336986542, -0.07115678489208221, -0.012766349129378796, -0.02133234217762947, -0.003692388301715255, -0.0709046721458435, 0.21515506505966187, 0.040707480162382126, 0.053735844790935516, -0.10108621418476105, 0.06901324540376663, 0.045506689697504044, -0.09438309818506241, 0.017114808782935143, 0.13212352991104126, -0.07520478963851929, -0.0361882820725441, 0.10244724154472351, 0.18074773252010345, -0.06377161294221878, -0.03159986063838005, -0.14073224365711212, -0.14335575699806213, 0.08635811507701874, 0.16872578859329224, 0.08807425945997238, -0.006385116372257471, -0.06608612835407257, 0.026346854865550995, -0.13707803189754486, 0.07749714702367783, 0.06682582199573517, 0.0721951425075531, -0.1336086392402649, 0.19982565939426422, 0.00321986828930676, 0.05656345561146736, -0.03482448309659958, 0.012366396375000477, -0.10981608182191849, 0.03445470705628395, -0.15110331773757935, -0.05646749213337898, -0.005905001424252987, -0.0076272208243608475, -0.006309965625405312, -0.06854155659675598, -0.0609305240213871, -0.003204388078302145, -0.12139254808425903, -0.026103591546416283, 0.017092758789658546, 0.0385056734085083, -0.1014077216386795, -0.03681290149688721, 0.028659475967288017, -0.06588670611381531, 0.05880991369485855, 0.06141796335577965, -0.006174610927700996, 0.08013321459293365, -0.14503128826618195, -0.020556790754199028, 0.06871206313371658, 0.005420076195150614, 0.07251329720020294, -0.08397012948989868, 0.008496426977217197, 0.008649192750453949, 0.09068343788385391, 0.03417453169822693, 0.07776031643152237, -0.12850549817085266, -0.0032674504909664392, -0.03680875152349472, -0.10640500485897064, -0.058615852147340775, 0.029285764321684837, 0.04976441711187363, 0.01579468883574009, 0.17184758186340332, -0.09933202713727951, 0.05802683159708977, -0.2214149683713913, -0.004396536853164434, -0.022442299872636795, -0.11633988469839096, -0.08860976994037628, -0.07871846109628677, 0.08648845553398132, -0.047548532485961914, 0.11532234400510788, 0.02340509369969368, 0.1020892933011055, 0.035239871591329575, -0.03546001762151718, 0.010719145648181438, 0.02809467352926731, 0.22820837795734406, 0.04959890991449356, -0.04607502743601799, 0.05613522604107857, 0.06498904526233673, 0.10839855670928955, 0.12735390663146973, 0.23662839829921722, 0.14962057769298553, -0.0005288260290399194, 0.09580673277378082, 0.014903565868735313, -0.05161033198237419, -0.1419733166694641, 0.0078056505881249905, -0.04371722415089607, 0.09975649416446686, -0.03392507880926132, 0.20798291265964508, 0.0788794755935669, -0.1580137461423874, 0.054178059101104736, -0.06973464787006378, -0.09293940663337708, -0.11438030004501343, -0.010256335139274597, -0.0921550765633583, -0.16385915875434875, -0.00019251070625614375, -0.12390564382076263, 0.047855399549007416, 0.10554711520671844, 0.027487408369779587, -0.02766057848930359, 0.16929876804351807, 0.049069128930568695, 0.00534017151221633, 0.08513611555099487, -0.007051735185086727, 0.003669401630759239, -0.07142508774995804, -0.06960798799991608, -0.01654333807528019, -0.011231575161218643, 0.04055968299508095, -0.04114683344960213, -0.10745253413915634, 0.03871801868081093, -0.03592865541577339, -0.1091340184211731, 0.024984613060951233, 0.02526981383562088, 0.07350527495145798, 0.06694076210260391, 0.009120501577854156, -0.004397101700305939, -0.02361970953643322, 0.24364489316940308, -0.0977468341588974, -0.11200183629989624, -0.09787199646234512, 0.3091495633125305, 0.0493117980659008, 0.000599670922383666, 0.02331003174185753, -0.058761097490787506, -0.014990278519690037, 0.25348979234695435, 0.17558199167251587, -0.10588985681533813, -0.014249047264456749, 0.0005126685136929154, -0.007214350625872612, -0.011025166139006615, 0.14586010575294495, 0.15076535940170288, 0.055865172296762466, -0.10436509549617767, -0.015284767374396324, -0.04914744943380356, -0.012965478003025055, -0.04620613530278206, 0.08249904215335846, 0.06355299055576324, 0.003478531027212739, -0.029941746965050697, 0.07703514397144318, -0.0726843774318695, -0.05242672935128212, -0.007071784697473049, -0.20342248678207397, -0.15985189378261566, -0.018796350806951523, 0.09130074828863144, -0.0025267861783504486, 0.06673802435398102, -0.026007594540715218, -0.0011326191015541553, 0.05488181114196777, -0.01837734691798687, -0.05266289785504341, -0.08499737083911896, 0.10097026079893112, -0.11689341068267822, 0.145405113697052, -0.03935663774609566, 0.05458074063062668, 0.12970709800720215, 0.0648510605096817, -0.05610905587673187, 0.08224319666624069, 0.03750820830464363, -0.08729379624128342, 0.04444955289363861, 0.13464896380901337, -0.03956779092550278, 0.029197324067354202, 0.04701937362551689, -0.1501840054988861, 0.0315573550760746, -0.09314462542533875, -0.03978608921170235, -0.019829092547297478, -0.04298949986696243, -0.05840228870511055, 0.11600907146930695, 0.23502860963344574, -0.023503722622990608, 0.030781293287873268, -0.0951702892780304, 0.006374203134328127, 0.033558204770088196, 0.06834197044372559, -0.08632484823465347, -0.26237720251083374, -0.004776547662913799, 0.09469445794820786, -0.025876225903630257, -0.2591387629508972, -0.08726963400840759, -0.00011639032163657248, -0.06218493729829788, -0.1200968474149704, 0.11077622324228287, 0.08319942653179169, 0.03613196685910225, -0.04883745685219765, -0.14060921967029572, -0.06534074991941452, 0.19298294186592102, -0.14952266216278076, -0.07542966306209564 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # qa-indo-k This model was trained from scratch on an unkown dataset. It achieves the following results on the evaluation set: - Loss: 2.4984 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 1.2537 | 1.0 | 8209 | 1.9642 | | 0.943 | 2.0 | 16418 | 2.2143 | | 0.6694 | 3.0 | 24627 | 2.4984 | ### Framework versions - Transformers 4.6.1 - Pytorch 1.7.0 - Datasets 1.11.0 - Tokenizers 0.10.3
{}
question-answering
fadhilarkan/qa-indo-k
[ "transformers", "pytorch", "albert", "question-answering", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #albert #question-answering #endpoints_compatible #region-us
qa-indo-k ========= This model was trained from scratch on an unkown dataset. It achieves the following results on the evaluation set: * Loss: 2.4984 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 16 * eval\_batch\_size: 16 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 3 ### Training results ### Framework versions * Transformers 4.6.1 * Pytorch 1.7.0 * Datasets 1.11.0 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3", "### Training results", "### Framework versions\n\n\n* Transformers 4.6.1\n* Pytorch 1.7.0\n* Datasets 1.11.0\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #albert #question-answering #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3", "### Training results", "### Framework versions\n\n\n* Transformers 4.6.1\n* Pytorch 1.7.0\n* Datasets 1.11.0\n* Tokenizers 0.10.3" ]
[ 30, 98, 4, 30 ]
[ "passage: TAGS\n#transformers #pytorch #albert #question-answering #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3### Training results### Framework versions\n\n\n* Transformers 4.6.1\n* Pytorch 1.7.0\n* Datasets 1.11.0\n* Tokenizers 0.10.3" ]
[ -0.0883120596408844, -0.0411439947783947, -0.0017433665925636888, 0.09196717292070389, 0.21109025180339813, 0.039637867361307144, 0.10200946033000946, 0.08227881789207458, -0.1256236881017685, 0.0024050259962677956, 0.1143365353345871, 0.1560308039188385, -0.021831264719367027, 0.04647960141301155, -0.06986591964960098, -0.25180360674858093, -0.0248868428170681, 0.060372497886419296, -0.12145556509494781, 0.14141960442066193, 0.08088656514883041, -0.16576507687568665, 0.059084806591272354, -0.00418064696714282, -0.2767196595668793, 0.0329463928937912, 0.025159861892461777, -0.06716614961624146, 0.15801464021205902, -0.002302268985658884, 0.19737441837787628, -0.004670789465308189, 0.08968020975589752, -0.17184779047966003, 0.007306316401809454, 0.05066155642271042, 0.02118353731930256, 0.06222253292798996, 0.0448404960334301, -0.012796380557119846, 0.09044971317052841, -0.11276738345623016, 0.07897993177175522, 0.01866939477622509, -0.1543487161397934, -0.2825738489627838, -0.06332560628652573, -0.01417645625770092, 0.07457824051380157, 0.11943558603525162, -0.009530048817396164, 0.18147480487823486, -0.15730494260787964, 0.10790086537599564, 0.28776049613952637, -0.2533194422721863, -0.08287931233644485, 0.03828039392828941, 0.008416548371315002, 0.06960279494524002, -0.11463844776153564, -0.027564316987991333, 0.07377727329730988, 0.06260266900062561, 0.1027630865573883, -0.044519420713186264, -0.13927416503429413, 0.043963123112916946, -0.1534949690103531, -0.03254033252596855, 0.1063452959060669, 0.014484052546322346, -0.01713091880083084, 0.02351946011185646, -0.07181355357170105, -0.12736831605434418, -0.038012344390153885, -0.035304803401231766, 0.06755156069993973, -0.07847410440444946, -0.10980038344860077, 0.04457823559641838, -0.10894569754600525, -0.0831608846783638, -0.06431610137224197, 0.24931637942790985, 0.05540728569030762, 0.031614962965250015, -0.08388592302799225, 0.10995253920555115, -0.018564729019999504, -0.15074589848518372, 0.023461557924747467, 0.038525309413671494, -0.033967357128858566, -0.06087813153862953, -0.09410785138607025, -0.03603333234786987, -0.0010350161464884877, 0.12024831771850586, -0.09977725893259048, 0.05564117431640625, 0.06320486217737198, 0.02806149795651436, -0.0953279659152031, 0.24023550748825073, -0.021230489015579224, 0.023389603942632675, -0.017000213265419006, 0.013005733489990234, -0.03274323418736458, 0.010816438123583794, -0.05994651839137077, -0.012485047802329063, 0.12168198078870773, 0.030073637142777443, -0.09118108451366425, 0.040151920169591904, -0.03366038203239441, -0.0016265071462839842, -0.058104828000068665, -0.10209614038467407, 0.048576124012470245, -0.004610384348779917, -0.08294180780649185, 0.048753879964351654, -0.0032929955050349236, 0.010141821578145027, -0.011341696605086327, 0.16699479520320892, -0.07900408655405045, 0.07016103714704514, -0.12639647722244263, -0.10630521178245544, -0.006308265030384064, -0.028092198073863983, 0.043955400586128235, -0.09329626709222794, -0.11793262511491776, -0.006466494873166084, 0.06104668229818344, -0.02143467403948307, -0.011757736094295979, -0.02279965579509735, -0.10586241632699966, -0.0124696409329772, -0.023056723177433014, 0.1950351893901825, -0.04980246722698212, 0.12177189439535141, 0.09290888160467148, 0.08493449538946152, -0.0077930595725774765, 0.04628753289580345, -0.08294280618429184, -0.005051724147051573, -0.25911402702331543, 0.020977964624762535, -0.047599855810403824, 0.06471812725067139, -0.06052906811237335, -0.15387585759162903, 0.058834582567214966, -0.004050701390951872, 0.09319315105676651, 0.100801981985569, -0.1408371925354004, -0.08121129125356674, 0.13798066973686218, -0.07034510374069214, -0.09589419513940811, 0.09700609743595123, -0.061902593821287155, 0.018148625269532204, 0.07404503226280212, 0.14296062290668488, -0.01273888535797596, -0.11477314680814743, 0.02113782986998558, -0.03072747029364109, 0.030255192890763283, -0.03941540792584419, 0.0418446809053421, 0.029470961540937424, -0.002844220958650112, 0.02915235608816147, -0.05958247184753418, 0.058453042060136795, -0.14508309960365295, -0.07132600992918015, -0.05628114938735962, -0.08722943812608719, 0.050571806728839874, 0.09515061229467392, 0.09039371460676193, -0.1289043128490448, -0.06080714613199234, 0.13361071050167084, 0.045656461268663406, -0.04641353338956833, 0.031730473041534424, -0.04835185408592224, 0.030671529471874237, -0.06287459284067154, -0.037764716893434525, -0.21557600796222687, -0.03474308177828789, -0.0024974681437015533, 0.04903523623943329, 0.004321074113249779, 0.050550732761621475, 0.0942171961069107, 0.04234607145190239, -0.08502476662397385, -0.030894124880433083, -0.08638186752796173, -0.009812239557504654, -0.13301996886730194, -0.1821964979171753, -0.025634855031967163, -0.0065161376260221004, 0.06094798073172569, -0.15331728756427765, 0.018690794706344604, -0.033341407775878906, 0.0755615085363388, -0.012000628747045994, 0.008820923045277596, -0.07835625112056732, 0.10205569118261337, 0.006198180373758078, -0.038125645369291306, 0.05076233297586441, -0.021104084327816963, -0.05169016122817993, -0.07342991232872009, -0.0625791922211647, 0.20388802886009216, 0.14266088604927063, -0.19635963439941406, -0.10209152102470398, 0.05944192036986351, -0.07503889501094818, -0.02156536839902401, -0.06067214906215668, 0.05806436017155647, 0.24145591259002686, -0.012385230511426926, 0.13421568274497986, -0.0750066339969635, -0.05226202309131622, 0.0018093293765559793, -0.055878181010484695, 0.08157894760370255, 0.12173622101545334, 0.09790250658988953, -0.059388525784015656, 0.10453875362873077, 0.15278840065002441, -0.13375091552734375, 0.08604792505502701, -0.06919226050376892, -0.08207147568464279, -0.026379486545920372, -0.02685566619038582, -0.007303209509700537, 0.12650911509990692, -0.12004538625478745, 0.005551520735025406, 0.004777290392667055, 0.04367746412754059, 0.03237568959593773, -0.25449660420417786, -0.059885408729314804, 0.027799135074019432, -0.012905944138765335, -0.046526405960321426, -0.020267004147171974, 0.05127422511577606, 0.1169748455286026, -0.016831936314702034, -0.062115274369716644, 0.010605322197079659, 0.0022981923539191484, -0.06431857496500015, 0.24460269510746002, -0.06081400439143181, -0.07858270406723022, -0.07018567621707916, -0.05424674600362778, -0.025049639865756035, -0.014664909802377224, 0.06972144544124603, -0.15853360295295715, -0.026264015585184097, 0.009269203059375286, 0.06240328401327133, -0.014180989935994148, 0.050079718232154846, 0.01996248960494995, 0.005889063701033592, 0.05727481096982956, -0.12430860847234726, -0.010961903259158134, -0.08351729810237885, -0.09436338394880295, 0.09132068604230881, 0.056380871683359146, 0.10731352865695953, 0.15400385856628418, -0.04141310974955559, 0.016572412103414536, -0.015846744179725647, 0.26676470041275024, -0.08650434017181396, -0.07395181059837341, 0.12174657732248306, 0.0018092724494636059, 0.03893469646573067, 0.08595576882362366, 0.08078686892986298, -0.11994569003582001, 0.003304045647382736, 0.02839907445013523, -0.03747139871120453, -0.24483899772167206, -0.021513469517230988, -0.040771305561065674, -0.0819714292883873, 0.04425205662846565, -0.006145555060356855, 0.02169724926352501, 0.05043656751513481, 0.054193828254938126, 0.06815555691719055, -0.0709419846534729, 0.050065454095602036, 0.10688889026641846, 0.04047117009758949, 0.11908674240112305, -0.04792068526148796, -0.10659387707710266, 0.0023876202758401632, -0.07456861436367035, 0.2837046980857849, 0.003952550236135721, 0.02309657819569111, 0.06246671453118324, 0.14353543519973755, 0.013598203659057617, 0.11355767399072647, 0.009360426105558872, -0.08713974058628082, 0.002518625929951668, -0.030129604041576385, -0.02940700761973858, 0.001872764085419476, -0.05121953785419464, 0.07250405848026276, -0.13980966806411743, -0.04019041359424591, 0.0640445128083229, 0.22710900008678436, 0.012689827010035515, -0.2859035134315491, -0.0648653581738472, -0.01052081398665905, -0.04782174155116081, -0.0049751377664506435, 0.0104749146848917, 0.10723999887704849, -0.10792344063520432, 0.012392114847898483, -0.04965515807271004, 0.09496954828500748, 0.010626695118844509, 0.055827464908361435, 0.04373637214303017, 0.09036222845315933, 0.005964008159935474, 0.0667971521615982, -0.3511998951435089, 0.3327435851097107, 0.004444397985935211, 0.0940890982747078, -0.05781504511833191, -0.025976672768592834, 0.015052233822643757, 0.050387777388095856, 0.026456372812390327, -0.017954863607883453, -0.014400963671505451, -0.2127961814403534, -0.01632896065711975, 0.0702609047293663, 0.13643471896648407, 0.009076647460460663, 0.10438038408756256, 0.004460004158318043, 0.0061179837211966515, 0.09002076089382172, -0.019167376682162285, -0.08233829587697983, -0.03146517276763916, -0.04699849337339401, -0.02531301975250244, -0.052027761936187744, -0.06881240755319595, -0.12164720892906189, -0.09629584848880768, 0.10506681352853775, 0.06819866597652435, -0.034163013100624084, -0.12001992762088776, 0.10990212857723236, 0.10688308626413345, -0.07545854896306992, 0.03167523816227913, 0.03576970845460892, 0.027035102248191833, 0.046332649886608124, -0.04900439828634262, 0.10106486827135086, -0.06754334270954132, -0.15509873628616333, -0.03536611795425415, 0.09811966866254807, 0.04243512079119682, 0.08259912580251694, -0.019837362691760063, 0.03147127479314804, -0.030141707509756088, -0.1062123030424118, 0.008085637353360653, -0.03787270560860634, 0.07475419342517853, 0.05961262434720993, -0.025385204702615738, 0.06204204261302948, -0.06234594061970711, -0.00044113234616816044, 0.18624922633171082, 0.25901666283607483, -0.07743518799543381, -0.039284247905015945, 0.004379536956548691, -0.04951426386833191, -0.15971477329730988, 0.1076236367225647, 0.09858015179634094, -0.006741650402545929, 0.02504735253751278, -0.13706037402153015, 0.14892295002937317, 0.09710042923688889, 0.00809232983738184, 0.06004556268453598, -0.3229343295097351, -0.12575304508209229, 0.08388122171163559, 0.19046568870544434, 0.1849527657032013, -0.15182386338710785, 0.006359577178955078, -0.018108289688825607, -0.16348296403884888, 0.059656932950019836, -0.07783011347055435, 0.11463853716850281, -0.03904099762439728, 0.10165382921695709, 0.003314174944534898, -0.08138134330511093, 0.12499688565731049, 0.029054081067442894, 0.12194716930389404, -0.03355379030108452, -0.03521426394581795, 0.05742743983864784, -0.023315034806728363, -0.014574284665286541, 0.003933507949113846, 0.027225656434893608, -0.07800142467021942, -0.014774962328374386, -0.12276527285575867, 0.0283038392663002, -0.04999028891324997, -0.05429333075881004, -0.018511643633246422, -0.006106802728027105, 0.03326614201068878, -0.031033771112561226, 0.09797212481498718, 0.02903483621776104, 0.1762275993824005, 0.02866189368069172, 0.07586620002985, -0.09946262836456299, -0.10010920464992523, 0.012403441593050957, 0.007968549616634846, 0.058807406574487686, -0.16436238586902618, 0.02050558105111122, 0.16156525909900665, 0.05131901800632477, 0.109932541847229, 0.11430659145116806, -0.008735301904380322, 0.0014650074299424887, 0.05346853658556938, -0.15613293647766113, -0.08884218335151672, 0.006397351156920195, -0.07514729350805283, -0.0831233337521553, 0.057871829718351364, 0.0604986734688282, -0.07450179010629654, -0.009665235877037048, -0.0289651770144701, -0.03963281586766243, -0.07941816002130508, 0.2349262237548828, 0.0849708840250969, 0.06512892246246338, -0.1209036186337471, 0.04942905530333519, 0.030961384996771812, -0.09463614225387573, -0.007542853709310293, 0.07777027040719986, -0.05789697542786598, -0.017405832186341286, 0.15559327602386475, 0.214459627866745, -0.08608435839414597, -0.0170490350574255, -0.17636609077453613, -0.12505598366260529, 0.0705755278468132, 0.19710060954093933, 0.13411056995391846, -0.012164415791630745, -0.0346548892557621, 0.03889112547039986, -0.1539580076932907, 0.055543363094329834, 0.03629142791032791, 0.07645496726036072, -0.12278091907501221, 0.193842351436615, 0.025699838995933533, 0.060143034905195236, -0.030128877609968185, 0.030694296583533287, -0.1390962153673172, 0.06560713797807693, -0.12775465846061707, -0.06567773222923279, 0.028690215200185776, -0.017079150304198265, 0.000038001187931513414, -0.09795887768268585, -0.06869334727525711, 0.023127367720007896, -0.14134997129440308, -0.005015361588448286, 0.04937044158577919, 0.01790572889149189, -0.12656550109386444, -0.04482497647404671, 0.056676313281059265, -0.07685768604278564, 0.03540617600083351, 0.08415783941745758, 0.008606253191828728, 0.10249247401952744, -0.14744654297828674, -0.05780837684869766, 0.07978285104036331, -0.00197802996262908, 0.10978688299655914, -0.09066993743181229, 0.0023233871906995773, -0.002250376157462597, 0.13824434578418732, 0.039788227528333664, 0.035380080342292786, -0.13411147892475128, 0.01537796389311552, -0.03956986963748932, -0.11753575503826141, -0.061497513204813004, -0.016043415293097496, 0.08035430312156677, 0.01879570633172989, 0.1567326933145523, -0.07322447746992111, 0.07637818902730942, -0.2258312851190567, -0.024043066427111626, -0.02186008170247078, -0.0959283635020256, -0.08626385778188705, -0.048003289848566055, 0.0885954275727272, -0.05540398880839348, 0.11896247416734695, 0.012536438181996346, 0.13712821900844574, 0.04412170499563217, -0.02546296827495098, 0.01714279316365719, 0.03516397997736931, 0.2227407544851303, 0.04369674250483513, -0.02574237622320652, 0.09394972026348114, 0.09446952491998672, 0.10571005195379257, 0.07226774096488953, 0.25484246015548706, 0.18753457069396973, -0.038948290050029755, 0.095436692237854, 0.011136847548186779, -0.048055220395326614, -0.130842924118042, -0.022871874272823334, -0.02260647527873516, 0.06771973520517349, -0.009586011059582233, 0.1859195977449417, 0.06754276156425476, -0.16594350337982178, 0.06119813397526741, -0.07995697855949402, -0.09772709757089615, -0.09903238713741302, 0.12294083088636398, -0.08078353852033615, -0.17717047035694122, 0.03830756992101669, -0.1303921490907669, 0.017518840730190277, 0.1491554081439972, 0.018595049157738686, -0.00424342742189765, 0.20677727460861206, 0.08124113082885742, 0.0533704049885273, 0.04274703562259674, -0.008431194350123405, -0.012654410675168037, -0.07381236553192139, -0.02288188599050045, -0.03264077007770538, -0.038464076817035675, 0.03055606596171856, -0.042001109570264816, -0.14887821674346924, 0.021593905985355377, -0.023896094411611557, -0.10602870583534241, 0.02289225533604622, 0.029951484873890877, 0.08153917640447617, 0.01991010271012783, -0.005239290650933981, 0.03788240626454353, -0.03598333150148392, 0.2467544823884964, -0.09101299196481705, -0.13013312220573425, -0.0910852700471878, 0.29968559741973877, 0.06951171159744263, -0.0032831125427037477, 0.03358267992734909, -0.05642562359571457, -0.03350335732102394, 0.24448201060295105, 0.1301925778388977, -0.08876974135637283, -0.0027487885672599077, 0.006884511094540358, -0.01411850843578577, -0.03648895025253296, 0.12200479954481125, 0.1606128066778183, 0.058231282979249954, -0.1426057517528534, -0.05698694288730621, -0.06918694078922272, -0.025473883375525475, -0.03626508638262749, 0.031806256622076035, 0.07333742827177048, -0.006175338290631771, -0.04601702094078064, 0.06967554986476898, -0.052684441208839417, -0.10622843354940414, 0.07518208026885986, -0.22487719357013702, -0.15021869540214539, -0.007413913495838642, 0.14597631990909576, -0.007780879735946655, 0.09327567368745804, -0.02508401870727539, -0.029349694028496742, 0.07374635338783264, -0.025082789361476898, -0.07551302015781403, -0.11256611347198486, 0.12492407858371735, -0.13154104351997375, 0.14152644574642181, -0.029389506205916405, 0.13302429020404816, 0.12108806520700455, 0.0614306703209877, -0.06479649990797043, 0.058832842856645584, 0.05114053562283516, -0.15822574496269226, -0.012263866141438484, 0.13455995917320251, -0.026248138397932053, -0.006845658645033836, 0.026968641206622124, -0.18612687289714813, 0.029352298006415367, -0.040603939443826675, -0.008020303212106228, -0.05385932698845863, -0.05639544501900673, -0.058049771934747696, 0.07700762152671814, 0.24346238374710083, -0.01406620629131794, 0.042190711945295334, -0.08333182334899902, 0.027994539588689804, 0.05651956796646118, 0.04110085219144821, -0.10300634056329727, -0.2522828280925751, 0.021142663434147835, 0.0883435606956482, -0.06298784166574478, -0.18377375602722168, -0.09916441887617111, 0.042873967438936234, -0.0961863100528717, -0.07339596003293991, 0.054582852870225906, 0.07034119218587875, 0.06988485902547836, -0.04121842235326767, -0.15904501080513, -0.07667579501867294, 0.1815049946308136, -0.15509097278118134, -0.09926120191812515 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # qa-indo-math-k-v2 This model was trained from scratch on an unkown dataset. It achieves the following results on the evaluation set: - Loss: 1.9328 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 100 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 80 | 0.7969 | | No log | 2.0 | 160 | 0.7612 | | No log | 3.0 | 240 | 0.7624 | | No log | 4.0 | 320 | 0.7424 | | No log | 5.0 | 400 | 0.7634 | | No log | 6.0 | 480 | 0.7415 | | 0.9241 | 7.0 | 560 | 0.7219 | | 0.9241 | 8.0 | 640 | 0.7792 | | 0.9241 | 9.0 | 720 | 0.7803 | | 0.9241 | 10.0 | 800 | 0.7666 | | 0.9241 | 11.0 | 880 | 0.7614 | | 0.9241 | 12.0 | 960 | 0.7616 | | 0.6373 | 13.0 | 1040 | 0.7673 | | 0.6373 | 14.0 | 1120 | 0.7818 | | 0.6373 | 15.0 | 1200 | 0.8030 | | 0.6373 | 16.0 | 1280 | 0.8021 | | 0.6373 | 17.0 | 1360 | 0.8025 | | 0.6373 | 18.0 | 1440 | 0.8628 | | 0.5614 | 19.0 | 1520 | 0.8616 | | 0.5614 | 20.0 | 1600 | 0.8739 | | 0.5614 | 21.0 | 1680 | 0.8647 | | 0.5614 | 22.0 | 1760 | 0.9006 | | 0.5614 | 23.0 | 1840 | 0.9560 | | 0.5614 | 24.0 | 1920 | 0.9395 | | 0.486 | 25.0 | 2000 | 0.9453 | | 0.486 | 26.0 | 2080 | 0.9569 | | 0.486 | 27.0 | 2160 | 1.0208 | | 0.486 | 28.0 | 2240 | 0.9860 | | 0.486 | 29.0 | 2320 | 0.9806 | | 0.486 | 30.0 | 2400 | 1.0681 | | 0.486 | 31.0 | 2480 | 1.1085 | | 0.4126 | 32.0 | 2560 | 1.1028 | | 0.4126 | 33.0 | 2640 | 1.1110 | | 0.4126 | 34.0 | 2720 | 1.1573 | | 0.4126 | 35.0 | 2800 | 1.1387 | | 0.4126 | 36.0 | 2880 | 1.2067 | | 0.4126 | 37.0 | 2960 | 1.2079 | | 0.3559 | 38.0 | 3040 | 1.2152 | | 0.3559 | 39.0 | 3120 | 1.2418 | | 0.3559 | 40.0 | 3200 | 1.2023 | | 0.3559 | 41.0 | 3280 | 1.2679 | | 0.3559 | 42.0 | 3360 | 1.3178 | | 0.3559 | 43.0 | 3440 | 1.3419 | | 0.3084 | 44.0 | 3520 | 1.4702 | | 0.3084 | 45.0 | 3600 | 1.3824 | | 0.3084 | 46.0 | 3680 | 1.4227 | | 0.3084 | 47.0 | 3760 | 1.3925 | | 0.3084 | 48.0 | 3840 | 1.4940 | | 0.3084 | 49.0 | 3920 | 1.4110 | | 0.2686 | 50.0 | 4000 | 1.4534 | | 0.2686 | 51.0 | 4080 | 1.4749 | | 0.2686 | 52.0 | 4160 | 1.5351 | | 0.2686 | 53.0 | 4240 | 1.5479 | | 0.2686 | 54.0 | 4320 | 1.4755 | | 0.2686 | 55.0 | 4400 | 1.5207 | | 0.2686 | 56.0 | 4480 | 1.5075 | | 0.2388 | 57.0 | 4560 | 1.5470 | | 0.2388 | 58.0 | 4640 | 1.5361 | | 0.2388 | 59.0 | 4720 | 1.5914 | | 0.2388 | 60.0 | 4800 | 1.6430 | | 0.2388 | 61.0 | 4880 | 1.6249 | | 0.2388 | 62.0 | 4960 | 1.5503 | | 0.2046 | 63.0 | 5040 | 1.6441 | | 0.2046 | 64.0 | 5120 | 1.6789 | | 0.2046 | 65.0 | 5200 | 1.6174 | | 0.2046 | 66.0 | 5280 | 1.6175 | | 0.2046 | 67.0 | 5360 | 1.6947 | | 0.2046 | 68.0 | 5440 | 1.6299 | | 0.1891 | 69.0 | 5520 | 1.7419 | | 0.1891 | 70.0 | 5600 | 1.8442 | | 0.1891 | 71.0 | 5680 | 1.8802 | | 0.1891 | 72.0 | 5760 | 1.8233 | | 0.1891 | 73.0 | 5840 | 1.8172 | | 0.1891 | 74.0 | 5920 | 1.8181 | | 0.1664 | 75.0 | 6000 | 1.8399 | | 0.1664 | 76.0 | 6080 | 1.8128 | | 0.1664 | 77.0 | 6160 | 1.8423 | | 0.1664 | 78.0 | 6240 | 1.8380 | | 0.1664 | 79.0 | 6320 | 1.8941 | | 0.1664 | 80.0 | 6400 | 1.8636 | | 0.1664 | 81.0 | 6480 | 1.7949 | | 0.1614 | 82.0 | 6560 | 1.8342 | | 0.1614 | 83.0 | 6640 | 1.8123 | | 0.1614 | 84.0 | 6720 | 1.8639 | | 0.1614 | 85.0 | 6800 | 1.8580 | | 0.1614 | 86.0 | 6880 | 1.8816 | | 0.1614 | 87.0 | 6960 | 1.8579 | | 0.1487 | 88.0 | 7040 | 1.8783 | | 0.1487 | 89.0 | 7120 | 1.9175 | | 0.1487 | 90.0 | 7200 | 1.9025 | | 0.1487 | 91.0 | 7280 | 1.9207 | | 0.1487 | 92.0 | 7360 | 1.9195 | | 0.1487 | 93.0 | 7440 | 1.9142 | | 0.1355 | 94.0 | 7520 | 1.9333 | | 0.1355 | 95.0 | 7600 | 1.9238 | | 0.1355 | 96.0 | 7680 | 1.9256 | | 0.1355 | 97.0 | 7760 | 1.9305 | | 0.1355 | 98.0 | 7840 | 1.9294 | | 0.1355 | 99.0 | 7920 | 1.9301 | | 0.1297 | 100.0 | 8000 | 1.9328 | ### Framework versions - Transformers 4.6.1 - Pytorch 1.7.0 - Datasets 1.11.0 - Tokenizers 0.10.3
{}
text2text-generation
fadhilarkan/qa-indo-math-k-v2
[ "transformers", "pytorch", "t5", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #t5 #text2text-generation #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
qa-indo-math-k-v2 ================= This model was trained from scratch on an unkown dataset. It achieves the following results on the evaluation set: * Loss: 1.9328 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 16 * eval\_batch\_size: 16 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 100 * mixed\_precision\_training: Native AMP ### Training results ### Framework versions * Transformers 4.6.1 * Pytorch 1.7.0 * Datasets 1.11.0 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 100\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.6.1\n* Pytorch 1.7.0\n* Datasets 1.11.0\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #t5 #text2text-generation #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 100\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.6.1\n* Pytorch 1.7.0\n* Datasets 1.11.0\n* Tokenizers 0.10.3" ]
[ 48, 113, 4, 30 ]
[ "passage: TAGS\n#transformers #pytorch #t5 #text2text-generation #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 100\n* mixed\\_precision\\_training: Native AMP### Training results### Framework versions\n\n\n* Transformers 4.6.1\n* Pytorch 1.7.0\n* Datasets 1.11.0\n* Tokenizers 0.10.3" ]
[ -0.08156592398881912, -0.012361937202513218, -0.002191622043028474, 0.0805610716342926, 0.1962430328130722, 0.03247357904911041, 0.10526630282402039, 0.11685120314359665, -0.10524746775627136, 0.018731512129306793, 0.10433346778154373, 0.16635513305664062, 0.02452840842306614, 0.13050977885723114, -0.07545632869005203, -0.29224729537963867, -0.003891986096277833, 0.040468789637088776, -0.04690833017230034, 0.1362561136484146, 0.08868353813886642, -0.14323222637176514, 0.0669264942407608, -0.013661333359777927, -0.20484478771686554, 0.020347634330391884, 0.02354174107313156, -0.06574802100658417, 0.15930257737636566, 0.029096899554133415, 0.13415977358818054, 0.008522158488631248, 0.0828954428434372, -0.1953328549861908, 0.012613357976078987, 0.06161973997950554, 0.020888937637209892, 0.07415274530649185, 0.07515265047550201, -0.014040946029126644, 0.13339315354824066, -0.08832243084907532, 0.057688068598508835, 0.019544832408428192, -0.12891989946365356, -0.21175411343574524, -0.06238570809364319, -0.007512605283409357, 0.07336979359388351, 0.10613157600164413, -0.01782912015914917, 0.14746402204036713, -0.10643308609724045, 0.10897105187177658, 0.2229255586862564, -0.26820623874664307, -0.06963095813989639, 0.00046356074744835496, 0.01664808951318264, 0.0965929627418518, -0.0982825830578804, -0.0062537300400435925, 0.04712412506341934, 0.062132008373737335, 0.12536299228668213, -0.030444344505667686, -0.11150761693716049, 0.010179899632930756, -0.1461651772260666, -0.027119984850287437, 0.10410107672214508, 0.022851448506116867, -0.02783772721886635, -0.028728580102324486, -0.07634850591421127, -0.1475607007741928, -0.05342481657862663, -0.02339308336377144, 0.035308837890625, -0.04027707874774933, -0.0747775286436081, 0.003829027758911252, -0.0903463214635849, -0.0645487904548645, -0.06897576153278351, 0.17286139726638794, 0.045211274176836014, -0.003030786057934165, -0.041944943368434906, 0.10197316855192184, -0.025500716641545296, -0.13121312856674194, 0.03008628822863102, 0.019737817347049713, -0.029657404869794846, -0.053955160081386566, -0.07975015044212341, -0.10121779143810272, -0.001701170695014298, 0.08316102623939514, -0.07129357010126114, 0.06722857058048248, -0.0023449051659554243, 0.02441696636378765, -0.09042230248451233, 0.1876072734594345, -0.019580435007810593, -0.027687927708029747, 0.007115843705832958, 0.039987243711948395, -0.004189804196357727, -0.020267726853489876, -0.09183340519666672, -0.005950891878455877, 0.1269233226776123, 0.019225839525461197, -0.07440506666898727, 0.07029393315315247, -0.037363201379776, -0.023065347224473953, -0.04705582186579704, -0.10606907308101654, 0.0389242060482502, -0.0165330208837986, -0.06944584101438522, 0.023399153724312782, 0.015182996168732643, 0.019811121746897697, -0.05178304389119148, 0.1462029367685318, -0.07439347356557846, 0.038686878979206085, -0.11298705637454987, -0.1318408101797104, 0.005205955822020769, -0.039169102907180786, 0.011351092718541622, -0.10780920088291168, -0.16051797568798065, -0.010871108621358871, 0.045229896903038025, -0.037699904292821884, -0.04843717813491821, -0.05365730822086334, -0.06260155141353607, 0.029357904568314552, -0.028793780133128166, 0.17843802273273468, -0.058726757764816284, 0.11773480474948883, 0.06659951061010361, 0.06951174885034561, -0.026033323258161545, 0.05881397798657417, -0.08543605357408524, -0.001155498088337481, -0.20454782247543335, 0.06925611197948456, -0.03247334808111191, 0.07224316895008087, -0.07318670302629471, -0.11403539776802063, -0.00399272795766592, 0.0035342148039489985, 0.10355202853679657, 0.1094234511256218, -0.15285441279411316, -0.085750512778759, 0.17397509515285492, -0.06677883863449097, -0.10422054678201675, 0.1271226406097412, -0.05578520894050598, 0.02744918502867222, 0.08166985958814621, 0.16023744642734528, 0.04621736332774162, -0.07214579731225967, 0.03694041073322296, -0.035749997943639755, 0.05911632627248764, -0.03237204998731613, 0.04780024662613869, 0.018219366669654846, -0.03258119150996208, 0.025079814717173576, 0.01430481020361185, 0.07161345332860947, -0.11695604026317596, -0.07452653348445892, -0.05153312161564827, -0.08623193204402924, 0.05347554013133049, 0.0660325139760971, 0.0834190770983696, -0.12051711231470108, -0.076043039560318, 0.06546886265277863, 0.06306762248277664, -0.0582939088344574, 0.03946337476372719, -0.05180769041180611, 0.05153338983654976, -0.03536981716752052, -0.0016059649642556906, -0.20587171614170074, -0.022857746109366417, 0.008073410950601101, 0.06461566686630249, 0.0320754274725914, 0.002276958432048559, 0.07737171649932861, 0.06627040356397629, -0.06631135940551758, -0.024310344830155373, -0.023790691047906876, -0.007458725478500128, -0.14541374146938324, -0.17559818923473358, -0.013363081030547619, -0.013602374121546745, 0.09527606517076492, -0.20535700023174286, 0.02246628701686859, -0.0418417789041996, 0.08131337910890579, 0.0006479981821030378, 0.0035715799313038588, -0.055536482483148575, 0.1002596914768219, -0.030548367649316788, -0.03677939251065254, 0.07458896189928055, -0.004014624282717705, -0.07757394015789032, -0.036191634833812714, -0.12376689165830612, 0.17084944248199463, 0.13602393865585327, -0.16954867541790009, -0.08788222819566727, -0.0034156637266278267, -0.050604816526174545, -0.02920519933104515, -0.05492391064763069, 0.027170097455382347, 0.18945646286010742, -0.002452743472531438, 0.15765012800693512, -0.06701381504535675, -0.03473101183772087, 0.01755576767027378, -0.031234977766871452, 0.04630566015839577, 0.11674298346042633, 0.09423884004354477, -0.0867689996957779, 0.11391671746969223, 0.1414593756198883, -0.09452817589044571, 0.13421489298343658, -0.02713855542242527, -0.08908320963382721, 0.005498530808836222, -0.025136081501841545, 0.0006174388690851629, 0.05773322284221649, -0.1436210423707962, -0.003704630769789219, 0.01955839805305004, 0.03744697943329811, 0.025616459548473358, -0.21941712498664856, -0.028770050033926964, 0.03919560834765434, -0.031240349635481834, -0.028557509183883667, -0.01514813769608736, 0.03664287552237511, 0.12837722897529602, 0.003918725065886974, -0.05507150664925575, 0.018461063504219055, -0.002038399688899517, -0.08561477065086365, 0.2109488546848297, -0.08126039057970047, -0.16944155097007751, -0.09494645893573761, -0.103628970682621, -0.04107386991381645, 0.010040915571153164, 0.05998431518673897, -0.12355157732963562, -0.03333575651049614, -0.03980891406536102, 0.058443840593099594, -0.019900057464838028, 0.04467008262872696, -0.005247924476861954, -0.002472796244546771, 0.05938917398452759, -0.09313619881868362, -0.021917514503002167, -0.048436105251312256, -0.06351713091135025, 0.07294513285160065, 0.03793459013104439, 0.1062745675444603, 0.16727639734745026, -0.04113749787211418, 0.01954019069671631, -0.03783256560564041, 0.2226545810699463, -0.07065949589014053, -0.035232726484537125, 0.1406080573797226, -0.008954760618507862, 0.054412245750427246, 0.10985829681158066, 0.054513540118932724, -0.0936233326792717, 0.036178432404994965, 0.038142867386341095, -0.03299715369939804, -0.2217046022415161, -0.04062091186642647, -0.06997639685869217, -0.03572576865553856, 0.08096108585596085, 0.011047260835766792, 0.041876211762428284, 0.06021096557378769, 0.030059678480029106, 0.07647974789142609, -0.03563937172293663, 0.06057292968034744, 0.1473267525434494, 0.04598378390073776, 0.13854357600212097, -0.04329238086938858, -0.08807298541069031, 0.034942325204610825, -0.043948352336883545, 0.22426560521125793, 0.006810232065618038, 0.06963241100311279, 0.033503033220767975, 0.14727959036827087, 0.015234394930303097, 0.10349060595035553, 0.0098769785836339, -0.05304459482431412, -0.00964740477502346, -0.03613941743969917, -0.05434631183743477, 0.014518837444484234, -0.0464152917265892, 0.041090235114097595, -0.14836284518241882, -0.02575421892106533, 0.05242691561579704, 0.24290722608566284, 0.03418606147170067, -0.3162679076194763, -0.07888150215148926, 0.0135786859318614, -0.06766806542873383, -0.03204919397830963, 0.011413341388106346, 0.07646040618419647, -0.11742173880338669, 0.051994238048791885, -0.0747532770037651, 0.1123824268579483, -0.025330480188131332, 0.05627720430493355, 0.028550388291478157, 0.1185828447341919, -0.005157695151865482, 0.07827578485012054, -0.35539141297340393, 0.27662745118141174, 0.003073939587920904, 0.07218938320875168, -0.084047831594944, -0.004576345905661583, 0.03810352832078934, 0.04700513184070587, 0.01563114859163761, -0.01973857916891575, -0.05847560241818428, -0.1972339004278183, -0.024963529780507088, 0.0395720899105072, 0.12441221624612808, -0.00569147989153862, 0.12137434631586075, -0.03730965778231621, 0.009678706526756287, 0.07638825476169586, -0.005298185627907515, -0.09682627022266388, -0.07865706086158752, -0.015056869015097618, 0.023821765556931496, -0.005598831456154585, -0.06038588285446167, -0.11441786587238312, -0.10203856974840164, 0.1606806516647339, 0.04484165087342262, -0.027772976085543633, -0.12828269600868225, 0.10487665981054306, 0.07655799388885498, -0.08315619826316833, 0.034379743039608, 0.013411624357104301, 0.0685739815235138, 0.025124525651335716, -0.07911702245473862, 0.11827168613672256, -0.07032951712608337, -0.15252719819545746, -0.05069190636277199, 0.11002770066261292, 0.016784830018877983, 0.07432560622692108, -0.02002001367509365, 0.01427633035928011, -0.026097998023033142, -0.085694819688797, 0.02153901755809784, -0.024332324042916298, 0.064873106777668, 0.05520246922969818, -0.0674532949924469, 0.010582173243165016, -0.07259780168533325, -0.042910926043987274, 0.22096148133277893, 0.22793251276016235, -0.06865843385457993, 0.005219974555075169, 0.027579961344599724, -0.06761012971401215, -0.18253099918365479, 0.05185053125023842, 0.08090239018201828, 0.016011467203497887, 0.029556017369031906, -0.17877168953418732, 0.0994090735912323, 0.08057235926389694, 0.010586963966488838, 0.09373987466096878, -0.3127830922603607, -0.13418908417224884, 0.11231516301631927, 0.15691860020160675, 0.15425118803977966, -0.14217087626457214, -0.014217986725270748, -0.04887180030345917, -0.10892941802740097, 0.10569969564676285, -0.07586206495761871, 0.12929503619670868, -0.01870008371770382, 0.11115100979804993, 0.018936390057206154, -0.049237996339797974, 0.09512273967266083, -0.011688520200550556, 0.08750584721565247, -0.07402250915765762, 0.00809576828032732, 0.011871110647916794, -0.03558581322431564, 0.00037999535561539233, -0.05780060589313507, 0.020197534933686256, -0.09738274663686752, -0.03161368891596794, -0.09057449549436569, 0.023804016411304474, -0.02189425565302372, -0.06508973240852356, -0.015404540114104748, 0.009467998519539833, 0.05248389393091202, -0.021461782976984978, 0.10415682941675186, -0.02090083248913288, 0.17442187666893005, 0.08974908292293549, 0.10973232239484787, -0.08662267029285431, -0.018044037744402885, -0.0017621275037527084, -0.014233981259167194, 0.03821919858455658, -0.12258588522672653, 0.029137101024389267, 0.14938685297966003, 0.009007656015455723, 0.1342206597328186, 0.09763464331626892, -0.018834056332707405, 0.012871709652245045, 0.0764993354678154, -0.16056770086288452, -0.09515730291604996, -0.01899721287190914, -0.045431021600961685, -0.09813666343688965, 0.03270506486296654, 0.09861964732408524, -0.07407747954130173, -0.011483022011816502, -0.021264906972646713, -0.0053487191908061504, -0.07002084702253342, 0.21686112880706787, 0.04307674616575241, 0.05537967011332512, -0.10159841179847717, 0.06625688821077347, 0.04767652228474617, -0.09188994020223618, 0.016364287585020065, 0.13092873990535736, -0.07336020469665527, -0.035060815513134, 0.10443607717752457, 0.1845375895500183, -0.06773792952299118, -0.031146278604865074, -0.1392481029033661, -0.1427164375782013, 0.08739054203033447, 0.16955256462097168, 0.0883423388004303, -0.006321068853139877, -0.0665694996714592, 0.024472352117300034, -0.1371605545282364, 0.07752097398042679, 0.06678934395313263, 0.07164173573255539, -0.13135965168476105, 0.2021605372428894, 0.003968580160290003, 0.056564804166555405, -0.03535480424761772, 0.013903305865824223, -0.10855726897716522, 0.035105057060718536, -0.14875178039073944, -0.05501783266663551, -0.0034675851929932833, -0.008127414621412754, -0.009434674866497517, -0.07008369266986847, -0.06011364609003067, -0.0031191587913781404, -0.12063869088888168, -0.025064054876565933, 0.017074469476938248, 0.03485650196671486, -0.10202792286872864, -0.03674716502428055, 0.030778029933571815, -0.06472188979387283, 0.05608314648270607, 0.060030899941921234, -0.004469986539334059, 0.07949493080377579, -0.1449567675590515, -0.017428968101739883, 0.06697534769773483, 0.00617951201274991, 0.07314978539943695, -0.08183480054140091, 0.011369144544005394, 0.0065465401858091354, 0.09233494848012924, 0.03192931413650513, 0.07652485370635986, -0.1305561512708664, -0.006189081352204084, -0.03633757308125496, -0.10643675178289413, -0.060500603169202805, 0.031185446307063103, 0.05436583235859871, 0.016342543065547943, 0.16953518986701965, -0.09850378334522247, 0.05601150169968605, -0.22634932398796082, -0.003723207861185074, -0.022142795845866203, -0.1167202740907669, -0.0893765389919281, -0.0788145512342453, 0.08820559829473495, -0.04641098156571388, 0.11538023501634598, 0.026614811271429062, 0.10001445561647415, 0.03447217866778374, -0.038344334810972214, 0.009740661829710007, 0.025112878531217575, 0.23006615042686462, 0.052194949239492416, -0.04572294279932976, 0.056419409811496735, 0.06660132855176926, 0.10920874029397964, 0.1302766352891922, 0.2349407821893692, 0.1472669243812561, 0.0006001877482049167, 0.09709389507770538, 0.014617946930229664, -0.05236945301294327, -0.13932691514492035, 0.006854372099041939, -0.04571027681231499, 0.09714233875274658, -0.03378656134009361, 0.21044933795928955, 0.08045510947704315, -0.1572306752204895, 0.05856654793024063, -0.06850942969322205, -0.09400800615549088, -0.11519379168748856, -0.007769725751131773, -0.09153199195861816, -0.16575485467910767, -0.0007444829097948968, -0.12391283363103867, 0.04834705591201782, 0.10508774220943451, 0.025463063269853592, -0.029229411855340004, 0.17155587673187256, 0.051755890250205994, 0.00717551214620471, 0.0854274183511734, -0.006061000283807516, 0.005276612006127834, -0.07177067548036575, -0.07419288903474808, -0.013107351027429104, -0.011485196650028229, 0.041581008583307266, -0.03996804356575012, -0.10823087394237518, 0.03990282118320465, -0.030823061242699623, -0.10875604301691055, 0.02335517667233944, 0.025248456746339798, 0.07503625005483627, 0.06686077266931534, 0.0068625397980213165, -0.001210031216032803, -0.026529155671596527, 0.24266797304153442, -0.09753766655921936, -0.10921866446733475, -0.09486725926399231, 0.3055872917175293, 0.0506800152361393, 0.0005355795728974044, 0.022392744198441505, -0.05889357626438141, -0.015314276330173016, 0.2544131577014923, 0.17033807933330536, -0.10679995268583298, -0.01644803397357464, -0.0007447610842064023, -0.008161580190062523, -0.010371278040111065, 0.14622755348682404, 0.1500340849161148, 0.05860152468085289, -0.10464649647474289, -0.01653124764561653, -0.05119522288441658, -0.014489850029349327, -0.04641348123550415, 0.08325956016778946, 0.06123735383152962, 0.004324223846197128, -0.03106127493083477, 0.07620450109243393, -0.0699843168258667, -0.058380771428346634, -0.0010427181841805577, -0.2040269672870636, -0.15942607820034027, -0.018468867987394333, 0.08725828677415848, -0.00019703646830748767, 0.0657811313867569, -0.025293251499533653, 0.0027136430144309998, 0.053168922662734985, -0.019575338810682297, -0.05437298119068146, -0.08814610540866852, 0.09856393188238144, -0.11538822948932648, 0.14458170533180237, -0.038550201803445816, 0.053230997174978256, 0.1296432763338089, 0.06444915384054184, -0.05597954988479614, 0.08393774926662445, 0.036558568477630615, -0.08875875920057297, 0.045524775981903076, 0.135824054479599, -0.038439106196165085, 0.02681538835167885, 0.04449934884905815, -0.15154066681861877, 0.030040839686989784, -0.09587044268846512, -0.04032942280173302, -0.023374559357762337, -0.0437486469745636, -0.05869390442967415, 0.11631328612565994, 0.2372196763753891, -0.022701885551214218, 0.030273662880063057, -0.09549014270305634, 0.004634181968867779, 0.03354795649647713, 0.06481315195560455, -0.08534902334213257, -0.2617630660533905, -0.003882673801854253, 0.10097938030958176, -0.027140099555253983, -0.2597610056400299, -0.08477798849344254, -0.00033813866320997477, -0.06229758262634277, -0.11699606478214264, 0.10955744981765747, 0.08228383213281631, 0.03763625770807266, -0.04802930727601051, -0.14179600775241852, -0.06352081894874573, 0.1925448179244995, -0.1494217813014984, -0.07428309321403503 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # qa-indo-math-k This model was trained from scratch on an unkown dataset. It achieves the following results on the evaluation set: - Loss: 0.8801 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 10 - eval_batch_size: 10 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 127 | 0.7652 | | No log | 2.0 | 254 | 0.7520 | | No log | 3.0 | 381 | 0.7681 | | 0.9618 | 4.0 | 508 | 0.7337 | | 0.9618 | 5.0 | 635 | 0.7560 | | 0.9618 | 6.0 | 762 | 0.7397 | | 0.9618 | 7.0 | 889 | 0.7298 | | 0.6652 | 8.0 | 1016 | 0.7891 | | 0.6652 | 9.0 | 1143 | 0.7874 | | 0.6652 | 10.0 | 1270 | 0.7759 | | 0.6652 | 11.0 | 1397 | 0.7505 | | 0.6174 | 12.0 | 1524 | 0.7838 | | 0.6174 | 13.0 | 1651 | 0.7878 | | 0.6174 | 14.0 | 1778 | 0.8028 | | 0.6174 | 15.0 | 1905 | 0.8154 | | 0.5733 | 16.0 | 2032 | 0.8131 | | 0.5733 | 17.0 | 2159 | 0.8278 | | 0.5733 | 18.0 | 2286 | 0.8308 | | 0.5733 | 19.0 | 2413 | 0.8433 | | 0.5378 | 20.0 | 2540 | 0.8303 | | 0.5378 | 21.0 | 2667 | 0.8352 | | 0.5378 | 22.0 | 2794 | 0.8369 | | 0.5378 | 23.0 | 2921 | 0.8518 | | 0.5095 | 24.0 | 3048 | 0.8749 | | 0.5095 | 25.0 | 3175 | 0.8533 | | 0.5095 | 26.0 | 3302 | 0.8547 | | 0.5095 | 27.0 | 3429 | 0.8844 | | 0.4856 | 28.0 | 3556 | 0.8752 | | 0.4856 | 29.0 | 3683 | 0.8804 | | 0.4856 | 30.0 | 3810 | 0.8801 | ### Framework versions - Transformers 4.6.1 - Pytorch 1.7.0 - Datasets 1.11.0 - Tokenizers 0.10.3
{}
text2text-generation
fadhilarkan/qa-indo-math-k
[ "transformers", "pytorch", "t5", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #t5 #text2text-generation #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
qa-indo-math-k ============== This model was trained from scratch on an unkown dataset. It achieves the following results on the evaluation set: * Loss: 0.8801 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 10 * eval\_batch\_size: 10 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 30 * mixed\_precision\_training: Native AMP ### Training results ### Framework versions * Transformers 4.6.1 * Pytorch 1.7.0 * Datasets 1.11.0 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 10\n* eval\\_batch\\_size: 10\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 30\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.6.1\n* Pytorch 1.7.0\n* Datasets 1.11.0\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #t5 #text2text-generation #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 10\n* eval\\_batch\\_size: 10\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 30\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.6.1\n* Pytorch 1.7.0\n* Datasets 1.11.0\n* Tokenizers 0.10.3" ]
[ 48, 113, 4, 30 ]
[ "passage: TAGS\n#transformers #pytorch #t5 #text2text-generation #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 10\n* eval\\_batch\\_size: 10\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 30\n* mixed\\_precision\\_training: Native AMP### Training results### Framework versions\n\n\n* Transformers 4.6.1\n* Pytorch 1.7.0\n* Datasets 1.11.0\n* Tokenizers 0.10.3" ]
[ -0.07876863330602646, -0.01118527539074421, -0.002109619090333581, 0.07825209200382233, 0.19553090631961823, 0.032103851437568665, 0.10814165323972702, 0.11652316153049469, -0.10729686915874481, 0.01780310645699501, 0.10366617888212204, 0.16803176701068878, 0.02419506199657917, 0.13096101582050323, -0.07742803543806076, -0.29511120915412903, -0.0031211788300424814, 0.040202006697654724, -0.04192832484841347, 0.13761933147907257, 0.08973608911037445, -0.1427420973777771, 0.06687559187412262, -0.013555490411818027, -0.20429635047912598, 0.021050872281193733, 0.022349048405885696, -0.0672602429986, 0.15907897055149078, 0.027496013790369034, 0.133317768573761, 0.009572228416800499, 0.08380139619112015, -0.19640658795833588, 0.012924011796712875, 0.0608113557100296, 0.020188763737678528, 0.07305281609296799, 0.07516076415777206, -0.015222141519188881, 0.13574670255184174, -0.09046994149684906, 0.059141673147678375, 0.018280280753970146, -0.1289244294166565, -0.2091543972492218, -0.060662250965833664, -0.006863149348646402, 0.07351328432559967, 0.10733332484960556, -0.019104091450572014, 0.1511935144662857, -0.10684298723936081, 0.10891487449407578, 0.22520487010478973, -0.2704365849494934, -0.06931246072053909, -0.0010000319452956319, 0.019069069996476173, 0.0984329879283905, -0.0989292562007904, -0.008349441923201084, 0.047672536224126816, 0.061330847442150116, 0.12495031952857971, -0.031139299273490906, -0.10566065460443497, 0.009305061772465706, -0.14810679852962494, -0.027635810896754265, 0.10665923357009888, 0.0228547565639019, -0.026945047080516815, -0.03195560351014137, -0.07433097809553146, -0.14445677399635315, -0.05325973033905029, -0.02413390576839447, 0.034055471420288086, -0.04041131213307381, -0.07392889261245728, 0.0037195072509348392, -0.09156434237957001, -0.06280460208654404, -0.06759657710790634, 0.17305676639080048, 0.04644401744008064, -0.004960101563483477, -0.04530971497297287, 0.102129727602005, -0.026440078392624855, -0.1327335089445114, 0.03100740537047386, 0.01854841411113739, -0.028268402442336082, -0.05621477961540222, -0.07949574291706085, -0.10145706683397293, -0.002201434690505266, 0.08486118167638779, -0.06595933437347412, 0.0686219334602356, -0.0046417429111897945, 0.022951442748308182, -0.08805018663406372, 0.18793125450611115, -0.01805627904832363, -0.030170176178216934, 0.005847490392625332, 0.041790835559368134, -0.004707553889602423, -0.01940382830798626, -0.09194616228342056, -0.0042986199259757996, 0.12737056612968445, 0.019466040655970573, -0.07306783646345139, 0.07119468599557877, -0.03561023622751236, -0.02426142618060112, -0.04677235335111618, -0.10654240101575851, 0.0380493625998497, -0.014527968131005764, -0.07104900479316711, 0.023492496460676193, 0.012723921798169613, 0.021770179271697998, -0.052795276045799255, 0.14552190899848938, -0.07377798855304718, 0.0383957140147686, -0.11174752563238144, -0.13185952603816986, 0.0051524443551898, -0.041671060025691986, 0.011724812909960747, -0.10709357261657715, -0.16323287785053253, -0.011656043119728565, 0.044669486582279205, -0.035028569400310516, -0.04749147221446037, -0.05554370582103729, -0.06220083683729172, 0.0276790801435709, -0.02870737388730049, 0.17928069829940796, -0.05932903662323952, 0.11711394786834717, 0.06464777886867523, 0.06769675761461258, -0.029711009934544563, 0.05947006493806839, -0.08614356070756912, -0.003532569156959653, -0.20089121162891388, 0.06833444535732269, -0.031513381749391556, 0.07322089374065399, -0.07372424006462097, -0.11486988514661789, -0.0027698096819221973, 0.0031008822843432426, 0.1016671434044838, 0.10893285274505615, -0.15406276285648346, -0.0851905569434166, 0.17325355112552643, -0.06567980349063873, -0.10360556840896606, 0.12323974817991257, -0.05668551102280617, 0.03108334168791771, 0.08252289146184921, 0.1639144867658615, 0.046836014837026596, -0.0717591941356659, 0.03769942745566368, -0.03828994184732437, 0.05839695781469345, -0.02997707948088646, 0.04829609394073486, 0.01824900321662426, -0.02904541976749897, 0.02497623674571514, 0.012657364830374718, 0.06894680112600327, -0.11548791825771332, -0.07461008429527283, -0.050603192299604416, -0.0853206142783165, 0.050738830119371414, 0.06622011214494705, 0.08422867953777313, -0.12040264159440994, -0.07442088425159454, 0.06767305731773376, 0.06356798112392426, -0.0590076744556427, 0.03966306149959564, -0.05130447447299957, 0.048981454223394394, -0.03299710154533386, -0.0018452215008437634, -0.2081061750650406, -0.022803502157330513, 0.008322203531861305, 0.06050723046064377, 0.03398400917649269, 0.002262207679450512, 0.07644705474376678, 0.06347277015447617, -0.06481567770242691, -0.025098245590925217, -0.022292930632829666, -0.0070825666189193726, -0.1446281522512436, -0.17657770216464996, -0.011708182282745838, -0.01491472963243723, 0.09658606350421906, -0.2046498954296112, 0.022991668432950974, -0.04177366942167282, 0.08296536654233932, 0.0009277924546040595, 0.003080383175984025, -0.05500268563628197, 0.1001628190279007, -0.03044954128563404, -0.036704014986753464, 0.07532984018325806, -0.004049880430102348, -0.07779916375875473, -0.037809908390045166, -0.130279541015625, 0.16704949736595154, 0.13638633489608765, -0.16811947524547577, -0.08595427870750427, -0.003644476179033518, -0.051512956619262695, -0.029033977538347244, -0.05355062708258629, 0.027530645951628685, 0.18899258971214294, -0.003246389562264085, 0.15735004842281342, -0.06785834580659866, -0.03514726459980011, 0.016476228833198547, -0.031193530187010765, 0.04501413553953171, 0.11609791964292526, 0.09208162873983383, -0.09214381873607635, 0.11298881471157074, 0.14585518836975098, -0.09198582917451859, 0.137017160654068, -0.026428723707795143, -0.08952922374010086, 0.005474883131682873, -0.026261046528816223, -0.0007120826048776507, 0.05729485675692558, -0.1421336978673935, -0.004480747506022453, 0.019788028672337532, 0.038589902222156525, 0.026784725487232208, -0.2208707630634308, -0.02801772952079773, 0.03870905563235283, -0.030216138809919357, -0.03234752267599106, -0.013272705487906933, 0.03645464777946472, 0.12847653031349182, 0.004791411105543375, -0.05543389171361923, 0.017735959962010384, -0.00408752728253603, -0.08629681915044785, 0.21056696772575378, -0.08204662799835205, -0.17084093391895294, -0.09209942817687988, -0.10644176602363586, -0.04110458120703697, 0.009203934110701084, 0.062009118497371674, -0.1220102459192276, -0.03355121612548828, -0.03954797238111496, 0.05460671707987785, -0.01765640825033188, 0.043570660054683685, -0.005220597144216299, -0.0013380522141233087, 0.05839388445019722, -0.09272065758705139, -0.022626671940088272, -0.049613550305366516, -0.060997433960437775, 0.07169077545404434, 0.036196645349264145, 0.10512620210647583, 0.16664142906665802, -0.03881903365254402, 0.020228387787938118, -0.03908130154013634, 0.22121353447437286, -0.07247936725616455, -0.03641403093934059, 0.14082512259483337, -0.012494832277297974, 0.05452388525009155, 0.11216384172439575, 0.05315442383289337, -0.0935191810131073, 0.03729270398616791, 0.03763268142938614, -0.03213666379451752, -0.22205857932567596, -0.04181166738271713, -0.06894627958536148, -0.036467574536800385, 0.08193187415599823, 0.011406484991312027, 0.04489988833665848, 0.05819597467780113, 0.03105510026216507, 0.07324272394180298, -0.03312277793884277, 0.0625709816813469, 0.1453876793384552, 0.04614708945155144, 0.137979194521904, -0.044579047709703445, -0.08791477978229523, 0.03379705175757408, -0.043594811111688614, 0.22316862642765045, 0.009052499197423458, 0.06775124371051788, 0.03524775430560112, 0.14466173946857452, 0.014886675402522087, 0.10130161046981812, 0.012133649550378323, -0.053587429225444794, -0.009611531160771847, -0.03620981052517891, -0.05174442380666733, 0.01616973988711834, -0.043848760426044464, 0.04193682223558426, -0.14833800494670868, -0.028023600578308105, 0.053442325443029404, 0.24277950823307037, 0.03504035994410515, -0.3167230188846588, -0.07740586996078491, 0.014264498837292194, -0.06962832063436508, -0.031134039163589478, 0.012710651382803917, 0.07129327952861786, -0.11860466003417969, 0.05499131605029106, -0.07449901103973389, 0.1122848391532898, -0.02418886497616768, 0.059329207986593246, 0.029202785342931747, 0.11627335101366043, -0.0054195839911699295, 0.0778505727648735, -0.3592117726802826, 0.2773599326610565, 0.002596428617835045, 0.07161357998847961, -0.0851825475692749, -0.0054798731580376625, 0.039303719997406006, 0.046973809599876404, 0.017061395570635796, -0.022403230890631676, -0.05542779341340065, -0.19086360931396484, -0.02479315921664238, 0.041543927043676376, 0.1281253546476364, -0.005674374755471945, 0.12206733971834183, -0.03844480589032173, 0.009721781127154827, 0.07662937045097351, -0.008707261644303799, -0.09916238486766815, -0.0778525248169899, -0.012062202207744122, 0.021892059594392776, -0.00532707991078496, -0.06053885444998741, -0.11409419029951096, -0.1068732962012291, 0.16056524217128754, 0.04692252352833748, -0.026480166241526604, -0.1273612082004547, 0.10440802574157715, 0.07482150197029114, -0.08271586894989014, 0.03378454968333244, 0.01415498461574316, 0.06804186850786209, 0.027633367106318474, -0.07919403910636902, 0.11750800907611847, -0.06849021464586258, -0.1514797955751419, -0.04970039427280426, 0.11043215543031693, 0.016461100429296494, 0.07366374880075455, -0.018195753917098045, 0.013671470806002617, -0.027064483612775803, -0.08436831086874008, 0.018874261528253555, -0.024589385837316513, 0.06373821198940277, 0.05546676740050316, -0.06699778884649277, 0.00342717207968235, -0.07407218217849731, -0.04332590848207474, 0.22369380295276642, 0.2282133400440216, -0.06685593724250793, 0.0072219595313072205, 0.026319945231080055, -0.06797492504119873, -0.18254981935024261, 0.05392242595553398, 0.07965775579214096, 0.015052535571157932, 0.030512971803545952, -0.17652861773967743, 0.09649205207824707, 0.07844321429729462, 0.01097642071545124, 0.08785057812929153, -0.3141491413116455, -0.13472677767276764, 0.11397648602724075, 0.1570948213338852, 0.14769893884658813, -0.1418079137802124, -0.014046653173863888, -0.048879753798246384, -0.10915666073560715, 0.10874573141336441, -0.07755222171545029, 0.12886720895767212, -0.01770738884806633, 0.11096123605966568, 0.01899007521569729, -0.04952535778284073, 0.09445612877607346, -0.011570974253118038, 0.08743184804916382, -0.07423962652683258, 0.005915384739637375, 0.013622797094285488, -0.03578644618391991, -0.000345397274941206, -0.05652567744255066, 0.01852705329656601, -0.09529750794172287, -0.03044995106756687, -0.09198551625013351, 0.022906744852662086, -0.022243676707148552, -0.06543852388858795, -0.013437158428132534, 0.010213010013103485, 0.054171372205019, -0.020774396136403084, 0.1065211147069931, -0.024160070344805717, 0.17379212379455566, 0.08348633348941803, 0.11166571825742722, -0.08395060151815414, -0.015066372230648994, -0.003373929066583514, -0.013991122134029865, 0.03620266169309616, -0.12715421617031097, 0.03016088530421257, 0.14939597249031067, 0.008462121710181236, 0.13676954805850983, 0.09718445688486099, -0.01667632721364498, 0.013158882036805153, 0.07679673284292221, -0.16140426695346832, -0.09392596781253815, -0.01800397038459778, -0.04573892056941986, -0.09688390791416168, 0.03459654748439789, 0.09848678857088089, -0.07178056240081787, -0.012116230092942715, -0.021209780126810074, -0.006546559743583202, -0.07079477608203888, 0.21574640274047852, 0.0424991101026535, 0.0538104809820652, -0.10194025933742523, 0.06748706102371216, 0.04684314504265785, -0.0940212681889534, 0.01693706028163433, 0.13224664330482483, -0.07534690946340561, -0.03531958907842636, 0.10422228276729584, 0.18343600630760193, -0.06690070033073425, -0.032071467489004135, -0.14087915420532227, -0.1414538472890854, 0.08756560832262039, 0.17176619172096252, 0.08850182592868805, -0.007789907045662403, -0.0676017478108406, 0.025897067040205002, -0.13761784136295319, 0.0772528126835823, 0.06637606024742126, 0.07156918942928314, -0.13103629648685455, 0.20184725522994995, 0.003901261370629072, 0.05458878353238106, -0.034796472638845444, 0.013195662759244442, -0.10919912904500961, 0.03520360216498375, -0.15008951723575592, -0.057858679443597794, -0.0049168881960213184, -0.008362747728824615, -0.008758909069001675, -0.06918269395828247, -0.06037374213337898, -0.0036914634983986616, -0.12150952965021133, -0.026148997247219086, 0.017488569021224976, 0.0368213877081871, -0.10185164213180542, -0.03558943420648575, 0.02946418710052967, -0.063367560505867, 0.05680811032652855, 0.061044223606586456, -0.005007303785532713, 0.07997987419366837, -0.14413779973983765, -0.018743077293038368, 0.06763740628957748, 0.006634070072323084, 0.0725112035870552, -0.08153211325407028, 0.010029017925262451, 0.007931656204164028, 0.09207667410373688, 0.03278215974569321, 0.07755714654922485, -0.1287730187177658, -0.004098436329513788, -0.03611160069704056, -0.10549700260162354, -0.06002266705036163, 0.030441591516137123, 0.05137162655591965, 0.01500660553574562, 0.1700609028339386, -0.09723303467035294, 0.05626573786139488, -0.22277745604515076, -0.0038097237702459097, -0.022070005536079407, -0.11837439239025116, -0.08936530351638794, -0.08051665872335434, 0.08756139874458313, -0.04719655588269234, 0.11412665247917175, 0.024728020653128624, 0.10232948511838913, 0.03570408746600151, -0.03322488069534302, 0.00867508165538311, 0.026464471593499184, 0.23052021861076355, 0.05121311917901039, -0.046333424746990204, 0.05697467550635338, 0.0667804554104805, 0.1081833690404892, 0.12855179607868195, 0.23529623448848724, 0.15058447420597076, 0.0022088689729571342, 0.09543383866548538, 0.014691184274852276, -0.051394931972026825, -0.14220473170280457, 0.00985025055706501, -0.04455934464931488, 0.09802530705928802, -0.03325482830405235, 0.2107568383216858, 0.07913272827863693, -0.15714013576507568, 0.05677848309278488, -0.06859923899173737, -0.09297452867031097, -0.11404907703399658, -0.008485482074320316, -0.09175989031791687, -0.16298571228981018, -0.00028748606564477086, -0.12374600768089294, 0.049446962773799896, 0.10445382446050644, 0.025904176756739616, -0.028795646503567696, 0.1725260317325592, 0.04714955762028694, 0.0038057868368923664, 0.0866909921169281, -0.006385760847479105, 0.004316847305744886, -0.07485149800777435, -0.07029129564762115, -0.0140297282487154, -0.012321440503001213, 0.04060230776667595, -0.042173322290182114, -0.10754071176052094, 0.0389433279633522, -0.033644452691078186, -0.10733957588672638, 0.024757128208875656, 0.025782348588109016, 0.07536797970533371, 0.06643086671829224, 0.0082040224224329, -0.0022186622954905033, -0.025076836347579956, 0.24439741671085358, -0.09872090071439743, -0.11318129301071167, -0.09628134965896606, 0.3084511458873749, 0.05032582953572273, 0.00008416866330662742, 0.02290303073823452, -0.058724042028188705, -0.012801283970475197, 0.25486746430397034, 0.1721808910369873, -0.10686954855918884, -0.014573848806321621, 0.0006379300612024963, -0.0075448183342814445, -0.012077447958290577, 0.14406535029411316, 0.15137916803359985, 0.055778659880161285, -0.1040058583021164, -0.015980413183569908, -0.05043524503707886, -0.014255673624575138, -0.04489685222506523, 0.0837947428226471, 0.0633363425731659, 0.0023136876989156008, -0.029685938730835915, 0.07722613215446472, -0.07069322466850281, -0.055732402950525284, -0.006284026429057121, -0.20524843037128448, -0.16018922626972198, -0.017862524837255478, 0.08984879404306412, -0.0011949760373681784, 0.06471744924783707, -0.02525509148836136, 0.0007457917672581971, 0.053742095828056335, -0.018164418637752533, -0.0521109439432621, -0.08707653731107712, 0.09971737116575241, -0.12061189115047455, 0.1441032886505127, -0.03940131887793541, 0.05355242267251015, 0.13011714816093445, 0.06421755254268646, -0.05495550483465195, 0.08338558673858643, 0.03737889975309372, -0.0877002477645874, 0.04449997842311859, 0.13620701432228088, -0.03863288462162018, 0.028394071385264397, 0.04553099349141121, -0.15231412649154663, 0.03136765956878662, -0.09422779828310013, -0.0406910739839077, -0.021820032969117165, -0.042969848960638046, -0.057832617312669754, 0.1169750988483429, 0.2347845435142517, -0.022342246025800705, 0.03157990798354149, -0.09524141997098923, 0.005760520696640015, 0.03463857248425484, 0.06728789210319519, -0.08652747422456741, -0.2612270712852478, -0.004600421525537968, 0.09688504040241241, -0.0265514999628067, -0.2590712010860443, -0.0858839750289917, -0.0003910810628440231, -0.06332722306251526, -0.11792726069688797, 0.10883645713329315, 0.08287663757801056, 0.03603976219892502, -0.04823977127671242, -0.14183050394058228, -0.06360667198896408, 0.1928228735923767, -0.1490124613046646, -0.07526174187660217 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-finetuned-xsum-2 This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the squad dataset. It achieves the following results on the evaluation set: - Loss: 1.9536 - Rouge1: 28.8137 - Rouge2: 9.1265 - Rougel: 26.0238 - Rougelsum: 26.0217 - Gen Len: 13.854 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 10 - eval_batch_size: 10 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:-------:|:------:|:-------:|:---------:|:-------:| | 2.2142 | 1.0 | 8760 | 1.9994 | 29.007 | 9.2583 | 26.2377 | 26.2356 | 13.4546 | | 2.1372 | 2.0 | 17520 | 1.9622 | 29.1077 | 9.445 | 26.3734 | 26.3687 | 13.6995 | | 2.0755 | 3.0 | 26280 | 1.9536 | 28.8137 | 9.1265 | 26.0238 | 26.0217 | 13.854 | ### Framework versions - Transformers 4.9.2 - Pytorch 1.9.0+cu102 - Datasets 1.11.0 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["squad"], "metrics": ["rouge"], "model_index": [{"name": "t5-small-finetuned-xsum-2", "results": [{"task": {"name": "Sequence-to-sequence Language Modeling", "type": "text2text-generation"}, "dataset": {"name": "squad", "type": "squad", "args": "plain_text"}, "metric": {"name": "Rouge1", "type": "rouge", "value": 28.8137}}]}]}
text2text-generation
fadhilarkan/t5-small-finetuned-xsum-2
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "dataset:squad", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #t5 #text2text-generation #generated_from_trainer #dataset-squad #license-apache-2.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
t5-small-finetuned-xsum-2 ========================= This model is a fine-tuned version of t5-small on the squad dataset. It achieves the following results on the evaluation set: * Loss: 1.9536 * Rouge1: 28.8137 * Rouge2: 9.1265 * Rougel: 26.0238 * Rougelsum: 26.0217 * Gen Len: 13.854 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 10 * eval\_batch\_size: 10 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 3 * mixed\_precision\_training: Native AMP ### Training results ### Framework versions * Transformers 4.9.2 * Pytorch 1.9.0+cu102 * Datasets 1.11.0 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 10\n* eval\\_batch\\_size: 10\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.9.2\n* Pytorch 1.9.0+cu102\n* Datasets 1.11.0\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #t5 #text2text-generation #generated_from_trainer #dataset-squad #license-apache-2.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 10\n* eval\\_batch\\_size: 10\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.9.2\n* Pytorch 1.9.0+cu102\n* Datasets 1.11.0\n* Tokenizers 0.10.3" ]
[ 73, 113, 4, 34 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #t5 #text2text-generation #generated_from_trainer #dataset-squad #license-apache-2.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 10\n* eval\\_batch\\_size: 10\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3\n* mixed\\_precision\\_training: Native AMP### Training results### Framework versions\n\n\n* Transformers 4.9.2\n* Pytorch 1.9.0+cu102\n* Datasets 1.11.0\n* Tokenizers 0.10.3" ]
[ -0.08584735542535782, 0.0992618054151535, -0.0039571598172187805, 0.08623979985713959, 0.11087407171726227, 0.0004456715832930058, 0.15910284221172333, 0.15556558966636658, -0.12500765919685364, 0.05796042084693909, 0.1311701387166977, 0.14513522386550903, 0.051048099994659424, 0.16598615050315857, -0.06923911720514297, -0.26250365376472473, 0.049879107624292374, 0.052217334508895874, -0.015311752445995808, 0.12592639029026031, 0.0877671092748642, -0.12380092591047287, 0.08618072420358658, 0.028240257874131203, -0.17921704053878784, -0.012511014938354492, -0.000050127506256103516, -0.08607012778520584, 0.10974336415529251, 0.027102872729301453, 0.09626840800046921, 0.04033678025007248, 0.0478006973862648, -0.16680806875228882, 0.010498058050870895, 0.06413140147924423, 0.0061685568653047085, 0.09899240732192993, 0.058520928025245667, -0.013298665173351765, 0.11170542240142822, -0.07651378959417343, 0.076536625623703, 0.020918095484375954, -0.125277578830719, -0.25574591755867004, -0.11440207809209824, 0.04122365638613701, 0.06734079122543335, 0.07584256678819656, -0.0031482314225286245, 0.180698424577713, -0.026563124731183052, 0.11293216049671173, 0.2618125379085541, -0.3148324489593506, -0.05607132241129875, -0.014175349846482277, 0.0589849017560482, 0.07862930744886398, -0.07280569523572922, -0.03154456615447998, 0.01828784868121147, 0.047912344336509705, 0.1504959911108017, -0.016264567151665688, -0.045072805136442184, -0.021194126456975937, -0.14061525464057922, -0.06773552298545837, 0.14933256804943085, 0.025803014636039734, -0.038806576281785965, -0.06873161345720291, -0.08341214805841446, -0.18671859800815582, -0.05343848466873169, -0.007737587206065655, 0.048285018652677536, -0.035266660153865814, -0.08438678830862045, -0.02556983008980751, -0.07218629121780396, -0.03390216827392578, -0.06615693122148514, 0.13964545726776123, 0.05284208431839943, 0.018876811489462852, -0.06592272222042084, 0.06860506534576416, -0.03651143237948418, -0.15702681243419647, -0.015369389206171036, 0.010739562101662159, 0.00959298387169838, -0.0387917198240757, -0.04111267998814583, -0.12884770333766937, 0.014756615273654461, 0.1699063777923584, -0.0955289825797081, 0.08000864088535309, -0.04501046985387802, 0.04022569954395294, -0.0786084532737732, 0.18434150516986847, -0.018353721126914024, 0.012541214935481548, 0.018726371228694916, 0.06008005514740944, 0.05746745318174362, -0.03217723220586777, -0.11079777032136917, 0.038743842393159866, 0.11495918035507202, 0.027590835466980934, -0.03407713770866394, 0.07437902688980103, -0.03749508038163185, -0.027149278670549393, 0.040330152958631516, -0.10956737399101257, 0.036902546882629395, -0.013723715208470821, -0.06374974548816681, 0.0036392011679708958, 0.015418927185237408, 0.003991646226495504, -0.0504332035779953, 0.09285221993923187, -0.07740925997495651, 0.02241150476038456, -0.08132917433977127, -0.1412046253681183, 0.03839689865708351, -0.11353690922260284, -0.0037248479202389717, -0.09890389442443848, -0.14033867418766022, -0.004914071410894394, 0.06028631329536438, -0.043599121272563934, -0.04298204183578491, -0.04754870757460594, -0.09732627123594284, 0.04314708709716797, -0.028114542365074158, 0.0693347230553627, -0.07230019569396973, 0.08213768154382706, 0.026003697887063026, 0.07720588892698288, -0.05128736421465874, 0.050149817019701004, -0.08823229372501373, 0.03609832748770714, -0.223740816116333, 0.05778861418366432, -0.054258812218904495, 0.07845111936330795, -0.1030733734369278, -0.10311351716518402, 0.029652070254087448, -0.02577129378914833, 0.1003960520029068, 0.08211269229650497, -0.1729101985692978, -0.07116984575986862, 0.2051159292459488, -0.09201522916555405, -0.13488523662090302, 0.12827950716018677, -0.0494302473962307, 0.0008552625658921897, 0.056424736976623535, 0.22372590005397797, 0.05271419882774353, -0.10327542573213577, -0.007333851885050535, -0.04673563316464424, 0.04165162891149521, -0.050133850425481796, 0.06427457183599472, 0.007720343768596649, 0.09158088266849518, 0.008887630887329578, 0.023798078298568726, 0.02751709148287773, -0.08409322053194046, -0.07387498021125793, -0.05834991857409477, -0.06400258839130402, 0.017810912802815437, 0.03473624959588051, 0.06544459611177444, -0.1299087107181549, -0.10357885807752609, 0.06800329685211182, 0.0685114711523056, -0.08334056288003922, 0.06322578340768814, -0.10994572192430496, 0.11112672090530396, -0.04751935973763466, 0.002247440628707409, -0.18743503093719482, -0.02926953136920929, 0.037997275590896606, -0.016801534220576286, 0.02372104860842228, -0.04145417734980583, 0.06769006699323654, 0.06365665048360825, -0.03200269490480423, -0.024696961045265198, -0.015580186620354652, 0.004510323982685804, -0.11369217932224274, -0.19971975684165955, -0.03748781606554985, -0.037388961762189865, 0.07381036877632141, -0.14373011887073517, 0.048551030457019806, 0.06798010319471359, 0.12317453324794769, 0.04060181975364685, -0.01621297001838684, -0.01532784290611744, 0.07327544689178467, -0.05188262090086937, -0.0732225552201271, 0.06072100251913071, 0.03047906793653965, -0.08648740500211716, 0.00816005002707243, -0.1646048128604889, 0.14234235882759094, 0.14540410041809082, -0.03020465560257435, -0.049013905227184296, -0.0010310993529856205, -0.054885007441043854, -0.022003334015607834, -0.008748465217649937, 0.021760093048214912, 0.16160090267658234, 0.020493432879447937, 0.16294832527637482, -0.09895725548267365, -0.054053571075201035, 0.04822308570146561, -0.032314106822013855, -0.003117491491138935, 0.0955914780497551, 0.03787332400679588, -0.10416106134653091, 0.13678915798664093, 0.14353537559509277, -0.051781896501779556, 0.1256266087293625, -0.06384119391441345, -0.06364995241165161, -0.027903785929083824, -0.008136012591421604, 0.027310913428664207, 0.08405937254428864, -0.12846976518630981, -0.01792714186012745, 0.038734350353479385, 0.038314059376716614, 0.008446644060313702, -0.1921273171901703, 0.014373007230460644, 0.03473970666527748, -0.058291930705308914, -0.03207993507385254, -0.005939110182225704, 0.02467060275375843, 0.10723304748535156, 0.022331412881612778, -0.06491817533969879, 0.03166753053665161, 0.009291766211390495, -0.06174449250102043, 0.17484484612941742, -0.11326184123754501, -0.17679230868816376, -0.10910230129957199, -0.11330094188451767, -0.06235586479306221, -0.0032830270938575268, 0.08885188400745392, -0.06933203339576721, -0.052024900913238525, -0.1017429530620575, -0.017926404252648354, -0.007135421968996525, 0.0272233784198761, 0.04718980938196182, -0.014160910621285439, 0.06382004171609879, -0.11778134852647781, -0.029722701758146286, -0.025526298210024834, -0.006628426723182201, 0.065660260617733, 0.02170683816075325, 0.10985083878040314, 0.13023130595684052, -0.04030542075634003, 0.040066782385110855, -0.045241110026836395, 0.21593201160430908, -0.07063885033130646, -0.008991808630526066, 0.1321907341480255, -0.01855345442891121, 0.08965563029050827, 0.12355485558509827, 0.04486452788114548, -0.09430581331253052, -0.005254560150206089, 0.01177634671330452, -0.048406220972537994, -0.2252243310213089, -0.023432815447449684, -0.05436677485704422, 0.008713411167263985, 0.09815286844968796, 0.03560304641723633, 0.04321134462952614, 0.044423554092645645, 0.01331339217722416, 0.05988559499382973, -0.003022992517799139, 0.11837897449731827, 0.1418503224849701, 0.05664079263806343, 0.1461828649044037, -0.05652656778693199, -0.030071545392274857, 0.05420089140534401, 0.00928149838000536, 0.2221190631389618, 0.004486629273742437, 0.18958432972431183, 0.054600201547145844, 0.1494414508342743, 0.029652554541826248, 0.06346410512924194, -0.019211966544389725, -0.0014566711615771055, -0.016836069524288177, -0.042371951043605804, -0.036324407905340195, 0.014274864457547665, -0.07030358165502548, 0.025723746046423912, -0.10830756276845932, 0.010771289467811584, 0.05993590131402016, 0.30586931109428406, 0.025444351136684418, -0.3642767369747162, -0.10124993324279785, 0.009906662628054619, -0.06144833192229271, -0.040566813200712204, 0.017601393163204193, 0.07767143845558167, -0.0710521936416626, 0.08816220611333847, -0.08762599527835846, 0.10790145397186279, -0.051124729216098785, 0.04176494851708412, 0.057455919682979584, 0.09804605692625046, -0.003246966516599059, 0.04446382820606232, -0.3008970320224762, 0.2578900158405304, 0.020112482830882072, 0.06479835510253906, -0.07419470697641373, 0.020817061886191368, 0.011699755676090717, 0.05578368157148361, 0.05271891504526138, -0.01828804239630699, -0.11687621474266052, -0.14542485773563385, -0.08585039526224136, 0.014835935086011887, 0.10382066667079926, 0.026034008711576462, 0.12175910174846649, -0.02340715378522873, 0.00001889447412395384, 0.045328449457883835, -0.03463023900985718, -0.04271881654858589, -0.1048237532377243, 0.029057275503873825, 0.04858400672674179, -0.006675299257040024, -0.06619148701429367, -0.09657350182533264, -0.08297896385192871, 0.18054789304733276, 0.006546925753355026, -0.06793729215860367, -0.12496135383844376, 0.03700164705514908, 0.08069810271263123, -0.08217740803956985, 0.041545987129211426, -0.016656124964356422, 0.12017178535461426, 0.008048992604017258, -0.08867453783750534, 0.11610760539770126, -0.050188783556222916, -0.1764776110649109, -0.044868819415569305, 0.1120874434709549, 0.0061345347203314304, 0.05747169628739357, -0.00743403984233737, 0.04256541654467583, -0.029870079830288887, -0.07346749305725098, 0.018096154555678368, 0.010271218605339527, 0.0844101831316948, -0.03381235525012016, -0.023971086367964745, 0.009976040571928024, -0.06435319036245346, -0.012968857772648335, 0.1843469887971878, 0.25417473912239075, -0.09093844145536423, 0.07966423779726028, 0.03831318020820618, -0.05901720002293587, -0.15645919740200043, 0.009830444119870663, 0.04843428358435631, -0.007907376624643803, -0.007883596234023571, -0.17160673439502716, 0.03032444790005684, 0.09990144520998001, -0.012646126560866833, 0.07677630335092545, -0.3162672221660614, -0.12832903861999512, 0.08752918988466263, 0.12865646183490753, 0.08142311125993729, -0.16679829359054565, -0.041788700968027115, -0.029016777873039246, -0.13646340370178223, 0.14222262799739838, -0.11504282802343369, 0.11791214346885681, -0.02852950617671013, 0.10047561675310135, 0.009007461369037628, -0.055813081562519073, 0.1062621921300888, -0.0037888132501393557, 0.08078280091285706, -0.07774589955806732, 0.02892182767391205, 0.12109271436929703, -0.07973743230104446, 0.0468827486038208, -0.08960741758346558, 0.029462357982993126, -0.09827804565429688, -0.01566763035953045, -0.061323631554841995, 0.002853203099220991, -0.026543309912085533, -0.03669626638293266, -0.05091514438390732, 0.0001469973212806508, 0.08250035345554352, -0.02100486308336258, 0.20391900837421417, 0.017019888386130333, 0.14874738454818726, 0.1502220332622528, 0.10269059240818024, -0.1336606740951538, -0.04413376376032829, 0.007945524528622627, -0.028026504442095757, 0.0425548292696476, -0.15550273656845093, 0.04560641199350357, 0.1417471319437027, -0.0012136929435655475, 0.11905777454376221, 0.07156790792942047, -0.05679392069578171, 0.03227810189127922, 0.04944806545972824, -0.1679626852273941, -0.10858434438705444, 0.02219724841415882, 0.033401135355234146, -0.10890822857618332, 0.06786797195672989, 0.13391335308551788, -0.05324294790625572, -0.01857275888323784, 0.007918319664895535, 0.020238593220710754, -0.01512724906206131, 0.16522081196308136, 0.020157191902399063, 0.055987220257520676, -0.11122720688581467, 0.08421118557453156, 0.05369129776954651, -0.12086380273103714, 0.05267513915896416, 0.12532466650009155, -0.10499317198991776, -0.028030438348650932, 0.04443185403943062, 0.1545441895723343, -0.056778356432914734, -0.05270526558160782, -0.15398940443992615, -0.1292145848274231, 0.10387812554836273, 0.20231951773166656, 0.05972826108336449, 0.011184469796717167, -0.03943886235356331, 0.005111428443342447, -0.12161858379840851, 0.09033931791782379, 0.03927061706781387, 0.08104190975427628, -0.12342159450054169, 0.13409295678138733, -0.0054840692318975925, 0.038233447819948196, -0.018565760925412178, 0.01699814945459366, -0.10654328018426895, 0.004654191434383392, -0.14900833368301392, 0.006811130791902542, -0.052186135202646255, -0.002777061192318797, -0.013120804913341999, -0.04233861714601517, -0.0631592869758606, 0.013951645232737064, -0.11282175034284592, -0.03142080828547478, 0.00874464213848114, 0.026623938232660294, -0.12297465652227402, -0.019318372011184692, 0.0016779868165031075, -0.08493781834840775, 0.0896947979927063, 0.04939866438508034, -0.01781505160033703, 0.02897464856505394, -0.046712812036275864, -0.013085570186376572, 0.06142320856451988, 0.010536909103393555, 0.07778161019086838, -0.10124333947896957, -0.018649574369192123, 0.01866067759692669, 0.020440224558115005, 0.02809942699968815, 0.1025506779551506, -0.11672069132328033, 0.006309335120022297, -0.00689778383821249, -0.06154801324009895, -0.06614469736814499, 0.05717695131897926, 0.0977000966668129, 0.018264537677168846, 0.18445689976215363, -0.07653816044330597, 0.03190300986170769, -0.19306421279907227, -0.003111821599304676, 0.013428931124508381, -0.14872470498085022, -0.06443072855472565, -0.04477577656507492, 0.06599319726228714, -0.0679950937628746, 0.1333918422460556, 0.006247237790375948, 0.03318145498633385, 0.05076105147600174, -0.04036763310432434, -0.041453517973423004, 0.021109988912940025, 0.17160408198833466, 0.031115621328353882, -0.04875050485134125, 0.06877001374959946, 0.01392285618931055, 0.08430175483226776, 0.08954999595880508, 0.20827807486057281, 0.13823473453521729, 0.054644469171762466, 0.10141918808221817, 0.03875322267413139, -0.03293547034263611, -0.18261252343654633, 0.05623164772987366, -0.04131860285997391, 0.14998182654380798, -0.010530774481594563, 0.2081417292356491, 0.12028644979000092, -0.14819784462451935, 0.05402679368853569, -0.03568876162171364, -0.08135230839252472, -0.11039847880601883, -0.08190574496984482, -0.09321577101945877, -0.15103082358837128, -0.01187313161790371, -0.1237790584564209, 0.06044412776827812, 0.058542199432849884, 0.022617530077695847, -0.0017334300791844726, 0.11372533440589905, 0.01824752241373062, 0.006011430639773607, 0.06168529391288757, 0.002437625080347061, -0.03728220984339714, -0.056241292506456375, -0.08509591966867447, 0.011238430626690388, 0.00762531440705061, 0.05369826406240463, 0.007320051081478596, 0.00019484692893456668, 0.04189342260360718, -0.04074636101722717, -0.1120152398943901, 0.02208518795669079, 0.034745216369628906, 0.05975911393761635, 0.02635340765118599, 0.013027113862335682, -0.01007112953811884, -0.008962278254330158, 0.19139431416988373, -0.07740618288516998, -0.0755351334810257, -0.11037018895149231, 0.23422060906887054, 0.02336173504590988, -0.03994698077440262, 0.03261895850300789, -0.06241334229707718, -0.025312593206763268, 0.2001192271709442, 0.18697164952754974, -0.02650107815861702, -0.008990256115794182, -0.019749628379940987, -0.008679377846419811, -0.021761402487754822, 0.10568960756063461, 0.13529957830905914, 0.02670273557305336, -0.06448350846767426, -0.03400636091828346, -0.055261410772800446, -0.004356290213763714, -0.061842262744903564, 0.06965424120426178, 0.020535914227366447, -0.005986371077597141, -0.03086266852915287, 0.04892341047525406, -0.06083298474550247, -0.06801537424325943, 0.01611950248479843, -0.20889312028884888, -0.15602004528045654, 0.005090497899800539, 0.08451278507709503, -0.013790136203169823, 0.05516907572746277, 0.004861532244831324, -0.004743426106870174, 0.09591302275657654, -0.01801958493888378, -0.07502568513154984, -0.06553226709365845, 0.10070470720529556, -0.17842073738574982, 0.17933563888072968, -0.03314128890633583, 0.0308191180229187, 0.14295899868011475, 0.05377867817878723, -0.10166338831186295, 0.05602109804749489, 0.04442505165934563, -0.054288219660520554, 0.009608466178178787, 0.118598572909832, -0.02830931730568409, 0.0712922215461731, 0.050706423819065094, -0.12243440002202988, -0.01361719612032175, -0.08728976547718048, -0.03672812879085541, -0.02005298249423504, -0.04731740802526474, -0.04576459899544716, 0.11494731903076172, 0.19486886262893677, -0.03917165845632553, 0.004128564149141312, -0.06520739197731018, 0.007334691006690264, 0.05928698182106018, -0.010124802589416504, -0.056509967893362045, -0.2600800395011902, 0.001975024351850152, 0.084468774497509, -0.0037308952305465937, -0.2537882924079895, -0.09033471345901489, -0.00220554624684155, -0.03677377104759216, -0.11452711373567581, 0.08690669387578964, 0.08029662072658539, 0.042398400604724884, -0.0647733211517334, -0.0249649565666914, -0.06532636284828186, 0.17396967113018036, -0.14174601435661316, -0.057263847440481186 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-finetuned-xsum This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 10 - eval_batch_size: 10 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.9.2 - Pytorch 1.9.0+cu102 - Datasets 1.11.0 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["squad"], "model_index": [{"name": "t5-small-finetuned-xsum", "results": [{"task": {"name": "Sequence-to-sequence Language Modeling", "type": "text2text-generation"}, "dataset": {"name": "squad", "type": "squad", "args": "plain_text"}}]}]}
text2text-generation
fadhilarkan/t5-small-finetuned-xsum
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "dataset:squad", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #t5 #text2text-generation #generated_from_trainer #dataset-squad #license-apache-2.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
# t5-small-finetuned-xsum This model is a fine-tuned version of t5-small on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 10 - eval_batch_size: 10 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.9.2 - Pytorch 1.9.0+cu102 - Datasets 1.11.0 - Tokenizers 0.10.3
[ "# t5-small-finetuned-xsum\n\nThis model is a fine-tuned version of t5-small on the squad dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 2e-05\n- train_batch_size: 10\n- eval_batch_size: 10\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 1\n- mixed_precision_training: Native AMP", "### Framework versions\n\n- Transformers 4.9.2\n- Pytorch 1.9.0+cu102\n- Datasets 1.11.0\n- Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #t5 #text2text-generation #generated_from_trainer #dataset-squad #license-apache-2.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "# t5-small-finetuned-xsum\n\nThis model is a fine-tuned version of t5-small on the squad dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 2e-05\n- train_batch_size: 10\n- eval_batch_size: 10\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 1\n- mixed_precision_training: Native AMP", "### Framework versions\n\n- Transformers 4.9.2\n- Pytorch 1.9.0+cu102\n- Datasets 1.11.0\n- Tokenizers 0.10.3" ]
[ 73, 33, 6, 12, 8, 3, 103, 34 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #t5 #text2text-generation #generated_from_trainer #dataset-squad #license-apache-2.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n# t5-small-finetuned-xsum\n\nThis model is a fine-tuned version of t5-small on the squad dataset.## Model description\n\nMore information needed## Intended uses & limitations\n\nMore information needed## Training and evaluation data\n\nMore information needed## Training procedure### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 2e-05\n- train_batch_size: 10\n- eval_batch_size: 10\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 1\n- mixed_precision_training: Native AMP### Framework versions\n\n- Transformers 4.9.2\n- Pytorch 1.9.0+cu102\n- Datasets 1.11.0\n- Tokenizers 0.10.3" ]
[ -0.054408833384513855, 0.09293580800294876, -0.003184547182172537, 0.05927075445652008, 0.14082135260105133, 0.03511885926127434, 0.12660479545593262, 0.13172131776809692, -0.12751664221286774, 0.06132560968399048, 0.052797842770814896, 0.07831346243619919, 0.061221376061439514, 0.14354535937309265, -0.039797600358724594, -0.2632962465286255, 0.01622738316655159, 0.005455106031149626, -0.037394747138023376, 0.09881701320409775, 0.09682492166757584, -0.08822118490934372, 0.06289397925138474, 0.001968816854059696, -0.16868095099925995, 0.040780145674943924, -0.01343765389174223, -0.05844641104340553, 0.08724380284547806, 0.02285115234553814, 0.09798495471477509, 0.015487734228372574, 0.10989701002836227, -0.22650133073329926, 0.00538852671161294, 0.09899324178695679, 0.0195509921759367, 0.06229786202311516, 0.07993190735578537, 0.02302500419318676, 0.1665128469467163, -0.14231759309768677, 0.0992773026227951, 0.024634553119540215, -0.05780874565243721, -0.12495608627796173, -0.07004031538963318, 0.06586198508739471, 0.08471107482910156, 0.09830287098884583, 0.00008048873132793233, 0.1530475914478302, -0.09019582718610764, 0.08332768827676773, 0.161393940448761, -0.2696192264556885, -0.06709378212690353, 0.04111025109887123, 0.048144299536943436, 0.08507824689149857, -0.08388474583625793, -0.01898481883108616, 0.023518096655607224, 0.04837554693222046, 0.11006282269954681, -0.015779055655002594, -0.08920016139745712, -0.010704179294407368, -0.14039264619350433, -0.018686674535274506, 0.15898311138153076, 0.032105639576911926, -0.021733200177550316, -0.09978696703910828, -0.07726144790649414, -0.08001109212636948, -0.013815989717841148, -0.05751549452543259, 0.039328038692474365, -0.024459440261125565, -0.050168752670288086, -0.051855046302080154, -0.06975707411766052, -0.032542865723371506, -0.025597229599952698, 0.07753470540046692, 0.06354358047246933, 0.009296621195971966, -0.05363338068127632, 0.08467688411474228, 0.019691282883286476, -0.10409599542617798, -0.0025050994008779526, 0.002615608973428607, -0.08860253542661667, -0.06865108758211136, -0.04066512733697891, -0.09390988200902939, 0.00612567039206624, 0.12572042644023895, -0.04531696438789368, 0.08505470305681229, -0.00217252504080534, 0.004582894034683704, -0.021090608090162277, 0.11321444064378738, -0.03150033578276634, -0.04144786670804024, 0.015997745096683502, 0.0723705142736435, 0.026294132694602013, -0.008943812921643257, -0.0847381055355072, -0.005791645962744951, 0.10513986647129059, 0.053791504353284836, -0.04013079032301903, 0.03866736963391304, -0.021557291969656944, -0.043106816709041595, -0.037648316472768784, -0.13672365248203278, 0.04275874048471451, -0.017256293445825577, -0.06096750870347023, 0.03274178504943848, 0.013710915111005306, -0.01080436073243618, -0.07857509702444077, 0.09647541493177414, -0.0766497254371643, 0.008222456090152264, -0.08832937479019165, -0.09039948880672455, 0.034143514931201935, -0.08103741705417633, -0.031113069504499435, -0.08471933752298355, -0.17176395654678345, -0.033473946154117584, 0.04989024996757507, -0.03839645907282829, -0.056351352483034134, -0.048796866089105606, -0.05280119180679321, 0.019077712669968605, -0.0072633749805390835, 0.12126221507787704, -0.056024640798568726, 0.05820097401738167, -0.02286006510257721, 0.023186462000012398, 0.013636315241456032, 0.04380436986684799, -0.07557216286659241, 0.011016584932804108, -0.12643353641033173, 0.07763512432575226, -0.054497748613357544, 0.020909607410430908, -0.11568160355091095, -0.09907111525535583, -0.01933484710752964, -0.01770481839776039, 0.05349458381533623, 0.09799601137638092, -0.18009629845619202, -0.04159980267286301, 0.16734783351421356, -0.08204978704452515, -0.05111575126647949, 0.10895359516143799, -0.04407109320163727, 0.014171634800732136, 0.06853097677230835, 0.1664058417081833, 0.10071524232625961, -0.12948408722877502, -0.011279023252427578, -0.01033252477645874, 0.03917669132351875, -0.004483398050069809, 0.04761935770511627, -0.005876608658581972, 0.02090873382985592, 0.005294344387948513, -0.016451120376586914, 0.011597788892686367, -0.07081470638513565, -0.08071661740541458, -0.06339327991008759, -0.06532035022974014, 0.008255111053586006, 0.03236439451575279, 0.047863755375146866, -0.07273126393556595, -0.11157400161027908, 0.14191517233848572, 0.1146913468837738, -0.077333003282547, 0.0277810450643301, -0.07892058044672012, 0.023847676813602448, -0.027298739179968834, -0.0032606557942926884, -0.1975019872188568, -0.11873292177915573, 0.04075118899345398, -0.0766148567199707, 0.06113823503255844, 0.025387901812791824, 0.05121377483010292, 0.0565306581556797, -0.048592887818813324, -0.006527928169816732, -0.0715043768286705, -0.0003661605005618185, -0.09477463364601135, -0.18986178934574127, -0.038810934871435165, -0.019247211515903473, 0.13643845915794373, -0.2161165028810501, 0.020987126976251602, -0.021176232025027275, 0.13464286923408508, 0.021757032722234726, -0.05149009823799133, -0.007995445281267166, 0.0686957910656929, -0.020358577370643616, -0.09067634493112564, 0.051082976162433624, 0.005318902898579836, -0.07024963200092316, -0.05276202782988548, -0.15204299986362457, 0.055558327585458755, 0.0897294133901596, 0.02427203767001629, -0.08536715060472488, -0.011942023411393166, -0.05910918861627579, -0.05364792421460152, -0.0924973264336586, 0.008637464605271816, 0.18040356040000916, -0.0012125219218432903, 0.12700943648815155, -0.06510034203529358, -0.0648767277598381, 0.003405394498258829, 0.02153739519417286, -0.012571101076900959, 0.07479283213615417, 0.10985022783279419, -0.11830335110425949, 0.09347397089004517, 0.08089425414800644, -0.06938061118125916, 0.1525839865207672, -0.04972269386053085, -0.09012560546398163, -0.016406070441007614, 0.009213176555931568, -0.0027402639389038086, 0.08170675486326218, -0.11675217002630234, 0.004406831227242947, 0.02365565486252308, 0.024561719968914986, 0.04875367134809494, -0.1693030595779419, 0.012567861936986446, 0.020641576498746872, -0.04665340483188629, -0.0048867883160710335, -0.019785309210419655, 0.040453050285577774, 0.09873823821544647, 0.01056482084095478, -0.01110728457570076, 0.020376842468976974, -0.00013568166468758136, -0.09816684573888779, 0.17185883224010468, -0.12315301597118378, -0.16702356934547424, -0.1015242412686348, 0.0456111878156662, -0.06282638758420944, -0.0397084578871727, 0.02727048471570015, -0.08007394522428513, -0.06204314902424812, -0.0993959903717041, -0.010441177524626255, -0.05790982022881508, 0.0019865704234689474, 0.022190093994140625, 0.01861235499382019, 0.06625032424926758, -0.1280815452337265, 0.0013193488121032715, -0.009743111208081245, -0.08791670948266983, 0.010890881530940533, 0.03928937017917633, 0.09280053526163101, 0.15150907635688782, -0.026591377332806587, 0.024289444088935852, -0.045544788241386414, 0.18385711312294006, -0.05557812750339508, 0.018696708604693413, 0.11514807492494583, 0.01838129758834839, 0.057229604572057724, 0.11686751991510391, 0.029890280216932297, -0.08052577078342438, 0.03002697415649891, 0.07246167957782745, -0.01807699352502823, -0.24269016087055206, -0.04876088723540306, -0.052324168384075165, -0.06991779804229736, 0.1061420738697052, 0.05588681250810623, 0.0141123216599226, 0.0343550443649292, -0.012991929426789284, 0.06906972080469131, -0.0037202569656074047, 0.09154491871595383, 0.13053664565086365, 0.053386107087135315, 0.10617080330848694, -0.044911161065101624, -0.03007320687174797, 0.07767560333013535, -0.0020148546900600195, 0.26499590277671814, -0.006655554752796888, 0.0962899699807167, 0.03927505016326904, 0.12890130281448364, -0.0010109018767252564, 0.031082231551408768, 0.02494020015001297, 0.01292029395699501, 0.010583534836769104, -0.06312309205532074, -0.01863587088882923, 0.02336869388818741, -0.0009504597401246428, 0.01524141151458025, -0.08216653019189835, 0.030936604365706444, 0.028816580772399902, 0.26584020256996155, 0.022342927753925323, -0.283297598361969, -0.06022413447499275, 0.004037834703922272, -0.06369823217391968, -0.04560182988643646, 0.01603379100561142, 0.12488521635532379, -0.1131671741604805, 0.07780612260103226, -0.07018548995256424, 0.09705285727977753, -0.03810926899313927, -0.004683316219598055, 0.060594070702791214, 0.1591857522726059, 0.001006947597488761, 0.07763206213712692, -0.24802376329898834, 0.1877569854259491, 0.017128437757492065, 0.12113406509160995, -0.0700150728225708, 0.0364522784948349, 0.023553382605314255, 0.05943552032113075, 0.06765947490930557, 0.0024482712615281343, -0.09020144492387772, -0.12184848636388779, -0.08077375590801239, 0.046328477561473846, 0.11540614813566208, 0.013533983379602432, 0.08405394852161407, -0.05464109033346176, 0.009190540760755539, 0.049391455948352814, -0.060320354998111725, -0.18313269317150116, -0.1404452919960022, 0.0202852264046669, 0.03710699453949928, -0.05975035950541496, -0.06954508274793625, -0.09812664240598679, -0.027733532711863518, 0.2000924050807953, 0.0008634746773168445, -0.041321754455566406, -0.13700583577156067, 0.0678459033370018, 0.09540954977273941, -0.06028197333216667, 0.017623500898480415, 0.014917824417352676, 0.11581987887620926, 0.02400582656264305, -0.1260068565607071, 0.05450556054711342, -0.0652279481291771, -0.12769930064678192, -0.052898108959198, 0.11444418132305145, 0.04085289686918259, 0.04874419793486595, -0.002274201950058341, 0.012562118470668793, 0.015899894759058952, -0.08495569229125977, -0.00519543094560504, 0.10821755975484848, 0.08158323168754578, 0.05591903626918793, -0.11196327954530716, -0.02850564569234848, -0.0368141233921051, -0.027514735236763954, 0.1410665512084961, 0.15462252497673035, -0.07407686114311218, 0.07867198437452316, 0.05570385232567787, -0.09915929287672043, -0.16795219480991364, 0.06554915755987167, 0.10021067410707474, 0.004287782125174999, 0.030778706073760986, -0.20573756098747253, 0.10938186943531036, 0.12298784404993057, 0.006036858074367046, 0.05384708195924759, -0.3693242371082306, -0.13554556667804718, 0.06320154666900635, 0.11908480525016785, 0.03190777450799942, -0.1490050107240677, -0.026693470776081085, -0.032867431640625, -0.11721386015415192, 0.14265646040439606, -0.11335322260856628, 0.11372581124305725, -0.0036207870580255985, 0.08216576278209686, 0.016325203701853752, -0.03940097987651825, 0.10613597929477692, 0.026084434241056442, 0.06807178258895874, -0.06295700371265411, 0.04584389179944992, 0.08494367450475693, -0.0629231259226799, 0.04879831522703171, -0.05963288992643356, 0.04575212672352791, -0.14116033911705017, -0.02914293296635151, -0.06045215204358101, 0.06344648450613022, -0.03627674654126167, -0.057787537574768066, -0.05356088653206825, 0.03875379264354706, 0.08728817850351334, -0.04236391559243202, 0.06287845224142075, 0.011712444014847279, 0.10693904012441635, 0.07389429211616516, 0.10658405721187592, -0.03600846603512764, -0.10522648692131042, -0.016266219317913055, -0.018539024516940117, 0.054123636335134506, -0.09358148276805878, 0.016064316034317017, 0.13300339877605438, 0.02511206641793251, 0.1439160704612732, 0.04672958701848984, -0.04066157341003418, 0.0030807191506028175, 0.04328307881951332, -0.11831718683242798, -0.17775607109069824, -0.007747484836727381, -0.03554658964276314, -0.11280170828104019, 0.0070608737878501415, 0.09527312964200974, -0.06157412752509117, -0.008678583428263664, -0.0029725844506174326, 0.021510424092411995, -0.023307878524065018, 0.17961448431015015, 0.003362034447491169, 0.0428147092461586, -0.07967240363359451, 0.1330028474330902, 0.08456707000732422, -0.11482914537191391, 0.06010282039642334, 0.11361204087734222, -0.08742581307888031, -0.01923552341759205, 0.10122893005609512, 0.16523560881614685, -0.03522760421037674, -0.04618692025542259, -0.08119747042655945, -0.10965107381343842, 0.06878600269556046, 0.1336420625448227, 0.03140074014663696, -0.010628539137542248, -0.054232459515333176, 0.02781382016837597, -0.14113883674144745, 0.07247684895992279, 0.05182233080267906, 0.07018763571977615, -0.1275233030319214, 0.15565727651119232, 0.020667623728513718, 0.02432844787836075, -0.018115466460585594, 0.011292076669633389, -0.09679333120584488, -0.02448859065771103, -0.11753051728010178, 0.0017849005525931716, -0.035582687705755234, 0.0034532479476183653, -0.0022617410868406296, -0.018019361421465874, -0.05524709075689316, 0.04370565712451935, -0.06527218967676163, -0.061870280653238297, 0.0013052340364083648, 0.05778713524341583, -0.12759675085544586, 0.008490418083965778, -0.005539182107895613, -0.09375342726707458, 0.07044536620378494, 0.05217829346656799, 0.0025555051397532225, 0.03546556085348129, -0.10997757315635681, -0.023871419951319695, 0.04179941862821579, 0.03677847981452942, 0.053275372833013535, -0.0892496332526207, 0.00558438478037715, 0.006011407822370529, 0.03975839912891388, 0.022462721914052963, 0.07386798411607742, -0.10960660129785538, -0.013231380842626095, -0.07395400106906891, -0.0691993311047554, -0.06634264439344406, 0.04445789009332657, 0.09726695716381073, 0.019367080181837082, 0.1807323843240738, -0.09534440189599991, 0.0339805968105793, -0.20022684335708618, -0.027135955169796944, 0.011891706846654415, -0.037244562059640884, -0.03768785670399666, -0.03393138572573662, 0.07166872918605804, -0.05668752267956734, 0.10752028226852417, 0.007633577100932598, 0.0627993643283844, 0.05004848912358284, -0.03819335624575615, -0.058036934584379196, 0.0045424276031553745, 0.18930462002754211, 0.060153570026159286, -0.027612730860710144, 0.06841377913951874, -0.020154915750026703, 0.0679832249879837, 0.07064405083656311, 0.2279609888792038, 0.14967665076255798, -0.04647846519947052, 0.07562541216611862, 0.04742151498794556, -0.09696324914693832, -0.15996316075325012, 0.12085606157779694, -0.03722352162003517, 0.14812040328979492, -0.0426582470536232, 0.1887710988521576, 0.10763397812843323, -0.1688988208770752, 0.0524134635925293, -0.04038289934396744, -0.10617893189191818, -0.12710319459438324, -0.08509819954633713, -0.08684708923101425, -0.11116977781057358, 0.010991017334163189, -0.11798088997602463, 0.05429135635495186, 0.05694718286395073, 0.03227247670292854, 0.003527548862621188, 0.12577016651630402, -0.04164173826575279, -0.008004773408174515, 0.06227594241499901, 0.014035837724804878, -0.010587742552161217, -0.06190194934606552, -0.06494032591581345, 0.024495350196957588, -0.0017040662933140993, 0.08012675493955612, -0.03201846778392792, 0.010979841463267803, 0.039178453385829926, -0.033678360283374786, -0.05144317075610161, 0.03320903703570366, 0.008372576907277107, 0.03122584894299507, 0.0627211183309555, 0.055678755044937134, -0.03199135139584541, -0.03216111660003662, 0.24303694069385529, -0.06433939188718796, -0.11548881977796555, -0.12943793833255768, 0.21893209218978882, 0.032169487327337265, -0.030678872019052505, 0.0774495080113411, -0.09238302707672119, -0.019668610766530037, 0.17439767718315125, 0.15789131820201874, -0.03851332142949104, -0.02057046629488468, -0.013039127923548222, -0.019327549263834953, -0.03627314791083336, 0.15030193328857422, 0.09523988515138626, 0.06928791105747223, -0.037109941244125366, -0.0029067164286971092, -0.014203985221683979, -0.017783069983124733, -0.10393156856298447, 0.06549493968486786, 0.02867092937231064, -0.010259856469929218, -0.007463169749826193, 0.06626380980014801, -0.010639275424182415, -0.12808632850646973, 0.03590903803706169, -0.14260469377040863, -0.1643928438425064, -0.02392677590250969, 0.09008858352899551, -0.05002053827047348, 0.03566199168562889, -0.013005344197154045, -0.004745457787066698, 0.11843858659267426, -0.012855789624154568, -0.08285006135702133, -0.09559961408376694, 0.0858035683631897, -0.0922810360789299, 0.18404990434646606, -0.007296561263501644, 0.06493060290813446, 0.11131167411804199, 0.04421495273709297, -0.11067559570074081, 0.06552758812904358, 0.04636095464229584, -0.061529092490673065, 0.0369427427649498, 0.14812596142292023, -0.05533468723297119, 0.08014869689941406, 0.039424363523721695, -0.0844176784157753, -0.013977625407278538, -0.06174495816230774, -0.013716461136937141, -0.060941874980926514, 0.000983378035016358, -0.07460518181324005, 0.15280954539775848, 0.2083313763141632, -0.012934401631355286, 0.015576372854411602, -0.09601417183876038, 0.01904202625155449, 0.04752456396818161, 0.10039688646793365, -0.030435362830758095, -0.2018730789422989, 0.010076478123664856, -0.015586926601827145, 0.03468161076307297, -0.23390556871891022, -0.09799160063266754, 0.019076379016041756, -0.04654281958937645, -0.10268419235944748, 0.12516453862190247, 0.08725190907716751, 0.03849439322948456, -0.04386086389422417, -0.13509298861026764, -0.036781035363674164, 0.1498529464006424, -0.1546640396118164, -0.037755195051431656 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # test-summarization This model was trained from scratch on an unkown dataset. It achieves the following results on the evaluation set: - Loss: 2.4740 - Rouge1: 28.3487 - Rouge2: 7.7836 - Rougel: 22.3307 - Rougelsum: 22.3357 - Gen Len: 18.8307 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 14 - eval_batch_size: 14 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:-------:|:------:|:-------:|:---------:|:-------:| | 2.7042 | 1.0 | 14575 | 2.4740 | 28.3487 | 7.7836 | 22.3307 | 22.3357 | 18.8307 | ### Framework versions - Transformers 4.6.1 - Pytorch 1.7.0 - Datasets 1.11.0 - Tokenizers 0.10.3
{"metrics": ["rouge"]}
text2text-generation
fadhilarkan/test-summarization
[ "transformers", "pytorch", "t5", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #t5 #text2text-generation #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
test-summarization ================== This model was trained from scratch on an unkown dataset. It achieves the following results on the evaluation set: * Loss: 2.4740 * Rouge1: 28.3487 * Rouge2: 7.7836 * Rougel: 22.3307 * Rougelsum: 22.3357 * Gen Len: 18.8307 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 14 * eval\_batch\_size: 14 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 1 * mixed\_precision\_training: Native AMP ### Training results ### Framework versions * Transformers 4.6.1 * Pytorch 1.7.0 * Datasets 1.11.0 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 14\n* eval\\_batch\\_size: 14\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 1\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.6.1\n* Pytorch 1.7.0\n* Datasets 1.11.0\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #t5 #text2text-generation #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 14\n* eval\\_batch\\_size: 14\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 1\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.6.1\n* Pytorch 1.7.0\n* Datasets 1.11.0\n* Tokenizers 0.10.3" ]
[ 48, 113, 4, 30 ]
[ "passage: TAGS\n#transformers #pytorch #t5 #text2text-generation #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 14\n* eval\\_batch\\_size: 14\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 1\n* mixed\\_precision\\_training: Native AMP### Training results### Framework versions\n\n\n* Transformers 4.6.1\n* Pytorch 1.7.0\n* Datasets 1.11.0\n* Tokenizers 0.10.3" ]
[ -0.07622705399990082, -0.01142213586717844, -0.0022985348477959633, 0.08033488690853119, 0.1965385228395462, 0.03363955765962601, 0.10650551319122314, 0.11699125915765762, -0.10706164687871933, 0.01911693997681141, 0.10412339866161346, 0.16413187980651855, 0.022859999909996986, 0.1302761733531952, -0.07542525231838226, -0.2954055964946747, -0.0024443943984806538, 0.037272464483976364, -0.04796401038765907, 0.13536877930164337, 0.09001745283603668, -0.14044944941997528, 0.0668080523610115, -0.012469173409044743, -0.20384341478347778, 0.020764777436852455, 0.023435933515429497, -0.06518197059631348, 0.15849177539348602, 0.030342742800712585, 0.13512299954891205, 0.009112024679780006, 0.08194518834352493, -0.19837826490402222, 0.012392962351441383, 0.06058337911963463, 0.01938812807202339, 0.07222641259431839, 0.07596807181835175, -0.016884975135326385, 0.1340610831975937, -0.08912529051303864, 0.05903103947639465, 0.019805800169706345, -0.12812240421772003, -0.21527443826198578, -0.060323622077703476, -0.006171379704028368, 0.07277822494506836, 0.10641327500343323, -0.017631400376558304, 0.14513961970806122, -0.10581781715154648, 0.10776741802692413, 0.2207024246454239, -0.26975351572036743, -0.07037477195262909, -0.0027153680566698313, 0.01410528365522623, 0.0990128219127655, -0.09782782196998596, -0.005771642550826073, 0.046870794147253036, 0.06294664740562439, 0.12565405666828156, -0.030613243579864502, -0.10657265782356262, 0.009626025334000587, -0.14641323685646057, -0.027786867693066597, 0.10590488463640213, 0.020608287304639816, -0.026743948459625244, -0.026595981791615486, -0.07575204968452454, -0.1418531835079193, -0.0512634702026844, -0.0239725261926651, 0.035034626722335815, -0.03955657780170441, -0.07163646817207336, 0.0027177927549928427, -0.09171892702579498, -0.06056787073612213, -0.07009520381689072, 0.17442691326141357, 0.04546252638101578, -0.0036377343349158764, -0.043016791343688965, 0.10159731656312943, -0.02281378023326397, -0.13086120784282684, 0.030467785894870758, 0.020032815635204315, -0.02860405296087265, -0.054762035608291626, -0.07834013551473618, -0.09653177857398987, -0.001314141321927309, 0.08506632596254349, -0.07255908101797104, 0.067982979118824, -0.00530896196141839, 0.02288368158042431, -0.08883698284626007, 0.18631796538829803, -0.017449725419282913, -0.024944305419921875, 0.006473642773926258, 0.03875944763422012, -0.004098053090274334, -0.020983871072530746, -0.0927913710474968, -0.0023285343777388334, 0.12734273076057434, 0.020183265209197998, -0.07042756676673889, 0.06894858926534653, -0.03698880597949028, -0.02387794479727745, -0.04878439009189606, -0.10694622248411179, 0.03944703936576843, -0.013091090135276318, -0.06849362701177597, 0.022394638508558273, 0.016138831153512, 0.020201431587338448, -0.05140872299671173, 0.14530447125434875, -0.07378723472356796, 0.04089122265577316, -0.10843413323163986, -0.1315055936574936, 0.006268671713769436, -0.03440164402127266, 0.011583814397454262, -0.1106899306178093, -0.15933364629745483, -0.009854058735072613, 0.0477791354060173, -0.03819406032562256, -0.04943480342626572, -0.052525702863931656, -0.061358608305454254, 0.029487309977412224, -0.028614915907382965, 0.17554320394992828, -0.05980818346142769, 0.11539581418037415, 0.06530456244945526, 0.06724042445421219, -0.027765946462750435, 0.057862285524606705, -0.08377384394407272, -0.00018620611808728427, -0.20533955097198486, 0.06872620433568954, -0.03515799716114998, 0.07220867276191711, -0.07424706220626831, -0.11406659334897995, -0.0016100771026685834, 0.0029527076985687017, 0.1003255695104599, 0.10717269033193588, -0.1497519314289093, -0.08676657825708389, 0.17034409940242767, -0.06985655426979065, -0.1041594073176384, 0.12577828764915466, -0.0554683655500412, 0.029415924102067947, 0.07967326045036316, 0.16387253999710083, 0.05058706924319267, -0.07334142923355103, 0.0378539003431797, -0.03672492504119873, 0.05742499604821205, -0.027065470814704895, 0.050043072551488876, 0.019070105627179146, -0.033995602279901505, 0.02515411376953125, 0.012900497764348984, 0.07115131616592407, -0.11690899729728699, -0.07542766630649567, -0.0506284162402153, -0.08380156010389328, 0.05323990806937218, 0.06408987939357758, 0.08456819504499435, -0.1195240318775177, -0.07564304769039154, 0.06856705993413925, 0.06278552860021591, -0.058403193950653076, 0.03989938274025917, -0.05119355022907257, 0.05171217769384384, -0.034412529319524765, -0.0013264225563034415, -0.20534339547157288, -0.029128406196832657, 0.007305965293198824, 0.05783931538462639, 0.03371451795101166, 0.0002971660578623414, 0.07576121389865875, 0.06493072956800461, -0.06692884117364883, -0.022486405447125435, -0.02123257890343666, -0.006050447933375835, -0.14250889420509338, -0.17870888113975525, -0.012776749208569527, -0.014110986143350601, 0.10111524164676666, -0.20760612189769745, 0.02189621515572071, -0.040264423936605453, 0.08254134654998779, 0.0006892484379932284, 0.005475405603647232, -0.05736270546913147, 0.10000975430011749, -0.03192029893398285, -0.03614164516329765, 0.07468094676733017, -0.003737169783562422, -0.07819408923387527, -0.033998195081949234, -0.12550503015518188, 0.16980907320976257, 0.13476191461086273, -0.17118093371391296, -0.0865989401936531, -0.003685899544507265, -0.051812320947647095, -0.03049958124756813, -0.05464769899845123, 0.02754630148410797, 0.19069373607635498, -0.004796660505235195, 0.1563212126493454, -0.06500623375177383, -0.03287499397993088, 0.019011860713362694, -0.03264721855521202, 0.04277470335364342, 0.11632228642702103, 0.09418061375617981, -0.09000809490680695, 0.11343733221292496, 0.14273904263973236, -0.0931273102760315, 0.13493148982524872, -0.026387151330709457, -0.08775022625923157, 0.00400875648483634, -0.02574433945119381, 0.00044724449981004, 0.05701391398906708, -0.14148525893688202, -0.0015565147623419762, 0.019195420667529106, 0.0411149226129055, 0.027747340500354767, -0.220101460814476, -0.028192397207021713, 0.040169671177864075, -0.031631920486688614, -0.030156360939145088, -0.01721651665866375, 0.03802334517240524, 0.1277310848236084, 0.006366505287587643, -0.055823005735874176, 0.01975773647427559, -0.0029765935614705086, -0.08774035423994064, 0.20981809496879578, -0.08360535651445389, -0.1716672033071518, -0.09491836279630661, -0.10752526670694351, -0.04204469174146652, 0.009716936387121677, 0.06390196084976196, -0.12024138867855072, -0.03386816382408142, -0.04073766618967056, 0.05798085778951645, -0.019755426794290543, 0.044901877641677856, -0.004596429876983166, -0.0030881634447723627, 0.06070709601044655, -0.09212320297956467, -0.022009028121829033, -0.04720684513449669, -0.06293193995952606, 0.07378339767456055, 0.03675156086683273, 0.10527929663658142, 0.16713224351406097, -0.03942111134529114, 0.01933159865438938, -0.038478679955005646, 0.22381341457366943, -0.07053828239440918, -0.035635415464639664, 0.13702872395515442, -0.01188076101243496, 0.0548047199845314, 0.1127154529094696, 0.053349848836660385, -0.09226744621992111, 0.03568427264690399, 0.0372249074280262, -0.03259739652276039, -0.22215181589126587, -0.04374456778168678, -0.06832991540431976, -0.03223299980163574, 0.08159220218658447, 0.011992846615612507, 0.04107856750488281, 0.05602666735649109, 0.033100105822086334, 0.07485803216695786, -0.030981605872511864, 0.06181938573718071, 0.1520071178674698, 0.0455738790333271, 0.1375626176595688, -0.043515413999557495, -0.08519395440816879, 0.036166492849588394, -0.043836865574121475, 0.22544099390506744, 0.007633793633431196, 0.06719490140676498, 0.03573828190565109, 0.1458507925271988, 0.015253094956278801, 0.09744764119386673, 0.01169939897954464, -0.05303989350795746, -0.008955593220889568, -0.03567476198077202, -0.050415027886629105, 0.016820844262838364, -0.046191807836294174, 0.039317671209573746, -0.1487734168767929, -0.024522848427295685, 0.05356452241539955, 0.2421897053718567, 0.033834490925073624, -0.31466636061668396, -0.0798381045460701, 0.014705200679600239, -0.06761828064918518, -0.02971033565700054, 0.012148969806730747, 0.07599681615829468, -0.11662198603153229, 0.05306660383939743, -0.07370322197675705, 0.11167069524526596, -0.021630948409438133, 0.057219889014959335, 0.033523108810186386, 0.11622603237628937, -0.0038095240015536547, 0.07778014987707138, -0.35215073823928833, 0.27793416380882263, 0.0029784077778458595, 0.07020854204893112, -0.08163593709468842, -0.004300720989704132, 0.038007739931344986, 0.05152996629476547, 0.014513515867292881, -0.019319284707307816, -0.06144573912024498, -0.19371569156646729, -0.02516116388142109, 0.04212469980120659, 0.12590304017066956, -0.006649035029113293, 0.12125534564256668, -0.03931180760264397, 0.009604604914784431, 0.07661991566419601, -0.004024802707135677, -0.09626637399196625, -0.07857305556535721, -0.01230902224779129, 0.0214743260294199, -0.005662631243467331, -0.06096465140581131, -0.11528871953487396, -0.1048002690076828, 0.16247698664665222, 0.04851407930254936, -0.024930454790592194, -0.127873957157135, 0.1037680059671402, 0.07386847585439682, -0.08429507911205292, 0.03442765772342682, 0.013766742311418056, 0.0673576071858406, 0.026992684230208397, -0.08071020990610123, 0.11858000606298447, -0.0693817287683487, -0.15119265019893646, -0.05042121186852455, 0.1074615940451622, 0.014707245863974094, 0.07465773820877075, -0.01915346458554268, 0.013742834329605103, -0.025431672111153603, -0.08468729257583618, 0.020553110167384148, -0.022237185388803482, 0.06065027788281441, 0.054881222546100616, -0.06806348264217377, 0.006135588511824608, -0.0734572485089302, -0.044526971876621246, 0.22133295238018036, 0.23250728845596313, -0.07032027095556259, 0.0067435456439852715, 0.025330735370516777, -0.06888070702552795, -0.1826813817024231, 0.052189797163009644, 0.08057284355163574, 0.013026623986661434, 0.03169320896267891, -0.17700529098510742, 0.09937503933906555, 0.08027275651693344, 0.008962764404714108, 0.09160816669464111, -0.311799556016922, -0.13447967171669006, 0.10982222855091095, 0.15643762052059174, 0.15302100777626038, -0.14280952513217926, -0.014586420729756355, -0.045725736767053604, -0.11150393635034561, 0.10522603243589401, -0.07723639905452728, 0.12870080769062042, -0.016414394602179527, 0.11028078943490982, 0.017289619892835617, -0.04790332540869713, 0.09805940091609955, -0.01219868566840887, 0.0849737748503685, -0.07339048385620117, 0.008958983235061169, 0.009956993162631989, -0.03695983067154884, -0.0028383738826960325, -0.053274255245923996, 0.02010188065469265, -0.09804987907409668, -0.031355760991573334, -0.09007950872182846, 0.024277551099658012, -0.022707831114530563, -0.06387870013713837, -0.01341215893626213, 0.008986962027847767, 0.05486312136054039, -0.021258141845464706, 0.10690828412771225, -0.023371435701847076, 0.17507053911685944, 0.09171205013990402, 0.10497529804706573, -0.08502747863531113, -0.015992814674973488, -0.004184487275779247, -0.015129825100302696, 0.03616400435566902, -0.12624454498291016, 0.03246217593550682, 0.1496967226266861, 0.007463640999048948, 0.13719725608825684, 0.09794460982084274, -0.01593519188463688, 0.01497920136898756, 0.07673818618059158, -0.1612890511751175, -0.09775993227958679, -0.019202128052711487, -0.04765188694000244, -0.09684336930513382, 0.03192329406738281, 0.10205941647291183, -0.07321374118328094, -0.010970140807330608, -0.019925326108932495, -0.005248911678791046, -0.07125696539878845, 0.21214567124843597, 0.04152362048625946, 0.05456077307462692, -0.10002235323190689, 0.0672183558344841, 0.04962161183357239, -0.09560878574848175, 0.015964724123477936, 0.13282907009124756, -0.07359357178211212, -0.036140430718660355, 0.10218370705842972, 0.1837107092142105, -0.06782471388578415, -0.03148099407553673, -0.14033663272857666, -0.14380770921707153, 0.08661539107561111, 0.1712396740913391, 0.0885109081864357, -0.005892341025173664, -0.0651942640542984, 0.02644418179988861, -0.136588454246521, 0.07881241291761398, 0.06677448749542236, 0.07184918969869614, -0.13431471586227417, 0.19946496188640594, 0.004601280204951763, 0.05744476616382599, -0.036103177815675735, 0.011199869215488434, -0.11063779890537262, 0.03432532772421837, -0.1539095640182495, -0.05303356796503067, -0.0038144257850944996, -0.007213899865746498, -0.00589224835857749, -0.07056467980146408, -0.06215474009513855, -0.0027287534903734922, -0.12123221158981323, -0.024839265272021294, 0.017076818272471428, 0.038416244089603424, -0.10198605060577393, -0.03762895241379738, 0.031010832637548447, -0.06501749902963638, 0.05777624621987343, 0.06274048984050751, -0.005038429517298937, 0.07851609587669373, -0.14373183250427246, -0.018455391749739647, 0.06758932769298553, 0.005100916605442762, 0.0745004191994667, -0.08521932363510132, 0.00861462950706482, 0.007319040130823851, 0.09012611210346222, 0.03313278406858444, 0.07808298617601395, -0.12958857417106628, -0.00236681685782969, -0.03691721707582474, -0.10927868634462357, -0.058631204068660736, 0.02884639985859394, 0.05131691321730614, 0.014931921847164631, 0.16934248805046082, -0.10021188110113144, 0.05787574499845505, -0.2231770008802414, -0.004390193615108728, -0.02259650267660618, -0.11486634612083435, -0.08653104305267334, -0.0784895196557045, 0.08502070605754852, -0.0483117550611496, 0.11385920643806458, 0.025585373863577843, 0.10070927441120148, 0.03654530271887779, -0.040213361382484436, 0.0073452601209282875, 0.027332214638590813, 0.2265377789735794, 0.05217912420630455, -0.04584485664963722, 0.057499319314956665, 0.06524182111024857, 0.10889563709497452, 0.13216528296470642, 0.23582984507083893, 0.14894354343414307, 0.0010986452689394355, 0.09563397616147995, 0.014282983727753162, -0.05264264717698097, -0.14559468626976013, 0.008548075333237648, -0.0459243506193161, 0.10062472522258759, -0.033471304923295975, 0.20439955592155457, 0.08116870373487473, -0.1571674346923828, 0.055541180074214935, -0.0703250989317894, -0.0930141881108284, -0.11602679640054703, -0.006301515735685825, -0.09299938380718231, -0.167836531996727, -0.000984772341325879, -0.12249954044818878, 0.0494510792195797, 0.10557191073894501, 0.025793056935071945, -0.026290182024240494, 0.16788159310817719, 0.05065853148698807, 0.006449512206017971, 0.08227348327636719, -0.006437620148062706, 0.004776445683091879, -0.07254461944103241, -0.07262624800205231, -0.015366028994321823, -0.011422360315918922, 0.03873418644070625, -0.03911478444933891, -0.10545986145734787, 0.039427440613508224, -0.03474430367350578, -0.10977619141340256, 0.0242108516395092, 0.02622714824974537, 0.07148930430412292, 0.06526967138051987, 0.00631328159943223, -0.002290709177032113, -0.024512946605682373, 0.24746252596378326, -0.09672103077173233, -0.10931815952062607, -0.09727595001459122, 0.31486502289772034, 0.046914242208004, 0.0013187606818974018, 0.022253455594182014, -0.05856931582093239, -0.015944862738251686, 0.2521749436855316, 0.17242781817913055, -0.10713014751672745, -0.014724954031407833, 0.0006994143477641046, -0.007429551333189011, -0.00924145057797432, 0.14625699818134308, 0.1492493450641632, 0.05960531160235405, -0.1048072874546051, -0.018134035170078278, -0.051733117550611496, -0.011898808181285858, -0.04775966703891754, 0.08213670551776886, 0.061404842883348465, 0.004964177962392569, -0.031920161098241806, 0.07478545606136322, -0.07307495176792145, -0.05563129484653473, -0.002866410417482257, -0.20547950267791748, -0.15934237837791443, -0.01819067820906639, 0.09367316216230392, -0.0034120262134820223, 0.06585469841957092, -0.025781819596886635, -0.0016857279697433114, 0.05594227463006973, -0.019241079688072205, -0.052422311156988144, -0.08674155920743942, 0.09961263835430145, -0.11721254885196686, 0.14684031903743744, -0.03966100141406059, 0.05272715166211128, 0.12941621243953705, 0.06668221950531006, -0.057465046644210815, 0.0795002430677414, 0.03667247295379639, -0.08962821215391159, 0.042123131453990936, 0.13594090938568115, -0.04035354033112526, 0.031441666185855865, 0.04720192775130272, -0.1507311910390854, 0.028466807678341866, -0.09437944740056992, -0.041201166808605194, -0.018411245197057724, -0.04913058131933212, -0.05822810158133507, 0.1147039383649826, 0.23620183765888214, -0.022104915231466293, 0.03154154494404793, -0.09460675716400146, 0.0052604759112000465, 0.03462652489542961, 0.07028541713953018, -0.08534751832485199, -0.26302486658096313, -0.003785444889217615, 0.09938611090183258, -0.025446122512221336, -0.2598761022090912, -0.08854138106107712, 0.0005602310411632061, -0.06081823632121086, -0.11645472049713135, 0.11169775575399399, 0.0824870839715004, 0.036913491785526276, -0.049773216247558594, -0.14714659750461578, -0.06396542489528656, 0.19185996055603027, -0.1475033313035965, -0.07630523294210434 ]
null
null
transformers
# test DialoGPT Model
{"tags": ["conversational"]}
text-generation
faketermz/DialoGPT
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
# test DialoGPT Model
[ "# test DialoGPT Model" ]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "# test DialoGPT Model" ]
[ 51, 7 ]
[ "passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n# test DialoGPT Model" ]
[ -0.058454714715480804, 0.054849859327077866, -0.004869355354458094, 0.019150514155626297, 0.09150604903697968, -0.006544081959873438, 0.1494974046945572, 0.15603479743003845, 0.028035923838615417, -0.035270605236291885, 0.1401039958000183, 0.1623115837574005, -0.008783511817455292, 0.06414789706468582, -0.09861502796411514, -0.2093149870634079, 0.05586855486035347, 0.06806384027004242, 0.04782457277178764, 0.1618170291185379, 0.0970136821269989, -0.04119293764233589, 0.06944122910499573, 0.011731921695172787, -0.15551045536994934, 0.0191457811743021, 0.007759189233183861, -0.11941414326429367, 0.12551811337471008, 0.022183502092957497, 0.038173697888851166, 0.048153962939977646, -0.06395348161458969, -0.13320717215538025, 0.02491115592420101, -0.027845701202750206, -0.001629888080060482, 0.02514367736876011, 0.021239858120679855, -0.06791474670171738, 0.1254461407661438, 0.15228617191314697, 0.012522995471954346, 0.036126088351011276, -0.11515181511640549, -0.040248479694128036, -0.017945963889360428, 0.01445676852017641, 0.06579438596963882, 0.13734322786331177, -0.07059428095817566, 0.19655130803585052, -0.1334463506937027, 0.12238873541355133, 0.0833498165011406, -0.3017609119415283, -0.018900733441114426, 0.11468781530857086, 0.09184467047452927, 0.032848112285137177, -0.015478502959012985, 0.06723278015851974, 0.059066496789455414, 0.037155769765377045, -0.09091409295797348, -0.0871148556470871, -0.11432796716690063, 0.01610618643462658, -0.11762023717164993, -0.04796699807047844, 0.24762365221977234, -0.03425273671746254, 0.026874223724007607, -0.08787276595830917, -0.04574678838253021, -0.04064542427659035, 0.00033346202690154314, -0.059280186891555786, -0.09031906723976135, 0.037614911794662476, -0.031396109610795975, -0.07800453156232834, -0.11591324955224991, -0.09253411740064621, -0.1838322877883911, 0.13470417261123657, 0.051137860864400864, 0.024284031242132187, -0.1901329904794693, 0.12057295441627502, 0.0032377031166106462, -0.10034241527318954, -0.045879196375608444, -0.09226091206073761, -0.021190974861383438, -0.0143235232681036, -0.06118772178888321, -0.07306955009698868, 0.11778464168310165, 0.12681500613689423, -0.02081223763525486, 0.032691191881895065, -0.059091631323099136, 0.034338708966970444, 0.03227529674768448, 0.1347121298313141, 0.05753312632441521, -0.02795943059027195, 0.007872167974710464, -0.0538443885743618, -0.032866086810827255, -0.018135584890842438, -0.1250055432319641, -0.043608617037534714, 0.11646825075149536, 0.08025936037302017, 0.050520963966846466, 0.08109351992607117, -0.020388437435030937, -0.02221030369400978, 0.012409097515046597, -0.059038612991571426, -0.013676952570676804, 0.016980506479740143, -0.024934304878115654, 0.06013813614845276, 0.010789730586111546, 0.03574361652135849, -0.12216432392597198, -0.03852637857198715, -0.025252651423215866, 0.009040998294949532, -0.029451966285705566, -0.052693646401166916, 0.016880404204130173, -0.011835316196084023, -0.018818935379385948, -0.1672831028699875, -0.19920334219932556, -0.037303078919649124, -0.022787155583500862, -0.04938225448131561, -0.06718356907367706, -0.10711118578910828, -0.02007245644927025, 0.01590443029999733, -0.05980628356337547, -0.02528882399201393, -0.047439511865377426, 0.09419794380664825, 0.06464263051748276, 0.07677150517702103, -0.011239194311201572, 0.06594876199960709, -0.11797385662794113, -0.01836390234529972, -0.06805621832609177, 0.16485495865345, -0.04164442792534828, 0.046624522656202316, -0.0583755187690258, -0.047979120165109634, -0.09155350178480148, 0.058172985911369324, -0.011609026230871677, 0.2869161069393158, -0.10176746547222137, -0.08694947510957718, 0.2871631681919098, -0.06729502230882645, -0.1681573987007141, 0.17321836948394775, -0.005662125535309315, 0.08434148132801056, 0.1458483189344406, 0.20242097973823547, 0.036679331213235855, -0.06982307136058807, 0.06610346585512161, 0.10163009911775589, -0.06774018704891205, 0.0159312691539526, 0.04796474426984787, -0.07013561576604843, -0.10035333782434464, 0.037662483751773834, 0.035901784896850586, 0.05465921014547348, -0.05863593891263008, -0.028357233852148056, -0.04442752152681351, -0.005883077159523964, 0.12295838445425034, 0.005269973073154688, 0.11714410036802292, -0.0723094791173935, -0.06714286655187607, -0.00963416788727045, 0.03430144488811493, -0.0692492127418518, 0.013825044967234135, -0.11759655177593231, 0.10783547163009644, -0.042049508541822433, 0.04190414398908615, -0.14326126873493195, -0.027180619537830353, -0.0049763089045882225, 0.15543679893016815, 0.06109524518251419, 0.10191883891820908, 0.0830189436674118, -0.07119312882423401, 0.016974104568362236, 0.008264495991170406, 0.15129679441452026, -0.024509763345122337, -0.08084318786859512, -0.055974725633859634, 0.10929803550243378, -0.04928668960928917, 0.11129365116357803, -0.0846387967467308, 0.0031721419654786587, -0.015374132432043552, 0.08368207514286041, -0.043865710496902466, 0.029321201145648956, 0.02182772010564804, -0.010339019820094109, -0.04862494021654129, -0.004948901943862438, 0.06311853229999542, -0.00604849960654974, -0.07639694958925247, 0.2026381939649582, -0.12419036030769348, 0.0949496328830719, 0.15560908615589142, -0.1867033839225769, -0.0341830737888813, -0.10101998597383499, -0.039037298411130905, 0.0161844901740551, 0.012440241873264313, -0.036104656755924225, 0.2559361159801483, -0.026020856574177742, 0.15171363949775696, -0.07120358198881149, -0.05087471753358841, -0.04232212156057358, -0.07747453451156616, 0.039309725165367126, 0.11888479441404343, 0.040811702609062195, -0.15411873161792755, 0.12326928228139877, 0.03497624024748802, -0.03586103022098541, 0.15842053294181824, 0.0014126397436484694, -0.019493548199534416, 0.04872272536158562, 0.08602794259786606, -0.04667172208428383, -0.06355796009302139, -0.3210277259349823, -0.017428047955036163, 0.07226964086294174, 0.06320029497146606, 0.10473031550645828, -0.10398541390895844, -0.014157657511532307, 0.006904085632413626, -0.05514471232891083, 0.016831200569868088, 0.12987978756427765, 0.037081386893987656, 0.0995415598154068, -0.02794845961034298, -0.07398311793804169, 0.06615743786096573, 0.00842159241437912, -0.13789595663547516, 0.21935713291168213, -0.10228922963142395, -0.351380318403244, -0.07798030227422714, -0.14230568706989288, -0.043414708226919174, 0.04082268103957176, 0.1278688758611679, -0.13504822552204132, 0.002140265889465809, -0.0071036010049283504, 0.07623924314975739, -0.03012276440858841, 0.018732087686657906, -0.04211229830980301, -0.011621891520917416, -0.0988372340798378, -0.09592793136835098, -0.06463591754436493, -0.013895131647586823, -0.06176260858774185, 0.1348438560962677, -0.15241123735904694, 0.01777040585875511, 0.2230299413204193, 0.025681564584374428, 0.06849886476993561, -0.04621488228440285, 0.23949366807937622, -0.1321290284395218, -0.018847346305847168, 0.20788225531578064, -0.022986773401498795, 0.011788264848291874, 0.09856043010950089, -0.043529361486434937, -0.06920145452022552, 0.05489673838019371, -0.04377273470163345, -0.046189114451408386, -0.2655889093875885, -0.11465185135602951, -0.07716473191976547, 0.06016466021537781, 0.009002579376101494, 0.05059518665075302, 0.17120978236198425, 0.08232632279396057, 0.005490353796631098, -0.04270629957318306, 0.04460737854242325, 0.06263939291238785, 0.2743052840232849, -0.07302570343017578, 0.13908229768276215, -0.028281500563025475, -0.1613590121269226, 0.03890436515212059, 0.050126805901527405, 0.09708860516548157, 0.04968543350696564, 0.012783254496753216, 0.03824257850646973, 0.05118744075298309, 0.11116833984851837, 0.03133596479892731, 0.04323854669928551, -0.05486233904957771, 0.011408190242946148, -0.043146539479494095, -0.039166029542684555, 0.022502293810248375, 0.10174766927957535, -0.13526582717895508, -0.03933142125606537, -0.05440516769886017, 0.06854544579982758, 0.040510233491659164, 0.11623764038085938, -0.22330570220947266, -0.02811270020902157, 0.007951779291033745, -0.06950613856315613, -0.09898509830236435, 0.06624045222997665, -0.0020685831550508738, -0.16554704308509827, 0.0382755771279335, -0.02306016907095909, 0.10852667689323425, -0.03900473937392235, 0.055670611560344696, -0.11482951045036316, -0.08686720579862595, 0.001418977277353406, 0.1310579478740692, -0.34720489382743835, 0.1921512633562088, -0.018785808235406876, -0.008973367512226105, -0.1116703525185585, -0.007289990317076445, 0.012535588815808296, 0.07615324854850769, 0.12236164510250092, -0.0367874950170517, 0.06051143258810043, 0.0166466161608696, -0.060440488159656525, 0.04908055439591408, 0.0767110213637352, 0.04110727459192276, 0.023286882787942886, -0.03427311033010483, 0.0076326956041157246, -0.031848110258579254, -0.10525447875261307, -0.054235316812992096, -0.08960884809494019, 0.051539096981287, 0.044878821820020676, 0.077382393181324, 0.012124489061534405, -0.045855388045310974, -0.11207980662584305, 0.2706051170825958, -0.009881890378892422, -0.10997073352336884, -0.07459985464811325, -0.01366905402392149, 0.10455609858036041, -0.06383665651082993, 0.008727332577109337, -0.0545499250292778, 0.02226313389837742, -0.035375434905290604, -0.13758137822151184, 0.07034696638584137, -0.0937955379486084, -0.04983924701809883, -0.005518049001693726, 0.2052101492881775, -0.009376054629683495, 0.05064765363931656, 0.0899551510810852, -0.004778609611093998, -0.12866626679897308, -0.08799124509096146, -0.0236807893961668, -0.014748654328286648, -0.051659729331731796, 0.06924217939376831, 0.011515798978507519, -0.049098994582891464, -0.0815337672829628, -0.013482983224093914, 0.3251459002494812, 0.1308719664812088, -0.030886685475707054, 0.13827869296073914, 0.07455132901668549, -0.06599841266870499, -0.2753336727619171, -0.05593071132898331, -0.004109115339815617, 0.0009279991500079632, -0.09591929614543915, -0.11729458719491959, 0.07816115021705627, -0.022252582013607025, -0.029169345274567604, 0.12748727202415466, -0.31080004572868347, -0.09567046165466309, 0.22354020178318024, -0.047274548560380936, 0.303570419549942, -0.11134189367294312, -0.09181136637926102, -0.016782080754637718, -0.1331019550561905, 0.09437451511621475, 0.01971776969730854, 0.11464765667915344, -0.01670672371983528, 0.1475977599620819, 0.05319061875343323, -0.02369678020477295, 0.1180834099650383, -0.0021039156708866358, -0.0693134143948555, -0.07371712476015091, 0.010891949757933617, -0.037655238062143326, 0.014403223991394043, 0.09428992122411728, -0.05124399811029434, 0.07107353210449219, -0.16588160395622253, -0.0626865029335022, -0.09268821775913239, 0.08915496617555618, 0.03317294642329216, -0.032328199595212936, -0.025900837033987045, -0.06484688818454742, -0.02357528917491436, 0.009307267144322395, 0.08925804495811462, -0.13776692748069763, 0.1612735241651535, 0.08838483691215515, 0.1845770627260208, -0.07790207117795944, -0.051760513335466385, -0.023004546761512756, -0.056241706013679504, 0.057940445840358734, -0.06865041702985764, 0.009621568024158478, 0.13467873632907867, -0.0035723799373954535, 0.09898031502962112, 0.07685713469982147, -0.02669421024620533, 0.018519213423132896, 0.08489738404750824, -0.19064347445964813, -0.03180111199617386, -0.0804634690284729, -0.049049001187086105, 0.015458212234079838, 0.08038663864135742, 0.18582649528980255, -0.011249285191297531, -0.03098529577255249, -0.0036591109819710255, -0.010518142022192478, -0.0726601853966713, 0.1655663549900055, 0.0017973622307181358, 0.03877574950456619, -0.13751128315925598, 0.04153814539313316, -0.03182561323046684, -0.07847652584314346, 0.054848380386829376, 0.1338367909193039, -0.08696423470973969, -0.13125291466712952, -0.05923584848642349, 0.11829932779073715, -0.12494949251413345, -0.03240529075264931, -0.07682308554649353, -0.12645423412322998, 0.06299314647912979, 0.09946855902671814, 0.08371288329362869, 0.07774490118026733, -0.04786419868469238, -0.03923014923930168, -0.03998357430100441, 0.037138137966394424, 0.06832768768072128, -0.006618075538426638, -0.05796827748417854, 0.08674520999193192, -0.029653333127498627, 0.1310734897851944, -0.10023680329322815, -0.10233759135007858, -0.14999645948410034, 0.07634498178958893, -0.16427560150623322, -0.06851678341627121, -0.06469745188951492, -0.04902215674519539, 0.024453742429614067, -0.03767972066998482, -0.02496998943388462, -0.026698438450694084, -0.1154048964381218, 0.03709735348820686, -0.030145864933729172, 0.010503530502319336, -0.08502773940563202, 0.044890936464071274, 0.06939425319433212, -0.04093350097537041, 0.1404537409543991, 0.1418255865573883, -0.1364632546901703, 0.08360781520605087, -0.14520063996315002, -0.05157753825187683, 0.1034243181347847, 0.014297890476882458, 0.040113795548677444, -0.013348469510674477, 0.0452757403254509, 0.10868445038795471, 0.07968773692846298, 0.0977620854973793, 0.04256525635719299, -0.07501073181629181, 0.0035135881043970585, -0.07545894384384155, -0.1014469638466835, -0.04288777336478233, -0.010369316674768925, -0.002110555302351713, 0.07937587797641754, 0.09711065888404846, -0.083875373005867, 0.08098902553319931, -0.08568625897169113, 0.01201139111071825, -0.0012806035811081529, -0.09962452203035355, -0.008271715603768826, -0.05279671773314476, 0.07912836968898773, 0.015200342983007431, 0.2039761245250702, 0.03525412827730179, 0.018965288996696472, 0.00934840552508831, 0.04136067256331444, 0.1021413654088974, -0.020224733278155327, 0.21893568336963654, 0.09200558066368103, -0.034528639167547226, -0.0716996043920517, 0.058325644582509995, 0.003977341111749411, -0.05586417019367218, 0.11495020240545273, 0.037620075047016144, -0.0855429396033287, 0.1061040461063385, -0.0009836751269176602, 0.027369007468223572, -0.06896647065877914, -0.15417204797267914, -0.0558401495218277, 0.07802252471446991, -0.026615388691425323, 0.16059410572052002, 0.13386170566082, -0.03831009939312935, 0.017519518733024597, -0.01762382686138153, -0.08813165873289108, -0.1907293051481247, -0.1360551118850708, -0.10229163616895676, -0.17812412977218628, 0.04984592646360397, -0.12169785052537918, 0.028916416689753532, -0.008355679921805859, 0.104253388941288, -0.09299057722091675, 0.12396393716335297, 0.043293148279190063, -0.12403465062379837, 0.09757477045059204, -0.06543520838022232, 0.08988867700099945, 0.0012928369687870145, 0.006293184123933315, -0.01032754871994257, 0.05515429750084877, 0.044296469539403915, 0.02063763700425625, -0.0774684026837349, 0.01758519560098648, -0.13003961741924286, -0.06137846037745476, -0.03617681935429573, 0.07973537594079971, 0.019738605245947838, 0.15622523427009583, 0.03249668329954147, -0.020491018891334534, 0.014693236909806728, 0.23480357229709625, -0.07108572125434875, -0.16085906326770782, -0.11766039580106735, 0.288775235414505, -0.026304736733436584, 0.08767376840114594, -0.01947002299129963, -0.0008486983715556562, -0.0674542710185051, 0.3482770025730133, 0.25160446763038635, -0.06493043899536133, -0.014332713559269905, 0.011789110489189625, 0.02393379434943199, 0.07832381129264832, 0.09435038268566132, 0.09390745311975479, 0.3169805109500885, -0.07054763287305832, -0.032593220472335815, -0.020893925800919533, -0.04717233404517174, -0.0660860612988472, 0.006177202332764864, 0.056367553770542145, -0.06511129438877106, -0.006414288654923439, 0.14549164474010468, -0.23514917492866516, 0.10448009520769119, -0.15506908297538757, -0.12318719178438187, -0.10488470643758774, 0.007667371071875095, 0.07273745536804199, 0.0032971338368952274, 0.060189615935087204, -0.013672963716089725, -0.0445433109998703, 0.04276106879115105, -0.027405912056565285, -0.14222432672977448, -0.026559237390756607, 0.07964788377285004, -0.06021779403090477, -0.04851333051919937, -0.006879991851747036, 0.17818358540534973, 0.08485501259565353, 0.03263808414340019, -0.02355680987238884, 0.0774456113576889, 0.016655102372169495, -0.07189899682998657, 0.0863724797964096, 0.05652570724487305, 0.05991189926862717, -0.0748266652226448, 0.08401535451412201, -0.09818252176046371, 0.0405905544757843, -0.05464518070220947, 0.006547361146658659, -0.1310739368200302, 0.04552610591053963, -0.076016865670681, 0.07189974933862686, 0.11426668614149094, -0.02573787420988083, 0.03964782506227493, -0.04094333201646805, 0.02463437244296074, -0.025362994521856308, -0.07840605080127716, -0.07869792729616165, -0.20892135798931122, -0.08113861083984375, 0.07829083502292633, -0.038717228919267654, -0.22615940868854523, 0.014125785790383816, -0.10439585149288177, 0.020266849547624588, -0.05749313160777092, 0.10231843590736389, 0.08090648800134659, 0.05316178873181343, 0.010411521419882774, -0.04713747650384903, 0.029959427192807198, 0.10475810617208481, -0.1484200805425644, -0.07842686772346497 ]
null
null
null
# Configuration `title`: _string_ Display title for the Space `emoji`: _string_ Space emoji (emoji-only character allowed) `colorFrom`: _string_ Color for Thumbnail gradient (red, yellow, green, blue, indigo, purple, pink, gray) `colorTo`: _string_ Color for Thumbnail gradient (red, yellow, green, blue, indigo, purple, pink, gray) `sdk`: _string_ Can be either `gradio` or `streamlit` `sdk_version` : _string_ Only applicable for `streamlit` SDK. See [doc](https://hf.co/docs/hub/spaces) for more info on supported versions. `app_file`: _string_ Path to your main application file (which contains either `gradio` or `streamlit` Python code). Path is relative to the root of the repository. `pinned`: _boolean_ Whether the Space stays on top of your list.
{"title": "Test Space", "emoji": "\ud83d\udd25", "colorFrom": "indigo", "colorTo": "blue", "sdk": "gradio", "app_file": "app.py", "pinned": false}
null
omerXfaruq/test-space
[ "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #region-us
# Configuration 'title': _string_ Display title for the Space 'emoji': _string_ Space emoji (emoji-only character allowed) 'colorFrom': _string_ Color for Thumbnail gradient (red, yellow, green, blue, indigo, purple, pink, gray) 'colorTo': _string_ Color for Thumbnail gradient (red, yellow, green, blue, indigo, purple, pink, gray) 'sdk': _string_ Can be either 'gradio' or 'streamlit' 'sdk_version' : _string_ Only applicable for 'streamlit' SDK. See doc for more info on supported versions. 'app_file': _string_ Path to your main application file (which contains either 'gradio' or 'streamlit' Python code). Path is relative to the root of the repository. 'pinned': _boolean_ Whether the Space stays on top of your list.
[ "# Configuration\n\n'title': _string_ \nDisplay title for the Space\n\n'emoji': _string_ \nSpace emoji (emoji-only character allowed)\n\n'colorFrom': _string_ \nColor for Thumbnail gradient (red, yellow, green, blue, indigo, purple, pink, gray)\n\n'colorTo': _string_ \nColor for Thumbnail gradient (red, yellow, green, blue, indigo, purple, pink, gray)\n\n'sdk': _string_ \nCan be either 'gradio' or 'streamlit'\n\n'sdk_version' : _string_ \nOnly applicable for 'streamlit' SDK. \nSee doc for more info on supported versions.\n\n'app_file': _string_ \nPath to your main application file (which contains either 'gradio' or 'streamlit' Python code). \nPath is relative to the root of the repository.\n\n'pinned': _boolean_ \nWhether the Space stays on top of your list." ]
[ "TAGS\n#region-us \n", "# Configuration\n\n'title': _string_ \nDisplay title for the Space\n\n'emoji': _string_ \nSpace emoji (emoji-only character allowed)\n\n'colorFrom': _string_ \nColor for Thumbnail gradient (red, yellow, green, blue, indigo, purple, pink, gray)\n\n'colorTo': _string_ \nColor for Thumbnail gradient (red, yellow, green, blue, indigo, purple, pink, gray)\n\n'sdk': _string_ \nCan be either 'gradio' or 'streamlit'\n\n'sdk_version' : _string_ \nOnly applicable for 'streamlit' SDK. \nSee doc for more info on supported versions.\n\n'app_file': _string_ \nPath to your main application file (which contains either 'gradio' or 'streamlit' Python code). \nPath is relative to the root of the repository.\n\n'pinned': _boolean_ \nWhether the Space stays on top of your list." ]
[ 6, 223 ]
[ "passage: TAGS\n#region-us \n# Configuration\n\n'title': _string_ \nDisplay title for the Space\n\n'emoji': _string_ \nSpace emoji (emoji-only character allowed)\n\n'colorFrom': _string_ \nColor for Thumbnail gradient (red, yellow, green, blue, indigo, purple, pink, gray)\n\n'colorTo': _string_ \nColor for Thumbnail gradient (red, yellow, green, blue, indigo, purple, pink, gray)\n\n'sdk': _string_ \nCan be either 'gradio' or 'streamlit'\n\n'sdk_version' : _string_ \nOnly applicable for 'streamlit' SDK. \nSee doc for more info on supported versions.\n\n'app_file': _string_ \nPath to your main application file (which contains either 'gradio' or 'streamlit' Python code). \nPath is relative to the root of the repository.\n\n'pinned': _boolean_ \nWhether the Space stays on top of your list." ]
[ 0.01188071072101593, 0.07758358120918274, -0.005383076146245003, -0.017373213544487953, 0.08687979727983475, -0.014924844726920128, 0.014434631913900375, 0.06603410094976425, 0.10808582603931427, 0.1384299099445343, 0.02763586863875389, 0.09634341299533844, 0.009154659695923328, 0.1522364765405655, 0.006923646666109562, -0.22283697128295898, 0.042200393974781036, -0.0709344744682312, 0.04902972653508186, 0.06943602859973907, 0.06273981928825378, -0.059291329234838486, 0.07202128320932388, -0.0033088354393839836, -0.14888131618499756, 0.00013695177040062845, -0.010616403073072433, -0.049460891634225845, 0.014828769490122795, -0.0402386374771595, 0.08266407251358032, -0.04675670340657234, -0.07371697574853897, -0.1268932968378067, 0.033357325941324234, 0.12697471678256989, 0.033907450735569, 0.002259220229461789, 0.12230198830366135, -0.12981177866458893, 0.21807576715946198, -0.1327449381351471, 0.05513199418783188, -0.014647294767200947, -0.018211161717772484, -0.15117362141609192, -0.0412733368575573, -0.05453411117196083, 0.14670124650001526, 0.009025073610246181, -0.008476284332573414, 0.01575237512588501, -0.12312111258506775, 0.08234678208827972, 0.06933248043060303, -0.04727475345134735, -0.002634770004078746, 0.1116911768913269, 0.08801890909671783, 0.037870731204748154, -0.12108538299798965, 0.0075067500583827496, -0.03785065934062004, -0.010196342132985592, -0.03730084374547005, -0.05277198180556297, -0.10130736231803894, 0.02550225891172886, -0.08296948671340942, -0.0009194708545692265, 0.25919461250305176, 0.012544205412268639, -0.05758257955312729, -0.11951438337564468, -0.06565803289413452, -0.045700762420892715, 0.02577689290046692, 0.060137517750263214, 0.053701069205999374, 0.06539168953895569, 0.10311403125524521, -0.0007050674175843596, -0.12313074618577957, -0.010358340106904507, -0.12153321504592896, 0.15558311343193054, -0.027887029573321342, 0.020990798249840736, -0.11456135660409927, 0.08364246785640717, -0.08822081238031387, -0.13817736506462097, 0.014043902978301048, -0.10895320028066635, 0.00031807392952032387, 0.06523092091083527, -0.0740472599864006, -0.17337968945503235, 0.0711340457201004, 0.1878124326467514, 0.055560074746608734, 0.0983857661485672, -0.0769592747092247, 0.04823235049843788, 0.10609938204288483, 0.191655695438385, -0.07476762682199478, 0.00942059326916933, 0.02892918698489666, -0.1705435961484909, 0.09933915734291077, -0.08998927474021912, -0.1121046394109726, 0.018870292231440544, -0.001934586907736957, -0.000014767882021260448, 0.10403572767972946, 0.0064650182612240314, -0.08259890973567963, -0.06819719076156616, 0.11214480549097061, -0.08646366745233536, 0.08762615919113159, 0.04516882076859474, -0.03648534417152405, 0.05987478047609329, -0.027545860037207603, 0.033786140382289886, 0.03255436569452286, 0.18013893067836761, -0.04335426539182663, -0.03640882298350334, -0.1593049317598343, -0.10343391448259354, 0.04724676534533501, -0.09820203483104706, 0.05610208958387375, -0.06877691298723221, -0.045289840549230576, -0.044973164796829224, 0.014098557643592358, -0.000728745711967349, 0.05700746551156044, 0.05061240494251251, -0.11077108979225159, 0.12225869297981262, 0.0473838746547699, -0.010428318753838539, -0.045939430594444275, 0.04395761713385582, -0.014665937051177025, 0.08389930427074432, -0.07425318658351898, 0.006531501188874245, -0.08674965053796768, 0.030134806409478188, -0.31573250889778137, 0.0038507028948515654, -0.01876232586801052, 0.10097015649080276, -0.001635766588151455, -0.00516595458611846, -0.03464873880147934, -0.03676575794816017, -0.05587775260210037, 0.046409010887145996, -0.25948604941368103, 0.011800145730376244, 0.1486954241991043, -0.00558213796466589, -0.010950867086648941, 0.039532337337732315, 0.015502169728279114, -0.19489143788814545, 0.0033431637566536665, 0.382671982049942, 0.12433561682701111, -0.15602239966392517, -0.038460731506347656, 0.002253052545711398, -0.12435132265090942, 0.05122614651918411, 0.10650063306093216, -0.028285304084420204, 0.06810537725687027, 0.06492038071155548, -0.13770891726016998, 0.03194277361035347, 0.08137232065200806, 0.07254006713628769, -0.06185802444815636, 0.03309902548789978, 0.12447807937860489, -0.001426891190931201, -0.09820882230997086, -0.12830325961112976, -0.044034551829099655, 0.05778408423066139, 0.12614697217941284, 0.010718805715441704, -0.005161978770047426, -0.08368363976478577, 0.15632237493991852, 0.046334970742464066, -0.01825164072215557, -0.11742157489061356, -0.10392706096172333, 0.039694882929325104, 0.15260495245456696, -0.04313033074140549, 0.00972882192581892, 0.02338254079222679, 0.0057436628267169, 0.06214966997504234, -0.06808450818061829, 0.005501836538314819, -0.0404035858809948, 0.07184121012687683, -0.06626638770103455, 0.0597655288875103, -0.04996529221534729, -0.07479199767112732, -0.054193515330553055, -0.01938489079475403, 0.154617577791214, 0.16577643156051636, 0.08953801542520523, -0.08143158257007599, 0.07282175868749619, -0.0971396267414093, -0.07091189175844193, -0.05644267797470093, -0.0658361092209816, -0.014500929042696953, 0.10139623284339905, 0.12220189720392227, -0.18264023959636688, 0.05132247507572174, 0.12537862360477448, 0.0016902342904359102, 0.06873060762882233, 0.0471314862370491, 0.000008568487828597426, 0.07041674107313156, -0.03394358977675438, -0.026566192507743835, 0.039171043783426285, 0.06057918071746826, -0.004764103796333075, -0.045834168791770935, -0.03129440173506737, 0.0007111160084605217, -0.08782535046339035, -0.046953946352005005, 0.01650119572877884, 0.09927795827388763, 0.021815184503793716, 0.06723066419363022, 0.07200349122285843, 0.11227423697710037, 0.23267285525798798, -0.01663021929562092, -0.04860781878232956, -0.05390782281756401, -0.0038662166334688663, -0.072230763733387, 0.05298231542110443, -0.044093791395425797, -0.013703000731766224, 0.06197461113333702, 0.02880055084824562, -0.0241240244358778, -0.07767774909734726, -0.048432767391204834, 0.015537015162408352, 0.01294061541557312, 0.058635298162698746, 0.13916529715061188, 0.03883228823542595, 0.013341385871171951, -0.03627052530646324, 0.03799179568886757, -0.08247525244951248, -0.06778591871261597, -0.009052245877683163, 0.0850275531411171, -0.2374516725540161, -0.27590590715408325, -0.06182103976607323, -0.1899542510509491, -0.05442836135625839, 0.10173444449901581, 0.06149669736623764, -0.0981135293841362, -0.06572254002094269, -0.010261597111821175, -0.017206426709890366, -0.10618901252746582, -0.030549757182598114, -0.19057513773441315, -0.00282036024145782, -0.0530216358602047, -0.08368751406669617, -0.04087941721081734, 0.07227448374032974, 0.07781261950731277, 0.13454799354076385, 0.11990272998809814, 0.13019338250160217, 0.14590215682983398, -0.04064978286623955, -0.017342550680041313, 0.030587121844291687, 0.1189412996172905, -0.11379950493574142, 0.09215140342712402, 0.15846885740756989, 0.04160125181078911, 0.10976667702198029, 0.17799557745456696, -0.01809956505894661, -0.08431658893823624, 0.09001435339450836, 0.03243125602602959, 0.002199815586209297, -0.14897596836090088, -0.09807609766721725, -0.09747834503650665, -0.024533651769161224, -0.01050117053091526, 0.08103906363248825, -0.02973933517932892, 0.00024748386931605637, 0.007691757287830114, -0.031353335827589035, -0.11500386148691177, 0.10164745151996613, 0.10783034563064575, -0.051677361130714417, 0.06240885704755783, -0.03621061518788338, 0.013111197389662266, 0.12872914969921112, -0.005574287846684456, 0.05351933091878891, 0.0009217691840603948, 0.02266230620443821, 0.07706180214881897, 0.12979085743427277, 0.05972360819578171, -0.06920131295919418, -0.012724172323942184, -0.018883759155869484, -0.02852329984307289, -0.04018702358007431, -0.051866352558135986, 0.016110291704535484, 0.07158230245113373, -0.07070600986480713, 0.007464050315320492, -0.09313590079545975, 0.04392194375395775, -0.013408638536930084, 0.040764421224594116, -0.09933379292488098, 0.11283421516418457, 0.11212150752544403, 0.06982560455799103, -0.20660647749900818, -0.0049742055125534534, 0.1760960966348648, -0.06036512181162834, 0.026148896664381027, 0.044760819524526596, 0.07438094913959503, -0.013310940004885197, -0.014131118543446064, -0.011971941217780113, 0.04165353998541832, 0.008321966044604778, 0.10816291719675064, -0.06053003668785095, -0.06731956452131271, -0.009565652348101139, -0.01802060380578041, 0.0145226139575243, -0.031234830617904663, 0.023711146786808968, 0.15951348841190338, -0.0065234447829425335, 0.05780748277902603, -0.17307095229625702, -0.08096909523010254, -0.054502543061971664, -0.021976597607135773, 0.16028445959091187, -0.09405897557735443, 0.021642018109560013, -0.017742451280355453, -0.03450736030936241, -0.029039451852440834, -0.06952325999736786, -0.0375576987862587, -0.08077406883239746, 0.022223329171538353, 0.004659013357013464, 0.04072054848074913, -0.07474403083324432, 0.03581817448139191, 0.04575775936245918, 0.07663757354021072, 0.008526667021214962, -0.027415957301855087, -0.09199786931276321, -0.1843370795249939, 0.06291311979293823, -0.049490317702293396, 0.04931570217013359, -0.0418127179145813, 0.1938740313053131, 0.06365559250116348, -0.05853547528386116, 0.05742616578936577, -0.03859667852520943, 0.03838387504220009, -0.13857907056808472, 0.07207682728767395, -0.07659886032342911, -0.016371112316846848, -0.007355353329330683, 0.11035165935754776, -0.1062881276011467, -0.15562652051448822, 0.06501084566116333, 0.16950535774230957, 0.10116761177778244, 0.000806302996352315, -0.022203318774700165, 0.0725877434015274, 0.05569668486714363, 0.0068956539034843445, 0.06090042367577553, 0.1454852670431137, -0.12914572656154633, 0.1224699541926384, -0.022552968934178352, -0.016733380034565926, -0.13407345116138458, 0.03897436335682869, -0.02403831109404564, 0.05824385955929756, 0.03790315240621567, -0.18016976118087769, 0.08470097184181213, -0.03233107551932335, 0.01641049236059189, 0.23477694392204285, -0.18917188048362732, -0.06158251315355301, 0.05588087812066078, 0.024497007951140404, -0.04277771711349487, -0.11648520082235336, -0.09813736379146576, -0.029879916459321976, -0.05052601546049118, 0.11488782614469528, -0.04573405534029007, 0.04909282177686691, -0.031638309359550476, 0.1112939864397049, 0.047230225056409836, -0.045135047286748886, 0.1427699476480484, -0.14035338163375854, 0.0977340042591095, -0.12127474695444107, 0.019972048699855804, 0.09111752361059189, -0.07159112393856049, 0.10494855046272278, -0.06665443629026413, 0.06383790075778961, -0.2465050369501114, 0.0022746575996279716, -0.008453061804175377, 0.036550372838974, 0.0271987933665514, -0.05680028721690178, -0.12901988625526428, -0.03715227171778679, -0.027381405234336853, -0.01813647337257862, -0.11713598668575287, -0.0031143249943852425, -0.14133024215698242, -0.057005152106285095, -0.08749523013830185, 0.02312685362994671, -0.21061889827251434, -0.004185882862657309, 0.008126300759613514, 0.020437484607100487, -0.17857614159584045, -0.04297766089439392, 0.03774886205792427, 0.004375527147203684, 0.08832122385501862, -0.023119816556572914, -0.04940380901098251, 0.014956346713006496, 0.13044969737529755, -0.12233772873878479, -0.0006630075513385236, -0.03437092527747154, 0.14777947962284088, -0.011739841662347317, -0.11739847809076309, 0.0032358316238969564, 0.07741342484951019, -0.032717783004045486, -0.003090545302256942, 0.04521242901682854, 0.08729007840156555, -0.016245700418949127, 0.05914886295795441, 0.0005832412862218916, -0.07385926693677902, 0.01753399521112442, 0.07166670262813568, -0.03103218413889408, 0.0253831148147583, 0.04003673419356346, -0.0640636757016182, -0.036020029336214066, 0.11157411336898804, 0.08526992052793503, 0.14425128698349, 0.0024558203294873238, 0.07784372568130493, -0.022310519590973854, 0.00008107958274194971, 0.007436560466885567, 0.06408929824829102, 0.039241448044776917, -0.06688732653856277, -0.048639725893735886, 0.0198516845703125, 0.10516323149204254, -0.026003355160355568, 0.057434793561697006, -0.12909218668937683, -0.08399637043476105, 0.037286579608917236, -0.0039027638267725706, -0.01567487232387066, -0.08358988910913467, -0.04786192625761032, -0.05242536962032318, -0.04371176287531853, 0.0586145780980587, 0.1470838487148285, -0.0020743575878441334, 0.005813091527670622, -0.01973113976418972, -0.04642482101917267, -0.025618139654397964, -0.055881984531879425, -0.07332699000835419, -0.048941005021333694, 0.06819722801446915, -0.11012738198041916, -0.07231386750936508, 0.16018956899642944, -0.03682415932416916, -0.03815343603491783, 0.024433957412838936, 0.01551902573555708, -0.00039856525836512446, -0.14088329672813416, -0.10607647895812988, 0.14317864179611206, 0.029827237129211426, 0.012417588382959366, -0.15009038150310516, 0.02611035853624344, -0.01723400130867958, 0.014754951931536198, -0.06131420657038689, 0.018221061676740646, -0.1636582612991333, -0.01831182837486267, -0.043449562042951584, -0.1960551142692566, -0.07952366024255753, -0.02105804532766342, -0.006272517144680023, 0.11141568422317505, 0.16052664816379547, 0.051811136305332184, 0.006949711591005325, 0.005004440434277058, -0.02623261883854866, -0.006475407164543867, -0.013523302972316742, 0.06349780410528183, 0.039204467087984085, 0.0024625249207019806, -0.02758321352303028, 0.0603170283138752, 0.10930006951093674, -0.12960131466388702, -0.036593466997146606, 0.15204331278800964, -0.012650004588067532, 0.031441085040569305, 0.1599513441324234, -0.011068953201174736, 0.02534940093755722, 0.08766882121562958, 0.05402905493974686, 0.06659457087516785, -0.011877855286002159, 0.022817092016339302, 0.12724968791007996, 0.02715393155813217, -0.05997871980071068, -0.08889736980199814, -0.01388144213706255, -0.2833007872104645, -0.07705571502447128, -0.03963233903050423, 0.08437919616699219, -0.036246880888938904, 0.26679450273513794, 0.12403151392936707, -0.1266176998615265, 0.0516984798014164, 0.0333801694214344, -0.04046184569597244, -0.0784478411078453, -0.15067048370838165, -0.02651614509522915, -0.1089402586221695, 0.002701305551454425, -0.10374482721090317, 0.08816846460103989, -0.03821096569299698, -0.0022927771788090467, -0.025286901742219925, 0.08528466522693634, -0.04238740727305412, -0.14017419517040253, -0.0010722818551585078, -0.005889455787837505, -0.05190213397145271, 0.08433298766613007, 0.07148399204015732, -0.01335175707936287, -0.02401786483824253, 0.07422652095556259, 0.024782950058579445, -0.004932098090648651, 0.009790784679353237, -0.14268329739570618, -0.02815517596900463, 0.03501781448721886, 0.007378872949630022, -0.05755603685975075, 0.06268104165792465, 0.07430897653102875, -0.02182610146701336, -0.0035758463200181723, 0.3859916031360626, -0.002008322160691023, -0.00420699967071414, 0.021913999691605568, -0.17859221994876862, 0.0202576145529747, 0.050627049058675766, -0.06285877525806427, -0.1814487725496292, -0.12856777012348175, 0.1440022885799408, 0.010789863765239716, 0.04751095920801163, 0.00413023354485631, 0.0036507844924926758, 0.01860237494111061, 0.024117661640048027, 0.12237895280122757, 0.05381025746464729, 0.20935729146003723, 0.02940075471997261, 0.037343814969062805, -0.013649571686983109, -0.039105575531721115, -0.1428230255842209, -0.08808896690607071, -0.041783563792705536, -0.10876533389091492, -0.06712602078914642, 0.07452433556318283, 0.03308483213186264, 0.08906224370002747, -0.017640581354498863, 0.012726355344057083, -0.047113630920648575, 0.05965685844421387, 0.17941376566886902, -0.03781856968998909, 0.06464013457298279, 0.0029464554972946644, -0.07043617963790894, 0.08819912374019623, 0.0008902386180125177, -0.12900254130363464, -0.004896699916571379, 0.0014196228003129363, -0.07022278755903244, 0.15389502048492432, -0.02325236052274704, 0.005016704089939594, 0.06732019782066345, 0.04813087359070778, -0.08010302484035492, 0.059342797845602036, 0.0013369007501751184, -0.08320751786231995, 0.03120153211057186, 0.17014345526695251, 0.010565650649368763, -0.07222873717546463, 0.12183177471160889, -0.01722615398466587, 0.013417752459645271, -0.08210001140832901, 0.16389773786067963, -0.1405809074640274, 0.08207181096076965, -0.16919106245040894, 0.029745303094387054, 0.022214224562048912, 0.012673028744757175, -0.008893320336937904, -0.06229591369628906, -0.008654721081256866, -0.01413356140255928, -0.040051933377981186, -0.010774712078273296, 0.05027569457888603, -0.026332490146160126, 0.2655848264694214, 0.013165590353310108, -0.08682727068662643, -0.07146721333265305, -0.027951331809163094, 0.04633788391947746, -0.0429544635117054, 0.09822317212820053, -0.024975966662168503, 0.008648942224681377, -0.08020338416099548, -0.11325552314519882, 0.0160344447940588, 0.07119356095790863, -0.12669649720191956, -0.05326187238097191 ]
null
null
fastai
# Amazing! Congratulations on hosting your fastai model on the Hugging Face Hub! # Some next steps 1. Fill out this model card with more information (template below and [documentation here](https://huggingface.co/docs/hub/model-repos))! 2. Create a demo in Gradio or Streamlit using the 🤗Spaces ([documentation here](https://huggingface.co/docs/hub/spaces)). 3. Join our fastai community on the Hugging Face Discord! Greetings fellow fastlearner 🤝! --- # Model card ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed
{"tags": ["fastai", "image-classification"]}
image-classification
fastai/fastbook_04_mnist_basics
[ "fastai", "image-classification", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #fastai #image-classification #region-us
# Amazing! Congratulations on hosting your fastai model on the Hugging Face Hub! # Some next steps 1. Fill out this model card with more information (template below and documentation here)! 2. Create a demo in Gradio or Streamlit using the Spaces (documentation here). 3. Join our fastai community on the Hugging Face Discord! Greetings fellow fastlearner ! --- # Model card ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed
[ "# Amazing!\n\nCongratulations on hosting your fastai model on the Hugging Face Hub!", "# Some next steps\n1. Fill out this model card with more information (template below and documentation here)!\n\n2. Create a demo in Gradio or Streamlit using the Spaces (documentation here).\n\n3. Join our fastai community on the Hugging Face Discord!\n\nGreetings fellow fastlearner !\n\n\n---", "# Model card", "## Model description\nMore information needed", "## Intended uses & limitations\nMore information needed", "## Training and evaluation data\nMore information needed" ]
[ "TAGS\n#fastai #image-classification #region-us \n", "# Amazing!\n\nCongratulations on hosting your fastai model on the Hugging Face Hub!", "# Some next steps\n1. Fill out this model card with more information (template below and documentation here)!\n\n2. Create a demo in Gradio or Streamlit using the Spaces (documentation here).\n\n3. Join our fastai community on the Hugging Face Discord!\n\nGreetings fellow fastlearner !\n\n\n---", "# Model card", "## Model description\nMore information needed", "## Intended uses & limitations\nMore information needed", "## Training and evaluation data\nMore information needed" ]
[ 14, 20, 66, 3, 6, 12, 8 ]
[ "passage: TAGS\n#fastai #image-classification #region-us \n# Amazing!\n\nCongratulations on hosting your fastai model on the Hugging Face Hub!# Some next steps\n1. Fill out this model card with more information (template below and documentation here)!\n\n2. Create a demo in Gradio or Streamlit using the Spaces (documentation here).\n\n3. Join our fastai community on the Hugging Face Discord!\n\nGreetings fellow fastlearner !\n\n\n---# Model card## Model description\nMore information needed## Intended uses & limitations\nMore information needed## Training and evaluation data\nMore information needed" ]
[ -0.043135710060596466, -0.0480441153049469, 0.002067365450784564, 0.09406481683254242, 0.17428547143936157, 0.11595744639635086, 0.10578379780054092, 0.07675820589065552, 0.11263571679592133, 0.012933879159390926, 0.09528832882642746, -0.10546129941940308, 0.10350865125656128, 0.2567436695098877, 0.07784169167280197, -0.2770094573497772, 0.012813934125006199, -0.007953129708766937, 0.0933113694190979, 0.06120896339416504, 0.12847793102264404, -0.0340941958129406, 0.16186320781707764, -0.0032289919909089804, -0.22723549604415894, -0.05442282557487488, -0.035241130739450455, -0.0008513794164173305, 0.11844152212142944, -0.03443443030118942, 0.027914218604564667, -0.004232730250805616, 0.00510071124881506, -0.08619315922260284, 0.059358056634664536, 0.022516973316669464, 0.01743599958717823, 0.051905132830142975, -0.026123041287064552, 0.08707024902105331, 0.07905260473489761, -0.040730543434619904, -0.11513078212738037, 0.08185576647520065, -0.1443115621805191, -0.16801327466964722, -0.08478699624538422, -0.11538249254226685, 0.0826377272605896, -0.005096469074487686, -0.021996311843395233, 0.09613007307052612, -0.1569768339395523, -0.028199873864650726, 0.1706697940826416, -0.1165284812450409, -0.06350965052843094, -0.013901366852223873, 0.05250532180070877, -0.08845742791891098, -0.07898663729429245, 0.09973388910293579, 0.10610274970531464, -0.034963712096214294, 0.012514031492173672, 0.016721894964575768, 0.03414324298501015, -0.02308172732591629, -0.0479145385324955, 0.0686134621500969, -0.039595410227775574, 0.08148591965436935, -0.1220196858048439, -0.14820213615894318, 0.027280371636152267, 0.05988028645515442, -0.061631590127944946, -0.03823978081345558, 0.0826442688703537, -0.01776871271431446, -0.11668780446052551, -0.09055625647306442, -0.0562506765127182, -0.11699071526527405, 0.009308401495218277, 0.07822392880916595, -0.014650757424533367, 0.07005138695240021, -0.08558835834264755, 0.04940911754965782, -0.19470584392547607, -0.04850504919886589, -0.07143335789442062, -0.10438532382249832, 0.016327984631061554, -0.02445412054657936, 0.045131951570510864, 0.1857319325208664, 0.15608258545398712, 0.019407980144023895, 0.032645273953676224, -0.01819371059536934, 0.00469429325312376, 0.054605912417173386, 0.01280822604894638, 0.06697534769773483, -0.0206596702337265, -0.19677616655826569, -0.0049900272861123085, -0.01557135209441185, 0.10349574685096741, -0.07035461068153381, -0.0629304051399231, -0.010664394125342369, -0.11958497017621994, 0.06761164963245392, -0.0800957977771759, 0.014090508222579956, -0.006535483989864588, 0.0015902144368737936, 0.2216138392686844, 0.05701671168208122, 0.0018828930333256721, 0.01112278550863266, -0.14458723366260529, -0.10899219661951065, -0.054492413997650146, 0.043661460280418396, 0.037110041826963425, 0.0068321749567985535, -0.06815827637910843, 0.05887800082564354, -0.024025017395615578, -0.004513882100582123, 0.014964091591536999, -0.21053393185138702, 0.014274601824581623, -0.09068627655506134, -0.0645553469657898, 0.05323205143213272, -0.015847288072109222, -0.06705991923809052, 0.07854674011468887, -0.03332813084125519, 0.03636208549141884, -0.037716954946517944, 0.01206962764263153, 0.01988861709833145, -0.07712192833423615, 0.013829362578690052, 0.2004818469285965, 0.13786356151103973, -0.048133738338947296, -0.018403515219688416, -0.11051812767982483, 0.030601641163229942, -0.15388061106204987, 0.05590495467185974, -0.07877650856971741, 0.17316985130310059, -0.016681216657161713, -0.00954410433769226, -0.018222911283373833, 0.070732980966568, 0.0695413202047348, 0.20989961922168732, -0.20927298069000244, -0.0864877700805664, 0.17135030031204224, -0.1028808206319809, -0.20001867413520813, 0.2073664516210556, 0.0037236532662063837, 0.08018296211957932, -0.025776075199246407, 0.19611068069934845, -0.03752565383911133, -0.15284352004528046, -0.021860264241695404, -0.01987580768764019, -0.23738797008991241, -0.037454407662153244, 0.08996538817882538, 0.12026983499526978, -0.06928714364767075, 0.019999906420707703, -0.022698676213622093, 0.20344729721546173, -0.08743656426668167, -0.031762272119522095, 0.025296220555901527, -0.10002098977565765, 0.016979429870843887, 0.03881438076496124, 0.02478625252842903, -0.06543570756912231, 0.0015125152422115207, -0.11599341779947281, 0.09862883388996124, 0.07253655046224594, -0.03770461678504944, -0.06350032985210419, 0.12406552582979202, -0.04497717693448067, -0.04611393064260483, 0.09792304784059525, -0.06290939450263977, 0.05256460979580879, 0.07789719104766846, 0.0895533561706543, -0.027086131274700165, 0.09694752097129822, 0.07247143983840942, 0.007704056333750486, 0.017469873651862144, 0.12334408611059189, -0.037424635142087936, -0.03010450303554535, -0.0015248177805915475, 0.07065773755311966, -0.013815510086715221, 0.37256643176078796, -0.19437465071678162, 0.01264515146613121, -0.07431638985872269, 0.07827471941709518, 0.06558379530906677, 0.008369416929781437, 0.09666746109724045, -0.05257272347807884, -0.016364678740501404, -0.05276801064610481, 0.09637202322483063, -0.06473593413829803, -0.08030439168214798, 0.245479553937912, -0.04435107111930847, 0.0015527111245319247, 0.1119016781449318, -0.07846727222204208, -0.0774184912443161, -0.07033362239599228, -0.028132472187280655, 0.03005247935652733, -0.036516476422548294, 0.07750328630208969, -0.05086011439561844, -0.06716867536306381, 0.164797842502594, -0.041989438235759735, 0.06883152574300766, 0.045540209859609604, -0.0591207817196846, -0.06222207471728325, 0.06130985543131828, 0.11461935937404633, -0.10475140810012817, 0.032870352268218994, 0.11699222028255463, -0.0046376315876841545, 0.1674608290195465, 0.0668523907661438, -0.0463855154812336, -0.07240559905767441, -0.01209191232919693, 0.00755219766870141, 0.18750041723251343, -0.1262729912996292, -0.06423264741897583, 0.037490129470825195, -0.04403343051671982, 0.0411548875272274, -0.07618264853954315, -0.061276182532310486, 0.0019428496016189456, -0.07555006444454193, 0.03570283576846123, 0.10342660546302795, -0.07675479352474213, 0.05655413493514061, 0.04517119377851486, -0.08173984289169312, 0.018242493271827698, 0.012910636141896248, -0.03104432485997677, 0.052935924381017685, 0.07264021039009094, -0.2419428825378418, -0.09361378103494644, -0.1663937121629715, -0.002626647474244237, 0.032305411994457245, 0.019495362415909767, -0.1286236047744751, 0.04093075916171074, -0.07128695398569107, -0.05111696943640709, 0.07645750790834427, -0.020088685676455498, -0.09898541867733002, -0.019337348639965057, -0.004159604664891958, -0.04456043615937233, -0.03249547258019447, -0.0828743726015091, 0.014113122597336769, 0.0625327080488205, -0.0005850419402122498, 0.12264519929885864, -0.0182399433106184, -0.03249913081526756, 0.016461730003356934, -0.03851296752691269, 0.15194565057754517, -0.14628317952156067, 0.06290345638990402, 0.13647639751434326, 0.08691491931676865, 0.03498184308409691, 0.014357306994497776, 0.01888621784746647, -0.09653738886117935, 0.03061218559741974, 0.02812359668314457, -0.10880009084939957, -0.02390168607234955, -0.02810594066977501, -0.017189426347613335, 0.24837341904640198, -0.08590604364871979, 0.014641075395047665, 0.04842265695333481, 0.09561057388782501, 0.11257214844226837, -0.04483693465590477, -0.12010210007429123, 0.0437953844666481, -0.2770012617111206, -0.05331218242645264, 0.0034633467439562082, -0.09107033908367157, -0.08132261782884598, 0.16335411369800568, -0.03697102516889572, 0.046548038721084595, -0.011720911599695683, 0.05299021676182747, 0.00932406261563301, 0.11544059216976166, 0.08117494732141495, -0.055646784603595734, 0.008533512242138386, -0.10210198163986206, -0.0706220269203186, -0.044772714376449585, -0.07318025827407837, 0.06035754084587097, 0.15553075075149536, -0.03332701325416565, -0.04884640499949455, 0.019017783924937248, 0.08505929261445999, 0.04301110655069351, 0.17213056981563568, -0.18511416018009186, -0.007468045689165592, 0.03231125324964523, 0.004559095483273268, -0.04790284484624863, -0.009308310225605965, 0.08271279186010361, -0.051327720284461975, 0.03435641527175903, -0.0033591578248888254, 0.06670107692480087, 0.00583041924983263, 0.030286476016044617, -0.03503349795937538, 0.13878925144672394, -0.01977924443781376, -0.003170720301568508, -0.07537979632616043, 0.14675933122634888, 0.014169539324939251, -0.030842578038573265, -0.049590103328228, -0.0530262365937233, 0.20665694773197174, 0.05273042246699333, 0.12341324239969254, 0.01690969429910183, -0.07317589968442917, -0.12108731269836426, -0.12186117470264435, 0.01795782707631588, 0.11305365711450577, -0.03651094064116478, -0.029258979484438896, 0.03206599876284599, -0.04900307208299637, -0.06283751875162125, 0.15639695525169373, -0.11433583498001099, -0.0006148363463580608, -0.036594539880752563, 0.026475686579942703, -0.05151570588350296, 0.05945201590657234, 0.03615500405430794, -0.08295443654060364, 0.08569244295358658, 0.24987472593784332, 0.12029357254505157, -0.08264528214931488, -0.07273224741220474, 0.002617470920085907, -0.02786053717136383, -0.020367488265037537, -0.021884938701987267, 0.04934200644493103, 0.009905995801091194, 0.0004229980695527047, 0.11496644467115402, -0.06797561049461365, 0.016827818006277084, -0.06810642033815384, 0.07184386253356934, -0.04323017969727516, -0.0028854708652943373, -0.00307843298651278, -0.03579486161470413, -0.016158048063516617, -0.0422385036945343, 0.19092562794685364, -0.03435656428337097, -0.08914748579263687, 0.10777997970581055, 0.006099659949541092, -0.010074339807033539, -0.09088420867919922, -0.009726413525640965, 0.17160965502262115, 0.33205264806747437, -0.05090351402759552, 0.08274491876363754, 0.12986552715301514, 0.03720282390713692, -0.2415936142206192, 0.05336371064186096, -0.10078507661819458, 0.049300696700811386, 0.028043881058692932, -0.04503197222948074, 0.04855889454483986, 0.1074744164943695, -0.03213361278176308, 0.18884874880313873, 0.014890321530401707, -0.08196082711219788, -0.030725494027137756, 0.05735310912132263, 0.29306864738464355, -0.1206628829240799, -0.012375160120427608, -0.11899732053279877, -0.1831255853176117, 0.09127216786146164, -0.12136732786893845, 0.13883338868618011, -0.06503088772296906, -0.01128410454839468, -0.00135329260956496, -0.056972239166498184, 0.1969723105430603, -0.15176847577095032, 0.04598135128617287, -0.16029277443885803, -0.13859347999095917, -0.0493440143764019, -0.09242217242717743, 0.13723771274089813, -0.06290692836046219, -0.041892312467098236, -0.21003976464271545, 0.016344062983989716, -0.022265831008553505, 0.1083710715174675, 0.03837580978870392, -0.0648311972618103, -0.11631380766630173, 0.12938262522220612, -0.06921392679214478, 0.056820694357156754, -0.047558363527059555, -0.05949753150343895, -0.007661539129912853, -0.09887956827878952, 0.08431664854288101, -0.06787542998790741, 0.16960689425468445, -0.05376526713371277, -0.03638920933008194, 0.06585593521595001, -0.2144651561975479, 0.0166571494191885, 0.03131101280450821, -0.012965804897248745, 0.11123693734407425, -0.01633749157190323, -0.047351494431495667, 0.12050335854291916, 0.15230409801006317, -0.04691421613097191, -0.2445915937423706, -0.09298652410507202, -0.04959504306316376, 0.05545267090201378, 0.059482406824827194, 0.044635310769081116, -0.04266856238245964, -0.009003440849483013, -0.03170306235551834, 0.03940223157405853, -0.09892602264881134, -0.06588069349527359, 0.09053584933280945, -0.00817983876913786, -0.07454292476177216, 0.10300100594758987, -0.022258969023823738, -0.04005026817321777, -0.018872611224651337, 0.16877278685569763, -0.00872802920639515, -0.09444648772478104, -0.05856668949127197, 0.2785908281803131, -0.03326436132192612, -0.07237108051776886, -0.07370047271251678, -0.011851859278976917, -0.06296929717063904, 0.041280463337898254, 0.044611480087041855, -0.019301583990454674, 0.09459996968507767, 0.07632751762866974, -0.13422319293022156, -0.04825257509946823, -0.08253509551286697, 0.023763936012983322, -0.09391538053750992, 0.04638104513287544, 0.03239896893501282, 0.13846981525421143, -0.08944819867610931, -0.03877723962068558, -0.11869994550943375, -0.06565392762422562, -0.14193984866142273, -0.017984768375754356, -0.030354734510183334, -0.016195911914110184, 0.04378911852836609, 0.035043247044086456, -0.05438777804374695, -0.046839725226163864, -0.054815664887428284, 0.03332525119185448, 0.07172195613384247, 0.03302118554711342, -0.000739118258934468, 0.024337897077202797, 0.06358452141284943, -0.008854986168444157, 0.1939183622598648, 0.061528053134679794, 0.039933547377586365, -0.05893708020448685, -0.2132119983434677, -0.0598771795630455, 0.03549247607588768, -0.11447872966527939, 0.10493447631597519, -0.015037617646157742, 0.022291040048003197, -0.0777871385216713, 0.02952207624912262, 0.030745264142751694, 0.13215720653533936, 0.010184871032834053, 0.1054762452840805, 0.015861721709370613, -0.07867103070020676, -0.053909119218587875, 0.025915324687957764, 0.10166049748659134, 0.05523233860731125, -0.006063671782612801, -0.007831367664039135, 0.03637465462088585, -0.04801254719495773, 0.022043542936444283, -0.0416007824242115, -0.1349056214094162, 0.018430570140480995, -0.04111394286155701, 0.007220780942589045, -0.009335651993751526, 0.1632072478532791, 0.07893939316272736, -0.03843383863568306, -0.019855517894029617, 0.05185551568865776, -0.0005758315091952682, -0.029132919386029243, -0.01664462871849537, 0.01242818683385849, -0.011641372926533222, -0.027803935110569, 0.12793557345867157, 0.04118882119655609, 0.0337052047252655, 0.03223983943462372, 0.08624710142612457, -0.03031889535486698, 0.1351775974035263, 0.090060293674469, 0.0012925242772325873, -0.08949068933725357, -0.02499302476644516, -0.09216870367527008, 0.04371993616223335, -0.044952891767024994, 0.13794651627540588, 0.11835663765668869, -0.07657405734062195, -0.02159014157950878, -0.06422453373670578, -0.03567412495613098, -0.05832476541399956, 0.06457220762968063, -0.036254268139600754, -0.11074639856815338, 0.0795147716999054, 0.0487079843878746, -0.0749422088265419, 0.10327911376953125, 0.019404537975788116, -0.0516987144947052, 0.11024338006973267, -0.10676587373018265, 0.08653149753808975, 0.12639398872852325, -0.048159126192331314, -0.1274534910917282, 0.018654676154255867, -0.08037962764501572, -0.06715868413448334, -0.010014939121901989, 0.0060997516848146915, -0.07008650153875351, -0.04766400158405304, 0.09101904928684235, -0.023412268608808517, -0.09781716018915176, -0.0008946926682256162, -0.007512894459068775, 0.0707123652100563, -0.0013006697408854961, 0.0025908693205565214, 0.03761951997876167, 0.024346277117729187, 0.13499146699905396, -0.010488980449736118, 0.09446719288825989, -0.13800489902496338, 0.16271324455738068, -0.17424793541431427, -0.023526016622781754, -0.19467030465602875, -0.08556114882230759, -0.03965567424893379, 0.21183790266513824, 0.23956528306007385, -0.18419544398784637, -0.040272392332553864, -0.017754072323441505, -0.00530411908403039, -0.08042346686124802, 0.1485847383737564, 0.0328950472176075, -0.0008285317453555763, -0.050059664994478226, -0.04119158536195755, 0.01906406879425049, -0.05878768488764763, -0.009829306975007057, 0.12060701102018356, 0.020988527685403824, 0.058587390929460526, -0.10601888597011566, 0.04354076460003853, -0.16034962236881256, -0.09522249549627304, 0.031089019030332565, -0.1770310252904892, -0.08044994622468948, -0.008362904191017151, 0.00033926876494660974, 0.10942710936069489, 0.04765947535634041, -0.01021200604736805, 0.08884991705417633, -0.09390634298324585, 0.0006667477427981794, -0.1471072882413864, 0.01179987471550703, 0.003775576362386346, -0.10497850924730301, 0.24912607669830322, -0.02273484878242016, -0.1089288592338562, 0.07065869867801666, -0.0394342839717865, -0.0996435284614563, 0.07207883149385452, -0.05799354612827301, -0.058163970708847046, -0.05888238549232483, 0.2342519909143448, -0.01402230840176344, -0.1793975979089737, 0.04475797340273857, -0.13360072672367096, 0.03672799840569496, 0.05115630850195885, -0.01632162556052208, -0.06009916588664055, 0.056012704968452454, -0.05951359122991562, 0.09143692255020142, 0.12558197975158691, 0.028852302581071854, -0.024508308619260788, -0.056836724281311035, 0.07209930568933487, 0.056752145290374756, -0.07044989615678787, -0.08954179286956787, -0.07587070018053055, -0.00455087423324585, 0.0499885231256485, -0.10768280178308487, -0.1991163194179535, -0.04256344586610794, -0.12377270311117172, -0.0023479368537664413, 0.04336123168468475, 0.08650597184896469, 0.2383410483598709, 0.06379329413175583, 0.015083998441696167, -0.18092140555381775, 0.09031050652265549, 0.09377514570951462, -0.01314084604382515, -0.08979006111621857 ]
null
null
fastai
# Amazing! Congratulations on hosting your fastai model on the Hugging Face Hub! # Some next steps 1. Fill out this model card with more information (template below and [documentation here](https://huggingface.co/docs/hub/model-repos))! 2. Create a demo in Gradio or Streamlit using the 🤗Spaces ([documentation here](https://huggingface.co/docs/hub/spaces)). 3. Join our fastai community on the Hugging Face Discord! Greetings fellow fastlearner 🤝! --- # Model card ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed
{"tags": ["fastai"]}
null
fastai/fastbook_06_multicat_Biwi_Kinect_Head_Pose
[ "fastai", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #fastai #region-us
# Amazing! Congratulations on hosting your fastai model on the Hugging Face Hub! # Some next steps 1. Fill out this model card with more information (template below and documentation here)! 2. Create a demo in Gradio or Streamlit using the Spaces (documentation here). 3. Join our fastai community on the Hugging Face Discord! Greetings fellow fastlearner ! --- # Model card ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed
[ "# Amazing!\n\nCongratulations on hosting your fastai model on the Hugging Face Hub!", "# Some next steps\n1. Fill out this model card with more information (template below and documentation here)!\n\n2. Create a demo in Gradio or Streamlit using the Spaces (documentation here).\n\n3. Join our fastai community on the Hugging Face Discord!\n\nGreetings fellow fastlearner !\n\n\n---", "# Model card", "## Model description\nMore information needed", "## Intended uses & limitations\nMore information needed", "## Training and evaluation data\nMore information needed" ]
[ "TAGS\n#fastai #region-us \n", "# Amazing!\n\nCongratulations on hosting your fastai model on the Hugging Face Hub!", "# Some next steps\n1. Fill out this model card with more information (template below and documentation here)!\n\n2. Create a demo in Gradio or Streamlit using the Spaces (documentation here).\n\n3. Join our fastai community on the Hugging Face Discord!\n\nGreetings fellow fastlearner !\n\n\n---", "# Model card", "## Model description\nMore information needed", "## Intended uses & limitations\nMore information needed", "## Training and evaluation data\nMore information needed" ]
[ 9, 20, 66, 3, 6, 12, 8 ]
[ "passage: TAGS\n#fastai #region-us \n# Amazing!\n\nCongratulations on hosting your fastai model on the Hugging Face Hub!# Some next steps\n1. Fill out this model card with more information (template below and documentation here)!\n\n2. Create a demo in Gradio or Streamlit using the Spaces (documentation here).\n\n3. Join our fastai community on the Hugging Face Discord!\n\nGreetings fellow fastlearner !\n\n\n---# Model card## Model description\nMore information needed## Intended uses & limitations\nMore information needed## Training and evaluation data\nMore information needed" ]
[ -0.033277031034231186, -0.08227241784334183, 0.0022239338140934706, 0.07713031768798828, 0.17038100957870483, 0.10486842691898346, 0.08670254796743393, 0.07142214477062225, 0.11567308753728867, 0.013446890749037266, 0.09491732716560364, -0.10746689885854721, 0.09321203827857971, 0.2697221636772156, 0.08565160632133484, -0.2643716335296631, 0.007085119374096394, -0.007957587949931622, 0.09378449618816376, 0.0647154450416565, 0.12935099005699158, -0.01542446669191122, 0.14802193641662598, -0.006468500941991806, -0.20873704552650452, -0.048613112419843674, -0.0367392972111702, 0.006289718206971884, 0.12599752843379974, -0.05386224761605263, 0.030972018837928772, -0.015907105058431625, -0.0041992454789578915, -0.0924329087138176, 0.05714719742536545, 0.027781732380390167, 0.033576205372810364, 0.04195935279130936, -0.03856709972023964, 0.090358667075634, 0.08452040702104568, -0.028579043224453926, -0.11602935940027237, 0.09493833780288696, -0.15224945545196533, -0.17045728862285614, -0.10770466178655624, -0.15297317504882812, 0.06646230816841125, 0.01824142225086689, -0.032926321029663086, 0.12947368621826172, -0.17055726051330566, -0.03268762677907944, 0.19679228961467743, -0.1398683488368988, -0.054200977087020874, -0.022875504568219185, 0.08887587487697601, -0.08454488962888718, -0.06776228547096252, 0.08554226160049438, 0.10405685752630234, -0.02733820304274559, 0.010947559960186481, 0.013491141609847546, 0.028794609010219574, -0.00744158448651433, -0.05253235623240471, 0.07537523657083511, -0.030229059979319572, 0.061034366488456726, -0.12459655851125717, -0.13618654012680054, 0.020395886152982712, 0.07018813490867615, -0.051939528435468674, -0.06627117097377777, 0.08689701557159424, 0.00023925417917780578, -0.12471684068441391, -0.10193783044815063, -0.044013865292072296, -0.11784403026103973, 0.010395646095275879, 0.0941244587302208, -0.017060521990060806, 0.05990614369511604, -0.09526018053293228, 0.052144426852464676, -0.19857820868492126, -0.03546607121825218, -0.0739876851439476, -0.09697233885526657, 0.015451633371412754, -0.0281793512403965, 0.03342891484498978, 0.19603703916072845, 0.15404142439365387, 0.040892187505960464, 0.04508811607956886, -0.03108343854546547, 0.017177764326334, 0.04148007556796074, -0.0008477934752590954, 0.0648224875330925, -0.009331580251455307, -0.22554752230644226, -0.0034632382448762655, -0.03554622828960419, 0.11059566587209702, -0.07053891569375992, -0.048477303236722946, -0.017674023285508156, -0.14979448914527893, 0.08524873852729797, -0.0650213286280632, 0.0014887347351759672, -0.004883226472884417, 0.017286252230405807, 0.19425265491008759, 0.046697601675987244, 0.00032520972308702767, -0.0058996472507715225, -0.1312907189130783, -0.10475128889083862, -0.0633954331278801, 0.05420992895960808, 0.03653633967041969, 0.002547129988670349, -0.08216937631368637, 0.06124689429998398, -0.02218456007540226, 0.0038849383126944304, 0.022792907431721687, -0.22105424106121063, 0.018331365659832954, -0.08542918413877487, -0.07521633058786392, 0.05388824641704559, -0.029907379299402237, -0.06049371510744095, 0.068365678191185, -0.03459030017256737, 0.0346822515130043, -0.03688182309269905, 0.0016914508305490017, 0.017987843602895737, -0.071634441614151, 0.004566612187772989, 0.22498995065689087, 0.12187080085277557, -0.0373307466506958, -0.01403727661818266, -0.11625855416059494, 0.03486724942922592, -0.12201837450265884, 0.045901890844106674, -0.07823994755744934, 0.18674558401107788, -0.014955941587686539, 0.01712312549352646, -0.025887764990329742, 0.07750066369771957, 0.0900055542588234, 0.21741575002670288, -0.20995363593101501, -0.09242399781942368, 0.20153622329235077, -0.09993880242109299, -0.20968188345432281, 0.2143387496471405, 0.010933434590697289, 0.10466093569993973, -0.02445356920361519, 0.2072000801563263, -0.06392479687929153, -0.17961379885673523, -0.02127908729016781, -0.011059229262173176, -0.24161723256111145, -0.051771532744169235, 0.10153976082801819, 0.08293270319700241, -0.05680832639336586, 0.03393745422363281, -0.0017613122472539544, 0.19719333946704865, -0.08100304007530212, -0.0327664315700531, 0.0037850369699299335, -0.09438452124595642, 0.008816446177661419, 0.024635400623083115, 0.030300842598080635, -0.07669425010681152, 0.0045998780988156796, -0.10862505435943604, 0.10374045372009277, 0.08856850862503052, -0.018831197172403336, -0.05914812535047531, 0.11219041049480438, -0.030924323946237564, -0.03990488499403, 0.10462885349988937, -0.07421869039535522, 0.054816972464323044, 0.07873906940221786, 0.0769772157073021, -0.011359816417098045, 0.09274003654718399, 0.06584157794713974, 0.013920036144554615, 0.03992454335093498, 0.11420150846242905, -0.03665994852781296, -0.031658392399549484, 0.02031930349767208, 0.0778738409280777, -0.022186169400811195, 0.3688422739505768, -0.17356127500534058, 0.01821484975516796, -0.10282918810844421, 0.08845876902341843, 0.06183716654777527, -0.0008401357918046415, 0.0835038349032402, -0.0367698073387146, -0.0032264823094010353, -0.055524107068777084, 0.08583492785692215, -0.05812237039208412, -0.08662345260381699, 0.2658982574939728, -0.03440943360328674, 0.0036153150722384453, 0.09868631511926651, -0.054184261709451675, -0.062347497791051865, -0.06147386133670807, -0.026257529854774475, 0.0223053228110075, -0.027185508981347084, 0.07022673636674881, -0.06264147907495499, -0.060661379247903824, 0.16288144886493683, -0.03619345277547836, 0.06410842388868332, 0.027257069945335388, -0.08201233297586441, -0.04750926420092583, 0.06294645369052887, 0.09405282884836197, -0.06485769897699356, 0.038453102111816406, 0.1124429702758789, -0.0016101401997730136, 0.16678395867347717, 0.0592765286564827, -0.056373707950115204, -0.09419229626655579, -0.005355950444936752, 0.007470285519957542, 0.1591932624578476, -0.13831892609596252, -0.054418422281742096, 0.029514815658330917, -0.023972032591700554, 0.05227358266711235, -0.05514098331332207, -0.07087593525648117, 0.0013438323512673378, -0.07329598814249039, 0.025018898770213127, 0.12582840025424957, -0.09504543989896774, 0.03497644141316414, 0.04957837611436844, -0.05680005997419357, 0.0234662014991045, 0.02370806410908699, -0.029213670641183853, 0.04664962738752365, 0.07227440923452377, -0.206625297665596, -0.10228221863508224, -0.18699663877487183, 0.016714517027139664, 0.024553729221224785, 0.027458691969513893, -0.1259651482105255, 0.04575458914041519, -0.06818679720163345, -0.038054630160331726, 0.0717974603176117, -0.024877948686480522, -0.09307482093572617, -0.022279124706983566, -0.014280120842158794, -0.05402163788676262, -0.027896815910935402, -0.08477012068033218, -0.0009268703288398683, 0.03632563725113869, -0.00031268977909348905, 0.13541896641254425, -0.02366817370057106, -0.009438908658921719, 0.005859281402081251, -0.03213220462203026, 0.1568119376897812, -0.135063037276268, 0.045071423053741455, 0.13406558334827423, 0.10207222402095795, 0.03798583522439003, 0.012921007350087166, 0.018819143995642662, -0.08992904424667358, 0.02965068444609642, 0.031484205275774, -0.09813158959150314, -0.056053221225738525, -0.024970686063170433, -0.030953072011470795, 0.26418179273605347, -0.12343134731054306, 0.0034723030403256416, 0.03854964300990105, 0.07769693434238434, 0.12518101930618286, -0.05048064887523651, -0.14797833561897278, 0.048560041934251785, -0.2661287486553192, -0.056680064648389816, 0.004655467811971903, -0.09040501713752747, -0.08040545135736465, 0.15619415044784546, -0.027873646467924118, 0.03271074593067169, -0.006139150820672512, 0.09560710936784744, 0.010217266157269478, 0.13245338201522827, 0.06668516248464584, -0.05331530049443245, 0.02290397323668003, -0.10145124793052673, -0.07250506430864334, -0.03798116743564606, -0.07836087048053741, 0.059070851653814316, 0.15479473769664764, -0.04539763554930687, -0.03424506261944771, 0.01731664128601551, 0.09378930926322937, 0.04389014467597008, 0.15866267681121826, -0.14041966199874878, -0.004812900442630053, 0.04247099161148071, -0.019690074026584625, -0.031159594655036926, -0.01611192710697651, 0.08120068907737732, -0.05842692777514458, 0.00590216601267457, 0.006586797069758177, 0.06998071074485779, 0.04643845185637474, 0.03342098370194435, -0.05887731909751892, 0.17546813189983368, -0.021034201607108116, -0.0014303643256425858, -0.09125334024429321, 0.1439528912305832, 0.00908610224723816, -0.017340699210762978, -0.03325200453400612, -0.04431763291358948, 0.19507499039173126, 0.028783265501260757, 0.11954433470964432, 0.023984292522072792, -0.07356978952884674, -0.09644994139671326, -0.1253555417060852, 0.022706180810928345, 0.11147056519985199, -0.026222921907901764, -0.025333024561405182, 0.02208506129682064, -0.0478445440530777, -0.06646084040403366, 0.17884555459022522, -0.10769326984882355, -0.005300077609717846, -0.03208669275045395, 0.01915164291858673, -0.04101448506116867, 0.04576132446527481, 0.046079907566308975, -0.04248332232236862, 0.09340482950210571, 0.2727794051170349, 0.1320023387670517, -0.08205481618642807, -0.10265505313873291, 0.021805085241794586, -0.03450016677379608, -0.013096245005726814, -0.01371059101074934, 0.020579569041728973, -0.0014869094593450427, 0.02443990297615528, 0.11256244778633118, -0.07091707736253738, 0.024737318977713585, -0.06810358166694641, 0.08501476794481277, -0.050070133060216904, -0.004111715592443943, -0.012967436574399471, -0.03546015918254852, -0.02919752709567547, -0.04813423380255699, 0.1696971207857132, -0.038042016327381134, -0.09443683922290802, 0.09035778790712357, -0.0018192444695159793, 0.01589462161064148, -0.08407724648714066, -0.04203187674283981, 0.18087424337863922, 0.3359929919242859, -0.04722631722688675, 0.09998135268688202, 0.15277111530303955, 0.03294616937637329, -0.21692126989364624, 0.030374795198440552, -0.10977433621883392, 0.051621805876493454, 0.03609371930360794, -0.03846230357885361, 0.034110233187675476, 0.09874881058931351, -0.028129929676651955, 0.17585526406764984, 0.01953643187880516, -0.08693647384643555, -0.033929161727428436, 0.036069389432668686, 0.3122052550315857, -0.10846572369337082, -0.020826220512390137, -0.10692492872476578, -0.2016768604516983, 0.06194566190242767, -0.14693762362003326, 0.14843909442424774, -0.06627882272005081, 0.0003900393203366548, -0.0052173142321407795, -0.06483335793018341, 0.1994384527206421, -0.14798803627490997, 0.026006877422332764, -0.15147830545902252, -0.12328807264566422, -0.041251420974731445, -0.08403646945953369, 0.14865940809249878, -0.06570124626159668, -0.04344901069998741, -0.19091598689556122, 0.007350549101829529, -0.027974670752882957, 0.11063537746667862, 0.028815733268857002, -0.0752638578414917, -0.09923963248729706, 0.11788176000118256, -0.06749717146158218, 0.03910348564386368, -0.07890404015779495, -0.06121758371591568, 0.010397613979876041, -0.09941333532333374, 0.08287406712770462, -0.0862501934170723, 0.1852070838212967, -0.03763248398900032, -0.04029596224427223, 0.0446147620677948, -0.2003331333398819, 0.002552860416471958, 0.026034075766801834, -0.021374043077230453, 0.1076977401971817, -0.018087027594447136, -0.07767273485660553, 0.1185331791639328, 0.1408364474773407, -0.051157817244529724, -0.23953555524349213, -0.09481517970561981, -0.06125766783952713, 0.03499162942171097, 0.06602034717798233, 0.04337223991751671, -0.037582479417324066, -0.018169071525335312, -0.041513841599226, 0.033625271171331406, -0.1189054325222969, -0.06319139897823334, 0.07589460164308548, -0.006073975935578346, -0.0763356164097786, 0.09338429570198059, -0.032820019870996475, -0.03311539068818092, -0.01368726510554552, 0.20198774337768555, -0.008855608291924, -0.09226503223180771, -0.06877847015857697, 0.27900266647338867, -0.03048190288245678, -0.0664299875497818, -0.08531653881072998, -0.006670560222119093, -0.06582149863243103, 0.04188055172562599, 0.041328541934490204, -0.002010792028158903, 0.08545565605163574, 0.07762014120817184, -0.13911466300487518, -0.05826771259307861, -0.05318617820739746, 0.011891456320881844, -0.07135025411844254, 0.05160493031144142, 0.032012127339839935, 0.13050486147403717, -0.08505744487047195, -0.03419254347681999, -0.12417411804199219, -0.06809327751398087, -0.14624148607254028, -0.05798319727182388, -0.03375891596078873, -0.025243792682886124, 0.0439620241522789, 0.031299322843551636, -0.05921275168657303, -0.04215855151414871, -0.04741876199841499, 0.030783573165535927, 0.057625751942396164, 0.023527050390839577, -0.009588590823113918, 0.043739497661590576, 0.08983426541090012, -0.006243378389626741, 0.1896410435438156, 0.08729267865419388, 0.055043112486600876, -0.04603677615523338, -0.19039814174175262, -0.05211332067847252, 0.02223200537264347, -0.12218629568815231, 0.11196397244930267, -0.015412883833050728, 0.012895013205707073, -0.07319827377796173, 0.04668041691184044, 0.02726844884455204, 0.12743760645389557, 0.002793054562062025, 0.1049814224243164, 0.043434470891952515, -0.10533586889505386, -0.061283957213163376, -0.0021762026008218527, 0.10733196139335632, 0.06612566858530045, -0.01128743588924408, -0.0033717022743076086, 0.04405450448393822, -0.035242099314928055, 0.019733525812625885, -0.04306551441550255, -0.13787303864955902, 0.034886833280324936, -0.04694775119423866, -0.0011652560206130147, 0.00710663478821516, 0.17317064106464386, 0.054182033985853195, -0.0254618301987648, -0.024032916873693466, 0.028941364958882332, 0.025683606043457985, -0.045264825224876404, -0.01727895624935627, 0.025978242978453636, -0.021640481427311897, -0.043705880641937256, 0.13222450017929077, 0.028626786544919014, 0.014563014730811119, 0.019564509391784668, 0.06472164392471313, -0.015074329450726509, 0.13567432761192322, 0.08222419023513794, -0.008827874436974525, -0.09915708005428314, -0.07344666868448257, -0.08103683590888977, 0.011100872419774532, -0.05304981768131256, 0.15240591764450073, 0.11740470677614212, -0.07795556634664536, -0.029058072715997696, -0.06257851421833038, -0.041331928223371506, -0.07843977957963943, 0.1036653220653534, -0.02496233582496643, -0.10892316699028015, 0.0774388313293457, 0.048255205154418945, -0.06232855096459389, 0.09361261129379272, 0.008523445576429367, -0.04945077374577522, 0.12077987939119339, -0.08857360482215881, 0.0779586061835289, 0.09074028581380844, -0.056155528873205185, -0.11285826563835144, 0.02101917378604412, -0.0790560320019722, -0.10934588313102722, -0.01704513281583786, -0.006802526768296957, -0.0675000324845314, -0.06630554795265198, 0.09924396872520447, -0.033378325402736664, -0.0808417946100235, -0.009302894584834576, 0.009268181398510933, 0.07236810028553009, 0.0006998069584369659, 0.010767156258225441, 0.02342168800532818, 0.02797984518110752, 0.15616022050380707, -0.011072474531829357, 0.07178742438554764, -0.1418774425983429, 0.16658848524093628, -0.15504102408885956, -0.020312270149588585, -0.2072305679321289, -0.07219657301902771, -0.04165418818593025, 0.21532052755355835, 0.23293757438659668, -0.17166124284267426, -0.038346052169799805, -0.012377340346574783, -0.007216373458504677, -0.08423903584480286, 0.1459619104862213, 0.03773199021816254, 0.02572815492749214, -0.05505906045436859, -0.028217488899827003, 0.03330636024475098, -0.06944887340068817, -0.027143921703100204, 0.13746559619903564, 0.007842977531254292, 0.05865885317325592, -0.08870512992143631, 0.033735159784555435, -0.1761062890291214, -0.07380182296037674, -0.005655340384691954, -0.17696590721607208, -0.06730128079652786, -0.010545771569013596, 0.002838961547240615, 0.10502849519252777, 0.06459736824035645, 0.003863506717607379, 0.09335818141698837, -0.06752859055995941, 0.006134026683866978, -0.15302301943302155, 0.011434430256485939, 0.02834193967282772, -0.08365264534950256, 0.22153930366039276, -0.025956200435757637, -0.12750713527202606, 0.073382169008255, -0.0354037769138813, -0.11012329161167145, 0.08625926822423935, -0.050227366387844086, -0.06749723851680756, -0.07164901494979858, 0.20211242139339447, -0.014962103217840195, -0.20338715612888336, 0.031386494636535645, -0.14145377278327942, 0.04773411899805069, 0.0645521879196167, -0.000413411675253883, -0.05528945103287697, 0.03904610127210617, -0.05273297429084778, 0.09188544005155563, 0.12330617010593414, 0.02328065037727356, -0.010847174562513828, -0.05439227819442749, 0.08116582781076431, 0.06407524645328522, -0.07506254315376282, -0.09338168799877167, -0.09387233853340149, -0.0019494221778586507, 0.11523110419511795, -0.12432260066270828, -0.1959688514471054, -0.0497063584625721, -0.11102040857076645, -0.0017136825481429696, 0.043178826570510864, 0.06693094968795776, 0.24413280189037323, 0.0637032687664032, 0.024202952161431313, -0.20832905173301697, 0.09214244782924652, 0.09660524874925613, -0.01729140244424343, -0.09274700284004211 ]
null
null
fastai
# Amazing! Congratulations on hosting your fastai model on the Hugging Face Hub! # Some next steps 1. Fill out this model card with more information (template below and [documentation here](https://huggingface.co/docs/hub/model-repos))! 2. Create a demo in Gradio or Streamlit using the 🤗Spaces ([documentation here](https://huggingface.co/docs/hub/spaces)). 3. Join our fastai community on the Hugging Face Discord! Greetings fellow fastlearner 🤝! --- # Model card ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed
{"tags": ["fastai"]}
null
fastai/fastbook_06_multicat_PASCAL
[ "fastai", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #fastai #region-us
# Amazing! Congratulations on hosting your fastai model on the Hugging Face Hub! # Some next steps 1. Fill out this model card with more information (template below and documentation here)! 2. Create a demo in Gradio or Streamlit using the Spaces (documentation here). 3. Join our fastai community on the Hugging Face Discord! Greetings fellow fastlearner ! --- # Model card ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed
[ "# Amazing!\n\nCongratulations on hosting your fastai model on the Hugging Face Hub!", "# Some next steps\n1. Fill out this model card with more information (template below and documentation here)!\n\n2. Create a demo in Gradio or Streamlit using the Spaces (documentation here).\n\n3. Join our fastai community on the Hugging Face Discord!\n\nGreetings fellow fastlearner !\n\n\n---", "# Model card", "## Model description\nMore information needed", "## Intended uses & limitations\nMore information needed", "## Training and evaluation data\nMore information needed" ]
[ "TAGS\n#fastai #region-us \n", "# Amazing!\n\nCongratulations on hosting your fastai model on the Hugging Face Hub!", "# Some next steps\n1. Fill out this model card with more information (template below and documentation here)!\n\n2. Create a demo in Gradio or Streamlit using the Spaces (documentation here).\n\n3. Join our fastai community on the Hugging Face Discord!\n\nGreetings fellow fastlearner !\n\n\n---", "# Model card", "## Model description\nMore information needed", "## Intended uses & limitations\nMore information needed", "## Training and evaluation data\nMore information needed" ]
[ 9, 20, 66, 3, 6, 12, 8 ]
[ "passage: TAGS\n#fastai #region-us \n# Amazing!\n\nCongratulations on hosting your fastai model on the Hugging Face Hub!# Some next steps\n1. Fill out this model card with more information (template below and documentation here)!\n\n2. Create a demo in Gradio or Streamlit using the Spaces (documentation here).\n\n3. Join our fastai community on the Hugging Face Discord!\n\nGreetings fellow fastlearner !\n\n\n---# Model card## Model description\nMore information needed## Intended uses & limitations\nMore information needed## Training and evaluation data\nMore information needed" ]
[ -0.033277031034231186, -0.08227241784334183, 0.0022239338140934706, 0.07713031768798828, 0.17038100957870483, 0.10486842691898346, 0.08670254796743393, 0.07142214477062225, 0.11567308753728867, 0.013446890749037266, 0.09491732716560364, -0.10746689885854721, 0.09321203827857971, 0.2697221636772156, 0.08565160632133484, -0.2643716335296631, 0.007085119374096394, -0.007957587949931622, 0.09378449618816376, 0.0647154450416565, 0.12935099005699158, -0.01542446669191122, 0.14802193641662598, -0.006468500941991806, -0.20873704552650452, -0.048613112419843674, -0.0367392972111702, 0.006289718206971884, 0.12599752843379974, -0.05386224761605263, 0.030972018837928772, -0.015907105058431625, -0.0041992454789578915, -0.0924329087138176, 0.05714719742536545, 0.027781732380390167, 0.033576205372810364, 0.04195935279130936, -0.03856709972023964, 0.090358667075634, 0.08452040702104568, -0.028579043224453926, -0.11602935940027237, 0.09493833780288696, -0.15224945545196533, -0.17045728862285614, -0.10770466178655624, -0.15297317504882812, 0.06646230816841125, 0.01824142225086689, -0.032926321029663086, 0.12947368621826172, -0.17055726051330566, -0.03268762677907944, 0.19679228961467743, -0.1398683488368988, -0.054200977087020874, -0.022875504568219185, 0.08887587487697601, -0.08454488962888718, -0.06776228547096252, 0.08554226160049438, 0.10405685752630234, -0.02733820304274559, 0.010947559960186481, 0.013491141609847546, 0.028794609010219574, -0.00744158448651433, -0.05253235623240471, 0.07537523657083511, -0.030229059979319572, 0.061034366488456726, -0.12459655851125717, -0.13618654012680054, 0.020395886152982712, 0.07018813490867615, -0.051939528435468674, -0.06627117097377777, 0.08689701557159424, 0.00023925417917780578, -0.12471684068441391, -0.10193783044815063, -0.044013865292072296, -0.11784403026103973, 0.010395646095275879, 0.0941244587302208, -0.017060521990060806, 0.05990614369511604, -0.09526018053293228, 0.052144426852464676, -0.19857820868492126, -0.03546607121825218, -0.0739876851439476, -0.09697233885526657, 0.015451633371412754, -0.0281793512403965, 0.03342891484498978, 0.19603703916072845, 0.15404142439365387, 0.040892187505960464, 0.04508811607956886, -0.03108343854546547, 0.017177764326334, 0.04148007556796074, -0.0008477934752590954, 0.0648224875330925, -0.009331580251455307, -0.22554752230644226, -0.0034632382448762655, -0.03554622828960419, 0.11059566587209702, -0.07053891569375992, -0.048477303236722946, -0.017674023285508156, -0.14979448914527893, 0.08524873852729797, -0.0650213286280632, 0.0014887347351759672, -0.004883226472884417, 0.017286252230405807, 0.19425265491008759, 0.046697601675987244, 0.00032520972308702767, -0.0058996472507715225, -0.1312907189130783, -0.10475128889083862, -0.0633954331278801, 0.05420992895960808, 0.03653633967041969, 0.002547129988670349, -0.08216937631368637, 0.06124689429998398, -0.02218456007540226, 0.0038849383126944304, 0.022792907431721687, -0.22105424106121063, 0.018331365659832954, -0.08542918413877487, -0.07521633058786392, 0.05388824641704559, -0.029907379299402237, -0.06049371510744095, 0.068365678191185, -0.03459030017256737, 0.0346822515130043, -0.03688182309269905, 0.0016914508305490017, 0.017987843602895737, -0.071634441614151, 0.004566612187772989, 0.22498995065689087, 0.12187080085277557, -0.0373307466506958, -0.01403727661818266, -0.11625855416059494, 0.03486724942922592, -0.12201837450265884, 0.045901890844106674, -0.07823994755744934, 0.18674558401107788, -0.014955941587686539, 0.01712312549352646, -0.025887764990329742, 0.07750066369771957, 0.0900055542588234, 0.21741575002670288, -0.20995363593101501, -0.09242399781942368, 0.20153622329235077, -0.09993880242109299, -0.20968188345432281, 0.2143387496471405, 0.010933434590697289, 0.10466093569993973, -0.02445356920361519, 0.2072000801563263, -0.06392479687929153, -0.17961379885673523, -0.02127908729016781, -0.011059229262173176, -0.24161723256111145, -0.051771532744169235, 0.10153976082801819, 0.08293270319700241, -0.05680832639336586, 0.03393745422363281, -0.0017613122472539544, 0.19719333946704865, -0.08100304007530212, -0.0327664315700531, 0.0037850369699299335, -0.09438452124595642, 0.008816446177661419, 0.024635400623083115, 0.030300842598080635, -0.07669425010681152, 0.0045998780988156796, -0.10862505435943604, 0.10374045372009277, 0.08856850862503052, -0.018831197172403336, -0.05914812535047531, 0.11219041049480438, -0.030924323946237564, -0.03990488499403, 0.10462885349988937, -0.07421869039535522, 0.054816972464323044, 0.07873906940221786, 0.0769772157073021, -0.011359816417098045, 0.09274003654718399, 0.06584157794713974, 0.013920036144554615, 0.03992454335093498, 0.11420150846242905, -0.03665994852781296, -0.031658392399549484, 0.02031930349767208, 0.0778738409280777, -0.022186169400811195, 0.3688422739505768, -0.17356127500534058, 0.01821484975516796, -0.10282918810844421, 0.08845876902341843, 0.06183716654777527, -0.0008401357918046415, 0.0835038349032402, -0.0367698073387146, -0.0032264823094010353, -0.055524107068777084, 0.08583492785692215, -0.05812237039208412, -0.08662345260381699, 0.2658982574939728, -0.03440943360328674, 0.0036153150722384453, 0.09868631511926651, -0.054184261709451675, -0.062347497791051865, -0.06147386133670807, -0.026257529854774475, 0.0223053228110075, -0.027185508981347084, 0.07022673636674881, -0.06264147907495499, -0.060661379247903824, 0.16288144886493683, -0.03619345277547836, 0.06410842388868332, 0.027257069945335388, -0.08201233297586441, -0.04750926420092583, 0.06294645369052887, 0.09405282884836197, -0.06485769897699356, 0.038453102111816406, 0.1124429702758789, -0.0016101401997730136, 0.16678395867347717, 0.0592765286564827, -0.056373707950115204, -0.09419229626655579, -0.005355950444936752, 0.007470285519957542, 0.1591932624578476, -0.13831892609596252, -0.054418422281742096, 0.029514815658330917, -0.023972032591700554, 0.05227358266711235, -0.05514098331332207, -0.07087593525648117, 0.0013438323512673378, -0.07329598814249039, 0.025018898770213127, 0.12582840025424957, -0.09504543989896774, 0.03497644141316414, 0.04957837611436844, -0.05680005997419357, 0.0234662014991045, 0.02370806410908699, -0.029213670641183853, 0.04664962738752365, 0.07227440923452377, -0.206625297665596, -0.10228221863508224, -0.18699663877487183, 0.016714517027139664, 0.024553729221224785, 0.027458691969513893, -0.1259651482105255, 0.04575458914041519, -0.06818679720163345, -0.038054630160331726, 0.0717974603176117, -0.024877948686480522, -0.09307482093572617, -0.022279124706983566, -0.014280120842158794, -0.05402163788676262, -0.027896815910935402, -0.08477012068033218, -0.0009268703288398683, 0.03632563725113869, -0.00031268977909348905, 0.13541896641254425, -0.02366817370057106, -0.009438908658921719, 0.005859281402081251, -0.03213220462203026, 0.1568119376897812, -0.135063037276268, 0.045071423053741455, 0.13406558334827423, 0.10207222402095795, 0.03798583522439003, 0.012921007350087166, 0.018819143995642662, -0.08992904424667358, 0.02965068444609642, 0.031484205275774, -0.09813158959150314, -0.056053221225738525, -0.024970686063170433, -0.030953072011470795, 0.26418179273605347, -0.12343134731054306, 0.0034723030403256416, 0.03854964300990105, 0.07769693434238434, 0.12518101930618286, -0.05048064887523651, -0.14797833561897278, 0.048560041934251785, -0.2661287486553192, -0.056680064648389816, 0.004655467811971903, -0.09040501713752747, -0.08040545135736465, 0.15619415044784546, -0.027873646467924118, 0.03271074593067169, -0.006139150820672512, 0.09560710936784744, 0.010217266157269478, 0.13245338201522827, 0.06668516248464584, -0.05331530049443245, 0.02290397323668003, -0.10145124793052673, -0.07250506430864334, -0.03798116743564606, -0.07836087048053741, 0.059070851653814316, 0.15479473769664764, -0.04539763554930687, -0.03424506261944771, 0.01731664128601551, 0.09378930926322937, 0.04389014467597008, 0.15866267681121826, -0.14041966199874878, -0.004812900442630053, 0.04247099161148071, -0.019690074026584625, -0.031159594655036926, -0.01611192710697651, 0.08120068907737732, -0.05842692777514458, 0.00590216601267457, 0.006586797069758177, 0.06998071074485779, 0.04643845185637474, 0.03342098370194435, -0.05887731909751892, 0.17546813189983368, -0.021034201607108116, -0.0014303643256425858, -0.09125334024429321, 0.1439528912305832, 0.00908610224723816, -0.017340699210762978, -0.03325200453400612, -0.04431763291358948, 0.19507499039173126, 0.028783265501260757, 0.11954433470964432, 0.023984292522072792, -0.07356978952884674, -0.09644994139671326, -0.1253555417060852, 0.022706180810928345, 0.11147056519985199, -0.026222921907901764, -0.025333024561405182, 0.02208506129682064, -0.0478445440530777, -0.06646084040403366, 0.17884555459022522, -0.10769326984882355, -0.005300077609717846, -0.03208669275045395, 0.01915164291858673, -0.04101448506116867, 0.04576132446527481, 0.046079907566308975, -0.04248332232236862, 0.09340482950210571, 0.2727794051170349, 0.1320023387670517, -0.08205481618642807, -0.10265505313873291, 0.021805085241794586, -0.03450016677379608, -0.013096245005726814, -0.01371059101074934, 0.020579569041728973, -0.0014869094593450427, 0.02443990297615528, 0.11256244778633118, -0.07091707736253738, 0.024737318977713585, -0.06810358166694641, 0.08501476794481277, -0.050070133060216904, -0.004111715592443943, -0.012967436574399471, -0.03546015918254852, -0.02919752709567547, -0.04813423380255699, 0.1696971207857132, -0.038042016327381134, -0.09443683922290802, 0.09035778790712357, -0.0018192444695159793, 0.01589462161064148, -0.08407724648714066, -0.04203187674283981, 0.18087424337863922, 0.3359929919242859, -0.04722631722688675, 0.09998135268688202, 0.15277111530303955, 0.03294616937637329, -0.21692126989364624, 0.030374795198440552, -0.10977433621883392, 0.051621805876493454, 0.03609371930360794, -0.03846230357885361, 0.034110233187675476, 0.09874881058931351, -0.028129929676651955, 0.17585526406764984, 0.01953643187880516, -0.08693647384643555, -0.033929161727428436, 0.036069389432668686, 0.3122052550315857, -0.10846572369337082, -0.020826220512390137, -0.10692492872476578, -0.2016768604516983, 0.06194566190242767, -0.14693762362003326, 0.14843909442424774, -0.06627882272005081, 0.0003900393203366548, -0.0052173142321407795, -0.06483335793018341, 0.1994384527206421, -0.14798803627490997, 0.026006877422332764, -0.15147830545902252, -0.12328807264566422, -0.041251420974731445, -0.08403646945953369, 0.14865940809249878, -0.06570124626159668, -0.04344901069998741, -0.19091598689556122, 0.007350549101829529, -0.027974670752882957, 0.11063537746667862, 0.028815733268857002, -0.0752638578414917, -0.09923963248729706, 0.11788176000118256, -0.06749717146158218, 0.03910348564386368, -0.07890404015779495, -0.06121758371591568, 0.010397613979876041, -0.09941333532333374, 0.08287406712770462, -0.0862501934170723, 0.1852070838212967, -0.03763248398900032, -0.04029596224427223, 0.0446147620677948, -0.2003331333398819, 0.002552860416471958, 0.026034075766801834, -0.021374043077230453, 0.1076977401971817, -0.018087027594447136, -0.07767273485660553, 0.1185331791639328, 0.1408364474773407, -0.051157817244529724, -0.23953555524349213, -0.09481517970561981, -0.06125766783952713, 0.03499162942171097, 0.06602034717798233, 0.04337223991751671, -0.037582479417324066, -0.018169071525335312, -0.041513841599226, 0.033625271171331406, -0.1189054325222969, -0.06319139897823334, 0.07589460164308548, -0.006073975935578346, -0.0763356164097786, 0.09338429570198059, -0.032820019870996475, -0.03311539068818092, -0.01368726510554552, 0.20198774337768555, -0.008855608291924, -0.09226503223180771, -0.06877847015857697, 0.27900266647338867, -0.03048190288245678, -0.0664299875497818, -0.08531653881072998, -0.006670560222119093, -0.06582149863243103, 0.04188055172562599, 0.041328541934490204, -0.002010792028158903, 0.08545565605163574, 0.07762014120817184, -0.13911466300487518, -0.05826771259307861, -0.05318617820739746, 0.011891456320881844, -0.07135025411844254, 0.05160493031144142, 0.032012127339839935, 0.13050486147403717, -0.08505744487047195, -0.03419254347681999, -0.12417411804199219, -0.06809327751398087, -0.14624148607254028, -0.05798319727182388, -0.03375891596078873, -0.025243792682886124, 0.0439620241522789, 0.031299322843551636, -0.05921275168657303, -0.04215855151414871, -0.04741876199841499, 0.030783573165535927, 0.057625751942396164, 0.023527050390839577, -0.009588590823113918, 0.043739497661590576, 0.08983426541090012, -0.006243378389626741, 0.1896410435438156, 0.08729267865419388, 0.055043112486600876, -0.04603677615523338, -0.19039814174175262, -0.05211332067847252, 0.02223200537264347, -0.12218629568815231, 0.11196397244930267, -0.015412883833050728, 0.012895013205707073, -0.07319827377796173, 0.04668041691184044, 0.02726844884455204, 0.12743760645389557, 0.002793054562062025, 0.1049814224243164, 0.043434470891952515, -0.10533586889505386, -0.061283957213163376, -0.0021762026008218527, 0.10733196139335632, 0.06612566858530045, -0.01128743588924408, -0.0033717022743076086, 0.04405450448393822, -0.035242099314928055, 0.019733525812625885, -0.04306551441550255, -0.13787303864955902, 0.034886833280324936, -0.04694775119423866, -0.0011652560206130147, 0.00710663478821516, 0.17317064106464386, 0.054182033985853195, -0.0254618301987648, -0.024032916873693466, 0.028941364958882332, 0.025683606043457985, -0.045264825224876404, -0.01727895624935627, 0.025978242978453636, -0.021640481427311897, -0.043705880641937256, 0.13222450017929077, 0.028626786544919014, 0.014563014730811119, 0.019564509391784668, 0.06472164392471313, -0.015074329450726509, 0.13567432761192322, 0.08222419023513794, -0.008827874436974525, -0.09915708005428314, -0.07344666868448257, -0.08103683590888977, 0.011100872419774532, -0.05304981768131256, 0.15240591764450073, 0.11740470677614212, -0.07795556634664536, -0.029058072715997696, -0.06257851421833038, -0.041331928223371506, -0.07843977957963943, 0.1036653220653534, -0.02496233582496643, -0.10892316699028015, 0.0774388313293457, 0.048255205154418945, -0.06232855096459389, 0.09361261129379272, 0.008523445576429367, -0.04945077374577522, 0.12077987939119339, -0.08857360482215881, 0.0779586061835289, 0.09074028581380844, -0.056155528873205185, -0.11285826563835144, 0.02101917378604412, -0.0790560320019722, -0.10934588313102722, -0.01704513281583786, -0.006802526768296957, -0.0675000324845314, -0.06630554795265198, 0.09924396872520447, -0.033378325402736664, -0.0808417946100235, -0.009302894584834576, 0.009268181398510933, 0.07236810028553009, 0.0006998069584369659, 0.010767156258225441, 0.02342168800532818, 0.02797984518110752, 0.15616022050380707, -0.011072474531829357, 0.07178742438554764, -0.1418774425983429, 0.16658848524093628, -0.15504102408885956, -0.020312270149588585, -0.2072305679321289, -0.07219657301902771, -0.04165418818593025, 0.21532052755355835, 0.23293757438659668, -0.17166124284267426, -0.038346052169799805, -0.012377340346574783, -0.007216373458504677, -0.08423903584480286, 0.1459619104862213, 0.03773199021816254, 0.02572815492749214, -0.05505906045436859, -0.028217488899827003, 0.03330636024475098, -0.06944887340068817, -0.027143921703100204, 0.13746559619903564, 0.007842977531254292, 0.05865885317325592, -0.08870512992143631, 0.033735159784555435, -0.1761062890291214, -0.07380182296037674, -0.005655340384691954, -0.17696590721607208, -0.06730128079652786, -0.010545771569013596, 0.002838961547240615, 0.10502849519252777, 0.06459736824035645, 0.003863506717607379, 0.09335818141698837, -0.06752859055995941, 0.006134026683866978, -0.15302301943302155, 0.011434430256485939, 0.02834193967282772, -0.08365264534950256, 0.22153930366039276, -0.025956200435757637, -0.12750713527202606, 0.073382169008255, -0.0354037769138813, -0.11012329161167145, 0.08625926822423935, -0.050227366387844086, -0.06749723851680756, -0.07164901494979858, 0.20211242139339447, -0.014962103217840195, -0.20338715612888336, 0.031386494636535645, -0.14145377278327942, 0.04773411899805069, 0.0645521879196167, -0.000413411675253883, -0.05528945103287697, 0.03904610127210617, -0.05273297429084778, 0.09188544005155563, 0.12330617010593414, 0.02328065037727356, -0.010847174562513828, -0.05439227819442749, 0.08116582781076431, 0.06407524645328522, -0.07506254315376282, -0.09338168799877167, -0.09387233853340149, -0.0019494221778586507, 0.11523110419511795, -0.12432260066270828, -0.1959688514471054, -0.0497063584625721, -0.11102040857076645, -0.0017136825481429696, 0.043178826570510864, 0.06693094968795776, 0.24413280189037323, 0.0637032687664032, 0.024202952161431313, -0.20832905173301697, 0.09214244782924652, 0.09660524874925613, -0.01729140244424343, -0.09274700284004211 ]
null
null
transformers
# Hermione Granger DialoGPT Model
{"tags": ["conversational"]}
text-generation
fatemaMeem98/DialoGPT-medium-HermioneGrangerBot
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "has_space", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #has_space #text-generation-inference #region-us
# Hermione Granger DialoGPT Model
[ "# Hermione Granger DialoGPT Model" ]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #has_space #text-generation-inference #region-us \n", "# Hermione Granger DialoGPT Model" ]
[ 55, 11 ]
[ "passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #has_space #text-generation-inference #region-us \n# Hermione Granger DialoGPT Model" ]
[ -0.02176320180296898, 0.11018767952919006, -0.005054037552326918, 0.0373448021709919, 0.1193646714091301, -0.007625901605933905, 0.11977442353963852, 0.14867106080055237, -0.01303309015929699, 0.005280165001749992, 0.11973198503255844, 0.15366265177726746, -0.021985279396176338, 0.07234776020050049, -0.09334313869476318, -0.3039616048336029, 0.0340433195233345, 0.04297415167093277, -0.01715810038149357, 0.10388048738241196, 0.07873019576072693, -0.0583416186273098, 0.07935819774866104, 0.013310728594660759, -0.1553538739681244, 0.0015540755121037364, -0.01697980985045433, -0.11496368050575256, 0.13891029357910156, 0.06797932833433151, 0.02359657920897007, 0.025824682787060738, -0.06890413910150528, -0.11815343797206879, 0.03428035229444504, -0.028739044442772865, -0.03150780126452446, 0.08140774816274643, -0.02205853909254074, -0.05015261098742485, 0.171212300658226, 0.10412183403968811, 0.009731319732964039, 0.020647333934903145, -0.15818874537944794, -0.038738787174224854, -0.003888678504154086, 0.021844156086444855, -0.015759015455842018, 0.10359831899404526, -0.039322368800640106, 0.13414441049098969, -0.09782405197620392, 0.07330995053052902, 0.16735069453716278, -0.3449242115020752, -0.032594144344329834, 0.1651172637939453, 0.06374356150627136, 0.09270313382148743, -0.0804150402545929, 0.08407220244407654, -0.0023040755186229944, -0.011113351210951805, -0.04549252986907959, -0.05580807849764824, -0.03959028422832489, 0.039537765085697174, -0.12081736326217651, -0.006864072289317846, 0.25180673599243164, -0.03598058968782425, 0.07880152016878128, -0.06730984896421432, -0.10457953810691833, 0.03880073502659798, -0.030488552525639534, -0.06037358567118645, -0.06516869366168976, 0.0631810650229454, 0.004384312313050032, -0.11075548082590103, -0.1194012239575386, 0.015528004616498947, -0.18402443826198578, 0.16434064507484436, 0.019778737798333168, 0.04190465062856674, -0.20075452327728271, 0.10298323631286621, -0.03188815340399742, -0.08719020336866379, 0.0021101145539432764, -0.1099766343832016, 0.03531818464398384, 0.0011764183873310685, -0.04671180620789528, -0.013502324931323528, 0.0675564557313919, 0.12005205452442169, -0.0022278104443103075, 0.009099236689507961, 0.019991619512438774, 0.05468429625034332, 0.07360181212425232, 0.04598672688007355, -0.029593678191304207, -0.0697617307305336, 0.02062837965786457, -0.05675239861011505, 0.0011325274826958776, -0.057149987667798996, -0.17913351953029633, -0.07087689638137817, 0.0418388806283474, 0.029474763199687004, 0.053421199321746826, 0.10149910300970078, 0.018270744010806084, -0.02364993467926979, 0.0529787503182888, -0.01119180116802454, 0.018480053171515465, -0.005013451911509037, 0.0003676831256598234, 0.12756673991680145, 0.020073367282748222, 0.026197602972388268, -0.08163327723741531, -0.022000186145305634, -0.10125560313463211, -0.0014072228223085403, -0.009201863780617714, -0.05320967361330986, 0.004558885935693979, -0.07961224764585495, 0.02040284126996994, -0.15175262093544006, -0.10360835492610931, 0.011217698454856873, -0.016043081879615784, -0.08196461200714111, -0.11215972155332565, -0.07764466106891632, -0.04391133785247803, 0.09519574046134949, -0.04032493382692337, 0.015258326195180416, -0.04637962207198143, 0.06806749850511551, -0.026611775159835815, 0.1137499064207077, -0.09497660398483276, 0.06742928177118301, -0.06817058473825455, -0.04836635664105415, -0.06246574968099594, 0.0769350603222847, -0.0012918474385514855, 0.04960952326655388, -0.025098731741309166, -0.02772124484181404, -0.07215047627687454, 0.04915856570005417, -0.021687641739845276, 0.21373094618320465, -0.06599678099155426, -0.09615623950958252, 0.19147884845733643, -0.059035349637269974, -0.10648071765899658, 0.1156638115644455, 0.0012087960494682193, 0.11180848628282547, 0.08898715674877167, 0.22245906293392181, 0.018097111955285072, -0.010034957900643349, 0.09271634370088577, 0.11118058115243912, -0.06606340408325195, 0.029269030317664146, 0.002515672706067562, -0.037940703332424164, -0.04725223779678345, 0.034429773688316345, 0.06267742812633514, 0.04933853819966316, -0.049925755709409714, -0.03478606045246124, -0.024816757068037987, -0.004948107525706291, 0.09240497648715973, -0.010546332225203514, 0.1397162228822708, -0.04593110457062721, -0.07889995723962784, -0.0015206868993118405, 0.011997118592262268, -0.045662906020879745, 0.05236125364899635, -0.04622167348861694, 0.10682430863380432, 0.02836369350552559, 0.041013821959495544, -0.1290683150291443, -0.023246141150593758, -0.05678971856832504, 0.13535365462303162, 0.07300795614719391, 0.16530677676200867, 0.07995697110891342, -0.03861608728766441, -0.01935683749616146, 0.05006122961640358, 0.11734072864055634, 0.014254250563681126, -0.09262315928936005, -0.11259988695383072, 0.07443682849407196, -0.05726279690861702, 0.10878611356019974, -0.06782474368810654, 0.02092120051383972, 0.03617982193827629, 0.08220122009515762, -0.01659507118165493, 0.012008578516542912, 0.013949275016784668, -0.02303669974207878, -0.06304425746202469, 0.015429720282554626, 0.07961539924144745, -0.015061063691973686, -0.038314204663038254, 0.19797064363956451, -0.18796338140964508, 0.14710748195648193, 0.1886191964149475, -0.20373640954494476, 0.018744541332125664, -0.10168299078941345, -0.03888465464115143, 0.019037559628486633, 0.06593792885541916, -0.02241481840610504, 0.15063460171222687, -0.05496622622013092, 0.14072079956531525, -0.033040013164281845, -0.03311986103653908, -0.04005669057369232, -0.06469786167144775, -0.018641633912920952, 0.07335854321718216, 0.0849100649356842, -0.15416832268238068, 0.158392071723938, 0.1194940134882927, -0.0039190445095300674, 0.17647546529769897, 0.08372396230697632, -0.006791363004595041, 0.04541080817580223, -0.057675428688526154, -0.07241598516702652, -0.06460670381784439, -0.32928401231765747, -0.06129048764705658, 0.08568010479211807, 0.04170471057295799, 0.10063932836055756, -0.08957906812429428, -0.038708463311195374, 0.01031416840851307, 0.01762991212308407, 0.05160904303193092, 0.15561163425445557, 0.027650263160467148, 0.12619858980178833, -0.007110105827450752, -0.08391513675451279, 0.05365980044007301, 0.01942981593310833, -0.06413751095533371, 0.15770834684371948, -0.11558429151773453, -0.3282853364944458, -0.0800154060125351, -0.17571298778057098, 0.006526568438857794, 0.03816822171211243, 0.10791157186031342, -0.08377990871667862, -0.03500084951519966, -0.0552683062851429, 0.10140372812747955, -0.14384056627750397, 0.01791631244122982, -0.08582711219787598, 0.020809177309274673, -0.12276913970708847, -0.11288928985595703, -0.03458597883582115, -0.04475787654519081, -0.07084190100431442, 0.11757132411003113, -0.07803711295127869, 0.03907286003232002, 0.2082720398902893, 0.024527419358491898, 0.04658426716923714, -0.03411382436752319, 0.23183274269104004, -0.09633401781320572, 0.03778643533587456, 0.1555168181657791, -0.0032803404610604048, 0.06687338650226593, 0.14100609719753265, 0.007507664151489735, -0.045603204518556595, 0.0031775867100805044, -0.028335146605968475, -0.05794340372085571, -0.1882660835981369, -0.11879432201385498, -0.1278962641954422, 0.08594857156276703, 0.029445894062519073, 0.045086927711963654, 0.15804412961006165, 0.06163150072097778, -0.021531913429498672, -0.05620572715997696, 0.044727761298418045, 0.08034844696521759, 0.2808246612548828, -0.05541328713297844, 0.16047826409339905, -0.004063347354531288, -0.13271844387054443, 0.05922712758183479, 0.06141003966331482, 0.11326765269041061, 0.034580543637275696, 0.02971055917441845, 0.023800870403647423, 0.05949154496192932, 0.15074551105499268, 0.014209654182195663, 0.05035773292183876, -0.04480163753032684, -0.05492410808801651, -0.035394854843616486, 0.027346601709723473, 0.07062681019306183, 0.09029579907655716, -0.16924066841602325, -0.04502274468541145, -0.025550981983542442, 0.04634886234998703, -0.05557933449745178, 0.1334024965763092, -0.1206451803445816, -0.004367700777947903, 0.0828346535563469, -0.058193862438201904, -0.11257067322731018, 0.0920831710100174, 0.042432595044374466, -0.147615447640419, -0.022845806553959846, 0.023234514519572258, 0.08564361929893494, -0.052348148077726364, 0.048111896961927414, -0.17916437983512878, -0.09870415925979614, -0.008205913007259369, 0.10979806631803513, -0.2588026821613312, 0.21268384158611298, -0.02333230711519718, -0.0788184404373169, -0.06821895390748978, -0.012916642241179943, 0.03608470410108566, 0.09700436145067215, 0.06502404063940048, -0.007843447849154472, 0.03212320804595947, 0.051019199192523956, -0.013462270610034466, 0.009308313950896263, 0.06956849247217178, 0.005440644919872284, 0.003432624973356724, -0.043800704181194305, 0.006860850844532251, -0.007478795014321804, -0.0021639640908688307, 0.023082084953784943, -0.21275779604911804, 0.09327047318220139, 0.04175376519560814, 0.013968801125884056, 0.022218961268663406, -0.06782126426696777, -0.13439233601093292, 0.20911972224712372, 0.06134737655520439, -0.0745071992278099, -0.07170283794403076, 0.01279792282730341, 0.08317147940397263, -0.0485730841755867, 0.08077600598335266, -0.048766884952783585, 0.022422779351472855, -0.07634583115577698, -0.17170047760009766, 0.10820300132036209, -0.06490223109722137, -0.04565301164984703, -0.015056698583066463, 0.18467485904693604, -0.029505249112844467, 0.03514225408434868, 0.04085763171315193, 0.05807911232113838, -0.19584672152996063, -0.0704452395439148, 0.03890901803970337, 0.032526060938835144, -0.006544297095388174, 0.02882685326039791, 0.011870748363435268, -0.03893151134252548, -0.005562616977840662, -0.00709218205884099, 0.3337843120098114, 0.16079747676849365, -0.07260335236787796, 0.14921073615550995, 0.06121806427836418, -0.05253702029585838, -0.28394898772239685, -0.07498307526111603, -0.0926932841539383, -0.04094644635915756, -0.041868310421705246, -0.15460778772830963, 0.08027387410402298, 0.0013507995754480362, -0.024741092696785927, 0.0922510102391243, -0.27880674600601196, -0.09154526889324188, 0.1799633502960205, -0.023502418771386147, 0.3792060911655426, -0.10834842920303345, -0.045512158423662186, -0.005222570616751909, -0.14863379299640656, 0.09752704203128815, -0.042766768485307693, 0.12269600480794907, -0.030733633786439896, 0.15591423213481903, 0.05811811238527298, -0.010392077267169952, 0.11934775114059448, 0.00809104461222887, -0.054565995931625366, -0.10946767032146454, -0.10059165209531784, 0.031312379986047745, 0.012965895235538483, 0.04378420114517212, -0.0705731213092804, 0.01821490004658699, -0.10541988909244537, -0.02146177738904953, -0.09539011865854263, 0.04048499837517738, 0.003576508956030011, -0.05160416290163994, -0.06405327469110489, -0.03736233338713646, -0.013081133365631104, 0.027354281395673752, 0.17493653297424316, -0.10412289947271347, 0.13889352977275848, 0.1294422447681427, 0.10240098088979721, -0.15811674296855927, -0.02484055608510971, -0.010674809105694294, -0.06761088967323303, 0.05626612901687622, -0.15259288251399994, 0.00043690865277312696, 0.0813787430524826, -0.009918092750012875, 0.06799642741680145, 0.08887877315282822, -0.0016860670875757933, -0.00046005845069885254, 0.1083025187253952, -0.26205018162727356, -0.12632250785827637, -0.07594732195138931, -0.0031289267353713512, 0.059659507125616074, 0.07327943295240402, 0.212363138794899, -0.008562629111111164, -0.0468740239739418, 0.007790885865688324, 0.02779027260839939, -0.035772040486335754, 0.08493129163980484, 0.01554280985146761, 0.027984684333205223, -0.12812912464141846, 0.03788479045033455, 0.029461124911904335, -0.08264247328042984, 0.04434088245034218, 0.17183105647563934, -0.10329902172088623, -0.14730769395828247, -0.1049872413277626, 0.04523848742246628, -0.10066767781972885, 0.04981543496251106, -0.04765656962990761, -0.11198912560939789, 0.05852996185421944, 0.10240017622709274, 0.06842027604579926, 0.06503603607416153, -0.09896855801343918, -0.02636048011481762, -0.009599673561751842, 0.02466828189790249, 0.024309072643518448, 0.009334743022918701, -0.0835161805152893, 0.11937350034713745, -0.05545638129115105, 0.08492109179496765, -0.08577711880207062, -0.10997374355792999, -0.14281699061393738, 0.02301807701587677, -0.061106838285923004, -0.09034862369298935, -0.09056343883275986, -0.053772348910570145, -0.001838662545196712, -0.04237997531890869, -0.016680460423231125, -0.048420414328575134, -0.10740002989768982, 0.012079259380698204, -0.029796484857797623, 0.01936544105410576, -0.07139783352613449, 0.025998782366514206, 0.05739085376262665, -0.0367710180580616, 0.14572389423847198, 0.12880241870880127, -0.09670878201723099, 0.05816326290369034, -0.0881827101111412, -0.09268063306808472, 0.10257182270288467, 0.009137177839875221, 0.057515595108270645, 0.018638476729393005, -0.013678316958248615, 0.024657895788550377, 0.09065356105566025, 0.056823745369911194, 0.009649408049881458, -0.06973505020141602, 0.06484463810920715, -0.058498281985521317, -0.1624908149242401, -0.037128597497940063, -0.04940899461507797, 0.040638260543346405, 0.01049814186990261, 0.09135951101779938, -0.031690988689661026, 0.03657076880335808, -0.058991678059101105, 0.03356853872537613, -0.0007833791896700859, -0.14778609573841095, 0.018830537796020508, -0.09733298420906067, 0.03866663947701454, -0.00830809585750103, 0.21660712361335754, 0.07453800737857819, -0.1050255075097084, 0.028300965204834938, 0.03427984192967415, 0.07459685206413269, 0.015469666570425034, 0.21119216084480286, 0.11940260231494904, -0.06569549441337585, -0.06732417643070221, 0.09215132892131805, 0.028126182034611702, 0.111788809299469, 0.10081927478313446, -0.029301779344677925, -0.013398846611380577, 0.08000016957521439, 0.004982748068869114, 0.01743696630001068, -0.12556593120098114, -0.10725020617246628, 0.02248106710612774, 0.047661617398262024, -0.10284651070833206, 0.07581257820129395, 0.1939937323331833, -0.01993485540151596, 0.0230526365339756, -0.043188195675611496, -0.07869219034910202, -0.17953316867351532, -0.12886421382427216, -0.09400825202465057, -0.16206854581832886, -0.013842744752764702, -0.13247567415237427, 0.04189075902104378, 0.02824842371046543, 0.05820824205875397, -0.07690457254648209, 0.054813794791698456, 0.08028905093669891, -0.09853153675794601, 0.051896754652261734, -0.028468403965234756, 0.08568539470434189, -0.04340104013681412, 0.01701432280242443, -0.08969230204820633, 0.0216998141258955, -0.01282224990427494, 0.04430133104324341, -0.07129383832216263, -0.00035723872133530676, -0.13614825904369354, -0.09450037777423859, -0.061984628438949585, 0.06794846057891846, -0.006390053778886795, 0.15021120011806488, 0.018879404291510582, -0.046730268746614456, 0.007253321353346109, 0.26995569467544556, -0.08833786845207214, -0.06831140071153641, -0.02899865433573723, 0.22865407168865204, 0.03408302739262581, 0.09929480403661728, -0.021708739921450615, -0.01969718746840954, -0.08318984508514404, 0.27305030822753906, 0.342896431684494, -0.09612375497817993, 0.03446989879012108, 0.051942598074674606, 0.025622274726629257, 0.11252501606941223, 0.06023108586668968, 0.1391560435295105, 0.26581940054893494, -0.08080489188432693, -0.03955189511179924, -0.02369869500398636, -0.022035695612430573, -0.08948156982660294, 0.041424475610256195, 0.06366599351167679, -0.056362900882959366, -0.03591519221663475, 0.07581007480621338, -0.20852579176425934, 0.10436835885047913, -0.12374208867549896, -0.20433560013771057, -0.07212875038385391, 0.021920939907431602, 0.08469881862401962, -0.006348176393657923, 0.11035401374101639, -0.01603548787534237, -0.0582515113055706, 0.07195238769054413, 0.031107118353247643, -0.21734271943569183, -0.0194381233304739, 0.1114632710814476, -0.1116097941994667, -0.048222772777080536, -0.04805976152420044, 0.039351001381874084, 0.09073475748300552, 0.06024652346968651, -0.042361147701740265, 0.02444344013929367, 0.010154351592063904, -0.06793054938316345, 0.027862876653671265, 0.06520398706197739, 0.02844790369272232, -0.05735868215560913, 0.121042400598526, -0.11622749269008636, 0.03351334482431412, -0.011426523327827454, -0.007875227369368076, -0.008187727071344852, 0.016137108206748962, -0.07149848341941833, 0.07089248299598694, 0.0829535499215126, -0.018427545204758644, -0.02030465006828308, -0.027407871559262276, -0.04911865293979645, -0.02417164295911789, -0.07857339829206467, -0.1104612648487091, -0.16131237149238586, -0.10277637094259262, 0.025490814819931984, 0.019005747511982918, -0.1766766756772995, -0.005922373849898577, -0.11971552670001984, 0.05286078900098801, -0.11595727503299713, 0.11524387449026108, 0.12266995757818222, -0.032419316470623016, -0.0026043266989290714, 0.009077084250748158, 0.040101271122694016, 0.10280716419219971, -0.16080360114574432, -0.06691881269216537 ]
null
null
transformers
# FERNET-C5 FERNET-C5 (**F**lexible **E**mbedding **R**epresentation **NET**work) is a monolingual Czech BERT-base model pre-trained from 93GB of Czech Colossal Clean Crawled Corpus (C5). See our paper for details. ## Paper https://link.springer.com/chapter/10.1007/978-3-030-89579-2_3 The preprint of our paper is available at https://arxiv.org/abs/2107.10042. ## Citation If you find this model useful, please cite our paper: ``` @inproceedings{FERNETC5, title = {Comparison of Czech Transformers on Text Classification Tasks}, author = {Lehe{\v{c}}ka, Jan and {\v{S}}vec, Jan}, year = 2021, booktitle = {Statistical Language and Speech Processing}, publisher = {Springer International Publishing}, address = {Cham}, pages = {27--37}, doi = {10.1007/978-3-030-89579-2_3}, isbn = {978-3-030-89579-2}, editor = {Espinosa-Anke, Luis and Mart{\'i}n-Vide, Carlos and Spasi{\'{c}}, Irena} } ```
{"language": "cs", "license": "cc-by-nc-sa-4.0", "tags": ["Czech", "KKY", "FAV"]}
fill-mask
fav-kky/FERNET-C5
[ "transformers", "pytorch", "tf", "safetensors", "bert", "fill-mask", "Czech", "KKY", "FAV", "cs", "arxiv:2107.10042", "license:cc-by-nc-sa-4.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[ "2107.10042" ]
[ "cs" ]
TAGS #transformers #pytorch #tf #safetensors #bert #fill-mask #Czech #KKY #FAV #cs #arxiv-2107.10042 #license-cc-by-nc-sa-4.0 #autotrain_compatible #endpoints_compatible #region-us
# FERNET-C5 FERNET-C5 (Flexible Embedding Representation NETwork) is a monolingual Czech BERT-base model pre-trained from 93GB of Czech Colossal Clean Crawled Corpus (C5). See our paper for details. ## Paper URL The preprint of our paper is available at URL If you find this model useful, please cite our paper:
[ "# FERNET-C5\nFERNET-C5 (Flexible Embedding Representation NETwork) is a monolingual Czech BERT-base model pre-trained from 93GB of Czech Colossal Clean Crawled Corpus (C5). See our paper for details.", "## Paper\nURL\n\nThe preprint of our paper is available at URL\n\nIf you find this model useful, please cite our paper:" ]
[ "TAGS\n#transformers #pytorch #tf #safetensors #bert #fill-mask #Czech #KKY #FAV #cs #arxiv-2107.10042 #license-cc-by-nc-sa-4.0 #autotrain_compatible #endpoints_compatible #region-us \n", "# FERNET-C5\nFERNET-C5 (Flexible Embedding Representation NETwork) is a monolingual Czech BERT-base model pre-trained from 93GB of Czech Colossal Clean Crawled Corpus (C5). See our paper for details.", "## Paper\nURL\n\nThe preprint of our paper is available at URL\n\nIf you find this model useful, please cite our paper:" ]
[ 77, 62, 25 ]
[ "passage: TAGS\n#transformers #pytorch #tf #safetensors #bert #fill-mask #Czech #KKY #FAV #cs #arxiv-2107.10042 #license-cc-by-nc-sa-4.0 #autotrain_compatible #endpoints_compatible #region-us \n# FERNET-C5\nFERNET-C5 (Flexible Embedding Representation NETwork) is a monolingual Czech BERT-base model pre-trained from 93GB of Czech Colossal Clean Crawled Corpus (C5). See our paper for details.## Paper\nURL\n\nThe preprint of our paper is available at URL\n\nIf you find this model useful, please cite our paper:" ]
[ -0.09297949075698853, 0.004257638938724995, -0.0012516416609287262, 0.024785419926047325, 0.0432237945497036, -0.008725176565349102, 0.0898021012544632, 0.043437860906124115, 0.015404030680656433, 0.02876175381243229, 0.1414552628993988, 0.0356619618833065, -0.018511349335312843, 0.1508406102657318, 0.022256778553128242, -0.23423875868320465, 0.11833710223436356, 0.06282416731119156, -0.00023959796817507595, 0.06183476373553276, 0.11786531656980515, -0.09407006949186325, 0.01314450055360794, 0.03702195733785629, -0.0769842341542244, 0.011366371065378189, -0.057153694331645966, -0.04566260799765587, 0.1260666847229004, 0.010179020464420319, 0.12452651560306549, 0.08992597460746765, 0.05476045981049538, 0.0035827727988362312, 0.030591124668717384, -0.03822154924273491, -0.10210159420967102, 0.07952374219894409, 0.04142599552869797, 0.019788434728980064, 0.2983482778072357, -0.10257896035909653, -0.09200341254472733, -0.027763154357671738, -0.03505387529730797, -0.2131177932024002, -0.0059395343996584415, 0.10420607030391693, 0.031632501631975174, 0.07489706575870514, -0.023480497300624847, 0.1645619422197342, 0.004212225787341595, 0.10282549262046814, 0.10822403430938721, -0.3359823226928711, -0.08334513753652573, 0.13360285758972168, 0.04888089373707771, 0.009257965721189976, 0.00020261929603293538, 0.05981706455349922, 0.04105393588542938, -0.04380134865641594, 0.06254485994577408, -0.07514414936304092, -0.1463187336921692, -0.036094631999731064, -0.166656956076622, -0.0036838946398347616, 0.1452353596687317, -0.034210942685604095, -0.039352111518383026, 0.020265333354473114, -0.05121761932969093, 0.11902044713497162, -0.04287658631801605, -0.004359366837888956, -0.00775314774364233, -0.030314115807414055, 0.01749197207391262, -0.08695667237043381, -0.1318616420030594, -0.02646629698574543, -0.06982825696468353, 0.18697042763233185, -0.004608791787177324, 0.024211490526795387, 0.020061979070305824, 0.10574860870838165, -0.13506971299648285, -0.10382220149040222, 0.02344115450978279, -0.035998228937387466, 0.042572133243083954, -0.014834878034889698, -0.06165701895952225, -0.06235753744840622, 0.07221873104572296, 0.011143251322209835, 0.08743074536323547, -0.0564698651432991, 0.05719061195850372, 0.05950574949383736, -0.032773859798908234, 0.022711411118507385, -0.16948765516281128, 0.03423076495528221, 0.023353779688477516, -0.0786701962351799, 0.0767999142408371, -0.023507975041866302, -0.19371718168258667, -0.12019377201795578, 0.06280258297920227, 0.021075356751680374, -0.05010640248656273, 0.08743766695261002, 0.043657030910253525, 0.017668599262833595, 0.08337391167879105, -0.01645219512283802, -0.04594574123620987, -0.0015677481424063444, 0.009890339337289333, 0.048820991069078445, 0.024711953476071358, -0.004208419006317854, -0.06520918011665344, 0.0927618145942688, -0.0827653631567955, 0.0053432900458574295, -0.053337592631578445, -0.19357357919216156, 0.03075215592980385, -0.174957275390625, 0.05111856386065483, -0.17675036191940308, -0.06033160537481308, 0.036060865968465805, 0.06674223393201828, -0.022805100306868553, 0.0371880829334259, -0.007121260277926922, -0.0700945183634758, -0.03227180242538452, 0.021466173231601715, 0.0530436635017395, -0.044771458953619, 0.026144521310925484, -0.07675832509994507, 0.07283544540405273, -0.21184799075126648, -0.031984228640794754, -0.08917754143476486, -0.029028410091996193, -0.10703196376562119, -0.12615390121936798, -0.10390926152467728, 0.031491197645664215, -0.03902149200439453, -0.07830323278903961, -0.022847313433885574, -0.019964346662163734, 0.06168048456311226, 0.09396461397409439, -0.09863940626382828, 0.0035931456368416548, 0.20922411978244781, -0.16115324199199677, -0.08163385093212128, 0.10860565304756165, 0.013674256391823292, 0.08216843008995056, 0.011383443139493465, 0.07624713331460953, 0.16842618584632874, -0.1897016018629074, -0.027055446058511734, 0.11587274074554443, -0.012281890027225018, -0.141577810049057, 0.07144070416688919, 0.02590591087937355, -0.05439842864871025, 0.024316709488630295, -0.17550137639045715, -0.003694144543260336, -0.060562942177057266, -0.017662426456809044, -0.014685450121760368, -0.0665859803557396, 0.07776682823896408, 0.0069975582882761955, 0.08418487012386322, -0.05574316158890724, -0.017763681709766388, -0.01191924698650837, 0.06923745572566986, -0.0526166595518589, 0.03575004264712334, -0.029953572899103165, 0.1894495189189911, -0.100202776491642, 0.009758290834724903, -0.1289583295583725, -0.031149299815297127, 0.015630003064870834, -0.0181104838848114, -0.014098750427365303, 0.174566388130188, 0.040905412286520004, 0.06334351748228073, -0.027752405032515526, 0.031071096658706665, 0.0004974813782609999, 0.02710547298192978, -0.039999689906835556, -0.12829463183879852, -0.013582311570644379, -0.07267866283655167, 0.16081121563911438, -0.05688612535595894, -0.001866274164058268, 0.08268827944993973, 0.09049063175916672, -0.030825698748230934, 0.06974902749061584, -0.0025922239292412996, 0.04698854684829712, -0.006498412229120731, 0.022967394441366196, 0.09083244204521179, 0.08323505520820618, -0.05742032825946808, 0.04406299069523811, -0.051638584583997726, 0.13869188725948334, 0.12382005900144577, -0.004967973101884127, -0.03232427313923836, -0.10663578659296036, -0.022898124530911446, 0.04720097780227661, -0.005795647390186787, -0.04703553020954132, 0.06896836310625076, -0.03943122178316116, 0.0634014904499054, -0.06132444739341736, 0.02354900725185871, 0.06730211526155472, -0.05404256284236908, -0.038200750946998596, 0.1213400810956955, 0.10927507281303406, -0.14830008149147034, 0.07500825822353363, 0.13267944753170013, -0.1056898906826973, 0.14156684279441833, 0.0029724028427153826, -0.10511817038059235, -0.013482356444001198, 0.015779457986354828, 0.027959182858467102, 0.20310385525226593, -0.16038671135902405, -0.01489213202148676, 0.06383128464221954, -0.08145289123058319, 0.05363650619983673, -0.07668289542198181, 0.006917586550116539, -0.01507826428860426, -0.058356329798698425, -0.0355752557516098, 0.08282710611820221, -0.10713320225477219, 0.0940602645277977, -0.0030521161388605833, -0.1237010806798935, 0.0240503940731287, 0.01897110790014267, -0.07355503737926483, 0.16131040453910828, -0.07898732274770737, -0.17541059851646423, -0.13148613274097443, 0.032209113240242004, 0.016731131821870804, 0.034384146332740784, 0.053098227828741074, 0.025396263226866722, -0.11223240941762924, -0.03318442404270172, -0.05360323563218117, 0.045366182923316956, 0.010121893137693405, -0.08463041484355927, 0.024058474227786064, -0.028263315558433533, -0.0807524248957634, 0.003201457904651761, -0.048503972589969635, 0.014985723420977592, 0.08721227198839188, -0.07543957978487015, 0.17614276707172394, 0.021851809695363045, -0.03983322158455849, 0.042356885969638824, -0.010950046591460705, 0.07886163890361786, -0.040560681372880936, 0.05503108724951744, 0.1250748336315155, -0.03361379727721214, -0.011744819581508636, 0.09959089756011963, 0.035920754075050354, 0.03475847840309143, 0.032888010144233704, -0.11638528853654861, -0.08667182922363281, -0.0847947895526886, -0.16519232094287872, -0.06357655674219131, 0.001228352659381926, 0.006646042224019766, 0.0016038899775594473, -0.06872257590293884, 0.10306595265865326, -0.024836840108036995, -0.09323020279407501, -0.018242746591567993, 0.06278813630342484, 0.10823036730289459, -0.010967064648866653, 0.07724767178297043, -0.07331093400716782, -0.09003626555204391, 0.0578920878469944, -0.06589001417160034, 0.17519064247608185, -0.027015889063477516, 0.05196543037891388, 0.036389101296663284, 0.14034630358219147, 0.09636866301298141, 0.22664421796798706, -0.024234086275100708, -0.03007826767861843, -0.024216843768954277, -0.0850071907043457, 0.06277310848236084, -0.0030985726043581963, -0.08163551241159439, -0.0522623248398304, -0.0791688859462738, -0.07078245282173157, 0.053681857883930206, 0.01452572364360094, 0.1263931542634964, -0.1672316938638687, -0.05738648772239685, -0.04372572898864746, 0.10132353007793427, -0.07619007676839828, -0.06019606813788414, 0.10320048034191132, -0.06506514549255371, 0.0012942326720803976, -0.032707225531339645, 0.043492335826158524, 0.034090690314769745, 0.05503698065876961, -0.08955854922533035, 0.011660265736281872, -0.03418611362576485, 0.11735964566469193, -0.15860775113105774, 0.31648194789886475, 0.028160173445940018, 0.03163409233093262, -0.0990922600030899, -0.026954410597682, 0.05141618847846985, 0.13016341626644135, 0.17531588673591614, 0.0004657946992665529, 0.07971734553575516, -0.01982894539833069, -0.13956445455551147, 0.07833360135555267, 0.037962231785058975, -0.041544824838638306, 0.0751064270734787, -0.004847935400903225, -0.056847114115953445, 0.0027924664318561554, 0.12314900010824203, -0.07319805771112442, -0.12698249518871307, 0.08572398871183395, 0.019781213253736496, -0.06539128720760345, -0.03427441418170929, -0.12687037885189056, -0.10860048234462738, 0.17581583559513092, -0.04595959931612015, -0.07446149736642838, -0.10993107408285141, 0.04156595095992088, 0.10672439634799957, -0.0824187770485878, 0.10843662172555923, -0.04463193938136101, 0.11168089509010315, -0.08550882339477539, -0.05668332055211067, 0.04630974307656288, -0.11775645613670349, 0.003535000141710043, 0.015974698588252068, 0.026486940681934357, 0.032534558326005936, 0.03831285610795021, 0.05110156536102295, 0.03593268245458603, -0.041870083659887314, -0.088866226375103, -0.0542207695543766, -0.018240030854940414, 0.04409037157893181, -0.02928132563829422, -0.14929789304733276, -0.12162289768457413, 0.02375544235110283, -0.010493610985577106, 0.1263028234243393, 0.11221747100353241, -0.09698101133108139, 0.03626243770122528, 0.1928398758172989, -0.00393947958946228, -0.35047727823257446, -0.05750153958797455, -0.039964668452739716, 0.04391886293888092, -0.095095694065094, -0.057583149522542953, 0.08567164093255997, 0.06029706820845604, -0.05504960939288139, 0.030937649309635162, -0.08680669218301773, -0.08031424880027771, 0.2562100291252136, 0.10452160239219666, 0.23108720779418945, -0.05418086051940918, -0.022292857989668846, -0.004277058877050877, -0.09456498920917511, 0.07055268436670303, -0.2242392748594284, 0.034695811569690704, 0.0007059104973450303, -0.11312936246395111, 0.02326452173292637, -0.07062537968158722, 0.10554901510477066, -0.030466940253973007, -0.024636853486299515, -0.07923402637243271, -0.02063804492354393, 0.0752553716301918, -0.0027848680038005114, 0.10872606188058853, -0.0246430654078722, 0.05177225172519684, 0.017231842502951622, -0.05079678073525429, -0.016451414674520493, 0.1435128003358841, -0.03154265135526657, -0.07691814750432968, -0.047249823808670044, 0.0733017697930336, -0.07742266356945038, -0.009276381693780422, 0.06030299514532089, -0.04954669252038002, 0.06227840855717659, 0.1703084409236908, 0.13886211812496185, -0.08324955403804779, 0.17755348980426788, 0.06514322012662888, -0.07730526477098465, 0.0587143748998642, 0.104469433426857, -0.04739272594451904, 0.12985727190971375, 0.006358228623867035, -0.007244567386806011, 0.036312829703092575, -0.04504450783133507, -0.04313448816537857, 0.10656742751598358, -0.2405560463666916, 0.024028323590755463, -0.04221112281084061, -0.014044282026588917, -0.038625337183475494, 0.06438953429460526, 0.13923004269599915, -0.09746266901493073, 0.003761525033041835, -0.008240234106779099, -0.04844409227371216, 0.014667565934360027, 0.0828334391117096, 0.10213418304920197, 0.027845194563269615, -0.06449699401855469, -0.03575139865279198, 0.001485113170929253, -0.14031371474266052, -0.06347424536943436, -0.039529699832201004, -0.1892550140619278, -0.1280740648508072, 0.06870879977941513, 0.10083472728729248, -0.16530463099479675, -0.10153992474079132, -0.08150606602430344, -0.11874837428331375, -0.008094551041722298, 0.2433602660894394, 0.13766518235206604, -0.014572088606655598, -0.0008626904455013573, -0.022169673815369606, -0.08720733970403671, 0.12371087819337845, 0.03923529386520386, 0.02497481368482113, -0.05118914693593979, 0.12340661138296127, -0.05652439966797829, 0.029164709150791168, -0.07360517978668213, 0.055481307208538055, -0.0735720694065094, -0.05191661790013313, -0.08676522970199585, 0.013395018875598907, -0.07508300989866257, -0.053801119327545166, -0.029714612290263176, -0.04119919240474701, 0.0038281965535134077, 0.013422592543065548, -0.05848386138677597, 0.06179099157452583, -0.016009612008929253, -0.000009789974683371838, -0.039268676191568375, -0.043567903339862823, 0.020489444956183434, -0.03150695189833641, 0.09154342114925385, 0.07380212098360062, 0.016973411664366722, 0.1131397932767868, -0.16713830828666687, 0.0331660658121109, 0.03001219592988491, 0.058872342109680176, 0.06615723669528961, -0.027854079380631447, 0.023686902597546577, 0.041095390915870667, -0.004558265209197998, 0.036246489733457565, 0.0807202160358429, -0.0140481973066926, 0.06479424238204956, -0.034356489777565, -0.028143547475337982, 0.0054171462543308735, 0.07040859758853912, 0.07414355874061584, 0.06737376749515533, 0.087910957634449, -0.0983557179570198, 0.012721012346446514, 0.02618611603975296, 0.05678865313529968, -0.04385583475232124, -0.1049085408449173, -0.06172594800591469, -0.05321061238646507, 0.018725302070379257, -0.03472663834691048, 0.13016723096370697, 0.030762458220124245, 0.06066365912556648, 0.00032005648245103657, -0.01962786167860031, 0.10945979505777359, -0.007455358747392893, 0.20236022770404816, 0.056234993040561676, 0.03389611840248108, -0.14040902256965637, 0.09525123238563538, -0.006998009979724884, -0.014085622504353523, 0.1645764410495758, 0.052316997200250626, 0.005643326323479414, 0.11488943547010422, 0.062402669340372086, -0.010549888014793396, 0.031960874795913696, -0.08451148867607117, 0.0065034837462008, 0.045523181557655334, -0.026581857353448868, 0.09930125623941422, 0.17746764421463013, -0.08641377836465836, -0.034894902259111404, 0.07201468199491501, -0.06090693548321724, -0.08934443444013596, -0.12977144122123718, -0.07640858739614487, -0.039796892553567886, -0.02914697863161564, -0.09654867649078369, -0.07412008196115494, -0.04504837095737457, 0.04449593275785446, -0.017110560089349747, 0.18309062719345093, -0.029802924022078514, -0.03819437325000763, 0.11296723783016205, 0.016485240310430527, 0.01420524250715971, -0.06971511244773865, -0.039160747081041336, -0.07944938540458679, 0.047799430787563324, -0.03632931783795357, -0.011975635774433613, 0.056349433958530426, -0.034931596368551254, 0.007112017832696438, -0.03372132033109665, -0.057229768484830856, 0.011827816255390644, 0.0638778880238533, 0.12288262695074081, 0.033346425741910934, -0.04981992766261101, -0.010727323591709137, 0.09783036261796951, 0.00017655866395216435, -0.13300397992134094, -0.04525964334607124, 0.11233698576688766, -0.017172718420624733, 0.054594479501247406, 0.014499249868094921, -0.022123953327536583, 0.029539184644818306, 0.2560761272907257, 0.2538183033466339, 0.008131268434226513, 0.07663793116807938, 0.02641684003174305, 0.006864939350634813, 0.09183871001005173, 0.059694573283195496, 0.01390112191438675, 0.3136559724807739, -0.07889344543218613, -0.0846438854932785, -0.10148826986551285, 0.07725095748901367, -0.13298241794109344, -0.03076382353901863, 0.06908385455608368, -0.1107637956738472, -0.024170147255063057, 0.09086352586746216, -0.08220332860946655, -0.04171373322606087, -0.06003902852535248, -0.03518196567893028, -0.07268636673688889, -0.019286014139652252, 0.0022306833416223526, 0.034741129726171494, 0.09706654399633408, -0.1292487531900406, 0.028240248560905457, 0.0299411378800869, 0.037210673093795776, -0.060538940131664276, -0.04863806813955307, 0.060700200498104095, -0.041419174522161484, 0.13243983685970306, -0.00903032161295414, 0.04392882436513901, 0.10124915093183517, -0.01644940860569477, -0.0891394391655922, 0.09992829710245132, 0.024693511426448822, -0.09197373688220978, 0.11466841399669647, -0.0625622346997261, -0.061596062034368515, -0.042792629450559616, 0.03586198017001152, -0.11449669301509857, 0.09376762062311172, 0.09112659096717834, -0.009413527324795723, -0.035994697362184525, 0.14805416762828827, -0.1171930730342865, 0.09277531504631042, 0.13172514736652374, -0.0338057242333889, -0.06065002828836441, -0.0045995647087693214, 0.040960028767585754, 0.04118439555168152, -0.027472112327814102, 0.053544387221336365, -0.08240505307912827, 0.009391705505549908, -0.16211514174938202, -0.051949892193078995, -0.21752788126468658, -0.02566843293607235, -0.11709277331829071, 0.015852484852075577, -0.07838119566440582, -0.04544109106063843, 0.08412306755781174, -0.0022574039176106453, -0.004408661741763353, 0.15823929011821747, -0.02624065987765789, 0.006110480520874262, -0.11274342238903046, -0.10807853192090988 ]
null
null
transformers
# FERNET-CC_sk FERNET-CC_sk is a monolingual Slovak BERT-base model pre-trained from 29GB of filtered Slovak Common Crawl dataset. It is a Slovak version of our Czech [FERNET-C5](https://huggingface.co/fav-kky/FERNET-C5) model. Preprint of our paper is available at https://arxiv.org/abs/2107.10042.
{"language": "sk", "license": "cc-by-nc-sa-4.0", "tags": ["Slovak", "KKY", "FAV"]}
fill-mask
fav-kky/FERNET-CC_sk
[ "transformers", "pytorch", "tf", "bert", "fill-mask", "Slovak", "KKY", "FAV", "sk", "arxiv:2107.10042", "license:cc-by-nc-sa-4.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[ "2107.10042" ]
[ "sk" ]
TAGS #transformers #pytorch #tf #bert #fill-mask #Slovak #KKY #FAV #sk #arxiv-2107.10042 #license-cc-by-nc-sa-4.0 #autotrain_compatible #endpoints_compatible #region-us
# FERNET-CC_sk FERNET-CC_sk is a monolingual Slovak BERT-base model pre-trained from 29GB of filtered Slovak Common Crawl dataset. It is a Slovak version of our Czech FERNET-C5 model. Preprint of our paper is available at URL
[ "# FERNET-CC_sk\nFERNET-CC_sk is a monolingual Slovak BERT-base model pre-trained from 29GB of filtered Slovak Common Crawl dataset.\n\nIt is a Slovak version of our Czech FERNET-C5 model.\n\nPreprint of our paper is available at URL" ]
[ "TAGS\n#transformers #pytorch #tf #bert #fill-mask #Slovak #KKY #FAV #sk #arxiv-2107.10042 #license-cc-by-nc-sa-4.0 #autotrain_compatible #endpoints_compatible #region-us \n", "# FERNET-CC_sk\nFERNET-CC_sk is a monolingual Slovak BERT-base model pre-trained from 29GB of filtered Slovak Common Crawl dataset.\n\nIt is a Slovak version of our Czech FERNET-C5 model.\n\nPreprint of our paper is available at URL" ]
[ 72, 65 ]
[ "passage: TAGS\n#transformers #pytorch #tf #bert #fill-mask #Slovak #KKY #FAV #sk #arxiv-2107.10042 #license-cc-by-nc-sa-4.0 #autotrain_compatible #endpoints_compatible #region-us \n# FERNET-CC_sk\nFERNET-CC_sk is a monolingual Slovak BERT-base model pre-trained from 29GB of filtered Slovak Common Crawl dataset.\n\nIt is a Slovak version of our Czech FERNET-C5 model.\n\nPreprint of our paper is available at URL" ]
[ -0.10966793447732925, -0.06461170315742493, -0.0014212687965482473, 0.02242891862988472, 0.06720659136772156, -0.015158298425376415, 0.07360371202230453, 0.02421675994992256, 0.0900321826338768, 0.06558707356452942, 0.14608551561832428, 0.09873066842556, -0.016996582970023155, 0.17764897644519806, 0.036943335086107254, -0.168272003531456, 0.11668208241462708, -0.005058970768004656, -0.1378786414861679, 0.06421852111816406, 0.11279023438692093, -0.04958845674991608, 0.043233733624219894, 0.04751031473278999, -0.12328268587589264, -0.004129147622734308, 0.02089385874569416, -0.056155022233724594, 0.10191676020622253, 0.02472653239965439, 0.09595481306314468, 0.08171091228723526, 0.05790814012289047, 0.02473538927733898, 0.02088199555873871, -0.04653390124440193, -0.058848705142736435, 0.04009293392300606, -0.016522753983736038, 0.06663883477449417, 0.17788678407669067, -0.021304965019226074, -0.055081967264413834, -0.04304616153240204, -0.009152012877166271, -0.17452432215213776, -0.039323292672634125, 0.10819181799888611, 0.045875418931245804, 0.0740685686469078, 0.026506245136260986, 0.1239393800497055, -0.045157961547374725, 0.08334611356258392, 0.020472651347517967, -0.3295094668865204, -0.06978465616703033, 0.10567633807659149, -0.06806385517120361, 0.02098357304930687, -0.026069246232509613, 0.10365776717662811, 0.030021971091628075, -0.041374240070581436, 0.04363533854484558, -0.0897446796298027, -0.1712544560432434, -0.022256137803196907, -0.13261869549751282, 0.0032925442792475224, 0.0920640230178833, -0.03924059867858887, -0.013235916383564472, 0.10634719580411911, -0.022221727296710014, 0.055997028946876526, -0.04740948602557182, 0.0679674744606018, -0.06498263776302338, 0.0066214860416948795, -0.024559635668992996, -0.0689919963479042, -0.1276252716779709, -0.07574458420276642, -0.1364196091890335, 0.27017730474472046, 0.009405922144651413, 0.0720800906419754, 0.02599654532968998, 0.01370072178542614, -0.10809732973575592, -0.096279077231884, 0.03956279903650284, -0.012870699167251587, 0.006812979932874441, 0.021717526018619537, -0.0448441281914711, 0.0048558698035776615, 0.10565289109945297, 0.122347891330719, 0.11425202339887619, -0.02592439576983452, 0.05714491754770279, 0.08450399339199066, -0.05683037266135216, 0.025730308145284653, -0.1428389847278595, 0.04408889636397362, 0.033672090619802475, -0.12973752617835999, 0.06112358346581459, -0.09484808146953583, -0.17740705609321594, -0.08494856208562851, -0.00982029177248478, 0.004235970787703991, -0.01022038422524929, 0.0859912782907486, 0.07718242704868317, 0.023153576999902725, 0.09878012537956238, 0.000046394394303206354, -0.02724541909992695, -0.023106172680854797, 0.04037749022245407, 0.09415090829133987, -0.04639389365911484, 0.02476325072348118, -0.005961735267192125, 0.11051753908395767, -0.07887327671051025, -0.009890842251479626, -0.011297941207885742, -0.17437373101711273, 0.05290516838431358, -0.1504204422235489, 0.0070637003518640995, -0.22344769537448883, -0.09850577265024185, -0.008958637714385986, 0.0075027476996183395, -0.03723642975091934, -0.031118782237172127, 0.03637910261750221, -0.04340774565935135, 0.08415348082780838, 0.004457412287592888, 0.038490019738674164, -0.050612520426511765, 0.049535736441612244, -0.13634523749351501, 0.0932031124830246, -0.19912421703338623, -0.034670133143663406, -0.07434574514627457, -0.059598881751298904, -0.19368666410446167, -0.0672515258193016, -0.2204584926366806, 0.07092072814702988, -0.06790751963853836, -0.04332853481173515, -0.09797417372465134, -0.025473253801465034, 0.08489672839641571, 0.08658011257648468, -0.1385328471660614, -0.022036956623196602, 0.05068091303110123, -0.1938319057226181, -0.04481463134288788, 0.13512200117111206, 0.04930219054222107, 0.02546483650803566, 0.0011510476469993591, 0.1923992782831192, 0.23280447721481323, -0.13701321184635162, -0.009868374094367027, 0.13302238285541534, -0.024186627939343452, -0.21845106780529022, 0.10295701026916504, -0.010888997465372086, -0.06867529451847076, 0.027262123301625252, -0.17749015986919403, 0.1064298003911972, -0.05106641724705696, -0.015300248749554157, 0.013233283534646034, -0.07301818579435349, 0.07543879002332687, -0.01300742570310831, 0.12661492824554443, -0.053485121577978134, 0.02391836605966091, -0.08952394127845764, 0.07330317050218582, -0.02229446917772293, 0.04862998425960541, -0.05063191056251526, 0.21786880493164062, -0.054678987711668015, 0.025740601122379303, -0.08785770833492279, -0.0505044087767601, 0.008469748310744762, 0.015090069733560085, -0.00024682795628905296, 0.0700550377368927, 0.031058887019753456, -0.03733817860484123, -0.00322915380820632, 0.06670223921537399, 0.01062371302396059, 0.029954291880130768, -0.0683022290468216, -0.16905203461647034, 0.01945723593235016, -0.018700262531638145, 0.17508335411548615, -0.014280295930802822, -0.020509181544184685, 0.17347538471221924, 0.11381889134645462, -0.09782581776380539, 0.05964963138103485, -0.037954457104206085, 0.07215555012226105, 0.012096434831619263, 0.030422376468777657, 0.06480714678764343, 0.12512317299842834, -0.036273498088121414, 0.1693427413702011, 0.06162858381867409, 0.11389875411987305, 0.1286463886499405, -0.12314295768737793, -0.036059990525245667, -0.051052965223789215, 0.0017126086167991161, 0.017214186489582062, 0.006847335956990719, -0.06554321944713593, 0.04040636122226715, -0.015186102129518986, 0.056735921651124954, -0.012791622430086136, 0.02804228663444519, 0.0795063003897667, -0.062294088304042816, 0.011834942735731602, 0.0855693444609642, 0.11612092703580856, -0.0963502898812294, 0.10497494786977768, 0.10420693457126617, -0.08537519723176956, 0.16946859657764435, -0.0298780407756567, -0.07533201575279236, -0.030844377353787422, -0.03629462793469429, 0.012609949335455894, 0.1538418084383011, -0.1021975576877594, -0.05681426078081131, 0.08006428927183151, -0.08075185120105743, 0.04286455363035202, -0.07570163160562515, -0.0000909761365619488, -0.027111588045954704, -0.03778079152107239, -0.07534980028867722, 0.10836944729089737, -0.12838414311408997, 0.06656070798635483, 0.011749600991606712, -0.13457216322422028, 0.028986595571041107, 0.024544907733798027, -0.061934396624565125, 0.11021450161933899, -0.13222536444664001, -0.13112755119800568, -0.24062466621398926, 0.10740872472524643, -0.04813557118177414, -0.0036762298550456762, 0.038208503276109695, -0.002800954505801201, -0.08531797677278519, 0.01719016581773758, -0.0386253260076046, 0.011690724641084671, 0.05536133795976639, -0.0017928770976141095, -0.038936201483011246, -0.09051906317472458, -0.05944271758198738, -0.017604373395442963, -0.06296653300523758, 0.007344198413193226, 0.10850824415683746, -0.0414484366774559, 0.2093229442834854, 0.07704820483922958, -0.012072490528225899, 0.04178784787654877, -0.026074284687638283, 0.11205057799816132, -0.0738433301448822, 0.07660456746816635, 0.12004788964986801, 0.013056748546659946, 0.016224199905991554, 0.07714906334877014, 0.05289926752448082, 0.0851331576704979, 0.018288463354110718, -0.04465785622596741, -0.14886632561683655, -0.10358496755361557, -0.14502528309822083, -0.0718517005443573, -0.014753302559256554, -0.007599650416523218, 0.02608487568795681, 0.060439541935920715, 0.1222735345363617, -0.022239970043301582, -0.03414391353726387, -0.042868874967098236, 0.032093122601509094, 0.26252371072769165, 0.024864932522177696, 0.13218878209590912, -0.08310800045728683, -0.01361616887152195, 0.08986945450305939, -0.05740205571055412, 0.15647456049919128, -0.007905468344688416, 0.07240674644708633, 0.026769038289785385, 0.18348857760429382, 0.12350830435752869, 0.1806875765323639, -0.019714349880814552, -0.016728850081562996, 0.008948682807385921, -0.0670943558216095, 0.030169354751706123, -0.0007176338112913072, -0.0805492028594017, -0.14055635035037994, -0.004022642038762569, 0.00662012305110693, 0.06071029230952263, 0.15368486940860748, 0.03768531233072281, -0.05968005955219269, -0.08569391816854477, -0.06440798193216324, 0.12052637338638306, -0.011277438141405582, -0.012530127540230751, 0.1284165233373642, -0.06526868790388107, 0.0293407142162323, 0.02385878376662731, 0.04318000748753548, 0.03650851920247078, 0.04904985800385475, -0.020783059298992157, -0.03778037801384926, -0.032175950706005096, 0.0792597085237503, -0.10999967157840729, 0.2828034460544586, 0.027594594284892082, -0.0049644955433905125, -0.07385352998971939, -0.038775164633989334, 0.0693252831697464, 0.07591258734464645, 0.11073754727840424, 0.06393475085496902, -0.08510741591453552, -0.19478023052215576, -0.12196031212806702, 0.016533222049474716, 0.008297055028378963, -0.06664514541625977, 0.021687474101781845, -0.011701864190399647, -0.027028001844882965, -0.016665617004036903, 0.14417529106140137, -0.02514231763780117, -0.06140529736876488, 0.09293290227651596, 0.1573074758052826, -0.12836235761642456, -0.014894031919538975, -0.13016097247600555, -0.18152980506420135, 0.033761005848646164, -0.12556655704975128, -0.09632337093353271, -0.13889503479003906, 0.019789624959230423, 0.09120029956102371, -0.13732506334781647, 0.09914585202932358, -0.013026798143982887, 0.06936803460121155, -0.03804784640669823, -0.08158189803361893, 0.044831838458776474, -0.104708231985569, -0.029741719365119934, 0.05752572789788246, 0.05712618678808212, -0.026711435988545418, 0.048031970858573914, 0.025753166526556015, 0.054992035031318665, -0.0046479483135044575, -0.155964657664299, -0.018180089071393013, -0.09805875271558762, -0.08093991130590439, -0.0030211913399398327, -0.0937245637178421, 0.03315136954188347, 0.0012303489493206143, -0.06408282369375229, 0.16663828492164612, 0.0740325003862381, -0.1329660564661026, 0.041032373905181885, 0.22514653205871582, -0.003000996308401227, -0.4138437509536743, -0.05949897691607475, -0.00144622300285846, 0.008286839351058006, -0.14942021667957306, -0.08087647706270218, 0.13580304384231567, 0.13963928818702698, -0.05106927827000618, 0.004184183664619923, -0.0890440121293068, -0.10678771138191223, 0.21034465730190277, -0.009571908041834831, 0.3521692156791687, -0.06555232405662537, -0.05835024639964104, -0.007273232564330101, -0.10498590022325516, 0.007357134949415922, -0.2197253257036209, -0.0017540932167321444, 0.015285275876522064, -0.02029833197593689, 0.005702848080545664, -0.038353726267814636, 0.10840236395597458, 0.08869108557701111, 0.00741093885153532, -0.06429234147071838, -0.032888174057006836, 0.12260488420724869, 0.0180767010897398, 0.0536111555993557, 0.030680997297167778, 0.031203223392367363, -0.0324794203042984, -0.007807007059454918, -0.07693026959896088, 0.1028394103050232, 0.009612835012376308, -0.05562504753470421, -0.03405695781111717, 0.03877439349889755, -0.06368041783571243, -0.014396773651242256, 0.07026880234479904, -0.03444896265864372, 0.02261650562286377, 0.1353626400232315, 0.0014966193120926619, -0.15618613362312317, 0.038055215030908585, 0.044940028339624405, -0.10407383739948273, 0.07619152963161469, 0.08986961096525192, -0.002901821630075574, 0.13465142250061035, 0.05211159959435463, -0.04788605868816376, 0.03671154007315636, -0.010642433539032936, -0.02007167972624302, 0.09855066239833832, -0.1631297767162323, 0.07148130238056183, -0.013870293274521828, -0.036039285361766815, 0.042875371873378754, 0.03391602262854576, 0.1768745332956314, -0.061287157237529755, 0.03561650589108467, -0.01582816056907177, -0.07303637266159058, 0.00762591976672411, 0.16519659757614136, 0.13970555365085602, 0.009559296071529388, -0.11647151410579681, -0.046363379806280136, 0.01582820899784565, 0.004423255100846291, -0.026982005685567856, -0.014682436361908913, -0.19673854112625122, -0.12621960043907166, -0.000005410283847595565, 0.07185231894254684, -0.23292627930641174, -0.0790250152349472, -0.05438855662941933, -0.1308702528476715, -0.0016128247370943427, 0.23021651804447174, 0.11568979918956757, 0.004977790173143148, -0.017281509935855865, -0.021037425845861435, -0.04400145262479782, 0.07445388287305832, 0.0031008534133434296, 0.030730348080396652, -0.08717097342014313, 0.15919247269630432, -0.07090912759304047, 0.036138735711574554, -0.07586333900690079, 0.02339881658554077, -0.07121748477220535, -0.027086574584245682, 0.008337501436471939, -0.0019282076973468065, -0.0597432516515255, -0.04544452577829361, 0.0053343153558671474, -0.10190101712942123, -0.050819020718336105, 0.01683702878654003, -0.0607595294713974, 0.03357382491230965, -0.007018791977316141, 0.024549489840865135, -0.04196260869503021, -0.07805996388196945, 0.027887070551514626, 0.001667393371462822, 0.06625159084796906, 0.1502724587917328, 0.06764309108257294, 0.11668548732995987, -0.08588704466819763, 0.025586454197764397, 0.048283226788043976, 0.07558972388505936, 0.05752935633063316, 0.05864102020859718, 0.017415553331375122, 0.03205632045865059, 0.0323026217520237, 0.06416112929582596, 0.03695300966501236, -0.018812479451298714, 0.038553062826395035, -0.04576556384563446, -0.05814359709620476, -0.011223692446947098, 0.03771456703543663, 0.17753536999225616, 0.13999195396900177, 0.09462463110685349, -0.09145570546388626, -0.008743916638195515, 0.03495163843035698, 0.05561656877398491, -0.041326262056827545, -0.07701896876096725, -0.054892342537641525, -0.07656959444284439, 0.015393855981528759, -0.011065348982810974, 0.06418304890394211, 0.044489797204732895, 0.005761478096246719, 0.0231846421957016, 0.030727718025445938, 0.06065322831273079, -0.012544401921331882, 0.13098689913749695, 0.1256350874900818, 0.029359567910432816, -0.11032866686582565, 0.07556021213531494, 0.017672181129455566, 0.051668617874383926, 0.12088631093502045, -0.031157618388533592, 0.15838101506233215, 0.07827206701040268, 0.12352271378040314, -0.02072523720562458, 0.028719371184706688, -0.051242049783468246, -0.10676984488964081, 0.024409973993897438, -0.029157401993870735, 0.12248987704515457, 0.15515650808811188, -0.12449206411838531, -0.045708462595939636, 0.0725431814789772, -0.05347476154565811, -0.10327129811048508, -0.16167834401130676, -0.066722072660923, -0.11742237210273743, -0.008970980532467365, -0.06440073251724243, -0.052638839930295944, 0.014390161260962486, 0.05970768257975578, 0.024439843371510506, 0.10007110983133316, -0.12089377641677856, -0.009985636919736862, 0.12968142330646515, -0.007845580577850342, -0.016352461650967598, -0.10272636264562607, -0.05625654384493828, -0.0385432131588459, 0.046945396810770035, -0.03339572623372078, -0.01793419010937214, 0.07168610394001007, -0.028549352660775185, -0.008207034319639206, -0.053044967353343964, -0.05538441613316536, -0.04756386950612068, 0.08846829831600189, 0.11097823828458786, 0.05242333561182022, -0.01689838245511055, -0.02133309654891491, 0.04255509376525879, -0.004373069852590561, -0.12036953866481781, -0.07755938917398453, -0.043626729398965836, -0.005117786582559347, 0.08033456653356552, -0.01704702526330948, -0.026716100051999092, -0.033863380551338196, 0.24232813715934753, 0.19237451255321503, 0.032023582607507706, 0.053464170545339584, -0.006674738600850105, -0.00020708434749394655, 0.056494638323783875, 0.09301214665174484, 0.04505540058016777, 0.22947297990322113, -0.03307630866765976, -0.1199663057923317, -0.10840269923210144, 0.022744683548808098, -0.17107994854450226, -0.03387192636728287, 0.008991030976176262, -0.09587456285953522, -0.07000742852687836, 0.09587972611188889, -0.04990154132246971, -0.030026588588953018, -0.010382574051618576, -0.041231099516153336, -0.04034155234694481, -0.007955302484333515, -0.052001018077135086, 0.05265853554010391, 0.06505871564149857, -0.10297798365354538, 0.057449281215667725, -0.046853844076395035, 0.03876984864473343, -0.07166828960180283, -0.11282934248447418, 0.09913754463195801, 0.03334580361843109, 0.10400513559579849, -0.049866627901792526, 0.10879942774772644, 0.10792278498411179, 0.033609308302402496, -0.08113639056682587, 0.05117662996053696, -0.005489461123943329, -0.14549006521701813, 0.0018395996885374188, -0.07583126425743103, -0.06857860833406448, -0.05032913759350777, 0.05041604861617088, -0.08943572640419006, 0.047904253005981445, 0.04634934291243553, 0.05095604434609413, -0.044499319046735764, 0.0904405489563942, -0.12494437396526337, 0.10004638135433197, 0.06586699932813644, -0.02501738630235195, -0.08472727239131927, 0.005922682583332062, -0.06684137880802155, 0.011660287156701088, -0.04496799781918526, -0.007582847028970718, -0.0938887894153595, -0.008828393183648586, -0.2047417312860489, -0.012897510081529617, -0.05014793574810028, 0.0020057917572557926, -0.14223648607730865, 0.0361451730132103, -0.007850930094718933, 0.00011523860302986577, 0.005425949580967426, -0.03787955641746521, 0.00592358922585845, -0.00018008676124736667, -0.000040504524804418907, 0.026279324665665627, -0.09579148143529892, -0.10067440569400787 ]
null
null
transformers
# FERNET-News FERNET-News is a monolingual Czech RoBERTa-base model pre-trained from 20.5GB of thoroughly cleaned Czech news corpus. Preprint of our paper is available at https://arxiv.org/abs/2107.10042.
{"language": "cs", "license": "cc-by-nc-sa-4.0", "tags": ["Czech", "KKY", "FAV"]}
fill-mask
fav-kky/FERNET-News
[ "transformers", "pytorch", "tf", "roberta", "fill-mask", "Czech", "KKY", "FAV", "cs", "arxiv:2107.10042", "license:cc-by-nc-sa-4.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[ "2107.10042" ]
[ "cs" ]
TAGS #transformers #pytorch #tf #roberta #fill-mask #Czech #KKY #FAV #cs #arxiv-2107.10042 #license-cc-by-nc-sa-4.0 #autotrain_compatible #endpoints_compatible #region-us
# FERNET-News FERNET-News is a monolingual Czech RoBERTa-base model pre-trained from 20.5GB of thoroughly cleaned Czech news corpus. Preprint of our paper is available at URL
[ "# FERNET-News\nFERNET-News is a monolingual Czech RoBERTa-base model pre-trained from 20.5GB of thoroughly cleaned Czech news corpus.\n\nPreprint of our paper is available at URL" ]
[ "TAGS\n#transformers #pytorch #tf #roberta #fill-mask #Czech #KKY #FAV #cs #arxiv-2107.10042 #license-cc-by-nc-sa-4.0 #autotrain_compatible #endpoints_compatible #region-us \n", "# FERNET-News\nFERNET-News is a monolingual Czech RoBERTa-base model pre-trained from 20.5GB of thoroughly cleaned Czech news corpus.\n\nPreprint of our paper is available at URL" ]
[ 73, 47 ]
[ "passage: TAGS\n#transformers #pytorch #tf #roberta #fill-mask #Czech #KKY #FAV #cs #arxiv-2107.10042 #license-cc-by-nc-sa-4.0 #autotrain_compatible #endpoints_compatible #region-us \n# FERNET-News\nFERNET-News is a monolingual Czech RoBERTa-base model pre-trained from 20.5GB of thoroughly cleaned Czech news corpus.\n\nPreprint of our paper is available at URL" ]
[ -0.04676123335957527, -0.04692944884300232, -0.002103062579408288, 0.006601882632821798, 0.07909203320741653, 0.06429008394479752, 0.08581627160310745, 0.06737980991601944, -0.0007335738046094775, 0.03511781245470047, 0.1556273251771927, 0.06661994010210037, -0.06584497541189194, 0.06499826163053513, 0.043653931468725204, -0.18272681534290314, 0.1513802409172058, 0.001791047747246921, 0.027994727715849876, 0.05391189828515053, 0.0977783203125, 0.01525199692696333, -0.009056403301656246, 0.011607377789914608, -0.12562960386276245, 0.02515607513487339, 0.036948882043361664, -0.05515093728899956, 0.11356962472200394, 0.03305402770638466, 0.006381257902830839, 0.033142633736133575, 0.004880737513303757, -0.011138093657791615, 0.03019782155752182, -0.027068210765719414, -0.15281015634536743, 0.05135716497898102, 0.03404546156525612, -0.061770446598529816, 0.3376857340335846, -0.18781787157058716, -0.10974694043397903, -0.020544810220599174, -0.10235460847616196, -0.2689017653465271, -0.01800346188247204, 0.061431434005498886, 0.05647777020931244, 0.19637151062488556, -0.03165683522820473, 0.15321144461631775, -0.03555900603532791, 0.09803204238414764, 0.023728685453534126, -0.32302647829055786, -0.06983909755945206, 0.02405128814280033, -0.05419658496975899, 0.05564424768090248, -0.011493072845041752, 0.12255891412496567, 0.059945277869701385, -0.0458860881626606, -0.10781948268413544, -0.07439427822828293, -0.06233293563127518, -0.05044852942228317, -0.11675943434238434, -0.018071487545967102, 0.010413609445095062, -0.025925960391759872, 0.02629755809903145, 0.07656436413526535, -0.024007366970181465, 0.08140157163143158, -0.03681395575404167, 0.11153343319892883, -0.11711359024047852, -0.011583490297198296, -0.01887371949851513, -0.07056214660406113, -0.11855169385671616, -0.011443219147622585, -0.13193826377391815, 0.28082945942878723, -0.01080265361815691, 0.08762215822935104, 0.015890805050730705, 0.05097290128469467, -0.03664474934339523, -0.11564358323812485, 0.036097511649131775, -0.012614191509783268, 0.05691692978143692, 0.04262719675898552, -0.07541929185390472, -0.0325440838932991, 0.04110559821128845, -0.006846773903816938, -0.02436264045536518, -0.04741033539175987, 0.04050932079553604, 0.08488839119672775, -0.012768466025590897, -0.03617516905069351, -0.1220802292227745, 0.010958218015730381, -0.03067067824304104, -0.14972761273384094, 0.10069900751113892, -0.0016721164574846625, -0.17168457806110382, -0.09023910015821457, -0.08497922867536545, 0.0141089903190732, 0.00836915522813797, 0.10967439413070679, 0.07832230627536774, 0.06165461614727974, 0.005008074454963207, 0.0037011527456343174, -0.064695805311203, -0.034404460340738297, 0.04522371292114258, 0.13025839626789093, -0.05945524573326111, -0.009244542568922043, -0.06286102533340454, 0.14020712673664093, -0.09538089483976364, 0.003677239641547203, -0.01762007363140583, -0.13095815479755402, 0.026121973991394043, -0.14944061636924744, 0.04639733210206032, -0.15451762080192566, 0.025894081220030785, -0.019290558993816376, 0.010891709476709366, -0.06330131739377975, -0.026829365640878677, -0.037078484892845154, -0.033067211508750916, 0.08345330506563187, 0.026576519012451172, 0.04458384960889816, -0.07645109295845032, 0.10403725504875183, -0.10473493486642838, 0.0921855941414833, -0.19998228549957275, -0.027877632528543472, -0.10208205878734589, -0.09043944627046585, -0.009907753206789494, -0.022460628300905228, -0.1503627896308899, 0.09045145660638809, -0.03667346388101578, -0.01595494896173477, -0.03259577974677086, 0.02863294444978237, 0.027199624106287956, 0.11709638684988022, -0.04588063433766365, -0.04760723188519478, 0.1438629925251007, -0.1139838844537735, 0.06985398381948471, 0.09681377559900284, 0.02920311689376831, 0.07906991988420486, 0.08040045201778412, 0.11607779562473297, 0.1611776351928711, -0.11456185579299927, -0.02864087000489235, 0.06570615619421005, -0.016700947657227516, -0.045820724219083786, 0.040422819554805756, 0.02817610464990139, -0.07897010445594788, 0.0407693050801754, -0.16143448650836945, 0.08329092711210251, 0.003207162255421281, -0.0027310156729072332, 0.04000317305326462, -0.0018542550969868898, 0.03288964927196503, -0.036053672432899475, 0.08883830159902573, -0.09661629796028137, -0.054050810635089874, -0.09810792654752731, 0.08685189485549927, 0.04023607075214386, 0.05592859163880348, -0.057443633675575256, 0.12685608863830566, -0.04112859070301056, 0.07959884405136108, -0.06701287627220154, 0.0824110135436058, -0.05517154186964035, 0.05166415497660637, 0.025599414482712746, 0.13372863829135895, 0.00534306513145566, -0.08108200877904892, -0.07111624628305435, 0.03011321648955345, -0.031689658761024475, -0.01652764528989792, 0.010750435292720795, -0.1623689979314804, 0.1269797682762146, -0.039992593228816986, 0.18249250948429108, -0.03454958274960518, -0.04209411144256592, 0.11235305666923523, 0.030780848115682602, -0.07747451961040497, 0.07402635365724564, -0.04541001841425896, 0.06362695246934891, -0.025298379361629486, 0.05775267630815506, 0.08514128625392914, 0.09642394632101059, -0.04168335720896721, 0.1546841263771057, 0.007191434968262911, 0.04174458608031273, 0.1247790977358818, -0.0925956442952156, -0.04123780131340027, 0.05713195353746414, -0.012146000750362873, 0.03653964400291443, 0.005491348914802074, -0.03712470084428787, -0.00008043838897719979, -0.07310676574707031, 0.03584084287285805, 0.005770524498075247, 0.02165176346898079, 0.07409358769655228, -0.039319101721048355, -0.07395648956298828, 0.14678192138671875, 0.053639255464076996, -0.2196015864610672, 0.0915723368525505, 0.16768543422222137, -0.08522343635559082, 0.259059876203537, 0.03308338671922684, -0.07306315004825592, -0.021233689039945602, -0.07183032482862473, 0.022430419921875, 0.12158744782209396, -0.09042644500732422, 0.041880346834659576, 0.034642186015844345, -0.05947285518050194, 0.056297168135643005, 0.00014954757352825254, -0.07205840945243835, -0.05868414789438248, -0.05133311077952385, -0.10914188623428345, 0.10111773759126663, -0.10493098199367523, 0.07508539408445358, 0.024665430188179016, -0.05465901270508766, 0.06515881419181824, 0.013680278323590755, -0.05132683739066124, 0.06903799623250961, -0.1056554839015007, -0.19784635305404663, -0.16764892637729645, -0.01665404997766018, 0.026268355548381805, -0.014499482698738575, 0.06357081234455109, -0.05731773003935814, -0.05982865020632744, 0.02528562769293785, -0.028174689039587975, 0.026888485997915268, 0.02050125226378441, 0.014635743573307991, 0.04452690854668617, -0.031380634754896164, -0.03828974813222885, -0.006978205405175686, -0.08175560086965561, -0.04589490219950676, 0.08596830815076828, -0.07817024737596512, 0.1879645735025406, -0.030231289565563202, 0.04301916062831879, 0.05610156059265137, -0.01913941465318203, 0.11940773576498032, -0.15285393595695496, 0.030411221086978912, 0.0760253518819809, -0.01963135413825512, -0.004053943324834108, 0.11720406264066696, 0.023823801428079605, 0.054259613156318665, 0.052076563239097595, -0.022827651351690292, -0.06209755316376686, -0.11579279601573944, -0.1330081671476364, -0.06791909784078598, 0.03713930398225784, -0.030200693756341934, 0.012035765685141087, -0.002481148112565279, 0.044781871140003204, -0.11318016797304153, -0.11017517000436783, -0.022199109196662903, 0.05814342200756073, 0.2541978061199188, -0.003288282547146082, 0.06923338770866394, -0.09606925398111343, -0.05910271033644676, 0.08898421376943588, -0.11861459910869598, 0.09332305938005447, 0.02360742911696434, 0.08964578807353973, -0.01029050163924694, 0.0859069973230362, 0.10419803857803345, 0.13223694264888763, 0.023826660588383675, -0.052590612322092056, 0.00726068252697587, -0.03554892912507057, 0.10141395777463913, -0.009111881256103516, -0.11393319070339203, -0.10251603275537491, 0.011834921315312386, -0.09273716807365417, 0.07200156152248383, 0.08773770928382874, 0.12948133051395416, -0.01262179110199213, -0.0660514235496521, -0.03953060135245323, 0.08310093730688095, -0.10728700459003448, -0.05989863723516464, 0.039374470710754395, -0.03363588824868202, 0.06607996672391891, 0.019605286419391632, 0.02909722365438938, 0.0446523055434227, 0.08354542404413223, -0.03632105886936188, -0.16688786447048187, -0.047065120190382004, 0.14748062193393707, -0.2216949611902237, 0.32020339369773865, 0.03313635289669037, 0.03158935159444809, -0.059455323964357376, -0.09251147508621216, 0.02145352028310299, 0.09540381282567978, 0.09427792578935623, 0.046495743095874786, -0.06052621081471443, -0.043655749410390854, -0.1505236029624939, 0.0417824313044548, 0.01499284990131855, -0.10151727497577667, 0.06808263808488846, -0.019043248146772385, -0.0394657701253891, -0.0024078204296529293, 0.08314662426710129, 0.0009063986944966018, -0.14626279473304749, 0.10019055008888245, 0.09475332498550415, -0.060096271336078644, -0.0008845138945616782, -0.13940200209617615, -0.055733371526002884, 0.08329162001609802, -0.09799141436815262, -0.06295232474803925, -0.1375764161348343, 0.07966102659702301, -0.008799447678029537, -0.11220132559537888, 0.02956055849790573, 0.008464566431939602, 0.0738302543759346, -0.04920751228928566, -0.07490710914134979, 0.020833590999245644, -0.06744155287742615, -0.04434938728809357, 0.036253754049539566, 0.044267069548368454, 0.0676390528678894, 0.037569914013147354, 0.015213485807180405, 0.08659762144088745, -0.0022145507391542196, -0.08883834630250931, 0.017129406332969666, -0.10167226195335388, -0.10463183373212814, -0.028451846912503242, -0.1255573034286499, -0.11731528490781784, -0.07793242484331131, -0.11075782775878906, 0.12928961217403412, 0.20065435767173767, -0.10397133976221085, 0.023422207683324814, 0.15955984592437744, 0.012491391971707344, -0.3645211458206177, -0.075505331158638, -0.004696184769272804, 0.01935439370572567, -0.05245239660143852, -0.09200479090213776, 0.025286300107836723, 0.1032107025384903, -0.056839097291231155, 0.09442351013422012, -0.09611250460147858, -0.03388979285955429, 0.1681625247001648, -0.09232453256845474, 0.4816630780696869, -0.045471709221601486, -0.02959965541958809, -0.03272305801510811, 0.020680420100688934, 0.10411514341831207, -0.19144180417060852, 0.06144874542951584, -0.023383697494864464, -0.007427414413541555, 0.02492665871977806, -0.003653181018307805, 0.0879010483622551, -0.00831257551908493, -0.04153876379132271, -0.13676701486110687, -0.018267717212438583, 0.09835642576217651, 0.035581715404987335, -0.03560962527990341, -0.08057326823472977, 0.0033072354272007942, -0.04913407191634178, -0.03358149155974388, -0.08149798959493637, 0.09400038421154022, -0.030084775760769844, -0.02732507325708866, -0.02470795437693596, 0.06028125435113907, -0.09938625246286392, -0.04410659894347191, 0.17056718468666077, -0.08593644946813583, 0.0772550031542778, -0.03912518918514252, -0.005288207903504372, 0.0012138740858063102, 0.1383567452430725, -0.0007721240981481969, -0.09506135433912277, 0.0764031931757927, 0.08746732771396637, -0.06614375114440918, 0.08172496408224106, 0.01690652035176754, -0.06227460131049156, 0.02304110676050186, -0.09446123987436295, 0.013142235577106476, 0.10034230351448059, -0.26496389508247375, 0.08101802319288254, -0.0654970332980156, -0.03627840057015419, 0.06863008439540863, -0.04646052047610283, 0.18736295402050018, -0.01457817293703556, 0.005829531233757734, 0.04182589054107666, -0.06075819209218025, 0.03464069589972496, 0.0837518572807312, 0.06969655305147171, -0.018329031765460968, -0.09284061938524246, -0.011901871301233768, 0.037634413689374924, -0.1327676624059677, -0.014088790863752365, 0.11150240898132324, -0.16611020267009735, -0.1355118304491043, -0.016000080853700638, 0.06734225898981094, -0.25116899609565735, -0.06750673800706863, -0.08892656117677689, -0.09355836361646652, 0.054993148893117905, 0.21831321716308594, 0.11576122790575027, 0.010893070138990879, 0.005503517575562, -0.023871585726737976, -0.03300892934203148, 0.08558091521263123, 0.0020822661463171244, -0.011124800890684128, 0.013577556237578392, 0.018796406686306, -0.07350457459688187, 0.1027490645647049, -0.08196820318698883, 0.037163566797971725, -0.06415415555238724, -0.0029358721803873777, -0.046975765377283096, 0.00006047540227882564, 0.014582091011106968, -0.07312946021556854, -0.052933864295482635, -0.08567553758621216, -0.026648536324501038, -0.04608519747853279, -0.05429091677069664, 0.02249395102262497, -0.008228529244661331, -0.007014753296971321, -0.008417696692049503, -0.02655291184782982, -0.0013763863826170564, -0.00947472732514143, 0.08300625532865524, 0.1622706949710846, 0.038838353008031845, 0.1542319506406784, -0.11739730834960938, 0.032200321555137634, 0.018237994983792305, -0.01479143276810646, 0.033463262021541595, 0.1091144010424614, -0.004254940897226334, 0.03193860501050949, 0.012655275873839855, 0.08736768364906311, -0.029537569731473923, -0.06095584109425545, 0.1197485625743866, 0.016881411895155907, -0.08899011462926865, 0.024705950170755386, 0.009578349068760872, 0.09359622746706009, 0.0706225261092186, 0.2094084471464157, -0.129205122590065, 0.022297268733382225, 0.09229348599910736, 0.07710513472557068, -0.04711000621318817, -0.12208305299282074, -0.10252299904823303, -0.03623950853943825, 0.021579114720225334, -0.015082512982189655, 0.0569022074341774, 0.003999575041234493, -0.0008288747048936784, 0.05031643062829971, -0.022891541942954063, -0.009025531820952892, -0.058863963931798935, 0.1414547711610794, 0.1318659633398056, 0.04162180423736572, -0.20828592777252197, -0.005323770921677351, -0.04662159085273743, 0.024032985791563988, 0.07848897576332092, 0.021431980654597282, 0.23577232658863068, 0.08530370891094208, 0.07548261433839798, -0.029716933146119118, 0.11969847977161407, -0.07923014461994171, -0.08541236072778702, 0.012210467830300331, 0.012781520374119282, 0.11152845621109009, 0.21570543944835663, -0.04424373805522919, -0.06433746218681335, 0.024979794397950172, -0.006294045597314835, -0.06715545803308487, -0.11296823620796204, -0.061514049768447876, -0.09811457991600037, -0.01376098021864891, -0.0233566053211689, 0.03505457937717438, -0.03870616853237152, 0.07155535370111465, -0.04703390225768089, 0.11313984543085098, 0.010917354375123978, -0.11634623259305954, 0.18129539489746094, -0.004032752010971308, 0.03218149021267891, -0.09680747985839844, -0.00806108396500349, -0.043223753571510315, 0.07427778095006943, 0.006523486692458391, 0.02281554602086544, 0.044846002012491226, -0.032564517110586166, -0.0924278125166893, -0.07612840086221695, -0.03154929727315903, 0.07093069702386856, 0.10392629355192184, 0.1593555063009262, 0.0590226985514164, -0.006698562763631344, -0.012443494983017445, 0.11367915570735931, 0.03425677493214607, -0.1168002337217331, -0.003096719039604068, 0.019303513690829277, 0.004221753217279911, 0.10860451310873032, -0.06937330961227417, -0.025468694046139717, 0.004114754032343626, 0.24146820604801178, 0.2416193038225174, 0.044527243822813034, 0.06570116430521011, -0.010837332345545292, 0.035691045224666595, 0.1485733538866043, 0.03387191519141197, 0.03502083197236061, 0.237283393740654, -0.06555986404418945, -0.1230083554983139, -0.0892086997628212, 0.07664346694946289, -0.16706249117851257, -0.042062170803546906, 0.026878008618950844, -0.0894429087638855, -0.048067547380924225, 0.12727276980876923, -0.09130658954381943, 0.01254566852003336, -0.08698827028274536, -0.037055451422929764, -0.05654047429561615, 0.001833309535868466, 0.047594863921403885, 0.0438544787466526, 0.09906043112277985, -0.060605861246585846, 0.031994085758924484, -0.04311102256178856, 0.007280601654201746, -0.022635528817772865, -0.1741112470626831, 0.06876567006111145, -0.008109920658171177, 0.05998886749148369, -0.04733169078826904, -0.03560246154665947, 0.09134329855442047, -0.010173051618039608, -0.06392446160316467, 0.10703673958778381, -0.02340850792825222, -0.07609539479017258, 0.07450087368488312, -0.027075476944446564, -0.032244808971881866, -0.11158142238855362, 0.12719152867794037, -0.06325743347406387, 0.09475774317979813, -0.03965136781334877, -0.02791409194469452, -0.026336094364523888, 0.1773710995912552, -0.065594382584095, 0.08485035598278046, 0.21761323511600494, -0.030368873849511147, -0.05101488530635834, 0.006681215018033981, -0.03940756246447563, 0.07433660328388214, -0.06143667548894882, 0.023674387484788895, -0.05269123241305351, -0.012028830125927925, -0.14141274988651276, -0.018265238031744957, -0.14495235681533813, 0.030853938311338425, -0.14559772610664368, 0.024506952613592148, -0.051032520830631256, -0.03537402302026749, 0.017883557826280594, -0.051665619015693665, 0.024337979033589363, -0.027656886726617813, 0.06585003435611725, -0.02539905719459057, -0.09668795764446259, -0.09397675842046738 ]
null
null
transformers
# FERNET-News_sk FERNET-News_sk is a monolingual Slovak RoBERTa-base model pre-trained from 4.5GB of thoroughly cleaned Slovak news corpus. It is a Slovak version of our Czech [FERNET-News](https://huggingface.co/fav-kky/FERNET-News) model. Preprint of our paper is available at https://arxiv.org/abs/2107.10042.
{"language": "sk", "license": "cc-by-nc-sa-4.0", "tags": ["Slovak", "KKY", "FAV"]}
fill-mask
fav-kky/FERNET-News_sk
[ "transformers", "pytorch", "tf", "roberta", "fill-mask", "Slovak", "KKY", "FAV", "sk", "arxiv:2107.10042", "license:cc-by-nc-sa-4.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[ "2107.10042" ]
[ "sk" ]
TAGS #transformers #pytorch #tf #roberta #fill-mask #Slovak #KKY #FAV #sk #arxiv-2107.10042 #license-cc-by-nc-sa-4.0 #autotrain_compatible #endpoints_compatible #region-us
# FERNET-News_sk FERNET-News_sk is a monolingual Slovak RoBERTa-base model pre-trained from 4.5GB of thoroughly cleaned Slovak news corpus. It is a Slovak version of our Czech FERNET-News model. Preprint of our paper is available at URL
[ "# FERNET-News_sk\nFERNET-News_sk is a monolingual Slovak RoBERTa-base model pre-trained from 4.5GB of thoroughly cleaned Slovak news corpus.\n\nIt is a Slovak version of our Czech FERNET-News model.\n\nPreprint of our paper is available at URL" ]
[ "TAGS\n#transformers #pytorch #tf #roberta #fill-mask #Slovak #KKY #FAV #sk #arxiv-2107.10042 #license-cc-by-nc-sa-4.0 #autotrain_compatible #endpoints_compatible #region-us \n", "# FERNET-News_sk\nFERNET-News_sk is a monolingual Slovak RoBERTa-base model pre-trained from 4.5GB of thoroughly cleaned Slovak news corpus.\n\nIt is a Slovak version of our Czech FERNET-News model.\n\nPreprint of our paper is available at URL" ]
[ 73, 64 ]
[ "passage: TAGS\n#transformers #pytorch #tf #roberta #fill-mask #Slovak #KKY #FAV #sk #arxiv-2107.10042 #license-cc-by-nc-sa-4.0 #autotrain_compatible #endpoints_compatible #region-us \n# FERNET-News_sk\nFERNET-News_sk is a monolingual Slovak RoBERTa-base model pre-trained from 4.5GB of thoroughly cleaned Slovak news corpus.\n\nIt is a Slovak version of our Czech FERNET-News model.\n\nPreprint of our paper is available at URL" ]
[ -0.04115327447652817, -0.09924004971981049, -0.002679569413885474, -0.035357024520635605, 0.08180879801511765, 0.019352277740836143, 0.1110849529504776, 0.04556041210889816, 0.031057029962539673, 0.046218711882829666, 0.14437071979045868, 0.09541811048984528, -0.06721934676170349, 0.11627719551324844, 0.04702911525964737, -0.1839950531721115, 0.1545095145702362, -0.024520544335246086, -0.04174519330263138, 0.056872524321079254, 0.10947230458259583, -0.006155848503112793, -0.008394208736717701, 0.020137052983045578, -0.07986607402563095, 0.024911874905228615, 0.0436597503721714, -0.06016959995031357, 0.10481305420398712, 0.023362619802355766, -0.008719694800674915, 0.0638333186507225, -0.006001335568726063, -0.002927835565060377, 0.037201713770627975, -0.024641525000333786, -0.08517706394195557, 0.033548563718795776, 0.0063965278677642345, 0.004951507318764925, 0.2390575259923935, -0.1421862542629242, -0.1004844382405281, -0.041275788098573685, -0.0633063092827797, -0.27569860219955444, -0.029897423461079597, 0.09677866846323013, 0.05407091975212097, 0.1515556126832962, -0.017522061243653297, 0.13453352451324463, -0.03620576858520508, 0.08159909397363663, -0.0016566921258345246, -0.28316637873649597, -0.07105185091495514, 0.031969454139471054, -0.08459168672561646, 0.04258616268634796, 0.009246855042874813, 0.1549450010061264, 0.034388281404972076, -0.02124825306236744, -0.07296161353588104, -0.07334514707326889, -0.08490338176488876, -0.04737645015120506, -0.11677505075931549, -0.013618214055895805, 0.003986491356045008, -0.022603852674365044, 0.021692203357815742, 0.07168829441070557, -0.0026370170526206493, 0.11790195852518082, -0.06284870207309723, 0.1088515892624855, -0.123292475938797, 0.006259462796151638, -0.03609486296772957, -0.08974489569664001, -0.11797147244215012, -0.04074275866150856, -0.12511290609836578, 0.3450908362865448, 0.020238196477293968, 0.09612864255905151, 0.006389460992068052, 0.03836184740066528, -0.08970007300376892, -0.11873520910739899, 0.04979752004146576, -0.028279708698391914, 0.07153891026973724, 0.05536128208041191, -0.03835614398121834, -0.06730610132217407, 0.07311117649078369, 0.05076238512992859, -0.007767296861857176, -0.05824423208832741, 0.05940254032611847, 0.09008610993623734, -0.0356278270483017, -0.0538456104695797, -0.13582809269428253, 0.02219734713435173, 0.00501263327896595, -0.136647030711174, 0.09251827001571655, -0.04811180755496025, -0.1448860913515091, -0.07271972298622131, -0.079095259308815, 0.0004322355380281806, 0.05826108157634735, 0.1349382996559143, 0.1402548998594284, 0.03645132854580879, 0.026893189176917076, 0.005807072855532169, -0.06797060370445251, -0.07044142484664917, 0.05739063397049904, 0.16240525245666504, -0.08411386609077454, 0.01938469707965851, -0.048205871134996414, 0.14398905634880066, -0.07458675652742386, -0.039578020572662354, -0.01757027767598629, -0.13479779660701752, 0.02980792336165905, -0.13469359278678894, 0.01594104804098606, -0.20811215043067932, -0.08572755008935928, -0.0453583262860775, -0.03252768516540527, -0.06870681047439575, -0.044967301189899445, 0.010510263033211231, -0.051031485199928284, 0.093789242208004, 0.008297454565763474, 0.07586538791656494, -0.06168103218078613, 0.09983488917350769, -0.13118281960487366, 0.07588628679513931, -0.201711967587471, -0.023737479001283646, -0.09716776758432388, -0.07349393516778946, -0.11451012641191483, -0.022090516984462738, -0.1941191703081131, 0.11643039435148239, -0.056204866617918015, -0.007444590330123901, -0.13345517218112946, 0.020464086905121803, 0.06013207510113716, 0.10141773521900177, -0.07779446244239807, -0.03997588902711868, 0.05576208978891373, -0.16864988207817078, 0.06250599026679993, 0.10861995071172714, 0.03912152722477913, 0.10714498162269592, 0.07041628658771515, 0.16768555343151093, 0.2250022143125534, -0.09176334738731384, -0.012388275004923344, 0.06268709897994995, -0.042481567710638046, -0.10940594226121902, 0.06696881353855133, -0.005684204399585724, -0.06742323935031891, 0.05979654937982559, -0.18884141743183136, 0.11860719323158264, -0.02187548577785492, 0.019007142633199692, 0.02897721529006958, -0.015946608036756516, 0.070262610912323, -0.046306658536195755, 0.11401315778493881, -0.07774054259061813, -0.028635291382670403, -0.08712984621524811, 0.0825217068195343, 0.02530299499630928, 0.06081821769475937, -0.06905118376016617, 0.20253679156303406, -0.011045370250940323, 0.09005215764045715, -0.060608480125665665, 0.04387309402227402, -0.03734366595745087, 0.02222197689116001, 0.023613302037119865, 0.07642354816198349, 0.007918325252830982, -0.09696310013532639, -0.036744922399520874, 0.044482216238975525, -0.01484362781047821, 0.007553852163255215, 0.001136244973167777, -0.1491185575723648, 0.10006488859653473, -0.019935278221964836, 0.1461673527956009, -0.0171598419547081, -0.024316364899277687, 0.08917953073978424, 0.06551210582256317, -0.09565282613039017, 0.08429113030433655, -0.05210814252495766, 0.07636052370071411, 0.009956294670701027, 0.04618962109088898, 0.0879160687327385, 0.11991254985332489, 0.011258101090788841, 0.18561764061450958, 0.05974969640374184, 0.056119270622730255, 0.10466033220291138, -0.16408436000347137, -0.022327614948153496, 0.04617854580283165, -0.012102649547159672, 0.03488384932279587, -0.01944723166525364, -0.07674098014831543, -0.013475308194756508, -0.027957964688539505, 0.026712562888860703, 0.003561737248674035, 0.024322709068655968, 0.07217098772525787, -0.054190680384635925, -0.01637876406311989, 0.09778136759996414, 0.07285928726196289, -0.1477726399898529, 0.07360593974590302, 0.12252742797136307, -0.07528945058584213, 0.2446572631597519, -0.007229695096611977, -0.06614425778388977, -0.007561496924608946, -0.0846715196967125, -0.006709611974656582, 0.07401304692029953, -0.10098806023597717, 0.01918274536728859, 0.06281709671020508, -0.07063423097133636, 0.07391573488712311, 0.014387354254722595, -0.06550199538469315, -0.05815014988183975, -0.04571899399161339, -0.10847945511341095, 0.1586596518754959, -0.1039929911494255, 0.05788521096110344, 0.023094123229384422, -0.04003853350877762, 0.04169060289859772, 0.022848820313811302, -0.05819080024957657, 0.05477242171764374, -0.08529560267925262, -0.16103911399841309, -0.2654481530189514, 0.09066827595233917, 0.005110458470880985, -0.02990036830306053, 0.06244010105729103, -0.044446129351854324, -0.06248444318771362, 0.007067135535180569, -0.003410464385524392, 0.051194556057453156, 0.040430258959531784, 0.03066626749932766, 0.022346289828419685, -0.0656975582242012, -0.03691490367054939, -0.02179291844367981, -0.10312709212303162, -0.014143387787044048, 0.08144474774599075, -0.05390129238367081, 0.19512341916561127, 0.012311013415455818, 0.03916133567690849, 0.08026789873838425, -0.02284531481564045, 0.13036811351776123, -0.13702286779880524, 0.09076336771249771, 0.18072761595249176, 0.018521541729569435, 0.01412298996001482, 0.1321650892496109, 0.03318537399172783, 0.1138940081000328, 0.048790667206048965, 0.0039004995487630367, -0.09759809821844101, -0.10948453098535538, -0.12718705832958221, -0.048288360238075256, -0.002443359699100256, -0.07998786866664886, 0.026006197556853294, 0.05738815665245056, 0.07916358858346939, -0.0891302153468132, -0.11391034722328186, 0.002177204005420208, 0.05054709315299988, 0.3381120264530182, 0.004927197005599737, 0.10367972403764725, -0.0941840261220932, -0.04411543533205986, 0.09607616811990738, -0.13288216292858124, 0.12949296832084656, 0.010837666690349579, 0.037153929471969604, 0.048359472304582596, 0.06667573750019073, 0.14332695305347443, 0.1270531564950943, 0.007886801846325397, -0.04472861438989639, 0.007297334726899862, -0.055808763951063156, 0.10726428776979446, -0.024136703461408615, -0.15831798315048218, -0.13671563565731049, 0.04233653098344803, -0.03570336475968361, 0.060649000108242035, 0.15414465963840485, 0.06636644154787064, 0.006139417178928852, -0.07032918930053711, -0.054667744785547256, 0.08223677426576614, -0.04515041410923004, -0.05687309056520462, 0.09101957082748413, -0.04547084495425224, 0.05438355356454849, 0.05535135790705681, 0.036616791039705276, 0.051978569477796555, 0.09222587198019028, 0.0024270748253911734, -0.13826033473014832, -0.05579087510704994, 0.1278226524591446, -0.1221320629119873, 0.30782896280288696, 0.013215133920311928, 0.041506607085466385, -0.0230806153267622, -0.08088900148868561, 0.04099797084927559, 0.09902822971343994, 0.06773260980844498, 0.05586300790309906, -0.08226316422224045, -0.12880542874336243, -0.14402757585048676, 0.01750854402780533, -0.01456827949732542, -0.08610579371452332, 0.06277941167354584, -0.038153063505887985, -0.03367110714316368, -0.007829468697309494, 0.1348947286605835, -0.036312226206064224, -0.07109212875366211, 0.09673987329006195, 0.14213095605373383, -0.08678998798131943, -0.04056822881102562, -0.14443762600421906, -0.12024292349815369, -0.0380423329770565, -0.07257726788520813, -0.1158197671175003, -0.14081765711307526, 0.0747450664639473, 0.019167480990290642, -0.13499104976654053, 0.019420292228460312, 0.0283860694617033, 0.0879954919219017, -0.02649872563779354, -0.09450513124465942, -0.017081834375858307, -0.06552677601575851, -0.06941045075654984, 0.07087887823581696, 0.059998925775289536, 0.04174656793475151, 0.007302547805011272, 0.027834879234433174, 0.06513460725545883, 0.013170426711440086, -0.1459273248910904, 0.015613197349011898, -0.0996173694729805, -0.1376464068889618, -0.031249623745679855, -0.11443372070789337, -0.04762716218829155, -0.05872161686420441, -0.11155277490615845, 0.1303585171699524, 0.15143916010856628, -0.11058147996664047, -0.0070963590405881405, 0.21285435557365417, 0.005263032857328653, -0.3967377543449402, -0.09052208065986633, 0.018403323367238045, -0.017953822389245033, -0.09172139316797256, -0.04568309336900711, 0.0894927829504013, 0.12566472589969635, -0.052763231098651886, 0.02200058475136757, -0.13358727097511292, -0.07397190481424332, 0.19300466775894165, -0.10861971229314804, 0.48433414101600647, -0.06046682596206665, -0.06842741370201111, -0.0060136448591947556, -0.022714363411068916, 0.04102744534611702, -0.28308847546577454, 0.013374864123761654, -0.007405982818454504, 0.00422575743868947, 0.011174316518008709, -0.012101777829229832, 0.07347890734672546, 0.07609432935714722, -0.006557515822350979, -0.1155010536313057, -0.028393102809786797, 0.11618991941213608, 0.035092439502477646, 0.011714673601090908, 0.03402050957083702, 0.007917487993836403, -0.07342630624771118, -0.03438235819339752, -0.1120760589838028, 0.07769616693258286, -0.012392861768603325, -0.02567395009100437, -0.0157617274671793, 0.06049524247646332, -0.08881448209285736, -0.023863188922405243, 0.12653754651546478, -0.09651145339012146, 0.08474323153495789, 0.046288520097732544, -0.04788286238908768, -0.1123749315738678, 0.06357882171869278, 0.015331795439124107, -0.11245305091142654, 0.04448675364255905, 0.1257297396659851, -0.049257129430770874, 0.07133664935827255, 0.02517257072031498, -0.07392573356628418, 0.029075797647237778, -0.06633997708559036, 0.004536673426628113, 0.08626821637153625, -0.20682108402252197, 0.061287082731723785, -0.05542668327689171, -0.025211375206708908, 0.06669237464666367, -0.019357062876224518, 0.19843249022960663, -0.013209770433604717, 0.03510028496384621, 0.025656485930085182, -0.07316672056913376, 0.03183566406369209, 0.12795767188072205, 0.12289856374263763, -0.006739538162946701, -0.08859901875257492, -0.03995237126946449, 0.030367590487003326, 0.006657998543232679, -0.03350461646914482, 0.08184032887220383, -0.1916203498840332, -0.13696295022964478, -0.046046867966651917, 0.050250064581632614, -0.22705575823783875, -0.09318526089191437, -0.07397343218326569, -0.12919992208480835, 0.04600757732987404, 0.2027549296617508, 0.09846387803554535, -0.009357933886349201, -0.012741552665829659, -0.026261573657393456, -0.0004501879739109427, 0.08496169745922089, 0.029938582330942154, -0.007257400546222925, -0.017283828929066658, 0.07788442075252533, -0.07415954768657684, 0.07742498815059662, -0.10038871318101883, 0.00824691355228424, -0.04470270499587059, 0.005506610032171011, -0.012451710179448128, -0.00651875976473093, -0.02029063180088997, -0.07435578107833862, -0.03647845238447189, -0.12166602164506912, -0.04241563007235527, -0.03297269344329834, -0.043904077261686325, 0.022340573370456696, -0.008518248796463013, 0.011334882117807865, -0.02333482727408409, -0.0397837795317173, 0.009530551731586456, 0.003056124085560441, 0.06684235483407974, 0.13701072335243225, 0.04219977557659149, 0.13659480214118958, -0.06882500648498535, 0.015564563684165478, 0.017828714102506638, 0.004292414523661137, 0.010346789844334126, 0.12037504464387894, 0.00966219324618578, 0.0263996422290802, 0.01795533113181591, 0.08623111993074417, -0.06050950661301613, -0.04887489229440689, 0.14170938730239868, 0.010675729252398014, -0.06126505881547928, 0.014181197620928288, 0.014119815081357956, 0.12117645889520645, 0.1280631422996521, 0.17894840240478516, -0.1323312222957611, -0.009251156821846962, 0.054700180888175964, 0.09413010627031326, -0.03568265587091446, -0.09057113528251648, -0.02482934668660164, -0.0502597838640213, 0.01639738120138645, -0.005130440462380648, 0.04839635640382767, 0.050124641507864, -0.033479928970336914, 0.046418964862823486, 0.011845691129565239, -0.003517423290759325, -0.047064319252967834, 0.09635630995035172, 0.15719254314899445, 0.05338099226355553, -0.2030171900987625, -0.014347769320011139, -0.014042139053344727, -0.004546777345240116, 0.11626297980546951, 0.017389610409736633, 0.2573956549167633, 0.07913821190595627, 0.12829028069972992, -0.00622142618522048, 0.11334925889968872, -0.04306710138916969, -0.09544595330953598, 0.011806913651525974, -0.026994220912456512, 0.1229303628206253, 0.216302752494812, -0.07769376039505005, -0.05452960357069969, 0.07801003754138947, 0.003165832255035639, -0.08358677476644516, -0.1781972199678421, -0.06285926699638367, -0.14212653040885925, -0.012455376796424389, -0.02872510254383087, -0.008406409062445164, 0.003409882076084614, 0.07110771536827087, -0.03858978673815727, 0.06599926203489304, -0.027701156213879585, -0.08291849493980408, 0.19324451684951782, -0.03742900490760803, 0.027604293078184128, -0.13747183978557587, -0.012105769477784634, -0.02203022874891758, 0.1196136474609375, -0.015826037153601646, 0.02234233357012272, 0.06081661581993103, -0.03851265832781792, -0.0876629501581192, -0.06704447418451309, -0.046608373522758484, 0.031211860477924347, 0.10704129934310913, 0.10001417994499207, 0.05795099958777428, -0.019450660794973373, -0.01144937239587307, 0.10065538436174393, 0.04823818430304527, -0.18207910656929016, -0.016516758129000664, -0.11091326922178268, 0.034509893506765366, 0.11232683807611465, -0.058896470814943314, -0.043830592185258865, -0.038999248296022415, 0.26256847381591797, 0.23562097549438477, 0.0825122594833374, 0.06235319375991821, -0.0037787100300192833, 0.020056581124663353, 0.12019411474466324, 0.08374497294425964, 0.029048260301351547, 0.234523743391037, -0.038224924355745316, -0.09437405318021774, -0.07953005284070969, 0.047726068645715714, -0.1950177401304245, -0.018750226125121117, 0.02167559787631035, -0.0779714286327362, -0.056542541831731796, 0.151081383228302, -0.11752788722515106, -0.002890173811465502, -0.11832116544246674, -0.013625500723719597, -0.03722669556736946, -0.02469702996313572, -0.004208508413285017, 0.028217362239956856, 0.08807846158742905, -0.0725020095705986, 0.05537009984254837, -0.061882384121418, 0.01065497100353241, 0.02569119818508625, -0.18173278868198395, 0.09407608956098557, 0.041714366525411606, 0.05838513374328613, -0.07104525715112686, -0.018238220363855362, 0.10345859080553055, -0.02472371980547905, -0.0630434975028038, 0.10716415196657181, -0.038457196205854416, -0.08451780676841736, 0.04443567618727684, -0.07860612869262695, -0.025767654180526733, -0.10480766743421555, 0.10917096585035324, -0.09373831003904343, 0.07053078711032867, -0.046904366463422775, -0.033154021948575974, -0.05456214398145676, 0.14231321215629578, -0.09253056347370148, 0.07685169577598572, 0.13616852462291718, -0.036254215985536575, -0.05192708969116211, 0.0073446789756417274, -0.05646314099431038, 0.04087398201227188, -0.058428797870874405, 0.028180047869682312, -0.06222217530012131, -0.005853742826730013, -0.19578228890895844, 0.004620547406375408, -0.13587437570095062, 0.047259747982025146, -0.14324800670146942, 0.039787471294403076, 0.013910090550780296, -0.03670960292220116, 0.021512718871235847, -0.053233660757541656, 0.018769513815641403, -0.08107412606477737, 0.04080751910805702, 0.0036045117303729057, -0.10252979397773743, -0.07153387367725372 ]
null
null
transformers
## Proc-RoBERTa Proc-RoBERTa is a pre-trained language model for procedural text. It was built by fine-tuning the RoBERTa-based model on a procedural corpus (PubMed articles/chemical patents/cooking recipes), which contains 1.05B tokens. More details can be found in the following [paper](https://arxiv.org/abs/2109.04711): ``` @inproceedings{bai-etal-2021-pre, title = "Pre-train or Annotate? Domain Adaptation with a Constrained Budget", author = "Bai, Fan and Ritter, Alan and Xu, Wei", booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing", month = nov, year = "2021", address = "Online and Punta Cana, Dominican Republic", publisher = "Association for Computational Linguistics", } ``` ## Usage ``` from transformers import * tokenizer = AutoTokenizer.from_pretrained("fbaigt/proc_roberta") model = AutoModelForTokenClassification.from_pretrained("fbaigt/proc_roberta") ``` More usage details can be found [here](https://github.com/bflashcp3f/ProcBERT).
{"language": ["en"], "datasets": ["pubmed", "chemical patent", "cooking recipe"]}
feature-extraction
fbaigt/proc_roberta
[ "transformers", "pytorch", "roberta", "feature-extraction", "en", "arxiv:2109.04711", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[ "2109.04711" ]
[ "en" ]
TAGS #transformers #pytorch #roberta #feature-extraction #en #arxiv-2109.04711 #endpoints_compatible #region-us
## Proc-RoBERTa Proc-RoBERTa is a pre-trained language model for procedural text. It was built by fine-tuning the RoBERTa-based model on a procedural corpus (PubMed articles/chemical patents/cooking recipes), which contains 1.05B tokens. More details can be found in the following paper: ## Usage More usage details can be found here.
[ "## Proc-RoBERTa\nProc-RoBERTa is a pre-trained language model for procedural text. It was built by fine-tuning the RoBERTa-based model on a procedural corpus (PubMed articles/chemical patents/cooking recipes), which contains 1.05B tokens. More details can be found in the following paper:", "## Usage\n\n\nMore usage details can be found here." ]
[ "TAGS\n#transformers #pytorch #roberta #feature-extraction #en #arxiv-2109.04711 #endpoints_compatible #region-us \n", "## Proc-RoBERTa\nProc-RoBERTa is a pre-trained language model for procedural text. It was built by fine-tuning the RoBERTa-based model on a procedural corpus (PubMed articles/chemical patents/cooking recipes), which contains 1.05B tokens. More details can be found in the following paper:", "## Usage\n\n\nMore usage details can be found here." ]
[ 41, 79, 11 ]
[ "passage: TAGS\n#transformers #pytorch #roberta #feature-extraction #en #arxiv-2109.04711 #endpoints_compatible #region-us \n## Proc-RoBERTa\nProc-RoBERTa is a pre-trained language model for procedural text. It was built by fine-tuning the RoBERTa-based model on a procedural corpus (PubMed articles/chemical patents/cooking recipes), which contains 1.05B tokens. More details can be found in the following paper:## Usage\n\n\nMore usage details can be found here." ]
[ 0.04305489361286163, -0.051469553261995316, -0.0014334459556266665, -0.011421282775700092, 0.06703007966279984, -0.046355824917554855, 0.019881488755345345, 0.05875914916396141, -0.09452122449874878, 0.04523053392767906, 0.17688363790512085, 0.1660536229610443, -0.05219467356801033, 0.12561030685901642, 0.015987694263458252, -0.27327123284339905, 0.032913122326135635, 0.05117703601717949, 0.12283935397863388, 0.12904852628707886, 0.12393215298652649, -0.04895453527569771, 0.0942172110080719, 0.037544433027505875, -0.04918897897005081, 0.032899998128414154, 0.07878776639699936, -0.13875913619995117, 0.08163146674633026, 0.03137236088514328, 0.04999538138508797, 0.02524905651807785, -0.014454403892159462, -0.16866962611675262, 0.029779834672808647, -0.015642421320080757, -0.004490834195166826, 0.040477853268384933, 0.0023171110078692436, -0.07893554121255875, 0.22045768797397614, 0.036477863788604736, 0.03716106340289116, 0.008774161338806152, -0.17604181170463562, -0.06319739669561386, -0.009322628378868103, 0.03508667275309563, -0.029468322172760963, 0.08380597084760666, 0.0005446654977276921, 0.12412714958190918, -0.09108634293079376, 0.06500472873449326, 0.16473476588726044, -0.1867627501487732, -0.09580282866954803, -0.06949632614850998, 0.14609669148921967, 0.08111534267663956, 0.11313872039318085, 0.009421431459486485, 0.0634232759475708, 0.016113489866256714, -0.06509687751531601, -0.13903820514678955, -0.13648007810115814, -0.050816237926483154, -0.11063539981842041, -0.05068676173686981, 0.23943576216697693, -0.0921272486448288, -0.0787845253944397, 0.04738542437553406, -0.013683773577213287, -0.05712904781103134, -0.020151279866695404, -0.03821577504277229, -0.03293471783399582, -0.019960451871156693, -0.04795296862721443, -0.030880939215421677, -0.05678354203701019, -0.07425080239772797, -0.07742996513843536, 0.2713688910007477, 0.01994211971759796, 0.037918571382761, -0.1741185486316681, 0.008120100945234299, -0.11330252885818481, -0.04887127876281738, -0.02192554622888565, -0.06337036937475204, 0.13788537681102753, -0.012823499739170074, -0.0452459454536438, -0.0044354465790092945, 0.04037768393754959, 0.31128016114234924, 0.09851094335317612, 0.03931267559528351, -0.002723779296502471, 0.04513610526919365, 0.05578694865107536, 0.11182712018489838, 0.02288365736603737, -0.016261771321296692, 0.012017808854579926, -0.0842909887433052, -0.02352149598300457, -0.022336499765515327, -0.0944470763206482, -0.05729874223470688, 0.0571066290140152, 0.013289110735058784, 0.03389288857579231, 0.022550225257873535, -0.030022649094462395, 0.023873597383499146, 0.03927084803581238, -0.06786144524812698, -0.06987026333808899, -0.060276832431554794, 0.034254129976034164, 0.08803462237119675, -0.005534240044653416, -0.00845049973577261, -0.0595698282122612, 0.04104653373360634, -0.08835787326097488, -0.08785146474838257, -0.058558832854032516, -0.027656950056552887, -0.04292474314570427, -0.12406127899885178, 0.056594256311655045, -0.17475438117980957, -0.0061616795137524605, -0.07152106612920761, 0.05656619742512703, -0.07339387387037277, -0.006194619461894035, -0.004776806104928255, 0.09585241228342056, -0.030579952523112297, -0.06101207062602043, 0.06401747465133667, -0.049968037754297256, 0.09458452463150024, 0.037134379148483276, 0.07982441782951355, -0.13461458683013916, 0.038491543382406235, -0.12107275426387787, 0.027037912979722023, -0.21615013480186462, -0.03512772172689438, -0.0044332947582006454, 0.04145833104848862, -0.10999660193920135, -0.08470037579536438, -0.10529232770204544, 0.05695277824997902, 0.0012465047184377909, 0.023668134585022926, -0.019084466621279716, -0.07343034446239471, 0.2212473303079605, -0.11872006952762604, -0.022212287411093712, 0.0701896995306015, -0.012673639692366123, 0.21379458904266357, 0.08267989754676819, 0.18198099732398987, 0.09406685084104538, -0.027154870331287384, 0.12882563471794128, 0.053014982491731644, 0.02527480013668537, -0.10459421575069427, 0.03624577447772026, -0.04993139207363129, -0.2010975331068039, 0.04405060410499573, -0.09350893646478653, 0.006831641774624586, -0.045924440026283264, -0.009421763941645622, 0.0485265851020813, -0.018632346764206886, -0.06978470087051392, -0.03370872884988785, 0.03816172480583191, -0.0408736951649189, -0.011530379764735699, -0.09665632992982864, 0.011508626863360405, -0.014789309352636337, 0.056826427578926086, -0.05963882803916931, 0.1748456060886383, 0.04857507720589638, -0.03300335630774498, -0.24658113718032837, 0.16414254903793335, -0.019285568967461586, 0.11663364619016647, 0.08655495196580887, 0.00950372964143753, 0.024612603709101677, -0.038776054978370667, 0.0756998360157013, 0.0688081830739975, 0.1121135875582695, 0.003994845785200596, -0.014125334098935127, -0.10035669803619385, 0.04677700251340866, -0.07508647441864014, -0.04903562366962433, 0.0794345885515213, -0.056519366800785065, 0.01973927579820156, -0.019473956897854805, 0.014697408303618431, -0.007203545421361923, -0.03134722635149956, 0.10768689215183258, -0.018085341900587082, 0.08970264345407486, 0.059707850217819214, -0.02643500454723835, -0.004806273151189089, 0.06781147420406342, -0.023787913843989372, 0.13178861141204834, 0.1139066219329834, -0.08672112226486206, -0.08916221559047699, -0.05100693181157112, -0.02821779064834118, 0.05621747300028801, 0.0048468224704265594, 0.011821328662335873, 0.23615621030330658, -0.033920127898454666, 0.06787694990634918, -0.059003859758377075, 0.044679734855890274, 0.0674893856048584, -0.12124249339103699, -0.01545675564557314, 0.10694358497858047, 0.08678999543190002, -0.1265580654144287, 0.02617402747273445, 0.0766308456659317, 0.025471042841672897, 0.10554869472980499, 0.002442713128402829, -0.04090164974331856, -0.016040243208408356, 0.028228923678398132, 0.03177427500486374, 0.039052098989486694, -0.20668427646160126, -0.0696653202176094, 0.027171891182661057, -0.027678435668349266, 0.043547485023736954, -0.10753825306892395, -0.006121697835624218, 0.024738499894738197, 0.014693559147417545, -0.04878043010830879, 0.0034372126683592796, -0.054549410939216614, 0.08636008203029633, 0.09153617918491364, -0.0967441275715828, -0.0210498608648777, 0.010751981288194656, -0.03931793197989464, 0.22448065876960754, -0.05626947805285454, -0.006801928859204054, -0.173897847533226, -0.2433440238237381, 0.1066371351480484, 0.04026585444808006, 0.04409552365541458, -0.09508088231086731, -0.05520102381706238, 0.02132340706884861, 0.051306791603565216, -0.0997297465801239, 0.0008865692652761936, -0.0648844763636589, 0.04559842869639397, -0.031055597588419914, -0.0751713290810585, -0.054017774760723114, -0.06274232268333435, -0.010836761444807053, 0.08774266391992569, -0.12188105285167694, 0.16170795261859894, 0.07599709928035736, 0.016879407688975334, 0.037919558584690094, -0.02874745987355709, 0.21191826462745667, -0.0344427265226841, -0.09622772783041, 0.16273415088653564, -0.08791972696781158, 0.02404329553246498, 0.03709566965699196, 0.0011138067347928882, -0.07190649211406708, 0.015536121092736721, -0.10358518362045288, -0.09988625347614288, -0.17100447416305542, -0.06752784550189972, -0.03739137575030327, 0.02145223505795002, 0.11826453357934952, 0.005322616547346115, -0.01529629249125719, 0.08967739343643188, 0.08521763235330582, 0.07731016725301743, 0.012397203594446182, 0.03210728242993355, 0.139551043510437, -0.060356587171554565, 0.07837431132793427, -0.027697943150997162, -0.09679629653692245, 0.060230135917663574, -0.020034044981002808, 0.2030094861984253, 0.13683845102787018, 0.0962567925453186, 0.06968161463737488, 0.055389512330293655, 0.10410653799772263, 0.12543350458145142, -0.03710611164569855, 0.05416237935423851, -0.08671918511390686, -0.04894381761550903, -0.13797049224376678, 0.022797422483563423, -0.119822658598423, -0.1351151019334793, -0.04457494243979454, -0.04479183256626129, -0.017640411853790283, 0.09696362167596817, -0.003712915349751711, -0.17614099383354187, 0.015599052421748638, 0.04554116725921631, -0.02428111620247364, -0.059559233486652374, 0.1266227662563324, -0.06722036749124527, -0.07973045110702515, 0.0022902311757206917, -0.012686196714639664, 0.09392445534467697, -0.10243351012468338, 0.07363107055425644, -0.05748661607503891, -0.0269018467515707, 0.011344080790877342, 0.09185367822647095, -0.25119414925575256, 0.2959195375442505, -0.009908013045787811, -0.027018139138817787, -0.08703630417585373, -0.020485082641243935, -0.08513431251049042, 0.03430021181702614, 0.17620262503623962, -0.008533271960914135, -0.22135968506336212, -0.15349769592285156, -0.10142145305871964, 0.06146537512540817, 0.13138434290885925, 0.013145753182470798, 0.07334033399820328, -0.06925272196531296, 0.03113791160285473, -0.037098366767168045, -0.1057654321193695, -0.0312021654099226, -0.14112626016139984, 0.005344408564269543, -0.09098824858665466, 0.010158848017454147, -0.021534185856580734, 0.02018008939921856, 0.16362012922763824, 0.01580166257917881, -0.10006563365459442, -0.022526944056153297, -0.0720105916261673, -0.04614066705107689, 0.07165616750717163, -0.10070909559726715, 0.02166719362139702, -0.045899875462055206, -0.07242098450660706, -0.047263722866773605, -0.09600556641817093, 0.06640032678842545, -0.04863503575325012, -0.016192253679037094, -0.030760543420910835, -0.003526251297444105, 0.05809706449508667, 0.035145584493875504, 0.032436273992061615, 0.052711647003889084, -0.11950060725212097, -0.08235691487789154, -0.06893670558929443, -0.06057122349739075, 0.026901060715317726, -0.00972156785428524, -0.11199824512004852, -0.002278213854879141, -0.07573218643665314, 0.008637318387627602, 0.13519003987312317, 0.05984489992260933, -0.004099952057003975, 0.06714864820241928, 0.20380249619483948, -0.0496348962187767, -0.25819942355155945, -0.09745592623949051, -0.04763667657971382, 0.004123905207961798, -0.046429798007011414, -0.13638530671596527, 0.10671108961105347, 0.10317176580429077, 0.0013830194948241115, -0.025267343968153, -0.1854933500289917, -0.09811612963676453, 0.19688524305820465, 0.08684983104467392, 0.4358683228492737, -0.09190911054611206, -0.062421418726444244, -0.007207163609564304, -0.12422628700733185, 0.042686283588409424, -0.09933855384588242, 0.04467049986124039, -0.03838792443275452, 0.001436964375898242, -0.005752003286033869, -0.035921625792980194, 0.049312859773635864, 0.0032667587511241436, -0.01094694435596466, -0.04483197629451752, -0.13919231295585632, 0.033819954842329025, 0.06284487992525101, -0.02898082695901394, 0.056425340473651886, 0.025308268144726753, -0.10919907689094543, -0.08647535741329193, -0.07030128687620163, 0.0182621031999588, -0.004633414559066296, -0.06478988379240036, 0.0032418023329228163, 0.02589908242225647, -0.1040172427892685, -0.024171214550733566, 0.15174663066864014, -0.09806162118911743, 0.1773187220096588, 0.11785843968391418, 0.15649007260799408, -0.02461579442024231, -0.029298406094312668, 0.07595754414796829, -0.06743587553501129, 0.07818430662155151, -0.002245227573439479, -0.06538980454206467, 0.03541412204504013, 0.0066159931011497974, 0.016979476436972618, 0.04278706759214401, -0.04883068799972534, 0.028807248920202255, 0.11803334951400757, -0.14236366748809814, -0.04011492431163788, 0.01588389091193676, -0.09269966185092926, -0.0029883626848459244, -0.0731816217303276, 0.11601551622152328, -0.039618439972400665, -0.0587463453412056, -0.026825066655874252, -0.015948904678225517, -0.10001438856124878, 0.12980401515960693, 0.11808304488658905, 0.019398195669054985, -0.06614918261766434, -0.04848039150238037, 0.08923181146383286, -0.07738015055656433, 0.0025216317735612392, -0.006616737227886915, -0.07231511175632477, -0.06338320672512054, -0.024087676778435707, 0.07231508195400238, -0.1737181842327118, -0.03470435366034508, -0.08591734617948532, -0.1112116351723671, 0.07731480896472931, 0.14181913435459137, 0.07229351997375488, -0.010991341434419155, -0.05414271727204323, -0.0034181480295956135, 0.028422951698303223, -0.03743986040353775, -0.021627327427268028, -0.008677151054143906, 0.035797636955976486, 0.06703142076730728, -0.02516520768404007, 0.07393643260002136, -0.049901071935892105, -0.042115118354558945, -0.2025356888771057, 0.06497523188591003, -0.09971863031387329, 0.020120343193411827, -0.1218104362487793, -0.033428553491830826, -0.02773062139749527, 0.016399899497628212, -0.037047356367111206, -0.0343644917011261, -0.07252147793769836, 0.05110007897019386, -0.03833629935979843, 0.007533240132033825, -0.04112815856933594, 0.034119732677936554, 0.10866878926753998, -0.00540805421769619, -0.010577571578323841, 0.058340854942798615, -0.04149342328310013, 0.049522846937179565, 0.007544285152107477, -0.0161384716629982, 0.05102789029479027, 0.011309409514069557, 0.027561331167817116, -0.03817408159375191, 0.030922051519155502, 0.01360220555216074, 0.05328936502337456, 0.03112073428928852, 0.04506989195942879, -0.11709509789943695, 0.14921757578849792, 0.05842689424753189, -0.14358380436897278, -0.03313281759619713, -0.0011883318657055497, 0.07160922139883041, 0.04323901981115341, 0.05090571939945221, -0.05597595125436783, 0.029700538143515587, 0.01253619883209467, 0.04482903704047203, -0.009857986122369766, -0.15411090850830078, -0.11932280659675598, -0.1378404051065445, -0.011300364509224892, 0.03438461199402809, 0.25478997826576233, 0.07496427744626999, 0.06403906643390656, 0.051753539592027664, -0.016498969867825508, 0.020815221592783928, -0.029156215488910675, 0.09296350181102753, 0.12709133327007294, -0.004777317401021719, -0.08922310173511505, 0.038233350962400436, -0.014894727617502213, 0.048777807503938675, 0.2105644941329956, 0.14213059842586517, 0.13168452680110931, 0.0521431602537632, 0.016929998993873596, 0.055849846452474594, -0.01149806845933199, -0.11505865305662155, 0.057027511298656464, 0.03264159336686134, 0.00377687462605536, 0.001572958193719387, 0.14575506746768951, -0.07262071967124939, 0.010466262698173523, 0.04732491448521614, -0.023010455071926117, -0.2234104722738266, -0.10273641347885132, -0.05130559578537941, -0.03383610397577286, -0.02211686410009861, -0.09637150168418884, -0.007153159473091364, -0.05817652866244316, -0.037691324949264526, 0.027573302388191223, 0.07247618585824966, -0.017479997128248215, -0.09370444715023041, 0.07617084681987762, -0.009349547326564789, 0.05250170826911926, -0.1119663268327713, -0.018852822482585907, -0.09270919859409332, -0.0678229108452797, 0.013472769409418106, 0.0316397063434124, -0.06803024560213089, -0.014353347942233086, -0.07990007847547531, -0.039209943264722824, -0.06304706633090973, 0.07527775317430496, 0.050964295864105225, 0.10810758173465729, -0.0012487180065363646, -0.08979305624961853, 0.03830068185925484, 0.17434102296829224, -0.0209348127245903, -0.09879828244447708, -0.03928016871213913, 0.338951051235199, 0.05859776958823204, 0.057958509773015976, -0.019911479204893112, 0.036988675594329834, 0.011235012672841549, 0.3990013301372528, 0.2359294891357422, 0.038604315370321274, 0.02738865278661251, 0.03165023773908615, 0.0500120148062706, 0.13715095818042755, 0.16218264400959015, 0.051565974950790405, 0.33051615953445435, -0.0493471622467041, -0.08696514368057251, -0.007300468627363443, 0.034608371555805206, -0.09501203894615173, -0.0450509674847126, 0.13371577858924866, -0.09072522073984146, -0.06407136470079422, 0.11708080768585205, -0.17897747457027435, 0.016246967017650604, 0.009967967867851257, -0.12578372657299042, -0.11607962846755981, -0.0762157067656517, 0.028574543073773384, 0.03346642851829529, 0.14865005016326904, -0.03359357267618179, -0.07965031266212463, -0.003949650563299656, 0.07494308054447174, -0.20558404922485352, -0.05649467185139656, 0.14774926006793976, 0.22205302119255066, -0.0042329574935138226, -0.016370458528399467, 0.01798820309340954, 0.06849724054336548, 0.022486841306090355, -0.03235947713255882, 0.07652828842401505, 0.003501680213958025, 0.00775346253067255, 0.026280030608177185, -0.061408303678035736, -0.03546629101037979, -0.034565601497888565, 0.029597043991088867, -0.12224295735359192, 0.07620464265346527, 0.09274788200855255, 0.022137043997645378, -0.0677671954035759, 0.0018124481430277228, -0.1184288039803505, 0.1234482154250145, 0.16824008524417877, 0.0011574475793167949, -0.012531650252640247, -0.029519781470298767, 0.04507782682776451, 0.008414112031459808, 0.026008279994130135, -0.11392094939947128, -0.07306090742349625, -0.16529487073421478, -0.01755824126303196, -0.05922446399927139, -0.28419554233551025, 0.022003507241606712, -0.03897242620587349, 0.04744414612650871, -0.09072238206863403, 0.06023724749684334, 0.028636479750275612, 0.036296240985393524, 0.010462554171681404, 0.06753872334957123, 0.027294844388961792, 0.0647580549120903, -0.1401074081659317, -0.040518805384635925 ]
null
null
transformers
## ProcBERT ProcBERT is a pre-trained language model specifically for procedural text. It was pre-trained on a large-scale procedural corpus (PubMed articles/chemical patents/cooking recipes) containing over 12B tokens and shows great performance on downstream tasks. More details can be found in the following [paper](https://arxiv.org/abs/2109.04711): ``` @inproceedings{bai-etal-2021-pre, title = "Pre-train or Annotate? Domain Adaptation with a Constrained Budget", author = "Bai, Fan and Ritter, Alan and Xu, Wei", booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing", month = nov, year = "2021", address = "Online and Punta Cana, Dominican Republic", publisher = "Association for Computational Linguistics", } ``` ## Usage ``` from transformers import * tokenizer = AutoTokenizer.from_pretrained("fbaigt/procbert") model = AutoModelForTokenClassification.from_pretrained("fbaigt/procbert") ``` More usage details can be found [here](https://github.com/bflashcp3f/ProcBERT).
{"language": ["en"], "datasets": ["pubmed", "chemical patent", "cooking recipe"]}
feature-extraction
fbaigt/procbert
[ "transformers", "pytorch", "bert", "feature-extraction", "en", "arxiv:2109.04711", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[ "2109.04711" ]
[ "en" ]
TAGS #transformers #pytorch #bert #feature-extraction #en #arxiv-2109.04711 #endpoints_compatible #region-us
## ProcBERT ProcBERT is a pre-trained language model specifically for procedural text. It was pre-trained on a large-scale procedural corpus (PubMed articles/chemical patents/cooking recipes) containing over 12B tokens and shows great performance on downstream tasks. More details can be found in the following paper: ## Usage More usage details can be found here.
[ "## ProcBERT\nProcBERT is a pre-trained language model specifically for procedural text. It was pre-trained on a large-scale procedural corpus (PubMed articles/chemical patents/cooking recipes) containing over 12B tokens and shows great performance on downstream tasks. More details can be found in the following paper:", "## Usage\n\n\nMore usage details can be found here." ]
[ "TAGS\n#transformers #pytorch #bert #feature-extraction #en #arxiv-2109.04711 #endpoints_compatible #region-us \n", "## ProcBERT\nProcBERT is a pre-trained language model specifically for procedural text. It was pre-trained on a large-scale procedural corpus (PubMed articles/chemical patents/cooking recipes) containing over 12B tokens and shows great performance on downstream tasks. More details can be found in the following paper:", "## Usage\n\n\nMore usage details can be found here." ]
[ 40, 79, 11 ]
[ "passage: TAGS\n#transformers #pytorch #bert #feature-extraction #en #arxiv-2109.04711 #endpoints_compatible #region-us \n## ProcBERT\nProcBERT is a pre-trained language model specifically for procedural text. It was pre-trained on a large-scale procedural corpus (PubMed articles/chemical patents/cooking recipes) containing over 12B tokens and shows great performance on downstream tasks. More details can be found in the following paper:## Usage\n\n\nMore usage details can be found here." ]
[ -0.030100692063570023, -0.02689710631966591, -0.00011925531725864857, -0.013133513741195202, 0.05601958930492401, -0.042996492236852646, 0.014973573386669159, 0.045144423842430115, -0.138955757021904, 0.04533974826335907, 0.1698436737060547, 0.048245180398225784, -0.05645215883851051, 0.1770380735397339, 0.031627751886844635, -0.24980677664279938, 0.044734977185726166, 0.08360649645328522, 0.12273579090833664, 0.10551842302083969, 0.10405132174491882, -0.10769829899072647, 0.06747759133577347, 0.01464148610830307, -0.057174522429704666, 0.022521471604704857, 0.013851694762706757, -0.0961323231458664, 0.11364410072565079, 0.011944140307605267, 0.08382543921470642, 0.054860010743141174, 0.016029998660087585, -0.15887661278247833, 0.019796283915638924, 0.0025517879985272884, 0.01899854466319084, 0.045645784586668015, 0.05855147913098335, 0.03658099099993706, 0.10945446789264679, 0.02070845104753971, 0.0149241853505373, 0.006048198789358139, -0.12129364162683487, -0.00753180542960763, 0.019314736127853394, 0.058324363082647324, -0.03173326328396797, 0.10144933313131332, 0.009730502963066101, 0.10268426686525345, -0.11056879162788391, 0.060389406979084015, 0.11125580221414566, -0.23197300732135773, -0.10126195102930069, -0.021162906661629677, 0.20990993082523346, 0.053752537816762924, 0.034727152436971664, -0.043032094836235046, 0.04737623780965805, 0.021921157836914062, -0.046279337257146835, -0.09654642641544342, -0.048980411142110825, -0.05233680456876755, -0.1338823288679123, -0.003394866595044732, 0.20231597125530243, -0.10137365758419037, -0.06320349872112274, -0.053053583949804306, -0.05787346512079239, -0.040943510830402374, -0.018987879157066345, -0.05610726773738861, 0.0010010574478656054, -0.007572080474346876, -0.006570133380591869, -0.04005309194326401, -0.07962536066770554, -0.09308330714702606, -0.05845143273472786, 0.15810176730155945, 0.023892026394605637, 0.0012732624309137464, -0.12090366333723068, 0.06534051150083542, -0.13067211210727692, -0.020528122782707214, -0.008674900978803635, -0.08898934721946716, 0.11516235023736954, -0.026293905451893806, -0.03584318608045578, 0.028414567932486534, 0.011513601988554, 0.19201257824897766, 0.0715145617723465, 0.06495766341686249, 0.0008041249820962548, 0.040915604680776596, 0.04471500217914581, 0.10807029902935028, 0.04420769587159157, -0.03742683306336403, -0.026180250570178032, -0.010264333337545395, -0.07710197567939758, -0.0012013799278065562, -0.06975448876619339, -0.05841594934463501, 0.08392181247472763, -0.04014597833156586, -0.03526626527309418, 0.0038704629987478256, -0.05133316293358803, 0.014698936603963375, 0.16852207481861115, -0.05656374990940094, -0.0480036698281765, -0.041930265724658966, 0.009301261976361275, 0.09741049259901047, -0.01860744133591652, 0.006354788318276405, -0.09404503554105759, 0.06897736340761185, -0.0936090424656868, -0.038287028670310974, -0.06578607112169266, -0.041235730051994324, -0.051949162036180496, -0.14950329065322876, 0.0073081124573946, -0.12053454667329788, -0.012279150076210499, -0.030104637145996094, 0.06323731690645218, -0.040801696479320526, -0.009729265235364437, -0.03875809535384178, 0.09729050099849701, -0.04513794556260109, -0.0693465992808342, 0.0915818065404892, -0.06099247932434082, 0.09746121615171432, 0.04357539862394333, 0.0548250786960125, -0.13630835711956024, 0.03637820482254028, -0.14747312664985657, 0.0305311381816864, -0.17977768182754517, -0.016082677990198135, -0.019310392439365387, -0.004501532297581434, -0.12687097489833832, -0.15647107362747192, -0.12543514370918274, 0.03643018752336502, 0.005614433437585831, 0.03882012143731117, -0.08887005597352982, -0.039320703595876694, 0.2358631044626236, -0.0927102118730545, -0.006114592310041189, 0.07579539716243744, -0.0265701524913311, 0.1840546429157257, 0.0742543637752533, 0.1948794573545456, 0.04428078606724739, -0.08240752667188644, 0.11251312494277954, 0.11327718198299408, 0.06666406244039536, -0.07409247010946274, 0.01948649249970913, -0.04447383061051369, -0.20650345087051392, 0.036402348428964615, -0.14585630595684052, -0.02285047248005867, -0.02327483892440796, 0.003154529957100749, 0.052815720438957214, -0.010977694764733315, 0.007841715589165688, -0.003073472063988447, 0.08621875196695328, -0.006264173425734043, -0.019496049731969833, -0.003034841502085328, -0.02132975496351719, -0.03249697387218475, 0.0471794493496418, -0.03333376348018646, 0.06880703568458557, 0.07375704497098923, -0.035207878798246384, -0.24451522529125214, 0.1321500837802887, 0.029304908588528633, 0.10174078494310379, 0.05330156534910202, 0.09602460265159607, 0.06417303532361984, 0.06339822709560394, 0.0648399367928505, 0.012053236365318298, 0.07236974686384201, -0.0030232390854507685, -0.09438090771436691, -0.03730815649032593, 0.024711385369300842, -0.0750836730003357, -0.011582962237298489, -0.04718324914574623, -0.028248975053429604, -0.034686941653490067, -0.05977988615632057, -0.006954898126423359, -0.03369436413049698, -0.043801449239254, 0.1005547046661377, -0.038589172065258026, 0.09492624551057816, 0.1010332852602005, -0.02003004029393196, -0.024363191798329353, 0.03407119959592819, -0.038568057119846344, 0.17639867961406708, 0.10433422774076462, -0.09557580947875977, -0.05618615448474884, -0.16860616207122803, -0.04704183340072632, 0.009833087213337421, -0.01995678059756756, 0.014110984280705452, 0.268552303314209, -0.02983180433511734, 0.1089814305305481, -0.07271067053079605, 0.03723399341106415, 0.04377815127372742, -0.03612034395337105, 0.019947601482272148, 0.1105533316731453, 0.11421768367290497, -0.04697847738862038, 0.002137945732101798, 0.13437071442604065, 0.05576635152101517, 0.05775536969304085, 0.019326848909258842, -0.04339361563324928, 0.049074653536081314, 0.046086013317108154, -0.01855357363820076, 0.07532500475645065, -0.28511860966682434, -0.04293151572346687, 0.008617976680397987, 0.03129178658127785, 0.06558547914028168, -0.1637556105852127, -0.0018265440594404936, 0.02501518651843071, -0.007882294245064259, -0.10539916157722473, -0.024220025166869164, -0.051430054008960724, 0.08641579002141953, 0.07455404102802277, -0.09505125135183334, 0.002880099695175886, 0.021465064957737923, -0.04798845946788788, 0.21461044251918793, -0.07830378413200378, -0.062363024801015854, -0.10903140157461166, -0.17129500210285187, 0.08926864713430405, 0.02682301588356495, 0.03032592497766018, -0.0561169795691967, -0.05612322688102722, -0.03114146925508976, -0.019231325015425682, -0.1141643077135086, -0.01156251784414053, -0.043122898787260056, -0.003874639282003045, -0.0015211908612400293, -0.09964262694120407, -0.04023795202374458, -0.03745070844888687, -0.0453466959297657, 0.056207653135061264, -0.10080050677061081, 0.1078701764345169, 0.07151642441749573, 0.018124932423233986, 0.02098669484257698, -0.03185742348432541, 0.19880379736423492, 0.015685588121414185, -0.09562906622886658, 0.12409837543964386, -0.0778314545750618, 0.034275081008672714, 0.012654473073780537, 0.02834668941795826, -0.07830295711755753, 0.02251812256872654, -0.07880539447069168, -0.051350370049476624, -0.12377051264047623, -0.09576676040887833, -0.027789803221821785, 0.04896644130349159, 0.13871046900749207, 0.03508793190121651, -0.06662526726722717, 0.03299001604318619, 0.10749088227748871, 0.11671089380979538, 0.04780306667089462, 0.01880800351500511, 0.10647950321435928, -0.07394930720329285, 0.07964179664850235, 0.010491429828107357, -0.07885117083787918, 0.03883799910545349, -0.02313985861837864, 0.2124517560005188, 0.09054625779390335, 0.10290631651878357, 0.027307314798235893, 0.08009505271911621, 0.07746490836143494, 0.17190738022327423, -0.06353925913572311, 0.029220566153526306, -0.061923131346702576, -0.038026776164770126, -0.12342498451471329, 0.01378070842474699, -0.05383952334523201, -0.12872181832790375, -0.08396600931882858, -0.06718415766954422, -0.0028401550371199846, 0.0781024917960167, -0.04972420260310173, -0.2015315592288971, 0.019605567678809166, 0.01755189336836338, -0.0780516192317009, -0.1063048467040062, 0.13501699268817902, 0.0775882750749588, -0.09577286243438721, -0.021316692233085632, -0.010525851510465145, 0.10919465869665146, -0.04572240635752678, 0.08933400362730026, -0.013468733988702297, -0.06495903432369232, 0.03452284261584282, 0.11333540081977844, -0.2664707601070404, 0.24484442174434662, -0.028411714360117912, -0.012379059568047523, -0.0926058441400528, -0.03742840886116028, -0.08625537157058716, 0.07610432058572769, 0.1720718890428543, 0.005811033770442009, -0.04401044547557831, -0.1805529147386551, -0.18185627460479736, 0.0652303546667099, 0.13237245380878448, -0.00492097856476903, 0.015907811000943184, -0.0360846109688282, 0.0019888088572770357, -0.04350212216377258, -0.12944357097148895, -0.10309351235628128, -0.12519146502017975, 0.003275464754551649, -0.12884441018104553, 0.09785450994968414, -0.03961709141731262, -0.02480234019458294, 0.10070638358592987, 0.06565668433904648, -0.18898369371891022, -0.005608600098639727, -0.04384835064411163, -0.06119528040289879, 0.030973320826888084, -0.036822136491537094, 0.029253462329506874, -0.040272049605846405, -0.062105920165777206, -0.04539712518453598, -0.07591213285923004, 0.08371423184871674, -0.08054212480783463, -0.07334787398576736, -0.037616051733493805, 0.029300598427653313, 0.11255750805139542, 0.06289716064929962, 0.03913108631968498, 0.016203945502638817, -0.12747403979301453, -0.09498948603868484, -0.12573671340942383, -0.02270825020968914, 0.08725908398628235, -0.06430722773075104, -0.11649496108293533, 0.005065689329057932, -0.020500874146819115, 0.06592360138893127, 0.18862837553024292, 0.058440595865249634, -0.00018289376748725772, 0.08700673282146454, 0.1764398217201233, -0.0472019799053669, -0.2933414578437805, 0.0009260347578674555, 0.015166275203227997, -0.0017143349396064878, -0.10545828193426132, -0.17810624837875366, 0.16421407461166382, 0.14058785140514374, 0.019695350900292397, 0.03241657838225365, -0.24578145146369934, -0.10812880098819733, 0.12156280130147934, 0.06154509633779526, 0.3311101794242859, -0.09675250947475433, -0.02475658431649208, 0.022816786542534828, -0.06117403879761696, 0.07098060846328735, -0.017214221879839897, 0.028535014018416405, -0.01601368933916092, -0.05916406959295273, -0.011912158690392971, -0.06539306044578552, 0.052514176815748215, 0.05549090728163719, -0.029940076172351837, -0.013094558380544186, -0.06442808359861374, -0.0254148468375206, 0.05582347512245178, 0.0015608611283823848, 0.05671986564993858, 0.003868795232847333, -0.1645040512084961, -0.07631907612085342, -0.057476677000522614, 0.0143059641122818, -0.0061690364964306355, -0.06132742390036583, 0.04510951414704323, 0.04054069146513939, -0.0737924724817276, 0.016315016895532608, 0.1246664971113205, -0.06769519299268723, 0.12341448664665222, 0.08272348344326019, 0.2157658040523529, -0.09436832368373871, -0.09174694120883942, 0.08318164199590683, -0.0222904235124588, 0.0914800614118576, -0.000043691696191672236, -0.03400637209415436, 0.12136273086071014, 0.011796117760241032, 0.03449494019150734, 0.05850842222571373, 0.010669269599020481, 0.011544277891516685, 0.06472212076187134, -0.21476876735687256, -0.04778954014182091, 0.014653385616838932, 0.038159389048814774, -0.02580980770289898, -0.030619127675890923, 0.04870400205254555, -0.07733499258756638, -0.03770442306995392, -0.020963730290532112, 0.003199314698576927, -0.08989311009645462, 0.17481228709220886, 0.049001339823007584, 0.0619603767991066, -0.0683538094162941, -0.04389475658535957, 0.06138499081134796, -0.17407453060150146, -0.036468636244535446, 0.021391144022345543, -0.09302587807178497, -0.05189857259392738, 0.00046297069638967514, 0.03557121008634567, 0.019689032807946205, -0.05978522077202797, -0.0468001551926136, -0.08340448141098022, 0.0915658175945282, 0.11040796339511871, 0.08065734058618546, -0.022863784804940224, -0.083602674305439, 0.021646857261657715, 0.0106267798691988, -0.055229321122169495, 0.004754918627440929, 0.03773337975144386, 0.05785903334617615, 0.09375821799039841, 0.009530824609100819, 0.088860422372818, -0.05102662742137909, -0.05627276375889778, -0.1624736487865448, 0.04616610333323479, -0.08849360793828964, 0.040250927209854126, -0.1196906641125679, -0.030448172241449356, -0.04213496297597885, 0.04051700606942177, 0.037808094173669815, -0.056237559765577316, -0.07040207833051682, 0.06429632753133774, -0.025295652449131012, 0.00532825430855155, -0.057735152542591095, 0.06402502208948135, 0.07172314822673798, -0.02705320343375206, 0.02205607108771801, 0.04078199341893196, -0.04193979874253273, 0.014177006669342518, 0.06752994656562805, -0.06150148808956146, 0.0662703886628151, 0.05581377446651459, 0.01874164491891861, 0.021537821739912033, 0.04836614802479744, 0.04090796783566475, 0.05971751734614372, 0.025600826367735863, 0.1193196177482605, -0.11773525178432465, 0.13225173950195312, 0.01651913858950138, -0.11026191711425781, -0.0373593233525753, -0.03856134042143822, 0.0461016446352005, 0.09133680164813995, 0.07709188759326935, -0.07413583248853683, 0.02834385447204113, 0.03381992504000664, 0.014876729808747768, 0.011555362492799759, -0.171340212225914, -0.09753306210041046, -0.1208147406578064, 0.016388315707445145, 0.020612269639968872, 0.2682233452796936, 0.04267478734254837, 0.09734725952148438, 0.03632040694355965, -0.0390591099858284, -0.03258620575070381, -0.04751207306981087, 0.1097707450389862, 0.10859419405460358, 0.019080525264143944, -0.04192321375012398, 0.07802597433328629, 0.012647421099245548, 0.09012124687433243, 0.25521132349967957, 0.16960619390010834, -0.012922020629048347, 0.0535895861685276, -0.01682867668569088, -0.011370904743671417, -0.19675514101982117, -0.06520839780569077, 0.037160106003284454, 0.10114485025405884, -0.09116757661104202, 0.13751816749572754, 0.006788213737308979, -0.09489491581916809, -0.026194851845502853, 0.026261011138558388, -0.08602464199066162, -0.1582675576210022, -0.02451200969517231, -0.018848218023777008, -0.0025514885783195496, -0.04342115670442581, -0.09757965803146362, -0.013969965279102325, 0.0217902772128582, 0.011899665929377079, 0.03700917586684227, 0.16072264313697815, -0.03108425810933113, -0.07723496109247208, 0.06297716498374939, 0.0023663160391151905, 0.08547627180814743, -0.1458359807729721, -0.03919604420661926, -0.10114031285047531, -0.06631648540496826, 0.05334388464689255, 0.011383576318621635, -0.055247750133275986, -0.03951437771320343, -0.04621869698166847, -0.02005735971033573, -0.09910060465335846, 0.06601394712924957, 0.02870764769613743, 0.15928512811660767, 0.01279109250754118, -0.08434141427278519, 0.02642221376299858, 0.14253412187099457, -0.040988098829984665, -0.1033773347735405, -0.03153175488114357, 0.36867210268974304, 0.06233115866780281, 0.03996438905596733, 0.015225528739392757, 0.06190608814358711, 0.004075785167515278, 0.38980865478515625, 0.21165262162685394, -0.036224331706762314, 0.017504321411252022, 0.05356622859835625, 0.044477593153715134, 0.14621160924434662, 0.19241484999656677, 0.07793992012739182, 0.3125382363796234, -0.06538978964090347, -0.12229211628437042, -0.022748274728655815, 0.02059762179851532, -0.13672830164432526, -0.08098369836807251, 0.1377461850643158, -0.047364745289087296, -0.0859455019235611, 0.08042628318071365, -0.14935234189033508, 0.005747613497078419, -0.0164765827357769, -0.08631410449743271, -0.10893511772155762, -0.05196046829223633, 0.07045166939496994, -0.022948915138840675, 0.09548113495111465, -0.020199868828058243, -0.010038231499493122, 0.048349395394325256, 0.045128028839826584, -0.14197520911693573, -0.0035399857442826033, 0.13293126225471497, 0.20204207301139832, 0.057339031249284744, 0.003247681772336364, 0.09052707254886627, 0.006967560388147831, 0.0651509165763855, -0.03500023111701012, 0.07017271965742111, 0.00913206022232771, -0.04069095104932785, -0.04157843068242073, -0.08679560571908951, -0.028907153755426407, 0.0373409241437912, 0.013226393610239029, -0.20048926770687103, 0.08714411407709122, 0.06015058979392052, -0.024216391146183014, -0.09127522259950638, 0.036642469465732574, -0.07175355404615402, 0.11603404581546783, 0.16571368277072906, 0.025554753839969635, -0.06205185130238533, -0.049133725464344025, 0.04812873154878616, -0.04678615182638168, 0.038416411727666855, -0.130287304520607, -0.14503498375415802, -0.15615953505039215, -0.1349307745695114, -0.031088242307305336, -0.21710273623466492, 0.0005010706372559071, -0.04697177931666374, 0.09262512624263763, -0.07513873279094696, 0.03626308962702751, 0.01627606898546219, 0.009846185334026814, -0.0033122883178293705, 0.0581948421895504, 0.015208912082016468, 0.05755581706762314, -0.10364402830600739, -0.05869695544242859 ]
null
null
transformers
This model is the fine-tuned model of "akdeniz27/bert-base-hungarian-cased-ner" using WikiANN-hu dataset.
{}
token-classification
fdominik98/bert-base-hu-cased-ner
[ "transformers", "pytorch", "bert", "token-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #bert #token-classification #autotrain_compatible #endpoints_compatible #region-us
This model is the fine-tuned model of "akdeniz27/bert-base-hungarian-cased-ner" using WikiANN-hu dataset.
[]
[ "TAGS\n#transformers #pytorch #bert #token-classification #autotrain_compatible #endpoints_compatible #region-us \n" ]
[ 37 ]
[ "passage: TAGS\n#transformers #pytorch #bert #token-classification #autotrain_compatible #endpoints_compatible #region-us \n" ]
[ -0.04952388256788254, 0.052763525396585464, -0.008742042817175388, 0.033980391919612885, 0.16650345921516418, 0.031232766807079315, 0.056794650852680206, 0.08634597808122635, 0.05724777653813362, -0.022096728906035423, 0.12041265517473221, 0.25661665201187134, -0.04172574356198311, 0.09726614505052567, -0.09425565600395203, -0.2964369058609009, 0.072568878531456, 0.08518822491168976, -0.03685073181986809, 0.10874255001544952, 0.0826217457652092, -0.09953062981367111, 0.07087896764278412, -0.021146323531866074, -0.14565661549568176, 0.03782055899500847, 0.04566175118088722, -0.12290510535240173, 0.10927622765302658, 0.024675650522112846, 0.195825457572937, 0.0250800009816885, -0.04914003983139992, -0.12460087239742279, 0.02292012982070446, 0.012434997595846653, -0.0567244216799736, 0.05464257672429085, 0.07972842454910278, -0.09245497733354568, -0.02643316052854061, 0.0736164003610611, 0.040207646787166595, 0.040536463260650635, -0.12785013020038605, -0.130097895860672, -0.01677129417657852, 0.04410306364297867, 0.06830945611000061, 0.03920266404747963, 0.028024563565850258, 0.19659002125263214, -0.1535772681236267, 0.1040927842259407, 0.1168038472533226, -0.2951667606830597, -0.0032763986382633448, 0.12271767109632492, 0.02307300455868244, 0.002292903373017907, -0.046535883098840714, 0.026178892701864243, 0.025552578270435333, 0.011873415671288967, 0.027952805161476135, -0.08463964611291885, -0.08450421690940857, 0.03911300376057625, -0.10113436728715897, -0.025793785229325294, 0.17653688788414001, -0.04118471220135689, 0.051768165081739426, 0.011256481520831585, -0.10429224371910095, -0.06710886210203171, -0.016446024179458618, -0.016140753403306007, -0.029147058725357056, 0.05014093220233917, 0.020645350217819214, 0.04166753962635994, -0.09745467454195023, 0.026441968977451324, -0.21823887526988983, 0.2394854873418808, 0.026930933818221092, 0.06543339043855667, -0.1759624481201172, 0.06742089986801147, 0.002468109829351306, -0.080185666680336, 0.03979361802339554, -0.10338287800550461, 0.000461930176243186, -0.05314353480935097, -0.03661246970295906, 0.03140731528401375, 0.06317161023616791, 0.17395952343940735, 0.0793117806315422, 0.05008377507328987, -0.005898697301745415, 0.07871981710195541, 0.034834783524274826, 0.12483206391334534, 0.004537689033895731, -0.03222474083304405, 0.04727894067764282, -0.12738829851150513, -0.022797152400016785, -0.057654689997434616, -0.13722378015518188, -0.035683806985616684, 0.08572584390640259, 0.08669279515743256, -0.002899006474763155, 0.07131802290678024, -0.07259770482778549, -0.04170111194252968, 0.0977427288889885, -0.06708423793315887, 0.03773060068488121, 0.011165250092744827, 0.01788998953998089, 0.10969475656747818, -0.03837720677256584, 0.006092004477977753, -0.038544073700904846, 0.16035914421081543, -0.06788671761751175, -0.0086200051009655, -0.03894633799791336, -0.07913154363632202, 0.03580477461218834, -0.1462087333202362, 0.05359502136707306, -0.16970540583133698, -0.07705289125442505, 0.03400159999728203, 0.03982843458652496, 0.006068000569939613, -0.023860258981585503, 0.004609986208379269, 0.0009630053536966443, 0.010919814929366112, -0.06532157212495804, -0.059639010578393936, -0.06180674210190773, 0.0789342075586319, -0.026356957852840424, 0.05199717730283737, -0.09772148728370667, 0.06380254030227661, -0.10777808725833893, 0.014992175623774529, -0.1314254105091095, -0.01425449550151825, -0.07122194766998291, 0.1727602779865265, -0.012890664860606194, -0.0652521625161171, -0.042813826352357864, 0.026928367093205452, -0.05078446492552757, 0.1189238503575325, -0.05899157002568245, -0.11599802225828171, 0.16220137476921082, -0.10287307947874069, -0.12483754754066467, 0.07581168413162231, -0.01511769462376833, -0.007789896801114082, 0.06788471341133118, 0.1409188061952591, 0.11342629045248032, -0.021826764568686485, 0.08137305825948715, 0.10294424742460251, -0.1294003278017044, -0.13587328791618347, 0.006361662410199642, 0.00798719096928835, -0.14556561410427094, 0.052592433989048004, 0.05236833915114403, 0.0726967453956604, -0.07074553519487381, -0.03274666517972946, -0.01327072735875845, -0.016134168952703476, 0.11864199489355087, 0.06209159642457962, 0.11604267358779907, -0.0657677873969078, 0.00820392556488514, 0.047656312584877014, 0.004204337950795889, 0.036543652415275574, 0.015800083056092262, -0.08706195652484894, 0.12248360365629196, -0.04112236201763153, -0.0011841603554785252, -0.1986646205186844, -0.09740031510591507, 0.023004116490483284, 0.07795482873916626, -0.03679869696497917, 0.13610167801380157, 0.0701465755701065, -0.04764446243643761, 0.00010037058382295072, -0.03370752930641174, 0.17777207493782043, 0.04204830154776573, -0.07011453807353973, -0.07916951924562454, 0.018525518476963043, -0.07664067298173904, -0.030626622959971428, -0.05736034736037254, 0.004993060603737831, 0.09117806702852249, 0.15110987424850464, 0.013702728785574436, 0.07227712869644165, -0.04311654344201088, 0.06486255675554276, -0.07453466951847076, 0.009454507380723953, 0.10986973345279694, -0.00844109058380127, -0.05139068886637688, 0.12689460813999176, -0.1288842260837555, 0.3503526449203491, 0.18760092556476593, -0.3039218783378601, -0.0014054732164368033, -0.04166017845273018, -0.015616725198924541, 0.008022678084671497, 0.052066002041101456, 0.02243027463555336, 0.055117130279541016, 0.004745377227663994, 0.16756683588027954, -0.015916254371404648, -0.05048782005906105, 0.01112330798059702, -0.05658484622836113, -0.04292769730091095, 0.0737248957157135, 0.08670081943273544, -0.20279163122177124, 0.1850307285785675, 0.22442755103111267, 0.0013078266056254506, 0.10093411803245544, -0.009863444603979588, 0.027319302782416344, 0.03913215547800064, -0.0403471440076828, -0.01890004798769951, -0.015322047285735607, -0.1852157860994339, -0.04855918884277344, 0.07947539538145065, 0.031089356169104576, 0.044881563633680344, -0.12700966000556946, -0.023778779432177544, 0.019753707572817802, 0.05750936269760132, -0.006435907445847988, 0.08618827164173126, 0.05749829113483429, 0.08228709548711777, -0.00042137576383538544, -0.12340108305215836, 0.11843181401491165, 0.008938729763031006, -0.06630217283964157, 0.1701919436454773, -0.13096192479133606, -0.2919446527957916, -0.12918199598789215, -0.21609659492969513, -0.02221912518143654, 0.04468577727675438, 0.06791006773710251, -0.09210261702537537, -0.05621439218521118, 0.07646377384662628, -0.0043442221358418465, -0.08893678337335587, 0.06794130802154541, -0.08020073175430298, 0.05017327144742012, -0.04635123163461685, -0.06104189157485962, -0.06701690703630447, -0.041732318699359894, -0.02662169374525547, 0.13805724680423737, -0.09828965365886688, 0.06120699644088745, 0.17539545893669128, -0.011075721122324467, 0.06305833160877228, -0.023022029548883438, 0.17187125980854034, -0.051036398857831955, -0.01183983776718378, 0.15369866788387299, -0.07339499890804291, 0.08695117384195328, 0.16216324269771576, 0.039562564343214035, -0.05847073718905449, 0.00318810623139143, -0.03215182200074196, -0.10039623826742172, -0.18391156196594238, -0.12352752685546875, -0.11139705777168274, 0.03804181143641472, 0.07061707973480225, 0.06962733715772629, 0.135431706905365, 0.09561170637607574, 0.051199477165937424, 0.010959632694721222, -0.048153605312108994, 0.07466201484203339, 0.2208920270204544, 0.001999937929213047, 0.1435864269733429, -0.04169393703341484, -0.1389981210231781, 0.07379768788814545, 0.05560476705431938, 0.13692645728588104, 0.10865066200494766, -0.01025706622749567, 0.01681477762758732, 0.15626244246959686, 0.18229423463344574, 0.1308237463235855, 0.006019692402333021, -0.03366916626691818, -0.00786581914871931, 0.01499095093458891, -0.05352693051099777, 0.018093694001436234, 0.1126210168004036, -0.1184353232383728, -0.05580713599920273, -0.1544867902994156, 0.06733953207731247, 0.09452182799577713, 0.05705242604017258, -0.21316885948181152, 0.015583771280944347, 0.07424211502075195, -0.02289263904094696, -0.07244562357664108, 0.07719103991985321, -0.06336886435747147, -0.14039036631584167, 0.06610569357872009, -0.05594165250658989, 0.1137172058224678, -0.07018838077783585, 0.07125633209943771, 0.00436688307672739, -0.09134659916162491, 0.03966715931892395, 0.09198823571205139, -0.24242180585861206, 0.2353951781988144, -0.005842206999659538, -0.08202855288982391, -0.07314476370811462, -0.01116443332284689, 0.040539294481277466, 0.20659157633781433, 0.06959166377782822, 0.015105132944881916, -0.09668217599391937, -0.2116534262895584, -0.01098657213151455, 0.0037440438754856586, 0.10247340053319931, -0.042362287640571594, -0.020731588825583458, -0.04073396697640419, -0.02784070186316967, -0.013651788234710693, -0.025264961645007133, 0.03604467213153839, -0.12370047718286514, 0.0628918707370758, 0.03108403831720352, 0.0375843271613121, 0.011039070785045624, -0.053596705198287964, -0.131315678358078, 0.20352721214294434, -0.08504047989845276, -0.057783741503953934, -0.11823975294828415, -0.09986942261457443, 0.06580016016960144, -0.09040012210607529, 0.08111396431922913, -0.08633793145418167, 0.013077793642878532, -0.03235287219285965, -0.1910691112279892, 0.14946654438972473, -0.11215386539697647, -0.021799318492412567, -0.08084782212972641, 0.13647201657295227, -0.07384097576141357, 0.013447601348161697, 0.013732876628637314, 0.02437661960721016, -0.08041444420814514, -0.0828900933265686, 0.006355836056172848, -0.014282151125371456, 0.031239764764904976, 0.025724230334162712, -0.06753705441951752, -0.0018155953148379922, -0.011079292744398117, 0.043730828911066055, 0.24128669500350952, 0.1798989176750183, -0.08305246382951736, 0.11879931390285492, 0.15382987260818481, -0.04894930124282837, -0.31972965598106384, -0.07097899168729782, -0.11553299427032471, -0.045486610382795334, -0.038512568920850754, -0.1360434889793396, 0.1564210206270218, 0.02604006603360176, -0.04126296564936638, 0.08387403935194016, -0.14068999886512756, -0.07977245002985, 0.22926518321037292, 0.0029623862355947495, 0.40268903970718384, -0.08702389895915985, -0.08436572551727295, -0.01582670770585537, -0.15964074432849884, 0.11801808327436447, 0.04110552370548248, 0.06407788395881653, -0.02680877409875393, 0.053290240466594696, 0.039342157542705536, -0.06043728440999985, 0.09375226497650146, 0.031009389087557793, 0.044987753033638, -0.10373856127262115, -0.13265928626060486, 0.028911620378494263, -0.030960315838456154, -0.014786438085138798, 0.057378023862838745, 0.022116998210549355, -0.12861059606075287, -0.025071382522583008, -0.07482665032148361, 0.08682981133460999, 0.03502606973052025, -0.06619370728731155, -0.003656937973573804, -0.011468438431620598, -0.010950524359941483, -0.007217009086161852, 0.25750675797462463, 0.003593818750232458, 0.14098960161209106, 0.10273806750774384, 0.09543769061565399, -0.17969036102294922, -0.03609991818666458, -0.07452508062124252, -0.06570184230804443, 0.096438467502594, -0.030126970261335373, 0.07519517093896866, 0.1516796350479126, -0.04122238606214523, 0.04297369718551636, 0.12120365351438522, 0.047616977244615555, -0.0461055189371109, 0.14043885469436646, -0.20969203114509583, 0.03770104795694351, -0.02787908911705017, -0.02063949778676033, 0.07864256948232651, 0.10774786025285721, 0.10418630391359329, 0.04115518182516098, -0.035168662667274475, 0.01394918467849493, -0.02965446747839451, -0.03510928899049759, 0.07017704844474792, 0.06717298924922943, 0.043598420917987823, -0.13562940061092377, 0.03572770580649376, 0.03545781224966049, -0.15994900465011597, -0.04561840742826462, 0.0798286497592926, -0.15686658024787903, -0.11122603714466095, -0.02263965830206871, 0.11455298960208893, -0.14521896839141846, -0.039632488042116165, -0.04641811549663544, -0.13418996334075928, 0.06972779333591461, 0.18159188330173492, 0.13103143870830536, 0.10970540344715118, -0.05561865121126175, -0.021705783903598785, -0.011595118790864944, -0.01822039857506752, 0.006359242834150791, 0.06845489144325256, -0.17037172615528107, 0.017899589613080025, -0.01394583098590374, 0.14702916145324707, -0.09660974144935608, -0.07415182143449783, -0.16891857981681824, 0.04697556421160698, -0.09303826838731766, -0.07159677147865295, -0.08290879428386688, -0.02118426188826561, 0.028802918270230293, -0.08412807434797287, -0.03680410608649254, -0.03769955411553383, -0.12591150403022766, 0.058045439422130585, 0.016383599489927292, 0.029256748035550117, -0.04278605803847313, -0.049387238919734955, 0.10788699239492416, -0.040735047310590744, 0.09248634427785873, 0.11333432793617249, -0.06952280551195145, 0.08524111658334732, -0.09002139419317245, -0.12434586137533188, 0.12248294800519943, 0.02376852184534073, 0.11538374423980713, 0.037905752658843994, 0.03187960386276245, 0.07364030182361603, 0.015629447996616364, 0.05559782683849335, 0.05336270108819008, -0.12224778532981873, 0.02708340249955654, -0.01786322332918644, -0.1931128054857254, -0.02867043949663639, -0.07598401606082916, 0.12200799584388733, -0.0023715540301054716, 0.15108288824558258, -0.006962954066693783, 0.08709387481212616, -0.04373457655310631, -0.00553933484479785, -0.020426053553819656, -0.20569974184036255, -0.038188423961400986, -0.05518931895494461, 0.0054757255129516125, -0.003793900366872549, 0.25238698720932007, 0.03206604719161987, 0.021465452387928963, 0.04169522970914841, 0.05841078236699104, 0.0034062466584146023, 0.03988324850797653, 0.17441175878047943, 0.1048174500465393, -0.044596027582883835, -0.06612113863229752, 0.07449153810739517, 0.014104411005973816, -0.03425929695367813, 0.10280604660511017, 0.0579635351896286, -0.022101202979683876, 0.061401285231113434, 0.006350876297801733, 0.03077852725982666, -0.17194421589374542, -0.18425245583057404, -0.0518796369433403, 0.07249171286821365, 0.02366054244339466, 0.06857233494520187, 0.10899512469768524, -0.026017313823103905, 0.0467560812830925, -0.04243495315313339, -0.03868629038333893, -0.19200804829597473, -0.11754908412694931, -0.09499595314264297, -0.10949105769395828, 0.012144351378083229, -0.045467864722013474, -0.025607097893953323, 0.112579844892025, 0.05665137246251106, -0.02637707255780697, 0.07898925989866257, 0.0068581425584852695, -0.015829376876354218, 0.035544686019420624, -0.015088078565895557, -0.002572772093117237, -0.008363397791981697, -0.025032468140125275, -0.1646868884563446, -0.01614730805158615, -0.059904489666223526, -0.0038963949773460627, -0.0638962835073471, 0.002605070825666189, -0.10870174318552017, -0.11156944185495377, -0.027449829503893852, 0.031112194061279297, -0.07530830055475235, 0.08167865127325058, -0.012178707867860794, 0.031354498118162155, 0.02408476360142231, 0.15556955337524414, -0.0745464414358139, -0.05411846935749054, -0.04471001774072647, 0.26918578147888184, 0.0574658028781414, 0.1188357025384903, 0.007326812483370304, 0.018914537504315376, -0.0766475573182106, 0.29574328660964966, 0.26567307114601135, -0.03664971888065338, 0.05142061784863472, 0.04157736524939537, 0.01670730672776699, 0.09608681499958038, 0.1372172236442566, 0.07940847426652908, 0.23908233642578125, -0.07535005360841751, -0.04486403986811638, -0.029895322397351265, -0.017877299338579178, -0.10601367056369781, 0.0677277147769928, 0.0556669756770134, -0.0367586687207222, -0.08847290277481079, 0.07175103574991226, -0.16698697209358215, 0.1506146639585495, 0.055220942944288254, -0.18291416764259338, -0.07399025559425354, -0.022136300802230835, 0.1443227231502533, -0.019863387569785118, 0.0790862888097763, -0.031677428632974625, -0.10550876706838608, 0.039427150040864944, 0.01414680015295744, -0.21330086886882782, -0.05566805601119995, 0.0937623530626297, 0.0036555929109454155, 0.05017957463860512, -0.023827895522117615, 0.03583429008722305, 0.08428710699081421, 0.0726693794131279, -0.04607251659035683, 0.006363187450915575, 0.011929735541343689, -0.08450563997030258, -0.03499215841293335, 0.00016984343528747559, 0.013966171070933342, -0.05488259717822075, 0.03193806856870651, -0.18189109861850739, 0.04003556817770004, -0.09101450443267822, -0.036184389144182205, -0.019026435911655426, 0.023357758298516273, -0.029626764357089996, 0.05516811087727547, 0.07363101094961166, 0.009205193258821964, -0.03664170578122139, -0.06109684333205223, -0.025447756052017212, 0.03078463301062584, -0.11446559429168701, -0.14089645445346832, -0.08753776550292969, -0.06155245006084442, 0.09708955883979797, -0.01227374467998743, -0.0782943144440651, -0.04041222110390663, -0.07965502887964249, 0.03774513676762581, -0.14707180857658386, 0.06991016864776611, 0.03579777479171753, 0.04206673055887222, -0.01093299314379692, -0.03975704312324524, 0.019534343853592873, 0.054816145449876785, -0.12402302771806717, -0.09320621192455292 ]
null
null
transformers
Magyar nyelvű token classification feladatra felkészített BERT modell.
{}
token-classification
fdominik98/ner-hu-model-2021
[ "transformers", "pytorch", "bert", "token-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #bert #token-classification #autotrain_compatible #endpoints_compatible #region-us
Magyar nyelvű token classification feladatra felkészített BERT modell.
[]
[ "TAGS\n#transformers #pytorch #bert #token-classification #autotrain_compatible #endpoints_compatible #region-us \n" ]
[ 37 ]
[ "passage: TAGS\n#transformers #pytorch #bert #token-classification #autotrain_compatible #endpoints_compatible #region-us \n" ]
[ -0.04952388256788254, 0.052763525396585464, -0.008742042817175388, 0.033980391919612885, 0.16650345921516418, 0.031232766807079315, 0.056794650852680206, 0.08634597808122635, 0.05724777653813362, -0.022096728906035423, 0.12041265517473221, 0.25661665201187134, -0.04172574356198311, 0.09726614505052567, -0.09425565600395203, -0.2964369058609009, 0.072568878531456, 0.08518822491168976, -0.03685073181986809, 0.10874255001544952, 0.0826217457652092, -0.09953062981367111, 0.07087896764278412, -0.021146323531866074, -0.14565661549568176, 0.03782055899500847, 0.04566175118088722, -0.12290510535240173, 0.10927622765302658, 0.024675650522112846, 0.195825457572937, 0.0250800009816885, -0.04914003983139992, -0.12460087239742279, 0.02292012982070446, 0.012434997595846653, -0.0567244216799736, 0.05464257672429085, 0.07972842454910278, -0.09245497733354568, -0.02643316052854061, 0.0736164003610611, 0.040207646787166595, 0.040536463260650635, -0.12785013020038605, -0.130097895860672, -0.01677129417657852, 0.04410306364297867, 0.06830945611000061, 0.03920266404747963, 0.028024563565850258, 0.19659002125263214, -0.1535772681236267, 0.1040927842259407, 0.1168038472533226, -0.2951667606830597, -0.0032763986382633448, 0.12271767109632492, 0.02307300455868244, 0.002292903373017907, -0.046535883098840714, 0.026178892701864243, 0.025552578270435333, 0.011873415671288967, 0.027952805161476135, -0.08463964611291885, -0.08450421690940857, 0.03911300376057625, -0.10113436728715897, -0.025793785229325294, 0.17653688788414001, -0.04118471220135689, 0.051768165081739426, 0.011256481520831585, -0.10429224371910095, -0.06710886210203171, -0.016446024179458618, -0.016140753403306007, -0.029147058725357056, 0.05014093220233917, 0.020645350217819214, 0.04166753962635994, -0.09745467454195023, 0.026441968977451324, -0.21823887526988983, 0.2394854873418808, 0.026930933818221092, 0.06543339043855667, -0.1759624481201172, 0.06742089986801147, 0.002468109829351306, -0.080185666680336, 0.03979361802339554, -0.10338287800550461, 0.000461930176243186, -0.05314353480935097, -0.03661246970295906, 0.03140731528401375, 0.06317161023616791, 0.17395952343940735, 0.0793117806315422, 0.05008377507328987, -0.005898697301745415, 0.07871981710195541, 0.034834783524274826, 0.12483206391334534, 0.004537689033895731, -0.03222474083304405, 0.04727894067764282, -0.12738829851150513, -0.022797152400016785, -0.057654689997434616, -0.13722378015518188, -0.035683806985616684, 0.08572584390640259, 0.08669279515743256, -0.002899006474763155, 0.07131802290678024, -0.07259770482778549, -0.04170111194252968, 0.0977427288889885, -0.06708423793315887, 0.03773060068488121, 0.011165250092744827, 0.01788998953998089, 0.10969475656747818, -0.03837720677256584, 0.006092004477977753, -0.038544073700904846, 0.16035914421081543, -0.06788671761751175, -0.0086200051009655, -0.03894633799791336, -0.07913154363632202, 0.03580477461218834, -0.1462087333202362, 0.05359502136707306, -0.16970540583133698, -0.07705289125442505, 0.03400159999728203, 0.03982843458652496, 0.006068000569939613, -0.023860258981585503, 0.004609986208379269, 0.0009630053536966443, 0.010919814929366112, -0.06532157212495804, -0.059639010578393936, -0.06180674210190773, 0.0789342075586319, -0.026356957852840424, 0.05199717730283737, -0.09772148728370667, 0.06380254030227661, -0.10777808725833893, 0.014992175623774529, -0.1314254105091095, -0.01425449550151825, -0.07122194766998291, 0.1727602779865265, -0.012890664860606194, -0.0652521625161171, -0.042813826352357864, 0.026928367093205452, -0.05078446492552757, 0.1189238503575325, -0.05899157002568245, -0.11599802225828171, 0.16220137476921082, -0.10287307947874069, -0.12483754754066467, 0.07581168413162231, -0.01511769462376833, -0.007789896801114082, 0.06788471341133118, 0.1409188061952591, 0.11342629045248032, -0.021826764568686485, 0.08137305825948715, 0.10294424742460251, -0.1294003278017044, -0.13587328791618347, 0.006361662410199642, 0.00798719096928835, -0.14556561410427094, 0.052592433989048004, 0.05236833915114403, 0.0726967453956604, -0.07074553519487381, -0.03274666517972946, -0.01327072735875845, -0.016134168952703476, 0.11864199489355087, 0.06209159642457962, 0.11604267358779907, -0.0657677873969078, 0.00820392556488514, 0.047656312584877014, 0.004204337950795889, 0.036543652415275574, 0.015800083056092262, -0.08706195652484894, 0.12248360365629196, -0.04112236201763153, -0.0011841603554785252, -0.1986646205186844, -0.09740031510591507, 0.023004116490483284, 0.07795482873916626, -0.03679869696497917, 0.13610167801380157, 0.0701465755701065, -0.04764446243643761, 0.00010037058382295072, -0.03370752930641174, 0.17777207493782043, 0.04204830154776573, -0.07011453807353973, -0.07916951924562454, 0.018525518476963043, -0.07664067298173904, -0.030626622959971428, -0.05736034736037254, 0.004993060603737831, 0.09117806702852249, 0.15110987424850464, 0.013702728785574436, 0.07227712869644165, -0.04311654344201088, 0.06486255675554276, -0.07453466951847076, 0.009454507380723953, 0.10986973345279694, -0.00844109058380127, -0.05139068886637688, 0.12689460813999176, -0.1288842260837555, 0.3503526449203491, 0.18760092556476593, -0.3039218783378601, -0.0014054732164368033, -0.04166017845273018, -0.015616725198924541, 0.008022678084671497, 0.052066002041101456, 0.02243027463555336, 0.055117130279541016, 0.004745377227663994, 0.16756683588027954, -0.015916254371404648, -0.05048782005906105, 0.01112330798059702, -0.05658484622836113, -0.04292769730091095, 0.0737248957157135, 0.08670081943273544, -0.20279163122177124, 0.1850307285785675, 0.22442755103111267, 0.0013078266056254506, 0.10093411803245544, -0.009863444603979588, 0.027319302782416344, 0.03913215547800064, -0.0403471440076828, -0.01890004798769951, -0.015322047285735607, -0.1852157860994339, -0.04855918884277344, 0.07947539538145065, 0.031089356169104576, 0.044881563633680344, -0.12700966000556946, -0.023778779432177544, 0.019753707572817802, 0.05750936269760132, -0.006435907445847988, 0.08618827164173126, 0.05749829113483429, 0.08228709548711777, -0.00042137576383538544, -0.12340108305215836, 0.11843181401491165, 0.008938729763031006, -0.06630217283964157, 0.1701919436454773, -0.13096192479133606, -0.2919446527957916, -0.12918199598789215, -0.21609659492969513, -0.02221912518143654, 0.04468577727675438, 0.06791006773710251, -0.09210261702537537, -0.05621439218521118, 0.07646377384662628, -0.0043442221358418465, -0.08893678337335587, 0.06794130802154541, -0.08020073175430298, 0.05017327144742012, -0.04635123163461685, -0.06104189157485962, -0.06701690703630447, -0.041732318699359894, -0.02662169374525547, 0.13805724680423737, -0.09828965365886688, 0.06120699644088745, 0.17539545893669128, -0.011075721122324467, 0.06305833160877228, -0.023022029548883438, 0.17187125980854034, -0.051036398857831955, -0.01183983776718378, 0.15369866788387299, -0.07339499890804291, 0.08695117384195328, 0.16216324269771576, 0.039562564343214035, -0.05847073718905449, 0.00318810623139143, -0.03215182200074196, -0.10039623826742172, -0.18391156196594238, -0.12352752685546875, -0.11139705777168274, 0.03804181143641472, 0.07061707973480225, 0.06962733715772629, 0.135431706905365, 0.09561170637607574, 0.051199477165937424, 0.010959632694721222, -0.048153605312108994, 0.07466201484203339, 0.2208920270204544, 0.001999937929213047, 0.1435864269733429, -0.04169393703341484, -0.1389981210231781, 0.07379768788814545, 0.05560476705431938, 0.13692645728588104, 0.10865066200494766, -0.01025706622749567, 0.01681477762758732, 0.15626244246959686, 0.18229423463344574, 0.1308237463235855, 0.006019692402333021, -0.03366916626691818, -0.00786581914871931, 0.01499095093458891, -0.05352693051099777, 0.018093694001436234, 0.1126210168004036, -0.1184353232383728, -0.05580713599920273, -0.1544867902994156, 0.06733953207731247, 0.09452182799577713, 0.05705242604017258, -0.21316885948181152, 0.015583771280944347, 0.07424211502075195, -0.02289263904094696, -0.07244562357664108, 0.07719103991985321, -0.06336886435747147, -0.14039036631584167, 0.06610569357872009, -0.05594165250658989, 0.1137172058224678, -0.07018838077783585, 0.07125633209943771, 0.00436688307672739, -0.09134659916162491, 0.03966715931892395, 0.09198823571205139, -0.24242180585861206, 0.2353951781988144, -0.005842206999659538, -0.08202855288982391, -0.07314476370811462, -0.01116443332284689, 0.040539294481277466, 0.20659157633781433, 0.06959166377782822, 0.015105132944881916, -0.09668217599391937, -0.2116534262895584, -0.01098657213151455, 0.0037440438754856586, 0.10247340053319931, -0.042362287640571594, -0.020731588825583458, -0.04073396697640419, -0.02784070186316967, -0.013651788234710693, -0.025264961645007133, 0.03604467213153839, -0.12370047718286514, 0.0628918707370758, 0.03108403831720352, 0.0375843271613121, 0.011039070785045624, -0.053596705198287964, -0.131315678358078, 0.20352721214294434, -0.08504047989845276, -0.057783741503953934, -0.11823975294828415, -0.09986942261457443, 0.06580016016960144, -0.09040012210607529, 0.08111396431922913, -0.08633793145418167, 0.013077793642878532, -0.03235287219285965, -0.1910691112279892, 0.14946654438972473, -0.11215386539697647, -0.021799318492412567, -0.08084782212972641, 0.13647201657295227, -0.07384097576141357, 0.013447601348161697, 0.013732876628637314, 0.02437661960721016, -0.08041444420814514, -0.0828900933265686, 0.006355836056172848, -0.014282151125371456, 0.031239764764904976, 0.025724230334162712, -0.06753705441951752, -0.0018155953148379922, -0.011079292744398117, 0.043730828911066055, 0.24128669500350952, 0.1798989176750183, -0.08305246382951736, 0.11879931390285492, 0.15382987260818481, -0.04894930124282837, -0.31972965598106384, -0.07097899168729782, -0.11553299427032471, -0.045486610382795334, -0.038512568920850754, -0.1360434889793396, 0.1564210206270218, 0.02604006603360176, -0.04126296564936638, 0.08387403935194016, -0.14068999886512756, -0.07977245002985, 0.22926518321037292, 0.0029623862355947495, 0.40268903970718384, -0.08702389895915985, -0.08436572551727295, -0.01582670770585537, -0.15964074432849884, 0.11801808327436447, 0.04110552370548248, 0.06407788395881653, -0.02680877409875393, 0.053290240466594696, 0.039342157542705536, -0.06043728440999985, 0.09375226497650146, 0.031009389087557793, 0.044987753033638, -0.10373856127262115, -0.13265928626060486, 0.028911620378494263, -0.030960315838456154, -0.014786438085138798, 0.057378023862838745, 0.022116998210549355, -0.12861059606075287, -0.025071382522583008, -0.07482665032148361, 0.08682981133460999, 0.03502606973052025, -0.06619370728731155, -0.003656937973573804, -0.011468438431620598, -0.010950524359941483, -0.007217009086161852, 0.25750675797462463, 0.003593818750232458, 0.14098960161209106, 0.10273806750774384, 0.09543769061565399, -0.17969036102294922, -0.03609991818666458, -0.07452508062124252, -0.06570184230804443, 0.096438467502594, -0.030126970261335373, 0.07519517093896866, 0.1516796350479126, -0.04122238606214523, 0.04297369718551636, 0.12120365351438522, 0.047616977244615555, -0.0461055189371109, 0.14043885469436646, -0.20969203114509583, 0.03770104795694351, -0.02787908911705017, -0.02063949778676033, 0.07864256948232651, 0.10774786025285721, 0.10418630391359329, 0.04115518182516098, -0.035168662667274475, 0.01394918467849493, -0.02965446747839451, -0.03510928899049759, 0.07017704844474792, 0.06717298924922943, 0.043598420917987823, -0.13562940061092377, 0.03572770580649376, 0.03545781224966049, -0.15994900465011597, -0.04561840742826462, 0.0798286497592926, -0.15686658024787903, -0.11122603714466095, -0.02263965830206871, 0.11455298960208893, -0.14521896839141846, -0.039632488042116165, -0.04641811549663544, -0.13418996334075928, 0.06972779333591461, 0.18159188330173492, 0.13103143870830536, 0.10970540344715118, -0.05561865121126175, -0.021705783903598785, -0.011595118790864944, -0.01822039857506752, 0.006359242834150791, 0.06845489144325256, -0.17037172615528107, 0.017899589613080025, -0.01394583098590374, 0.14702916145324707, -0.09660974144935608, -0.07415182143449783, -0.16891857981681824, 0.04697556421160698, -0.09303826838731766, -0.07159677147865295, -0.08290879428386688, -0.02118426188826561, 0.028802918270230293, -0.08412807434797287, -0.03680410608649254, -0.03769955411553383, -0.12591150403022766, 0.058045439422130585, 0.016383599489927292, 0.029256748035550117, -0.04278605803847313, -0.049387238919734955, 0.10788699239492416, -0.040735047310590744, 0.09248634427785873, 0.11333432793617249, -0.06952280551195145, 0.08524111658334732, -0.09002139419317245, -0.12434586137533188, 0.12248294800519943, 0.02376852184534073, 0.11538374423980713, 0.037905752658843994, 0.03187960386276245, 0.07364030182361603, 0.015629447996616364, 0.05559782683849335, 0.05336270108819008, -0.12224778532981873, 0.02708340249955654, -0.01786322332918644, -0.1931128054857254, -0.02867043949663639, -0.07598401606082916, 0.12200799584388733, -0.0023715540301054716, 0.15108288824558258, -0.006962954066693783, 0.08709387481212616, -0.04373457655310631, -0.00553933484479785, -0.020426053553819656, -0.20569974184036255, -0.038188423961400986, -0.05518931895494461, 0.0054757255129516125, -0.003793900366872549, 0.25238698720932007, 0.03206604719161987, 0.021465452387928963, 0.04169522970914841, 0.05841078236699104, 0.0034062466584146023, 0.03988324850797653, 0.17441175878047943, 0.1048174500465393, -0.044596027582883835, -0.06612113863229752, 0.07449153810739517, 0.014104411005973816, -0.03425929695367813, 0.10280604660511017, 0.0579635351896286, -0.022101202979683876, 0.061401285231113434, 0.006350876297801733, 0.03077852725982666, -0.17194421589374542, -0.18425245583057404, -0.0518796369433403, 0.07249171286821365, 0.02366054244339466, 0.06857233494520187, 0.10899512469768524, -0.026017313823103905, 0.0467560812830925, -0.04243495315313339, -0.03868629038333893, -0.19200804829597473, -0.11754908412694931, -0.09499595314264297, -0.10949105769395828, 0.012144351378083229, -0.045467864722013474, -0.025607097893953323, 0.112579844892025, 0.05665137246251106, -0.02637707255780697, 0.07898925989866257, 0.0068581425584852695, -0.015829376876354218, 0.035544686019420624, -0.015088078565895557, -0.002572772093117237, -0.008363397791981697, -0.025032468140125275, -0.1646868884563446, -0.01614730805158615, -0.059904489666223526, -0.0038963949773460627, -0.0638962835073471, 0.002605070825666189, -0.10870174318552017, -0.11156944185495377, -0.027449829503893852, 0.031112194061279297, -0.07530830055475235, 0.08167865127325058, -0.012178707867860794, 0.031354498118162155, 0.02408476360142231, 0.15556955337524414, -0.0745464414358139, -0.05411846935749054, -0.04471001774072647, 0.26918578147888184, 0.0574658028781414, 0.1188357025384903, 0.007326812483370304, 0.018914537504315376, -0.0766475573182106, 0.29574328660964966, 0.26567307114601135, -0.03664971888065338, 0.05142061784863472, 0.04157736524939537, 0.01670730672776699, 0.09608681499958038, 0.1372172236442566, 0.07940847426652908, 0.23908233642578125, -0.07535005360841751, -0.04486403986811638, -0.029895322397351265, -0.017877299338579178, -0.10601367056369781, 0.0677277147769928, 0.0556669756770134, -0.0367586687207222, -0.08847290277481079, 0.07175103574991226, -0.16698697209358215, 0.1506146639585495, 0.055220942944288254, -0.18291416764259338, -0.07399025559425354, -0.022136300802230835, 0.1443227231502533, -0.019863387569785118, 0.0790862888097763, -0.031677428632974625, -0.10550876706838608, 0.039427150040864944, 0.01414680015295744, -0.21330086886882782, -0.05566805601119995, 0.0937623530626297, 0.0036555929109454155, 0.05017957463860512, -0.023827895522117615, 0.03583429008722305, 0.08428710699081421, 0.0726693794131279, -0.04607251659035683, 0.006363187450915575, 0.011929735541343689, -0.08450563997030258, -0.03499215841293335, 0.00016984343528747559, 0.013966171070933342, -0.05488259717822075, 0.03193806856870651, -0.18189109861850739, 0.04003556817770004, -0.09101450443267822, -0.036184389144182205, -0.019026435911655426, 0.023357758298516273, -0.029626764357089996, 0.05516811087727547, 0.07363101094961166, 0.009205193258821964, -0.03664170578122139, -0.06109684333205223, -0.025447756052017212, 0.03078463301062584, -0.11446559429168701, -0.14089645445346832, -0.08753776550292969, -0.06155245006084442, 0.09708955883979797, -0.01227374467998743, -0.0782943144440651, -0.04041222110390663, -0.07965502887964249, 0.03774513676762581, -0.14707180857658386, 0.06991016864776611, 0.03579777479171753, 0.04206673055887222, -0.01093299314379692, -0.03975704312324524, 0.019534343853592873, 0.054816145449876785, -0.12402302771806717, -0.09320621192455292 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-cola This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.7480 - Matthews Correlation: 0.5370 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------------------:| | 0.5292 | 1.0 | 535 | 0.5110 | 0.4239 | | 0.3508 | 2.0 | 1070 | 0.4897 | 0.4993 | | 0.2346 | 3.0 | 1605 | 0.6275 | 0.5029 | | 0.1806 | 4.0 | 2140 | 0.7480 | 0.5370 | | 0.1291 | 5.0 | 2675 | 0.8841 | 0.5200 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu111 - Datasets 1.17.0 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["glue"], "metrics": ["matthews_correlation"], "model-index": [{"name": "distilbert-base-uncased-finetuned-cola", "results": [{"task": {"type": "text-classification", "name": "Text Classification"}, "dataset": {"name": "glue", "type": "glue", "args": "cola"}, "metrics": [{"type": "matthews_correlation", "value": 0.5370037450559281, "name": "Matthews Correlation"}]}]}]}
text-classification
federicopascual/distilbert-base-uncased-finetuned-cola
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #dataset-glue #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us
distilbert-base-uncased-finetuned-cola ====================================== This model is a fine-tuned version of distilbert-base-uncased on the glue dataset. It achieves the following results on the evaluation set: * Loss: 0.7480 * Matthews Correlation: 0.5370 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 16 * eval\_batch\_size: 16 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 5 ### Training results ### Framework versions * Transformers 4.15.0 * Pytorch 1.10.0+cu111 * Datasets 1.17.0 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.0+cu111\n* Datasets 1.17.0\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #dataset-glue #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.0+cu111\n* Datasets 1.17.0\n* Tokenizers 0.10.3" ]
[ 67, 98, 4, 33 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #dataset-glue #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.0+cu111\n* Datasets 1.17.0\n* Tokenizers 0.10.3" ]
[ -0.10177629441022873, 0.09868992865085602, -0.002423677360638976, 0.12112317979335785, 0.1650812178850174, 0.03426579013466835, 0.1299346536397934, 0.12770213186740875, -0.08564593642950058, 0.021304525434970856, 0.1207699179649353, 0.16118186712265015, 0.023844653740525246, 0.10977903753519058, -0.04856811463832855, -0.26443108916282654, -0.014250527136027813, 0.05101621896028519, -0.05502324551343918, 0.13528308272361755, 0.09085173904895782, -0.12123988568782806, 0.09099695831537247, 0.010560519993305206, -0.19217939674854279, 0.0012736907228827477, -0.00007869464025134221, -0.05158104747533798, 0.1480625867843628, 0.026134053245186806, 0.1222379058599472, 0.004350635223090649, 0.08203282207250595, -0.20211967825889587, 0.0109197236597538, 0.047976233065128326, 0.0034287353046238422, 0.09363500773906708, 0.04515067860484123, 0.002628615591675043, 0.12063173204660416, -0.0803351029753685, 0.05412057787179947, 0.025187760591506958, -0.11920642107725143, -0.2130812108516693, -0.07939155399799347, 0.036630984395742416, 0.07490450143814087, 0.10550613701343536, -0.007987946271896362, 0.12026778608560562, -0.08140391111373901, 0.09315772354602814, 0.22560088336467743, -0.2846624255180359, -0.06620592623949051, 0.04440826550126076, 0.014406891539692879, 0.04722030460834503, -0.10258147865533829, -0.03414628654718399, 0.04851415753364563, 0.0509343147277832, 0.1279968023300171, -0.027470313012599945, -0.11697384715080261, 0.006325297988951206, -0.14067994058132172, -0.031778451055288315, 0.16862210631370544, 0.04232211038470268, -0.027326999232172966, -0.05612191930413246, -0.05705082044005394, -0.1505020707845688, -0.035502392798662186, -0.01559263002127409, 0.049344535917043686, -0.023357374593615532, -0.04166480526328087, -0.009466851130127907, -0.10793615877628326, -0.06508545577526093, -0.07387420535087585, 0.11076346784830093, 0.03758743405342102, 0.006860504392534494, -0.029825663194060326, 0.11246810108423233, -0.007811444811522961, -0.12158264964818954, 0.025255942717194557, 0.022893251851201057, 0.01350346952676773, -0.03933148831129074, -0.05274882912635803, -0.06423640251159668, 0.01213061437010765, 0.12725643813610077, -0.05570182576775551, 0.04239019751548767, 0.05044251307845116, 0.04930534213781357, -0.09428779035806656, 0.19049058854579926, -0.034276507794857025, -0.025200827047228813, 0.0005440381937660277, 0.05053231865167618, 0.017217280343174934, -0.011495225131511688, -0.12165343761444092, 0.004494988825172186, 0.08820939809083939, 0.007856707088649273, -0.06190384179353714, 0.07444976270198822, -0.059118129312992096, -0.024367066100239754, 0.0022545091342180967, -0.09038243442773819, 0.021844087168574333, 0.0009826826862990856, -0.07183235138654709, -0.020876631140708923, 0.036078646779060364, 0.015619035810232162, -0.01955125480890274, 0.1076565608382225, -0.08774691820144653, 0.02745640277862549, -0.09359776973724365, -0.10990453511476517, 0.016444405540823936, -0.10769655555486679, 0.022347012534737587, -0.09183300286531448, -0.179530531167984, -0.017432404682040215, 0.05996386706829071, -0.024156158789992332, -0.057796917855739594, -0.058523666113615036, -0.06686114519834518, 0.011313402093946934, -0.00775144575163722, 0.11726417392492294, -0.06450776755809784, 0.09395397454500198, 0.025765664875507355, 0.06269765645265579, -0.042549166828393936, 0.05981731042265892, -0.10193105041980743, 0.013144214637577534, -0.15104839205741882, 0.0400441437959671, -0.05145822837948799, 0.06935621798038483, -0.08194040507078171, -0.10615845024585724, 0.002663051476702094, -0.0028380511794239283, 0.06268789619207382, 0.09636878967285156, -0.18458586931228638, -0.08252619951963425, 0.1638277769088745, -0.07281412184238434, -0.12196049094200134, 0.12136763334274292, -0.0580064132809639, 0.05861146003007889, 0.05951378867030144, 0.17990033328533173, 0.08656419813632965, -0.07854954153299332, 0.0018196254968643188, 0.023756947368383408, 0.05026758089661598, -0.06338667124509811, 0.06808595359325409, 0.0018259093631058931, 0.01989728771150112, 0.03576963394880295, -0.027762150391936302, 0.0641099065542221, -0.08784174174070358, -0.09886786341667175, -0.0402458980679512, -0.08253508061170578, 0.0465523786842823, 0.07975026965141296, 0.06739030033349991, -0.09414571523666382, -0.07797343283891678, 0.05024334043264389, 0.08206507563591003, -0.058022212237119675, 0.024602338671684265, -0.049497149884700775, 0.07355623692274094, -0.023844702169299126, -0.021642537787556648, -0.17968407273292542, -0.032223403453826904, 0.007671972271054983, 0.0017039760714396834, 0.018056152388453484, 0.03337876871228218, 0.06358686834573746, 0.06016344204545021, -0.05022745952010155, -0.019244832918047905, -0.0352572537958622, -0.0006887496565468609, -0.12579292058944702, -0.19718441367149353, -0.028450479730963707, -0.02205497771501541, 0.16075244545936584, -0.2082725465297699, 0.05154874175786972, -0.014233555644750595, 0.06959009915590286, 0.012252251617610455, -0.0065546054393053055, -0.037181925028562546, 0.07644595205783844, -0.04241294413805008, -0.05049571767449379, 0.08215155452489853, 0.01450799684971571, -0.09128501266241074, -0.050215501338243484, -0.09774215519428253, 0.1582167148590088, 0.12925271689891815, -0.11003289371728897, -0.07731720805168152, -0.023380616679787636, -0.0669984295964241, -0.034903690218925476, -0.04613172262907028, 0.026549331843852997, 0.1879379004240036, -0.0049881828017532825, 0.14970116317272186, -0.06918737292289734, -0.043393924832344055, 0.018244462087750435, -0.03694281727075577, 0.01636327989399433, 0.13443101942539215, 0.13418081402778625, -0.06011265516281128, 0.15530750155448914, 0.14804664254188538, -0.08511312305927277, 0.1510668396949768, -0.04195278137922287, -0.06577235460281372, -0.01610550656914711, -0.029684927314519882, -0.011206655763089657, 0.10058020800352097, -0.15690045058727264, -0.002004367997869849, 0.030701281502842903, 0.015433641150593758, 0.02562039904296398, -0.22722068428993225, -0.04094555974006653, 0.03781639412045479, -0.044886574149131775, -0.006275756284594536, -0.00595852779224515, 0.005161743611097336, 0.10115070641040802, -0.0004888595431111753, -0.08683908730745316, 0.03661135584115982, 0.0027518956921994686, -0.08374463021755219, 0.2156449258327484, -0.081173375248909, -0.17226016521453857, -0.13096117973327637, -0.07049524784088135, -0.047677770256996155, -0.0015197350876405835, 0.06859971582889557, -0.09709104150533676, -0.02635144256055355, -0.07209304720163345, 0.025860309600830078, 0.007600440643727779, 0.022702498361468315, 0.0029937936924397945, 0.007451718207448721, 0.06447025388479233, -0.11222215741872787, -0.015035846270620823, -0.058496929705142975, -0.04542740061879158, 0.044325705617666245, 0.02816983126103878, 0.11031338572502136, 0.15270480513572693, -0.013083916157484055, 0.012781093828380108, -0.03162777051329613, 0.23638051748275757, -0.06001908704638481, -0.0208893995732069, 0.1460668295621872, -0.007206457667052746, 0.051826294511556625, 0.11371733248233795, 0.07455668598413467, -0.07760798186063766, 0.003885192796587944, 0.037943821400403976, -0.034547463059425354, -0.23284892737865448, -0.053616248071193695, -0.05520634725689888, 0.011296672746539116, 0.089586041867733, 0.02373400144279003, 0.030841536819934845, 0.07044725120067596, 0.04116436094045639, 0.07381468266248703, -0.037414710968732834, 0.05087532848119736, 0.1295747458934784, 0.030546288937330246, 0.12477082759141922, -0.04690399020910263, -0.06424792855978012, 0.040794432163238525, -0.010863419622182846, 0.22334444522857666, 0.009917938150465488, 0.13131633400917053, 0.06607729941606522, 0.1649666577577591, -0.009735438972711563, 0.07535355538129807, -0.010470135137438774, -0.03799179568886757, -0.0162015613168478, -0.03991588577628136, -0.04029099643230438, 0.023612579330801964, -0.06360199302434921, 0.06474608182907104, -0.12359699606895447, 0.014717328362166882, 0.05894068628549576, 0.24849559366703033, 0.03377196192741394, -0.3200716972351074, -0.09709673374891281, 0.0007384793716482818, -0.029719963669776917, -0.019953938201069832, 0.026196908205747604, 0.09424502402544022, -0.09753169119358063, 0.029457727447152138, -0.07466296851634979, 0.0962631106376648, -0.055720455944538116, 0.05116957798600197, 0.08169417083263397, 0.09054762125015259, 0.011883794330060482, 0.09314082562923431, -0.2884000837802887, 0.27650073170661926, 0.0002981654542963952, 0.056524623185396194, -0.07594560086727142, 0.008374286815524101, 0.041159119457006454, 0.06563553959131241, 0.07949315011501312, -0.01224528532475233, -0.01759219914674759, -0.18658626079559326, -0.06754712015390396, 0.027284175157546997, 0.06876907497644424, -0.04146112501621246, 0.08209217339754105, -0.031855158507823944, 0.008920346386730671, 0.07337794452905655, 0.0023068361915647984, -0.053541041910648346, -0.10786380618810654, -0.005141935311257839, 0.022722337394952774, -0.06008746474981308, -0.06107710674405098, -0.12087935954332352, -0.12990501523017883, 0.155729740858078, -0.035367779433727264, -0.038886189460754395, -0.106304831802845, 0.08325839787721634, 0.05899275466799736, -0.08922765403985977, 0.0430733785033226, 0.0019881264306604862, 0.07539381086826324, 0.02154691517353058, -0.07059939950704575, 0.10247620195150375, -0.07363677769899368, -0.1557348668575287, -0.0653294250369072, 0.10667534172534943, 0.033229321241378784, 0.06670800596475601, -0.014250626787543297, 0.00431025680154562, -0.046546995639801025, -0.08820211887359619, 0.020896978676319122, 0.004755881614983082, 0.07743469625711441, 0.018997633829712868, -0.07543632388114929, 0.01201551128178835, -0.06481624394655228, -0.034086693078279495, 0.20510898530483246, 0.2221778780221939, -0.09982394427061081, 0.024086005985736847, 0.025836989283561707, -0.0738971009850502, -0.19793148338794708, 0.03522804379463196, 0.05483577400445938, 0.008683490566909313, 0.04294142872095108, -0.18465115129947662, 0.13146370649337769, 0.10747389495372772, -0.011773521080613136, 0.10583452880382538, -0.324044793844223, -0.12059681862592697, 0.13578835129737854, 0.13629050552845, 0.09854068607091904, -0.1321391612291336, -0.02271113730967045, -0.018754245713353157, -0.1379910707473755, 0.11446153372526169, -0.09142790734767914, 0.120912104845047, -0.037892017513513565, 0.07596635818481445, 0.0028597572818398476, -0.0584384985268116, 0.12073198705911636, 0.023140931501984596, 0.0945015400648117, -0.058765899389982224, -0.033337973058223724, 0.03047853522002697, -0.042802438139915466, 0.03446131944656372, -0.09962396323680878, 0.029662422835826874, -0.10281215608119965, -0.0251001063734293, -0.06927776336669922, 0.04619433730840683, -0.04536258056759834, -0.06819522380828857, -0.037817176431417465, 0.025476092472672462, 0.04637615382671356, -0.007411271333694458, 0.12242395430803299, 0.02384062111377716, 0.1488822102546692, 0.09686450660228729, 0.07455138862133026, -0.06877368688583374, -0.08208677172660828, -0.026989970356225967, -0.01078053005039692, 0.050466980785131454, -0.1369129866361618, 0.019369233399629593, 0.15191002190113068, 0.020388750359416008, 0.15307851135730743, 0.08298779278993607, -0.021846970543265343, -0.00145810900721699, 0.059030331671237946, -0.16558411717414856, -0.09374777227640152, -0.017512774094939232, -0.06781873852014542, -0.12064754962921143, 0.04518076777458191, 0.09283262491226196, -0.06830855458974838, -0.006686370354145765, -0.004924751818180084, 0.013755558989942074, -0.05032142624258995, 0.18429741263389587, 0.06282955408096313, 0.047867823392152786, -0.096428282558918, 0.07266043871641159, 0.0449543371796608, -0.07330744713544846, 0.0033405697904527187, 0.07132815569639206, -0.08534601330757141, -0.05450327321887016, 0.06432835012674332, 0.1912047564983368, -0.043927162885665894, -0.04855562746524811, -0.1453658491373062, -0.12287921458482742, 0.07764768600463867, 0.1408335417509079, 0.11843205243349075, 0.01058033388108015, -0.06616745889186859, 0.0029106447473168373, -0.10731884837150574, 0.10160065442323685, 0.045956265181303024, 0.06211207062005997, -0.14301945269107819, 0.14211498200893402, 0.020740197971463203, 0.04820193350315094, -0.01806846633553505, 0.023208048194646835, -0.10020429641008377, 0.007697694003582001, -0.09298595041036606, -0.019537312909960747, -0.029065001755952835, 0.011588165536522865, -0.005960927344858646, -0.04729988053441048, -0.0542338490486145, 0.010628738440573215, -0.10766087472438812, -0.023693302646279335, 0.030114110559225082, 0.07296796143054962, -0.10916557163000107, -0.035426318645477295, 0.030875829979777336, -0.06108306720852852, 0.07371184974908829, 0.04329424351453781, 0.015606247819960117, 0.050780802965164185, -0.13902859389781952, 0.02026754431426525, 0.07313340902328491, 0.029131997376680374, 0.06079116463661194, -0.09932733327150345, -0.007924248464405537, -0.00831547100096941, 0.039642333984375, 0.02172110602259636, 0.07442112267017365, -0.1410936713218689, 0.0035281842574477196, -0.02308511547744274, -0.08286073803901672, -0.06700614094734192, 0.028149420395493507, 0.08893175423145294, 0.018416542559862137, 0.19928090274333954, -0.07619873434305191, 0.049508191645145416, -0.21921874582767487, 0.007203821558505297, -0.006482485681772232, -0.11031077802181244, -0.10131534934043884, -0.07205703109502792, 0.05513612926006317, -0.060717787593603134, 0.1499030590057373, 0.04670583829283714, 0.0190992783755064, 0.02442006766796112, -0.011104658246040344, 0.0123064573854208, 0.009836219251155853, 0.18994872272014618, 0.030648769810795784, -0.03457606956362724, 0.05985496938228607, 0.044767893850803375, 0.10333859920501709, 0.11458932608366013, 0.2000289261341095, 0.14501407742500305, -0.009634922258555889, 0.09320678561925888, 0.043747033923864365, -0.055918898433446884, -0.15551309287548065, 0.05201669782400131, -0.0348605252802372, 0.10937416553497314, -0.02125314436852932, 0.22091102600097656, 0.06478510051965714, -0.1696740686893463, 0.051610227674245834, -0.05148177221417427, -0.08721215277910233, -0.11527423560619354, -0.049710892140865326, -0.07701697945594788, -0.13180910050868988, -0.003880183445289731, -0.11571096628904343, -0.0028426540084183216, 0.12518630921840668, 0.003630818100646138, -0.027395818382501602, 0.15849998593330383, 0.014401617459952831, 0.022212907671928406, 0.06015627831220627, 0.008367235772311687, -0.03863980621099472, -0.14036662876605988, -0.059315942227840424, -0.012330079451203346, -0.008793477900326252, 0.03116128407418728, -0.06153199076652527, -0.04473326727747917, 0.03117159940302372, -0.02042582258582115, -0.09601709246635437, 0.006006556563079357, 0.011131567880511284, 0.0533316507935524, 0.044897403568029404, 0.009516828693449497, 0.018703876063227654, -0.0037758296821266413, 0.20052506029605865, -0.0717770978808403, -0.06498154252767563, -0.10246375948190689, 0.23358504474163055, 0.0361536405980587, -0.018478771671652794, 0.03453867882490158, -0.06657195836305618, 0.004409546032547951, 0.24914872646331787, 0.21641024947166443, -0.07975707203149796, -0.0060849878937006, 0.016893045976758003, -0.007865218445658684, -0.021979933604598045, 0.09790797531604767, 0.14306801557540894, 0.04558771848678589, -0.09230106323957443, -0.04356169328093529, -0.058740004897117615, -0.0174243226647377, -0.03374728187918663, 0.0693250447511673, 0.051049165427684784, 0.009482786059379578, -0.03563119098544121, 0.0567263662815094, -0.06666052341461182, -0.09042596817016602, 0.05730389058589935, -0.21876642107963562, -0.16741296648979187, -0.01652800291776657, 0.1028960645198822, 0.0017809192650020123, 0.061948828399181366, -0.029001614078879356, -0.003035155590623617, 0.09021490812301636, -0.019437670707702637, -0.09757450222969055, -0.07405272871255875, 0.0848613753914833, -0.11156534403562546, 0.21836979687213898, -0.047714509069919586, 0.054364051669836044, 0.1254379153251648, 0.06760457158088684, -0.0644994005560875, 0.06536801904439926, 0.04187343269586563, -0.04156811535358429, 0.023007867857813835, 0.06869390606880188, -0.03251289203763008, 0.06446241587400436, 0.047979000955820084, -0.13706746697425842, 0.02370663918554783, -0.04812363535165787, -0.06919568032026291, -0.043872371315956116, -0.020693952217698097, -0.06029629707336426, 0.12902742624282837, 0.2190595120191574, -0.024821428582072258, -0.00955967791378498, -0.07230399549007416, 0.00883461069315672, 0.05615578591823578, 0.021983714774250984, -0.057219840586185455, -0.21056394279003143, 0.016822319477796555, 0.04565083608031273, -0.01846429333090782, -0.25154390931129456, -0.10084811598062515, 0.004124476574361324, -0.07295944541692734, -0.0947342962026596, 0.07150569558143616, 0.08810579776763916, 0.054769519716501236, -0.05578319728374481, -0.04721960425376892, -0.07467550039291382, 0.14914295077323914, -0.1454761028289795, -0.09100616723299026 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetune-sentiment-analysis-model-3000-samples This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 0.4558 - Accuracy: 0.8867 - F1: 0.8944 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu111 - Datasets 1.17.0 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["imdb"], "metrics": ["accuracy", "f1"], "model-index": [{"name": "finetune-sentiment-analysis-model-3000-samples", "results": [{"task": {"type": "text-classification", "name": "Text Classification"}, "dataset": {"name": "imdb", "type": "imdb", "args": "plain_text"}, "metrics": [{"type": "accuracy", "value": 0.8866666666666667, "name": "Accuracy"}, {"type": "f1", "value": 0.8944099378881988, "name": "F1"}]}]}]}
text-classification
federicopascual/finetune-sentiment-analysis-model-3000-samples
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:imdb", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #dataset-imdb #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us
# finetune-sentiment-analysis-model-3000-samples This model is a fine-tuned version of distilbert-base-uncased on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 0.4558 - Accuracy: 0.8867 - F1: 0.8944 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu111 - Datasets 1.17.0 - Tokenizers 0.10.3
[ "# finetune-sentiment-analysis-model-3000-samples\n\nThis model is a fine-tuned version of distilbert-base-uncased on the imdb dataset.\nIt achieves the following results on the evaluation set:\n- Loss: 0.4558\n- Accuracy: 0.8867\n- F1: 0.8944", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 2e-05\n- train_batch_size: 16\n- eval_batch_size: 16\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 2", "### Training results", "### Framework versions\n\n- Transformers 4.15.0\n- Pytorch 1.10.0+cu111\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #dataset-imdb #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us \n", "# finetune-sentiment-analysis-model-3000-samples\n\nThis model is a fine-tuned version of distilbert-base-uncased on the imdb dataset.\nIt achieves the following results on the evaluation set:\n- Loss: 0.4558\n- Accuracy: 0.8867\n- F1: 0.8944", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 2e-05\n- train_batch_size: 16\n- eval_batch_size: 16\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 2", "### Training results", "### Framework versions\n\n- Transformers 4.15.0\n- Pytorch 1.10.0+cu111\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ 67, 74, 6, 12, 8, 3, 90, 4, 33 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #dataset-imdb #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us \n# finetune-sentiment-analysis-model-3000-samples\n\nThis model is a fine-tuned version of distilbert-base-uncased on the imdb dataset.\nIt achieves the following results on the evaluation set:\n- Loss: 0.4558\n- Accuracy: 0.8867\n- F1: 0.8944## Model description\n\nMore information needed## Intended uses & limitations\n\nMore information needed## Training and evaluation data\n\nMore information needed## Training procedure### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 2e-05\n- train_batch_size: 16\n- eval_batch_size: 16\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 2### Training results### Framework versions\n\n- Transformers 4.15.0\n- Pytorch 1.10.0+cu111\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ -0.11693186312913895, 0.1743505597114563, -0.0029459395445883274, 0.08483696728944778, 0.14086918532848358, 0.02594788931310177, 0.07675006240606308, 0.1549052596092224, -0.09307685494422913, 0.0902821496129036, 0.09251099079847336, 0.08320192992687225, 0.06356693804264069, 0.14335528016090393, -0.0405014306306839, -0.24688905477523804, 0.02951681986451149, 0.009553381241858006, -0.06848286092281342, 0.10145802795886993, 0.12894685566425323, -0.07945546507835388, 0.08893837779760361, 0.04858020693063736, -0.17052818834781647, 0.0005353077431209385, -0.010265622287988663, -0.07312151789665222, 0.07504205405712128, 0.03033798187971115, 0.03981767222285271, 0.0006854942766949534, 0.07510975003242493, -0.18381717801094055, -0.009026524610817432, 0.056862130761146545, 0.03811394050717354, 0.10687889903783798, 0.054662175476551056, 0.031014664098620415, 0.08488840609788895, -0.12308838218450546, 0.08089625090360641, 0.04706713184714317, -0.08328141272068024, -0.1846577227115631, -0.09262741357088089, 0.11303100734949112, 0.07141049206256866, 0.09725520014762878, 0.005963603965938091, 0.15440189838409424, -0.008545973338186741, 0.07838141173124313, 0.17202666401863098, -0.2724810540676117, -0.05736343562602997, 0.02821962721645832, 0.05097336322069168, 0.05596733093261719, -0.09812057763338089, 0.00022159921354614198, 0.04543594270944595, 0.026919523254036903, 0.0995737761259079, -0.0138024240732193, 0.00003635527900769375, -0.045290831476449966, -0.11712472140789032, -0.08172494173049927, 0.23985370993614197, 0.07559571415185928, -0.07748455554246902, -0.13422845304012299, -0.04830676689743996, -0.10806533694267273, -0.03667426109313965, -0.05879145860671997, 0.03495616838335991, -0.027679506689310074, -0.031152712181210518, -0.06230615824460983, -0.07089255750179291, -0.04019639268517494, 0.02568667195737362, 0.12048723548650742, 0.03913827985525131, 0.028930969536304474, -0.007457258645445108, 0.0833292007446289, -0.046942926943302155, -0.14603520929813385, -0.05894717946648598, -0.012298008427023888, -0.038900572806596756, -0.05290880426764488, -0.04596143588423729, 0.005540316924452782, 0.004373727831989527, 0.1648007333278656, -0.061501167714595795, 0.06793875247240067, 0.03016859106719494, -0.00515426229685545, -0.02004786767065525, 0.17848116159439087, -0.039723094552755356, -0.03124893642961979, 0.01902529038488865, 0.10120408236980438, 0.01441743690520525, -0.007276132237166166, -0.08067408949136734, -0.026747463271021843, 0.12519985437393188, 0.04859991371631622, -0.017662324011325836, 0.041033051908016205, -0.05894409492611885, -0.05352982133626938, 0.0765845999121666, -0.12345373630523682, 0.029643336310982704, -0.03148181363940239, -0.09461639076471329, -0.03363701328635216, 0.03864353522658348, -0.0050774067640304565, -0.052173785865306854, 0.013452725484967232, -0.09410576522350311, -0.019244657829403877, -0.052311353385448456, -0.04010176658630371, 0.0031431633979082108, -0.05205269530415535, 0.014353131875395775, -0.08060071617364883, -0.1833120882511139, -0.03643481805920601, 0.031232984736561775, -0.06781276315450668, -0.0988980233669281, 0.005611964967101812, -0.06742052733898163, 0.030674170702695847, -0.006295301951467991, 0.07501477003097534, -0.02267877385020256, 0.0640648603439331, 0.05920276418328285, 0.02068333886563778, 0.03114299848675728, 0.05514371022582054, -0.09083177149295807, 0.04696086794137955, -0.1139337494969368, 0.10590807348489761, -0.08486074209213257, 0.03373036906123161, -0.1335071474313736, -0.10327525436878204, 0.003784714499488473, -0.033775486052036285, 0.06996386498212814, 0.13521263003349304, -0.09667083621025085, -0.02656753547489643, 0.11063877493143082, -0.0715336799621582, -0.1219930350780487, 0.08127797394990921, -0.011654082685709, 0.043204668909311295, 0.04571196436882019, 0.14153945446014404, 0.12724357843399048, -0.08981406688690186, -0.04432263970375061, 0.0420248918235302, 0.05364459007978439, 0.00820975098758936, 0.08909651637077332, -0.01296304352581501, 0.020992089062929153, 0.032260384410619736, -0.06213735044002533, -0.018136847764253616, -0.07364166527986526, -0.08374867588281631, -0.07690610736608505, -0.06727714836597443, 0.0297671090811491, 0.027876557782292366, 0.04144586622714996, -0.05451866239309311, -0.11123678833246231, 0.0820891410112381, 0.14454537630081177, -0.03527887538075447, 0.01181985903531313, -0.0812390074133873, 0.07411151379346848, -0.05899018794298172, -0.01516754925251007, -0.22239503264427185, -0.084479920566082, 0.06422543525695801, -0.09040019661188126, 0.026976699009537697, -0.013270065188407898, 0.04798846319317818, 0.057665880769491196, -0.024289870634675026, -0.041742730885744095, -0.08572521060705185, -0.016916994005441666, -0.10067460685968399, -0.14225661754608154, -0.0634663924574852, -0.017245745286345482, 0.18795034289360046, -0.21156306564807892, 0.018171437084674835, 0.01925976574420929, 0.13006176054477692, 0.008491694927215576, -0.06509442627429962, 0.01656590774655342, -0.007246545050293207, -0.01583508402109146, -0.10931560397148132, 0.03624901920557022, 0.031286269426345825, -0.09691426157951355, -0.04251840338110924, -0.13427002727985382, 0.0952012911438942, 0.07981943339109421, 0.07127940654754639, -0.07628273963928223, -0.009097259491682053, -0.05781342461705208, -0.04510314390063286, -0.03853613883256912, -0.020749531686306, 0.16654996573925018, 0.005981022957712412, 0.1385786086320877, -0.07514172792434692, -0.0566411055624485, 0.030749035999178886, -0.016176242381334305, -0.04801680147647858, 0.056138746440410614, -0.01897283084690571, -0.1586460918188095, 0.10260327160358429, 0.0921371653676033, -0.012544587254524231, 0.11051441729068756, -0.06606943160295486, -0.08120696246623993, -0.042405132204294205, 0.01191057451069355, 0.00482184300199151, 0.08395311236381531, -0.10600756853818893, 0.007611661683768034, 0.06396172940731049, 0.02136659063398838, 0.02449881285429001, -0.13482561707496643, 0.025758661329746246, 0.046542052179574966, -0.03754616528749466, 0.027086498215794563, 0.007516544312238693, 0.0006286604329943657, 0.07987207174301147, 0.04039282351732254, -0.010051471181213856, 0.04192960634827614, -0.007263206411153078, -0.07527251541614532, 0.17237290740013123, -0.11542124301195145, -0.20112116634845734, -0.16663013398647308, 0.04805079847574234, -0.09458975493907928, -0.014883022755384445, 0.018229885026812553, -0.04094113036990166, -0.06495922803878784, -0.07311005890369415, -0.03668319061398506, -0.06564714759588242, -0.004441381432116032, 0.09591013193130493, -0.008798717521131039, 0.13096560537815094, -0.12849827110767365, -0.007924867793917656, 0.0077962069772183895, -0.06087401509284973, -0.02612927369773388, 0.027455510571599007, 0.10333361476659775, 0.0768071636557579, -0.013233156874775887, 0.028702277690172195, -0.014027290977537632, 0.2846577763557434, -0.07976256310939789, -0.013272040523588657, 0.17705115675926208, 0.023331979289650917, 0.07965469360351562, 0.10117363929748535, 0.02745506539940834, -0.08554452657699585, 0.013571162708103657, 0.02718173898756504, -0.0038768399972468615, -0.2177646905183792, -0.0343562550842762, -0.029483618214726448, -0.06483105570077896, 0.11737702041864395, 0.05625692009925842, 0.08279699087142944, 0.07926681637763977, -0.03422349691390991, 0.07750348746776581, -0.02037043683230877, 0.11063101887702942, 0.1449788361787796, 0.0529661625623703, 0.10035362094640732, -0.025186480954289436, -0.0045619229786098, 0.07580941915512085, -0.018898017704486847, 0.22788791358470917, -0.008201289921998978, 0.19116631150245667, 0.01647976227104664, 0.15743322670459747, -0.01708589866757393, 0.042509835213422775, 0.009843703359365463, 0.01559433713555336, 0.007982397451996803, -0.06361474096775055, -0.06116607040166855, 0.020800266414880753, -0.02058698982000351, 0.07698504626750946, -0.10356634110212326, 0.05150679871439934, 0.008536139503121376, 0.24940887093544006, 0.03444472700357437, -0.32769203186035156, -0.11060340702533722, 0.0070545910857617855, -0.029415447264909744, -0.11618559807538986, -0.013810931704938412, 0.06097650155425072, -0.1551380753517151, 0.07116539776325226, -0.06531103700399399, 0.09594400972127914, -0.044868353754282, 0.0049496544525027275, 0.06109970435500145, 0.10372714698314667, 0.01338812243193388, 0.10088042169809341, -0.20986071228981018, 0.17814379930496216, 0.02531396970152855, 0.08171334117650986, -0.06877528131008148, 0.06621040403842926, 0.021357279270887375, 0.10560325533151627, 0.12009092420339584, 0.0015845198649913073, -0.02888171374797821, -0.17746105790138245, -0.0973772332072258, -0.0014074150240048766, 0.09945474565029144, -0.07329367846250534, 0.07533162087202072, -0.06435681134462357, 0.0062919496558606625, 0.025888705626130104, -0.037388790398836136, -0.14916202425956726, -0.1360853612422943, 0.04744316264986992, 0.02496424876153469, 0.015718650072813034, -0.07927320152521133, -0.08905495703220367, -0.010188179090619087, 0.18559809029102325, 0.004278680309653282, -0.07423865795135498, -0.1677369326353073, 0.09052968770265579, 0.13608454167842865, -0.08431088179349899, 0.03840417414903641, -0.024625182151794434, 0.16281846165657043, 0.0529702864587307, -0.08609391003847122, 0.042282961308956146, -0.06745308637619019, -0.17339834570884705, -0.016052531078457832, 0.13938626646995544, -0.008103430271148682, 0.040132105350494385, 0.011383323930203915, 0.033908337354660034, -0.0030796274077147245, -0.09019219130277634, -0.003465265966951847, 0.043906278908252716, 0.0931791216135025, 0.04152877256274223, -0.03765425458550453, 0.044658735394477844, -0.055809929966926575, -0.0011061903787776828, 0.11318108439445496, 0.2104150503873825, -0.08514449745416641, 0.03734118863940239, 0.03385625779628754, -0.07218178361654282, -0.15751121938228607, 0.01930394023656845, 0.12923160195350647, 0.02151905931532383, 0.058400824666023254, -0.16328208148479462, 0.08918382972478867, 0.090486541390419, -0.04188362509012222, 0.04132487624883652, -0.26659369468688965, -0.12806189060211182, 0.08011121302843094, 0.10002930462360382, 0.018605973571538925, -0.14434342086315155, -0.07314810156822205, -0.028622714802622795, -0.11291033774614334, 0.08465342968702316, -0.013389135710895061, 0.10361257195472717, -0.026933901011943817, 0.06063903495669365, 0.04097505658864975, -0.019019829109311104, 0.1724454164505005, 0.03508656471967697, 0.064765565097332, -0.06284759938716888, 0.04522707685828209, 0.09565431624650955, -0.07967691123485565, 0.11292140185832977, -0.028264032676815987, 0.09337270259857178, -0.17774786055088043, -0.009313518181443214, -0.056456368416547775, 0.06724807620048523, -0.06121336668729782, -0.04132796451449394, -0.039862800389528275, 0.03792929649353027, 0.04626769945025444, -0.033103980123996735, 0.11261386424303055, 0.05224515497684479, 0.05031029134988785, 0.1738239973783493, 0.07225411385297775, 0.009255041368305683, -0.16607800126075745, -0.019966183230280876, -0.009696616791188717, 0.05454588308930397, -0.12620696425437927, 0.02819741517305374, 0.09620686620473862, 0.029487749561667442, 0.13535445928573608, 0.013693664222955704, -0.06616803258657455, -0.018001655116677284, 0.03414982184767723, -0.09908761084079742, -0.15825724601745605, -0.0657438114285469, -0.013993361033499241, -0.1595481038093567, 0.011343659833073616, 0.10967747122049332, -0.058804191648960114, -0.016980955377221107, -0.014605318196117878, 0.008254197426140308, -0.0043394966050982475, 0.17134645581245422, 0.044913239777088165, 0.07392308861017227, -0.08786589652299881, 0.12006749212741852, 0.08127067238092422, -0.04770645126700401, 0.04881051927804947, 0.033309098333120346, -0.09665707498788834, -0.023931942880153656, 0.04839671775698662, 0.10718637704849243, -0.036028455942869186, -0.05212327837944031, -0.0690477192401886, -0.07142319530248642, 0.04851553589105606, 0.03026670403778553, 0.07693034410476685, 0.0013139719376340508, -0.03550922870635986, -0.00791282020509243, -0.1328054964542389, 0.11137072741985321, 0.048746008425951004, 0.07047614455223083, -0.19301410019397736, 0.04325035214424133, 0.007272620219737291, 0.0632917657494545, -0.015852995216846466, -0.013245939277112484, -0.06644180417060852, -0.04998549818992615, -0.09136462956666946, 0.013134903274476528, -0.04353722557425499, 0.005512678995728493, -0.023743199184536934, -0.05730156600475311, -0.03644675388932228, 0.0644986480474472, -0.05647548660635948, -0.09370006620883942, 0.01475257147103548, 0.06610152125358582, -0.12065406143665314, -0.007616377901285887, 0.020349908620119095, -0.10363812744617462, 0.09463419020175934, 0.06653086096048355, 0.03904424235224724, 0.008632473647594452, 0.028655311092734337, 0.018485352396965027, 0.03781549260020256, 0.031944677233695984, 0.05155019089579582, -0.11179322749376297, 0.005048817954957485, -0.021924013271927834, 0.014731870964169502, -0.00010501075303182006, 0.05754359811544418, -0.14213304221630096, -0.06737642735242844, -0.058122508227825165, -0.011842777021229267, -0.07073574513196945, 0.06075487658381462, 0.10930342972278595, 0.021082386374473572, 0.18127669394016266, -0.04938395321369171, 0.016890691593289375, -0.21883538365364075, -0.014894346706569195, -0.013687524013221264, -0.05808287113904953, -0.06893318891525269, -0.04656689614057541, 0.06177064776420593, -0.048953037708997726, 0.09280496835708618, -0.012839173898100853, 0.10841382294893265, 0.042254865169525146, 0.011908610351383686, 0.017527379095554352, -0.0118234409019351, 0.1638081818819046, 0.08048319071531296, -0.006821601651608944, 0.12333844602108002, -0.0018560132011771202, 0.06663920730352402, 0.02926694229245186, 0.09155648946762085, 0.12875467538833618, -0.05933723598718643, 0.08037208765745163, 0.054871153086423874, -0.06513306498527527, -0.16375184059143066, 0.06689812988042831, -0.027522187680006027, 0.11701495200395584, -0.02599320188164711, 0.09883548319339752, 0.10301516205072403, -0.17238076031208038, 0.059033364057540894, -0.043439775705337524, -0.09824863821268082, -0.10290127247571945, -0.10741869360208511, -0.08576306700706482, -0.1241767480969429, 0.005576684605330229, -0.13120262324810028, 0.03222338482737541, 0.075589619576931, -0.014134961180388927, -0.02781789004802704, 0.1527658998966217, -0.06780309230089188, -0.01864500530064106, 0.07093995809555054, -0.009928827174007893, -0.016726266592741013, -0.04812786728143692, -0.04601020738482475, 0.04339104890823364, 0.03046526201069355, 0.09678702056407928, -0.035909369587898254, 0.00945102795958519, 0.03435423597693443, -0.024302946403622627, -0.0973571389913559, 0.013930868357419968, 0.021192461252212524, 0.00881222914904356, 0.011324964463710785, 0.024120021611452103, 0.0026273636613041162, -0.04767556115984917, 0.26695024967193604, -0.06394614279270172, -0.03714193031191826, -0.13463094830513, 0.1502072960138321, 0.049684323370456696, -0.03502146527171135, 0.07972369343042374, -0.10572056472301483, -0.00815280806273222, 0.1524346023797989, 0.10340319573879242, -0.0338001549243927, -0.027555812150239944, -0.003932109568268061, -0.023369261994957924, -0.04449247568845749, 0.10097568482160568, 0.08867069333791733, -0.011454681865870953, -0.040282268077135086, 0.028105059638619423, -0.01237039640545845, -0.03960208222270012, -0.08029735833406448, 0.102127306163311, 0.012183740735054016, 0.010340387932956219, -0.022372199222445488, 0.055956147611141205, 0.023616712540388107, -0.1472478061914444, 0.026134124025702477, -0.146402969956398, -0.17550702393054962, -0.0256930161267519, 0.031705450266599655, 0.00536860479041934, 0.05930385738611221, 0.015342341735959053, -0.0033425132278352976, 0.133302241563797, -0.01436495129019022, -0.08059779554605484, -0.08648116886615753, 0.08773905038833618, -0.07239925861358643, 0.2110091894865036, 0.0083153760060668, 0.0669490322470665, 0.109374038875103, 0.0038826267700642347, -0.17143085598945618, 0.00949144084006548, 0.06251689046621323, -0.018590813502669334, 0.05546526238322258, 0.16788412630558014, -0.01354866474866867, 0.04653799906373024, 0.03382298722863197, -0.15136723220348358, -0.05866047739982605, -0.0653083398938179, 0.005492920987308025, -0.07677216827869415, -0.013658160343766212, -0.0643312856554985, 0.1632225662469864, 0.19954830408096313, -0.05869267135858536, -0.029872221872210503, -0.066815085709095, 0.04088956490159035, 0.06487955898046494, 0.08146999776363373, -0.007926618680357933, -0.19925661385059357, 0.006584334187209606, 0.002180317882448435, 0.018186919391155243, -0.2124805599451065, -0.10768933594226837, 0.04212712123990059, -0.062114790081977844, -0.05566179379820824, 0.1066041812300682, 0.04034971445798874, 0.012687531299889088, -0.034952402114868164, -0.05280733108520508, -0.0705915316939354, 0.14825130999088287, -0.1524062603712082, -0.049950011074543 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuned-sentiment-analysis-model This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 0.2868 - Accuracy: 0.909 - Precision: 0.8900 - Recall: 0.9283 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu111 - Datasets 1.17.0 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["imdb"], "metrics": ["accuracy", "precision", "recall"], "model-index": [{"name": "finetuned-sentiment-analysis-model", "results": [{"task": {"type": "text-classification", "name": "Text Classification"}, "dataset": {"name": "imdb", "type": "imdb", "args": "plain_text"}, "metrics": [{"type": "accuracy", "value": 0.909, "name": "Accuracy"}, {"type": "precision", "value": 0.8899803536345776, "name": "Precision"}, {"type": "recall", "value": 0.9282786885245902, "name": "Recall"}]}]}]}
text-classification
federicopascual/finetuned-sentiment-analysis-model
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:imdb", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #dataset-imdb #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us
# finetuned-sentiment-analysis-model This model is a fine-tuned version of distilbert-base-uncased on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 0.2868 - Accuracy: 0.909 - Precision: 0.8900 - Recall: 0.9283 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu111 - Datasets 1.17.0 - Tokenizers 0.10.3
[ "# finetuned-sentiment-analysis-model\n\nThis model is a fine-tuned version of distilbert-base-uncased on the imdb dataset.\nIt achieves the following results on the evaluation set:\n- Loss: 0.2868\n- Accuracy: 0.909\n- Precision: 0.8900\n- Recall: 0.9283", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 2e-05\n- train_batch_size: 16\n- eval_batch_size: 16\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 2", "### Training results", "### Framework versions\n\n- Transformers 4.15.0\n- Pytorch 1.10.0+cu111\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #dataset-imdb #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us \n", "# finetuned-sentiment-analysis-model\n\nThis model is a fine-tuned version of distilbert-base-uncased on the imdb dataset.\nIt achieves the following results on the evaluation set:\n- Loss: 0.2868\n- Accuracy: 0.909\n- Precision: 0.8900\n- Recall: 0.9283", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 2e-05\n- train_batch_size: 16\n- eval_batch_size: 16\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 2", "### Training results", "### Framework versions\n\n- Transformers 4.15.0\n- Pytorch 1.10.0+cu111\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ 67, 78, 6, 12, 8, 3, 90, 4, 33 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #dataset-imdb #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us \n# finetuned-sentiment-analysis-model\n\nThis model is a fine-tuned version of distilbert-base-uncased on the imdb dataset.\nIt achieves the following results on the evaluation set:\n- Loss: 0.2868\n- Accuracy: 0.909\n- Precision: 0.8900\n- Recall: 0.9283## Model description\n\nMore information needed## Intended uses & limitations\n\nMore information needed## Training and evaluation data\n\nMore information needed## Training procedure### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 2e-05\n- train_batch_size: 16\n- eval_batch_size: 16\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 2### Training results### Framework versions\n\n- Transformers 4.15.0\n- Pytorch 1.10.0+cu111\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ -0.1270783692598343, 0.170096755027771, -0.0030526837799698114, 0.0819387137889862, 0.14433085918426514, 0.03090442158281803, 0.06961461901664734, 0.16656768321990967, -0.08910830318927765, 0.1156148612499237, 0.07501570880413055, 0.07403549551963806, 0.07571476697921753, 0.15890194475650787, -0.03194378688931465, -0.23221154510974884, 0.020212478935718536, 0.0053267707116901875, -0.04135894402861595, 0.09380759298801422, 0.12398882210254669, -0.10411890596151352, 0.07296385616064072, 0.02843886986374855, -0.16959476470947266, 0.007505382411181927, -0.01770075038075447, -0.07303310930728912, 0.07569899410009384, 0.016982581466436386, 0.05973748117685318, -0.01430006604641676, 0.0811789259314537, -0.19378377497196198, -0.010819612070918083, 0.06650648266077042, 0.0492192842066288, 0.09692718088626862, 0.07301533967256546, 0.009052660316228867, 0.054774731397628784, -0.13119250535964966, 0.0781695768237114, 0.04443720728158951, -0.08061478286981583, -0.17818370461463928, -0.10276322811841965, 0.10851515084505081, 0.08595635741949081, 0.09846501052379608, -0.010500352829694748, 0.1422528475522995, -0.02999921515583992, 0.07321528345346451, 0.17177318036556244, -0.24344787001609802, -0.05881299450993538, 0.05026620253920555, 0.04633385315537453, 0.02694559469819069, -0.09853541105985641, -0.002821505069732666, 0.046652454882860184, 0.03281155228614807, 0.0764184445142746, 0.0016993626486510038, -0.06185462325811386, -0.017406722530722618, -0.11139100790023804, -0.07822749018669128, 0.2398522049188614, 0.056894369423389435, -0.0611775778234005, -0.1359664350748062, -0.05090047046542168, -0.1081463173031807, -0.050703778862953186, -0.05188547074794769, 0.03756108507514, -0.03574094548821449, -0.054878558963537216, -0.026802457869052887, -0.07823412865400314, -0.044734980911016464, 0.0076143150217831135, 0.07399642467498779, 0.04696996882557869, 0.023684639483690262, -0.03189476579427719, 0.09903907775878906, -0.017807308584451675, -0.13236628472805023, -0.05195845291018486, -0.008430765010416508, -0.05470503866672516, -0.0623159296810627, -0.03718121349811554, 0.006583737209439278, 0.010729100555181503, 0.17087779939174652, -0.04757805913686752, 0.0661253035068512, 0.02801193669438362, -0.0005326812388375401, -0.02503249980509281, 0.18875637650489807, -0.06178542971611023, -0.04462626576423645, 0.009783916175365448, 0.10127521306276321, -0.002405255800113082, -0.0030856525991111994, -0.06228937581181526, -0.022515764459967613, 0.14763765037059784, 0.0580466166138649, -0.00887045357376337, 0.035879965871572495, -0.05851665139198303, -0.03876623883843422, 0.028284229338169098, -0.13033869862556458, 0.03457647189497948, -0.017340177670121193, -0.11551358550786972, -0.00809472519904375, 0.036051079630851746, -0.010903513990342617, -0.05779469385743141, 0.027558941394090652, -0.09617448598146439, -0.0239561740309, -0.0737084224820137, -0.04553547501564026, 0.01745559088885784, -0.04345454275608063, -0.001880426425486803, -0.06751508265733719, -0.21558769047260284, -0.04866451397538185, 0.03262484446167946, -0.07393045723438263, -0.0735933855175972, -0.019104816019535065, -0.0728943794965744, 0.030625006183981895, -0.0004189092433080077, 0.10823755711317062, -0.023761341348290443, 0.07043902575969696, 0.042590219527482986, 0.035623129457235336, 0.06719736754894257, 0.06007557734847069, -0.093289315700531, 0.03788990154862404, -0.12204907089471817, 0.09783819317817688, -0.08319086581468582, 0.02641274593770504, -0.13352574408054352, -0.08365115523338318, 0.004665810149163008, -0.019236234948039055, 0.06798316538333893, 0.14447049796581268, -0.1549123227596283, -0.035867609083652496, 0.14489832520484924, -0.056041400879621506, -0.11038776487112045, 0.07800135016441345, -0.019176021218299866, 0.05392185598611832, 0.05292164906859398, 0.12827461957931519, 0.10551021248102188, -0.08763127774000168, -0.06733068823814392, 0.016751794144511223, 0.060877725481987, 0.019435619935393333, 0.0680282860994339, -0.027178727090358734, 0.042422566562891006, 0.04063868150115013, -0.04899156838655472, -0.0277670007199049, -0.08462349325418472, -0.07712860405445099, -0.06725252419710159, -0.06336072832345963, 0.024393662810325623, 0.02584235742688179, 0.050050973892211914, -0.05274414271116257, -0.11003991961479187, 0.10100950300693512, 0.14481677114963531, -0.037016142159700394, 0.00725196860730648, -0.0816580057144165, 0.07759832590818405, -0.0380609855055809, -0.01468872744590044, -0.22209659218788147, -0.09103178977966309, 0.05570060759782791, -0.08384256809949875, -0.0000689636217430234, -0.02184482105076313, 0.054896362125873566, 0.04288400709629059, -0.019356608390808105, -0.041335053741931915, -0.07322533428668976, -0.02601633220911026, -0.1008944883942604, -0.14787179231643677, -0.056280579417943954, -0.017102127894759178, 0.20906566083431244, -0.20580342411994934, 0.018118806183338165, -0.0020731224212795496, 0.15180853009223938, 0.002984517253935337, -0.07642923295497894, 0.011476188898086548, -0.0006459705764427781, -0.014517450705170631, -0.10554033517837524, 0.03452082350850105, 0.010762524791061878, -0.07135862857103348, -0.04804476723074913, -0.14113713800907135, 0.038974493741989136, 0.09231134504079819, 0.08194608241319656, -0.08357824385166168, -0.02143104560673237, -0.056806694716215134, -0.05047456547617912, -0.0610383115708828, -0.03248925134539604, 0.15461814403533936, 0.01710095815360546, 0.1271991729736328, -0.0666225403547287, -0.07751460373401642, 0.012657160870730877, -0.00709196925163269, -0.04114638268947601, 0.06738172471523285, 0.006258722394704819, -0.10338868200778961, 0.11222244799137115, 0.06240524351596832, -0.027595622465014458, 0.1314927041530609, -0.05834349989891052, -0.09481437504291534, -0.02837798185646534, 0.0011248759692534804, 0.001954426057636738, 0.10200177878141403, -0.09482462704181671, 0.006695298012346029, 0.06427650898694992, 0.012910070829093456, 0.03227023035287857, -0.1418197751045227, 0.025721244513988495, 0.03112597018480301, -0.0347694493830204, 0.021576661616563797, -0.0015809021424502134, 0.029009776189923286, 0.08619313687086105, 0.021900909021496773, 0.006644641514867544, 0.025970466434955597, -0.01170401182025671, -0.08333650976419449, 0.18849821388721466, -0.11632941663265228, -0.1881789267063141, -0.15443332493305206, 0.05344635993242264, -0.07955971360206604, -0.026813112199306488, 0.009987249039113522, -0.061393290758132935, -0.05758630856871605, -0.07057423889636993, -0.016465207561850548, -0.05364380031824112, -0.007680555805563927, 0.07390553504228592, -0.0018041478469967842, 0.1166287213563919, -0.13781607151031494, 0.00028771706274710596, -0.0065219528041779995, -0.07060588896274567, 0.002810702659189701, 0.03809470310807228, 0.09252546727657318, 0.08922620117664337, -0.004265605937689543, 0.030628805980086327, -0.01910656876862049, 0.251903772354126, -0.07576185464859009, -0.0018763324478641152, 0.16351863741874695, 0.032830897718667984, 0.06943906843662262, 0.1036466583609581, 0.021150508895516396, -0.0799500048160553, 0.012235935777425766, 0.05631478503346443, 0.005576827097684145, -0.2249288558959961, -0.03719425946474075, -0.02620069682598114, -0.046352386474609375, 0.12110530585050583, 0.04112519696354866, 0.05926255136728287, 0.07430174201726913, -0.03818686679005623, 0.07665785402059555, -0.0260075144469738, 0.0905749648809433, 0.11396609991788864, 0.04338744282722473, 0.1036611944437027, -0.020361771807074547, -0.004572811536490917, 0.06373867392539978, -0.0008698551682755351, 0.237117737531662, -0.020352425053715706, 0.13458049297332764, 0.028752105310559273, 0.14317554235458374, -0.030049871653318405, 0.05366956815123558, 0.009782388806343079, 0.011954862624406815, 0.013172389939427376, -0.0645953118801117, -0.0491844080388546, 0.018089797347784042, -0.0011647468199953437, 0.07633306086063385, -0.1094198152422905, 0.046217821538448334, 0.03074532002210617, 0.23691776394844055, 0.05065393075346947, -0.34012481570243835, -0.10304377973079681, 0.02070327289402485, -0.024473639205098152, -0.1156497523188591, -0.01351200696080923, 0.07145561277866364, -0.15941348671913147, 0.05640978738665581, -0.06810428947210312, 0.09278479218482971, -0.04201407730579376, -0.003903917735442519, 0.052843574434518814, 0.12225862592458725, 0.013455050997436047, 0.09818532317876816, -0.2077060341835022, 0.18646417558193207, 0.028748231008648872, 0.09338980913162231, -0.07009093463420868, 0.06772076338529587, 0.03420504927635193, 0.0489337295293808, 0.12543390691280365, -0.0013689410407096148, -0.05082927271723747, -0.1814391016960144, -0.10371813923120499, 0.010812239721417427, 0.09213879704475403, -0.07129604369401932, 0.09354591369628906, -0.0563260056078434, 0.0004961533704772592, 0.02797773852944374, -0.04111045226454735, -0.16037890315055847, -0.12755489349365234, 0.035789743065834045, 0.018964294344186783, 0.0081141646951437, -0.08881956338882446, -0.09175696223974228, -0.022948134690523148, 0.1674564778804779, -0.0210715401917696, -0.06519493460655212, -0.15766213834285736, 0.10786005109548569, 0.15645639598369598, -0.07873433083295822, 0.04494188353419304, -0.010922422632575035, 0.17101694643497467, 0.037815190851688385, -0.08328855782747269, 0.04021712392568588, -0.07855434715747833, -0.1693951040506363, -0.04163286089897156, 0.1265346109867096, 0.00583358108997345, 0.04169117659330368, 0.008722556754946709, 0.038420192897319794, -0.010183908976614475, -0.07980302721261978, 0.017111053690314293, 0.07726863771677017, 0.09634570777416229, 0.05718572810292244, -0.06152104213833809, -0.012482613325119019, -0.05912244692444801, 0.0022887892555445433, 0.11949711292982101, 0.19645501673221588, -0.08140864223241806, 0.02797267585992813, 0.03288738429546356, -0.07118814438581467, -0.175088569521904, 0.0442584864795208, 0.12412780523300171, 0.026307739317417145, 0.03927209600806236, -0.17706581950187683, 0.10407467186450958, 0.09869449585676193, -0.032162103801965714, 0.044489312916994095, -0.28848814964294434, -0.130428746342659, 0.09825844317674637, 0.0848354697227478, -0.005645320285111666, -0.13475678861141205, -0.06943599134683609, -0.025319069623947144, -0.10166867822408676, 0.07225753366947174, -0.030574118718504906, 0.09795258939266205, -0.02879532426595688, 0.089443638920784, 0.03625845909118652, -0.03986082226037979, 0.1634787768125534, 0.04274160414934158, 0.06950795650482178, -0.048392534255981445, 0.03311512619256973, 0.08596666157245636, -0.08712387830018997, 0.10466180741786957, -0.015103835612535477, 0.09113078564405441, -0.1899605542421341, -0.0008933509234338999, -0.06807611137628555, 0.07723722606897354, -0.06250133365392685, -0.04171208292245865, -0.036303285509347916, 0.04683467000722885, 0.03990870341658592, -0.03722001239657402, 0.04323329031467438, 0.04918866232037544, 0.06709139049053192, 0.1271636039018631, 0.045274123549461365, 0.02266174554824829, -0.1638433188199997, -0.009990937076508999, -0.003988169599324465, 0.05037224665284157, -0.11659268289804459, 0.02270231395959854, 0.1088605746626854, 0.03491046279668808, 0.1414904147386551, 0.029551362618803978, -0.08443589508533478, -0.013736768625676632, 0.040827151387929916, -0.1016950011253357, -0.12447473406791687, -0.03899994492530823, 0.0026238553691655397, -0.1688176989555359, -0.002438261639326811, 0.08545286953449249, -0.051949530839920044, -0.02096862904727459, -0.021782515570521355, 0.021001199260354042, 0.003379266243427992, 0.19654710590839386, 0.036847151815891266, 0.0786978006362915, -0.08374422043561935, 0.13218504190444946, 0.07718700915575027, -0.06633970886468887, 0.05083514750003815, 0.02686842530965805, -0.08397507667541504, -0.02154156193137169, 0.057815615087747574, 0.12238137423992157, -0.03250383958220482, -0.04718440771102905, -0.07765999436378479, -0.07941348105669022, 0.055413320660591125, 0.04187163710594177, 0.06152435392141342, 0.005773499608039856, -0.036143749952316284, 0.0017346451058983803, -0.13232925534248352, 0.11457812041044235, 0.0865442156791687, 0.0712999552488327, -0.15960559248924255, 0.09254951030015945, 0.004913884215056896, 0.03000720962882042, -0.00728164566680789, -0.002718553179875016, -0.0753767266869545, -0.03243859484791756, -0.09632398933172226, 0.0026229468639940023, -0.040846966207027435, -0.011277060024440289, -0.015655672177672386, -0.03433194011449814, -0.03275267034769058, 0.04813067242503166, -0.06423940509557724, -0.09443087875843048, 0.006045354064553976, 0.08382955193519592, -0.1401711255311966, -0.0022735705133527517, 0.02874939702451229, -0.10986239463090897, 0.09045662730932236, 0.08768466114997864, 0.05293406546115875, 0.01842336542904377, -0.020600905641913414, -0.009036273695528507, 0.03316657617688179, 0.03243076428771019, 0.06201161816716194, -0.11730904877185822, 0.012269027531147003, -0.03198762238025665, 0.01426196563988924, 0.006448523141443729, 0.035770077258348465, -0.14474794268608093, -0.05831507220864296, -0.05574345961213112, -0.01476556621491909, -0.0726812481880188, 0.05569712445139885, 0.11016277223825455, 0.027145111933350563, 0.16683949530124664, -0.061300601810216904, 0.01648777537047863, -0.22871822118759155, -0.009155405685305595, -0.023694150149822235, -0.050482701510190964, -0.06389768421649933, -0.03208925947546959, 0.08075958490371704, -0.04870879277586937, 0.0931483581662178, -0.007910839281976223, 0.09278993308544159, 0.03885580599308014, 0.008651809766888618, -0.016337784007191658, 0.0010077625047415495, 0.1599029153585434, 0.07239741832017899, -0.002301911124959588, 0.1031670793890953, 0.0033619648311287165, 0.07771404087543488, 0.03948506340384483, 0.12356624752283096, 0.14522825181484222, -0.05791010335087776, 0.09261146187782288, 0.05533505603671074, -0.09176386892795563, -0.15724168717861176, 0.0734696313738823, -0.04871353507041931, 0.11311633139848709, -0.03475816547870636, 0.09735188633203506, 0.10599575191736221, -0.18224915862083435, 0.06137888506054878, -0.06619945168495178, -0.09874913841485977, -0.10099055618047714, -0.06962026655673981, -0.0868711769580841, -0.10092253983020782, 0.009660583920776844, -0.13327139616012573, 0.03348371386528015, 0.08645276725292206, -0.0020116306841373444, -0.017174916341900826, 0.14938604831695557, -0.06489231437444687, -0.018710456788539886, 0.06865644454956055, 0.008738851174712181, -0.01959953084588051, -0.05435984209179878, -0.04484948143362999, 0.036189790815114975, 0.040762029588222504, 0.10754486918449402, -0.040889922529459, 0.01229127123951912, 0.04793374240398407, -0.01718900352716446, -0.09369346499443054, 0.009570296853780746, 0.00374619010835886, 0.011394968256354332, 0.005553454626351595, 0.03824378177523613, 0.013429660350084305, -0.04798297584056854, 0.2829655706882477, -0.07763570547103882, -0.05182206258177757, -0.15185272693634033, 0.1642698496580124, 0.04913260042667389, -0.028454506769776344, 0.07198483496904373, -0.12166080623865128, -0.014467056840658188, 0.16225691139698029, 0.10367576032876968, -0.030644597485661507, -0.035523951053619385, -0.001515102107077837, -0.0263461135327816, -0.058035288006067276, 0.09136735647916794, 0.09496854990720749, 0.015199221670627594, -0.047262635082006454, 0.03886410593986511, -0.005804550368338823, -0.059163156896829605, -0.07095497846603394, 0.11897477507591248, 0.007793270517140627, 0.01151123084127903, -0.024616213515400887, 0.06687034666538239, 0.0038248745258897543, -0.1584414690732956, 0.030945371836423874, -0.144521564245224, -0.1855345517396927, -0.02857438288629055, 0.0503729023039341, 0.0016425240319222212, 0.067967489361763, 0.007849509827792645, 0.00396882276982069, 0.13826435804367065, -0.0070071532391011715, -0.07987892627716064, -0.10549989342689514, 0.08216553181409836, -0.03488989546895027, 0.24289259314537048, 0.003398394212126732, 0.06442822515964508, 0.11264173686504364, 0.004849390126764774, -0.16412845253944397, 0.0014402623055502772, 0.06446629762649536, -0.028768928721547127, 0.05852235481142998, 0.17024792730808258, -0.020184513181447983, 0.054615121334791183, 0.0423574298620224, -0.1457698494195938, -0.04333506524562836, -0.05237597972154617, -0.001307385740801692, -0.10031633824110031, 0.007257187273353338, -0.05377275124192238, 0.15581126511096954, 0.21175777912139893, -0.05531333386898041, -0.02123059518635273, -0.07334964722394943, 0.0373014435172081, 0.049571335315704346, 0.09398358315229416, -0.012071345932781696, -0.1978711485862732, 0.028514565899968147, -0.025908492505550385, 0.017529983073472977, -0.2329893410205841, -0.08904089033603668, 0.056028321385383606, -0.06892667710781097, -0.051783882081508636, 0.1183767095208168, 0.05605003237724304, 0.02161254547536373, -0.03783527761697769, -0.0433097667992115, -0.05845728889107704, 0.1450357437133789, -0.14376194775104523, -0.05645888298749924 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuning-sentiment-analysis-model-3000-samples This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 0.3130 - Accuracy: 0.8733 - F1: 0.8812 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu111 - Datasets 1.17.0 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["imdb"], "metrics": ["accuracy", "f1"], "model-index": [{"name": "finetuning-sentiment-analysis-model-3000-samples", "results": [{"task": {"type": "text-classification", "name": "Text Classification"}, "dataset": {"name": "imdb", "type": "imdb", "args": "plain_text"}, "metrics": [{"type": "accuracy", "value": 0.8733333333333333, "name": "Accuracy"}, {"type": "f1", "value": 0.88125, "name": "F1"}]}]}]}
text-classification
federicopascual/finetuning-sentiment-analysis-model-3000-samples
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:imdb", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #dataset-imdb #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us
# finetuning-sentiment-analysis-model-3000-samples This model is a fine-tuned version of distilbert-base-uncased on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 0.3130 - Accuracy: 0.8733 - F1: 0.8812 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu111 - Datasets 1.17.0 - Tokenizers 0.10.3
[ "# finetuning-sentiment-analysis-model-3000-samples\n\nThis model is a fine-tuned version of distilbert-base-uncased on the imdb dataset.\nIt achieves the following results on the evaluation set:\n- Loss: 0.3130\n- Accuracy: 0.8733\n- F1: 0.8812", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 2e-05\n- train_batch_size: 16\n- eval_batch_size: 16\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 2", "### Training results", "### Framework versions\n\n- Transformers 4.15.0\n- Pytorch 1.10.0+cu111\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #dataset-imdb #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us \n", "# finetuning-sentiment-analysis-model-3000-samples\n\nThis model is a fine-tuned version of distilbert-base-uncased on the imdb dataset.\nIt achieves the following results on the evaluation set:\n- Loss: 0.3130\n- Accuracy: 0.8733\n- F1: 0.8812", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 2e-05\n- train_batch_size: 16\n- eval_batch_size: 16\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 2", "### Training results", "### Framework versions\n\n- Transformers 4.15.0\n- Pytorch 1.10.0+cu111\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ 67, 76, 6, 12, 8, 3, 90, 4, 33 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #dataset-imdb #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us \n# finetuning-sentiment-analysis-model-3000-samples\n\nThis model is a fine-tuned version of distilbert-base-uncased on the imdb dataset.\nIt achieves the following results on the evaluation set:\n- Loss: 0.3130\n- Accuracy: 0.8733\n- F1: 0.8812## Model description\n\nMore information needed## Intended uses & limitations\n\nMore information needed## Training and evaluation data\n\nMore information needed## Training procedure### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 2e-05\n- train_batch_size: 16\n- eval_batch_size: 16\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 2### Training results### Framework versions\n\n- Transformers 4.15.0\n- Pytorch 1.10.0+cu111\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ -0.1287984997034073, 0.17650039494037628, -0.0028625763952732086, 0.0771234929561615, 0.1348087638616562, 0.02653486095368862, 0.0715121403336525, 0.15989157557487488, -0.10150086134672165, 0.10070181638002396, 0.08385781198740005, 0.07272189855575562, 0.06962540000677109, 0.15756991505622864, -0.028043558821082115, -0.25322455167770386, 0.02217739261686802, 0.013949754647910595, -0.08133984357118607, 0.09776145219802856, 0.1350569725036621, -0.08589690923690796, 0.07652560621500015, 0.041659433394670486, -0.17392687499523163, 0.0011843520915135741, -0.017021873965859413, -0.0781206414103508, 0.07013756036758423, 0.027828065678477287, 0.04034733772277832, -0.0027810290921479464, 0.07917917519807816, -0.18165548145771027, -0.010114466771483421, 0.062472689896821976, 0.04756156727671623, 0.10934101790189743, 0.0675637498497963, 0.02458919584751129, 0.08810913562774658, -0.13162492215633392, 0.07667529582977295, 0.046886783093214035, -0.07624167948961258, -0.20368219912052155, -0.10062170028686523, 0.11340036988258362, 0.07351921498775482, 0.10111386328935623, 0.0026167628820985556, 0.14784908294677734, -0.016761429607868195, 0.07083257287740707, 0.179881289601326, -0.2457214593887329, -0.06387729942798615, 0.02834976278245449, 0.04289770871400833, 0.044706329703330994, -0.10189946740865707, -0.004317028913646936, 0.05470805987715721, 0.034509189426898956, 0.09799171984195709, -0.007201498840004206, -0.025035396218299866, -0.03715192526578903, -0.1138552725315094, -0.07881319522857666, 0.24567417800426483, 0.0643346905708313, -0.07387066632509232, -0.1391211599111557, -0.03808211907744408, -0.10159078240394592, -0.03508610650897026, -0.04853583872318268, 0.029930440708994865, -0.03768470138311386, -0.040847230702638626, -0.05375691503286362, -0.0757175013422966, -0.045141879469156265, 0.02405858226120472, 0.11840257793664932, 0.04275446757674217, 0.027002835646271706, -0.018688201904296875, 0.08976826816797256, -0.03443889692425728, -0.15419018268585205, -0.05955454707145691, -0.016686055809259415, -0.03533671051263809, -0.04937651753425598, -0.044087108224630356, 0.02480759285390377, 0.009303266182541847, 0.16375145316123962, -0.08476805686950684, 0.0652121976017952, 0.03833627700805664, -0.006284784059971571, -0.014344293624162674, 0.17537279427051544, -0.04148973152041435, -0.03241646662354469, 0.01439922396093607, 0.10289042443037033, 0.011129014194011688, -0.003620209638029337, -0.06818382441997528, -0.03362206369638443, 0.11812000721693039, 0.055252671241760254, -0.008824738673865795, 0.030506357550621033, -0.05077619478106499, -0.048878997564315796, 0.06757407635450363, -0.1332215815782547, 0.028356395661830902, -0.028588445857167244, -0.09835804253816605, -0.021962592378258705, 0.03525583818554878, -0.009794695302844048, -0.05626325681805611, 0.019128764048218727, -0.0897468626499176, -0.023565365001559258, -0.05894029885530472, -0.0354100726544857, 0.014199919998645782, -0.04466567933559418, 0.008351589553058147, -0.07358890771865845, -0.18256117403507233, -0.03621605038642883, 0.02336021140217781, -0.06820125877857208, -0.1045880913734436, 0.012432191520929337, -0.06991492211818695, 0.026197537779808044, -0.005287636071443558, 0.09903164207935333, -0.018703239038586617, 0.06706210225820541, 0.06600699573755264, 0.026214033365249634, 0.03894622251391411, 0.055238254368305206, -0.09015627950429916, 0.04409890994429588, -0.11724013090133667, 0.10507847368717194, -0.08895648270845413, 0.035335373133420944, -0.12818174064159393, -0.10482622683048248, -0.00836796686053276, -0.03253726661205292, 0.07238946855068207, 0.14232492446899414, -0.11050107330083847, -0.03848796710371971, 0.12153280526399612, -0.06608746945858002, -0.12523368000984192, 0.07049395143985748, -0.007436443120241165, 0.031291376799345016, 0.04400700330734253, 0.1229400783777237, 0.1433434784412384, -0.08001215755939484, -0.05670586973428726, 0.042988330125808716, 0.07473402470350266, 0.010990186594426632, 0.09054888784885406, -0.02511434257030487, 0.02187291905283928, 0.0410243421792984, -0.06424417346715927, -0.017734570428729057, -0.07611866295337677, -0.08362317085266113, -0.07635797560214996, -0.07005484402179718, 0.02739044465124607, 0.03589097037911415, 0.03666483238339424, -0.05263671278953552, -0.10864503681659698, 0.07488943636417389, 0.15353500843048096, -0.03181130811572075, 0.011307003907859325, -0.06734418869018555, 0.06979721784591675, -0.04791201651096344, -0.013411613181233406, -0.22855821251869202, -0.09725993871688843, 0.06049966812133789, -0.08584954589605331, 0.01497322041541338, -0.036505259573459625, 0.0487373061478138, 0.05369367077946663, -0.027995670214295387, -0.03596622124314308, -0.08775229007005692, -0.028741754591464996, -0.09078522026538849, -0.14647139608860016, -0.0702475979924202, -0.020519420504570007, 0.19913500547409058, -0.20475579798221588, 0.018645884469151497, 0.014887848868966103, 0.13893261551856995, 0.0013628682354465127, -0.06769992411136627, 0.017196988686919212, -0.0036854639183729887, -0.019056376069784164, -0.11094221472740173, 0.027103649452328682, 0.025756636634469032, -0.08547963947057724, -0.044086676090955734, -0.12493700534105301, 0.06808479875326157, 0.08433005958795547, 0.08506083488464355, -0.07613065093755722, -0.024282487109303474, -0.07000412791967392, -0.04167706146836281, -0.059366319328546524, -0.020279353484511375, 0.1472584307193756, 0.006752927787601948, 0.1259244978427887, -0.07833252102136612, -0.07174605131149292, 0.028388014063239098, -0.009827805683016777, -0.047693487256765366, 0.05792635306715965, -0.004048813600093126, -0.11903101205825806, 0.1117522343993187, 0.0816909596323967, -0.018250271677970886, 0.12063603848218918, -0.0736081451177597, -0.09142701327800751, -0.033683083951473236, 0.01096810307353735, 0.007124944590032101, 0.09753461927175522, -0.09781019389629364, 0.010944581590592861, 0.06764975935220718, 0.012642592191696167, 0.032982468605041504, -0.1345730423927307, 0.02620101533830166, 0.03889000415802002, -0.03437770530581474, 0.026668721809983253, 0.0041983770206570625, 0.013105743564665318, 0.08420836180448532, 0.034150563180446625, 0.013966541737318039, 0.03520140051841736, -0.007929871790111065, -0.08170721679925919, 0.18435533344745636, -0.11704248189926147, -0.19201259315013885, -0.16327759623527527, 0.06400924921035767, -0.08954194188117981, -0.02214408479630947, 0.006579817738384008, -0.05084070563316345, -0.061071231961250305, -0.06490442901849747, -0.023832201957702637, -0.05911099165678024, -0.0009869454661384225, 0.08990377187728882, 0.002258527325466275, 0.1314907670021057, -0.1250581294298172, -0.0027965970803052187, 0.012760388664901257, -0.0640651062130928, -0.0253691915422678, 0.030326053500175476, 0.10032209753990173, 0.08148782700300217, -0.008970290422439575, 0.03131721541285515, -0.018094604834914207, 0.2747700810432434, -0.08571917563676834, -0.00903280358761549, 0.1700119525194168, 0.03410936892032623, 0.07452327013015747, 0.0930708721280098, 0.026115521788597107, -0.0767102912068367, 0.017194435000419617, 0.03297899290919304, -0.006190081592649221, -0.222972571849823, -0.04038655012845993, -0.03592247888445854, -0.05668811500072479, 0.12163569778203964, 0.053500864654779434, 0.08107531815767288, 0.0863671824336052, -0.04930547624826431, 0.0789370909333229, -0.020300785079598427, 0.10516621917486191, 0.1281997114419937, 0.05155396834015846, 0.10010799765586853, -0.031604014337062836, -0.0048774355091154575, 0.07841110229492188, -0.012091152369976044, 0.23135805130004883, -0.025268886238336563, 0.16744272410869598, 0.021025096997618675, 0.16546763479709625, -0.022654736414551735, 0.054581452161073685, 0.011502181179821491, 0.012747489847242832, 0.01938582770526409, -0.07150831073522568, -0.054213669151067734, 0.012729388661682606, -0.01755480282008648, 0.08345462381839752, -0.10666051506996155, 0.044781703501939774, 0.010576753877103329, 0.23969392478466034, 0.03973253816366196, -0.3257737457752228, -0.10574302822351456, 0.014642034657299519, -0.02028164081275463, -0.11859279125928879, -0.011778146028518677, 0.07095678150653839, -0.1580471694469452, 0.0826665386557579, -0.06050793081521988, 0.09339325875043869, -0.028682144358754158, -0.0031367396004498005, 0.06657880544662476, 0.11028570681810379, 0.01585317589342594, 0.10540156811475754, -0.21226948499679565, 0.174493670463562, 0.020001616328954697, 0.08121564984321594, -0.07491688430309296, 0.0753118172287941, 0.02602115273475647, 0.08926437050104141, 0.11886615306138992, -0.001959599554538727, -0.04180435836315155, -0.16680306196212769, -0.09444939345121384, 0.005992478225380182, 0.0988779217004776, -0.07922865450382233, 0.0809139832854271, -0.061173439025878906, 0.0040385485626757145, 0.021443968638777733, -0.03919396921992302, -0.15147636830806732, -0.14638306200504303, 0.04415574297308922, 0.01921331323683262, 0.0017126629827544093, -0.09037593007087708, -0.09577567875385284, -0.00425230897963047, 0.17149348556995392, -0.004485365003347397, -0.08414091914892197, -0.17354470491409302, 0.10587593168020248, 0.15077456831932068, -0.083489328622818, 0.03817359358072281, -0.02304271049797535, 0.1835382878780365, 0.04408753290772438, -0.0905395969748497, 0.02335946261882782, -0.07410486042499542, -0.1769455075263977, -0.013250894844532013, 0.15015946328639984, -0.003102886490523815, 0.045063696801662445, 0.0034896170254796743, 0.0320938378572464, 0.001051996136084199, -0.09135200828313828, -0.004806539509445429, 0.05737587809562683, 0.09545896202325821, 0.04279410094022751, -0.047455210238695145, 0.028853990137577057, -0.05164134502410889, -0.0020411615259945393, 0.1119367927312851, 0.1919826716184616, -0.08991634845733643, 0.03340096399188042, 0.03165244311094284, -0.0696973130106926, -0.16636021435260773, 0.02922271378338337, 0.13675686717033386, 0.024563973769545555, 0.05282693728804588, -0.17968349158763885, 0.10447162389755249, 0.09294003248214722, -0.03873108699917793, 0.043402403593063354, -0.26414480805397034, -0.12576057016849518, 0.08373097330331802, 0.08594606071710587, -0.021127311512827873, -0.14332234859466553, -0.07694726437330246, -0.033102381974458694, -0.11269745230674744, 0.08799292147159576, -0.020215878263115883, 0.09421153366565704, -0.025830630213022232, 0.06703399121761322, 0.04152116924524307, -0.022183343768119812, 0.18032389879226685, 0.03338303416967392, 0.0564497709274292, -0.057612527161836624, 0.04152549430727959, 0.09501831233501434, -0.07776934653520584, 0.11106394231319427, -0.03195693716406822, 0.09635347872972488, -0.1808571219444275, -0.010883353650569916, -0.06979652494192123, 0.0731680691242218, -0.06777527183294296, -0.04203415289521217, -0.04226307570934296, 0.04381247237324715, 0.037682775408029556, -0.037692829966545105, 0.09320151060819626, 0.05602775141596794, 0.07301051914691925, 0.15209686756134033, 0.07875765860080719, 0.019512619823217392, -0.16085100173950195, -0.01923336833715439, -0.010710637085139751, 0.05190765857696533, -0.13280487060546875, 0.02297084964811802, 0.10012384504079819, 0.04159275442361832, 0.12121222913265228, 0.019444886595010757, -0.07608900219202042, -0.02565259113907814, 0.04462658241391182, -0.09643606096506119, -0.14796887338161469, -0.06933476775884628, 0.008557148277759552, -0.17934946715831757, 0.011177069507539272, 0.08826687186956406, -0.0607214979827404, -0.022156234830617905, -0.01713920570909977, 0.009277884848415852, -0.006599648855626583, 0.18686459958553314, 0.054237574338912964, 0.07985494285821915, -0.09056856483221054, 0.1287815123796463, 0.07925121486186981, -0.04830923676490784, 0.042268455028533936, 0.04789001867175102, -0.0894569680094719, -0.019925907254219055, 0.056375421583652496, 0.08922941982746124, -0.035363730043172836, -0.0589156411588192, -0.06637629866600037, -0.08614328503608704, 0.05231295898556709, 0.0341331921517849, 0.07264727354049683, 0.0025660728570073843, -0.02770804800093174, -0.0004271354991942644, -0.14066965878009796, 0.11502893269062042, 0.05513646826148033, 0.07031429558992386, -0.17962665855884552, 0.056669097393751144, 0.0070403930731117725, 0.06615686416625977, -0.01328952331095934, -0.012005762197077274, -0.06268268823623657, -0.04528172314167023, -0.09440913051366806, 0.0037959166802465916, -0.04371622949838638, -0.003770112991333008, -0.023994848132133484, -0.0483643114566803, -0.03374304994940758, 0.06421365588903427, -0.05460670217871666, -0.09772235155105591, 0.0005651487736031413, 0.06616583466529846, -0.12407384067773819, 0.004335694946348667, 0.026516858488321304, -0.11116840690374374, 0.09109961241483688, 0.0703195333480835, 0.04898228496313095, 0.015169253572821617, 0.030774474143981934, 0.0003685743431560695, 0.037030890583992004, 0.03473268076777458, 0.05697609856724739, -0.11801061779260635, 0.007983013056218624, -0.02256016992032528, 0.014787967316806316, 0.00012540425814222544, 0.04042671620845795, -0.142361581325531, -0.05896095186471939, -0.050589051097631454, -0.013541803695261478, -0.06957142055034637, 0.06034475937485695, 0.10764598846435547, 0.021180760115385056, 0.16751691699028015, -0.0473005510866642, 0.017843443900346756, -0.22914771735668182, -0.014224731363356113, -0.02701600268483162, -0.05440602824091911, -0.0672515407204628, -0.026337316259741783, 0.06919728964567184, -0.03826776519417763, 0.09066414088010788, -0.014866948127746582, 0.1073230430483818, 0.04482019692659378, 0.01265926007181406, 0.02102985978126526, -0.0028413075488060713, 0.17409861087799072, 0.08205276727676392, -0.007719759829342365, 0.11921171098947525, 0.0005338879418559372, 0.06548776477575302, 0.0310886912047863, 0.11134705692529678, 0.12798471748828888, -0.050328582525253296, 0.07489582151174545, 0.06398741155862808, -0.07761964201927185, -0.14943520724773407, 0.05975789204239845, -0.027371924370527267, 0.10541726648807526, -0.02925092913210392, 0.09866541624069214, 0.10962139815092087, -0.1848665028810501, 0.06328120827674866, -0.0500725694000721, -0.09654095023870468, -0.10795505344867706, -0.09656216204166412, -0.07839763909578323, -0.11999915540218353, 0.004912372212857008, -0.1386626958847046, 0.023349305614829063, 0.08797156810760498, -0.009149263612926006, -0.024877751246094704, 0.16137947142124176, -0.06059243157505989, -0.022452952340245247, 0.07628272473812103, 0.0012517442228272557, -0.006437603384256363, -0.047435592859983444, -0.03806886449456215, 0.04389185458421707, 0.03188164159655571, 0.10080397874116898, -0.041784632951021194, -0.0018349356250837445, 0.04147540405392647, -0.014672123827040195, -0.09189189225435257, 0.014583069831132889, 0.004895790945738554, 0.011506350710988045, 0.015985894948244095, 0.023788711056113243, 0.012243842706084251, -0.051109977066516876, 0.27052125334739685, -0.06791584193706512, -0.05209304764866829, -0.1464902013540268, 0.1490422487258911, 0.04729076474905014, -0.041294656693935394, 0.08714674413204193, -0.11552684009075165, -0.02368815243244171, 0.1506369560956955, 0.10150891542434692, -0.02146238274872303, -0.02861202135682106, 0.00023323053028434515, -0.02468576468527317, -0.0559999942779541, 0.1018783450126648, 0.09578849375247955, 0.020117375999689102, -0.04110746085643768, 0.02955053001642227, -0.005942649208009243, -0.04225686565041542, -0.08013031631708145, 0.1087358146905899, 0.0077374218963086605, 0.009988510981202126, -0.01980726793408394, 0.060123857110738754, 0.023589426651597023, -0.14387144148349762, 0.024339215829968452, -0.14743681252002716, -0.18338434398174286, -0.030951444059610367, 0.036393843591213226, 0.005790438503026962, 0.056571006774902344, 0.01860458217561245, 0.004242892377078533, 0.14072059094905853, -0.009481706656515598, -0.077309250831604, -0.09735515713691711, 0.09912986308336258, -0.06276323646306992, 0.22124804556369781, 0.0024288420099765062, 0.06612378358840942, 0.10597328096628189, -0.0024895810056477785, -0.18119236826896667, -0.0008956548990681767, 0.06945151090621948, -0.020183837041258812, 0.04927681013941765, 0.1721046268939972, -0.015081155113875866, 0.0369744673371315, 0.035454146564006805, -0.14385762810707092, -0.05988100916147232, -0.05788576602935791, 0.010890553705394268, -0.08944469690322876, 0.00045295216841623187, -0.06493042409420013, 0.1546667069196701, 0.2030397653579712, -0.06330668181180954, -0.03351042419672012, -0.06862574070692062, 0.04314612224698067, 0.06160518527030945, 0.097832590341568, -0.00224286993034184, -0.20076267421245575, 0.008050386793911457, -0.015531172975897789, 0.011335983872413635, -0.2181105613708496, -0.09517190605401993, 0.05349064990878105, -0.07030011713504791, -0.05334519222378731, 0.10752646625041962, 0.043428581207990646, 0.015465871430933475, -0.03450409322977066, -0.04882777854800224, -0.07130300998687744, 0.14431051909923553, -0.15617313981056213, -0.04405606538057327 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuning-sentiment-model-3000-samples-testcopy This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 0.3374 - Accuracy: 0.87 - F1: 0.8762 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu111 - Datasets 1.17.0 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["imdb"], "metrics": ["accuracy", "f1"], "model-index": [{"name": "finetuning-sentiment-model-3000-samples-testcopy", "results": [{"task": {"type": "text-classification", "name": "Text Classification"}, "dataset": {"name": "imdb", "type": "imdb", "args": "plain_text"}, "metrics": [{"type": "accuracy", "value": 0.87, "name": "Accuracy"}, {"type": "f1", "value": 0.8761904761904761, "name": "F1"}]}]}]}
text-classification
federicopascual/finetuning-sentiment-model-3000-samples-testcopy
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:imdb", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #dataset-imdb #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us
# finetuning-sentiment-model-3000-samples-testcopy This model is a fine-tuned version of distilbert-base-uncased on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 0.3374 - Accuracy: 0.87 - F1: 0.8762 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu111 - Datasets 1.17.0 - Tokenizers 0.10.3
[ "# finetuning-sentiment-model-3000-samples-testcopy\n\nThis model is a fine-tuned version of distilbert-base-uncased on the imdb dataset.\nIt achieves the following results on the evaluation set:\n- Loss: 0.3374\n- Accuracy: 0.87\n- F1: 0.8762", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 2e-05\n- train_batch_size: 16\n- eval_batch_size: 16\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 2", "### Training results", "### Framework versions\n\n- Transformers 4.15.0\n- Pytorch 1.10.0+cu111\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #dataset-imdb #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us \n", "# finetuning-sentiment-model-3000-samples-testcopy\n\nThis model is a fine-tuned version of distilbert-base-uncased on the imdb dataset.\nIt achieves the following results on the evaluation set:\n- Loss: 0.3374\n- Accuracy: 0.87\n- F1: 0.8762", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 2e-05\n- train_batch_size: 16\n- eval_batch_size: 16\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 2", "### Training results", "### Framework versions\n\n- Transformers 4.15.0\n- Pytorch 1.10.0+cu111\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ 67, 74, 6, 12, 8, 3, 90, 4, 33 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #dataset-imdb #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us \n# finetuning-sentiment-model-3000-samples-testcopy\n\nThis model is a fine-tuned version of distilbert-base-uncased on the imdb dataset.\nIt achieves the following results on the evaluation set:\n- Loss: 0.3374\n- Accuracy: 0.87\n- F1: 0.8762## Model description\n\nMore information needed## Intended uses & limitations\n\nMore information needed## Training and evaluation data\n\nMore information needed## Training procedure### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 2e-05\n- train_batch_size: 16\n- eval_batch_size: 16\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 2### Training results### Framework versions\n\n- Transformers 4.15.0\n- Pytorch 1.10.0+cu111\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ -0.11613300442695618, 0.1712411791086197, -0.002962801605463028, 0.07953286170959473, 0.13667462766170502, 0.02600974217057228, 0.08193976432085037, 0.15857943892478943, -0.08851674944162369, 0.08926171809434891, 0.09504853934049606, 0.08200325071811676, 0.06128288432955742, 0.14356860518455505, -0.037074144929647446, -0.24760614335536957, 0.03176449239253998, 0.008277587592601776, -0.06562089920043945, 0.10475248843431473, 0.1297975778579712, -0.07828105241060257, 0.08777596801519394, 0.047143448144197464, -0.17269940674304962, -0.000038576639781240374, -0.009491443634033203, -0.07125019282102585, 0.07540078461170197, 0.029277410358190536, 0.04161490127444267, 0.003006999148055911, 0.07456156611442566, -0.18633227050304413, -0.008445101790130138, 0.05703457444906235, 0.0402958020567894, 0.10602977871894836, 0.054637473076581955, 0.033336181193590164, 0.09058075398206711, -0.12020035088062286, 0.08283115923404694, 0.046874552965164185, -0.08133040368556976, -0.17938998341560364, -0.09611596167087555, 0.11376035958528519, 0.07200486212968826, 0.098477803170681, 0.0051893251948058605, 0.16561990976333618, -0.007022080942988396, 0.07883831113576889, 0.17515850067138672, -0.2770093083381653, -0.0598892942070961, 0.04055660963058472, 0.0656939148902893, 0.055501583963632584, -0.0988212451338768, 0.001310317893512547, 0.04468698427081108, 0.02924734354019165, 0.09489927440881729, -0.015875492244958878, 0.008119898848235607, -0.0471077486872673, -0.1200738251209259, -0.08392231166362762, 0.23649725317955017, 0.07085172086954117, -0.07984814792871475, -0.13796736299991608, -0.04494905099272728, -0.102249376475811, -0.033141255378723145, -0.06109106168150902, 0.03199775889515877, -0.027210162952542305, -0.03229809179902077, -0.0663478747010231, -0.06919846683740616, -0.04276587814092636, 0.02928743325173855, 0.11633222550153732, 0.04208175465464592, 0.025688588619232178, -0.013523572124540806, 0.08396362513303757, -0.04167114198207855, -0.14808019995689392, -0.06111287698149681, -0.01727326586842537, -0.03684943914413452, -0.05764540657401085, -0.04563319683074951, -0.0020891844760626554, 0.008081328123807907, 0.16844408214092255, -0.05875258892774582, 0.06986739486455917, 0.02929988130927086, -0.004877541679888964, -0.021708421409130096, 0.18381507694721222, -0.03209917992353439, -0.024687757715582848, 0.017152929678559303, 0.10333295166492462, 0.008688820526003838, -0.00624119071289897, -0.07743974030017853, -0.030350985005497932, 0.13213317096233368, 0.05389682948589325, -0.011429150588810444, 0.03900730982422829, -0.05336279422044754, -0.053208962082862854, 0.07461497187614441, -0.1237710639834404, 0.029983365908265114, -0.03534502536058426, -0.08516643196344376, -0.037090372294187546, 0.03548923134803772, -0.0073984223417937756, -0.05300292745232582, 0.007417184766381979, -0.09358424693346024, -0.016759809106588364, -0.05096058547496796, -0.03782657906413078, 0.0016299817943945527, -0.050085488706827164, 0.011303512379527092, -0.08018110692501068, -0.17614462971687317, -0.04053983464837074, 0.0295429490506649, -0.06512563675642014, -0.09851124882698059, 0.01084295567125082, -0.06982550770044327, 0.030899569392204285, -0.005804293788969517, 0.06935726851224899, -0.020420538261532784, 0.0642961710691452, 0.059509921818971634, 0.015344865620136261, 0.03703302517533302, 0.05250764638185501, -0.09280270338058472, 0.050257544964551926, -0.11756924539804459, 0.10248388350009918, -0.08660973608493805, 0.0328725203871727, -0.13605262339115143, -0.10576041042804718, 0.006885205861181021, -0.0350443534553051, 0.07130751758813858, 0.13635390996932983, -0.09850548207759857, -0.023827817291021347, 0.12078450620174408, -0.0694846659898758, -0.12271618098020554, 0.08127443492412567, -0.013257444836199284, 0.0444723442196846, 0.04576417803764343, 0.14146140217781067, 0.13296747207641602, -0.09484051167964935, -0.04221484065055847, 0.04089832305908203, 0.05530404672026634, 0.015293964184820652, 0.08963442593812943, -0.01583814062178135, 0.019842414185404778, 0.029918747022747993, -0.06345140188932419, -0.024212677031755447, -0.07378203421831131, -0.08166656643152237, -0.07824680954217911, -0.06311675906181335, 0.033521346747875214, 0.027447540313005447, 0.03681646287441254, -0.05545427277684212, -0.11523221433162689, 0.08345019072294235, 0.14423692226409912, -0.03760511055588722, 0.012731257826089859, -0.0821930468082428, 0.07634937018156052, -0.05962071195244789, -0.017074793577194214, -0.22192880511283875, -0.08950770646333694, 0.06675317883491516, -0.08644358068704605, 0.028389448300004005, -0.01066279225051403, 0.04846326261758804, 0.05453656613826752, -0.02350577525794506, -0.0419798269867897, -0.08751510828733444, -0.01789802499115467, -0.10345298796892166, -0.1370466947555542, -0.06704746931791306, -0.019322538748383522, 0.1814582496881485, -0.2165265828371048, 0.018225187435746193, 0.01337165106087923, 0.12581199407577515, 0.005847776774317026, -0.06570703536272049, 0.01834837719798088, -0.008477076888084412, -0.017085634171962738, -0.11195190250873566, 0.03567282110452652, 0.03091549314558506, -0.09596636146306992, -0.04038623347878456, -0.13242347538471222, 0.0877726748585701, 0.0755629763007164, 0.0750899538397789, -0.07976201176643372, -0.011567376554012299, -0.05875258520245552, -0.04343423247337341, -0.04145878180861473, -0.02020678110420704, 0.17046517133712769, 0.007698887959122658, 0.1366698294878006, -0.07675507664680481, -0.05908840894699097, 0.02925422415137291, -0.018477266654372215, -0.048131249845027924, 0.05609859153628349, -0.02018231339752674, -0.16029484570026398, 0.10068468749523163, 0.09573769569396973, -0.00873007345944643, 0.10782325267791748, -0.06613689661026001, -0.08105768263339996, -0.04256458953022957, 0.015022077597677708, 0.0050944131799042225, 0.08113065361976624, -0.09618527442216873, 0.00938829779624939, 0.0628000870347023, 0.02378075383603573, 0.023632073774933815, -0.13574181497097015, 0.02385234273970127, 0.04573320224881172, -0.03925125673413277, 0.02653985284268856, 0.011805041693150997, 0.001166898524388671, 0.07723493129014969, 0.041003864258527756, -0.008455735631287098, 0.040240850299596786, -0.007651037070900202, -0.0776955708861351, 0.17447875440120697, -0.11080417037010193, -0.19994433224201202, -0.1695774495601654, 0.05146264284849167, -0.09318115562200546, -0.015424435958266258, 0.018912330269813538, -0.03731629252433777, -0.0614507831633091, -0.07407360523939133, -0.03866443410515785, -0.06679429113864899, -0.00691772298887372, 0.08821330219507217, -0.00876407790929079, 0.12952135503292084, -0.12786392867565155, -0.009750453755259514, 0.012685827910900116, -0.06438229233026505, -0.02683863788843155, 0.023323291912674904, 0.0995580181479454, 0.07547849416732788, -0.015716785565018654, 0.027958374470472336, -0.015869589522480965, 0.28813761472702026, -0.07885462045669556, -0.013938125222921371, 0.1832314133644104, 0.02090514451265335, 0.07923804223537445, 0.0981944352388382, 0.022580735385417938, -0.08665063977241516, 0.015900613740086555, 0.0246351957321167, -0.004205515142530203, -0.22156287729740143, -0.030708275735378265, -0.029035694897174835, -0.06582555919885635, 0.11824168264865875, 0.056429244577884674, 0.08396564424037933, 0.0797266960144043, -0.03725680336356163, 0.07342968881130219, -0.01788428984582424, 0.11628450453281403, 0.1406213939189911, 0.052379023283720016, 0.10036018490791321, -0.027991030365228653, -0.005707101430743933, 0.07297483086585999, -0.01603643223643303, 0.22838787734508514, -0.005276690237224102, 0.18481028079986572, 0.021601354703307152, 0.15455316007137299, -0.01709737256169319, 0.03808506205677986, 0.01171808410435915, 0.015019770711660385, 0.010041636414825916, -0.0646742507815361, -0.06281182169914246, 0.01890694536268711, -0.0181899331510067, 0.07325513660907745, -0.10440316051244736, 0.048140574246644974, 0.005028437823057175, 0.24829228222370148, 0.03624531999230385, -0.325486421585083, -0.11088427901268005, 0.006771523505449295, -0.03368578478693962, -0.12123370915651321, -0.013970529660582542, 0.06343484669923782, -0.1610705703496933, 0.0697743371129036, -0.06757626682519913, 0.09803453832864761, -0.03901434317231178, 0.005398046690970659, 0.06019575893878937, 0.1002703458070755, 0.012495381757616997, 0.1046389490365982, -0.21254055202007294, 0.17963488399982452, 0.023305969312787056, 0.07821160554885864, -0.07201352715492249, 0.06697361171245575, 0.018912162631750107, 0.10726885497570038, 0.12079279124736786, 0.0012726872228085995, -0.032372236251831055, -0.16997510194778442, -0.09573151916265488, 0.0007736223051324487, 0.10114672034978867, -0.07050998508930206, 0.07880475372076035, -0.06967200338840485, 0.008557439781725407, 0.02418162114918232, -0.034742992371320724, -0.1486022025346756, -0.13141801953315735, 0.04880513250827789, 0.017288103699684143, 0.014532060362398624, -0.08107957243919373, -0.087220199406147, -0.008888950571417809, 0.19171781837940216, 0.008101050741970539, -0.07305172085762024, -0.16669796407222748, 0.08702073991298676, 0.13819043338298798, -0.0854889303445816, 0.0355054996907711, -0.02485295571386814, 0.1657973974943161, 0.05125207081437111, -0.0864076316356659, 0.03789527714252472, -0.06608917564153671, -0.17509981989860535, -0.015623224899172783, 0.14083944261074066, -0.00908784568309784, 0.04167146235704422, 0.01629354991018772, 0.0347294807434082, -0.004497050307691097, -0.0895497128367424, -0.006713565438985825, 0.04196620360016823, 0.09450867027044296, 0.038368962705135345, -0.03810594603419304, 0.05056175962090492, -0.05926162376999855, -0.000346095155691728, 0.11286984384059906, 0.21752050518989563, -0.0845596045255661, 0.0364755317568779, 0.02547639235854149, -0.07640107721090317, -0.1564027965068817, 0.020959898829460144, 0.1273484081029892, 0.02085367776453495, 0.060942694544792175, -0.15954720973968506, 0.08750824630260468, 0.08825880289077759, -0.04258133843541145, 0.039888083934783936, -0.2715460956096649, -0.1288096010684967, 0.07823920249938965, 0.09866765141487122, 0.008309070952236652, -0.14586840569972992, -0.07390520721673965, -0.02841314673423767, -0.1140257716178894, 0.07724986225366592, -0.008835985325276852, 0.10539942979812622, -0.02729262411594391, 0.05948099493980408, 0.04181371256709099, -0.019821474328637123, 0.17499558627605438, 0.03204159066081047, 0.06415218114852905, -0.06276538968086243, 0.04512705281376839, 0.09572317451238632, -0.08120198547840118, 0.11019543558359146, -0.03315193951129913, 0.09824346005916595, -0.17860646545886993, -0.011244461871683598, -0.05854152515530586, 0.0681709349155426, -0.06449927389621735, -0.04074632748961449, -0.040219273418188095, 0.03984547406435013, 0.043935004621744156, -0.03349829837679863, 0.11498495191335678, 0.0471477210521698, 0.06034756824374199, 0.16465577483177185, 0.07630375027656555, 0.0171424001455307, -0.16629242897033691, -0.022043347358703613, -0.008627419359982014, 0.05253826454281807, -0.124093197286129, 0.028454726561903954, 0.09696298837661743, 0.030914995819330215, 0.1316237598657608, 0.013291122391819954, -0.06603584438562393, -0.020824603736400604, 0.03126217797398567, -0.09765015542507172, -0.15686793625354767, -0.06580930948257446, -0.0035363093484193087, -0.1658785194158554, 0.011522989720106125, 0.11050331592559814, -0.057315725833177567, -0.021579856052994728, -0.015224002301692963, 0.00869808904826641, -0.005705499090254307, 0.17226922512054443, 0.04429984092712402, 0.07695621252059937, -0.08309457451105118, 0.11397082358598709, 0.07975862175226212, -0.04136938229203224, 0.050601404160261154, 0.034422870725393295, -0.09351546317338943, -0.024218246340751648, 0.05293860659003258, 0.10367385298013687, -0.03686432167887688, -0.04744890332221985, -0.06714790314435959, -0.06762365996837616, 0.04526207223534584, 0.040427833795547485, 0.07879376411437988, 0.000683710677549243, -0.031287845224142075, -0.011075129732489586, -0.13415613770484924, 0.11123388260602951, 0.04424554854631424, 0.07419107854366302, -0.19402280449867249, 0.04630622640252113, 0.006466217339038849, 0.0665312260389328, -0.01690315641462803, -0.013645601458847523, -0.06978663802146912, -0.04840969666838646, -0.09442462027072906, 0.012959321960806847, -0.04139931499958038, 0.003600474912673235, -0.02291885018348694, -0.05806406959891319, -0.033671315759420395, 0.06358149647712708, -0.056327953934669495, -0.09522862732410431, 0.009985470212996006, 0.0683526024222374, -0.11983659118413925, -0.002967437030747533, 0.026595588773489, -0.106247678399086, 0.0928039625287056, 0.05961785092949867, 0.03643328696489334, 0.00860385037958622, 0.03051101043820381, 0.020826159045100212, 0.03474040329456329, 0.03236950561404228, 0.04602790251374245, -0.11640187352895737, 0.005719745997339487, -0.02127685211598873, 0.01538328267633915, 0.00341706327162683, 0.05776320770382881, -0.14291422069072723, -0.06930121034383774, -0.05813485011458397, -0.014329362660646439, -0.06638072431087494, 0.060318294912576675, 0.10442053526639938, 0.01934496872127056, 0.18246304988861084, -0.05049582198262215, 0.021116307005286217, -0.2202705442905426, -0.018053371459245682, -0.014287962578237057, -0.05650031566619873, -0.05979223921895027, -0.04837789759039879, 0.06206318736076355, -0.04915393143892288, 0.08878013491630554, -0.012758920900523663, 0.11403153091669083, 0.04303010553121567, 0.012841546908020973, 0.019679224118590355, -0.010544638149440289, 0.16577844321727753, 0.07741532474756241, -0.007395146880298853, 0.12596216797828674, -0.004365314729511738, 0.06166185811161995, 0.022844640538096428, 0.0973147600889206, 0.13456717133522034, -0.06490066647529602, 0.07733244448900223, 0.05614929273724556, -0.060781799256801605, -0.16210974752902985, 0.05756234750151634, -0.020409969612956047, 0.11598478257656097, -0.02532149851322174, 0.10124224424362183, 0.10409601777791977, -0.17547927796840668, 0.0602123998105526, -0.045725416392087936, -0.09863398969173431, -0.10584088414907455, -0.10840248316526413, -0.08539283275604248, -0.12130872160196304, 0.006530444137752056, -0.12948164343833923, 0.030904751271009445, 0.0753956064581871, -0.014103417284786701, -0.030655302107334137, 0.1536177545785904, -0.06974855810403824, -0.021737515926361084, 0.06800328940153122, -0.010775457136332989, -0.013458569534122944, -0.04782801494002342, -0.04414352402091026, 0.04601417854428291, 0.031249741092324257, 0.09927137941122055, -0.035917919129133224, 0.012228403240442276, 0.03345286101102829, -0.028060875833034515, -0.09796087443828583, 0.014964671805500984, 0.021822938695549965, 0.009417024441063404, 0.012510576285421848, 0.025392716750502586, 0.003022741759195924, -0.04703736677765846, 0.26567408442497253, -0.06218525022268295, -0.045055460184812546, -0.13307549059391022, 0.16052952408790588, 0.04895111173391342, -0.03689613565802574, 0.07756303995847702, -0.10386461019515991, -0.0050483341328799725, 0.15393120050430298, 0.1003170758485794, -0.03139567747712135, -0.02906874753534794, -0.0023676431737840176, -0.02247479557991028, -0.0426504984498024, 0.10513206571340561, 0.08880172669887543, -0.011184212751686573, -0.040609538555145264, 0.02747556008398533, -0.010725690051913261, -0.04042632505297661, -0.08303698152303696, 0.09560740739107132, 0.011286035180091858, 0.009807886555790901, -0.018275275826454163, 0.059489279985427856, 0.02030181884765625, -0.14306898415088654, 0.021268468350172043, -0.14158938825130463, -0.17578427493572235, -0.023361291736364365, 0.03248990327119827, -0.0016902047209441662, 0.05916864052414894, 0.016209226101636887, -0.0023622359149158, 0.1313246339559555, -0.01571347378194332, -0.07293768227100372, -0.08549968898296356, 0.09097853302955627, -0.07464075088500977, 0.21161511540412903, 0.009707484394311905, 0.06944871693849564, 0.11102605611085892, 0.0008059392566792667, -0.17250795662403107, 0.009895172901451588, 0.06483668833971024, -0.019056549295783043, 0.05644865334033966, 0.16656948626041412, -0.010891983285546303, 0.047704167664051056, 0.035664305090904236, -0.14541777968406677, -0.05874605476856232, -0.07158464193344116, 0.011868077330291271, -0.08059468120336533, -0.009086072444915771, -0.06696999073028564, 0.1643286645412445, 0.20108641684055328, -0.06040360778570175, -0.029294626787304878, -0.06638002395629883, 0.04095146805047989, 0.06554919481277466, 0.08035529404878616, -0.01057951059192419, -0.19900846481323242, 0.006805688142776489, -0.0000196592700376641, 0.01644226722419262, -0.21784768998622894, -0.10835115611553192, 0.045817241072654724, -0.060617875307798386, -0.054046642035245895, 0.11055021733045578, 0.03829747810959816, 0.012435190379619598, -0.03450653702020645, -0.054582539945840836, -0.07119301706552505, 0.1490342766046524, -0.15622693300247192, -0.049980368465185165 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuning-sentiment-model-3000-samples This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 0.3404 - Accuracy: 0.8667 - F1: 0.8734 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu111 - Datasets 1.17.0 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["imdb"], "metrics": ["accuracy", "f1"], "model-index": [{"name": "finetuning-sentiment-model-3000-samples", "results": [{"task": {"type": "text-classification", "name": "Text Classification"}, "dataset": {"name": "imdb", "type": "imdb", "args": "plain_text"}, "metrics": [{"type": "accuracy", "value": 0.8666666666666667, "name": "Accuracy"}, {"type": "f1", "value": 0.8734177215189873, "name": "F1"}]}]}]}
text-classification
federicopascual/finetuning-sentiment-model-3000-samples
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:imdb", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #dataset-imdb #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us
# finetuning-sentiment-model-3000-samples This model is a fine-tuned version of distilbert-base-uncased on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 0.3404 - Accuracy: 0.8667 - F1: 0.8734 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu111 - Datasets 1.17.0 - Tokenizers 0.10.3
[ "# finetuning-sentiment-model-3000-samples\n\nThis model is a fine-tuned version of distilbert-base-uncased on the imdb dataset.\nIt achieves the following results on the evaluation set:\n- Loss: 0.3404\n- Accuracy: 0.8667\n- F1: 0.8734", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 2e-05\n- train_batch_size: 16\n- eval_batch_size: 16\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 2", "### Training results", "### Framework versions\n\n- Transformers 4.15.0\n- Pytorch 1.10.0+cu111\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #dataset-imdb #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us \n", "# finetuning-sentiment-model-3000-samples\n\nThis model is a fine-tuned version of distilbert-base-uncased on the imdb dataset.\nIt achieves the following results on the evaluation set:\n- Loss: 0.3404\n- Accuracy: 0.8667\n- F1: 0.8734", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 2e-05\n- train_batch_size: 16\n- eval_batch_size: 16\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 2", "### Training results", "### Framework versions\n\n- Transformers 4.15.0\n- Pytorch 1.10.0+cu111\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ 67, 72, 6, 12, 8, 3, 90, 4, 33 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #dataset-imdb #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us \n# finetuning-sentiment-model-3000-samples\n\nThis model is a fine-tuned version of distilbert-base-uncased on the imdb dataset.\nIt achieves the following results on the evaluation set:\n- Loss: 0.3404\n- Accuracy: 0.8667\n- F1: 0.8734## Model description\n\nMore information needed## Intended uses & limitations\n\nMore information needed## Training and evaluation data\n\nMore information needed## Training procedure### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 2e-05\n- train_batch_size: 16\n- eval_batch_size: 16\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 2### Training results### Framework versions\n\n- Transformers 4.15.0\n- Pytorch 1.10.0+cu111\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ -0.11751808226108551, 0.1816021353006363, -0.002757289446890354, 0.09303216636180878, 0.13826438784599304, 0.022485220804810524, 0.09529184550046921, 0.15734714269638062, -0.08146440982818604, 0.08824820816516876, 0.09797755628824234, 0.08601271361112595, 0.0615052729845047, 0.1412891447544098, -0.03911522403359413, -0.24315758049488068, 0.03539805859327316, 0.0035590266343206167, -0.042545270174741745, 0.10673762112855911, 0.12219411134719849, -0.07641628384590149, 0.1000017449259758, 0.05528891086578369, -0.17384091019630432, -0.00537147605791688, -0.009628202766180038, -0.0687950998544693, 0.08189103752374649, 0.01563439331948757, 0.04149189963936806, 0.002588931005448103, 0.07360369712114334, -0.17845572531223297, -0.00775195611640811, 0.05336376652121544, 0.028388652950525284, 0.10861099511384964, 0.04827982187271118, 0.02350701577961445, 0.07867701351642609, -0.12212257087230682, 0.08650524169206619, 0.04220205917954445, -0.08932588994503021, -0.15759584307670593, -0.09131480008363724, 0.10060272365808487, 0.07353182882070541, 0.09235687553882599, 0.007788898888975382, 0.1757952868938446, -0.002852801466360688, 0.08414890617132187, 0.17317081987857819, -0.2860468626022339, -0.05376049131155014, 0.02981656789779663, 0.05902973935008049, 0.05652279034256935, -0.10370984673500061, -0.00001360774058412062, 0.03636883571743965, 0.025272708386182785, 0.09714596718549728, -0.01633458025753498, 0.017314616590738297, -0.045016560703516006, -0.11395034939050674, -0.08205408602952957, 0.23076723515987396, 0.06701014935970306, -0.07854688167572021, -0.1336684226989746, -0.05366521328687668, -0.11954469233751297, -0.033400531858205795, -0.04873480647802353, 0.03009580634534359, -0.025419490411877632, -0.04517091065645218, -0.05430402234196663, -0.06510978192090988, -0.042800091207027435, 0.028932206332683563, 0.12134949862957001, 0.033762674778699875, 0.03128904849290848, -0.01960710436105728, 0.08509393036365509, -0.03722432628273964, -0.15122446417808533, -0.05238519608974457, -0.010800817981362343, -0.040281396359205246, -0.0560920275747776, -0.04092021286487579, -0.025693854317069054, -0.00040761500713415444, 0.16822952032089233, -0.04308852553367615, 0.07959794253110886, 0.01906522922217846, 0.00029006163822486997, -0.01486220397055149, 0.1728082001209259, -0.03288211673498154, -0.029340216889977455, 0.019865600392222404, 0.10311715304851532, 0.025607075542211533, -0.0173783116042614, -0.08938327431678772, -0.01750890165567398, 0.13408991694450378, 0.047462642192840576, -0.019709110260009766, 0.045766811817884445, -0.057336196303367615, -0.05276121944189072, 0.09622021019458771, -0.11988797783851624, 0.03657311573624611, -0.034926701337099075, -0.09304773062467575, -0.052380140870809555, 0.029157480224967003, -0.0014305785298347473, -0.04484327509999275, 0.02185952290892601, -0.10240904986858368, -0.01182982325553894, -0.05255109816789627, -0.042677439749240875, 0.00031808196217752993, -0.05570630356669426, 0.009187376126646996, -0.07693202793598175, -0.1924356371164322, -0.03391728177666664, 0.03571595251560211, -0.06710570305585861, -0.0827605277299881, -0.005242336541414261, -0.059448789805173874, 0.0394723080098629, 0.0005945955635979772, 0.05985083803534508, -0.0278206504881382, 0.06330664455890656, 0.049852535128593445, 0.017657380551099777, 0.021186351776123047, 0.0488196462392807, -0.10267171263694763, 0.0524601936340332, -0.1184334084391594, 0.09803973883390427, -0.07423459738492966, 0.038962289690971375, -0.1313907951116562, -0.10197166353464127, 0.0018546434585005045, -0.04141093045473099, 0.07199592888355255, 0.13272278010845184, -0.10335154086351395, -0.022165454924106598, 0.11816459894180298, -0.07785513252019882, -0.12071248143911362, 0.08534370362758636, -0.022953324019908905, 0.045993104577064514, 0.046202655881643295, 0.1589670181274414, 0.11482222378253937, -0.09405960142612457, -0.04601092264056206, 0.023824656382203102, 0.03999439254403114, 0.011852654628455639, 0.07992444187402725, -0.00309094344265759, 0.02800542116165161, 0.02701490744948387, -0.04682716354727745, -0.021443666890263557, -0.06339383870363235, -0.08331917971372604, -0.07590357959270477, -0.06402608007192612, 0.043350111693143845, 0.02541390061378479, 0.040221646428108215, -0.061540424823760986, -0.11145498603582382, 0.08370458334684372, 0.139164537191391, -0.03616904467344284, 0.013012531213462353, -0.09199543297290802, 0.07749252766370773, -0.07083675265312195, -0.019325491040945053, -0.22403904795646667, -0.08301106840372086, 0.06912441551685333, -0.0844799056649208, 0.03631474822759628, -0.023486437276005745, 0.05756011977791786, 0.06669508665800095, -0.020877957344055176, -0.04520843178033829, -0.07576073706150055, -0.013489354401826859, -0.1070614606142044, -0.14007365703582764, -0.06415729969739914, -0.025006959214806557, 0.1785648763179779, -0.20162789523601532, 0.018683813512325287, 0.03474830090999603, 0.1296490728855133, 0.02043439820408821, -0.07037334144115448, 0.021798264235258102, -0.007155642379075289, -0.01540442742407322, -0.10946563631296158, 0.03500191494822502, 0.0358981117606163, -0.0988478735089302, -0.04068392515182495, -0.15268602967262268, 0.1001257672905922, 0.07800216972827911, 0.07480549812316895, -0.07787521183490753, -0.007283263374119997, -0.052342046052217484, -0.04770160838961601, -0.04090987890958786, -0.02255544438958168, 0.1789885014295578, 0.013741696253418922, 0.13861024379730225, -0.07114116847515106, -0.05627784878015518, 0.03262091800570488, -0.016391878947615623, -0.04565364494919777, 0.05119848996400833, -0.032233331352472305, -0.1856033205986023, 0.09945181012153625, 0.08837785571813583, -0.009968377649784088, 0.11120755225419998, -0.05440429598093033, -0.07501151412725449, -0.04978104308247566, 0.008305763825774193, 0.009151633828878403, 0.09068036824464798, -0.09676872938871384, -0.0012435144744813442, 0.05805904418230057, 0.025901319459080696, 0.014793879352509975, -0.14031444489955902, 0.02428031712770462, 0.04397774860262871, -0.03224165737628937, 0.01261818502098322, 0.012260672636330128, -0.0064454879611730576, 0.07525911927223206, 0.043180469423532486, -0.023749854415655136, 0.04694293439388275, -0.009407322853803635, -0.07326249778270721, 0.1627616584300995, -0.11315874755382538, -0.19340206682682037, -0.1698642075061798, 0.03387963026762009, -0.09838724881410599, -0.01237355824559927, 0.02181529439985752, -0.035198334604501724, -0.0654141753911972, -0.0793607234954834, -0.06935850530862808, -0.06716088950634003, -0.004725308623164892, 0.08316729217767715, -0.01389254443347454, 0.12275215238332748, -0.12859021127223969, -0.01312447339296341, 0.01617579534649849, -0.04588047042489052, -0.024191783741116524, 0.024624288082122803, 0.1066960021853447, 0.07267232239246368, -0.019129442051053047, 0.03396252915263176, -0.013957099989056587, 0.28829655051231384, -0.07700160890817642, -0.013763348571956158, 0.16620296239852905, 0.00806343462318182, 0.0908171683549881, 0.10410254448652267, 0.02938893623650074, -0.09005089849233627, 0.015587905421853065, 0.017387278378009796, -0.013714615255594254, -0.20694488286972046, -0.02887600287795067, -0.029988422989845276, -0.0651637613773346, 0.11897396296262741, 0.06584492325782776, 0.08896847069263458, 0.07601267844438553, -0.020059525966644287, 0.07728071510791779, -0.01887539029121399, 0.12239715456962585, 0.12466126680374146, 0.06316735595464706, 0.09678853303194046, -0.02540436014533043, -0.008474195376038551, 0.06567256897687912, -0.006952231749892235, 0.22003857791423798, -0.0023755573201924562, 0.21153624355793, 0.00903434120118618, 0.15483734011650085, -0.011572915129363537, 0.04366135597229004, 0.005354332271963358, 0.017576299607753754, 0.007074527908116579, -0.06367988139390945, -0.06372563540935516, 0.027870740741491318, -0.0240074023604393, 0.07183142751455307, -0.09497726708650589, 0.05259593203663826, 0.01469150185585022, 0.2448384165763855, 0.03316648304462433, -0.34119167923927307, -0.10391506552696228, 0.004619442857801914, -0.027203358709812164, -0.1143159493803978, -0.018975958228111267, 0.055673129856586456, -0.15398186445236206, 0.0669340267777443, -0.07896468788385391, 0.09647475928068161, -0.06532717496156693, 0.006476891692727804, 0.060297392308712006, 0.09661275148391724, 0.0028436158318072557, 0.09538515657186508, -0.1975776106119156, 0.18235979974269867, 0.03521745651960373, 0.08307526260614395, -0.07810354977846146, 0.05547117814421654, 0.023298660293221474, 0.10496754944324493, 0.1173199862241745, 0.0016715157544240355, -0.05484309419989586, -0.1739548295736313, -0.1047971099615097, -0.006790669169276953, 0.10034748911857605, -0.06530170142650604, 0.06909020990133286, -0.06220695376396179, 0.0025445199571549892, 0.020988501608371735, -0.039113905280828476, -0.13971185684204102, -0.13198715448379517, 0.052037231624126434, 0.0363936685025692, 0.017986765131354332, -0.07397470623254776, -0.08639027923345566, -0.00149569904897362, 0.19479872286319733, 0.024537328630685806, -0.07276735454797745, -0.16600382328033447, 0.06684314459562302, 0.12614817917346954, -0.08242025226354599, 0.032370831817388535, -0.02220471017062664, 0.16392828524112701, 0.04970354586839676, -0.08457130193710327, 0.05361076444387436, -0.058126747608184814, -0.16700737178325653, -0.027699299156665802, 0.1340915560722351, -0.0002737696922849864, 0.039944037795066833, 0.014476556330919266, 0.04034135490655899, -0.0063025858253240585, -0.08248136937618256, 0.0030022431164979935, 0.028310317546129227, 0.09540396183729172, 0.026606177911162376, -0.01637192629277706, 0.0662526935338974, -0.05731521546840668, 0.005008238833397627, 0.11470456421375275, 0.21501398086547852, -0.07943270355463028, 0.04944658279418945, 0.039695918560028076, -0.06786882132291794, -0.14887364208698273, 0.019561516121029854, 0.11102131009101868, 0.020852332934737206, 0.060156624764204025, -0.1567920744419098, 0.07312533259391785, 0.08063869923353195, -0.04672463610768318, 0.04950418323278427, -0.2723522484302521, -0.12903790175914764, 0.0661400556564331, 0.10664171725511551, 0.023467646911740303, -0.13608182966709137, -0.07294810563325882, -0.030931619927287102, -0.12698885798454285, 0.07951623946428299, -0.014900824055075645, 0.10654163360595703, -0.027001993730664253, 0.08066123723983765, 0.03787997364997864, -0.026980319991707802, 0.16767479479312897, 0.037222277373075485, 0.07254593819379807, -0.07153238356113434, 0.03524688258767128, 0.10610850900411606, -0.08675243705511093, 0.1107497438788414, -0.04933162406086922, 0.09062749147415161, -0.17221352458000183, -0.004437610972672701, -0.05065610632300377, 0.05891958251595497, -0.05537492781877518, -0.04453763738274574, -0.03741813823580742, 0.03387155383825302, 0.04616621136665344, -0.030120328068733215, 0.12807735800743103, 0.05869285762310028, 0.0446474589407444, 0.1790764182806015, 0.07974105328321457, -0.002389336470514536, -0.16781608760356903, -0.018380792811512947, -0.010416410863399506, 0.05630705505609512, -0.11648104339838028, 0.0316196046769619, 0.09916786849498749, 0.029079265892505646, 0.13892081379890442, 0.01750325597822666, -0.06497553735971451, -0.008000479079782963, 0.03231145814061165, -0.10870011895895004, -0.1448986679315567, -0.055610235780477524, 0.009483187459409237, -0.16011172533035278, 0.015096813440322876, 0.11662521213293076, -0.05256527662277222, -0.019629083573818207, -0.007568194065243006, 0.008486410602927208, -0.0026067709550261497, 0.16495724022388458, 0.03892726078629494, 0.07367552071809769, -0.08628332614898682, 0.11713596433401108, 0.07806311547756195, -0.0483725443482399, 0.05658234283328056, 0.03068239800632, -0.10360906273126602, -0.02142951264977455, 0.04275353252887726, 0.12721502780914307, -0.0362071767449379, -0.04982610419392586, -0.0783441886305809, -0.05421309918165207, 0.03842892497777939, 0.0355849489569664, 0.07357504218816757, 0.008270598948001862, -0.04284878447651863, -0.010046403855085373, -0.1322612315416336, 0.10487744957208633, 0.04376409575343132, 0.07568958401679993, -0.19076810777187347, 0.02996230684220791, 0.0038561781402677298, 0.05753655731678009, -0.015381318517029285, -0.016712704673409462, -0.07048890739679337, -0.04436721280217171, -0.08361133933067322, 0.0173640213906765, -0.04910724237561226, 0.004190685693174601, -0.023993810638785362, -0.056314799934625626, -0.03520311787724495, 0.06032620742917061, -0.05952071398496628, -0.0918772891163826, 0.01963680237531662, 0.05263209715485573, -0.12466216087341309, -0.006763247773051262, 0.02664838545024395, -0.10338439047336578, 0.09162961691617966, 0.06686396896839142, 0.0261430311948061, 0.0024298294447362423, 0.02693534828722477, 0.026402687653899193, 0.03278490900993347, 0.016279811039566994, 0.05319879576563835, -0.1115935668349266, -0.0011850069276988506, -0.02480093389749527, 0.006671086885035038, 0.004765227437019348, 0.07459354400634766, -0.13788799941539764, -0.052848268300294876, -0.05219259113073349, -0.016972040757536888, -0.06753328442573547, 0.059837404638528824, 0.11510132998228073, 0.018206210806965828, 0.182295560836792, -0.048866357654333115, 0.016626330092549324, -0.20570698380470276, -0.016301576048135757, 0.0016723927110433578, -0.06510930508375168, -0.06418793648481369, -0.053858790546655655, 0.05840928852558136, -0.05718895420432091, 0.08878058195114136, -0.00631486251950264, 0.10432542115449905, 0.04181194305419922, 0.03147995471954346, 0.0006292795878835022, -0.012719977647066116, 0.15181607007980347, 0.06712552160024643, -0.014017028734087944, 0.12651672959327698, -0.005124935880303383, 0.061418164521455765, 0.0307196993380785, 0.09320729225873947, 0.11180897057056427, -0.04206647723913193, 0.0822397843003273, 0.04675498977303505, -0.050604306161403656, -0.18723511695861816, 0.057980652898550034, -0.02233974263072014, 0.12523086369037628, -0.027212588116526604, 0.10901179164648056, 0.10314423590898514, -0.16096335649490356, 0.053518861532211304, -0.042845647782087326, -0.10045041888952255, -0.09668776392936707, -0.1269230991601944, -0.08421368896961212, -0.11768529564142227, 0.009378396905958652, -0.11717984825372696, 0.034857869148254395, 0.06403156369924545, -0.01819942705333233, -0.023168670013546944, 0.15690211951732635, -0.07030341774225235, -0.001918309135362506, 0.061766643077135086, -0.012344957329332829, -0.02542407251894474, -0.03141219913959503, -0.04705614596605301, 0.034906089305877686, 0.021783171221613884, 0.10194259881973267, -0.031555041670799255, 0.0259357038885355, 0.028467902913689613, -0.024578750133514404, -0.101446732878685, 0.013293378055095673, 0.024447008967399597, 0.009038136340677738, 0.007424691691994667, 0.029487168416380882, 0.0033221563789993525, -0.048928190022706985, 0.2587166428565979, -0.06380714476108551, -0.01906404085457325, -0.13285745680332184, 0.14711476862430573, 0.046297669410705566, -0.040689870715141296, 0.07303299009799957, -0.10941654443740845, 0.005252137780189514, 0.14228485524654388, 0.11021265387535095, -0.036765486001968384, -0.025745028629899025, -0.012874811887741089, -0.021170511841773987, -0.03974330797791481, 0.09705914556980133, 0.07048969715833664, -0.027027642354369164, -0.04650174826383591, 0.03157719597220421, -0.02072541043162346, -0.04596046730875969, -0.07593858987092972, 0.08855843544006348, 0.005402378737926483, 0.012537558563053608, -0.031102076172828674, 0.05880855396389961, 0.012080776505172253, -0.14038485288619995, 0.02416440099477768, -0.15003816783428192, -0.1703203171491623, -0.009068356826901436, 0.04319377243518829, 0.00287028681486845, 0.06502830982208252, 0.017203791067004204, -0.0013508943375200033, 0.11842624843120575, -0.015294424258172512, -0.07846234738826752, -0.08787348121404648, 0.08139818906784058, -0.08273843675851822, 0.21529673039913177, 0.00782808568328619, 0.06552057713270187, 0.1129598394036293, 0.008534248918294907, -0.173043891787529, 0.009335368871688843, 0.0605417937040329, -0.018350442871451378, 0.045982200652360916, 0.17809125781059265, -0.012782289646565914, 0.053035106509923935, 0.030980821698904037, -0.13401253521442413, -0.05501260235905647, -0.07233331352472305, 0.026081016287207603, -0.07409694045782089, -0.02043278142809868, -0.05340881273150444, 0.16891324520111084, 0.18890179693698883, -0.05188405141234398, -0.024962356314063072, -0.06236255541443825, 0.03384004533290863, 0.06969189643859863, 0.053426552563905716, -0.021914072334766388, -0.20371845364570618, 0.005894253961741924, 0.028160609304904938, 0.017105786129832268, -0.21917624771595, -0.11954142153263092, 0.04244231432676315, -0.06005863845348358, -0.05191902816295624, 0.10326740890741348, 0.03844881430268288, 0.014313673600554466, -0.03639879822731018, -0.04157118499279022, -0.06431896239519119, 0.14587903022766113, -0.1554078608751297, -0.054137155413627625 ]
null
null
transformers
# ✨ bert-restore-punctuation [![forthebadge](https://forthebadge.com/images/badges/gluten-free.svg)]() This a bert-base-uncased model finetuned for punctuation restoration on [Yelp Reviews](https://www.tensorflow.org/datasets/catalog/yelp_polarity_reviews). The model predicts the punctuation and upper-casing of plain, lower-cased text. An example use case can be ASR output. Or other cases when text has lost punctuation. This model is intended for direct use as a punctuation restoration model for the general English language. Alternatively, you can use this for further fine-tuning on domain-specific texts for punctuation restoration tasks. Model restores the following punctuations -- **[! ? . , - : ; ' ]** The model also restores the upper-casing of words. ----------------------------------------------- ## 🚋 Usage **Below is a quick way to get up and running with the model.** 1. First, install the package. ```bash pip install rpunct ``` 2. Sample python code. ```python from rpunct import RestorePuncts # The default language is 'english' rpunct = RestorePuncts() rpunct.punctuate("""in 2018 cornell researchers built a high-powered detector that in combination with an algorithm-driven process called ptychography set a world record by tripling the resolution of a state-of-the-art electron microscope as successful as it was that approach had a weakness it only worked with ultrathin samples that were a few atoms thick anything thicker would cause the electrons to scatter in ways that could not be disentangled now a team again led by david muller the samuel b eckert professor of engineering has bested its own record by a factor of two with an electron microscope pixel array detector empad that incorporates even more sophisticated 3d reconstruction algorithms the resolution is so fine-tuned the only blurring that remains is the thermal jiggling of the atoms themselves""") # Outputs the following: # In 2018, Cornell researchers built a high-powered detector that, in combination with an algorithm-driven process called Ptychography, set a world record by tripling the # resolution of a state-of-the-art electron microscope. As successful as it was, that approach had a weakness. It only worked with ultrathin samples that were a few atoms # thick. Anything thicker would cause the electrons to scatter in ways that could not be disentangled. Now, a team again led by David Muller, the Samuel B. # Eckert Professor of Engineering, has bested its own record by a factor of two with an Electron microscope pixel array detector empad that incorporates even more # sophisticated 3d reconstruction algorithms. The resolution is so fine-tuned the only blurring that remains is the thermal jiggling of the atoms themselves. ``` **This model works on arbitrarily large text in English language and uses GPU if available.** ----------------------------------------------- ## 📡 Training data Here is the number of product reviews we used for finetuning the model: | Language | Number of text samples| | -------- | ----------------- | | English | 560,000 | We found the best convergence around _**3 epochs**_, which is what presented here and available via a download. ----------------------------------------------- ## 🎯 Accuracy The fine-tuned model obtained the following accuracy on 45,990 held-out text samples: | Accuracy | Overall F1 | Eval Support | | -------- | ---------------------- | ------------------- | | 91% | 90% | 45,990 Below is a breakdown of the performance of the model by each label: | label | precision | recall | f1-score | support| | --------- | -------------|-------- | ----------|--------| | **!** | 0.45 | 0.17 | 0.24 | 424 | **!+Upper** | 0.43 | 0.34 | 0.38 | 98 | **'** | 0.60 | 0.27 | 0.37 | 11 | **,** | 0.59 | 0.51 | 0.55 | 1522 | **,+Upper** | 0.52 | 0.50 | 0.51 | 239 | **-** | 0.00 | 0.00 | 0.00 | 18 | **.** | 0.69 | 0.84 | 0.75 | 2488 | **.+Upper** | 0.65 | 0.52 | 0.57 | 274 | **:** | 0.52 | 0.31 | 0.39 | 39 | **:+Upper** | 0.36 | 0.62 | 0.45 | 16 | **;** | 0.00 | 0.00 | 0.00 | 17 | **?** | 0.54 | 0.48 | 0.51 | 46 | **?+Upper** | 0.40 | 0.50 | 0.44 | 4 | **none** | 0.96 | 0.96 | 0.96 |35352 | **Upper** | 0.84 | 0.82 | 0.83 | 5442 ----------------------------------------------- ## ☕ Contact Contact [Daulet Nurmanbetov]([email protected]) for questions, feedback and/or requests for similar models. -----------------------------------------------
{"language": ["en"], "license": "mit", "tags": ["punctuation"], "datasets": ["yelp_polarity"], "metrics": ["f1"]}
token-classification
felflare/bert-restore-punctuation
[ "transformers", "pytorch", "bert", "token-classification", "punctuation", "en", "dataset:yelp_polarity", "license:mit", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #bert #token-classification #punctuation #en #dataset-yelp_polarity #license-mit #autotrain_compatible #endpoints_compatible #has_space #region-us
bert-restore-punctuation ======================== ![forthebadge]() This a bert-base-uncased model finetuned for punctuation restoration on Yelp Reviews. The model predicts the punctuation and upper-casing of plain, lower-cased text. An example use case can be ASR output. Or other cases when text has lost punctuation. This model is intended for direct use as a punctuation restoration model for the general English language. Alternatively, you can use this for further fine-tuning on domain-specific texts for punctuation restoration tasks. Model restores the following punctuations -- [! ? . , - : ; ' ] The model also restores the upper-casing of words. --- Usage ----- Below is a quick way to get up and running with the model. 1. First, install the package. 2. Sample python code. This model works on arbitrarily large text in English language and uses GPU if available. --- Training data ------------- Here is the number of product reviews we used for finetuning the model: We found the best convergence around *3 epochs*, which is what presented here and available via a download. --- Accuracy -------- The fine-tuned model obtained the following accuracy on 45,990 held-out text samples: Accuracy: 91%, Overall F1: 90%, Eval Support: 45,990 Below is a breakdown of the performance of the model by each label: --- Contact ------- Contact Daulet Nurmanbetov for questions, feedback and/or requests for similar models. ---
[]
[ "TAGS\n#transformers #pytorch #bert #token-classification #punctuation #en #dataset-yelp_polarity #license-mit #autotrain_compatible #endpoints_compatible #has_space #region-us \n" ]
[ 62 ]
[ "passage: TAGS\n#transformers #pytorch #bert #token-classification #punctuation #en #dataset-yelp_polarity #license-mit #autotrain_compatible #endpoints_compatible #has_space #region-us \n" ]
[ -0.017052503302693367, 0.09520770609378815, -0.006247104611247778, 0.03608335554599762, 0.10027153789997101, 0.026419393718242645, 0.08252007514238358, 0.08708757907152176, 0.04649297520518303, 0.00864136591553688, 0.1612905114889145, 0.19685862958431244, -0.01279420405626297, 0.09611954540014267, -0.08850598335266113, -0.32733380794525146, 0.06302057206630707, 0.07246104627847672, -0.06722714006900787, 0.10348072648048401, 0.09592738747596741, -0.10014666616916656, 0.04474412277340889, 0.01001225970685482, -0.13195252418518066, -0.007174701429903507, 0.015165177173912525, -0.11420203000307083, 0.11657465994358063, 0.030887754634022713, 0.14765645563602448, 0.07174593955278397, -0.03882116824388504, -0.13787099719047546, 0.027842584997415543, 0.002084980485960841, -0.0929492935538292, 0.1009092628955841, 0.04702175781130791, -0.04034425690770149, 0.09066689014434814, -0.02105661667883396, 0.059591732919216156, 0.028527405112981796, -0.12682223320007324, -0.18508175015449524, -0.05350063741207123, 0.0724891722202301, 0.012535333633422852, 0.004054330755025148, 0.00970517285168171, 0.18540766835212708, -0.13817906379699707, 0.06595145165920258, 0.07000270485877991, -0.3386085331439972, 0.0017459045629948378, 0.17090149223804474, 0.028087563812732697, -0.02395007386803627, -0.06906387209892273, 0.059444066137075424, 0.05163949728012085, 0.0012310156598687172, 0.06974592059850693, -0.03243616968393326, -0.042941365391016006, 0.08745111525058746, -0.1202186644077301, -0.03493266925215721, 0.1598513424396515, -0.03167945519089699, 0.06312189251184464, -0.0450935885310173, -0.06150808557868004, -0.08284781873226166, -0.00874941237270832, 0.02545350231230259, 0.0071314796805381775, 0.028824588283896446, 0.033056192100048065, 0.034820493310689926, -0.13603077828884125, 0.03450984135270119, -0.21765834093093872, 0.1797371357679367, 0.018409013748168945, 0.06867332011461258, -0.14066699147224426, 0.03670800104737282, -0.007635926827788353, -0.08812974393367767, 0.03350358083844185, -0.07503020763397217, -0.000680448894854635, -0.03810805082321167, -0.0975768193602562, 0.04606977477669716, 0.04718170687556267, 0.21658878028392792, 0.045234814286231995, 0.007019743788987398, 0.02531713992357254, 0.11177085340023041, 0.09899342060089111, 0.09134849905967712, -0.0453357994556427, 0.020386993885040283, 0.0032391678541898727, -0.1255665123462677, 0.04177700728178024, -0.06997261941432953, -0.15366677939891815, -0.060437895357608795, 0.05681834742426872, 0.036361731588840485, 0.036313675343990326, 0.07274852693080902, -0.0567549504339695, 0.0008651374955661595, 0.08535641431808472, -0.02535160258412361, 0.07795461267232895, -0.005000177305191755, 0.03749465197324753, 0.087350994348526, -0.022737344726920128, 0.016390036791563034, 0.017413539811968803, 0.18368545174598694, -0.07506217062473297, 0.018810613080859184, -0.019823163747787476, -0.13261422514915466, 0.08105066418647766, -0.12108447402715683, 0.05052972584962845, -0.15785028040409088, -0.03240993991494179, 0.03649537265300751, 0.053107745945453644, -0.04441491886973381, -0.026419032365083694, 0.055353228002786636, -0.04716981202363968, 0.06356398016214371, -0.06391812860965729, -0.025056440383195877, -0.07986196875572205, 0.059760380536317825, -0.08612527698278427, 0.0940488874912262, -0.1547870934009552, 0.03465092182159424, -0.09647446125745773, 0.005636624060571194, -0.06882306188344955, -0.030045874416828156, -0.09286646544933319, 0.08188851922750473, -0.002334505319595337, -0.10403533279895782, -0.02147003449499607, 0.038984138518571854, -0.02056039124727249, 0.10971228033304214, -0.17573204636573792, -0.05884154140949249, 0.09283804148435593, -0.12343011051416397, -0.10423971712589264, 0.11110816150903702, -0.02053317427635193, -0.02537836693227291, 0.014070347882807255, 0.20206806063652039, 0.04997338727116585, -0.07333813607692719, 0.00802295096218586, 0.08170351386070251, -0.11029449105262756, -0.11166347563266754, 0.053997211158275604, 0.054985638707876205, -0.06483576446771622, 0.023242276161909103, 0.06261656433343887, 0.04735569655895233, -0.06464584916830063, -0.057706236839294434, -0.032979682087898254, 0.012373345904052258, 0.09454140812158585, 0.04594910144805908, 0.0843518078327179, -0.08362577855587006, -0.01036791317164898, 0.07441676408052444, -0.004574284888803959, 0.06353887915611267, 0.0440656840801239, -0.05610973387956619, 0.15743042528629303, -0.04072343185544014, -0.026458529755473137, -0.14489449560642242, -0.06022888794541359, -0.04900704324245453, 0.06351343542337418, 0.001108247204683721, 0.18005621433258057, 0.04425474628806114, -0.048011165112257004, -0.021840659901499748, 0.013892735354602337, 0.15426230430603027, 0.08436709642410278, -0.07489760220050812, -0.11544772982597351, -0.012804766185581684, -0.07383004575967789, 0.02021396905183792, -0.055103056132793427, 0.019147444516420364, 0.12512913346290588, 0.13914735615253448, -0.023690324276685715, 0.08276081830263138, -0.02011517621576786, 0.05880837142467499, -0.07641567289829254, 0.018383242189884186, 0.09366171807050705, -0.0024114628322422504, -0.06634227186441422, 0.16034986078739166, -0.07681974768638611, 0.3123535215854645, 0.20629745721817017, -0.23462557792663574, -0.01846441812813282, -0.09428344666957855, -0.03348633646965027, 0.03462749347090721, 0.02515505999326706, 0.00910400040447712, -0.062420837581157684, -0.02368350513279438, 0.09695102274417877, -0.010232782922685146, -0.04006308317184448, 0.017809370532631874, -0.07568349689245224, -0.08872809261083603, 0.06860276311635971, 0.09699977934360504, -0.2329404354095459, 0.19949078559875488, 0.27238836884498596, 0.006710982881486416, 0.10666251927614212, -0.015816230326890945, 0.033891573548316956, -0.02864457294344902, -0.093905970454216, -0.03941260650753975, 0.08775465190410614, -0.0868760347366333, -0.025954818353056908, 0.10907890647649765, 0.018008938059210777, 0.014383959583938122, -0.14737598598003387, -0.06304267793893814, 0.04004867747426033, 0.08511043339967728, -0.1591048538684845, 0.10628750920295715, 0.048923127353191376, 0.11335590481758118, 0.0021437001414597034, -0.11148430407047272, 0.08940327167510986, 0.007306851912289858, -0.03572623059153557, 0.13764943182468414, -0.1492760181427002, -0.20240458846092224, -0.090920090675354, -0.12611335515975952, 0.008052237331867218, 0.010154278948903084, 0.08161593228578568, -0.04109404981136322, -0.05056684464216232, 0.006058445665985346, 0.0033485994208604097, -0.09708388149738312, 0.0618399940431118, -0.1318737119436264, 0.02541080303490162, -0.07928157597780228, -0.06804265081882477, -0.07194342464208603, -0.049552567303180695, 0.03937869146466255, 0.1576925814151764, -0.01831957697868347, 0.07582658529281616, 0.12800905108451843, -0.04998025670647621, 0.02120046876370907, -0.05112543702125549, 0.1954456865787506, -0.04973014071583748, 0.017778396606445312, 0.1303844302892685, 0.03458816930651665, 0.06088805943727493, 0.17842428386211395, 0.06719943135976791, -0.021856289356946945, -0.01910468563437462, -0.02326134406030178, -0.10628942400217056, -0.13187944889068604, -0.15299782156944275, -0.11627069860696793, 0.053219981491565704, 0.07401326298713684, 0.05662905052304268, 0.061571504920721054, 0.07822926342487335, 0.029765570536255836, -0.04864845797419548, -0.05311860889196396, 0.09315965324640274, 0.2890680134296417, -0.012515458278357983, 0.1582946628332138, -0.04763521999120712, -0.10007189214229584, 0.07605183124542236, 0.07540088891983032, 0.07475893944501877, 0.08719705790281296, -0.0016584559343755245, 0.05422120541334152, 0.20207560062408447, 0.13612201809883118, 0.1085161417722702, 0.03771573305130005, -0.02390677109360695, -0.025375526398420334, -0.0017527553718537092, -0.01768111251294613, 0.047873638570308685, 0.12590746581554413, -0.1516025811433792, -0.03211350739002228, -0.20598554611206055, 0.057141005992889404, 0.04739123955368996, 0.09309795498847961, -0.2010771781206131, -0.01771751046180725, 0.06569267809391022, 0.021052325144410133, -0.052591145038604736, 0.06456749141216278, 0.001152255805209279, -0.07828565686941147, 0.0956638902425766, -0.05774400383234024, 0.09120403975248337, 0.051221154630184174, 0.0719597116112709, -0.0015852405922487378, -0.13437804579734802, 0.019241470843553543, 0.08398488163948059, -0.25838613510131836, 0.23989680409431458, -0.013521125540137291, -0.10048364847898483, -0.06680899858474731, -0.026174433529376984, 0.020221376791596413, 0.1680377572774887, 0.05953015014529228, 0.02701142616569996, -0.10166754573583603, -0.17003120481967926, 0.022120771929621696, -0.018709849566221237, 0.055877722799777985, -0.01071527786552906, -0.02021877095103264, -0.028245912864804268, 0.019665611907839775, 0.03458893299102783, 0.08339320868253708, 0.02541285753250122, -0.17773772776126862, 0.07460452616214752, 0.05221286043524742, -0.055029481649398804, 0.017118029296398163, -0.10980106890201569, -0.20931869745254517, 0.1042759045958519, -0.029850203543901443, -0.05699523538351059, -0.11639174818992615, -0.0435652881860733, 0.08638039231300354, -0.05628937482833862, 0.06254075467586517, -0.05558447167277336, 0.03209233656525612, -0.054570555686950684, -0.16456098854541779, 0.1418415755033493, -0.10219518840312958, -0.054210446774959564, -0.04477234184741974, 0.11054126918315887, -0.09728328883647919, 0.03993242606520653, 0.02422977425158024, 0.10858326405286789, -0.14482565224170685, -0.1126384437084198, 0.04787854850292206, -0.10495517402887344, 0.1076662614941597, 0.006023732479661703, -0.005993056111037731, 0.020864062011241913, 0.051816944032907486, 0.02329612709581852, 0.209211066365242, 0.2416035681962967, -0.1269427388906479, 0.14856186509132385, 0.08809582144021988, -0.012591867707669735, -0.31142351031303406, -0.08476391434669495, -0.15574675798416138, -0.028706204146146774, 0.06992403417825699, -0.08288838714361191, 0.06185591593384743, 0.013570467941462994, -0.07316498458385468, 0.03875930234789848, -0.14803194999694824, -0.08412524312734604, 0.1843385249376297, -0.020442752167582512, 0.31883567571640015, -0.09796176105737686, -0.0471615195274353, -0.016936317086219788, -0.19672773778438568, 0.2395036369562149, -0.0037167691625654697, 0.06620495021343231, -0.03690856695175171, 0.0864025354385376, 0.03974051773548126, -0.06799117475748062, 0.1473151445388794, -0.02031477354466915, 0.03130227327346802, -0.11477240175008774, -0.14658813178539276, 0.05132204294204712, -0.029030483216047287, -0.007546215318143368, -0.03679356724023819, 0.005837121978402138, -0.11646204441785812, -0.0034011502284556627, -0.08483666926622391, 0.08068259060382843, -0.01912553422152996, -0.06598325073719025, -0.10285380482673645, 0.02625582553446293, 0.035591453313827515, -0.049720365554094315, 0.29054003953933716, 0.010516535490751266, 0.14145228266716003, 0.15054243803024292, 0.0397978276014328, -0.1455579251050949, -0.01942584104835987, -0.02004886418581009, -0.08314093202352524, 0.09248757362365723, -0.06871146708726883, 0.03471618890762329, 0.14148791134357452, -0.02520214207470417, 0.03804798796772957, 0.12527233362197876, 0.031968094408512115, -0.04505637288093567, 0.13684487342834473, -0.17216038703918457, -0.07521045207977295, 0.030765622854232788, 0.010977104306221008, 0.0907256007194519, 0.07555296272039413, 0.09095356613397598, -0.022803835570812225, -0.034255947917699814, 0.04227070137858391, 0.01969217136502266, -0.043206922709941864, 0.06032513827085495, 0.07331019639968872, 0.04843904823064804, -0.1334133744239807, 0.02478858083486557, 0.040135931223630905, -0.10926125198602676, -0.012690450064837933, 0.018750475719571114, -0.10467778146266937, -0.14495758712291718, -0.04809579998254776, 0.005517237354069948, -0.185426265001297, -0.02214823290705681, 0.0028711778577417135, -0.16852355003356934, 0.048033200204372406, 0.1487250030040741, 0.11935824900865555, 0.08200415968894958, -0.053180843591690063, -0.04828551411628723, -0.013552319258451462, -0.007123496383428574, -0.03202727437019348, 0.05533844977617264, -0.12613287568092346, 0.051994044333696365, -0.043642476201057434, 0.11219724267721176, -0.09045838564634323, -0.025574205443263054, -0.16335299611091614, -0.011015851981937885, -0.04487326741218567, -0.06074867770075798, -0.09986580908298492, -0.024816615507006645, 0.03243688493967056, -0.0871920958161354, -0.03135332465171814, -0.048165831714868546, -0.12824329733848572, 0.046829916536808014, 0.00653403764590621, 0.0656915009021759, -0.09487026929855347, -0.053203120827674866, 0.07378028333187103, -0.0058763655833899975, 0.09184704720973969, 0.04609520733356476, -0.04928062856197357, 0.0572211816906929, -0.0844237357378006, -0.11096768081188202, 0.09570474922657013, 0.018859118223190308, 0.08239869773387909, -0.031700409948825836, 0.004188999533653259, 0.06591116636991501, -0.023486727848649025, 0.06805644184350967, 0.027721982449293137, -0.09660323709249496, -0.013448233716189861, -0.042420826852321625, -0.160532146692276, -0.019326047971844673, -0.06560764461755753, 0.08836580067873001, -0.0041424972005188465, 0.15900778770446777, -0.013289122842252254, 0.020212465897202492, -0.07538894563913345, 0.0022468846291303635, -0.04136289283633232, -0.17440854012966156, -0.07344232499599457, -0.023945016786456108, 0.015190576203167439, -0.0020063139963895082, 0.2734714448451996, 0.06634877622127533, -0.09846014529466629, 0.05435197427868843, 0.10101072490215302, -0.030792120844125748, 0.020903177559375763, 0.20419573783874512, 0.060127176344394684, -0.05666561424732208, -0.06407621502876282, 0.054010458290576935, -0.020335432142019272, -0.02616902068257332, 0.09233993291854858, 0.07446461915969849, 0.028210701420903206, 0.04430290311574936, 0.024826230481266975, -0.013624567538499832, -0.0987381786108017, -0.10073072463274002, -0.023801738396286964, 0.0760122612118721, -0.029034828767180443, 0.08761580288410187, 0.0946328341960907, -0.07520552724599838, 0.05693314969539642, -0.09047790616750717, -0.02294754609465599, -0.14607417583465576, -0.18890924751758575, -0.057024698704481125, -0.08590160310268402, -0.02246403507888317, -0.05284453183412552, 0.022516194730997086, 0.14001543819904327, 0.05936487764120102, -0.016005825251340866, -0.007668953854590654, -0.04087911173701286, 0.00630803732201457, 0.0165378637611866, 0.008373870514333248, -0.0018344521522521973, -0.04719372093677521, -0.02403331734240055, -0.09913751482963562, -0.020590560510754585, -0.04641897976398468, 0.002877728082239628, -0.012937764637172222, -0.010794803500175476, -0.11053948104381561, -0.10175131261348724, -0.015253097750246525, 0.03427039459347725, 0.023585457354784012, 0.12771232426166534, -0.005976539570838213, 0.06960663944482803, 0.023000139743089676, 0.20787525177001953, -0.06245632469654083, -0.01754995994269848, -0.03673392906785011, 0.23260140419006348, 0.04398464411497116, 0.09431582689285278, 0.0019583499524742365, -0.017696745693683624, -0.08196680247783661, 0.1811521351337433, 0.32069024443626404, -0.05259241908788681, 0.046965572983026505, 0.022342972457408905, 0.008510691113770008, 0.09746523201465607, 0.10416863113641739, 0.0744204968214035, 0.1633078008890152, -0.0855272188782692, 0.006124089937657118, -0.07877311110496521, -0.0026582484133541584, -0.07976002246141434, 0.06325225532054901, 0.041428327560424805, -0.07920125126838684, -0.06210967153310776, 0.08391460031270981, -0.1192241981625557, 0.05360282585024834, 0.0726345032453537, -0.22351261973381042, -0.07255446165800095, 0.02406599372625351, 0.16843058168888092, -0.0260624960064888, 0.09792903810739517, -0.0610494464635849, -0.060291588306427, 0.0028974274173378944, 0.007497293874621391, -0.14555515348911285, -0.0015775683568790555, 0.0968908965587616, 0.022558704018592834, 0.06853623688220978, -0.0316903218626976, 0.07154305279254913, 0.12477556616067886, 0.08262696862220764, -0.06020593270659447, 0.025951184332370758, 0.043013036251068115, -0.0955207347869873, -0.032818373292684555, -0.01866978406906128, 0.017979813739657402, -0.10337858647108078, 0.07819679379463196, -0.18787285685539246, 0.03943188488483429, -0.07655808329582214, -0.017370041459798813, -0.01014622487127781, 0.042075056582689285, -0.039096903055906296, 0.07061254233121872, 0.043824709951877594, -0.034494999796152115, -0.053333476185798645, -0.04352997988462448, -0.04459399729967117, 0.03334075212478638, -0.12518741190433502, -0.09032929688692093, -0.026649951934814453, -0.024515988305211067, 0.03720720857381821, 0.00400589220225811, -0.05255270376801491, -0.03054351545870304, -0.0796794518828392, 0.03945191949605942, -0.10233516246080399, 0.06459276378154755, 0.037261713296175, -0.001456945901736617, -0.03109007515013218, -0.07771289348602295, 0.019812503829598427, 0.05031098797917366, -0.10309746116399765, -0.04274389147758484 ]
null
null
transformers
# DioloGPT KaeyaBot model
{"tags": ["conversational"]}
text-generation
felinecity/DioloGPT-small-KaeyaBot
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
# DioloGPT KaeyaBot model
[ "# DioloGPT KaeyaBot model" ]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "# DioloGPT KaeyaBot model" ]
[ 51, 9 ]
[ "passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n# DioloGPT KaeyaBot model" ]
[ -0.013482030481100082, -0.04944401979446411, -0.00660965871065855, 0.018116695806384087, 0.16041694581508636, 0.005352854263037443, 0.1591426134109497, 0.113655224442482, -0.005036589689552784, -0.02728116884827614, 0.12488944083452225, 0.22933024168014526, 0.029869183897972107, 0.1351277083158493, -0.07913515716791153, -0.29110777378082275, 0.05341096594929695, 0.03645821288228035, 0.0021556243300437927, 0.08520137518644333, 0.10741303861141205, -0.07100285589694977, 0.10141543298959732, -0.015280923806130886, -0.12886378169059753, -0.034620773047208786, 0.009351576678454876, -0.14558735489845276, 0.07823927700519562, 0.0635087788105011, 0.05051994323730469, 0.025348380208015442, -0.03491302207112312, -0.11841075867414474, 0.036076925694942474, -0.010789170861244202, -0.01633112132549286, 0.03215695172548294, -0.006123706232756376, -0.10275706648826599, 0.06512311846017838, 0.05040643364191055, -0.007862668484449387, 0.01055244728922844, -0.1442529559135437, 0.010917812585830688, -0.01737990230321884, 0.011684340424835682, 0.13442599773406982, 0.10449829697608948, -0.02284255623817444, 0.044014379382133484, -0.0918123796582222, 0.10083391517400742, 0.11368492990732193, -0.24449126422405243, -0.03187127411365509, 0.10879965126514435, 0.03690730035305023, 0.05006536468863487, -0.014344406314194202, 0.06345362216234207, 0.046731121838092804, 0.00035137636587023735, 0.01799810864031315, -0.09024252742528915, -0.0809108167886734, 0.007838817313313484, -0.07939121127128601, 0.005723253358155489, 0.2735130786895752, -0.06425411999225616, 0.04118042066693306, -0.0737089291214943, -0.07196356356143951, 0.023852720856666565, -0.0601150244474411, -0.008588753640651703, -0.07469012588262558, 0.027902815490961075, 0.057888440787792206, -0.10337091982364655, -0.1314590871334076, -0.008448471315205097, -0.17960487306118011, 0.24182842671871185, 0.050672855228185654, 0.018773283809423447, -0.20690259337425232, 0.07384129613637924, 0.017387308180332184, -0.10685200989246368, -0.006884794682264328, -0.11515865474939346, 0.041213035583496094, 0.010604165494441986, -0.015647996217012405, -0.05562400445342064, 0.08027039468288422, 0.11201230436563492, 0.049923136830329895, 0.003928730729967356, -0.01086176373064518, 0.03498953580856323, 0.07448742538690567, 0.1263836920261383, -0.019534315913915634, -0.015271554701030254, 0.044583309441804886, -0.058608293533325195, 0.013690563850104809, -0.06365002691745758, -0.16729891300201416, -0.011074299924075603, -0.0019514053128659725, 0.06900392472743988, 0.025876125320792198, 0.12303344905376434, -0.04554140567779541, -0.056231752038002014, 0.029509034007787704, -0.05098415166139603, -0.034932199865579605, -0.01566430553793907, -0.03030925616621971, 0.17786185443401337, -0.005685892887413502, 0.03192080184817314, -0.10662221908569336, 0.057476289570331573, -0.04604175314307213, -0.0024113552644848824, -0.030046630650758743, -0.05317991226911545, -0.007894616574048996, -0.09116844832897186, 0.04384077712893486, -0.18569129705429077, -0.16892604529857635, 0.002109426073729992, -0.0014731264673173428, -0.06242804601788521, -0.07764072716236115, -0.09326117485761642, -0.03556299954652786, 0.023548118770122528, -0.0708107203245163, -0.0026914088521152735, -0.0493709072470665, 0.07582206279039383, -0.03043040819466114, 0.12273649871349335, -0.08936804533004761, 0.0855768695473671, -0.09660112857818604, -0.009370164945721626, -0.1144319400191307, 0.13016021251678467, -0.02309008315205574, 0.10889901965856552, -0.01719598099589348, -0.004806773737072945, -0.08014009147882462, 0.0707927942276001, -0.010947787202894688, 0.2390892058610916, -0.09615686535835266, -0.10527963191270828, 0.20623502135276794, -0.03790713846683502, -0.14620162546634674, 0.10589602589607239, -0.004730983171612024, 0.13065624237060547, 0.12939231097698212, 0.18979355692863464, 0.0007764091715216637, -0.02888396754860878, 0.05273909121751785, 0.08515644073486328, -0.09192401170730591, -0.009224558249115944, 0.006953336298465729, 0.019487295299768448, -0.0604826994240284, 0.058031678199768066, 0.07512139528989792, 0.058956172317266464, -0.04852375388145447, -0.03693552687764168, 0.0054132877849042416, -0.03053313121199608, 0.07787030935287476, -0.03355223312973976, 0.11395929753780365, -0.028790919110178947, -0.009170105680823326, -0.0036145257763564587, 0.06036003306508064, -0.04261153191328049, 0.018190739676356316, -0.06871908903121948, 0.13146312534809113, -0.024455873295664787, 0.07805652916431427, -0.11542021483182907, -0.06328452378511429, -0.014105372130870819, 0.11948758363723755, 0.05177495628595352, 0.06743009388446808, 0.03816762939095497, -0.04157688468694687, 0.02144087478518486, 0.006811530329287052, 0.16115623712539673, -0.009470009244978428, -0.08691064268350601, -0.094950832426548, 0.10649995505809784, -0.05250834673643112, 0.05891750752925873, -0.04607817530632019, 0.012430060654878616, -0.007558582350611687, 0.08419515937566757, -0.01676550693809986, 0.09096702188253403, 0.013472671620547771, 0.017037739977240562, -0.08330360054969788, 0.00552785862237215, 0.06929166615009308, -0.04137129336595535, -0.07525984197854996, 0.24265378713607788, -0.11155009269714355, 0.09725353121757507, 0.1959332674741745, -0.2246531844139099, 0.017021849751472473, -0.024936281144618988, -0.01824372075498104, 0.003590463427826762, 0.0407932847738266, -0.020584916695952415, 0.15661026537418365, -0.005723661743104458, 0.1630423665046692, -0.043110910803079605, -0.019893556833267212, 0.020257245749235153, -0.08925081044435501, -0.00834382139146328, 0.09131285548210144, 0.10188426077365875, -0.06383258104324341, 0.15723173320293427, 0.14325986802577972, 0.02455965429544449, 0.18680575489997864, 0.028767947107553482, -0.0063820513896644115, 0.04121730849146843, -0.006069001276046038, -0.03843383118510246, -0.03192035108804703, -0.219386026263237, -0.04428457096219063, 0.06277934461832047, 0.009671555832028389, 0.10874585062265396, -0.06731194257736206, -0.04561801254749298, -0.008217640221118927, -0.0076491497457027435, 0.08621719479560852, 0.12873822450637817, 0.03028985857963562, 0.11494994908571243, -0.00158013217151165, -0.027686171233654022, 0.05653297156095505, 0.031615711748600006, -0.037328172475099564, 0.19481655955314636, -0.11397957801818848, -0.35038501024246216, -0.09559032320976257, -0.17552193999290466, -0.07455673813819885, 0.03829096630215645, 0.07300632447004318, -0.15407921373844147, -0.02510600909590721, 0.014120997861027718, 0.10819751769304276, -0.06674625724554062, 0.016306182369589806, -0.047712475061416626, 0.0020079133100807667, -0.15064212679862976, -0.08720564097166061, -0.06352168321609497, -0.046571291983127594, -0.057697124779224396, 0.1546059548854828, -0.1368713676929474, 0.05739881843328476, 0.20625919103622437, 0.04664858058094978, 0.022002840414643288, -0.022375911474227905, 0.17239011824131012, -0.11726665496826172, 0.0457535982131958, 0.2143382728099823, 0.00867398176342249, 0.07063840329647064, 0.15636718273162842, -0.023956511169672012, -0.09318286180496216, 0.04038812592625618, -0.009676158428192139, -0.07902279496192932, -0.2506827712059021, -0.12741594016551971, -0.11919914186000824, 0.11445384472608566, 0.017909526824951172, 0.021345248445868492, 0.17496436834335327, 0.12987011671066284, -0.0325968861579895, 0.06649789959192276, 0.033899616450071335, 0.08671996742486954, 0.23215514421463013, -0.06239953264594078, 0.15568697452545166, -0.01785510592162609, -0.16171787679195404, 0.0989636480808258, 0.05934997648000717, 0.1355666220188141, 0.0011738985776901245, 0.0213867649435997, 0.03273242339491844, 0.04031551629304886, 0.10453791916370392, 0.07370110601186752, 0.009527068585157394, -0.025985941290855408, -0.04248800128698349, -0.03684599697589874, -0.022087519988417625, 0.08546103537082672, 0.03424449265003204, -0.16365528106689453, -0.014997772872447968, -0.010500336065888405, 0.0851941704750061, 0.08801325410604477, 0.1347058266401291, -0.17752423882484436, -0.021291052922606468, 0.09493374824523926, 0.00997153576463461, -0.11472714692354202, 0.06450123339891434, -0.03718695789575577, -0.1397397816181183, 0.05941950902342796, -0.014308363199234009, 0.10111919790506363, -0.06641452759504318, 0.05838441103696823, -0.11516855657100677, -0.02304365299642086, 0.002995515475049615, 0.09358447790145874, -0.393774151802063, 0.1628636121749878, -0.00986325554549694, -0.005545234307646751, -0.12398351728916168, 0.010843661613762379, 0.028195470571517944, 0.05972886085510254, 0.08891104906797409, -0.010003120638430119, 0.07640086114406586, -0.09257785975933075, -0.07097684592008591, 0.029322227463126183, 0.08371448516845703, -0.05723239853978157, -0.0016892198473215103, -0.009944526478648186, 0.0050379810854792595, -0.05052965134382248, -0.09611181169748306, -0.016050349920988083, -0.15210463106632233, 0.08686468750238419, 0.05218008905649185, 0.05912322923541069, 0.02918119542300701, -0.026591941714286804, -0.06211758404970169, 0.18332351744174957, -0.005264990031719208, -0.13673368096351624, -0.0789438784122467, -0.0685691386461258, 0.06152055785059929, -0.07190051674842834, 0.032612599432468414, -0.0811052918434143, 0.02096245437860489, -0.05929744988679886, -0.19246259331703186, 0.06953182816505432, -0.09314093738794327, -0.05067726969718933, -0.0079753203317523, 0.18315578997135162, -0.01674685999751091, -0.02609667368233204, 0.047122880816459656, -0.01152312383055687, -0.10806039720773697, -0.10138577967882156, 0.011060762219130993, 0.08743880689144135, 0.036481451243162155, 0.08845022320747375, -0.05318596586585045, -0.08045724034309387, -0.12577585875988007, -0.03599841520190239, 0.21745523810386658, 0.1352667659521103, -0.034043945372104645, 0.16965073347091675, 0.1135406419634819, -0.07224813848733902, -0.31420955061912537, -0.1262809932231903, -0.07170078158378601, 0.0005419179797172546, -0.053622931241989136, -0.19506920874118805, 0.09403566271066666, -0.016184424981474876, -0.017515968531370163, 0.0996241420507431, -0.2860146462917328, -0.12294992059469223, 0.1576877236366272, -0.0020774747245013714, 0.39147499203681946, -0.09711934626102448, -0.05213112756609917, -0.06704415380954742, -0.08231525123119354, 0.14660745859146118, 0.003282658290117979, 0.11926298588514328, -0.03223257511854172, 0.1811666190624237, 0.0640127956867218, 0.005202583037316799, 0.0986623540520668, 0.049879979342222214, -0.03150435537099838, -0.11892729997634888, -0.08872099220752716, 0.054370198398828506, -0.00361951463855803, 0.06871772557497025, -0.045202355831861496, 0.042667657136917114, -0.1388511061668396, -0.06406469643115997, -0.07063893973827362, 0.03217563033103943, 0.022150516510009766, -0.08418355882167816, -0.05102207511663437, -0.01917990855872631, -0.010927168652415276, 0.028528694063425064, 0.12718607485294342, -0.045191530138254166, 0.061615824699401855, 0.05375410616397858, 0.10642847418785095, -0.0852544978260994, 0.039659637957811356, -0.06165105104446411, -0.05476545915007591, 0.08751996606588364, -0.15280890464782715, 0.014260325580835342, 0.10948443412780762, -0.05449675768613815, 0.07034394145011902, 0.08002948760986328, -0.03322891891002655, 0.042468149214982986, 0.0819685310125351, -0.2078244686126709, -0.059846896678209305, -0.04982765018939972, -0.05239968001842499, 0.11036893725395203, 0.11758973449468613, 0.20212361216545105, -0.021785449236631393, -0.035690389573574066, -0.014266952872276306, 0.03772967308759689, -0.030779385939240456, 0.10024284571409225, -0.003108932636678219, 0.014578756876289845, -0.1356244832277298, 0.04088431969285011, 0.018231678754091263, -0.04935435950756073, 0.050490230321884155, 0.09342405200004578, -0.09433169662952423, -0.12526321411132812, -0.05212131142616272, 0.07134290039539337, -0.0969986766576767, -0.0027227341197431087, -0.01635088585317135, -0.16709518432617188, 0.052774835377931595, 0.09144146740436554, 0.05221816152334213, 0.07960651069879532, -0.06543218344449997, -0.0179096981883049, -0.055595021694898605, 0.026248406618833542, 0.06626072525978088, 0.006795559544116259, -0.0881875529885292, 0.021433385089039803, -0.03993553668260574, 0.16217570006847382, -0.09396102279424667, -0.08887333422899246, -0.13835769891738892, 0.027371102944016457, -0.17396841943264008, -0.05773686245083809, -0.1259203851222992, -0.05451234430074692, -0.03418267145752907, -0.029858360067009926, -0.039504360407590866, -0.0435597263276577, -0.08228189498186111, 0.05074796825647354, -0.04999759793281555, 0.03118089772760868, -0.05612969771027565, -0.045256368815898895, 0.030891595408320427, -0.050119198858737946, 0.13050159811973572, 0.1406235694885254, -0.07488695532083511, 0.06683994084596634, -0.07634495198726654, -0.039566803723573685, 0.09073929488658905, 0.05351864546537399, 0.06112143024802208, 0.04633815214037895, -0.002145530190318823, 0.04543326050043106, 0.04723939672112465, 0.04391106218099594, 0.029905904084444046, -0.09344480186700821, 0.04646405205130577, -0.05182987079024315, -0.12524983286857605, -0.03639671206474304, 0.005239246413111687, 0.041996438056230545, 0.06181972473859787, 0.11364899575710297, -0.060029465705156326, 0.11049474775791168, -0.04336366429924965, 0.0264158733189106, -0.021741051226854324, -0.17489992082118988, 0.011466334573924541, -0.11083097755908966, 0.035859253257513046, -0.01356759387999773, 0.2189660668373108, 0.048111531883478165, -0.0048138173297047615, 0.008679034188389778, 0.03266594558954239, 0.04032257944345474, 0.04873806983232498, 0.1462908387184143, 0.10418044030666351, -0.03941921517252922, -0.14856553077697754, 0.07860119640827179, 0.04979313164949417, 0.10476244986057281, 0.0788101926445961, -0.0032637007534503937, -0.008567674085497856, 0.09158727526664734, -0.0024726937990635633, 0.011867997236549854, -0.0760711207985878, -0.10420184582471848, -0.11120584607124329, 0.040450215339660645, -0.014851558953523636, 0.05407802760601044, 0.13595010340213776, -0.022204827517271042, 0.0061662159860134125, -0.013565451838076115, -0.09817624092102051, -0.14944778382778168, -0.1978628784418106, -0.09255565702915192, -0.10039447247982025, -0.004987895023077726, -0.1292000114917755, 0.017753439024090767, 0.025326456874608994, 0.07977227866649628, -0.0743170902132988, 0.12330517172813416, 0.08845844864845276, -0.09819568693637848, 0.1366061568260193, -0.02930130623281002, 0.035352397710084915, 0.0013805855996906757, -0.02378052845597267, -0.1260133683681488, 0.04055990278720856, -0.014052973128855228, 0.05454232916235924, -0.06255052983760834, 0.03133060038089752, -0.10206601023674011, -0.08690181374549866, -0.04904913157224655, 0.05576784908771515, -0.01058909296989441, 0.11049410700798035, 0.04277542978525162, -0.0542302280664444, 0.03859201818704605, 0.18897023797035217, -0.028784576803445816, -0.06421303749084473, -0.07458139210939407, 0.14758092164993286, 0.011797708459198475, 0.09122835099697113, -0.027796631678938866, 0.0249556303024292, -0.11141808331012726, 0.36470651626586914, 0.2769416272640228, -0.0932321548461914, 0.0011342503130435944, -0.02969958260655403, 0.03763050213456154, 0.07493697851896286, 0.13585630059242249, 0.08117265999317169, 0.28879058361053467, -0.053391486406326294, -0.03465833514928818, -0.024943789467215538, -0.03410155698657036, -0.10079725086688995, 0.05028124898672104, 0.05205275118350983, -0.07995148748159409, -0.021969502791762352, 0.09531421959400177, -0.2670392096042633, 0.13942958414554596, -0.08704971522092819, -0.18320243060588837, -0.10686859488487244, -0.011772154830396175, 0.054480500519275665, 0.02383100986480713, 0.10637961328029633, -0.03152860328555107, -0.07485074549913406, 0.08676011860370636, 0.017972063273191452, -0.1609298288822174, 0.03648524731397629, 0.08000543713569641, -0.010551512241363525, -0.04312047362327576, -0.01824316568672657, 0.0699373409152031, 0.07471390813589096, 0.04988278076052666, -0.017278242856264114, 0.05565600469708443, -0.006048320326954126, -0.007254385389387608, 0.06590966880321503, 0.03585546463727951, -0.0009652543812990189, -0.12986749410629272, 0.1127333790063858, -0.14744898676872253, 0.03514809533953667, 0.019453592598438263, -0.042535971850156784, -0.03262657672166824, 0.03626735880970955, -0.10610075294971466, 0.05622672662138939, 0.10164473205804825, -0.028023410588502884, -0.01666472665965557, -0.028365053236484528, -0.017056241631507874, -0.04851152002811432, -0.05852307006716728, -0.09714926779270172, -0.15487539768218994, -0.1308649480342865, 0.027045125141739845, 0.031534720212221146, -0.16601626574993134, 0.049147821962833405, -0.1326368749141693, 0.057243626564741135, -0.1291460543870926, 0.09664825350046158, 0.06121774762868881, 0.014837436378002167, -0.015610164031386375, 0.01829163357615471, 0.003466215915977955, 0.0910218134522438, -0.10638102889060974, -0.09066619724035263 ]
null
null
transformers
# DioloGPT KaeyaBot model
{"tags": ["conversational"]}
text-generation
felinecity/DioloGPT-small-KaeyaBot2
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
# DioloGPT KaeyaBot model
[ "# DioloGPT KaeyaBot model" ]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "# DioloGPT KaeyaBot model" ]
[ 51, 9 ]
[ "passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n# DioloGPT KaeyaBot model" ]
[ -0.013482030481100082, -0.04944401979446411, -0.00660965871065855, 0.018116695806384087, 0.16041694581508636, 0.005352854263037443, 0.1591426134109497, 0.113655224442482, -0.005036589689552784, -0.02728116884827614, 0.12488944083452225, 0.22933024168014526, 0.029869183897972107, 0.1351277083158493, -0.07913515716791153, -0.29110777378082275, 0.05341096594929695, 0.03645821288228035, 0.0021556243300437927, 0.08520137518644333, 0.10741303861141205, -0.07100285589694977, 0.10141543298959732, -0.015280923806130886, -0.12886378169059753, -0.034620773047208786, 0.009351576678454876, -0.14558735489845276, 0.07823927700519562, 0.0635087788105011, 0.05051994323730469, 0.025348380208015442, -0.03491302207112312, -0.11841075867414474, 0.036076925694942474, -0.010789170861244202, -0.01633112132549286, 0.03215695172548294, -0.006123706232756376, -0.10275706648826599, 0.06512311846017838, 0.05040643364191055, -0.007862668484449387, 0.01055244728922844, -0.1442529559135437, 0.010917812585830688, -0.01737990230321884, 0.011684340424835682, 0.13442599773406982, 0.10449829697608948, -0.02284255623817444, 0.044014379382133484, -0.0918123796582222, 0.10083391517400742, 0.11368492990732193, -0.24449126422405243, -0.03187127411365509, 0.10879965126514435, 0.03690730035305023, 0.05006536468863487, -0.014344406314194202, 0.06345362216234207, 0.046731121838092804, 0.00035137636587023735, 0.01799810864031315, -0.09024252742528915, -0.0809108167886734, 0.007838817313313484, -0.07939121127128601, 0.005723253358155489, 0.2735130786895752, -0.06425411999225616, 0.04118042066693306, -0.0737089291214943, -0.07196356356143951, 0.023852720856666565, -0.0601150244474411, -0.008588753640651703, -0.07469012588262558, 0.027902815490961075, 0.057888440787792206, -0.10337091982364655, -0.1314590871334076, -0.008448471315205097, -0.17960487306118011, 0.24182842671871185, 0.050672855228185654, 0.018773283809423447, -0.20690259337425232, 0.07384129613637924, 0.017387308180332184, -0.10685200989246368, -0.006884794682264328, -0.11515865474939346, 0.041213035583496094, 0.010604165494441986, -0.015647996217012405, -0.05562400445342064, 0.08027039468288422, 0.11201230436563492, 0.049923136830329895, 0.003928730729967356, -0.01086176373064518, 0.03498953580856323, 0.07448742538690567, 0.1263836920261383, -0.019534315913915634, -0.015271554701030254, 0.044583309441804886, -0.058608293533325195, 0.013690563850104809, -0.06365002691745758, -0.16729891300201416, -0.011074299924075603, -0.0019514053128659725, 0.06900392472743988, 0.025876125320792198, 0.12303344905376434, -0.04554140567779541, -0.056231752038002014, 0.029509034007787704, -0.05098415166139603, -0.034932199865579605, -0.01566430553793907, -0.03030925616621971, 0.17786185443401337, -0.005685892887413502, 0.03192080184817314, -0.10662221908569336, 0.057476289570331573, -0.04604175314307213, -0.0024113552644848824, -0.030046630650758743, -0.05317991226911545, -0.007894616574048996, -0.09116844832897186, 0.04384077712893486, -0.18569129705429077, -0.16892604529857635, 0.002109426073729992, -0.0014731264673173428, -0.06242804601788521, -0.07764072716236115, -0.09326117485761642, -0.03556299954652786, 0.023548118770122528, -0.0708107203245163, -0.0026914088521152735, -0.0493709072470665, 0.07582206279039383, -0.03043040819466114, 0.12273649871349335, -0.08936804533004761, 0.0855768695473671, -0.09660112857818604, -0.009370164945721626, -0.1144319400191307, 0.13016021251678467, -0.02309008315205574, 0.10889901965856552, -0.01719598099589348, -0.004806773737072945, -0.08014009147882462, 0.0707927942276001, -0.010947787202894688, 0.2390892058610916, -0.09615686535835266, -0.10527963191270828, 0.20623502135276794, -0.03790713846683502, -0.14620162546634674, 0.10589602589607239, -0.004730983171612024, 0.13065624237060547, 0.12939231097698212, 0.18979355692863464, 0.0007764091715216637, -0.02888396754860878, 0.05273909121751785, 0.08515644073486328, -0.09192401170730591, -0.009224558249115944, 0.006953336298465729, 0.019487295299768448, -0.0604826994240284, 0.058031678199768066, 0.07512139528989792, 0.058956172317266464, -0.04852375388145447, -0.03693552687764168, 0.0054132877849042416, -0.03053313121199608, 0.07787030935287476, -0.03355223312973976, 0.11395929753780365, -0.028790919110178947, -0.009170105680823326, -0.0036145257763564587, 0.06036003306508064, -0.04261153191328049, 0.018190739676356316, -0.06871908903121948, 0.13146312534809113, -0.024455873295664787, 0.07805652916431427, -0.11542021483182907, -0.06328452378511429, -0.014105372130870819, 0.11948758363723755, 0.05177495628595352, 0.06743009388446808, 0.03816762939095497, -0.04157688468694687, 0.02144087478518486, 0.006811530329287052, 0.16115623712539673, -0.009470009244978428, -0.08691064268350601, -0.094950832426548, 0.10649995505809784, -0.05250834673643112, 0.05891750752925873, -0.04607817530632019, 0.012430060654878616, -0.007558582350611687, 0.08419515937566757, -0.01676550693809986, 0.09096702188253403, 0.013472671620547771, 0.017037739977240562, -0.08330360054969788, 0.00552785862237215, 0.06929166615009308, -0.04137129336595535, -0.07525984197854996, 0.24265378713607788, -0.11155009269714355, 0.09725353121757507, 0.1959332674741745, -0.2246531844139099, 0.017021849751472473, -0.024936281144618988, -0.01824372075498104, 0.003590463427826762, 0.0407932847738266, -0.020584916695952415, 0.15661026537418365, -0.005723661743104458, 0.1630423665046692, -0.043110910803079605, -0.019893556833267212, 0.020257245749235153, -0.08925081044435501, -0.00834382139146328, 0.09131285548210144, 0.10188426077365875, -0.06383258104324341, 0.15723173320293427, 0.14325986802577972, 0.02455965429544449, 0.18680575489997864, 0.028767947107553482, -0.0063820513896644115, 0.04121730849146843, -0.006069001276046038, -0.03843383118510246, -0.03192035108804703, -0.219386026263237, -0.04428457096219063, 0.06277934461832047, 0.009671555832028389, 0.10874585062265396, -0.06731194257736206, -0.04561801254749298, -0.008217640221118927, -0.0076491497457027435, 0.08621719479560852, 0.12873822450637817, 0.03028985857963562, 0.11494994908571243, -0.00158013217151165, -0.027686171233654022, 0.05653297156095505, 0.031615711748600006, -0.037328172475099564, 0.19481655955314636, -0.11397957801818848, -0.35038501024246216, -0.09559032320976257, -0.17552193999290466, -0.07455673813819885, 0.03829096630215645, 0.07300632447004318, -0.15407921373844147, -0.02510600909590721, 0.014120997861027718, 0.10819751769304276, -0.06674625724554062, 0.016306182369589806, -0.047712475061416626, 0.0020079133100807667, -0.15064212679862976, -0.08720564097166061, -0.06352168321609497, -0.046571291983127594, -0.057697124779224396, 0.1546059548854828, -0.1368713676929474, 0.05739881843328476, 0.20625919103622437, 0.04664858058094978, 0.022002840414643288, -0.022375911474227905, 0.17239011824131012, -0.11726665496826172, 0.0457535982131958, 0.2143382728099823, 0.00867398176342249, 0.07063840329647064, 0.15636718273162842, -0.023956511169672012, -0.09318286180496216, 0.04038812592625618, -0.009676158428192139, -0.07902279496192932, -0.2506827712059021, -0.12741594016551971, -0.11919914186000824, 0.11445384472608566, 0.017909526824951172, 0.021345248445868492, 0.17496436834335327, 0.12987011671066284, -0.0325968861579895, 0.06649789959192276, 0.033899616450071335, 0.08671996742486954, 0.23215514421463013, -0.06239953264594078, 0.15568697452545166, -0.01785510592162609, -0.16171787679195404, 0.0989636480808258, 0.05934997648000717, 0.1355666220188141, 0.0011738985776901245, 0.0213867649435997, 0.03273242339491844, 0.04031551629304886, 0.10453791916370392, 0.07370110601186752, 0.009527068585157394, -0.025985941290855408, -0.04248800128698349, -0.03684599697589874, -0.022087519988417625, 0.08546103537082672, 0.03424449265003204, -0.16365528106689453, -0.014997772872447968, -0.010500336065888405, 0.0851941704750061, 0.08801325410604477, 0.1347058266401291, -0.17752423882484436, -0.021291052922606468, 0.09493374824523926, 0.00997153576463461, -0.11472714692354202, 0.06450123339891434, -0.03718695789575577, -0.1397397816181183, 0.05941950902342796, -0.014308363199234009, 0.10111919790506363, -0.06641452759504318, 0.05838441103696823, -0.11516855657100677, -0.02304365299642086, 0.002995515475049615, 0.09358447790145874, -0.393774151802063, 0.1628636121749878, -0.00986325554549694, -0.005545234307646751, -0.12398351728916168, 0.010843661613762379, 0.028195470571517944, 0.05972886085510254, 0.08891104906797409, -0.010003120638430119, 0.07640086114406586, -0.09257785975933075, -0.07097684592008591, 0.029322227463126183, 0.08371448516845703, -0.05723239853978157, -0.0016892198473215103, -0.009944526478648186, 0.0050379810854792595, -0.05052965134382248, -0.09611181169748306, -0.016050349920988083, -0.15210463106632233, 0.08686468750238419, 0.05218008905649185, 0.05912322923541069, 0.02918119542300701, -0.026591941714286804, -0.06211758404970169, 0.18332351744174957, -0.005264990031719208, -0.13673368096351624, -0.0789438784122467, -0.0685691386461258, 0.06152055785059929, -0.07190051674842834, 0.032612599432468414, -0.0811052918434143, 0.02096245437860489, -0.05929744988679886, -0.19246259331703186, 0.06953182816505432, -0.09314093738794327, -0.05067726969718933, -0.0079753203317523, 0.18315578997135162, -0.01674685999751091, -0.02609667368233204, 0.047122880816459656, -0.01152312383055687, -0.10806039720773697, -0.10138577967882156, 0.011060762219130993, 0.08743880689144135, 0.036481451243162155, 0.08845022320747375, -0.05318596586585045, -0.08045724034309387, -0.12577585875988007, -0.03599841520190239, 0.21745523810386658, 0.1352667659521103, -0.034043945372104645, 0.16965073347091675, 0.1135406419634819, -0.07224813848733902, -0.31420955061912537, -0.1262809932231903, -0.07170078158378601, 0.0005419179797172546, -0.053622931241989136, -0.19506920874118805, 0.09403566271066666, -0.016184424981474876, -0.017515968531370163, 0.0996241420507431, -0.2860146462917328, -0.12294992059469223, 0.1576877236366272, -0.0020774747245013714, 0.39147499203681946, -0.09711934626102448, -0.05213112756609917, -0.06704415380954742, -0.08231525123119354, 0.14660745859146118, 0.003282658290117979, 0.11926298588514328, -0.03223257511854172, 0.1811666190624237, 0.0640127956867218, 0.005202583037316799, 0.0986623540520668, 0.049879979342222214, -0.03150435537099838, -0.11892729997634888, -0.08872099220752716, 0.054370198398828506, -0.00361951463855803, 0.06871772557497025, -0.045202355831861496, 0.042667657136917114, -0.1388511061668396, -0.06406469643115997, -0.07063893973827362, 0.03217563033103943, 0.022150516510009766, -0.08418355882167816, -0.05102207511663437, -0.01917990855872631, -0.010927168652415276, 0.028528694063425064, 0.12718607485294342, -0.045191530138254166, 0.061615824699401855, 0.05375410616397858, 0.10642847418785095, -0.0852544978260994, 0.039659637957811356, -0.06165105104446411, -0.05476545915007591, 0.08751996606588364, -0.15280890464782715, 0.014260325580835342, 0.10948443412780762, -0.05449675768613815, 0.07034394145011902, 0.08002948760986328, -0.03322891891002655, 0.042468149214982986, 0.0819685310125351, -0.2078244686126709, -0.059846896678209305, -0.04982765018939972, -0.05239968001842499, 0.11036893725395203, 0.11758973449468613, 0.20212361216545105, -0.021785449236631393, -0.035690389573574066, -0.014266952872276306, 0.03772967308759689, -0.030779385939240456, 0.10024284571409225, -0.003108932636678219, 0.014578756876289845, -0.1356244832277298, 0.04088431969285011, 0.018231678754091263, -0.04935435950756073, 0.050490230321884155, 0.09342405200004578, -0.09433169662952423, -0.12526321411132812, -0.05212131142616272, 0.07134290039539337, -0.0969986766576767, -0.0027227341197431087, -0.01635088585317135, -0.16709518432617188, 0.052774835377931595, 0.09144146740436554, 0.05221816152334213, 0.07960651069879532, -0.06543218344449997, -0.0179096981883049, -0.055595021694898605, 0.026248406618833542, 0.06626072525978088, 0.006795559544116259, -0.0881875529885292, 0.021433385089039803, -0.03993553668260574, 0.16217570006847382, -0.09396102279424667, -0.08887333422899246, -0.13835769891738892, 0.027371102944016457, -0.17396841943264008, -0.05773686245083809, -0.1259203851222992, -0.05451234430074692, -0.03418267145752907, -0.029858360067009926, -0.039504360407590866, -0.0435597263276577, -0.08228189498186111, 0.05074796825647354, -0.04999759793281555, 0.03118089772760868, -0.05612969771027565, -0.045256368815898895, 0.030891595408320427, -0.050119198858737946, 0.13050159811973572, 0.1406235694885254, -0.07488695532083511, 0.06683994084596634, -0.07634495198726654, -0.039566803723573685, 0.09073929488658905, 0.05351864546537399, 0.06112143024802208, 0.04633815214037895, -0.002145530190318823, 0.04543326050043106, 0.04723939672112465, 0.04391106218099594, 0.029905904084444046, -0.09344480186700821, 0.04646405205130577, -0.05182987079024315, -0.12524983286857605, -0.03639671206474304, 0.005239246413111687, 0.041996438056230545, 0.06181972473859787, 0.11364899575710297, -0.060029465705156326, 0.11049474775791168, -0.04336366429924965, 0.0264158733189106, -0.021741051226854324, -0.17489992082118988, 0.011466334573924541, -0.11083097755908966, 0.035859253257513046, -0.01356759387999773, 0.2189660668373108, 0.048111531883478165, -0.0048138173297047615, 0.008679034188389778, 0.03266594558954239, 0.04032257944345474, 0.04873806983232498, 0.1462908387184143, 0.10418044030666351, -0.03941921517252922, -0.14856553077697754, 0.07860119640827179, 0.04979313164949417, 0.10476244986057281, 0.0788101926445961, -0.0032637007534503937, -0.008567674085497856, 0.09158727526664734, -0.0024726937990635633, 0.011867997236549854, -0.0760711207985878, -0.10420184582471848, -0.11120584607124329, 0.040450215339660645, -0.014851558953523636, 0.05407802760601044, 0.13595010340213776, -0.022204827517271042, 0.0061662159860134125, -0.013565451838076115, -0.09817624092102051, -0.14944778382778168, -0.1978628784418106, -0.09255565702915192, -0.10039447247982025, -0.004987895023077726, -0.1292000114917755, 0.017753439024090767, 0.025326456874608994, 0.07977227866649628, -0.0743170902132988, 0.12330517172813416, 0.08845844864845276, -0.09819568693637848, 0.1366061568260193, -0.02930130623281002, 0.035352397710084915, 0.0013805855996906757, -0.02378052845597267, -0.1260133683681488, 0.04055990278720856, -0.014052973128855228, 0.05454232916235924, -0.06255052983760834, 0.03133060038089752, -0.10206601023674011, -0.08690181374549866, -0.04904913157224655, 0.05576784908771515, -0.01058909296989441, 0.11049410700798035, 0.04277542978525162, -0.0542302280664444, 0.03859201818704605, 0.18897023797035217, -0.028784576803445816, -0.06421303749084473, -0.07458139210939407, 0.14758092164993286, 0.011797708459198475, 0.09122835099697113, -0.027796631678938866, 0.0249556303024292, -0.11141808331012726, 0.36470651626586914, 0.2769416272640228, -0.0932321548461914, 0.0011342503130435944, -0.02969958260655403, 0.03763050213456154, 0.07493697851896286, 0.13585630059242249, 0.08117265999317169, 0.28879058361053467, -0.053391486406326294, -0.03465833514928818, -0.024943789467215538, -0.03410155698657036, -0.10079725086688995, 0.05028124898672104, 0.05205275118350983, -0.07995148748159409, -0.021969502791762352, 0.09531421959400177, -0.2670392096042633, 0.13942958414554596, -0.08704971522092819, -0.18320243060588837, -0.10686859488487244, -0.011772154830396175, 0.054480500519275665, 0.02383100986480713, 0.10637961328029633, -0.03152860328555107, -0.07485074549913406, 0.08676011860370636, 0.017972063273191452, -0.1609298288822174, 0.03648524731397629, 0.08000543713569641, -0.010551512241363525, -0.04312047362327576, -0.01824316568672657, 0.0699373409152031, 0.07471390813589096, 0.04988278076052666, -0.017278242856264114, 0.05565600469708443, -0.006048320326954126, -0.007254385389387608, 0.06590966880321503, 0.03585546463727951, -0.0009652543812990189, -0.12986749410629272, 0.1127333790063858, -0.14744898676872253, 0.03514809533953667, 0.019453592598438263, -0.042535971850156784, -0.03262657672166824, 0.03626735880970955, -0.10610075294971466, 0.05622672662138939, 0.10164473205804825, -0.028023410588502884, -0.01666472665965557, -0.028365053236484528, -0.017056241631507874, -0.04851152002811432, -0.05852307006716728, -0.09714926779270172, -0.15487539768218994, -0.1308649480342865, 0.027045125141739845, 0.031534720212221146, -0.16601626574993134, 0.049147821962833405, -0.1326368749141693, 0.057243626564741135, -0.1291460543870926, 0.09664825350046158, 0.06121774762868881, 0.014837436378002167, -0.015610164031386375, 0.01829163357615471, 0.003466215915977955, 0.0910218134522438, -0.10638102889060974, -0.09066619724035263 ]
null
null
transformers
# DioloGPT LisaBot model
{"tags": ["conversational"]}
text-generation
felinecity/DioloGPT-small-LisaBot
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
# DioloGPT LisaBot model
[ "# DioloGPT LisaBot model" ]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "# DioloGPT LisaBot model" ]
[ 51, 8 ]
[ "passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n# DioloGPT LisaBot model" ]
[ -0.029328245669603348, 0.03723815828561783, -0.006895450409501791, 0.04889634996652603, 0.14895035326480865, 0.011883338913321495, 0.18311049044132233, 0.11943424493074417, 0.016406463459134102, -0.04449348524212837, 0.13111895322799683, 0.20789767801761627, -0.007189597003161907, 0.10930775851011276, -0.07690312713384628, -0.3252317011356354, 0.050289642065763474, 0.039966024458408356, -0.043235696852207184, 0.08937612920999527, 0.1125669926404953, -0.05250434949994087, 0.10541144013404846, -0.01817232556641102, -0.16798274219036102, -0.01912146620452404, -0.003156219609081745, -0.10860709846019745, 0.0807017832994461, 0.0664425864815712, 0.0651884451508522, 0.03904646262526512, -0.022599807009100914, -0.0782502070069313, 0.030250338837504387, -0.0013531785225495696, -0.013569631613790989, 0.05846495181322098, 0.0021010912023484707, -0.10364317148923874, 0.0955217182636261, 0.04475487768650055, 0.011700058355927467, 0.022704096511006355, -0.15814244747161865, 0.03986551985144615, -0.009011158719658852, -0.03857630863785744, 0.08329746872186661, 0.11513280123472214, -0.013509880751371384, 0.08637033402919769, -0.09660452604293823, 0.11082640290260315, 0.14374354481697083, -0.2736108601093292, -0.0333932600915432, 0.1316474974155426, 0.0014306249795481563, 0.03414762765169144, -0.0006292964681051672, 0.05321236327290535, 0.02901291847229004, 0.021492712199687958, -0.030763672664761543, -0.07305711507797241, -0.06811391562223434, -0.0035538466181606054, -0.07215484231710434, -0.010293906554579735, 0.2924296259880066, -0.04940566420555115, 0.03532072901725769, -0.07024267315864563, -0.09191200137138367, 0.008452476002275944, -0.04876045510172844, -0.03136386349797249, -0.06502240151166916, 0.05245746299624443, 0.018965627998113632, -0.09600221365690231, -0.10828667134046555, -0.018839769065380096, -0.162322998046875, 0.18976624310016632, 0.022241136059165, 0.03648676350712776, -0.22765123844146729, 0.08548924326896667, 0.018568141385912895, -0.10558510571718216, 0.001871575484983623, -0.10700592398643494, 0.0543266162276268, 0.0028644076082855463, -0.04493405669927597, -0.0672609731554985, 0.061313383281230927, 0.12189832329750061, 0.015669548884034157, -0.00040804027230478823, -0.028488848358392715, 0.03569619730114937, 0.07285302132368088, 0.09100448340177536, -0.012112108990550041, -0.03155976161360741, 0.03680747002363205, -0.09935184568166733, -0.010885883122682571, -0.05244247987866402, -0.1707736700773239, -0.015808958560228348, 0.006480935029685497, 0.06544920057058334, 0.04539652168750763, 0.12768065929412842, -0.0614190474152565, -0.06447000056505203, 0.06650754809379578, -0.05465654283761978, -0.007555694319307804, -0.011759641580283642, -0.032091014087200165, 0.1556423008441925, 0.023399123921990395, 0.016510792076587677, -0.11394122242927551, 0.04684578627347946, -0.05298810824751854, -0.004111834801733494, -0.05765104666352272, -0.04745332524180412, -0.015261505730450153, -0.04245674982666969, 0.03313618525862694, -0.15648072957992554, -0.19743779301643372, -0.004618766717612743, 0.0063469791784882545, -0.08496898412704468, -0.07072534412145615, -0.10597080737352371, -0.03714630380272865, 0.03529529646039009, -0.058053888380527496, -0.021311650052666664, -0.04197255149483681, 0.07204986363649368, -0.01978432573378086, 0.10103687644004822, -0.14080685377120972, 0.08326230943202972, -0.10657190531492233, -0.017607903108000755, -0.10631078481674194, 0.1399596780538559, 0.01639265939593315, 0.12174445390701294, -0.018155479803681374, -0.01947285607457161, -0.0979805439710617, 0.07973404973745346, -0.016247684136033058, 0.26703155040740967, -0.14957906305789948, -0.08640493452548981, 0.21982432901859283, -0.04766673594713211, -0.11975882947444916, 0.10443239659070969, -0.010852615348994732, 0.10889342427253723, 0.13001975417137146, 0.14211255311965942, 0.016910318285226822, 0.003616544883698225, 0.0890187993645668, 0.0921565368771553, -0.0913369283080101, 0.003929294180124998, -0.016294218599796295, 0.012157018296420574, -0.05037248879671097, 0.06453073024749756, 0.07614035904407501, 0.04521912708878517, -0.05181271582841873, -0.038874536752700806, -0.01960822381079197, -0.019774090498685837, 0.0579492561519146, -0.015295184217393398, 0.1124684289097786, -0.03190203011035919, -0.029047509655356407, -0.001268048188649118, 0.035614024847745895, -0.04596944525837898, 0.006015157792717218, -0.06469520181417465, 0.08704603463411331, 0.007005276158452034, 0.06870530545711517, -0.16074246168136597, -0.07456262409687042, -0.024646446108818054, 0.1859603226184845, 0.06171246990561485, 0.12458490580320358, 0.05969439819455147, -0.028478698804974556, 0.02469014748930931, 0.004784136079251766, 0.16775494813919067, -0.0217563696205616, -0.06523340195417404, -0.10004142671823502, 0.07941178232431412, -0.07156039029359818, 0.03872760012745857, -0.04045075923204422, 0.01761152222752571, 0.029499925673007965, 0.11049078404903412, 0.011326950043439865, 0.053087394684553146, 0.002181092044338584, 0.009439605288207531, -0.07019832730293274, -0.017854485660791397, 0.07975471019744873, -0.02419431321322918, -0.0518796369433403, 0.17911815643310547, -0.10394753515720367, 0.11938143521547318, 0.19722236692905426, -0.23980706930160522, 0.011709686368703842, -0.029900360852479935, -0.03316936641931534, 0.03433942794799805, 0.05051653832197189, -0.033179424703121185, 0.15759620070457458, -0.01345332246273756, 0.1525457352399826, -0.0320751927793026, -0.013479908928275108, -0.009387596510350704, -0.06116515398025513, -0.023092057555913925, 0.07077686488628387, 0.10918232798576355, -0.06681957095861435, 0.17251652479171753, 0.12455529719591141, 0.033532701432704926, 0.17275840044021606, 0.04018564522266388, 0.009206144139170647, 0.04883567988872528, 0.0011404067045077682, -0.03174205124378204, -0.062111083418130875, -0.22378267347812653, -0.037767570465803146, 0.06516052782535553, 0.027117392048239708, 0.09936538338661194, -0.07091864198446274, -0.03324853628873825, -0.005588016007095575, -0.01720249094069004, 0.08236531168222427, 0.08248358219861984, 0.04030303657054901, 0.12026672065258026, -0.01257975772023201, -0.062292519956827164, 0.06384793668985367, 0.023545363917946815, -0.05764133483171463, 0.18055981397628784, -0.11536531895399094, -0.3679669201374054, -0.10600132495164871, -0.1268586665391922, -0.0801299437880516, 0.06812874972820282, 0.07285431772470474, -0.1376919448375702, -0.03320015221834183, 0.014042738825082779, 0.1282191127538681, -0.06355020403862, 0.033497974276542664, -0.061721865087747574, 0.0254905316978693, -0.10997317731380463, -0.11603692919015884, -0.07344507426023483, -0.03562313690781593, -0.061827100813388824, 0.15000444650650024, -0.1394326090812683, 0.034454166889190674, 0.17137554287910461, 0.05042339116334915, 0.0466831810772419, -0.0034055719152092934, 0.2326716184616089, -0.10744582861661911, 0.029558314010500908, 0.1954965591430664, -0.003776682773604989, 0.039349768310785294, 0.159366637468338, -0.0004405127256177366, -0.1355820745229721, 0.03295709937810898, -0.021703729405999184, -0.0780366063117981, -0.2132139801979065, -0.15655606985092163, -0.12239070981740952, 0.10196684300899506, 0.059776462614536285, 0.03645845130085945, 0.17203155159950256, 0.09710431843996048, -0.04531267657876015, 0.0693298727273941, 0.04805470630526543, 0.08374835550785065, 0.1797250211238861, -0.062022119760513306, 0.15569792687892914, -0.017404386773705482, -0.17779505252838135, 0.0826643630862236, 0.05476132780313492, 0.13946041464805603, 0.02026558294892311, 0.05783287063241005, 0.016617126762866974, 0.026054853573441505, 0.12065419554710388, 0.10330135375261307, 0.02679803967475891, -0.03137991204857826, -0.04592600464820862, -0.04544096067547798, -0.050997279584407806, 0.06792062520980835, 0.03195817396044731, -0.14016731083393097, -0.02626923844218254, -0.022649670019745827, 0.07838907092809677, 0.10879790782928467, 0.1311095952987671, -0.22993257641792297, -0.018177006393671036, 0.07750948518514633, 0.01380266435444355, -0.1133960410952568, 0.06935802847146988, -0.03933881223201752, -0.12841691076755524, 0.033285703510046005, -0.024671919643878937, 0.11001930385828018, -0.10688246786594391, 0.08170825988054276, -0.08598823100328445, -0.02947520650923252, 0.02083451859652996, 0.08769021928310394, -0.4155300557613373, 0.17136959731578827, -0.0028397401329129934, -0.010652957484126091, -0.11393999308347702, 0.02341303788125515, 0.00957039836794138, 0.09979651868343353, 0.10026714205741882, -0.017088761553168297, 0.10056046396493912, -0.040410224348306656, -0.053241461515426636, 0.021868539974093437, 0.08025902509689331, -0.04339143633842468, -0.009067812003195286, -0.01626693829894066, -0.005357156042009592, -0.022745361551642418, -0.07246052473783493, -0.025547878816723824, -0.18719080090522766, 0.09235312044620514, 0.027513938024640083, 0.07983490824699402, 0.032102979719638824, -0.012125144712626934, -0.014014055021107197, 0.2620481252670288, 0.017862198874354362, -0.11942107230424881, -0.0999886766076088, 0.022636644542217255, 0.055908575654029846, -0.045603007078170776, 0.00659693218767643, -0.06790260225534439, 0.03325832635164261, -0.05723269656300545, -0.2149651050567627, 0.08400005847215652, -0.10023558884859085, -0.037675946950912476, -0.028931772336363792, 0.17939595878124237, -0.01579897850751877, -0.0202646441757679, 0.05214685946702957, -0.0023455743212252855, -0.0930907279253006, -0.09471689164638519, -0.0014590051723644137, 0.07170749455690384, 0.028751065954566002, 0.061922837048769, -0.04346413165330887, -0.02971756085753441, -0.07804159075021744, 0.01759967766702175, 0.23147441446781158, 0.09695100784301758, -0.03633489832282066, 0.16121940314769745, 0.0696209967136383, -0.06318257749080658, -0.2922605574131012, -0.07825800776481628, -0.06788463145494461, -0.02415655180811882, -0.05849893391132355, -0.20682021975517273, 0.11679048091173172, -0.027748052030801773, -0.0034161508083343506, 0.09470835328102112, -0.27453699707984924, -0.10052988678216934, 0.17825189232826233, -0.009373466484248638, 0.3862219750881195, -0.10375989228487015, -0.0658525750041008, -0.08681701868772507, -0.16159115731716156, 0.18966032564640045, 0.03590280935168266, 0.08856327086687088, -0.02286359667778015, 0.1957816183567047, 0.07653509080410004, -0.00011590548820095137, 0.08372047543525696, 0.040449678897857666, -0.014453429728746414, -0.11105240881443024, -0.06641056388616562, -0.010886232368648052, 0.017607709392905235, 0.0772450789809227, -0.048635538667440414, 0.03654354438185692, -0.11528810113668442, -0.06704042851924896, -0.06825733184814453, 0.05138803645968437, 0.011639050208032131, -0.08690837025642395, -0.010470828041434288, -0.03270682692527771, -0.016293589025735855, 0.03173070028424263, 0.14301708340644836, -0.04513125494122505, 0.06420530378818512, 0.03176986053586006, 0.12464249134063721, -0.16548354923725128, 0.024609988555312157, -0.031447023153305054, -0.03449559211730957, 0.09566409140825272, -0.13100557029247284, 0.034142155200242996, 0.09994935244321823, -0.06078726053237915, 0.08567981421947479, 0.10689770430326462, 0.0008646309142932296, -0.012657948769629002, 0.09084746986627579, -0.24090035259723663, -0.05544648692011833, -0.05918146297335625, -0.018603218719363213, 0.10920432209968567, 0.11404559761285782, 0.22877946496009827, -0.015639323741197586, -0.030029263347387314, 0.002932126633822918, 0.031081972643733025, -0.0450381375849247, 0.08835586905479431, -0.018310153856873512, 0.012093662284314632, -0.15789571404457092, 0.04433852434158325, 0.02244865708053112, -0.0707460343837738, 0.039262257516384125, 0.11037477850914001, -0.09846869856119156, -0.13594451546669006, -0.04708186164498329, 0.09709841012954712, -0.096428781747818, 0.012995309196412563, -0.0523790642619133, -0.14515894651412964, 0.06072337180376053, 0.017306145280599594, 0.06055498868227005, 0.09657725691795349, -0.09191824495792389, -0.024184856563806534, -0.05204879865050316, -0.005891706794500351, 0.02405719645321369, 0.02162100374698639, -0.0630398616194725, 0.06672002375125885, -0.05940939113497734, 0.10763068497180939, -0.09084988385438919, -0.08303232491016388, -0.15293340384960175, 0.026662325486540794, -0.11924871057271957, -0.08327414095401764, -0.12774458527565002, -0.03937143832445145, -0.011084392666816711, -0.02469954639673233, -0.023838724941015244, -0.03479287028312683, -0.08508969843387604, 0.022697657346725464, -0.04802407696843147, 0.0041303476318717, -0.06598515063524246, -0.00935723539441824, 0.02200583927333355, -0.06122900918126106, 0.11967559158802032, 0.13688738644123077, -0.09367017447948456, 0.04697304591536522, -0.13659369945526123, -0.06506028026342392, 0.09950483590364456, 0.03830504044890404, 0.07414589077234268, 0.06787694245576859, 0.005343320779502392, 0.07992826402187347, 0.05187946557998657, 0.0344943031668663, 0.06912799924612045, -0.09244941920042038, 0.0658605694770813, -0.02900785766541958, -0.1294308304786682, -0.05894545093178749, -0.006244589574635029, 0.07104294002056122, 0.04180511087179184, 0.1220419779419899, -0.0498996302485466, 0.09186876565217972, -0.06217348203063011, 0.017349546775221825, 0.006175586488097906, -0.1530129313468933, 0.007450266275554895, -0.10926893353462219, 0.05219777673482895, -0.004620085470378399, 0.19237548112869263, 0.07745229452848434, 0.0010993537725880742, 0.017758850008249283, 0.07199726998806, 0.03930443152785301, 0.04195794463157654, 0.11341273784637451, 0.10655054450035095, -0.03603072091937065, -0.13982895016670227, 0.0903310775756836, 0.06373830884695053, 0.1524895578622818, 0.1152951791882515, 0.013661934994161129, -0.027940701693296432, 0.08077488094568253, -0.003302662167698145, 0.020844755694270134, -0.09067203849554062, -0.10712030529975891, -0.04167025536298752, 0.05574262887239456, -0.025057220831513405, 0.01499838288873434, 0.09863069653511047, -0.020017394796013832, 0.03213697299361229, -0.021219294518232346, -0.08396103978157043, -0.15123461186885834, -0.2017359882593155, -0.08672753721475601, -0.13552598655223846, -0.008164982311427593, -0.14829589426517487, 0.025607747957110405, 0.005115304607897997, 0.07170896232128143, -0.07334594428539276, 0.08434181660413742, 0.04011553153395653, -0.08079126477241516, 0.0826503336429596, -0.02742615155875683, 0.0634450912475586, -0.021856343373656273, -0.0072669596411287785, -0.1320638507604599, 0.07470422983169556, -0.013501787558197975, 0.05481485277414322, -0.04567525163292885, 0.00996420718729496, -0.09791994094848633, -0.08780521899461746, -0.05149204283952713, 0.04040034860372543, -0.05197697505354881, 0.1783996969461441, 0.02675895392894745, -0.05794303119182587, 0.04526633396744728, 0.197531595826149, -0.04246615990996361, -0.09518314152956009, -0.11401218920946121, 0.14335015416145325, 0.008522981777787209, 0.10336427390575409, -0.03119117207825184, 0.008374445140361786, -0.10785622149705887, 0.3159852921962738, 0.3454977869987488, -0.10033400356769562, 0.010934093967080116, -0.0023077947553247213, 0.030782446265220642, 0.08879277110099792, 0.1244446188211441, 0.10082508623600006, 0.3241177201271057, -0.054311320185661316, -0.03129411116242409, -0.017128048464655876, -0.04109000042080879, -0.08236774802207947, 0.06314016133546829, 0.038076888769865036, -0.059701621532440186, -0.008216362446546555, 0.08916931599378586, -0.2314404845237732, 0.1254129707813263, -0.05804092809557915, -0.20983493328094482, -0.0852634459733963, -0.014475858770310879, 0.02941286750137806, 0.01720484159886837, 0.1127777174115181, -0.04030393436551094, -0.08143871277570724, 0.10755171626806259, 0.005435420665889978, -0.1961628496646881, -0.00031151421717368066, 0.06759988516569138, -0.0792757123708725, -0.038009703159332275, -0.017896179109811783, 0.055265624076128006, 0.06909351050853729, 0.0564793162047863, -0.04164296016097069, 0.03333113342523575, -0.016823936253786087, -0.01986556500196457, 0.06435897946357727, 0.04644544795155525, -0.006870954763144255, -0.0894399955868721, 0.0946667492389679, -0.1775442659854889, 0.020637469366192818, 0.053979430347681046, -0.024212993681430817, -0.036186333745718, 0.030745983123779297, -0.09573786705732346, 0.048446789383888245, 0.11576225608587265, -0.010237271897494793, 0.004423218779265881, -0.03030877187848091, 0.015428856946527958, -0.03862288221716881, -0.08859021216630936, -0.1236775666475296, -0.17528457939624786, -0.12474242597818375, 0.06890276074409485, 0.00874523539096117, -0.1622752994298935, 0.014656917192041874, -0.12388904392719269, 0.039198122918605804, -0.132217675447464, 0.09370765835046768, 0.0809192955493927, 0.02019476145505905, -0.013686512596905231, 0.022850895300507545, 0.01967916078865528, 0.09122931957244873, -0.10017788410186768, -0.10062745213508606 ]
null
null
transformers
# DioloGPT KaeyaBot model
{"tags": ["conversational"]}
text-generation
felinecity/ScaraBot
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
# DioloGPT KaeyaBot model
[ "# DioloGPT KaeyaBot model" ]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "# DioloGPT KaeyaBot model" ]
[ 51, 9 ]
[ "passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n# DioloGPT KaeyaBot model" ]
[ -0.013482030481100082, -0.04944401979446411, -0.00660965871065855, 0.018116695806384087, 0.16041694581508636, 0.005352854263037443, 0.1591426134109497, 0.113655224442482, -0.005036589689552784, -0.02728116884827614, 0.12488944083452225, 0.22933024168014526, 0.029869183897972107, 0.1351277083158493, -0.07913515716791153, -0.29110777378082275, 0.05341096594929695, 0.03645821288228035, 0.0021556243300437927, 0.08520137518644333, 0.10741303861141205, -0.07100285589694977, 0.10141543298959732, -0.015280923806130886, -0.12886378169059753, -0.034620773047208786, 0.009351576678454876, -0.14558735489845276, 0.07823927700519562, 0.0635087788105011, 0.05051994323730469, 0.025348380208015442, -0.03491302207112312, -0.11841075867414474, 0.036076925694942474, -0.010789170861244202, -0.01633112132549286, 0.03215695172548294, -0.006123706232756376, -0.10275706648826599, 0.06512311846017838, 0.05040643364191055, -0.007862668484449387, 0.01055244728922844, -0.1442529559135437, 0.010917812585830688, -0.01737990230321884, 0.011684340424835682, 0.13442599773406982, 0.10449829697608948, -0.02284255623817444, 0.044014379382133484, -0.0918123796582222, 0.10083391517400742, 0.11368492990732193, -0.24449126422405243, -0.03187127411365509, 0.10879965126514435, 0.03690730035305023, 0.05006536468863487, -0.014344406314194202, 0.06345362216234207, 0.046731121838092804, 0.00035137636587023735, 0.01799810864031315, -0.09024252742528915, -0.0809108167886734, 0.007838817313313484, -0.07939121127128601, 0.005723253358155489, 0.2735130786895752, -0.06425411999225616, 0.04118042066693306, -0.0737089291214943, -0.07196356356143951, 0.023852720856666565, -0.0601150244474411, -0.008588753640651703, -0.07469012588262558, 0.027902815490961075, 0.057888440787792206, -0.10337091982364655, -0.1314590871334076, -0.008448471315205097, -0.17960487306118011, 0.24182842671871185, 0.050672855228185654, 0.018773283809423447, -0.20690259337425232, 0.07384129613637924, 0.017387308180332184, -0.10685200989246368, -0.006884794682264328, -0.11515865474939346, 0.041213035583496094, 0.010604165494441986, -0.015647996217012405, -0.05562400445342064, 0.08027039468288422, 0.11201230436563492, 0.049923136830329895, 0.003928730729967356, -0.01086176373064518, 0.03498953580856323, 0.07448742538690567, 0.1263836920261383, -0.019534315913915634, -0.015271554701030254, 0.044583309441804886, -0.058608293533325195, 0.013690563850104809, -0.06365002691745758, -0.16729891300201416, -0.011074299924075603, -0.0019514053128659725, 0.06900392472743988, 0.025876125320792198, 0.12303344905376434, -0.04554140567779541, -0.056231752038002014, 0.029509034007787704, -0.05098415166139603, -0.034932199865579605, -0.01566430553793907, -0.03030925616621971, 0.17786185443401337, -0.005685892887413502, 0.03192080184817314, -0.10662221908569336, 0.057476289570331573, -0.04604175314307213, -0.0024113552644848824, -0.030046630650758743, -0.05317991226911545, -0.007894616574048996, -0.09116844832897186, 0.04384077712893486, -0.18569129705429077, -0.16892604529857635, 0.002109426073729992, -0.0014731264673173428, -0.06242804601788521, -0.07764072716236115, -0.09326117485761642, -0.03556299954652786, 0.023548118770122528, -0.0708107203245163, -0.0026914088521152735, -0.0493709072470665, 0.07582206279039383, -0.03043040819466114, 0.12273649871349335, -0.08936804533004761, 0.0855768695473671, -0.09660112857818604, -0.009370164945721626, -0.1144319400191307, 0.13016021251678467, -0.02309008315205574, 0.10889901965856552, -0.01719598099589348, -0.004806773737072945, -0.08014009147882462, 0.0707927942276001, -0.010947787202894688, 0.2390892058610916, -0.09615686535835266, -0.10527963191270828, 0.20623502135276794, -0.03790713846683502, -0.14620162546634674, 0.10589602589607239, -0.004730983171612024, 0.13065624237060547, 0.12939231097698212, 0.18979355692863464, 0.0007764091715216637, -0.02888396754860878, 0.05273909121751785, 0.08515644073486328, -0.09192401170730591, -0.009224558249115944, 0.006953336298465729, 0.019487295299768448, -0.0604826994240284, 0.058031678199768066, 0.07512139528989792, 0.058956172317266464, -0.04852375388145447, -0.03693552687764168, 0.0054132877849042416, -0.03053313121199608, 0.07787030935287476, -0.03355223312973976, 0.11395929753780365, -0.028790919110178947, -0.009170105680823326, -0.0036145257763564587, 0.06036003306508064, -0.04261153191328049, 0.018190739676356316, -0.06871908903121948, 0.13146312534809113, -0.024455873295664787, 0.07805652916431427, -0.11542021483182907, -0.06328452378511429, -0.014105372130870819, 0.11948758363723755, 0.05177495628595352, 0.06743009388446808, 0.03816762939095497, -0.04157688468694687, 0.02144087478518486, 0.006811530329287052, 0.16115623712539673, -0.009470009244978428, -0.08691064268350601, -0.094950832426548, 0.10649995505809784, -0.05250834673643112, 0.05891750752925873, -0.04607817530632019, 0.012430060654878616, -0.007558582350611687, 0.08419515937566757, -0.01676550693809986, 0.09096702188253403, 0.013472671620547771, 0.017037739977240562, -0.08330360054969788, 0.00552785862237215, 0.06929166615009308, -0.04137129336595535, -0.07525984197854996, 0.24265378713607788, -0.11155009269714355, 0.09725353121757507, 0.1959332674741745, -0.2246531844139099, 0.017021849751472473, -0.024936281144618988, -0.01824372075498104, 0.003590463427826762, 0.0407932847738266, -0.020584916695952415, 0.15661026537418365, -0.005723661743104458, 0.1630423665046692, -0.043110910803079605, -0.019893556833267212, 0.020257245749235153, -0.08925081044435501, -0.00834382139146328, 0.09131285548210144, 0.10188426077365875, -0.06383258104324341, 0.15723173320293427, 0.14325986802577972, 0.02455965429544449, 0.18680575489997864, 0.028767947107553482, -0.0063820513896644115, 0.04121730849146843, -0.006069001276046038, -0.03843383118510246, -0.03192035108804703, -0.219386026263237, -0.04428457096219063, 0.06277934461832047, 0.009671555832028389, 0.10874585062265396, -0.06731194257736206, -0.04561801254749298, -0.008217640221118927, -0.0076491497457027435, 0.08621719479560852, 0.12873822450637817, 0.03028985857963562, 0.11494994908571243, -0.00158013217151165, -0.027686171233654022, 0.05653297156095505, 0.031615711748600006, -0.037328172475099564, 0.19481655955314636, -0.11397957801818848, -0.35038501024246216, -0.09559032320976257, -0.17552193999290466, -0.07455673813819885, 0.03829096630215645, 0.07300632447004318, -0.15407921373844147, -0.02510600909590721, 0.014120997861027718, 0.10819751769304276, -0.06674625724554062, 0.016306182369589806, -0.047712475061416626, 0.0020079133100807667, -0.15064212679862976, -0.08720564097166061, -0.06352168321609497, -0.046571291983127594, -0.057697124779224396, 0.1546059548854828, -0.1368713676929474, 0.05739881843328476, 0.20625919103622437, 0.04664858058094978, 0.022002840414643288, -0.022375911474227905, 0.17239011824131012, -0.11726665496826172, 0.0457535982131958, 0.2143382728099823, 0.00867398176342249, 0.07063840329647064, 0.15636718273162842, -0.023956511169672012, -0.09318286180496216, 0.04038812592625618, -0.009676158428192139, -0.07902279496192932, -0.2506827712059021, -0.12741594016551971, -0.11919914186000824, 0.11445384472608566, 0.017909526824951172, 0.021345248445868492, 0.17496436834335327, 0.12987011671066284, -0.0325968861579895, 0.06649789959192276, 0.033899616450071335, 0.08671996742486954, 0.23215514421463013, -0.06239953264594078, 0.15568697452545166, -0.01785510592162609, -0.16171787679195404, 0.0989636480808258, 0.05934997648000717, 0.1355666220188141, 0.0011738985776901245, 0.0213867649435997, 0.03273242339491844, 0.04031551629304886, 0.10453791916370392, 0.07370110601186752, 0.009527068585157394, -0.025985941290855408, -0.04248800128698349, -0.03684599697589874, -0.022087519988417625, 0.08546103537082672, 0.03424449265003204, -0.16365528106689453, -0.014997772872447968, -0.010500336065888405, 0.0851941704750061, 0.08801325410604477, 0.1347058266401291, -0.17752423882484436, -0.021291052922606468, 0.09493374824523926, 0.00997153576463461, -0.11472714692354202, 0.06450123339891434, -0.03718695789575577, -0.1397397816181183, 0.05941950902342796, -0.014308363199234009, 0.10111919790506363, -0.06641452759504318, 0.05838441103696823, -0.11516855657100677, -0.02304365299642086, 0.002995515475049615, 0.09358447790145874, -0.393774151802063, 0.1628636121749878, -0.00986325554549694, -0.005545234307646751, -0.12398351728916168, 0.010843661613762379, 0.028195470571517944, 0.05972886085510254, 0.08891104906797409, -0.010003120638430119, 0.07640086114406586, -0.09257785975933075, -0.07097684592008591, 0.029322227463126183, 0.08371448516845703, -0.05723239853978157, -0.0016892198473215103, -0.009944526478648186, 0.0050379810854792595, -0.05052965134382248, -0.09611181169748306, -0.016050349920988083, -0.15210463106632233, 0.08686468750238419, 0.05218008905649185, 0.05912322923541069, 0.02918119542300701, -0.026591941714286804, -0.06211758404970169, 0.18332351744174957, -0.005264990031719208, -0.13673368096351624, -0.0789438784122467, -0.0685691386461258, 0.06152055785059929, -0.07190051674842834, 0.032612599432468414, -0.0811052918434143, 0.02096245437860489, -0.05929744988679886, -0.19246259331703186, 0.06953182816505432, -0.09314093738794327, -0.05067726969718933, -0.0079753203317523, 0.18315578997135162, -0.01674685999751091, -0.02609667368233204, 0.047122880816459656, -0.01152312383055687, -0.10806039720773697, -0.10138577967882156, 0.011060762219130993, 0.08743880689144135, 0.036481451243162155, 0.08845022320747375, -0.05318596586585045, -0.08045724034309387, -0.12577585875988007, -0.03599841520190239, 0.21745523810386658, 0.1352667659521103, -0.034043945372104645, 0.16965073347091675, 0.1135406419634819, -0.07224813848733902, -0.31420955061912537, -0.1262809932231903, -0.07170078158378601, 0.0005419179797172546, -0.053622931241989136, -0.19506920874118805, 0.09403566271066666, -0.016184424981474876, -0.017515968531370163, 0.0996241420507431, -0.2860146462917328, -0.12294992059469223, 0.1576877236366272, -0.0020774747245013714, 0.39147499203681946, -0.09711934626102448, -0.05213112756609917, -0.06704415380954742, -0.08231525123119354, 0.14660745859146118, 0.003282658290117979, 0.11926298588514328, -0.03223257511854172, 0.1811666190624237, 0.0640127956867218, 0.005202583037316799, 0.0986623540520668, 0.049879979342222214, -0.03150435537099838, -0.11892729997634888, -0.08872099220752716, 0.054370198398828506, -0.00361951463855803, 0.06871772557497025, -0.045202355831861496, 0.042667657136917114, -0.1388511061668396, -0.06406469643115997, -0.07063893973827362, 0.03217563033103943, 0.022150516510009766, -0.08418355882167816, -0.05102207511663437, -0.01917990855872631, -0.010927168652415276, 0.028528694063425064, 0.12718607485294342, -0.045191530138254166, 0.061615824699401855, 0.05375410616397858, 0.10642847418785095, -0.0852544978260994, 0.039659637957811356, -0.06165105104446411, -0.05476545915007591, 0.08751996606588364, -0.15280890464782715, 0.014260325580835342, 0.10948443412780762, -0.05449675768613815, 0.07034394145011902, 0.08002948760986328, -0.03322891891002655, 0.042468149214982986, 0.0819685310125351, -0.2078244686126709, -0.059846896678209305, -0.04982765018939972, -0.05239968001842499, 0.11036893725395203, 0.11758973449468613, 0.20212361216545105, -0.021785449236631393, -0.035690389573574066, -0.014266952872276306, 0.03772967308759689, -0.030779385939240456, 0.10024284571409225, -0.003108932636678219, 0.014578756876289845, -0.1356244832277298, 0.04088431969285011, 0.018231678754091263, -0.04935435950756073, 0.050490230321884155, 0.09342405200004578, -0.09433169662952423, -0.12526321411132812, -0.05212131142616272, 0.07134290039539337, -0.0969986766576767, -0.0027227341197431087, -0.01635088585317135, -0.16709518432617188, 0.052774835377931595, 0.09144146740436554, 0.05221816152334213, 0.07960651069879532, -0.06543218344449997, -0.0179096981883049, -0.055595021694898605, 0.026248406618833542, 0.06626072525978088, 0.006795559544116259, -0.0881875529885292, 0.021433385089039803, -0.03993553668260574, 0.16217570006847382, -0.09396102279424667, -0.08887333422899246, -0.13835769891738892, 0.027371102944016457, -0.17396841943264008, -0.05773686245083809, -0.1259203851222992, -0.05451234430074692, -0.03418267145752907, -0.029858360067009926, -0.039504360407590866, -0.0435597263276577, -0.08228189498186111, 0.05074796825647354, -0.04999759793281555, 0.03118089772760868, -0.05612969771027565, -0.045256368815898895, 0.030891595408320427, -0.050119198858737946, 0.13050159811973572, 0.1406235694885254, -0.07488695532083511, 0.06683994084596634, -0.07634495198726654, -0.039566803723573685, 0.09073929488658905, 0.05351864546537399, 0.06112143024802208, 0.04633815214037895, -0.002145530190318823, 0.04543326050043106, 0.04723939672112465, 0.04391106218099594, 0.029905904084444046, -0.09344480186700821, 0.04646405205130577, -0.05182987079024315, -0.12524983286857605, -0.03639671206474304, 0.005239246413111687, 0.041996438056230545, 0.06181972473859787, 0.11364899575710297, -0.060029465705156326, 0.11049474775791168, -0.04336366429924965, 0.0264158733189106, -0.021741051226854324, -0.17489992082118988, 0.011466334573924541, -0.11083097755908966, 0.035859253257513046, -0.01356759387999773, 0.2189660668373108, 0.048111531883478165, -0.0048138173297047615, 0.008679034188389778, 0.03266594558954239, 0.04032257944345474, 0.04873806983232498, 0.1462908387184143, 0.10418044030666351, -0.03941921517252922, -0.14856553077697754, 0.07860119640827179, 0.04979313164949417, 0.10476244986057281, 0.0788101926445961, -0.0032637007534503937, -0.008567674085497856, 0.09158727526664734, -0.0024726937990635633, 0.011867997236549854, -0.0760711207985878, -0.10420184582471848, -0.11120584607124329, 0.040450215339660645, -0.014851558953523636, 0.05407802760601044, 0.13595010340213776, -0.022204827517271042, 0.0061662159860134125, -0.013565451838076115, -0.09817624092102051, -0.14944778382778168, -0.1978628784418106, -0.09255565702915192, -0.10039447247982025, -0.004987895023077726, -0.1292000114917755, 0.017753439024090767, 0.025326456874608994, 0.07977227866649628, -0.0743170902132988, 0.12330517172813416, 0.08845844864845276, -0.09819568693637848, 0.1366061568260193, -0.02930130623281002, 0.035352397710084915, 0.0013805855996906757, -0.02378052845597267, -0.1260133683681488, 0.04055990278720856, -0.014052973128855228, 0.05454232916235924, -0.06255052983760834, 0.03133060038089752, -0.10206601023674011, -0.08690181374549866, -0.04904913157224655, 0.05576784908771515, -0.01058909296989441, 0.11049410700798035, 0.04277542978525162, -0.0542302280664444, 0.03859201818704605, 0.18897023797035217, -0.028784576803445816, -0.06421303749084473, -0.07458139210939407, 0.14758092164993286, 0.011797708459198475, 0.09122835099697113, -0.027796631678938866, 0.0249556303024292, -0.11141808331012726, 0.36470651626586914, 0.2769416272640228, -0.0932321548461914, 0.0011342503130435944, -0.02969958260655403, 0.03763050213456154, 0.07493697851896286, 0.13585630059242249, 0.08117265999317169, 0.28879058361053467, -0.053391486406326294, -0.03465833514928818, -0.024943789467215538, -0.03410155698657036, -0.10079725086688995, 0.05028124898672104, 0.05205275118350983, -0.07995148748159409, -0.021969502791762352, 0.09531421959400177, -0.2670392096042633, 0.13942958414554596, -0.08704971522092819, -0.18320243060588837, -0.10686859488487244, -0.011772154830396175, 0.054480500519275665, 0.02383100986480713, 0.10637961328029633, -0.03152860328555107, -0.07485074549913406, 0.08676011860370636, 0.017972063273191452, -0.1609298288822174, 0.03648524731397629, 0.08000543713569641, -0.010551512241363525, -0.04312047362327576, -0.01824316568672657, 0.0699373409152031, 0.07471390813589096, 0.04988278076052666, -0.017278242856264114, 0.05565600469708443, -0.006048320326954126, -0.007254385389387608, 0.06590966880321503, 0.03585546463727951, -0.0009652543812990189, -0.12986749410629272, 0.1127333790063858, -0.14744898676872253, 0.03514809533953667, 0.019453592598438263, -0.042535971850156784, -0.03262657672166824, 0.03626735880970955, -0.10610075294971466, 0.05622672662138939, 0.10164473205804825, -0.028023410588502884, -0.01666472665965557, -0.028365053236484528, -0.017056241631507874, -0.04851152002811432, -0.05852307006716728, -0.09714926779270172, -0.15487539768218994, -0.1308649480342865, 0.027045125141739845, 0.031534720212221146, -0.16601626574993134, 0.049147821962833405, -0.1326368749141693, 0.057243626564741135, -0.1291460543870926, 0.09664825350046158, 0.06121774762868881, 0.014837436378002167, -0.015610164031386375, 0.01829163357615471, 0.003466215915977955, 0.0910218134522438, -0.10638102889060974, -0.09066619724035263 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # opus-mt-de-en-finetuned-de-to-en-second This model is a fine-tuned version of [Helsinki-NLP/opus-mt-de-en](https://huggingface.co/Helsinki-NLP/opus-mt-de-en) on the wmt16 dataset. It achieves the following results on the evaluation set: - Loss: 1.2282 - Bleu: 37.9762 - Gen Len: 25.3696 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:| | No log | 1.0 | 157 | 1.1837 | 38.8278 | 25.22 | | No log | 2.0 | 314 | 1.2057 | 38.3047 | 25.2908 | | No log | 3.0 | 471 | 1.2167 | 38.231 | 25.316 | | 1.4808 | 4.0 | 628 | 1.2256 | 37.9871 | 25.3556 | | 1.4808 | 5.0 | 785 | 1.2282 | 37.9762 | 25.3696 | ### Framework versions - Transformers 4.12.5 - Pytorch 1.10.0+cu111 - Datasets 1.16.1 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["wmt16"], "metrics": ["bleu"], "model-index": [{"name": "opus-mt-de-en-finetuned-de-to-en-second", "results": [{"task": {"type": "text2text-generation", "name": "Sequence-to-sequence Language Modeling"}, "dataset": {"name": "wmt16", "type": "wmt16", "args": "de-en"}, "metrics": [{"type": "bleu", "value": 37.9762, "name": "Bleu"}]}]}]}
text2text-generation
felipetanios/opus-mt-de-en-finetuned-de-to-en-second
[ "transformers", "pytorch", "tensorboard", "marian", "text2text-generation", "generated_from_trainer", "dataset:wmt16", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #marian #text2text-generation #generated_from_trainer #dataset-wmt16 #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us
opus-mt-de-en-finetuned-de-to-en-second ======================================= This model is a fine-tuned version of Helsinki-NLP/opus-mt-de-en on the wmt16 dataset. It achieves the following results on the evaluation set: * Loss: 1.2282 * Bleu: 37.9762 * Gen Len: 25.3696 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 16 * eval\_batch\_size: 16 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 5 ### Training results ### Framework versions * Transformers 4.12.5 * Pytorch 1.10.0+cu111 * Datasets 1.16.1 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.12.5\n* Pytorch 1.10.0+cu111\n* Datasets 1.16.1\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #marian #text2text-generation #generated_from_trainer #dataset-wmt16 #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.12.5\n* Pytorch 1.10.0+cu111\n* Datasets 1.16.1\n* Tokenizers 0.10.3" ]
[ 69, 98, 4, 33 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #marian #text2text-generation #generated_from_trainer #dataset-wmt16 #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5### Training results### Framework versions\n\n\n* Transformers 4.12.5\n* Pytorch 1.10.0+cu111\n* Datasets 1.16.1\n* Tokenizers 0.10.3" ]
[ -0.10624333471059799, 0.07806745916604996, -0.0026847387198358774, 0.1246161162853241, 0.1471657156944275, 0.027972735464572906, 0.13686558604240417, 0.12347269803285599, -0.09508732706308365, 0.024209782481193542, 0.13771513104438782, 0.15107424557209015, 0.01696319319307804, 0.10587067902088165, -0.04728548601269722, -0.2438245415687561, -0.012300528585910797, 0.0469089150428772, -0.06706249713897705, 0.13539668917655945, 0.0899498462677002, -0.1274656057357788, 0.09885881841182709, 0.008835035376250744, -0.18603600561618805, 0.0017271469114348292, -0.00640947837382555, -0.046327780932188034, 0.1452941745519638, 0.023918602615594864, 0.11343810707330704, 0.004095644224435091, 0.08415603637695312, -0.18689918518066406, 0.01045252662152052, 0.03868924826383591, 0.00870944932103157, 0.0905226543545723, 0.04740118607878685, 0.008789327926933765, 0.1286650002002716, -0.06326135247945786, 0.04229431599378586, 0.020519282668828964, -0.12857484817504883, -0.1936672329902649, -0.08285903930664062, 0.03201901912689209, 0.07020982354879379, 0.1122099980711937, -0.0057212901301681995, 0.13123472034931183, -0.08095180243253708, 0.08899672329425812, 0.23428693413734436, -0.2772238552570343, -0.0656919777393341, 0.040469300001859665, 0.030802669003605843, 0.06065039336681366, -0.08844535797834396, -0.023034904152154922, 0.04646942391991615, 0.049859996885061264, 0.11436253041028976, -0.025212211534380913, -0.08864949643611908, 0.022045735269784927, -0.1378270536661148, -0.0442851223051548, 0.1871890276670456, 0.04917928948998451, -0.023441661149263382, -0.04119861498475075, -0.06193077564239502, -0.14908017218112946, -0.024270515888929367, -0.015684522688388824, 0.04031725227832794, -0.025182930752635002, -0.07211671024560928, -0.011044886894524097, -0.10956957936286926, -0.07064551115036011, -0.06579877436161041, 0.12021487206220627, 0.029448220506310463, 0.01500458363443613, -0.049799349159002304, 0.11330915987491608, -0.0014499182580038905, -0.13395169377326965, 0.02365082874894142, 0.024220312014222145, 0.02762713097035885, -0.034106314182281494, -0.06294132769107819, -0.08023654669523239, 0.006823976524174213, 0.10927707701921463, -0.050572916865348816, 0.039402592927217484, 0.0527624636888504, 0.047845255583524704, -0.09036706387996674, 0.1651281714439392, -0.03958650305867195, -0.04513408988714218, -0.0006341070402413607, 0.05989210307598114, 0.01855846308171749, -0.011498781852424145, -0.12110251933336258, 0.0028259945102036, 0.08406369388103485, 0.007796582765877247, -0.05550406873226166, 0.06725793331861496, -0.05470459535717964, -0.026469849050045013, -0.007426395080983639, -0.0804273933172226, 0.024914903566241264, -0.0025971964932978153, -0.08355296403169632, -0.017205270007252693, 0.031726304441690445, 0.021225029602646828, -0.016274388879537582, 0.10262485593557358, -0.09101160615682602, 0.020911209285259247, -0.09426376223564148, -0.09852413088083267, 0.019575461745262146, -0.08347029983997345, 0.03087248094379902, -0.08980461955070496, -0.2059880644083023, -0.012731341645121574, 0.06327962875366211, -0.02803385816514492, -0.0567544549703598, -0.058821067214012146, -0.07118762284517288, 0.015808437019586563, -0.008151859045028687, 0.14619608223438263, -0.06093943864107132, 0.1019357293844223, 0.03764098882675171, 0.06520857661962509, -0.03903718665242195, 0.05127754807472229, -0.10024280101060867, 0.01006454136222601, -0.1440439522266388, 0.04135357588529587, -0.03059815615415573, 0.06647466868162155, -0.07895239442586899, -0.0962895080447197, -0.01840386539697647, -0.0023279287852346897, 0.07613850384950638, 0.11065979301929474, -0.17931152880191803, -0.074381522834301, 0.1672659069299698, -0.0600106380879879, -0.12874601781368256, 0.12245785444974899, -0.061823442578315735, 0.06732068955898285, 0.06273268163204193, 0.16169822216033936, 0.049081459641456604, -0.07658139616250992, 0.019840704277157784, -0.004577424842864275, 0.05514132231473923, -0.0532940998673439, 0.07398417592048645, 0.0037604174576699734, 0.019116941839456558, 0.023599453270435333, -0.026080798357725143, 0.05238062143325806, -0.09585674852132797, -0.10124392807483673, -0.043637655675411224, -0.10451988130807877, 0.036362871527671814, 0.0645357146859169, 0.07324264943599701, -0.10548129677772522, -0.08006016165018082, 0.034252095967531204, 0.0822068452835083, -0.05621802806854248, 0.02541123703122139, -0.06033840402960777, 0.06867313385009766, -0.03513285890221596, -0.01541160512715578, -0.1682693213224411, 0.00038578035309910774, 0.002772791078314185, 0.006018455605953932, 0.027480972930788994, 0.034812986850738525, 0.07671476155519485, 0.07359424978494644, -0.04821432754397392, -0.013993104919791222, -0.044124484062194824, -0.0028353321831673384, -0.12608574330806732, -0.1994713544845581, -0.029376957565546036, -0.017326172441244125, 0.14368294179439545, -0.21779057383537292, 0.04183819517493248, -0.020403824746608734, 0.07370135933160782, 0.010646134614944458, -0.01952945627272129, -0.041316669434309006, 0.07058677077293396, -0.04332353174686432, -0.04220760613679886, 0.0706971064209938, 0.00984268169850111, -0.0962906926870346, -0.04628867655992508, -0.11224640160799026, 0.1606275886297226, 0.13503187894821167, -0.12852250039577484, -0.05956530198454857, -0.0002462649717926979, -0.05853443220257759, -0.039339907467365265, -0.051874928176403046, 0.018932679668068886, 0.17654183506965637, -0.0072119226679205894, 0.14587384462356567, -0.07722223550081253, -0.04177303612232208, 0.025849059224128723, -0.03749316558241844, 0.02148856781423092, 0.12736931443214417, 0.12066736817359924, -0.07979803532361984, 0.13842670619487762, 0.15774595737457275, -0.08184291422367096, 0.1503305584192276, -0.03513462096452713, -0.0709647610783577, -0.026398316025733948, -0.02755776047706604, -0.008474316447973251, 0.103703074157238, -0.16937704384326935, 0.002394914161413908, 0.027132101356983185, 0.024112612009048462, 0.024004360660910606, -0.22615014016628265, -0.04623258486390114, 0.04639080539345741, -0.037915267050266266, -0.026300137862563133, -0.006589734926819801, -0.0032882257364690304, 0.10017489641904831, -0.004160253331065178, -0.0767209455370903, 0.03525527939200401, 0.0035008571576327085, -0.08172447979450226, 0.20575347542762756, -0.07233186066150665, -0.1471085101366043, -0.13010422885417938, -0.08125895261764526, -0.04682854190468788, 0.011643537320196629, 0.07116058468818665, -0.08437880873680115, -0.02522558532655239, -0.07165402919054031, 0.04258987307548523, -0.008616885170340538, 0.0167219340801239, 0.03265415504574776, 0.002859178464859724, 0.06244874745607376, -0.11036261916160583, -0.009742358699440956, -0.04569846764206886, -0.052130527794361115, 0.03923463448882103, 0.025100981816649437, 0.12303885817527771, 0.14213216304779053, -0.010386514477431774, 0.013688411563634872, -0.018923867493867874, 0.25025659799575806, -0.06591328233480453, -0.01850191317498684, 0.1527075171470642, -0.0051827626302838326, 0.05033169314265251, 0.09767386317253113, 0.07492422312498093, -0.08470603823661804, -0.004937117453664541, 0.02545689232647419, -0.039869118481874466, -0.2300322949886322, -0.04346197843551636, -0.05245925486087799, 0.0061734579503536224, 0.0864645317196846, 0.01870207116007805, 0.04066898301243782, 0.08028218150138855, 0.03396929055452347, 0.08624771982431412, -0.0375768207013607, 0.05671008676290512, 0.1158643439412117, 0.043482016772031784, 0.12290572375059128, -0.044615041464567184, -0.060206759721040726, 0.04353388398885727, 0.0046261209063231945, 0.21889151632785797, 0.01650458201766014, 0.13596783578395844, 0.06745550781488419, 0.15591828525066376, -0.013097036629915237, 0.077749103307724, -0.0032278229482471943, -0.04307049140334129, -0.02557292766869068, -0.04590129479765892, -0.03430257365107536, 0.02801785245537758, -0.07427618652582169, 0.06425555050373077, -0.1221156194806099, 0.02850964292883873, 0.04894611984491348, 0.23947595059871674, 0.03536003828048706, -0.32024243474006653, -0.09829245507717133, 0.005446299910545349, -0.029103994369506836, -0.016687646508216858, 0.03489646315574646, 0.09652964770793915, -0.09452309459447861, 0.0276954248547554, -0.06358115375041962, 0.10399508476257324, -0.04747457429766655, 0.05508390814065933, 0.05688343569636345, 0.08530346304178238, 0.007181981112807989, 0.091334268450737, -0.29900386929512024, 0.28452232480049133, 0.004067650996148586, 0.06885473430156708, -0.08388353884220123, -0.004483846016228199, 0.027986625209450722, 0.0557597354054451, 0.06561791151762009, -0.008266119286417961, -0.02464044652879238, -0.16977417469024658, -0.05097714066505432, 0.026202267035841942, 0.08062072843313217, -0.03027254343032837, 0.09513580799102783, -0.023561690002679825, 0.015234217047691345, 0.06712079048156738, 0.03324263170361519, -0.06674318015575409, -0.10276306420564651, -0.004520912654697895, 0.03515361249446869, -0.04547571390867233, -0.061142049729824066, -0.10727165639400482, -0.11540930718183517, 0.12918730080127716, -0.010169184766709805, -0.024036165326833725, -0.09783580899238586, 0.07594382762908936, 0.07400140166282654, -0.08646830916404724, 0.032338161021471024, 0.008865300565958023, 0.06466817110776901, 0.0196726992726326, -0.05772050842642784, 0.10528942197561264, -0.08084769546985626, -0.16530822217464447, -0.07009667158126831, 0.10733997821807861, 0.03701900318264961, 0.0680900290608406, -0.011153467930853367, 0.009003950282931328, -0.05969119444489479, -0.08133267611265182, 0.03458701819181442, -0.017047738656401634, 0.07316652685403824, 0.008714748546481133, -0.04722818732261658, 0.03029933199286461, -0.062475647777318954, -0.056825652718544006, 0.1893990933895111, 0.2393544763326645, -0.09004295617341995, 0.01990298368036747, 0.04507823660969734, -0.0691816434264183, -0.18316268920898438, 0.025727177038788795, 0.047554127871990204, 0.00956587865948677, 0.04822542518377304, -0.18956252932548523, 0.11676836758852005, 0.10114551335573196, -0.012631410732865334, 0.11187462508678436, -0.35086527466773987, -0.12218939512968063, 0.10994945466518402, 0.13913756608963013, 0.13481493294239044, -0.14324454963207245, -0.02284303866326809, -0.029726102948188782, -0.16866518557071686, 0.106343112885952, -0.09632949531078339, 0.12271274626255035, -0.03337335214018822, 0.1141027957201004, 0.005695724859833717, -0.061566874384880066, 0.12249676883220673, 0.015864385291934013, 0.09177111089229584, -0.06537538021802902, -0.018176767975091934, 0.05019437149167061, -0.0389213003218174, 0.01949484832584858, -0.10823563486337662, 0.03212869539856911, -0.10261905193328857, -0.020697716623544693, -0.07278269529342651, 0.03216016665101051, -0.04292260482907295, -0.06419209390878677, -0.0279899500310421, 0.012973738834261894, 0.05181066691875458, -0.005832187365740538, 0.11925255507230759, 0.02441655844449997, 0.13544189929962158, 0.0999901294708252, 0.08135821670293808, -0.08269812166690826, -0.06143157556653023, -0.030541516840457916, -0.01569085754454136, 0.053918588906526566, -0.14678804576396942, 0.018730642274022102, 0.1311543732881546, 0.024645064026117325, 0.1384451538324356, 0.08302182704210281, -0.033024270087480545, 0.00980584230273962, 0.06246161088347435, -0.1730741411447525, -0.09109684079885483, -0.024701643735170364, -0.03403407335281372, -0.10434114933013916, 0.05261564254760742, 0.10101568698883057, -0.0649624913930893, -0.0047539109364151955, -0.0146296676248312, 0.01042401883751154, -0.05938832834362984, 0.19745369255542755, 0.05071590095758438, 0.04968269169330597, -0.09603080153465271, 0.07830528914928436, 0.04149392619729042, -0.05965464189648628, 0.012151017785072327, 0.07967221736907959, -0.07589860260486603, -0.04783656448125839, 0.05329577252268791, 0.1896236389875412, -0.06861604005098343, -0.046161018311977386, -0.1435944139957428, -0.11142081767320633, 0.08034311980009079, 0.14370816946029663, 0.10451076179742813, 0.004676085896790028, -0.06288141757249832, 0.004666488151997328, -0.11496265977621078, 0.09362637251615524, 0.05593739077448845, 0.06392709165811539, -0.1415705680847168, 0.14068971574306488, 0.005604010075330734, 0.035553738474845886, -0.014294374734163284, 0.0273720845580101, -0.09101203083992004, 0.015419894829392433, -0.118554025888443, -0.037896111607551575, -0.02361542358994484, -0.00274658203125, -0.017730914056301117, -0.054477520287036896, -0.06128585711121559, 0.018218044191598892, -0.10862161219120026, -0.020093316212296486, 0.029134975746273994, 0.055151958018541336, -0.10753678530454636, -0.029432710260152817, 0.03351130709052086, -0.062243953347206116, 0.06290514767169952, 0.053884223103523254, 0.014461261220276356, 0.04911995306611061, -0.14145337045192719, 0.022970598191022873, 0.05175848305225372, 0.023853542283177376, 0.06047973781824112, -0.09082359820604324, -0.014864620752632618, -0.0053275590762495995, 0.05682501196861267, 0.014440094120800495, 0.07442010194063187, -0.1280810832977295, -0.00030133678228594363, -0.0076990858651697636, -0.08645270764827728, -0.06328076869249344, 0.025812475010752678, 0.08818896859884262, 0.007970710285007954, 0.19714166224002838, -0.06484730541706085, 0.049539703875780106, -0.2133236676454544, 0.010722736828029156, 0.004395260475575924, -0.10798349976539612, -0.12747406959533691, -0.0701686218380928, 0.06069780886173248, -0.06385453045368195, 0.14660723507404327, 0.020184936001896858, 0.018564073368906975, 0.02212054282426834, -0.004356988240033388, 0.01305472757667303, -0.002717613009735942, 0.20963835716247559, 0.03648258000612259, -0.03304186090826988, 0.047217488288879395, 0.055550385266542435, 0.10443304479122162, 0.12877924740314484, 0.19615735113620758, 0.1441223919391632, 0.002379127312451601, 0.09814969450235367, 0.03983467072248459, -0.04669048637151718, -0.16531431674957275, 0.028255971148610115, -0.02322797104716301, 0.10283520817756653, -0.029659822583198547, 0.21211691200733185, 0.07951273769140244, -0.16170097887516022, 0.03934573382139206, -0.06225811317563057, -0.07792330533266068, -0.11040978133678436, -0.07317480444908142, -0.07836231589317322, -0.13702574372291565, 0.004183078650385141, -0.11554816365242004, 0.022122856229543686, 0.1030067577958107, 0.005219617392867804, -0.03226274251937866, 0.15506111085414886, 0.02355988323688507, 0.02542177401483059, 0.04567556083202362, 0.0006645179819315672, -0.027774646878242493, -0.10656283795833588, -0.0631115734577179, -0.014061656780540943, -0.01937052421271801, 0.03207935765385628, -0.057561665773391724, -0.06276938319206238, 0.025586364790797234, -0.012413124553859234, -0.09906536340713501, 0.001886314363218844, 0.007908323779702187, 0.0674385353922844, 0.05240970104932785, -0.00044939442886970937, 0.023233378306031227, -0.006918375845998526, 0.21677739918231964, -0.07256411761045456, -0.08007853478193283, -0.09262605011463165, 0.20669898390769958, 0.03707428649067879, -0.01727042905986309, 0.02886890061199665, -0.0642564669251442, 0.011150621809065342, 0.2620165944099426, 0.20915158092975616, -0.09759026020765305, -0.01354790385812521, 0.019256088882684708, -0.004872651770710945, -0.024642210453748703, 0.09260037541389465, 0.1305469274520874, 0.051055487245321274, -0.09291112422943115, -0.03133433312177658, -0.0695333406329155, -0.014704016037285328, -0.03559606149792671, 0.07551994919776917, 0.04333168640732765, -0.0011194167891517282, -0.031356628984212875, 0.05582214146852493, -0.06372059136629105, -0.07945653051137924, 0.032788343727588654, -0.21873411536216736, -0.15323957800865173, -0.01915874145925045, 0.11796282976865768, 0.006616602186113596, 0.06953156739473343, -0.02809479832649231, 0.0007086072000674903, 0.07208989560604095, -0.01572396419942379, -0.09769819676876068, -0.07797207683324814, 0.08971355110406876, -0.11094043403863907, 0.2078281193971634, -0.048102639615535736, 0.05914730578660965, 0.12413325160741806, 0.06247631087899208, -0.07642737776041031, 0.07069544494152069, 0.04625409469008446, -0.045684974640607834, 0.01538063120096922, 0.08449843525886536, -0.028688596561551094, 0.06964082270860672, 0.04838111996650696, -0.13198286294937134, 0.02069452963769436, -0.02149025723338127, -0.04727916419506073, -0.0319603756070137, -0.032445989549160004, -0.052974361926317215, 0.1335410177707672, 0.2120964676141739, -0.03609080985188484, -0.00668561365455389, -0.07293707132339478, 0.024918273091316223, 0.06497760117053986, 0.022006604820489883, -0.0638643205165863, -0.2261056751012802, 0.001259823446162045, 0.05893371254205704, -0.009926946833729744, -0.2504805028438568, -0.09800540655851364, -0.0003476119600236416, -0.07714854925870895, -0.08977741748094559, 0.07144946604967117, 0.10762341320514679, 0.05058607831597328, -0.05376794561743736, -0.045206695795059204, -0.07347717881202698, 0.15391094982624054, -0.14071427285671234, -0.09476979076862335 ]
null
null
transformers
# mbart for 9-3
{}
text2text-generation
felixai/distilmbart-9-3
[ "transformers", "pytorch", "mbart", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #mbart #text2text-generation #autotrain_compatible #endpoints_compatible #region-us
# mbart for 9-3
[ "# mbart for 9-3" ]
[ "TAGS\n#transformers #pytorch #mbart #text2text-generation #autotrain_compatible #endpoints_compatible #region-us \n", "# mbart for 9-3" ]
[ 39, 6 ]
[ "passage: TAGS\n#transformers #pytorch #mbart #text2text-generation #autotrain_compatible #endpoints_compatible #region-us \n# mbart for 9-3" ]
[ -0.06892195343971252, -0.0357501357793808, -0.006704540923237801, 0.017345275729894638, 0.13324514031410217, 0.006342276465147734, 0.13286231458187103, 0.12973016500473022, -0.0037631425075232983, -0.029139557853341103, 0.14235307276248932, 0.2483941912651062, -0.0292444359511137, 0.21427693963050842, -0.10631557554006577, -0.2154942750930786, 0.03711683303117752, 0.07098500430583954, 0.04702899232506752, 0.14072096347808838, 0.07514137029647827, -0.06867991387844086, 0.0706714391708374, -0.07902637869119644, -0.1733202040195465, 0.07657776027917862, -0.004330298863351345, -0.12543068826198578, 0.061872448772192, 0.024009699001908302, 0.09237861633300781, 0.08397229015827179, -0.074364073574543, -0.10011713951826096, 0.03037085570394993, -0.03221787139773369, -0.07087177783250809, 0.049601126462221146, 0.08234962821006775, -0.07596161216497421, 0.030767900869250298, 0.0786045715212822, 0.012745031155645847, 0.03696799650788307, -0.13217203319072723, 0.0432780459523201, -0.06980327516794205, 0.051804300397634506, 0.12488479912281036, 0.06100426986813545, -0.0006172880530357361, 0.17010019719600677, -0.14147713780403137, 0.13161732256412506, 0.15741963684558868, -0.28923743963241577, -0.006636971142143011, 0.08096438646316528, 0.08093610405921936, 0.09333431720733643, 0.006916667800396681, 0.012813614681363106, 0.007595224771648645, 0.04454715549945831, 0.01697036437690258, -0.08139965683221817, -0.04935417324304581, 0.01488359086215496, -0.11334867775440216, -0.0025399820879101753, 0.27085089683532715, -0.053221698850393295, 0.03855035454034805, -0.034314170479774475, -0.05513360723853111, -0.02787320502102375, -0.04067210480570793, 0.024412304162979126, -0.07045668363571167, 0.03951268643140793, -0.05797678977251053, -0.03611243888735771, -0.11178737133741379, -0.0017716004513204098, -0.18979881703853607, 0.14518949389457703, 0.004413645714521408, 0.04730971157550812, -0.16622653603553772, 0.07066140323877335, -0.018767239525914192, -0.11387725919485092, 0.05222970247268677, -0.11515887081623077, 0.04926449805498123, -0.03252324461936951, -0.05351362004876137, -0.0845504179596901, 0.04861194267868996, 0.13538607954978943, 0.1336207389831543, 0.05717906355857849, -0.03677193820476532, 0.08650927990674973, -0.005029279738664627, 0.03732757270336151, 0.003264747792854905, -0.11399243772029877, 0.08194351196289062, -0.02691015601158142, 0.0319354385137558, -0.04588611423969269, -0.16756698489189148, -0.02758615091443062, 0.04780244454741478, 0.10636278241872787, 0.034125395119190216, 0.0672144889831543, -0.034913238137960434, -0.0477626770734787, 0.2203088253736496, -0.07415910065174103, -0.013760053552687168, -0.010769687592983246, -0.013822868466377258, 0.07587393373250961, 0.022074062377214432, 0.021391969174146652, -0.08449149876832962, 0.10734229534864426, -0.040207214653491974, -0.0007793199620209634, -0.02903200127184391, -0.08297862112522125, 0.0364564023911953, -0.07667698711156845, 0.027778012678027153, -0.17420125007629395, -0.18071100115776062, 0.02197543904185295, -0.014243606477975845, -0.02001969888806343, -0.030139034613966942, -0.03295483812689781, -0.04941084608435631, 0.037148214876651764, -0.08735071122646332, 0.06911299377679825, -0.04194499924778938, 0.08546009659767151, 0.04160251468420029, 0.07574684917926788, -0.15339474380016327, 0.06638901680707932, -0.08914528042078018, -0.024839168414473534, -0.1312083750963211, 0.08140639215707779, -0.042335256934165955, 0.15891258418560028, -0.032059445977211, -0.0342683345079422, -0.09001702070236206, 0.015483261086046696, 0.008634235709905624, 0.1781369000673294, -0.08140730857849121, -0.09603609144687653, 0.17626550793647766, -0.059563323855400085, -0.15728859603405, 0.05599348992109299, -0.0009301382233388722, 0.03552549332380295, 0.10514320433139801, 0.1641346663236618, 0.0649726390838623, 0.0018691073637455702, 0.04972320795059204, 0.06384453922510147, -0.06952519714832306, -0.18891938030719757, 0.02195475623011589, 0.03546638786792755, -0.08944331109523773, 0.05297580361366272, 0.0810946598649025, 0.06924840807914734, -0.047621652483940125, -0.026391174644231796, -0.0010561887174844742, -0.03948511928319931, 0.08698241412639618, 0.013928789645433426, 0.1100696250796318, -0.11728952080011368, 0.00007450440898537636, 0.05475778877735138, 0.005684461444616318, 0.01409239787608385, 0.020562442019581795, -0.049348849803209305, 0.07961037755012512, -0.11963512748479843, 0.0309338066726923, -0.1679556518793106, -0.03821905329823494, -0.0014068132732063532, 0.1427135318517685, 0.04355057328939438, 0.06429655849933624, 0.07538696378469467, -0.017610738053917885, -0.030538374558091164, -0.03903988376259804, 0.163905531167984, 0.014318660832941532, -0.09213759005069733, -0.06644332408905029, 0.025722669437527657, -0.08461961150169373, -0.037021148949861526, 0.015467241406440735, 0.04147464036941528, 0.020186571404337883, 0.10353270173072815, 0.01177149172872305, 0.039621442556381226, 0.03441974148154259, 0.04541851580142975, -0.05849530175328255, 0.034178439527750015, 0.09524329006671906, 0.006046784110367298, -0.0988755151629448, 0.2022186815738678, -0.2152528166770935, 0.24009577929973602, 0.20975840091705322, -0.18109749257564545, 0.021628662943840027, -0.06027401611208916, -0.013669949024915695, -0.011917613446712494, 0.0875815600156784, -0.02826622501015663, 0.0399562269449234, 0.008899268694221973, 0.17163461446762085, -0.06446391344070435, -0.09201055020093918, -0.012690135277807713, -0.05915465205907822, -0.023913325741887093, 0.05193888023495674, 0.06145758554339409, -0.2106339931488037, 0.14223498106002808, 0.2633437216281891, 0.006162608042359352, 0.16761603951454163, 0.050884395837783813, -0.016986144706606865, 0.036405567079782486, -0.025723442435264587, -0.022538065910339355, -0.08520691841840744, -0.17789243161678314, -0.04207925498485565, 0.05505353584885597, 0.052201006561517715, 0.11662750691175461, -0.0891476646065712, -0.027280349284410477, -0.01739487238228321, 0.018333859741687775, -0.021792994812130928, 0.08891071379184723, 0.035917215049266815, 0.08603506535291672, -0.0016619378002360463, -0.017324967309832573, 0.10384973883628845, 0.007511509116739035, -0.09858398139476776, 0.15407219529151917, -0.1483912616968155, -0.2982812821865082, -0.16642123460769653, -0.22832411527633667, -0.05460157245397568, 0.03332815319299698, 0.11365236341953278, -0.0826638787984848, -0.022659966722130775, -0.006816021166741848, 0.03497041389346123, -0.054827846586704254, 0.03762606903910637, -0.023071184754371643, 0.049868833273649216, -0.05240403488278389, -0.0784095749258995, -0.045768264681100845, -0.022693729028105736, -0.03780993074178696, 0.142952099442482, -0.1545613706111908, 0.05837426334619522, 0.1423107087612152, 0.019195767119526863, 0.057236529886722565, -0.019982265308499336, 0.1661379337310791, -0.027691245079040527, 0.021809101104736328, 0.2083650529384613, -0.04527096822857857, 0.0851840004324913, 0.14810340106487274, 0.017033465206623077, -0.06805652379989624, 0.047988411039114, -0.06307290494441986, -0.08999951928853989, -0.22644475102424622, -0.09234552085399628, -0.11748892813920975, 0.05430649220943451, 0.043524567037820816, 0.03922058269381523, 0.09818235784769058, 0.09734170138835907, -0.0072397030889987946, -0.007345980033278465, 0.05307123064994812, 0.0983942374587059, 0.12842367589473724, 0.0018710544100031257, 0.18229269981384277, -0.05682768672704697, -0.09386905282735825, 0.10824626684188843, 0.0929219201207161, 0.08567119389772415, 0.03694918379187584, -0.018571747466921806, 0.041065528988838196, 0.06813081353902817, 0.12662631273269653, 0.1654113233089447, 0.008779439143836498, -0.025278935208916664, -0.026281341910362244, -0.02169492468237877, -0.03058900311589241, 0.01279663760215044, 0.06718304008245468, -0.1145641878247261, -0.048539258539676666, -0.12763889133930206, 0.08114700019359589, 0.05703360587358475, 0.10089785605669022, -0.2409328669309616, 0.01479456014931202, 0.07827139645814896, -0.05397266894578934, -0.0529097244143486, 0.048174142837524414, -0.03543861210346222, -0.08895765990018845, 0.11353711038827896, -0.007807196583598852, 0.1246558204293251, 0.0112066138535738, 0.043699201196432114, -0.06345543265342712, -0.06846676766872406, 0.013941876590251923, 0.09125172346830368, -0.3355643153190613, 0.14600183069705963, 0.009516443125903606, -0.027767017483711243, -0.08313923329114914, -0.008642846718430519, 0.04082600399851799, 0.11096683889627457, 0.015537845902144909, -0.0076188333332538605, -0.02508750557899475, -0.11342304944992065, -0.08916491270065308, -0.007492721080780029, 0.10704606771469116, 0.016990698873996735, 0.023488037288188934, 0.0007054278394207358, -0.04257650673389435, -0.024695133790373802, -0.004867002833634615, -0.010353750549256802, -0.1378449946641922, 0.07297720015048981, 0.03730929270386696, -0.01777709275484085, 0.0024654425214976072, -0.04082099720835686, -0.03199842572212219, 0.20975114405155182, -0.010968330316245556, -0.10766109824180603, -0.09560222178697586, -0.0870378389954567, 0.09274730831384659, -0.07733339071273804, 0.04222572222352028, -0.06573361903429031, 0.021542629227042198, -0.05517560988664627, -0.19614984095096588, 0.12914271652698517, -0.12438622117042542, -0.024951979517936707, -0.05538006126880646, 0.18804344534873962, -0.09066951274871826, 0.01806395873427391, 0.019666066393256187, 0.0019392459653317928, -0.1038392037153244, -0.07023093104362488, -0.0021482736337929964, -0.04186651483178139, 0.05061221122741699, 0.07254479080438614, -0.05403662845492363, -0.07795659452676773, -0.04850710555911064, -0.025008291006088257, 0.2434644103050232, 0.2090003937482834, -0.031335096806287766, 0.13671380281448364, 0.17776526510715485, -0.03637063130736351, -0.307149738073349, -0.07875126600265503, -0.06518107652664185, -0.03173458203673363, -0.05247603729367256, -0.08416710048913956, 0.07702014595270157, 0.0038967239670455456, -0.016817089170217514, 0.1026173010468483, -0.22321979701519012, -0.09226659685373306, 0.12550920248031616, 0.023317819461226463, 0.34226658940315247, -0.12908394634723663, -0.09391581267118454, -0.08057352155447006, -0.12808339297771454, 0.08406434953212738, -0.01971336454153061, 0.09802018105983734, -0.03931561857461929, 0.11033771187067032, 0.009466622956097126, -0.06485925614833832, 0.06565568596124649, 0.02760336548089981, -0.005445214454084635, -0.10910406708717346, -0.02000551111996174, 0.09587042778730392, -0.039514973759651184, 0.050592705607414246, -0.06817664206027985, 0.02610795758664608, -0.13054467737674713, -0.03855583071708679, -0.10764570534229279, 0.014216066338121891, 0.018902111798524857, -0.02796626277267933, 0.04237893223762512, -0.06326029449701309, -0.013471550308167934, -0.006003708112984896, 0.10830570757389069, -0.0868203192949295, 0.1238512247800827, 0.18668608367443085, 0.1187034547328949, -0.1656518280506134, 0.056921716779470444, -0.04855036363005638, -0.09664583951234818, 0.02745654806494713, -0.08896069973707199, 0.06970543414354324, 0.1021953821182251, -0.06434483826160431, 0.06226677447557449, 0.09339962154626846, 0.0038661169819533825, 0.012243512086570263, 0.16803665459156036, -0.1989738494157791, 0.16167378425598145, -0.056125130504369736, 0.09356138855218887, 0.025010615587234497, 0.09462772309780121, 0.15107865631580353, 0.05131053552031517, -0.060200463980436325, -0.017701376229524612, 0.0025520927738398314, -0.07747155427932739, 0.1514032483100891, 0.05351497605443001, 0.028740961104631424, -0.15363462269306183, 0.058778923004865646, -0.01591380313038826, -0.0799158364534378, -0.02607942372560501, 0.20585548877716064, -0.15551231801509857, -0.11766470968723297, -0.00015093204274307936, 0.11866717785596848, -0.09403695166110992, -0.007866195403039455, -0.07724249362945557, -0.09415620565414429, 0.10930551588535309, 0.1789552867412567, 0.06800340861082077, 0.036092620342969894, -0.034996964037418365, -0.02947748452425003, -0.03633831441402435, -0.001147251226939261, 0.037652235478162766, 0.0934113934636116, -0.07317007333040237, 0.03963937610387802, -0.03810274973511696, 0.12118025869131088, -0.08862695842981339, -0.01958727277815342, -0.1200343444943428, 0.03886738792061806, -0.13264766335487366, -0.05616142973303795, -0.11544762551784515, -0.040267929434776306, -0.027662839740514755, -0.04886013641953468, -0.07235387712717056, -0.03912399336695671, -0.1174139678478241, 0.02741110324859619, -0.05689988285303116, -0.0018149887910112739, -0.052256569266319275, -0.047386009246110916, 0.06491245329380035, -0.05860578268766403, 0.10569623857736588, 0.14099343121051788, -0.07501338422298431, 0.07900919020175934, -0.013645244762301445, -0.12081965804100037, 0.11583693325519562, 0.03449335694313049, 0.04797589033842087, 0.07060566544532776, 0.0209041740745306, 0.09713207185268402, 0.04310305416584015, 0.046732235699892044, 0.10602668672800064, -0.10537201166152954, -0.0001775141863618046, -0.08038479089736938, -0.15970414876937866, -0.050942957401275635, -0.0019782271701842546, 0.10579844564199448, 0.04856609180569649, 0.14094722270965576, -0.05353757366538048, 0.0770760253071785, -0.06340640783309937, -0.0009513967088423669, -0.010035114362835884, -0.21176573634147644, -0.06484410166740417, -0.05612938106060028, 0.03016454167664051, 0.011338278651237488, 0.241689532995224, -0.040884412825107574, -0.0027520996518433094, 0.021778585389256477, 0.0534219890832901, 0.04297066852450371, 0.011858968064188957, 0.20910874009132385, 0.05513913929462433, -0.04754401743412018, -0.10364016890525818, 0.09846355766057968, 0.012446790002286434, -0.051400020718574524, 0.08647236227989197, 0.07491733133792877, 0.031630974262952805, 0.08599795401096344, 0.018488720059394836, 0.07649217545986176, -0.09436121582984924, -0.17753098905086517, -0.01891496032476425, 0.05269602686166763, 0.012353511527180672, 0.07462600618600845, 0.1407892107963562, -0.03147793933749199, 0.014510243199765682, -0.009967437013983727, -0.054968833923339844, -0.14711220562458038, -0.08360100537538528, -0.09713605791330338, -0.09966355562210083, 0.008228031918406487, -0.0881221815943718, 0.024025248363614082, 0.03744838014245033, 0.07694751024246216, -0.020474299788475037, 0.10616232454776764, 0.05026464909315109, -0.08345168083906174, 0.04642145335674286, -0.07843214273452759, 0.009464265778660774, 0.0642533004283905, 0.01794266700744629, -0.07600889354944229, -0.0012557149166241288, -0.004481921903789043, 0.03268194943666458, -0.10845696181058884, -0.006692146882414818, -0.12197476625442505, -0.1321103572845459, -0.04821602255105972, 0.03744411841034889, 0.0147593654692173, 0.1667894423007965, 0.006421511061489582, -0.024230970069766045, 0.03768453374505043, 0.15283605456352234, -0.07844193279743195, -0.10639483481645584, -0.04707916080951691, 0.15303704142570496, 0.05920162796974182, 0.08979368209838867, -0.039127103984355927, 0.00923154503107071, -0.05839163064956665, 0.30567479133605957, 0.2941461503505707, -0.07487822324037552, 0.02979397587478161, 0.053869277238845825, 0.03605571389198303, 0.09729649126529694, 0.13363489508628845, 0.08549845963716507, 0.1696004420518875, -0.061922039836645126, -0.0032773283310234547, -0.018166858702898026, -0.020119959488511086, -0.06946394592523575, 0.05767068266868591, 0.027663923799991608, -0.07544992119073868, -0.035940490663051605, 0.10344897210597992, -0.12220442295074463, 0.1281331479549408, -0.08859247714281082, -0.19203129410743713, -0.07137063890695572, -0.014119947329163551, 0.1328325718641281, 0.007326135877519846, 0.08666878193616867, 0.002362459897994995, -0.0461600124835968, -0.017756033688783646, -0.0017005010740831494, -0.20506201684474945, -0.0374620258808136, 0.06705210357904434, -0.04991445317864418, -0.05072595551609993, -0.03433799743652344, 0.04867485538125038, 0.08569800853729248, 0.03147657960653305, -0.03787043318152428, 0.1071709394454956, 0.0023655444383621216, -0.0006135308649390936, 0.034802716225385666, 0.08813365548849106, -0.024139875546097755, -0.047538042068481445, 0.04958384484052658, -0.19865301251411438, 0.02344624139368534, -0.07416210323572159, -0.05572020635008812, -0.020441414788365364, 0.035624779760837555, -0.01722699962556362, 0.0811632052063942, 0.07163990288972855, -0.030791157856583595, -0.005192028824239969, -0.044116947799921036, -0.012780101038515568, 0.022233638912439346, -0.04267401248216629, -0.11395188421010971, -0.15986555814743042, -0.11158245801925659, 0.08805301040410995, 0.043099939823150635, -0.2814752161502838, 0.010410896502435207, -0.13490693271160126, 0.016184337437152863, -0.20859172940254211, 0.13412529230117798, 0.040788158774375916, 0.010107075795531273, -0.007146431598812342, -0.083252914249897, 0.017186742275953293, 0.0798274502158165, -0.17566820979118347, -0.09651437401771545 ]
null
null
transformers
# rare-puppers Autogenerated by HuggingPics🤗🖼️ Create your own image classifier for **anything** by running [the demo on Google Colab](https://colab.research.google.com/github/nateraw/huggingpics/blob/main/HuggingPics.ipynb). Report any issues with the demo at the [github repo](https://github.com/nateraw/huggingpics). ## Example Images #### corgi ![corgi](images/corgi.jpg) #### samoyed ![samoyed](images/samoyed.jpg) #### shiba inu ![shiba inu](images/shiba_inu.jpg)
{"tags": ["image-classification", "pytorch", "huggingpics"], "metrics": ["accuracy"]}
image-classification
ferdinand/rare-puppers
[ "transformers", "pytorch", "tensorboard", "vit", "image-classification", "huggingpics", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #vit #image-classification #huggingpics #model-index #autotrain_compatible #endpoints_compatible #region-us
# rare-puppers Autogenerated by HuggingPics️ Create your own image classifier for anything by running the demo on Google Colab. Report any issues with the demo at the github repo. ## Example Images #### corgi !corgi #### samoyed !samoyed #### shiba inu !shiba inu
[ "# rare-puppers\n\n\nAutogenerated by HuggingPics️\n\nCreate your own image classifier for anything by running the demo on Google Colab.\n\nReport any issues with the demo at the github repo.", "## Example Images", "#### corgi\n\n!corgi", "#### samoyed\n\n!samoyed", "#### shiba inu\n\n!shiba inu" ]
[ "TAGS\n#transformers #pytorch #tensorboard #vit #image-classification #huggingpics #model-index #autotrain_compatible #endpoints_compatible #region-us \n", "# rare-puppers\n\n\nAutogenerated by HuggingPics️\n\nCreate your own image classifier for anything by running the demo on Google Colab.\n\nReport any issues with the demo at the github repo.", "## Example Images", "#### corgi\n\n!corgi", "#### samoyed\n\n!samoyed", "#### shiba inu\n\n!shiba inu" ]
[ 49, 44, 4, 7, 9, 11 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #vit #image-classification #huggingpics #model-index #autotrain_compatible #endpoints_compatible #region-us \n# rare-puppers\n\n\nAutogenerated by HuggingPics️\n\nCreate your own image classifier for anything by running the demo on Google Colab.\n\nReport any issues with the demo at the github repo.## Example Images#### corgi\n\n!corgi#### samoyed\n\n!samoyed#### shiba inu\n\n!shiba inu" ]
[ -0.08725201338529587, 0.03195034712553024, -0.0021389354951679707, 0.1135053038597107, 0.15519317984580994, 0.03239595144987106, 0.13578292727470398, 0.12030287832021713, 0.05626533553004265, 0.03964082524180412, 0.10228189080953598, 0.11883898079395294, 0.028155656531453133, 0.17724762856960297, 0.012100371532142162, -0.2828732430934906, 0.034176383167505264, 0.05366837605834007, 0.031914111226797104, 0.057901784777641296, 0.023022184148430824, -0.0998450219631195, 0.15487806499004364, -0.0027328983414918184, -0.1814582347869873, -0.06354904174804688, -0.011302858591079712, -0.026495302096009254, 0.062415964901447296, 0.02706352062523365, 0.07643365859985352, 0.04628670588135719, 0.048448216170072556, -0.037812162190675735, 0.06485318392515182, 0.02091336064040661, -0.03882516920566559, 0.08166497945785522, 0.09309375286102295, 0.05058153718709946, -0.0022560437209904194, 0.06809859722852707, -0.03961021453142166, 0.037191152572631836, -0.10592982918024063, 0.016338806599378586, -0.046722013503313065, 0.041327252984046936, 0.09235234558582306, 0.05342043563723564, -0.0159174632281065, 0.18937605619430542, -0.07387242466211319, 0.06267139315605164, 0.204153373837471, -0.008847134187817574, -0.1255074292421341, 0.10155905038118362, 0.022742880508303642, -0.010586855001747608, -0.04176018014550209, 0.07217155396938324, 0.06993623822927475, -0.023803625255823135, -0.08407008647918701, -0.07971884310245514, -0.10400845110416412, -0.0659603402018547, -0.11390291899442673, -0.0005772259319201112, -0.036161940544843674, 0.007211155258119106, -0.026158908382058144, -0.011855215765535831, -0.06617917120456696, -0.03847353532910347, -0.07845224440097809, 0.046847131103277206, 0.011522369459271431, -0.002245101844891906, -0.08106949180364609, -0.02939991094172001, -0.11006252467632294, -0.07804960012435913, -0.040562357753515244, 0.07844525575637817, 0.06363581120967865, 0.06238023564219475, -0.09889709204435349, 0.034971993416547775, -0.060022495687007904, -0.06362511217594147, -0.02836483158171177, -0.04747164621949196, -0.04073799401521683, -0.03706582635641098, 0.006928959395736456, -0.02729734592139721, 0.1591191291809082, 0.17127059400081635, 0.019826671108603477, 0.053793616592884064, 0.0022218883968889713, 0.07772756367921829, 0.05695729702711105, 0.10798590630292892, -0.08507385104894638, 0.05391492694616318, 0.10528440773487091, 0.044559672474861145, 0.03493637964129448, -0.02846892736852169, -0.10629629343748093, -0.04619873687624931, 0.005445396527647972, -0.004112243186682463, 0.07416379451751709, 0.07932920753955841, -0.06106899678707123, -0.040247976779937744, 0.12962009012699127, 0.033938441425561905, -0.0067568556405603886, -0.029184821993112564, -0.017937632277607918, -0.03950744494795799, 0.07358310371637344, -0.00608476297929883, -0.009796147234737873, 0.019999604672193527, -0.0709942877292633, 0.05375722050666809, -0.021510133519768715, 0.041401349008083344, 0.03244863077998161, -0.19535957276821136, 0.002194782951846719, -0.18268167972564697, 0.0064466861076653, -0.008419123478233814, 0.03258252888917923, -0.04353305697441101, -0.059357188642024994, 0.008648096583783627, 0.0038042874075472355, -0.05518633499741554, 0.008929149247705936, -0.05204879119992256, -0.049876581877470016, 0.03365376591682434, 0.03086325339972973, 0.08409526944160461, -0.12796184420585632, 0.02025497891008854, -0.14339636266231537, 0.01808703877031803, -0.22358684241771698, 0.07740803807973862, -0.0807129368185997, 0.13639891147613525, -0.05171693116426468, -0.018077053129673004, 0.026494668796658516, 0.003394173691049218, 0.03545491024851799, 0.1802806854248047, -0.10681743174791336, -0.08012638241052628, 0.09299447387456894, -0.13464754819869995, -0.08361375331878662, 0.1784285008907318, -0.009829333052039146, -0.004474638029932976, 0.04090268909931183, 0.14485524594783783, 0.049888018518686295, -0.12506426870822906, -0.0023372904397547245, -0.03928179293870926, -0.10563148558139801, 0.001297077862545848, 0.02361970581114292, 0.07307205349206924, -0.03278478607535362, 0.028870759531855583, -0.057325270026922226, 0.13522130250930786, -0.0756012573838234, -0.06212741509079933, -0.011922481469810009, -0.07765046507120132, 0.010072366334497929, 0.10895247757434845, 0.08522842079401016, 0.03529075160622597, 0.006655340548604727, -0.11329551786184311, 0.06300210952758789, 0.003479685401543975, -0.010017212480306625, -0.07677577435970306, 0.20370084047317505, -0.026291143149137497, 0.01377155166119337, -0.0799843817949295, -0.03747062012553215, 0.050133541226387024, -0.037256646901369095, 0.15824776887893677, -0.010255233384668827, 0.03251718729734421, 0.03872392326593399, -0.012551270425319672, -0.006375012919306755, 0.06509717553853989, -0.041594523936510086, -0.1060938611626625, -0.10735425353050232, 0.0698326975107193, -0.03683536499738693, 0.12558099627494812, -0.08935602009296417, 0.0005720042972825468, 0.03784332051873207, 0.13630113005638123, 0.04155619814991951, -0.05775643512606621, 0.06386461853981018, -0.013183949515223503, -0.052448321133852005, -0.03119824267923832, 0.10777141898870468, -0.023843131959438324, -0.028976907953619957, 0.0922992154955864, -0.03028225526213646, -0.053854260593652725, 0.1724037230014801, -0.17595380544662476, -0.08996876329183578, -0.07063911855220795, -0.021678511053323746, 0.0257002804428339, -0.03513510897755623, 0.09859878569841385, 0.12328615039587021, -0.02315390482544899, 0.11330175399780273, -0.025448214262723923, 0.07668901979923248, 0.04546011611819267, -0.03618212789297104, -0.037199001759290695, 0.07456471771001816, 0.1732560098171234, -0.13867461681365967, 0.09609217196702957, 0.014329317957162857, -0.08134523779153824, 0.12503774464130402, 0.017924558371305466, -0.013553149066865444, 0.0364948995411396, -0.015502866357564926, 0.06963246315717697, 0.16218173503875732, -0.1248825266957283, -0.04629707336425781, 0.04180235043168068, -0.12308557331562042, 0.012266606092453003, -0.13019578158855438, 0.00032581883715465665, -0.059241216629743576, 0.004582630470395088, 0.058693598955869675, 0.056561533361673355, -0.02150285243988037, 0.06558628380298615, -0.016758570447564125, -0.03748732805252075, -0.007656690198928118, 0.04019112512469292, -0.022498898208141327, 0.12266936153173447, -0.018671948462724686, -0.23571515083312988, -0.11232282221317291, -0.004492770880460739, -0.05782869830727577, 0.08241916447877884, 0.04560401663184166, -0.1352987140417099, -0.028466781601309776, -0.0029495072085410357, 0.07264716923236847, 0.08223062753677368, 0.06170215457677841, -0.07660193741321564, 0.03016502410173416, 0.02640322595834732, -0.029735982418060303, -0.015808120369911194, -0.07721602916717529, -0.041204772889614105, 0.1743878871202469, -0.04482881724834442, 0.11662738770246506, 0.04770622402429581, 0.0002567560295574367, 0.017374958842992783, 0.0006751101464033127, 0.17181523144245148, -0.13390152156352997, 0.0354495644569397, 0.19081208109855652, -0.015049438923597336, 0.039994172751903534, 0.125303715467453, 0.004979373887181282, -0.08107107877731323, -0.010994499549269676, 0.025968365371227264, -0.15241122245788574, -0.05767630413174629, -0.05720720812678337, -0.0671539455652237, 0.16645075380802155, 0.13435012102127075, 0.055542655289173126, 0.049172159284353256, 0.20927931368350983, -0.023016836494207382, 0.06522751599550247, -0.017073944211006165, 0.058385107666254044, -0.04346790909767151, 0.0064426143653690815, 0.06281419843435287, 0.0005436323117464781, -0.08646364510059357, 0.10815723985433578, -0.009162385016679764, 0.11316092312335968, -0.026063119992613792, 0.03861460089683533, -0.004421021323651075, 0.1333499252796173, 0.1291249841451645, -0.03633374720811844, 0.03913675248622894, -0.034587886184453964, -0.022632235661149025, -0.04384814575314522, -0.06627126783132553, 0.04909754544496536, 0.08852285146713257, -0.11463501304388046, 0.02870742790400982, 0.023283440619707108, 0.036439232528209686, 0.17827972769737244, 0.04621202126145363, -0.3211063742637634, -0.014094782061874866, -0.039162687957286835, 0.022455396130681038, -0.023093489930033684, 0.012418294325470924, -0.010800427757203579, -0.0842115506529808, 0.07306312769651413, -0.10376513749361038, 0.11075038462877274, -0.1286194920539856, 0.02667526714503765, 0.034889865666627884, 0.06627020984888077, -0.00503558898344636, -0.009011751972138882, -0.09946633875370026, 0.10092965513467789, -0.02858249843120575, -0.06153140589594841, -0.05412408336997032, 0.004426621366292238, 0.12417545169591904, 0.14550656080245972, 0.09538534283638, 0.007453936152160168, 0.07573871314525604, -0.20739008486270905, -0.10569656640291214, 0.006672629155218601, 0.0209259781986475, -0.05289652198553085, -0.007929849438369274, -0.005339838098734617, -0.022439075633883476, -0.04532014951109886, 0.043954893946647644, -0.1144966408610344, -0.07773924618959427, 0.029495103284716606, 0.0043275728821754456, 0.03984550014138222, -0.008062648586928844, -0.05335452780127525, -0.11182335764169693, 0.04794478043913841, 0.14780905842781067, -0.011666921898722649, -0.09672053903341293, 0.11132102459669113, 0.035195332020521164, -0.08826787024736404, 0.02265583910048008, -0.10907873511314392, 0.05252985656261444, -0.025499023497104645, -0.15687888860702515, 0.08956512808799744, -0.10042647272348404, -0.13593590259552002, -0.07579820603132248, -0.001924236654303968, 0.041143544018268585, 0.009296742267906666, 0.018196964636445045, 0.03443411365151405, -0.012468704022467136, -0.05671745538711548, 0.059189241379499435, 0.028822725638747215, 0.02986554056406021, 0.1001846119761467, 0.029619254171848297, -0.07286301255226135, -0.08809434622526169, 0.007607334293425083, 0.04963431879878044, 0.17585845291614532, -0.054766152054071426, 0.039655692875385284, 0.07079920917749405, 0.015472592785954475, -0.3493516147136688, -0.013201026245951653, 0.03561287000775337, -0.048122551292181015, -0.05820423737168312, -0.12167651951313019, 0.15705633163452148, 0.08948065340518951, -0.03899039328098297, 0.08654363453388214, -0.07273750007152557, -0.13459128141403198, 0.08251696079969406, 0.1053558811545372, 0.15190021693706512, -0.1989029198884964, -0.035685472190380096, -0.010895918123424053, 0.04725129157304764, 0.13657422363758087, -0.04451083764433861, 0.07869797199964523, -0.04333565756678581, -0.009525101631879807, 0.02575378306210041, -0.013180339708924294, 0.1126987561583519, -0.08153390884399414, -0.003806003136560321, -0.11173462122678757, -0.1275569498538971, -0.030610211193561554, -0.028784172609448433, -0.03528527542948723, 0.025452205911278725, 0.02299712970852852, -0.03399757668375969, 0.005726407282054424, -0.052121832966804504, 0.08704721182584763, 0.0508025623857975, -0.040398649871349335, -0.12360955774784088, 0.057384323328733444, -0.08068276941776276, 0.062280766665935516, 0.24721577763557434, -0.015316469594836235, 0.011376569978892803, 0.14206595718860626, 0.030055245384573936, -0.06631238758563995, -0.00721421092748642, -0.051209401339292526, -0.04404282569885254, 0.12108639627695084, -0.04142024368047714, 0.020760687068104744, 0.05812057852745056, 0.02079555206000805, 0.028378119692206383, 0.03908412531018257, -0.003966422751545906, 0.0966523140668869, 0.12638217210769653, -0.10604514181613922, -0.11415927112102509, -0.02408481575548649, -0.07823611050844193, 0.04854125156998634, 0.06240178644657135, 0.1317335069179535, -0.0403314009308815, -0.05524204671382904, 0.019972680136561394, 0.0285005085170269, -0.015163728967308998, 0.10260289907455444, 0.05561532825231552, -0.03574158623814583, -0.13584718108177185, 0.06593596935272217, 0.04068996384739876, -0.11389065533876419, -0.06260333955287933, 0.12008363753557205, -0.08999498933553696, -0.13304714858531952, 0.07044947892427444, 0.11229751259088516, -0.17939569056034088, 0.03147571533918381, -0.08238337188959122, -0.019431615248322487, 0.0027325269766151905, 0.018985729664564133, 0.10295498371124268, -0.040888141840696335, 0.0607030875980854, 0.05882333219051361, -0.08289425820112228, -0.003656163811683655, 0.01958155445754528, 0.14842434227466583, -0.20882852375507355, 0.009651273488998413, -0.011176757514476776, 0.10227029770612717, -0.11131701618432999, -0.02373182401061058, -0.1929367184638977, -0.024856941774487495, -0.03278624638915062, 0.16526728868484497, -0.1437751203775406, 0.00010059722262667492, -0.0007877603638917208, -0.05140140280127525, -0.019004421308636665, -0.02863585203886032, -0.10821327567100525, -0.012270847335457802, -0.000684377970173955, 0.06372399628162384, -0.0017814041348174214, 0.0002054373180726543, 0.08945772051811218, -0.01676907017827034, 0.15503482520580292, 0.044239673763513565, -0.02895471639931202, -0.006449585780501366, -0.18732605874538422, -0.06998784095048904, 0.09405958652496338, 0.004841608460992575, 0.022439563646912575, 0.11194804310798645, 0.04371132701635361, -0.03388566896319389, 0.023277083411812782, 0.005538814701139927, 0.20068097114562988, -0.07086087763309479, -0.002188601763918996, -0.041933923959732056, -0.06707032769918442, -0.06389482319355011, 0.04217404127120972, 0.09274961054325104, 0.04379455745220184, 0.054257262498140335, -0.1059599220752716, 0.07182063162326813, -0.10689008980989456, 0.022997181862592697, 0.00436578132212162, -0.12181895971298218, -0.05255858600139618, -0.10454263538122177, 0.057460565119981766, 0.002079826081171632, 0.0405784510076046, 0.07822473347187042, 0.014956562779843807, -0.017391670495271683, 0.1237729862332344, 0.10886748880147934, 0.05331963673233986, 0.03983170911669731, 0.019532421603798866, 0.019626639783382416, -0.0523393452167511, 0.07320230454206467, 0.0911930724978447, -0.055890075862407684, 0.034207191318273544, 0.08102597296237946, -0.06335224211215973, 0.06631726771593094, 0.07132592797279358, 0.009764610789716244, -0.02630438841879368, 0.05446895584464073, -0.13079112768173218, 0.07842826098203659, -0.032619405537843704, 0.08821578323841095, 0.06923332810401917, -0.04353935644030571, 0.016186915338039398, -0.04772103950381279, -0.01853223703801632, -0.037967365235090256, -0.13838975131511688, -0.08448541164398193, -0.21566998958587646, 0.06285329163074493, 0.017504384741187096, -0.06989763677120209, 0.0664452537894249, 0.0007161907269619405, -0.04861297085881233, 0.14067216217517853, 0.020421603694558144, -0.028630387037992477, 0.06892839074134827, 0.00839083082973957, -0.12336155027151108, 0.06620859354734421, -0.14866822957992554, 0.004483657423406839, 0.027446625754237175, 0.01047604251652956, -0.022959185764193535, 0.012766623869538307, 0.06751374155282974, -0.02648531273007393, -0.07218021154403687, 0.018889764323830605, -0.020737793296575546, 0.0167922955006361, 0.029956558719277382, -0.040787506848573685, 0.034757260233163834, 0.016432933509349823, 0.11644991487264633, 0.002297893399372697, 0.1180640161037445, -0.1241452693939209, 0.09324660897254944, -0.16601592302322388, -0.002099323319271207, -0.052609313279390335, -0.03613383695483208, -0.04724516719579697, 0.2724369168281555, 0.20673854649066925, -0.09205078333616257, 0.011794310063123703, -0.004787789657711983, -0.010113546624779701, -0.028441956266760826, 0.11468766629695892, -0.0010977567872032523, 0.06403674930334091, -0.05773759260773659, -0.04239797219634056, 0.022904792800545692, -0.04402057081460953, -0.09063120186328888, -0.06883646547794342, 0.06888104975223541, 0.017044290900230408, -0.12659882009029388, 0.06993076205253601, -0.15111567080020905, -0.07410997897386551, 0.14538536965847015, -0.16738663613796234, -0.0761028453707695, -0.04550480842590332, 0.01064881682395935, 0.05035661160945892, 0.06608270853757858, -0.05546850711107254, 0.07120561599731445, -0.1258363276720047, -0.02713467925786972, -0.17326048016548157, -0.05071635544300079, 0.03572816029191017, -0.1299186497926712, 0.20968447625637054, -0.07654013484716415, -0.02401120588183403, 0.07507874071598053, 0.01623411290347576, -0.07579199224710464, -0.05201580002903938, -0.049096111208200455, -0.16179879009723663, -0.010975295677781105, 0.14950203895568848, -0.024331487715244293, -0.08826322853565216, 0.036256734281778336, -0.02044050209224224, -0.005074082873761654, -0.07827994227409363, 0.0521697998046875, -0.06823016703128815, 0.08491257578134537, -0.1509498655796051, 0.11561037600040436, 0.061694223433732986, 0.005649690981954336, -0.043289005756378174, -0.05039950832724571, 0.04929303377866745, 0.02856380119919777, -0.08540303260087967, -0.08779382705688477, -0.11135072261095047, -0.04295514523983002, -0.07339957356452942, -0.020091285929083824, -0.06009935215115547, -0.018592648208141327, -0.15128980576992035, 0.011191206984221935, -0.03268490359187126, 0.12019525468349457, 0.12039797753095627, -0.020448220893740654, 0.04011854529380798, -0.1739470660686493, 0.013399132527410984, 0.05131117254495621, -0.04280964657664299, -0.09528150409460068 ]
null
null
transformers
# FinBERT fine-tuned with the FinnSentiment dataset This is a FinBERT model fine-tuned with the [FinnSentiment dataset](https://arxiv.org/pdf/2012.02613.pdf). 90% of sentences were used for training and 10% for evaluation. ## Evaluation results |Metric|Score| |--|--| |Accuracy|0.8639028475711893| |F1-score|0.8643024701696561| |Precision|0.8653866541244811| |Recall|0.8639028475711893| |Matthews|0.6764924917164834| ![kuva.png](https://s3.amazonaws.com/moonup/production/uploads/1661156173672-61561a042387f285c1f8aec3.png) ## License FinBERT-FinnSentiment is licensed under the [CC BY 4.0 License](https://creativecommons.org/licenses/by/4.0/deed.en) (same as FinBERT and the FinnSentiment dataset).
{"language": "fi", "license": "cc-by-4.0"}
text-classification
fergusq/finbert-finnsentiment
[ "transformers", "pytorch", "safetensors", "bert", "text-classification", "fi", "arxiv:2012.02613", "license:cc-by-4.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[ "2012.02613" ]
[ "fi" ]
TAGS #transformers #pytorch #safetensors #bert #text-classification #fi #arxiv-2012.02613 #license-cc-by-4.0 #autotrain_compatible #endpoints_compatible #region-us
FinBERT fine-tuned with the FinnSentiment dataset ================================================= This is a FinBERT model fine-tuned with the FinnSentiment dataset. 90% of sentences were used for training and 10% for evaluation. Evaluation results ------------------ !URL License ------- FinBERT-FinnSentiment is licensed under the CC BY 4.0 License (same as FinBERT and the FinnSentiment dataset).
[]
[ "TAGS\n#transformers #pytorch #safetensors #bert #text-classification #fi #arxiv-2012.02613 #license-cc-by-4.0 #autotrain_compatible #endpoints_compatible #region-us \n" ]
[ 61 ]
[ "passage: TAGS\n#transformers #pytorch #safetensors #bert #text-classification #fi #arxiv-2012.02613 #license-cc-by-4.0 #autotrain_compatible #endpoints_compatible #region-us \n" ]
[ -0.07074271887540817, 0.1043623685836792, -0.006278748158365488, 0.046398576349020004, 0.12059628963470459, 0.005458899307996035, 0.1450931876897812, 0.0793006643652916, 0.04170950502157211, -0.01655121147632599, 0.15116415917873383, 0.24215225875377655, -0.017093593254685402, 0.14331147074699402, -0.13538865745067596, -0.1949196308851242, 0.06379783898591995, 0.047832317650318146, 0.03236619383096695, 0.11127027124166489, 0.12005003541707993, -0.07536625117063522, 0.06056512892246246, -0.029500572010874748, -0.12850743532180786, 0.00561158312484622, 0.08329801261425018, -0.1338895559310913, 0.12008535861968994, 0.058767758309841156, 0.1431434601545334, 0.09094791859388351, -0.010634674690663815, -0.14248427748680115, 0.02540016360580921, -0.015264094807207584, -0.10475098341703415, 0.06461168080568314, 0.09635281562805176, -0.040653910487890244, 0.041922617703676224, 0.047876521944999695, -0.004216212313622236, 0.05420336499810219, -0.11650311946868896, -0.0849558487534523, -0.07212138175964355, 0.10645899176597595, 0.08085799217224121, 0.08065704256296158, 0.019003113731741905, 0.16506046056747437, -0.08007381856441498, 0.10076391696929932, 0.08353759348392487, -0.367742121219635, -0.0010109146824106574, 0.0865483507514, 0.03220474347472191, 0.016638409346342087, -0.044925421476364136, 0.04744303971529007, 0.06987771391868591, -0.002614782890304923, 0.031174035742878914, -0.06526535004377365, -0.10202645510435104, 0.007784956134855747, -0.07830189168453217, -0.03890659287571907, 0.1972433179616928, -0.029916996136307716, 0.007616093382239342, -0.0230194590985775, -0.07168407738208771, -0.015436410903930664, -0.008619073778390884, 0.024051489308476448, -0.01561423484236002, 0.046218276023864746, 0.04904455319046974, 0.026302753016352654, -0.149550661444664, 0.0009570135152898729, -0.20752619206905365, 0.16446882486343384, 0.008243273943662643, 0.0581035278737545, -0.11698577553033829, 0.05432150885462761, -0.016618339344859123, -0.09272322058677673, 0.02226351574063301, -0.09104248881340027, 0.10162078589200974, -0.0296144001185894, -0.04442151263356209, 0.049238573759794235, 0.08648194372653961, 0.15019384026527405, -0.02954678051173687, 0.007587640080600977, -0.046393752098083496, 0.11180588603019714, -0.03409462422132492, 0.029780440032482147, 0.03360237926244736, 0.03211415186524391, 0.1029139831662178, -0.051492657512426376, 0.05909283086657524, -0.03227897360920906, -0.160806342959404, -0.02416400983929634, 0.03862007334828377, 0.11454067379236221, 0.013662733137607574, 0.07560654729604721, -0.050086382776498795, 0.03292026370763779, 0.17201471328735352, -0.06302247196435928, 0.011886829510331154, 0.01810828037559986, 0.03580337017774582, -0.007519731298089027, 0.015913011506199837, 0.02070789411664009, -0.055859629064798355, 0.15250791609287262, -0.05811484530568123, 0.003306036349385977, -0.0012286456767469645, -0.07226062566041946, 0.07183679938316345, -0.09328675270080566, 0.04678503796458244, -0.21567828953266144, -0.09686805307865143, 0.024833980947732925, 0.0026878754142671824, 0.011270358227193356, -0.06840067356824875, 0.019906094297766685, -0.02765078842639923, 0.02270451933145523, -0.08095479756593704, -0.07456734776496887, -0.0829448476433754, 0.11050869524478912, -0.020342599600553513, 0.026764987036585808, -0.1626507192850113, 0.023332245647907257, -0.09384893625974655, -0.02557964436709881, -0.060497112572193146, -0.04713434353470802, -0.07784012705087662, 0.13766400516033173, -0.02137025073170662, -0.05278102308511734, 0.0031754670199006796, 0.028838537633419037, -0.03299179673194885, 0.16266986727714539, -0.0868707001209259, -0.05809537321329117, 0.18100100755691528, -0.1518547385931015, -0.1919063925743103, 0.09247097373008728, 0.011101177893579006, -0.02235986851155758, 0.08443167060613632, 0.1607116013765335, 0.05271334573626518, -0.0923633798956871, 0.012953861616551876, 0.11074459552764893, -0.06790196895599365, -0.15456199645996094, 0.03254792094230652, -0.004554698709398508, -0.13852038979530334, 0.03427949920296669, -0.02525174245238304, 0.05428009852766991, -0.03685225918889046, -0.05746304243803024, -0.03719807043671608, -0.040577951818704605, 0.06566020101308823, 0.02562335878610611, 0.06511855870485306, -0.09443122148513794, 0.0006612924044020474, -0.04245160520076752, 0.012977326288819313, 0.04419251158833504, 0.024824021384119987, -0.09312403202056885, 0.12862488627433777, -0.0033105737529695034, 0.007930737920105457, -0.15072953701019287, -0.030441511422395706, -0.014350167475640774, 0.09509500116109848, 0.0034827941562980413, 0.053466763347387314, 0.04051684960722923, -0.001198116224259138, -0.02736065909266472, -0.033005278557538986, 0.15303315222263336, 0.03889263793826103, -0.06022843345999718, -0.11146719008684158, 0.058771345764398575, -0.045946795493364334, 0.05297522246837616, -0.14451907575130463, 0.021906739100813866, 0.09077957272529602, 0.08814112097024918, -0.025080738589167595, 0.08553198724985123, -0.03476230055093765, 0.04380197823047638, -0.06335697323083878, 0.033393848687410355, 0.11940270662307739, 0.038626957684755325, -0.06747191399335861, 0.1906302124261856, -0.13983391225337982, 0.34616753458976746, 0.2098294049501419, -0.2077997326850891, -0.016497092321515083, -0.048250991851091385, -0.006027663126587868, 0.018800344318151474, 0.01270280685275793, 0.0321851409971714, 0.04516378790140152, -0.019824495539069176, 0.19192181527614594, -0.06772179156541824, -0.01730082929134369, 0.020897675305604935, -0.05794063210487366, -0.03782336041331291, 0.08757883310317993, 0.0818096399307251, -0.2161003053188324, 0.17733970284461975, 0.2593190371990204, -0.008451641537249088, 0.07160479575395584, -0.023319965228438377, 0.032290540635585785, 0.03903978690505028, 0.0014638458378612995, 0.005997702479362488, 0.003866740269586444, -0.060137178748846054, -0.0005446984432637691, 0.07461974769830704, -0.0006178183248266578, 0.028414001688361168, -0.16043105721473694, -0.059043679386377335, -0.009853385388851166, -0.008207723498344421, -0.0860285609960556, 0.06482779234647751, 0.021338675171136856, 0.14313249289989471, -0.026306888088583946, -0.12025167793035507, 0.10904137045145035, 0.0014181324513629079, -0.12205129861831665, 0.18732154369354248, -0.13257120549678802, -0.2709187865257263, -0.1454779952764511, -0.1559039205312729, -0.012640021741390228, 0.04545939341187477, 0.11590591818094254, -0.04738107696175575, -0.060243524610996246, -0.026645855978131294, -0.10022860020399094, -0.036776021122932434, 0.022239724174141884, -0.04039403423666954, 0.06483953446149826, 0.002380412071943283, -0.0855664312839508, -0.05747024342417717, -0.014821469783782959, -0.04336372762918472, 0.13557758927345276, -0.06439600139856339, 0.09430009871721268, 0.11445273458957672, -0.024682529270648956, 0.024962928146123886, -0.06922992318868637, 0.1531110256910324, -0.05286826565861702, -0.020942213013768196, 0.21189601719379425, -0.07360640168190002, 0.08038653433322906, 0.16571952402591705, 0.042770709842443466, -0.060152072459459305, 0.02010812982916832, -0.08552411943674088, -0.06052431836724281, -0.23212295770645142, -0.12768390774726868, -0.07596899569034576, 0.07871754467487335, 0.07908094674348831, 0.08218871057033539, 0.09549518674612045, 0.08522160351276398, -0.01475648581981659, -0.011011523194611073, 0.03502928838133812, 0.09675823897123337, 0.2549041509628296, 0.008415330201387405, 0.13837824761867523, -0.08943170309066772, -0.06633943319320679, 0.09999057650566101, 0.03290081024169922, 0.09425829350948334, 0.09376215934753418, -0.03880556672811508, 0.05608048662543297, 0.13479351997375488, 0.15850131213665009, 0.11507951468229294, 0.03629238158464432, -0.030595501884818077, -0.009794050827622414, -0.02979508973658085, -0.03639188036322594, 0.024150235578417778, -0.0535786896944046, -0.11122114211320877, -0.07944049686193466, -0.13139793276786804, 0.06366061419248581, 0.07915858179330826, 0.05906464159488678, -0.23843058943748474, -0.0036411266773939133, 0.07024072855710983, 0.019116220995783806, -0.07351277023553848, 0.08438655734062195, -0.029017271474003792, -0.0842670202255249, 0.12047035992145538, -0.04799588397145271, 0.09997634589672089, -0.03173407167196274, 0.0544683001935482, -0.033220384269952774, -0.12217731773853302, 0.022433390840888023, 0.10845091193914413, -0.28616034984588623, 0.2501465678215027, 0.01887289062142372, -0.015688011422753334, -0.052815936505794525, -0.026078278198838234, 0.03746016323566437, 0.2570573091506958, 0.12802380323410034, 0.0018820639234036207, -0.08989229053258896, -0.15901924669742584, -0.04272191971540451, 0.01906212791800499, 0.07694466412067413, 0.006811900995671749, -0.019293952733278275, -0.04611637070775032, -0.01628873497247696, -0.0002959085686597973, -0.039737019687891006, -0.02853742614388466, -0.13824236392974854, 0.055993951857089996, 0.09454870223999023, 0.08258339017629623, -0.04205092042684555, -0.05612349510192871, -0.1655026227235794, 0.1851685792207718, -0.1789713203907013, -0.06623032689094543, -0.0984569564461708, -0.11111850291490555, 0.0021514897234737873, -0.06707938760519028, 0.07625589519739151, -0.06768288463354111, 0.008889100514352322, -0.08463508635759354, -0.16253946721553802, 0.11786206066608429, -0.131697416305542, -0.07285914570093155, -0.05026162788271904, 0.1447104811668396, -0.1044854074716568, 0.012092161923646927, 0.04254868999123573, 0.02915591187775135, -0.07835763692855835, -0.1044110581278801, 0.0042512137442827225, -0.010304361581802368, 0.11747129261493683, -0.009443403221666813, -0.11466637998819351, -0.13373416662216187, -0.026460712775588036, -0.04503853619098663, 0.21952031552791595, 0.29248958826065063, -0.08967375755310059, 0.11645007133483887, 0.18010616302490234, -0.060415346175432205, -0.3239750862121582, -0.11100344359874725, -0.13418544828891754, -0.06286675482988358, -0.030471673235297203, -0.07674804329872131, 0.06616607308387756, 0.043063934892416, -0.07719185203313828, 0.12089245766401291, -0.14207503199577332, -0.09851471334695816, 0.1856117695569992, 0.02154366672039032, 0.3327651619911194, -0.14202052354812622, -0.08768591284751892, -0.06000358611345291, -0.14044471085071564, 0.13343439996242523, -0.030364444479346275, 0.051103442907333374, -0.010798578150570393, 0.007267214357852936, 0.001266229897737503, -0.053431592881679535, 0.10807426273822784, -0.0529869981110096, 0.0500190369784832, -0.12663285434246063, -0.08860290050506592, 0.029455559328198433, -0.015837816521525383, 0.01744050532579422, -0.08183266222476959, 0.040383100509643555, -0.09137121587991714, -0.027667731046676636, -0.052566614001989365, 0.08446726948022842, -0.004200867377221584, -0.0431387685239315, -0.021306628361344337, -0.017233258113265038, -0.01843353733420372, -0.031064586713910103, 0.22153760492801666, -0.043152742087841034, 0.16993960738182068, 0.1667640507221222, 0.14269854128360748, -0.12350665032863617, 0.03828267753124237, -0.0517355315387249, -0.10582006722688675, 0.060462016612291336, -0.08783143758773804, 0.048980049788951874, 0.1250205636024475, -0.04182390496134758, 0.058756861835718155, 0.09579753875732422, 0.04777585342526436, -0.019564593210816383, 0.15586210787296295, -0.23489080369472504, 0.04034769535064697, -0.01866963505744934, 0.09536218643188477, 0.061074595898389816, 0.09409862011671066, 0.1352885663509369, -0.021350812166929245, -0.028106406331062317, 0.006970398128032684, 0.013317417353391647, -0.015213350765407085, 0.05960509181022644, 0.06603699922561646, 0.027226410806179047, -0.11097204685211182, 0.06174527853727341, 0.0259476900100708, -0.15335947275161743, -0.03369821608066559, 0.07917152345180511, -0.17124788463115692, -0.1315019577741623, -0.026862312108278275, 0.040110137313604355, -0.15074406564235687, -0.1091003268957138, -0.05394360050559044, -0.15110981464385986, 0.053122133016586304, 0.23138107359409332, 0.09241433441638947, 0.06283695250749588, 0.009724192321300507, -0.06628880649805069, -0.021596848964691162, 0.028893722221255302, -0.05994907766580582, 0.045507341623306274, -0.14319956302642822, 0.05433565005660057, -0.007015409413725138, 0.09501933306455612, -0.07515900582075119, 0.009730958379805088, -0.1367054432630539, 0.028605233877897263, -0.05751592665910721, 0.04076853394508362, -0.07442336529493332, -0.007184928748756647, -0.011079986579716206, -0.06485582143068314, -0.03568093478679657, -0.023853430524468422, -0.09216051548719406, 0.037606753408908844, -0.0016493572620674968, 0.0416400283575058, -0.09563501179218292, -0.055580150336027145, 0.047098513692617416, -0.016783343628048897, 0.1046050563454628, 0.0761178731918335, -0.07771732658147812, 0.07718051970005035, -0.18059512972831726, -0.07068981975317001, 0.12822763621807098, 0.020390082150697708, 0.029548360034823418, 0.01571624167263508, 0.02687649615108967, 0.12220696359872818, -0.029411928728222847, 0.07056375592947006, 0.09191861003637314, -0.1116727814078331, 0.004895064979791641, -0.010901281610131264, -0.12495690584182739, -0.032781124114990234, -0.05979784205555916, 0.12262355536222458, -0.014485474675893784, 0.1938188225030899, -0.08400819450616837, 0.03366199880838394, -0.05087275430560112, 0.015400512143969536, -0.034510452300310135, -0.19307594001293182, -0.16412897408008575, -0.05822133272886276, 0.011124669574201107, -0.010898958891630173, 0.24157097935676575, 0.008662634529173374, -0.03354019671678543, 0.08519979566335678, 0.041845060884952545, -0.01015971228480339, 0.011599669232964516, 0.22613704204559326, 0.05419141426682472, -0.03267159312963486, -0.09817115217447281, 0.03861822560429573, -0.0005756395403295755, -0.0932866781949997, 0.10415002703666687, 0.0978325679898262, -0.011069783940911293, 0.04893701151013374, 0.04369695112109184, -0.0033345618285238743, -0.08591315895318985, -0.16225600242614746, -0.06266317516565323, 0.05599246919155121, 0.001544453320093453, 0.09742910414934158, 0.1609269380569458, -0.017049066722393036, -0.01410964410752058, -0.07340028882026672, -0.03104553185403347, -0.17870011925697327, -0.0990028977394104, -0.10505956411361694, -0.08347249776124954, 0.014799927361309528, -0.05242210254073143, 0.0072674560360610485, 0.07010377943515778, 0.04756230115890503, -0.05620381608605385, 0.018834928050637245, -0.027263134717941284, -0.03969673067331314, 0.06221161037683487, -0.005308530759066343, 0.02500002458691597, -0.028787752613425255, -0.047788962721824646, -0.07610227167606354, -0.07444087415933609, -0.02228902094066143, 0.029648112133145332, -0.0012608757242560387, 0.037685003131628036, -0.10004530102014542, -0.08407430350780487, -0.026890529319643974, 0.07492098212242126, 0.019489526748657227, 0.16594499349594116, 0.003541095880791545, 0.03328508138656616, 0.07509125024080276, 0.1824493259191513, -0.05120851844549179, -0.11478231102228165, -0.01763494499027729, 0.268440306186676, 0.03534314036369324, 0.09742670506238937, 0.001563991536386311, -0.005011184141039848, -0.002137098927050829, 0.295202374458313, 0.26746663451194763, -0.060166627168655396, 0.05805198848247528, -0.013511033728718758, 0.027767842635512352, 0.09496545791625977, 0.11780855059623718, 0.10530523210763931, 0.24225181341171265, -0.06580852717161179, -0.04093404486775398, -0.04104244336485863, 0.05279866233468056, -0.10842593014240265, 0.08861760795116425, -0.01660950668156147, -0.053763601928949356, -0.056596625596284866, 0.09285510331392288, -0.08235899358987808, 0.08920599520206451, 0.00867441389709711, -0.14257103204727173, -0.03611725941300392, 0.012819601222872734, 0.1446944624185562, -0.008330028504133224, 0.03979303315281868, -0.04337704926729202, -0.05812786892056465, 0.012551575899124146, -0.005660370923578739, -0.16105471551418304, -0.003661832306534052, 0.035952646285295486, -0.002821034286171198, 0.09291094541549683, 0.0076299309730529785, 0.11849743127822876, 0.0803941860795021, 0.0528525784611702, -0.07474478334188461, 0.11828083544969559, 0.021677520126104355, -0.08450602740049362, 0.032245200127363205, -0.06709827482700348, -0.006505848374217749, -0.03576981648802757, 0.05608944594860077, -0.11308006197214127, 0.07059606164693832, -0.041230663657188416, -0.10353749245405197, -0.044698480516672134, 0.06768415123224258, -0.05590090528130531, 0.06255866587162018, 0.03887259587645531, -0.025135301053524017, -0.04550786316394806, -0.04817911610007286, -0.01671639084815979, 0.024267880246043205, -0.1349005550146103, -0.028970913961529732, -0.09170505404472351, -0.020892305299639702, 0.1045571118593216, 0.04662511870265007, -0.1726902574300766, -0.002053714357316494, -0.11377237737178802, 0.029541870579123497, -0.18153497576713562, 0.04947223886847496, 0.07548246532678604, -0.005252008326351643, -0.025395112112164497, -0.08556065708398819, 0.033699631690979004, 0.050686173141002655, -0.07823415100574493, -0.10458377748727798 ]
null
null
null
<br /> <p align="center"> <a href="https://github.com/FernandoPerezLara/image-preprocessing-layer"> <img src="https://huggingface.co/fernandoperlar/preprocessing_image/resolve/main/duck.png" alt="Logo" width="100" height="146"> </a> <h3 align="center">Image Preprocessing Model</h3> <p align="center"> Image preprocessing in a convolutional model <br /> <a href="https://github.com/FernandoPerezLara/image-preprocessing-layer"><strong>Read more about the model »</strong></a> <br /> <br /> <a href="https://github.com/FernandoPerezLara/image-preprocessing-layer">View Code</a> · <a href="https://github.com/FernandoPerezLara/image-preprocessing-layer/issues">Report Bug</a> · <a href="https://github.com/FernandoPerezLara/image-preprocessing-layer/discussions">Start a discussion</a> </p> </p> <br /> The main objective of this project is to apply preprocessing to an image dataset while the model is being trained. The solution has been taken because we do not want to apply preprocessing to the data before training (i.e. create a copy of the data but already preprocessed) because we want to apply data augmentation while the model trains. The use of `Lambda` layers has been discarded because they do not allow the use of external libraries that do not work with tensors, since we want to use the functions provided by *OpenCV* and *NumPy*. ## Preprocessing In this example found in this repository we wanted to divide the images from HSV color masks, where it is divided into: * **Warm zones**: red and white colors are obtained. * **Warm zones**: The green color is obtained. * **Cold zones**: The color blue is obtained. Within the code you can find the declaration of these filters as: ```python filters = { "original": lambda x: x, "red": lambda x: data.getImageTensor(x, (330, 0, 0), (360, 255, 255)) + data.getImageTensor(x, (0, 0, 0), (50, 255, 255)), "green": lambda x: data.getImageTensor(x, (60, 0, 0), (130, 255, 255)), "blue": lambda x: data.getImageTensor(x, (180, 0, 0), (270, 255, 255)), } ``` On the other hand, the preprocessing functions are located inside `scripts/Data.py` file as follows: ```python def detectColor(self, image, lower, upper): if tf.is_tensor(image): temp_image = image.numpy().copy() # Used for training else: temp_image = image.copy() # Used for displaying the image hsv_image = temp_image.copy() hsv_image = cv.cvtColor(hsv_image, cv.COLOR_RGB2HSV) mask = cv.inRange(hsv_image, lower, upper) result = temp_image.copy() result[np.where(mask == 0)] = 0 return result def getImageTensor(self, images, lower, upper): results = [] for img in images: results.append(np.expand_dims(self.detectColor(img, lower, upper), axis=0)) return np.concatenate(results, axis=0) ``` ## Model The model used to solve our problem was a *CNN* with a preprocessing layer: ![Model](./model.png "Model") This model can be found in the `scripts/Model.py` file in the following function: ```python def create_model(): class FilterLayer(layers.Layer): def __init__(self, filter, **kwargs): self.filter = filter super(FilterLayer, self).__init__(name="filter_layer", **kwargs) def call(self, image): shape = image.shape [image, ] = tf.py_function(self.filter, [image], [tf.float32]) image = backend.stop_gradient(image) image.set_shape(shape) return image def get_config(self): return super().get_config() model = models.Sequential() model.add(layers.Input(shape=(215, 538, 3))) model.add(FilterLayer(filter=self.filter)) model.add(layers.Conv2D(32, (3, 3), activation="relu")) model.add(layers.MaxPooling2D(pool_size=(2, 2))) model.add(layers.Conv2D(32, (3, 3), activation="relu")) model.add(layers.GlobalAveragePooling2D()) model.add(layers.Dropout(rate=0.4)) model.add(layers.Dense(32, activation="relu")) model.add(layers.Dropout(rate=0.4)) model.add(layers.Dense(2, activation="softmax")) return model ``` ## Contributors This work has been possible thanks to: - [Fernando Pérez Lara](https://www.linkedin.com/in/fernandoperezlara/) ([**@FernandoPerezLara**](https://github.com/FernandoPerezLara)) for having developed the model to make this idea come true. ## License Copyright (c) 2021 Fernando Pérez Lara. Licensed and distributed under the [MIT](LICENSE.txt) license.
{}
null
fernandoperlar/preprocessing_image
[ "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #region-us
<br /> <p align="center"> <a href="URL <img src="URL alt="Logo" width="100" height="146"> </a> <h3 align="center">Image Preprocessing Model</h3> <p align="center"> Image preprocessing in a convolutional model <br /> <a href="URL more about the model »</strong></a> <br /> <br /> <a href="URL Code</a> · <a href="URL Bug</a> · <a href="URL a discussion</a> </p> </p> <br /> The main objective of this project is to apply preprocessing to an image dataset while the model is being trained. The solution has been taken because we do not want to apply preprocessing to the data before training (i.e. create a copy of the data but already preprocessed) because we want to apply data augmentation while the model trains. The use of 'Lambda' layers has been discarded because they do not allow the use of external libraries that do not work with tensors, since we want to use the functions provided by *OpenCV* and *NumPy*. ## Preprocessing In this example found in this repository we wanted to divide the images from HSV color masks, where it is divided into: * Warm zones: red and white colors are obtained. * Warm zones: The green color is obtained. * Cold zones: The color blue is obtained. Within the code you can find the declaration of these filters as: On the other hand, the preprocessing functions are located inside 'scripts/URL' file as follows: ## Model The model used to solve our problem was a *CNN* with a preprocessing layer: !Model This model can be found in the 'scripts/URL' file in the following function: ## Contributors This work has been possible thanks to: - Fernando Pérez Lara (@FernandoPerezLara) for having developed the model to make this idea come true. ## License Copyright (c) 2021 Fernando Pérez Lara. Licensed and distributed under the MIT license.
[ "## Preprocessing\nIn this example found in this repository we wanted to divide the images from HSV color masks, where it is divided into:\n* Warm zones: red and white colors are obtained.\n* Warm zones: The green color is obtained.\n* Cold zones: The color blue is obtained.\n\nWithin the code you can find the declaration of these filters as:\n\n\nOn the other hand, the preprocessing functions are located inside 'scripts/URL' file as follows:", "## Model\nThe model used to solve our problem was a *CNN* with a preprocessing layer:\n\n!Model\n\nThis model can be found in the 'scripts/URL' file in the following function:", "## Contributors\nThis work has been possible thanks to:\n- Fernando Pérez Lara (@FernandoPerezLara) for having developed the model to make this idea come true.", "## License\nCopyright (c) 2021 Fernando Pérez Lara.\n\nLicensed and distributed under the MIT license." ]
[ "TAGS\n#region-us \n", "## Preprocessing\nIn this example found in this repository we wanted to divide the images from HSV color masks, where it is divided into:\n* Warm zones: red and white colors are obtained.\n* Warm zones: The green color is obtained.\n* Cold zones: The color blue is obtained.\n\nWithin the code you can find the declaration of these filters as:\n\n\nOn the other hand, the preprocessing functions are located inside 'scripts/URL' file as follows:", "## Model\nThe model used to solve our problem was a *CNN* with a preprocessing layer:\n\n!Model\n\nThis model can be found in the 'scripts/URL' file in the following function:", "## Contributors\nThis work has been possible thanks to:\n- Fernando Pérez Lara (@FernandoPerezLara) for having developed the model to make this idea come true.", "## License\nCopyright (c) 2021 Fernando Pérez Lara.\n\nLicensed and distributed under the MIT license." ]
[ 6, 110, 43, 37, 21 ]
[ "passage: TAGS\n#region-us \n## Preprocessing\nIn this example found in this repository we wanted to divide the images from HSV color masks, where it is divided into:\n* Warm zones: red and white colors are obtained.\n* Warm zones: The green color is obtained.\n* Cold zones: The color blue is obtained.\n\nWithin the code you can find the declaration of these filters as:\n\n\nOn the other hand, the preprocessing functions are located inside 'scripts/URL' file as follows:## Model\nThe model used to solve our problem was a *CNN* with a preprocessing layer:\n\n!Model\n\nThis model can be found in the 'scripts/URL' file in the following function:## Contributors\nThis work has been possible thanks to:\n- Fernando Pérez Lara (@FernandoPerezLara) for having developed the model to make this idea come true.## License\nCopyright (c) 2021 Fernando Pérez Lara.\n\nLicensed and distributed under the MIT license." ]
[ -0.15608875453472137, -0.05257842317223549, 0.002983200130984187, 0.05010061711072922, 0.08410165458917618, 0.011202559806406498, 0.15150055289268494, 0.03484790399670601, 0.10241308063268661, 0.0698520615696907, 0.08416642993688583, 0.09638826549053192, 0.0587843656539917, -0.003764333901926875, 0.040134113281965256, -0.23202061653137207, 0.0165336262434721, -0.06554718315601349, -0.1101100817322731, 0.03815435618162155, 0.05381498858332634, -0.036982301622629166, 0.11271597445011139, 0.0359090194106102, -0.1439070999622345, -0.07059735059738159, -0.04551935940980911, -0.012105877511203289, 0.1503628045320511, 0.049955714493989944, 0.06130620837211609, 0.07192687690258026, 0.11755283176898956, -0.18668414652347565, 0.027757925912737846, -0.010570020414888859, -0.0073732915334403515, 0.09430015087127686, 0.23540768027305603, -0.011878647841513157, 0.17577655613422394, 0.016698531806468964, -0.06013065204024315, 0.06667982786893845, -0.11298277229070663, -0.1328621357679367, -0.07501159608364105, -0.011106760241091251, 0.05675945058465004, -0.016375986859202385, 0.0247428510338068, 0.09360361844301224, -0.10194287449121475, 0.016516895964741707, 0.07369983941316605, -0.23602502048015594, 0.015825549140572548, 0.07671736180782318, 0.045952193439006805, -0.003553721820935607, 0.05921065807342529, 0.15034818649291992, 0.13119088113307953, 0.015327886678278446, -0.06187457591295242, -0.03766298294067383, 0.04902670159935951, -0.004494286607950926, -0.1262129694223404, -0.034880541265010834, 0.054464250802993774, -0.029552627354860306, -0.06492898613214493, -0.00770873436704278, -0.106983482837677, 0.07477639615535736, 0.07237004488706589, 0.09684217721223831, 0.020649341866374016, 0.07600695639848709, 0.02147473208606243, -0.030085129663348198, -0.13344943523406982, -0.09240406006574631, 0.010342893190681934, 0.25863325595855713, 0.021187806501984596, 0.08512406796216965, -0.11536043137311935, 0.14570866525173187, -0.021637337282299995, -0.1048131063580513, 0.0062009356915950775, -0.12746837735176086, 0.024520650506019592, 0.05630608648061752, -0.009118457324802876, -0.0994531512260437, 0.06422662734985352, 0.14708800613880157, 0.038683634251356125, 0.019319264218211174, 0.01507234014570713, 0.09842685610055923, 0.12965261936187744, 0.02431226707994938, -0.1390441507101059, 0.015358022414147854, -0.0049966671504080296, -0.14161179959774017, 0.06455998122692108, -0.09913589805364609, -0.11122612655162811, -0.06965946406126022, -0.08865076303482056, 0.10259503871202469, 0.05794985964894295, -0.008532960899174213, -0.06527259200811386, -0.04966222867369652, 0.18343321979045868, -0.013750186190009117, -0.04148247465491295, 0.008118392899632454, 0.0038949043955653906, -0.011432185769081116, 0.03468545153737068, 0.0029793984722346067, -0.002025796566158533, 0.06616903841495514, -0.1083894819021225, -0.007679058704525232, -0.08524268865585327, -0.07999736815690994, -0.02396630123257637, -0.06239556148648262, -0.015688257291913033, -0.07612384855747223, -0.045518696308135986, -0.007771106902509928, 0.12042676657438278, 0.0027776893693953753, 0.13852424919605255, 0.0733596682548523, 0.008942368440330029, -0.014168520458042622, 0.017556605860590935, -0.04274026304483414, -0.07613123953342438, 0.023590488359332085, 0.006795584689825773, 0.12913942337036133, -0.11871732771396637, -0.0019520909991115332, -0.037975311279296875, 0.11745419353246689, -0.11106002330780029, 0.023911578580737114, -0.04768642783164978, 0.09620419889688492, -0.012743519619107246, -0.10006589442491531, 0.009020775556564331, 0.04305444285273552, 0.003523119492456317, 0.16009078919887543, -0.1700749695301056, -0.03617604821920395, 0.08831323683261871, -0.18900027871131897, -0.0015014918753877282, 0.06123030185699463, 0.0012652457226067781, -0.03106321208178997, -0.0013251688797026873, 0.29032450914382935, -0.01935613341629505, -0.1107148602604866, 0.09495431929826736, 0.1054232195019722, -0.06752736121416092, -0.11266612261533737, 0.1139724925160408, -0.06968261301517487, -0.17576192319393158, 0.006927344016730785, -0.21015702188014984, 0.0604667104780674, -0.0740148052573204, -0.03691904619336128, 0.022670211270451546, -0.03765453025698662, -0.00047887390246614814, -0.03619914501905441, 0.0019314831588417292, 0.007311596535146236, 0.031193198636174202, -0.18935826420783997, 0.0997028723359108, -0.05952144414186478, 0.034856028854846954, -0.03936963900923729, 0.12326579540967941, -0.021508095785975456, -0.06621742248535156, -0.14118066430091858, 0.04449068754911423, 0.05517728254199028, -0.09100606292486191, 0.03341588005423546, 0.032861270010471344, -0.04649105668067932, 0.1988869160413742, 0.014555179513990879, 0.00711626885458827, 0.021929483860731125, -0.03953960910439491, 0.03900153189897537, -0.15285935997962952, -0.1020546406507492, -0.04151378199458122, 0.04570554941892624, -0.05199158191680908, -0.026499107480049133, 0.007862874306738377, 0.020396795123815536, 0.006034775637090206, 0.024410834535956383, 0.0643361359834671, 0.0030839003156870604, -0.06802685558795929, -0.06748819351196289, 0.03473362699151039, -0.006771004758775234, -0.03640889748930931, 0.13368169963359833, -0.1350698173046112, -0.13736797869205475, 0.0968429446220398, -0.07828913629055023, -0.014094545505940914, -0.02578899823129177, -0.03871842473745346, 0.054920680820941925, 0.05994999036192894, 0.07713302224874496, 0.07075128704309464, -0.031637296080589294, 0.015260443091392517, -0.07998525351285934, 0.08438251167535782, -0.030998360365629196, -0.11480177193880081, -0.05297097936272621, 0.0009111440158449113, 0.11286157369613647, -0.14099125564098358, 0.036428604274988174, 0.024870198220014572, 0.13334141671657562, 0.1237599179148674, 0.05357810854911804, -0.04242938384413719, -0.040276627987623215, 0.073459692299366, 0.0166925135999918, 0.19189050793647766, -0.003340918105095625, -0.017226701602339745, 0.008059385232627392, -0.012107573449611664, 0.10530222952365875, -0.15546618402004242, -0.016217101365327835, 0.0009706161799840629, -0.011316969990730286, -0.019853224977850914, 0.006000257097184658, -0.16630442440509796, 0.003705225884914398, 0.0014453039038926363, -0.003967061173170805, 0.04188895598053932, -0.05011659115552902, -0.08290208876132965, 0.19509650766849518, -0.17282621562480927, -0.11149559170007706, -0.18591853976249695, 0.07030872255563736, -0.002532635349780321, 0.12666253745555878, 0.038801103830337524, -0.13096512854099274, -0.08026330918073654, -0.03647198900580406, 0.10419375449419022, -0.04541783779859543, -0.04511350393295288, -0.010067390277981758, 0.003339262679219246, -0.09442855417728424, -0.10355164855718613, -0.017379280179739, -0.03733748942613602, 0.023924482986330986, 0.12338186055421829, -0.04151933267712593, 0.14072534441947937, 0.16908764839172363, 0.06603918224573135, -0.03399158641695976, 0.028052644804120064, 0.13067547976970673, -0.05485004931688309, 0.01533570047467947, 0.16611698269844055, -0.014470157213509083, 0.0564555861055851, 0.11213655024766922, 0.018995041027665138, -0.07870938628911972, 0.010907291434705257, -0.13808919489383698, -0.11469916254281998, -0.21529772877693176, -0.16789212822914124, -0.06767553836107254, -0.028709949925541878, -0.012672358192503452, 0.032318469136953354, -0.0397307351231575, 0.12403053790330887, -0.05302343890070915, -0.05739552527666092, -0.06657514721155167, 0.06848105043172836, -0.07590451091527939, -0.013744217343628407, -0.01217624731361866, -0.03198807314038277, -0.00020607348415069282, 0.15289759635925293, 0.06244262680411339, 0.2129417210817337, 0.06758511811494827, 0.19087791442871094, 0.12084983289241791, 0.17593936622142792, 0.12183880805969238, 0.0898672416806221, 0.08036186546087265, 0.042961012572050095, -0.05756775662302971, -0.07236181944608688, -0.046076346188783646, 0.04153301939368248, -0.04265141114592552, -0.16983994841575623, -0.0009337240480817854, 0.07415991276502609, 0.03431585431098938, 0.11233759671449661, 0.06735099852085114, -0.24630193412303925, 0.02470717392861843, 0.06620530039072037, 0.1458635777235031, -0.06645827740430832, 0.025834446772933006, 0.23310276865959167, -0.0735003873705864, 0.04207071289420128, 0.007522535510361195, 0.06310690939426422, -0.11596221476793289, 0.04300765320658684, -0.01084220688790083, -0.0008725532097741961, -0.01802910305559635, 0.06577762216329575, -0.03809117153286934, 0.19944362342357635, 0.024434538558125496, 0.002303351880982518, -0.05242849141359329, 0.008876734413206577, 0.021633896976709366, 0.17042827606201172, 0.0881384015083313, 0.03517650440335274, -0.18213213980197906, -0.0474303774535656, -0.07102327048778534, 0.038265377283096313, 0.14508382976055145, -0.034306712448596954, -0.04950826242566109, 0.04617562144994736, 0.030362624675035477, -0.04906973987817764, 0.07306662946939468, -0.16350829601287842, -0.07169809192419052, 0.07361026853322983, -0.1506967544555664, 0.05886683985590935, -0.08161421120166779, 0.029823536053299904, 0.0747302919626236, 0.05776919797062874, -0.05676089972257614, -0.101817786693573, -0.1330377608537674, -0.15597453713417053, 0.07267502695322037, -0.07469165325164795, 0.05391982942819595, -0.011829937808215618, 0.05375641584396362, -0.06852688640356064, -0.10454915463924408, 0.11309660226106644, -0.09952617436647415, -0.06306784600019455, -0.062082719057798386, 0.032842233777046204, 0.08038774877786636, -0.00807640515267849, 0.025376779958605766, 0.01320675853639841, -0.06785602122545242, -0.15678860247135162, 0.02728920802474022, 0.02226218953728676, -0.0019488377729430795, 0.04076233506202698, -0.08599475771188736, -0.09031430631875992, 0.01588382199406624, 0.0005615045083686709, 0.017567304894328117, 0.25026172399520874, -0.06577648222446442, 0.04760514944791794, 0.37802642583847046, -0.08790574967861176, -0.28474846482276917, -0.01414487324655056, -0.09686288982629776, 0.029546083882451057, 0.08196886628866196, -0.25025463104248047, 0.04260833188891411, 0.0620511956512928, -0.01994960382580757, 0.18269219994544983, -0.2398918718099594, -0.058708786964416504, 0.08552046865224838, 0.09880297631025314, 0.16509877145290375, -0.13262130320072174, -0.0954379066824913, -0.12552610039710999, -0.13610437512397766, 0.050933897495269775, -0.1238045021891594, 0.12144887447357178, -0.03394762799143791, -0.02380731701850891, -0.0023296144790947437, -0.07544893026351929, 0.2251737266778946, 0.05948355048894882, 0.15991921722888947, -0.1184946671128273, -0.015166209079325199, 0.08722526580095291, -0.003706136951223016, 0.05304466560482979, -0.020944764837622643, 0.12169284373521805, 0.0386502705514431, -0.027681173756718636, -0.05373337119817734, 0.08162801712751389, -0.03977401927113533, -0.145080104470253, -0.0948801189661026, 0.039984025061130524, -0.03787657618522644, 0.04556124284863472, 0.013875873759388924, 0.006791275925934315, -0.004141450859606266, 0.09354035556316376, 0.08380629122257233, 0.007198995910584927, 0.023347824811935425, -0.020132357254624367, -0.00042045064037665725, 0.13319775462150574, -0.07988400757312775, -0.04547632858157158, 0.0775633454322815, 0.043565478175878525, 0.0346941240131855, 0.04010724276304245, -0.12016472965478897, 0.05663728341460228, 0.10440011322498322, -0.1367848664522171, -0.06231900304555893, 0.011378878727555275, 0.029180185869336128, 0.13187913596630096, 0.0559687502682209, 0.09871829301118851, -0.010266127064824104, -0.013132537715137005, -0.02309010922908783, 0.048806313425302505, -0.07159397751092911, 0.06918945163488388, 0.13152627646923065, -0.02098464034497738, -0.07957547903060913, 0.12666530907154083, 0.007485362235456705, 0.13188251852989197, -0.09555870294570923, 0.04519771784543991, -0.1523445099592209, -0.13141204416751862, -0.007478979881852865, 0.11100469529628754, -0.15938808023929596, -0.08134986460208893, -0.013510080054402351, -0.05311669036746025, -0.09939263761043549, -0.008999600075185299, 0.04239894077181816, 0.034736424684524536, -0.0030733037274330854, -0.031610313802957535, 0.030260320752859116, -0.09930427372455597, -0.10812927782535553, 0.07046426087617874, -0.029019851237535477, 0.05621107667684555, -0.03353060781955719, 0.06005215272307396, -0.06389733403921127, -0.05862661451101303, -0.09379933029413223, -0.003034069901332259, -0.213337704539299, 0.04119051620364189, -0.08938388526439667, -0.024565821513533592, -0.02932608313858509, 0.03097205050289631, 0.029603540897369385, 0.06851613521575928, -0.09041989594697952, -0.021913081407546997, -0.07919340580701828, -0.008432631380856037, -0.07048165053129196, 0.008567321114242077, 0.06749049574136734, -0.03093068115413189, 0.08292106539011002, -0.027205372229218483, -0.05263017863035202, -0.0008162196027114987, -0.20513999462127686, -0.12438099831342697, 0.008467698469758034, -0.0028265563305467367, 0.015434427186846733, 0.04333624988794327, -0.0437716469168663, -0.02534310705959797, 0.005831714253872633, -0.04964029788970947, 0.09542132914066315, -0.07047805190086365, 0.08451008051633835, -0.019916603341698647, -0.07772374153137207, -0.02293551340699196, 0.005081453360617161, 0.06613844633102417, 0.07087922841310501, 0.004163635428994894, 0.029336752369999886, 0.034661103039979935, -0.024143481627106667, -0.04405203089118004, 0.031736183911561966, 0.03751912713050842, -0.09362741559743881, -0.009320275858044624, 0.0028999745845794678, -0.023719418793916702, 0.18117347359657288, 0.045445479452610016, -0.14875321090221405, -0.05708452686667442, 0.2046167105436325, 0.04549335688352585, 0.017300685867667198, 0.14028318226337433, -0.015256124548614025, 0.07428038865327835, -0.001544001861475408, 0.06279364973306656, -0.023897560313344002, -0.07221926748752594, 0.20030391216278076, 0.03794487938284874, 0.06188388913869858, 0.03204542025923729, 0.008266218937933445, -0.08931268751621246, -0.163443461060524, -0.20353148877620697, 0.05309334397315979, 0.062377166002988815, -0.0059588816948235035, -0.03462173789739609, 0.14744135737419128, -0.1243322417140007, 0.03047114983201027, 0.07634896785020828, -0.0852881446480751, -0.12610311806201935, -0.21334242820739746, 0.012618577107787132, -0.06891199946403503, 0.026641016826033592, -0.020790619775652885, -0.021016700193285942, 0.25246065855026245, 0.014330422505736351, -0.04368991032242775, 0.15072552859783173, 0.014834551140666008, -0.12237747758626938, -0.02811424620449543, 0.028312798589468002, 0.005654714070260525, -0.01819869875907898, -0.04743362218141556, -0.04244891181588173, 0.016652749851346016, 0.0031776358373463154, 0.013318216428160667, 0.025870855897665024, 0.04821256175637245, -0.008674866519868374, -0.0323990099132061, -0.04005221650004387, 0.013369143940508366, -0.03149249404668808, 0.16322149336338043, -0.020159905776381493, -0.06700272858142853, 0.05255056172609329, 0.0733109563589096, 0.013525590300559998, -0.01746608316898346, 0.011595120653510094, 0.2043246477842331, -0.1155272051692009, 0.08226317167282104, -0.0408550500869751, -0.08999022096395493, -0.01599196344614029, 0.15209899842739105, 0.2524440884590149, -0.0941653847694397, -0.01958494447171688, -0.06941749155521393, -0.0006034171092323959, 0.02525743469595909, 0.17437659204006195, -0.04166391119360924, 0.19905945658683777, -0.07235518842935562, 0.02080940268933773, -0.05361953377723694, -0.051330070942640305, -0.15174701809883118, -0.010317628271877766, -0.04439663514494896, -0.05682707577943802, -0.04944697767496109, 0.1372140794992447, -0.08582142740488052, -0.11569245904684067, 0.2000715285539627, 0.06466659903526306, -0.006045263726264238, 0.030060121789574623, 0.09548894315958023, -0.011721797287464142, 0.13267989456653595, -0.10226956754922867, 0.0022191961761564016, 0.03250768780708313, 0.04928377643227577, -0.17302322387695312, -0.06578003615140915, 0.033766649663448334, -0.0832807794213295, 0.17375634610652924, 0.034700412303209305, -0.0028272115159779787, 0.02494698390364647, 0.033741582185029984, -0.11323077231645584, 0.07010751217603683, 0.006787893362343311, -0.10662472248077393, -0.051601190119981766, -0.02843325026333332, -0.04724963381886482, -0.08897155523300171, -0.017964914441108704, -0.07622845470905304, 0.040025968104600906, 0.12096083909273148, 0.03909454867243767, -0.11201304197311401, -0.09217272698879242, -0.15236856043338776, 0.09748721867799759, -0.0034185086842626333, -0.026883769780397415, -0.07257121801376343, -0.008313623256981373, 0.038295380771160126, -0.021952977403998375, -0.037201423197984695, -0.01519891619682312, -0.10679473727941513, -0.023104693740606308, 0.006975912023335695, 0.044304974377155304, -0.04437784478068352, 0.044226884841918945, -0.058123763650655746, -0.01113586314022541, -0.0042368629947304726, 0.04331446439027786, 0.11343951523303986, -0.02225923351943493, -0.0026579650584608316, -0.0679413303732872, 0.0405062735080719, 0.02166692353785038, -0.05509445071220398, -0.121132493019104 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2108 - Accuracy: 0.9265 - F1: 0.9265 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.8108 | 1.0 | 250 | 0.3101 | 0.903 | 0.8995 | | 0.2423 | 2.0 | 500 | 0.2108 | 0.9265 | 0.9265 | ### Framework versions - Transformers 4.13.0 - Pytorch 1.13.1+cu116 - Datasets 2.8.0 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["emotion"], "metrics": ["accuracy", "f1"], "model-index": [{"name": "distilbert-base-uncased-finetuned-emotion", "results": [{"task": {"type": "text-classification", "name": "Text Classification"}, "dataset": {"name": "emotion", "type": "emotion", "args": "split"}, "metrics": [{"type": "accuracy", "value": 0.9265, "name": "Accuracy"}, {"type": "f1", "value": 0.9264826040883781, "name": "F1"}]}]}]}
text-classification
ffalcao/distilbert-base-uncased-finetuned-emotion
[ "transformers", "pytorch", "tensorboard", "safetensors", "distilbert", "text-classification", "generated_from_trainer", "dataset:emotion", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #safetensors #distilbert #text-classification #generated_from_trainer #dataset-emotion #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us
distilbert-base-uncased-finetuned-emotion ========================================= This model is a fine-tuned version of distilbert-base-uncased on the emotion dataset. It achieves the following results on the evaluation set: * Loss: 0.2108 * Accuracy: 0.9265 * F1: 0.9265 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 64 * eval\_batch\_size: 64 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 2 ### Training results ### Framework versions * Transformers 4.13.0 * Pytorch 1.13.1+cu116 * Datasets 2.8.0 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 2", "### Training results", "### Framework versions\n\n\n* Transformers 4.13.0\n* Pytorch 1.13.1+cu116\n* Datasets 2.8.0\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #safetensors #distilbert #text-classification #generated_from_trainer #dataset-emotion #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 2", "### Training results", "### Framework versions\n\n\n* Transformers 4.13.0\n* Pytorch 1.13.1+cu116\n* Datasets 2.8.0\n* Tokenizers 0.10.3" ]
[ 72, 98, 4, 34 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #safetensors #distilbert #text-classification #generated_from_trainer #dataset-emotion #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 2### Training results### Framework versions\n\n\n* Transformers 4.13.0\n* Pytorch 1.13.1+cu116\n* Datasets 2.8.0\n* Tokenizers 0.10.3" ]
[ -0.10738013684749603, 0.12037812173366547, -0.003153255209326744, 0.1326982080936432, 0.15002381801605225, 0.02951776422560215, 0.1262800693511963, 0.1218746155500412, -0.06491266191005707, 0.039960283786058426, 0.10552217066287994, 0.15024977922439575, 0.029286423698067665, 0.11231227219104767, -0.07817020267248154, -0.24861617386341095, -0.007724636700004339, 0.03708606958389282, -0.010069441981613636, 0.13520842790603638, 0.09634879231452942, -0.13117188215255737, 0.09391900151968002, -0.008931620046496391, -0.14541161060333252, -0.0017114082584157586, 0.012582090683281422, -0.048663102090358734, 0.1410035490989685, 0.00944233126938343, 0.10318908840417862, 0.023198334500193596, 0.08706836402416229, -0.2165239304304123, 0.018166648223996162, 0.04777665436267853, 0.0031746358145028353, 0.08763284236192703, 0.055753957480192184, -0.023306939750909805, 0.11809997260570526, -0.07967203110456467, 0.05498460680246353, 0.015601394698023796, -0.11547456681728363, -0.25516316294670105, -0.0840914249420166, 0.04780462384223938, 0.07551255822181702, 0.1094307154417038, -0.023223524913191795, 0.15445543825626373, -0.08217428624629974, 0.10310891270637512, 0.237522691488266, -0.25629961490631104, -0.0627451092004776, 0.028756586834788322, 0.027023211121559143, 0.06155195087194443, -0.12160498648881912, -0.03170251101255417, 0.04410795494914055, 0.04403066262602806, 0.13819263875484467, -0.030917851254343987, -0.07354148477315903, -0.0009101519826799631, -0.1330411434173584, -0.04713287204504013, 0.15973150730133057, 0.06199865788221359, -0.03261520713567734, -0.06254356354475021, -0.06499145925045013, -0.13330763578414917, -0.03132476285099983, -0.006702800747007132, 0.05669199675321579, -0.025019584223628044, -0.07246871292591095, 0.012257851660251617, -0.1197022944688797, -0.04126187413930893, -0.047979556024074554, 0.12115919589996338, 0.02106955647468567, 0.011509185656905174, -0.013582732528448105, 0.10747323930263519, 0.006222587078809738, -0.1396915763616562, 0.026790224015712738, 0.018921758979558945, 0.02717369794845581, -0.028102705255150795, -0.05952167138457298, -0.06622409075498581, 0.0033474767114967108, 0.10761664807796478, -0.08736157417297363, 0.04585705325007439, 0.028024472296237946, 0.040354400873184204, -0.07636317610740662, 0.18481169641017914, -0.04317011684179306, -0.03289242833852768, 0.0011324422666803002, 0.09089276194572449, 0.05265146121382713, -0.004149126820266247, -0.11027292162179947, 0.03734550252556801, 0.10026814043521881, 0.01654667966067791, -0.07126529514789581, 0.0772046223282814, -0.08336299657821655, -0.0178986843675375, -0.000735446868930012, -0.08097123354673386, 0.02359742857515812, 0.024546580389142036, -0.07694234699010849, -0.02195565216243267, 0.018656332045793533, 0.013177206739783287, -0.010094692930579185, 0.11104919016361237, -0.07081261277198792, 0.018783608451485634, -0.08207854628562927, -0.11113880574703217, 0.033186301589012146, -0.08138547837734222, 0.029754262417554855, -0.0984206274151802, -0.20685920119285583, -0.020144041627645493, 0.06542225182056427, -0.018268711864948273, -0.040020037442445755, -0.0573602132499218, -0.06467879563570023, 0.012154403142631054, -0.010844796895980835, 0.08125416189432144, -0.06735078990459442, 0.09785182774066925, 0.02294820174574852, 0.08270080387592316, -0.01892436482012272, 0.04191906377673149, -0.12780946493148804, 0.017943762242794037, -0.13850148022174835, 0.036643754690885544, -0.05332427844405174, 0.07444900274276733, -0.06473563611507416, -0.1026984229683876, 0.02704141102731228, -0.018425948917865753, 0.062454890459775925, 0.11823844164609909, -0.18955378234386444, -0.08593228459358215, 0.17446842789649963, -0.07870082557201385, -0.1261122077703476, 0.14950068295001984, -0.058255549520254135, 0.0401092953979969, 0.07549437880516052, 0.19948290288448334, 0.048918891698122025, -0.0800500139594078, -0.01546560600399971, 0.011783279478549957, 0.05713983252644539, -0.028022857382893562, 0.07074547559022903, 0.023854954168200493, 0.03508080169558525, 0.028752511367201805, -0.03309422358870506, 0.06542623043060303, -0.08911225199699402, -0.0964989960193634, -0.030252955853939056, -0.10231538861989975, 0.06348754465579987, 0.08671025186777115, 0.048831209540367126, -0.11964574456214905, -0.078431636095047, -0.0007229573675431311, 0.09430715441703796, -0.06335091590881348, 0.02560480684041977, -0.06312396377325058, 0.07856052368879318, -0.00803186371922493, -0.013806653209030628, -0.16547515988349915, -0.00025345777976326644, 0.013531169854104519, 0.012597477063536644, -0.008225331082940102, 0.008640298619866371, 0.07249526679515839, 0.05988670885562897, -0.06955114006996155, -0.042277999222278595, -0.031904660165309906, 0.00013912607391830534, -0.10697627067565918, -0.22450529038906097, -0.014900698326528072, -0.03084101714193821, 0.1789993792772293, -0.21338386833667755, 0.04850100725889206, -0.0032907791901379824, 0.07510723173618317, 0.029655301943421364, -0.02584785781800747, -0.02252284437417984, 0.054337162524461746, -0.046715863049030304, -0.05366230756044388, 0.07381673902273178, 0.00793092604726553, -0.09500080347061157, -0.02472624182701111, -0.14067336916923523, 0.1711043268442154, 0.1318063884973526, -0.08554276078939438, -0.06124741584062576, 0.00010591503814794123, -0.05654057487845421, -0.013289240188896656, -0.043974850326776505, 0.027796776965260506, 0.15437054634094238, 0.005344624165445566, 0.14236098527908325, -0.07850074768066406, -0.02889401838183403, 0.022390656173229218, -0.056242503225803375, 0.0028597263153642416, 0.13540928065776825, 0.07433552294969559, -0.08041377365589142, 0.15081864595413208, 0.1712636649608612, -0.08767783641815186, 0.14514374732971191, -0.04316583275794983, -0.04757386073470116, -0.02947305701673031, -0.02521711029112339, -0.00546006765216589, 0.10953806340694427, -0.13613945245742798, 0.004148281179368496, 0.02241726964712143, -0.0037554344162344933, -0.009225415997207165, -0.22285281121730804, -0.05126520246267319, 0.04775461181998253, -0.044692039489746094, -0.004424051847308874, -0.011690959334373474, 0.0069193351082503796, 0.11150737851858139, -0.007837783545255661, -0.08906052261590958, 0.03225323557853699, -0.006934234872460365, -0.08391449600458145, 0.20748741924762726, -0.0937250554561615, -0.1885107159614563, -0.10593202710151672, -0.058404240757226944, -0.05301670730113983, 0.013206051662564278, 0.06912534683942795, -0.10520486533641815, -0.026268254965543747, -0.10035684704780579, 0.008472384884953499, 0.024951541796326637, 0.010454241186380386, 0.033621884882450104, -0.009799627587199211, 0.06674747169017792, -0.10191746056079865, -0.018702268600463867, -0.05685834586620331, -0.04128672555088997, 0.061994265764951706, 0.03265887498855591, 0.11460454016923904, 0.15965910255908966, -0.01042711641639471, 0.003484437009319663, -0.037683747708797455, 0.22628140449523926, -0.07145828008651733, -0.015763575211167336, 0.14970622956752777, -0.024509722366929054, 0.06351570039987564, 0.12856224179267883, 0.06516996026039124, -0.09621702879667282, 0.016218267381191254, 0.04032311215996742, -0.03838679566979408, -0.21909739077091217, -0.040575072169303894, -0.03351905569434166, 0.0386095866560936, 0.06351953744888306, 0.023883381858468056, 0.03143133595585823, 0.07166815549135208, 0.019514616578817368, 0.02573566883802414, -0.02952040545642376, 0.05931525304913521, 0.11396495997905731, 0.02074858359992504, 0.11041425913572311, -0.032439224421978, -0.051776278764009476, 0.05885699763894081, -0.021928695961833, 0.20053409039974213, -0.008747171610593796, 0.13898831605911255, 0.05160636082291603, 0.17712163925170898, -0.029722891747951508, 0.071148581802845, -0.018414292484521866, -0.03751150146126747, -0.030652105808258057, -0.03812199831008911, -0.05431320518255234, 0.025635410100221634, -0.06157097592949867, 0.08580240607261658, -0.12982039153575897, 0.0027094625402241945, 0.07161881774663925, 0.25926923751831055, 0.03836555778980255, -0.3252430260181427, -0.1033373773097992, 0.01746140979230404, -0.02640632539987564, -0.0004996988573111594, 0.021190525963902473, 0.10317878425121307, -0.08734596520662308, 0.050169482827186584, -0.06900926679372787, 0.08083584159612656, -0.06841132044792175, 0.06383111327886581, 0.0343250036239624, 0.06725509464740753, -0.0006044135079719126, 0.07967722415924072, -0.2738777697086334, 0.2684120237827301, -0.002520986134186387, 0.061079539358615875, -0.07433506846427917, -0.006549430079758167, 0.06516318768262863, 0.0760224387049675, 0.07716395705938339, -0.006319473031908274, 0.013318191282451153, -0.19533054530620575, -0.048702821135520935, 0.0244325939565897, 0.07467348873615265, -0.03669372573494911, 0.09170855581760406, -0.023628195747733116, 0.0013500787317752838, 0.07312533259391785, 0.02603452280163765, -0.05950009077787399, -0.08302415907382965, -0.007087198551744223, 0.05184769257903099, -0.04751817509531975, -0.07046545296907425, -0.12624719738960266, -0.11691436171531677, 0.1346554011106491, -0.006356689613312483, -0.03741643950343132, -0.10334764420986176, 0.06629548966884613, 0.04730217158794403, -0.08870925009250641, 0.018650127574801445, 0.004131474066525698, 0.08785171806812286, 0.017820967361330986, -0.06537182629108429, 0.11033626645803452, -0.08806706964969635, -0.19294407963752747, -0.06691883504390717, 0.11359626799821854, 0.041155193001031876, 0.06932346522808075, -0.003752838121727109, -0.002032366581261158, -0.04304051026701927, -0.08039100468158722, 0.04708993434906006, 0.023878104984760284, 0.0540541410446167, 0.02402973175048828, -0.025128215551376343, -0.01970686763525009, -0.07235625386238098, -0.03590741753578186, 0.17233505845069885, 0.2765439748764038, -0.07973001897335052, 0.02975377067923546, 0.05791657790541649, -0.06067396700382233, -0.2012566179037094, 0.037933215498924255, 0.040234677493572235, -0.003969583194702864, 0.07056132704019547, -0.15809661149978638, 0.10529280453920364, 0.08042293041944504, -0.029356079176068306, 0.09196817874908447, -0.29406121373176575, -0.11933547258377075, 0.13450835645198822, 0.1556558907032013, 0.11756180971860886, -0.15321114659309387, -0.0145959397777915, -0.03019106760621071, -0.10941160470247269, 0.11603622138500214, -0.11586499959230423, 0.112421914935112, -0.020291801542043686, 0.09621621668338776, 0.01785537786781788, -0.053377434611320496, 0.12818114459514618, -0.0023059186059981585, 0.1058083027601242, -0.07386764883995056, -0.013059407472610474, 0.0473051555454731, -0.04666903242468834, 0.0308030154556036, -0.1241644099354744, 0.030894111841917038, -0.09954892843961716, -0.028886590152978897, -0.0900978073477745, 0.032225556671619415, -0.03998291864991188, -0.07150743901729584, -0.04851265996694565, 0.03974129259586334, 0.07763869315385818, -0.006157561670988798, 0.1023707464337349, 0.026913728564977646, 0.12513503432273865, 0.1412152796983719, 0.09708569198846817, -0.053394902497529984, -0.058022934943437576, -0.025750471279025078, -0.021645763888955116, 0.04708586633205414, -0.14358749985694885, 0.025062020868062973, 0.1340748518705368, 0.014271227642893791, 0.15553757548332214, 0.07572933286428452, -0.047549162060022354, 0.01470349170267582, 0.06181354448199272, -0.16021232306957245, -0.10559000074863434, -0.017840785905718803, -0.0469122938811779, -0.12981821596622467, 0.03864598646759987, 0.09418358653783798, -0.07159127295017242, 0.0016896713059395552, -0.018101895228028297, 0.027956025674939156, -0.019163066521286964, 0.18026293814182281, 0.05227549746632576, 0.03549981862306595, -0.10539087653160095, 0.09119581431150436, 0.03190138190984726, -0.11368244141340256, 0.020912881940603256, 0.07004209607839584, -0.0834701657295227, -0.05490371584892273, 0.06460746377706528, 0.19754746556282043, -0.04763536527752876, -0.056359950453042984, -0.15829403698444366, -0.13200967013835907, 0.06908898800611496, 0.13708283007144928, 0.10735714435577393, 0.006597604136914015, -0.06494376808404922, 0.014836554415524006, -0.1136559247970581, 0.117315374314785, 0.07447594404220581, 0.05268869921565056, -0.14841759204864502, 0.1148848831653595, 0.003247949993237853, 0.03167227655649185, -0.02133387327194214, 0.02511807531118393, -0.09128063172101974, 0.005571509711444378, -0.13476049900054932, -0.019282404333353043, -0.03536384552717209, 0.009085833095014095, -0.00745523814111948, -0.04634622484445572, -0.03782188147306442, 0.00983763113617897, -0.11083492636680603, -0.017869630828499794, 0.037801384925842285, 0.062426116317510605, -0.12920522689819336, -0.058162204921245575, 0.0234682597219944, -0.06441442668437958, 0.09897768497467041, 0.04559144005179405, 0.013262161053717136, 0.05453994870185852, -0.18676890432834625, 0.020589660853147507, 0.08140170574188232, 0.014802796766161919, 0.0449494943022728, -0.07800853252410889, -0.01867101900279522, -0.00910028163343668, 0.025842491537332535, 0.01822701096534729, 0.08591962605714798, -0.12416549026966095, 0.031040837988257408, 0.009499761275947094, -0.07697191089391708, -0.06275857985019684, 0.030774621292948723, 0.06775809824466705, 0.011832303367555141, 0.20853044092655182, -0.08388349413871765, 0.042012471705675125, -0.21961669623851776, 0.004216327797621489, 0.0020531846676021814, -0.11958099901676178, -0.1540694683790207, -0.05120823159813881, 0.06165393069386482, -0.05620124563574791, 0.11759550869464874, 0.04582194238901138, 0.017272446304559708, 0.01675061695277691, -0.004731167573481798, 0.04780687764286995, 0.0019947579130530357, 0.17721763253211975, 0.021816140040755272, -0.056988656520843506, 0.04797830060124397, 0.03260938823223114, 0.11721111834049225, 0.08933580666780472, 0.1886584311723709, 0.15622109174728394, 0.02981962077319622, 0.09189388900995255, 0.02813323773443699, -0.031156154349446297, -0.16229967772960663, 0.00432564876973629, -0.05390536040067673, 0.11433552950620651, -0.010693995282053947, 0.23532900214195251, 0.07936564087867737, -0.15368826687335968, 0.05050675943493843, -0.06795287877321243, -0.07332437485456467, -0.10287248343229294, -0.07431399077177048, -0.0832594633102417, -0.13521558046340942, -0.0009195648599416018, -0.1332794576883316, 0.010511270724236965, 0.09945814311504364, 0.007528843358159065, -0.042415037751197815, 0.14689233899116516, 0.013448726385831833, 0.02429973892867565, 0.09087087213993073, 0.009900511242449284, -0.06708618998527527, -0.08655992150306702, -0.06875015795230865, -0.0068365284241735935, -0.013168963603675365, 0.03683122619986534, -0.04911878705024719, -0.06444915384054184, 0.029101835563778877, -0.017534881830215454, -0.11305786669254303, 0.014851273968815804, 0.011090103536844254, 0.06791515648365021, 0.045740287750959396, 0.0032669028732925653, 0.024636946618556976, -0.00015511750825680792, 0.21607159078121185, -0.07622655481100082, -0.030628353357315063, -0.08508682250976562, 0.23128584027290344, 0.009267394430935383, -0.018446270376443863, 0.03587211295962334, -0.08570235967636108, 0.0035302513279020786, 0.2270987629890442, 0.20721586048603058, -0.09580633044242859, 0.0037647325079888105, -0.01957179792225361, 0.0023524698335677385, -0.050390880554914474, 0.09620951116085052, 0.1416652798652649, 0.01995927467942238, -0.09922285377979279, 0.0005028511513955891, -0.053904928267002106, -0.01814708299934864, -0.032905496656894684, 0.050679806619882584, 0.05186834931373596, 0.013971772976219654, -0.05090099573135376, 0.06255252659320831, -0.06880387663841248, -0.10963638126850128, 0.06411782652139664, -0.2171366959810257, -0.15080052614212036, -0.02332746610045433, 0.1129748672246933, 0.033197250217199326, 0.06499268114566803, -0.016172580420970917, 0.009849218651652336, 0.08137096464633942, -0.01975616067647934, -0.09997548907995224, -0.06772688776254654, 0.09057573229074478, -0.13697165250778198, 0.22004394233226776, -0.057056576013565063, 0.042246196419000626, 0.12145630270242691, 0.04681579768657684, -0.07037979364395142, 0.0866442397236824, 0.05757230147719383, -0.06143627688288689, 0.01537763886153698, 0.11174119263887405, -0.02652757801115513, 0.09448489546775818, 0.052946437150239944, -0.14834070205688477, 0.011008336208760738, -0.01731264404952526, -0.06894208490848541, -0.04691863805055618, -0.006483388599008322, -0.058587756007909775, 0.11787135899066925, 0.20219439268112183, -0.036150433123111725, 0.006827424746006727, -0.06121744588017464, 0.003329202067106962, 0.05887424200773239, 0.005951235070824623, -0.036282237619161606, -0.2111884504556656, 0.022500867024064064, 0.07111190259456635, -0.00145635474473238, -0.2740030884742737, -0.09300485253334045, -0.017257453873753548, -0.059886012226343155, -0.09825723618268967, 0.06390213966369629, 0.07416994124650955, 0.051391515880823135, -0.043416306376457214, -0.05303296074271202, -0.06403885781764984, 0.16994766891002655, -0.13369248807430267, -0.08018191903829575 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-tiny-random-length-128-learning_rate-2e-05-weight_decay-0.01-finetuned-en-to-ro This model is a fine-tuned version of [patrickvonplaten/t5-tiny-random](https://huggingface.co/patrickvonplaten/t5-tiny-random) on the wmt16_en_ro_pre_processed dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Framework versions - Transformers 4.12.5 - Pytorch 1.10.0+cu102 - Datasets 1.15.1 - Tokenizers 0.10.3
{"tags": ["generated_from_trainer"], "datasets": ["wmt16_en_ro_pre_processed"], "model-index": [{"name": "t5-tiny-random-length-128-learning_rate-2e-05-weight_decay-0.01-finetuned-en-to-ro", "results": []}]}
text2text-generation
ffsouza/t5-tiny-random-length-128-learning_rate-2e-05-weight_decay-0.01-finetuned-en-to-ro
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "dataset:wmt16_en_ro_pre_processed", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #t5 #text2text-generation #generated_from_trainer #dataset-wmt16_en_ro_pre_processed #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
# t5-tiny-random-length-128-learning_rate-2e-05-weight_decay-0.01-finetuned-en-to-ro This model is a fine-tuned version of patrickvonplaten/t5-tiny-random on the wmt16_en_ro_pre_processed dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Framework versions - Transformers 4.12.5 - Pytorch 1.10.0+cu102 - Datasets 1.15.1 - Tokenizers 0.10.3
[ "# t5-tiny-random-length-128-learning_rate-2e-05-weight_decay-0.01-finetuned-en-to-ro\n\nThis model is a fine-tuned version of patrickvonplaten/t5-tiny-random on the wmt16_en_ro_pre_processed dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 2e-05\n- train_batch_size: 8\n- eval_batch_size: 8\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 1", "### Framework versions\n\n- Transformers 4.12.5\n- Pytorch 1.10.0+cu102\n- Datasets 1.15.1\n- Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #t5 #text2text-generation #generated_from_trainer #dataset-wmt16_en_ro_pre_processed #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "# t5-tiny-random-length-128-learning_rate-2e-05-weight_decay-0.01-finetuned-en-to-ro\n\nThis model is a fine-tuned version of patrickvonplaten/t5-tiny-random on the wmt16_en_ro_pre_processed dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 2e-05\n- train_batch_size: 8\n- eval_batch_size: 8\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 1", "### Framework versions\n\n- Transformers 4.12.5\n- Pytorch 1.10.0+cu102\n- Datasets 1.15.1\n- Tokenizers 0.10.3" ]
[ 75, 76, 6, 12, 8, 3, 90, 33 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #t5 #text2text-generation #generated_from_trainer #dataset-wmt16_en_ro_pre_processed #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n# t5-tiny-random-length-128-learning_rate-2e-05-weight_decay-0.01-finetuned-en-to-ro\n\nThis model is a fine-tuned version of patrickvonplaten/t5-tiny-random on the wmt16_en_ro_pre_processed dataset.## Model description\n\nMore information needed## Intended uses & limitations\n\nMore information needed## Training and evaluation data\n\nMore information needed## Training procedure### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 2e-05\n- train_batch_size: 8\n- eval_batch_size: 8\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 1### Framework versions\n\n- Transformers 4.12.5\n- Pytorch 1.10.0+cu102\n- Datasets 1.15.1\n- Tokenizers 0.10.3" ]
[ -0.07454276829957962, 0.1281173974275589, -0.0035724544432014227, 0.06385056674480438, 0.13110652565956116, 0.04022363945841789, 0.09290546923875809, 0.1334718018770218, -0.11183986067771912, 0.11996877193450928, 0.097145214676857, 0.04726020246744156, 0.08105902373790741, 0.12456467747688293, -0.023203421384096146, -0.23168502748012543, 0.009665986523032188, -0.017003944143652916, -0.04044090956449509, 0.09548240154981613, 0.0997786894440651, -0.0971563383936882, 0.08274980634450912, 0.01621328666806221, -0.13660019636154175, 0.009984185919165611, -0.040057554841041565, -0.06856904923915863, 0.07590329647064209, 0.04518725350499153, 0.06451524049043655, 0.021036427468061447, 0.11217986047267914, -0.22439219057559967, -0.010052218101918697, 0.07330816984176636, 0.031702686101198196, 0.0992278903722763, 0.09974756836891174, 0.01659388840198517, 0.06922155618667603, -0.13946498930454254, 0.06316259503364563, 0.039692703634500504, -0.06948382407426834, -0.11120614409446716, -0.07066610455513, 0.07930659502744675, 0.039581336081027985, 0.09800612181425095, -0.005668694619089365, 0.16185332834720612, -0.05978386849164963, 0.05719210207462311, 0.20782732963562012, -0.24187837541103363, -0.07313869893550873, 0.035403575748205185, 0.07014771550893784, 0.048007335513830185, -0.08955694735050201, -0.017885910347104073, 0.06278960406780243, 0.02731972001492977, 0.06749500334262848, 0.0011714135762304068, -0.03099711798131466, -0.014876344241201878, -0.12232816964387894, -0.032879192382097244, 0.1477474421262741, 0.049415815621614456, -0.023097453638911247, -0.1126399114727974, -0.06920094043016434, -0.13940401375293732, -0.022993672639131546, -0.009523802436888218, 0.008611752651631832, -0.05042267590761185, -0.07349778711795807, -0.004771319217979908, -0.05438019335269928, -0.02691512368619442, 0.01826009340584278, 0.10002445429563522, 0.046002406626939774, 0.008141597732901573, -0.032650839537382126, 0.10313309729099274, 0.00846299808472395, -0.13939377665519714, -0.02705674059689045, -0.007680670823901892, -0.08955111354589462, -0.05816037952899933, -0.0323595330119133, 0.032827816903591156, 0.01341953594237566, 0.1874500811100006, -0.034105077385902405, 0.06312210112810135, 0.03319365903735161, -0.019175847992300987, -0.0054336488246917725, 0.12793640792369843, -0.08201392740011215, -0.08895238488912582, -0.011040911078453064, 0.10612201690673828, -0.004317318554967642, -0.009807267226278782, -0.07739191502332687, -0.03002704307436943, 0.09819963574409485, 0.044546667486429214, 0.004836533218622208, 0.04465894028544426, -0.019490009173750877, -0.0431574285030365, 0.0475081205368042, -0.12791702151298523, 0.03233201429247856, 0.013558711856603622, -0.08226199448108673, 0.026061076670885086, -0.005136311054229736, -0.01669127494096756, -0.06675735116004944, 0.06309164315462112, -0.08335854113101959, -0.025763841345906258, -0.06748280674219131, -0.07326909154653549, 0.01428950298577547, -0.04747939482331276, -0.0008971152710728347, -0.0832446739077568, -0.14598838984966278, -0.04381003975868225, 0.023497380316257477, -0.08984711021184921, -0.09095502644777298, -0.020338458940386772, -0.07062370330095291, 0.0366177037358284, -0.008258968591690063, 0.16511224210262299, -0.03165020793676376, 0.05549130216240883, 0.03631480783224106, 0.03224122151732445, 0.08234734833240509, 0.033872541040182114, -0.08221295475959778, 0.03672229126095772, -0.049800168722867966, 0.09725311398506165, -0.07104319334030151, 0.03278814256191254, -0.13370707631111145, -0.1128527969121933, -0.018819155171513557, -0.032867033034563065, 0.06343622505664825, 0.11185434460639954, -0.11852974444627762, -0.033632177859544754, 0.12442225217819214, -0.01952170394361019, -0.06671302020549774, 0.08962526172399521, -0.021538058295845985, -0.0007393707637675107, 0.027881087735295296, 0.07933014631271362, 0.1307353973388672, -0.09472878277301788, -0.052765898406505585, 0.024594126269221306, 0.07755153626203537, 0.03892584517598152, 0.06239605322480202, 0.0029310910031199455, -0.009436027146875858, 0.019202163442969322, -0.06350677460432053, -0.005388021934777498, -0.07849761098623276, -0.08752522617578506, -0.0505049042403698, -0.06703957915306091, 0.03874104470014572, 0.02810736931860447, 0.04491012170910835, -0.053467653691768646, -0.1396329253911972, 0.04190180078148842, 0.14062969386577606, -0.054520364850759506, 0.012388771399855614, -0.08069714903831482, 0.04099108278751373, -0.04151654243469238, -0.005952579900622368, -0.19984710216522217, -0.0868861973285675, 0.05628005415201187, -0.07075992971658707, 0.022720688953995705, 0.007160317152738571, 0.05800807103514671, 0.06310420483350754, -0.016110777854919434, -0.036203786730766296, -0.05408757925033569, -0.032267116010189056, -0.08410939574241638, -0.16084490716457367, -0.0858842059969902, -0.013532549142837524, 0.17428477108478546, -0.22170892357826233, 0.004784273914992809, -0.0061203595250844955, 0.1370016485452652, -0.005958054214715958, -0.043756745755672455, -0.014803528785705566, 0.02638228051364422, -0.05096063390374184, -0.0920969620347023, 0.02241384983062744, -0.009224624373018742, -0.06693210452795029, -0.05032765865325928, -0.15367986261844635, -0.005999053828418255, 0.08991897106170654, 0.053544990718364716, -0.09515836089849472, 0.008988126181066036, -0.07635308057069778, -0.052035655826330185, -0.062377188354730606, -0.02187621220946312, 0.15814514458179474, 0.011650738306343555, 0.11276214569807053, -0.051640067249536514, -0.07667968422174454, 0.026253122836351395, 0.02741653099656105, -0.03548818081617355, 0.09434208273887634, 0.08703813701868057, -0.08514811098575592, 0.08241724967956543, 0.031110534444451332, -0.024205902591347694, 0.11563852429389954, -0.03395579755306244, -0.10459302365779877, -0.02140820398926735, 0.005381499417126179, 0.015332914888858795, 0.06080399081110954, -0.0876418948173523, 0.0023228994105011225, 0.06360289454460144, -0.006782783195376396, 0.03265239670872688, -0.1336480677127838, 0.01747988723218441, 0.03316371887922287, -0.019046040251851082, 0.03261500969529152, -0.028521938249468803, 0.029454706236720085, 0.07569146901369095, 0.037176430225372314, -0.0192697923630476, 0.017953457310795784, -0.014677918516099453, -0.08316139131784439, 0.17254410684108734, -0.07870761305093765, -0.15407127141952515, -0.14119009673595428, -0.021490322425961494, -0.055365849286317825, -0.028429370373487473, -0.0029447744600474834, -0.06766727566719055, -0.07939556241035461, -0.08276593685150146, 0.015882957726716995, -0.05603795126080513, 0.012136983685195446, 0.08840256184339523, 0.021376224234700203, 0.10172140598297119, -0.11071527749300003, 0.03253448009490967, 0.01197353471070528, -0.07031121850013733, 0.009446430020034313, 0.04384922236204147, 0.10953625291585922, 0.1257028430700302, -0.0022023192141205072, 0.01119438000023365, -0.017224391922354698, 0.2426493614912033, -0.06805239617824554, 0.003986455500125885, 0.10899815708398819, 0.010672018863260746, 0.06465302407741547, 0.12782540917396545, 0.03174369037151337, -0.061227086931467056, 0.03629739210009575, 0.04859725758433342, -0.00925416499376297, -0.24122875928878784, -0.04955125227570534, -0.027535725384950638, -0.02699650451540947, 0.16321682929992676, 0.03773116320371628, 0.00898232962936163, 0.0673220083117485, -0.05599473789334297, 0.10478878021240234, -0.01834850199520588, 0.08790374547243118, 0.07602834701538086, 0.06886841356754303, 0.09934758394956589, -0.015257810242474079, -0.035494621843099594, 0.062118493020534515, 0.0005468972958624363, 0.2203683704137802, -0.039522022008895874, 0.18836545944213867, -0.00907787773758173, 0.15730756521224976, -0.007884849794209003, 0.04409375041723251, 0.020966313779354095, 0.017189716920256615, 0.02644365467131138, -0.07177909463644028, -0.013923313468694687, 0.03675602748990059, -0.009209002368152142, 0.05586869269609451, -0.07492313534021378, 0.0715084820985794, 0.006770663894712925, 0.23997460305690765, 0.0559757798910141, -0.3196845054626465, -0.07569017261266708, 0.014031252823770046, -0.024150650948286057, -0.07710672169923782, 0.01167986448854208, 0.08628935366868973, -0.13240265846252441, 0.07047048211097717, -0.06917230039834976, 0.09198751300573349, -0.03461515158414841, 0.0036614465061575174, 0.08872142434120178, 0.15283292531967163, 0.018803775310516357, 0.10305394977331161, -0.16117292642593384, 0.16771450638771057, 0.018468564376235008, 0.08243131637573242, -0.08982641249895096, 0.05332348495721817, -0.017305882647633553, 0.02732934057712555, 0.10212162882089615, -0.012180114164948463, -0.0532962828874588, -0.15164941549301147, -0.11880657076835632, 0.006800312083214521, 0.12034857273101807, -0.04497985169291496, 0.12083374708890915, -0.06570697575807571, -0.018328476697206497, 0.03061620146036148, -0.07019559293985367, -0.13332237303256989, -0.16299648582935333, 0.055059678852558136, -0.011917597614228725, -0.04044617712497711, -0.07797136902809143, -0.10588666051626205, -0.0788196250796318, 0.20987971127033234, -0.04106149449944496, -0.03671550005674362, -0.1407472938299179, 0.10757769644260406, 0.15468938648700714, -0.0839855819940567, 0.0025932842399924994, -0.0000019463134321995312, 0.16604597866535187, 0.009819341823458672, -0.10552242398262024, 0.05319526791572571, -0.06786823272705078, -0.18727096915245056, -0.03712758049368858, 0.13553497195243835, 0.025124043226242065, 0.05711159110069275, -0.023982631042599678, 0.011451606638729572, -0.005601155571639538, -0.08200626820325851, -0.012945604510605335, 0.06621203571557999, 0.03914692997932434, 0.03402990102767944, -0.03979012742638588, -0.008002583868801594, -0.06346467137336731, 0.0046472810208797455, 0.1138807013630867, 0.18834006786346436, -0.09708474576473236, 0.040018606930971146, 0.04331229627132416, -0.061329882591962814, -0.18166585266590118, 0.03616723418235779, 0.1188635602593422, 0.014518240466713905, 0.02182491309940815, -0.1780472993850708, 0.09745516628026962, 0.07948439568281174, -0.0022839445155113935, 0.061649784445762634, -0.33148375153541565, -0.12980122864246368, 0.06158037483692169, 0.055659666657447815, 0.008509373292326927, -0.12941019237041473, -0.06555692851543427, -0.042627908289432526, -0.13826198875904083, 0.07425348460674286, -0.02700718306005001, 0.09766485542058945, -0.015368839725852013, 0.08223474025726318, 0.032394569367170334, -0.051901720464229584, 0.14249460399150848, 0.03776979446411133, 0.031200673431158066, -0.05553652346134186, 0.016505630686879158, 0.08124452829360962, -0.06926850229501724, 0.04156417399644852, -0.026452496647834778, 0.06412360817193985, -0.14053674042224884, -0.03484141454100609, -0.0640365406870842, 0.06674246490001678, -0.06183619424700737, -0.04484335705637932, -0.044243376702070236, 0.04134710878133774, 0.07106628268957138, -0.023620717227458954, 0.06638357043266296, 0.04532261937856674, 0.041820503771305084, 0.1503549963235855, 0.08801033347845078, 0.019386926665902138, -0.11338572949171066, 0.0009362888522446156, -0.007218612357974052, 0.05453440546989441, -0.09135064482688904, 0.01824173703789711, 0.1289403885602951, 0.04372129216790199, 0.10923436284065247, 0.03105846606194973, -0.07823703438043594, -0.021642837673425674, 0.030418772250413895, -0.10797200351953506, -0.15875943005084991, -0.046624500304460526, -0.008601175621151924, -0.1813557744026184, -0.02268386445939541, 0.10987656563520432, -0.0544714629650116, -0.019624270498752594, -0.008732952177524567, 0.02881857194006443, 0.0005883442354388535, 0.19456599652767181, 0.025691935792565346, 0.07772994041442871, -0.09509331732988358, 0.09305880218744278, 0.10207235813140869, -0.0504712238907814, 0.034450918436050415, 0.09120277315378189, -0.0820384994149208, -0.014993010088801384, 0.055453088134527206, 0.07107751071453094, -0.04796278104186058, -0.02169143036007881, -0.05293455347418785, -0.09580382704734802, 0.07400291413068771, 0.02057354524731636, 0.04292243719100952, -0.014896637760102749, -0.015237732790410519, 0.0021268408745527267, -0.15201520919799805, 0.10145584493875504, 0.06739237159490585, 0.09269959479570389, -0.13711190223693848, 0.11946100741624832, -0.0007092011510394514, 0.05894780531525612, -0.009864820167422295, 0.02046786993741989, -0.07552451640367508, -0.03572665527462959, -0.13438750803470612, 0.015750179067254066, -0.05765724927186966, 0.005485298577696085, -0.015843991190195084, -0.023392733186483383, -0.04911153018474579, 0.0420541986823082, -0.04915963113307953, -0.09016533941030502, -0.01496781688183546, 0.052467722445726395, -0.10487958043813705, 0.018960237503051758, 0.023809760808944702, -0.1230500265955925, 0.07998013496398926, 0.047134190797805786, 0.030565502122044563, 0.007472021505236626, -0.018102064728736877, -0.03107317164540291, 0.019193893298506737, 0.05604720488190651, 0.07286497950553894, -0.09906810522079468, 0.004384736064821482, -0.0384114608168602, 0.028530947864055634, -0.005540662910789251, 0.019164927303791046, -0.14489246904850006, -0.005654293578118086, -0.0677919015288353, -0.029260626062750816, -0.06287636607885361, 0.04636619612574577, 0.06284093111753464, -0.011830740608274937, 0.15517552196979523, -0.06509847193956375, 0.0635448768734932, -0.219806507229805, -0.01677549071609974, -0.008428421802818775, -0.01993701234459877, -0.03719929978251457, -0.010631093755364418, 0.0886334627866745, -0.04970794916152954, 0.11137082427740097, -0.02983943559229374, 0.07857246696949005, 0.03608296811580658, -0.030764171853661537, -0.024320129305124283, 0.01979132741689682, 0.17697884142398834, 0.09365644305944443, -0.009662983007729053, 0.06913501769304276, -0.02521488629281521, 0.0830264762043953, 0.06446246802806854, 0.15357452630996704, 0.12896651029586792, -0.0056044477969408035, 0.0742572769522667, 0.06741838157176971, -0.12660643458366394, -0.14442752301692963, 0.13567280769348145, -0.08041811734437943, 0.12024681270122528, -0.03494255244731903, 0.10609891265630722, 0.11717426776885986, -0.15922874212265015, 0.011385674588382244, -0.062084659934043884, -0.09927724301815033, -0.11012730002403259, -0.09674537926912308, -0.09981565177440643, -0.10126007348299026, 0.02855408936738968, -0.11523651331663132, 0.026166534051299095, 0.061394304037094116, 0.014431821182370186, 0.009990076534450054, 0.12924911081790924, -0.0051550427451729774, -0.011651528999209404, 0.051366761326789856, 0.027467671781778336, 0.0019250990590080619, -0.03338927775621414, -0.053653329610824585, 0.04970654100179672, 0.015756798908114433, 0.0944725051522255, -0.04079728573560715, 0.02286725677549839, 0.06586373597383499, 0.005101245827972889, -0.08484868705272675, 0.015098812058568, 0.008161063306033611, 0.012701671570539474, 0.04929252341389656, 0.037484560161828995, 0.025830978527665138, -0.05922163650393486, 0.21058249473571777, -0.07380843907594681, -0.07648251950740814, -0.14079490303993225, 0.1520812213420868, 0.02918452024459839, -0.007396283093839884, 0.08116990327835083, -0.09745726734399796, -0.028750810772180557, 0.20364519953727722, 0.16537724435329437, -0.037946753203868866, -0.03757253661751747, 0.022256283089518547, -0.014414447359740734, -0.04072245955467224, 0.10161290317773819, 0.10323749482631683, 0.016555292531847954, -0.054341819137334824, -0.030285704880952835, 0.005877992138266563, -0.0316244475543499, -0.07398621737957001, 0.0805978775024414, 0.011109080165624619, 0.016517600044608116, -0.024775361642241478, 0.034952156245708466, -0.022209657356142998, -0.17012391984462738, 0.04460611194372177, -0.1340268850326538, -0.18354102969169617, -0.018222393468022346, 0.0857880637049675, -0.01358551625162363, 0.06704103946685791, -0.004651995375752449, -0.026018129661679268, 0.14363688230514526, -0.013825691305100918, -0.09078910946846008, -0.05325369909405708, 0.06943486630916595, -0.06533253937959671, 0.19909830391407013, -0.0029357646126300097, 0.046251073479652405, 0.11071157455444336, 0.020207369700074196, -0.18261058628559113, 0.009586961939930916, 0.09024257957935333, -0.04834793135523796, 0.05286119878292084, 0.17097412049770355, -0.03212078660726547, 0.08486053347587585, 0.051558397710323334, -0.13128605484962463, -0.036742713302373886, 0.006887665018439293, 0.033459994941949844, -0.08887848258018494, -0.021551573649048805, -0.04441196471452713, 0.16202585399150848, 0.22187449038028717, -0.05168595910072327, -0.023739513009786606, -0.059897612780332565, 0.013050926849246025, 0.01762017235159874, 0.13050399720668793, -0.019051656126976013, -0.21773867309093475, -0.004682816565036774, -0.044174011796712875, 0.05632476881146431, -0.22040626406669617, -0.073118656873703, 0.046381086111068726, -0.05398676171898842, -0.07014645636081696, 0.14311657845973969, 0.04911119118332863, 0.03164202347397804, -0.03750263899564743, -0.06146903708577156, -0.05925631523132324, 0.13470786809921265, -0.1719033271074295, -0.0624619759619236 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-tiny-random-length-96-learning_rate-0.0002-weight_decay-0.01-finetuned-en-to-ro This model is a fine-tuned version of [patrickvonplaten/t5-tiny-random](https://huggingface.co/patrickvonplaten/t5-tiny-random) on the wmt16_en_ro_pre_processed dataset. It achieves the following results on the evaluation set: - Loss: 4.6426 - Bleu: 0.0617 - Gen Len: 8.9895 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 8 ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |:-------------:|:-----:|:------:|:---------------:|:------:|:-------:| | 4.5828 | 1.0 | 76290 | 5.5397 | 0.0089 | 8.981 | | 4.187 | 2.0 | 152580 | 5.2241 | 0.0172 | 8.989 | | 3.9612 | 3.0 | 228870 | 5.0092 | 0.034 | 8.988 | | 3.8151 | 4.0 | 305160 | 4.8688 | 0.0365 | 8.9865 | | 3.7162 | 5.0 | 381450 | 4.7656 | 0.0469 | 8.9865 | | 3.6498 | 6.0 | 457740 | 4.6874 | 0.0531 | 8.9885 | | 3.6147 | 7.0 | 534030 | 4.6612 | 0.0585 | 8.9875 | | 3.5972 | 8.0 | 610320 | 4.6426 | 0.0617 | 8.9895 | ### Framework versions - Transformers 4.12.5 - Pytorch 1.10.0+cu102 - Datasets 1.15.1 - Tokenizers 0.10.3
{"tags": ["generated_from_trainer"], "datasets": ["wmt16_en_ro_pre_processed"], "metrics": ["bleu"], "model-index": [{"name": "t5-tiny-random-length-96-learning_rate-0.0002-weight_decay-0.01-finetuned-en-to-ro", "results": [{"task": {"type": "text2text-generation", "name": "Sequence-to-sequence Language Modeling"}, "dataset": {"name": "wmt16_en_ro_pre_processed", "type": "wmt16_en_ro_pre_processed", "args": "enro"}, "metrics": [{"type": "bleu", "value": 0.0617, "name": "Bleu"}]}]}]}
text2text-generation
ffsouza/t5-tiny-random-length-96-learning_rate-0.0002-weight_decay-0.01-finetuned-en-to-ro
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "dataset:wmt16_en_ro_pre_processed", "model-index", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #t5 #text2text-generation #generated_from_trainer #dataset-wmt16_en_ro_pre_processed #model-index #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
t5-tiny-random-length-96-learning\_rate-0.0002-weight\_decay-0.01-finetuned-en-to-ro ==================================================================================== This model is a fine-tuned version of patrickvonplaten/t5-tiny-random on the wmt16\_en\_ro\_pre\_processed dataset. It achieves the following results on the evaluation set: * Loss: 4.6426 * Bleu: 0.0617 * Gen Len: 8.9895 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 0.0002 * train\_batch\_size: 8 * eval\_batch\_size: 8 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 8 ### Training results ### Framework versions * Transformers 4.12.5 * Pytorch 1.10.0+cu102 * Datasets 1.15.1 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0002\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 8", "### Training results", "### Framework versions\n\n\n* Transformers 4.12.5\n* Pytorch 1.10.0+cu102\n* Datasets 1.15.1\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #t5 #text2text-generation #generated_from_trainer #dataset-wmt16_en_ro_pre_processed #model-index #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0002\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 8", "### Training results", "### Framework versions\n\n\n* Transformers 4.12.5\n* Pytorch 1.10.0+cu102\n* Datasets 1.15.1\n* Tokenizers 0.10.3" ]
[ 79, 97, 4, 33 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #t5 #text2text-generation #generated_from_trainer #dataset-wmt16_en_ro_pre_processed #model-index #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0002\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 8### Training results### Framework versions\n\n\n* Transformers 4.12.5\n* Pytorch 1.10.0+cu102\n* Datasets 1.15.1\n* Tokenizers 0.10.3" ]
[ -0.11129482090473175, 0.08685921877622604, -0.0019008017843589187, 0.1210261657834053, 0.14959387481212616, 0.021479889750480652, 0.13989385962486267, 0.13551859557628632, -0.0606486015021801, 0.037123966962099075, 0.1452626734972, 0.12729692459106445, 0.02874220535159111, 0.10761258006095886, -0.04405386373400688, -0.2482037991285324, -0.007995142601430416, 0.061650633811950684, -0.036537010222673416, 0.15019957721233368, 0.0797363668680191, -0.1301073282957077, 0.10767052322626114, -0.006576516665518284, -0.19651693105697632, -0.006081182509660721, 0.00554992537945509, -0.03884774446487427, 0.13952550292015076, 0.026141176000237465, 0.10299208015203476, 0.02175716869533062, 0.06772463023662567, -0.16168303787708282, 0.011475127190351486, 0.045628730207681656, 0.018104426562786102, 0.10245069116353989, 0.06251989305019379, -0.005448930896818638, 0.08260294049978256, -0.06530297547578812, 0.03612416237592697, 0.01916002482175827, -0.13478617370128632, -0.21275638043880463, -0.045997150242328644, 0.031168172135949135, 0.05455317348241806, 0.11096958816051483, -0.024920545518398285, 0.1282678246498108, -0.034558143466711044, 0.10980916023254395, 0.2241102159023285, -0.2695293426513672, -0.06273896992206573, 0.03556695953011513, 0.03931974992156029, 0.1122829020023346, -0.09568601101636887, -0.0203696358948946, 0.044046979397535324, 0.041817985475063324, 0.12553012371063232, -0.02948448434472084, -0.021478643640875816, 0.010867977514863014, -0.1388722062110901, -0.0503593310713768, 0.1779460459947586, 0.04712356626987457, -0.02765977941453457, -0.04853586480021477, -0.09261561185121536, -0.1845214068889618, -0.018543466925621033, -0.004119635093957186, 0.02533983811736107, -0.03527422994375229, -0.09917336702346802, -0.033515237271785736, -0.10603202134370804, -0.061659909784793854, -0.032555967569351196, 0.14196909964084625, 0.029648011550307274, 0.0023994748480618, -0.04960209131240845, 0.12417323142290115, 0.009536376222968102, -0.15036380290985107, 0.033998530358076096, 0.021037869155406952, 0.0011753244325518608, -0.0293295718729496, -0.061307236552238464, -0.11105137318372726, -0.018665416166186333, 0.09206307679414749, -0.043777160346508026, 0.05108170583844185, 0.03486951068043709, 0.04030550271272659, -0.07852241396903992, 0.18859583139419556, -0.06047699972987175, -0.05662250146269798, -0.021431751549243927, 0.09131195396184921, 0.009117735549807549, -0.026442984119057655, -0.13609834015369415, -0.009921104647219181, 0.12812486290931702, -0.011518249288201332, -0.04509327933192253, 0.07824814319610596, -0.04442282021045685, -0.06101405620574951, -0.02407834865152836, -0.0847381055355072, -0.001449243980459869, -0.009097795933485031, -0.07676529139280319, -0.0011566028697416186, 0.022409798577427864, 0.006128526292741299, -0.027562445029616356, 0.081508107483387, -0.1173551008105278, 0.01525898091495037, -0.07669254392385483, -0.1224713996052742, -0.010257628746330738, -0.08423690497875214, 0.018277473747730255, -0.09586714953184128, -0.18395371735095978, -0.015308857895433903, 0.05399496853351593, -0.034455884248018265, -0.047746676951646805, -0.07184713333845139, -0.05470087379217148, 0.021843841299414635, -0.00817794632166624, 0.1215696856379509, -0.0556861087679863, 0.12181766331195831, 0.05138289928436279, 0.06578737497329712, -0.03622157871723175, 0.05891212821006775, -0.10192742198705673, 0.029560817405581474, -0.12927882373332977, 0.06914499402046204, -0.010102389380335808, 0.055833473801612854, -0.10595555603504181, -0.10386954247951508, -0.025067349895834923, -0.010514556430280209, 0.07984087616205215, 0.11024698615074158, -0.14627398550510406, -0.09091447293758392, 0.18390220403671265, -0.04385499656200409, -0.125582754611969, 0.1473132073879242, -0.05992583930492401, 0.07971242815256119, 0.06254217773675919, 0.21478764712810516, 0.07076668739318848, -0.05057637393474579, 0.017250504344701767, 0.005246484186500311, 0.09135492891073227, -0.05109844729304314, 0.09531278163194656, 0.007194054313004017, -0.011691847816109657, 0.016495870426297188, -0.04557368531823158, 0.06020643934607506, -0.09820611774921417, -0.08236289024353027, -0.02155541069805622, -0.0992109552025795, 0.08183135837316513, 0.0605379119515419, 0.08620022982358932, -0.09088705480098724, -0.09571415930986404, 0.025034746155142784, 0.07948452234268188, -0.0945788100361824, 0.030454343184828758, -0.0653187707066536, 0.07882210612297058, -0.10116099566221237, -0.01807030662894249, -0.17955178022384644, -0.007650430779904127, 0.01404951699078083, 0.030111826956272125, 0.021472079679369926, 0.03843677043914795, 0.0824122205376625, 0.0719778835773468, -0.05631662532687187, -0.040043119341135025, -0.03546709939837456, -0.01212724857032299, -0.1426432728767395, -0.16650746762752533, -0.04934372752904892, -0.019319185987114906, 0.16602735221385956, -0.21011324226856232, 0.03896033391356468, -0.01744273491203785, 0.06421886384487152, 0.022563062608242035, -0.03561697155237198, -0.027341531589627266, 0.057942915707826614, -0.05066772177815437, -0.04959757253527641, 0.07873088121414185, 0.006656716112047434, -0.1131027489900589, -0.03283371031284332, -0.15751534700393677, 0.14594940841197968, 0.1169838234782219, -0.10979779064655304, -0.06776002049446106, -0.0007647479069419205, -0.04844418913125992, -0.03825066611170769, -0.020527860149741173, -0.028047336265444756, 0.17930945754051208, 0.005923958029597998, 0.1664733737707138, -0.08781255781650543, -0.04237636178731918, 0.025958117097616196, -0.02935734950006008, 0.0137011194601655, 0.14746977388858795, 0.07550208270549774, -0.10782855749130249, 0.13676957786083221, 0.15014037489891052, -0.0603259801864624, 0.1641107201576233, -0.01452576369047165, -0.08505077660083771, -0.03407925367355347, -0.012186839245259762, -0.006428622640669346, 0.08348101377487183, -0.160430446267128, -0.006495638284832239, 0.029980506747961044, 0.019886475056409836, 0.03048672527074814, -0.19566494226455688, -0.03214646503329277, 0.060776595026254654, -0.028426144272089005, -0.010689237155020237, -0.002882651286199689, -0.011068331077694893, 0.1041257306933403, 0.019159674644470215, -0.06481349468231201, 0.03623358905315399, -0.0023412322625517845, -0.07933124899864197, 0.21002481877803802, -0.051610067486763, -0.17904849350452423, -0.14629283547401428, -0.0981934517621994, -0.06641706079244614, 0.02154536359012127, 0.05405288189649582, -0.07840787619352341, -0.013316973112523556, -0.08774561434984207, 0.055168937891721725, -0.04507259652018547, 0.019661828875541687, 0.02686798758804798, -0.02759852074086666, 0.05778733640909195, -0.0976761132478714, -0.005192176904529333, -0.03058706969022751, -0.03250386565923691, 0.05406416952610016, -0.010812480002641678, 0.1208207756280899, 0.15754888951778412, -0.005376092158257961, 0.02624027617275715, -0.02023119106888771, 0.25612345337867737, -0.0688457116484642, -0.02485201321542263, 0.1504194587469101, -0.02221675217151642, 0.06264086812734604, 0.09631248563528061, 0.053010422736406326, -0.08236527442932129, 0.011875933036208153, 0.02107503078877926, -0.043893855065107346, -0.20206905901432037, -0.02455109916627407, -0.055745434015989304, 0.024452706798911095, 0.11532095819711685, 0.007761124521493912, 0.035049326717853546, 0.08070503175258636, 0.034222863614559174, 0.09296494722366333, -0.03978166729211807, 0.06705260276794434, 0.09173208475112915, 0.040664687752723694, 0.1285676807165146, -0.02663811668753624, -0.05917946994304657, 0.03242690861225128, 0.011330103501677513, 0.19615039229393005, -0.009373449720442295, 0.20156331360340118, 0.032291460782289505, 0.15498697757720947, -0.0010564557742327452, 0.08369356393814087, -0.014710722491145134, -0.0214210394769907, -0.02648720145225525, -0.04048586264252663, -0.05702728405594826, 0.013919324614107609, -0.032597292214632034, 0.06492257863283157, -0.12426115572452545, 0.007493156474083662, 0.03129393979907036, 0.23850788176059723, 0.05887012183666229, -0.36489030718803406, -0.1106652170419693, 0.0065041594207286835, -0.026808777824044228, -0.035205431282520294, 0.022671692073345184, 0.13791674375534058, -0.09658671170473099, 0.007798857521265745, -0.08875349909067154, 0.0957459881901741, -0.07007870078086853, 0.06062912195920944, 0.05597538501024246, 0.07270423322916031, -0.009864714927971363, 0.08510639518499374, -0.2646436393260956, 0.26567530632019043, 0.010244968347251415, 0.024983251467347145, -0.07139675319194794, -0.020740801468491554, 0.005712062120437622, 0.044399309903383255, 0.08061598241329193, -0.0028259011451154947, 0.026348065584897995, -0.20926323533058167, -0.07175976037979126, 0.019231561571359634, 0.1060052365064621, -0.0852772668004036, 0.1252749115228653, -0.03626513481140137, 0.012466403655707836, 0.06012581288814545, 0.0294849444180727, -0.021669352427124977, -0.10336462408304214, 0.022995183244347572, 0.022509099915623665, -0.02344200387597084, -0.053027890622615814, -0.10989664494991302, -0.09556565433740616, 0.13688647747039795, -0.011782022193074226, -0.05062823370099068, -0.11239292472600937, 0.08722682297229767, 0.07554320991039276, -0.10337405651807785, 0.0033031993079930544, 0.004759280011057854, 0.08320991694927216, 0.012824726291000843, -0.06869152933359146, 0.11388908326625824, -0.04748409241437912, -0.1659952849149704, -0.045753564685583115, 0.13247646391391754, 0.03850533813238144, 0.06085497885942459, -0.023980602622032166, 0.009089206345379353, -0.06291390210390091, -0.06886947900056839, 0.030844353139400482, -0.016694484278559685, 0.05612017586827278, 0.01364199910312891, -0.019094640389084816, 0.052622802555561066, -0.0765843316912651, -0.019563013687729836, 0.20178432762622833, 0.2359534353017807, -0.07618433982133865, -0.005636718589812517, 0.054743047803640366, -0.062000781297683716, -0.17917783558368683, 0.03499739617109299, 0.06646290421485901, 0.016469575464725494, 0.051147568970918655, -0.17624080181121826, 0.07445341348648071, 0.07482858747243881, 0.004213227890431881, 0.104732945561409, -0.35477378964424133, -0.12407789379358292, 0.08845802396535873, 0.1507720947265625, 0.12904518842697144, -0.14049115777015686, -0.03426070138812065, -0.019631842151284218, -0.15300865471363068, 0.11324676126241684, -0.0660524070262909, 0.1397533118724823, -0.022951459512114525, 0.11222439259290695, 0.025674832984805107, -0.06091678887605667, 0.12254446744918823, 0.018481770530343056, 0.07058332860469818, -0.057890936732292175, -0.03235486149787903, 0.06357522308826447, -0.04974477365612984, 0.013858463615179062, -0.08485979586839676, 0.032363295555114746, -0.12633977830410004, -0.03725280240178108, -0.08917655795812607, 0.010101281106472015, -0.03475666046142578, -0.07591066509485245, -0.01850280724465847, 0.02512645721435547, 0.05800189822912216, -0.0038036732003092766, 0.13983456790447235, -0.0041191792115569115, 0.1327277421951294, 0.14394435286521912, 0.08411548286676407, -0.047292470932006836, -0.06776440143585205, -0.027899879962205887, -0.01165557000786066, 0.049793291836977005, -0.14211437106132507, 0.023204324766993523, 0.14460144937038422, 0.022188011556863785, 0.14698119461536407, 0.07972295582294464, -0.03799492120742798, 0.01344555988907814, 0.04415521025657654, -0.1898542046546936, -0.13568857312202454, -0.05381710082292557, -0.06256797909736633, -0.14456912875175476, 0.034538108855485916, 0.13479746878147125, -0.06627839803695679, -0.005813077557832003, -0.01361168920993805, 0.005463586188852787, -0.04325440898537636, 0.19285036623477936, 0.049665335565805435, 0.059440575540065765, -0.0901356041431427, 0.06587804853916168, 0.05376181751489639, -0.07427607476711273, 0.011483541689813137, 0.07216204702854156, -0.08689289540052414, -0.04113250598311424, 0.0004796424473170191, 0.17255167663097382, -0.06949758529663086, -0.00782988965511322, -0.15394414961338043, -0.09244858473539352, 0.06321394443511963, 0.12065427750349045, 0.093609519302845, 0.013792373239994049, -0.06757332384586334, -0.0014389370335265994, -0.12796510756015778, 0.10911466181278229, 0.06661643087863922, 0.0743437185883522, -0.13960669934749603, 0.1669340431690216, -0.01472312118858099, 0.06309062242507935, -0.018414989113807678, 0.00526881217956543, -0.0942457765340805, 0.016482926905155182, -0.11979763209819794, -0.028711194172501564, -0.017412666231393814, -0.007925674319267273, -0.02963428944349289, -0.056428369134664536, -0.0513606034219265, 0.0021314327605068684, -0.1183808296918869, -0.027786053717136383, 0.037159740924835205, 0.03171360865235329, -0.08544643968343735, -0.02448243461549282, 0.027139663696289062, -0.06882205605506897, 0.08638905733823776, 0.04110212251543999, -0.00012752260954584926, 0.043659619987010956, -0.08062781393527985, 0.032736074179410934, 0.024610891938209534, 0.01429933961480856, 0.04740913584828377, -0.05832435563206673, -0.010674666613340378, -0.031749505549669266, 0.05245659872889519, 0.018067283555865288, 0.09071727842092514, -0.12808115780353546, 0.024396151304244995, -0.01971321739256382, -0.04723051190376282, -0.0873897448182106, 0.0522678941488266, 0.03237037733197212, 0.05411618575453758, 0.17966414988040924, -0.06380388885736465, 0.05598807707428932, -0.21672235429286957, -0.0009439538116566837, 0.017880966886878014, -0.12175183743238449, -0.07429616898298264, -0.08526328951120377, 0.06577122956514359, -0.07165410369634628, 0.08928274363279343, 0.007163198199123144, 0.04599053040146828, 0.015425685793161392, -0.013273127377033234, 0.029242413118481636, -0.0021599854808300734, 0.20797015726566315, 0.021039988845586777, -0.045666489750146866, 0.06148066371679306, 0.053232643753290176, 0.10892506688833237, 0.18480288982391357, 0.19697199761867523, 0.14888998866081238, -0.01180803682655096, 0.08532299101352692, 0.012032845057547092, -0.026215296238660812, -0.19024434685707092, 0.02526647038757801, -0.029139967635273933, 0.10761931538581848, -0.019621150568127632, 0.22047936916351318, 0.08585403859615326, -0.15253011882305145, 0.02652900107204914, -0.04342740401625633, -0.09028571099042892, -0.09434922784566879, -0.1054535061120987, -0.07622504234313965, -0.12466257065534592, -0.00924481451511383, -0.1200873851776123, 0.018467430025339127, 0.12350839376449585, 0.01847468689084053, -0.03345026820898056, 0.17971186339855194, 0.023012014105916023, -0.01612667925655842, 0.06983274966478348, 0.0005830178270116448, -0.01168929785490036, -0.09141409397125244, -0.07643794268369675, 0.00873758364468813, 0.011849329806864262, 0.045003872364759445, -0.0571669302880764, -0.053561195731163025, 0.021158600226044655, -0.02375832013785839, -0.12179611623287201, -0.008990729227662086, 0.028691109269857407, 0.06521307677030563, 0.029601536691188812, -0.0025359257124364376, -0.0027129645459353924, -0.029080107808113098, 0.2381495237350464, -0.08546233177185059, -0.03052346035838127, -0.08457199484109879, 0.20631572604179382, 0.01742284744977951, -0.0184982530772686, 0.02886461466550827, -0.07630789279937744, 0.016031304374337196, 0.2628134787082672, 0.19123020768165588, -0.11069875955581665, -0.009602580219507217, 0.02004328928887844, 0.003959952853620052, 0.003056860761716962, 0.10381925851106644, 0.0952906534075737, 0.03010847605764866, -0.0985950455069542, -0.01877722702920437, -0.05483366921544075, -0.010615571402013302, -0.010334235616028309, 0.08158329129219055, 0.04801483079791069, 0.01809796877205372, -0.06115364283323288, 0.057133302092552185, -0.07882513850927353, -0.10489687323570251, 0.015047763474285603, -0.21812622249126434, -0.15430127084255219, -0.026992086321115494, 0.0862409695982933, 0.0009460148285143077, 0.07524008303880692, -0.032421525567770004, 0.017369817942380905, 0.06236458569765091, -0.0030545194167643785, -0.08221832662820816, -0.06251957267522812, 0.09354276955127716, -0.11502611637115479, 0.17406325042247772, -0.050186894834041595, 0.028856346383690834, 0.12190888077020645, 0.04716724157333374, -0.07578524947166443, 0.06421569734811783, 0.04703047499060631, -0.01750980131328106, 0.02627057395875454, 0.124296173453331, -0.019520321860909462, 0.09641355276107788, 0.04136328771710396, -0.14797455072402954, 0.004058438818901777, -0.04112648963928223, -0.02636597864329815, -0.03798500448465347, -0.06659182906150818, -0.045060768723487854, 0.14509902894496918, 0.22133317589759827, -0.05027059465646744, -0.01862996816635132, -0.06728777289390564, 0.00022357363195624202, 0.06746768951416016, 0.04599805921316147, -0.05905519798398018, -0.24511601030826569, -0.023602943867444992, 0.03520466014742851, -0.004474869463592768, -0.2902645170688629, -0.07854700088500977, 0.0017739227041602135, -0.055823903530836105, -0.08007501810789108, 0.1018914058804512, 0.0882430300116539, 0.04882802441716194, -0.054092857986688614, -0.00949146132916212, -0.07811802625656128, 0.16588880121707916, -0.1573590487241745, -0.09565908461809158 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-tiny-random-length-96-learning_rate-2e-05-weight_decay-0.01-finetuned-en-to-ro This model is a fine-tuned version of [patrickvonplaten/t5-tiny-random](https://huggingface.co/patrickvonplaten/t5-tiny-random) on the wmt16_en_ro_pre_processed dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Framework versions - Transformers 4.12.5 - Pytorch 1.10.0+cu102 - Datasets 1.15.1 - Tokenizers 0.10.3
{"tags": ["generated_from_trainer"], "datasets": ["wmt16_en_ro_pre_processed"], "model-index": [{"name": "t5-tiny-random-length-96-learning_rate-2e-05-weight_decay-0.01-finetuned-en-to-ro", "results": []}]}
text2text-generation
ffsouza/t5-tiny-random-length-96-learning_rate-2e-05-weight_decay-0.01-finetuned-en-to-ro
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "dataset:wmt16_en_ro_pre_processed", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #t5 #text2text-generation #generated_from_trainer #dataset-wmt16_en_ro_pre_processed #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
# t5-tiny-random-length-96-learning_rate-2e-05-weight_decay-0.01-finetuned-en-to-ro This model is a fine-tuned version of patrickvonplaten/t5-tiny-random on the wmt16_en_ro_pre_processed dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Framework versions - Transformers 4.12.5 - Pytorch 1.10.0+cu102 - Datasets 1.15.1 - Tokenizers 0.10.3
[ "# t5-tiny-random-length-96-learning_rate-2e-05-weight_decay-0.01-finetuned-en-to-ro\n\nThis model is a fine-tuned version of patrickvonplaten/t5-tiny-random on the wmt16_en_ro_pre_processed dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 2e-05\n- train_batch_size: 8\n- eval_batch_size: 8\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 1", "### Framework versions\n\n- Transformers 4.12.5\n- Pytorch 1.10.0+cu102\n- Datasets 1.15.1\n- Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #t5 #text2text-generation #generated_from_trainer #dataset-wmt16_en_ro_pre_processed #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "# t5-tiny-random-length-96-learning_rate-2e-05-weight_decay-0.01-finetuned-en-to-ro\n\nThis model is a fine-tuned version of patrickvonplaten/t5-tiny-random on the wmt16_en_ro_pre_processed dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 2e-05\n- train_batch_size: 8\n- eval_batch_size: 8\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 1", "### Framework versions\n\n- Transformers 4.12.5\n- Pytorch 1.10.0+cu102\n- Datasets 1.15.1\n- Tokenizers 0.10.3" ]
[ 75, 76, 6, 12, 8, 3, 90, 33 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #t5 #text2text-generation #generated_from_trainer #dataset-wmt16_en_ro_pre_processed #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n# t5-tiny-random-length-96-learning_rate-2e-05-weight_decay-0.01-finetuned-en-to-ro\n\nThis model is a fine-tuned version of patrickvonplaten/t5-tiny-random on the wmt16_en_ro_pre_processed dataset.## Model description\n\nMore information needed## Intended uses & limitations\n\nMore information needed## Training and evaluation data\n\nMore information needed## Training procedure### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 2e-05\n- train_batch_size: 8\n- eval_batch_size: 8\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 1### Framework versions\n\n- Transformers 4.12.5\n- Pytorch 1.10.0+cu102\n- Datasets 1.15.1\n- Tokenizers 0.10.3" ]
[ -0.07418181002140045, 0.12743863463401794, -0.00356648163869977, 0.06326070427894592, 0.13032041490077972, 0.04047324135899544, 0.09316591918468475, 0.1340050995349884, -0.11097250878810883, 0.120153047144413, 0.09673666954040527, 0.04853234440088272, 0.08074729889631271, 0.12553581595420837, -0.0236589964479208, -0.23097194731235504, 0.01008811965584755, -0.01663970574736595, -0.03954813629388809, 0.09594252705574036, 0.09988157451152802, -0.09760366380214691, 0.08205656707286835, 0.01597023755311966, -0.138411283493042, 0.009813698008656502, -0.04016759619116783, -0.0680353119969368, 0.07562119513750076, 0.04428306594491005, 0.06475557386875153, 0.021186724305152893, 0.11133276671171188, -0.22338995337486267, -0.010042744688689709, 0.07364706695079803, 0.03161165490746498, 0.09939579665660858, 0.09961281716823578, 0.016189245507121086, 0.07015498727560043, -0.13938596844673157, 0.06354567408561707, 0.03972258046269417, -0.0699368342757225, -0.11338455229997635, -0.07076487690210342, 0.08011937141418457, 0.04098479077219963, 0.09782573580741882, -0.0061334893107414246, 0.1627500206232071, -0.060032304376363754, 0.057182930409908295, 0.20695017278194427, -0.24249766767024994, -0.07314903289079666, 0.034531522542238235, 0.07007107883691788, 0.047561392188072205, -0.09048281610012054, -0.017405908554792404, 0.0621376596391201, 0.026094399392604828, 0.06708939373493195, 0.0006017988780513406, -0.03146769851446152, -0.015506349503993988, -0.12239054590463638, -0.03223931044340134, 0.1490137279033661, 0.04911011457443237, -0.022885944694280624, -0.11340128630399704, -0.06934042274951935, -0.13799405097961426, -0.02266167290508747, -0.009799162857234478, 0.0088186739012599, -0.050364065915346146, -0.07263348996639252, -0.004844512324780226, -0.05490795150399208, -0.027646834030747414, 0.01747892051935196, 0.10004136711359024, 0.04559042304754257, 0.007825921289622784, -0.03303985297679901, 0.10328050702810287, 0.008754858747124672, -0.13964426517486572, -0.026708856225013733, -0.007394325453788042, -0.09020762890577316, -0.05835678055882454, -0.032734766602516174, 0.032611455768346786, 0.013623115606606007, 0.18710733950138092, -0.03273444622755051, 0.06299522519111633, 0.031595733016729355, -0.018826929852366447, -0.0051434226334095, 0.128192737698555, -0.08171398192644119, -0.08820155262947083, -0.011304512619972229, 0.10627055168151855, -0.004672045819461346, -0.009565997868776321, -0.07754439115524292, -0.02940073050558567, 0.09914620965719223, 0.04510268196463585, 0.0055306460708379745, 0.04430462419986725, -0.020244065672159195, -0.04351089149713516, 0.04559120535850525, -0.12775805592536926, 0.032773226499557495, 0.013585792854428291, -0.08118696510791779, 0.025997048243880272, -0.0053815217688679695, -0.016443170607089996, -0.06636925786733627, 0.06304613500833511, -0.08394178003072739, -0.025694862008094788, -0.06745991855859756, -0.07279670983552933, 0.013870961032807827, -0.04865380376577377, -0.001223134808242321, -0.0820317417383194, -0.1456955075263977, -0.04446931555867195, 0.02364944852888584, -0.08965185284614563, -0.09049931913614273, -0.02030479907989502, -0.07050300389528275, 0.03730315715074539, -0.008392253890633583, 0.16649635136127472, -0.03143835440278053, 0.05573509261012077, 0.03597058728337288, 0.03221584111452103, 0.08298374712467194, 0.03473685681819916, -0.0818534716963768, 0.0365743413567543, -0.05046025291085243, 0.09699501097202301, -0.07107671350240707, 0.03194189816713333, -0.13426576554775238, -0.11203917860984802, -0.017597895115613937, -0.03298012167215347, 0.06275356560945511, 0.1119319349527359, -0.11893519759178162, -0.034151531755924225, 0.12526831030845642, -0.019920246675610542, -0.06646004319190979, 0.08826473355293274, -0.021628880873322487, 0.0003178598126396537, 0.02736332081258297, 0.08113457262516022, 0.12954272329807281, -0.09518667310476303, -0.052185047417879105, 0.023403076454997063, 0.07781252264976501, 0.03934044763445854, 0.0624811127781868, 0.0018280921503901482, -0.008816225454211235, 0.018609825521707535, -0.06549667567014694, -0.005801456980407238, -0.07840068638324738, -0.08725499361753464, -0.05035070702433586, -0.06674111634492874, 0.03860640898346901, 0.028551243245601654, 0.04484712705016136, -0.053192902356386185, -0.13935424387454987, 0.0415179543197155, 0.1405262053012848, -0.054143305867910385, 0.011948841623961926, -0.08023544400930405, 0.040147602558135986, -0.04151606187224388, -0.005709582474082708, -0.19999702274799347, -0.08732941001653671, 0.05664153769612312, -0.07153180986642838, 0.022754771634936333, 0.007709439843893051, 0.057923343032598495, 0.062029965221881866, -0.01580214500427246, -0.03684321045875549, -0.05422186106443405, -0.03234400972723961, -0.08406432718038559, -0.16227418184280396, -0.08486375212669373, -0.014120729640126228, 0.17601971328258514, -0.2203109860420227, 0.004243309143930674, -0.0052683399990201, 0.1379135549068451, -0.005586687009781599, -0.04404732957482338, -0.014010963030159473, 0.025996381416916847, -0.05044574290513992, -0.09229596704244614, 0.023299112915992737, -0.009920947253704071, -0.06651455163955688, -0.04988516494631767, -0.15391938388347626, -0.0054778908379375935, 0.09011385589838028, 0.05489550530910492, -0.09547069668769836, 0.008363653905689716, -0.07622798532247543, -0.05164499953389168, -0.0622459277510643, -0.021924979984760284, 0.15931279957294464, 0.012444806285202503, 0.11249688267707825, -0.051296133548021317, -0.07756978273391724, 0.025775916874408722, 0.028047895058989525, -0.035445939749479294, 0.09379537403583527, 0.08629599213600159, -0.08764080703258514, 0.08276248723268509, 0.03347956761717796, -0.02311287261545658, 0.11637216806411743, -0.03443247079849243, -0.1046655923128128, -0.021715277805924416, 0.005822309758514166, 0.015407344326376915, 0.06093396246433258, -0.08842355012893677, 0.0014797371113672853, 0.06399517506361008, -0.007040772121399641, 0.03204115107655525, -0.13346007466316223, 0.017546288669109344, 0.03217848390340805, -0.018653182312846184, 0.03356495127081871, -0.027898449450731277, 0.02948947437107563, 0.07612942159175873, 0.03747326880693436, -0.019404614344239235, 0.017307231202721596, -0.014600570313632488, -0.0826447606086731, 0.17266122996807098, -0.0788344070315361, -0.15374226868152618, -0.14060451090335846, -0.020948002114892006, -0.05573057383298874, -0.02867957577109337, -0.002963604172691703, -0.0680164098739624, -0.07973427325487137, -0.08152998238801956, 0.01612657494843006, -0.05564262345433235, 0.012188361026346684, 0.08839647471904755, 0.020875809714198112, 0.10083343088626862, -0.11103734374046326, 0.032457828521728516, 0.011362293735146523, -0.07097893953323364, 0.009389606304466724, 0.04414244368672371, 0.10919036716222763, 0.1256340891122818, -0.0008258925518020988, 0.011875634081661701, -0.017013829201459885, 0.24065004289150238, -0.0691148191690445, 0.00410713255405426, 0.1087549477815628, 0.010778593830764294, 0.06424201279878616, 0.12822693586349487, 0.03108612820506096, -0.06171835586428642, 0.035767048597335815, 0.0484420582652092, -0.008411379531025887, -0.24128128588199615, -0.04962819069623947, -0.027945145964622498, -0.029467113316059113, 0.16368407011032104, 0.03757195547223091, 0.009025441482663155, 0.06716599315404892, -0.05610543116927147, 0.10361802577972412, -0.01816912740468979, 0.08827796578407288, 0.07687577605247498, 0.06793363392353058, 0.10026531666517258, -0.014918338507413864, -0.03585238382220268, 0.06182241067290306, -0.0006296408828347921, 0.22199572622776031, -0.038389626890420914, 0.18712952733039856, -0.008429111912846565, 0.15538783371448517, -0.008692358620464802, 0.04440055415034294, 0.020818686112761497, 0.017223086208105087, 0.026179272681474686, -0.07179425656795502, -0.01357956137508154, 0.03667986020445824, -0.007977474480867386, 0.05514978989958763, -0.0748305469751358, 0.06894850730895996, 0.007007031701505184, 0.24034208059310913, 0.05654946714639664, -0.3187890946865082, -0.07468138635158539, 0.014191573485732079, -0.023613421246409416, -0.07782180607318878, 0.010659796185791492, 0.08548946678638458, -0.13244949281215668, 0.07142260670661926, -0.06885404884815216, 0.09199321269989014, -0.03508928790688515, 0.003306146478280425, 0.08750665932893753, 0.1518699675798416, 0.019173281267285347, 0.10234366357326508, -0.1606743037700653, 0.1694195568561554, 0.019257867708802223, 0.0821535512804985, -0.08973142504692078, 0.05343689024448395, -0.016948893666267395, 0.027221858501434326, 0.10281180590391159, -0.012193537317216396, -0.051175955682992935, -0.15047839283943176, -0.11889006197452545, 0.006645054556429386, 0.12129858136177063, -0.046689458191394806, 0.12056874483823776, -0.06581755727529526, -0.018435314297676086, 0.03066038154065609, -0.06916983425617218, -0.13278928399085999, -0.1625521034002304, 0.05597778782248497, -0.011415330693125725, -0.040472667664289474, -0.07831451296806335, -0.10598127543926239, -0.0771765485405922, 0.2105577141046524, -0.042181797325611115, -0.036761436611413956, -0.14082497358322144, 0.10708753764629364, 0.15522506833076477, -0.08377961814403534, 0.002293901052325964, -0.0008664841298013926, 0.16612695157527924, 0.009776060469448566, -0.10533087700605392, 0.05353928729891777, -0.06780482083559036, -0.1872951090335846, -0.03757864609360695, 0.13614852726459503, 0.024559490382671356, 0.056567490100860596, -0.023291274905204773, 0.012704006396234035, -0.006541674956679344, -0.0820838138461113, -0.011698796413838863, 0.06695874035358429, 0.03975372016429901, 0.03396221622824669, -0.040649790316820145, -0.008962134830653667, -0.06324262917041779, 0.004388037603348494, 0.11429882049560547, 0.18836210668087006, -0.09662864357233047, 0.040995776653289795, 0.043330349028110504, -0.061448197811841965, -0.1817743182182312, 0.036562446504831314, 0.11946088820695877, 0.014114661142230034, 0.020509691908955574, -0.17891372740268707, 0.09732168912887573, 0.07944983243942261, -0.0027222889475524426, 0.06188669800758362, -0.3293774127960205, -0.12965713441371918, 0.06273695826530457, 0.05552852526307106, 0.008916239254176617, -0.1301513910293579, -0.06609053164720535, -0.041755713522434235, -0.13690564036369324, 0.07517316192388535, -0.02951027825474739, 0.0982368066906929, -0.016027705743908882, 0.08214469999074936, 0.0323435477912426, -0.051456864923238754, 0.14201174676418304, 0.037779275327920914, 0.03137131780385971, -0.05509347468614578, 0.016241295263171196, 0.08169806003570557, -0.06947203725576401, 0.0411139652132988, -0.026649830862879753, 0.06387108564376831, -0.1404699981212616, -0.03429039195179939, -0.06461954861879349, 0.06755191087722778, -0.06164070591330528, -0.044864851981401443, -0.044262927025556564, 0.04132939875125885, 0.07083117216825485, -0.024036090821027756, 0.06589724123477936, 0.045250896364450455, 0.04306233301758766, 0.1497763693332672, 0.08774790167808533, 0.019221346825361252, -0.11359357088804245, 0.0005660988972522318, -0.0076027195900678635, 0.054767899215221405, -0.09163688123226166, 0.017556915059685707, 0.12834468483924866, 0.04409150406718254, 0.10971633344888687, 0.03143804520368576, -0.07819853723049164, -0.022266652435064316, 0.030767589807510376, -0.10817781835794449, -0.15834921598434448, -0.04605187848210335, -0.007232364267110825, -0.18097898364067078, -0.0228995680809021, 0.10984302312135696, -0.05294066667556763, -0.01975387893617153, -0.008713576011359692, 0.028635531663894653, 0.0012321521062403917, 0.19443555176258087, 0.025026312097907066, 0.07787635177373886, -0.09553048759698868, 0.09207576513290405, 0.10201539099216461, -0.05066460371017456, 0.03501662611961365, 0.09071191400289536, -0.081886425614357, -0.015289386734366417, 0.05622285231947899, 0.07359595596790314, -0.04754742607474327, -0.020814819261431694, -0.05212448537349701, -0.09592626988887787, 0.07381751388311386, 0.021497247740626335, 0.04268088564276695, -0.014974446035921574, -0.015023821033537388, 0.001653366256505251, -0.15106698870658875, 0.10117831081151962, 0.0661628469824791, 0.09249754250049591, -0.13643452525138855, 0.1194264218211174, -0.0006586590898223221, 0.0580153726041317, -0.00994501356035471, 0.0202805008739233, -0.0756177008152008, -0.035833101719617844, -0.1313917338848114, 0.01531313732266426, -0.05698670819401741, 0.005207360722124577, -0.015663521364331245, -0.023979248479008675, -0.04911723732948303, 0.04180021956562996, -0.04995500296354294, -0.09079337865114212, -0.015369709581136703, 0.05279660224914551, -0.10603249818086624, 0.018662551417946815, 0.02375922165811062, -0.12352988123893738, 0.08060982823371887, 0.047349780797958374, 0.031213412061333656, 0.007696637883782387, -0.018956277519464493, -0.03159578889608383, 0.01892700605094433, 0.05599585920572281, 0.07301251590251923, -0.10063803941011429, 0.004644182510674, -0.038783516734838486, 0.02902538888156414, -0.005112755112349987, 0.02019549533724785, -0.1446962058544159, -0.006531673017889261, -0.06809398531913757, -0.029806245118379593, -0.06263609230518341, 0.04706573486328125, 0.06342793256044388, -0.011169638484716415, 0.15515197813510895, -0.06494840979576111, 0.06363890320062637, -0.21963545680046082, -0.01651011034846306, -0.008863434195518494, -0.02028803341090679, -0.036094553768634796, -0.011042412370443344, 0.08827535808086395, -0.05048205703496933, 0.11114952713251114, -0.02984660491347313, 0.0786038339138031, 0.03618514910340309, -0.02959398925304413, -0.024951301515102386, 0.01916293241083622, 0.17685620486736298, 0.09403638541698456, -0.00952405110001564, 0.06943081319332123, -0.024842334911227226, 0.08234786987304688, 0.06426641345024109, 0.1540626734495163, 0.1287890374660492, -0.006258445791900158, 0.07353080064058304, 0.06776217371225357, -0.12801721692085266, -0.14458538591861725, 0.13585186004638672, -0.07969573140144348, 0.12013901770114899, -0.0347411148250103, 0.10686350613832474, 0.11692016571760178, -0.15981332957744598, 0.011673422530293465, -0.06199651584029198, -0.09860962629318237, -0.10974232107400894, -0.09438035637140274, -0.10033067315816879, -0.10078784823417664, 0.028502890840172768, -0.11510713398456573, 0.02643214538693428, 0.05819004029035568, 0.014603934250772, 0.010110881179571152, 0.12985283136367798, -0.005043017212301493, -0.012275430373847485, 0.05230393260717392, 0.027823040261864662, 0.0005674578133039176, -0.03406054154038429, -0.05348987132310867, 0.04943283647298813, 0.015342378988862038, 0.09448172897100449, -0.040379468351602554, 0.021871598437428474, 0.06511974334716797, 0.004069601651281118, -0.0853264182806015, 0.015379414893686771, 0.008129558525979519, 0.012764993123710155, 0.04849393665790558, 0.03744901716709137, 0.02562381885945797, -0.05953989923000336, 0.21017098426818848, -0.07375449687242508, -0.075953409075737, -0.1397092193365097, 0.15326528251171112, 0.02882455661892891, -0.00778298219665885, 0.08070196956396103, -0.09701081365346909, -0.02925402671098709, 0.20297187566757202, 0.164110466837883, -0.03754974156618118, -0.03726063296198845, 0.022705689072608948, -0.014215352013707161, -0.04007003828883171, 0.10151498764753342, 0.10333559662103653, 0.01676959916949272, -0.05418608337640762, -0.0289749875664711, 0.00603037653490901, -0.03227294236421585, -0.07356574386358261, 0.08055533468723297, 0.011927317827939987, 0.01607964001595974, -0.0245932936668396, 0.035373132675886154, -0.02094629965722561, -0.16873924434185028, 0.045716799795627594, -0.13541458547115326, -0.1842414289712906, -0.01857091300189495, 0.08616283535957336, -0.014447744935750961, 0.0671057403087616, -0.004475873429328203, -0.02636061981320381, 0.14274567365646362, -0.01367342472076416, -0.09069297462701797, -0.05468224734067917, 0.06964804977178574, -0.06741304695606232, 0.19863082468509674, -0.003127173986285925, 0.046243153512477875, 0.11094433069229126, 0.019602058455348015, -0.18273566663265228, 0.010192499496042728, 0.08989924192428589, -0.04916628450155258, 0.053228266537189484, 0.1720985323190689, -0.03242483735084534, 0.08345486223697662, 0.05155443027615547, -0.1312558501958847, -0.03615700453519821, 0.006474698428064585, 0.03280748426914215, -0.08905409276485443, -0.02105553261935711, -0.0447988323867321, 0.16260389983654022, 0.22200174629688263, -0.05104714259505272, -0.02415650337934494, -0.06051218509674072, 0.013531175442039967, 0.01869555190205574, 0.13112694025039673, -0.019703056663274765, -0.21707351505756378, -0.004496349021792412, -0.04290616512298584, 0.05673912912607193, -0.22065535187721252, -0.07282544672489166, 0.04584036394953728, -0.053826507180929184, -0.07083562016487122, 0.14242050051689148, 0.04824373871088028, 0.031555306166410446, -0.03739641606807709, -0.06304434686899185, -0.05854129046201706, 0.13423623144626617, -0.17234298586845398, -0.061630044132471085 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-tiny-random-length-96-learning_rate-2e-05-weight_decay-0.02-finetuned-en-to-ro This model is a fine-tuned version of [patrickvonplaten/t5-tiny-random](https://huggingface.co/patrickvonplaten/t5-tiny-random) on the wmt16_en_ro_pre_processed dataset. It achieves the following results on the evaluation set: - Loss: 6.4854 - Bleu: 0.0002 - Gen Len: 9.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:------:|:-------:| | 6.2568 | 1.0 | 76290 | 6.4854 | 0.0002 | 9.0 | ### Framework versions - Transformers 4.12.5 - Pytorch 1.10.0+cu102 - Datasets 1.15.1 - Tokenizers 0.10.3
{"tags": ["generated_from_trainer"], "datasets": ["wmt16_en_ro_pre_processed"], "metrics": ["bleu"], "model-index": [{"name": "t5-tiny-random-length-96-learning_rate-2e-05-weight_decay-0.02-finetuned-en-to-ro", "results": [{"task": {"type": "text2text-generation", "name": "Sequence-to-sequence Language Modeling"}, "dataset": {"name": "wmt16_en_ro_pre_processed", "type": "wmt16_en_ro_pre_processed", "args": "enro"}, "metrics": [{"type": "bleu", "value": 0.0002, "name": "Bleu"}]}]}]}
text2text-generation
ffsouza/t5-tiny-random-length-96-learning_rate-2e-05-weight_decay-0.02-finetuned-en-to-ro
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "dataset:wmt16_en_ro_pre_processed", "model-index", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #t5 #text2text-generation #generated_from_trainer #dataset-wmt16_en_ro_pre_processed #model-index #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
t5-tiny-random-length-96-learning\_rate-2e-05-weight\_decay-0.02-finetuned-en-to-ro =================================================================================== This model is a fine-tuned version of patrickvonplaten/t5-tiny-random on the wmt16\_en\_ro\_pre\_processed dataset. It achieves the following results on the evaluation set: * Loss: 6.4854 * Bleu: 0.0002 * Gen Len: 9.0 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 8 * eval\_batch\_size: 8 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 1 ### Training results ### Framework versions * Transformers 4.12.5 * Pytorch 1.10.0+cu102 * Datasets 1.15.1 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 1", "### Training results", "### Framework versions\n\n\n* Transformers 4.12.5\n* Pytorch 1.10.0+cu102\n* Datasets 1.15.1\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #t5 #text2text-generation #generated_from_trainer #dataset-wmt16_en_ro_pre_processed #model-index #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 1", "### Training results", "### Framework versions\n\n\n* Transformers 4.12.5\n* Pytorch 1.10.0+cu102\n* Datasets 1.15.1\n* Tokenizers 0.10.3" ]
[ 79, 98, 4, 33 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #t5 #text2text-generation #generated_from_trainer #dataset-wmt16_en_ro_pre_processed #model-index #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 1### Training results### Framework versions\n\n\n* Transformers 4.12.5\n* Pytorch 1.10.0+cu102\n* Datasets 1.15.1\n* Tokenizers 0.10.3" ]
[ -0.10774723440408707, 0.08628731220960617, -0.001870359992608428, 0.11920102685689926, 0.14882314205169678, 0.02130948193371296, 0.14098460972309113, 0.12969866394996643, -0.06249110400676727, 0.0388583280146122, 0.1491231918334961, 0.13375863432884216, 0.02812032401561737, 0.12197306752204895, -0.04938492923974991, -0.24534083902835846, -0.005457524675875902, 0.05262937396764755, -0.037154871970415115, 0.15240593254566193, 0.08033008873462677, -0.12989507615566254, 0.10782449692487717, -0.005903293844312429, -0.1886114776134491, -0.012816695496439934, 0.003559398464858532, -0.03731314465403557, 0.14121417701244354, 0.0262891985476017, 0.10258346796035767, 0.02521291747689247, 0.06673301756381989, -0.16061021387577057, 0.011788610368967056, 0.042155418545007706, 0.016526076942682266, 0.10150386393070221, 0.05959181487560272, -0.00511342054232955, 0.08273180574178696, -0.07050734758377075, 0.035208940505981445, 0.013182499445974827, -0.13450658321380615, -0.19015681743621826, -0.05159010738134384, 0.018215501680970192, 0.05385340005159378, 0.10720022767782211, -0.02583475597202778, 0.13096685707569122, -0.0367567203938961, 0.10871986299753189, 0.21426399052143097, -0.272760808467865, -0.06669247895479202, 0.021960493177175522, 0.04315323382616043, 0.11682489514350891, -0.09002728015184402, -0.01871895045042038, 0.04285798221826553, 0.03973958268761635, 0.12394102662801743, -0.0284748412668705, -0.023888489231467247, 0.007423250004649162, -0.13884533941745758, -0.04406731203198433, 0.17523221671581268, 0.04865052551031113, -0.02777033858001232, -0.050285592675209045, -0.08898360282182693, -0.1863611936569214, -0.011553222313523293, -0.002635424956679344, 0.023610278964042664, -0.03352053835988045, -0.10198689252138138, -0.03804132714867592, -0.103229820728302, -0.062406379729509354, -0.029041122645139694, 0.1368304044008255, 0.022753313183784485, 0.004293069709092379, -0.04102432355284691, 0.12000657618045807, 0.004691520240157843, -0.14708617329597473, 0.03361368551850319, 0.020406421273946762, 0.0003251024172641337, -0.03370055928826332, -0.060449786484241486, -0.11632466316223145, -0.01761735789477825, 0.09170252829790115, -0.034017208963632584, 0.04675908386707306, 0.033480074256658554, 0.03902272507548332, -0.0737721174955368, 0.18502630293369293, -0.049542851746082306, -0.06402894109487534, -0.018068863078951836, 0.09790397435426712, 0.013162719085812569, -0.029897315427660942, -0.13339664041996002, -0.0053167203441262245, 0.12896905839443207, -0.009364540688693523, -0.04509549215435982, 0.0744059607386589, -0.051193851977586746, -0.057931166142225266, -0.01662680134177208, -0.08285773545503616, -0.0003395781386643648, -0.01206312794238329, -0.07701395452022552, -0.014723146334290504, 0.01876666396856308, 0.013187197968363762, -0.02162221446633339, 0.08588190376758575, -0.11482267081737518, 0.014977783896028996, -0.07675927877426147, -0.12095070630311966, -0.011725707910954952, -0.09122127294540405, 0.016112180426716805, -0.0896715298295021, -0.19030073285102844, -0.016972217708826065, 0.05427630618214607, -0.03608277812600136, -0.0574197918176651, -0.07396691292524338, -0.0533733107149601, 0.02010693959891796, -0.008175469003617764, 0.12689027190208435, -0.059430502355098724, 0.11810141056776047, 0.04683571308851242, 0.06695125997066498, -0.043724898248910904, 0.057768139988183975, -0.10209804773330688, 0.029261110350489616, -0.13367193937301636, 0.07102397829294205, -0.010290442034602165, 0.05914675444364548, -0.10255616903305054, -0.10174454748630524, -0.022925028577446938, -0.013626717031002045, 0.0746566578745842, 0.10308433324098587, -0.1571042686700821, -0.08619727939367294, 0.17436569929122925, -0.045112814754247665, -0.12421849370002747, 0.14652688801288605, -0.06280937045812607, 0.07533766329288483, 0.0630154088139534, 0.20517362654209137, 0.05327320471405983, -0.048405442386865616, 0.0197143517434597, 0.0011833757162094116, 0.0877043828368187, -0.044013481587171555, 0.10025973618030548, 0.005348844453692436, -0.005279725883156061, 0.010656893253326416, -0.03898818418383598, 0.05500559136271477, -0.09780627489089966, -0.08607520908117294, -0.01811862178146839, -0.10186000913381577, 0.0732976496219635, 0.05400490388274193, 0.08287518471479416, -0.09522616118192673, -0.09692344814538956, 0.022586438804864883, 0.07647441327571869, -0.08911005407571793, 0.024221371859312057, -0.06453760713338852, 0.07425585389137268, -0.09637979418039322, -0.022269582375884056, -0.17849101126194, -0.008913354948163033, 0.016279814764857292, 0.030681060627102852, 0.025591345503926277, 0.039917297661304474, 0.07837951928377151, 0.07755965739488602, -0.049786314368247986, -0.03269043192267418, -0.034031301736831665, -0.010211145505309105, -0.13873407244682312, -0.16902174055576324, -0.043915316462516785, -0.022279683500528336, 0.18226222693920135, -0.21647904813289642, 0.032854363322257996, -0.014207706786692142, 0.05987383797764778, 0.024662600830197334, -0.03712032362818718, -0.025545410811901093, 0.05942387506365776, -0.051046259701251984, -0.049001339823007584, 0.07638950645923615, 0.00989341177046299, -0.11827360093593597, -0.03318874537944794, -0.15964670479297638, 0.14098739624023438, 0.11633137613534927, -0.11130397766828537, -0.0664505660533905, -0.0002133355737896636, -0.04710477218031883, -0.0373370386660099, -0.024506045505404472, -0.022135237231850624, 0.18290172517299652, 0.009438975714147091, 0.16548773646354675, -0.0854150652885437, -0.04303021356463432, 0.021292874589562416, -0.02792905457317829, 0.014003908261656761, 0.14203451573848724, 0.07807327061891556, -0.12720945477485657, 0.13396447896957397, 0.15381291508674622, -0.0624454990029335, 0.1684192568063736, -0.010685895569622517, -0.08137813955545425, -0.034922730177640915, -0.012009073980152607, -0.005393679719418287, 0.07928093522787094, -0.15248213708400726, -0.007558057084679604, 0.030449621379375458, 0.015675822272896767, 0.0268548596650362, -0.19868753850460052, -0.03191935271024704, 0.06008246913552284, -0.028934704139828682, -0.011707316152751446, -0.008340663276612759, -0.007458898704499006, 0.10249648988246918, 0.023371202871203423, -0.0643196776509285, 0.03806531801819801, -0.0035566750448197126, -0.07688045501708984, 0.20436513423919678, -0.05327022448182106, -0.17928729951381683, -0.14668089151382446, -0.09422823041677475, -0.06242665648460388, 0.02406477928161621, 0.05030794441699982, -0.07218629121780396, -0.01645067147910595, -0.08790940791368484, 0.053258124738931656, -0.0392012819647789, 0.01812429167330265, 0.031749654561281204, -0.026748117059469223, 0.058091070502996445, -0.09266697615385056, -0.007064655423164368, -0.031056411564350128, -0.035527415573596954, 0.057029690593481064, -0.004624802619218826, 0.12071084976196289, 0.15104196965694427, -0.007931860163807869, 0.02231030911207199, -0.019529711455106735, 0.26309239864349365, -0.07133061438798904, -0.023551203310489655, 0.1394638866186142, -0.032084278762340546, 0.06362183392047882, 0.10074799507856369, 0.0527925081551075, -0.08505625277757645, 0.014647670090198517, 0.020610447973012924, -0.043524619191884995, -0.1985921561717987, -0.025299029424786568, -0.055112455040216446, 0.013589435257017612, 0.11410301178693771, 0.008727239444851875, 0.03946748003363609, 0.07959052175283432, 0.035921886563301086, 0.09563974291086197, -0.03733958303928375, 0.06419390439987183, 0.0884065255522728, 0.04582539200782776, 0.13073225319385529, -0.022594748064875603, -0.062313538044691086, 0.036969877779483795, 0.004549635574221611, 0.19371940195560455, -0.0062346076592803, 0.21120691299438477, 0.029419703409075737, 0.146567702293396, 0.0006074634729884565, 0.08088073134422302, -0.007997007109224796, -0.020186565816402435, -0.03248445689678192, -0.043229103088378906, -0.06393326818943024, 0.02082190476357937, -0.030479898676276207, 0.060008201748132706, -0.11452192068099976, 0.02001105807721615, 0.033499374985694885, 0.24142764508724213, 0.05505506321787834, -0.36730292439460754, -0.10524879395961761, 0.008617457002401352, -0.025427451357245445, -0.03373785689473152, 0.01874992996454239, 0.13601338863372803, -0.09514268487691879, 0.015488062053918839, -0.08975418657064438, 0.09731888025999069, -0.07740909606218338, 0.06115658953785896, 0.055142488330602646, 0.07405675947666168, -0.009166877716779709, 0.0825689285993576, -0.25992628931999207, 0.26444369554519653, 0.01094553992152214, 0.030266771093010902, -0.07329799979925156, -0.01840299181640148, 0.007375625893473625, 0.03484370559453964, 0.0791439637541771, -0.0050027091056108475, 0.021083783358335495, -0.2003200650215149, -0.07694539427757263, 0.018995966762304306, 0.10391358286142349, -0.08437260240316391, 0.1230710968375206, -0.03859550878405571, 0.01140495017170906, 0.05552784726023674, 0.028621677309274673, -0.023119643330574036, -0.1033669039607048, 0.024801483377814293, 0.019575882703065872, -0.024079790338873863, -0.051339659839868546, -0.1068825051188469, -0.09427852928638458, 0.14668011665344238, -0.005597354844212532, -0.045632172375917435, -0.1093110665678978, 0.08571308106184006, 0.0771670788526535, -0.09937753528356552, 0.005838858429342508, 0.0036207446828484535, 0.08220444619655609, 0.013866214081645012, -0.05913907662034035, 0.1134570986032486, -0.047871485352516174, -0.1686278134584427, -0.04876172915101051, 0.1271866261959076, 0.03455254063010216, 0.0634649470448494, -0.022397847846150398, 0.014753150753676891, -0.0656997337937355, -0.06686975061893463, 0.030460715293884277, -0.023626932874321938, 0.05268034711480141, 0.011320429854094982, -0.011761435307562351, 0.05621881037950516, -0.07575412094593048, -0.02380026876926422, 0.20333519577980042, 0.24215252697467804, -0.0735136866569519, -0.004147804342210293, 0.05102333799004555, -0.05719854310154915, -0.17386846244335175, 0.031804703176021576, 0.0655498206615448, 0.018029730767011642, 0.04812759533524513, -0.1747165322303772, 0.07470221072435379, 0.08199149370193481, 0.00024597602896392345, 0.10374852269887924, -0.3384709656238556, -0.12595698237419128, 0.08452210575342178, 0.14844149351119995, 0.12713798880577087, -0.13721174001693726, -0.0370728075504303, -0.02315114624798298, -0.14604716002941132, 0.11531157046556473, -0.06732795387506485, 0.13639362156391144, -0.016764117404818535, 0.10659976303577423, 0.024486370384693146, -0.0587138831615448, 0.12324017286300659, 0.015569906681776047, 0.06764480471611023, -0.06226402893662453, -0.03754077106714249, 0.051746632903814316, -0.04931196570396423, 0.010488116182386875, -0.09121342748403549, 0.02894054539501667, -0.12213355302810669, -0.036082033067941666, -0.08101921528577805, 0.009510315954685211, -0.031118325889110565, -0.07170649617910385, -0.01379915326833725, 0.025546645745635033, 0.055017393082380295, 0.0005571246729232371, 0.1420118361711502, -0.00312669575214386, 0.1266428828239441, 0.14019662141799927, 0.08945295214653015, -0.048322323709726334, -0.05362031236290932, -0.025913633406162262, -0.011068700812757015, 0.04784908890724182, -0.12903743982315063, 0.02272189036011696, 0.14405164122581482, 0.019697299227118492, 0.15277403593063354, 0.07422136515378952, -0.03326917067170143, 0.017823578789830208, 0.05028131231665611, -0.19570331275463104, -0.12924817204475403, -0.04952366650104523, -0.06647192686796188, -0.13838033378124237, 0.025166451930999756, 0.13828212022781372, -0.057244136929512024, -0.0047295959666371346, -0.015112821012735367, 0.007801898289471865, -0.04119333624839783, 0.18764230608940125, 0.04601430892944336, 0.05987510085105896, -0.09114173799753189, 0.06319890916347504, 0.05905727669596672, -0.06659964472055435, 0.011389750987291336, 0.07449010014533997, -0.08754391968250275, -0.03822055459022522, 0.0032389697153121233, 0.1709159016609192, -0.06200855225324631, -0.008119192905724049, -0.15103937685489655, -0.0889555886387825, 0.06269938498735428, 0.12178625911474228, 0.09208327531814575, 0.010235460475087166, -0.06509846448898315, -0.0008313562721014023, -0.12204422056674957, 0.10657289624214172, 0.06349905580282211, 0.07072440534830093, -0.13631437718868256, 0.16072171926498413, -0.015331716276705265, 0.06197306886315346, -0.01972285844385624, 0.00865804310888052, -0.08754665404558182, 0.01272586639970541, -0.11101242154836655, -0.023725247010588646, -0.01785249635577202, -0.00868644192814827, -0.02627519518136978, -0.05933867394924164, -0.05338694155216217, -0.0024670155253261328, -0.11701902002096176, -0.030917005613446236, 0.031858209520578384, 0.0302273016422987, -0.08978244662284851, -0.02704700268805027, 0.030164476484060287, -0.06934206932783127, 0.08637258410453796, 0.04106311872601509, 0.002000498352572322, 0.03931432589888573, -0.08168420195579529, 0.032070010900497437, 0.03163016214966774, 0.016009662300348282, 0.0515790618956089, -0.06100895255804062, -0.015789559110999107, -0.028670713305473328, 0.05550919100642204, 0.01630225032567978, 0.0889183059334755, -0.12651139497756958, 0.02457459829747677, -0.009918969124555588, -0.05548012629151344, -0.08445757627487183, 0.05188159644603729, 0.039866846054792404, 0.04719993472099304, 0.18390096724033356, -0.061876025050878525, 0.05359366908669472, -0.2133646160364151, 0.0007854033610783517, 0.016962680965662003, -0.12023309618234634, -0.08264097571372986, -0.08522967994213104, 0.0658491998910904, -0.07355677336454391, 0.09584120661020279, 0.01129030343145132, 0.04469893127679825, 0.01541848573833704, -0.002570240292698145, 0.02358938194811344, 0.0032581943087279797, 0.20298710465431213, 0.027081476524472237, -0.04570033401250839, 0.05732863396406174, 0.04609213024377823, 0.11063463240861893, 0.17067186534404755, 0.20386597514152527, 0.1450435072183609, 0.0009683159296400845, 0.08365187048912048, 0.017259865999221802, -0.025860024616122246, -0.193107470870018, 0.030700894072651863, -0.029039137065410614, 0.108987957239151, -0.014365826733410358, 0.2233346551656723, 0.07529316842556, -0.1535068154335022, 0.02056664600968361, -0.043660733848810196, -0.09200834482908249, -0.09545472264289856, -0.09842363744974136, -0.08147936314344406, -0.11390361934900284, -0.00841597095131874, -0.1199558824300766, 0.024104299023747444, 0.12347037345170975, 0.017037851735949516, -0.03237475827336311, 0.17887653410434723, 0.020827779546380043, -0.011651583015918732, 0.06675811856985092, 0.000053970212320564315, -0.01130143366754055, -0.09482696652412415, -0.0797174796462059, 0.0041549052111804485, 0.014392019249498844, 0.047783542424440384, -0.057813018560409546, -0.05304551124572754, 0.017956960946321487, -0.021528758108615875, -0.12406821548938751, -0.007896034978330135, 0.02899930253624916, 0.06320537626743317, 0.02823418751358986, -0.0014825233956798911, 0.0005586107145063579, -0.02478548139333725, 0.23216953873634338, -0.08002237975597382, -0.035330500453710556, -0.08701420575380325, 0.19853505492210388, 0.011500914581120014, -0.01312739122658968, 0.03108958899974823, -0.07508767396211624, 0.019435502588748932, 0.24979852139949799, 0.1974736601114273, -0.12000972032546997, -0.009687304496765137, 0.017022693529725075, 0.004451688379049301, 0.00001412888741469942, 0.09610389918088913, 0.09158646315336227, 0.021937591955065727, -0.09505988657474518, -0.014149785973131657, -0.05811506137251854, -0.010553604923188686, -0.011251507326960564, 0.07141318917274475, 0.05280524864792824, 0.02236715890467167, -0.05966295674443245, 0.05810315161943436, -0.07839485257863998, -0.10698241740465164, 0.004257900174707174, -0.22247152030467987, -0.15952274203300476, -0.024651911109685898, 0.08373211324214935, -0.0013113528257235885, 0.07391777634620667, -0.032230887562036514, 0.008458024822175503, 0.05409688502550125, -0.005318291950970888, -0.07965769618749619, -0.055248651653528214, 0.09545480459928513, -0.11907234787940979, 0.1757233738899231, -0.04987962171435356, 0.03335264325141907, 0.12132002413272858, 0.043050285428762436, -0.07173530012369156, 0.06888142228126526, 0.04918712005019188, -0.01865323632955551, 0.02974170632660389, 0.12666423618793488, -0.02482725866138935, 0.10208860784769058, 0.048766326159238815, -0.142535999417305, 0.006210108753293753, -0.04249749332666397, -0.029285594820976257, -0.03342651575803757, -0.06838587671518326, -0.04681166633963585, 0.14824479818344116, 0.22052203118801117, -0.04596797749400139, -0.011306090280413628, -0.06329084932804108, 0.0014323149807751179, 0.06678219884634018, 0.05267966538667679, -0.06452994793653488, -0.24504896998405457, -0.027361733838915825, 0.042944032698869705, -0.0015450266655534506, -0.28886082768440247, -0.0810607373714447, -0.005549087654799223, -0.050026796758174896, -0.0789799615740776, 0.10008943825960159, 0.08507188409566879, 0.04422440752387047, -0.05414404720067978, -0.008911618031561375, -0.0789276659488678, 0.15971319377422333, -0.15547896921634674, -0.09321779757738113 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # tiny-mbart-finetuned-en-to-ro This model is a fine-tuned version of [sshleifer/tiny-mbart](https://huggingface.co/sshleifer/tiny-mbart) on the wmt16_en_ro_pre_processed dataset. It achieves the following results on the evaluation set: - Loss: 8.4792 - Bleu: 0.0 - Gen Len: 20.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:----:|:-------:| | 8.2425 | 1.0 | 76290 | 8.4792 | 0.0 | 20.0 | ### Framework versions - Transformers 4.12.5 - Pytorch 1.10.0+cu102 - Datasets 1.15.1 - Tokenizers 0.10.3
{"tags": ["generated_from_trainer"], "datasets": ["wmt16_en_ro_pre_processed"], "metrics": ["bleu"], "model-index": [{"name": "tiny-mbart-finetuned-en-to-ro", "results": [{"task": {"type": "text2text-generation", "name": "Sequence-to-sequence Language Modeling"}, "dataset": {"name": "wmt16_en_ro_pre_processed", "type": "wmt16_en_ro_pre_processed", "args": "enro"}, "metrics": [{"type": "bleu", "value": 0.0, "name": "Bleu"}]}]}]}
text2text-generation
ffsouza/tiny-mbart-finetuned-en-to-ro
[ "transformers", "pytorch", "tensorboard", "mbart", "text2text-generation", "generated_from_trainer", "dataset:wmt16_en_ro_pre_processed", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #mbart #text2text-generation #generated_from_trainer #dataset-wmt16_en_ro_pre_processed #model-index #autotrain_compatible #endpoints_compatible #region-us
tiny-mbart-finetuned-en-to-ro ============================= This model is a fine-tuned version of sshleifer/tiny-mbart on the wmt16\_en\_ro\_pre\_processed dataset. It achieves the following results on the evaluation set: * Loss: 8.4792 * Bleu: 0.0 * Gen Len: 20.0 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 8 * eval\_batch\_size: 8 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 1 * mixed\_precision\_training: Native AMP ### Training results ### Framework versions * Transformers 4.12.5 * Pytorch 1.10.0+cu102 * Datasets 1.15.1 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 1\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.12.5\n* Pytorch 1.10.0+cu102\n* Datasets 1.15.1\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #mbart #text2text-generation #generated_from_trainer #dataset-wmt16_en_ro_pre_processed #model-index #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 1\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.12.5\n* Pytorch 1.10.0+cu102\n* Datasets 1.15.1\n* Tokenizers 0.10.3" ]
[ 70, 113, 4, 33 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #mbart #text2text-generation #generated_from_trainer #dataset-wmt16_en_ro_pre_processed #model-index #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 1\n* mixed\\_precision\\_training: Native AMP### Training results### Framework versions\n\n\n* Transformers 4.12.5\n* Pytorch 1.10.0+cu102\n* Datasets 1.15.1\n* Tokenizers 0.10.3" ]
[ -0.09897331148386002, 0.06212788075208664, -0.003706732066348195, 0.09771396219730377, 0.12977059185504913, 0.016780540347099304, 0.14437679946422577, 0.14073237776756287, -0.08298103511333466, 0.062452223151922226, 0.1347084641456604, 0.12738986313343048, 0.033955857157707214, 0.1455448418855667, -0.061345331370830536, -0.2700382173061371, 0.015838416293263435, 0.04176711663603783, -0.020830843597650528, 0.13514454662799835, 0.08256837725639343, -0.1272425651550293, 0.09110759943723679, 0.012491918168962002, -0.17030619084835052, 0.004715313669294119, 0.007411223370581865, -0.06403713673353195, 0.11829172819852829, 0.021498162299394608, 0.11776174604892731, 0.02810792811214924, 0.07449494302272797, -0.17686888575553894, 0.010149477049708366, 0.05981271713972092, 0.012346141040325165, 0.09417496621608734, 0.05924791470170021, -0.025981128215789795, 0.13035725057125092, -0.07199026644229889, 0.06958475708961487, 0.026622101664543152, -0.13616736233234406, -0.2300657033920288, -0.07671408355236053, 0.03188447654247284, 0.06817036122083664, 0.09032867103815079, -0.018115881830453873, 0.13553471863269806, -0.05925557389855385, 0.10849904268980026, 0.2665161192417145, -0.2656686007976532, -0.0680430456995964, 0.0003758948005270213, 0.036514852195978165, 0.08781422674655914, -0.09227053076028824, -0.021631114184856415, 0.0399169959127903, 0.04925042763352394, 0.12586063146591187, -0.014902619644999504, -0.019858496263623238, -0.006383994594216347, -0.14112256467342377, -0.04904001206159592, 0.1369747668504715, 0.01968200132250786, -0.03747319057583809, -0.053346987813711166, -0.08219780772924423, -0.19726026058197021, -0.03892681375145912, -0.005787925329059362, 0.03019120916724205, -0.032652173191308975, -0.0971122458577156, -0.02164529263973236, -0.08096976578235626, -0.07066786289215088, -0.044155098497867584, 0.1711454838514328, 0.04740401729941368, 0.013811664655804634, -0.059161365032196045, 0.09809694439172745, -0.040094006806612015, -0.1551884561777115, 0.0017892863834276795, 0.015752552077174187, 0.008973302319645882, -0.03354664519429207, -0.052260126918554306, -0.08670564740896225, -0.00891318079084158, 0.15838342905044556, -0.09441167861223221, 0.07004296779632568, -0.0007745604962110519, 0.033766698092222214, -0.08887085318565369, 0.17045439779758453, -0.005641345400363207, -0.022173307836055756, -0.008819859474897385, 0.07767505198717117, 0.024242892861366272, -0.03651906177401543, -0.1008463054895401, 0.015505928546190262, 0.10183527320623398, 0.013532215729355812, -0.058871980756521225, 0.058584168553352356, -0.04463495686650276, -0.028801249340176582, 0.003722079796716571, -0.10512274503707886, 0.03360525518655777, 0.00046991228009574115, -0.07601293921470642, 0.005893405992537737, 0.020226383581757545, 0.001245943596586585, -0.027393624186515808, 0.11483702808618546, -0.09088370203971863, 0.028041165322065353, -0.09183994680643082, -0.13952599465847015, 0.008919195272028446, -0.10776178538799286, -0.004726531449705362, -0.08515720814466476, -0.16538454592227936, -0.018863758072257042, 0.04859016463160515, -0.04007485881447792, -0.02362024039030075, -0.05925755202770233, -0.07198629528284073, 0.04349669814109802, -0.005864326376467943, 0.09406362473964691, -0.05822135880589485, 0.0967564806342125, 0.0523277223110199, 0.08290351182222366, -0.03045186772942543, 0.052985984832048416, -0.0939209833741188, 0.030807625502347946, -0.189560204744339, 0.055618081241846085, -0.04160178825259209, 0.052005816251039505, -0.09559907764196396, -0.1049751415848732, -0.021989313885569572, -0.005252784583717585, 0.09694705158472061, 0.10337795317173004, -0.16564467549324036, -0.09803105890750885, 0.19548283517360687, -0.09156331419944763, -0.08803698420524597, 0.13098502159118652, -0.05640183389186859, 0.03229216858744621, 0.05906382203102112, 0.19082733988761902, 0.053000107407569885, -0.09028912335634232, 0.0008257119916379452, -0.036213260143995285, 0.06710461527109146, -0.01768403686583042, 0.07082512229681015, -0.007854596711695194, 0.03042711690068245, 0.01279536448419094, 0.011400350369513035, 0.022588388994336128, -0.1027488186955452, -0.08268097788095474, -0.04528224095702171, -0.07259701937437057, 0.05388937518000603, 0.04641779884696007, 0.06711675971746445, -0.12081582099199295, -0.10754842311143875, 0.03710031136870384, 0.07944260537624359, -0.07615503668785095, 0.04221436008810997, -0.08097509294748306, 0.07488633692264557, -0.057539910078048706, -0.011388523504137993, -0.18591858446598053, -0.008659601211547852, 0.027429502457380295, -0.005654398817569017, 0.02947145700454712, -0.01144387200474739, 0.08002542704343796, 0.07656674832105637, -0.040178120136260986, -0.025620529428124428, -0.050042133778333664, -0.0133230434730649, -0.12913113832473755, -0.19846084713935852, -0.03727271035313606, -0.031159045174717903, 0.10351687669754028, -0.1881095916032791, 0.049517884850502014, 0.032958611845970154, 0.09978260099887848, 0.03585890308022499, -0.03247595950961113, -0.03661888837814331, 0.08518461138010025, -0.0468377061188221, -0.04949519410729408, 0.06455367803573608, -0.002717884723097086, -0.09404245018959045, -0.036270011216402054, -0.1606486737728119, 0.12960852682590485, 0.12691175937652588, -0.07250460237264633, -0.0801360234618187, -0.005777307320386171, -0.05533416569232941, -0.027757564559578896, -0.04621627554297447, 0.008728882297873497, 0.18741783499717712, 0.014111834578216076, 0.1541779339313507, -0.08541134744882584, -0.04517417773604393, 0.03729621693491936, -0.032241497188806534, 0.011563410982489586, 0.12550711631774902, 0.08346886187791824, -0.07943731546401978, 0.1286662369966507, 0.15001778304576874, -0.07589004933834076, 0.16245101392269135, -0.0276210755109787, -0.07903272658586502, -0.02905009686946869, -0.02359064482152462, 0.008488981984555721, 0.08919837325811386, -0.14964929223060608, -0.020823676139116287, 0.02298814244568348, 0.0323663093149662, 0.019109414890408516, -0.20615029335021973, -0.008192394860088825, 0.05286870524287224, -0.04676259681582451, -0.03564172238111496, -0.006425959523767233, 0.01712467335164547, 0.10805532336235046, 0.014356794767081738, -0.055772826075553894, 0.01912580616772175, 0.0013025213265791535, -0.07421378046274185, 0.19140633940696716, -0.08041026443243027, -0.15355464816093445, -0.12810978293418884, -0.07750896364450455, -0.05934322997927666, 0.007653649430721998, 0.07414048165082932, -0.10382970422506332, -0.0303182415664196, -0.08576316386461258, 0.04537983611226082, -0.026873646304011345, 0.035240061581134796, 0.03577860817313194, -0.012945204973220825, 0.05770459026098251, -0.11058571189641953, -0.026673320680856705, -0.042492855340242386, -0.047141339629888535, 0.057113975286483765, 0.019417457282543182, 0.11496564000844955, 0.13916468620300293, -0.025600196793675423, 0.03728015720844269, -0.029960913583636284, 0.23755085468292236, -0.06917169690132141, -0.02159510925412178, 0.1374811828136444, -0.013543147593736649, 0.07307475060224533, 0.11251846700906754, 0.06206585466861725, -0.08854836970567703, 0.002491636434569955, 0.03828795999288559, -0.05313871055841446, -0.21302050352096558, -0.025031443685293198, -0.046295635402202606, 0.006638544145971537, 0.11425517499446869, 0.023960055783391, 0.03596076741814613, 0.06408103555440903, 0.013804965652525425, 0.06680312752723694, -0.027523597702383995, 0.09577387571334839, 0.10529199987649918, 0.05187077075242996, 0.1472768932580948, -0.03736725449562073, -0.04750921204686165, 0.047170549631118774, -0.014692303724586964, 0.2279309183359146, 0.00916081853210926, 0.16695517301559448, 0.04793957248330116, 0.1477092206478119, 0.028381098061800003, 0.06994063407182693, -0.01023856457322836, -0.022295773029327393, -0.01703610084950924, -0.04907051846385002, -0.047272372990846634, 0.024296307936310768, -0.06058097630739212, 0.057248249650001526, -0.1365516036748886, 0.022970369085669518, 0.04555764049291611, 0.2618778944015503, 0.03172305226325989, -0.3472556471824646, -0.1002122238278389, 0.005614013411104679, -0.04552006348967552, -0.01979408599436283, 0.025378236547112465, 0.09719720482826233, -0.08744892477989197, 0.05507215857505798, -0.07326015084981918, 0.1096811443567276, -0.05308644473552704, 0.052249111235141754, 0.047453828155994415, 0.11214492470026016, -0.014100826345384121, 0.05030013993382454, -0.288224995136261, 0.2722267210483551, 0.019022956490516663, 0.0682285949587822, -0.07044826447963715, 0.0049875411204993725, 0.02197965979576111, 0.03519957885146141, 0.05684145539999008, -0.02115144208073616, -0.09044095128774643, -0.19563722610473633, -0.07211947441101074, 0.02061229944229126, 0.12921065092086792, -0.03277742862701416, 0.12908430397510529, -0.028881454840302467, 0.013250868767499924, 0.05412276089191437, -0.02039189450442791, -0.07947266101837158, -0.09611770510673523, 0.014761912636458874, 0.0392737090587616, -0.03864405304193497, -0.06719017773866653, -0.10296200960874557, -0.05826228857040405, 0.1507227122783661, -0.023013252764940262, -0.049378182739019394, -0.1265472024679184, 0.060623038560152054, 0.08652881532907486, -0.09682231396436691, 0.019612397998571396, -0.00677607674151659, 0.10144510120153427, 0.000033204618375748396, -0.06559253484010696, 0.11147180944681168, -0.06208471208810806, -0.1905837208032608, -0.05349297076463699, 0.12378795444965363, 0.03527543693780899, 0.06882178038358688, -0.021461280062794685, 0.031822413206100464, -0.03452833741903305, -0.08555588126182556, 0.03168082982301712, 0.013114294037222862, 0.042442917823791504, 0.005525163374841213, -0.032829780131578445, 0.035109858959913254, -0.06799621134996414, -0.023313008248806, 0.16705676913261414, 0.253177285194397, -0.08621221035718918, 0.0457674004137516, 0.05577586591243744, -0.06555614620447159, -0.17025873064994812, 0.0317862369120121, 0.06199970468878746, 0.005771013908088207, 0.006295657251030207, -0.19181957840919495, 0.054887887090444565, 0.10014249384403229, -0.005545844789594412, 0.09365241229534149, -0.33491507172584534, -0.13188865780830383, 0.09214653074741364, 0.13055038452148438, 0.11579543352127075, -0.15492169559001923, -0.03848681598901749, -0.024924738332629204, -0.1326456367969513, 0.1070517748594284, -0.09742625802755356, 0.12233110517263412, -0.034661851823329926, 0.1080123782157898, 0.01697089523077011, -0.05630628019571304, 0.12142326682806015, 0.005665711592882872, 0.0844845324754715, -0.06153843179345131, -0.0003355967055540532, 0.05488954856991768, -0.06049172207713127, 0.025878962129354477, -0.08941352367401123, 0.02535502053797245, -0.0977565199136734, -0.030583426356315613, -0.07521884143352509, 0.016741951927542686, -0.03561945632100105, -0.055432043969631195, -0.03732994943857193, 0.003659334499388933, 0.05146348103880882, -0.015113680623471737, 0.16142582893371582, -0.008942115120589733, 0.16667746007442474, 0.13008330762386322, 0.09046386927366257, -0.08709797263145447, -0.05286401882767677, 0.007389794569462538, -0.017894109711050987, 0.0669548436999321, -0.1501956284046173, 0.03140188381075859, 0.14251182973384857, 0.022716309875249863, 0.14328432083129883, 0.08243858814239502, -0.04297526553273201, 0.02871651202440262, 0.06030705198645592, -0.16529060900211334, -0.10059066116809845, -0.011212041601538658, -0.008844096213579178, -0.12138297408819199, 0.05150214955210686, 0.13593029975891113, -0.06492121517658234, -0.007893775589764118, -0.013955570757389069, 0.01040569692850113, -0.03322751075029373, 0.19329720735549927, 0.03833417966961861, 0.056444793939590454, -0.10130307823419571, 0.07405608147382736, 0.04188966378569603, -0.09132052212953568, 0.03690518066287041, 0.11921681463718414, -0.07762625068426132, -0.027952129021286964, 0.01797192543745041, 0.19576384127140045, -0.07224312424659729, -0.036419034004211426, -0.15915817022323608, -0.11084987223148346, 0.09304860234260559, 0.17858274281024933, 0.07654240727424622, 0.001896882662549615, -0.055322859436273575, 0.023635530844330788, -0.1283886432647705, 0.08650189638137817, 0.05727207288146019, 0.0689699649810791, -0.11763856559991837, 0.16589808464050293, 0.0030598528683185577, 0.028483815491199493, -0.019085491076111794, 0.010289139114320278, -0.10780223459005356, 0.010127787478268147, -0.12655365467071533, -0.016169201582670212, -0.04053298383951187, -0.008490345440804958, -0.007096101995557547, -0.05092569813132286, -0.06673354655504227, 0.01096253376454115, -0.11350123584270477, -0.03338075056672096, 0.009239702485501766, 0.03322991728782654, -0.11520674079656601, -0.009718482382595539, 0.026040710508823395, -0.0786505863070488, 0.06999355554580688, 0.05358589068055153, 0.0039702593348920345, 0.037376660853624344, -0.09264218062162399, 0.02270856872200966, 0.04235853627324104, -0.0039061398711055517, 0.05572621151804924, -0.07320421189069748, -0.007380381226539612, -0.018949760124087334, 0.04972876235842705, 0.025697629898786545, 0.08340973407030106, -0.12937885522842407, 0.028631607070565224, -0.0007026239763945341, -0.07893063873052597, -0.07002419978380203, 0.05332111567258835, 0.07876299321651459, 0.029989425092935562, 0.17034710943698883, -0.08417264372110367, 0.05757184326648712, -0.2092028260231018, 0.001348562422208488, 0.014885411597788334, -0.10898508131504059, -0.07022164762020111, -0.06361772865056992, 0.06974434852600098, -0.06662110984325409, 0.11821982264518738, 0.0203534048050642, 0.04339184612035751, 0.037538718432188034, -0.03650867938995361, -0.02670113369822502, 0.003734608180820942, 0.1751812845468521, 0.0519544743001461, -0.04838751628994942, 0.05552903935313225, 0.02939252369105816, 0.10127724707126617, 0.12266045063734055, 0.21777822077274323, 0.14708946645259857, 0.03894691914319992, 0.09670494496822357, 0.025432433933019638, -0.04332306981086731, -0.1820172220468521, 0.05073332414031029, -0.02292722649872303, 0.10894192010164261, -0.014743849635124207, 0.19512467086315155, 0.11514171957969666, -0.15208296477794647, 0.04726603254675865, -0.022747209295630455, -0.07941539585590363, -0.13579393923282623, -0.07232115417718887, -0.0922468900680542, -0.13861379027366638, 0.004212976433336735, -0.12077376246452332, 0.05685197934508324, 0.07082255184650421, 0.02051025815308094, 0.0013020924525335431, 0.14730580151081085, 0.014355231076478958, 0.00989349652081728, 0.06532898545265198, 0.003620221745222807, -0.018465198576450348, -0.07471563667058945, -0.08226261287927628, 0.010024570859968662, -0.016671497374773026, 0.04766174405813217, -0.02732744812965393, -0.053787775337696075, 0.02179073914885521, -0.019136536866426468, -0.11611424386501312, 0.00983885582536459, 0.021756017580628395, 0.06563956290483475, 0.05766556039452553, 0.005821282975375652, -0.0004568534786812961, -0.02220609225332737, 0.2086041420698166, -0.08150071650743484, -0.0535026453435421, -0.10256025940179825, 0.24900439381599426, 0.03225886821746826, -0.0135867390781641, 0.022436169907450676, -0.06903573125600815, -0.009539050050079823, 0.2153550088405609, 0.18664447963237762, -0.05461517721414566, 0.002710554050281644, -0.0009269415168091655, -0.00434150779619813, -0.007245565298944712, 0.0899820327758789, 0.10326799005270004, 0.05670422315597534, -0.07672057300806046, -0.01859072782099247, -0.05025395378470421, -0.01381755992770195, -0.04435155168175697, 0.0676790252327919, 0.03190368413925171, 0.009576192125678062, -0.04894528165459633, 0.044215984642505646, -0.05627136304974556, -0.08281057327985764, 0.03792152926325798, -0.21512971818447113, -0.14885850250720978, -0.0048071835190057755, 0.09268360584974289, 0.004511278122663498, 0.07173781841993332, -0.013976434245705605, -0.018985044211149216, 0.08164069056510925, -0.014499678276479244, -0.0801888257265091, -0.0925775021314621, 0.10104835778474808, -0.12905697524547577, 0.18619291484355927, -0.04216248542070389, 0.03285389021039009, 0.1279362589120865, 0.04956747218966484, -0.07652949541807175, 0.0697784274816513, 0.048110898584127426, -0.059095364063978195, -0.001592571148648858, 0.15283943712711334, -0.03610047698020935, 0.09230336546897888, 0.05328521504998207, -0.15848761796951294, 0.005759235471487045, -0.05225745216012001, -0.05274975299835205, -0.02561980113387108, -0.044041525572538376, -0.04756252467632294, 0.12820927798748016, 0.22180987894535065, -0.031032932922244072, -0.0030736145563423634, -0.05981820821762085, 0.019438501447439194, 0.06280802190303802, 0.03888566046953201, -0.05669305473566055, -0.25345441699028015, -0.0005731135024689138, 0.09300336986780167, -0.011422841809689999, -0.2805338203907013, -0.09892770648002625, 0.009529856964945793, -0.04487624019384384, -0.09818173944950104, 0.08877147734165192, 0.07851417362689972, 0.057035110890865326, -0.051057592034339905, -0.0773637443780899, -0.057304684072732925, 0.1693039834499359, -0.14952437579631805, -0.07335790991783142 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # tiny-mbart-length-128-learning_rate-2e-05-weight_decay-0.01-finetuned-en-to-ro This model is a fine-tuned version of [sshleifer/tiny-mbart](https://huggingface.co/sshleifer/tiny-mbart) on the wmt16_en_ro_pre_processed dataset. It achieves the following results on the evaluation set: - Loss: 8.4656 - Bleu: 0.0 - Gen Len: 20.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:----:|:-------:| | 8.2268 | 1.0 | 76290 | 8.4656 | 0.0 | 20.0 | ### Framework versions - Transformers 4.12.5 - Pytorch 1.10.0+cu102 - Datasets 1.15.1 - Tokenizers 0.10.3
{"tags": ["generated_from_trainer"], "datasets": ["wmt16_en_ro_pre_processed"], "metrics": ["bleu"], "model-index": [{"name": "tiny-mbart-length-128-learning_rate-2e-05-weight_decay-0.01-finetuned-en-to-ro", "results": [{"task": {"type": "text2text-generation", "name": "Sequence-to-sequence Language Modeling"}, "dataset": {"name": "wmt16_en_ro_pre_processed", "type": "wmt16_en_ro_pre_processed", "args": "enro"}, "metrics": [{"type": "bleu", "value": 0.0, "name": "Bleu"}]}]}]}
text2text-generation
ffsouza/tiny-mbart-length-128-learning_rate-2e-05-weight_decay-0.01-finetuned-en-to-ro
[ "transformers", "pytorch", "tensorboard", "mbart", "text2text-generation", "generated_from_trainer", "dataset:wmt16_en_ro_pre_processed", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #mbart #text2text-generation #generated_from_trainer #dataset-wmt16_en_ro_pre_processed #model-index #autotrain_compatible #endpoints_compatible #region-us
tiny-mbart-length-128-learning\_rate-2e-05-weight\_decay-0.01-finetuned-en-to-ro ================================================================================ This model is a fine-tuned version of sshleifer/tiny-mbart on the wmt16\_en\_ro\_pre\_processed dataset. It achieves the following results on the evaluation set: * Loss: 8.4656 * Bleu: 0.0 * Gen Len: 20.0 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 8 * eval\_batch\_size: 8 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 1 * mixed\_precision\_training: Native AMP ### Training results ### Framework versions * Transformers 4.12.5 * Pytorch 1.10.0+cu102 * Datasets 1.15.1 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 1\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.12.5\n* Pytorch 1.10.0+cu102\n* Datasets 1.15.1\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #mbart #text2text-generation #generated_from_trainer #dataset-wmt16_en_ro_pre_processed #model-index #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 1\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.12.5\n* Pytorch 1.10.0+cu102\n* Datasets 1.15.1\n* Tokenizers 0.10.3" ]
[ 70, 113, 4, 33 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #mbart #text2text-generation #generated_from_trainer #dataset-wmt16_en_ro_pre_processed #model-index #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 1\n* mixed\\_precision\\_training: Native AMP### Training results### Framework versions\n\n\n* Transformers 4.12.5\n* Pytorch 1.10.0+cu102\n* Datasets 1.15.1\n* Tokenizers 0.10.3" ]
[ -0.09897331148386002, 0.06212788075208664, -0.003706732066348195, 0.09771396219730377, 0.12977059185504913, 0.016780540347099304, 0.14437679946422577, 0.14073237776756287, -0.08298103511333466, 0.062452223151922226, 0.1347084641456604, 0.12738986313343048, 0.033955857157707214, 0.1455448418855667, -0.061345331370830536, -0.2700382173061371, 0.015838416293263435, 0.04176711663603783, -0.020830843597650528, 0.13514454662799835, 0.08256837725639343, -0.1272425651550293, 0.09110759943723679, 0.012491918168962002, -0.17030619084835052, 0.004715313669294119, 0.007411223370581865, -0.06403713673353195, 0.11829172819852829, 0.021498162299394608, 0.11776174604892731, 0.02810792811214924, 0.07449494302272797, -0.17686888575553894, 0.010149477049708366, 0.05981271713972092, 0.012346141040325165, 0.09417496621608734, 0.05924791470170021, -0.025981128215789795, 0.13035725057125092, -0.07199026644229889, 0.06958475708961487, 0.026622101664543152, -0.13616736233234406, -0.2300657033920288, -0.07671408355236053, 0.03188447654247284, 0.06817036122083664, 0.09032867103815079, -0.018115881830453873, 0.13553471863269806, -0.05925557389855385, 0.10849904268980026, 0.2665161192417145, -0.2656686007976532, -0.0680430456995964, 0.0003758948005270213, 0.036514852195978165, 0.08781422674655914, -0.09227053076028824, -0.021631114184856415, 0.0399169959127903, 0.04925042763352394, 0.12586063146591187, -0.014902619644999504, -0.019858496263623238, -0.006383994594216347, -0.14112256467342377, -0.04904001206159592, 0.1369747668504715, 0.01968200132250786, -0.03747319057583809, -0.053346987813711166, -0.08219780772924423, -0.19726026058197021, -0.03892681375145912, -0.005787925329059362, 0.03019120916724205, -0.032652173191308975, -0.0971122458577156, -0.02164529263973236, -0.08096976578235626, -0.07066786289215088, -0.044155098497867584, 0.1711454838514328, 0.04740401729941368, 0.013811664655804634, -0.059161365032196045, 0.09809694439172745, -0.040094006806612015, -0.1551884561777115, 0.0017892863834276795, 0.015752552077174187, 0.008973302319645882, -0.03354664519429207, -0.052260126918554306, -0.08670564740896225, -0.00891318079084158, 0.15838342905044556, -0.09441167861223221, 0.07004296779632568, -0.0007745604962110519, 0.033766698092222214, -0.08887085318565369, 0.17045439779758453, -0.005641345400363207, -0.022173307836055756, -0.008819859474897385, 0.07767505198717117, 0.024242892861366272, -0.03651906177401543, -0.1008463054895401, 0.015505928546190262, 0.10183527320623398, 0.013532215729355812, -0.058871980756521225, 0.058584168553352356, -0.04463495686650276, -0.028801249340176582, 0.003722079796716571, -0.10512274503707886, 0.03360525518655777, 0.00046991228009574115, -0.07601293921470642, 0.005893405992537737, 0.020226383581757545, 0.001245943596586585, -0.027393624186515808, 0.11483702808618546, -0.09088370203971863, 0.028041165322065353, -0.09183994680643082, -0.13952599465847015, 0.008919195272028446, -0.10776178538799286, -0.004726531449705362, -0.08515720814466476, -0.16538454592227936, -0.018863758072257042, 0.04859016463160515, -0.04007485881447792, -0.02362024039030075, -0.05925755202770233, -0.07198629528284073, 0.04349669814109802, -0.005864326376467943, 0.09406362473964691, -0.05822135880589485, 0.0967564806342125, 0.0523277223110199, 0.08290351182222366, -0.03045186772942543, 0.052985984832048416, -0.0939209833741188, 0.030807625502347946, -0.189560204744339, 0.055618081241846085, -0.04160178825259209, 0.052005816251039505, -0.09559907764196396, -0.1049751415848732, -0.021989313885569572, -0.005252784583717585, 0.09694705158472061, 0.10337795317173004, -0.16564467549324036, -0.09803105890750885, 0.19548283517360687, -0.09156331419944763, -0.08803698420524597, 0.13098502159118652, -0.05640183389186859, 0.03229216858744621, 0.05906382203102112, 0.19082733988761902, 0.053000107407569885, -0.09028912335634232, 0.0008257119916379452, -0.036213260143995285, 0.06710461527109146, -0.01768403686583042, 0.07082512229681015, -0.007854596711695194, 0.03042711690068245, 0.01279536448419094, 0.011400350369513035, 0.022588388994336128, -0.1027488186955452, -0.08268097788095474, -0.04528224095702171, -0.07259701937437057, 0.05388937518000603, 0.04641779884696007, 0.06711675971746445, -0.12081582099199295, -0.10754842311143875, 0.03710031136870384, 0.07944260537624359, -0.07615503668785095, 0.04221436008810997, -0.08097509294748306, 0.07488633692264557, -0.057539910078048706, -0.011388523504137993, -0.18591858446598053, -0.008659601211547852, 0.027429502457380295, -0.005654398817569017, 0.02947145700454712, -0.01144387200474739, 0.08002542704343796, 0.07656674832105637, -0.040178120136260986, -0.025620529428124428, -0.050042133778333664, -0.0133230434730649, -0.12913113832473755, -0.19846084713935852, -0.03727271035313606, -0.031159045174717903, 0.10351687669754028, -0.1881095916032791, 0.049517884850502014, 0.032958611845970154, 0.09978260099887848, 0.03585890308022499, -0.03247595950961113, -0.03661888837814331, 0.08518461138010025, -0.0468377061188221, -0.04949519410729408, 0.06455367803573608, -0.002717884723097086, -0.09404245018959045, -0.036270011216402054, -0.1606486737728119, 0.12960852682590485, 0.12691175937652588, -0.07250460237264633, -0.0801360234618187, -0.005777307320386171, -0.05533416569232941, -0.027757564559578896, -0.04621627554297447, 0.008728882297873497, 0.18741783499717712, 0.014111834578216076, 0.1541779339313507, -0.08541134744882584, -0.04517417773604393, 0.03729621693491936, -0.032241497188806534, 0.011563410982489586, 0.12550711631774902, 0.08346886187791824, -0.07943731546401978, 0.1286662369966507, 0.15001778304576874, -0.07589004933834076, 0.16245101392269135, -0.0276210755109787, -0.07903272658586502, -0.02905009686946869, -0.02359064482152462, 0.008488981984555721, 0.08919837325811386, -0.14964929223060608, -0.020823676139116287, 0.02298814244568348, 0.0323663093149662, 0.019109414890408516, -0.20615029335021973, -0.008192394860088825, 0.05286870524287224, -0.04676259681582451, -0.03564172238111496, -0.006425959523767233, 0.01712467335164547, 0.10805532336235046, 0.014356794767081738, -0.055772826075553894, 0.01912580616772175, 0.0013025213265791535, -0.07421378046274185, 0.19140633940696716, -0.08041026443243027, -0.15355464816093445, -0.12810978293418884, -0.07750896364450455, -0.05934322997927666, 0.007653649430721998, 0.07414048165082932, -0.10382970422506332, -0.0303182415664196, -0.08576316386461258, 0.04537983611226082, -0.026873646304011345, 0.035240061581134796, 0.03577860817313194, -0.012945204973220825, 0.05770459026098251, -0.11058571189641953, -0.026673320680856705, -0.042492855340242386, -0.047141339629888535, 0.057113975286483765, 0.019417457282543182, 0.11496564000844955, 0.13916468620300293, -0.025600196793675423, 0.03728015720844269, -0.029960913583636284, 0.23755085468292236, -0.06917169690132141, -0.02159510925412178, 0.1374811828136444, -0.013543147593736649, 0.07307475060224533, 0.11251846700906754, 0.06206585466861725, -0.08854836970567703, 0.002491636434569955, 0.03828795999288559, -0.05313871055841446, -0.21302050352096558, -0.025031443685293198, -0.046295635402202606, 0.006638544145971537, 0.11425517499446869, 0.023960055783391, 0.03596076741814613, 0.06408103555440903, 0.013804965652525425, 0.06680312752723694, -0.027523597702383995, 0.09577387571334839, 0.10529199987649918, 0.05187077075242996, 0.1472768932580948, -0.03736725449562073, -0.04750921204686165, 0.047170549631118774, -0.014692303724586964, 0.2279309183359146, 0.00916081853210926, 0.16695517301559448, 0.04793957248330116, 0.1477092206478119, 0.028381098061800003, 0.06994063407182693, -0.01023856457322836, -0.022295773029327393, -0.01703610084950924, -0.04907051846385002, -0.047272372990846634, 0.024296307936310768, -0.06058097630739212, 0.057248249650001526, -0.1365516036748886, 0.022970369085669518, 0.04555764049291611, 0.2618778944015503, 0.03172305226325989, -0.3472556471824646, -0.1002122238278389, 0.005614013411104679, -0.04552006348967552, -0.01979408599436283, 0.025378236547112465, 0.09719720482826233, -0.08744892477989197, 0.05507215857505798, -0.07326015084981918, 0.1096811443567276, -0.05308644473552704, 0.052249111235141754, 0.047453828155994415, 0.11214492470026016, -0.014100826345384121, 0.05030013993382454, -0.288224995136261, 0.2722267210483551, 0.019022956490516663, 0.0682285949587822, -0.07044826447963715, 0.0049875411204993725, 0.02197965979576111, 0.03519957885146141, 0.05684145539999008, -0.02115144208073616, -0.09044095128774643, -0.19563722610473633, -0.07211947441101074, 0.02061229944229126, 0.12921065092086792, -0.03277742862701416, 0.12908430397510529, -0.028881454840302467, 0.013250868767499924, 0.05412276089191437, -0.02039189450442791, -0.07947266101837158, -0.09611770510673523, 0.014761912636458874, 0.0392737090587616, -0.03864405304193497, -0.06719017773866653, -0.10296200960874557, -0.05826228857040405, 0.1507227122783661, -0.023013252764940262, -0.049378182739019394, -0.1265472024679184, 0.060623038560152054, 0.08652881532907486, -0.09682231396436691, 0.019612397998571396, -0.00677607674151659, 0.10144510120153427, 0.000033204618375748396, -0.06559253484010696, 0.11147180944681168, -0.06208471208810806, -0.1905837208032608, -0.05349297076463699, 0.12378795444965363, 0.03527543693780899, 0.06882178038358688, -0.021461280062794685, 0.031822413206100464, -0.03452833741903305, -0.08555588126182556, 0.03168082982301712, 0.013114294037222862, 0.042442917823791504, 0.005525163374841213, -0.032829780131578445, 0.035109858959913254, -0.06799621134996414, -0.023313008248806, 0.16705676913261414, 0.253177285194397, -0.08621221035718918, 0.0457674004137516, 0.05577586591243744, -0.06555614620447159, -0.17025873064994812, 0.0317862369120121, 0.06199970468878746, 0.005771013908088207, 0.006295657251030207, -0.19181957840919495, 0.054887887090444565, 0.10014249384403229, -0.005545844789594412, 0.09365241229534149, -0.33491507172584534, -0.13188865780830383, 0.09214653074741364, 0.13055038452148438, 0.11579543352127075, -0.15492169559001923, -0.03848681598901749, -0.024924738332629204, -0.1326456367969513, 0.1070517748594284, -0.09742625802755356, 0.12233110517263412, -0.034661851823329926, 0.1080123782157898, 0.01697089523077011, -0.05630628019571304, 0.12142326682806015, 0.005665711592882872, 0.0844845324754715, -0.06153843179345131, -0.0003355967055540532, 0.05488954856991768, -0.06049172207713127, 0.025878962129354477, -0.08941352367401123, 0.02535502053797245, -0.0977565199136734, -0.030583426356315613, -0.07521884143352509, 0.016741951927542686, -0.03561945632100105, -0.055432043969631195, -0.03732994943857193, 0.003659334499388933, 0.05146348103880882, -0.015113680623471737, 0.16142582893371582, -0.008942115120589733, 0.16667746007442474, 0.13008330762386322, 0.09046386927366257, -0.08709797263145447, -0.05286401882767677, 0.007389794569462538, -0.017894109711050987, 0.0669548436999321, -0.1501956284046173, 0.03140188381075859, 0.14251182973384857, 0.022716309875249863, 0.14328432083129883, 0.08243858814239502, -0.04297526553273201, 0.02871651202440262, 0.06030705198645592, -0.16529060900211334, -0.10059066116809845, -0.011212041601538658, -0.008844096213579178, -0.12138297408819199, 0.05150214955210686, 0.13593029975891113, -0.06492121517658234, -0.007893775589764118, -0.013955570757389069, 0.01040569692850113, -0.03322751075029373, 0.19329720735549927, 0.03833417966961861, 0.056444793939590454, -0.10130307823419571, 0.07405608147382736, 0.04188966378569603, -0.09132052212953568, 0.03690518066287041, 0.11921681463718414, -0.07762625068426132, -0.027952129021286964, 0.01797192543745041, 0.19576384127140045, -0.07224312424659729, -0.036419034004211426, -0.15915817022323608, -0.11084987223148346, 0.09304860234260559, 0.17858274281024933, 0.07654240727424622, 0.001896882662549615, -0.055322859436273575, 0.023635530844330788, -0.1283886432647705, 0.08650189638137817, 0.05727207288146019, 0.0689699649810791, -0.11763856559991837, 0.16589808464050293, 0.0030598528683185577, 0.028483815491199493, -0.019085491076111794, 0.010289139114320278, -0.10780223459005356, 0.010127787478268147, -0.12655365467071533, -0.016169201582670212, -0.04053298383951187, -0.008490345440804958, -0.007096101995557547, -0.05092569813132286, -0.06673354655504227, 0.01096253376454115, -0.11350123584270477, -0.03338075056672096, 0.009239702485501766, 0.03322991728782654, -0.11520674079656601, -0.009718482382595539, 0.026040710508823395, -0.0786505863070488, 0.06999355554580688, 0.05358589068055153, 0.0039702593348920345, 0.037376660853624344, -0.09264218062162399, 0.02270856872200966, 0.04235853627324104, -0.0039061398711055517, 0.05572621151804924, -0.07320421189069748, -0.007380381226539612, -0.018949760124087334, 0.04972876235842705, 0.025697629898786545, 0.08340973407030106, -0.12937885522842407, 0.028631607070565224, -0.0007026239763945341, -0.07893063873052597, -0.07002419978380203, 0.05332111567258835, 0.07876299321651459, 0.029989425092935562, 0.17034710943698883, -0.08417264372110367, 0.05757184326648712, -0.2092028260231018, 0.001348562422208488, 0.014885411597788334, -0.10898508131504059, -0.07022164762020111, -0.06361772865056992, 0.06974434852600098, -0.06662110984325409, 0.11821982264518738, 0.0203534048050642, 0.04339184612035751, 0.037538718432188034, -0.03650867938995361, -0.02670113369822502, 0.003734608180820942, 0.1751812845468521, 0.0519544743001461, -0.04838751628994942, 0.05552903935313225, 0.02939252369105816, 0.10127724707126617, 0.12266045063734055, 0.21777822077274323, 0.14708946645259857, 0.03894691914319992, 0.09670494496822357, 0.025432433933019638, -0.04332306981086731, -0.1820172220468521, 0.05073332414031029, -0.02292722649872303, 0.10894192010164261, -0.014743849635124207, 0.19512467086315155, 0.11514171957969666, -0.15208296477794647, 0.04726603254675865, -0.022747209295630455, -0.07941539585590363, -0.13579393923282623, -0.07232115417718887, -0.0922468900680542, -0.13861379027366638, 0.004212976433336735, -0.12077376246452332, 0.05685197934508324, 0.07082255184650421, 0.02051025815308094, 0.0013020924525335431, 0.14730580151081085, 0.014355231076478958, 0.00989349652081728, 0.06532898545265198, 0.003620221745222807, -0.018465198576450348, -0.07471563667058945, -0.08226261287927628, 0.010024570859968662, -0.016671497374773026, 0.04766174405813217, -0.02732744812965393, -0.053787775337696075, 0.02179073914885521, -0.019136536866426468, -0.11611424386501312, 0.00983885582536459, 0.021756017580628395, 0.06563956290483475, 0.05766556039452553, 0.005821282975375652, -0.0004568534786812961, -0.02220609225332737, 0.2086041420698166, -0.08150071650743484, -0.0535026453435421, -0.10256025940179825, 0.24900439381599426, 0.03225886821746826, -0.0135867390781641, 0.022436169907450676, -0.06903573125600815, -0.009539050050079823, 0.2153550088405609, 0.18664447963237762, -0.05461517721414566, 0.002710554050281644, -0.0009269415168091655, -0.00434150779619813, -0.007245565298944712, 0.0899820327758789, 0.10326799005270004, 0.05670422315597534, -0.07672057300806046, -0.01859072782099247, -0.05025395378470421, -0.01381755992770195, -0.04435155168175697, 0.0676790252327919, 0.03190368413925171, 0.009576192125678062, -0.04894528165459633, 0.044215984642505646, -0.05627136304974556, -0.08281057327985764, 0.03792152926325798, -0.21512971818447113, -0.14885850250720978, -0.0048071835190057755, 0.09268360584974289, 0.004511278122663498, 0.07173781841993332, -0.013976434245705605, -0.018985044211149216, 0.08164069056510925, -0.014499678276479244, -0.0801888257265091, -0.0925775021314621, 0.10104835778474808, -0.12905697524547577, 0.18619291484355927, -0.04216248542070389, 0.03285389021039009, 0.1279362589120865, 0.04956747218966484, -0.07652949541807175, 0.0697784274816513, 0.048110898584127426, -0.059095364063978195, -0.001592571148648858, 0.15283943712711334, -0.03610047698020935, 0.09230336546897888, 0.05328521504998207, -0.15848761796951294, 0.005759235471487045, -0.05225745216012001, -0.05274975299835205, -0.02561980113387108, -0.044041525572538376, -0.04756252467632294, 0.12820927798748016, 0.22180987894535065, -0.031032932922244072, -0.0030736145563423634, -0.05981820821762085, 0.019438501447439194, 0.06280802190303802, 0.03888566046953201, -0.05669305473566055, -0.25345441699028015, -0.0005731135024689138, 0.09300336986780167, -0.011422841809689999, -0.2805338203907013, -0.09892770648002625, 0.009529856964945793, -0.04487624019384384, -0.09818173944950104, 0.08877147734165192, 0.07851417362689972, 0.057035110890865326, -0.051057592034339905, -0.0773637443780899, -0.057304684072732925, 0.1693039834499359, -0.14952437579631805, -0.07335790991783142 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # tiny-mbart-length-96-learning_rate-2e-05-weight_decay-0.005-finetuned-en-to-ro This model is a fine-tuned version of [sshleifer/tiny-mbart](https://huggingface.co/sshleifer/tiny-mbart) on the wmt16_en_ro_pre_processed dataset. It achieves the following results on the evaluation set: - Loss: 8.5983 - Bleu: 0.0 - Gen Len: 20.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:----:|:-------:| | 8.3753 | 1.0 | 76290 | 8.5983 | 0.0 | 20.0 | ### Framework versions - Transformers 4.12.5 - Pytorch 1.10.0+cu102 - Datasets 1.15.1 - Tokenizers 0.10.3
{"tags": ["generated_from_trainer"], "datasets": ["wmt16_en_ro_pre_processed"], "metrics": ["bleu"], "model-index": [{"name": "tiny-mbart-length-96-learning_rate-2e-05-weight_decay-0.005-finetuned-en-to-ro", "results": [{"task": {"type": "text2text-generation", "name": "Sequence-to-sequence Language Modeling"}, "dataset": {"name": "wmt16_en_ro_pre_processed", "type": "wmt16_en_ro_pre_processed", "args": "enro"}, "metrics": [{"type": "bleu", "value": 0.0, "name": "Bleu"}]}]}]}
text2text-generation
ffsouza/tiny-mbart-length-96-learning_rate-2e-05-weight_decay-0.005-finetuned-en-to-ro
[ "transformers", "pytorch", "tensorboard", "mbart", "text2text-generation", "generated_from_trainer", "dataset:wmt16_en_ro_pre_processed", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #mbart #text2text-generation #generated_from_trainer #dataset-wmt16_en_ro_pre_processed #model-index #autotrain_compatible #endpoints_compatible #region-us
tiny-mbart-length-96-learning\_rate-2e-05-weight\_decay-0.005-finetuned-en-to-ro ================================================================================ This model is a fine-tuned version of sshleifer/tiny-mbart on the wmt16\_en\_ro\_pre\_processed dataset. It achieves the following results on the evaluation set: * Loss: 8.5983 * Bleu: 0.0 * Gen Len: 20.0 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 8 * eval\_batch\_size: 8 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 1 * mixed\_precision\_training: Native AMP ### Training results ### Framework versions * Transformers 4.12.5 * Pytorch 1.10.0+cu102 * Datasets 1.15.1 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 1\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.12.5\n* Pytorch 1.10.0+cu102\n* Datasets 1.15.1\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #mbart #text2text-generation #generated_from_trainer #dataset-wmt16_en_ro_pre_processed #model-index #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 1\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.12.5\n* Pytorch 1.10.0+cu102\n* Datasets 1.15.1\n* Tokenizers 0.10.3" ]
[ 70, 113, 4, 33 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #mbart #text2text-generation #generated_from_trainer #dataset-wmt16_en_ro_pre_processed #model-index #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 1\n* mixed\\_precision\\_training: Native AMP### Training results### Framework versions\n\n\n* Transformers 4.12.5\n* Pytorch 1.10.0+cu102\n* Datasets 1.15.1\n* Tokenizers 0.10.3" ]
[ -0.09897331148386002, 0.06212788075208664, -0.003706732066348195, 0.09771396219730377, 0.12977059185504913, 0.016780540347099304, 0.14437679946422577, 0.14073237776756287, -0.08298103511333466, 0.062452223151922226, 0.1347084641456604, 0.12738986313343048, 0.033955857157707214, 0.1455448418855667, -0.061345331370830536, -0.2700382173061371, 0.015838416293263435, 0.04176711663603783, -0.020830843597650528, 0.13514454662799835, 0.08256837725639343, -0.1272425651550293, 0.09110759943723679, 0.012491918168962002, -0.17030619084835052, 0.004715313669294119, 0.007411223370581865, -0.06403713673353195, 0.11829172819852829, 0.021498162299394608, 0.11776174604892731, 0.02810792811214924, 0.07449494302272797, -0.17686888575553894, 0.010149477049708366, 0.05981271713972092, 0.012346141040325165, 0.09417496621608734, 0.05924791470170021, -0.025981128215789795, 0.13035725057125092, -0.07199026644229889, 0.06958475708961487, 0.026622101664543152, -0.13616736233234406, -0.2300657033920288, -0.07671408355236053, 0.03188447654247284, 0.06817036122083664, 0.09032867103815079, -0.018115881830453873, 0.13553471863269806, -0.05925557389855385, 0.10849904268980026, 0.2665161192417145, -0.2656686007976532, -0.0680430456995964, 0.0003758948005270213, 0.036514852195978165, 0.08781422674655914, -0.09227053076028824, -0.021631114184856415, 0.0399169959127903, 0.04925042763352394, 0.12586063146591187, -0.014902619644999504, -0.019858496263623238, -0.006383994594216347, -0.14112256467342377, -0.04904001206159592, 0.1369747668504715, 0.01968200132250786, -0.03747319057583809, -0.053346987813711166, -0.08219780772924423, -0.19726026058197021, -0.03892681375145912, -0.005787925329059362, 0.03019120916724205, -0.032652173191308975, -0.0971122458577156, -0.02164529263973236, -0.08096976578235626, -0.07066786289215088, -0.044155098497867584, 0.1711454838514328, 0.04740401729941368, 0.013811664655804634, -0.059161365032196045, 0.09809694439172745, -0.040094006806612015, -0.1551884561777115, 0.0017892863834276795, 0.015752552077174187, 0.008973302319645882, -0.03354664519429207, -0.052260126918554306, -0.08670564740896225, -0.00891318079084158, 0.15838342905044556, -0.09441167861223221, 0.07004296779632568, -0.0007745604962110519, 0.033766698092222214, -0.08887085318565369, 0.17045439779758453, -0.005641345400363207, -0.022173307836055756, -0.008819859474897385, 0.07767505198717117, 0.024242892861366272, -0.03651906177401543, -0.1008463054895401, 0.015505928546190262, 0.10183527320623398, 0.013532215729355812, -0.058871980756521225, 0.058584168553352356, -0.04463495686650276, -0.028801249340176582, 0.003722079796716571, -0.10512274503707886, 0.03360525518655777, 0.00046991228009574115, -0.07601293921470642, 0.005893405992537737, 0.020226383581757545, 0.001245943596586585, -0.027393624186515808, 0.11483702808618546, -0.09088370203971863, 0.028041165322065353, -0.09183994680643082, -0.13952599465847015, 0.008919195272028446, -0.10776178538799286, -0.004726531449705362, -0.08515720814466476, -0.16538454592227936, -0.018863758072257042, 0.04859016463160515, -0.04007485881447792, -0.02362024039030075, -0.05925755202770233, -0.07198629528284073, 0.04349669814109802, -0.005864326376467943, 0.09406362473964691, -0.05822135880589485, 0.0967564806342125, 0.0523277223110199, 0.08290351182222366, -0.03045186772942543, 0.052985984832048416, -0.0939209833741188, 0.030807625502347946, -0.189560204744339, 0.055618081241846085, -0.04160178825259209, 0.052005816251039505, -0.09559907764196396, -0.1049751415848732, -0.021989313885569572, -0.005252784583717585, 0.09694705158472061, 0.10337795317173004, -0.16564467549324036, -0.09803105890750885, 0.19548283517360687, -0.09156331419944763, -0.08803698420524597, 0.13098502159118652, -0.05640183389186859, 0.03229216858744621, 0.05906382203102112, 0.19082733988761902, 0.053000107407569885, -0.09028912335634232, 0.0008257119916379452, -0.036213260143995285, 0.06710461527109146, -0.01768403686583042, 0.07082512229681015, -0.007854596711695194, 0.03042711690068245, 0.01279536448419094, 0.011400350369513035, 0.022588388994336128, -0.1027488186955452, -0.08268097788095474, -0.04528224095702171, -0.07259701937437057, 0.05388937518000603, 0.04641779884696007, 0.06711675971746445, -0.12081582099199295, -0.10754842311143875, 0.03710031136870384, 0.07944260537624359, -0.07615503668785095, 0.04221436008810997, -0.08097509294748306, 0.07488633692264557, -0.057539910078048706, -0.011388523504137993, -0.18591858446598053, -0.008659601211547852, 0.027429502457380295, -0.005654398817569017, 0.02947145700454712, -0.01144387200474739, 0.08002542704343796, 0.07656674832105637, -0.040178120136260986, -0.025620529428124428, -0.050042133778333664, -0.0133230434730649, -0.12913113832473755, -0.19846084713935852, -0.03727271035313606, -0.031159045174717903, 0.10351687669754028, -0.1881095916032791, 0.049517884850502014, 0.032958611845970154, 0.09978260099887848, 0.03585890308022499, -0.03247595950961113, -0.03661888837814331, 0.08518461138010025, -0.0468377061188221, -0.04949519410729408, 0.06455367803573608, -0.002717884723097086, -0.09404245018959045, -0.036270011216402054, -0.1606486737728119, 0.12960852682590485, 0.12691175937652588, -0.07250460237264633, -0.0801360234618187, -0.005777307320386171, -0.05533416569232941, -0.027757564559578896, -0.04621627554297447, 0.008728882297873497, 0.18741783499717712, 0.014111834578216076, 0.1541779339313507, -0.08541134744882584, -0.04517417773604393, 0.03729621693491936, -0.032241497188806534, 0.011563410982489586, 0.12550711631774902, 0.08346886187791824, -0.07943731546401978, 0.1286662369966507, 0.15001778304576874, -0.07589004933834076, 0.16245101392269135, -0.0276210755109787, -0.07903272658586502, -0.02905009686946869, -0.02359064482152462, 0.008488981984555721, 0.08919837325811386, -0.14964929223060608, -0.020823676139116287, 0.02298814244568348, 0.0323663093149662, 0.019109414890408516, -0.20615029335021973, -0.008192394860088825, 0.05286870524287224, -0.04676259681582451, -0.03564172238111496, -0.006425959523767233, 0.01712467335164547, 0.10805532336235046, 0.014356794767081738, -0.055772826075553894, 0.01912580616772175, 0.0013025213265791535, -0.07421378046274185, 0.19140633940696716, -0.08041026443243027, -0.15355464816093445, -0.12810978293418884, -0.07750896364450455, -0.05934322997927666, 0.007653649430721998, 0.07414048165082932, -0.10382970422506332, -0.0303182415664196, -0.08576316386461258, 0.04537983611226082, -0.026873646304011345, 0.035240061581134796, 0.03577860817313194, -0.012945204973220825, 0.05770459026098251, -0.11058571189641953, -0.026673320680856705, -0.042492855340242386, -0.047141339629888535, 0.057113975286483765, 0.019417457282543182, 0.11496564000844955, 0.13916468620300293, -0.025600196793675423, 0.03728015720844269, -0.029960913583636284, 0.23755085468292236, -0.06917169690132141, -0.02159510925412178, 0.1374811828136444, -0.013543147593736649, 0.07307475060224533, 0.11251846700906754, 0.06206585466861725, -0.08854836970567703, 0.002491636434569955, 0.03828795999288559, -0.05313871055841446, -0.21302050352096558, -0.025031443685293198, -0.046295635402202606, 0.006638544145971537, 0.11425517499446869, 0.023960055783391, 0.03596076741814613, 0.06408103555440903, 0.013804965652525425, 0.06680312752723694, -0.027523597702383995, 0.09577387571334839, 0.10529199987649918, 0.05187077075242996, 0.1472768932580948, -0.03736725449562073, -0.04750921204686165, 0.047170549631118774, -0.014692303724586964, 0.2279309183359146, 0.00916081853210926, 0.16695517301559448, 0.04793957248330116, 0.1477092206478119, 0.028381098061800003, 0.06994063407182693, -0.01023856457322836, -0.022295773029327393, -0.01703610084950924, -0.04907051846385002, -0.047272372990846634, 0.024296307936310768, -0.06058097630739212, 0.057248249650001526, -0.1365516036748886, 0.022970369085669518, 0.04555764049291611, 0.2618778944015503, 0.03172305226325989, -0.3472556471824646, -0.1002122238278389, 0.005614013411104679, -0.04552006348967552, -0.01979408599436283, 0.025378236547112465, 0.09719720482826233, -0.08744892477989197, 0.05507215857505798, -0.07326015084981918, 0.1096811443567276, -0.05308644473552704, 0.052249111235141754, 0.047453828155994415, 0.11214492470026016, -0.014100826345384121, 0.05030013993382454, -0.288224995136261, 0.2722267210483551, 0.019022956490516663, 0.0682285949587822, -0.07044826447963715, 0.0049875411204993725, 0.02197965979576111, 0.03519957885146141, 0.05684145539999008, -0.02115144208073616, -0.09044095128774643, -0.19563722610473633, -0.07211947441101074, 0.02061229944229126, 0.12921065092086792, -0.03277742862701416, 0.12908430397510529, -0.028881454840302467, 0.013250868767499924, 0.05412276089191437, -0.02039189450442791, -0.07947266101837158, -0.09611770510673523, 0.014761912636458874, 0.0392737090587616, -0.03864405304193497, -0.06719017773866653, -0.10296200960874557, -0.05826228857040405, 0.1507227122783661, -0.023013252764940262, -0.049378182739019394, -0.1265472024679184, 0.060623038560152054, 0.08652881532907486, -0.09682231396436691, 0.019612397998571396, -0.00677607674151659, 0.10144510120153427, 0.000033204618375748396, -0.06559253484010696, 0.11147180944681168, -0.06208471208810806, -0.1905837208032608, -0.05349297076463699, 0.12378795444965363, 0.03527543693780899, 0.06882178038358688, -0.021461280062794685, 0.031822413206100464, -0.03452833741903305, -0.08555588126182556, 0.03168082982301712, 0.013114294037222862, 0.042442917823791504, 0.005525163374841213, -0.032829780131578445, 0.035109858959913254, -0.06799621134996414, -0.023313008248806, 0.16705676913261414, 0.253177285194397, -0.08621221035718918, 0.0457674004137516, 0.05577586591243744, -0.06555614620447159, -0.17025873064994812, 0.0317862369120121, 0.06199970468878746, 0.005771013908088207, 0.006295657251030207, -0.19181957840919495, 0.054887887090444565, 0.10014249384403229, -0.005545844789594412, 0.09365241229534149, -0.33491507172584534, -0.13188865780830383, 0.09214653074741364, 0.13055038452148438, 0.11579543352127075, -0.15492169559001923, -0.03848681598901749, -0.024924738332629204, -0.1326456367969513, 0.1070517748594284, -0.09742625802755356, 0.12233110517263412, -0.034661851823329926, 0.1080123782157898, 0.01697089523077011, -0.05630628019571304, 0.12142326682806015, 0.005665711592882872, 0.0844845324754715, -0.06153843179345131, -0.0003355967055540532, 0.05488954856991768, -0.06049172207713127, 0.025878962129354477, -0.08941352367401123, 0.02535502053797245, -0.0977565199136734, -0.030583426356315613, -0.07521884143352509, 0.016741951927542686, -0.03561945632100105, -0.055432043969631195, -0.03732994943857193, 0.003659334499388933, 0.05146348103880882, -0.015113680623471737, 0.16142582893371582, -0.008942115120589733, 0.16667746007442474, 0.13008330762386322, 0.09046386927366257, -0.08709797263145447, -0.05286401882767677, 0.007389794569462538, -0.017894109711050987, 0.0669548436999321, -0.1501956284046173, 0.03140188381075859, 0.14251182973384857, 0.022716309875249863, 0.14328432083129883, 0.08243858814239502, -0.04297526553273201, 0.02871651202440262, 0.06030705198645592, -0.16529060900211334, -0.10059066116809845, -0.011212041601538658, -0.008844096213579178, -0.12138297408819199, 0.05150214955210686, 0.13593029975891113, -0.06492121517658234, -0.007893775589764118, -0.013955570757389069, 0.01040569692850113, -0.03322751075029373, 0.19329720735549927, 0.03833417966961861, 0.056444793939590454, -0.10130307823419571, 0.07405608147382736, 0.04188966378569603, -0.09132052212953568, 0.03690518066287041, 0.11921681463718414, -0.07762625068426132, -0.027952129021286964, 0.01797192543745041, 0.19576384127140045, -0.07224312424659729, -0.036419034004211426, -0.15915817022323608, -0.11084987223148346, 0.09304860234260559, 0.17858274281024933, 0.07654240727424622, 0.001896882662549615, -0.055322859436273575, 0.023635530844330788, -0.1283886432647705, 0.08650189638137817, 0.05727207288146019, 0.0689699649810791, -0.11763856559991837, 0.16589808464050293, 0.0030598528683185577, 0.028483815491199493, -0.019085491076111794, 0.010289139114320278, -0.10780223459005356, 0.010127787478268147, -0.12655365467071533, -0.016169201582670212, -0.04053298383951187, -0.008490345440804958, -0.007096101995557547, -0.05092569813132286, -0.06673354655504227, 0.01096253376454115, -0.11350123584270477, -0.03338075056672096, 0.009239702485501766, 0.03322991728782654, -0.11520674079656601, -0.009718482382595539, 0.026040710508823395, -0.0786505863070488, 0.06999355554580688, 0.05358589068055153, 0.0039702593348920345, 0.037376660853624344, -0.09264218062162399, 0.02270856872200966, 0.04235853627324104, -0.0039061398711055517, 0.05572621151804924, -0.07320421189069748, -0.007380381226539612, -0.018949760124087334, 0.04972876235842705, 0.025697629898786545, 0.08340973407030106, -0.12937885522842407, 0.028631607070565224, -0.0007026239763945341, -0.07893063873052597, -0.07002419978380203, 0.05332111567258835, 0.07876299321651459, 0.029989425092935562, 0.17034710943698883, -0.08417264372110367, 0.05757184326648712, -0.2092028260231018, 0.001348562422208488, 0.014885411597788334, -0.10898508131504059, -0.07022164762020111, -0.06361772865056992, 0.06974434852600098, -0.06662110984325409, 0.11821982264518738, 0.0203534048050642, 0.04339184612035751, 0.037538718432188034, -0.03650867938995361, -0.02670113369822502, 0.003734608180820942, 0.1751812845468521, 0.0519544743001461, -0.04838751628994942, 0.05552903935313225, 0.02939252369105816, 0.10127724707126617, 0.12266045063734055, 0.21777822077274323, 0.14708946645259857, 0.03894691914319992, 0.09670494496822357, 0.025432433933019638, -0.04332306981086731, -0.1820172220468521, 0.05073332414031029, -0.02292722649872303, 0.10894192010164261, -0.014743849635124207, 0.19512467086315155, 0.11514171957969666, -0.15208296477794647, 0.04726603254675865, -0.022747209295630455, -0.07941539585590363, -0.13579393923282623, -0.07232115417718887, -0.0922468900680542, -0.13861379027366638, 0.004212976433336735, -0.12077376246452332, 0.05685197934508324, 0.07082255184650421, 0.02051025815308094, 0.0013020924525335431, 0.14730580151081085, 0.014355231076478958, 0.00989349652081728, 0.06532898545265198, 0.003620221745222807, -0.018465198576450348, -0.07471563667058945, -0.08226261287927628, 0.010024570859968662, -0.016671497374773026, 0.04766174405813217, -0.02732744812965393, -0.053787775337696075, 0.02179073914885521, -0.019136536866426468, -0.11611424386501312, 0.00983885582536459, 0.021756017580628395, 0.06563956290483475, 0.05766556039452553, 0.005821282975375652, -0.0004568534786812961, -0.02220609225332737, 0.2086041420698166, -0.08150071650743484, -0.0535026453435421, -0.10256025940179825, 0.24900439381599426, 0.03225886821746826, -0.0135867390781641, 0.022436169907450676, -0.06903573125600815, -0.009539050050079823, 0.2153550088405609, 0.18664447963237762, -0.05461517721414566, 0.002710554050281644, -0.0009269415168091655, -0.00434150779619813, -0.007245565298944712, 0.0899820327758789, 0.10326799005270004, 0.05670422315597534, -0.07672057300806046, -0.01859072782099247, -0.05025395378470421, -0.01381755992770195, -0.04435155168175697, 0.0676790252327919, 0.03190368413925171, 0.009576192125678062, -0.04894528165459633, 0.044215984642505646, -0.05627136304974556, -0.08281057327985764, 0.03792152926325798, -0.21512971818447113, -0.14885850250720978, -0.0048071835190057755, 0.09268360584974289, 0.004511278122663498, 0.07173781841993332, -0.013976434245705605, -0.018985044211149216, 0.08164069056510925, -0.014499678276479244, -0.0801888257265091, -0.0925775021314621, 0.10104835778474808, -0.12905697524547577, 0.18619291484355927, -0.04216248542070389, 0.03285389021039009, 0.1279362589120865, 0.04956747218966484, -0.07652949541807175, 0.0697784274816513, 0.048110898584127426, -0.059095364063978195, -0.001592571148648858, 0.15283943712711334, -0.03610047698020935, 0.09230336546897888, 0.05328521504998207, -0.15848761796951294, 0.005759235471487045, -0.05225745216012001, -0.05274975299835205, -0.02561980113387108, -0.044041525572538376, -0.04756252467632294, 0.12820927798748016, 0.22180987894535065, -0.031032932922244072, -0.0030736145563423634, -0.05981820821762085, 0.019438501447439194, 0.06280802190303802, 0.03888566046953201, -0.05669305473566055, -0.25345441699028015, -0.0005731135024689138, 0.09300336986780167, -0.011422841809689999, -0.2805338203907013, -0.09892770648002625, 0.009529856964945793, -0.04487624019384384, -0.09818173944950104, 0.08877147734165192, 0.07851417362689972, 0.057035110890865326, -0.051057592034339905, -0.0773637443780899, -0.057304684072732925, 0.1693039834499359, -0.14952437579631805, -0.07335790991783142 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # tiny-mbart-length-96-learning_rate-2e-05-weight_decay-0.01-finetuned-en-to-ro This model is a fine-tuned version of [sshleifer/tiny-mbart](https://huggingface.co/sshleifer/tiny-mbart) on the wmt16_en_ro_pre_processed dataset. It achieves the following results on the evaluation set: - Loss: 8.5137 - Bleu: 0.0 - Gen Len: 20.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:----:|:-------:| | 8.2817 | 1.0 | 76290 | 8.5137 | 0.0 | 20.0 | ### Framework versions - Transformers 4.12.5 - Pytorch 1.10.0+cu102 - Datasets 1.15.1 - Tokenizers 0.10.3
{"tags": ["generated_from_trainer"], "datasets": ["wmt16_en_ro_pre_processed"], "metrics": ["bleu"], "model-index": [{"name": "tiny-mbart-length-96-learning_rate-2e-05-weight_decay-0.01-finetuned-en-to-ro", "results": [{"task": {"type": "text2text-generation", "name": "Sequence-to-sequence Language Modeling"}, "dataset": {"name": "wmt16_en_ro_pre_processed", "type": "wmt16_en_ro_pre_processed", "args": "enro"}, "metrics": [{"type": "bleu", "value": 0.0, "name": "Bleu"}]}]}]}
text2text-generation
ffsouza/tiny-mbart-length-96-learning_rate-2e-05-weight_decay-0.01-finetuned-en-to-ro
[ "transformers", "pytorch", "tensorboard", "mbart", "text2text-generation", "generated_from_trainer", "dataset:wmt16_en_ro_pre_processed", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #mbart #text2text-generation #generated_from_trainer #dataset-wmt16_en_ro_pre_processed #model-index #autotrain_compatible #endpoints_compatible #region-us
tiny-mbart-length-96-learning\_rate-2e-05-weight\_decay-0.01-finetuned-en-to-ro =============================================================================== This model is a fine-tuned version of sshleifer/tiny-mbart on the wmt16\_en\_ro\_pre\_processed dataset. It achieves the following results on the evaluation set: * Loss: 8.5137 * Bleu: 0.0 * Gen Len: 20.0 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 8 * eval\_batch\_size: 8 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 1 * mixed\_precision\_training: Native AMP ### Training results ### Framework versions * Transformers 4.12.5 * Pytorch 1.10.0+cu102 * Datasets 1.15.1 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 1\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.12.5\n* Pytorch 1.10.0+cu102\n* Datasets 1.15.1\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #mbart #text2text-generation #generated_from_trainer #dataset-wmt16_en_ro_pre_processed #model-index #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 1\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.12.5\n* Pytorch 1.10.0+cu102\n* Datasets 1.15.1\n* Tokenizers 0.10.3" ]
[ 70, 113, 4, 33 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #mbart #text2text-generation #generated_from_trainer #dataset-wmt16_en_ro_pre_processed #model-index #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 1\n* mixed\\_precision\\_training: Native AMP### Training results### Framework versions\n\n\n* Transformers 4.12.5\n* Pytorch 1.10.0+cu102\n* Datasets 1.15.1\n* Tokenizers 0.10.3" ]
[ -0.09897331148386002, 0.06212788075208664, -0.003706732066348195, 0.09771396219730377, 0.12977059185504913, 0.016780540347099304, 0.14437679946422577, 0.14073237776756287, -0.08298103511333466, 0.062452223151922226, 0.1347084641456604, 0.12738986313343048, 0.033955857157707214, 0.1455448418855667, -0.061345331370830536, -0.2700382173061371, 0.015838416293263435, 0.04176711663603783, -0.020830843597650528, 0.13514454662799835, 0.08256837725639343, -0.1272425651550293, 0.09110759943723679, 0.012491918168962002, -0.17030619084835052, 0.004715313669294119, 0.007411223370581865, -0.06403713673353195, 0.11829172819852829, 0.021498162299394608, 0.11776174604892731, 0.02810792811214924, 0.07449494302272797, -0.17686888575553894, 0.010149477049708366, 0.05981271713972092, 0.012346141040325165, 0.09417496621608734, 0.05924791470170021, -0.025981128215789795, 0.13035725057125092, -0.07199026644229889, 0.06958475708961487, 0.026622101664543152, -0.13616736233234406, -0.2300657033920288, -0.07671408355236053, 0.03188447654247284, 0.06817036122083664, 0.09032867103815079, -0.018115881830453873, 0.13553471863269806, -0.05925557389855385, 0.10849904268980026, 0.2665161192417145, -0.2656686007976532, -0.0680430456995964, 0.0003758948005270213, 0.036514852195978165, 0.08781422674655914, -0.09227053076028824, -0.021631114184856415, 0.0399169959127903, 0.04925042763352394, 0.12586063146591187, -0.014902619644999504, -0.019858496263623238, -0.006383994594216347, -0.14112256467342377, -0.04904001206159592, 0.1369747668504715, 0.01968200132250786, -0.03747319057583809, -0.053346987813711166, -0.08219780772924423, -0.19726026058197021, -0.03892681375145912, -0.005787925329059362, 0.03019120916724205, -0.032652173191308975, -0.0971122458577156, -0.02164529263973236, -0.08096976578235626, -0.07066786289215088, -0.044155098497867584, 0.1711454838514328, 0.04740401729941368, 0.013811664655804634, -0.059161365032196045, 0.09809694439172745, -0.040094006806612015, -0.1551884561777115, 0.0017892863834276795, 0.015752552077174187, 0.008973302319645882, -0.03354664519429207, -0.052260126918554306, -0.08670564740896225, -0.00891318079084158, 0.15838342905044556, -0.09441167861223221, 0.07004296779632568, -0.0007745604962110519, 0.033766698092222214, -0.08887085318565369, 0.17045439779758453, -0.005641345400363207, -0.022173307836055756, -0.008819859474897385, 0.07767505198717117, 0.024242892861366272, -0.03651906177401543, -0.1008463054895401, 0.015505928546190262, 0.10183527320623398, 0.013532215729355812, -0.058871980756521225, 0.058584168553352356, -0.04463495686650276, -0.028801249340176582, 0.003722079796716571, -0.10512274503707886, 0.03360525518655777, 0.00046991228009574115, -0.07601293921470642, 0.005893405992537737, 0.020226383581757545, 0.001245943596586585, -0.027393624186515808, 0.11483702808618546, -0.09088370203971863, 0.028041165322065353, -0.09183994680643082, -0.13952599465847015, 0.008919195272028446, -0.10776178538799286, -0.004726531449705362, -0.08515720814466476, -0.16538454592227936, -0.018863758072257042, 0.04859016463160515, -0.04007485881447792, -0.02362024039030075, -0.05925755202770233, -0.07198629528284073, 0.04349669814109802, -0.005864326376467943, 0.09406362473964691, -0.05822135880589485, 0.0967564806342125, 0.0523277223110199, 0.08290351182222366, -0.03045186772942543, 0.052985984832048416, -0.0939209833741188, 0.030807625502347946, -0.189560204744339, 0.055618081241846085, -0.04160178825259209, 0.052005816251039505, -0.09559907764196396, -0.1049751415848732, -0.021989313885569572, -0.005252784583717585, 0.09694705158472061, 0.10337795317173004, -0.16564467549324036, -0.09803105890750885, 0.19548283517360687, -0.09156331419944763, -0.08803698420524597, 0.13098502159118652, -0.05640183389186859, 0.03229216858744621, 0.05906382203102112, 0.19082733988761902, 0.053000107407569885, -0.09028912335634232, 0.0008257119916379452, -0.036213260143995285, 0.06710461527109146, -0.01768403686583042, 0.07082512229681015, -0.007854596711695194, 0.03042711690068245, 0.01279536448419094, 0.011400350369513035, 0.022588388994336128, -0.1027488186955452, -0.08268097788095474, -0.04528224095702171, -0.07259701937437057, 0.05388937518000603, 0.04641779884696007, 0.06711675971746445, -0.12081582099199295, -0.10754842311143875, 0.03710031136870384, 0.07944260537624359, -0.07615503668785095, 0.04221436008810997, -0.08097509294748306, 0.07488633692264557, -0.057539910078048706, -0.011388523504137993, -0.18591858446598053, -0.008659601211547852, 0.027429502457380295, -0.005654398817569017, 0.02947145700454712, -0.01144387200474739, 0.08002542704343796, 0.07656674832105637, -0.040178120136260986, -0.025620529428124428, -0.050042133778333664, -0.0133230434730649, -0.12913113832473755, -0.19846084713935852, -0.03727271035313606, -0.031159045174717903, 0.10351687669754028, -0.1881095916032791, 0.049517884850502014, 0.032958611845970154, 0.09978260099887848, 0.03585890308022499, -0.03247595950961113, -0.03661888837814331, 0.08518461138010025, -0.0468377061188221, -0.04949519410729408, 0.06455367803573608, -0.002717884723097086, -0.09404245018959045, -0.036270011216402054, -0.1606486737728119, 0.12960852682590485, 0.12691175937652588, -0.07250460237264633, -0.0801360234618187, -0.005777307320386171, -0.05533416569232941, -0.027757564559578896, -0.04621627554297447, 0.008728882297873497, 0.18741783499717712, 0.014111834578216076, 0.1541779339313507, -0.08541134744882584, -0.04517417773604393, 0.03729621693491936, -0.032241497188806534, 0.011563410982489586, 0.12550711631774902, 0.08346886187791824, -0.07943731546401978, 0.1286662369966507, 0.15001778304576874, -0.07589004933834076, 0.16245101392269135, -0.0276210755109787, -0.07903272658586502, -0.02905009686946869, -0.02359064482152462, 0.008488981984555721, 0.08919837325811386, -0.14964929223060608, -0.020823676139116287, 0.02298814244568348, 0.0323663093149662, 0.019109414890408516, -0.20615029335021973, -0.008192394860088825, 0.05286870524287224, -0.04676259681582451, -0.03564172238111496, -0.006425959523767233, 0.01712467335164547, 0.10805532336235046, 0.014356794767081738, -0.055772826075553894, 0.01912580616772175, 0.0013025213265791535, -0.07421378046274185, 0.19140633940696716, -0.08041026443243027, -0.15355464816093445, -0.12810978293418884, -0.07750896364450455, -0.05934322997927666, 0.007653649430721998, 0.07414048165082932, -0.10382970422506332, -0.0303182415664196, -0.08576316386461258, 0.04537983611226082, -0.026873646304011345, 0.035240061581134796, 0.03577860817313194, -0.012945204973220825, 0.05770459026098251, -0.11058571189641953, -0.026673320680856705, -0.042492855340242386, -0.047141339629888535, 0.057113975286483765, 0.019417457282543182, 0.11496564000844955, 0.13916468620300293, -0.025600196793675423, 0.03728015720844269, -0.029960913583636284, 0.23755085468292236, -0.06917169690132141, -0.02159510925412178, 0.1374811828136444, -0.013543147593736649, 0.07307475060224533, 0.11251846700906754, 0.06206585466861725, -0.08854836970567703, 0.002491636434569955, 0.03828795999288559, -0.05313871055841446, -0.21302050352096558, -0.025031443685293198, -0.046295635402202606, 0.006638544145971537, 0.11425517499446869, 0.023960055783391, 0.03596076741814613, 0.06408103555440903, 0.013804965652525425, 0.06680312752723694, -0.027523597702383995, 0.09577387571334839, 0.10529199987649918, 0.05187077075242996, 0.1472768932580948, -0.03736725449562073, -0.04750921204686165, 0.047170549631118774, -0.014692303724586964, 0.2279309183359146, 0.00916081853210926, 0.16695517301559448, 0.04793957248330116, 0.1477092206478119, 0.028381098061800003, 0.06994063407182693, -0.01023856457322836, -0.022295773029327393, -0.01703610084950924, -0.04907051846385002, -0.047272372990846634, 0.024296307936310768, -0.06058097630739212, 0.057248249650001526, -0.1365516036748886, 0.022970369085669518, 0.04555764049291611, 0.2618778944015503, 0.03172305226325989, -0.3472556471824646, -0.1002122238278389, 0.005614013411104679, -0.04552006348967552, -0.01979408599436283, 0.025378236547112465, 0.09719720482826233, -0.08744892477989197, 0.05507215857505798, -0.07326015084981918, 0.1096811443567276, -0.05308644473552704, 0.052249111235141754, 0.047453828155994415, 0.11214492470026016, -0.014100826345384121, 0.05030013993382454, -0.288224995136261, 0.2722267210483551, 0.019022956490516663, 0.0682285949587822, -0.07044826447963715, 0.0049875411204993725, 0.02197965979576111, 0.03519957885146141, 0.05684145539999008, -0.02115144208073616, -0.09044095128774643, -0.19563722610473633, -0.07211947441101074, 0.02061229944229126, 0.12921065092086792, -0.03277742862701416, 0.12908430397510529, -0.028881454840302467, 0.013250868767499924, 0.05412276089191437, -0.02039189450442791, -0.07947266101837158, -0.09611770510673523, 0.014761912636458874, 0.0392737090587616, -0.03864405304193497, -0.06719017773866653, -0.10296200960874557, -0.05826228857040405, 0.1507227122783661, -0.023013252764940262, -0.049378182739019394, -0.1265472024679184, 0.060623038560152054, 0.08652881532907486, -0.09682231396436691, 0.019612397998571396, -0.00677607674151659, 0.10144510120153427, 0.000033204618375748396, -0.06559253484010696, 0.11147180944681168, -0.06208471208810806, -0.1905837208032608, -0.05349297076463699, 0.12378795444965363, 0.03527543693780899, 0.06882178038358688, -0.021461280062794685, 0.031822413206100464, -0.03452833741903305, -0.08555588126182556, 0.03168082982301712, 0.013114294037222862, 0.042442917823791504, 0.005525163374841213, -0.032829780131578445, 0.035109858959913254, -0.06799621134996414, -0.023313008248806, 0.16705676913261414, 0.253177285194397, -0.08621221035718918, 0.0457674004137516, 0.05577586591243744, -0.06555614620447159, -0.17025873064994812, 0.0317862369120121, 0.06199970468878746, 0.005771013908088207, 0.006295657251030207, -0.19181957840919495, 0.054887887090444565, 0.10014249384403229, -0.005545844789594412, 0.09365241229534149, -0.33491507172584534, -0.13188865780830383, 0.09214653074741364, 0.13055038452148438, 0.11579543352127075, -0.15492169559001923, -0.03848681598901749, -0.024924738332629204, -0.1326456367969513, 0.1070517748594284, -0.09742625802755356, 0.12233110517263412, -0.034661851823329926, 0.1080123782157898, 0.01697089523077011, -0.05630628019571304, 0.12142326682806015, 0.005665711592882872, 0.0844845324754715, -0.06153843179345131, -0.0003355967055540532, 0.05488954856991768, -0.06049172207713127, 0.025878962129354477, -0.08941352367401123, 0.02535502053797245, -0.0977565199136734, -0.030583426356315613, -0.07521884143352509, 0.016741951927542686, -0.03561945632100105, -0.055432043969631195, -0.03732994943857193, 0.003659334499388933, 0.05146348103880882, -0.015113680623471737, 0.16142582893371582, -0.008942115120589733, 0.16667746007442474, 0.13008330762386322, 0.09046386927366257, -0.08709797263145447, -0.05286401882767677, 0.007389794569462538, -0.017894109711050987, 0.0669548436999321, -0.1501956284046173, 0.03140188381075859, 0.14251182973384857, 0.022716309875249863, 0.14328432083129883, 0.08243858814239502, -0.04297526553273201, 0.02871651202440262, 0.06030705198645592, -0.16529060900211334, -0.10059066116809845, -0.011212041601538658, -0.008844096213579178, -0.12138297408819199, 0.05150214955210686, 0.13593029975891113, -0.06492121517658234, -0.007893775589764118, -0.013955570757389069, 0.01040569692850113, -0.03322751075029373, 0.19329720735549927, 0.03833417966961861, 0.056444793939590454, -0.10130307823419571, 0.07405608147382736, 0.04188966378569603, -0.09132052212953568, 0.03690518066287041, 0.11921681463718414, -0.07762625068426132, -0.027952129021286964, 0.01797192543745041, 0.19576384127140045, -0.07224312424659729, -0.036419034004211426, -0.15915817022323608, -0.11084987223148346, 0.09304860234260559, 0.17858274281024933, 0.07654240727424622, 0.001896882662549615, -0.055322859436273575, 0.023635530844330788, -0.1283886432647705, 0.08650189638137817, 0.05727207288146019, 0.0689699649810791, -0.11763856559991837, 0.16589808464050293, 0.0030598528683185577, 0.028483815491199493, -0.019085491076111794, 0.010289139114320278, -0.10780223459005356, 0.010127787478268147, -0.12655365467071533, -0.016169201582670212, -0.04053298383951187, -0.008490345440804958, -0.007096101995557547, -0.05092569813132286, -0.06673354655504227, 0.01096253376454115, -0.11350123584270477, -0.03338075056672096, 0.009239702485501766, 0.03322991728782654, -0.11520674079656601, -0.009718482382595539, 0.026040710508823395, -0.0786505863070488, 0.06999355554580688, 0.05358589068055153, 0.0039702593348920345, 0.037376660853624344, -0.09264218062162399, 0.02270856872200966, 0.04235853627324104, -0.0039061398711055517, 0.05572621151804924, -0.07320421189069748, -0.007380381226539612, -0.018949760124087334, 0.04972876235842705, 0.025697629898786545, 0.08340973407030106, -0.12937885522842407, 0.028631607070565224, -0.0007026239763945341, -0.07893063873052597, -0.07002419978380203, 0.05332111567258835, 0.07876299321651459, 0.029989425092935562, 0.17034710943698883, -0.08417264372110367, 0.05757184326648712, -0.2092028260231018, 0.001348562422208488, 0.014885411597788334, -0.10898508131504059, -0.07022164762020111, -0.06361772865056992, 0.06974434852600098, -0.06662110984325409, 0.11821982264518738, 0.0203534048050642, 0.04339184612035751, 0.037538718432188034, -0.03650867938995361, -0.02670113369822502, 0.003734608180820942, 0.1751812845468521, 0.0519544743001461, -0.04838751628994942, 0.05552903935313225, 0.02939252369105816, 0.10127724707126617, 0.12266045063734055, 0.21777822077274323, 0.14708946645259857, 0.03894691914319992, 0.09670494496822357, 0.025432433933019638, -0.04332306981086731, -0.1820172220468521, 0.05073332414031029, -0.02292722649872303, 0.10894192010164261, -0.014743849635124207, 0.19512467086315155, 0.11514171957969666, -0.15208296477794647, 0.04726603254675865, -0.022747209295630455, -0.07941539585590363, -0.13579393923282623, -0.07232115417718887, -0.0922468900680542, -0.13861379027366638, 0.004212976433336735, -0.12077376246452332, 0.05685197934508324, 0.07082255184650421, 0.02051025815308094, 0.0013020924525335431, 0.14730580151081085, 0.014355231076478958, 0.00989349652081728, 0.06532898545265198, 0.003620221745222807, -0.018465198576450348, -0.07471563667058945, -0.08226261287927628, 0.010024570859968662, -0.016671497374773026, 0.04766174405813217, -0.02732744812965393, -0.053787775337696075, 0.02179073914885521, -0.019136536866426468, -0.11611424386501312, 0.00983885582536459, 0.021756017580628395, 0.06563956290483475, 0.05766556039452553, 0.005821282975375652, -0.0004568534786812961, -0.02220609225332737, 0.2086041420698166, -0.08150071650743484, -0.0535026453435421, -0.10256025940179825, 0.24900439381599426, 0.03225886821746826, -0.0135867390781641, 0.022436169907450676, -0.06903573125600815, -0.009539050050079823, 0.2153550088405609, 0.18664447963237762, -0.05461517721414566, 0.002710554050281644, -0.0009269415168091655, -0.00434150779619813, -0.007245565298944712, 0.0899820327758789, 0.10326799005270004, 0.05670422315597534, -0.07672057300806046, -0.01859072782099247, -0.05025395378470421, -0.01381755992770195, -0.04435155168175697, 0.0676790252327919, 0.03190368413925171, 0.009576192125678062, -0.04894528165459633, 0.044215984642505646, -0.05627136304974556, -0.08281057327985764, 0.03792152926325798, -0.21512971818447113, -0.14885850250720978, -0.0048071835190057755, 0.09268360584974289, 0.004511278122663498, 0.07173781841993332, -0.013976434245705605, -0.018985044211149216, 0.08164069056510925, -0.014499678276479244, -0.0801888257265091, -0.0925775021314621, 0.10104835778474808, -0.12905697524547577, 0.18619291484355927, -0.04216248542070389, 0.03285389021039009, 0.1279362589120865, 0.04956747218966484, -0.07652949541807175, 0.0697784274816513, 0.048110898584127426, -0.059095364063978195, -0.001592571148648858, 0.15283943712711334, -0.03610047698020935, 0.09230336546897888, 0.05328521504998207, -0.15848761796951294, 0.005759235471487045, -0.05225745216012001, -0.05274975299835205, -0.02561980113387108, -0.044041525572538376, -0.04756252467632294, 0.12820927798748016, 0.22180987894535065, -0.031032932922244072, -0.0030736145563423634, -0.05981820821762085, 0.019438501447439194, 0.06280802190303802, 0.03888566046953201, -0.05669305473566055, -0.25345441699028015, -0.0005731135024689138, 0.09300336986780167, -0.011422841809689999, -0.2805338203907013, -0.09892770648002625, 0.009529856964945793, -0.04487624019384384, -0.09818173944950104, 0.08877147734165192, 0.07851417362689972, 0.057035110890865326, -0.051057592034339905, -0.0773637443780899, -0.057304684072732925, 0.1693039834499359, -0.14952437579631805, -0.07335790991783142 ]
null
null
transformers
T5-small for QA --- [Google's T5-small](https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html) pre-trained on the [C4](https://huggingface.co/datasets/c4) dataset, fine-tuned for Question-Answering on [SQuAD v2](https://huggingface.co/datasets/squad_v2) with the following hyperparameters: ``` optimizer=adamw_hf learning_rate=3e-5 adam_beta1=0.9 adam_beta2=0.999 adam_epsilon=1e-08 num_train_epochs=2 per_device_train_batch_size=12 ``` Usage --- The input [context and question] has to be prepared in a specific way as follows: ```python from transformers import pipeline def prep_input(_context, _question): return " ".join(["question:", _question.strip(), "context:", _context.strip()]) t5qa = pipeline("text2text-generation", "fgaim/t5-small-squad-v2") context = """ Oxygen is a chemical element with symbol O and atomic number 8. It is a member of the chalcogen group on the periodic table and is a highly reactive nonmetal and oxidizing agent that readily forms compounds (notably oxides) with most elements. By mass, oxygen is the third-most abundant element in the universe, after hydrogen and helium. At standard temperature and pressure, two atoms of the element bind to form dioxygen, a colorless and odorless diatomic gas with the formula O. """ t5qa(prep_input(context, "How many atoms combine to form dioxygen?")) # [{'generated_text': 'two'}] t5qa(prep_input(context, "What element makes up almost half of the earth's crust by mass?")) # [{'generated_text': 'oxygen'}] t5qa(prep_input(context, "What are the most abundent elements of the universe by mass?")) # [{'generated_text': 'hydrogen and helium'}] ```
{"language": ["en"], "license": "apache-2.0", "tags": ["text2text-generation"], "datasets": ["c4", "squad"], "widget": [{"text": "question: What is the atomic number for oxygen? context: Oxygen is a chemical element with symbol O and atomic number 8."}, {"text": "question: What is the chemical symbol of Oxygen? context: Oxygen is a chemical element with symbol O and atomic number 8."}]}
text2text-generation
fgaim/t5-small-squad-v2
[ "transformers", "pytorch", "t5", "text2text-generation", "en", "dataset:c4", "dataset:squad", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #t5 #text2text-generation #en #dataset-c4 #dataset-squad #license-apache-2.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
T5-small for QA --- Google's T5-small pre-trained on the C4 dataset, fine-tuned for Question-Answering on SQuAD v2 with the following hyperparameters: Usage --- The input [context and question] has to be prepared in a specific way as follows:
[]
[ "TAGS\n#transformers #pytorch #t5 #text2text-generation #en #dataset-c4 #dataset-squad #license-apache-2.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 70 ]
[ "passage: TAGS\n#transformers #pytorch #t5 #text2text-generation #en #dataset-c4 #dataset-squad #license-apache-2.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ -0.05345983803272247, 0.10568087548017502, -0.00505443662405014, 0.05532882735133171, 0.13051675260066986, 0.03043091855943203, 0.13740496337413788, 0.14787086844444275, -0.04366079717874527, -0.05500632897019386, 0.1338426172733307, 0.2094319462776184, 0.027787676081061363, 0.08085139095783234, -0.08710924535989761, -0.20386067032814026, 0.043814536184072495, 0.04766424745321274, -0.029208501800894737, 0.12170512229204178, 0.12090525776147842, -0.03662335127592087, 0.08804409950971603, -0.026242563501000404, -0.11717851459980011, 0.016621598973870277, 0.057438090443611145, -0.11736539751291275, 0.11327894032001495, 0.04229316860437393, 0.05775456130504608, 0.06974613666534424, -0.012776787392795086, -0.143752321600914, 0.018343038856983185, 0.03215142339468002, -0.0733560100197792, 0.07049296051263809, 0.07319813966751099, -0.027612341567873955, 0.10141060501337051, 0.0018257158808410168, -0.02133934572339058, 0.06891316920518875, -0.10063778609037399, -0.08271777629852295, -0.08639390021562576, 0.040912628173828125, 0.061447594314813614, 0.09826813638210297, 0.01880824938416481, 0.14126518368721008, -0.07870922982692719, 0.10432017594575882, 0.11981193721294403, -0.36684465408325195, 0.012469503097236156, 0.046823203563690186, 0.04361055791378021, 0.05921817943453789, 0.00013204281276557595, 0.02002066560089588, 0.03869294747710228, 0.04562465846538544, 0.0640394538640976, -0.06218167766928673, -0.23411555588245392, 0.04932740703225136, -0.07711897790431976, -0.07842297852039337, 0.3279387652873993, -0.027857905253767967, 0.041196152567863464, -0.01708342880010605, -0.09481198340654373, -0.022549021989107132, 0.005921103525906801, 0.028200877830386162, -0.0014769650297239423, 0.06830842792987823, 0.03357566520571709, -0.05458315461874008, -0.15991637110710144, -0.01136728748679161, -0.19408616423606873, -0.028278440237045288, 0.0020873816683888435, 0.08098997920751572, -0.1856805831193924, 0.07821357250213623, 0.05483387038111687, -0.10947632044553757, 0.022918015718460083, -0.06489526480436325, 0.04200112074613571, 0.0027785729616880417, -0.06286313384771347, -0.0822787806391716, 0.1250874102115631, 0.14868487417697906, 0.0141532514244318, -0.012895802035927773, -0.08061850070953369, 0.0790167897939682, -0.004690379835665226, 0.04087679460644722, -0.02337532676756382, -0.03542071208357811, 0.0969942957162857, -0.11183720827102661, 0.050339460372924805, -0.03076629713177681, -0.13389630615711212, -0.06895110756158829, 0.040472112596035004, 0.10146418958902359, 0.0747864693403244, 0.08990323543548584, -0.03516437113285065, -0.019070293754339218, 0.08906194567680359, -0.08682312071323395, -0.03079874813556671, 0.00018275700858794153, 0.007220097351819277, 0.08411147445440292, 0.07224323600530624, 0.028041472658514977, -0.1340782791376114, 0.007627222221344709, -0.05804084613919258, -0.04107941314578056, -0.00943369884043932, -0.05170980095863342, 0.07913379371166229, -0.09636251628398895, 0.01051581371575594, -0.14107263088226318, -0.2049150913953781, 0.0327996164560318, 0.0457146055996418, -0.006047205068171024, -0.11255916208028793, -0.0005784544046036899, -0.04905834048986435, 0.041430771350860596, -0.08398523181676865, 0.052264824509620667, -0.07082121819257736, 0.07979270070791245, -0.07769239693880081, 0.05433599278330803, -0.17641472816467285, 0.06513693928718567, -0.12656483054161072, -0.027300922200083733, -0.012362114153802395, 0.040052734315395355, -0.011794175021350384, 0.11285450309515, -0.07463262975215912, -0.03289294242858887, 0.021740050986409187, -0.010606211610138416, -0.01761700212955475, 0.15745854377746582, -0.15556441247463226, -0.04250507801771164, 0.2208091914653778, -0.09836806356906891, -0.23069247603416443, 0.07515447586774826, 0.022026557475328445, 0.04781533032655716, 0.07671692222356796, 0.1356850117444992, 0.04811748117208481, -0.041248589754104614, 0.04122230410575867, 0.11752404272556305, -0.08329389244318008, -0.1824755221605301, 0.0581192709505558, -0.03401731327176094, -0.052367113530635834, 0.05235310643911362, 0.031965821981430054, 0.07292594760656357, -0.023272978141903877, -0.07573074102401733, -0.08212395012378693, -0.04549214616417885, 0.037960756570100784, -0.007895436137914658, 0.05386374145746231, -0.05530682951211929, -0.012904038652777672, -0.020291080698370934, 0.016126995906233788, -0.009283575229346752, 0.06052872911095619, -0.026730969548225403, 0.08420714735984802, -0.009389802813529968, 0.03901233524084091, -0.15336112678050995, -0.06852497160434723, -0.009379466064274311, 0.12147453427314758, -0.004455822519958019, 0.06254756450653076, 0.027484655380249023, -0.036739908158779144, -0.010762820020318031, 0.0013359748991206288, 0.12923452258110046, 0.02501612901687622, -0.04721728712320328, -0.1275508552789688, 0.025248469784855843, -0.032482877373695374, 0.07463600486516953, -0.05067456141114235, 0.030085789039731026, 0.023078424856066704, 0.10295096039772034, -0.022075733169913292, 0.08177642524242401, -0.0030819515231996775, -0.017763236537575722, -0.08279404789209366, -0.010013936087489128, 0.10551047325134277, 0.049563221633434296, -0.07751551270484924, 0.18970520794391632, -0.0853591188788414, 0.17438526451587677, 0.1874798834323883, -0.17353211343288422, 0.05381235480308533, -0.046288877725601196, -0.04943305253982544, -0.016834061592817307, 0.02485303208231926, -0.007831333205103874, -0.002542866161093116, 0.017258772626519203, 0.16675524413585663, -0.07141392678022385, -0.03900257498025894, 0.01684667356312275, -0.054889511317014694, 0.004674592521041632, 0.04095830023288727, 0.12028985470533371, -0.17085491120815277, 0.1642731875181198, 0.23755857348442078, 0.01700017973780632, 0.12201204895973206, -0.06598460674285889, -0.03964969888329506, 0.04869042709469795, -0.01194783579558134, -0.025357335805892944, -0.027440661564469337, -0.14297789335250854, 0.03677377477288246, 0.12319047749042511, 0.020973268896341324, 0.056151311844587326, -0.12005440890789032, -0.030398089438676834, -0.016415512189269066, -0.0454675517976284, -0.04702261835336685, 0.07405366748571396, 0.04030810296535492, 0.13876307010650635, -0.0411590039730072, -0.03790390491485596, 0.1393403857946396, 0.009644870646297932, -0.12444514036178589, 0.18122676014900208, -0.15748797357082367, -0.27451464533805847, -0.11935658007860184, -0.11885371059179306, -0.06624694168567657, 0.0015400908887386322, 0.13776612281799316, -0.04858090355992317, -0.033626943826675415, -0.02380547486245632, -0.017695076763629913, -0.004563175607472658, 0.02120908349752426, -0.05906909331679344, 0.05312487110495567, -0.00659610191360116, -0.12359163165092468, -0.04176473245024681, 0.019371116533875465, -0.05850677192211151, 0.13417749106884003, -0.09307930618524551, 0.06988215446472168, 0.15168148279190063, -0.000999167561531067, 0.030184442177414894, -0.05170413479208946, 0.1592029482126236, -0.013987323269248009, 0.043962109833955765, 0.241371750831604, -0.023736730217933655, 0.06232695281505585, 0.13527053594589233, -0.006176834460347891, -0.04448984935879707, 0.026821833103895187, -0.04862428456544876, -0.07154827564954758, -0.32359808683395386, -0.12125680595636368, -0.11661204695701599, 0.07604733109474182, 0.05002399533987045, 0.05472854524850845, 0.11331255733966827, 0.07860710471868515, -0.03138696774840355, 0.035358719527721405, 0.0040317075327038765, 0.07060986757278442, 0.2396107017993927, -0.008764720521867275, 0.11310236901044846, -0.10611683130264282, -0.027510907500982285, 0.12155739963054657, 0.1024225503206253, 0.13264821469783783, 0.034770675003528595, 0.09589331597089767, 0.06741392612457275, 0.1527475267648697, 0.05683586373925209, 0.1557532399892807, 0.0409485325217247, 0.02445300854742527, -0.022577621042728424, -0.04610469937324524, -0.048234544694423676, 0.02197021245956421, -0.052414294332265854, -0.11358509957790375, -0.07277557253837585, -0.04815904423594475, 0.06861992925405502, 0.20685644447803497, 0.07525049149990082, -0.22696629166603088, -0.0063626631163060665, 0.05059933662414551, 0.0019323966698721051, -0.07810638099908829, 0.07710792869329453, -0.019919419661164284, -0.1119743287563324, 0.10573281347751617, -0.050533998757600784, 0.11736007779836655, -0.00029188152984716, 0.048921406269073486, 0.008496959693729877, -0.07744432985782623, 0.04607146233320236, 0.1293509602546692, -0.3238925337791443, 0.19264645874500275, -0.00809368398040533, -0.041886553168296814, -0.12708261609077454, 0.013299292884767056, -0.0014316111337393522, 0.14872172474861145, 0.11406237632036209, 0.015334092080593109, -0.04487079381942749, 0.02440826967358589, -0.055935055017471313, 0.05373751372098923, 0.026158606633543968, 0.019431471824645996, 0.0002377327182330191, -0.05353475734591484, -0.012376819737255573, 0.014685184694826603, 0.05171822011470795, -0.05115216597914696, -0.16647377610206604, 0.058212198317050934, 0.09499386698007584, 0.019529182463884354, -0.026057766750454903, -0.03287391737103462, -0.05757967755198479, 0.21608611941337585, -0.07725855708122253, -0.12276621162891388, -0.12048564106225967, -0.051812659949064255, 0.06365851312875748, -0.06510531902313232, 0.05838220193982124, -0.07280261069536209, 0.01743384078145027, -0.04303588718175888, -0.2262369692325592, 0.09741457551717758, -0.11224821209907532, -0.05822809785604477, -0.038560736924409866, 0.14906547963619232, -0.08941047638654709, 0.013484225608408451, 0.04090148210525513, -0.0040292320773005486, -0.08392712473869324, -0.07945062220096588, -0.01891239546239376, 0.013553031720221043, 0.10027100890874863, 0.0017496306682005525, -0.10117452591657639, -0.09395895898342133, 0.002038542414084077, -0.04409601166844368, 0.29324933886528015, 0.11451919376850128, -0.07842564582824707, 0.19918027520179749, 0.11886723339557648, -0.09441231936216354, -0.27940693497657776, -0.12979844212532043, -0.09288650006055832, -0.05837314948439598, -0.0068786186166107655, -0.15482689440250397, 0.10647406429052353, 0.025070538744330406, -0.038298286497592926, 0.07897288352251053, -0.2561172842979431, -0.07992775738239288, 0.15573373436927795, 0.002567727817222476, 0.24263262748718262, -0.13063541054725647, -0.0754687488079071, -0.08548933267593384, -0.19905658066272736, 0.2248881608247757, -0.15361393988132477, 0.07315415889024734, -0.041709158569574356, 0.07267739623785019, 0.006761000957340002, -0.05380742624402046, 0.05924082547426224, 0.03133460879325867, -0.0031690674368292093, -0.11540553718805313, 0.027718733996152878, 0.1453484296798706, -0.022239159792661667, 0.08441323786973953, -0.14468522369861603, 0.06477716565132141, -0.1112036481499672, -0.00565250962972641, -0.08980093896389008, 0.0642915666103363, -0.007449374999850988, -0.07229913771152496, -0.01491532102227211, -0.05890559405088425, 0.07206031680107117, -0.02107320725917816, 0.15838396549224854, 0.022382279857993126, 0.1039278581738472, 0.18732121586799622, 0.1225573718547821, -0.11952974647283554, 0.008738203905522823, -0.09610188752412796, -0.08177526295185089, 0.032624971121549606, -0.15780769288539886, 0.04640304297208786, 0.11400435119867325, -0.03909176215529442, 0.060373228043317795, 0.08425091952085495, 0.0072616469115018845, -0.038729503750801086, 0.1241917759180069, -0.2154521942138672, 0.012949822470545769, -0.040952958166599274, 0.013070622459053993, -0.015222211368381977, 0.06470012664794922, 0.16700133681297302, 0.008342220447957516, -0.03602886199951172, -0.0014335460728034377, 0.0427137091755867, -0.07269590348005295, 0.08174581080675125, 0.035223692655563354, 0.012787309475243092, -0.13360339403152466, 0.11619802564382553, 0.04075046628713608, -0.1230790838599205, 0.0032606569584459066, 0.1449151188135147, -0.15911535918712616, -0.1226486936211586, 0.05386613681912422, 0.04773769527673721, -0.17670471966266632, -0.07805754244327545, -0.04449494555592537, -0.12622147798538208, 0.08678797632455826, 0.13014502823352814, 0.056632936000823975, 0.08693834394216537, -0.02156137488782406, -0.09684393554925919, -0.020669778808951378, 0.040959883481264114, -0.03549710288643837, 0.025486493483185768, -0.08870510011911392, 0.03644223511219025, -0.03207898139953613, 0.12997569143772125, -0.04326091706752777, -0.014001665636897087, -0.09377466142177582, 0.010845685377717018, -0.1761033535003662, -0.006529198493808508, -0.06435691565275192, -0.02823156863451004, -0.014087609015405178, -0.02748287096619606, -0.0441051684319973, 0.007241980638355017, -0.09157870709896088, -0.011179988272488117, -0.036411527544260025, 0.07944715023040771, -0.129007950425148, -0.03713059052824974, 0.035675179213285446, -0.0330313965678215, 0.14423337578773499, 0.09297679364681244, -0.11007247120141983, 0.09403670579195023, -0.14432375133037567, -0.1046963781118393, 0.08352164924144745, 0.04835091903805733, 0.05018264800310135, 0.01107467245310545, -0.001578575698658824, 0.12833631038665771, -0.02638852596282959, 0.03609144315123558, 0.03245405852794647, -0.10995826125144958, -0.027494411915540695, -0.03193431720137596, -0.08396662771701813, -0.05935904011130333, -0.05111448094248772, 0.08051126450300217, 0.02525661699473858, 0.1526716649532318, -0.044559627771377563, 0.06411942839622498, -0.11263013631105423, 0.007869790308177471, -0.014507410116493702, -0.13343234360218048, -0.12130085378885269, -0.0435379296541214, 0.009287938475608826, -0.029917597770690918, 0.21076619625091553, 0.018970979377627373, -0.004773318767547607, 0.03932749107480049, 0.10783334076404572, 0.0016655809013172984, 0.005768088158220053, 0.26750215888023376, 0.03725935518741608, -0.03271772712469101, -0.0682627409696579, 0.030109528452157974, -0.0015482478775084019, 0.036430057138204575, 0.17178207635879517, 0.04806717485189438, 0.036938704550266266, 0.07365690916776657, 0.027370240539312363, -0.006263221614062786, -0.08320892602205276, -0.10352130979299545, 0.014207241125404835, 0.11590565741062164, -0.004788863006979227, 0.09769170731306076, 0.13339783251285553, -0.060398899018764496, 0.019878823310136795, -0.04699467495083809, -0.04783665016293526, -0.1539652943611145, -0.1687878519296646, -0.07154340296983719, -0.0958346575498581, -0.015632404014468193, -0.10932809114456177, 0.057757068425416946, 0.07801304012537003, 0.054095372557640076, -0.07064035534858704, 0.006166325882077217, 0.03620394691824913, -0.08068116009235382, 0.035270921885967255, -0.01729642041027546, 0.03448859602212906, -0.02615215629339218, -0.0009646190446801484, -0.04192608967423439, 0.021625209599733353, -0.03399499133229256, 0.046694956719875336, 0.02696252427995205, 0.07038819044828415, -0.12012569606304169, -0.0721542164683342, -0.03509721904993057, 0.04429953917860985, 0.004608631134033203, 0.15008197724819183, 0.03642052784562111, 0.0061731799505651, 0.07878587394952774, 0.1835906058549881, -0.06943366676568985, -0.1769464910030365, -0.07352637499570847, 0.16930799186229706, 0.02472231350839138, 0.017771603539586067, 0.04351772740483284, -0.006194069515913725, -0.06318094581365585, 0.30510058999061584, 0.3075483441352844, -0.05524842068552971, 0.008766436949372292, -0.014931983314454556, 0.01538156159222126, 0.06236054375767708, 0.151315838098526, 0.11411876976490021, 0.20806197822093964, -0.06281916052103043, -0.0071946559473872185, -0.045988161116838455, 0.010091467760503292, -0.11641829460859299, 0.1124381273984909, -0.0017180906143039465, -0.09485233575105667, 0.03728106617927551, 0.10415574163198471, -0.1364545077085495, 0.09036508947610855, -0.08596701174974442, -0.11255965381860733, -0.06295010447502136, -0.0242881178855896, 0.11955910921096802, 0.015626395121216774, 0.030333828181028366, -0.03417526185512543, -0.03262335807085037, 0.13068833947181702, -0.0044299159198999405, -0.22840677201747894, 0.018291855230927467, 0.08574049919843674, -0.13177353143692017, 0.06897380948066711, 0.003649655729532242, 0.10352266579866409, 0.08574596792459488, 0.07380075007677078, -0.10944170504808426, 0.053283918648958206, 0.014102498069405556, 0.01469498872756958, 0.054178740829229355, -0.05528691038489342, -0.019455472007393837, -0.07446280121803284, 0.044797252863645554, -0.07747247070074081, 0.03423687070608139, 0.06569840013980865, -0.021732768043875694, -0.036821428686380386, 0.007820367813110352, -0.0535365492105484, 0.07263214141130447, 0.04994039610028267, -0.044121675193309784, -0.0015251453733071685, -0.09891121089458466, -0.028961101546883583, 0.015195796266198158, -0.15489205718040466, -0.0576443076133728, -0.058318935334682465, -0.05673503875732422, 0.06552955508232117, 0.022839907556772232, -0.17236779630184174, -0.0010440986370667815, -0.09831004589796066, -0.0033817733637988567, -0.1994839459657669, 0.07548601925373077, 0.08473224192857742, -0.011865517124533653, 0.003144856309518218, 0.05531148612499237, 0.007834059186279774, 0.07395582646131516, -0.1082361489534378, -0.09428982436656952 ]
null
null
transformers
# BERT Base for Tigrinya Language We pre-train a BERT base-uncased model for Tigrinya on a dataset of 40 million tokens trained for 40 epochs. This repo contains the original pre-trained Flax model that was trained on a TPU v3.8 and its corresponding PyTorch version. ## Hyperparameters The hyperparameters corresponding to the model sizes mentioned above are as follows: | Model Size | L | AH | HS | FFN | P | Seq | |------------|----|----|-----|------|------|------| | BASE | 12 | 12 | 768 | 3072 | 110M | 512 | (L = number of layers; AH = number of attention heads; HS = hidden size; FFN = feedforward network dimension; P = number of parameters; Seq = maximum sequence length.) ## Citation If you use this model in your product or research, please cite as follows: ``` @article{Fitsum2021TiPLMs, author={Fitsum Gaim and Wonsuk Yang and Jong C. Park}, title={Monolingual Pre-trained Language Models for Tigrinya}, year=2021, publisher={WiNLP 2021 at EMNLP 2021} } ```
{"language": "ti", "widget": [{"text": "\u12d3\u1255\u121a \u12f0\u1242\u12a3\u1295\u1235\u1275\u12ee [MASK] \u1265\u130d\u1265\u122a \u1270\u122b\u12a5\u12e9"}]}
fill-mask
fgaim/tibert-base
[ "transformers", "pytorch", "jax", "bert", "fill-mask", "ti", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "ti" ]
TAGS #transformers #pytorch #jax #bert #fill-mask #ti #autotrain_compatible #endpoints_compatible #has_space #region-us
BERT Base for Tigrinya Language =============================== We pre-train a BERT base-uncased model for Tigrinya on a dataset of 40 million tokens trained for 40 epochs. This repo contains the original pre-trained Flax model that was trained on a TPU v3.8 and its corresponding PyTorch version. Hyperparameters --------------- The hyperparameters corresponding to the model sizes mentioned above are as follows: (L = number of layers; AH = number of attention heads; HS = hidden size; FFN = feedforward network dimension; P = number of parameters; Seq = maximum sequence length.) If you use this model in your product or research, please cite as follows:
[]
[ "TAGS\n#transformers #pytorch #jax #bert #fill-mask #ti #autotrain_compatible #endpoints_compatible #has_space #region-us \n" ]
[ 45 ]
[ "passage: TAGS\n#transformers #pytorch #jax #bert #fill-mask #ti #autotrain_compatible #endpoints_compatible #has_space #region-us \n" ]
[ -0.018716592341661453, 0.01956140249967575, -0.006763755809515715, 0.026492532342672348, 0.0785820409655571, 0.04057798162102699, 0.08437102288007736, 0.10142290592193604, 0.08449754863977432, 0.016109289601445198, 0.16018430888652802, 0.14455920457839966, -0.03791216015815735, 0.15207906067371368, -0.03278684988617897, -0.26467347145080566, 0.05996346101164818, 0.0326806902885437, -0.09011964499950409, 0.10502596199512482, 0.061749279499053955, -0.10156816244125366, 0.07450296729803085, -0.023103389889001846, -0.1006791740655899, 0.051851291209459305, 0.04248037561774254, -0.09646754711866379, 0.12945066392421722, 0.004160339944064617, 0.20284701883792877, 0.02951415441930294, -0.05237147584557533, -0.05361330136656761, 0.0510825477540493, 0.014506814070045948, -0.07468386739492416, 0.051914241164922714, -0.008838496170938015, -0.0610814094543457, 0.01722273975610733, 0.02521018125116825, 0.026336023584008217, 0.018415464088320732, -0.17134273052215576, -0.16421590745449066, -0.018918069079518318, 0.020931238308548927, -0.0066371457651257515, 0.05240464583039284, 0.005247147288173437, 0.21583788096904755, -0.1449425369501114, 0.07656890898942947, 0.19234643876552582, -0.31402909755706787, -0.018862802535295486, 0.13257448375225067, 0.14789986610412598, -0.000621809798758477, -0.05976932495832443, 0.07593876123428345, 0.024540644139051437, 0.02034100703895092, 0.10721959173679352, -0.07208669930696487, -0.06280440837144852, 0.04178937152028084, -0.09873402118682861, -0.06086595728993416, 0.20014001429080963, -0.04482434689998627, 0.0606294609606266, 0.00890424381941557, -0.11652642488479614, -0.08941385895013809, 0.001526338397525251, -0.020502720028162003, -0.010927369818091393, 0.0344441793859005, -0.01869789883494377, -0.026253750547766685, -0.1377522349357605, 0.025431474670767784, -0.2012346088886261, 0.1988951414823532, -0.0019405186176300049, 0.0626368597149849, -0.17953753471374512, 0.04714170843362808, -0.0329873152077198, -0.12370704114437103, 0.0752863958477974, -0.08689107745885849, 0.018822094425559044, 0.008590287528932095, -0.07794550061225891, -0.018680114299058914, 0.06176329776644707, 0.1442805677652359, 0.05944770574569702, 0.020127713680267334, 0.06339091807603836, 0.11196241527795792, 0.04590009152889252, 0.07947126775979996, 0.0005888595478609204, -0.05232208967208862, 0.010710615664720535, -0.059299368411302567, 0.019802823662757874, -0.07317980378866196, -0.13297979533672333, -0.038363028317689896, 0.027443185448646545, 0.042699847370386124, 0.07725296914577484, 0.050902288407087326, -0.07364790141582489, 0.02395290695130825, 0.07047739624977112, -0.050257910043001175, 0.03840018808841705, -0.033338628709316254, 0.07773283869028091, 0.06467432528734207, 0.013354365713894367, -0.007214528042823076, 0.0427621491253376, 0.08338715136051178, -0.10666663944721222, -0.02787589840590954, -0.06823033839464188, -0.10528109967708588, 0.03726276010274887, -0.12438034266233444, 0.03198548033833504, -0.18372991681098938, -0.049737751483917236, 0.04724344611167908, 0.07081033289432526, -0.004162527155131102, -0.04001207649707794, 0.06569570302963257, -0.04266354814171791, 0.05783088877797127, -0.03967179358005524, -0.029812734574079514, -0.04984335973858833, 0.08934786170721054, -0.022119585424661636, 0.16938921809196472, -0.12796461582183838, 0.04153301939368248, -0.07582353800535202, 0.02518833614885807, -0.1328711062669754, -0.06813748925924301, -0.02829097956418991, 0.1280442476272583, 0.0225665420293808, -0.035723086446523666, -0.1540251225233078, 0.05351029708981514, -0.018545644357800484, 0.1517019271850586, -0.13946284353733063, -0.08805006742477417, 0.1928367167711258, -0.07617892324924469, -0.1313474029302597, 0.08896268159151077, 0.009487100876867771, 0.012537541799247265, 0.007844962179660797, 0.16637536883354187, -0.0040877885185182095, -0.16165992617607117, 0.03784158453345299, 0.12195698916912079, -0.0925564095377922, -0.0644633024930954, 0.06226968392729759, 0.022759070619940758, -0.06220996752381325, 0.013350841589272022, 0.08405653387308121, 0.08586704730987549, -0.0662229135632515, -0.053969595581293106, -0.025041962042450905, -0.041585635393857956, 0.1396973729133606, 0.027550213038921356, 0.11047530919313431, -0.09177426993846893, -0.05153608322143555, -0.0243193618953228, 0.010790678672492504, 0.09486427158117294, 0.0358414463698864, -0.0556003674864769, 0.1587260365486145, -0.06786973029375076, -0.010929911397397518, -0.15286991000175476, -0.10735125094652176, -0.025299852713942528, 0.07814822345972061, -0.014499715529382229, 0.21457119286060333, 0.1042620912194252, -0.05676944553852081, -0.014598025009036064, -0.011851778253912926, 0.07580394297838211, 0.048323411494493484, -0.042516887187957764, -0.11385691910982132, -0.018266024067997932, -0.09519186615943909, -0.025307541713118553, -0.022941337898373604, 0.015305832959711552, 0.014649895019829273, 0.14083227515220642, -0.0006293214973993599, 0.03038640320301056, -0.044125996530056, 0.03339936211705208, -0.05667928233742714, -0.0012783341808244586, 0.05523821711540222, -0.004058130085468292, -0.03038300760090351, 0.1830091029405594, -0.15564535558223724, 0.3778941035270691, 0.20649370551109314, -0.2701747417449951, -0.03593064844608307, 0.09442611783742905, -0.016994141042232513, 0.021418334916234016, 0.03632244095206261, -0.04158234968781471, -0.03909726068377495, -0.04156909137964249, 0.11270143836736679, -0.011414304375648499, -0.023103849962353706, 0.02510271593928337, -0.08186972141265869, -0.08455482870340347, 0.020703870803117752, 0.07576467096805573, -0.13830676674842834, 0.20100460946559906, 0.3580632507801056, -0.03312008082866669, 0.1706019639968872, 0.03998040780425072, -0.0008925701258704066, -0.025992805138230324, -0.0786805972456932, -0.05078424885869026, 0.09939432144165039, -0.1918867528438568, -0.06275881826877594, 0.06785056740045547, -0.017268722876906395, 0.03533907234668732, -0.11304644495248795, -0.058380529284477234, 0.036550212651491165, 0.08725589513778687, -0.10113472491502762, 0.14896337687969208, 0.03449977561831474, 0.07992418855428696, 0.006679642479866743, -0.08834362775087357, 0.07000397890806198, 0.011331413872539997, -0.0035384423099458218, 0.10893746465444565, -0.12339747697114944, -0.3126799464225769, -0.07649705559015274, -0.1357318013906479, 0.040934719145298004, 0.028706714510917664, 0.07717806100845337, -0.0674157366156578, -0.03389695659279823, 0.043433599174022675, 0.0031047312077134848, -0.09916280955076218, 0.07938291877508163, -0.09331804513931274, 0.004807931371033192, -0.03775378316640854, -0.06034345552325249, -0.08241048455238342, -0.017990918830037117, -0.03606078028678894, 0.14131838083267212, -0.04471023380756378, 0.08596855401992798, 0.1208510622382164, -0.009843243286013603, 0.05743534862995148, -0.0033515451941639185, 0.22435182332992554, -0.08485199511051178, 0.011270946823060513, 0.14431044459342957, -0.015009584836661816, 0.07266069948673248, 0.17250145971775055, 0.03214779868721962, -0.02619399130344391, -0.012130388990044594, -0.0367959588766098, -0.11720903217792511, -0.09144467860460281, -0.07773366570472717, -0.15009059011936188, -0.012227713130414486, 0.04746619984507561, 0.05668441578745842, 0.13256840407848358, 0.055705390870571136, 0.04067482054233551, -0.016571909189224243, -0.10201559215784073, 0.03486325964331627, 0.1251944750547409, -0.05605435371398926, 0.14170441031455994, -0.02451098896563053, -0.13870947062969208, 0.051139384508132935, 0.049826961010694504, 0.05776532366871834, 0.11637112498283386, -0.02503076195716858, 0.05375967174768448, 0.20673854649066925, 0.15332798659801483, 0.10667400062084198, 0.024898314848542213, -0.07085411995649338, -0.026712117716670036, -0.019017834216356277, -0.0023149193730205297, 0.06036917492747307, 0.19396241009235382, -0.09443285316228867, -0.014395704492926598, -0.17698344588279724, 0.05036589875817299, 0.06394261866807938, 0.09831920266151428, -0.2233354151248932, 0.02010962925851345, 0.08707020431756973, 0.0049064611084759235, -0.056388262659311295, 0.02829798124730587, 0.05529927834868431, -0.10415264219045639, 0.03149237111210823, -0.0005025425925850868, 0.08192446827888489, 0.09060977399349213, 0.08652052283287048, -0.05982251465320587, -0.10801032930612564, 0.01680404506623745, 0.03838873282074928, -0.23812198638916016, 0.2550521194934845, -0.02170681022107601, -0.09140466898679733, -0.05605369806289673, -0.02403327450156212, 0.05895958095788956, 0.12814129889011383, 0.09479700028896332, 0.047181203961372375, -0.0687108114361763, -0.12851545214653015, 0.015330538153648376, 0.0014897022629156709, 0.09226493537425995, -0.051921967417001724, 0.007189408876001835, -0.023727502673864365, -0.0318504236638546, 0.016572147607803345, 0.2048088014125824, -0.0036509118508547544, -0.11905161291360855, 0.09117826819419861, 0.06924042105674744, -0.01759910397231579, -0.01467852108180523, -0.07560889422893524, -0.16395166516304016, 0.1534842848777771, 0.039185576140880585, 0.0008931110496632755, -0.10598065704107285, -0.11011047661304474, 0.11815934628248215, -0.06764183193445206, 0.08989080041646957, -0.07324676960706711, 0.011753262020647526, -0.09271204471588135, -0.14852067828178406, 0.1675879806280136, -0.12130600214004517, 0.0015655728057026863, -0.09893681108951569, 0.10364512354135513, -0.09934110194444656, 0.07248358428478241, -0.004463587887585163, 0.08023601770401001, -0.1453222781419754, -0.04110085591673851, 0.04787315055727959, -0.08205217868089676, 0.03735632449388504, 0.003502310486510396, -0.02789507992565632, -0.01973923109471798, 0.06270651519298553, 0.03233236074447632, 0.22265133261680603, 0.24178771674633026, -0.09735046327114105, 0.14145435392856598, 0.08713201433420181, -0.015979396179318428, -0.33901533484458923, -0.08899673074483871, -0.15794101357460022, 0.022028397768735886, 0.08518680185079575, -0.08041436970233917, 0.047041088342666626, -0.04694472625851631, -0.07521001249551773, 0.11350074410438538, -0.17434826493263245, -0.08199378103017807, 0.18863524496555328, -0.026513613760471344, 0.44708380103111267, -0.12922319769859314, -0.03186441957950592, -0.010831243358552456, -0.10295093059539795, 0.07012095302343369, -0.030793502926826477, 0.09342451393604279, -0.010647829622030258, 0.05101967230439186, 0.03735759109258652, -0.06943738460540771, 0.12040378898382187, -0.08822456002235413, 0.007303926628082991, -0.10645002126693726, -0.14312158524990082, 0.11793749034404755, -0.032803792506456375, -0.04140540584921837, -0.03722865507006645, -0.01396148931235075, -0.06046976521611214, 0.013600540347397327, -0.12682703137397766, 0.11328048259019852, 0.006392418872565031, -0.06134670600295067, 0.006633168552070856, 0.008990205824375153, -0.001449412084184587, -0.012109935283660889, 0.22099903225898743, -0.01807790994644165, 0.2177792340517044, 0.08191961795091629, -0.014295502565801144, -0.1304980367422104, -0.0769704282283783, 0.004632152151316404, -0.07620365917682648, 0.09807863086462021, -0.05091368779540062, 0.031178195029497147, 0.0761478915810585, -0.010782947763800621, 0.04594691842794418, 0.11441923677921295, 0.0002784303214866668, -0.018138105049729347, 0.1838766187429428, -0.21150457859039307, -0.012900900095701218, -0.027104422450065613, -0.008278004825115204, 0.06046172231435776, 0.01599052920937538, 0.0852411687374115, 0.007592764217406511, -0.03372012451291084, -0.0012880503199994564, -0.02039349265396595, -0.07583954930305481, 0.009777488186955452, 0.07037131488323212, 0.0601196251809597, -0.09630311280488968, -0.014684705063700676, 0.020370807498693466, -0.20254921913146973, -0.009088168852031231, 0.10413571447134018, -0.0674857571721077, -0.13599124550819397, -0.01293158158659935, 0.041345495730638504, -0.025122227147221565, 0.003983992151916027, -0.04020093008875847, -0.09952469915151596, 0.03160359337925911, 0.19966340065002441, 0.10959027707576752, 0.06444192677736282, -0.01128611620515585, -0.0017804086674004793, 0.02512287348508835, 0.0008263916242867708, -0.002812315709888935, 0.04329361394047737, -0.12077637761831284, 0.03326911851763725, -0.01183723472058773, 0.1497766226530075, -0.11036612093448639, -0.0400470532476902, -0.16767063736915588, 0.0018725573318079114, -0.012205228209495544, -0.12368873506784439, -0.09534022212028503, -0.09855550527572632, 0.021209461614489555, -0.09631325304508209, -0.06731277704238892, -0.045469146221876144, -0.13415434956550598, -0.00032862366060726345, 0.022215906530618668, 0.030965985730290413, -0.06225541979074478, -0.03943479061126709, 0.13731297850608826, -0.04855744540691376, 0.059784162789583206, 0.11007153987884521, -0.053365521132946014, 0.0716547816991806, -0.04946000128984451, -0.1255914270877838, 0.08785057067871094, 0.015609954483807087, 0.09192873537540436, 0.06405208259820938, -0.015032433904707432, 0.017506837844848633, 0.0665934830904007, 0.04308469593524933, 0.026281088590621948, -0.08293873816728592, 0.05159498378634453, 0.028300557285547256, -0.18251092731952667, 0.013236832804977894, -0.09109552204608917, 0.10766959935426712, -0.0215500146150589, 0.08822895586490631, -0.011787409894168377, 0.06665170192718506, -0.08033763617277145, 0.03059840016067028, -0.049959052354097366, -0.16596882045269012, -0.027156632393598557, -0.03319834545254707, 0.026476072147488594, -0.022881561890244484, 0.21689026057720184, 0.036236584186553955, -0.04384949430823326, 0.03971150517463684, 0.07271911948919296, -0.0054847244173288345, 0.0075235129334032536, 0.15344920754432678, 0.08896595239639282, -0.07860264927148819, -0.08185818791389465, 0.08368752151727676, 0.02314853109419346, -0.004391250666230917, 0.08760112524032593, 0.09972148388624191, 0.10405497997999191, 0.09535703808069229, 0.016476692631840706, 0.0059495228342711926, -0.14433994889259338, -0.19991211593151093, -0.03208185359835625, 0.07524742931127548, -0.027213726192712784, -0.006378382910043001, 0.1622462421655655, -0.006616086233407259, 0.05082191154360771, -0.08250853419303894, 0.0054335203021764755, -0.16892026364803314, -0.11435629427433014, -0.06678326427936554, -0.07684695720672607, -0.01552826538681984, -0.02601679041981697, 0.030689217150211334, 0.12454147636890411, 0.021338360384106636, -0.005289506632834673, 0.13845562934875488, 0.025136087089776993, -0.024829983711242676, -0.002981876954436302, 0.005757165141403675, 0.024622352793812752, -0.033317647874355316, 0.005135134793817997, -0.15391136705875397, -0.012859896756708622, -0.061864253133535385, -0.013076270930469036, -0.10050825029611588, -0.006403560750186443, -0.09892002493143082, -0.13717244565486908, -0.07084160298109055, 0.004031373653560877, -0.0410948283970356, 0.0783693715929985, -0.007653805892914534, 0.046144116669893265, -0.011215322650969028, 0.18185047805309296, -0.10490322858095169, -0.058193139731884, -0.03452982380986214, 0.16888810694217682, 0.008640413172543049, 0.08472440391778946, -0.04152536019682884, 0.027449890971183777, -0.12871034443378448, 0.25930070877075195, 0.3661806285381317, -0.07336948812007904, 0.09285399317741394, 0.06491922587156296, 0.0193422120064497, 0.030152160674333572, 0.07597483694553375, 0.072634257376194, 0.23791664838790894, -0.11797590553760529, -0.010488714091479778, -0.057547636330127716, -0.02148490771651268, -0.08191554248332977, 0.0053735957480967045, 0.04902149364352226, -0.03245244547724724, -0.06161678954958916, 0.0399104468524456, -0.14287924766540527, 0.09575983136892319, 0.06072020158171654, -0.2579907476902008, -0.056728679686784744, -0.0000043243016989436, 0.18387234210968018, -0.0001959197106771171, 0.1151711568236351, -0.04594285786151886, -0.08790366351604462, 0.015928110107779503, 0.0007014860166236758, -0.17261230945587158, -0.06557457149028778, 0.14371319115161896, -0.017475953325629234, 0.07612664252519608, -0.05169067531824112, -0.008168055675923824, 0.09831497818231583, 0.06369658559560776, -0.03108178824186325, -0.0010998303769156337, 0.03740651533007622, -0.09196978062391281, -0.10842049866914749, 0.02136641927063465, 0.003911149222403765, -0.0861721932888031, 0.060279786586761475, -0.16354860365390778, 0.045141272246837616, -0.08985745161771774, -0.010472030378878117, 0.015027366578578949, 0.034435566514730453, -0.02491009049117565, 0.0748371034860611, 0.06510620564222336, 0.008458446711301804, -0.0497715100646019, -0.02371944673359394, -0.04079500213265419, 0.08074639737606049, -0.07892812788486481, -0.18614140152931213, -0.06953465193510056, -0.06266763806343079, 0.02530635893344879, -0.011055922135710716, -0.12815025448799133, -0.06836600601673126, -0.06444620341062546, 0.032778434455394745, -0.11356262117624283, 0.027883388102054596, 0.08889710158109665, 0.033887699246406555, 0.010468434542417526, -0.05898585915565491, 0.043185360729694366, 0.055784132331609726, -0.1632528156042099, -0.072266586124897 ]
null
null
transformers
# Tigrinya POS tagging with TiELECTRA This model is a fine-tuned version of [TiELECTRA](https://huggingface.co/fgaim/tielectra-small) on the NTC-v1 dataset (Tedla et al. 2016). ## Basic usage ```python from transformers import pipeline ti_pos = pipeline("token-classification", model="fgaim/tielectra-small-pos") ti_pos("ድምጻዊ ኣብርሃም ኣፈወርቂ ንዘልኣለም ህያው ኮይኑ ኣብ ልብና ይነብር") ``` ## Training ### Hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10.0 ### Results The model achieves the following results on the test set: - Loss: 0.2236 - Adj Precision: 0.9148 - Adj Recall: 0.9192 - Adj F1: 0.9170 - Adj Number: 1670 - Adv Precision: 0.8228 - Adv Recall: 0.8058 - Adv F1: 0.8142 - Adv Number: 484 - Con Precision: 0.9793 - Con Recall: 0.9743 - Con F1: 0.9768 - Con Number: 972 - Fw Precision: 0.5 - Fw Recall: 0.3214 - Fw F1: 0.3913 - Fw Number: 28 - Int Precision: 0.64 - Int Recall: 0.6154 - Int F1: 0.6275 - Int Number: 26 - N Precision: 0.9525 - N Recall: 0.9587 - N F1: 0.9556 - N Number: 3992 - Num Precision: 0.9825 - Num Recall: 0.9372 - Num F1: 0.9593 - Num Number: 239 - N Prp Precision: 0.9132 - N Prp Recall: 0.9404 - N Prp F1: 0.9266 - N Prp Number: 470 - N V Precision: 0.9667 - N V Recall: 0.9760 - N V F1: 0.9713 - N V Number: 416 - Pre Precision: 0.9645 - Pre Recall: 0.9592 - Pre F1: 0.9619 - Pre Number: 907 - Pro Precision: 0.9395 - Pro Recall: 0.9079 - Pro F1: 0.9234 - Pro Number: 445 - Pun Precision: 1.0 - Pun Recall: 0.9994 - Pun F1: 0.9997 - Pun Number: 1607 - Unc Precision: 0.9286 - Unc Recall: 0.8125 - Unc F1: 0.8667 - Unc Number: 16 - V Precision: 0.7609 - V Recall: 0.8974 - V F1: 0.8235 - V Number: 78 - V Aux Precision: 0.9581 - V Aux Recall: 0.9786 - V Aux F1: 0.9682 - V Aux Number: 654 - V Ger Precision: 0.9183 - V Ger Recall: 0.9415 - V Ger F1: 0.9297 - V Ger Number: 513 - V Imf Precision: 0.9473 - V Imf Recall: 0.9442 - V Imf F1: 0.9458 - V Imf Number: 914 - V Imv Precision: 0.8163 - V Imv Recall: 0.5714 - V Imv F1: 0.6723 - V Imv Number: 70 - V Prf Precision: 0.8927 - V Prf Recall: 0.8776 - V Prf F1: 0.8851 - V Prf Number: 294 - V Rel Precision: 0.9535 - V Rel Recall: 0.9485 - V Rel F1: 0.9510 - V Rel Number: 757 - Overall Precision: 0.9456 - Overall Recall: 0.9456 - Overall F1: 0.9456 - Overall Accuracy: 0.9456 ### Framework versions - Transformers 4.10.3 - Pytorch 1.9.0+cu111 - Datasets 1.10.2 - Tokenizers 0.10.1 ## Citation If you use this model in your product or research, please cite as follows: ``` @article{Fitsum2021TiPLMs, author= {Fitsum Gaim and Wonsuk Yang and Jong C. Park}, title= {Monolingual Pre-trained Language Models for Tigrinya}, year= 2021, publisher= {WiNLP 2021/EMNLP 2021} } ``` ## References ``` Tedla, Y., Yamamoto, K. & Marasinghe, A. 2016. Tigrinya Part-of-Speech Tagging with Morphological Patterns and the New Nagaoka Tigrinya Corpus. International Journal Of Computer Applications 146 pp. 33-41 (2016). ```
{"language": "ti", "datasets": ["TLMD", "NTC"], "metrics": ["f1", "precision", "recall", "accuracy"], "widget": [{"text": "\u12f5\u121d\u133b\u12ca \u12a3\u1265\u122d\u1203\u121d \u12a3\u1348\u12c8\u122d\u1242 \u1295\u12d8\u120d\u12a3\u1208\u121d \u1205\u12eb\u12cd \u12ae\u12ed\u1291 \u12a3\u1265 \u120d\u1265\u1293 \u12ed\u1290\u1265\u122d"}]}
token-classification
fgaim/tielectra-small-pos
[ "transformers", "pytorch", "electra", "token-classification", "ti", "dataset:TLMD", "dataset:NTC", "model-index", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "ti" ]
TAGS #transformers #pytorch #electra #token-classification #ti #dataset-TLMD #dataset-NTC #model-index #autotrain_compatible #endpoints_compatible #has_space #region-us
# Tigrinya POS tagging with TiELECTRA This model is a fine-tuned version of TiELECTRA on the NTC-v1 dataset (Tedla et al. 2016). ## Basic usage ## Training ### Hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10.0 ### Results The model achieves the following results on the test set: - Loss: 0.2236 - Adj Precision: 0.9148 - Adj Recall: 0.9192 - Adj F1: 0.9170 - Adj Number: 1670 - Adv Precision: 0.8228 - Adv Recall: 0.8058 - Adv F1: 0.8142 - Adv Number: 484 - Con Precision: 0.9793 - Con Recall: 0.9743 - Con F1: 0.9768 - Con Number: 972 - Fw Precision: 0.5 - Fw Recall: 0.3214 - Fw F1: 0.3913 - Fw Number: 28 - Int Precision: 0.64 - Int Recall: 0.6154 - Int F1: 0.6275 - Int Number: 26 - N Precision: 0.9525 - N Recall: 0.9587 - N F1: 0.9556 - N Number: 3992 - Num Precision: 0.9825 - Num Recall: 0.9372 - Num F1: 0.9593 - Num Number: 239 - N Prp Precision: 0.9132 - N Prp Recall: 0.9404 - N Prp F1: 0.9266 - N Prp Number: 470 - N V Precision: 0.9667 - N V Recall: 0.9760 - N V F1: 0.9713 - N V Number: 416 - Pre Precision: 0.9645 - Pre Recall: 0.9592 - Pre F1: 0.9619 - Pre Number: 907 - Pro Precision: 0.9395 - Pro Recall: 0.9079 - Pro F1: 0.9234 - Pro Number: 445 - Pun Precision: 1.0 - Pun Recall: 0.9994 - Pun F1: 0.9997 - Pun Number: 1607 - Unc Precision: 0.9286 - Unc Recall: 0.8125 - Unc F1: 0.8667 - Unc Number: 16 - V Precision: 0.7609 - V Recall: 0.8974 - V F1: 0.8235 - V Number: 78 - V Aux Precision: 0.9581 - V Aux Recall: 0.9786 - V Aux F1: 0.9682 - V Aux Number: 654 - V Ger Precision: 0.9183 - V Ger Recall: 0.9415 - V Ger F1: 0.9297 - V Ger Number: 513 - V Imf Precision: 0.9473 - V Imf Recall: 0.9442 - V Imf F1: 0.9458 - V Imf Number: 914 - V Imv Precision: 0.8163 - V Imv Recall: 0.5714 - V Imv F1: 0.6723 - V Imv Number: 70 - V Prf Precision: 0.8927 - V Prf Recall: 0.8776 - V Prf F1: 0.8851 - V Prf Number: 294 - V Rel Precision: 0.9535 - V Rel Recall: 0.9485 - V Rel F1: 0.9510 - V Rel Number: 757 - Overall Precision: 0.9456 - Overall Recall: 0.9456 - Overall F1: 0.9456 - Overall Accuracy: 0.9456 ### Framework versions - Transformers 4.10.3 - Pytorch 1.9.0+cu111 - Datasets 1.10.2 - Tokenizers 0.10.1 If you use this model in your product or research, please cite as follows: ## References
[ "# Tigrinya POS tagging with TiELECTRA\n\nThis model is a fine-tuned version of TiELECTRA on the NTC-v1 dataset (Tedla et al. 2016).", "## Basic usage", "## Training", "### Hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 5e-05\n- train_batch_size: 8\n- eval_batch_size: 32\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 10.0", "### Results\n\nThe model achieves the following results on the test set:\n- Loss: 0.2236\n- Adj Precision: 0.9148\n- Adj Recall: 0.9192\n- Adj F1: 0.9170\n- Adj Number: 1670\n- Adv Precision: 0.8228\n- Adv Recall: 0.8058\n- Adv F1: 0.8142\n- Adv Number: 484\n- Con Precision: 0.9793\n- Con Recall: 0.9743\n- Con F1: 0.9768\n- Con Number: 972\n- Fw Precision: 0.5\n- Fw Recall: 0.3214\n- Fw F1: 0.3913\n- Fw Number: 28\n- Int Precision: 0.64\n- Int Recall: 0.6154\n- Int F1: 0.6275\n- Int Number: 26\n- N Precision: 0.9525\n- N Recall: 0.9587\n- N F1: 0.9556\n- N Number: 3992\n- Num Precision: 0.9825\n- Num Recall: 0.9372\n- Num F1: 0.9593\n- Num Number: 239\n- N Prp Precision: 0.9132\n- N Prp Recall: 0.9404\n- N Prp F1: 0.9266\n- N Prp Number: 470\n- N V Precision: 0.9667\n- N V Recall: 0.9760\n- N V F1: 0.9713\n- N V Number: 416\n- Pre Precision: 0.9645\n- Pre Recall: 0.9592\n- Pre F1: 0.9619\n- Pre Number: 907\n- Pro Precision: 0.9395\n- Pro Recall: 0.9079\n- Pro F1: 0.9234\n- Pro Number: 445\n- Pun Precision: 1.0\n- Pun Recall: 0.9994\n- Pun F1: 0.9997\n- Pun Number: 1607\n- Unc Precision: 0.9286\n- Unc Recall: 0.8125\n- Unc F1: 0.8667\n- Unc Number: 16\n- V Precision: 0.7609\n- V Recall: 0.8974\n- V F1: 0.8235\n- V Number: 78\n- V Aux Precision: 0.9581\n- V Aux Recall: 0.9786\n- V Aux F1: 0.9682\n- V Aux Number: 654\n- V Ger Precision: 0.9183\n- V Ger Recall: 0.9415\n- V Ger F1: 0.9297\n- V Ger Number: 513\n- V Imf Precision: 0.9473\n- V Imf Recall: 0.9442\n- V Imf F1: 0.9458\n- V Imf Number: 914\n- V Imv Precision: 0.8163\n- V Imv Recall: 0.5714\n- V Imv F1: 0.6723\n- V Imv Number: 70\n- V Prf Precision: 0.8927\n- V Prf Recall: 0.8776\n- V Prf F1: 0.8851\n- V Prf Number: 294\n- V Rel Precision: 0.9535\n- V Rel Recall: 0.9485\n- V Rel F1: 0.9510\n- V Rel Number: 757\n- Overall Precision: 0.9456\n- Overall Recall: 0.9456\n- Overall F1: 0.9456\n- Overall Accuracy: 0.9456", "### Framework versions\n\n- Transformers 4.10.3\n- Pytorch 1.9.0+cu111\n- Datasets 1.10.2\n- Tokenizers 0.10.1\n\n\nIf you use this model in your product or research, please cite as follows:", "## References" ]
[ "TAGS\n#transformers #pytorch #electra #token-classification #ti #dataset-TLMD #dataset-NTC #model-index #autotrain_compatible #endpoints_compatible #has_space #region-us \n", "# Tigrinya POS tagging with TiELECTRA\n\nThis model is a fine-tuned version of TiELECTRA on the NTC-v1 dataset (Tedla et al. 2016).", "## Basic usage", "## Training", "### Hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 5e-05\n- train_batch_size: 8\n- eval_batch_size: 32\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 10.0", "### Results\n\nThe model achieves the following results on the test set:\n- Loss: 0.2236\n- Adj Precision: 0.9148\n- Adj Recall: 0.9192\n- Adj F1: 0.9170\n- Adj Number: 1670\n- Adv Precision: 0.8228\n- Adv Recall: 0.8058\n- Adv F1: 0.8142\n- Adv Number: 484\n- Con Precision: 0.9793\n- Con Recall: 0.9743\n- Con F1: 0.9768\n- Con Number: 972\n- Fw Precision: 0.5\n- Fw Recall: 0.3214\n- Fw F1: 0.3913\n- Fw Number: 28\n- Int Precision: 0.64\n- Int Recall: 0.6154\n- Int F1: 0.6275\n- Int Number: 26\n- N Precision: 0.9525\n- N Recall: 0.9587\n- N F1: 0.9556\n- N Number: 3992\n- Num Precision: 0.9825\n- Num Recall: 0.9372\n- Num F1: 0.9593\n- Num Number: 239\n- N Prp Precision: 0.9132\n- N Prp Recall: 0.9404\n- N Prp F1: 0.9266\n- N Prp Number: 470\n- N V Precision: 0.9667\n- N V Recall: 0.9760\n- N V F1: 0.9713\n- N V Number: 416\n- Pre Precision: 0.9645\n- Pre Recall: 0.9592\n- Pre F1: 0.9619\n- Pre Number: 907\n- Pro Precision: 0.9395\n- Pro Recall: 0.9079\n- Pro F1: 0.9234\n- Pro Number: 445\n- Pun Precision: 1.0\n- Pun Recall: 0.9994\n- Pun F1: 0.9997\n- Pun Number: 1607\n- Unc Precision: 0.9286\n- Unc Recall: 0.8125\n- Unc F1: 0.8667\n- Unc Number: 16\n- V Precision: 0.7609\n- V Recall: 0.8974\n- V F1: 0.8235\n- V Number: 78\n- V Aux Precision: 0.9581\n- V Aux Recall: 0.9786\n- V Aux F1: 0.9682\n- V Aux Number: 654\n- V Ger Precision: 0.9183\n- V Ger Recall: 0.9415\n- V Ger F1: 0.9297\n- V Ger Number: 513\n- V Imf Precision: 0.9473\n- V Imf Recall: 0.9442\n- V Imf F1: 0.9458\n- V Imf Number: 914\n- V Imv Precision: 0.8163\n- V Imv Recall: 0.5714\n- V Imv F1: 0.6723\n- V Imv Number: 70\n- V Prf Precision: 0.8927\n- V Prf Recall: 0.8776\n- V Prf F1: 0.8851\n- V Prf Number: 294\n- V Rel Precision: 0.9535\n- V Rel Recall: 0.9485\n- V Rel F1: 0.9510\n- V Rel Number: 757\n- Overall Precision: 0.9456\n- Overall Recall: 0.9456\n- Overall F1: 0.9456\n- Overall Accuracy: 0.9456", "### Framework versions\n\n- Transformers 4.10.3\n- Pytorch 1.9.0+cu111\n- Datasets 1.10.2\n- Tokenizers 0.10.1\n\n\nIf you use this model in your product or research, please cite as follows:", "## References" ]
[ 60, 43, 3, 2, 90, 731, 51, 3 ]
[ "passage: TAGS\n#transformers #pytorch #electra #token-classification #ti #dataset-TLMD #dataset-NTC #model-index #autotrain_compatible #endpoints_compatible #has_space #region-us \n# Tigrinya POS tagging with TiELECTRA\n\nThis model is a fine-tuned version of TiELECTRA on the NTC-v1 dataset (Tedla et al. 2016).## Basic usage## Training### Hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 5e-05\n- train_batch_size: 8\n- eval_batch_size: 32\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 10.0" ]
[ -0.10564864426851273, 0.015356437303125858, -0.0004011961573269218, 0.11663652956485748, 0.1792474389076233, 0.057295866310596466, 0.05913279205560684, 0.08217132836580276, -0.026685185730457306, 0.016018638387322426, 0.10245402902364731, 0.11692693829536438, -0.010284905321896076, 0.19538044929504395, -0.04859508201479912, -0.22994615137577057, 0.0035474065225571394, 0.06750630587339401, -0.0635034367442131, 0.12368544936180115, 0.11115852743387222, -0.11334268003702164, 0.10837919265031815, 0.00903906300663948, -0.1754622459411621, 0.03891390934586525, 0.011269880458712578, -0.1005680114030838, 0.1306394636631012, 0.023270202800631523, 0.16969476640224457, -0.024137046188116074, 0.09764339029788971, -0.041867274791002274, 0.012228403240442276, 0.061963096261024475, 0.0061555178835988045, 0.06714555621147156, 0.017891554161906242, 0.005476081278175116, 0.17343029379844666, -0.12239862978458405, 0.059323396533727646, -0.010394909419119358, -0.1295190304517746, -0.13183599710464478, -0.02356904372572899, 0.028494959697127342, 0.03271860629320145, 0.07196434587240219, 0.0014105625450611115, 0.23554891347885132, -0.08733173459768295, 0.09418738633394241, 0.17147791385650635, -0.2813428044319153, -0.06757209450006485, 0.132989764213562, 0.04468539357185364, 0.060303639620542526, -0.05485045909881592, 0.006994559895247221, 0.0920393168926239, 0.010493570007383823, 0.15263527631759644, -0.03909379243850708, -0.13398467004299164, 0.028185922652482986, -0.16272231936454773, -0.013459701091051102, 0.300716370344162, 0.04444478824734688, -0.024376235902309418, 0.007011792156845331, -0.11322825402021408, -0.14004701375961304, 0.0022607180289924145, -0.04491320624947548, 0.01573435589671135, -0.021738693118095398, -0.02135583572089672, 0.015924122184515, -0.09359975904226303, -0.018905486911535263, -0.09440034627914429, 0.11709930002689362, 0.04735533148050308, 0.01982022076845169, -0.048444777727127075, 0.07519832253456116, -0.04899362102150917, -0.0540042519569397, 0.028643516823649406, -0.01541185099631548, -0.07525768876075745, -0.09078475832939148, -0.05433330312371254, -0.0327056460082531, -0.016140535473823547, 0.09706852585077286, 0.06761207431554794, 0.021805142983794212, 0.0915430411696434, 0.008268855512142181, 0.005295008886605501, 0.19687673449516296, -0.08587484061717987, -0.05533194541931152, 0.002112029120326042, -0.021684451028704643, -0.03190666809678078, -0.010458716191351414, -0.09452372789382935, -0.08879631757736206, 0.09522498399019241, -0.013812138698995113, -0.07948017865419388, 0.10080642253160477, -0.02364393137395382, -0.0625920444726944, -0.026938147842884064, -0.07986237853765488, 0.048513468354940414, -0.04456630349159241, -0.03946012258529663, 0.12155809998512268, 0.01819857396185398, 0.017816169187426567, -0.012915274128317833, 0.054361987859010696, -0.1290128082036972, -0.011250054463744164, -0.08065365254878998, -0.1422027349472046, -0.029124097898602486, -0.1634547859430313, 0.03156309947371483, -0.1806182861328125, -0.15106317400932312, -0.003466410329565406, 0.05543399229645729, -0.02092849835753441, -0.06214951351284981, -0.032454248517751694, -0.03829953074455261, 0.012867125682532787, -0.0022944125812500715, 0.03818974643945694, -0.06675112992525101, 0.053039420396089554, 0.005661537870764732, 0.08600465208292007, -0.06855936348438263, 0.02237348072230816, -0.08351297676563263, 0.009419195353984833, -0.07545434683561325, 0.021394386887550354, 0.01848301663994789, 0.07701832801103592, -0.09609884023666382, -0.10405717045068741, -0.0309629924595356, 0.0285263080149889, 0.03294902667403221, 0.07854529470205307, -0.17460526525974274, -0.022613324224948883, 0.15824544429779053, -0.06581851094961166, -0.08319756388664246, 0.10906597971916199, -0.04295751079916954, 0.10297120362520218, 0.11484041064977646, 0.10171961784362793, 0.12670622766017914, -0.10750134289264679, 0.012192382477223873, 0.0040034581907093525, -0.04326033964753151, -0.11610894650220871, 0.0632425919175148, 0.09213116019964218, -0.102088563144207, -0.0001106776762753725, 0.00029195897514000535, 0.04112116992473602, -0.09441552311182022, -0.05621393024921417, -0.06415536999702454, -0.09334223717451096, 0.07263711094856262, 0.017478935420513153, 0.06116645038127899, -0.09135223925113678, -0.04351509362459183, 0.12444533407688141, 0.12111728638410568, -0.04526340961456299, 0.019897017627954483, -0.10764987021684647, 0.04849905148148537, -0.07246831059455872, -0.036383721977472305, -0.1313151717185974, -0.061731502413749695, -0.010850869119167328, 0.101552315056324, 0.03346272557973862, 0.17348042130470276, 0.04404723644256592, 0.001826408552005887, -0.038592830300331116, 0.012237143702805042, -0.0027758430223912, 0.008682587184011936, -0.11985861510038376, -0.10709090530872345, -0.023277711123228073, -0.017489118501544, 0.054828282445669174, -0.21837617456912994, -0.006255352403968573, -0.06947474181652069, 0.07537878304719925, 0.03138409182429314, 0.022035526111721992, -0.046310797333717346, 0.0603870153427124, -0.05673326924443245, -0.08123552054166794, 0.04207149147987366, -0.004872601479291916, -0.05257822945713997, -0.06215740367770195, -0.11158068478107452, 0.16955092549324036, 0.10915301740169525, -0.04309046268463135, -0.09943999350070953, 0.036151181906461716, -0.030306270346045494, -0.004931436851620674, -0.06450565904378891, 0.00047545143752358854, 0.05849089473485947, -0.07688970118761063, 0.11984508484601974, -0.06851132959127426, -0.01553155854344368, 0.024052100256085396, -0.04001126065850258, -0.016398770734667778, 0.0949435904622078, 0.1593591868877411, -0.21911251544952393, 0.07838842272758484, 0.11561231315135956, -0.10909602791070938, 0.12270314246416092, 0.013922661542892456, -0.0788157507777214, -0.018467796966433525, -0.028561828657984734, 0.002571111312136054, 0.05931570380926132, -0.14983732998371124, -0.0108836954459548, 0.04300820454955101, 0.05307077243924141, 0.00441058911383152, -0.1311655342578888, -0.03041951358318329, 0.06051621586084366, 0.013844980858266354, -0.0291423462331295, 0.05996972322463989, 0.0029287789948284626, 0.10314112901687622, -0.010714379139244556, -0.11021474003791809, 0.018779423087835312, 0.04970523715019226, -0.05464276671409607, 0.16750690340995789, -0.05118902400135994, -0.187277689576149, -0.08215004950761795, -0.05826828256249428, 0.0017553040524944663, 0.031405020505189896, 0.04066864773631096, -0.06335485726594925, -0.07787715643644333, -0.07247957587242126, -0.010187441483139992, -0.04729755222797394, 0.08229620009660721, 0.024625418707728386, 0.0010993822943419218, 0.04830130562186241, -0.10181073099374771, -0.0024111398961395025, -0.03932438790798187, -0.05319605767726898, 0.07616139203310013, -0.04018206521868706, 0.0924210175871849, 0.17915163934230804, -0.07996799051761627, 0.033055175095796585, -0.025114066898822784, 0.24533569812774658, -0.05298792943358421, 0.02723889797925949, 0.15668508410453796, 0.04193625971674919, 0.010375034995377064, 0.11175045371055603, 0.010768093168735504, -0.09958770871162415, 0.04517538473010063, 0.02702653594315052, -0.09442413598299026, -0.1966802328824997, -0.082016721367836, -0.10761184990406036, -0.012935440056025982, 0.13829076290130615, 0.02696348913013935, 0.029490504413843155, 0.09856899827718735, 0.04621355980634689, 0.1547171175479889, -0.09900599718093872, 0.06579013913869858, 0.14584670960903168, 0.05008542910218239, 0.11624620854854584, -0.06410954147577286, -0.08718980848789215, 0.07461269944906235, -0.00914684683084488, 0.20298589766025543, 0.015674540773034096, 0.017979852855205536, 0.03433099016547203, 0.15411460399627686, 0.015978023409843445, 0.09640379250049591, -0.017473656684160233, -0.05348408967256546, -0.049133408814668655, -0.004550014156848192, 0.02833355776965618, 0.02912229858338833, 0.029172662645578384, -0.0037719139363616705, -0.046657316386699677, 0.046375200152397156, 0.02797466143965721, 0.08840625733137131, 0.12174535542726517, -0.3870524764060974, -0.037195708602666855, -0.013505907729268074, -0.006761682219803333, -0.08639764785766602, 0.02357769012451172, 0.07979435473680496, -0.0798148438334465, 0.036044325679540634, -0.032057687640190125, 0.08837376534938812, -0.014184791594743729, 0.011984712444245815, 0.06588543951511383, 0.10040165483951569, -0.024830477312207222, 0.07075166702270508, -0.2084178477525711, 0.20123615860939026, -0.01294257864356041, 0.0363757498562336, -0.057012900710105896, -0.061774466186761856, -0.01743438094854355, 0.11994269490242004, 0.021302450448274612, 0.02094194106757641, -0.0016479409532621503, -0.16173486411571503, -0.04477239400148392, 0.043832939118146896, 0.04502807557582855, -0.0130685493350029, 0.09185021370649338, -0.07345467805862427, 0.013128448277711868, 0.07586836814880371, 0.07442250847816467, -0.08792188763618469, -0.06496305018663406, -0.03125178813934326, 0.14750245213508606, -0.05406102538108826, -0.002700609154999256, -0.10746210813522339, -0.1625501960515976, 0.14405234158039093, 0.10060227662324905, -0.008197363466024399, -0.1361376792192459, 0.09789855778217316, 0.11957041919231415, -0.07477302849292755, 0.0864437147974968, 0.0348857082426548, 0.0402369424700737, 0.06690357625484467, -0.0772775262594223, 0.1220482885837555, -0.051677070558071136, -0.06439150869846344, -0.03092355653643608, 0.05730312317609787, 0.018770920112729073, 0.022261878475546837, 0.00736966822296381, 0.01036002952605486, -0.012051685713231564, -0.0749494731426239, -0.014677327126264572, 0.03492328152060509, 0.0337129607796669, 0.07336412370204926, -0.010330434888601303, -0.03412104770541191, -0.0034052233677357435, -0.03397942706942558, 0.15449556708335876, 0.15610520541667938, -0.08279628306627274, 0.007681333925575018, -0.04757077991962433, -0.04309002682566643, -0.16032665967941284, 0.04589322581887245, 0.023029284551739693, 0.04475569725036621, 0.07836240530014038, -0.09125885367393494, 0.13026447594165802, 0.05795394629240036, 0.01696685329079628, 0.05787166953086853, -0.30356308817863464, -0.11719774454832077, 0.12128701061010361, 0.10379759967327118, 0.24082398414611816, -0.06087835878133774, 0.024514051154255867, -0.02938440628349781, -0.10329553484916687, 0.12785430252552032, -0.10782194882631302, 0.13073761761188507, -0.018490897491574287, 0.06529272347688675, 0.02379417233169079, -0.010510723106563091, 0.0976688414812088, 0.04104378819465637, 0.07745825499296188, -0.05810248479247093, -0.023012686520814896, 0.06106759235262871, -0.047558970749378204, 0.04561605677008629, -0.0026241519954055548, 0.054980386048555374, -0.10457094013690948, -0.05642722174525261, -0.033666983246803284, 0.05946647375822067, 0.02663290873169899, -0.07913694530725479, -0.0955902710556984, 0.012015477754175663, 0.04973294213414192, -0.04562703147530556, 0.07606043666601181, 0.04283195361495018, 0.049273863434791565, -0.00720252888277173, 0.053990740329027176, -0.06560888886451721, -0.05615836754441261, -0.015279720537364483, 0.007349705323576927, 0.08282217383384705, -0.12653705477714539, 0.04365607723593712, 0.10735232383012772, 0.007573910057544708, 0.10099438577890396, 0.07638026773929596, 0.015214071609079838, 0.006449292413890362, 0.07617770880460739, -0.09828551858663559, -0.03236531838774681, -0.001128469011746347, -0.10289914160966873, -0.07878734171390533, 0.08104460686445236, 0.13191884756088257, -0.09936414659023285, -0.0034211387392133474, -0.022683575749397278, -0.056602731347084045, -0.04301319271326065, 0.13626810908317566, 0.060667142271995544, 0.01389866042882204, -0.08202988654375076, 0.02632877230644226, 0.068668432533741, -0.032434798777103424, 0.008501490578055382, 0.012384455651044846, -0.108665831387043, -0.043984945863485336, 0.12420272827148438, 0.09915103763341904, -0.15560045838356018, -0.03534155711531639, -0.07412026077508926, -0.07704351842403412, 0.09453443437814713, 0.11350567638874054, 0.10442527383565903, 0.0125562259927392, -0.08209944516420364, -0.00638459250330925, -0.1199093610048294, 0.04396730288863182, 0.09846846759319305, 0.08511567115783691, -0.2600165605545044, 0.14779455959796906, -0.025162259116768837, 0.0385311096906662, -0.03613344207406044, -0.007882561534643173, -0.10459736734628677, 0.01518564485013485, -0.015202485956251621, 0.01605992391705513, -0.01021141093224287, 0.02223185822367668, 0.005658416543155909, -0.07733040302991867, -0.09192918986082077, 0.015712160617113113, -0.07094769179821014, 0.002559643005952239, 0.041986558586359024, 0.07036779075860977, -0.05493396520614624, -0.03515937551856041, 0.014887954108417034, -0.045886024832725525, 0.05595262348651886, 0.001543704536743462, -0.02633456140756607, 0.03784526512026787, -0.12554703652858734, 0.018133558332920074, 0.10737285763025284, 0.03626559302210808, 0.10179020464420319, -0.04421430453658104, 0.030812496319413185, 0.010452301241457462, 0.09224295616149902, 0.017701728269457817, -0.007480122148990631, -0.08980804681777954, -0.018497537821531296, -0.11993696540594101, -0.09688372910022736, -0.03508208319544792, -0.00905739888548851, 0.07170204073190689, 0.03011350892484188, 0.1776333451271057, -0.03693242743611336, -0.020680518820881844, -0.1680319458246231, -0.011213704012334347, -0.024228233844041824, -0.05125211551785469, -0.09446226060390472, -0.05217018350958824, 0.061070363968610764, -0.033624328672885895, 0.11349374800920486, 0.07866424322128296, 0.0008831836166791618, -0.005675619933754206, 0.022463828325271606, -0.029839083552360535, -0.013772045262157917, 0.26769495010375977, 0.03577563166618347, -0.010076737031340599, 0.020178910344839096, 0.03728784993290901, 0.13757570087909698, 0.14890943467617035, 0.14810863137245178, 0.10292534530162811, -0.10046312212944031, 0.08907714486122131, -0.06813549995422363, -0.07056278735399246, -0.20450866222381592, -0.013891467824578285, -0.0898154005408287, 0.07752205431461334, 0.0065755886025726795, 0.10628372430801392, 0.11048738658428192, -0.12070634216070175, -0.008842604234814644, -0.06759286671876907, -0.08482768386602402, -0.10936370491981506, -0.16926024854183197, -0.12164619565010071, -0.1598288118839264, -0.0023222737945616245, -0.10494288802146912, 0.019778305664658546, 0.1174759715795517, 0.019461603835225105, -0.003837460419163108, 0.12039714306592941, -0.02924971468746662, -0.0229764673858881, 0.019124096259474754, 0.0027169857639819384, -0.00971639808267355, -0.04873695224523544, -0.03863257169723511, -0.0506477877497673, 0.003504885593429208, 0.02662101574242115, -0.07623009383678436, 0.0024621973279863596, 0.0368683896958828, -0.03047575056552887, -0.050807174295186996, -0.026286009699106216, 0.018489163368940353, 0.012329868040978909, -0.05065234750509262, 0.032128024846315384, -0.03557995706796646, -0.024099620059132576, 0.2449951022863388, -0.04188012331724167, -0.09582728147506714, -0.12462806701660156, 0.15398333966732025, 0.06369707733392715, 0.015348581597208977, 0.03865077719092369, -0.06189220771193504, -0.0006100011523813009, 0.24367113411426544, 0.15278448164463043, -0.05725271999835968, -0.006641837302595377, -0.04212743043899536, -0.010492322035133839, -0.011074353009462357, 0.15242567658424377, 0.07132366299629211, 0.038943931460380554, -0.04361448436975479, -0.03607388585805893, -0.07959405332803726, 0.027783842757344246, -0.03949186950922012, 0.00711788609623909, 0.039109133183956146, -0.02443717233836651, -0.04590051248669624, 0.06768231093883514, -0.035204675048589706, -0.04594160616397858, 0.08898372203111649, -0.09795462340116501, -0.12227649986743927, -0.03489257022738457, 0.060548920184373856, 0.00549525348469615, 0.07241286337375641, -0.10639115422964096, -0.02381906844675541, -0.016757404431700706, 0.0030846407171338797, -0.13199801743030548, -0.06537792831659317, 0.09576794505119324, 0.004167717881500721, 0.13029909133911133, -0.04628003388643265, 0.0829506665468216, 0.08404473215341568, 0.04866504669189453, -0.09427397698163986, 0.029384002089500427, -0.001049693557433784, 0.031460028141736984, 0.0677952840924263, 0.013470172882080078, -0.04574517905712128, 0.03827216476202011, 0.048195384442806244, -0.15933442115783691, -0.03250177577137947, 0.018198681995272636, 0.06787312030792236, -0.07681383192539215, -0.023507501929998398, -0.08570787310600281, 0.15263678133487701, 0.15714292228221893, -0.04338042810559273, -0.018299488350749016, -0.06498747318983078, 0.03702281787991524, 0.057754036039114, -0.012578348629176617, -0.04329245537519455, -0.1787882149219513, -0.04408898949623108, -0.02752097137272358, -0.00235154596157372, -0.12168143689632416, -0.07040626555681229, -0.09102876484394073, -0.06909023970365524, -0.09123528003692627, 0.10758274048566818, 0.07006531953811646, 0.02112307772040367, -0.04887879639863968, -0.02794520929455757, -0.060051850974559784, 0.12884224951267242, -0.15432916581630707, -0.08973143249750137 ]
null
null
transformers
# Sentiment Analysis for Tigrinya with TiELECTRA small This model is a fine-tuned version of [TiELECTRA small](https://huggingface.co/fgaim/tielectra-small) on a YouTube comments Sentiment Analysis dataset for Tigrinya (Tela et al. 2020). ## Basic usage ```python from transformers import pipeline ti_sent = pipeline("sentiment-analysis", model="fgaim/tielectra-small-sentiment") ti_sent("ድምጻዊ ኣብርሃም ኣፈወርቂ ንዘልኣለም ህያው ኮይኑ ኣብ ልብና ይነብር") ``` ## Training ### Hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Results The model achieves the following results on the evaluation set: - F1: 0.8229 - Precision: 0.8056 - Recall: 0.841 - Accuracy: 0.819 - Loss: 0.4299 ### Framework versions - Transformers 4.10.3 - Pytorch 1.9.0+cu111 - Datasets 1.10.2 - Tokenizers 0.10.1 ## Citation If you use this model in your product or research, please cite as follows: ``` @article{Fitsum2021TiPLMs, author={Fitsum Gaim and Wonsuk Yang and Jong C. Park}, title={Monolingual Pre-trained Language Models for Tigrinya}, year=2021, publisher= {WiNLP 2021/EMNLP 2021} } ``` ## References ``` Tela, A., Woubie, A. and Hautamäki, V. 2020. Transferring Monolingual Model to Low-Resource Language: The Case of Tigrinya. ArXiv, abs/2006.07698. ```
{"language": "ti", "metrics": ["f1", "precision", "recall", "accuracy"], "widget": [{"text": "\u12f5\u121d\u133b\u12ca \u12a3\u1265\u122d\u1203\u121d \u12a3\u1348\u12c8\u122d\u1242 \u1295\u12d8\u120d\u12a3\u1208\u121d \u1205\u12eb\u12cd \u12ae\u12ed\u1291 \u12a3\u1265 \u120d\u1265\u1293 \u12ed\u1290\u1265\u122d"}]}
text-classification
fgaim/tielectra-small-sentiment
[ "transformers", "pytorch", "electra", "text-classification", "ti", "model-index", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "ti" ]
TAGS #transformers #pytorch #electra #text-classification #ti #model-index #autotrain_compatible #endpoints_compatible #has_space #region-us
# Sentiment Analysis for Tigrinya with TiELECTRA small This model is a fine-tuned version of TiELECTRA small on a YouTube comments Sentiment Analysis dataset for Tigrinya (Tela et al. 2020). ## Basic usage ## Training ### Hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Results The model achieves the following results on the evaluation set: - F1: 0.8229 - Precision: 0.8056 - Recall: 0.841 - Accuracy: 0.819 - Loss: 0.4299 ### Framework versions - Transformers 4.10.3 - Pytorch 1.9.0+cu111 - Datasets 1.10.2 - Tokenizers 0.10.1 If you use this model in your product or research, please cite as follows: ## References
[ "# Sentiment Analysis for Tigrinya with TiELECTRA small\n\nThis model is a fine-tuned version of TiELECTRA small on a YouTube comments Sentiment Analysis dataset for Tigrinya (Tela et al. 2020).", "## Basic usage", "## Training", "### Hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 2e-05\n- train_batch_size: 32\n- eval_batch_size: 32\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 3.0", "### Results\n\nThe model achieves the following results on the evaluation set:\n- F1: 0.8229\n- Precision: 0.8056\n- Recall: 0.841\n- Accuracy: 0.819\n- Loss: 0.4299", "### Framework versions\n\n- Transformers 4.10.3\n- Pytorch 1.9.0+cu111\n- Datasets 1.10.2\n- Tokenizers 0.10.1\n\n\nIf you use this model in your product or research, please cite as follows:", "## References" ]
[ "TAGS\n#transformers #pytorch #electra #text-classification #ti #model-index #autotrain_compatible #endpoints_compatible #has_space #region-us \n", "# Sentiment Analysis for Tigrinya with TiELECTRA small\n\nThis model is a fine-tuned version of TiELECTRA small on a YouTube comments Sentiment Analysis dataset for Tigrinya (Tela et al. 2020).", "## Basic usage", "## Training", "### Hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 2e-05\n- train_batch_size: 32\n- eval_batch_size: 32\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 3.0", "### Results\n\nThe model achieves the following results on the evaluation set:\n- F1: 0.8229\n- Precision: 0.8056\n- Recall: 0.841\n- Accuracy: 0.819\n- Loss: 0.4299", "### Framework versions\n\n- Transformers 4.10.3\n- Pytorch 1.9.0+cu111\n- Datasets 1.10.2\n- Tokenizers 0.10.1\n\n\nIf you use this model in your product or research, please cite as follows:", "## References" ]
[ 47, 52, 3, 2, 89, 52, 51, 3 ]
[ "passage: TAGS\n#transformers #pytorch #electra #text-classification #ti #model-index #autotrain_compatible #endpoints_compatible #has_space #region-us \n# Sentiment Analysis for Tigrinya with TiELECTRA small\n\nThis model is a fine-tuned version of TiELECTRA small on a YouTube comments Sentiment Analysis dataset for Tigrinya (Tela et al. 2020).## Basic usage## Training### Hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 2e-05\n- train_batch_size: 32\n- eval_batch_size: 32\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 3.0### Results\n\nThe model achieves the following results on the evaluation set:\n- F1: 0.8229\n- Precision: 0.8056\n- Recall: 0.841\n- Accuracy: 0.819\n- Loss: 0.4299### Framework versions\n\n- Transformers 4.10.3\n- Pytorch 1.9.0+cu111\n- Datasets 1.10.2\n- Tokenizers 0.10.1\n\n\nIf you use this model in your product or research, please cite as follows:## References" ]
[ -0.06383460760116577, 0.0928911417722702, -0.0019137859344482422, 0.09667100012302399, 0.12535157799720764, 0.0012252844171598554, 0.07934927940368652, 0.14776216447353363, 0.0014958546962589025, 0.10109357535839081, 0.06986942887306213, 0.08731227368116379, 0.06797723472118378, 0.1355658918619156, -0.07011596858501434, -0.23238395154476166, 0.0001817943702917546, 0.015060137957334518, 0.042795442044734955, 0.12332241237163544, 0.13079918920993805, -0.13597065210342407, 0.1244131550192833, 0.022658515721559525, -0.1409231424331665, 0.011466828174889088, 0.05652010440826416, -0.09089358150959015, 0.09461068361997604, 0.017417222261428833, 0.057789333164691925, 0.0078046564012765884, 0.07523693889379501, -0.12182371318340302, -0.0008405557018704712, 0.018873538821935654, 0.01877090148627758, 0.062255971133708954, 0.10336823761463165, -0.003073109546676278, 0.08471599221229553, -0.14245638251304626, 0.04654013738036156, 0.06145287677645683, -0.11627107858657837, -0.10979519784450531, -0.07662250846624374, 0.06950752437114716, 0.0744619145989418, 0.07849098742008209, -0.049804333597421646, 0.18435271084308624, -0.07476484030485153, 0.10358206927776337, 0.2144092321395874, -0.2282593995332718, -0.058507636189460754, 0.0390971414744854, 0.024665260687470436, 0.06825800985097885, -0.07925880700349808, 0.03256372734904289, 0.04996200278401375, 0.001696286373771727, 0.08144950866699219, -0.04265255481004715, -0.048945434391498566, -0.020712755620479584, -0.11772548407316208, -0.06553614884614944, 0.24044883251190186, 0.0744355320930481, -0.03720000013709068, -0.10078435391187668, -0.07850156724452972, -0.07531292736530304, -0.07585158944129944, -0.060446470975875854, 0.07249277830123901, -0.0483170785009861, -0.05820108950138092, -0.004622588399797678, -0.09808753430843353, -0.015010247007012367, -0.04757307842373848, 0.03370629996061325, 0.004240547772496939, 0.04587569460272789, -0.07791969925165176, 0.00993468426167965, -0.10873906314373016, -0.12317489087581635, -0.04862074553966522, -0.018485430628061295, -0.0057948981411755085, -0.10037273168563843, -0.031695619225502014, 0.005087585654109716, 0.04330561310052872, 0.10557607561349869, 0.008915849030017853, 0.059699319303035736, 0.007693388499319553, -0.018404439091682434, 0.009094676934182644, 0.19895485043525696, -0.08399388939142227, -0.06653528660535812, 0.03684747964143753, 0.030812116339802742, 0.02416226826608181, 0.018383555114269257, -0.05498029291629791, -0.03762077912688255, 0.09964656829833984, 0.039975106716156006, -0.010346919298171997, 0.042919229716062546, -0.06608464568853378, -0.03191908821463585, -0.019776320084929466, -0.11410093307495117, 0.04206499084830284, 0.009964140132069588, -0.08634167164564133, 0.11106742918491364, -0.03708124905824661, 0.016704361885786057, -0.04768228903412819, 0.01132954005151987, -0.11364565789699554, 0.027595950290560722, -0.04524684697389603, -0.0941578596830368, 0.037071213126182556, -0.06970367580652237, 0.009028295986354351, -0.12754018604755402, -0.12820963561534882, -0.02487774007022381, -0.002807444194331765, -0.07950092107057571, -0.03663770481944084, -0.05695304647088051, -0.06973373889923096, 0.040098804980516434, 0.01596679911017418, -0.03152772784233093, -0.05613362416625023, 0.07505658268928528, 0.05062253028154373, 0.081511951982975, 0.041207198053598404, 0.03792217746376991, -0.12127771228551865, 0.008955796249210835, -0.12221675366163254, 0.08479301631450653, -0.031458523124456406, 0.04563206061720848, -0.1566344052553177, -0.10076717287302017, 0.015293744392693043, -0.01356901042163372, 0.024212541058659554, 0.1675681620836258, -0.20879630744457245, -0.036924611777067184, 0.15687228739261627, -0.07392770051956177, -0.08987295627593994, 0.14155696332454681, -0.012828842736780643, 0.0609457865357399, 0.10420229285955429, 0.1604820042848587, 0.03727438673377037, -0.08371590077877045, -0.06474092602729797, -0.028104722499847412, -0.0227205753326416, 0.015427954494953156, 0.0810919776558876, 0.016903162002563477, 0.0700896829366684, -0.011189223267138004, -0.023044049739837646, -0.05563966929912567, -0.07538092136383057, -0.05638383328914642, -0.053717076778411865, -0.03218134120106697, 0.01704772189259529, 0.0032712945248931646, 0.036287177354097366, -0.06562274694442749, -0.051125604659318924, 0.10338833928108215, 0.10502859950065613, -0.035601139068603516, 0.004466200713068247, -0.1251242309808731, 0.15391068160533905, -0.1103983074426651, -0.050869639962911606, -0.1519518792629242, -0.014645576477050781, 0.03734802082180977, 0.003090043319389224, 0.002817876171320677, 0.03915414586663246, 0.06099751964211464, -0.03239891305565834, -0.019796859472990036, 0.022358346730470657, -0.04773793742060661, -0.00544936116784811, -0.05002386495471001, -0.10720222443342209, -0.00510522723197937, 0.0032485576812177896, 0.13436470925807953, -0.19473284482955933, -0.03150269389152527, 0.12411787360906601, 0.10621577501296997, 0.037054408341646194, -0.04065508395433426, -0.0018685824470594525, -0.007490501739084721, -0.011064639315009117, -0.07737311720848083, 0.0533643402159214, -0.02679140493273735, -0.05214786157011986, -0.00634961249306798, -0.12019890546798706, 0.03148927539587021, 0.1101728156208992, -0.028683114796876907, -0.08551699668169022, 0.021866828203201294, -0.022517427802085876, 0.0097506083548069, -0.06086507439613342, -0.02477961964905262, 0.10258281230926514, 0.013012279756367207, 0.08215538412332535, -0.1144850105047226, -0.0543743371963501, 0.03756861016154289, -0.054388806223869324, -0.0458727702498436, 0.10909666866064072, 0.06249840557575226, -0.2112044245004654, 0.08327027410268784, 0.06292148679494858, -0.03281527757644653, 0.11224732547998428, -0.03068220242857933, -0.08631378412246704, -0.03356827795505524, -0.017908375710248947, -0.000046298398956423625, 0.046677857637405396, -0.03619740903377533, 0.006261954549700022, 0.05980474501848221, 0.006441148463636637, -0.03333352133631706, -0.10846293717622757, 0.030218880623579025, 0.052128177136182785, -0.048736196011304855, -0.04857207462191582, 0.04843958839774132, 0.038021270185709, 0.1180228590965271, 0.04039890319108963, 0.010083917528390884, -0.003235762706026435, -0.026276182383298874, -0.08583185821771622, 0.14582017064094543, -0.04467674717307091, -0.18786470592021942, -0.11852286756038666, 0.00971270352602005, -0.05581018701195717, 0.0023419978097081184, 0.022494709119200706, -0.07688761502504349, -0.077372707426548, -0.08272769302129745, 0.0035373885184526443, -0.02424248307943344, -0.014320154674351215, 0.05038551241159439, 0.015033457428216934, 0.03989925608038902, -0.12246078252792358, -0.052267130464315414, -0.03521263226866722, -0.07559100538492203, 0.02794361673295498, 0.008708717301487923, 0.06138654798269272, 0.0758979320526123, -0.05263160914182663, 0.027215031906962395, -0.039840515702962875, 0.27551135420799255, -0.08639633655548096, 0.05926800146698952, 0.20915760099887848, 0.05181160941720009, 0.06363127380609512, 0.17962847650051117, 0.029485464096069336, -0.10368850827217102, 0.019553426653146744, 0.04515325650572777, -0.00005610095468000509, -0.17393508553504944, -0.03392885625362396, -0.05594421550631523, -0.023160863667726517, 0.1245374009013176, 0.005611096974462271, -0.011833211407065392, 0.08754482120275497, -0.002659821417182684, 0.030616745352745056, -0.016415076330304146, 0.09716210514307022, 0.22859998047351837, 0.0839601382613182, 0.1016140952706337, -0.035840220749378204, 0.00009662965021561831, 0.09521287679672241, -0.058629486709833145, 0.15357837080955505, 0.0013788824435323477, 0.18375428020954132, 0.033991988748311996, 0.0737561285495758, 0.02522166632115841, 0.04753529652953148, -0.014311375096440315, 0.002451844047755003, -0.014194954186677933, -0.06626296043395996, -0.06099925562739372, 0.02838563732802868, 0.05644230544567108, 0.038862746208906174, -0.06460844725370407, 0.034232232719659805, 0.08432875573635101, 0.22834362089633942, 0.07684138417243958, -0.39001747965812683, -0.10423798859119415, 0.024334492161870003, -0.0663800984621048, -0.06040431559085846, 0.0018780296668410301, 0.0537225715816021, -0.12623709440231323, 0.06001829355955124, -0.03230610489845276, 0.07847816497087479, -0.08126670867204666, 0.007107404991984367, 0.014032132923603058, 0.07408837229013443, -0.0001645758020458743, 0.06630611419677734, -0.1809099167585373, 0.20580251514911652, 0.018763409927487373, 0.0514383539557457, -0.04831627011299133, -0.015054041519761086, 0.018786942586302757, 0.0041523524560034275, 0.1323106586933136, 0.014078612439334393, -0.017804693430662155, -0.1735030561685562, -0.08946090191602707, 0.02317240834236145, 0.07211503386497498, -0.042875226587057114, 0.12548597157001495, -0.1025342121720314, -0.01580585166811943, 0.003859142307192087, -0.02350822277367115, -0.08823180943727493, -0.07186652719974518, -0.00513351708650589, 0.06881159543991089, 0.012637761421501637, -0.015661880373954773, -0.08262446522712708, -0.05690179392695427, 0.09976799041032791, -0.03243212774395943, -0.07340358942747116, -0.13235485553741455, 0.07081998139619827, 0.14228466153144836, -0.0786963403224945, 0.10024333000183105, -0.001377756823785603, 0.1302599459886551, 0.05302271991968155, -0.05799911171197891, 0.06929836422204971, -0.056420642882585526, -0.15849393606185913, 0.015454933978617191, 0.1380467265844345, -0.017208004370331764, 0.03892499953508377, 0.03584953397512436, 0.07865282893180847, -0.0029947496950626373, -0.08086495846509933, -0.04440559446811676, 0.07339958101511002, 0.05333365872502327, 0.012035166844725609, -0.005892376881092787, -0.07359190285205841, -0.09077135473489761, -0.004636866971850395, 0.15869039297103882, 0.2812035083770752, -0.08112264424562454, 0.044718507677316666, 0.02204861491918564, -0.020374100655317307, -0.13732224702835083, 0.027680182829499245, 0.06629276275634766, 0.006125879008322954, 0.07732648402452469, -0.042798303067684174, 0.0960654690861702, 0.05395261570811272, -0.004512609448283911, -0.03795326128602028, -0.28181859850883484, -0.12171253561973572, 0.04698622226715088, 0.10582820326089859, 0.11426770687103271, -0.07223806530237198, -0.03948740288615227, -0.03708532080054283, -0.1343192309141159, 0.11046651750802994, 0.03417238965630531, 0.11044485121965408, -0.012703662738204002, 0.12690386176109314, 0.04045422375202179, -0.016805551946163177, 0.11885344237089157, 0.00407234113663435, 0.046874430030584335, -0.06496145576238632, -0.0765048936009407, 0.03439585119485855, -0.06253141909837723, 0.09524054825305939, 0.044562928378582, 0.05113404616713524, -0.11875128746032715, -0.03973117470741272, -0.06570465117692947, 0.06006282567977905, -0.022330034524202347, -0.03735775500535965, -0.058049872517585754, 0.0332191027700901, 0.06764418631792068, -0.054141320288181305, -0.004139889031648636, -0.04883505776524544, -0.032033637166023254, 0.06331076472997665, 0.12199220806360245, 0.011122656054794788, -0.07972084730863571, 0.02284851297736168, -0.008899656124413013, 0.03290656581521034, -0.11747891455888748, 0.07009252160787582, 0.11436827480792999, 0.038869552314281464, 0.12344872951507568, 0.0355721153318882, -0.021006690338253975, 0.011781562119722366, 0.041350990533828735, -0.07947452366352081, -0.13444045186042786, -0.000684996834024787, -0.0807669386267662, -0.13460594415664673, -0.060498856008052826, 0.13708767294883728, -0.06453366577625275, -0.03936750814318657, -0.005176232662051916, 0.04194018617272377, -0.004149105399847031, 0.09913551062345505, 0.0011940698605030775, 0.042557645589113235, -0.0900353193283081, 0.1006021499633789, 0.07020595669746399, -0.12043330073356628, 0.053751230239868164, 0.059887442737817764, -0.08609935641288757, -0.03563547134399414, 0.06089680269360542, 0.043786048889160156, -0.08784293383359909, -0.03413521870970726, -0.06979375332593918, -0.0874839797616005, 0.04947685822844505, 0.14351390302181244, 0.07599800825119019, 0.021266886964440346, -0.03177526220679283, -0.011768405325710773, -0.1160915344953537, 0.10260053724050522, 0.11554914712905884, 0.016894491389393806, -0.1782374083995819, 0.05653677135705948, -0.032607369124889374, -0.005214089062064886, -0.026162613183259964, 0.01905754581093788, -0.11048000305891037, -0.028274020180106163, -0.0041440813802182674, 0.09142281115055084, -0.060901105403900146, 0.02471139281988144, -0.018512437120079994, -0.030945299193263054, -0.09867861866950989, 0.01442805863916874, -0.07936976104974747, -0.03754014894366264, 0.021027052775025368, 0.11317335814237595, -0.1336042881011963, 0.00681692361831665, 0.059504542499780655, -0.05373947694897652, 0.10654683411121368, 0.06214834749698639, -0.010685360990464687, 0.012227142229676247, -0.08874756842851639, -0.015391003340482712, 0.0499160997569561, 0.017020870000123978, 0.05659142881631851, -0.15015298128128052, 0.04111368581652641, -0.0032935957424342632, 0.02988189272582531, -0.005315860733389854, 0.06100162863731384, -0.11063792556524277, -0.023224974051117897, -0.06265497952699661, -0.06049497425556183, -0.08998702466487885, 0.022959595546126366, 0.09483035653829575, -0.0014232174726203084, 0.1875704973936081, -0.07884011417627335, 0.0056244744919240475, -0.17588074505329132, 0.003879944561049342, -0.03443333879113197, -0.04773417487740517, -0.13308581709861755, -0.059704363346099854, 0.07902368158102036, -0.04000881686806679, 0.06874614208936691, 0.01886005885899067, 0.07440219819545746, 0.05666545033454895, 0.025574885308742523, -0.06819619238376617, 0.00618134718388319, 0.1880047768354416, 0.037666205316782, -0.039529573172330856, 0.03053794428706169, 0.017221076413989067, 0.06375745683908463, 0.03993719816207886, 0.12843552231788635, 0.20172184705734253, -0.059899333864450455, 0.06250477582216263, 0.02401382103562355, -0.037344031035900116, -0.11958333104848862, 0.057965755462646484, -0.08744840323925018, 0.0705515667796135, -0.04616643115878105, 0.1213449165225029, 0.15678514540195465, -0.1422412097454071, 0.06003352627158165, -0.09563051164150238, -0.05717860907316208, -0.10458377748727798, -0.1521795094013214, -0.13016226887702942, -0.11619536578655243, 0.016113266348838806, -0.13168005645275116, 0.07402453571557999, 0.07579036802053452, 0.04042484238743782, -0.041829854249954224, 0.13586096465587616, -0.13387218117713928, -0.06851032376289368, 0.08587094396352768, 0.010358575731515884, -0.0249632615596056, 0.004730135202407837, -0.030680149793624878, 0.004193579778075218, 0.029669178649783134, 0.07313462346792221, 0.011072997003793716, 0.006719294935464859, 0.003488403744995594, -0.0731649398803711, -0.10434436798095703, -0.002839714754372835, 0.03447319567203522, 0.008216285146772861, -0.04884563758969307, 0.0346156544983387, -0.011600502766668797, -0.00661851791664958, 0.2668314576148987, -0.07559937983751297, -0.0654003694653511, -0.13001404702663422, 0.17918524146080017, 0.018669012933969498, 0.011549735441803932, 0.015556791797280312, -0.1316276639699936, -0.004215753637254238, 0.22017888724803925, 0.10051340609788895, -0.024897314608097076, -0.016975147649645805, -0.04003095254302025, 0.0067824553698301315, -0.03305298462510109, 0.04658098518848419, 0.01415134035050869, 0.03619464859366417, -0.07051055878400803, 0.04888388514518738, -0.017238350585103035, -0.007446542382240295, -0.03577427938580513, 0.08265151083469391, 0.02142319269478321, -0.00620512617751956, -0.06723778694868088, 0.09065017104148865, -0.027135631069540977, -0.12653730809688568, 0.035533078014850616, -0.147543802857399, -0.10487447679042816, -0.00674851331859827, -0.030713757500052452, 0.02895895019173622, 0.07991902530193329, -0.015677843242883682, -0.03956498205661774, 0.06318812072277069, 0.039664845913648605, -0.12709541618824005, -0.02768951840698719, 0.10811308026313782, -0.03666193410754204, 0.1753734052181244, -0.023284267634153366, 0.06349699199199677, 0.12418323755264282, 0.00391775369644165, -0.1092086136341095, 0.036454398185014725, 0.06519608199596405, -0.04785097762942314, 0.0583859421312809, 0.13394421339035034, -0.009660596959292889, 0.05131363868713379, 0.06590025126934052, -0.17374132573604584, -0.01610066182911396, -0.020362939685583115, 0.05743058770895004, -0.09665093570947647, 0.009951407089829445, -0.08958741277456284, 0.1444185972213745, 0.15833279490470886, -0.050065673887729645, -0.006510119419544935, -0.07947884500026703, 0.06888751685619354, 0.06901955604553223, 0.03663790225982666, -0.03061581216752529, -0.19617117941379547, 0.019979756325483322, -0.004520630929619074, 0.020642932504415512, -0.16880455613136292, -0.07290355861186981, -0.016968244686722755, -0.02338205836713314, -0.08246056735515594, 0.08540963381528854, 0.059365853667259216, 0.01171308383345604, -0.017379989847540855, -0.09905074536800385, -0.009777596220374107, 0.1739354133605957, -0.13513125479221344, -0.05186808854341507 ]
null
null
transformers
# Pre-trained ELECTRA small for Tigrinya Language We pre-train ELECTRA small on the [TLMD](https://zenodo.org/record/5139094) dataset, with over 40 million tokens. Contained are trained Flax and PyTorch models. ## Hyperparameters The hyperparameters corresponding to model sizes mentioned above are as follows: | Model Size | L | AH | HS | FFN | P | Seq | |------------|----|----|-----|------|------|------| | SMALL | 12 | 4 | 256 | 1024 | 14M | 512 | (L = number of layers; AH = number of attention heads; HS = hidden size; FFN = feedforward network dimension; P = number of parameters; Seq = maximum sequence length.) ### Framework versions - Transformers 4.12.0.dev0 - Pytorch 1.9.0+cu111 - Datasets 1.13.3 - Tokenizers 0.10.3 ## Citation If you use this model in your product or research, please cite as follows: ``` @article{Fitsum2021TiPLMs, author={Fitsum Gaim and Wonsuk Yang and Jong C. Park}, title={Monolingual Pre-trained Language Models for Tigrinya}, year=2021, publisher={WiNLP 2021 at EMNLP 2021} } ```
{"language": "ti", "widget": [{"text": "\u12d3\u1255\u121a \u1218\u1295\u12a5\u1230\u12ed \u12a4\u122d\u1275\u122b [MASK] \u1270\u122b\u12a5\u12e9"}]}
fill-mask
fgaim/tielectra-small
[ "transformers", "pytorch", "jax", "electra", "fill-mask", "ti", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "ti" ]
TAGS #transformers #pytorch #jax #electra #fill-mask #ti #autotrain_compatible #endpoints_compatible #has_space #region-us
Pre-trained ELECTRA small for Tigrinya Language =============================================== We pre-train ELECTRA small on the TLMD dataset, with over 40 million tokens. Contained are trained Flax and PyTorch models. Hyperparameters --------------- The hyperparameters corresponding to model sizes mentioned above are as follows: (L = number of layers; AH = number of attention heads; HS = hidden size; FFN = feedforward network dimension; P = number of parameters; Seq = maximum sequence length.) ### Framework versions * Transformers 4.12.0.dev0 * Pytorch 1.9.0+cu111 * Datasets 1.13.3 * Tokenizers 0.10.3 If you use this model in your product or research, please cite as follows:
[ "### Framework versions\n\n\n* Transformers 4.12.0.dev0\n* Pytorch 1.9.0+cu111\n* Datasets 1.13.3\n* Tokenizers 0.10.3\n\n\nIf you use this model in your product or research, please cite as follows:" ]
[ "TAGS\n#transformers #pytorch #jax #electra #fill-mask #ti #autotrain_compatible #endpoints_compatible #has_space #region-us \n", "### Framework versions\n\n\n* Transformers 4.12.0.dev0\n* Pytorch 1.9.0+cu111\n* Datasets 1.13.3\n* Tokenizers 0.10.3\n\n\nIf you use this model in your product or research, please cite as follows:" ]
[ 46, 54 ]
[ "passage: TAGS\n#transformers #pytorch #jax #electra #fill-mask #ti #autotrain_compatible #endpoints_compatible #has_space #region-us \n### Framework versions\n\n\n* Transformers 4.12.0.dev0\n* Pytorch 1.9.0+cu111\n* Datasets 1.13.3\n* Tokenizers 0.10.3\n\n\nIf you use this model in your product or research, please cite as follows:" ]
[ -0.11817972362041473, 0.07896044850349426, -0.0035891460720449686, 0.043459054082632065, 0.09188172221183777, 0.017020639032125473, 0.14598193764686584, 0.03180411458015442, -0.075920470058918, 0.029922131448984146, 0.1609889715909958, 0.1321931779384613, -0.02247013710439205, 0.20639458298683167, -0.05246930569410324, -0.3010999858379364, 0.08319848030805588, 0.1496291309595108, -0.07488887012004852, 0.1394515335559845, 0.10470247268676758, -0.1409856677055359, 0.10093541443347931, 0.09954839199781418, -0.1936422884464264, -0.0277872197329998, 0.037602655589580536, -0.15080100297927856, 0.07669425755739212, -0.001517808181233704, 0.16652466356754303, 0.08307117968797684, 0.04490837827324867, 0.029711870476603508, 0.031797342002391815, -0.00010031375859398395, -0.03512733802199364, 0.09391434490680695, -0.006008635275065899, -0.031977102160453796, 0.099881611764431, 0.02691035345196724, 0.05775006487965584, -0.02159186452627182, -0.10281794518232346, -0.23995058238506317, -0.06964430958032608, 0.11864262074232101, 0.04480643942952156, 0.051344651728868484, 0.013791716657578945, 0.2612631618976593, -0.034891143441200256, 0.08396363258361816, 0.19507481157779694, -0.2143344283103943, -0.05766924470663071, -0.037056080996990204, 0.09198078513145447, -0.01723925769329071, 0.028257910162210464, 0.007581162732094526, 0.05522996559739113, 0.06833076477050781, 0.1348930448293686, -0.03183720260858536, -0.04269268363714218, -0.016188569366931915, -0.1441771686077118, -0.10109444707632065, 0.2350151687860489, -0.05586175620555878, -0.03565343841910362, -0.023639865219593048, -0.13681179285049438, -0.09880530089139938, -0.05995641276240349, -0.036668017506599426, 0.0017250864766538143, -0.07639659196138382, -0.10398063063621521, -0.027847638353705406, -0.1084630936384201, -0.07132939994335175, -0.1766003668308258, 0.33673006296157837, 0.039420511573553085, 0.09796237200498581, -0.14480911195278168, 0.04258398711681366, -0.04192217439413071, -0.19425800442695618, 0.01999826915562153, -0.1175861656665802, 0.10777977108955383, -0.02260732650756836, -0.10045389831066132, -0.043252840638160706, 0.040380630642175674, 0.2029830515384674, -0.06470903009176254, -0.012120415456593037, 0.04135946184396744, 0.02679854817688465, 0.027420295402407646, 0.1458515077829361, -0.07987959682941437, 0.12759993970394135, 0.04113294184207916, 0.016878843307495117, 0.09702946245670319, -0.04462302476167679, -0.14764806628227234, -0.043142445385456085, 0.08107027411460876, 0.02384759671986103, 0.02252929098904133, 0.05138289928436279, -0.006402408238500357, -0.037462953478097916, 0.18619957566261292, -0.05835997313261032, -0.0014268172672018409, -0.02558443881571293, -0.010492579080164433, 0.046288881450891495, 0.06222052127122879, -0.011218621395528316, -0.007067039608955383, 0.05880989879369736, -0.09325084090232849, -0.033020880073308945, -0.08580290526151657, -0.12100397795438766, 0.029580729082226753, -0.1224968284368515, 0.05672208592295647, -0.19989722967147827, -0.07738188654184341, 0.0896795243024826, 0.061837196350097656, -0.0061808074824512005, -0.07391378283500671, 0.04896914213895798, -0.09266260266304016, 0.036863505840301514, -0.02591772750020027, -0.0009973992127925158, -0.03562479838728905, 0.08714444190263748, 0.11555507779121399, 0.11593544483184814, -0.12928634881973267, 0.034592606127262115, -0.07239828258752823, 0.03513278812170029, -0.22999070584774017, 0.007192840799689293, -0.059592194855213165, -0.0030517452396452427, -0.030504586175084114, -0.15197166800498962, 0.03648838773369789, 0.014930864796042442, 0.07780110836029053, 0.1393892914056778, -0.08825921267271042, -0.09792609512805939, 0.11762465536594391, -0.18392685055732727, -0.15754254162311554, 0.07538945227861404, -0.009403057396411896, -0.05420719087123871, 0.0013303676387295127, 0.0482732318341732, 0.08593451231718063, -0.1744139939546585, -0.02477436512708664, -0.024942027404904366, -0.04583623632788658, -0.11464491486549377, 0.055483683943748474, 0.06477395445108414, -0.010101442225277424, 0.010419049300253391, -0.04491792246699333, 0.038907524198293686, -0.10178868472576141, -0.0859135091304779, -0.07155493646860123, -0.054780200123786926, 0.16818374395370483, 0.038637325167655945, 0.06091378629207611, -0.03535066545009613, -0.0618622824549675, 0.09035972505807877, 0.0744694173336029, -0.01860126480460167, 0.011513680219650269, -0.1428123414516449, 0.20618775486946106, -0.1724623590707779, -0.021850503981113434, -0.2039891928434372, -0.061643507331609726, -0.004636741708964109, 0.045750293880701065, 0.0034265678841620684, -0.028060197830200195, 0.08909968286752701, 0.07170421630144119, -0.0037126170936971903, -0.030892889946699142, -0.03530729562044144, 0.03312627226114273, -0.0230085626244545, -0.10111350566148758, -0.08421146124601364, -0.05276516452431679, 0.017558284103870392, 0.04852289333939552, 0.02495432272553444, 0.0653611347079277, 0.1559465080499649, -0.005449381656944752, 0.04847097024321556, -0.0033083283342421055, 0.0807366892695427, -0.01054861955344677, -0.030129175633192062, 0.0023317099548876286, 0.020574424415826797, -0.03727094456553459, 0.08441551774740219, -0.11355452239513397, 0.26057136058807373, 0.20471635460853577, -0.04013819247484207, -0.0014325164956972003, 0.03006821684539318, -0.03976454213261604, 0.021464545279741287, -0.01414551492780447, 0.05802997201681137, 0.07866394519805908, -0.010459725745022297, 0.09360815584659576, -0.08640821278095245, -0.019110623747110367, 0.11694962531328201, -0.040940072387456894, -0.07573629170656204, -0.008694172836840153, 0.11801976710557938, -0.07016727328300476, 0.10935452580451965, 0.1331099569797516, -0.15729859471321106, 0.06604652851819992, -0.06446149945259094, -0.052255336195230484, -0.03550686687231064, -0.13255509734153748, 0.021349456161260605, 0.1782415807247162, -0.08210688084363937, -0.03399652615189552, 0.10545916855335236, -0.07260718941688538, 0.02866634540259838, -0.13950632512569427, 0.006348897702991962, 0.0242471881210804, 0.015450077131390572, -0.15120136737823486, 0.13739845156669617, 0.04857033118605614, 0.07368262112140656, 0.0016260402044281363, -0.06791374087333679, 0.03927617520093918, 0.059460170567035675, -0.02100636623799801, 0.15430423617362976, -0.12565234303474426, -0.22069086134433746, -0.15609565377235413, -0.07068300247192383, -0.07213153690099716, 0.0284121073782444, 0.04118157923221588, -0.054828424006700516, -0.07616657018661499, 0.03688318282365799, 0.014250069856643677, 0.00672171451151371, 0.06911274045705795, -0.017078420147299767, -0.028143255040049553, 0.015728963539004326, -0.11638808250427246, -0.04469476640224457, -0.01399983000010252, 0.0667647197842598, 0.11435385048389435, -0.01536325179040432, 0.14546899497509003, 0.10195502638816833, -0.0600908137857914, 0.04563560336828232, 0.009129498153924942, 0.2254185676574707, -0.09765692800283432, -0.045213766396045685, 0.237984761595726, 0.004021478351205587, 0.07395138591527939, 0.11018045246601105, 0.04579604044556618, -0.02339272014796734, -0.025635745376348495, -0.1002747192978859, -0.08048975467681885, -0.11077980697154999, -0.08133996278047562, -0.05543586239218712, -0.09871608763933182, 0.09571738541126251, 0.00828767940402031, 0.07793723046779633, 0.15032705664634705, 0.012597658671438694, 0.029708372429013252, -0.100921630859375, 0.11938832700252533, 0.23155294358730316, 0.05879531428217888, 0.14347350597381592, -0.03940996900200844, -0.09282343089580536, 0.028418682515621185, -0.011735072359442711, 0.19600173830986023, -0.012082933448255062, 0.029498113319277763, 0.0781882107257843, 0.13958415389060974, 0.11583138257265091, 0.16367127001285553, 0.04908952862024307, -0.014281811192631721, 0.010779710486531258, -0.060264311730861664, -0.07365992665290833, -0.02388332225382328, 0.012038043700158596, 0.04101673141121864, -0.11096414923667908, 0.008555705659091473, 0.03160323575139046, 0.20588286221027374, -0.017586620524525642, -0.42300307750701904, -0.09944579005241394, -0.0017899131635203958, -0.009040819481015205, -0.09261132031679153, -0.010342470370233059, -0.02269546501338482, -0.05215355008840561, 0.0869852676987648, -0.07180260866880417, 0.07520359754562378, 0.02663685567677021, 0.00964188203215599, -0.021486621350049973, 0.10576725751161575, 0.0176166333258152, 0.024141963571310043, -0.23580941557884216, 0.28155016899108887, 0.0027005635201931, 0.024691054597496986, -0.07279513776302338, 0.005166925024241209, 0.034111492335796356, 0.15114426612854004, 0.03708881512284279, -0.01662699319422245, -0.03415653482079506, -0.04769575223326683, -0.07082926481962204, 0.050112348049879074, 0.032272279262542725, 0.028148602694272995, 0.09292246401309967, 0.010333810932934284, -0.038125164806842804, 0.0036026276648044586, -0.03271101415157318, -0.04769658297300339, -0.08792996406555176, 0.06390989571809769, -0.0036116254050284624, 0.01677662320435047, -0.06472189724445343, -0.14208856225013733, -0.029837897047400475, 0.03982938081026077, 0.04912560433149338, -0.12045824527740479, -0.10589046031236649, -0.07661709189414978, 0.18651103973388672, -0.07947996258735657, 0.1439165472984314, -0.07157450169324875, 0.158982053399086, -0.059790149331092834, -0.11560383439064026, 0.042011115700006485, -0.1067081168293953, -0.11350667476654053, 0.01995282992720604, 0.07229191809892654, -0.0227496400475502, 0.0498078279197216, -0.00024639262119308114, 0.078359454870224, -0.11523094773292542, -0.07306725531816483, -0.03517835587263107, -0.04678626358509064, 0.1572946459054947, -0.08098754286766052, 0.0880492553114891, -0.016802962869405746, -0.01998201757669449, 0.07867510616779327, 0.08581630140542984, 0.11583687365055084, -0.09109541773796082, 0.07350488007068634, 0.11104372143745422, 0.039238814264535904, -0.18170307576656342, -0.11231103539466858, 0.005625505931675434, 0.016288455575704575, -0.08477400988340378, -0.08651428669691086, 0.011483454145491123, -0.0013382148463279009, -0.04230857640504837, 0.01739339344203472, -0.1756453514099121, -0.10155704617500305, 0.17173954844474792, 0.08818725496530533, 0.08275998383760452, -0.1191234216094017, -0.011929798871278763, -0.010617353953421116, -0.21218164265155792, 0.13558067381381989, -0.03879170119762421, 0.021245786920189857, -0.053342290222644806, 0.15174055099487305, 0.013313734903931618, -0.0685095265507698, 0.15295900404453278, -0.09652476012706757, 0.0033641806803643703, -0.04203465208411217, -0.0914343073964119, 0.19717130064964294, -0.04065067321062088, 0.06949620693922043, 0.007964005693793297, 0.05314524471759796, -0.006962752901017666, -0.04174325242638588, -0.097224161028862, 0.05148540437221527, -0.04011576995253563, -0.03813749924302101, 0.009181558154523373, -0.03227170929312706, -0.04163302853703499, -0.0696345642209053, 0.1569279581308365, 0.042307619005441666, 0.12528440356254578, 0.12670248746871948, 0.14728012681007385, -0.14204683899879456, -0.04409923404455185, 0.03308415412902832, -0.09120725840330124, 0.11732232570648193, -0.11536479741334915, 0.01910223253071308, 0.08048570156097412, 0.020007841289043427, -0.0033589638769626617, 0.09193853288888931, -0.02886517159640789, 0.027303483337163925, 0.12958964705467224, -0.20190906524658203, -0.03502136841416359, -0.03054138831794262, 0.058246590197086334, -0.08510945737361908, 0.10591208934783936, 0.09336697310209274, -0.07862028479576111, -0.06632056087255478, 0.005966921336948872, -0.04737740755081177, -0.0226662028580904, 0.08635763823986053, 0.09068591892719269, 0.08149712532758713, -0.1385958194732666, 0.011033037677407265, 0.007229007314890623, -0.14962147176265717, -0.0092058926820755, 0.014815468341112137, -0.09176457673311234, -0.07137549668550491, 0.019987983629107475, 0.019922303035855293, -0.14665594696998596, -0.08265849202871323, -0.12590326368808746, -0.11950116604566574, 0.05500954017043114, 0.2551548182964325, 0.11339975893497467, 0.002938223537057638, -0.027280066162347794, 0.02790897712111473, -0.11828544735908508, 0.0589485764503479, 0.061793599277734756, 0.07883945107460022, -0.1849769949913025, 0.09789590537548065, -0.01733461767435074, 0.12561742961406708, -0.08212066441774368, -0.001878903480246663, -0.10156763345003128, 0.0260695219039917, -0.1187949851155281, 0.009793291799724102, -0.12144874781370163, -0.005415944382548332, -0.03682812303304672, -0.05422361195087433, -0.11247406899929047, 0.03898582607507706, -0.08944054692983627, 0.03520909324288368, 0.049719035625457764, -0.04121742025017738, -0.10541374236345291, 0.0038055703043937683, 0.04783915728330612, -0.07550747692584991, 0.04540540650486946, 0.1449749916791916, -0.05128374323248863, 0.05939045920968056, 0.10648652911186218, -0.06851351261138916, 0.07893511652946472, 0.03287733346223831, 0.10072197020053864, -0.12298865616321564, 0.01913103088736534, 0.03350336104631424, 0.006149528548121452, 0.0029658572748303413, 0.10795964300632477, -0.07155822217464447, 0.05096691474318504, 0.05600159615278244, -0.03589281067252159, -0.08172785490751266, 0.014320665039122105, 0.1681211292743683, 0.02646157331764698, 0.12143724411725998, -0.024640845134854317, 0.005651361308991909, -0.05871810391545296, 0.030072974041104317, -0.08116329461336136, -0.13971497118473053, -0.06278342753648758, -0.012981380335986614, 0.033760927617549896, -0.022489121183753014, 0.18834391236305237, -0.025094274431467056, 0.11221324652433395, 0.00502358702942729, 0.10813300311565399, -0.048901498317718506, 0.023568304255604744, 0.16721254587173462, 0.05079744756221771, -0.006831996608525515, 0.0019999544601887465, 0.0869377851486206, 0.024603236466646194, -0.02695930376648903, 0.11746634542942047, 0.023464420810341835, 0.09584427624940872, 0.10041812062263489, 0.07817435264587402, 0.05175434798002243, -0.18053118884563446, -0.1759890615940094, 0.008235401473939419, 0.04670892283320427, 0.030369814485311508, 0.04299381002783775, 0.15540200471878052, -0.04178537800908089, 0.039059124886989594, 0.015349416062235832, -0.031571000814437866, -0.10603746771812439, -0.06439363211393356, -0.07542069256305695, -0.15504151582717896, 0.012844965793192387, -0.10218540579080582, -0.04879271611571312, 0.01877162605524063, -0.011367757804691792, -0.004292919300496578, 0.12510260939598083, 0.05661267414689064, -0.002127672079950571, 0.007982882671058178, 0.009788199327886105, -0.011700721457600594, 0.0746038407087326, -0.030245263129472733, -0.04928630590438843, -0.014146373607218266, 0.0026873683091253042, -0.0061916569247841835, -0.05421999841928482, 0.04217592999339104, -0.05296028032898903, -0.10066584497690201, 0.0005197424907237291, 0.030780795961618423, 0.05684232339262962, 0.016922567039728165, -0.024684401229023933, 0.024764617905020714, 0.003013341687619686, 0.08547721803188324, -0.07894740998744965, -0.1436230093240738, -0.16464050114154816, 0.2519151568412781, -0.03337603062391281, -0.012485489249229431, 0.08981548249721527, -0.026743363589048386, -0.1167679950594902, 0.16954919695854187, 0.19803203642368317, 0.059753116220235825, 0.04514457285404205, 0.06326939910650253, -0.006410764995962381, -0.06164608523249626, 0.05898405611515045, 0.09101246297359467, 0.19977323710918427, -0.075473852455616, -0.07910069078207016, -0.1132986918091774, 0.03795894607901573, -0.03893238306045532, -0.02676706574857235, -0.0015836111269891262, -0.09060394018888474, -0.03960048407316208, 0.05542741343379021, -0.1316034495830536, 0.06526569277048111, 0.011977549642324448, -0.12785638868808746, -0.0736299678683281, 0.0009364242432639003, 0.05121323838829994, -0.011954043060541153, 0.07494424283504486, -0.021562065929174423, -0.05048457533121109, 0.12463998049497604, 0.025173760950565338, -0.11672215908765793, -0.008300254121422768, 0.17219501733779907, -0.02067241072654724, 0.06356051564216614, -0.025552213191986084, 0.13943663239479065, 0.12275367230176926, 0.05850521847605705, -0.08300705254077911, 0.02049902267754078, 0.057498835027217865, -0.13601474463939667, 0.012999322265386581, 0.07973872125148773, 0.0011970876948907971, -0.11683762818574905, -0.005177028477191925, -0.13994057476520538, -0.005325672682374716, -0.09518356621265411, 0.04551776498556137, 0.0073951357044279575, 0.042753275483846664, -0.0547565296292305, 0.0679381862282753, 0.0835629552602768, -0.022099534049630165, -0.028293831273913383, -0.043593261390924454, 0.09967760741710663, 0.1159355565905571, -0.04623585194349289, -0.08240055292844772, -0.17366880178451538, -0.05106625705957413, 0.05351738631725311, -0.04266666620969772, -0.16118845343589783, -0.030575213953852654, -0.025600435212254524, -0.04685351625084877, -0.04979362711310387, 0.014306437224149704, 0.09000232815742493, 0.014579013921320438, -0.022584956139326096, 0.16309963166713715, -0.09404218941926956, 0.07992732524871826, -0.22304797172546387, -0.04903891310095787 ]
null
null
transformers
# TiRoBERTa: RoBERTa Pretrained for the Tigrinya Language We pretrain a RoBERTa base model for Tigrinya on a dataset of 40 million tokens trained for 40 epochs. Contained in this repo is the original pretrained Flax model that was trained on a TPU v3.8 and it's corresponding PyTorch version. ## Hyperparameters The hyperparameters corresponding to model sizes mentioned above are as follows: | Model Size | L | AH | HS | FFN | P | Seq | |------------|----|----|-----|------|------|------| | BASE | 12 | 12 | 768 | 3072 | 125M | 512 | (L = number of layers; AH = number of attention heads; HS = hidden size; FFN = feedforward network dimension; P = number of parameters; Seq = maximum sequence length.) ### Framework versions - Transformers 4.12.0.dev0 - Pytorch 1.9.0+cu111 - Datasets 1.13.3 - Tokenizers 0.10.3 ## Citation If you use this model in your product or research, please cite as follows: ``` @article{Fitsum2021TiPLMs, author={Fitsum Gaim and Wonsuk Yang and Jong C. Park}, title={Monolingual Pre-trained Language Models for Tigrinya}, year=2021, publisher={WiNLP 2021 at EMNLP 2021} } ```
{"language": "ti", "widget": [{"text": "\u12d3\u1255\u121a \u1218\u1295\u12a5\u1230\u12ed \u12a4\u122d\u1275\u122b <mask> \u1270\u122b\u12a5\u12e9"}]}
fill-mask
fgaim/tiroberta-base
[ "transformers", "pytorch", "jax", "safetensors", "roberta", "fill-mask", "ti", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "ti" ]
TAGS #transformers #pytorch #jax #safetensors #roberta #fill-mask #ti #autotrain_compatible #endpoints_compatible #has_space #region-us
TiRoBERTa: RoBERTa Pretrained for the Tigrinya Language ======================================================= We pretrain a RoBERTa base model for Tigrinya on a dataset of 40 million tokens trained for 40 epochs. Contained in this repo is the original pretrained Flax model that was trained on a TPU v3.8 and it's corresponding PyTorch version. Hyperparameters --------------- The hyperparameters corresponding to model sizes mentioned above are as follows: (L = number of layers; AH = number of attention heads; HS = hidden size; FFN = feedforward network dimension; P = number of parameters; Seq = maximum sequence length.) ### Framework versions * Transformers 4.12.0.dev0 * Pytorch 1.9.0+cu111 * Datasets 1.13.3 * Tokenizers 0.10.3 If you use this model in your product or research, please cite as follows:
[ "### Framework versions\n\n\n* Transformers 4.12.0.dev0\n* Pytorch 1.9.0+cu111\n* Datasets 1.13.3\n* Tokenizers 0.10.3\n\n\nIf you use this model in your product or research, please cite as follows:" ]
[ "TAGS\n#transformers #pytorch #jax #safetensors #roberta #fill-mask #ti #autotrain_compatible #endpoints_compatible #has_space #region-us \n", "### Framework versions\n\n\n* Transformers 4.12.0.dev0\n* Pytorch 1.9.0+cu111\n* Datasets 1.13.3\n* Tokenizers 0.10.3\n\n\nIf you use this model in your product or research, please cite as follows:" ]
[ 51, 54 ]
[ "passage: TAGS\n#transformers #pytorch #jax #safetensors #roberta #fill-mask #ti #autotrain_compatible #endpoints_compatible #has_space #region-us \n### Framework versions\n\n\n* Transformers 4.12.0.dev0\n* Pytorch 1.9.0+cu111\n* Datasets 1.13.3\n* Tokenizers 0.10.3\n\n\nIf you use this model in your product or research, please cite as follows:" ]
[ -0.11556901037693024, 0.05383968725800514, -0.0028003768529742956, 0.04625615105032921, 0.09170034527778625, 0.004894590005278587, 0.14731818437576294, 0.038577139377593994, -0.10158193111419678, 0.01579907163977623, 0.1585691124200821, 0.1141531690955162, -0.03272339701652527, 0.19731973111629486, -0.062156956642866135, -0.2731761336326599, 0.0906236469745636, 0.13206012547016144, -0.0568728893995285, 0.1477605253458023, 0.10863564908504486, -0.1384282261133194, 0.09607633203268051, 0.08520586788654327, -0.19767379760742188, -0.021287957206368446, 0.06604614853858948, -0.1545289009809494, 0.07650258392095566, -0.014353047125041485, 0.18002529442310333, 0.08547866344451904, 0.043494392186403275, 0.01926112361252308, 0.03378928825259209, 0.023003431037068367, -0.02933534048497677, 0.09132792055606842, 0.018414899706840515, -0.04585666209459305, 0.048997871577739716, 0.005183830391615629, 0.055549900978803635, -0.01375456154346466, -0.10248936712741852, -0.261606365442276, -0.08815409243106842, 0.1260666698217392, 0.04469815641641617, 0.054010942578315735, 0.01701008528470993, 0.27975761890411377, -0.04079141467809677, 0.08974221348762512, 0.2218734323978424, -0.2468022108078003, -0.06490611284971237, -0.016877954825758934, 0.09138639271259308, -0.014629479497671127, -0.0007673605578020215, 0.004392549395561218, 0.05270276963710785, 0.06032035872340202, 0.13702046871185303, -0.04990489408373833, -0.09270934015512466, -0.018043534830212593, -0.13469843566417694, -0.0788736492395401, 0.2210351824760437, -0.058523353189229965, -0.046863581985235214, -0.026886427775025368, -0.14010652899742126, -0.06957409530878067, -0.06283391267061234, -0.03673792630434036, -0.0027635816950351, -0.06665275245904922, -0.1271129995584488, -0.018634196370840073, -0.11277447640895844, -0.08238998055458069, -0.16877615451812744, 0.3253819942474365, 0.03148927167057991, 0.08990732580423355, -0.13832397758960724, 0.04667337238788605, -0.03205810487270355, -0.19638855755329132, 0.02680320106446743, -0.1258939653635025, 0.10290387272834778, -0.02436230517923832, -0.08078370243310928, -0.05188322067260742, 0.04444802179932594, 0.2012462615966797, -0.11327210813760757, -0.018133092671632767, 0.012817827053368092, 0.023288363590836525, -0.001574518159031868, 0.1395324021577835, -0.08595194667577744, 0.10682147741317749, 0.046473585069179535, 0.01867091841995716, 0.09363123774528503, -0.029469242319464684, -0.12262695282697678, -0.046387579292058945, 0.1067967638373375, 0.03901825472712517, 0.020518533885478973, 0.06556670367717743, 0.008828353136777878, -0.021275455132126808, 0.18513938784599304, -0.06369058787822723, 0.002543436363339424, -0.022556912153959274, 0.019177652895450592, 0.015695888549089432, 0.056692153215408325, -0.011675328947603703, 0.0033007818274199963, 0.05333011969923973, -0.10015904903411865, -0.032550886273384094, -0.08183887600898743, -0.12333136051893234, 0.02614409476518631, -0.08814689517021179, 0.0527324452996254, -0.2069179117679596, -0.09996359795331955, 0.08492501080036163, 0.05533963814377785, -0.006969391368329525, -0.03726013004779816, 0.059582870453596115, -0.11205390095710754, 0.03386085852980614, -0.03017215058207512, 0.022232798859477043, -0.04016036167740822, 0.09179147332906723, 0.10934634506702423, 0.10272929072380066, -0.11550165712833405, 0.021193794906139374, -0.0958930179476738, 0.04385717958211899, -0.22829605638980865, -0.007211590185761452, -0.062168415635824203, 0.013330690562725067, -0.022345036268234253, -0.13702912628650665, 0.02436760812997818, 0.01762716844677925, 0.07418242841959, 0.1376468539237976, -0.07767947018146515, -0.07530424743890762, 0.15299274027347565, -0.18635600805282593, -0.16417111456394196, 0.07990675419569016, -0.013718944042921066, -0.026326367631554604, 0.002742406912147999, 0.06869509816169739, 0.10802365839481354, -0.15952670574188232, -0.03157240152359009, -0.020917631685733795, -0.05109461769461632, -0.12436815351247787, 0.05022577568888664, 0.06147358566522598, -0.04449113830924034, 0.016267601400613785, -0.044840529561042786, 0.03756261244416237, -0.09799510985612869, -0.08480299264192581, -0.08612408488988876, -0.06179485097527504, 0.15144622325897217, 0.04119199886918068, 0.06322761625051498, -0.052437037229537964, -0.06349707394838333, 0.08826551586389542, 0.06852946430444717, -0.029220450669527054, 0.012319549918174744, -0.12360058724880219, 0.20141273736953735, -0.17472133040428162, -0.023216689005494118, -0.19831582903862, -0.0865713506937027, -0.009887708351016045, 0.06535511463880539, -0.03412410244345665, -0.05078636109828949, 0.10421684384346008, 0.07417028397321701, -0.03098604828119278, -0.03796171769499779, 0.001761124236509204, 0.046432290226221085, -0.015240049920976162, -0.10235834866762161, -0.0669887363910675, -0.06110525503754616, 0.018350498750805855, 0.04016062617301941, 0.020702138543128967, 0.06621335446834564, 0.16034674644470215, 0.008746766485273838, 0.0517408549785614, -0.004270270466804504, 0.07734372466802597, -0.002423512749373913, -0.04444184899330139, 0.009115781635046005, 0.026043230667710304, -0.00984301045536995, 0.10589129477739334, -0.12059366703033447, 0.27657902240753174, 0.20254197716712952, -0.01794767752289772, -0.016172153875231743, 0.033208224922418594, -0.04745717719197273, 0.025560878217220306, -0.02095235139131546, 0.05042912811040878, 0.037032533437013626, -0.013507087714970112, 0.09255659580230713, -0.0988885834813118, -0.03465805947780609, 0.10484561324119568, -0.050173256546258926, -0.0750066265463829, -0.009508154354989529, 0.058097586035728455, -0.10231396555900574, 0.1291503608226776, 0.15753649175167084, -0.14114657044410706, 0.07836122810840607, -0.07145195454359055, -0.05163552612066269, -0.03402125835418701, -0.10760968178510666, 0.023999042809009552, 0.1898985654115677, -0.04447709023952484, -0.03752630203962326, 0.09815137088298798, -0.06661144644021988, 0.026459291577339172, -0.13544782996177673, -0.003114189486950636, 0.004627287853509188, 0.016190262511372566, -0.12645718455314636, 0.1281357705593109, 0.05480888858437538, 0.08088213205337524, -0.005222534295171499, -0.07190168648958206, 0.04548727348446846, 0.05178999528288841, -0.026211131364107132, 0.16508826613426208, -0.11962990462779999, -0.22899958491325378, -0.1509067267179489, -0.06788744032382965, -0.07424448430538177, 0.02041459269821644, 0.03741110488772392, -0.04820301756262779, -0.0832827240228653, 0.009924824349582195, -0.010178948752582073, 0.03291163221001625, 0.07449864596128464, -0.031852997839450836, -0.014259487390518188, 0.03401648625731468, -0.11224910616874695, -0.042487338185310364, -0.010162608698010445, 0.04103986173868179, 0.11395911872386932, -0.01158719789236784, 0.13755720853805542, 0.09211020171642303, -0.05896037071943283, 0.02970808744430542, -0.00384749798104167, 0.19514232873916626, -0.09413348138332367, -0.04064098000526428, 0.21620140969753265, 0.005230044946074486, 0.06710107624530792, 0.13732777535915375, 0.04541875794529915, -0.017054090276360512, -0.012177739292383194, -0.09257727861404419, -0.07254165410995483, -0.11266501247882843, -0.07269406318664551, -0.04977649450302124, -0.08331160247325897, 0.08228420466184616, 0.014221280813217163, 0.07776488363742828, 0.14391309022903442, 0.014212545938789845, 0.0005316338501870632, -0.08030786365270615, 0.12492893636226654, 0.19539128243923187, 0.05316267907619476, 0.14941835403442383, -0.04142438992857933, -0.09056169539690018, 0.02677321620285511, -0.0063091604970395565, 0.17709806561470032, -0.031306784600019455, 0.0004937085323035717, 0.07326173037290573, 0.15702269971370697, 0.11132826656103134, 0.17957603931427002, 0.03580549731850624, -0.02531787008047104, 0.01258750818669796, -0.06706596165895462, -0.058919183909893036, -0.032490383833646774, -0.029016833752393723, 0.05766952037811279, -0.10045807808637619, -0.001770899980328977, 0.06270939856767654, 0.20315450429916382, -0.005924816709011793, -0.40722328424453735, -0.09924069046974182, 0.008199452422559261, -0.007953259162604809, -0.09363298863172531, 0.004022387787699699, 0.005331173073500395, -0.042882487177848816, 0.07214274257421494, -0.08178740739822388, 0.06227850168943405, 0.054282110184431076, 0.011335615999996662, -0.022764919325709343, 0.09807190299034119, 0.0052010477520525455, 0.02799282595515251, -0.2275221347808838, 0.2836167514324188, 0.016433652490377426, 0.032857537269592285, -0.05956784263253212, 0.0019074055599048734, 0.037140995264053345, 0.14460237324237823, 0.06425754725933075, -0.01049752440303564, -0.0502716563642025, -0.04369215667247772, -0.07443918287754059, 0.045457493513822556, 0.03245478868484497, 0.055416643619537354, 0.0993700698018074, -0.013592837378382683, -0.049315713346004486, 0.02012079395353794, -0.04413741081953049, -0.052483461797237396, -0.07538916915655136, 0.05065637081861496, -0.007065236568450928, 0.002496478846296668, -0.09174010902643204, -0.1351950466632843, -0.032416149973869324, 0.06971488147974014, 0.08045341819524765, -0.10482804477214813, -0.10340479761362076, -0.08777965605258942, 0.18084090948104858, -0.07229800522327423, 0.13223488628864288, -0.07569881528615952, 0.14743146300315857, -0.06600215286016464, -0.12410680204629898, 0.04698595032095909, -0.11452217400074005, -0.12108635157346725, 0.017445599660277367, 0.09797614812850952, -0.04572603851556778, 0.035024289041757584, 0.006360214669257402, 0.08170997351408005, -0.10007207095623016, -0.0776597186923027, -0.04696493595838547, -0.06131014600396156, 0.1640554666519165, -0.09346581250429153, 0.06509353220462799, -0.04129553586244583, -0.014161626808345318, 0.07786659896373749, 0.0972876325249672, 0.12457072734832764, -0.09714889526367188, 0.0760984867811203, 0.12341716885566711, 0.050760261714458466, -0.21585573256015778, -0.09294545650482178, -0.01677713543176651, -0.003780689090490341, -0.08197829127311707, -0.03227434307336807, 0.03334224224090576, -0.003850124077871442, -0.049191150814294815, -0.0035318683367222548, -0.15034011006355286, -0.0997031033039093, 0.19154058396816254, 0.10643944144248962, 0.1085161417722702, -0.13145877420902252, -0.02007347345352173, -0.013878202997148037, -0.19029362499713898, 0.14367718994617462, -0.10108832269906998, 0.02321631833910942, -0.04762449115514755, 0.11343415826559067, 0.009874420240521431, -0.08681152760982513, 0.1394273191690445, -0.1097746342420578, 0.026972422376275063, -0.04706437513232231, -0.09461896866559982, 0.22521072626113892, -0.046593740582466125, 0.07222114503383636, 0.023285597562789917, 0.06409461796283722, 0.030562279745936394, -0.038908299058675766, -0.10801934450864792, 0.0564553365111351, -0.03995348885655403, -0.05001838132739067, 0.010985320433974266, -0.0006827572360634804, -0.04840778931975365, -0.08731625229120255, 0.15283802151679993, 0.04172797501087189, 0.14658786356449127, 0.15196597576141357, 0.1381022185087204, -0.14737343788146973, 0.0006200627540238202, 0.051522690802812576, -0.1069231927394867, 0.11231662333011627, -0.1015903577208519, 0.03024352341890335, 0.06205253303050995, 0.01813800446689129, -0.0027095226105302572, 0.09403561055660248, -0.030156690627336502, 0.007809498813003302, 0.14042575657367706, -0.22905421257019043, -0.04029879346489906, -0.03459114953875542, 0.03263836354017258, -0.09668715298175812, 0.1064101904630661, 0.0975060909986496, -0.0764058455824852, -0.062276992946863174, 0.010608245618641376, -0.03995562344789505, -0.02803564816713333, 0.08701561391353607, 0.09769830852746964, 0.07975506037473679, -0.12686583399772644, 0.020057354122400284, -0.0005713971913792193, -0.11777075380086899, -0.02267325669527054, 0.01419903989881277, -0.10567298531532288, -0.07534736394882202, 0.035066209733486176, 0.02469012513756752, -0.1024777740240097, -0.0885411873459816, -0.12488245964050293, -0.12272483110427856, 0.03681935742497444, 0.2667813003063202, 0.10887777805328369, 0.02208247408270836, -0.001306352554820478, 0.021642619743943214, -0.12924650311470032, 0.0841531902551651, 0.05303747579455376, 0.0857071727514267, -0.18807850778102875, 0.10131530463695526, -0.02030654437839985, 0.11257147043943405, -0.08263865858316422, 0.01654968410730362, -0.13101771473884583, 0.014909288845956326, -0.12067069113254547, -0.0019831093959510326, -0.1302405744791031, -0.0004771715321112424, -0.03357759490609169, -0.05652700737118721, -0.11551963537931442, 0.036942411214113235, -0.0770929679274559, 0.03633324056863785, 0.05527409166097641, -0.04464099556207657, -0.12516607344150543, -0.008139344863593578, 0.04866524413228035, -0.0694715678691864, 0.040493857115507126, 0.13863272964954376, -0.04112961143255234, 0.07351063936948776, 0.056663867086172104, -0.08603476732969284, 0.07136581093072891, 0.01720704697072506, 0.09652931988239288, -0.14219127595424652, 0.014756236225366592, 0.05272010341286659, 0.016972914338111877, 0.01934782601892948, 0.12153048813343048, -0.07517943531274796, 0.062232159078121185, 0.04642380774021149, -0.03505606949329376, -0.07641706615686417, 0.00527836661785841, 0.17792220413684845, 0.010936504229903221, 0.130209282040596, -0.05050788074731827, -0.00022189524315763265, -0.07481342554092407, 0.02957705594599247, -0.08647476881742477, -0.16244754195213318, -0.06280135363340378, -0.0012697380734607577, 0.03356672078371048, -0.015111071057617664, 0.19185160100460052, -0.023128220811486244, 0.10288859903812408, 0.013058178126811981, 0.08362860232591629, -0.024860795587301254, 0.027373041957616806, 0.1765250265598297, 0.041904155164957047, -0.01877100020647049, 0.00448161456733942, 0.08486124128103256, 0.024805951863527298, -0.0422406941652298, 0.1210712194442749, 0.05288802087306976, 0.07803956419229507, 0.09343860298395157, 0.07274755090475082, 0.03645018860697746, -0.14340505003929138, -0.1853034645318985, -0.009652444161474705, 0.022605065256357193, 0.012056211940944195, 0.02912389300763607, 0.1894952952861786, -0.056097276508808136, 0.037287477403879166, 0.003870248794555664, -0.035899657756090164, -0.1133989691734314, -0.04559033364057541, -0.0867658331990242, -0.1440705955028534, 0.010528653860092163, -0.10896517336368561, -0.05702156946063042, 0.01568135991692543, -0.0033209570683538914, 0.00257220515049994, 0.17709451913833618, 0.055533330887556076, 0.006997307296842337, 0.015622375532984734, 0.019237129017710686, -0.009255338460206985, 0.07446152716875076, -0.02448548749089241, -0.05344868078827858, -0.017040329053997993, -0.005865344312041998, -0.003002087352797389, -0.040878813713788986, 0.035339850932359695, -0.05419323593378067, -0.10169379413127899, -0.004231914412230253, 0.04710191488265991, 0.05048241466283798, 0.02089109644293785, -0.012428228743374348, 0.02738162875175476, 0.013945309445261955, 0.11565878987312317, -0.08311554789543152, -0.1656409204006195, -0.16108635067939758, 0.26452359557151794, -0.03201751038432121, -0.016885321587324142, 0.08135026693344116, -0.037754785269498825, -0.08641385287046432, 0.18050287663936615, 0.2336496263742447, 0.06269769370555878, 0.056920379400253296, 0.05234807729721069, -0.006979047320783138, -0.06859466433525085, 0.0673794224858284, 0.09702181816101074, 0.19893968105316162, -0.07617712765932083, -0.07753504812717438, -0.09067676961421967, 0.019042866304516792, -0.03849735110998154, 0.006259495858103037, -0.0007733270758762956, -0.07559752464294434, -0.050551995635032654, 0.052301548421382904, -0.1076052263379097, 0.04889563471078873, 0.004414684139192104, -0.13145111501216888, -0.07430151104927063, 0.009046788327395916, 0.056685127317905426, -0.02899068035185337, 0.06512214243412018, -0.015837058424949646, -0.025036383420228958, 0.10026859492063522, 0.03387031331658363, -0.09926413744688034, -0.01120822038501501, 0.16108590364456177, -0.019756367430090904, 0.098439060151577, -0.02455529384315014, 0.11235825717449188, 0.1328444927930832, 0.0339743010699749, -0.10664061456918716, 0.034626904875040054, 0.06323960423469543, -0.15111540257930756, 0.0130056357011199, 0.07004105299711227, -0.0038258882705122232, -0.09500598907470703, -0.007789712864905596, -0.13980041444301605, -0.0005265315994620323, -0.09037534892559052, 0.03442778438329697, -0.013875220902264118, 0.03144409507513046, -0.04874246567487717, 0.07698572427034378, 0.08854758739471436, -0.023254912346601486, -0.008755465969443321, -0.05458943918347359, 0.09587042778730392, 0.10330329090356827, -0.049007490277290344, -0.06316006183624268, -0.1791381984949112, -0.029776785522699356, 0.07624921202659607, -0.03714624419808388, -0.18503040075302124, -0.03066668100655079, -0.01356207299977541, -0.05231337994337082, -0.06768529117107391, 0.021564852446317673, 0.09156257659196854, 0.027148939669132233, -0.019244756549596786, 0.1413450986146927, -0.09552868455648422, 0.08388935774564743, -0.2122555375099182, -0.04910914972424507 ]
null
null
transformers
# Tigrinya POS tagging with TiRoBERTa This model is a fine-tuned version of [TiRoBERTa](https://huggingface.co/fgaim/tiroberta) on the NTC-v1 dataset (Tedla et al. 2016). ## Training ### Hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10.0 ### Results The model achieves the following results on the test set: - Loss: 0.3194 - Adj Precision: 0.9219 - Adj Recall: 0.9335 - Adj F1: 0.9277 - Adj Number: 1670 - Adv Precision: 0.8297 - Adv Recall: 0.8554 - Adv F1: 0.8423 - Adv Number: 484 - Con Precision: 0.9844 - Con Recall: 0.9763 - Con F1: 0.9804 - Con Number: 972 - Fw Precision: 0.7895 - Fw Recall: 0.5357 - Fw F1: 0.6383 - Fw Number: 28 - Int Precision: 0.6552 - Int Recall: 0.7308 - Int F1: 0.6909 - Int Number: 26 - N Precision: 0.9650 - N Recall: 0.9662 - N F1: 0.9656 - N Number: 3992 - Num Precision: 0.9747 - Num Recall: 0.9665 - Num F1: 0.9706 - Num Number: 239 - N Prp Precision: 0.9308 - N Prp Recall: 0.9447 - N Prp F1: 0.9377 - N Prp Number: 470 - N V Precision: 0.9854 - N V Recall: 0.9736 - N V F1: 0.9794 - N V Number: 416 - Pre Precision: 0.9722 - Pre Recall: 0.9625 - Pre F1: 0.9673 - Pre Number: 907 - Pro Precision: 0.9448 - Pro Recall: 0.9236 - Pro F1: 0.9341 - Pro Number: 445 - Pun Precision: 1.0 - Pun Recall: 0.9994 - Pun F1: 0.9997 - Pun Number: 1607 - Unc Precision: 1.0 - Unc Recall: 0.875 - Unc F1: 0.9333 - Unc Number: 16 - V Precision: 0.8780 - V Recall: 0.9231 - V F1: 0.9 - V Number: 78 - V Aux Precision: 0.9685 - V Aux Recall: 0.9878 - V Aux F1: 0.9780 - V Aux Number: 654 - V Ger Precision: 0.9388 - V Ger Recall: 0.9571 - V Ger F1: 0.9479 - V Ger Number: 513 - V Imf Precision: 0.9634 - V Imf Recall: 0.9497 - V Imf F1: 0.9565 - V Imf Number: 914 - V Imv Precision: 0.8793 - V Imv Recall: 0.7286 - V Imv F1: 0.7969 - V Imv Number: 70 - V Prf Precision: 0.8960 - V Prf Recall: 0.9082 - V Prf F1: 0.9020 - V Prf Number: 294 - V Rel Precision: 0.9678 - V Rel Recall: 0.9538 - V Rel F1: 0.9607 - V Rel Number: 757 - Overall Precision: 0.9562 - Overall Recall: 0.9562 - Overall F1: 0.9562 - Overall Accuracy: 0.9562 ### Framework versions - Transformers 4.12.0.dev0 - Pytorch 1.9.0+cu111 - Datasets 1.13.3 - Tokenizers 0.10.3 ## Citation If you use this model in your product or research, please cite as follows: ``` @article{Fitsum2021TiPLMs, author={Fitsum Gaim and Wonsuk Yang and Jong C. Park}, title={Monolingual Pre-trained Language Models for Tigrinya}, year=2021, publisher={WiNLP 2021/EMNLP 2021} } ``` ## References ``` Tedla, Y., Yamamoto, K. & Marasinghe, A. 2016. Tigrinya Part-of-Speech Tagging with Morphological Patterns and the New Nagaoka Tigrinya Corpus. International Journal Of Computer Applications 146 pp. 33-41 (2016). ```
{"language": "ti", "datasets": ["TLMD", "NTC"], "metrics": ["f1", "precision", "recall", "accuracy"], "widget": [{"text": "\u12f5\u121d\u133b\u12ca \u12a3\u1265\u122d\u1203\u121d \u12a3\u1348\u12c8\u122d\u1242 \u1295\u12d8\u120d\u12a3\u1208\u121d \u1205\u12eb\u12cd \u12ae\u12ed\u1291 \u12a3\u1265 \u120d\u1265\u1293 \u12ed\u1290\u1265\u122d"}]}
token-classification
fgaim/tiroberta-pos
[ "transformers", "pytorch", "safetensors", "roberta", "token-classification", "ti", "dataset:TLMD", "dataset:NTC", "model-index", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "ti" ]
TAGS #transformers #pytorch #safetensors #roberta #token-classification #ti #dataset-TLMD #dataset-NTC #model-index #autotrain_compatible #endpoints_compatible #has_space #region-us
# Tigrinya POS tagging with TiRoBERTa This model is a fine-tuned version of TiRoBERTa on the NTC-v1 dataset (Tedla et al. 2016). ## Training ### Hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10.0 ### Results The model achieves the following results on the test set: - Loss: 0.3194 - Adj Precision: 0.9219 - Adj Recall: 0.9335 - Adj F1: 0.9277 - Adj Number: 1670 - Adv Precision: 0.8297 - Adv Recall: 0.8554 - Adv F1: 0.8423 - Adv Number: 484 - Con Precision: 0.9844 - Con Recall: 0.9763 - Con F1: 0.9804 - Con Number: 972 - Fw Precision: 0.7895 - Fw Recall: 0.5357 - Fw F1: 0.6383 - Fw Number: 28 - Int Precision: 0.6552 - Int Recall: 0.7308 - Int F1: 0.6909 - Int Number: 26 - N Precision: 0.9650 - N Recall: 0.9662 - N F1: 0.9656 - N Number: 3992 - Num Precision: 0.9747 - Num Recall: 0.9665 - Num F1: 0.9706 - Num Number: 239 - N Prp Precision: 0.9308 - N Prp Recall: 0.9447 - N Prp F1: 0.9377 - N Prp Number: 470 - N V Precision: 0.9854 - N V Recall: 0.9736 - N V F1: 0.9794 - N V Number: 416 - Pre Precision: 0.9722 - Pre Recall: 0.9625 - Pre F1: 0.9673 - Pre Number: 907 - Pro Precision: 0.9448 - Pro Recall: 0.9236 - Pro F1: 0.9341 - Pro Number: 445 - Pun Precision: 1.0 - Pun Recall: 0.9994 - Pun F1: 0.9997 - Pun Number: 1607 - Unc Precision: 1.0 - Unc Recall: 0.875 - Unc F1: 0.9333 - Unc Number: 16 - V Precision: 0.8780 - V Recall: 0.9231 - V F1: 0.9 - V Number: 78 - V Aux Precision: 0.9685 - V Aux Recall: 0.9878 - V Aux F1: 0.9780 - V Aux Number: 654 - V Ger Precision: 0.9388 - V Ger Recall: 0.9571 - V Ger F1: 0.9479 - V Ger Number: 513 - V Imf Precision: 0.9634 - V Imf Recall: 0.9497 - V Imf F1: 0.9565 - V Imf Number: 914 - V Imv Precision: 0.8793 - V Imv Recall: 0.7286 - V Imv F1: 0.7969 - V Imv Number: 70 - V Prf Precision: 0.8960 - V Prf Recall: 0.9082 - V Prf F1: 0.9020 - V Prf Number: 294 - V Rel Precision: 0.9678 - V Rel Recall: 0.9538 - V Rel F1: 0.9607 - V Rel Number: 757 - Overall Precision: 0.9562 - Overall Recall: 0.9562 - Overall F1: 0.9562 - Overall Accuracy: 0.9562 ### Framework versions - Transformers 4.12.0.dev0 - Pytorch 1.9.0+cu111 - Datasets 1.13.3 - Tokenizers 0.10.3 If you use this model in your product or research, please cite as follows: ## References
[ "# Tigrinya POS tagging with TiRoBERTa\n\nThis model is a fine-tuned version of TiRoBERTa on the NTC-v1 dataset (Tedla et al. 2016).", "## Training", "### Hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 5e-05\n- train_batch_size: 8\n- eval_batch_size: 32\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 10.0", "### Results\n\nThe model achieves the following results on the test set:\n- Loss: 0.3194\n- Adj Precision: 0.9219\n- Adj Recall: 0.9335\n- Adj F1: 0.9277\n- Adj Number: 1670\n- Adv Precision: 0.8297\n- Adv Recall: 0.8554\n- Adv F1: 0.8423\n- Adv Number: 484\n- Con Precision: 0.9844\n- Con Recall: 0.9763\n- Con F1: 0.9804\n- Con Number: 972\n- Fw Precision: 0.7895\n- Fw Recall: 0.5357\n- Fw F1: 0.6383\n- Fw Number: 28\n- Int Precision: 0.6552\n- Int Recall: 0.7308\n- Int F1: 0.6909\n- Int Number: 26\n- N Precision: 0.9650\n- N Recall: 0.9662\n- N F1: 0.9656\n- N Number: 3992\n- Num Precision: 0.9747\n- Num Recall: 0.9665\n- Num F1: 0.9706\n- Num Number: 239\n- N Prp Precision: 0.9308\n- N Prp Recall: 0.9447\n- N Prp F1: 0.9377\n- N Prp Number: 470\n- N V Precision: 0.9854\n- N V Recall: 0.9736\n- N V F1: 0.9794\n- N V Number: 416\n- Pre Precision: 0.9722\n- Pre Recall: 0.9625\n- Pre F1: 0.9673\n- Pre Number: 907\n- Pro Precision: 0.9448\n- Pro Recall: 0.9236\n- Pro F1: 0.9341\n- Pro Number: 445\n- Pun Precision: 1.0\n- Pun Recall: 0.9994\n- Pun F1: 0.9997\n- Pun Number: 1607\n- Unc Precision: 1.0\n- Unc Recall: 0.875\n- Unc F1: 0.9333\n- Unc Number: 16\n- V Precision: 0.8780\n- V Recall: 0.9231\n- V F1: 0.9\n- V Number: 78\n- V Aux Precision: 0.9685\n- V Aux Recall: 0.9878\n- V Aux F1: 0.9780\n- V Aux Number: 654\n- V Ger Precision: 0.9388\n- V Ger Recall: 0.9571\n- V Ger F1: 0.9479\n- V Ger Number: 513\n- V Imf Precision: 0.9634\n- V Imf Recall: 0.9497\n- V Imf F1: 0.9565\n- V Imf Number: 914\n- V Imv Precision: 0.8793\n- V Imv Recall: 0.7286\n- V Imv F1: 0.7969\n- V Imv Number: 70\n- V Prf Precision: 0.8960\n- V Prf Recall: 0.9082\n- V Prf F1: 0.9020\n- V Prf Number: 294\n- V Rel Precision: 0.9678\n- V Rel Recall: 0.9538\n- V Rel F1: 0.9607\n- V Rel Number: 757\n- Overall Precision: 0.9562\n- Overall Recall: 0.9562\n- Overall F1: 0.9562\n- Overall Accuracy: 0.9562", "### Framework versions\n\n- Transformers 4.12.0.dev0\n- Pytorch 1.9.0+cu111\n- Datasets 1.13.3\n- Tokenizers 0.10.3\n\n\nIf you use this model in your product or research, please cite as follows:", "## References" ]
[ "TAGS\n#transformers #pytorch #safetensors #roberta #token-classification #ti #dataset-TLMD #dataset-NTC #model-index #autotrain_compatible #endpoints_compatible #has_space #region-us \n", "# Tigrinya POS tagging with TiRoBERTa\n\nThis model is a fine-tuned version of TiRoBERTa on the NTC-v1 dataset (Tedla et al. 2016).", "## Training", "### Hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 5e-05\n- train_batch_size: 8\n- eval_batch_size: 32\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 10.0", "### Results\n\nThe model achieves the following results on the test set:\n- Loss: 0.3194\n- Adj Precision: 0.9219\n- Adj Recall: 0.9335\n- Adj F1: 0.9277\n- Adj Number: 1670\n- Adv Precision: 0.8297\n- Adv Recall: 0.8554\n- Adv F1: 0.8423\n- Adv Number: 484\n- Con Precision: 0.9844\n- Con Recall: 0.9763\n- Con F1: 0.9804\n- Con Number: 972\n- Fw Precision: 0.7895\n- Fw Recall: 0.5357\n- Fw F1: 0.6383\n- Fw Number: 28\n- Int Precision: 0.6552\n- Int Recall: 0.7308\n- Int F1: 0.6909\n- Int Number: 26\n- N Precision: 0.9650\n- N Recall: 0.9662\n- N F1: 0.9656\n- N Number: 3992\n- Num Precision: 0.9747\n- Num Recall: 0.9665\n- Num F1: 0.9706\n- Num Number: 239\n- N Prp Precision: 0.9308\n- N Prp Recall: 0.9447\n- N Prp F1: 0.9377\n- N Prp Number: 470\n- N V Precision: 0.9854\n- N V Recall: 0.9736\n- N V F1: 0.9794\n- N V Number: 416\n- Pre Precision: 0.9722\n- Pre Recall: 0.9625\n- Pre F1: 0.9673\n- Pre Number: 907\n- Pro Precision: 0.9448\n- Pro Recall: 0.9236\n- Pro F1: 0.9341\n- Pro Number: 445\n- Pun Precision: 1.0\n- Pun Recall: 0.9994\n- Pun F1: 0.9997\n- Pun Number: 1607\n- Unc Precision: 1.0\n- Unc Recall: 0.875\n- Unc F1: 0.9333\n- Unc Number: 16\n- V Precision: 0.8780\n- V Recall: 0.9231\n- V F1: 0.9\n- V Number: 78\n- V Aux Precision: 0.9685\n- V Aux Recall: 0.9878\n- V Aux F1: 0.9780\n- V Aux Number: 654\n- V Ger Precision: 0.9388\n- V Ger Recall: 0.9571\n- V Ger F1: 0.9479\n- V Ger Number: 513\n- V Imf Precision: 0.9634\n- V Imf Recall: 0.9497\n- V Imf F1: 0.9565\n- V Imf Number: 914\n- V Imv Precision: 0.8793\n- V Imv Recall: 0.7286\n- V Imv F1: 0.7969\n- V Imv Number: 70\n- V Prf Precision: 0.8960\n- V Prf Recall: 0.9082\n- V Prf F1: 0.9020\n- V Prf Number: 294\n- V Rel Precision: 0.9678\n- V Rel Recall: 0.9538\n- V Rel F1: 0.9607\n- V Rel Number: 757\n- Overall Precision: 0.9562\n- Overall Recall: 0.9562\n- Overall F1: 0.9562\n- Overall Accuracy: 0.9562", "### Framework versions\n\n- Transformers 4.12.0.dev0\n- Pytorch 1.9.0+cu111\n- Datasets 1.13.3\n- Tokenizers 0.10.3\n\n\nIf you use this model in your product or research, please cite as follows:", "## References" ]
[ 65, 43, 2, 90, 725, 54, 3 ]
[ "passage: TAGS\n#transformers #pytorch #safetensors #roberta #token-classification #ti #dataset-TLMD #dataset-NTC #model-index #autotrain_compatible #endpoints_compatible #has_space #region-us \n# Tigrinya POS tagging with TiRoBERTa\n\nThis model is a fine-tuned version of TiRoBERTa on the NTC-v1 dataset (Tedla et al. 2016).## Training### Hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 5e-05\n- train_batch_size: 8\n- eval_batch_size: 32\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 10.0" ]
[ -0.12409871071577072, 0.025563187897205353, -0.000051309569244040176, 0.1230221763253212, 0.1749490648508072, 0.03733820840716362, 0.0786648616194725, 0.07043658196926117, -0.07431109994649887, 0.021996693685650826, 0.0915224701166153, 0.11086460947990417, -0.024498268961906433, 0.20603041350841522, -0.05072828009724617, -0.22524641454219818, 0.0081176171079278, 0.045402172952890396, -0.03804250434041023, 0.11947587877511978, 0.10304208844900131, -0.1127215251326561, 0.09757480770349503, 0.00490187481045723, -0.16408173739910126, 0.04013500362634659, 0.03802439197897911, -0.10207659751176834, 0.11964204162359238, 0.007999865338206291, 0.15933191776275635, -0.01438944786787033, 0.08711180090904236, 0.005913920234888792, 0.01850154995918274, 0.07567059248685837, 0.008025155402719975, 0.07066768407821655, 0.06409101188182831, -0.027258196845650673, 0.1776302307844162, -0.1189080998301506, 0.05043915659189224, -0.0024873833172023296, -0.12754741311073303, -0.133747860789299, -0.026725785806775093, 0.0377504862844944, 0.026461608707904816, 0.09230349957942963, -0.019066935405135155, 0.24005991220474243, -0.0860525518655777, 0.10778864473104477, 0.17322827875614166, -0.31774887442588806, -0.08258946985006332, 0.1451914757490158, 0.03353410214185715, 0.0750516876578331, -0.07816511392593384, 0.0025335459504276514, 0.09714434295892715, -0.005795838311314583, 0.15137916803359985, -0.037336040288209915, -0.12266255170106888, 0.010841448791325092, -0.18725290894508362, 0.0006740741664543748, 0.26081907749176025, 0.03287087008357048, -0.05311916023492813, 0.008287091739475727, -0.1134207472205162, -0.13833685219287872, -0.01356012187898159, -0.05567420274019241, 0.009004342369735241, -0.022154495120048523, -0.06347117573022842, 0.010462186299264431, -0.09519334882497787, -0.042850568890571594, -0.06996095180511475, 0.12277326732873917, 0.054236043244600296, 0.009375163353979588, -0.053565844893455505, 0.08396723121404648, -0.0392770953476429, -0.044413287192583084, 0.04015730693936348, -0.034554433077573776, -0.0809929147362709, -0.09636791050434113, -0.07123833149671555, -0.08421096950769424, -0.017558304592967033, 0.1227036863565445, 0.04491107910871506, 0.01728123612701893, 0.04198678955435753, 0.0063833980821073055, -0.027424806728959084, 0.1984679102897644, -0.1019904837012291, -0.058051835745573044, 0.014416228048503399, 0.0008676947909407318, -0.021142465993762016, 0.009071014821529388, -0.07866106182336807, -0.08710584789514542, 0.1443599909543991, -0.005145407747477293, -0.08097332715988159, 0.1155770868062973, -0.030041517689824104, -0.047732166945934296, -0.024222182109951973, -0.07084602117538452, 0.02926771529018879, -0.03722333908081055, -0.03565117344260216, 0.06643308699131012, 0.0290415957570076, -0.004943527281284332, -0.006902292836457491, 0.07940709590911865, -0.1358005255460739, -0.018258169293403625, -0.08164539188146591, -0.12089914083480835, -0.03794049099087715, -0.1711137592792511, 0.026722250506281853, -0.1923525184392929, -0.1343434602022171, 0.007555223070085049, 0.037109050899744034, -0.026520563289523125, -0.018587198108434677, -0.03780773654580116, -0.045993249863386154, -0.0008797269547358155, 0.0023080676328390837, 0.09104225784540176, -0.057656802237033844, 0.057417094707489014, 0.006779118906706572, 0.09236875176429749, -0.0516463927924633, 0.014857692644000053, -0.11217834800481796, 0.02120545506477356, -0.0655243769288063, 0.00714187603443861, -0.012638532556593418, 0.05930878967046738, -0.0826389491558075, -0.09210838377475739, -0.05378228425979614, 0.017007064074277878, 0.04982054606080055, 0.09418115764856339, -0.17130538821220398, -0.015211689285933971, 0.22221989929676056, -0.08147183805704117, -0.06723665446043015, 0.12181840091943741, -0.027839522808790207, 0.0848938375711441, 0.11566883325576782, 0.130886510014534, 0.10089311748743057, -0.10653521865606308, 0.00738589558750391, 0.00885127205401659, -0.05749249458312988, -0.09692265838384628, 0.07365390658378601, 0.10082319378852844, -0.15067178010940552, 0.010019557550549507, 0.02175598032772541, 0.03485240042209625, -0.10075414925813675, -0.05734535679221153, -0.06730697304010391, -0.11747439950704575, 0.0885622575879097, 0.012545829638838768, 0.07287999242544174, -0.10514355450868607, -0.04229963570833206, 0.06951882690191269, 0.11618707329034805, -0.028118951246142387, 0.00027183169731870294, -0.10453838109970093, 0.06407652795314789, -0.06796714663505554, -0.03218531981110573, -0.14270296692848206, -0.049613360315561295, -0.003628409467637539, 0.1149538904428482, 0.03651804476976395, 0.1899998039007187, 0.060688406229019165, 0.03394915163516998, -0.05142921954393387, -0.003565139602869749, 0.016039088368415833, 0.0145157715305686, -0.10348023474216461, -0.10961303859949112, 0.001568661187775433, -0.031639955937862396, 0.09876246750354767, -0.22247160971164703, 0.0010689180344343185, -0.06264270842075348, 0.0795895978808403, 0.054381389170885086, 0.010633467696607113, -0.020534204319119453, 0.0621761679649353, -0.045222409069538116, -0.08896631002426147, 0.04488157853484154, 0.0036816056817770004, -0.025701217353343964, -0.05042846128344536, -0.10986607521772385, 0.18601910769939423, 0.1185280978679657, -0.006411889102309942, -0.12524515390396118, 0.03563132882118225, -0.04824845865368843, 0.000352012604707852, -0.05108967050909996, 0.014270921237766743, 0.02972351759672165, -0.08637766540050507, 0.13248172402381897, -0.07714729011058807, -0.004168270621448755, 0.02769659459590912, -0.05093207210302353, -0.019150299951434135, 0.10357529670000076, 0.10935717821121216, -0.24568089842796326, 0.08457940071821213, 0.12683384120464325, -0.11521085351705551, 0.1385909765958786, 0.00880363117903471, -0.09698288142681122, -0.015104283578693867, -0.010105808265507221, 0.01824403926730156, 0.0645039901137352, -0.14914797246456146, -0.0058960095047950745, 0.03821907937526703, 0.04511353373527527, 0.020633630454540253, -0.1339184045791626, -0.0384904183447361, 0.031523313373327255, 0.027293261140584946, -0.007432241458445787, 0.07318899780511856, 0.0018047173507511616, 0.11790378391742706, -0.017430642619729042, -0.10607994347810745, 0.015888046473264694, 0.05574523285031319, -0.05601042881608009, 0.16409698128700256, -0.047050051391124725, -0.20660746097564697, -0.08733684569597244, -0.05848035588860512, -0.014511329121887684, 0.046137623488903046, 0.036393024027347565, -0.05840783193707466, -0.06365157663822174, -0.07684168964624405, 0.004909544717520475, -0.031766872853040695, 0.09688306599855423, -0.00459440378472209, 0.024969972670078278, 0.07763355225324631, -0.09581371396780014, -0.00035360801848582923, -0.041997380554676056, -0.08007672429084778, 0.09070364385843277, -0.034188538789749146, 0.09559879451990128, 0.13999123871326447, -0.08000069856643677, 0.02023552916944027, -0.03848007693886757, 0.2488938570022583, -0.03598750755190849, 0.015124709345400333, 0.14047695696353912, 0.03403286263346672, 0.006762009114027023, 0.07631975412368774, -0.009366503916680813, -0.11001253873109818, 0.05783945322036743, 0.022969603538513184, -0.07532880455255508, -0.19476385414600372, -0.07130461931228638, -0.07902578264474869, 0.02813754789531231, 0.14371196925640106, 0.027936916798353195, 0.028803592547774315, 0.11037957668304443, 0.04848668724298477, 0.13471531867980957, -0.08444071561098099, 0.07083962857723236, 0.05099122226238251, 0.02906123176217079, 0.12620332837104797, -0.06662458181381226, -0.0904974490404129, 0.08637098968029022, -0.03243191912770271, 0.19422803819179535, -0.004388182889670134, -0.022131476551294327, 0.044428642839193344, 0.1833885759115219, 0.021885640919208527, 0.10838212817907333, -0.013498320244252682, -0.06517603248357773, -0.05386453866958618, -0.02049577794969082, 0.003679979592561722, 0.021720724180340767, -0.0008890990866348147, 0.009356385096907616, -0.05429833382368088, 0.043803054839372635, 0.03757380321621895, 0.09053131192922592, 0.11753468215465546, -0.388651043176651, -0.04864314943552017, -0.032973166555166245, 0.014977662824094296, -0.07949692755937576, 0.03369584307074547, 0.10170508176088333, -0.06804068386554718, 0.016733525320887566, -0.04663481563329697, 0.07176197320222855, 0.008978519588708878, 0.005163185764104128, 0.02007625810801983, 0.11631114035844803, -0.026924902573227882, 0.07885196805000305, -0.22786018252372742, 0.18853896856307983, -0.01502261683344841, 0.052031632512807846, -0.048896949738264084, -0.07420048862695694, -0.006727794650942087, 0.1338323950767517, 0.051419876515865326, 0.01377920527011156, 0.02761402539908886, -0.16356052458286285, -0.06482604146003723, 0.021897507831454277, 0.07903879135847092, 0.0023832356091588736, 0.09046890586614609, -0.08115150779485703, -0.017761442810297012, 0.06781332939863205, 0.05029425770044327, -0.09617926925420761, -0.05791948735713959, -0.037599481642246246, 0.11925777047872543, -0.02621839940547943, -0.032728925347328186, -0.10742668807506561, -0.16699571907520294, 0.14743675291538239, 0.14362284541130066, 0.023890428245067596, -0.1191646158695221, 0.09849902987480164, 0.10836420208215714, -0.06299713253974915, 0.08415969461202621, 0.025665272027254105, 0.04781046137213707, 0.05085596442222595, -0.08638884872198105, 0.11420919746160507, -0.07135405391454697, -0.08126311004161835, -0.03923653066158295, 0.07278524339199066, 0.00664296792820096, 0.019018113613128662, 0.004243206232786179, 0.0024936283007264137, -0.0035081873647868633, -0.057317234575748444, -0.014207368716597557, 0.02564460225403309, 0.046935226768255234, 0.06013793870806694, -0.027978239580988884, -0.10734280198812485, -0.02563820779323578, -0.022044803947210312, 0.13918305933475494, 0.17632992565631866, -0.07998225092887878, -0.0016031315317377448, -0.027635015547275543, -0.01619790866971016, -0.1898507922887802, 0.07815723121166229, 0.004236358217895031, 0.02434162236750126, 0.06013710796833038, -0.06367219984531403, 0.1194230243563652, 0.057958196848630905, 0.015824930742383003, 0.06548697501420975, -0.28012821078300476, -0.12269914150238037, 0.1283658742904663, 0.1446622610092163, 0.22048255801200867, -0.06175341457128525, 0.021998926997184753, -0.013524173758924007, -0.009860263206064701, 0.1290530562400818, -0.15655383467674255, 0.13368041813373566, -0.004586298018693924, 0.010364589281380177, 0.027730563655495644, -0.031796809285879135, 0.06983521580696106, -0.006593977566808462, 0.07905349880456924, -0.05820845067501068, 0.0026333436835557222, 0.1125994473695755, -0.039813313633203506, 0.04241493344306946, 0.015712909400463104, 0.0832236111164093, -0.024120623245835304, -0.06633812934160233, -0.040258534252643585, 0.06263468414545059, 0.017295263707637787, -0.0893145427107811, -0.07993268966674805, 0.050356097519397736, 0.01790592260658741, -0.06648900359869003, 0.01253530103713274, 0.03741009160876274, 0.03240525722503662, 0.011810842901468277, 0.03356053680181503, -0.05462181195616722, -0.005084317643195391, -0.01706550642848015, -0.0120617114007473, 0.07605359703302383, -0.08708222955465317, 0.02149340510368347, 0.07963504642248154, 0.0005730041884817183, 0.10115818679332733, 0.07087281346321106, 0.004337586462497711, -0.004110208712518215, 0.09458626806735992, -0.13383615016937256, -0.05562439560890198, -0.02920309081673622, -0.10836519300937653, -0.06101895496249199, 0.10012373328208923, 0.12818029522895813, -0.10438721626996994, 0.0009056894923560321, -0.021716417744755745, -0.06642337888479233, -0.039479970932006836, 0.1340845674276352, 0.07115909457206726, 0.0036026891320943832, -0.07294297963380814, 0.047158703207969666, 0.06365358829498291, -0.05166582018136978, -0.0028131308499723673, 0.0022497130557894707, -0.11915483325719833, -0.04906953498721123, 0.09465914964675903, 0.13958382606506348, -0.08122279495000839, -0.03212791308760643, -0.07432624697685242, -0.05021214485168457, 0.08632594347000122, 0.11290763318538666, 0.10448621213436127, 0.012069519609212875, -0.07267484813928604, -0.0024454561062157154, -0.12743760645389557, 0.06242561340332031, 0.09388834983110428, 0.10376328974962234, -0.2618028521537781, 0.18427550792694092, -0.026953143998980522, 0.018780430778861046, -0.04600771144032478, -0.0013557558413594961, -0.11869027465581894, 0.004309395793825388, -0.01621708832681179, 0.020565610378980637, -0.02414427138864994, 0.015387710183858871, -0.008233500644564629, -0.06956731528043747, -0.07728211581707001, 0.019035492092370987, -0.05906073749065399, 0.017491154372692108, 0.041730307042598724, 0.05281468853354454, -0.07291148602962494, -0.02729465439915657, 0.002821320667862892, -0.04623743146657944, 0.05020211637020111, 0.022181233391165733, -0.024448882788419724, 0.052097368985414505, -0.1459244340658188, 0.02634435147047043, 0.09873022139072418, 0.01352084893733263, 0.09374511241912842, -0.026028161868453026, 0.029112255200743675, 0.008272560313344002, 0.0958952084183693, 0.023586612194776535, 0.00830597709864378, -0.08493578433990479, -0.009026956744492054, -0.079123854637146, -0.08080379664897919, -0.036941222846508026, -0.011099284514784813, 0.06787099689245224, 0.003590409643948078, 0.18695518374443054, -0.06165442615747452, -0.01848006434738636, -0.15327903628349304, -0.014122514985501766, -0.03404133766889572, -0.07733891159296036, -0.10654492676258087, -0.04928240925073624, 0.0600956454873085, -0.03616707772016525, 0.09435272216796875, 0.09243892133235931, -0.009597866795957088, -0.015315520577132702, -0.0015142658958211541, -0.008308466523885727, 0.0062086209654808044, 0.28376904129981995, 0.03798552230000496, -0.017770592123270035, -0.010869600810110569, 0.052638113498687744, 0.13725899159908295, 0.17417193949222565, 0.1381436437368393, 0.16213813424110413, -0.1351584941148758, 0.08238725364208221, -0.07443434000015259, -0.047803845256567, -0.2206965833902359, -0.007518403232097626, -0.11466720700263977, 0.06324532628059387, -0.00858541950583458, 0.12928420305252075, 0.10695956647396088, -0.11054850369691849, -0.011412634514272213, -0.06046104431152344, -0.08336455374956131, -0.0841403380036354, -0.1727423220872879, -0.12713295221328735, -0.1326122134923935, 0.0038316501304507256, -0.09681511670351028, 0.0025348158087581396, 0.07540681213140488, 0.02630893886089325, -0.02204151451587677, 0.19741463661193848, -0.04460563510656357, -0.02008947916328907, 0.03287799283862114, 0.0008040191605687141, -0.03013908863067627, -0.03944336622953415, -0.06069924309849739, -0.03612389788031578, -0.006386464927345514, 0.028147118166089058, -0.08168656378984451, -0.011095852591097355, 0.027177846059203148, -0.027646504342556, -0.04398765787482262, -0.0139847407117486, 0.022653227671980858, 0.009050865657627583, -0.042730458080768585, 0.03234931454062462, -0.04325919598340988, -0.014269818551838398, 0.27835091948509216, -0.039274804294109344, -0.11537719517946243, -0.12151350826025009, 0.18589790165424347, 0.0415017269551754, 0.027914084494113922, 0.042300883680582047, -0.07336409389972687, 0.03270836919546127, 0.2717874348163605, 0.1682649850845337, -0.05088202282786369, 0.0031440029852092266, -0.026088323444128036, -0.013763834722340107, -0.04160050302743912, 0.17048931121826172, 0.07321953773498535, 0.028890639543533325, -0.034422826021909714, -0.02429909259080887, -0.07555076479911804, 0.012562516145408154, -0.02642456442117691, 0.03216039389371872, 0.0403066985309124, -0.02158365584909916, -0.05928754433989525, 0.055516187101602554, -0.032696906477212906, -0.06554176658391953, 0.05247638747096062, -0.09451033174991608, -0.1369868367910385, -0.04189891740679741, 0.059495631605386734, -0.0009065933409146965, 0.08037369698286057, -0.09185802191495895, -0.0037144089583307505, -0.05454307422041893, -0.0018190128030255437, -0.1027722954750061, -0.0653250515460968, 0.07017847895622253, 0.027619941160082817, 0.15123118460178375, -0.04513368383049965, 0.06006600335240364, 0.08761314302682877, 0.04005341976881027, -0.1129438579082489, 0.04714164510369301, -0.009849789552390575, 0.000006485730409622192, 0.07177404314279556, 0.042434435337781906, -0.050774045288562775, 0.0473049059510231, 0.03273305669426918, -0.16689813137054443, -0.023290276527404785, 0.01738579571247101, 0.04874102771282196, -0.08234188705682755, 0.001144343288615346, -0.08542686700820923, 0.158009871840477, 0.16489563882350922, -0.03635893017053604, -0.0010884690564125776, -0.07570429891347885, 0.052398741245269775, 0.05229923129081726, -0.01715863309800625, -0.018084319308400154, -0.1998501420021057, -0.055367741733789444, 0.014972447417676449, 0.0030322170350700617, -0.20188242197036743, -0.04712533950805664, -0.0894760861992836, -0.05801756680011749, -0.10960748791694641, 0.10618136078119278, 0.059757065027952194, 0.02660355344414711, -0.030146680772304535, -0.04648569971323013, -0.06043302267789841, 0.12071839720010757, -0.13980214297771454, -0.08986424654722214 ]
null
null
transformers
# Sentiment Analysis for Tigrinya with TiRoBERTa This model is a fine-tuned version of [TiRoBERTa](https://huggingface.co/fgaim/roberta-base-tigrinya) on a YouTube comments Sentiment Analysis dataset for Tigrinya (Tela et al. 2020). ## Basic usage ```python from transformers import pipeline ti_sent = pipeline("sentiment-analysis", model="fgaim/tiroberta-sentiment") ti_sent("ድምጻዊ ኣብርሃም ኣፈወርቂ ንዘልኣለም ህያው ኮይኑ ኣብ ልብና ይነብር") ``` ## Training ### Hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Results It achieves the following results on the evaluation set: - F1: 0.8477 - Precision: 0.7607 - Recall: 0.957 - Accuracy: 0.828 - Loss: 0.6796 ### Framework versions - Transformers 4.10.3 - Pytorch 1.9.0+cu111 - Datasets 1.10.2 - Tokenizers 0.10.1 ## Citation If you use this model in your product or research, please cite as follows: ``` @article{Fitsum2021TiPLMs, author={Fitsum Gaim and Wonsuk Yang and Jong C. Park}, title={Monolingual Pre-trained Language Models for Tigrinya}, year=2021, publisher={WiNLP 2021/EMNLP 2021} } ``` ## References ``` Tela, A., Woubie, A. and Hautamäki, V. 2020. Transferring Monolingual Model to Low-Resource Language: The Case of Tigrinya. ArXiv, abs/2006.07698. ```
{"language": "ti", "datasets": ["TLMD"], "metrics": ["accuracy", "f1", "precision", "recall"], "widget": [{"text": "\u12f5\u121d\u133b\u12ca \u12a3\u1265\u122d\u1203\u121d \u12a3\u1348\u12c8\u122d\u1242 \u1295\u12d8\u120d\u12a3\u1208\u121d \u1205\u12eb\u12cd \u12ae\u12ed\u1291 \u12a3\u1265 \u120d\u1265\u1293 \u12ed\u1290\u1265\u122d"}]}
text-classification
fgaim/tiroberta-sentiment
[ "transformers", "pytorch", "roberta", "text-classification", "ti", "dataset:TLMD", "model-index", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "ti" ]
TAGS #transformers #pytorch #roberta #text-classification #ti #dataset-TLMD #model-index #autotrain_compatible #endpoints_compatible #has_space #region-us
# Sentiment Analysis for Tigrinya with TiRoBERTa This model is a fine-tuned version of TiRoBERTa on a YouTube comments Sentiment Analysis dataset for Tigrinya (Tela et al. 2020). ## Basic usage ## Training ### Hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Results It achieves the following results on the evaluation set: - F1: 0.8477 - Precision: 0.7607 - Recall: 0.957 - Accuracy: 0.828 - Loss: 0.6796 ### Framework versions - Transformers 4.10.3 - Pytorch 1.9.0+cu111 - Datasets 1.10.2 - Tokenizers 0.10.1 If you use this model in your product or research, please cite as follows: ## References
[ "# Sentiment Analysis for Tigrinya with TiRoBERTa\n\nThis model is a fine-tuned version of TiRoBERTa on a YouTube comments Sentiment Analysis dataset for Tigrinya (Tela et al. 2020).", "## Basic usage", "## Training", "### Hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 2e-05\n- train_batch_size: 32\n- eval_batch_size: 32\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 3.0", "### Results\n\nIt achieves the following results on the evaluation set:\n- F1: 0.8477\n- Precision: 0.7607\n- Recall: 0.957\n- Accuracy: 0.828\n- Loss: 0.6796", "### Framework versions\n\n- Transformers 4.10.3\n- Pytorch 1.9.0+cu111\n- Datasets 1.10.2\n- Tokenizers 0.10.1\n\n\nIf you use this model in your product or research, please cite as follows:", "## References" ]
[ "TAGS\n#transformers #pytorch #roberta #text-classification #ti #dataset-TLMD #model-index #autotrain_compatible #endpoints_compatible #has_space #region-us \n", "# Sentiment Analysis for Tigrinya with TiRoBERTa\n\nThis model is a fine-tuned version of TiRoBERTa on a YouTube comments Sentiment Analysis dataset for Tigrinya (Tela et al. 2020).", "## Basic usage", "## Training", "### Hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 2e-05\n- train_batch_size: 32\n- eval_batch_size: 32\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 3.0", "### Results\n\nIt achieves the following results on the evaluation set:\n- F1: 0.8477\n- Precision: 0.7607\n- Recall: 0.957\n- Accuracy: 0.828\n- Loss: 0.6796", "### Framework versions\n\n- Transformers 4.10.3\n- Pytorch 1.9.0+cu111\n- Datasets 1.10.2\n- Tokenizers 0.10.1\n\n\nIf you use this model in your product or research, please cite as follows:", "## References" ]
[ 53, 50, 3, 2, 89, 50, 51, 3 ]
[ "passage: TAGS\n#transformers #pytorch #roberta #text-classification #ti #dataset-TLMD #model-index #autotrain_compatible #endpoints_compatible #has_space #region-us \n# Sentiment Analysis for Tigrinya with TiRoBERTa\n\nThis model is a fine-tuned version of TiRoBERTa on a YouTube comments Sentiment Analysis dataset for Tigrinya (Tela et al. 2020).## Basic usage## Training### Hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 2e-05\n- train_batch_size: 32\n- eval_batch_size: 32\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 3.0### Results\n\nIt achieves the following results on the evaluation set:\n- F1: 0.8477\n- Precision: 0.7607\n- Recall: 0.957\n- Accuracy: 0.828\n- Loss: 0.6796### Framework versions\n\n- Transformers 4.10.3\n- Pytorch 1.9.0+cu111\n- Datasets 1.10.2\n- Tokenizers 0.10.1\n\n\nIf you use this model in your product or research, please cite as follows:## References" ]
[ -0.0880238488316536, 0.1263127624988556, -0.0018613676074892282, 0.0893734022974968, 0.1107969805598259, 0.005070060957223177, 0.08105336874723434, 0.14100764691829681, -0.04414255917072296, 0.07940275222063065, 0.07810820639133453, 0.07174544036388397, 0.06551416218280792, 0.1335236132144928, -0.07213761657476425, -0.21619075536727905, 0.010366247966885567, 0.004038081970065832, 0.014175912365317345, 0.14416851103305817, 0.10762247443199158, -0.1143539771437645, 0.1193094253540039, 0.016213444992899895, -0.1541822850704193, 0.02224132791161537, 0.06906870007514954, -0.08746596425771713, 0.10552828758955002, 0.0412253700196743, 0.09264591336250305, 0.03573942929506302, 0.07839600741863251, -0.1054748147726059, 0.003663082607090473, 0.03942846134305, -0.008784540928900242, 0.06821882724761963, 0.11839766055345535, -0.030039599165320396, 0.147997185587883, -0.10514622926712036, 0.044960036873817444, 0.06968044489622116, -0.13756754994392395, -0.10012432187795639, -0.08486239612102509, 0.039856307208538055, 0.04155158996582031, 0.09130127727985382, -0.07149137556552887, 0.17144447565078735, -0.0677347183227539, 0.1316535323858261, 0.2104833424091339, -0.23180106282234192, -0.07580915093421936, 0.0470886304974556, 0.01859918422996998, 0.07330452650785446, -0.09196120500564575, 0.048788782209157944, 0.06446629762649536, -0.014448719099164009, 0.0848507359623909, -0.04747837781906128, -0.04657638445496559, -0.014621471986174583, -0.13456693291664124, -0.06875666230916977, 0.23161140084266663, 0.09368947148323059, -0.06246531009674072, -0.061482857912778854, -0.0964265689253807, -0.09375105798244476, -0.0342446006834507, -0.041714541614055634, 0.05132388323545456, -0.05460934713482857, -0.10857944190502167, 0.003554633120074868, -0.09049595892429352, -0.038939837366342545, -0.0651470273733139, 0.031087834388017654, 0.005141181871294975, 0.0614786297082901, -0.047627437859773636, 0.03432866558432579, -0.07888451218605042, -0.11975447833538055, -0.033359020948410034, -0.019531235098838806, -0.08712723851203918, -0.08491438627243042, -0.024211859330534935, -0.035826895385980606, 0.021257981657981873, 0.10722189396619797, 0.02007382921874523, 0.07284435629844666, -0.034465596079826355, -0.038316648453474045, 0.005933459848165512, 0.22284290194511414, -0.09069082885980606, -0.06787075847387314, 0.0011253730626776814, 0.02332654409110546, -0.006596272811293602, 0.006528361234813929, -0.0386686772108078, -0.05276583507657051, 0.12514299154281616, 0.028441153466701508, -0.01872311718761921, 0.05591559410095215, -0.06574184447526932, -0.030773108825087547, -0.018712423741817474, -0.108387291431427, 0.032181087881326675, 0.004122098907828331, -0.0886150524020195, 0.07318216562271118, 0.006008722819387913, 0.0025741385761648417, -0.03467412292957306, 0.01670416258275509, -0.11333736777305603, 0.016615405678749084, -0.06155768036842346, -0.1139805018901825, 0.02921634167432785, -0.11078407615423203, -0.011452986858785152, -0.13888631761074066, -0.11128617823123932, -0.024480191990733147, 0.019635621458292007, -0.08315245807170868, -0.004149810876697302, -0.056458909064531326, -0.058718014508485794, 0.03292668238282204, 0.013045202940702438, 0.023534642532467842, -0.04474471136927605, 0.08213142305612564, 0.05601619556546211, 0.08062124997377396, 0.040176261216402054, 0.043064724653959274, -0.10526592284440994, 0.027744492515921593, -0.1294192522764206, 0.1051124706864357, -0.05175332725048065, 0.037634044885635376, -0.16068969666957855, -0.10543583333492279, 0.023562368005514145, -0.025301173329353333, 0.039908770471811295, 0.15554852783679962, -0.2124277651309967, -0.015332137234508991, 0.17678165435791016, -0.07575137913227081, -0.07436049729585648, 0.1397545486688614, -0.021323425695300102, 0.031355343759059906, 0.09907089918851852, 0.15533676743507385, 0.04295230284333229, -0.11590240895748138, -0.0381963886320591, -0.0277713555842638, -0.013328117318451405, 0.042296841740608215, 0.09187595546245575, 0.023363038897514343, 0.01679178699851036, -0.014667980372905731, -0.013955860398709774, -0.05345075577497482, -0.08913763612508774, -0.06608189642429352, -0.04407971352338791, -0.04074982553720474, 0.0391504243016243, 0.005723881535232067, 0.02544543147087097, -0.06536753475666046, -0.07075522094964981, 0.05434919893741608, 0.107060506939888, -0.0379294827580452, 0.006928783841431141, -0.1253177523612976, 0.1386573612689972, -0.09812530875205994, -0.04645783081650734, -0.18232668936252594, -0.042921360582113266, 0.03554212674498558, 0.018237167969346046, 0.017338290810585022, 0.06752756237983704, 0.058001041412353516, 0.0029813179280608892, -0.038344696164131165, 0.00921144150197506, -0.05769752711057663, -0.011218775063753128, -0.0123305544257164, -0.11987851560115814, -0.0019511785358190536, -0.003989392425864935, 0.15403969585895538, -0.18595391511917114, -0.034075506031513214, 0.12209154665470123, 0.10474404692649841, 0.04689396545290947, -0.06518014520406723, -0.01067781075835228, -0.00320301647298038, -0.011722511611878872, -0.07854153960943222, 0.03590252995491028, -0.01740223355591297, -0.07062092423439026, -0.012279537506401539, -0.10161282867193222, 0.04174233600497246, 0.11116230487823486, 0.0015397388488054276, -0.11667078733444214, 0.01764526031911373, -0.029515491798520088, 0.005630088970065117, -0.0649709701538086, -0.016281912103295326, 0.09260261058807373, 0.006836811546236277, 0.08053547888994217, -0.1203257292509079, -0.03584190458059311, 0.05138740688562393, -0.04825577884912491, -0.04765110835433006, 0.12587158381938934, 0.04359312355518341, -0.24540017545223236, 0.06557789444923401, 0.049009058624506, -0.040065981447696686, 0.11612240970134735, -0.040135707706213, -0.09370601177215576, -0.05876082926988602, -0.006845742929726839, 0.005320659838616848, 0.0840158462524414, -0.07422332465648651, -0.0020481087267398834, 0.051147062331438065, 0.009272708557546139, -0.03956233337521553, -0.11994893103837967, 0.010808903723955154, 0.04780900105834007, -0.060212913900613785, -0.10022793710231781, 0.05205667018890381, 0.01997246779501438, 0.1148827001452446, 0.026746906340122223, -0.0034427412319928408, -0.016370870172977448, -0.03237542882561684, -0.0844319611787796, 0.14741450548171997, -0.052868884056806564, -0.18927760422229767, -0.1217477023601532, -0.040668852627277374, -0.07681639492511749, 0.004858435597270727, 0.013651599176228046, -0.0857577845454216, -0.07636759430170059, -0.0720418244600296, 0.029472216963768005, -0.040334850549697876, 0.008056934922933578, 0.020660022273659706, 0.015380753204226494, 0.05646607279777527, -0.11437850445508957, -0.04136735573410988, -0.03538885712623596, -0.0929199829697609, 0.05245838686823845, -0.0164340790361166, 0.1068594753742218, 0.06641500443220139, -0.049818553030490875, 0.04029569402337074, -0.040865492075681686, 0.27753743529319763, -0.0939321517944336, 0.04313239827752113, 0.15951299667358398, 0.04502600431442261, 0.058518875390291214, 0.1864883303642273, 0.024259179830551147, -0.10926907509565353, 0.03960111364722252, 0.0637616217136383, -0.01991172879934311, -0.20052076876163483, -0.019904593005776405, -0.04644006863236427, -0.026366762816905975, 0.11368384212255478, -0.000857429055031389, 0.004783785901963711, 0.08651401847600937, 0.01276710256934166, 0.021793395280838013, -0.002277543069794774, 0.08013853430747986, 0.16846399009227753, 0.058602429926395416, 0.11900089681148529, -0.04177042096853256, 0.0031512537971138954, 0.09831566363573074, -0.05463363602757454, 0.23125655949115753, -0.013537736609578133, 0.173477903008461, 0.04498980566859245, 0.12346871942281723, 0.012856384739279747, 0.04408305883407593, 0.005547890439629555, 0.003686670446768403, -0.01203385554254055, -0.05805767700076103, -0.056507404893636703, 0.015556280501186848, 0.04290962591767311, 0.03419319540262222, -0.048620786517858505, 0.023056158795952797, 0.07629645615816116, 0.21529173851013184, 0.08109589666128159, -0.3982623517513275, -0.08609353005886078, 0.00871360395103693, -0.06256292015314102, -0.06582798808813095, -0.004815845750272274, 0.052734844386577606, -0.12919321656227112, 0.07436364889144897, -0.04695647954940796, 0.09342671930789948, -0.06101546809077263, -0.015445446595549583, 0.015710748732089996, 0.06310275942087173, -0.028714574873447418, 0.07566403597593307, -0.20057101547718048, 0.26078349351882935, 0.006191771477460861, 0.033905431628227234, -0.031240850687026978, -0.02709238976240158, 0.008169252425432205, 0.045197322964668274, 0.1477455496788025, 0.018820062279701233, 0.02741868607699871, -0.16573236882686615, -0.08681829273700714, 0.016315875574946404, 0.09112035483121872, -0.05008048564195633, 0.12211424857378006, -0.08446422964334488, -0.022963793948292732, 0.002615417819470167, -0.00008003838593140244, -0.08753836154937744, -0.05107114464044571, -0.009321551769971848, 0.013395249843597412, 0.040210459381341934, -0.023898957297205925, -0.08122671395540237, -0.07630091160535812, 0.10528170317411423, 0.02439984120428562, -0.0487561896443367, -0.13512058556079865, 0.08178357779979706, 0.14380571246147156, -0.08193229138851166, 0.08552335202693939, -0.009014260023832321, 0.1149127408862114, 0.048260193318128586, -0.0672989934682846, 0.06486451625823975, -0.041894346475601196, -0.13723334670066833, -0.008006222546100616, 0.1340699940919876, 0.011612293310463428, 0.050132304430007935, 0.023462383076548576, 0.06715225428342819, 0.0019633581396192312, -0.07519689202308655, -0.03593026474118233, 0.03938431292772293, 0.059738557785749435, 0.018667878583073616, 0.026355886831879616, -0.08516263216733932, -0.11053086817264557, -0.013605602085590363, 0.11672348529100418, 0.2387966513633728, -0.08849497884511948, 0.033718861639499664, 0.010471630841493607, -0.01846797578036785, -0.14081396162509918, 0.05115780606865883, 0.08427400141954422, 0.020452557131648064, 0.04140887409448624, -0.05581511929631233, 0.056032732129096985, 0.04456274211406708, -0.002016606042161584, -0.04891581833362579, -0.2624993622303009, -0.13394302129745483, 0.06146632879972458, 0.12866167724132538, 0.06471729278564453, -0.0846734344959259, -0.04221475124359131, -0.025012491270899773, -0.10168888419866562, 0.10460472851991653, -0.011765843257308006, 0.10069094598293304, 0.008889662101864815, 0.12474638223648071, 0.037475425750017166, -0.01341262273490429, 0.1243111789226532, 0.020311955362558365, 0.048804692924022675, -0.05844178795814514, -0.046401701867580414, 0.08835327625274658, -0.061078086495399475, 0.08078578859567642, 0.06229769438505173, 0.06785425543785095, -0.09115327149629593, -0.03623403236269951, -0.07365141808986664, 0.04274425283074379, -0.03525304049253464, -0.044890955090522766, -0.053636837750673294, 0.03980620205402374, 0.05154281482100487, -0.07918451726436615, -0.019895559176802635, -0.06115323677659035, -0.0408613495528698, 0.08495742082595825, 0.09142839163541794, 0.048967745155096054, -0.07475493848323822, 0.023281320929527283, -0.008214670233428478, 0.03341884911060333, -0.12291914969682693, 0.05156741663813591, 0.11004991084337234, 0.04169441759586334, 0.16124847531318665, 0.017346300184726715, -0.0492171049118042, 0.010899623855948448, 0.05588923767209053, -0.09571683406829834, -0.13401246070861816, -0.021010911092162132, -0.11401903629302979, -0.130174458026886, -0.04222556948661804, 0.12694530189037323, -0.050119202584028244, -0.01704672910273075, 0.00640483433380723, 0.024014800786972046, -0.011022894643247128, 0.10041923820972443, 0.007294066250324249, 0.04260930418968201, -0.10055587440729141, 0.08996233344078064, 0.06617852300405502, -0.1322416514158249, 0.03062756359577179, 0.0446099154651165, -0.09736929833889008, -0.027100695297122, 0.04326252266764641, 0.07871454954147339, -0.0897061675786972, -0.026012608781456947, -0.06231694296002388, -0.08339105546474457, 0.05498385801911354, 0.1711035817861557, 0.08549666404724121, 0.031231926754117012, -0.03151319921016693, -0.0035390518605709076, -0.09168923646211624, 0.09803560376167297, 0.14024744927883148, 0.02437763474881649, -0.18049687147140503, 0.06944142282009125, -0.02602788619697094, -0.006205595098435879, -0.03053954988718033, 0.006986938416957855, -0.10343357920646667, -0.018807467073202133, -0.024763327091932297, 0.08109129965305328, -0.04970673844218254, 0.03727417439222336, -0.028682108968496323, -0.06791727989912033, -0.08610665053129196, 0.004433437250554562, -0.07240404188632965, -0.03147709369659424, 0.02913966216146946, 0.0825008675456047, -0.1613328754901886, -0.014731034636497498, 0.06294368207454681, -0.061055738478899, 0.08898661285638809, 0.07780945301055908, 0.003019446274265647, 0.039077408611774445, -0.07417771220207214, 0.014408733695745468, 0.04418657347559929, 0.014103504829108715, 0.05936820060014725, -0.14935174584388733, 0.03182753548026085, -0.012937076389789581, 0.031139180064201355, 0.0055104028433561325, 0.035754527896642685, -0.10539737343788147, -0.0467546209692955, -0.04661159962415695, -0.07740320265293121, -0.08483825623989105, 0.0686444416642189, 0.09334496408700943, 0.03272399306297302, 0.16329610347747803, -0.06933650374412537, 0.011605305597186089, -0.1897856891155243, 0.0011518746614456177, -0.012339508160948753, -0.04020509123802185, -0.13256333768367767, -0.0730985701084137, 0.08064638078212738, -0.05233623459935188, 0.04234019294381142, 0.039949074387550354, 0.08939500153064728, 0.037596166133880615, 0.03998258337378502, -0.06581466645002365, 0.001663634437136352, 0.18323664367198944, 0.03201817721128464, -0.030591852962970734, 0.023844201117753983, 0.011407416313886642, 0.041555870324373245, 0.04131978005170822, 0.10255980491638184, 0.18778358399868011, -0.05319041386246681, 0.03323705494403839, 0.031180869787931442, -0.030057307332754135, -0.11261117458343506, 0.07193830609321594, -0.12054137885570526, 0.07375197112560272, -0.0398876890540123, 0.13687895238399506, 0.13393981754779816, -0.1614581197500229, 0.07376711815595627, -0.048875100910663605, -0.08592899888753891, -0.09558426588773727, -0.17773599922657013, -0.12570072710514069, -0.11967175453901291, 0.03479911759495735, -0.13813947141170502, 0.08853829652070999, 0.037950653582811356, 0.05061258375644684, -0.02584823966026306, 0.17758598923683167, -0.11097687482833862, -0.08727799355983734, 0.0977063998579979, 0.026354217901825905, -0.03393173962831497, 0.034883785992860794, -0.010014253668487072, 0.03542547672986984, 0.030261380597949028, 0.06283698976039886, 0.004229709971696138, -0.005561801139265299, 0.023829028010368347, -0.0677768662571907, -0.09843756258487701, -0.004411669448018074, 0.03733949735760689, 0.010794831439852715, -0.017583079636096954, 0.042528752237558365, 0.009432198479771614, -0.009777726605534554, 0.2837207615375519, -0.07639093697071075, -0.03177175298333168, -0.1625916063785553, 0.19814738631248474, -0.00963557232171297, 0.014877064153552055, 0.04055039957165718, -0.11722446978092194, 0.01386239379644394, 0.21982404589653015, 0.11548667401075363, -0.004487756639719009, -0.022846199572086334, -0.026674283668398857, 0.006905372254550457, -0.004730568267405033, 0.05584048107266426, 0.0013410592218860984, 0.03509306162595749, -0.06163956597447395, 0.037981078028678894, -0.022287774831056595, -0.020686043426394463, 0.030991926789283752, 0.07679536193609238, 0.03407653048634529, -0.01791234500706196, -0.08976349234580994, 0.11253681778907776, -0.01625910960137844, -0.17242275178432465, 0.038132138550281525, -0.12429890781641006, -0.10962938517332077, -0.019275259226560593, -0.026220744475722313, 0.028376078233122826, 0.0785100981593132, -0.020673153921961784, -0.0210459902882576, 0.09462549537420273, 0.04259008541703224, -0.1268470138311386, -0.05631709471344948, 0.11482776701450348, -0.026000777259469032, 0.12603580951690674, -0.02594415284693241, 0.06457746773958206, 0.11906734853982925, 0.016650181263685226, -0.08573874831199646, 0.05182600021362305, 0.06514717638492584, -0.06005708500742912, 0.04418105259537697, 0.14950671792030334, -0.008291373029351234, 0.051238127052783966, 0.05201020836830139, -0.14004367589950562, -0.0022721262648701668, -0.049354564398527145, 0.03782644122838974, -0.09513971209526062, 0.04674180597066879, -0.10307971388101578, 0.15097059309482574, 0.2073334902524948, -0.036917831748723984, 0.03222550079226494, -0.09524960815906525, 0.04102693870663643, 0.06345602124929428, 0.01037078257650137, -0.009790861047804356, -0.1695556938648224, 0.000576595775783062, -0.0038110583554953337, 0.014926844276487827, -0.22102881968021393, -0.06873337179422379, -0.010476158931851387, -0.028929157182574272, -0.06721770763397217, 0.0975114032626152, 0.021421676501631737, 0.02058589644730091, -0.009406150318682194, -0.06663075089454651, -0.0026849128771573305, 0.159774512052536, -0.138111412525177, -0.050917841494083405 ]
null
null
transformers
# NewsSentiment: easy-to-use, high-quality target-dependent sentiment classification for news articles ## Important: [use our PyPI package](https://pypi.org/project/NewsSentiment/) instead of this model on the Hub The Huggingface Hub architecture currently [does not support](https://github.com/huggingface/transformers/issues/14785) target-dependent sentiment classification since you cannot provide the required inputs, i.e., sentence and target. Thus, we recommend that you use our easy-to-use [PyPI package NewsSentiment](https://pypi.org/project/NewsSentiment/). ## Description This model is the currently [best performing](https://aclanthology.org/2021.eacl-main.142.pdf) targeted sentiment classifier for news articles. In contrast to regular sentiment classification, targeted sentiment classification allows you to provide a target in a sentence. Only for this target, the sentiment is then predicted. This is more reliable in many cases, as demonstrated by the following simplistic example: "I like Bert, but I hate Robert." This model is also available as an easy-to-use PyPI package named [`NewsSentiment`](https://pypi.org/project/NewsSentiment/) and in its original GitHub repository named [`NewsMTSC`](https://github.com/fhamborg/NewsMTSC), where you will find the dataset the model was trained on, other models for sentiment classification, and a training and testing framework. More information on the model and the dataset (consisting of more than 10k sentences sampled from news articles, each labeled and agreed upon by at least 5 annotators) can be found in our [EACL paper](https://aclanthology.org/2021.eacl-main.142.pdf). The dataset, the model, and its source code can be viewed in our [GitHub repository](https://github.com/fhamborg/NewsMTSC). We recommend to use our [PyPI package](https://pypi.org/project/NewsSentiment/) for sentiment classification since the Huggingface Hub platform seems to [not support](https://github.com/huggingface/transformers/issues/14785) target-dependent sentiment classification. # How to cite If you use the dataset or model, please cite our [paper](https://www.aclweb.org/anthology/2021.eacl-main.142/) ([PDF](https://www.aclweb.org/anthology/2021.eacl-main.142.pdf)): ``` @InProceedings{Hamborg2021b, author = {Hamborg, Felix and Donnay, Karsten}, title = {NewsMTSC: (Multi-)Target-dependent Sentiment Classification in News Articles}, booktitle = {Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics (EACL 2021)}, year = {2021}, month = {Apr.}, location = {Virtual Event}, } ```
{"language": ["en"], "license": "apache-2.0", "tags": ["text-classification", "sentiment-analysis", "sentiment-classification", "targeted-sentiment-classification", "target-depentent-sentiment-classification"], "datasets": "fhamborg/news_sentiment_newsmtsc"}
text-classification
fhamborg/roberta-targeted-sentiment-classification-newsarticles
[ "transformers", "pytorch", "roberta", "text-classification", "sentiment-analysis", "sentiment-classification", "targeted-sentiment-classification", "target-depentent-sentiment-classification", "en", "dataset:fhamborg/news_sentiment_newsmtsc", "license:apache-2.0", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #roberta #text-classification #sentiment-analysis #sentiment-classification #targeted-sentiment-classification #target-depentent-sentiment-classification #en #dataset-fhamborg/news_sentiment_newsmtsc #license-apache-2.0 #endpoints_compatible #region-us
# NewsSentiment: easy-to-use, high-quality target-dependent sentiment classification for news articles ## Important: use our PyPI package instead of this model on the Hub The Huggingface Hub architecture currently does not support target-dependent sentiment classification since you cannot provide the required inputs, i.e., sentence and target. Thus, we recommend that you use our easy-to-use PyPI package NewsSentiment. ## Description This model is the currently best performing targeted sentiment classifier for news articles. In contrast to regular sentiment classification, targeted sentiment classification allows you to provide a target in a sentence. Only for this target, the sentiment is then predicted. This is more reliable in many cases, as demonstrated by the following simplistic example: "I like Bert, but I hate Robert." This model is also available as an easy-to-use PyPI package named 'NewsSentiment' and in its original GitHub repository named 'NewsMTSC', where you will find the dataset the model was trained on, other models for sentiment classification, and a training and testing framework. More information on the model and the dataset (consisting of more than 10k sentences sampled from news articles, each labeled and agreed upon by at least 5 annotators) can be found in our EACL paper. The dataset, the model, and its source code can be viewed in our GitHub repository. We recommend to use our PyPI package for sentiment classification since the Huggingface Hub platform seems to not support target-dependent sentiment classification. # How to cite If you use the dataset or model, please cite our paper (PDF):
[ "# NewsSentiment: easy-to-use, high-quality target-dependent sentiment classification for news articles", "## Important: use our PyPI package instead of this model on the Hub\nThe Huggingface Hub architecture currently does not support target-dependent sentiment classification since you cannot provide the required inputs, i.e., sentence and target. Thus, we recommend that you use our easy-to-use PyPI package NewsSentiment.", "## Description\n\nThis model is the currently best performing \ntargeted sentiment classifier for news articles. In contrast to regular sentiment\nclassification, targeted sentiment classification allows you to provide a target in a sentence. \nOnly for this target, the sentiment is then predicted. This is more reliable in many\ncases, as demonstrated by the following simplistic example: \"I like Bert, but I hate Robert.\"\n\nThis model is also available as an easy-to-use PyPI package named 'NewsSentiment' and \nin its original GitHub repository named 'NewsMTSC', where you will find the dataset the model was trained on, other models for sentiment classification, and a training and testing framework. More information on the model and the dataset (consisting of more than 10k sentences sampled from news articles, each \nlabeled and agreed upon by at least 5 annotators) can be found in our EACL paper. The\ndataset, the model, and its source code can be viewed in our GitHub repository.\n\nWe recommend to use our PyPI package for sentiment classification since the Huggingface Hub platform seems to not support target-dependent sentiment classification.", "# How to cite\nIf you use the dataset or model, please cite our paper (PDF):" ]
[ "TAGS\n#transformers #pytorch #roberta #text-classification #sentiment-analysis #sentiment-classification #targeted-sentiment-classification #target-depentent-sentiment-classification #en #dataset-fhamborg/news_sentiment_newsmtsc #license-apache-2.0 #endpoints_compatible #region-us \n", "# NewsSentiment: easy-to-use, high-quality target-dependent sentiment classification for news articles", "## Important: use our PyPI package instead of this model on the Hub\nThe Huggingface Hub architecture currently does not support target-dependent sentiment classification since you cannot provide the required inputs, i.e., sentence and target. Thus, we recommend that you use our easy-to-use PyPI package NewsSentiment.", "## Description\n\nThis model is the currently best performing \ntargeted sentiment classifier for news articles. In contrast to regular sentiment\nclassification, targeted sentiment classification allows you to provide a target in a sentence. \nOnly for this target, the sentiment is then predicted. This is more reliable in many\ncases, as demonstrated by the following simplistic example: \"I like Bert, but I hate Robert.\"\n\nThis model is also available as an easy-to-use PyPI package named 'NewsSentiment' and \nin its original GitHub repository named 'NewsMTSC', where you will find the dataset the model was trained on, other models for sentiment classification, and a training and testing framework. More information on the model and the dataset (consisting of more than 10k sentences sampled from news articles, each \nlabeled and agreed upon by at least 5 annotators) can be found in our EACL paper. The\ndataset, the model, and its source code can be viewed in our GitHub repository.\n\nWe recommend to use our PyPI package for sentiment classification since the Huggingface Hub platform seems to not support target-dependent sentiment classification.", "# How to cite\nIf you use the dataset or model, please cite our paper (PDF):" ]
[ 91, 24, 72, 254, 20 ]
[ "passage: TAGS\n#transformers #pytorch #roberta #text-classification #sentiment-analysis #sentiment-classification #targeted-sentiment-classification #target-depentent-sentiment-classification #en #dataset-fhamborg/news_sentiment_newsmtsc #license-apache-2.0 #endpoints_compatible #region-us \n# NewsSentiment: easy-to-use, high-quality target-dependent sentiment classification for news articles## Important: use our PyPI package instead of this model on the Hub\nThe Huggingface Hub architecture currently does not support target-dependent sentiment classification since you cannot provide the required inputs, i.e., sentence and target. Thus, we recommend that you use our easy-to-use PyPI package NewsSentiment.## Description\n\nThis model is the currently best performing \ntargeted sentiment classifier for news articles. In contrast to regular sentiment\nclassification, targeted sentiment classification allows you to provide a target in a sentence. \nOnly for this target, the sentiment is then predicted. This is more reliable in many\ncases, as demonstrated by the following simplistic example: \"I like Bert, but I hate Robert.\"\n\nThis model is also available as an easy-to-use PyPI package named 'NewsSentiment' and \nin its original GitHub repository named 'NewsMTSC', where you will find the dataset the model was trained on, other models for sentiment classification, and a training and testing framework. More information on the model and the dataset (consisting of more than 10k sentences sampled from news articles, each \nlabeled and agreed upon by at least 5 annotators) can be found in our EACL paper. The\ndataset, the model, and its source code can be viewed in our GitHub repository.\n\nWe recommend to use our PyPI package for sentiment classification since the Huggingface Hub platform seems to not support target-dependent sentiment classification.# How to cite\nIf you use the dataset or model, please cite our paper (PDF):" ]
[ -0.032544128596782684, 0.17790600657463074, -0.006950757000595331, -0.014728084206581116, 0.11271203309297562, 0.03540344536304474, 0.08442728966474533, 0.09982691705226898, 0.07120093703269958, 0.08108674734830856, -0.05694432929158211, 0.12277834117412567, 0.06895146518945694, -0.002521297661587596, -0.0055697024799883366, -0.18724589049816132, 0.017989322543144226, 0.015902288258075714, 0.25824981927871704, 0.08759314566850662, 0.1075950488448143, -0.011343544349074364, 0.05295218154788017, 0.01787068508565426, -0.08739269524812698, 0.03744317963719368, 0.04493046924471855, 0.0000182837884494802, 0.057947635650634766, 0.018777204677462578, 0.12277545034885406, -0.005812731571495533, -0.04843482747673988, -0.1309749037027359, 0.05130688473582268, 0.09967991709709167, -0.02418259158730507, 0.06799352914094925, 0.04883202910423279, -0.10931296646595001, 0.20889383554458618, -0.23182521760463715, 0.02674699015915394, 0.07362533360719681, -0.09788574278354645, -0.1127287819981575, -0.061010412871837616, 0.19123533368110657, 0.10495845973491669, 0.05110279470682144, -0.03632335364818573, 0.16335922479629517, -0.08003854751586914, 0.029723798856139183, 0.17850254476070404, -0.08073975890874863, -0.06798630207777023, -0.013132492080330849, -0.10491502285003662, 0.10004919767379761, -0.10593759268522263, 0.001074991887435317, -0.018286237493157387, 0.03194286674261093, -0.0009135648724623024, -0.023373540490865707, -0.030413804575800896, -0.027292698621749878, -0.08598000556230545, -0.08159808814525604, 0.08593334257602692, 0.003963892348110676, -0.09781511127948761, -0.13751579821109772, -0.07061076164245605, 0.0418371818959713, 0.010330135002732277, 0.028902985155582428, 0.019814886152744293, 0.0239495150744915, 0.10736445337533951, -0.06817463040351868, -0.09067846089601517, -0.007349223829805851, -0.03340159356594086, 0.18759533762931824, -0.02271372452378273, 0.06171126291155815, 0.056631460785865784, 0.13864706456661224, -0.10201212763786316, -0.05247090011835098, -0.05631043016910553, -0.08518975228071213, -0.07586237043142319, -0.019359273836016655, -0.095302052795887, -0.06544319540262222, -0.029345044866204262, 0.06368744373321533, -0.02639974281191826, -0.017360294237732887, -0.031129511073231697, -0.002199843991547823, 0.12625430524349213, 0.0950702503323555, -0.05181828513741493, 0.016661617904901505, 0.06301681697368622, -0.008303898386657238, 0.13194458186626434, 0.030146030709147453, 0.012229821644723415, -0.04013800621032715, -0.006530642043799162, 0.05451401695609093, 0.03374973312020302, 0.06753095984458923, -0.12684500217437744, -0.04598042368888855, 0.11619089543819427, -0.11888886988162994, 0.0011546837631613016, 0.053920190781354904, -0.06818664819002151, 0.10142689943313599, -0.0024056166876107454, -0.07316026091575623, -0.11008205264806747, 0.05797288566827774, -0.05125077813863754, 0.025593968108296394, -0.14778879284858704, -0.09379658848047256, 0.06478065252304077, -0.0808611735701561, -0.05953293293714523, -0.041545744985342026, -0.15075862407684326, -0.05703049898147583, -0.05053415149450302, -0.03341241925954819, -0.07356881350278854, -0.017540881410241127, -0.0007364745833911002, -0.04108981415629387, -0.0019806181080639362, -0.06785576045513153, -0.017733938992023468, 0.0446256585419178, -0.09651198238134384, 0.07823638617992401, 0.0027581879403442144, -0.03126857802271843, -0.11674430221319199, -0.0002965452440548688, -0.2622985541820526, 0.13867919147014618, -0.14617076516151428, 0.063224196434021, -0.03761890530586243, -0.014001470990478992, 0.05094924941658974, 0.004187020473182201, -0.04268858954310417, 0.1263611912727356, -0.1054357960820198, -0.04990857467055321, 0.05655030533671379, -0.1936318576335907, 0.10735996067523956, 0.12623809278011322, -0.063350610435009, 0.012923872098326683, 0.1609780639410019, 0.052342869341373444, 0.08341341465711594, 0.000014484311577689368, -0.1600235551595688, -0.02597115933895111, -0.16357825696468353, 0.04989823326468468, 0.003350782673805952, 0.07624200731515884, -0.04340808466076851, 0.003977496176958084, -0.06568121165037155, -0.0038540749810636044, 0.03648239001631737, -0.019837290048599243, -0.017712300643324852, -0.00710474094375968, -0.019038617610931396, 0.02322901040315628, -0.08190876245498657, 0.0017752182902768254, -0.09242389351129532, 0.07379543781280518, 0.12352171540260315, 0.0179993137717247, 0.006044717505574226, -0.09365227073431015, 0.05212422087788582, -0.0371563658118248, -0.0042006950825452805, -0.18137963116168976, -0.060129620134830475, 0.03694901987910271, -0.16002388298511505, 0.10687418282032013, 0.042116716504096985, -0.025050761178135872, -0.052959926426410675, -0.042570870369672775, -0.004678352270275354, -0.044591620564460754, -0.00197408115491271, -0.010856610722839832, -0.13154077529907227, -0.008015087805688381, -0.020434049889445305, 0.09500054270029068, -0.05821371078491211, 0.05248677730560303, 0.21158170700073242, 0.08655990660190582, 0.008209090679883957, -0.031003788113594055, 0.13074944913387299, 0.04119321331381798, 0.04365312308073044, -0.003146231407299638, 0.048295821994543076, 0.0072210789658129215, -0.04537302255630493, 0.0868351086974144, -0.07001487165689468, -0.22054237127304077, 0.07560291886329651, -0.05454932898283005, -0.10596592724323273, 0.0317264162003994, -0.019365955144166946, 0.031938984990119934, -0.06770457327365875, -0.06827174872159958, 0.17490793764591217, 0.008415482938289642, 0.03451189398765564, -0.08180715143680573, -0.03476131707429886, -0.05301458016037941, -0.016513878479599953, -0.008426537737250328, 0.10268985480070114, 0.014525435864925385, -0.17037418484687805, 0.09099888801574707, -0.015139011666178703, -0.08813004195690155, 0.12697255611419678, 0.08293375372886658, -0.07767487317323685, -0.031763236969709396, -0.052425816655159, 0.0015974659472703934, 0.057387031614780426, -0.10110398381948471, 0.006881792563945055, 0.05267949402332306, -0.08890911191701889, -0.0028273568022996187, -0.09079031646251678, 0.045727916061878204, -0.021117866039276123, 0.00015480854199267924, -0.03321712464094162, -0.05759064853191376, 0.08811261504888535, 0.11113245785236359, 0.007702598348259926, 0.07476630061864853, -0.007264688611030579, -0.06971930712461472, -0.09117477387189865, 0.08260015398263931, -0.06377869844436646, -0.23201870918273926, -0.1119447872042656, 0.08242932707071304, -0.06066830828785896, -0.0026285010389983654, 0.0032146605663001537, -0.09797023981809616, -0.07199996709823608, -0.05872205272316933, -0.008006214164197445, 0.1064765676856041, -0.09705773741006851, -0.0854988619685173, 0.00562724843621254, -0.0015914776595309377, -0.07249029725790024, -0.001045883633196354, -0.10945957899093628, -0.08855201303958893, 0.04689766839146614, -0.011880161240696907, 0.042411088943481445, 0.09822933375835419, 0.02181236259639263, -0.02017396315932274, -0.04197773337364197, 0.1587052345275879, -0.08166970312595367, 0.1396801620721817, 0.1369723528623581, -0.008359136991202831, 0.10928545147180557, 0.09694629162549973, 0.05400923267006874, -0.03811252489686012, 0.016496021300554276, 0.054255615919828415, -0.009040924720466137, -0.20406876504421234, -0.09098993986845016, -0.0397738553583622, -0.07985317707061768, 0.021578263491392136, 0.028118349611759186, 0.03289755433797836, 0.08512639999389648, -0.07528874278068542, -0.04941600561141968, -0.016564877703785896, 0.12347423285245895, 0.16903133690357208, -0.02213122695684433, 0.001314595341682434, -0.08685871213674545, -0.004700780846178532, 0.1390712708234787, -0.048392195254564285, 0.0884837880730629, -0.09504740685224533, 0.14864718914031982, 0.03353188559412956, 0.07780716568231583, 0.07219448685646057, 0.03397594019770622, -0.05428279936313629, 0.04009793698787689, -0.05733947828412056, -0.05229534953832626, -0.12493038922548294, 0.0695611760020256, -0.01544440258294344, 0.06994430720806122, 0.025240423157811165, -0.19977852702140808, 0.11426694691181183, 0.302765429019928, 0.018231457099318504, -0.15343834459781647, -0.07042989879846573, 0.03883016109466553, -0.025433747097849846, -0.0532427541911602, -0.05155697837471962, 0.054817378520965576, -0.0753762349486351, 0.10860451310873032, 0.024624740704894066, 0.06468866765499115, -0.17442834377288818, 0.022364893928170204, -0.041737060993909836, 0.1353316754102707, -0.02148415893316269, 0.08797784149646759, -0.022849446162581444, 0.09873802214860916, 0.037294499576091766, 0.06713514029979706, -0.07748914510011673, -0.045900676399469376, 0.13406358659267426, 0.011581198312342167, 0.09128207713365555, 0.03260247781872749, 0.03705659136176109, -0.07922186702489853, -0.1064189150929451, 0.0035469108261168003, 0.00004269728378858417, -0.09072692692279816, 0.07268527895212173, 0.025091078132390976, -0.010575391352176666, -0.05421726033091545, -0.05957292765378952, -0.007020099554210901, -0.11669106781482697, 0.018373673781752586, 0.09237828105688095, 0.05202438309788704, -0.028739390894770622, -0.0440162792801857, 0.1259852647781372, 0.22823597490787506, -0.12004373967647552, -0.12657763063907623, -0.11110994219779968, 0.01131971925497055, -0.01883886568248272, -0.04115865007042885, -0.08429159224033356, 0.0025882194750010967, 0.18758624792099, -0.017089491710066795, -0.05167052894830704, 0.003386403201147914, -0.02428802289068699, -0.12842898070812225, -0.030136631801724434, 0.11452687531709671, 0.10842761397361755, 0.041164446622133255, 0.015197033062577248, 0.02570255659520626, 0.007854843512177467, -0.12747453153133392, -0.0060482872650027275, 0.18592609465122223, -0.06266170740127563, 0.26370540261268616, -0.04677284508943558, -0.2540757358074188, -0.15429992973804474, 0.026770152151584625, 0.07349477708339691, 0.17683352530002594, -0.06060785427689552, 0.09673361480236053, 0.13066977262496948, -0.10857822746038437, -0.21549451351165771, -0.014299931935966015, 0.00008941583655541763, -0.039609432220458984, 0.0057665458880364895, -0.1516757607460022, 0.0885922983288765, 0.057914849370718, 0.012643663212656975, -0.10486157238483429, -0.05391179397702217, -0.03751729801297188, 0.047174736857414246, 0.06699666380882263, 0.09122113883495331, -0.036990679800510406, -0.04532608762383461, -0.00812908448278904, 0.043083157390356064, 0.23415438830852509, -0.051960572600364685, 0.06432493776082993, -0.04615721479058266, 0.13748769462108612, 0.06943324953317642, -0.03810514882206917, 0.13212646543979645, -0.0020828850101679564, 0.09921558946371078, -0.07965406775474548, -0.020872341468930244, 0.15073299407958984, -0.07393636554479599, 0.08067910373210907, 0.07112425565719604, -0.006313980091363192, -0.146327942609787, -0.06397140771150589, -0.12809279561042786, 0.03475998714566231, -0.019133590161800385, -0.017592770978808403, -0.09111041575670242, 0.09964483976364136, 0.023275023326277733, -0.01386735774576664, -0.05477159470319748, -0.12129353731870651, 0.07317188382148743, 0.16530847549438477, 0.1971847116947174, 0.04374676197767258, -0.0828208327293396, -0.0017956007504835725, -0.02537524327635765, 0.07922704517841339, -0.10564634203910828, 0.007391351740807295, 0.07208364456892014, 0.02523242123425007, 0.08797353506088257, -0.01761990785598755, -0.13756242394447327, 0.054980650544166565, 0.027871454134583473, -0.13980036973953247, -0.09003499150276184, -0.017748132348060608, 0.03330259397625923, -0.08689272403717041, -0.10061866044998169, 0.12615074217319489, -0.046450644731521606, -0.04988519474864006, 0.05414695665240288, 0.016746824607253075, 0.04777326434850693, -0.042418379336595535, -0.017098376527428627, 0.024346357211470604, -0.07178228348493576, 0.049514103680849075, 0.09855176508426666, -0.18468661606311798, 0.017671100795269012, 0.14527153968811035, -0.09048546850681305, -0.06854604184627533, -0.12707555294036865, 0.06274280697107315, -0.07961875945329666, -0.03852362185716629, -0.050715669989585876, -0.10687372833490372, 0.034313514828681946, 0.24196693301200867, 0.05163861811161041, 0.04420485720038414, -0.03881978988647461, 0.0021632907446473837, -0.03253784030675888, 0.014186377637088299, -0.02679150179028511, -0.018780579790472984, -0.026287177577614784, 0.03351326659321785, 0.06623421609401703, 0.01371794380247593, -0.034689608961343765, -0.07145584374666214, -0.06590325385332108, -0.030320176854729652, -0.16238945722579956, 0.06507011502981186, -0.04734416678547859, 0.03431094065308571, -0.0039237746968865395, 0.04095458984375, -0.021304884925484657, 0.005566473584622145, -0.047399502247571945, 0.016151119023561478, 0.03358585387468338, 0.09864801913499832, -0.12504860758781433, -0.005241813138127327, 0.09166941046714783, -0.04994749650359154, 0.11865893006324768, 0.06730585545301437, -0.0786033347249031, -0.03687947988510132, -0.1461695432662964, -0.03170974552631378, 0.0025012167170643806, 0.013109715655446053, -0.016464494168758392, -0.08751057088375092, 0.06048405170440674, 0.008605964481830597, -0.03957812860608101, 0.02696479856967926, 0.12469933182001114, -0.07348226755857468, 0.15441231429576874, 0.1834166944026947, -0.05038087069988251, -0.11852271109819412, 0.0004303043242543936, 0.1356881707906723, -0.009502590633928776, 0.10595626384019852, -0.04525448754429817, 0.01758270338177681, -0.1301048845052719, 0.0033984933979809284, -0.005806367378681898, -0.016525031998753548, -0.09660781919956207, -0.038603510707616806, 0.05404524505138397, 0.014831828884780407, 0.17358022928237915, 0.006471982225775719, -0.07720242440700531, 0.10199866443872452, 0.12534810602664948, -0.10389658808708191, -0.051639486104249954, -0.11982771009206772, -0.0019912715069949627, -0.028391791507601738, 0.032179415225982666, -0.09849002957344055, -0.0329672135412693, -0.016981786116957664, 0.08762896806001663, 0.11698243767023087, 0.28543028235435486, 0.01878136582672596, 0.03435317054390907, 0.09079845994710922, 0.00884277280420065, 0.043509095907211304, -0.042255301028490067, 0.020621754229068756, -0.029955539852380753, 0.12622426450252533, 0.10268411040306091, -0.012500627897679806, 0.11657912284135818, 0.017252899706363678, -0.03176107257604599, -0.058288123458623886, -0.25109514594078064, -0.023720992729067802, -0.01647193357348442, -0.01086343452334404, -0.11500845104455948, 0.009023101069033146, 0.10360242426395416, -0.02233058586716652, -0.043318428099155426, 0.02705891616642475, -0.07800431549549103, -0.09734944254159927, 0.1345341056585312, -0.0028319666162133217, 0.018709387630224228, -0.038670048117637634, 0.02727488987147808, 0.05667843297123909, 0.09292317926883698, 0.0628306195139885, 0.085719995200634, 0.11298311501741409, -0.0485481396317482, -0.1009359061717987, -0.0941697359085083, 0.015992574393749237, -0.02475077472627163, 0.00440113665536046, 0.1202615424990654, 0.028320230543613434, -0.016248978674411774, 0.014477601274847984, 0.16418786346912384, -0.03480822220444679, 0.016070984303951263, -0.08442588150501251, 0.34278690814971924, -0.09056270867586136, -0.055570632219314575, 0.06090087443590164, -0.09080129861831665, 0.020008279010653496, 0.091984324157238, 0.06708217412233353, -0.022388063371181488, 0.011561705730855465, -0.10815629363059998, 0.023119455203413963, 0.02318985015153885, 0.024418335407972336, 0.0382489413022995, 0.20478542149066925, -0.08017157018184662, 0.21359778940677643, -0.013917799107730389, 0.023684825748205185, -0.03226502984762192, -0.021615853533148766, -0.032721128314733505, -0.011289275251328945, -0.10488778352737427, 0.11739864200353622, -0.06454328447580338, -0.20823824405670166, 0.1672024428844452, -0.0711255893111229, -0.0951094701886177, 0.015070678666234016, 0.015503454953432083, 0.04470735415816307, 0.05536719039082527, 0.012584347277879715, -0.01836133375763893, 0.20235800743103027, -0.03910775110125542, -0.12758377194404602, -0.0774863213300705, 0.14085471630096436, -0.18859738111495972, 0.1446833610534668, 0.0073887999169528484, 0.022956734523177147, 0.11362776160240173, -0.09765829890966415, -0.14022529125213623, 0.06348580121994019, -0.019386500120162964, -0.22521233558654785, -0.0250705536454916, 0.21545733511447906, 0.0218289103358984, 0.10885320603847504, 0.06942296028137207, -0.10971865057945251, 0.031100956723093987, -0.01722569204866886, -0.024154655635356903, -0.05832874774932861, 0.09444701671600342, -0.08700332045555115, 0.05942542105913162, 0.1709144115447998, -0.0032750156242400408, -0.023845482617616653, -0.07882216572761536, -0.06104075163602829, 0.03672372177243233, -0.026254046708345413, 0.01912038028240204, -0.03535553812980652, 0.025797275826334953, 0.0821930393576622, 0.08926321566104889, -0.1972712129354477, -0.042445551604032516, -0.024259375408291817, -0.009828400798141956, -0.007306062150746584, 0.027688663452863693, -0.04140589386224747, 0.07605045288801193, 0.007547097746282816, -0.17383401095867157, 0.04110873490571976, 0.08582614362239838, -0.04242768511176109, -0.04582126811146736 ]
null
null
transformers
# BERT-DE-NER ## What is it? This is a German BERT model fine-tuned for named entity recognition. ## Base model & training This model is based on [bert-base-german-dbmdz-cased](https://huggingface.co/bert-base-german-dbmdz-cased) and has been fine-tuned for NER on the training data from [GermEval2014](https://sites.google.com/site/germeval2014ner). ## Model results The results on the test data from GermEval2014 are (entities only): | Precision | Recall | F1-Score | |----------:|-------:|---------:| | 0.817 | 0.842 | 0.829 | ## How to use ```Python >>> from transformers import pipeline >>> classifier = pipeline('ner', model="fhswf/bert_de_ner") >>> classifier('Von der Organisation „medico international“ hieß es, die EU entziehe sich seit vielen Jahren der Verantwortung für die Menschen an ihren Außengrenzen.') [{'word': 'med', 'score': 0.9996621608734131, 'entity': 'B-ORG', 'index': 6}, {'word': '##ico', 'score': 0.9995362162590027, 'entity': 'I-ORG', 'index': 7}, {'word': 'international', 'score': 0.9996932744979858, 'entity': 'I-ORG', 'index': 8}, {'word': 'eu', 'score': 0.9997008442878723, 'entity': 'B-ORG', 'index': 14}] ```
{"language": "de", "license": "cc-by-sa-4.0", "tags": ["German", "de", "NER"], "datasets": ["germeval_14"]}
token-classification
fhswf/bert_de_ner
[ "transformers", "pytorch", "tf", "jax", "safetensors", "bert", "token-classification", "German", "de", "NER", "dataset:germeval_14", "doi:10.57967/hf/0655", "license:cc-by-sa-4.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "de" ]
TAGS #transformers #pytorch #tf #jax #safetensors #bert #token-classification #German #de #NER #dataset-germeval_14 #doi-10.57967/hf/0655 #license-cc-by-sa-4.0 #autotrain_compatible #endpoints_compatible #region-us
BERT-DE-NER =========== What is it? ----------- This is a German BERT model fine-tuned for named entity recognition. Base model & training --------------------- This model is based on bert-base-german-dbmdz-cased and has been fine-tuned for NER on the training data from GermEval2014. Model results ------------- The results on the test data from GermEval2014 are (entities only): How to use ----------
[]
[ "TAGS\n#transformers #pytorch #tf #jax #safetensors #bert #token-classification #German #de #NER #dataset-germeval_14 #doi-10.57967/hf/0655 #license-cc-by-sa-4.0 #autotrain_compatible #endpoints_compatible #region-us \n" ]
[ 86 ]
[ "passage: TAGS\n#transformers #pytorch #tf #jax #safetensors #bert #token-classification #German #de #NER #dataset-germeval_14 #doi-10.57967/hf/0655 #license-cc-by-sa-4.0 #autotrain_compatible #endpoints_compatible #region-us \n" ]
[ -0.12804314494132996, 0.09047764539718628, -0.004133088979870081, 0.08044986426830292, 0.05427295342087746, -0.007584650069475174, 0.13152341544628143, 0.03595489263534546, 0.05435584485530853, 0.0023362888023257256, 0.14358532428741455, 0.16527068614959717, -0.010990745387971401, 0.1225588396191597, -0.06051800027489662, -0.18826468288898468, 0.0752175897359848, 0.0060549164190888405, 0.0013583051040768623, 0.1033514142036438, 0.11688113957643509, -0.06874484568834305, 0.0773695781826973, -0.0044049727730453014, -0.12911060452461243, 0.05375135317444801, 0.08313602209091187, -0.10324167460203171, 0.12987938523292542, 0.019405746832489967, 0.14092746376991272, 0.0974530354142189, 0.04553849995136261, -0.06898819655179977, 0.008351796306669712, -0.01376539096236229, -0.12478858232498169, 0.051530126482248306, 0.052664585411548615, -0.05530007556080818, 0.05106744170188904, 0.039165858179330826, -0.030153492465615273, 0.045297250151634216, -0.11525589972734451, -0.18687719106674194, -0.09256134182214737, 0.1681046038866043, 0.03722832351922989, 0.07602372765541077, 0.04580806568264961, 0.1852140575647354, -0.1279129683971405, 0.07816307991743088, 0.12284635752439499, -0.35062459111213684, -0.00831269659101963, 0.13969750702381134, 0.006796873174607754, -0.0052111330442130566, -0.06324031949043274, 0.02539326436817646, 0.09079960733652115, -0.013223525136709213, 0.04292247071862221, -0.061062537133693695, -0.06679603457450867, 0.056404225528240204, -0.09422852098941803, -0.015100871212780476, 0.2095562368631363, 0.007926538586616516, -0.004450885578989983, 0.047577518969774246, -0.054337259382009506, -0.0642930418252945, 0.001102213398553431, -0.023944050073623657, -0.010178713127970695, 0.008153632283210754, 0.03051155060529709, 0.04676041752099991, -0.1222725436091423, -0.024388782680034637, -0.21057406067848206, 0.21720284223556519, 0.021632498130202293, 0.05850737914443016, -0.11210130900144577, 0.07438942790031433, -0.05974812060594559, -0.11652831733226776, 0.008611710742115974, -0.06220162659883499, 0.003209800226613879, -0.03127768263220787, 0.0014587012119591236, 0.059070050716400146, 0.070285864174366, 0.18811091780662537, -0.004091321956366301, -0.006936937104910612, -0.016800101846456528, 0.0978156104683876, -0.04957728460431099, 0.0572546124458313, -0.05081308260560036, -0.029378261417150497, 0.054365672171115875, -0.09367652237415314, 0.03634236752986908, 0.0017811028519645333, -0.1421343982219696, -0.0495409332215786, 0.030826011672616005, 0.08065234869718552, -0.04056595265865326, 0.06116928905248642, -0.04677196219563484, 0.03384342044591904, 0.15900206565856934, -0.04755163565278053, 0.009952628053724766, 0.008646063506603241, 0.002244270872324705, -0.026470158249139786, -0.030942847952246666, 0.00256239902228117, 0.002339481608942151, 0.18764175474643707, -0.10981599986553192, -0.016071578487753868, -0.01182576548308134, -0.07512534409761429, 0.09195831418037415, -0.09279316663742065, 0.028483672067523003, -0.2029980719089508, -0.14530561864376068, 0.057921066880226135, 0.039195384830236435, -0.0025610863231122494, -0.005659396294504404, 0.004807429853826761, -0.03567935526371002, 0.016592931002378464, -0.06864748150110245, -0.12013634294271469, -0.08201419562101364, 0.05925459414720535, -0.05624765902757645, 0.029909754171967506, -0.1660478413105011, -0.016047928482294083, -0.14914250373840332, -0.003942581824958324, -0.09994614124298096, -0.09625718742609024, -0.14528408646583557, 0.10683095455169678, -0.04926114156842232, -0.05515620484948158, -0.022513598203659058, -0.00669202022254467, 0.0030912882648408413, 0.1266503483057022, -0.12571369111537933, -0.09189648926258087, 0.16639703512191772, -0.16132646799087524, -0.1454343944787979, 0.0930376872420311, 0.0068193417973816395, -0.026589181274175644, 0.0510341078042984, 0.14907129108905792, 0.0760602056980133, -0.17143529653549194, -0.014840736985206604, 0.08946587145328522, -0.13332407176494598, -0.16136978566646576, 0.057922277599573135, 0.005991453770548105, -0.17017894983291626, 0.04124997556209564, -0.046613845974206924, 0.10605716705322266, -0.042712368071079254, -0.0600307323038578, -0.012948996387422085, -0.03459973260760307, 0.10257668048143387, 0.028561465442180634, 0.06974288821220398, -0.09393393248319626, 0.0006843666196800768, -0.0006816710229031742, 0.02776360511779785, 0.04768241196870804, -0.013686971738934517, -0.07705473154783249, 0.08619595319032669, -0.04660818353295326, -0.03169795870780945, -0.07986606657505035, -0.11277700960636139, -0.0019576610065996647, -0.010302688926458359, 0.022117823362350464, 0.1040591150522232, 0.083253413438797, 0.013065855950117111, -0.05539825186133385, -0.03884859383106232, 0.09621259570121765, 0.06771981716156006, 0.017945025116205215, -0.15890640020370483, 0.05909787863492966, -0.03530285507440567, 0.038708243519067764, -0.08388686925172806, -0.012414839118719101, 0.10874679684638977, 0.15509022772312164, -0.006541332229971886, 0.0812222957611084, -0.06399670988321304, 0.0208443496376276, -0.04952472448348999, 0.03281613439321518, 0.07197496294975281, 0.024409094825387, -0.035340216010808945, 0.19425731897354126, -0.04129327833652496, 0.3893793225288391, 0.17161984741687775, -0.12457629293203354, -0.04624756798148155, -0.010964973829686642, -0.03804667666554451, -0.006100450176745653, 0.006621694657951593, 0.0023892782628536224, -0.0036385669372975826, -0.047343119978904724, 0.1467357873916626, -0.0761343389749527, -0.04383610188961029, 0.06645511835813522, -0.044159434735774994, -0.0689198449254036, 0.10518256574869156, 0.09165611118078232, -0.2291124314069748, 0.21298444271087646, 0.2553417980670929, -0.042506955564022064, 0.13595005869865417, -0.03125177323818207, 0.009607331827282906, -0.02054748684167862, -0.008795666508376598, -0.010275493375957012, 0.1718612164258957, -0.030921094119548798, 0.0019466174999251962, 0.05464717373251915, 0.03436063230037689, 0.02573537826538086, -0.1290537267923355, -0.0708441436290741, -0.033156268298625946, -0.002255738712847233, -0.06181184947490692, 0.08921772986650467, -0.0234217531979084, 0.1329735666513443, -0.030426591634750366, -0.21236218512058258, 0.11053115129470825, 0.011748035438358784, -0.1063438430428505, 0.17405809462070465, -0.12257945537567139, -0.20160098373889923, -0.13082823157310486, -0.1069362610578537, -0.08354910463094711, 0.0051803914830088615, 0.04706913232803345, -0.043162211775779724, -0.06290196627378464, 0.012980290688574314, -0.06987535208463669, -0.0558125376701355, 0.0362977460026741, -0.09189421683549881, 0.03268461674451828, 0.007585288491100073, -0.09783490747213364, -0.053134795278310776, -0.02610216662287712, 0.00997164472937584, 0.08399967849254608, -0.042975835502147675, 0.10353374481201172, 0.09431709349155426, -0.041560154408216476, 0.04469270631670952, -0.04985000193119049, 0.13771586120128632, -0.035990625619888306, 0.019589439034461975, 0.1008572056889534, -0.022732030600309372, 0.06353098899126053, 0.18878009915351868, 0.06643952429294586, -0.033044371753931046, -0.01878516748547554, -0.0564875453710556, -0.05860895663499832, -0.19504602253437042, -0.1324685513973236, -0.09354977309703827, 0.07434427738189697, 0.06716810911893845, 0.08112829178571701, 0.1278955340385437, 0.08057112991809845, 0.02575596421957016, -0.02457180619239807, -0.04378907382488251, 0.09111577272415161, 0.16292636096477509, 0.011603090912103653, 0.09705045819282532, -0.07695572078227997, -0.09166260808706284, 0.08852441608905792, 0.04582465440034866, 0.06598357856273651, 0.10171086341142654, -0.00949634239077568, 0.04594400152564049, 0.20732158422470093, 0.12364201247692108, 0.12335658818483353, 0.02224697358906269, -0.0838053748011589, 0.01596973091363907, -0.046922121196985245, 0.035972241312265396, 0.03342881053686142, -0.04985431209206581, -0.041627492755651474, -0.03507978841662407, -0.1694582998752594, 0.08136706054210663, 0.03113146685063839, 0.10663992911577225, -0.24101471900939941, -0.00634419871494174, -0.008823627606034279, 0.030980845913290977, -0.018081557005643845, 0.08020411431789398, -0.017319850623607635, -0.055970970541238785, 0.10407686978578568, -0.0455695204436779, 0.05131467804312706, 0.05554188787937164, 0.03680120036005974, -0.003167426213622093, -0.03610093891620636, -0.008894582279026508, 0.10374482721090317, -0.26517340540885925, 0.30712124705314636, 0.01953774504363537, -0.03736644238233566, -0.054920073598623276, -0.04377957805991173, 0.014661245979368687, 0.2169664353132248, 0.1785053312778473, 0.061911631375551224, -0.1191038116812706, -0.08735193312168121, -0.03324335068464279, 0.016552118584513664, 0.05152935907244682, -0.0016014761058613658, -0.051268141716718674, -0.02174302563071251, -0.04302787780761719, 0.008542720228433609, 0.027320008724927902, -0.08633308857679367, -0.07469438761472702, 0.05129377171397209, 0.09504786878824234, 0.016691654920578003, -0.03201349079608917, -0.06982879340648651, -0.18827418982982635, 0.1963934749364853, -0.15653853118419647, -0.010295744054019451, -0.12037254869937897, -0.11256790906190872, 0.04163997620344162, -0.09422623366117477, 0.04340481013059616, -0.03636699169874191, -0.00961042195558548, -0.07738995552062988, -0.15967485308647156, 0.1460374891757965, -0.15777619183063507, -0.03732391074299812, -0.06905519962310791, 0.13024216890335083, -0.045148611068725586, 0.018137186765670776, 0.010278316214680672, 0.018527161329984665, -0.03275204822421074, -0.10779567062854767, 0.02643507346510887, -0.07597033679485321, 0.10980278998613358, -0.012222504243254662, -0.05488024652004242, -0.11754067987203598, 0.034882910549640656, -0.019306350499391556, 0.12518908083438873, 0.26941025257110596, -0.09759854525327682, 0.10995543003082275, 0.24602001905441284, -0.006028404459357262, -0.3291236162185669, -0.04946855083107948, -0.12650641798973083, -0.027844317257404327, -0.04890074208378792, -0.03982772305607796, 0.10284806042909622, 0.11128503829240799, -0.1015084907412529, 0.07259027659893036, -0.1190202534198761, -0.10203733295202255, 0.1779988408088684, 0.023891162127256393, 0.3656960427761078, -0.0550781786441803, -0.05412821099162102, -0.011061339639127254, -0.20362547039985657, 0.11386055499315262, -0.056747809052467346, 0.014579132199287415, -0.02636387012898922, -0.042249780148267746, -0.00532890297472477, -0.09391237050294876, 0.09888029843568802, 0.03621683642268181, 0.08468934893608093, -0.09984194487333298, -0.10974231362342834, 0.14457501471042633, -0.006310918368399143, 0.07579737156629562, -0.06425682455301285, 0.04950159043073654, -0.010470587760210037, -0.010966943576931953, -0.0925515815615654, 0.14859430491924286, -0.013503397814929485, -0.10009276866912842, -0.043386198580265045, 0.05966624617576599, -0.038552165031433105, -0.07094628363847733, 0.21499398350715637, 0.017180008813738823, 0.09152547270059586, 0.1126614585518837, 0.0840502381324768, -0.12214957177639008, -0.006646002177149057, -0.036453474313020706, -0.10170231014490128, 0.0930134579539299, -0.072642020881176, 0.04645603522658348, 0.14713054895401, 0.00261800829321146, 0.08091167360544205, 0.0656166523694992, 0.002547347452491522, -0.05685481056571007, 0.15240125358104706, -0.2290976345539093, 0.023519504815340042, -0.03247266635298729, -0.028485722839832306, 0.09733112156391144, 0.17332115769386292, 0.0927792638540268, -0.065082848072052, 0.016496431082487106, 0.02257632464170456, -0.0283025112003088, -0.05811752378940582, 0.07216668874025345, 0.07785242050886154, 0.03026314079761505, -0.10777237266302109, 0.08194071799516678, 0.008218557573854923, -0.12607312202453613, -0.03682553768157959, 0.0370250903069973, -0.17184339463710785, -0.08421103656291962, -0.05882130190730095, 0.11236133426427841, -0.21071404218673706, -0.10323677211999893, -0.09344004839658737, -0.08870483189821243, 0.03386665880680084, 0.21281763911247253, 0.09450957179069519, 0.0749259740114212, 0.01866094209253788, -0.06392340362071991, -0.04098862409591675, 0.028263354673981667, -0.044858843088150024, 0.09045059233903885, -0.175167977809906, 0.03592021390795708, -0.02361399680376053, 0.10554035753011703, -0.07443691790103912, 0.02766854502260685, -0.15906570851802826, 0.021579772233963013, -0.0661025419831276, -0.033216442912817, -0.08784608542919159, -0.009239807724952698, -0.0019322207663208246, -0.1083182767033577, -0.039869457483291626, 0.024824131280183792, -0.1034337654709816, 0.06099922955036163, 0.06579743325710297, 0.046963538974523544, -0.07146904617547989, -0.031246989965438843, 0.052890196442604065, 0.006141304969787598, 0.1073569729924202, 0.1003815308213234, -0.014612148515880108, 0.12186016142368317, -0.15492980182170868, -0.057437874376773834, 0.07773299515247345, 0.015242761932313442, 0.09390264004468918, 0.028025610372424126, 0.03434135764837265, 0.1078542098402977, -0.02693135477602482, 0.06460276991128922, -0.05398188531398773, -0.11185839772224426, 0.04268399253487587, 0.02278856746852398, -0.1515040099620819, -0.0370185524225235, -0.05191138759255409, 0.12389672547578812, -0.026933806017041206, 0.1594977229833603, -0.05008712410926819, -0.004067521076649427, -0.045573748648166656, -0.009150567464530468, -0.009672683663666248, -0.17938901484012604, -0.1201007068157196, -0.04227360710501671, -0.021901605650782585, -0.031432587653398514, 0.2101593017578125, 0.03401460498571396, -0.08230829983949661, 0.05104903131723404, -0.007205793634057045, 0.01079822238534689, 0.02572050876915455, 0.1979089379310608, 0.010434435680508614, -0.02015470527112484, -0.13435098528862, 0.045071475207805634, -0.02086772210896015, -0.03889324516057968, 0.11381043493747711, 0.088589146733284, -0.01867685653269291, 0.024799363687634468, 0.09776659309864044, -0.08002211898565292, -0.11211854219436646, -0.12832379341125488, -0.07291378080844879, 0.04480886086821556, 0.03565326705574989, 0.050688933581113815, 0.2138015776872635, -0.034777965396642685, -0.016621064394712448, -0.023905334994196892, -0.013591914437711239, -0.14632359147071838, -0.15478473901748657, -0.08324504643678665, -0.11635102331638336, 0.047975607216358185, -0.021304655820131302, -0.012274335138499737, 0.04412170127034187, 0.08995357900857925, -0.03568580374121666, 0.06667201966047287, -0.021570926532149315, -0.023180436342954636, 0.04373178258538246, 0.019411258399486542, -0.012314634397625923, -0.03036484494805336, -0.030741097405552864, -0.09021209925413132, -0.10789015889167786, -0.04683401808142662, -0.024759743362665176, 0.028789224103093147, -0.007491447031497955, -0.042671289294958115, -0.05180228129029274, -0.03739519044756889, 0.04130019620060921, 0.01307216752320528, 0.09032228589057922, 0.018217969685792923, 0.05486707761883736, 0.0443895123898983, 0.11875573545694351, -0.034167248755693436, -0.11755837500095367, -0.04497230798006058, 0.26938673853874207, 0.03871440514922142, 0.1296014040708542, 0.009695835411548615, -0.01537010446190834, 0.02067834883928299, 0.19818104803562164, 0.2728146016597748, -0.006713382434099913, 0.06089284271001816, 0.002224845113232732, 0.012817339040338993, 0.03482618182897568, 0.07482034713029861, 0.03695093095302582, 0.2844969928264618, -0.05290371552109718, -0.032727017998695374, -0.061906903982162476, 0.018251270055770874, -0.04764947295188904, 0.10448817163705826, -0.014021430164575577, -0.08830896019935608, -0.10500549525022507, 0.07765383273363113, -0.06254616379737854, 0.08370767533779144, 0.07766515761613846, -0.0904751792550087, -0.07490759342908859, 0.006369021255522966, 0.12809674441814423, 0.026505770161747932, 0.03151208162307739, -0.07116604596376419, -0.03801567852497101, -0.012602762319147587, 0.013941817916929722, -0.190940260887146, -0.10081013292074203, 0.029804378747940063, 0.07235945761203766, 0.17058086395263672, -0.009303942322731018, 0.14846619963645935, 0.11259333044290543, 0.026541559025645256, -0.10071279853582382, 0.08344076573848724, 0.03143656626343727, -0.12735742330551147, -0.02974783629179001, -0.08207517862319946, 0.008388892747461796, 0.004459495190531015, 0.009002789855003357, -0.11057843267917633, 0.05216709151864052, 0.014178529381752014, -0.057735878974199295, -0.0854107141494751, 0.11316776275634766, -0.004866004455834627, 0.10216152667999268, 0.04085530713200569, -0.002870462369173765, -0.037825632840394974, -0.07583494484424591, 0.021041395142674446, 0.09593956917524338, -0.1008923128247261, -0.00019580092339310795, -0.061803802847862244, 0.004391353111714125, 0.07814780622720718, 0.013302411884069443, -0.0906485840678215, -0.021351922303438187, -0.07334361225366592, 0.015496280044317245, -0.10624536126852036, 0.02630317397415638, 0.0760180875658989, 0.030935006216168404, 0.009374115616083145, -0.04977317899465561, 0.014950470067560673, 0.013498218730092049, -0.0860883891582489, -0.10790842771530151 ]
null
null
transformers
# Fibruh Bot Model
{"tags": ["conversational"]}
text-generation
fibruh/DialoGPT-small-harrypotter
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
# Fibruh Bot Model
[ "# Fibruh Bot Model" ]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "# Fibruh Bot Model" ]
[ 51, 6 ]
[ "passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n# Fibruh Bot Model" ]
[ -0.02054092474281788, 0.0060601611621677876, -0.006901804357767105, 0.014957175590097904, 0.1398673802614212, -0.018231766298413277, 0.16717691719532013, 0.08531017601490021, 0.03206370770931244, -0.00520884245634079, 0.11419239640235901, 0.15471729636192322, 0.020722365006804466, 0.19662441313266754, -0.08506640791893005, -0.23889797925949097, 0.08980731666088104, 0.022069357335567474, -0.022051963955163956, 0.10393017530441284, 0.10167824476957321, -0.044627733528614044, 0.09795907884836197, -0.0014031928731128573, -0.21481260657310486, 0.00862063653767109, 0.00703787337988615, -0.0962039902806282, 0.09859427809715271, 0.11154258251190186, 0.0651988610625267, -0.0021896171383559704, -0.03867257386445999, -0.08765716850757599, 0.045800596475601196, -0.010846556164324284, -0.05532103776931763, 0.06471759080886841, 0.018978817388415337, -0.08392912149429321, 0.18291373550891876, 0.15469573438167572, -0.007651656400412321, 0.060015782713890076, -0.13943670690059662, 0.13177365064620972, 0.013665537349879742, 0.05558071658015251, 0.062452252954244614, 0.11077366769313812, -0.03731391206383705, 0.1296105533838272, -0.09399715065956116, 0.1285235583782196, 0.11696071177721024, -0.3083558976650238, -0.038880981504917145, 0.11238553375005722, 0.024114077910780907, -0.005753087345510721, -0.05992904677987099, 0.03451187536120415, 0.030490988865494728, 0.027988163754343987, -0.0334644615650177, -0.05683420971035957, -0.12361423671245575, -0.01912568509578705, -0.09390340000391006, -0.016947755590081215, 0.21793314814567566, -0.03336193040013313, 0.03246986120939255, -0.05864982306957245, -0.11036688089370728, 0.016615770757198334, -0.07379161566495895, 0.02912929281592369, -0.08635320514440536, 0.060557689517736435, 0.059878796339035034, -0.10597877949476242, -0.11087381094694138, -0.039302077144384384, -0.15340033173561096, 0.20363323390483856, 0.03893130645155907, 0.058567021042108536, -0.22744372487068176, 0.08003723621368408, 0.0006827301695011556, -0.07057568430900574, 0.023566151037812233, -0.09778366982936859, 0.0011344474041834474, -0.006564122159034014, -0.0574856735765934, -0.10189799964427948, 0.09055901318788528, 0.15516990423202515, -0.029949529096484184, -0.010695518925786018, -0.011071140877902508, 0.07112330198287964, 0.0360446460545063, 0.01258927397429943, -0.02678513526916504, 0.008715096861124039, 0.04188620299100876, -0.07171439379453659, -0.026506619527935982, -0.06591607630252838, -0.18091729283332825, 0.012116805650293827, 0.012540040537714958, 0.03966842591762543, 0.036275092512369156, 0.1141154021024704, -0.013167831115424633, -0.03466781601309776, 0.00830940529704094, -0.04086600989103317, -0.014278273098170757, 0.020532624796032906, -0.03728120028972626, 0.06647635996341705, 0.004790353123098612, 0.033723462373018265, -0.1307990849018097, 0.029441172257065773, -0.06831680238246918, 0.0006493101827800274, -0.03127843886613846, -0.07842464745044708, -0.001471432507969439, -0.09286385029554367, 0.028607990592718124, -0.17051824927330017, -0.13182060420513153, -0.013309135101735592, -0.004990553483366966, -0.06821954995393753, -0.09288053214550018, -0.08113282173871994, -0.06018686294555664, 0.043249987065792084, -0.04172155633568764, 0.024738045409321785, -0.061179257929325104, 0.07078509032726288, -0.03701263293623924, 0.09600260108709335, -0.14438830316066742, 0.05092964693903923, -0.09652640670537949, -0.054376374930143356, -0.0776190385222435, 0.09747778624296188, -0.026066826656460762, 0.1367160677909851, -0.01888059265911579, 0.021692760288715363, -0.09228942543268204, 0.0633685365319252, -0.020338669419288635, 0.26109644770622253, -0.088007852435112, -0.12284304201602936, 0.3252178430557251, -0.07539903372526169, -0.10332819819450378, 0.12024621665477753, 0.003803761675953865, 0.05791575834155083, 0.12314796447753906, 0.14659683406352997, -0.06809176504611969, -0.028945786878466606, 0.049096185714006424, 0.08514589071273804, -0.1050158441066742, 0.0003821029094979167, -0.018809763714671135, 0.011261725798249245, -0.08375049382448196, 0.02583959698677063, 0.07648435980081558, 0.10269526392221451, -0.06796086579561234, -0.027458278462290764, -0.008152191527187824, -0.040537137538194656, 0.0670042634010315, -0.02730083465576172, 0.13954997062683105, -0.023387381806969643, -0.0334850437939167, -0.04609757661819458, 0.014630134217441082, -0.009564840234816074, 0.006041241344064474, -0.11168672889471054, 0.12657767534255981, 0.00016736984252929688, 0.09482377767562866, -0.16797307133674622, -0.09554989635944366, -0.01740243285894394, 0.09936825186014175, 0.07259557396173477, 0.11097092926502228, 0.0584411546587944, -0.0006874877726659179, 0.02551731839776039, 0.030204424634575844, 0.13353285193443298, -0.02695961482822895, -0.10199784487485886, -0.14318600296974182, 0.049792829900979996, -0.062157247215509415, 0.1285780966281891, -0.1208595559000969, 0.03746816888451576, 0.05588574334979057, 0.140562042593956, 0.018667209893465042, 0.03853398561477661, 0.030518127605319023, -0.01956677995622158, -0.06547888368368149, 0.009709946811199188, 0.08152422308921814, -0.001864572986960411, -0.08595171570777893, 0.1839154064655304, -0.0887586772441864, 0.1797301471233368, 0.19590818881988525, -0.16595424711704254, -0.030789820477366447, -0.04559647664427757, -0.0448848232626915, 0.016818953678011894, 0.027421167120337486, -0.04328833520412445, 0.18932363390922546, 0.010202210396528244, 0.18063132464885712, -0.03260466828942299, -0.013894516043365002, 0.012535182759165764, -0.060402803122997284, 0.0034605758264660835, 0.08647362142801285, 0.13617971539497375, -0.14719344675540924, 0.14661453664302826, 0.0480252243578434, 0.029987961053848267, 0.18596580624580383, 0.043784257024526596, -0.009569271467626095, 0.06367213279008865, 0.0228286013007164, -0.03345385566353798, -0.02307376265525818, -0.2675307095050812, -0.056633953005075455, 0.05532900616526604, -0.024931032210588455, 0.10548810660839081, -0.08737482875585556, -0.016976619139313698, -0.02902773581445217, -0.016773661598563194, 0.07522870600223541, 0.09113594144582748, 0.04541074484586716, 0.1499042510986328, -0.006971906404942274, -0.12471182644367218, 0.03970231115818024, 0.011172793805599213, -0.10156187415122986, 0.17636099457740784, -0.08638527989387512, -0.3367501199245453, -0.106815867125988, -0.15633074939250946, -0.08631296455860138, 0.053926050662994385, 0.06508902460336685, -0.10367749631404877, -0.04407041519880295, -0.0200908612459898, 0.13228683173656464, 0.00982468668371439, 0.023884600028395653, -0.0264015831053257, 0.03075389750301838, -0.08735869079828262, -0.07901948690414429, -0.053264640271663666, -0.056516312062740326, -0.053866639733314514, 0.12444523721933365, -0.11016272753477097, 0.0842958390712738, 0.1648026704788208, 0.05654427036643028, 0.06600849330425262, -0.011688042432069778, 0.28111088275909424, -0.11587799340486526, 0.034452516585588455, 0.1569298803806305, -0.025612488389015198, 0.03245137259364128, 0.1503949761390686, 0.012768693268299103, -0.11411390453577042, 0.043003156781196594, -0.013302493840456009, -0.06709770113229752, -0.15752819180488586, -0.14682114124298096, -0.11516682803630829, 0.0730576291680336, 0.06821820884943008, 0.07504346966743469, 0.13167314231395721, 0.0632668286561966, -0.03901960700750351, 0.046755775809288025, 0.05992037430405617, 0.07542041689157486, 0.12394502758979797, -0.05259482190012932, 0.15186339616775513, -0.027110248804092407, -0.1573304831981659, 0.09951586276292801, 0.01673121377825737, 0.1280941367149353, 0.05578579753637314, 0.04965003579854965, 0.026752719655632973, 0.04523799568414688, 0.14781002700328827, 0.10824347287416458, -0.002274185884743929, -0.05220767855644226, -0.017494644969701767, -0.04534400627017021, -0.0400933139026165, 0.06706061214208603, 0.03385132923722267, -0.12964719533920288, -0.042671602219343185, -0.05043454095721245, 0.07718508690595627, 0.15713819861412048, 0.1034584641456604, -0.21785283088684082, -0.06748662889003754, 0.05736361816525459, -0.06541907787322998, -0.117362380027771, 0.07413795590400696, 0.053598061203956604, -0.16631212830543518, 0.027832141146063805, -0.031537167727947235, 0.13944090902805328, -0.0629776194691658, 0.08181792497634888, -0.09698087722063065, -0.05804531276226044, 0.008944845758378506, 0.07976392656564713, -0.30714792013168335, 0.1614106297492981, -0.009219711646437645, -0.035226769745349884, -0.10188416391611099, 0.008842556737363338, 0.03259841352701187, 0.11633233726024628, 0.09907831996679306, -0.007043886464089155, 0.06389738619327545, -0.14281277358531952, -0.07832028716802597, 0.02107367292046547, 0.07271529734134674, -0.061067014932632446, 0.037055131047964096, -0.027139538899064064, -0.007188768591731787, -0.04716707393527031, -0.06392709165811539, 0.009059270843863487, -0.17334772646427155, 0.08966939896345139, 0.07697566598653793, 0.06387123465538025, 0.0036181246396154165, -0.03688129782676697, 0.0048948186449706554, 0.23429138958454132, -0.08229024708271027, -0.10610897839069366, -0.10047464072704315, 0.039937395602464676, 0.01011992059648037, -0.05535491555929184, 0.01852934993803501, -0.07213114202022552, 0.06679368764162064, -0.08038758486509323, -0.18169459700584412, 0.1078367605805397, -0.11178022623062134, -0.04369218647480011, -0.01129565667361021, 0.16224607825279236, -0.0003537957090884447, 0.003474791534245014, 0.05509263277053833, -0.012647513300180435, -0.10094652324914932, -0.10741076618432999, -0.026538971811532974, 0.027276556938886642, -0.01363074779510498, 0.06760641187429428, -0.0497036911547184, -0.08880622684955597, -0.0593172125518322, 0.012749158777296543, 0.29378005862236023, 0.11654918640851974, -0.028478849679231644, 0.16273227334022522, 0.12244842201471329, -0.03703119605779648, -0.28337153792381287, -0.09514617174863815, -0.07360010594129562, -0.0019204391865059733, -0.12653669714927673, -0.18073517084121704, 0.10337173938751221, -0.0560440868139267, -0.010731109417974949, 0.16072998940944672, -0.28253114223480225, -0.08543334156274796, 0.20047850906848907, 0.0007755894330330193, 0.36843231320381165, -0.09686824679374695, -0.0963141992688179, -0.057926829904317856, -0.15719351172447205, 0.1609615832567215, -0.05247688293457031, 0.09713013470172882, -0.0015486031770706177, 0.1653023660182953, 0.06049752235412598, -0.002008670475333929, 0.060891058295965195, 0.039133913815021515, -0.041397809982299805, -0.10475795716047287, -0.04800160229206085, 0.03785950317978859, 0.04009474441409111, 0.09364870935678482, -0.05409209802746773, 0.015974879264831543, -0.11920168995857239, -0.05523005127906799, -0.08154217153787613, 0.06759990751743317, 0.015012312680482864, -0.039099231362342834, 0.00024737464264035225, -0.034843992441892624, -0.018662648275494576, 0.05323125049471855, 0.0841713398694992, -0.0664314553141594, 0.18158210813999176, 0.13879738748073578, 0.08487163484096527, -0.20782749354839325, 0.002991945017129183, -0.01287622470408678, -0.0361926443874836, 0.0972142294049263, -0.03905738145112991, 0.02695612795650959, 0.1134973093867302, -0.04235714673995972, 0.10399158298969269, 0.0858689621090889, -0.025098249316215515, -0.004006530623883009, 0.10567548871040344, -0.27543312311172485, -0.05886450782418251, -0.0630120113492012, 0.007819228805601597, 0.07504501193761826, 0.08435938507318497, 0.23631548881530762, -0.029646603390574455, -0.03099423460662365, -0.0018371040932834148, 0.023270118981599808, -0.03655245527625084, 0.07807359844446182, -0.0063048116862773895, 0.025012236088514328, -0.1767134815454483, 0.0023491547908633947, 0.0170024074614048, -0.0688042864203453, 0.02853623405098915, 0.14124351739883423, -0.14599189162254333, -0.12196870148181915, -0.08989793807268143, 0.12349474430084229, -0.1175236627459526, -0.000208066136110574, -0.04205668717622757, -0.17343483865261078, 0.08231718838214874, 0.10811573266983032, 0.05966328829526901, 0.08059205114841461, -0.07314576953649521, -0.03055236116051674, -0.024226920679211617, -0.003945943899452686, 0.01988561823964119, -0.0188748799264431, -0.03966570645570755, 0.0849919319152832, -0.028492268174886703, 0.11854968965053558, -0.10005642473697662, -0.08033940941095352, -0.17038191854953766, 0.025160863995552063, -0.09626351296901703, -0.06873961538076401, -0.08045404404401779, -0.036412108689546585, -0.025346871465444565, -0.033052876591682434, -0.04442790150642395, -0.051741715520620346, -0.10683134943246841, 0.02701585739850998, -0.04873550310730934, 0.01511183101683855, -0.1058424785733223, 0.04662603512406349, 0.04840393364429474, -0.051427531987428665, 0.16558729112148285, 0.16863246262073517, -0.10019190609455109, 0.08981532603502274, -0.08785772323608398, -0.06240786239504814, 0.10485748201608658, 0.014907154254615307, 0.08716090023517609, 0.07449769228696823, 0.015665633603930473, 0.04971419647336006, 0.0754883661866188, 0.06868968158960342, 0.08522450923919678, -0.08377418667078018, 0.012966837733983994, -0.016831927001476288, -0.09851735830307007, -0.047400329262018204, -0.0025259670801460743, 0.05262375995516777, 0.03797999396920204, 0.12074457854032516, -0.0463029220700264, 0.06925714761018753, -0.04543263092637062, 0.03991274908185005, 0.014298860915005207, -0.16827628016471863, -0.013691944070160389, -0.07802575826644897, 0.04036417603492737, -0.019289450719952583, 0.19781653583049774, 0.044277794659137726, 0.040794242173433304, 0.039233844727277756, 0.07326565682888031, -0.0020784286316484213, 0.03109659068286419, 0.07022666931152344, 0.13278751075267792, -0.03843729570508003, -0.11839074641466141, 0.05377732589840889, 0.04620156064629555, -0.0028453771956264973, 0.16848231852054596, -0.023043356835842133, 0.016809236258268356, 0.09272562712430954, 0.03804932162165642, 0.016474293544888496, -0.09795012325048447, -0.07385808229446411, -0.114338219165802, 0.08123935759067535, -0.04706500843167305, 0.15578429400920868, 0.16322258114814758, -0.01703689806163311, 0.023038027808070183, -0.006891343276947737, -0.05814795568585396, -0.15696626901626587, -0.18866267800331116, -0.0677606612443924, -0.09875614941120148, 0.0014564793091267347, -0.1202983558177948, 0.01885920576751232, -0.008966847322881222, 0.07636278122663498, -0.05715671926736832, 0.12034548074007034, 0.02452409826219082, -0.08146598935127258, 0.11088798195123672, -0.02794240042567253, 0.021994901821017265, -0.026497632265090942, -0.01313924603164196, -0.08609374612569809, 0.06678742170333862, 0.004876204300671816, 0.059191759675741196, -0.048799701035022736, 0.0420667938888073, -0.11096532642841339, -0.08503828942775726, -0.03717925399541855, 0.038888752460479736, -0.03734418749809265, 0.07532758265733719, 0.03037356585264206, -0.014066151343286037, 0.0104675879701972, 0.25222453474998474, -0.05669653043150902, -0.06786466389894485, -0.11620496213436127, 0.0892639309167862, 0.0023209836799651384, 0.11109703779220581, -0.048986125737428665, 0.009744838811457157, -0.1313861757516861, 0.34067651629447937, 0.31213146448135376, -0.15874060988426208, 0.026303332298994064, 0.008770797401666641, 0.03763553500175476, 0.10028288513422012, 0.11257784068584442, 0.09365607798099518, 0.32111597061157227, -0.04765033349394798, 0.009368274360895157, -0.010018882341682911, -0.05188518390059471, -0.07580859959125519, 0.07624384015798569, 0.06098327040672302, -0.03222336992621422, -0.060719817876815796, 0.09095753729343414, -0.25155380368232727, 0.035012971609830856, -0.1469227522611618, -0.17555385828018188, -0.09588733315467834, -0.0021804808638989925, 0.023925703018903732, 0.04510371759533882, 0.11560217291116714, -0.02137620374560356, -0.07465262711048126, 0.0861370712518692, 0.0034080788027495146, -0.1827721893787384, -0.06928936392068863, 0.0890139639377594, -0.11687792837619781, -0.01794487051665783, -0.03958752378821373, 0.03467218950390816, 0.07078681141138077, 0.028621666133403778, -0.04214077442884445, 0.02619308792054653, -0.015764925628900528, -0.05276542156934738, 0.02325773611664772, 0.08629066497087479, 0.023285796865820885, -0.058692581951618195, 0.07674992829561234, -0.20002521574497223, 0.026121187955141068, -0.050532013177871704, -0.023720979690551758, -0.014101486653089523, 0.061833806335926056, -0.07178539782762527, 0.04565555602312088, 0.15377277135849, -0.028500741347670555, -0.002289581811055541, -0.02803810127079487, 0.009568972513079643, -0.04179970175027847, -0.09406792372465134, -0.11369867622852325, -0.19985349476337433, -0.08528169989585876, 0.0042427643202245235, 0.004113374277949333, -0.20352542400360107, 0.00044098886428400874, -0.15171808004379272, 0.08631807565689087, -0.1337599903345108, 0.12001870572566986, 0.1308569461107254, 0.01818307861685753, -0.013860580511391163, -0.046954523772001266, 0.03291443735361099, 0.07544753700494766, -0.09456972777843475, -0.11128916591405869 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # biobert_v1.1_pubmed-finetuned-ner-finetuned-ner This model is a fine-tuned version of [fidukm34/biobert_v1.1_pubmed-finetuned-ner](https://huggingface.co/fidukm34/biobert_v1.1_pubmed-finetuned-ner) on the ncbi_disease dataset. It achieves the following results on the evaluation set: - Loss: 0.0715 - Precision: 0.8464 - Recall: 0.8872 - F1: 0.8663 - Accuracy: 0.9829 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 340 | 0.0715 | 0.8464 | 0.8872 | 0.8663 | 0.9829 | ### Framework versions - Transformers 4.8.1 - Pytorch 1.9.0+cu102 - Datasets 1.11.0 - Tokenizers 0.10.3
{"tags": ["generated_from_trainer"], "datasets": ["ncbi_disease"], "metrics": ["precision", "recall", "f1", "accuracy"], "model_index": [{"name": "biobert_v1.1_pubmed-finetuned-ner-finetuned-ner", "results": [{"task": {"name": "Token Classification", "type": "token-classification"}, "dataset": {"name": "ncbi_disease", "type": "ncbi_disease", "args": "ncbi_disease"}, "metric": {"name": "Accuracy", "type": "accuracy", "value": 0.9829142288061745}}]}]}
token-classification
fidukm34/biobert_v1.1_pubmed-finetuned-ner-finetuned-ner
[ "transformers", "pytorch", "bert", "token-classification", "generated_from_trainer", "dataset:ncbi_disease", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #bert #token-classification #generated_from_trainer #dataset-ncbi_disease #autotrain_compatible #endpoints_compatible #region-us
biobert\_v1.1\_pubmed-finetuned-ner-finetuned-ner ================================================= This model is a fine-tuned version of fidukm34/biobert\_v1.1\_pubmed-finetuned-ner on the ncbi\_disease dataset. It achieves the following results on the evaluation set: * Loss: 0.0715 * Precision: 0.8464 * Recall: 0.8872 * F1: 0.8663 * Accuracy: 0.9829 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 16 * eval\_batch\_size: 16 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 1 ### Training results ### Framework versions * Transformers 4.8.1 * Pytorch 1.9.0+cu102 * Datasets 1.11.0 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 1", "### Training results", "### Framework versions\n\n\n* Transformers 4.8.1\n* Pytorch 1.9.0+cu102\n* Datasets 1.11.0\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #bert #token-classification #generated_from_trainer #dataset-ncbi_disease #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 1", "### Training results", "### Framework versions\n\n\n* Transformers 4.8.1\n* Pytorch 1.9.0+cu102\n* Datasets 1.11.0\n* Tokenizers 0.10.3" ]
[ 54, 98, 4, 34 ]
[ "passage: TAGS\n#transformers #pytorch #bert #token-classification #generated_from_trainer #dataset-ncbi_disease #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 1### Training results### Framework versions\n\n\n* Transformers 4.8.1\n* Pytorch 1.9.0+cu102\n* Datasets 1.11.0\n* Tokenizers 0.10.3" ]
[ -0.10828348249197006, 0.08748280256986618, -0.0015680468641221523, 0.11407843977212906, 0.1996324509382248, 0.047830432653427124, 0.0866067185997963, 0.11536251753568649, -0.0987713560461998, 0.01888362132012844, 0.13790856301784515, 0.18294154107570648, -0.007212372031062841, 0.11529628187417984, -0.05578701198101044, -0.25161635875701904, -0.009623861871659756, 0.056279610842466354, -0.07588288187980652, 0.1335364729166031, 0.08623307943344116, -0.15041936933994293, 0.08482345193624496, -0.0036661941558122635, -0.2398713231086731, 0.01223980262875557, 0.03168183192610741, -0.04819338396191597, 0.1517566293478012, 0.0023273362312465906, 0.14737524092197418, -0.002999771386384964, 0.09771252423524857, -0.16161833703517914, 0.007191214710474014, 0.04399672523140907, 0.022624561563134193, 0.089588962495327, 0.051383089274168015, -0.01017994899302721, 0.1073124036192894, -0.10069914907217026, 0.05937274172902107, 0.01687842793762684, -0.13024687767028809, -0.2289334535598755, -0.06940079480409622, 0.015843579545617104, 0.056628596037626266, 0.09533309936523438, -0.00392229063436389, 0.15882106125354767, -0.1089223325252533, 0.09151192754507065, 0.21109648048877716, -0.2616707384586334, -0.0656462237238884, 0.03661680966615677, -0.006112308707088232, 0.06846781075000763, -0.11037441343069077, -0.017262665554881096, 0.05158436298370361, 0.04200497642159462, 0.11844227463006973, -0.04432210326194763, -0.11251405626535416, 0.029587240889668465, -0.1426405906677246, -0.01893465965986252, 0.12935291230678558, 0.02977728098630905, -0.02115163765847683, -0.0004361402243375778, -0.050270866602659225, -0.15266001224517822, -0.030313344672322273, -0.022529205307364464, 0.02827194333076477, -0.0557534396648407, -0.08137773722410202, 0.021954329684376717, -0.08484787493944168, -0.07354741543531418, -0.0637282282114029, 0.16222597658634186, 0.02844739891588688, 0.010413738898932934, -0.011794130317866802, 0.10475493222475052, 0.01641802117228508, -0.11716073006391525, 0.02956988848745823, 0.03259808197617531, -0.032787155359983444, -0.06880391389131546, -0.06815899163484573, -0.017596935853362083, 0.005315771326422691, 0.0964035764336586, -0.031725287437438965, 0.033319566398859024, 0.041497018188238144, 0.020500341430306435, -0.0863063707947731, 0.18388591706752777, -0.059929948300123215, -0.026606449857354164, 0.0017767880344763398, 0.04599948227405548, -0.0173394363373518, 0.0034778702538460493, -0.11601540446281433, -0.01959596388041973, 0.123465396463871, 0.01582939736545086, -0.09462857991456985, 0.06869535893201828, -0.05972924828529358, -0.0421459786593914, 0.02277367003262043, -0.08411812037229538, 0.040023788809776306, -0.004480279516428709, -0.0757366344332695, -0.020388895645737648, 0.004884581547230482, 0.015474687330424786, -0.00653814384713769, 0.13271281123161316, -0.10255352407693863, 0.028684064745903015, -0.09859097003936768, -0.11158963292837143, -0.0037510863039642572, -0.08770284056663513, 0.03701214864850044, -0.09505551308393478, -0.15354089438915253, -0.009487737901508808, 0.029818939045071602, -0.024328524246811867, -0.05214913561940193, -0.059818435460329056, -0.061578959226608276, 0.008613700978457928, -0.00918836984783411, 0.15926624834537506, -0.058767836540937424, 0.1051781103014946, 0.041391242295503616, 0.06988482922315598, -0.06103071570396423, 0.05342795327305794, -0.09543289989233017, 0.002790050348266959, -0.18764622509479523, 0.0495753176510334, -0.04511749744415283, 0.061471372842788696, -0.08113288134336472, -0.10934854298830032, 0.03636845573782921, -0.016826843842864037, 0.07905079424381256, 0.0989607647061348, -0.15251311659812927, -0.07854057848453522, 0.13592015206813812, -0.04720999300479889, -0.11377382278442383, 0.11166680604219437, -0.07568629831075668, 0.03762500733137131, 0.07079754024744034, 0.14981813728809357, 0.07407638430595398, -0.053610432893037796, 0.019263381138443947, -0.016706496477127075, 0.04102775454521179, -0.0718429684638977, 0.06449754536151886, 0.019900640472769737, -0.04391689971089363, 0.027687424793839455, -0.02449570596218109, 0.06481959670782089, -0.12108457833528519, -0.08524578809738159, -0.030529508367180824, -0.11279062181711197, 0.07699642330408096, 0.0749601349234581, 0.080438993871212, -0.09412094205617905, -0.05224340036511421, 0.08768156915903091, 0.08829804509878159, -0.042928460985422134, 0.01297790091484785, -0.060777824372053146, 0.03800174221396446, -0.0685412585735321, -0.034828849136829376, -0.1892300248146057, -0.042256247252225876, 0.008933013305068016, 0.047581423074007034, 0.00412924587726593, 0.013268425129354, 0.0687311515212059, 0.07050437480211258, -0.061976224184036255, -0.012777497060596943, -0.016584722325205803, 0.004497231915593147, -0.1521824151277542, -0.18605631589889526, -0.0360385924577713, -0.021828263998031616, 0.1211550310254097, -0.2102872133255005, 0.013359605334699154, -0.042068660259246826, 0.0813889279961586, 0.005845492240041494, -0.02104233019053936, -0.03978809714317322, 0.09489402174949646, -0.03635290265083313, -0.042165908962488174, 0.06812059134244919, -0.021900473162531853, -0.09488990157842636, -0.058382850140333176, -0.08304745703935623, 0.1672106832265854, 0.11958112567663193, -0.14587946236133575, -0.08393088728189468, -0.006764853373169899, -0.05500894784927368, -0.023289164528250694, -0.04612884297966957, 0.03335696458816528, 0.1815965175628662, -0.014234795235097408, 0.1468317061662674, -0.05229996517300606, -0.034593235701322556, 0.014068312011659145, -0.01812470145523548, 0.033472154289484024, 0.119961678981781, 0.12477719038724899, -0.10573068261146545, 0.1307351142168045, 0.14149226248264313, -0.08859344571828842, 0.11948902159929276, -0.02061411552131176, -0.07035855948925018, -0.01956709288060665, -0.05113913491368294, 0.0028238992672413588, 0.09927607327699661, -0.1533508449792862, -0.00478597404435277, 0.02487223595380783, 0.023274408653378487, 0.005884496960788965, -0.20564717054367065, -0.05309991538524628, 0.0294602382928133, -0.020483488216996193, -0.01709035597741604, -0.01993373967707157, 0.02506677806377411, 0.12018010765314102, 0.014651850797235966, -0.0824388712644577, 0.03941689059138298, 0.012143030762672424, -0.08268623799085617, 0.21596765518188477, -0.09092343598604202, -0.13670100271701813, -0.11125612258911133, -0.08442771434783936, -0.0444415919482708, 0.02447151392698288, 0.036397919058799744, -0.10737083107233047, -0.020973658189177513, -0.03712260350584984, 0.01848444901406765, -0.018722347915172577, 0.05037352815270424, 0.0053598531521856785, -0.007079537957906723, 0.0637555941939354, -0.090276338160038, -0.005013041198253632, -0.07050523906946182, -0.07611310482025146, 0.05585654079914093, 0.02379574626684189, 0.11901948601007462, 0.16318121552467346, -0.02687607705593109, 0.011906652711331844, -0.02950567938387394, 0.2364150881767273, -0.061383042484521866, -0.04541495442390442, 0.10641172528266907, -0.016691036522388458, 0.0355987511575222, 0.0993441566824913, 0.07358699291944504, -0.0963999554514885, 0.013784047216176987, 0.03426521643996239, -0.033201344311237335, -0.19747020304203033, -0.058653756976127625, -0.05553312227129936, -0.05393087491393089, 0.09560129791498184, 0.011135280132293701, 0.035603124648332596, 0.07568783313035965, 0.05236275866627693, 0.08648286014795303, -0.07232218980789185, 0.054097261279821396, 0.09944110363721848, 0.04563603922724724, 0.12514807283878326, -0.023967863991856575, -0.07720313966274261, 0.034246932715177536, -0.031536467373371124, 0.216258242726326, -0.0009912033565342426, 0.11010786890983582, 0.04392845928668976, 0.18518228828907013, 0.00956118293106556, 0.0945134088397026, 0.01313513983041048, -0.05247310921549797, -0.006312496494501829, -0.029363485053181648, -0.056643616408109665, 0.007416965905576944, -0.041994404047727585, 0.06573081761598587, -0.1304842233657837, -0.01519047562032938, 0.047137051820755005, 0.21321804821491241, 0.05778912082314491, -0.33916008472442627, -0.07907712459564209, -0.007319278549402952, -0.015369645319879055, -0.0351555272936821, 0.007422339636832476, 0.09614048153162003, -0.10265342146158218, 0.016889916732907295, -0.057892829179763794, 0.0922207161784172, -0.055990055203437805, 0.04944315925240517, 0.047007977962493896, 0.08738311380147934, -0.01339617371559143, 0.08626100420951843, -0.3050023019313812, 0.2676725685596466, 0.011705324985086918, 0.05823429301381111, -0.07638812810182571, -0.027151048183441162, 0.037034258246421814, 0.08963309973478317, 0.049615394324064255, 0.0020923512056469917, 0.001788492314517498, -0.24492155015468597, -0.04649941250681877, 0.032462459057569504, 0.10166066884994507, -0.03979215770959854, 0.09524045139551163, -0.022046508267521858, 0.004197305534034967, 0.07324160635471344, -0.02367464266717434, -0.05634278059005737, -0.06943301111459732, -0.02025449089705944, 0.034608639776706696, -0.02570217289030552, -0.0500703863799572, -0.10076946765184402, -0.10109799355268478, 0.15719063580036163, -0.001314158900640905, -0.021262338384985924, -0.1344350278377533, 0.1211644634604454, 0.09112174063920975, -0.08609870821237564, 0.03369355946779251, 0.011897209100425243, 0.05724423751235008, 0.04400297999382019, -0.06761091947555542, 0.10307223349809647, -0.0640924945473671, -0.16818398237228394, -0.07310240715742111, 0.09046817570924759, 0.05018208548426628, 0.06722723692655563, -0.0017472583567723632, 0.02320907451212406, -0.029210321605205536, -0.08288342505693436, 0.042589519172906876, -0.019951505586504936, 0.08191025257110596, 0.06132907047867775, -0.07250089198350906, 0.03902142867445946, -0.062014710158109665, -0.01978340558707714, 0.19527333974838257, 0.22728495299816132, -0.09727936238050461, -0.00004417899253894575, 0.024159671738743782, -0.06287132948637009, -0.19471430778503418, 0.07321047782897949, 0.08259717375040054, 0.005077207926660776, 0.03292771056294441, -0.18326328694820404, 0.16203977167606354, 0.10689619928598404, 0.002692384412512183, 0.1069900393486023, -0.275687575340271, -0.12087439745664597, 0.11731553077697754, 0.15795086324214935, 0.1585666984319687, -0.12065953016281128, -0.008623986504971981, -0.02079998515546322, -0.10393955558538437, 0.10858019441366196, -0.027435047551989555, 0.11732495576143265, -0.038439493626356125, 0.10110196471214294, 0.01658722385764122, -0.05043184384703636, 0.11239725351333618, 0.04436596855521202, 0.10235490649938583, -0.048329442739486694, -0.07215046882629395, 0.04103988781571388, -0.03160755708813667, -0.020553365349769592, -0.030126484110951424, 0.024155640974640846, -0.13428521156311035, -0.022835617884993553, -0.09118688106536865, 0.03776686266064644, -0.022094106301665306, -0.06791602820158005, -0.03008902072906494, 0.028533868491649628, 0.042028170078992844, -0.016722125932574272, 0.10633813589811325, 0.011198687367141247, 0.14135566353797913, 0.07105830311775208, 0.07785072922706604, -0.07264045625925064, -0.02685687690973282, 0.0028477536980062723, -0.015516647137701511, 0.05653649941086769, -0.09636204689741135, 0.03898690268397331, 0.14594246447086334, 0.028024718165397644, 0.13249816000461578, 0.09544787555932999, -0.005552826449275017, 0.004855652805417776, 0.06571564823389053, -0.15961956977844238, -0.033067356795072556, -0.009774229489266872, -0.09579870104789734, -0.11451957374811172, 0.04506542161107063, 0.08324721455574036, -0.05739818885922432, -0.014182034879922867, -0.025850705802440643, -0.010419710539281368, -0.07423564046621323, 0.21469752490520477, 0.07096613198518753, 0.052072152495384216, -0.1097894236445427, 0.04758425056934357, 0.062169525772333145, -0.05635981634259224, -0.007355814334005117, 0.058023035526275635, -0.09625343233346939, -0.036599427461624146, 0.10229307413101196, 0.20715327560901642, -0.08488603681325912, -0.021072281524538994, -0.12082027643918991, -0.11053496599197388, 0.078946053981781, 0.17181207239627838, 0.1161452904343605, 0.01216717530041933, -0.0592157244682312, 0.0024459706619381905, -0.1504276692867279, 0.07857910543680191, 0.024583421647548676, 0.08458898216485977, -0.12760771811008453, 0.19067436456680298, -0.012627508491277695, 0.05654923990368843, -0.032343775033950806, 0.02227255515754223, -0.11035244911909103, 0.020592540502548218, -0.11935686320066452, -0.03853412717580795, -0.010913074016571045, -0.0011909824097529054, 0.002475240733474493, -0.07747234404087067, -0.04812723025679588, -0.0008502210839651525, -0.12202350050210953, -0.023861845955252647, 0.04831687733530998, 0.03968987613916397, -0.10712511092424393, -0.05484806373715401, 0.027144744992256165, -0.05419868603348732, 0.07254965603351593, 0.056755006313323975, 0.0313163585960865, 0.05941840633749962, -0.12234926968812943, -0.012688416987657547, 0.0718083456158638, 0.016093501821160316, 0.08829990029335022, -0.07364112883806229, -0.0006401846767403185, -0.0009077807771973312, 0.07524457573890686, 0.03355580195784569, 0.08969372510910034, -0.1253948211669922, -0.0036540962755680084, -0.0247617419809103, -0.0886283740401268, -0.06054333224892616, 0.02372380904853344, 0.08063284307718277, 0.005329761654138565, 0.18103671073913574, -0.0637102946639061, 0.04253874719142914, -0.20047569274902344, -0.0161909107118845, -0.025359228253364563, -0.10809469223022461, -0.1292904019355774, -0.06394683569669724, 0.08128925412893295, -0.03596222773194313, 0.12840259075164795, 0.016423048451542854, 0.05641588941216469, 0.016779396682977676, -0.01839214749634266, 0.027335017919540405, 0.022028131410479546, 0.21664117276668549, 0.058639753609895706, -0.05305653437972069, 0.07926280051469803, 0.07513521611690521, 0.10637211799621582, 0.1419340819120407, 0.20195263624191284, 0.13314472138881683, -0.02392386831343174, 0.062237340956926346, 0.006717668380588293, -0.062098730355501175, -0.1573352962732315, -0.0074918512254953384, -0.057887107133865356, 0.07797666639089584, -0.007277084980159998, 0.2014690637588501, 0.03714670613408089, -0.17419005930423737, 0.038873638957738876, -0.05098367854952812, -0.09602060914039612, -0.10585279017686844, -0.007564553525298834, -0.08665549755096436, -0.13610218465328217, 0.0018309823935851455, -0.12063556164503098, 0.013021215796470642, 0.12841622531414032, 0.009778400883078575, -0.014115855097770691, 0.15978558361530304, 0.032281361520290375, 0.05024125799536705, 0.05352574959397316, 0.004068615380674601, -0.01664920710027218, -0.0967511460185051, -0.060651879757642746, -0.01958225481212139, -0.019181394949555397, 0.04031331092119217, -0.07585480064153671, -0.08379638195037842, 0.029635272920131683, -0.02045416831970215, -0.1085350289940834, 0.01757769100368023, 0.012078915722668171, 0.05225890874862671, 0.035967085510492325, 0.009102500043809414, 0.025665177032351494, -0.025369025766849518, 0.21479396522045135, -0.07052582502365112, -0.05532735586166382, -0.08945823460817337, 0.3084160387516022, 0.046529773622751236, 0.0029297040309756994, 0.027099289000034332, -0.055076390504837036, 0.01435511652380228, 0.24800407886505127, 0.17637832462787628, -0.11539044231176376, -0.013856184668838978, -0.004928064066916704, -0.013911922462284565, -0.005810739938169718, 0.134504035115242, 0.1190212294459343, 0.018199512735009193, -0.09898018836975098, -0.04710051789879799, -0.0645177811384201, -0.009752205573022366, -0.030324874445796013, 0.04317288473248482, 0.06512641161680222, 0.009283186867833138, -0.060429561883211136, 0.047832950949668884, -0.06397529691457748, -0.07761631160974503, 0.09319692850112915, -0.1997661143541336, -0.15818768739700317, -0.025857819244265556, 0.05873224511742592, -0.0027178749442100525, 0.06187080964446068, -0.03075733222067356, -0.006767265032976866, 0.05599977448582649, -0.02352835237979889, -0.09498559683561325, -0.10304141044616699, 0.10578858107328415, -0.10163641721010208, 0.1980302333831787, -0.04538717493414879, 0.0680089145898819, 0.12178079038858414, 0.05786598101258278, -0.07873383909463882, 0.05549734830856323, 0.033186301589012146, -0.07613673061132431, 0.03708450868725777, 0.10663487762212753, -0.03336620703339577, 0.060261115431785583, 0.028638185933232307, -0.14672236144542694, 0.02289450354874134, -0.07683783024549484, -0.04796402156352997, -0.032614536583423615, -0.050501126796007156, -0.04654325917363167, 0.13199304044246674, 0.22605913877487183, -0.022761022672057152, 0.025662191212177277, -0.0815550908446312, 0.0078065176494419575, 0.05418967828154564, 0.04134735092520714, -0.09505309909582138, -0.23366959393024445, 0.008371897041797638, 0.07034701853990555, -0.03622637689113617, -0.23038071393966675, -0.08268734812736511, -0.014697044156491756, -0.07555188983678818, -0.07152324914932251, 0.09116849303245544, 0.04113416001200676, 0.054718878120183945, -0.057065825909376144, -0.0835181400179863, -0.06990299373865128, 0.160805806517601, -0.15373541414737701, -0.0951625406742096 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # biobert_v1.1_pubmed-finetuned-ner This model is a fine-tuned version of [monologg/biobert_v1.1_pubmed](https://huggingface.co/monologg/biobert_v1.1_pubmed) on the ncbi_disease dataset. It achieves the following results on the evaluation set: - Loss: 0.0657 - Precision: 0.8338 - Recall: 0.8933 - F1: 0.8625 - Accuracy: 0.9827 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 340 | 0.0612 | 0.8268 | 0.85 | 0.8382 | 0.9806 | | 0.0987 | 2.0 | 680 | 0.0604 | 0.8397 | 0.8848 | 0.8616 | 0.9829 | | 0.0272 | 3.0 | 1020 | 0.0657 | 0.8338 | 0.8933 | 0.8625 | 0.9827 | ### Framework versions - Transformers 4.8.1 - Pytorch 1.9.0 - Datasets 1.6.2 - Tokenizers 0.10.3
{"tags": ["generated_from_trainer"], "datasets": ["ncbi_disease"], "metrics": ["precision", "recall", "f1", "accuracy"], "model_index": [{"name": "biobert_v1.1_pubmed-finetuned-ner", "results": [{"task": {"name": "Token Classification", "type": "token-classification"}, "dataset": {"name": "ncbi_disease", "type": "ncbi_disease", "args": "ncbi_disease"}, "metric": {"name": "Accuracy", "type": "accuracy", "value": 0.9827274990663513}}]}]}
token-classification
fidukm34/biobert_v1.1_pubmed-finetuned-ner
[ "transformers", "pytorch", "bert", "token-classification", "generated_from_trainer", "dataset:ncbi_disease", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #bert #token-classification #generated_from_trainer #dataset-ncbi_disease #autotrain_compatible #endpoints_compatible #region-us
biobert\_v1.1\_pubmed-finetuned-ner =================================== This model is a fine-tuned version of monologg/biobert\_v1.1\_pubmed on the ncbi\_disease dataset. It achieves the following results on the evaluation set: * Loss: 0.0657 * Precision: 0.8338 * Recall: 0.8933 * F1: 0.8625 * Accuracy: 0.9827 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 16 * eval\_batch\_size: 16 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 3 ### Training results ### Framework versions * Transformers 4.8.1 * Pytorch 1.9.0 * Datasets 1.6.2 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3", "### Training results", "### Framework versions\n\n\n* Transformers 4.8.1\n* Pytorch 1.9.0\n* Datasets 1.6.2\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #bert #token-classification #generated_from_trainer #dataset-ncbi_disease #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3", "### Training results", "### Framework versions\n\n\n* Transformers 4.8.1\n* Pytorch 1.9.0\n* Datasets 1.6.2\n* Tokenizers 0.10.3" ]
[ 54, 98, 4, 31 ]
[ "passage: TAGS\n#transformers #pytorch #bert #token-classification #generated_from_trainer #dataset-ncbi_disease #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3### Training results### Framework versions\n\n\n* Transformers 4.8.1\n* Pytorch 1.9.0\n* Datasets 1.6.2\n* Tokenizers 0.10.3" ]
[ -0.10672702640295029, 0.08427079021930695, -0.0016531774308532476, 0.1126013845205307, 0.19956055283546448, 0.047248102724552155, 0.0848192572593689, 0.11916397511959076, -0.09826157242059708, 0.013320855796337128, 0.13649055361747742, 0.18618656694889069, -0.0075025055557489395, 0.11551611125469208, -0.055852390825748444, -0.2517082989215851, -0.009739570319652557, 0.058988217264413834, -0.0770891010761261, 0.13282255828380585, 0.08833616971969604, -0.14883436262607574, 0.08162663131952286, -0.0024446402676403522, -0.2386464923620224, 0.018034249544143677, 0.03340545669198036, -0.0479116253554821, 0.15266053378582, 0.0000934064737521112, 0.14295829832553864, -0.001907667494378984, 0.0952625647187233, -0.15975825488567352, 0.008486474864184856, 0.04293252155184746, 0.024236073717474937, 0.08959704637527466, 0.05722976475954056, -0.008552778512239456, 0.11031326651573181, -0.09794547408819199, 0.06034513935446739, 0.016728835180401802, -0.1266794055700302, -0.24137786030769348, -0.06690065562725067, 0.010996103286743164, 0.0570601150393486, 0.09544061869382858, -0.004098992329090834, 0.1707286685705185, -0.108748659491539, 0.09311644732952118, 0.21254907548427582, -0.25854769349098206, -0.06374563276767731, 0.03667503595352173, -0.001097173779271543, 0.06923959404230118, -0.11161624640226364, -0.014086327515542507, 0.04986868053674698, 0.04535039886832237, 0.11861265450716019, -0.04473774507641792, -0.11100718379020691, 0.030147789046168327, -0.14295004308223724, -0.014008691534399986, 0.13426631689071655, 0.028481649234890938, -0.01831628568470478, -0.003680028021335602, -0.048046309500932693, -0.13562600314617157, -0.026783110573887825, -0.027654321864247322, 0.02800757624208927, -0.05831591412425041, -0.08304351568222046, 0.019588716328144073, -0.08394619077444077, -0.07552863657474518, -0.0606713630259037, 0.16393479704856873, 0.03106824681162834, 0.013240222819149494, -0.010707179084420204, 0.1041635200381279, 0.02002878673374653, -0.11735992878675461, 0.02837131917476654, 0.029238257557153702, -0.03119952604174614, -0.06622743606567383, -0.07256452739238739, -0.019983328878879547, 0.009269500151276588, 0.09260982275009155, -0.03783135861158371, 0.03182968869805336, 0.041552525013685226, 0.017655672505497932, -0.08668921887874603, 0.1776106357574463, -0.05908270180225372, -0.024134764447808266, -0.00032658883719705045, 0.05053946003317833, -0.019426463171839714, 0.00573198776692152, -0.11337704211473465, -0.018981358036398888, 0.12381690740585327, 0.016866834834218025, -0.09668269753456116, 0.06738199293613434, -0.06014217063784599, -0.046318765729665756, 0.02523704804480076, -0.08525850623846054, 0.037218112498521805, -0.005054676905274391, -0.0781455710530281, -0.020969541743397713, 0.0049341581761837006, 0.014751376584172249, -0.008424187079071999, 0.12799863517284393, -0.0990067720413208, 0.025664811953902245, -0.09906245023012161, -0.10981573909521103, -0.0071005430072546005, -0.07870779186487198, 0.038670022040605545, -0.09286963939666748, -0.1580428034067154, -0.008138841018080711, 0.028770005330443382, -0.02454383485019207, -0.05125315859913826, -0.05606583505868912, -0.05866139382123947, 0.006888755597174168, -0.011556421406567097, 0.16154251992702484, -0.05915123596787453, 0.10653512179851532, 0.043843045830726624, 0.07105859369039536, -0.06377442926168442, 0.05259094014763832, -0.09724822640419006, -0.0005446928553283215, -0.18149302899837494, 0.04652892053127289, -0.045798130333423615, 0.05604856461286545, -0.08000338077545166, -0.11068809032440186, 0.03921541944146156, -0.01888257823884487, 0.08023381233215332, 0.0964537188410759, -0.14303328096866608, -0.07987835258245468, 0.13376884162425995, -0.047016441822052, -0.11759518086910248, 0.11192383617162704, -0.07372983545064926, 0.037208687514066696, 0.07275907695293427, 0.15603382885456085, 0.07642093300819397, -0.0509769544005394, 0.021985098719596863, -0.01778264157474041, 0.04187226668000221, -0.06990591436624527, 0.06768472492694855, 0.021222064271569252, -0.04402913898229599, 0.03113456815481186, -0.026580888777971268, 0.06738757342100143, -0.1214926615357399, -0.08372237533330917, -0.02992032840847969, -0.11634337902069092, 0.0784149169921875, 0.07584843039512634, 0.08095633238554001, -0.09709474444389343, -0.04723665863275528, 0.0899478867650032, 0.09200753271579742, -0.04161261394619942, 0.011908884160220623, -0.061560630798339844, 0.03333212807774544, -0.06497779488563538, -0.03441198915243149, -0.18878698348999023, -0.045406438410282135, 0.011071396060287952, 0.04456445947289467, 0.0027773543260991573, 0.012960287742316723, 0.06918113678693771, 0.07361533492803574, -0.06636618077754974, -0.014624858275055885, -0.017863962799310684, 0.002659368794411421, -0.15023112297058105, -0.18703396618366241, -0.03317726030945778, -0.025335153564810753, 0.11228464543819427, -0.2061360627412796, 0.013272001408040524, -0.05333087220788002, 0.08644858747720718, 0.003808350069448352, -0.020811008289456367, -0.03782019391655922, 0.09152773767709732, -0.03633216395974159, -0.040006306022405624, 0.07059220224618912, -0.02482105977833271, -0.09548649191856384, -0.05506708845496178, -0.08057677745819092, 0.17008888721466064, 0.11702147126197815, -0.14737771451473236, -0.08014897257089615, -0.008687055669724941, -0.05576865002512932, -0.024373963475227356, -0.048210907727479935, 0.0301829744130373, 0.1778150051832199, -0.01476109866052866, 0.1477523148059845, -0.052714087069034576, -0.03459271788597107, 0.008785096928477287, -0.017880531027913094, 0.03355628624558449, 0.11716662347316742, 0.11669693887233734, -0.11244554817676544, 0.12831805646419525, 0.14921003580093384, -0.08972985297441483, 0.12619204819202423, -0.022504009306430817, -0.07028155773878098, -0.01580537110567093, -0.05159576237201691, 0.0013789944350719452, 0.0969388410449028, -0.14780771732330322, -0.001242180122062564, 0.026229744777083397, 0.022424448281526566, 0.005754076410084963, -0.20422177016735077, -0.05501094087958336, 0.027399107813835144, -0.02105552889406681, -0.012775992974638939, -0.014578251168131828, 0.024507442489266396, 0.12195464223623276, 0.011831333860754967, -0.08707182854413986, 0.03824414312839508, 0.011196671053767204, -0.08409716933965683, 0.21624691784381866, -0.09135342389345169, -0.13928987085819244, -0.10702420771121979, -0.08310884982347488, -0.049639903008937836, 0.024042200297117233, 0.03776613995432854, -0.1111331433057785, -0.021351218223571777, -0.03640398755669594, 0.016158999875187874, -0.01904108375310898, 0.05060630291700363, 0.005755830090492964, -0.00669540511444211, 0.06828734278678894, -0.09246547520160675, -0.003168126568198204, -0.07262647897005081, -0.07481208443641663, 0.05340670049190521, 0.020878486335277557, 0.11682728677988052, 0.15910841524600983, -0.023763507604599, 0.012367027811706066, -0.030880870297551155, 0.23356172442436218, -0.05838026851415634, -0.04909094050526619, 0.11526849865913391, -0.013415638357400894, 0.03418769687414169, 0.09427370131015778, 0.07218115776777267, -0.09706895798444748, 0.016718262806534767, 0.035941384732723236, -0.031057748943567276, -0.2028001993894577, -0.056909434497356415, -0.05632077157497406, -0.05732457712292671, 0.09158777445554733, 0.012725350446999073, 0.03551885485649109, 0.07337925583124161, 0.04983534663915634, 0.07724890857934952, -0.06851286441087723, 0.05425894260406494, 0.10166425257921219, 0.04551594331860542, 0.13042980432510376, -0.02048599347472191, -0.07727621495723724, 0.03384732827544212, -0.032152120023965836, 0.2173365205526352, -0.0036506117321550846, 0.10153952240943909, 0.04536767303943634, 0.1824190616607666, 0.005906893406063318, 0.09251779317855835, 0.014278561808168888, -0.05185038596391678, -0.005982000380754471, -0.02940792217850685, -0.052441056817770004, 0.006282910238951445, -0.041184164583683014, 0.06609587371349335, -0.12788166105747223, -0.016775520518422127, 0.04820733517408371, 0.2071400135755539, 0.05776066333055496, -0.3379681408405304, -0.07583253085613251, -0.008026775903999805, -0.01620742678642273, -0.03478265181183815, 0.007363904733210802, 0.09167125076055527, -0.10250139981508255, 0.02258392609655857, -0.05983216315507889, 0.09259297698736191, -0.04807266965508461, 0.05022258684039116, 0.04474843293428421, 0.09098747372627258, -0.013426254503428936, 0.08927680552005768, -0.309724360704422, 0.26636552810668945, 0.011525997892022133, 0.0580553263425827, -0.07500280439853668, -0.027285445481538773, 0.04114017263054848, 0.09438776224851608, 0.045193254947662354, 0.0018640565685927868, 0.007388670463114977, -0.24057768285274506, -0.043017953634262085, 0.03564636781811714, 0.10268200933933258, -0.03835606575012207, 0.08995064347982407, -0.023227769881486893, 0.007144388277083635, 0.07397592812776566, -0.024527914822101593, -0.06213478371500969, -0.06624506413936615, -0.01903393119573593, 0.034170933067798615, -0.027411213144659996, -0.0496494360268116, -0.1018831804394722, -0.10115973651409149, 0.15966881811618805, 0.009798558428883553, -0.022473342716693878, -0.13585789501667023, 0.12460137158632278, 0.09150730073451996, -0.08407243341207504, 0.028332069516181946, 0.011925285682082176, 0.05586066469550133, 0.045300837606191635, -0.07034949958324432, 0.10139071941375732, -0.06735768169164658, -0.17027254402637482, -0.07237354665994644, 0.09182770550251007, 0.051098424941301346, 0.06841395050287247, 0.00046263381955213845, 0.021839838474988937, -0.030494702979922295, -0.08161476254463196, 0.04860459268093109, -0.022254230454564095, 0.08134106546640396, 0.06545400619506836, -0.07407540827989578, 0.039058882743120193, -0.0642024576663971, -0.024112680926918983, 0.1903090924024582, 0.23280930519104004, -0.09186821430921555, 0.0025589512661099434, 0.030962444841861725, -0.06139957159757614, -0.19392526149749756, 0.07211311161518097, 0.08794286847114563, 0.0023818197660148144, 0.039497364312410355, -0.18396691977977753, 0.1607334315776825, 0.10383295267820358, 0.0009596662130206823, 0.09880737215280533, -0.2690892815589905, -0.12188071757555008, 0.11809950321912766, 0.16044899821281433, 0.15789608657360077, -0.11923873424530029, -0.006804258096963167, -0.019500304013490677, -0.0961984395980835, 0.10656623542308807, -0.033736977726221085, 0.11745467782020569, -0.04251864179968834, 0.09839979559183121, 0.016614621505141258, -0.04804433509707451, 0.11420764774084091, 0.03795742243528366, 0.10250195860862732, -0.04620341211557388, -0.0596780925989151, 0.044442079961299896, -0.02994878962635994, -0.01928839273750782, -0.03604228049516678, 0.026522137224674225, -0.13545367121696472, -0.023225970566272736, -0.09701082855463028, 0.03991074115037918, -0.01823825016617775, -0.0700104609131813, -0.03069264069199562, 0.029485879465937614, 0.04319152235984802, -0.017246123403310776, 0.10607326775789261, 0.012714744545519352, 0.14536695182323456, 0.07483777403831482, 0.08119414001703262, -0.07193338125944138, -0.027783242985606194, 0.0007570874877274036, -0.015339790843427181, 0.05685657262802124, -0.09322764724493027, 0.038337770849466324, 0.14444252848625183, 0.025996727868914604, 0.13324692845344543, 0.09655841439962387, -0.008493609726428986, 0.0035495799966156483, 0.06709956377744675, -0.16136334836483002, -0.02939753048121929, -0.012228448875248432, -0.09432786703109741, -0.11748712509870529, 0.047778189182281494, 0.08210145682096481, -0.05706128478050232, -0.014028307981789112, -0.026022890582680702, -0.009834100492298603, -0.07507860660552979, 0.22419174015522003, 0.07099621742963791, 0.0524250864982605, -0.1090191900730133, 0.0468764528632164, 0.05746904015541077, -0.05100574344396591, -0.006974291987717152, 0.060668062418699265, -0.09710393846035004, -0.03699721768498421, 0.10691576451063156, 0.20674459636211395, -0.08674225956201553, -0.0239975918084383, -0.12335171550512314, -0.10838793218135834, 0.07649610936641693, 0.1625586748123169, 0.11613935977220535, 0.006071569863706827, -0.05967715010046959, 0.0005950757185928524, -0.14893858134746552, 0.08235647529363632, 0.023582592606544495, 0.08666246384382248, -0.12696823477745056, 0.1867409497499466, -0.011116084642708302, 0.05772382766008377, -0.035254694521427155, 0.023035645484924316, -0.10790220648050308, 0.021483059972524643, -0.12212380766868591, -0.043889615684747696, -0.006386746186763048, -0.0029266069177538157, 0.0024456793908029795, -0.08248106390237808, -0.04738974571228027, 0.0030450026970356703, -0.12308844178915024, -0.02638969011604786, 0.05112454667687416, 0.03849680349230766, -0.10932835936546326, -0.05883095785975456, 0.026551879942417145, -0.053501781076192856, 0.0707046240568161, 0.05516988784074783, 0.028845401480793953, 0.06140650808811188, -0.11909963190555573, -0.01810149848461151, 0.07305937260389328, 0.019919324666261673, 0.08370009064674377, -0.07314138114452362, -0.0027598950546234846, 0.0022334775421768427, 0.07471680641174316, 0.035932473838329315, 0.09095387905836105, -0.12294183671474457, -0.007497639860957861, -0.02871735952794552, -0.08758436888456345, -0.05808878317475319, 0.02215060219168663, 0.07641156762838364, 0.011213903315365314, 0.18354658782482147, -0.06552332639694214, 0.03997586667537689, -0.20243437588214874, -0.016586776822805405, -0.0257033109664917, -0.11101478338241577, -0.13079248368740082, -0.05951357260346413, 0.08272436261177063, -0.036494750529527664, 0.12990421056747437, 0.014549546875059605, 0.0590205080807209, 0.018439138308167458, -0.015485924668610096, 0.03690417483448982, 0.017747705802321434, 0.2157946228981018, 0.05647643655538559, -0.04904934763908386, 0.08273374289274216, 0.07538094371557236, 0.10608521848917007, 0.13950115442276, 0.20174264907836914, 0.1332876980304718, -0.026256712153553963, 0.058650314807891846, 0.009067270904779434, -0.06046120449900627, -0.15901876986026764, -0.020700938999652863, -0.049561526626348495, 0.07819990813732147, -0.004783842246979475, 0.19544358551502228, 0.042729735374450684, -0.17479750514030457, 0.040721647441387177, -0.052320681512355804, -0.09629242867231369, -0.10662055760622025, -0.0009435050887987018, -0.08546803891658783, -0.1397094577550888, 0.002421734156087041, -0.12219838798046112, 0.015361030586063862, 0.12921053171157837, 0.012009707279503345, -0.01561321783810854, 0.1605815440416336, 0.03742823377251625, 0.04859543219208717, 0.05165103077888489, -0.00041161212720908225, -0.016455061733722687, -0.09004095196723938, -0.06047032028436661, -0.01822829060256481, -0.018216101452708244, 0.039007943123579025, -0.07820168137550354, -0.08922664821147919, 0.026647690683603287, -0.022642191499471664, -0.10882972180843353, 0.019293373450636864, 0.012392621487379074, 0.051066674292087555, 0.03793095424771309, 0.01146802306175232, 0.02503432333469391, -0.02496933750808239, 0.21875113248825073, -0.07162266969680786, -0.05257219448685646, -0.08751078695058823, 0.31498801708221436, 0.04741674289107323, 0.0015575698344036937, 0.0268173236399889, -0.05445760861039162, 0.00783589668571949, 0.24633875489234924, 0.17631082236766815, -0.116778664290905, -0.01606695167720318, -0.008803834207355976, -0.013904853723943233, -0.004590451251715422, 0.13939246535301208, 0.1207457110285759, 0.012746420688927174, -0.09805244207382202, -0.04454107582569122, -0.06503275036811829, -0.009912194684147835, -0.034229669719934464, 0.04429022967815399, 0.07113383710384369, 0.0065573775209486485, -0.059057872742414474, 0.04674409329891205, -0.05962645262479782, -0.07182731479406357, 0.08308858424425125, -0.19355997443199158, -0.15850870311260223, -0.029636388644576073, 0.058776967227458954, -0.004131822846829891, 0.05949316918849945, -0.030577324330806732, 0.0002164314064430073, 0.04831778258085251, -0.025475304573774338, -0.09540353715419769, -0.10780853033065796, 0.11239488422870636, -0.10851974040269852, 0.19474747776985168, -0.043062563985586166, 0.0730976089835167, 0.1203158050775528, 0.05199964717030525, -0.07690246403217316, 0.057883065193891525, 0.032447364181280136, -0.07880683243274689, 0.03921332210302353, 0.11203181743621826, -0.030515996739268303, 0.05952804163098335, 0.026985226199030876, -0.14385986328125, 0.01848122850060463, -0.07697722315788269, -0.049470674246549606, -0.03268585354089737, -0.04519512876868248, -0.04689362272620201, 0.13083447515964508, 0.22629113495349884, -0.02322257310152054, 0.025173403322696686, -0.08546677976846695, 0.009923839941620827, 0.05648145079612732, 0.035351529717445374, -0.0948251485824585, -0.23629164695739746, 0.007704526651650667, 0.07264170795679092, -0.0365375280380249, -0.2315303385257721, -0.08241590112447739, -0.017127158120274544, -0.07748793065547943, -0.07099942117929459, 0.09084253758192062, 0.03763600438833237, 0.05204366147518158, -0.0550951324403286, -0.08768784254789352, -0.07036572694778442, 0.1570354551076889, -0.16029420495033264, -0.09347447752952576 ]
null
null
transformers
This model can measure semantic similarity between pairs of texts containing figurative language. As far as we know, this model works slightly better than sup-simCSE-roberta-base. For example : **sentence 1**: I have been in seventh heaven since Harry entered my life . **sentence 2**: I have been in very happy since Harry entered my life. the cosin score of simcse: 0.897 the cosin score of us: 0.897 ------------------------------------------------------------------- **sentence 1**: I have been in seventh heaven since Harry entered my life . **sentence 2**: I have been in pain since Harry entered my life . the cosin score of simcse: 0.846 the cosin score of us: 0.753 -------------------------------------------------- It's still a big challenge for us to measure semantic similarity of figurative language from the sentence embedding perspective. unsupvised models may useless as the key is to infer the literal meaning of the figurative expression, since the annotated is rare.
{}
null
figurative-nlp/se4fig-roberta-base
[ "transformers", "pytorch", "roberta", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #roberta #endpoints_compatible #region-us
This model can measure semantic similarity between pairs of texts containing figurative language. As far as we know, this model works slightly better than sup-simCSE-roberta-base. For example : sentence 1: I have been in seventh heaven since Harry entered my life . sentence 2: I have been in very happy since Harry entered my life. the cosin score of simcse: 0.897 the cosin score of us: 0.897 ------------------------------------------------------------------- sentence 1: I have been in seventh heaven since Harry entered my life . sentence 2: I have been in pain since Harry entered my life . the cosin score of simcse: 0.846 the cosin score of us: 0.753 -------------------------------------------------- It's still a big challenge for us to measure semantic similarity of figurative language from the sentence embedding perspective. unsupvised models may useless as the key is to infer the literal meaning of the figurative expression, since the annotated is rare.
[]
[ "TAGS\n#transformers #pytorch #roberta #endpoints_compatible #region-us \n" ]
[ 24 ]
[ "passage: TAGS\n#transformers #pytorch #roberta #endpoints_compatible #region-us \n" ]
[ -0.04710838571190834, 0.000004481258201849414, -0.01084833312779665, -0.028830038383603096, 0.13689196109771729, 0.024661021307110786, 0.021276047453284264, 0.06774231046438217, 0.07277411967515945, -0.005768520291894674, 0.12997958064079285, 0.23497812449932098, -0.05278132110834122, 0.012769986875355244, -0.058594558387994766, -0.24939481914043427, 0.07595402747392654, 0.08731918036937714, -0.08350498974323273, 0.10799740999937057, 0.05421356484293938, -0.0927719920873642, 0.054529819637537, -0.028123930096626282, -0.11991901695728302, 0.0522734597325325, 0.02667221426963806, -0.08790246397256851, 0.1232864186167717, 0.019574476405978203, 0.1794423609972, 0.025344358757138252, -0.12528492510318756, -0.1700793355703354, 0.03414492681622505, 0.00017859147919807583, -0.06686453521251678, 0.02657829038798809, 0.044179003685712814, -0.12301196157932281, 0.057532187551259995, 0.0489761121571064, 0.008118457160890102, 0.03497127443552017, -0.1776191145181656, -0.16942951083183289, -0.05893833190202713, 0.028112027794122696, 0.023665081709623337, 0.07402801513671875, 0.019056716933846474, 0.17335262894630432, -0.15199004113674164, 0.08120588213205338, 0.18331138789653778, -0.28230294585227966, 0.0015046729240566492, 0.08527936041355133, 0.06626160442829132, 0.04926927015185356, 0.011503299698233604, 0.05494994297623634, 0.006573413033038378, 0.015392723493278027, -0.038082290440797806, -0.08980979025363922, -0.05154621973633766, 0.08386038988828659, -0.08894415944814682, -0.09970521926879883, 0.2075752317905426, -0.03570309281349182, 0.04820539429783821, 0.04827036336064339, -0.09897863864898682, -0.03811374679207802, 0.0005226113717071712, 0.00046723868581466377, -0.02164444699883461, 0.06373990327119827, 0.0032088239677250385, -0.027601467445492744, -0.11205756664276123, 0.04216599091887474, -0.22245104610919952, 0.28457048535346985, 0.026442578062415123, 0.0912148579955101, -0.2189355343580246, 0.05204150453209877, -0.04516136646270752, -0.07567647844552994, 0.022055523470044136, -0.10415781289339066, 0.030584361404180527, 0.014985884539783001, -0.0726739913225174, 0.029076840728521347, 0.07451772689819336, 0.18171283602714539, 0.029848651960492134, 0.023849116638302803, 0.037326473742723465, 0.10956461727619171, 0.021593017503619194, 0.09593676775693893, -0.004522756207734346, -0.0062623959966003895, 0.038684386759996414, -0.17025139927864075, 0.013620704412460327, -0.037897635251283646, -0.08988464623689651, -0.07785378396511078, 0.012553787790238857, 0.11354856938123703, 0.03250754252076149, 0.007742214482277632, -0.07710288465023041, 0.001371672609820962, 0.017974281683564186, -0.04751988500356674, -0.031038520857691765, -0.013762025162577629, 0.02762053720653057, 0.21292611956596375, -0.03568822890520096, -0.014079419896006584, -0.019960032775998116, 0.10149375349283218, -0.07446283847093582, -0.020848069339990616, -0.041397370398044586, -0.014479035511612892, 0.05333780497312546, -0.14959795773029327, 0.0894417017698288, -0.16235913336277008, -0.07721706479787827, 0.023479359224438667, 0.04314779117703438, 0.004523617215454578, 0.012278388254344463, 0.012087945826351643, -0.009219380095601082, -0.027236631140112877, -0.06194603443145752, -0.06089937686920166, -0.05625390261411667, 0.11111260950565338, 0.008455435745418072, 0.06341143697500229, -0.10391087830066681, 0.05662205442786217, -0.09099423885345459, 0.034544508904218674, -0.1375199556350708, -0.02523764967918396, -0.02645164355635643, 0.1923660933971405, 0.0068205008283257484, -0.05464669689536095, -0.12457500398159027, 0.048568207770586014, -0.038346800953149796, 0.15382003784179688, -0.010524366982281208, -0.11424499750137329, 0.2527368664741516, -0.09813989698886871, -0.16236662864685059, 0.05221249535679817, 0.005846796091645956, 0.007414969149976969, 0.07120196521282196, 0.16906669735908508, 0.042660776525735855, -0.057577621191740036, 0.08609550446271896, 0.1047014519572258, -0.16269704699516296, -0.1719195693731308, 0.03675294667482376, -0.03488772362470627, -0.09545575827360153, 0.04062844440340996, 0.02270287647843361, 0.09206480532884598, -0.08907764405012131, -0.015806129202246666, -0.01633630134165287, -0.025665801018476486, 0.05208549275994301, 0.05835433676838875, 0.08001566678285599, -0.07454166561365128, 0.005366346798837185, -0.021103912964463234, 0.0089016268029809, 0.04055006429553032, 0.05169028416275978, -0.043948616832494736, 0.1355406641960144, -0.05684935301542282, 0.002631255192682147, -0.21775834262371063, -0.08198042213916779, -0.031147386878728867, 0.09329741448163986, -0.023606708273291588, 0.16439582407474518, 0.0935794934630394, -0.11291755735874176, 0.005576607305556536, -0.015517151914536953, 0.10377269238233566, 0.012552604079246521, 0.007448928896337748, -0.03710265830159187, 0.037671931087970734, -0.08019174635410309, -0.06017129495739937, -0.013761534355580807, -0.0042076194658875465, 0.11294644325971603, 0.11935915052890778, 0.007766587194055319, 0.0414375476539135, -0.02214924804866314, 0.06110641360282898, -0.0232370775192976, 0.0158044695854187, 0.09678713232278824, -0.01638456992805004, -0.06773242354393005, 0.1486222892999649, -0.07785765081644058, 0.3427961468696594, 0.19542205333709717, -0.3026086688041687, 0.010744023136794567, 0.00817910023033619, -0.01671556755900383, 0.026477953419089317, 0.11432955414056778, 0.0012866508914157748, 0.056610532104969025, 0.032953374087810516, 0.10734401643276215, -0.019625410437583923, -0.02903112582862377, 0.008584939874708652, -0.06553634256124496, -0.03852369263768196, 0.09696078300476074, 0.07031720131635666, -0.13535082340240479, 0.1570144146680832, 0.24322782456874847, 0.0343286469578743, 0.10578674077987671, -0.05931145325303078, -0.016244295984506607, 0.03694572672247887, 0.011412939988076687, -0.03407431021332741, 0.025389118120074272, -0.21651425957679749, -0.043358366936445236, 0.07186431437730789, 0.005580555181950331, 0.09065420180559158, -0.13706739246845245, -0.07837424427270889, 0.026302676647901535, 0.03360499441623688, -0.04703304171562195, 0.11487317830324173, 0.03388232737779617, 0.077121801674366, 0.023567313328385353, -0.04248740151524544, 0.09480869770050049, 0.008020560257136822, -0.029814818874001503, 0.1654738038778305, -0.10702735930681229, -0.2581709027290344, -0.12193218618631363, -0.14464305341243744, 0.030673744156956673, 0.013289694674313068, 0.07178103923797607, -0.09570969641208649, -0.02794502303004265, 0.11040882021188736, 0.06391425430774689, -0.15068218111991882, 0.028558287769556046, -0.033212799578905106, 0.06838270276784897, -0.09712500125169754, -0.0651562362909317, -0.06374204158782959, -0.07063358277082443, -0.04265620559453964, 0.11264993250370026, -0.12369513511657715, 0.10658242553472519, 0.1185801699757576, 0.053718872368335724, 0.06899958103895187, -0.0026584325823932886, 0.14750708639621735, -0.08715782314538956, -0.06181985139846802, 0.21091774106025696, -0.017197037115693092, 0.09724331647157669, 0.11277004331350327, 0.03381453827023506, -0.07095205038785934, -0.029416784644126892, -0.06745780259370804, -0.12051685899496078, -0.2196408361196518, -0.10431885719299316, -0.1338929682970047, 0.001790988608263433, -0.013106169179081917, 0.03685977682471275, 0.09675391018390656, 0.08901132643222809, 0.0550701804459095, -0.09611242264509201, -0.05373142287135124, 0.06117139011621475, 0.2261544018983841, -0.024348463863134384, 0.0807882696390152, -0.08071843534708023, -0.09673191606998444, 0.08415748924016953, 0.06262189149856567, 0.20184406638145447, 0.09570007771253586, 0.011600117199122906, 0.07747740298509598, 0.15804089605808258, 0.14802859723567963, 0.12967321276664734, 0.004285544157028198, -0.03386882692575455, -0.01980484649538994, 0.008402297273278236, -0.06879641860723495, 0.008582867681980133, 0.0945887565612793, -0.1460021585226059, -0.04694917052984238, -0.21670974791049957, 0.07566370069980621, 0.05846427008509636, 0.033341988921165466, -0.14540016651153564, -0.00019760403665713966, 0.07043024152517319, 0.006035317201167345, -0.038673847913742065, 0.08767110854387283, -0.04047485813498497, -0.13432176411151886, 0.05549551174044609, -0.03985515609383583, 0.10120426118373871, -0.026484539732336998, 0.07381577044725418, -0.06528782844543457, -0.10097641497850418, 0.062186695635318756, 0.07416008412837982, -0.22962474822998047, 0.2966843247413635, -0.022008458152413368, -0.07843590527772903, -0.047935355454683304, -0.0402735136449337, 0.00031782049336470664, 0.14924046397209167, 0.11227667331695557, 0.03040711209177971, -0.08607617765665054, -0.11602409929037094, 0.05855415388941765, 0.027639638632535934, 0.1261444091796875, -0.02718510292470455, -0.03371329978108406, -0.011890764348208904, -0.0054674530401825905, -0.03813306242227554, -0.0011421740055084229, 0.09245268255472183, -0.13451752066612244, 0.043690603226423264, -0.005595468450337648, 0.015751486644148827, -0.0058060502633452415, 0.000216820408240892, -0.04368269816040993, 0.12863071262836456, -0.041234876960515976, -0.056774456053972244, -0.08750397711992264, -0.15236316621303558, 0.13593828678131104, -0.10860603302717209, 0.0916966125369072, -0.09828807413578033, -0.07356434315443039, -0.07884984463453293, -0.1789647787809372, 0.11347857862710953, -0.09571298211812973, 0.027581993490457535, -0.025902552530169487, 0.19910907745361328, -0.06354320794343948, -0.011006711050868034, -0.009784103371202946, 0.030833037570118904, -0.13190630078315735, -0.0889718309044838, 0.014048268087208271, -0.026677189394831657, 0.04725491255521774, 0.06850610673427582, -0.010306584648787975, 0.04110793396830559, 0.00722151156514883, -0.0022256039083003998, 0.2132948487997055, 0.20776315033435822, -0.04205271974205971, 0.12124003469944, 0.16055002808570862, -0.02298271469771862, -0.2685646414756775, -0.09160544723272324, -0.17717303335666656, -0.04701691120862961, -0.017774688079953194, -0.14274154603481293, 0.11054682731628418, 0.04712479189038277, -0.02545398473739624, 0.11969882249832153, -0.2559846341609955, -0.04124341532588005, 0.1493636518716812, 0.0062699345871806145, 0.5546489953994751, -0.11287706345319748, -0.08298387378454208, 0.01305436436086893, -0.24928133189678192, 0.07992938905954361, 0.01904345117509365, 0.059819381684064865, -0.030170824378728867, 0.08720887452363968, 0.03699829801917076, -0.08040692657232285, 0.12438756972551346, 0.0074538118205964565, 0.024170564487576485, -0.07946096360683441, -0.1280781477689743, 0.0872870683670044, -0.004839536268264055, -0.03662366047501564, 0.07352577149868011, 0.02766229584813118, -0.13575823605060577, -0.024937165901064873, -0.12918852269649506, 0.0509490966796875, 0.046772826462984085, -0.03127678856253624, -0.028668509796261787, -0.02079327218234539, -0.03304222971200943, 0.01052573136985302, 0.2621735632419586, -0.034418486058712006, 0.1412678211927414, -0.007903030142188072, 0.05526409298181534, -0.16902287304401398, -0.08229594677686691, -0.07681068032979965, -0.054233379662036896, 0.06747926026582718, -0.07158241420984268, 0.02895243652164936, 0.13923749327659607, -0.014868827536702156, -0.01971399411559105, 0.10571489483118057, -0.006689982954412699, -0.0020358276087790728, 0.14539019763469696, -0.2069898396730423, -0.05753513053059578, -0.021022606641054153, -0.04989248514175415, 0.1327422708272934, 0.11654264479875565, 0.0983550176024437, 0.07786483317613602, -0.03430752828717232, -0.02362983115017414, -0.028949681669473648, -0.08090628683567047, 0.0024792233016341925, 0.06885196268558502, 0.025992391631007195, -0.11667148768901825, 0.05747832730412483, -0.012274257838726044, -0.23964636027812958, -0.052203960716724396, 0.1062576100230217, -0.13067859411239624, -0.09600488841533661, -0.07801525294780731, 0.04109029099345207, -0.20162880420684814, -0.034601181745529175, -0.04159528389573097, -0.10255556553602219, 0.05963057279586792, 0.24780724942684174, 0.10143034905195236, 0.09888434410095215, -0.01028646994382143, -0.016449730843305588, 0.021191705018281937, -0.08732561767101288, 0.004237749148160219, 0.004638320300728083, -0.09378271549940109, -0.02855258248746395, -0.01363504771143198, 0.15873940289020538, -0.07890082895755768, -0.08274190872907639, -0.16358937323093414, 0.08995359390974045, -0.09812886267900467, -0.11397140473127365, -0.12412403523921967, -0.06893793493509293, 0.0037182122468948364, -0.09338416159152985, -0.04137818142771721, -0.02767200581729412, -0.13551916182041168, 0.07086745649576187, 0.023581858724355698, -0.0037772138603031635, -0.05501500517129898, -0.039861805737018585, 0.1472712904214859, -0.042508505284786224, 0.09451454877853394, 0.17123942077159882, -0.07602482289075851, 0.12351230531930923, -0.10503007471561432, -0.1372130960226059, 0.10087032616138458, -0.0001759071456035599, 0.07120119035243988, 0.06956369429826736, 0.020766686648130417, 0.06875994801521301, 0.030996467918157578, 0.05662810802459717, -0.034365203231573105, -0.12265201658010483, 0.031028853729367256, 0.03192706033587456, -0.1781196892261505, -0.033246178179979324, -0.08630622923374176, 0.15495331585407257, 0.028343068435788155, 0.0859447568655014, 0.022196872159838676, 0.10975440591573715, -0.01211862824857235, 0.007993047125637531, -0.0023370154667645693, -0.19463440775871277, 0.03239840641617775, -0.05557585507631302, -0.0024593796115368605, 0.0033398494124412537, 0.2839198708534241, -0.0705515444278717, 0.023442646488547325, 0.02998867630958557, 0.06523754447698593, 0.012018566019833088, 0.025090577080845833, 0.21156036853790283, 0.10683322697877884, -0.039572279900312424, -0.09842078387737274, 0.08749271929264069, -0.011929450556635857, -0.0594974085688591, 0.12458037585020065, 0.13864046335220337, 0.08676675707101822, 0.08204910904169083, -0.0033394009806215763, 0.070549875497818, -0.06136783957481384, -0.25319474935531616, 0.011225651018321514, 0.012381847016513348, 0.016442246735095978, 0.09178762137889862, 0.16398729383945465, -0.004069536458700895, 0.0749489888548851, -0.01615913212299347, 0.0006451079971157014, -0.13821111619472504, -0.08257102966308594, -0.047923535108566284, -0.10142721980810165, 0.029083652421832085, -0.05849800631403923, -0.007420131005346775, 0.17096444964408875, 0.0392775796353817, -0.03622451052069664, 0.09747672080993652, 0.0760326161980629, -0.0670693889260292, 0.03528399392962456, -0.007171704433858395, 0.021475624293088913, 0.04873443394899368, -0.012379645369946957, -0.1494901478290558, -0.07176815718412399, -0.06488432735204697, 0.037990935146808624, -0.10138802975416183, -0.01745467633008957, -0.13597668707370758, -0.09903085976839066, -0.05588725209236145, 0.08903270214796066, -0.048549771308898926, 0.0984780415892601, -0.02612706646323204, 0.006907667499035597, 0.016333235427737236, 0.19976969063282013, -0.05262446030974388, -0.04221903532743454, 0.001148911309428513, 0.16957782208919525, 0.05555977299809456, 0.09394799172878265, -0.011725390329957008, 0.026208948343992233, -0.06366859376430511, 0.33636584877967834, 0.2535180151462555, -0.0233058612793684, 0.04417799040675163, 0.05260763689875603, 0.04840950295329094, 0.11710292100906372, 0.09676902741193771, 0.10052920877933502, 0.3192276656627655, -0.0892692431807518, -0.04494080692529678, -0.031999826431274414, 0.013973445631563663, -0.10555802285671234, 0.05037616938352585, 0.03306281939148903, -0.07167352735996246, -0.07398556917905807, 0.12090129405260086, -0.17856739461421967, 0.11545499414205551, 0.08242010325193405, -0.22637870907783508, -0.05336158722639084, -0.0596175380051136, 0.15627482533454895, -0.002246581017971039, 0.12675566971302032, -0.04257085174322128, -0.15510323643684387, 0.03285594657063484, 0.062185365706682205, -0.2798806130886078, -0.09374892711639404, 0.11671829223632812, 0.06078186258673668, -0.02176550216972828, -0.03682553395628929, -0.0003849651257041842, 0.07988492399454117, 0.05872725695371628, -0.031531307846307755, 0.017113979905843735, 0.04315922036767006, -0.08697821199893951, -0.09998752921819687, -0.019003579393029213, 0.011787851341068745, -0.1190737634897232, 0.04075232893228531, -0.15655088424682617, 0.04439463093876839, 0.01169892493635416, -0.00949098076671362, 0.0003081741160713136, 0.016252411529421806, -0.06897782534360886, 0.01970541663467884, 0.047393329441547394, 0.0031528547406196594, -0.020613694563508034, -0.04386329650878906, -0.013762234710156918, 0.06974862515926361, -0.0728449895977974, -0.15882854163646698, -0.005591145716607571, -0.09538131207227707, 0.11189249902963638, -0.030698299407958984, -0.08759639412164688, -0.01687025837600231, -0.053370025008916855, 0.05895037204027176, -0.11432106047868729, 0.04182504862546921, 0.026789119467139244, 0.040701985359191895, 0.021567801013588905, -0.013804933987557888, 0.046552740037441254, 0.05624568089842796, -0.12087129056453705, -0.07611918449401855 ]
null
null
transformers
This model can convert the literal expression to figurative/metaphorical expression. Below is the usage of our model: from transformers import AutoTokenizer, AutoModelForSeq2SeqLM tokenizer = AutoTokenizer.from_pretrained("figurative-nlp/t5-figurative-generation") model = AutoModelForSeq2SeqLM.from_pretrained("figurative-nlp/t5-figurative-generation") input_ids = tokenizer( "research is <m> very difficult </m> for me.", return_tensors="pt" ).input_ids # Batch size 1 outputs = model.generate(input_ids,beam_search = 5) result = tokenizer.decode(outputs[0], skip_special_tokens=True) #result : research is a tough nut to crack for me. For example (the &lt;m&gt; and &lt;/m&gt; is the mark that inform the model which literal expression we want to convert it as figurative expression): **Input**: as of a cloud that softly &lt;m&gt; covers &lt;/m&gt; the sun. **Output**: as of a cloud that softly drapes over the sun. **Input**: that car coming around the corner &lt;m&gt; surprised me. &lt;/m&gt; **Output**: that car coming around the corner knocked my socks off. Note: the figurative language here includes metaphor, idiom and simile. We don't guarantee that the results generated results are satisfactory to you. We are trying to improve the effect of the model.
{}
text2text-generation
figurative-nlp/t5-figurative-generation
[ "transformers", "pytorch", "t5", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #t5 #text2text-generation #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
This model can convert the literal expression to figurative/metaphorical expression. Below is the usage of our model: from transformers import AutoTokenizer, AutoModelForSeq2SeqLM tokenizer = AutoTokenizer.from_pretrained("figurative-nlp/t5-figurative-generation") model = AutoModelForSeq2SeqLM.from_pretrained("figurative-nlp/t5-figurative-generation") input_ids = tokenizer( "research is <m> very difficult </m> for me.", return_tensors="pt" ).input_ids # Batch size 1 outputs = model.generate(input_ids,beam_search = 5) result = URL(outputs[0], skip_special_tokens=True) #result : research is a tough nut to crack for me. For example (the &lt;m&gt; and &lt;/m&gt; is the mark that inform the model which literal expression we want to convert it as figurative expression): Input: as of a cloud that softly &lt;m&gt; covers &lt;/m&gt; the sun. Output: as of a cloud that softly drapes over the sun. Input: that car coming around the corner &lt;m&gt; surprised me. &lt;/m&gt; Output: that car coming around the corner knocked my socks off. Note: the figurative language here includes metaphor, idiom and simile. We don't guarantee that the results generated results are satisfactory to you. We are trying to improve the effect of the model.
[ "# Batch size 1\n outputs = model.generate(input_ids,beam_search = 5)\n result = URL(outputs[0], skip_special_tokens=True)\n #result : research is a tough nut to crack for me.\n\n\n\nFor example (the &lt;m&gt; and &lt;/m&gt; is the mark that inform the model which literal expression we want to convert it as figurative expression):\n\n Input: as of a cloud that softly &lt;m&gt; covers &lt;/m&gt; the sun.\n \n Output: as of a cloud that softly drapes over the sun. \n \n Input: that car coming around the corner &lt;m&gt; surprised me. &lt;/m&gt;\n \n Output: that car coming around the corner knocked my socks off.\n \n \n Note: the figurative language here includes metaphor, idiom and simile. We don't guarantee that the results generated results are satisfactory to you. We are trying to improve the effect of the model." ]
[ "TAGS\n#transformers #pytorch #t5 #text2text-generation #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "# Batch size 1\n outputs = model.generate(input_ids,beam_search = 5)\n result = URL(outputs[0], skip_special_tokens=True)\n #result : research is a tough nut to crack for me.\n\n\n\nFor example (the &lt;m&gt; and &lt;/m&gt; is the mark that inform the model which literal expression we want to convert it as figurative expression):\n\n Input: as of a cloud that softly &lt;m&gt; covers &lt;/m&gt; the sun.\n \n Output: as of a cloud that softly drapes over the sun. \n \n Input: that car coming around the corner &lt;m&gt; surprised me. &lt;/m&gt;\n \n Output: that car coming around the corner knocked my socks off.\n \n \n Note: the figurative language here includes metaphor, idiom and simile. We don't guarantee that the results generated results are satisfactory to you. We are trying to improve the effect of the model." ]
[ 48, 234 ]
[ "passage: TAGS\n#transformers #pytorch #t5 #text2text-generation #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n# Batch size 1\n outputs = model.generate(input_ids,beam_search = 5)\n result = URL(outputs[0], skip_special_tokens=True)\n #result : research is a tough nut to crack for me.\n\n\n\nFor example (the &lt;m&gt; and &lt;/m&gt; is the mark that inform the model which literal expression we want to convert it as figurative expression):\n\n Input: as of a cloud that softly &lt;m&gt; covers &lt;/m&gt; the sun.\n \n Output: as of a cloud that softly drapes over the sun. \n \n Input: that car coming around the corner &lt;m&gt; surprised me. &lt;/m&gt;\n \n Output: that car coming around the corner knocked my socks off.\n \n \n Note: the figurative language here includes metaphor, idiom and simile. We don't guarantee that the results generated results are satisfactory to you. We are trying to improve the effect of the model." ]
[ -0.06365357339382172, -0.12393070012331009, -0.004857082851231098, 0.08249246329069138, 0.07526891678571701, -0.06349966675043106, -0.042893391102552414, 0.11404943466186523, -0.04838695377111435, 0.09703658521175385, 0.15946032106876373, 0.18535950779914856, 0.01588977873325348, 0.04518076777458191, -0.018859688192605972, -0.24704736471176147, 0.028027184307575226, -0.04932507500052452, 0.00859746616333723, 0.13465535640716553, 0.10902566462755203, -0.028029117733240128, 0.10610029846429825, 0.0026793121360242367, -0.08965987712144852, -0.1056646928191185, 0.015160585753619671, 0.018963878974318504, 0.07461625337600708, 0.1458427906036377, -0.00983419455587864, 0.03485066071152687, -0.06568443775177002, -0.13099107146263123, 0.001374538172967732, 0.00499274767935276, 0.001244590850546956, 0.028235748410224915, 0.04740998521447182, 0.05891619995236397, 0.19163720309734344, -0.060659486800432205, -0.0571589432656765, 0.09349654614925385, -0.11322227120399475, -0.04131751134991646, -0.05644731596112251, -0.03816575929522514, 0.09865886718034744, 0.054452620446681976, -0.07263708114624023, 0.27590566873550415, -0.12757447361946106, 0.13184170424938202, 0.11479400098323822, -0.1571039855480194, -0.048641666769981384, 0.0021917650010436773, 0.0752210021018982, -0.023842625319957733, -0.06991810351610184, 0.006898988503962755, -0.01643921621143818, 0.025330504402518272, 0.006673096679151058, 0.016632821410894394, 0.07380330562591553, 0.05592525750398636, -0.14886215329170227, -0.06341855973005295, 0.21852658689022064, 0.0033718799240887165, -0.09525321424007416, -0.13308462500572205, -0.027952468022704124, 0.08758164942264557, 0.015713047236204147, -0.09766639024019241, -0.00276086013764143, 0.026785118505358696, -0.038690678775310516, -0.02699846401810646, -0.12308558076620102, 0.007020196877419949, -0.12991313636302948, 0.06615564227104187, 0.003072560764849186, -0.00014492035552393645, -0.07376590371131897, 0.07450200617313385, -0.09903460741043091, -0.08318287879228592, -0.09684477001428604, -0.1293146163225174, 0.059353433549404144, -0.021230611950159073, -0.08181191235780716, -0.11487734317779541, 0.006144566927105188, 0.086587093770504, 0.10977156460285187, -0.00623915484175086, -0.0064255655743181705, 0.06709933280944824, 0.09457855671644211, 0.09947797656059265, -0.05040694773197174, -0.0015143414493650198, 0.033854950219392776, -0.009328768588602543, -0.01594374142587185, -0.03407038003206253, -0.04047146067023277, 0.04765336588025093, 0.03508441150188446, 0.016828976571559906, 0.13682053983211517, 0.11187390983104706, -0.08926398307085037, -0.059454791247844696, 0.016308492049574852, -0.0912105068564415, -0.06287714838981628, -0.03668468818068504, -0.08247125148773193, 0.051664985716342926, 0.04392636939883232, -0.009648262523114681, -0.06656534224748611, -0.05524840205907822, -0.07939036935567856, 0.004107743501663208, -0.07323987782001495, -0.06448862701654434, 0.048413943499326706, 0.0002838531509041786, -0.02819679118692875, -0.10589901357889175, -0.04719497263431549, -0.06404520571231842, 0.05693846568465233, -0.056930456310510635, -0.043726079165935516, -0.06299320608377457, -0.06239108741283417, 0.02601511776447296, 0.01726585440337658, -0.062267422676086426, 0.002558442996814847, 0.08120366185903549, 0.03952842578291893, 0.04682208225131035, -0.07440990954637527, 0.051761504262685776, -0.15066032111644745, 0.004858092404901981, -0.23541195690631866, 0.11524467170238495, -0.04053562507033348, 0.018206551671028137, -0.09072413295507431, -0.020043162629008293, 0.02298598550260067, 0.052224986255168915, 0.01982920803129673, 0.2047537863254547, -0.17546555399894714, 0.005370637867599726, 0.1428612619638443, -0.04677046462893486, -0.09205611050128937, 0.16106905043125153, -0.053235504776239395, 0.18661247193813324, 0.08193414658308029, -0.05069512128829956, 0.019195450469851494, -0.07221696525812149, -0.05866864323616028, 0.042979318648576736, -0.1430879384279251, 0.08381303399801254, 0.08444498479366302, -0.040028996765613556, -0.08745238929986954, 0.04460838437080383, -0.10159789770841599, 0.039372947067022324, -0.05639972537755966, -0.040949661284685135, -0.023700648918747902, 0.016810933127999306, 0.07409138232469559, -0.0018036521505564451, 0.0007113868487067521, -0.036530543118715286, -0.14213357865810394, 0.01113819144666195, -0.030434520915150642, 0.017025373876094818, 0.033159177750349045, -0.09380028396844864, 0.08918841928243637, -0.06600472331047058, 0.02348538301885128, -0.14378756284713745, -0.06307633966207504, 0.0008175966795533895, 0.016909169033169746, 0.07900013029575348, 0.03325323760509491, 0.028086906298995018, 0.0267235916107893, 0.03768647462129593, 0.06443112343549728, 0.014161046594381332, -0.0030426857993006706, -0.07286176085472107, -0.10368051379919052, 0.05061402544379234, -0.026826729997992516, -0.0023830574937164783, -0.028164919465780258, 0.034639872610569, 0.1655610054731369, -0.03460076451301575, -0.009803209453821182, -0.05402291566133499, -0.018192406743764877, -0.021751079708337784, -0.05354774743318558, 0.012907342985272408, 0.09424720704555511, 0.005002425517886877, -0.10661601275205612, 0.21402394771575928, -0.15279190242290497, -0.10329922288656235, 0.1245322898030281, -0.1716911941766739, -0.07367566227912903, -0.03756342828273773, -0.06942127645015717, -0.0464702770113945, 0.03946318477392197, -0.1022334173321724, 0.10311268270015717, 0.0015801425324752927, 0.04662022739648819, -0.07474072277545929, -0.05627219378948212, 0.058163948357105255, -0.07425343245267868, -0.021055618301033974, 0.04155130684375763, 0.053054310381412506, -0.12844714522361755, 0.07282425463199615, 0.16737380623817444, 0.018434150144457817, 0.13183149695396423, 0.0025951447896659374, -0.07317941635847092, -0.0974108949303627, 0.13260602951049805, -0.00030037364922463894, 0.011258845217525959, -0.09807323664426804, -0.02702893689274788, 0.05727367103099823, -0.015513373538851738, 0.042548779398202896, -0.08069030940532684, 0.026104643940925598, 0.08461010456085205, 0.06307633966207504, -0.018677523359656334, 0.04317878559231758, -0.017112834379076958, 0.04301301762461662, 0.025598933920264244, -0.007705483585596085, 0.12113098800182343, 0.005572743713855743, -0.10607504844665527, 0.14975115656852722, -0.091079480946064, -0.3044165074825287, -0.17574815452098846, -0.06796089559793472, -0.04052337631583214, 0.035221658647060394, 0.05802140012383461, -0.04110909253358841, -0.0399533174932003, -0.04481114074587822, 0.12568838894367218, 0.0037818150594830513, -0.0049717361107468605, -0.1504065990447998, -0.00867832824587822, 0.006979320663958788, -0.10138364881277084, -0.01659282110631466, -0.012018080800771713, -0.07776615023612976, 0.10937822610139847, -0.05858820304274559, 0.12143074721097946, 0.05320011079311371, 0.02969210222363472, -0.019190305843949318, -0.04412999004125595, 0.2875700891017914, -0.031292930245399475, 0.06920883059501648, 0.13470400869846344, -0.0770820900797844, 0.10330241918563843, 0.0998132973909378, 0.010230151005089283, -0.06945645809173584, 0.05424240604043007, -0.0010442417114973068, -0.09128981083631516, -0.14940139651298523, -0.047912199050188065, -0.06256367266178131, -0.015404594130814075, -0.05881268158555031, -0.016028400510549545, 0.04657858610153198, 0.11769124120473862, -0.005588404834270477, 0.06545121967792511, -0.030723191797733307, 0.08592067658901215, 0.11285260319709778, -0.07042589038610458, 0.13368575274944305, 0.030707992613315582, -0.06708905100822449, 0.11193427443504333, -0.08966420590877533, 0.14439477026462555, 0.0015850267373025417, 0.08501870930194855, 0.13043348491191864, 0.15910851955413818, 0.016425834968686104, 0.005592652130872011, 0.00303669017739594, -0.0011183873284608126, -0.08019854128360748, -0.10004386305809021, -0.11008957773447037, 0.06459902971982956, 0.11883325129747391, 0.016033072024583817, -0.08498387783765793, 0.05537126958370209, 0.05705898255109787, 0.09818174690008163, -0.013232654891908169, -0.1934218555688858, -0.07715164870023727, 0.0011143009178340435, -0.0063454569317400455, -0.0639541745185852, 0.05170689523220062, 0.039793673902750015, -0.11962367594242096, -0.08145463466644287, -0.08399130403995514, 0.06469669938087463, 0.010069651529192924, 0.09355755150318146, -0.026280643418431282, 0.014851483516395092, 0.024081187322735786, 0.09266316890716553, -0.24152590334415436, 0.13189886510372162, 0.022570617496967316, -0.03481745347380638, -0.07870394736528397, 0.057868942618370056, 0.05549066886305809, -0.04518169164657593, 0.19485385715961456, 0.00806523859500885, -0.02085593342781067, -0.13733556866645813, -0.09050463140010834, 0.021674608811736107, 0.18202783167362213, -0.07142587751150131, 0.11078120023012161, -0.03774465620517731, 0.04970851168036461, 0.01306625921279192, 0.21129664778709412, -0.07224621623754501, -0.10745604336261749, 0.07223482429981232, -0.11193037033081055, 0.002131694694980979, -0.039176713675260544, -0.033623192459344864, -0.043765973299741745, 0.1851828545331955, -0.11284594982862473, -0.059579282999038696, -0.11352556198835373, -0.007034335285425186, 0.07050689309835434, -0.08688335865736008, 0.0006954598939046264, -0.035881176590919495, -0.04364541172981262, 0.025304516777396202, -0.06046760082244873, 0.15057314932346344, -0.09263595938682556, -0.127589613199234, -0.0639301985502243, 0.11759265512228012, 0.05212002247571945, 0.041668545454740524, -0.031068578362464905, 0.06226570904254913, -0.06567215919494629, -0.12455850839614868, 0.010887742973864079, 0.09556560963392258, -0.019335150718688965, 0.04467788711190224, -0.007622951176017523, 0.009654891677200794, -0.07129699736833572, -0.01830858364701271, 0.13165803253650665, 0.18686766922473907, -0.06504907459020615, 0.14497943222522736, 0.11931753158569336, -0.0703810453414917, -0.2601728141307831, -0.06711556017398834, 0.02246258035302162, 0.037234652787446976, 0.13991159200668335, -0.08908361196517944, 0.0689583495259285, 0.01698782853782177, -0.03244258463382721, -0.011536444537341595, -0.17741413414478302, -0.09493041038513184, 0.12635517120361328, 0.041326846927404404, 0.16087386012077332, -0.11086343228816986, -0.07724824547767639, 0.07163313031196594, -0.03894736245274544, 0.11673564463853836, -0.026136765256524086, 0.07169976085424423, 0.02314017340540886, 0.033254314213991165, 0.08172410726547241, -0.04338093101978302, 0.09601395577192307, -0.052317045629024506, -0.007661448325961828, -0.13416928052902222, -0.0759212002158165, 0.041677121073007584, -0.038262613117694855, 0.1228988990187645, -0.020670104771852493, 0.04466784745454788, -0.1178957000374794, -0.040687862783670425, -0.08492836356163025, 0.06562226265668869, -0.07441746443510056, -0.07889726758003235, -0.05797002837061882, -0.01936706155538559, 0.08771965652704239, -0.014874950051307678, 0.02113328129053116, -0.06374114751815796, 0.000044163498387206346, 0.2345752865076065, 0.1342877894639969, 0.010160770267248154, -0.16485296189785004, -0.007849499583244324, -0.008399340324103832, 0.07222898304462433, -0.1299191415309906, 0.021420899778604507, 0.07322356849908829, -0.014841508120298386, 0.07001446932554245, 0.0728922188282013, -0.0774146020412445, 0.011770457029342651, 0.03846874088048935, -0.0950385257601738, -0.11050914227962494, -0.1553163081407547, -0.02899615839123726, -0.07237151265144348, -0.04653070494532585, 0.09286768734455109, -0.08722228556871414, 0.01991962641477585, -0.009585076943039894, 0.06914504617452621, 0.0701741874217987, 0.059437524527311325, 0.08614213019609451, 0.018415994942188263, -0.0554540753364563, -0.023826882243156433, 0.001889639999717474, -0.1779353767633438, 0.07447990030050278, 0.023586280643939972, -0.04571303725242615, -0.06952781230211258, 0.049699362367391586, -0.08793555200099945, -0.0649498999118805, 0.0071395328268408775, 0.003917254041880369, -0.04562242701649666, 0.06513329595327377, 0.1121121495962143, 0.10614603012800217, 0.08424212783575058, -0.053723447024822235, 0.023274598643183708, -0.019619451835751534, 0.12812061607837677, 0.0220117699354887, -0.01920296810567379, -0.010863486677408218, 0.04605351388454437, -0.020693758502602577, 0.062411315739154816, -0.06352504342794418, -0.07275337725877762, -0.10965748876333237, -0.0334329754114151, -0.026126623153686523, 0.04709339886903763, -0.04586610198020935, -0.030100969597697258, 0.012127387337386608, 0.02153690718114376, 0.033875588327646255, 0.013767142780125141, -0.07129895687103271, -0.026496265083551407, -0.015386868268251419, 0.0982237160205841, -0.07218731194734573, 0.011936523951590061, 0.13060270249843597, -0.05382011830806732, 0.039167970418930054, -0.03094806894659996, -0.090217724442482, 0.046092111617326736, -0.1339418590068817, 0.003299018833786249, -0.003069708589464426, -0.023676402866840363, 0.012485377490520477, -0.09210821241140366, -0.0068197972141206264, 0.026510581374168396, 0.023162439465522766, -0.016967928037047386, 0.10629986226558685, -0.1304495483636856, 0.046477191150188446, 0.08619112521409988, -0.05291090905666351, -0.06906044483184814, 0.0021020828280597925, -0.07883159816265106, 0.021561840549111366, 0.11311720311641693, -0.026049748063087463, 0.024123376235365868, -0.12288360297679901, 0.011022485792636871, 0.031040631234645844, 0.018799249082803726, -0.06292276084423065, -0.0579792819917202, 0.030505357310175896, -0.048442550003528595, 0.06570788472890854, 0.016214560717344284, -0.010241873562335968, 0.01609637215733528, 0.15956048667430878, 0.03674813732504845, -0.042633723467588425, 0.04647869989275932, 0.021148255094885826, -0.0061432551592588425, -0.057975221425294876, 0.047157272696495056, -0.0708102434873581, -0.16853520274162292, 0.12668341398239136, 0.02694733440876007, 0.01878299005329609, 0.13828913867473602, 0.04568184167146683, 0.05888235941529274, -0.07133779674768448, -0.000011787756193371024, 0.05699476599693298, 0.049503739923238754, -0.039455752819776535, 0.14065171778202057, 0.11518748104572296, -0.01743849739432335, 0.10283783823251724, -0.018455609679222107, -0.037577852606773376, -0.12043607234954834, -0.21542750298976898, -0.05106654018163681, -0.02776707522571087, -0.0030930577777326107, -0.06878586113452911, 0.05978359654545784, 0.045449063181877136, 0.020855864509940147, -0.04721003770828247, 0.11629743874073029, -0.13093340396881104, -0.12196588516235352, 0.0342019684612751, -0.09122742712497711, 0.008201674558222294, -0.00870970543473959, 0.00178502534981817, -0.0306510329246521, 0.0665239468216896, 0.07585511356592178, 0.05705946683883667, 0.03168534114956856, -0.015567431226372719, -0.12897220253944397, -0.10983909666538239, -0.03262420743703842, 0.0645490437746048, -0.005236913915723562, 0.045466821640729904, -0.015191225335001945, -0.023906825110316277, -0.011254558339715004, 0.10328133404254913, -0.05185489356517792, -0.08826041966676712, -0.10188668221235275, 0.22805245220661163, 0.014708172529935837, 0.03385581821203232, -0.02045450732111931, -0.07496129721403122, 0.03527028113603592, 0.17561355233192444, 0.18362636864185333, -0.03408478572964668, -0.014622814953327179, 0.031506553292274475, 0.02367205172777176, 0.04722194746136665, 0.15169569849967957, 0.031227365136146545, 0.38120943307876587, -0.0671495571732521, 0.08360617607831955, -0.0429835170507431, -0.04644845798611641, 0.007435040082782507, 0.03493458405137062, 0.05623011663556099, -0.008731786161661148, -0.03853217884898186, 0.1040455549955368, -0.09202338755130768, 0.01977928727865219, -0.061873190104961395, -0.024549094960093498, -0.021923406049609184, -0.018665539100766182, 0.06805551052093506, 0.03765644505620003, 0.08817655593156815, 0.0035530636087059975, -0.023686151951551437, 0.13866595923900604, -0.0042418260127305984, -0.1988290548324585, 0.14357589185237885, 0.1084677055478096, -0.08207782357931137, 0.075953908264637, 0.036830149590969086, 0.20381499826908112, 0.0937977135181427, 0.034778300672769547, -0.09281352162361145, 0.06680525839328766, 0.019506091251969337, -0.12241567671298981, 0.06480325013399124, 0.11163681000471115, 0.06748226284980774, 0.04261741042137146, 0.0593135729432106, -0.0793655514717102, 0.0654422789812088, -0.03455284237861633, -0.02559659443795681, -0.09856884926557541, 0.048688359558582306, -0.12118954211473465, 0.12266243249177933, 0.19002549350261688, -0.004688942804932594, -0.032454900443553925, -0.08604561537504196, -0.02128591202199459, -0.0528583899140358, 0.03838116303086281, -0.03136169910430908, -0.0950496718287468, 0.0007240382255986333, 0.07379327714443207, -0.0036951140500605106, -0.2082260549068451, -0.09219090640544891, 0.03412114828824997, 0.04332944378256798, -0.0062530506402254105, 0.0939989760518074, 0.11883634328842163, 0.034104954451322556, -0.05336460843682289, -0.012550989165902138, -0.043507397174835205, 0.07221900671720505, -0.05735839530825615, -0.05674823001027107 ]
null
null
transformers
This model can convert the figurative/metaphorical expression to the literal expression. Below is the usage of our model: from transformers import AutoTokenizer, AutoModelForSeq2SeqLM tokenizer = AutoTokenizer.from_pretrained("figurative-nlp/t5-figurative-paraphrase") model = AutoModelForSeq2SeqLM.from_pretrained("figurative-nlp/t5-figurative-paraphrase") input_ids = tokenizer( "paraphrase the sentence : i will talk this story to you from A to Z", return_tensors="pt" ).input_ids # Batch size 1 outputs = model.generate(input_ids,num_beams = 5) result = tokenizer.decode(outputs[0], skip_special_tokens=True) #result : i will talk this story to you from beginning to end.. For example: **Input**: He is always bang on when he makes a speech. **Output**: He is always presice when he makes a speech. **Input**: He always buy what he said. **Output**: He always agree with what he said. **Input**: Your team will be done like dinner if they play against the all-star team. **Output**: Your team will be defeated if they play against the all-star team. (the one is not particularly accurate) Note: the figurative language here includes metaphor, idiom and simile. We don't guarantee that the results generated results are satisfactory to you. We are trying to improve the effect of the model.
{}
text2text-generation
figurative-nlp/t5-figurative-paraphrase
[ "transformers", "pytorch", "t5", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #t5 #text2text-generation #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
This model can convert the figurative/metaphorical expression to the literal expression. Below is the usage of our model: from transformers import AutoTokenizer, AutoModelForSeq2SeqLM tokenizer = AutoTokenizer.from_pretrained("figurative-nlp/t5-figurative-paraphrase") model = AutoModelForSeq2SeqLM.from_pretrained("figurative-nlp/t5-figurative-paraphrase") input_ids = tokenizer( "paraphrase the sentence : i will talk this story to you from A to Z", return_tensors="pt" ).input_ids # Batch size 1 outputs = model.generate(input_ids,num_beams = 5) result = URL(outputs[0], skip_special_tokens=True) #result : i will talk this story to you from beginning to end.. For example: Input: He is always bang on when he makes a speech. Output: He is always presice when he makes a speech. Input: He always buy what he said. Output: He always agree with what he said. Input: Your team will be done like dinner if they play against the all-star team. Output: Your team will be defeated if they play against the all-star team. (the one is not particularly accurate) Note: the figurative language here includes metaphor, idiom and simile. We don't guarantee that the results generated results are satisfactory to you. We are trying to improve the effect of the model.
[ "# Batch size 1\n outputs = model.generate(input_ids,num_beams = 5)\n result = URL(outputs[0], skip_special_tokens=True)\n #result : i will talk this story to you from beginning to end..\n \n\n\n\nFor example:\n\n Input: He is always bang on when he makes a speech.\n \n Output: He is always presice when he makes a speech.\n \n Input: He always buy what he said.\n \n Output: He always agree with what he said. \n \n Input: Your team will be done like dinner if they play against the all-star team.\n \n Output: Your team will be defeated if they play against the all-star team. (the one is not particularly accurate)\n \n \n \n Note: the figurative language here includes metaphor, idiom and simile. We don't guarantee that the results generated results are satisfactory to you. We are trying to improve the effect of the model." ]
[ "TAGS\n#transformers #pytorch #t5 #text2text-generation #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "# Batch size 1\n outputs = model.generate(input_ids,num_beams = 5)\n result = URL(outputs[0], skip_special_tokens=True)\n #result : i will talk this story to you from beginning to end..\n \n\n\n\nFor example:\n\n Input: He is always bang on when he makes a speech.\n \n Output: He is always presice when he makes a speech.\n \n Input: He always buy what he said.\n \n Output: He always agree with what he said. \n \n Input: Your team will be done like dinner if they play against the all-star team.\n \n Output: Your team will be defeated if they play against the all-star team. (the one is not particularly accurate)\n \n \n \n Note: the figurative language here includes metaphor, idiom and simile. We don't guarantee that the results generated results are satisfactory to you. We are trying to improve the effect of the model." ]
[ 48, 207 ]
[ "passage: TAGS\n#transformers #pytorch #t5 #text2text-generation #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n# Batch size 1\n outputs = model.generate(input_ids,num_beams = 5)\n result = URL(outputs[0], skip_special_tokens=True)\n #result : i will talk this story to you from beginning to end..\n \n\n\n\nFor example:\n\n Input: He is always bang on when he makes a speech.\n \n Output: He is always presice when he makes a speech.\n \n Input: He always buy what he said.\n \n Output: He always agree with what he said. \n \n Input: Your team will be done like dinner if they play against the all-star team.\n \n Output: Your team will be defeated if they play against the all-star team. (the one is not particularly accurate)\n \n \n \n Note: the figurative language here includes metaphor, idiom and simile. We don't guarantee that the results generated results are satisfactory to you. We are trying to improve the effect of the model." ]
[ 0.009485136717557907, -0.0914163812994957, -0.004909302107989788, 0.051167238503694534, 0.0599968284368515, -0.09070752561092377, 0.0495334155857563, 0.12437533587217331, 0.018630947917699814, 0.009418496862053871, 0.10556137561798096, 0.18199720978736877, 0.025037212297320366, -0.011750400997698307, 0.014821485616266727, -0.2629458010196686, 0.02921941503882408, 0.022863486781716347, 0.07969728857278824, 0.11409694701433182, 0.09200819581747055, -0.04019659757614136, 0.10011935979127884, 0.027050349861383438, -0.11179913580417633, -0.03825526684522629, 0.0471140593290329, 0.013875072821974754, 0.0773206502199173, 0.04027353972196579, -0.008127867244184017, -0.00007593804184580222, -0.11101335287094116, -0.15057940781116486, -0.0015069817891344428, 0.029685402289032936, 0.045487020164728165, -0.0343700535595417, -0.02242547646164894, -0.037515152245759964, 0.22860966622829437, 0.002137009287253022, 0.02598707377910614, 0.09101767092943192, -0.17020608484745026, -0.011772945523262024, 0.003274659626185894, 0.040422920137643814, 0.11252458393573761, 0.08231822401285172, -0.08293566852807999, 0.17628422379493713, -0.06307654827833176, 0.08485535532236099, -0.02696056105196476, -0.20195059478282928, -0.023463279008865356, 0.019009266048669815, 0.0241654422134161, 0.03086904250085354, -0.07187780737876892, -0.0027965744957327843, 0.01937606744468212, 0.0872906818985939, -0.07159990072250366, -0.008652836084365845, -0.009215512312948704, 0.06331001967191696, -0.12766945362091064, -0.06608191877603531, 0.3047293722629547, -0.011630520224571228, -0.06445536017417908, -0.1351747214794159, -0.0022289033513516188, 0.004671045113354921, 0.0217848289757967, -0.08635009080171585, -0.005806824192404747, 0.06635905057191849, 0.03410590812563896, 0.08937055617570877, -0.16657598316669464, 0.05698220059275627, -0.15468230843544006, 0.03680572658777237, -0.004254528321325779, 0.022135324776172638, -0.11814515292644501, 0.04273614287376404, -0.02195744216442108, -0.12363937497138977, -0.06147243455052376, -0.11192286759614944, 0.017732318490743637, -0.013794858008623123, -0.11714661866426468, -0.163129985332489, -0.02305946871638298, -0.01654520444571972, 0.05769219249486923, 0.022662119939923286, 0.022178253158926964, 0.07269157469272614, 0.1374279409646988, 0.12711675465106964, -0.03745532035827637, 0.05810695141553879, -0.0006582440109923482, -0.003468524431809783, 0.05584610626101494, -0.0305345356464386, -0.08326108008623123, 0.09936907142400742, 0.04184303432703018, -0.019163765013217926, 0.040941741317510605, 0.16285303235054016, -0.11869177967309952, -0.036268264055252075, -0.01830316334962845, -0.04481055960059166, -0.09052545577287674, -0.012634726241230965, -0.10948149114847183, 0.08141719549894333, 0.01406524796038866, 0.019777147099375725, -0.13511089980602264, -0.0771130919456482, -0.08108746260404587, 0.018946446478366852, -0.054496560245752335, -0.061775241047143936, 0.060539424419403076, 0.118726447224617, -0.00552127743139863, -0.11211936920881271, -0.05525438115000725, -0.03311837092041969, 0.039947863668203354, -0.07417361438274384, -0.046258002519607544, -0.08759255707263947, 0.019401630386710167, -0.021869005635380745, 0.022016027942299843, -0.13952243328094482, -0.03841642290353775, 0.060152068734169006, 0.06237328425049782, 0.049838729202747345, -0.025658665224909782, 0.07721655070781708, -0.22725948691368103, -0.028520189225673676, -0.17990514636039734, 0.1305428296327591, 0.013769755139946938, 0.007374989800155163, -0.08118721842765808, -0.0016816389979794621, -0.09394028782844543, 0.06483571976423264, -0.049409475177526474, 0.22055606544017792, -0.2538507878780365, -0.03614914044737816, 0.1532078981399536, -0.07097399234771729, -0.20035183429718018, 0.171103373169899, -0.04218016937375069, 0.19039411842823029, 0.11218544095754623, 0.04853440448641777, -0.004863197449594736, -0.10149393230676651, 0.016982045024633408, 0.010430410504341125, -0.03119870088994503, 0.13274279236793518, 0.06422534584999084, -0.008050852455198765, -0.0077213020995259285, 0.038062065839767456, 0.048510078340768814, -0.007840173318982124, -0.05368933826684952, -0.05444065108895302, -0.013548753224313259, 0.06869550049304962, 0.03474481776356697, 0.022439029067754745, -0.00936882570385933, -0.032746825367212296, -0.10937171429395676, 0.01114229392260313, -0.03505108878016472, -0.0026358964387327433, -0.008347447961568832, -0.08871444314718246, 0.10243532806634903, -0.035044848918914795, 0.029573118314146996, -0.12628614902496338, 0.014061927795410156, 0.013495122082531452, 0.11187611520290375, 0.1315045803785324, 0.12864351272583008, 0.03210146725177765, -0.018139010295271873, 0.062331970781087875, 0.02292449213564396, 0.03465932980179787, 0.053617000579833984, -0.029862534254789352, -0.09340609610080719, 0.10527921468019485, -0.05304909124970436, 0.16308794915676117, -0.07963987439870834, 0.02657955512404442, 0.028785619884729385, 0.02941756322979927, -0.019766321405768394, -0.015273778699338436, -0.0010289547499269247, 0.02023588865995407, -0.07561071217060089, 0.02004523202776909, 0.10630354285240173, -0.00976594164967537, -0.12115509808063507, 0.2368149608373642, -0.26372095942497253, -0.05563504993915558, 0.15287397801876068, -0.25771257281303406, -0.04527895525097847, -0.0485050305724144, -0.05506319925189018, -0.03274920582771301, 0.08207158744335175, -0.08277107775211334, 0.1769721508026123, 0.00046358295367099345, 0.04452560842037201, -0.0919165313243866, 0.004065778572112322, 0.06615204364061356, -0.11824152618646622, 0.009429548867046833, 0.07262556999921799, -0.009216142818331718, -0.15392255783081055, 0.149582639336586, 0.15167415142059326, 0.05744192376732826, 0.18065403401851654, 0.008693343959748745, -0.0166271161288023, -0.06676959991455078, 0.08982154726982117, -0.05440264567732811, 0.027389343827962875, -0.23348507285118103, -0.023224402219057083, 0.011881801299750805, -0.037953853607177734, 0.030020322650671005, -0.10593049973249435, 0.004010726697742939, 0.0803222581744194, 0.05203670263290405, -0.020157234743237495, 0.07434506714344025, -0.01589779742062092, 0.11326584219932556, -0.020315812900662422, 0.023478612303733826, 0.0880257859826088, 0.01082814671099186, -0.14390705525875092, 0.15493282675743103, -0.13326099514961243, -0.29935240745544434, -0.08504730463027954, -0.03211847320199013, -0.07686321437358856, 0.03974949195981026, 0.06514289975166321, -0.0813085213303566, -0.009484441950917244, -0.0431307777762413, 0.12448842078447342, -0.01211849320679903, -0.09543059021234512, -0.10382480174303055, -0.029964538291096687, -0.07893985509872437, -0.1049051284790039, -0.07334211468696594, -0.0046565597876906395, -0.06204169988632202, 0.09192225337028503, -0.15765924751758575, 0.02555680461227894, 0.23281225562095642, 0.022758102044463158, 0.02797546237707138, -0.065304234623909, 0.21021778881549835, 0.012445013038814068, 0.053709208965301514, 0.19630831480026245, -0.035730861127376556, 0.06470426172018051, 0.08834614604711533, -0.007804710417985916, -0.008670558221638203, 0.04325924441218376, -0.02256106585264206, -0.05529336258769035, -0.08443921059370041, -0.09716436266899109, -0.12358838319778442, 0.06952250748872757, -0.01266813836991787, -0.0257599875330925, 0.07459313422441483, 0.0870116576552391, -0.05963223800063133, -0.03845662996172905, 0.04149360954761505, 0.09008656442165375, 0.17588427662849426, -0.09625199437141418, 0.08258326351642609, -0.025614067912101746, -0.07848235964775085, 0.026559321209788322, 0.04401440545916557, -0.0604507140815258, 0.037467896938323975, 0.06297130882740021, 0.1273951381444931, -0.0040076314471662045, -0.02920496091246605, 0.029055653139948845, -0.08207585662603378, -0.03432512283325195, -0.10768914222717285, -0.12028567492961884, -0.17745889723300934, 0.08773890882730484, 0.07095673680305481, 0.008281048387289047, -0.0747438296675682, -0.0054547651670873165, 0.0918664038181305, 0.015610234811902046, 0.06365900486707687, -0.2534484565258026, -0.10276287794113159, 0.0489029735326767, 0.05189157649874687, -0.04316335171461105, 0.060805823653936386, 0.059305377304553986, -0.07459744065999985, 0.04007056728005409, -0.0427064448595047, 0.05989859998226166, 0.08295506238937378, 0.11172378063201904, -0.07838205248117447, -0.04539841413497925, 0.01465862337499857, 0.10284949094057083, -0.33403050899505615, 0.041465312242507935, -0.014788168482482433, -0.07694950699806213, -0.11445970833301544, -0.021772796288132668, -0.037508998066186905, 0.008473987691104412, 0.16475017368793488, 0.05346781760454178, -0.054411083459854126, -0.09909576177597046, 0.018652524799108505, 0.006655696779489517, 0.05945533141493797, 0.016797950491309166, 0.09885811060667038, -0.03777364641427994, 0.052928660064935684, 0.04267190024256706, 0.16485798358917236, 0.008932476863265038, -0.168002188205719, 0.06510613858699799, -0.09841480106115341, -0.059073708951473236, 0.02254299446940422, 0.01298344973474741, 0.004309672396630049, 0.08976779133081436, -0.041866663843393326, -0.10727497935295105, -0.044668037444353104, -0.05063561350107193, -0.032637763768434525, -0.05677478387951851, -0.06280826032161713, -0.09768816828727722, 0.02133883163332939, -0.028308061882853508, -0.08902082592248917, 0.09874645620584488, -0.053122859448194504, -0.05418058857321739, -0.1109178364276886, 0.12126090377569199, 0.0006996926385909319, 0.05885084345936775, -0.02284977212548256, 0.01454282645136118, -0.08842771500349045, -0.08750125765800476, -0.036006782203912735, 0.022325526922941208, 0.02187175117433071, 0.023593386635184288, -0.06156061589717865, 0.0006693632458336651, -0.1478087157011032, -0.009942147880792618, 0.14339472353458405, 0.07096323370933533, -0.04568993300199509, 0.09485321491956711, 0.00295228511095047, -0.08564621210098267, -0.22558672726154327, -0.07811553031206131, -0.009842117317020893, 0.0003385400050319731, 0.02809949778020382, -0.03475681692361832, 0.09398868680000305, -0.047717928886413574, 0.030823906883597374, 0.0008334251469932497, -0.20542342960834503, -0.09901425987482071, 0.11581995338201523, 0.042916011065244675, 0.1995195597410202, -0.09824914485216141, 0.014404798857867718, 0.05605795234441757, -0.08900818973779678, 0.20551207661628723, -0.03349032998085022, 0.058853473514318466, 0.03772887960076332, 0.10098648816347122, 0.05881449580192566, 0.013304171152412891, 0.03529350459575653, 0.03140013664960861, 0.005459868814796209, -0.07979787886142731, -0.13260574638843536, 0.09627663344144821, -0.02464878000319004, 0.10657308995723724, -0.08219404518604279, 0.0006211561267264187, -0.17258696258068085, -0.018053460866212845, -0.08530674874782562, 0.0276594590395689, -0.1017427146434784, -0.07683733105659485, -0.007945798337459564, 0.035509075969457626, 0.09439487755298615, -0.04881465062499046, 0.057306207716464996, -0.13754817843437195, 0.12099847197532654, 0.31868356466293335, 0.09750120341777802, 0.028851168230175972, -0.07854937762022018, -0.001081310911104083, 0.0022247780580073595, 0.05137686803936958, -0.1438937783241272, 0.0064629619009792805, 0.08133580535650253, 0.006132874172180891, 0.09895703941583633, 0.08100575953722, -0.06649928539991379, -0.007619540672749281, 0.07709954679012299, -0.1101108193397522, -0.1597951054573059, -0.05291382595896721, 0.01844971626996994, 0.003387544071301818, -0.04701898247003555, 0.07244223356246948, -0.1352354735136032, 0.007067394442856312, 0.03499792143702507, 0.0891433134675026, -0.03009955585002899, 0.0688735693693161, -0.033436961472034454, 0.021766414865851402, -0.047730498015880585, -0.0072787427343428135, -0.0031033032573759556, -0.24063915014266968, 0.07204506546258926, -0.03948948159813881, -0.024736329913139343, -0.06915096193552017, -0.05562221258878708, 0.06458554416894913, -0.123476043343544, 0.004449708387255669, -0.022250181064009666, -0.17929020524024963, 0.014417954720556736, 0.1790231615304947, 0.05524907633662224, 0.09628819674253464, -0.02587573230266571, 0.031967394053936005, -0.010430483147501945, 0.12638917565345764, 0.09944064170122147, -0.05628770589828491, 0.003341787029057741, 0.09390261024236679, 0.02259356901049614, 0.10420092940330505, -0.06463257223367691, -0.12176760286092758, -0.1416175216436386, 0.012858300469815731, -0.06451545655727386, 0.01421821117401123, -0.06766267120838165, -0.02849677950143814, 0.00202006078325212, 0.04359455034136772, 0.027591848745942116, -0.028851376846432686, -0.03960704058408737, 0.0686303898692131, 0.023597411811351776, 0.10318351536989212, -0.07804109156131744, -0.004232428502291441, 0.09405513107776642, -0.08243443071842194, -0.011978579685091972, 0.06572235375642776, -0.16183249652385712, 0.06553155928850174, -0.1493905782699585, 0.054627932608127594, 0.0663740411400795, 0.013150876387953758, 0.012435121461749077, -0.05475052446126938, 0.008675966411828995, 0.06029858812689781, 0.019218651577830315, -0.03333656117320061, 0.14601945877075195, -0.08328261971473694, 0.030885258689522743, 0.11816693097352982, -0.10080970078706741, -0.10475743561983109, 0.047806475311517715, -0.14666999876499176, 0.049326084554195404, 0.1791495531797409, -0.03871547430753708, 0.03577058017253876, -0.14667156338691711, -0.010707163251936436, 0.05066045746207237, -0.02465244010090828, -0.030434997752308846, -0.060640446841716766, 0.008042451925575733, -0.02646070159971714, 0.1059964969754219, 0.02702265791594982, 0.029517538845539093, 0.015508216805756092, 0.14238591492176056, 0.0058775111101567745, 0.024929098784923553, -0.007595639675855637, -0.06280265003442764, -0.02844955213367939, -0.15026608109474182, 0.04046611860394478, -0.028692085295915604, -0.018163098022341728, 0.15953752398490906, 0.11412619054317474, 0.005433354992419481, 0.09163902699947357, 0.06496289372444153, 0.13761122524738312, -0.022128403186798096, -0.06109771132469177, 0.06414294987916946, 0.032020069658756256, -0.048722896724939346, 0.1360791027545929, 0.20160269737243652, -0.07140447199344635, 0.07559728622436523, -0.10991454124450684, -0.023819278925657272, -0.06205524876713753, -0.2470875382423401, 0.010576804168522358, -0.07373357564210892, -0.02036307193338871, -0.08240445703268051, 0.047049619257450104, -0.005472456570714712, 0.07624351233243942, -0.11484972387552261, 0.08937534689903259, -0.0447210967540741, -0.1293264627456665, -0.03630063310265541, -0.005558209028095007, 0.06227714940905571, 0.03326315060257912, 0.07860536128282547, -0.009422969073057175, 0.058702509850263596, 0.04671564698219299, 0.09261805564165115, 0.05005734786391258, -0.008609551005065441, -0.14819400012493134, -0.06300011277198792, -0.027795573696494102, -0.00460901390761137, -0.06859104335308075, 0.06093894690275192, 0.014211817644536495, -0.03691663220524788, 0.009081919677555561, 0.06450729072093964, -0.0662127360701561, -0.18708831071853638, -0.09884992986917496, 0.441694438457489, 0.0035548668820410967, 0.03580063581466675, -0.010829072445631027, -0.05197076126933098, -0.045889802277088165, 0.18429936468601227, 0.19106879830360413, -0.06695400923490524, -0.017137249931693077, -0.055559687316417694, 0.06042623519897461, 0.03067588061094284, 0.10731000453233719, 0.007465923670679331, 0.3290935158729553, -0.07217785716056824, 0.1569349616765976, -0.06497301906347275, -0.02985863760113716, -0.0006007064948789775, 0.0917336568236351, 0.12132605165243149, -0.019816840067505836, -0.051321279257535934, 0.07752752304077148, -0.1839865744113922, 0.042246971279382706, -0.12587787210941315, -0.0905459001660347, 0.024452747777104378, -0.030499346554279327, 0.06924131512641907, -0.0004938138881698251, 0.13532140851020813, 0.0132384542375803, -0.048340681940317154, 0.05792197957634926, 0.02349155582487583, -0.08430460095405579, 0.14040224254131317, 0.09728408604860306, -0.0866958498954773, -0.018465226516127586, 0.021593410521745682, 0.1580948680639267, 0.09965167939662933, 0.10518650710582733, 0.016719786450266838, 0.0693412572145462, -0.036773622035980225, 0.03287747502326965, -0.03440610319375992, 0.00010445771476952359, 0.05464746430516243, 0.06298860162496567, 0.06205414608120918, -0.16484282910823822, 0.09216490387916565, 0.013731035403907299, -0.015326120890676975, -0.07595989853143692, 0.11022955179214478, -0.03044068068265915, 0.10960487276315689, 0.1872866451740265, 0.00003222638042643666, -0.06050534546375275, -0.07835237681865692, -0.04295216500759125, -0.02144794538617134, 0.04664546623826027, -0.03241841122508049, -0.07179317623376846, 0.016974162310361862, 0.03784782811999321, 0.02258731797337532, -0.28719696402549744, -0.04463513195514679, 0.07127409428358078, 0.013137031346559525, 0.042523451149463654, 0.10967141389846802, 0.09322451055049896, 0.07339618355035782, -0.0880882740020752, 0.0054304515942931175, 0.036323729902505875, 0.16665376722812653, 0.036739531904459, -0.08417531102895737 ]
null
null
null
import requests API_URL = "https://api-inference.huggingface.co/models/huggingface/prunebert-base-uncased-6-finepruned-w-distil-squad" headers = {"Authorization": "Bearer api_UXqrzQBiZKXaWxstVwEKcYvHQpGSGiQGbr"} def query(payload): response = requests.post(API_URL, headers=headers, json=payload) return response.json() output = query({ "inputs": { "question": "What's my name?", "context": "My name is Clara and I live in Berkeley.", }, })
{}
null
fihtrotuld/123
[ "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #region-us
import requests API_URL = "URL headers = {"Authorization": "Bearer api_UXqrzQBiZKXaWxstVwEKcYvHQpGSGiQGbr"} def query(payload): response = URL(API_URL, headers=headers, json=payload) return URL() output = query({ "inputs": { "question": "What's my name?", "context": "My name is Clara and I live in Berkeley.", }, })
[]
[ "TAGS\n#region-us \n" ]
[ 6 ]
[ "passage: TAGS\n#region-us \n" ]
[ 0.024608636274933815, -0.026205500587821007, -0.009666500613093376, -0.10395516455173492, 0.08638657629489899, 0.059816278517246246, 0.01882290467619896, 0.020661840215325356, 0.23975107073783875, -0.005599027033895254, 0.1219947561621666, 0.0015615287702530622, -0.037353623658418655, 0.03733762726187706, -0.0035912662278860807, -0.17583473026752472, 0.03876631706953049, -0.018274923786520958, 0.01843859627842903, 0.026470553129911423, -0.07776834815740585, -0.07564429938793182, 0.015296397730708122, -0.10247814655303955, -0.083692267537117, 0.11002834886312485, 0.031466204673051834, -0.019670886918902397, 0.10779199749231339, -0.04243955761194229, 0.18699054419994354, -0.011512263678014278, -0.11213519424200058, -0.2536850869655609, 0.021806683391332626, -0.01765260472893715, -0.08747660368680954, 0.01506110467016697, 0.0665089413523674, -0.09014441072940826, -0.0588928684592247, 0.0795099288225174, -0.01132340170443058, 0.04246443510055542, -0.27593839168548584, -0.12684126198291779, -0.05297930911183357, -0.1421966552734375, 0.08651168644428253, 0.04035491496324539, 0.008764253929257393, 0.15506891906261444, -0.20897391438484192, 0.004104613792151213, 0.08255259692668915, -0.2538507878780365, 0.05591634660959244, 0.17671173810958862, 0.03623908758163452, 0.18037272989749908, 0.0060391901060938835, 0.11029672622680664, 0.0716743916273117, -0.024263937026262283, -0.17590197920799255, -0.08127854019403458, -0.04696211963891983, 0.16642488539218903, -0.06727185100317001, -0.14248386025428772, 0.34701237082481384, 0.00015008423360995948, 0.009657775051891804, 0.16921205818653107, -0.059524230659008026, -0.09972117841243744, 0.07259953022003174, 0.016484731808304787, 0.018492350354790688, 0.1471305936574936, 0.16307872533798218, -0.0458691343665123, -0.13837823271751404, -0.018630273640155792, -0.22798998653888702, 0.17510560154914856, -0.03248048573732376, 0.13137903809547424, -0.27447956800460815, 0.01684025302529335, -0.2570667266845703, 0.0032130838371813297, 0.04178816080093384, -0.06004921346902847, -0.0226522795855999, -0.013265985064208508, -0.08018817007541656, 0.004899587947875261, 0.06192673370242119, 0.1266920566558838, -0.06128726154565811, 0.06128238886594772, -0.09319206327199936, 0.141696035861969, 0.07166698575019836, 0.07868369668722153, 0.13037432730197906, 0.041205424815416336, -0.07187089323997498, -0.21872246265411377, -0.0026476888451725245, -0.06275863200426102, -0.09502086788415909, -0.0020165652967989445, -0.11606067419052124, 0.17244569957256317, -0.030802514404058456, -0.09825427830219269, -0.11208184063434601, 0.09148659557104111, -0.032992321997880936, -0.03437839448451996, -0.03552987426519394, -0.020977836102247238, 0.019381176680326462, 0.04704452306032181, -0.1548958420753479, -0.005131472367793322, 0.07039852440357208, 0.11502562463283539, -0.1346137970685959, -0.003783059772104025, -0.07908964157104492, 0.03039063885807991, 0.07654735445976257, -0.16510222852230072, 0.03158547356724739, -0.1124754324555397, -0.07531405985355377, 0.002912673633545637, -0.015710093080997467, -0.016202643513679504, 0.166526660323143, -0.0020451415330171585, 0.0714716836810112, -0.026345307007431984, -0.05890209600329399, -0.11243434250354767, -0.08489254862070084, 0.05390460044145584, 0.03670717030763626, 0.03266148269176483, -0.2193479984998703, 0.014805203303694725, -0.12762966752052307, 0.1360815018415451, -0.10566820204257965, -0.04705966264009476, -0.022842247039079666, 0.20562705397605896, 0.037286072969436646, 0.08762791007757187, -0.22171171009540558, 0.039756543934345245, -0.05404696613550186, 0.18480908870697021, -0.1502426266670227, -0.0799463614821434, 0.20813211798667908, -0.07964949309825897, -0.10115210711956024, 0.021235812455415726, 0.020391687750816345, 0.026287272572517395, 0.0766737088561058, 0.4564172327518463, -0.09766800701618195, -0.09146861732006073, 0.10178250074386597, 0.17055274546146393, -0.12427149713039398, -0.1827561855316162, 0.06446871906518936, -0.16666454076766968, -0.1973118633031845, 0.0018917324487119913, 0.09222044050693512, 0.038269978016614914, -0.07875611633062363, -0.020746968686580658, 0.06325206160545349, -0.0007678253459744155, 0.09095914661884308, 0.03755716234445572, 0.09034032374620438, -0.08716782182455063, 0.11115926504135132, -0.05017651244997978, 0.004037132486701012, 0.1343354731798172, 0.027325427159667015, -0.03223329409956932, 0.08694463223218918, -0.0485352948307991, 0.05295134335756302, -0.1662379503250122, -0.15068690478801727, 0.03398871049284935, 0.06283251196146011, 0.03186952322721481, 0.1280253529548645, 0.08141885697841644, -0.10732853412628174, 0.022690722718834877, -0.004228927195072174, 0.058398615568876266, 0.03891623765230179, 0.006107209715992212, 0.008764320984482765, 0.0961301177740097, -0.10607069730758667, -0.13589619100093842, -0.07336436957120895, -0.014715781435370445, 0.14371353387832642, -0.0302802175283432, 0.07690227776765823, -0.004240254405885935, 0.00013200697139836848, 0.06930823624134064, 0.08137880265712738, 0.016412746161222458, 0.08971183747053146, -0.05237193778157234, -0.05160155147314072, 0.10863113403320312, -0.13533565402030945, 0.17837053537368774, 0.14053137600421906, -0.20532016456127167, 0.029453208670020103, -0.06838275492191315, 0.03670361638069153, -0.008162540383636951, 0.0975119024515152, -0.08272241055965424, -0.02106042578816414, 0.013134466484189034, 0.0052274600602686405, -0.013007243163883686, 0.017682146281003952, -0.07295988500118256, -0.07787393033504486, -0.10233919322490692, 0.08436838537454605, 0.11562882363796234, -0.10282530635595322, 0.14214380085468292, 0.4384984076023102, 0.11495281755924225, 0.21582984924316406, -0.09581480920314789, -0.0412987545132637, 0.007486371789127588, 0.0001535322517156601, -0.04476691037416458, 0.08031861484050751, -0.15973517298698425, -0.038901735097169876, 0.027348900213837624, 0.07128690183162689, 0.11475157737731934, -0.14959022402763367, -0.09639324247837067, -0.00793045200407505, 0.0022841424215584993, -0.1249532699584961, 0.023905446752905846, -0.03974650055170059, 0.04015624523162842, 0.07232289016246796, -0.021535737439990044, 0.13939237594604492, -0.04166141897439957, -0.0639561116695404, 0.07585346698760986, -0.2017085999250412, -0.23179671168327332, -0.12309670448303223, -0.14680525660514832, 0.04366797208786011, 0.05154111236333847, 0.01726446859538555, -0.17635835707187653, -0.015074856579303741, 0.07706750929355621, 0.07820965349674225, -0.20886357128620148, -0.022814949974417686, -0.004290030337870121, 0.0895976573228836, -0.10227091610431671, -0.0017130117630586028, -0.04419664293527603, -0.10150232166051865, 0.0017003051470965147, 0.07279510796070099, -0.137485533952713, 0.13807645440101624, 0.21589438617229462, 0.07225540280342102, 0.07359948754310608, -0.019093448296189308, 0.09936179965734482, -0.10856141895055771, -0.16549113392829895, 0.08348225057125092, -0.06234746053814888, 0.047262318432331085, 0.17534415423870087, 0.03307317942380905, -0.13904969394207, -0.015682822093367577, -0.0402069091796875, -0.15603256225585938, -0.238995760679245, -0.09178274869918823, -0.1182505264878273, 0.16442428529262543, 0.0009358620154671371, 0.06651917099952698, 0.08258313685655594, -0.022042419761419296, 0.16447891294956207, -0.07379321753978729, -0.07578866183757782, -0.006978808436542749, 0.12375060468912125, -0.056660156697034836, -0.03080669604241848, -0.10566964000463486, -0.008295975625514984, 0.1151021271944046, 0.15304014086723328, 0.12214863300323486, 0.2957419455051422, 0.08268889784812927, 0.026645636186003685, 0.08958091586828232, 0.17622539401054382, 0.09495089203119278, 0.07838419824838638, -0.045413073152303696, -0.014814783819019794, 0.014317171648144722, -0.04022889584302902, 0.010141594335436821, 0.14683100581169128, -0.2679629921913147, -0.006678564939647913, -0.2710230350494385, 0.0965198427438736, -0.10913380235433578, 0.11837165057659149, -0.01015760749578476, 0.10194015502929688, 0.11082887649536133, 0.03233652561903, -0.03858073800802231, 0.16613617539405823, 0.08450309932231903, -0.11277695000171661, 0.001758623169735074, 0.03737903758883476, 0.09715615212917328, -0.02818971499800682, 0.12721189856529236, -0.11048974841833115, -0.1464834064245224, 0.013753619976341724, 0.07152791321277618, -0.15373679995536804, 0.3138748109340668, 0.012069208547472954, -0.13481520116329193, -0.01481647603213787, -0.09957809001207352, -0.006440147757530212, 0.1254177987575531, 0.09333524852991104, 0.07935678958892822, -0.2185502052307129, -0.13339371979236603, 0.05872276425361633, -0.00575496768578887, 0.22408108413219452, -0.034034017473459244, -0.11356475204229355, -0.027013886719942093, 0.04241163283586502, -0.06043251231312752, 0.08524788916110992, 0.023536119610071182, -0.08113526552915573, -0.032957352697849274, 0.05323701351881027, 0.012368366122245789, 0.00524376705288887, 0.09360801428556442, 0.020107939839363098, -0.0009265501867048442, 0.01785753294825554, 0.047885000705718994, -0.0675911232829094, -0.1984109878540039, 0.09357594698667526, -0.05215044692158699, 0.0015536568826064467, -0.08013670891523361, -0.15122665464878082, -0.08837161958217621, -0.16009655594825745, 0.12540200352668762, -0.034406669437885284, 0.12700119614601135, -0.06619787961244583, 0.17341409623622894, -0.07871770113706589, 0.04481020197272301, -0.047349292784929276, 0.050332702696323395, -0.007268077693879604, -0.07756082713603973, 0.16585899889469147, -0.15564003586769104, 0.01809087023139, 0.19572502374649048, -0.018915493041276932, 0.07177707552909851, 0.021322092041373253, -0.0636206790804863, 0.23147478699684143, 0.3014698624610901, 0.008138049393892288, 0.1665448248386383, 0.3018903136253357, -0.07466315478086472, -0.2642788887023926, -0.05505012720823288, -0.2841376066207886, -0.05371501296758652, 0.10716094076633453, -0.22523896396160126, 0.06986407935619354, 0.14383509755134583, -0.06471995264291763, 0.30228954553604126, -0.21825523674488068, 0.012589273042976856, 0.15434536337852478, -0.08868814259767532, 0.5515313148498535, -0.1133413165807724, -0.17677772045135498, -0.008122089318931103, -0.08741296827793121, 0.10602109134197235, -0.0340677872300148, 0.06877441704273224, 0.013465235009789467, 0.04797380417585373, 0.048932258039712906, -0.03111894056200981, 0.22701001167297363, 0.008710170164704323, 0.09015397727489471, -0.07378865778446198, -0.18624304234981537, 0.11639340221881866, -0.04359482601284981, -0.08891059458255768, 0.0849778801202774, -0.05942516401410103, -0.11078983545303345, 0.04663389176130295, -0.07950539886951447, -0.024862350896000862, 0.08423490077257156, -0.04678233340382576, -0.042606171220541, -0.008054176345467567, -0.1618063747882843, -0.0002289071271661669, 0.31360217928886414, -0.07096036523580551, 0.16695955395698547, 0.03677211329340935, 0.00038613268407061696, -0.11027684062719345, 0.030288029462099075, -0.05203165486454964, -0.021576624363660812, 0.09578979015350342, -0.11096979677677155, 0.03204701095819473, 0.14160704612731934, -0.04864364117383957, 0.05846960097551346, 0.09256096184253693, -0.0849417969584465, 0.007583672646433115, 0.17753590643405914, -0.17537221312522888, -0.1273445188999176, -0.006135711446404457, -0.09862716495990753, 0.14055661857128143, 0.04394126310944557, 0.05191568285226822, 0.16669964790344238, 0.03967129811644554, -0.029474308714270592, -0.02817419543862343, -0.1153380498290062, -0.0201893113553524, 0.040153320878744125, 0.00045633706031367183, -0.08791285753250122, 0.2262638509273529, 0.06409153342247009, -0.1328488290309906, -0.051157206296920776, 0.2161225974559784, -0.06805316358804703, -0.04911920800805092, -0.223562553524971, 0.10752306133508682, -0.07112517952919006, -0.0965060144662857, 0.05453834682703018, -0.02270081453025341, 0.005106312222778797, 0.181985542178154, 0.03941008821129799, 0.11070270836353302, 0.03738937899470329, -0.02448922023177147, 0.15798696875572205, -0.142850860953331, -0.14191335439682007, -0.025354057550430298, -0.08757315576076508, -0.13844476640224457, -0.026804137974977493, 0.1617041826248169, -0.09177309274673462, -0.14772607386112213, -0.2621181011199951, 0.10968475043773651, -0.16432365775108337, -0.10192688554525375, -0.03469514101743698, -0.08968492597341537, 0.0696166530251503, 0.030301768332719803, -0.03093348816037178, -0.06706760823726654, -0.18593791127204895, 0.0816768929362297, 0.06349513679742813, 0.045533183962106705, -0.017847947776317596, 0.0067379772663116455, 0.1720137596130371, 0.025955144315958023, 0.10040043294429779, 0.16762186586856842, 0.011397695168852806, 0.2246655523777008, -0.1671202927827835, -0.11496317386627197, 0.1336962729692459, -0.026543032377958298, 0.06762003898620605, 0.16792191565036774, -0.0772583931684494, 0.015526676550507545, -0.028136352077126503, 0.07066910713911057, -0.11003983020782471, -0.105624258518219, 0.007937257178127766, 0.02567129209637642, -0.2755882740020752, -0.005599735304713249, -0.19717298448085785, 0.14788752794265747, 0.02579621411859989, 0.03297143429517746, 0.10257530212402344, 0.10404334217309952, 0.08312062919139862, -0.0017710148822516203, 0.03226327523589134, -0.1176818460226059, 0.02753005363047123, -0.059239376336336136, -0.020663779228925705, 0.017624232918024063, 0.36952024698257446, -0.03603357449173927, -0.046802736818790436, 0.003710439894348383, 0.1307835876941681, -0.02139742486178875, 0.017395347356796265, 0.13209912180900574, 0.12607666850090027, -0.08595693111419678, -0.1504845917224884, 0.04888554662466049, -0.04565655067563057, -0.02836887165904045, 0.1464131623506546, 0.05905961990356445, 0.1050296202301979, 0.0908031314611435, -0.014463032595813274, -0.00318976235575974, 0.012856799177825451, -0.15486004948616028, 0.06223496049642563, -0.010558074340224266, 0.012565906159579754, 0.017934376373887062, 0.15238402783870697, -0.005540105979889631, 0.07739730179309845, -0.09889880567789078, 0.004208535887300968, -0.13498884439468384, -0.07913459837436676, 0.03617347031831741, -0.13393273949623108, 0.04141177982091904, -0.01871878281235695, 0.029611799865961075, 0.30386561155319214, 0.02558239921927452, -0.020639164373278618, 0.12512871623039246, -0.1214587539434433, -0.12050267308950424, -0.001594188273884356, -0.029960084706544876, 0.0791488066315651, -0.02633434161543846, -0.0997740775346756, -0.1001306027173996, -0.15166029334068298, -0.09759195148944855, 0.05182836204767227, -0.04993441700935364, -0.059362251311540604, -0.17634081840515137, -0.05707859992980957, -0.05147340148687363, 0.14025864005088806, -0.12263951450586319, 0.15159130096435547, -0.014490418136119843, 0.004084470681846142, 0.04405883327126503, 0.1950942426919937, -0.03644494712352753, 0.08714226633310318, 0.0154351145029068, 0.1522706001996994, -0.05119588226079941, 0.14720745384693146, -0.10931728035211563, -0.04014137014746666, -0.06710435450077057, 0.21513493359088898, 0.25630924105644226, -0.06136954948306084, -0.008937356993556023, -0.012760217301547527, 0.058654606342315674, 0.1073930487036705, 0.16049085557460785, 0.002326392102986574, 0.2802925705909729, -0.03133585304021835, 0.04815128445625305, 0.02901598811149597, 0.013607407920062542, -0.06336209923028946, 0.03397751972079277, 0.07539387792348862, -0.035039983689785004, -0.1412304788827896, 0.15837742388248444, -0.21980468928813934, 0.18157227337360382, 0.11640069633722305, -0.19996967911720276, -0.013728445395827293, -0.04882071167230606, 0.1689416468143463, -0.0856364443898201, 0.1637246012687683, -0.0903693437576294, -0.2108195722103119, -0.2056000679731369, 0.03867346793413162, -0.34623071551322937, -0.254462867975235, 0.10422009229660034, 0.1488201916217804, 0.04015883058309555, -0.018507536500692368, -0.019967829808592796, -0.018367022275924683, 0.04877542704343796, -0.0067357709631323814, 0.06014643982052803, 0.031397558748722076, -0.02988368645310402, -0.24127542972564697, -0.029804671183228493, 0.023964406922459602, -0.07093082368373871, 0.07464958727359772, -0.06874357163906097, -0.022495782002806664, 0.08059766888618469, -0.03066304884850979, 0.03298592567443848, -0.035373736172914505, -0.16326889395713806, 0.027529051527380943, 0.03900543600320816, 0.036012712866067886, 0.00634160777553916, 0.0008072225609794259, -0.03455270454287529, 0.0644603744149208, -0.16716794669628143, -0.16015739738941193, 0.14140215516090393, -0.06745140254497528, 0.2779497504234314, -0.05812826007604599, -0.0809100940823555, 0.04766704887151718, -0.03426874056458473, 0.1807648241519928, -0.07756473124027252, 0.047254521399736404, 0.12766779959201813, 0.011127962730824947, 0.03121316432952881, -0.3092964291572571, 0.11082969605922699, -0.000795336440205574, -0.006093299947679043, -0.07581598311662674 ]
null
null
transformers
# GPT2 base style transfer paraphraser This is the trained base-model from the paper [Reformulating Unsupervised Style Transfer as Paraphrase Generation](https://arxiv.org/abs/2010.05700) by Krishna K. et al. Note that I (the uploader) am not the author of the paper. Permission to upload to Huggingface was given by the main author. ## Citation If you found this model useful, please cite the original work: ``` @inproceedings{style20, author={Kalpesh Krishna and John Wieting and Mohit Iyyer}, Booktitle = {Empirical Methods in Natural Language Processing}, Year = "2020", Title={Reformulating Unsupervised Style Transfer as Paraphrase Generation}, } ```
{}
text-generation
filco306/gpt2-base-style-paraphraser
[ "transformers", "pytorch", "text-generation", "arxiv:2010.05700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[ "2010.05700" ]
[]
TAGS #transformers #pytorch #text-generation #arxiv-2010.05700 #autotrain_compatible #endpoints_compatible #region-us
# GPT2 base style transfer paraphraser This is the trained base-model from the paper Reformulating Unsupervised Style Transfer as Paraphrase Generation by Krishna K. et al. Note that I (the uploader) am not the author of the paper. Permission to upload to Huggingface was given by the main author. If you found this model useful, please cite the original work:
[ "# GPT2 base style transfer paraphraser\n\nThis is the trained base-model from the paper Reformulating Unsupervised Style Transfer as Paraphrase Generation by Krishna K. et al. Note that I (the uploader) am not the author of the paper. Permission to upload to Huggingface was given by the main author. \n\n\nIf you found this model useful, please cite the original work:" ]
[ "TAGS\n#transformers #pytorch #text-generation #arxiv-2010.05700 #autotrain_compatible #endpoints_compatible #region-us \n", "# GPT2 base style transfer paraphraser\n\nThis is the trained base-model from the paper Reformulating Unsupervised Style Transfer as Paraphrase Generation by Krishna K. et al. Note that I (the uploader) am not the author of the paper. Permission to upload to Huggingface was given by the main author. \n\n\nIf you found this model useful, please cite the original work:" ]
[ 42, 86 ]
[ "passage: TAGS\n#transformers #pytorch #text-generation #arxiv-2010.05700 #autotrain_compatible #endpoints_compatible #region-us \n# GPT2 base style transfer paraphraser\n\nThis is the trained base-model from the paper Reformulating Unsupervised Style Transfer as Paraphrase Generation by Krishna K. et al. Note that I (the uploader) am not the author of the paper. Permission to upload to Huggingface was given by the main author. \n\n\nIf you found this model useful, please cite the original work:" ]
[ 0.013750361278653145, -0.05992263928055763, -0.0020720260217785835, 0.018457723781466484, 0.1187732070684433, 0.04755192995071411, 0.14381417632102966, 0.0647866502404213, -0.16433635354042053, -0.07416094094514847, 0.1195310726761818, 0.1185111328959465, 0.024418147280812263, 0.029853908345103264, 0.054724302142858505, -0.3969886898994446, 0.036711666733026505, 0.07962452620267868, -0.006822725757956505, 0.11160330474376678, 0.12008243799209595, -0.0479733869433403, 0.1040782779455185, 0.047265008091926575, -0.08154014497995377, 0.034506410360336304, -0.006047294940799475, -0.02755415067076683, 0.12311143428087234, 0.09933309257030487, 0.07492220401763916, 0.059427376836538315, 0.043256502598524094, -0.034829989075660706, 0.05518190562725067, 0.019082801416516304, -0.07144754379987717, 0.06538105010986328, 0.05110480636358261, -0.04645918682217598, 0.3422531485557556, 0.0768551155924797, -0.06324512511491776, -0.0025835521519184113, -0.14049768447875977, -0.15301421284675598, -0.04251424968242645, 0.10840665549039841, 0.11865878850221634, 0.06217266619205475, -0.034182749688625336, 0.0821395069360733, 0.006913655437529087, 0.08913207799196243, 0.1595626026391983, -0.3331655263900757, -0.05980385094881058, 0.016130773350596428, 0.033370114862918854, 0.0639718621969223, 0.0017692653927952051, 0.07105240970849991, 0.026052378118038177, 0.01926284469664097, 0.008188107050955296, -0.11722112447023392, -0.08805369585752487, -0.0038587802555412054, -0.11996608972549438, 0.039205364882946014, 0.28073206543922424, -0.04297495633363724, -0.030046910047531128, 0.005782090127468109, -0.11165623366832733, 0.18890507519245148, -0.016855301335453987, -0.09133902192115784, -0.023474648594856262, 0.0375455766916275, 0.027187181636691093, -0.1991901397705078, -0.11404278874397278, -0.07447493076324463, -0.1447550356388092, 0.046116575598716736, 0.012759208679199219, 0.029725398868322372, -0.0537421889603138, 0.1267697811126709, -0.10040957480669022, -0.03869275003671646, 0.03341387212276459, -0.13454480469226837, 0.1608559936285019, 0.040004849433898926, -0.05782332643866539, -0.09866800904273987, -0.05237719416618347, 0.1197042465209961, 0.1771593689918518, -0.02349644899368286, 0.041538868099451065, 0.07459049671888351, 0.027746932581067085, 0.06867726892232895, -0.12857265770435333, -0.015226558782160282, 0.10142385959625244, -0.05924326181411743, 0.0632186159491539, -0.020296653732657433, -0.15705612301826477, -0.03894951939582825, 0.05375896394252777, -0.005048366263508797, -0.012801812961697578, 0.13925763964653015, 0.02211247757077217, -0.05276907607913017, 0.15305359661579132, -0.033361248672008514, -0.07961539179086685, -0.11066709458827972, 0.0007726845797151327, 0.05949771776795387, 0.11937299370765686, 0.04742376133799553, -0.07143791764974594, -0.01747709885239601, -0.09075193852186203, -0.014349985867738724, -0.040025677531957626, -0.08692233264446259, -0.05750957503914833, -0.12817923724651337, 0.013525160029530525, -0.1414431929588318, -0.20679910480976105, -0.006588574964553118, 0.012588800862431526, 0.007703725248575211, -0.0656416192650795, -0.04702853038907051, 0.05984213203191757, -0.018016861751675606, -0.04097757115960121, -0.003381662303581834, -0.04855268448591232, 0.05682417005300522, -0.08184020221233368, 0.06296423077583313, -0.17655164003372192, 0.06117276847362518, -0.11670596152544022, -0.017771560698747635, -0.23623058199882507, -0.006418554112315178, 0.008585413917899132, 0.04207276552915573, -0.02641349472105503, -0.08159512281417847, -0.08252856135368347, 0.020018134266138077, 0.010011964477598667, 0.17220400273799896, -0.05614521726965904, -0.1190788596868515, 0.17819266021251678, -0.13588246703147888, -0.07787403464317322, 0.0890408605337143, -0.006398854777216911, 0.15369845926761627, 0.0867791622877121, 0.16577912867069244, 0.05301521718502045, -0.05134453624486923, 0.07859960198402405, 0.060064710676670074, -0.10554170608520508, -0.007347809616476297, 0.02982850931584835, -0.0004535342159215361, -0.1429460048675537, 0.023012889549136162, -0.02421506494283676, 0.06287872791290283, -0.04409771412611008, 0.004091882146894932, 0.017629049718379974, -0.0007588631706312299, -0.00915017630904913, 0.028483880683779716, 0.07465335726737976, 0.010605028830468655, -0.03767919912934303, 0.003608018858358264, 0.015202010981738567, -0.07594817876815796, 0.054517704993486404, -0.02967843785881996, 0.07817480713129044, 0.004996248055249453, 0.04155753552913666, -0.11074905842542648, 0.025890661403536797, -0.04409957677125931, 0.16614723205566406, 0.06405635178089142, 0.1445743292570114, 0.041118886321783066, 0.0021445159800350666, -0.08420073986053467, 0.01308731734752655, 0.0829315111041069, -0.02740531601011753, -0.07379937171936035, -0.07823006063699722, 0.049592435359954834, 0.0021386255975812674, 0.05449988320469856, -0.07807909697294235, 0.03476967662572861, -0.05527612566947937, 0.04598069190979004, -0.007372342981398106, 0.06369877606630325, 0.03606230020523071, 0.006310099270194769, -0.05575701966881752, -0.010833065025508404, 0.11665275692939758, 0.004916511941701174, -0.07764565199613571, 0.2453075498342514, -0.14285501837730408, 0.0808039978146553, 0.13072864711284637, -0.2504570782184601, -0.02340061031281948, -0.028180880472064018, -0.058518048375844955, -0.01441502571105957, 0.05285003408789635, 0.016767248511314392, 0.1538037210702896, -0.05072147399187088, 0.1567903608083725, -0.08502404391765594, 0.006682331673800945, -0.008753673173487186, -0.10213004052639008, 0.00613397266715765, 0.07455483824014664, 0.10328900814056396, -0.05525609850883484, 0.062439970672130585, 0.2052268087863922, -0.008841309696435928, 0.1691088080406189, 0.04495679587125778, -0.04328140988945961, 0.0016937218606472015, -0.11800782382488251, -0.027809301391243935, -0.002952954499050975, -0.07820762693881989, -0.053355276584625244, 0.07306299358606339, 0.02165926620364189, 0.08912814408540726, -0.10078463703393936, -0.03001159243285656, -0.02827148325741291, -0.0017997854156419635, 0.0267011858522892, 0.0952862948179245, -0.05418914183974266, 0.09744727611541748, -0.03812416270375252, 0.042641784995794296, 0.022275462746620178, 0.04363499581813812, -0.08337409049272537, 0.14235509932041168, -0.10848855972290039, -0.2439207285642624, -0.16448085010051727, -0.020841937512159348, -0.03693705052137375, 0.05329018458724022, 0.06393874436616898, -0.0207977257668972, -0.04890217259526253, -0.06339453160762787, 0.07701539993286133, -0.036044325679540634, -0.0379532165825367, -0.10245560109615326, -0.03704134002327919, -0.02992086298763752, -0.08895087242126465, -0.0462680421769619, -0.04122856259346008, -0.14770813286304474, 0.11773746460676193, -0.16345016658306122, 0.11102008819580078, 0.08018162101507187, 0.031583022326231, 0.001267682877369225, -0.03891909494996071, 0.18396717309951782, -0.04864808917045593, 0.11763443052768707, 0.2205885499715805, 0.020405102521181107, 0.09236924350261688, 0.04181554913520813, -0.05790312960743904, -0.03933520242571831, 0.03516096994280815, -0.03433258458971977, -0.07988763600587845, -0.08564102649688721, -0.06499731540679932, -0.059617724269628525, 0.039237260818481445, 0.01464013196527958, 0.012789384461939335, 0.08694244176149368, 0.1337451934814453, -0.060773734003305435, 0.035630252212285995, 0.04335745424032211, 0.0827249214053154, 0.1687263399362564, -0.08435431867837906, 0.1776808500289917, -0.06228801608085632, -0.09548106789588928, 0.12689466774463654, -0.05393547937273979, 0.2074388861656189, 0.035265929996967316, -0.0316329151391983, 0.04105101898312569, 0.14991135895252228, 0.09034407883882523, 0.16852402687072754, -0.026987919583916664, -0.012521597556769848, -0.09510573744773865, -0.00931328535079956, -0.04284464940428734, 0.09245537966489792, -0.04826471954584122, -0.1390528380870819, -0.024093493819236755, -0.06200771778821945, 0.020275654271245003, 0.17822778224945068, 0.07810399681329727, -0.14845290780067444, -0.007771592121571302, 0.018674122169613838, 0.021390914916992188, -0.11526899039745331, 0.009067615494132042, -0.04509347677230835, -0.12202824652194977, 0.07793394476175308, -0.02960711158812046, 0.09601493179798126, -0.07002538442611694, 0.03345378860831261, -0.1478070318698883, -0.042429372668266296, -0.020663900300860405, 0.1141853854060173, -0.1449088156223297, 0.22198571264743805, -0.008767959661781788, -0.036330338567495346, -0.058596014976501465, -0.05719399452209473, 0.07987405359745026, 0.22802956402301788, 0.11179405450820923, 0.012072020210325718, -0.012447669170796871, -0.03941759467124939, -0.06197396293282509, 0.07880523055791855, 0.12177153676748276, -0.08995037525892258, 0.032200660556554794, -0.065863236784935, 0.029092583805322647, 0.007674444932490587, 0.06910084187984467, -0.09472547471523285, -0.11358793824911118, 0.05833575874567032, -0.04304802417755127, 0.11323472112417221, -0.012848319485783577, -0.049617212265729904, -0.059509553015232086, 0.1533442586660385, -0.023223696276545525, -0.12592962384223938, -0.07192973047494888, -0.05161420628428459, 0.023689955472946167, -0.07110351324081421, 0.05444900318980217, -0.07288802415132523, -0.05365629866719246, -0.008687223307788372, -0.14859546720981598, 0.07739532738924026, -0.06119794398546219, -0.06327339261770248, 0.04556160792708397, 0.05870039388537407, 0.056763794273138046, -0.0019746108446270227, 0.027067752555012703, 0.01672236993908882, -0.11312682181596756, -0.09427251666784286, -0.00244038924574852, 0.033564552664756775, 0.09096800535917282, -0.03495155647397041, -0.13002721965312958, 0.08654576539993286, -0.06762199103832245, -0.014287600293755531, 0.1374514400959015, 0.16810166835784912, -0.02838251367211342, 0.09170544147491455, 0.17323555052280426, -0.1004548892378807, -0.286796510219574, -0.2017260640859604, -0.0646519735455513, -0.010587770491838455, 0.012627274729311466, -0.17823271453380585, 0.08027992397546768, 0.09720940887928009, 0.0019299853593111038, 0.03244075924158096, -0.05608674883842468, -0.12515026330947876, 0.16902397572994232, 0.04111159220337868, 0.431844025850296, -0.13357725739479065, -0.002490031998604536, -0.04037316516041756, -0.10119974613189697, 0.0749296098947525, -0.00899962056428194, 0.09899590164422989, -0.054569732397794724, 0.03621464967727661, -0.011969656683504581, 0.007626652717590332, 0.07725406438112259, -0.09009978175163269, 0.040304046124219894, -0.1562637984752655, -0.018004821613430977, 0.13108128309249878, 0.021680057048797607, 0.03703532740473747, -0.03648938611149788, 0.0406775064766407, -0.1358451098203659, -0.04912810027599335, -0.0647435411810875, 0.0620594397187233, 0.0489824078977108, -0.11531946063041687, -0.05519340932369232, 0.07708235085010529, -0.07722699642181396, 0.017302891239523888, 0.09312178939580917, -0.1220649778842926, 0.08476652950048447, 0.01751450076699257, 0.11577074974775314, -0.10654620081186295, 0.12955515086650848, -0.04948858916759491, -0.06873518228530884, 0.04050082713365555, -0.07302606850862503, 0.016372215002775192, 0.08583738654851913, -0.051805656403303146, 0.09355815500020981, 0.04427974298596382, 0.017870398238301277, 0.05067010596394539, 0.10467065870761871, -0.2559959590435028, -0.09335928410291672, -0.07612083107233047, -0.10055140405893326, 0.0205475352704525, 0.0730813592672348, 0.16054219007492065, -0.018795808777213097, -0.05158328264951706, 0.00026757229352369905, -0.006135595962405205, -0.03377862647175789, 0.007597430143505335, 0.06340200453996658, -0.053728215396404266, -0.043661490082740784, 0.06435627490282059, 0.018205462023615837, -0.04668495059013367, 0.0041085402481257915, 0.005950717721134424, -0.1293187290430069, -0.07972460240125656, -0.10940411686897278, 0.07156385481357574, -0.14506983757019043, -0.02907879464328289, -0.06903046369552612, -0.036054328083992004, 0.010705772787332535, 0.06842464208602905, 0.07546650618314743, 0.03131021931767464, -0.04266900569200516, 0.019198700785636902, -0.010300539433956146, -0.01426120474934578, 0.05731624364852905, -0.027531703934073448, -0.05008647218346596, 0.09547151625156403, 0.036644864827394485, 0.13474369049072266, -0.10670612752437592, -0.044007398188114166, -0.06533388793468475, -0.029776472598314285, -0.09096364676952362, -0.08135712146759033, -0.10943886637687683, -0.06803601235151291, -0.030692780390381813, -0.03634583577513695, -0.04896632209420204, -0.049258679151535034, -0.09281034767627716, 0.0388457253575325, -0.03129547834396362, 0.011077165603637695, -0.023507332429289818, -0.02540726773440838, 0.08345986157655716, 0.016727406531572342, 0.08786550164222717, 0.10363143682479858, -0.03137346729636192, 0.07654687762260437, -0.04098505899310112, 0.02388474904000759, 0.03032994642853737, 0.021669358015060425, -0.024419039487838745, 0.04822828993201256, -0.030218565836548805, 0.0314931683242321, 0.023997066542506218, 0.026194678619503975, 0.056319937109947205, -0.07844351977109909, 0.10993591696023941, -0.010661006905138493, -0.0786665678024292, -0.05785574018955231, 0.02491172030568123, -0.055170901119709015, 0.11457587033510208, 0.13668742775917053, -0.08335626870393753, 0.056184593588113785, -0.09368637949228287, 0.03829327970743179, 0.00538790924474597, -0.1350865215063095, 0.08923289179801941, -0.17902381718158722, -0.018245434388518333, 0.048568468540906906, 0.22403183579444885, 0.02735406532883644, 0.002608750481158495, -0.010939150117337704, 0.1067764163017273, 0.0195232592523098, -0.06326501071453094, 0.1471760869026184, 0.0764826163649559, -0.005665059667080641, -0.08820649236440659, 0.16391034424304962, -0.03903910890221596, 0.0008538537076674402, 0.13376152515411377, -0.013023106381297112, -0.04424602910876274, 0.07326901704072952, -0.045043572783470154, 0.03606729209423065, 0.0011494739446789026, -0.10812780261039734, 0.05062323063611984, 0.09751714766025543, -0.007900194264948368, 0.16067960858345032, 0.17378847301006317, -0.02089555189013481, 0.01641986519098282, 0.0811007022857666, -0.053142860531806946, -0.18515925109386444, -0.2011861652135849, -0.07694341987371445, -0.16265027225017548, 0.0044499547220766544, -0.07355701923370361, -0.020404648035764694, 0.017624160274863243, 0.04861212521791458, -0.04369155317544937, 0.04146954044699669, -0.08401310443878174, -0.1498236507177353, 0.11302924156188965, -0.03747376799583435, -0.012435189448297024, -0.10747148096561432, -0.021486550569534302, -0.03052043542265892, 0.031158527359366417, 0.0038796563167124987, -0.002970887813717127, -0.005941919516772032, -0.005491259507834911, -0.07573540508747101, -0.07960803806781769, -0.10073322802782059, 0.09989240765571594, 0.008271077647805214, 0.05091048404574394, -0.021231817081570625, -0.012451093643903732, 0.007533238735049963, 0.16287358105182648, -0.0024994162376970053, -0.08346512913703918, -0.054752010852098465, 0.23052345216274261, -0.041034996509552, 0.03953161463141441, -0.007086144294589758, -0.008780651725828648, 0.05056745931506157, 0.3489843010902405, 0.2939869165420532, -0.05830987170338631, -0.012219320982694626, 0.015054005198180676, 0.037602901458740234, 0.11704828590154648, 0.09264302253723145, 0.0939563512802124, 0.124755859375, -0.09769944101572037, -0.06403517723083496, -0.0994562953710556, 0.03767608478665352, -0.07371874898672104, 0.022984826937317848, 0.0815645307302475, -0.05183139443397522, 0.003960517235100269, 0.07503179460763931, -0.11042144894599915, -0.025547174736857414, -0.07821720838546753, -0.021362580358982086, -0.01959351822733879, -0.0066222818568348885, -0.022681206464767456, -0.0002599340514279902, 0.08445645123720169, -0.04284762591123581, 0.02404039539396763, 0.17107367515563965, 0.05474244803190231, -0.14265339076519012, -0.0270738173276186, 0.11716505140066147, -0.09959753602743149, -0.018818646669387817, -0.04953784868121147, -0.031019283458590508, 0.04677808657288551, -0.011546926572918892, 0.0050789909437298775, 0.10985392332077026, -0.037058986723423004, 0.013461362570524216, 0.0061198268085718155, -0.011323179118335247, 0.04603487253189087, -0.14593221247196198, 0.008734765462577343, -0.06835594773292542, 0.10097550600767136, -0.03714747726917267, -0.11194220930337906, -0.010706620290875435, 0.11204720288515091, -0.1283383071422577, 0.11811964213848114, 0.11515623331069946, -0.009524021297693253, -0.017875973135232925, -0.06555429846048355, -0.03985926881432533, 0.044309742748737335, -0.05195445567369461, 0.006526122335344553, -0.03475583717226982, -0.07024364918470383, -0.005254313815385103, -0.02656594105064869, -0.20970962941646576, 0.0008766975370235741, -0.10985470563173294, -0.02385885640978813, -0.06054385378956795, 0.10071856528520584, 0.00942966341972351, 0.006651732139289379, 0.008018107153475285, 0.01534009724855423, 0.01523386500775814, 0.030269628390669823, -0.12061221897602081, -0.061883751302957535 ]
null
null
transformers
# GPT2 Bible style transfer paraphraser This is the trained Bible model from the paper [Reformulating Unsupervised Style Transfer as Paraphrase Generation](https://arxiv.org/abs/2010.05700) by Krishna K. et al. Note that I (the uploader) am not the author of the paper. Permission to upload to Huggingface was given by the main author. ## Citation If you found this model useful, please cite the original work: ``` @inproceedings{style20, author={Kalpesh Krishna and John Wieting and Mohit Iyyer}, Booktitle = {Empirical Methods in Natural Language Processing}, Year = "2020", Title={Reformulating Unsupervised Style Transfer as Paraphrase Generation}, } ```
{}
text-generation
filco306/gpt2-bible-paraphraser
[ "transformers", "pytorch", "text-generation", "arxiv:2010.05700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[ "2010.05700" ]
[]
TAGS #transformers #pytorch #text-generation #arxiv-2010.05700 #autotrain_compatible #endpoints_compatible #region-us
# GPT2 Bible style transfer paraphraser This is the trained Bible model from the paper Reformulating Unsupervised Style Transfer as Paraphrase Generation by Krishna K. et al. Note that I (the uploader) am not the author of the paper. Permission to upload to Huggingface was given by the main author. If you found this model useful, please cite the original work:
[ "# GPT2 Bible style transfer paraphraser\n\nThis is the trained Bible model from the paper Reformulating Unsupervised Style Transfer as Paraphrase Generation by Krishna K. et al. Note that I (the uploader) am not the author of the paper. Permission to upload to Huggingface was given by the main author. \n\n\nIf you found this model useful, please cite the original work:" ]
[ "TAGS\n#transformers #pytorch #text-generation #arxiv-2010.05700 #autotrain_compatible #endpoints_compatible #region-us \n", "# GPT2 Bible style transfer paraphraser\n\nThis is the trained Bible model from the paper Reformulating Unsupervised Style Transfer as Paraphrase Generation by Krishna K. et al. Note that I (the uploader) am not the author of the paper. Permission to upload to Huggingface was given by the main author. \n\n\nIf you found this model useful, please cite the original work:" ]
[ 42, 85 ]
[ "passage: TAGS\n#transformers #pytorch #text-generation #arxiv-2010.05700 #autotrain_compatible #endpoints_compatible #region-us \n# GPT2 Bible style transfer paraphraser\n\nThis is the trained Bible model from the paper Reformulating Unsupervised Style Transfer as Paraphrase Generation by Krishna K. et al. Note that I (the uploader) am not the author of the paper. Permission to upload to Huggingface was given by the main author. \n\n\nIf you found this model useful, please cite the original work:" ]
[ 0.008305924013257027, -0.03973846510052681, -0.003372024744749069, 0.05806238204240799, 0.13137325644493103, 0.06484947353601456, 0.12290965020656586, 0.04146311804652214, -0.14555440843105316, -0.07846622169017792, 0.13893850147724152, 0.11217566579580307, 0.015983376652002335, -0.06750229001045227, 0.05936179310083389, -0.3549312949180603, -0.016817009076476097, 0.08740349858999252, -0.01189098134636879, 0.11436436325311661, 0.06922072917222977, -0.032709814608097076, 0.12487857043743134, -0.010948406532406807, -0.03805657476186752, 0.0005588846397586167, -0.019320659339427948, 0.008327041752636433, 0.10729968547821045, 0.07920023053884506, 0.019397806376218796, 0.03131134808063507, 0.025021882727742195, -0.056875813752412796, 0.05540992692112923, 0.004217834677547216, -0.04868666082620621, 0.016491087153553963, -0.006537549197673798, -0.02899795211851597, 0.3271481394767761, 0.07565227895975113, -0.08255735039710999, 0.008972766809165478, -0.182783842086792, -0.0944875180721283, -0.0707181766629219, 0.08909010142087936, 0.07805322855710983, 0.07598358392715454, -0.017169252038002014, 0.1083243191242218, -0.00879758968949318, 0.09442522376775742, 0.1856999695301056, -0.28456804156303406, -0.053290143609046936, 0.07160693407058716, 0.02075793966650963, 0.1013682559132576, -0.014560322277247906, 0.08666403591632843, 0.038314249366521835, 0.08012477308511734, 0.021032527089118958, -0.13589662313461304, -0.083590567111969, -0.017186054959893227, -0.15640123188495636, -0.047347087413072586, 0.2677987515926361, -0.08531028032302856, -0.023789290338754654, 0.008694382384419441, -0.10266274213790894, 0.21597374975681305, 0.0016615435015410185, -0.06692527234554291, -0.030366946011781693, -0.00374214886687696, -0.015757763758301735, -0.21290913224220276, -0.10622745007276535, -0.08827559649944305, -0.16858690977096558, 0.03270262852311134, 0.04150121659040451, 0.001693239202722907, -0.0779092013835907, 0.13955476880073547, -0.10733934491872787, -0.07308395951986313, 0.01061960682272911, -0.13595151901245117, 0.21142680943012238, 0.028326740488409996, -0.06303523480892181, -0.0364399254322052, -0.1125146672129631, 0.12739083170890808, 0.1685454249382019, -0.010885234922170639, 0.03245419263839722, 0.03660941869020462, 0.029119621962308884, 0.09269934892654419, 0.002500817645341158, 0.007902562618255615, 0.0736808329820633, 0.010176361538469791, 0.07936229556798935, 0.02644808031618595, -0.15076513588428497, -0.10268726199865341, 0.021979251876473427, 0.05269191041588783, -0.020884307101368904, 0.1504354476928711, 0.051642172038555145, -0.05341482162475586, 0.12057942152023315, -0.032470911741256714, -0.06792603433132172, -0.10662633180618286, 0.036452341824769974, 0.021517010405659676, 0.1447121649980545, -0.030169324949383736, -0.10900002717971802, -0.042523451149463654, -0.052394166588783264, -0.015294250100851059, -0.030629849061369896, -0.0613565519452095, -0.028932714834809303, -0.12179384380578995, 0.017739344388246536, -0.1424207240343094, -0.22581300139427185, 0.015665506944060326, -0.03391537442803383, 0.04899173602461815, -0.06698451936244965, -0.023080699145793915, 0.0609099417924881, -0.022242454811930656, -0.028648799285292625, -0.005963734816759825, -0.031053973361849785, 0.09091765433549881, -0.08997523039579391, 0.04206457361578941, -0.06952480971813202, 0.06750282645225525, -0.13681286573410034, -0.02720601111650467, -0.21632695198059082, -0.0032959855161607265, 0.0016393822152167559, 0.044844429939985275, 0.01029716432094574, -0.07441121339797974, -0.12169193476438522, 0.04662661626935005, 0.01759941875934601, 0.1934603750705719, -0.09589926898479462, -0.13812404870986938, 0.20390619337558746, -0.146718829870224, -0.13687372207641602, 0.09799925237894058, 0.02761523239314556, 0.14892610907554626, 0.10493289679288864, 0.15532618761062622, 0.09933175891637802, -0.03953059762716293, 0.055698707699775696, 0.09093176573514938, -0.06079813838005066, -0.003261320758610964, 0.009189347736537457, -0.021291831508278847, -0.07007648050785065, -0.009231170639395714, 0.025151919573545456, 0.07426541298627853, -0.039946939796209335, 0.027043871581554413, 0.006780016236007214, -0.005727365147322416, -0.06642560660839081, 0.04117681831121445, 0.009150714613497257, 0.03221861273050308, -0.008982417173683643, -0.023484358564019203, 0.015141547657549381, -0.06692139059305191, 0.07526715844869614, 0.04990590363740921, 0.0885646864771843, -0.02108510583639145, 0.05450740456581116, -0.08198311179876328, 0.023552700877189636, -0.040003709495067596, 0.13315296173095703, 0.10463165491819382, 0.0630105659365654, 0.07804304361343384, -0.0015050357906147838, -0.09599708020687103, -0.0021107769571244717, 0.08936303853988647, -0.05828368663787842, -0.0917293131351471, -0.012034188024699688, 0.05142467841506004, 0.038854505866765976, -0.011066412553191185, -0.08757699280977249, 0.06671492010354996, -0.035973913967609406, 0.060974083840847015, -0.028538398444652557, 0.062380265444517136, 0.0611446388065815, -0.002345707733184099, -0.03180702403187752, -0.04058057442307472, 0.10305462777614594, -0.015397843904793262, -0.1020093485713005, 0.24272994697093964, -0.21962083876132965, 0.05858318507671356, 0.1432473063468933, -0.28060030937194824, -0.017961472272872925, 0.004007262643426657, -0.05640343204140663, -0.007306431885808706, 0.052089352160692215, 0.03347594290971756, 0.1595337837934494, -0.04696737602353096, 0.14893613755702972, -0.06283526122570038, -0.012023955583572388, 0.00723235122859478, -0.10768424719572067, -0.0005175775149837136, 0.131626158952713, 0.13659697771072388, -0.0957767516374588, 0.06865319609642029, 0.3202785849571228, 0.02002371847629547, 0.1404842883348465, 0.007016391027718782, -0.04719514027237892, -0.0007856906740926206, -0.16838614642620087, -0.029876381158828735, -0.06603993475437164, -0.000962820544373244, -0.02859593741595745, 0.0658690482378006, 0.07173299789428711, 0.09914819151163101, -0.08169595897197723, -0.011371186934411526, 0.014554175548255444, 0.021448418498039246, 0.0089789517223835, 0.1269833892583847, -0.059255052357912064, 0.07277101278305054, -0.09181398153305054, 0.09144458919763565, 0.03406567499041557, 0.07352989166975021, -0.06938239187002182, 0.16720621287822723, -0.08249402791261673, -0.2082410752773285, -0.1894540637731552, -0.07086619734764099, 0.014503750950098038, 0.047530535608530045, 0.10638348758220673, -0.003507602261379361, -0.05228454992175102, -0.061310555785894394, 0.15651649236679077, -0.08934175223112106, -0.034089818596839905, -0.14693869650363922, -0.12190677225589752, -0.021960148587822914, -0.08810696750879288, -0.059696778655052185, -0.010661878623068333, -0.24139344692230225, 0.12347084283828735, -0.17479968070983887, 0.08712233603000641, 0.023097025230526924, 0.06653450429439545, -0.0068261572159826756, -0.044941458851099014, 0.21543194353580475, -0.04922036826610565, 0.09815140068531036, 0.26939815282821655, -0.0075205727480351925, 0.11047541350126266, -0.021259872242808342, -0.062062378972768784, -0.03119955025613308, 0.00578059908002615, -0.014842290431261063, -0.10672570019960403, -0.09508584439754486, -0.023203449323773384, -0.05015888437628746, 0.03264206275343895, 0.006748206447809935, 0.0032044334802776575, 0.06423858553171158, 0.11937755346298218, -0.10218606144189835, 0.0479196235537529, 0.01586853340268135, 0.09905900061130524, 0.24762757122516632, -0.07018066942691803, 0.1395370215177536, -0.06767137348651886, -0.0754735991358757, 0.10728809237480164, -0.09582701325416565, 0.212960883975029, 0.02494698204100132, -0.004989670589566231, 0.06689084321260452, 0.08660201728343964, 0.07409483194351196, 0.12307634204626083, -0.03837614506483078, 0.00400252640247345, -0.08970285207033157, -0.024319011718034744, -0.07883032411336899, 0.03461875021457672, -0.05273483321070671, -0.12179690599441528, -0.07931309193372726, -0.03924236446619034, 0.020370392128825188, 0.10287807881832123, 0.07758952677249908, -0.14269216358661652, -0.03697631508111954, 0.023084433749318123, 0.013602993451058865, -0.12174011021852493, 0.04223036393523216, -0.05809438228607178, -0.09934747964143753, 0.11589241027832031, 0.011309024877846241, 0.10520794242620468, -0.0799465924501419, 0.05868351086974144, -0.18906964361667633, -0.08272946625947952, -0.03804689273238182, 0.11551184207201004, -0.23481442034244537, 0.19348393380641937, 0.0009008378838188946, -0.050718989223241806, -0.035311076790094376, -0.07392328977584839, 0.11493224650621414, 0.2563713490962982, 0.06021585687994957, 0.026985010132193565, 0.04559791833162308, -0.047828078269958496, -0.02329607866704464, 0.07263840734958649, 0.10730648040771484, -0.0928564965724945, 0.04659666121006012, -0.057506926357746124, 0.0468854084610939, -0.023557791486382484, 0.110519640147686, -0.05199979990720749, -0.0826120525598526, 0.06480376422405243, -0.04090375825762749, 0.05222481116652489, -0.018004491925239563, -0.061124641448259354, -0.0724397748708725, 0.03592643141746521, 0.00003148695031995885, -0.10398516803979874, -0.03771303594112396, -0.058567922562360764, 0.058625008910894394, -0.1070433035492897, 0.027607934549450874, -0.06405428797006607, -0.09808143973350525, -0.026606032624840736, -0.12411964684724808, 0.03739464655518532, -0.04804285615682602, -0.0684896856546402, 0.07833743840456009, 0.1445256918668747, 0.04353262856602669, 0.02058597467839718, -0.00033638474997133017, -0.010136853903532028, -0.09188754111528397, -0.07960640639066696, 0.03326788544654846, 0.07022121548652649, 0.07488247007131577, -0.011940479278564453, -0.09481638669967651, 0.10372518748044968, -0.08363789319992065, 0.007643468677997589, 0.10264943540096283, 0.1780722439289093, 0.0390394926071167, 0.05370311066508293, 0.18697237968444824, -0.11344204097986221, -0.29889214038848877, -0.2486944943666458, -0.07896661758422852, -0.005507468245923519, 0.06792435795068741, -0.15309341251850128, 0.077220618724823, 0.03489485755562782, 0.009201837703585625, 0.046662602573633194, -0.07862347364425659, -0.12486706674098969, 0.14989545941352844, 0.0047248112969100475, 0.361068457365036, -0.11688264459371567, -0.011604554019868374, 0.007180838380008936, -0.140174999833107, 0.0739206001162529, -0.036627933382987976, 0.11850231885910034, -0.06570783257484436, 0.13048666715621948, -0.002728288760408759, -0.001184397959150374, 0.0702122375369072, -0.04424293339252472, 0.02842617593705654, -0.1810552477836609, -0.030873265117406845, 0.0998707115650177, -0.02074524387717247, -0.023701230064034462, -0.13023871183395386, 0.04354449734091759, -0.12888772785663605, -0.057589299976825714, -0.05181814730167389, 0.05250459536910057, 0.00442340224981308, -0.1044352725148201, -0.00490383617579937, 0.05511845275759697, -0.06304359436035156, 0.026356831192970276, 0.05768898129463196, -0.11109193414449692, 0.039474718272686005, -0.01379190944135189, 0.134126678109169, -0.07582508027553558, 0.10337177664041519, -0.1272243857383728, -0.05795310065150261, 0.03436168283224106, -0.10273699462413788, 0.035768941044807434, 0.09131094813346863, -0.06314490735530853, 0.08824033290147781, 0.03776443749666214, 0.023729702457785606, 0.014429954811930656, 0.04828735068440437, -0.20210906863212585, -0.11227551847696304, -0.06753724813461304, -0.10420233011245728, -0.03490949049592018, 0.07856805622577667, 0.1817464530467987, 0.025717442855238914, -0.05179598554968834, -0.009749109856784344, -0.008201945573091507, 0.0006282090907916427, 0.032212067395448685, 0.00984873715788126, -0.049063634127378464, -0.028462843969464302, 0.034663040190935135, -0.01815779320895672, -0.038518182933330536, -0.0033548055216670036, 0.0568331740796566, -0.1101434975862503, -0.11087661981582642, -0.11382604390382767, 0.05279375612735748, -0.1608356535434723, 0.012379552237689495, 0.013362077064812183, -0.02895609848201275, 0.03564724698662758, 0.10068017244338989, 0.08427969366312027, -0.0015025250613689423, -0.08089488744735718, 0.026707777753472328, 0.03421318903565407, -0.0017396766925230622, 0.04297937825322151, -0.03641263768076897, -0.05849868059158325, 0.13848170638084412, 0.02467372454702854, 0.1224135011434555, -0.08095947653055191, -0.05306434631347656, -0.022747162729501724, -0.006667975801974535, -0.0905207097530365, -0.06538698077201843, -0.07436541467905045, -0.0240006223320961, -0.03831141069531441, -0.053009890019893646, -0.05148252472281456, -0.05472598969936371, -0.0946464017033577, 0.041893407702445984, -0.019902518019080162, 0.06416524946689606, 0.011335582472383976, -0.04697161167860031, 0.09636369347572327, 0.018583817407488823, 0.07212989032268524, 0.09729884564876556, -0.034705061465501785, 0.10348097234964371, -0.025393258780241013, 0.007548977620899677, 0.02628750167787075, 0.050823695957660675, -0.07598720490932465, 0.14160412549972534, -0.044619377702474594, 0.008555802516639233, -0.005251480266451836, 0.01801278628408909, -0.007243734784424305, -0.056354183703660965, 0.12762171030044556, 0.04919303581118584, -0.07924963533878326, -0.04069165885448456, 0.02778562344610691, -0.11784834414720535, 0.13270075619220734, 0.12824571132659912, -0.07457662373781204, 0.052054986357688904, -0.1344502568244934, 0.045824840664863586, 0.014921354129910469, -0.1771755814552307, 0.07091644406318665, -0.19944453239440918, 0.0033013392239809036, 0.04468650743365288, 0.14691567420959473, -0.0004539117799140513, 0.0036489004269242287, -0.021628370508551598, 0.17992481589317322, 0.040084339678287506, -0.12922360002994537, 0.11270330101251602, 0.09932352602481842, -0.04214083403348923, -0.09988028556108475, 0.11763360351324081, -0.04954713210463524, -0.01009352970868349, 0.13576897978782654, -0.0074730198830366135, -0.04798578843474388, 0.03102785535156727, -0.056377388536930084, 0.03501594066619873, 0.006204967852681875, -0.21812081336975098, 0.0936395674943924, 0.11030114442110062, -0.01374108251184225, 0.15833237767219543, 0.11767998337745667, 0.03390930965542793, 0.002952712820842862, 0.0442926287651062, -0.012869266793131828, -0.1720385104417801, -0.2238338440656662, -0.028323853388428688, -0.0649469718337059, 0.020280320197343826, -0.03200876712799072, -0.007136964239180088, 0.05302419140934944, 0.052192747592926025, -0.04998651519417763, 0.07215338945388794, -0.03917689621448517, -0.14442306756973267, 0.06125559285283089, -0.0519774965941906, -0.00809419248253107, -0.11037015914916992, -0.01282741129398346, -0.006829104386270046, 0.010234338231384754, 0.0005910309264436364, -0.046181391924619675, 0.009520665742456913, -0.018514662981033325, -0.11953777819871902, -0.07413443177938461, -0.13189052045345306, 0.10990697890520096, -0.0012022521113976836, 0.01634190045297146, -0.03626689314842224, -0.0031648091971874237, 0.004388490226119757, 0.14760391414165497, 0.02028665505349636, -0.16785666346549988, 0.027425922453403473, 0.25158512592315674, -0.0023223916068673134, 0.0019346754997968674, -0.003972876351326704, 0.01974627748131752, 0.05508695915341377, 0.33873769640922546, 0.3126797378063202, -0.06345474720001221, -0.02207186445593834, 0.057475943118333817, 0.04183607175946236, 0.1352991908788681, 0.03246413543820381, 0.06796935200691223, 0.1374824345111847, -0.08646287769079208, -0.03283149003982544, -0.08615667372941971, 0.023953473195433617, -0.0036185544449836016, 0.03453914821147919, 0.037059981375932693, -0.042118482291698456, 0.056752439588308334, 0.031512148678302765, -0.07394341379404068, -0.04514465108513832, -0.1132713109254837, -0.04583274945616722, 0.014466069638729095, -0.017293797805905342, -0.013498838059604168, 0.0611911378800869, 0.07393103092908859, -0.05941370874643326, 0.020626623183488846, 0.12928584218025208, 0.041107241064310074, -0.15060757100582123, -0.005927056074142456, 0.12439627200365067, -0.1197829321026802, -0.02248062565922737, -0.048827171325683594, -0.005036769434809685, 0.03619186952710152, 0.0033532450906932354, 0.04255229979753494, 0.10805834829807281, -0.007791349198669195, 0.0337010957300663, -0.004602937027812004, -0.008871200494468212, 0.019907450303435326, -0.14683784544467926, 0.002665773732587695, -0.10560508072376251, 0.09384280443191528, 0.04904941841959953, -0.12865103781223297, 0.03356723487377167, 0.06626513600349426, -0.0730820819735527, 0.09541358798742294, 0.13194593787193298, 0.0019138603238388896, -0.04069958254694939, -0.07079257816076279, -0.0598929338157177, 0.0775369182229042, -0.04844927042722702, 0.018557626754045486, 0.02073109894990921, -0.0865095928311348, -0.04557851701974869, -0.04375327751040459, -0.19694627821445465, -0.023989880457520485, -0.08075577765703201, -0.010262727737426758, -0.08799277991056442, 0.09963543713092804, -0.0065833041444420815, 0.006165105849504471, 0.038601990789175034, 0.06971213966608047, 0.006086495239287615, 0.0294656939804554, -0.122481569647789, -0.04141152650117874 ]
null
null
transformers
# GPT2 Romantic poetry style transfer paraphraser This is the trained Romantic poetry-model from the paper [Reformulating Unsupervised Style Transfer as Paraphrase Generation](https://arxiv.org/abs/2010.05700) by Krishna K. et al. Note that I (the uploader) am not the author of the paper. Permission to upload to Huggingface was given by the main author. ## Citation If you found this model useful, please cite the original work: ``` @inproceedings{style20, author={Kalpesh Krishna and John Wieting and Mohit Iyyer}, Booktitle = {Empirical Methods in Natural Language Processing}, Year = "2020", Title={Reformulating Unsupervised Style Transfer as Paraphrase Generation}, } ```
{}
text-generation
filco306/gpt2-romantic-poetry-paraphraser
[ "transformers", "pytorch", "text-generation", "arxiv:2010.05700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[ "2010.05700" ]
[]
TAGS #transformers #pytorch #text-generation #arxiv-2010.05700 #autotrain_compatible #endpoints_compatible #region-us
# GPT2 Romantic poetry style transfer paraphraser This is the trained Romantic poetry-model from the paper Reformulating Unsupervised Style Transfer as Paraphrase Generation by Krishna K. et al. Note that I (the uploader) am not the author of the paper. Permission to upload to Huggingface was given by the main author. If you found this model useful, please cite the original work:
[ "# GPT2 Romantic poetry style transfer paraphraser\n\nThis is the trained Romantic poetry-model from the paper Reformulating Unsupervised Style Transfer as Paraphrase Generation by Krishna K. et al. Note that I (the uploader) am not the author of the paper. Permission to upload to Huggingface was given by the main author. \n\n\nIf you found this model useful, please cite the original work:" ]
[ "TAGS\n#transformers #pytorch #text-generation #arxiv-2010.05700 #autotrain_compatible #endpoints_compatible #region-us \n", "# GPT2 Romantic poetry style transfer paraphraser\n\nThis is the trained Romantic poetry-model from the paper Reformulating Unsupervised Style Transfer as Paraphrase Generation by Krishna K. et al. Note that I (the uploader) am not the author of the paper. Permission to upload to Huggingface was given by the main author. \n\n\nIf you found this model useful, please cite the original work:" ]
[ 42, 90 ]
[ "passage: TAGS\n#transformers #pytorch #text-generation #arxiv-2010.05700 #autotrain_compatible #endpoints_compatible #region-us \n# GPT2 Romantic poetry style transfer paraphraser\n\nThis is the trained Romantic poetry-model from the paper Reformulating Unsupervised Style Transfer as Paraphrase Generation by Krishna K. et al. Note that I (the uploader) am not the author of the paper. Permission to upload to Huggingface was given by the main author. \n\n\nIf you found this model useful, please cite the original work:" ]
[ 0.06093309819698334, -0.009271158836781979, -0.004061062354594469, 0.07652349770069122, 0.0922376736998558, 0.039792560040950775, 0.04867467284202576, 0.0439453050494194, -0.17755354940891266, -0.07942917197942734, 0.14914816617965698, 0.12239902466535568, 0.008480689488351345, -0.07204777747392654, 0.02974790334701538, -0.37025687098503113, -0.023728514090180397, 0.04569126293063164, 0.07487791776657104, 0.11134239286184311, 0.09732063859701157, -0.00950046069920063, 0.124265655875206, 0.048305120319128036, 0.002574503654614091, -0.016552358865737915, -0.01030045561492443, 0.0009753429912962019, 0.10170501470565796, 0.07847058773040771, 0.009550373069941998, 0.07340500503778458, 0.008102341555058956, -0.07949498295783997, 0.036820217967033386, -0.02248193696141243, -0.07570790499448776, 0.002970967208966613, 0.12082666158676147, -0.11794398725032806, 0.26989439129829407, 0.009233725257217884, -0.02537251077592373, -0.002554569160565734, -0.11407096683979034, -0.06861431151628494, -0.08915820717811584, 0.08516806364059448, 0.07861566543579102, 0.12335440516471863, -0.0055229077115654945, 0.098491370677948, 0.018751516938209534, 0.045122891664505005, 0.15902936458587646, -0.3055051267147064, -0.0700211301445961, 0.00962748471647501, 0.06472795456647873, 0.09851635992527008, -0.07619225978851318, 0.0710332915186882, -0.013503557071089745, 0.07252918928861618, 0.049199383705854416, -0.1287125051021576, -0.013525302521884441, 0.029169751331210136, -0.12638923525810242, 0.037347082048654556, 0.24888619780540466, -0.06509985774755478, -0.04147947579622269, 0.014448156580328941, -0.11073873192071915, 0.1685696840286255, -0.036234669387340546, -0.08300191909074783, -0.015981877222657204, 0.008409315720200539, 0.058760110288858414, -0.19965584576129913, -0.15358172357082367, -0.03479462116956711, -0.10070402175188065, -0.05682508647441864, 0.0029644130263477564, 0.007702544331550598, -0.02053888514637947, 0.07944771647453308, -0.0913209393620491, 0.005847111809998751, 0.05627599358558655, -0.13526292145252228, 0.20691931247711182, 0.04512470215559006, -0.08411527425050735, -0.16343414783477783, -0.0830678939819336, 0.09841115027666092, 0.2164180725812912, -0.004715280141681433, 0.11155769228935242, 0.03484567627310753, 0.07044430077075958, 0.07337906211614609, -0.0022042104974389076, -0.02797766961157322, 0.07839251309633255, -0.04344803839921951, 0.09621400386095047, 0.008002545684576035, -0.1329270601272583, -0.1005764827132225, 0.0524841845035553, -0.027169032022356987, -0.01994229666888714, 0.11415588110685349, 0.0105950478464365, -0.021562449634075165, 0.16193732619285583, 0.02815566211938858, -0.05324427783489227, -0.0816929042339325, 0.026800693944096565, 0.07659540325403214, 0.1013733446598053, 0.005014225374907255, -0.1006057858467102, 0.011455053463578224, -0.08603972941637039, -0.029970217496156693, 0.0351378507912159, -0.050950534641742706, -0.031182214617729187, -0.1393224000930786, 0.028308138251304626, -0.17269162833690643, -0.172084242105484, -0.03622407093644142, 0.028158973902463913, -0.016944916918873787, -0.08135367184877396, -0.06526839733123779, 0.06875976175069809, 0.008034758269786835, -0.02722381055355072, -0.05288352072238922, -0.03730771318078041, 0.03980785980820656, -0.14559291303157806, 0.054646044969558716, -0.1692306399345398, 0.07560447603464127, -0.15261635184288025, -0.039293836802244186, -0.15699049830436707, -0.02434067241847515, 0.05613568425178528, 0.011236773803830147, -0.01681944914162159, -0.06116615980863571, -0.009999134577810764, -0.00922793336212635, -0.0347352996468544, 0.1893591433763504, -0.0870341882109642, -0.08583154529333115, 0.14957241714000702, -0.09311352670192719, -0.062432557344436646, 0.13706807792186737, 0.019395072013139725, 0.11544521152973175, 0.07105519622564316, 0.20993982255458832, 0.0673953965306282, -0.017290793359279633, 0.06844206899404526, 0.0590088777244091, -0.08411956578493118, 0.013192160986363888, 0.02989887073636055, 0.034077126532793045, -0.0704183429479599, 0.032056305557489395, 0.021697960793972015, -0.002184914657846093, 0.02351086400449276, -0.002514118095859885, -0.022738561034202576, 0.022888444364070892, -0.030166208744049072, -0.010390021838247776, 0.0481836199760437, -0.029302503913640976, -0.026364244520664215, -0.08913028985261917, 0.003098191926255822, -0.0067704906687140465, 0.09989435225725174, 0.029627561569213867, 0.09987696260213852, 0.124280646443367, 0.036025408655405045, -0.058228082954883575, 0.09428705275058746, -0.0398002564907074, 0.07661397010087967, 0.029246347025036812, 0.09546034783124924, 0.041943736374378204, 0.013103564269840717, -0.06011396273970604, 0.04916984587907791, 0.09159466624259949, -0.04478470981121063, -0.08966688066720963, -0.06249367445707321, 0.10197918117046356, 0.008458338677883148, 0.08651230484247208, -0.13023628294467926, 0.022062525153160095, -0.030679214745759964, -0.009720664471387863, -0.025151856243610382, 0.06463799625635147, 0.03210832551121712, 0.0033997874706983566, -0.06359107792377472, 0.04785347357392311, 0.12845246493816376, 0.03269093856215477, -0.10239556431770325, 0.28520357608795166, -0.14289093017578125, -0.03256642073392868, 0.12703031301498413, -0.28719523549079895, -0.013852214440703392, -0.08988139033317566, -0.05528322234749794, -0.0054498822428286076, 0.13053318858146667, 0.07022653520107269, 0.13647228479385376, -0.04532730579376221, 0.1594783067703247, -0.07791285216808319, 0.029761143028736115, -0.004241885617375374, -0.14504943788051605, -0.06412094831466675, 0.15430091321468353, 0.0026542285922914743, -0.02011916972696781, 0.08423344790935516, 0.2395399808883667, -0.02436375804245472, 0.1705143302679062, 0.07946228981018066, -0.008987710811197758, -0.023614004254341125, -0.13975289463996887, -0.04159840941429138, -0.028169648721814156, -0.08877667039632797, -0.018363798037171364, 0.07192560285329819, 0.008011993020772934, 0.07890528440475464, -0.11609882116317749, -0.08794290572404861, -0.01987527124583721, 0.05030694603919983, 0.03907719627022743, 0.124847412109375, -0.03451823815703392, 0.06015295162796974, -0.019749393686652184, 0.0940634086728096, 0.018154695630073547, 0.058394305408000946, -0.08250568807125092, 0.09861365705728531, -0.1632848083972931, -0.2789528965950012, -0.14484260976314545, 0.015338033437728882, -0.031188592314720154, 0.020674679428339005, 0.09166973829269409, -0.040001023560762405, -0.039901699870824814, -0.10072586685419083, 0.07757516205310822, -0.07558128982782364, -0.10109375417232513, -0.17069752514362335, -0.002931819763034582, -0.08262189477682114, -0.03164589777588844, -0.04678395390510559, -0.022562101483345032, -0.13638292253017426, 0.1490473449230194, -0.15237079560756683, 0.11461032927036285, 0.03372877463698387, 0.05019175633788109, -0.05760536715388298, -0.018378091976046562, 0.1446942538022995, -0.02463792823255062, 0.09810155630111694, 0.19165241718292236, 0.045681748539209366, 0.11271065473556519, -0.0013993749162182212, -0.0630321055650711, -0.0167080145329237, 0.03515097126364708, -0.015690378844738007, -0.050934381783008575, -0.09703582525253296, -0.08412379771471024, -0.031444162130355835, 0.11889299005270004, -0.02203535847365856, 0.03398459032177925, 0.03309696167707443, 0.14844980835914612, -0.052089422941207886, -0.008368991315364838, -0.01729508861899376, 0.11066828668117523, 0.2901153564453125, -0.09148053824901581, 0.1265455037355423, -0.0706382468342781, -0.03296983242034912, 0.1501614898443222, -0.03669137880206108, 0.09815199673175812, 0.03285163268446922, 0.028798988088965416, 0.02681879885494709, 0.225234255194664, 0.037139300256967545, 0.037030890583992004, 0.036624811589717865, -0.014927802607417107, -0.11310015618801117, -0.03340105339884758, -0.05901904031634331, 0.12251205742359161, -0.05774983763694763, -0.13828077912330627, -0.028669295832514763, -0.06254621595144272, 0.03615569695830345, 0.13437332212924957, 0.06571847945451736, -0.09069201350212097, 0.0049178930930793285, 0.021190686151385307, 0.014792677015066147, -0.08988756686449051, 0.024755386635661125, -0.10335201025009155, -0.17654944956302643, 0.09978511929512024, -0.045460477471351624, 0.07339868694543839, -0.07851429283618927, 0.042171888053417206, -0.16014347970485687, -0.08791683614253998, 0.013815738260746002, 0.09608634561300278, -0.16593770682811737, 0.17504021525382996, 0.00985680054873228, -0.053066644817590714, -0.021208414807915688, -0.10181693732738495, 0.04903245344758034, 0.17477184534072876, 0.1062440425157547, 0.015475071966648102, 0.07546151429414749, 0.03308187052607536, -0.034001804888248444, 0.05559242144227028, 0.11596830189228058, -0.08405273407697678, 0.023202842101454735, -0.07507826387882233, 0.021562552079558372, -0.05897953361272812, 0.16117557883262634, -0.05120162293314934, -0.15435642004013062, 0.011811564676463604, -0.028166847303509712, -0.0066804904490709305, 0.021899722516536713, -0.04627617076039314, -0.00010511586151551455, 0.0521492101252079, 0.10034338384866714, -0.1066003367304802, -0.022148214280605316, -0.14211711287498474, -0.024625709280371666, -0.045157380402088165, 0.034405410289764404, -0.11031492054462433, -0.10624400526285172, -0.05071324482560158, -0.10080042481422424, 0.04877282679080963, -0.025104418396949768, -0.060903675854206085, 0.02241179347038269, 0.10549993813037872, 0.08626455813646317, 0.0099274180829525, -0.004274019971489906, 0.037372034043073654, -0.14978496730327606, -0.09206385165452957, 0.02555658482015133, -0.002787573728710413, 0.057074204087257385, -0.07051236927509308, -0.12485429644584656, 0.05055028945207596, -0.10322850942611694, -0.07831577211618423, 0.1441868543624878, 0.18015453219413757, 0.006150558590888977, 0.14727844297885895, 0.17698878049850464, -0.12538032233715057, -0.28832295536994934, -0.16804857552051544, -0.09445612877607346, -0.049640458077192307, 0.04479887709021568, -0.17653800547122955, -0.009518474340438843, 0.05994760990142822, 0.028405217453837395, 0.00703987292945385, -0.08787816762924194, -0.10157589614391327, 0.09761427342891693, 0.04052838683128357, 0.4180953800678253, -0.13197672367095947, -0.007396066095679998, -0.045960161834955215, -0.11670627444982529, 0.07472871989011765, 0.11508069932460785, 0.1182357594370842, -0.11240985989570618, 0.12135742604732513, -0.018053492531180382, 0.03650783747434616, 0.06803370267152786, -0.1213630810379982, 0.030896620824933052, -0.1623450219631195, 0.019647911190986633, 0.12967455387115479, 0.014557995833456516, 0.01466756034642458, -0.10071369260549545, 0.024270905181765556, -0.07907707989215851, -0.04971013218164444, -0.14739945530891418, 0.02424836903810501, 0.00733063044026494, -0.11300267279148102, -0.05992256850004196, 0.102203868329525, -0.04737648367881775, -0.015954922884702682, -0.00008565965254092589, -0.06734839826822281, 0.013422906398773193, -0.021029658615589142, 0.05836429446935654, -0.003721074666827917, -0.003424004651606083, -0.04700767248868942, -0.06919196993112564, 0.01018136739730835, -0.05378687009215355, -0.017596902325749397, 0.10421845316886902, -0.049505580216646194, 0.03398364782333374, 0.02203579805791378, -0.010679611004889011, 0.011157295666635036, 0.08115693926811218, -0.29971522092819214, -0.16029249131679535, -0.0743517279624939, -0.15586130321025848, 0.08500813692808151, -0.012646275572478771, 0.18092985451221466, -0.020838383585214615, -0.07022791355848312, 0.0011239700252190232, -0.0061824508011341095, 0.016615262255072594, -0.047743044793605804, -0.008283313363790512, -0.08768139779567719, 0.014862489886581898, 0.08417785167694092, 0.01054696086794138, -0.18064816296100616, 0.02452138625085354, 0.13321949541568756, -0.09548702836036682, -0.08076319843530655, -0.10164749622344971, 0.009214021265506744, -0.22017131745815277, 0.04494781419634819, -0.03058832883834839, -0.014930537901818752, 0.0022680622059851885, 0.12489401549100876, 0.07433074712753296, 0.04518634453415871, -0.05981599539518356, 0.017504535615444183, -0.004345160908997059, -0.006538773886859417, 0.07724597305059433, -0.07138478010892868, -0.039316851645708084, 0.05341160297393799, 0.00966237485408783, 0.12213141471147537, -0.08169001340866089, -0.06455643475055695, -0.030198264867067337, -0.06448625773191452, -0.15353886783123016, -0.04749871417880058, -0.12241333723068237, -0.06279617547988892, -0.07559611648321152, 0.041487038135528564, -0.058430835604667664, -0.09992063790559769, -0.06316787749528885, -0.0028184298425912857, -0.01352617982774973, 0.04573154076933861, 0.005853801034390926, -0.06314381957054138, 0.07390734553337097, 0.02378206141293049, 0.05789214000105858, 0.13633359968662262, -0.040461182594299316, 0.05797740817070007, -0.052912622690200806, 0.06710425019264221, 0.01873525232076645, 0.01697869971394539, -0.020322050899267197, 0.05813619866967201, -0.08222328871488571, -0.0023805107921361923, 0.020098721608519554, 0.0506206639111042, 0.15832796692848206, -0.09740842133760452, 0.09875927865505219, 0.06700411438941956, -0.12097849696874619, -0.09189438074827194, -0.007185259833931923, -0.05763992667198181, 0.07013123482465744, 0.14495423436164856, -0.0979200005531311, 0.07446954399347305, -0.08203084766864777, 0.03766656666994095, 0.003925674129277468, -0.10974206030368805, 0.015806660056114197, -0.12373848259449005, -0.03343450650572777, 0.027816126123070717, 0.16805122792720795, 0.037968944758176804, -0.09082620590925217, 0.025237640365958214, 0.17213311791419983, -0.0028227015864104033, -0.08907175809144974, 0.01861211284995079, 0.07904774695634842, -0.0914682075381279, -0.09853054583072662, 0.15644370019435883, -0.030138054862618446, 0.04360102862119675, 0.07794693112373352, 0.015374802052974701, 0.08103679120540619, 0.10502547770738602, -0.06984666734933853, 0.08800662308931351, -0.018749568611383438, -0.07666194438934326, 0.057376112788915634, 0.1570294201374054, -0.04811936616897583, 0.21644623577594757, 0.13337311148643494, 0.005862596910446882, 0.031008176505565643, 0.02622072957456112, -0.0747418999671936, -0.15259872376918793, -0.24524562060832977, -0.05276134982705116, -0.06667471677064896, -0.014321105554699898, -0.013598248362541199, -0.011838310398161411, -0.01902443915605545, 0.04572387784719467, -0.08378975838422775, 0.01943550445139408, -0.017093772068619728, -0.1730465590953827, 0.17238928377628326, -0.010797522030770779, 0.010367391631007195, -0.03928833827376366, 0.03258479759097099, -0.048861145973205566, -0.03042268007993698, -0.010526168160140514, 0.028140611946582794, 0.028275206685066223, -0.018676193431019783, -0.10008184611797333, -0.07054433226585388, -0.10425127297639847, 0.11296544224023819, 0.025287296622991562, 0.09286224842071533, -0.02100943960249424, -0.013466594740748405, 0.020179247483611107, 0.21031343936920166, 0.05247991904616356, 0.06194151192903519, -0.003986714873462915, 0.22509469091892242, -0.05843483284115791, 0.007760543841868639, 0.048207592219114304, 0.05956343933939934, 0.021396612748503685, 0.27043741941452026, 0.3208360970020294, -0.06800255179405212, -0.01512544322758913, 0.03117801435291767, 0.04518464207649231, 0.11193611472845078, 0.06788375973701477, 0.10619881004095078, 0.13965126872062683, -0.13011015951633453, -0.024785250425338745, -0.16683931648731232, 0.057660967111587524, -0.04439791291952133, 0.0984058678150177, 0.08446823060512543, 0.005895896814763546, 0.005772273987531662, 0.027593448758125305, -0.1424027681350708, 0.03230616822838783, -0.09247590601444244, -0.080180823802948, -0.014928744174540043, 0.010818757116794586, -0.004203849472105503, -0.01002788357436657, 0.14792393147945404, 0.018125299364328384, 0.042214345186948776, 0.13710513710975647, 0.018834849819540977, -0.1491178274154663, 0.014177672564983368, 0.1508243978023529, -0.14915049076080322, 0.02934953384101391, -0.04674520716071129, -0.05902143195271492, 0.03247736766934395, 0.039688024669885635, 0.035940080881118774, 0.10144861787557602, -0.019576897844672203, 0.017486197873950005, -0.006522420793771744, 0.009699194692075253, 0.05010233446955681, -0.08360018581151962, 0.049883414059877396, 0.015868699178099632, 0.13664574921131134, 0.04193562641739845, -0.09229236841201782, -0.003497295780107379, 0.16897143423557281, -0.175393208861351, 0.0765770971775055, 0.14855219423770905, 0.0078091430477797985, -0.03371846303343773, -0.05994412302970886, -0.08081699162721634, 0.008640806190669537, -0.07769595086574554, 0.07051540911197662, 0.026459859684109688, -0.017048191279172897, 0.04883025586605072, -0.007199474144726992, -0.2783292829990387, -0.03793090209364891, -0.09358936548233032, 0.008708391338586807, -0.07315729558467865, 0.08079925924539566, -0.07259323447942734, -0.0013712123036384583, 0.028953157365322113, 0.03639381751418114, 0.030122919008135796, -0.024268317967653275, -0.057076115161180496, -0.08612003922462463 ]
null
null
transformers
# GPT2 Shakespeare style transfer paraphraser This is the trained Shakespeare-model from the paper [Reformulating Unsupervised Style Transfer as Paraphrase Generation](https://arxiv.org/abs/2010.05700) by Krishna K. et al. Note that I (the uploader) am not the author of the paper. Permission to upload to Huggingface was given by the main author. ## Citation If you found this model useful, please cite the original work: ``` @inproceedings{style20, author={Kalpesh Krishna and John Wieting and Mohit Iyyer}, Booktitle = {Empirical Methods in Natural Language Processing}, Year = "2020", Title={Reformulating Unsupervised Style Transfer as Paraphrase Generation}, } ```
{}
text-generation
filco306/gpt2-shakespeare-paraphraser
[ "transformers", "pytorch", "text-generation", "arxiv:2010.05700", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
2022-03-02T23:29:05+00:00
[ "2010.05700" ]
[]
TAGS #transformers #pytorch #text-generation #arxiv-2010.05700 #autotrain_compatible #endpoints_compatible #has_space #region-us
# GPT2 Shakespeare style transfer paraphraser This is the trained Shakespeare-model from the paper Reformulating Unsupervised Style Transfer as Paraphrase Generation by Krishna K. et al. Note that I (the uploader) am not the author of the paper. Permission to upload to Huggingface was given by the main author. If you found this model useful, please cite the original work:
[ "# GPT2 Shakespeare style transfer paraphraser\n\nThis is the trained Shakespeare-model from the paper Reformulating Unsupervised Style Transfer as Paraphrase Generation by Krishna K. et al. Note that I (the uploader) am not the author of the paper. Permission to upload to Huggingface was given by the main author. \n\n\nIf you found this model useful, please cite the original work:" ]
[ "TAGS\n#transformers #pytorch #text-generation #arxiv-2010.05700 #autotrain_compatible #endpoints_compatible #has_space #region-us \n", "# GPT2 Shakespeare style transfer paraphraser\n\nThis is the trained Shakespeare-model from the paper Reformulating Unsupervised Style Transfer as Paraphrase Generation by Krishna K. et al. Note that I (the uploader) am not the author of the paper. Permission to upload to Huggingface was given by the main author. \n\n\nIf you found this model useful, please cite the original work:" ]
[ 46, 86 ]
[ "passage: TAGS\n#transformers #pytorch #text-generation #arxiv-2010.05700 #autotrain_compatible #endpoints_compatible #has_space #region-us \n# GPT2 Shakespeare style transfer paraphraser\n\nThis is the trained Shakespeare-model from the paper Reformulating Unsupervised Style Transfer as Paraphrase Generation by Krishna K. et al. Note that I (the uploader) am not the author of the paper. Permission to upload to Huggingface was given by the main author. \n\n\nIf you found this model useful, please cite the original work:" ]
[ 0.02701636590063572, -0.04901103675365448, -0.0026243729516863823, 0.07207337766885757, 0.07302892208099365, -0.01815352775156498, 0.1308077573776245, 0.10094726085662842, -0.06257222592830658, -0.0506180040538311, 0.1287839561700821, 0.13698776066303253, -0.013233469799160957, -0.044544003903865814, 0.07810093462467194, -0.36854586005210876, 0.005724932532757521, 0.05779976770281792, -0.04970385134220123, 0.09733741730451584, 0.12675796449184418, -0.05754271149635315, 0.12235143780708313, 0.044889871031045914, -0.003716984298080206, 0.027062350884079933, 0.006313442252576351, -0.01894051395356655, 0.1840222328901291, 0.11531370878219604, 0.027822105213999748, 0.05178891494870186, 0.01242048479616642, -0.07886824011802673, 0.04786929115653038, 0.05331816524267197, -0.044031061232089996, 0.02682267501950264, 0.08232177793979645, -0.05191205441951752, 0.3343004882335663, 0.11620340496301651, -0.06789392232894897, -0.01368080172687769, -0.09923567622900009, -0.044754061847925186, -0.024626072496175766, 0.07658862322568893, 0.060384903103113174, 0.13226385414600372, -0.023763412609696388, 0.15420019626617432, -0.013196993619203568, 0.10112802684307098, 0.18770411610603333, -0.3377891480922699, -0.026460425928235054, -0.06274642050266266, 0.12539303302764893, 0.12399426847696304, -0.06528130918741226, 0.08698711544275284, -0.027471086010336876, 0.05243891850113869, 0.015419675968587399, -0.13102327287197113, -0.15275025367736816, 0.03705829009413719, -0.13618874549865723, 0.06724727898836136, 0.24520352482795715, -0.04540201649069786, -0.0319666787981987, 0.007875487208366394, -0.0782141238451004, 0.24454021453857422, -0.004292852245271206, -0.09612706303596497, -0.002499530091881752, 0.023222247138619423, 0.042521700263023376, -0.24552999436855316, -0.14444582164287567, -0.0036269030533730984, -0.1585206389427185, -0.02711743675172329, 0.012294831685721874, 0.030066030099987984, -0.06297847628593445, 0.06382694095373154, -0.11821690946817398, 0.005083923693746328, 0.04980061575770378, -0.13405300676822662, 0.18722693622112274, -0.0017529140459373593, -0.043680351227521896, -0.09155882149934769, -0.09916011244058609, 0.0721188560128212, 0.1625823676586151, -0.021464183926582336, 0.04982462525367737, 0.0973162055015564, 0.04790881276130676, 0.09169377386569977, -0.14865216612815857, 0.035162538290023804, 0.10782710462808609, 0.0021822417620569468, 0.06534761935472488, 0.0450592041015625, -0.15785112977027893, -0.08257167041301727, 0.013121713884174824, -0.025747165083885193, 0.030542440712451935, 0.10576322674751282, 0.021924737840890884, -0.005750694312155247, 0.13406871259212494, -0.018365995958447456, -0.01428916398435831, -0.08169372379779816, -0.0309230238199234, 0.11400347948074341, 0.15048789978027344, 0.03476911783218384, -0.11221456527709961, -0.019907664507627487, -0.12278346717357635, 0.026107829064130783, 0.06515107303857803, -0.12759678065776825, 0.009709097445011139, -0.11817978322505951, 0.006730717606842518, -0.133883535861969, -0.13324663043022156, -0.0037788173649460077, -0.013872661627829075, 0.0399014875292778, -0.03376210853457451, -0.025823548436164856, 0.024776771664619446, -0.04214693605899811, -0.025490012019872665, -0.06396910548210144, -0.03231281787157059, 0.04749371111392975, -0.14922109246253967, 0.04315624013543129, -0.15397295355796814, 0.0743425041437149, -0.1729404777288437, -0.06404146552085876, -0.23768845200538635, -0.007539535406976938, 0.04365498945116997, -0.02820291742682457, -0.05232051759958267, -0.05871855840086937, -0.05530066043138504, 0.052510812878608704, -0.035524606704711914, 0.16475878655910492, -0.10571948438882828, -0.1332978755235672, 0.14194121956825256, -0.06371435523033142, -0.12616924941539764, 0.12664175033569336, 0.02177722379565239, 0.112393319606781, 0.11095435917377472, 0.17213021218776703, 0.0705256313085556, -0.09297677874565125, 0.002398291602730751, 0.11480099707841873, -0.09609788656234741, 0.015498175285756588, 0.02637757919728756, -0.013685747981071472, 0.0566716194152832, 0.013152709230780602, -0.06407973915338516, 0.009977851063013077, 0.0009496381971985102, 0.026392873376607895, 0.0007329861400648952, 0.0165017768740654, -0.0011302503990009427, 0.0244156327098608, 0.04933692142367363, 0.013570593670010567, -0.0732078105211258, -0.0037797221448272467, -0.028786398470401764, -0.0776284784078598, 0.15868374705314636, 0.017101919278502464, 0.019560586661100388, 0.11363600939512253, 0.040397610515356064, -0.1352970153093338, 0.05793938785791397, -0.0339675135910511, 0.11652418226003647, 0.04449661448597908, 0.18702879548072815, 0.03441501036286354, 0.024752434343099594, -0.07317346334457397, 0.06410465389490128, 0.06259150058031082, -0.043994154781103134, -0.11758291721343994, -0.12481849640607834, 0.034593354910612106, -0.04253609851002693, -0.0011298934696242213, -0.08729010820388794, 0.033955805003643036, -0.07490694522857666, 0.022480176761746407, -0.012921973131597042, 0.05291375517845154, 0.038657695055007935, 0.014479881152510643, -0.08546358346939087, 0.004190466366708279, 0.10821294784545898, -0.023893313482403755, -0.11349166184663773, 0.22972291707992554, -0.18195059895515442, 0.06351405382156372, 0.15510773658752441, -0.2570785880088806, 0.013709882274270058, 0.00019885686924681067, -0.0901242345571518, -0.01703605428338051, 0.06137963756918907, -0.01934046857059002, 0.16989050805568695, -0.0033429667819291353, 0.13823355734348297, -0.09009191393852234, -0.006737078074365854, -0.0388055145740509, -0.10225075483322144, -0.04181618615984917, 0.13703510165214539, 0.06287245452404022, 0.017626116052269936, 0.04965677857398987, 0.25117918848991394, -0.05725830793380737, 0.15840496122837067, 0.06158680096268654, -0.010940748266875744, 0.04901162534952164, -0.13949018716812134, -0.06303001195192337, -0.06715868413448334, -0.0668865293264389, -0.03232339769601822, 0.04466323181986809, 0.022087670862674713, 0.07269924879074097, -0.1027207300066948, -0.05197252333164215, -0.026248697191476822, -0.00441765459254384, 0.014317487366497517, 0.11329050362110138, -0.06804817914962769, 0.09676110744476318, -0.042295947670936584, 0.04667135700583458, 0.007723554037511349, 0.06633235514163971, -0.1171383485198021, 0.12848520278930664, -0.15939101576805115, -0.1868056207895279, -0.12467217445373535, 0.0037721246480941772, -0.006660050712525845, 0.06423164904117584, 0.0712067037820816, 0.00638547632843256, -0.04988202452659607, -0.11818166077136993, 0.12517262995243073, -0.10077369213104248, -0.09329980611801147, -0.14213407039642334, 0.005630675703287125, -0.08085229247808456, -0.08446095883846283, -0.031065091490745544, -0.04435630142688751, -0.17384850978851318, 0.043359383940696716, -0.16160032153129578, 0.05861799418926239, 0.06906045973300934, 0.021685166284441948, -0.04403415322303772, -0.046583086252212524, 0.1378881335258484, -0.023091992363333702, 0.15101277828216553, 0.2171347737312317, 0.03610430657863617, 0.08555929362773895, 0.016498703509569168, -0.03926260024309158, 0.051462091505527496, 0.001312111970037222, -0.030454155057668686, -0.0326036736369133, -0.1536955088376999, -0.052297983318567276, -0.056420598179101944, 0.1543339043855667, -0.01008662674576044, 0.0391884371638298, -0.009734856896102428, 0.06856697052717209, -0.07016557455062866, 0.024769172072410583, 0.10580836981534958, 0.07023786008358002, 0.1875118613243103, -0.06604479998350143, 0.14761914312839508, -0.03933396190404892, -0.04288233816623688, 0.10495901107788086, -0.038604188710451126, 0.09960013628005981, 0.04247894883155823, -0.008712617680430412, -0.012850545346736908, 0.07869217544794083, 0.03272053971886635, 0.10101622343063354, 0.04463261738419533, -0.015707699581980705, -0.07910655438899994, -0.027986811473965645, 0.011418798007071018, 0.0879189595580101, 0.04441060125827789, -0.17978492379188538, 0.0016576239140704274, 0.0308837927877903, 0.0546053946018219, 0.04869294911623001, 0.1087566465139389, -0.12928910553455353, -0.006532907485961914, 0.016936615109443665, -0.026880815625190735, -0.07117991149425507, 0.028494076803326607, -0.04852871224284172, -0.16335435211658478, 0.06222042068839073, 0.00815914012491703, 0.07960289716720581, -0.06029266491532326, 0.05511310696601868, -0.17776095867156982, -0.08638846129179001, -0.01299138180911541, 0.07212676107883453, -0.14271169900894165, 0.1842445731163025, 0.024625733494758606, -0.022302981466054916, -0.01143577042967081, -0.08272119611501694, 0.07232088595628738, 0.21952150762081146, 0.14003735780715942, 0.004438538104295731, 0.08782888948917389, -0.01703326590359211, -0.034583013504743576, 0.06919926404953003, 0.09402530640363693, -0.08155182749032974, 0.03051820583641529, -0.08969256281852722, 0.016284391283988953, -0.008260301314294338, 0.18715138733386993, -0.06945975124835968, -0.13472875952720642, 0.026693405583500862, 0.03224117308855057, 0.014122149907052517, 0.028764892369508743, -0.07228633761405945, -0.0841018334031105, 0.09910966455936432, -0.09591390192508698, -0.12463847547769547, -0.028168631717562675, 0.003928625490516424, 0.03947560489177704, -0.05648078769445419, 0.014829909428954124, -0.10401515662670135, -0.03635542094707489, -0.10816948115825653, -0.10425001382827759, 0.06762947142124176, -0.02531616762280464, -0.045174211263656616, 0.009171836078166962, 0.14635148644447327, 0.042389970272779465, 0.04667286574840546, -0.010263608768582344, 0.025378072634339333, -0.14768721163272858, -0.07105036079883575, 0.022906169295310974, 0.02090977504849434, 0.0844910591840744, -0.006406958680599928, -0.19011864066123962, 0.10519984364509583, -0.07034590095281601, -0.014202497899532318, 0.150223046541214, 0.14654411375522614, -0.0043995375744998455, 0.0725686103105545, 0.1852918118238449, -0.09690709412097931, -0.34886857867240906, -0.15009009838104248, -0.06439904868602753, -0.051509130746126175, 0.06816302239894867, -0.1447925716638565, 0.047448620200157166, 0.046434562653303146, 0.02274272032082081, 0.029730089008808136, -0.06669218093156815, -0.1399035006761551, 0.14389768242835999, -0.04313076287508011, 0.3935287296772003, -0.10295821726322174, 0.02388661354780197, -0.03712354227900505, -0.07365087419748306, 0.004109193570911884, -0.036733973771333694, 0.10138608515262604, -0.07741378247737885, 0.05850154161453247, -0.03212185949087143, 0.02480228990316391, 0.027538523077964783, -0.01983404904603958, -0.0029685546178370714, -0.0911422073841095, -0.05924196168780327, 0.18137022852897644, -0.00041734776459634304, 0.038895703852176666, -0.05849447846412659, 0.005220190621912479, -0.05985652655363083, -0.006267338991165161, -0.16026589274406433, 0.07485891878604889, 0.014506732113659382, -0.050551023334264755, -0.07418254017829895, 0.06981799006462097, -0.09440673142671585, 0.034479133784770966, 0.125230610370636, -0.12637417018413544, 0.009873665869235992, 0.07459546625614166, 0.13404923677444458, -0.01171258557587862, 0.01612757332623005, 0.005753787234425545, -0.06474276632070541, -0.010113983415067196, -0.08813423663377762, 0.016961010172963142, 0.1059885248541832, -0.05008156970143318, 0.03699365258216858, 0.060760870575904846, -0.009886082261800766, 0.013604216277599335, 0.05944495275616646, -0.26134079694747925, -0.1392788141965866, -0.058760866522789, -0.10983622074127197, -0.028758911415934563, 0.04678913950920105, 0.21420922875404358, -0.045887500047683716, -0.048417262732982635, 0.039436399936676025, -0.00007100321090547368, 0.00616230396553874, 0.012216460891067982, 0.04679441452026367, -0.07100678235292435, 0.0024558345321565866, 0.12022833526134491, 0.022520562633872032, -0.11104778945446014, 0.0056821927428245544, 0.0834365263581276, -0.14712440967559814, -0.10942111164331436, -0.14344345033168793, 0.04645543545484543, -0.17732393741607666, 0.02174113504588604, -0.016985004767775536, -0.028162483125925064, -0.011310662142932415, 0.08377539366483688, 0.046980053186416626, 0.06097886711359024, -0.09162171930074692, -0.008986308239400387, -0.012192830443382263, 0.04898016154766083, 0.0633038654923439, -0.05621377006173134, -0.009466918185353279, 0.12703335285186768, -0.020763801410794258, 0.15466080605983734, -0.06813198328018188, -0.013703311793506145, -0.003638632595539093, -0.032826345413923264, -0.0832466334104538, -0.09134668111801147, -0.0809844359755516, -0.10049521178007126, -0.06361965090036392, -0.02471182309091091, -0.06381266564130783, -0.09508943557739258, -0.06475674360990524, -0.012677815742790699, -0.04455075412988663, 0.03924541920423508, -0.09212737530469894, -0.030177239328622818, 0.08804911375045776, 0.012127600610256195, 0.07779960334300995, 0.11865004152059555, -0.04078451171517372, 0.07005288451910019, 0.028973916545510292, -0.009408027864992619, -0.013028000481426716, 0.0029347799718379974, -0.012159403413534164, 0.09079873561859131, -0.09177651256322861, -0.017050184309482574, 0.046914249658584595, 0.015933174639940262, 0.03911438211798668, -0.0470898300409317, 0.15365827083587646, 0.012808307074010372, -0.07041852176189423, -0.060417238622903824, 0.020298944786190987, -0.05762719362974167, 0.08662224560976028, 0.13200244307518005, -0.07889851927757263, 0.05764683708548546, -0.11283260583877563, 0.0665547251701355, 0.013567086309194565, -0.1322593092918396, 0.09579037129878998, -0.12812933325767517, -0.016076454892754555, -0.015915870666503906, 0.16069546341896057, 0.05317182093858719, 0.001926719443872571, 0.05352059751749039, 0.0869293361902237, -0.03394756838679314, -0.04065905138850212, 0.04282001405954361, 0.0421704463660717, -0.07768471539020538, -0.12103686481714249, 0.1119794249534607, 0.002284341724589467, 0.07318412512540817, 0.15340463817119598, 0.01692652516067028, 0.03539988771080971, 0.10331537574529648, -0.053552646189928055, 0.06506646424531937, -0.04419104382395744, -0.1714709997177124, 0.09387920796871185, 0.11222036927938461, -0.03522525727748871, 0.15017931163311005, 0.1968325674533844, -0.017603619024157524, 0.0002318763145012781, 0.0561385378241539, -0.08703698962926865, -0.1998228132724762, -0.17648252844810486, -0.02562548965215683, -0.0751471295952797, -0.023418815806508064, -0.050940848886966705, 0.006353278644382954, -0.0887511596083641, 0.07943140715360641, -0.05093792453408241, 0.05125721916556358, -0.058171600103378296, -0.20126761496067047, 0.14804242551326752, -0.03405065834522247, 0.037162113934755325, -0.018420647829771042, 0.044035106897354126, -0.03159599006175995, -0.06848960369825363, -0.014431593008339405, 0.024659767746925354, -0.03230104595422745, 0.010745652951300144, -0.11822107434272766, -0.10181549936532974, -0.11831224709749222, 0.11665508151054382, -0.025151832029223442, 0.030846819281578064, -0.022052675485610962, -0.040327027440071106, 0.008769149892032146, 0.17991064488887787, -0.003372304607182741, 0.025265607982873917, 0.02842653915286064, 0.27498236298561096, 0.0099951708689332, 0.0087610287591815, -0.010527504608035088, 0.0021838191896677017, -0.01103608775883913, 0.3298097848892212, 0.3172343373298645, -0.11287956684827805, -0.00009774767386261374, -0.005596433766186237, 0.04355059191584587, 0.16446936130523682, 0.011421417817473412, 0.07364068925380707, 0.11580201238393784, -0.136884406208992, -0.029990840703248978, -0.09327199310064316, 0.04483288899064064, -0.07937857508659363, 0.09248430281877518, 0.08823472261428833, -0.04919242486357689, -0.011598551645874977, 0.031144078820943832, -0.09320205450057983, -0.11372558772563934, -0.12432823330163956, -0.07149743288755417, 0.037324994802474976, 0.014567744918167591, -0.004018436186015606, 0.010082351043820381, 0.14125721156597137, -0.014095543883740902, 0.01013936847448349, 0.11789515614509583, 0.014737071469426155, -0.18887168169021606, 0.03206045925617218, 0.12124040722846985, -0.09115411341190338, -0.06340930610895157, -0.04787728190422058, 0.004590553231537342, 0.042104266583919525, 0.024451278150081635, 0.022739853709936142, 0.06469877064228058, 0.0015851602656766772, 0.06413911283016205, -0.031943947076797485, -0.02063778229057789, 0.051507964730262756, -0.12068740278482437, 0.03332364186644554, -0.038931865245103836, 0.10569152981042862, -0.006330830976366997, -0.155548557639122, -0.008754348382353783, 0.1352933943271637, -0.10096841305494308, 0.09467252343893051, 0.1165751963853836, -0.00018388318130746484, -0.039313290268182755, -0.03951622545719147, -0.10453994572162628, 0.04790842905640602, -0.03506264090538025, 0.012526747770607471, -0.017820114269852638, -0.027074452489614487, -0.009510600939393044, -0.007900734432041645, -0.2350473254919052, -0.012925572693347931, -0.07520198822021484, -0.027866777032613754, -0.07913515716791153, 0.0786212608218193, -0.0258152037858963, -0.02361362613737583, 0.0186165738850832, 0.05475170537829399, 0.06483536958694458, 0.00789865106344223, -0.09707430750131607, -0.0831015408039093 ]
null
null
transformers
# GPT2 Switchboard style transfer paraphraser This is the trained Switchboard-model from the paper [Reformulating Unsupervised Style Transfer as Paraphrase Generation](https://arxiv.org/abs/2010.05700) by Krishna K. et al. Note that I (the uploader) am not the author of the paper. Permission to upload to Huggingface was given by the main author. ## Citation If you found this model useful, please cite the original work: ``` @inproceedings{style20, author={Kalpesh Krishna and John Wieting and Mohit Iyyer}, Booktitle = {Empirical Methods in Natural Language Processing}, Year = "2020", Title={Reformulating Unsupervised Style Transfer as Paraphrase Generation}, } ```
{}
text-generation
filco306/gpt2-switchboard-paraphraser
[ "transformers", "pytorch", "text-generation", "arxiv:2010.05700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[ "2010.05700" ]
[]
TAGS #transformers #pytorch #text-generation #arxiv-2010.05700 #autotrain_compatible #endpoints_compatible #region-us
# GPT2 Switchboard style transfer paraphraser This is the trained Switchboard-model from the paper Reformulating Unsupervised Style Transfer as Paraphrase Generation by Krishna K. et al. Note that I (the uploader) am not the author of the paper. Permission to upload to Huggingface was given by the main author. If you found this model useful, please cite the original work:
[ "# GPT2 Switchboard style transfer paraphraser\n\nThis is the trained Switchboard-model from the paper Reformulating Unsupervised Style Transfer as Paraphrase Generation by Krishna K. et al. Note that I (the uploader) am not the author of the paper. Permission to upload to Huggingface was given by the main author. \n\n\nIf you found this model useful, please cite the original work:" ]
[ "TAGS\n#transformers #pytorch #text-generation #arxiv-2010.05700 #autotrain_compatible #endpoints_compatible #region-us \n", "# GPT2 Switchboard style transfer paraphraser\n\nThis is the trained Switchboard-model from the paper Reformulating Unsupervised Style Transfer as Paraphrase Generation by Krishna K. et al. Note that I (the uploader) am not the author of the paper. Permission to upload to Huggingface was given by the main author. \n\n\nIf you found this model useful, please cite the original work:" ]
[ 42, 88 ]
[ "passage: TAGS\n#transformers #pytorch #text-generation #arxiv-2010.05700 #autotrain_compatible #endpoints_compatible #region-us \n# GPT2 Switchboard style transfer paraphraser\n\nThis is the trained Switchboard-model from the paper Reformulating Unsupervised Style Transfer as Paraphrase Generation by Krishna K. et al. Note that I (the uploader) am not the author of the paper. Permission to upload to Huggingface was given by the main author. \n\n\nIf you found this model useful, please cite the original work:" ]
[ 0.022642415016889572, -0.11738639324903488, -0.002246162388473749, 0.007448453456163406, 0.10888098180294037, 0.018335117027163506, 0.20456822216510773, 0.03829142078757286, -0.08497948199510574, -0.09004364162683487, 0.0849495679140091, 0.2261548787355423, 0.034389678388834, 0.06545420736074448, 0.030224768444895744, -0.4006049931049347, 0.07474670559167862, 0.11042039841413498, -0.054353971034288406, 0.12049680948257446, 0.10912417620420456, -0.08497270196676254, 0.07423272728919983, 0.05310049280524254, -0.08370495587587357, 0.01928161084651947, 0.009360787458717823, -0.041160471737384796, 0.13413205742835999, 0.14659401774406433, 0.1316431611776352, 0.06802725791931152, -0.004525582771748304, -0.07239806652069092, 0.05886968597769737, 0.03743726387619972, -0.07288910448551178, 0.07045766711235046, 0.02923368290066719, -0.017462214455008507, 0.254877507686615, 0.02291157655417919, -0.05560559406876564, 0.006345269735902548, -0.10960095375776291, -0.19269227981567383, -0.05219312012195587, 0.14051903784275055, 0.1118771880865097, 0.057508111000061035, -0.0180948618799448, 0.14699523150920868, 0.01432221382856369, 0.10465841740369797, 0.1938154697418213, -0.28291648626327515, -0.04751686379313469, -0.051057763397693634, 0.07156911492347717, 0.03105710819363594, -0.03050016611814499, 0.08881689608097076, 0.008022880181670189, 0.0005134799866937101, -0.014306689612567425, -0.1152268722653389, -0.09604617953300476, -0.020416829735040665, -0.1237889751791954, 0.03991718962788582, 0.16442568600177765, -0.00408377218991518, -0.009344466961920261, -0.06496486067771912, -0.12340514361858368, 0.1913955956697464, 0.003424821887165308, -0.1133149042725563, -0.02684805728495121, 0.020283319056034088, -0.0033952621743083, -0.20783506333827972, -0.11999139934778214, -0.08346356451511383, -0.18282724916934967, 0.0975966528058052, 0.007239514961838722, 0.03157760575413704, -0.06953167170286179, 0.1006716638803482, 0.11374282091856003, -0.027482710778713226, 0.0014395113103091717, -0.11789499223232269, 0.1116148978471756, 0.03726179525256157, -0.016480827704072, -0.14169305562973022, -0.050744228065013885, 0.11529292911291122, 0.1551656574010849, -0.02203327976167202, 0.023150643333792686, 0.07524846494197845, 0.005667230114340782, 0.09580899775028229, -0.12927114963531494, 0.053095743060112, 0.09809595346450806, -0.07128257304430008, 0.08680868148803711, -0.052476827055215836, -0.17169669270515442, -0.05613669008016586, 0.0968203991651535, 0.04353488236665726, 0.014956237748265266, 0.14528876543045044, 0.02693178318440914, -0.06687236577272415, 0.21653102338314056, -0.054548732936382294, -0.022364981472492218, -0.08632650226354599, 0.016071969643235207, 0.12444297224283218, 0.1024957224726677, 0.015911106020212173, -0.08870800584554672, -0.0357937291264534, -0.06674393266439438, 0.019852329045534134, -0.06454191356897354, -0.12080361694097519, -0.020509235560894012, -0.018099823966622353, 0.00640456285327673, -0.139913871884346, -0.182319775223732, -0.0012142028426751494, -0.020691459998488426, 0.036479007452726364, -0.043912794440984726, -0.013903956860303879, 0.054948147386312485, -0.016208196058869362, -0.05548727512359619, 0.03469403088092804, -0.04101261496543884, 0.06585001200437546, -0.10867410153150558, 0.05414057523012161, -0.18478929996490479, 0.02948821149766445, -0.07743344455957413, -0.04549996554851532, -0.28582972288131714, 0.019896896556019783, -0.013134561479091644, 0.040484681725502014, -0.018155500292778015, -0.07895899564027786, -0.021606912836432457, 0.043466079980134964, -0.016882209107279778, 0.10562688112258911, -0.043265052139759064, -0.13226206600666046, 0.2339337021112442, -0.18050874769687653, -0.08419204503297806, 0.08633887767791748, -0.02097904123365879, 0.091373011469841, 0.1010892391204834, 0.1080191358923912, 0.06515611708164215, -0.09547848999500275, 0.05370946601033211, 0.057203520089387894, -0.15630389750003815, -0.02539169229567051, 0.024155190214514732, 0.035110291093587875, -0.03184066340327263, 0.0027696851175278425, 0.04000042751431465, 0.09550079703330994, -0.030412381514906883, 0.01645014062523842, 0.028987478464841843, 0.018416285514831543, -0.0620482861995697, 0.054954227060079575, 0.05196451023221016, 0.02968391589820385, -0.06250818073749542, 0.15082058310508728, -0.003393556224182248, -0.09488832205533981, 0.07262309640645981, -0.07061731815338135, 0.04120803624391556, 0.020796669647097588, 0.011492366902530193, -0.08917070925235748, -0.022287411615252495, -0.05999390035867691, 0.1171201765537262, 0.03162715211510658, 0.21193456649780273, 0.05051356554031372, -0.018534110859036446, -0.05872368440032005, 0.012634686194360256, 0.0783151164650917, -0.002158329589292407, -0.0610286220908165, -0.07898653298616409, 0.04239106923341751, 0.0023705351632088423, 0.02616543509066105, -0.09791235625743866, 0.023762086406350136, 0.011326886713504791, 0.10749811679124832, -0.013003519736230373, 0.07055395096540451, 0.02971665747463703, -0.005767948925495148, -0.06584261357784271, -0.031376779079437256, 0.11370203644037247, 0.011250685900449753, -0.07954201102256775, 0.26582100987434387, -0.1570323258638382, 0.1399509310722351, 0.15330272912979126, -0.2666454017162323, 0.0014702858170494437, -0.047252215445041656, -0.06865891069173813, -0.016542579978704453, 0.0441620759665966, 0.02130441553890705, 0.1677967756986618, -0.015063175931572914, 0.14011451601982117, -0.07449161261320114, 0.0010186423314735293, -0.01316735241562128, -0.06178255379199982, 0.013700713403522968, 0.07382962852716446, 0.034241486340761185, -0.08135712146759033, 0.07414090633392334, 0.10650529712438583, 0.015940794721245766, 0.21824954450130463, 0.02612394094467163, -0.01919833943247795, -0.002136810449883342, -0.11896029114723206, -0.008797424845397472, 0.010557484813034534, -0.07055193930864334, -0.0523611456155777, 0.08217769116163254, 0.0016193254850804806, 0.08116817474365234, -0.1184573620557785, -0.016593655571341515, -0.025164693593978882, -0.01273305993527174, 0.08795814961194992, 0.09320486336946487, -0.019560500979423523, 0.07108665257692337, -0.04754824936389923, 0.05860380083322525, 0.024497192353010178, 0.04185350239276886, -0.07250665128231049, 0.14905786514282227, -0.08832987397909164, -0.3322668671607971, -0.1772657334804535, 0.003030468011274934, -0.003167979186400771, 0.008714917115867138, 0.050908226519823074, 0.011470352299511433, -0.039865732192993164, -0.049158163368701935, 0.13887088000774384, -0.06258565932512283, -0.01831367425620556, -0.06145209074020386, -0.037042275071144104, -0.06433772295713425, -0.11672250926494598, -0.020194821059703827, -0.032783154398202896, -0.15365007519721985, 0.09721054136753082, -0.13492287695407867, 0.09788398444652557, 0.09894762933254242, 0.016822826117277145, 0.013072081841528416, -0.07032529264688492, 0.0956190899014473, -0.05921079218387604, 0.15851092338562012, 0.2248091846704483, 0.027807429432868958, 0.0857292115688324, 0.025922948494553566, -0.0708838552236557, -0.021391626447439194, 0.021048566326498985, -0.025146065279841423, -0.07056461274623871, -0.09844384342432022, -0.044069234281778336, -0.04502435401082039, 0.06730055063962936, -0.017730340361595154, 0.007474629674106836, 0.11475808918476105, 0.1255791038274765, -0.08516295999288559, 0.011088586412370205, 0.05105188861489296, 0.07567932456731796, 0.19849665462970734, -0.0804227888584137, 0.2001882791519165, -0.0859890803694725, -0.09880276769399643, 0.1301833689212799, -0.09266162663698196, 0.11428830772638321, 0.0014957196544855833, -0.002328042406588793, 0.028651511296629906, 0.08504685014486313, 0.1043994203209877, 0.19571144878864288, -0.004670526832342148, -0.014718194492161274, -0.08062386512756348, -0.005470534320920706, -0.049416035413742065, 0.06939609348773956, -0.013067792169749737, -0.12670724093914032, 0.0007128393044695258, -0.05950154364109039, 0.03337537497282028, 0.12483973801136017, 0.07287448644638062, -0.13617323338985443, -0.04791087284684181, -0.01465320959687233, 0.011249165050685406, -0.12453842163085938, -0.017465144395828247, -0.05473931506276131, -0.11058297753334045, 0.09604816138744354, -0.05547701567411423, 0.0844327062368393, -0.14626161754131317, 0.006641899701207876, -0.17657141387462616, -0.004737436771392822, -0.030709879472851753, 0.1253185272216797, -0.18332301080226898, 0.16110876202583313, -0.0055365292355418205, 0.0016860044561326504, -0.08983462303876877, -0.06304091960191727, 0.05387907475233078, 0.1618829220533371, 0.06855082511901855, 0.0005644942866638303, -0.025134919211268425, -0.027706241235136986, -0.09048416465520859, 0.07147464156150818, 0.08156842738389969, -0.012206566520035267, 0.014414523728191853, -0.08843598514795303, 0.034702517092227936, 0.03165803104639053, 0.08668308705091476, -0.08866729587316513, -0.1415327787399292, 0.057592034339904785, 0.023097867146134377, 0.08956625312566757, -0.026542935520410538, -0.09300887584686279, -0.01511935330927372, 0.18557536602020264, -0.07266969978809357, -0.11452574282884598, -0.07885165512561798, -0.011913081631064415, 0.015941740944981575, -0.09049446880817413, 0.04686351493000984, -0.10287566483020782, -0.0006447622436098754, -0.03622869774699211, -0.1283024400472641, 0.08758639544248581, -0.04592147096991539, -0.09234953671693802, 0.0467219278216362, 0.051070135086774826, 0.04922120273113251, -0.010843510739505291, 0.030465079471468925, -0.024405116215348244, -0.09370525926351547, -0.10949843376874924, -0.0190024022012949, 0.07398839294910431, 0.07885278016328812, -0.03609587252140045, -0.11066088825464249, 0.08897160738706589, -0.044485460966825485, -0.048488978296518326, 0.13046279549598694, 0.15611673891544342, -0.026681626215577126, 0.08836951106786728, 0.16568315029144287, -0.07763678580522537, -0.304328590631485, -0.21194028854370117, -0.08980677276849747, -0.01708904840052128, -0.03483607620000839, -0.1505921483039856, 0.0941460132598877, 0.06285879015922546, 0.0089745307341218, 0.08364295959472656, -0.005041896365582943, -0.14351511001586914, 0.185830220580101, 0.0571383535861969, 0.4420553147792816, -0.14974991977214813, -0.006131554022431374, -0.055266525596380234, -0.12714041769504547, 0.14216208457946777, 0.006668915506452322, 0.0963878259062767, -0.05315380170941353, 0.03273598104715347, -0.0251858439296484, -0.021737780421972275, 0.06093349680304527, -0.13434350490570068, 0.045087046921253204, -0.16133250296115875, -0.08466305583715439, 0.16636261343955994, 0.01283263973891735, -0.01470585260540247, -0.06428475677967072, 0.02653101645410061, -0.09849897027015686, -0.0889301747083664, -0.08264951407909393, 0.09380706399679184, 0.04508129507303238, -0.11898621171712875, -0.09694314002990723, 0.06563432514667511, -0.06825072318315506, 0.013852962292730808, 0.15616759657859802, -0.09113336354494095, 0.014326432719826698, 0.07516892999410629, 0.0796278566122055, -0.12393952906131744, 0.12486490607261658, -0.07225216180086136, -0.08010170608758926, 0.04003065824508667, 0.032901108264923096, 0.039032720029354095, 0.0847206860780716, -0.042034126818180084, 0.08239147812128067, 0.07225411385297775, -0.012808933854103088, 0.04009174555540085, 0.06967524439096451, -0.22772136330604553, -0.14336912333965302, -0.03855522722005844, -0.0558478944003582, 0.05278780683875084, 0.07788543403148651, 0.18917341530323029, 0.004117815289646387, -0.04451772943139076, 0.00723509956151247, -0.0211196169257164, 0.004454941023141146, 0.007227658294141293, 0.049590423703193665, -0.03295280039310455, -0.03912712261080742, 0.040825579315423965, -0.001552210538648069, -0.07979843020439148, 0.011853854171931744, -0.022412799298763275, -0.12963475286960602, -0.07717487961053848, -0.04742728918790817, 0.08995708078145981, -0.1845005303621292, -0.06709663569927216, -0.0999038890004158, -0.06269064545631409, 0.01709909737110138, 0.16388432681560516, 0.05997678264975548, 0.05985400080680847, 0.004151548724621534, 0.03673626482486725, -0.032420914620161057, 0.004566321615129709, 0.005149309057742357, -0.039930738508701324, -0.07022411376237869, 0.17923825979232788, 0.04697965458035469, 0.10092081129550934, -0.10532942414283752, -0.02279108762741089, -0.10151800513267517, -0.036771949380636215, -0.08067748695611954, -0.04327571392059326, -0.1001540869474411, -0.07129678875207901, -0.01809588260948658, -0.057125575840473175, -0.03364451974630356, -0.03641520440578461, -0.07256254553794861, 0.047742437571287155, -0.022925008088350296, -0.010057821869850159, -0.08858848363161087, -0.06069422513246536, 0.05588924512267113, 0.01889350451529026, 0.0704902783036232, 0.1054399237036705, -0.024889709427952766, 0.06555971503257751, -0.06506132334470749, 0.03248805180191994, 0.03483687713742256, 0.01978292129933834, -0.00731669319793582, 0.03182939812541008, -0.034951724112033844, 0.05862117558717728, 0.062002018094062805, 0.03233820199966431, 0.04993513971567154, -0.05747581645846367, 0.09427832812070847, -0.027592582628130913, -0.07000426948070526, -0.033509161323308945, 0.05697111785411835, -0.047239139676094055, 0.10423005372285843, 0.12382502853870392, -0.07423530519008636, 0.06034292280673981, -0.1297309398651123, 0.04147164151072502, 0.027012277394533157, -0.11288491636514664, 0.21641337871551514, -0.1451132893562317, -0.006515130400657654, 0.053177230060100555, 0.2689671218395233, 0.03415258228778839, -0.030952004715800285, 0.002690284512937069, 0.027753004804253578, -0.023406604304909706, -0.03945702314376831, 0.20092326402664185, 0.04364423453807831, 0.005558432545512915, -0.044276606291532516, 0.11582451313734055, -0.015514004044234753, 0.09667299687862396, 0.16795961558818817, 0.04437324404716492, -0.08438693732023239, 0.09686567634344101, -0.0646430253982544, 0.034156862646341324, 0.02238159067928791, -0.15113569796085358, 0.034215204417705536, 0.08365444839000702, -0.011444099247455597, 0.16471824049949646, 0.16106002032756805, 0.005905826110392809, 0.012531641870737076, 0.12240254878997803, -0.05033181980252266, -0.1949419230222702, -0.19412146508693695, -0.08571022003889084, -0.13439060747623444, 0.011405148543417454, -0.05050419643521309, -0.016312221065163612, -0.02027803286910057, 0.06260848045349121, -0.021232927218079567, 0.034041568636894226, -0.027003750205039978, -0.10077159851789474, 0.09377912431955338, -0.018512427806854248, -0.04931368678808212, -0.08370032161474228, -0.011009970679879189, -0.017137087881565094, 0.03465517237782478, 0.0018367973389104009, -0.0074594165198504925, -0.01228038128465414, 0.023770883679389954, -0.045403290539979935, -0.08613073825836182, -0.08805680274963379, 0.09009590744972229, 0.015436596237123013, 0.03593553230166435, -0.01040665153414011, -0.008753988891839981, -0.0031955039594322443, 0.13028129935264587, 0.014013171195983887, -0.1323324292898178, -0.005376783199608326, 0.20474179089069366, -0.05520537868142128, 0.05816357210278511, -0.005352458916604519, 0.0018984157359227538, 0.023162512108683586, 0.35678595304489136, 0.21955205500125885, -0.04250945895910263, -0.004354351665824652, 0.012960080057382584, 0.03737300634384155, 0.10847661644220352, 0.07780147343873978, 0.07205279916524887, 0.149680033326149, -0.04436871036887169, -0.10702673345804214, -0.08800570666790009, -0.0042454954236745834, -0.05195667967200279, 0.013200550340116024, 0.05347788333892822, -0.02870689146220684, -0.010391072370111942, 0.04359276592731476, -0.12460317462682724, -0.13507352769374847, -0.029168741777539253, -0.014709661714732647, 0.010247999802231789, -0.0051087019965052605, 0.06963715702295303, -0.03066602721810341, 0.08279264718294144, -0.01785392127931118, 0.03230632469058037, 0.1936235874891281, 0.0507538765668869, -0.19031788408756256, 0.049614448100328445, 0.0819375291466713, -0.1526619791984558, -0.027277128770947456, -0.05882665514945984, 0.010936671867966652, 0.08069464564323425, -0.016799775883555412, 0.008081309497356415, 0.10300139337778091, -0.04894994571805, -0.017898106947541237, 0.013252484612166882, -0.004116067197173834, 0.024564698338508606, -0.1791403591632843, 0.00229322980158031, -0.11444398015737534, 0.11953458935022354, -0.05691909044981003, -0.17157678306102753, -0.019017739221453667, 0.09093740582466125, -0.11491447687149048, 0.09216663241386414, 0.09703948348760605, -0.003862573066726327, 0.004213476087898016, -0.06797097623348236, -0.04936083033680916, 0.03717855364084244, -0.024426626041531563, -0.011610785499215126, -0.024837752804160118, -0.089357890188694, -0.027564827352762222, -0.000809425488114357, -0.21083670854568481, 0.02022072859108448, -0.12795060873031616, -0.09240861982107162, -0.06158694997429848, 0.09922584146261215, -0.04016387462615967, 0.02784065157175064, 0.01087264809757471, 0.0536983460187912, 0.01161572802811861, 0.04256861284375191, -0.11967433989048004, -0.04457447677850723 ]
null
null
transformers
# GPT2 Tweet style transfer paraphraser This is the trained Tweet-model from the paper [Reformulating Unsupervised Style Transfer as Paraphrase Generation](https://arxiv.org/abs/2010.05700) by Krishna K. et al. Note that I (the uploader) am not the author of the paper. Permission to upload to Huggingface was given by the main author. ## Citation If you found this model useful, please cite the original work: ``` @inproceedings{style20, author={Kalpesh Krishna and John Wieting and Mohit Iyyer}, Booktitle = {Empirical Methods in Natural Language Processing}, Year = "2020", Title={Reformulating Unsupervised Style Transfer as Paraphrase Generation}, } ```
{}
text-generation
filco306/gpt2-tweet-paraphraser
[ "transformers", "pytorch", "text-generation", "arxiv:2010.05700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[ "2010.05700" ]
[]
TAGS #transformers #pytorch #text-generation #arxiv-2010.05700 #autotrain_compatible #endpoints_compatible #region-us
# GPT2 Tweet style transfer paraphraser This is the trained Tweet-model from the paper Reformulating Unsupervised Style Transfer as Paraphrase Generation by Krishna K. et al. Note that I (the uploader) am not the author of the paper. Permission to upload to Huggingface was given by the main author. If you found this model useful, please cite the original work:
[ "# GPT2 Tweet style transfer paraphraser\n\nThis is the trained Tweet-model from the paper Reformulating Unsupervised Style Transfer as Paraphrase Generation by Krishna K. et al. Note that I (the uploader) am not the author of the paper. Permission to upload to Huggingface was given by the main author. \n\n\nIf you found this model useful, please cite the original work:" ]
[ "TAGS\n#transformers #pytorch #text-generation #arxiv-2010.05700 #autotrain_compatible #endpoints_compatible #region-us \n", "# GPT2 Tweet style transfer paraphraser\n\nThis is the trained Tweet-model from the paper Reformulating Unsupervised Style Transfer as Paraphrase Generation by Krishna K. et al. Note that I (the uploader) am not the author of the paper. Permission to upload to Huggingface was given by the main author. \n\n\nIf you found this model useful, please cite the original work:" ]
[ 42, 86 ]
[ "passage: TAGS\n#transformers #pytorch #text-generation #arxiv-2010.05700 #autotrain_compatible #endpoints_compatible #region-us \n# GPT2 Tweet style transfer paraphraser\n\nThis is the trained Tweet-model from the paper Reformulating Unsupervised Style Transfer as Paraphrase Generation by Krishna K. et al. Note that I (the uploader) am not the author of the paper. Permission to upload to Huggingface was given by the main author. \n\n\nIf you found this model useful, please cite the original work:" ]
[ 0.05668855085968971, -0.10278899222612381, -0.002465823432430625, 0.03156713768839836, 0.11637859791517258, 0.05127875134348869, 0.12912504374980927, 0.06077665835618973, -0.18035657703876495, -0.08447448164224625, 0.1297200322151184, 0.1412062644958496, 0.003176213474944234, 0.04706540331244469, 0.06896302103996277, -0.3922452926635742, 0.006557496264576912, 0.05754178389906883, -0.010238359682261944, 0.1448097676038742, 0.1245616003870964, -0.02306441403925419, 0.12247098237276077, 0.042243942618370056, -0.07712240517139435, 0.029252173379063606, 0.03125029429793358, -0.056569959968328476, 0.13354170322418213, 0.10367219895124435, 0.055434707552194595, 0.06671323627233505, 0.010472850874066353, -0.0007056938484311104, 0.05850588530302048, 0.055540524423122406, -0.0816497951745987, 0.04071122407913208, 0.05791693553328514, -0.06771925836801529, 0.34739935398101807, 0.0700894370675087, -0.028466803953051567, 0.01977379620075226, -0.148725688457489, -0.10259272158145905, -0.050769172608852386, 0.07653408497571945, 0.11282599717378616, 0.06758233904838562, -0.030717337504029274, 0.18258461356163025, 0.008330954238772392, 0.09983936697244644, 0.16133524477481842, -0.3605079650878906, -0.05371362715959549, -0.03354770690202713, 0.03399644419550896, 0.09266535192728043, 0.01898527517914772, 0.09085189551115036, 0.029354296624660492, 0.03856174275279045, 0.03484269976615906, -0.12393766641616821, -0.072785384953022, -0.013649002648890018, -0.12233222275972366, 0.028417913243174553, 0.25493136048316956, -0.021100036799907684, -0.03395870700478554, 0.0037902132607996464, -0.09947798401117325, 0.19160419702529907, -0.00010846284567378461, -0.1213354766368866, -0.030302373692393303, 0.028469571843743324, -0.028183216229081154, -0.1809450387954712, -0.1354893445968628, -0.04200959950685501, -0.1742219179868698, 0.013113963417708874, 0.009546710178256035, 0.02440195530653, -0.11801935732364655, 0.1134592667222023, -0.06720998883247375, -0.018228286877274513, 0.051532186567783356, -0.13008835911750793, 0.12041718512773514, 0.015773504972457886, -0.03970940783619881, -0.1487029790878296, -0.050121236592531204, 0.10813423246145248, 0.139365091919899, -0.030966300517320633, 0.06484504044055939, 0.04483195021748543, 0.04096882790327072, 0.04436248540878296, -0.15279464423656464, -0.019994031637907028, 0.09060288965702057, -0.10904768854379654, 0.012064489535987377, -0.01670369692146778, -0.11150107532739639, -0.035231854766607285, 0.03868945688009262, -0.004322746302932501, 0.0024831315968185663, 0.16339440643787384, 0.022376636043190956, -0.048843901604413986, 0.13986051082611084, -0.02721293270587921, -0.0756719708442688, -0.1289910227060318, -0.003427941119298339, 0.07515165209770203, 0.10675450414419174, 0.04505658149719238, -0.08695980161428452, -0.004748477600514889, -0.11071810871362686, -0.02889484167098999, 0.003636582987383008, -0.08671397715806961, -0.04404282569885254, -0.11728588491678238, -0.016721239313483238, -0.18833483755588531, -0.17095094919204712, 0.0007797405123710632, -0.021699992939829826, 0.02397131733596325, -0.055697642266750336, -0.026381289586424828, 0.04996245354413986, 0.004473026841878891, -0.02028512768447399, -0.0125264348462224, -0.047564972192049026, 0.08786123245954514, -0.15279340744018555, 0.05264798924326897, -0.1684277355670929, 0.04935995861887932, -0.14105837047100067, -0.03645451366901398, -0.19576439261436462, 0.01217577513307333, 0.038657788187265396, 0.0957513228058815, -0.05861686170101166, -0.09338276833295822, -0.07412995398044586, 0.01387199480086565, 0.001901063951663673, 0.1660199612379074, -0.060527339577674866, -0.1149367094039917, 0.1700265109539032, -0.11324049532413483, -0.10319492965936661, 0.13666217029094696, 0.0007653991924598813, 0.17571543157100677, 0.12576231360435486, 0.15050990879535675, 0.11089082062244415, -0.08050357550382614, 0.07936681807041168, 0.030195064842700958, -0.1783342808485031, 0.026221664622426033, 0.0019257664680480957, 0.028138240799307823, -0.13882538676261902, -0.0022514648735523224, 0.03480719402432442, 0.08417599648237228, -0.06976691633462906, 0.025730803608894348, 0.03362029790878296, -0.010481465607881546, 0.00046422911691479385, -0.007869064807891846, 0.04766617715358734, -0.021574854850769043, -0.05586671456694603, -0.03309488669037819, 0.002290057484060526, -0.04220899939537048, 0.047573767602443695, -0.06124451011419296, 0.022111553698778152, 0.07473590224981308, 0.035971928387880325, -0.06864389032125473, -0.008032453246414661, -0.050436895340681076, 0.17242202162742615, 0.10832589119672775, 0.13122178614139557, 0.03323563188314438, -0.02555042877793312, -0.07503361999988556, 0.015818212181329727, 0.07897680997848511, -0.024307481944561005, -0.07078823447227478, -0.055800050497055054, 0.10851316899061203, 0.01065815333276987, 0.016539014875888824, -0.04745347052812576, 0.01766236498951912, -0.015341670252382755, 0.046299684792757034, 0.012210562825202942, 0.0820210725069046, 0.04013419523835182, -0.0014534508809447289, -0.04729899391531944, -0.031082499772310257, 0.07693253457546234, 0.00235338369384408, -0.09066437184810638, 0.2840561270713806, -0.15661264955997467, 0.10136295855045319, 0.1312950700521469, -0.23610937595367432, -0.07729008793830872, 0.019230257719755173, -0.06850288808345795, -0.02142888866364956, 0.05271073430776596, 0.0020451920572668314, 0.1397758573293686, -0.06530438363552094, 0.14740803837776184, -0.08654658496379852, -0.021027596667408943, 0.0245070718228817, -0.1000945195555687, -0.027936330065131187, 0.06393317133188248, 0.0620359368622303, -0.14554060995578766, 0.04146670550107956, 0.22554297745227814, 0.03393517807126045, 0.19523589313030243, 0.058122582733631134, -0.0346553660929203, -0.0018438943661749363, -0.13089394569396973, -0.024785438552498817, -0.05139085650444031, -0.02293773926794529, -0.027000054717063904, 0.06692229211330414, 0.03795018047094345, 0.06915058195590973, -0.06309203058481216, -0.06041004881262779, -0.014631900936365128, 0.013658266514539719, 0.030562400817871094, 0.11716115474700928, -0.03186109662055969, 0.12272331863641739, -0.05464477464556694, 0.053017206490039825, 0.019996779039502144, 0.0630362257361412, -0.10652939975261688, 0.13103537261486053, -0.14097866415977478, -0.342902272939682, -0.13340646028518677, 0.014263007789850235, 0.02424582839012146, 0.023381391540169716, 0.09131719917058945, -0.064763642847538, -0.03893610090017319, -0.06116459518671036, 0.09458022564649582, -0.05768357217311859, 0.01289746630936861, -0.1236233115196228, -0.04064418748021126, -0.029872242361307144, -0.07670476287603378, -0.038071077316999435, -0.028588756918907166, -0.19043824076652527, 0.15938639640808105, -0.1749953329563141, 0.10961820930242538, 0.08704333007335663, -0.007939756847918034, 0.004721236880868673, -0.08036772906780243, 0.18001314997673035, -0.08144678175449371, 0.15415622293949127, 0.1853632926940918, 0.0575232058763504, 0.11382598429918289, -0.010522530414164066, -0.0789099931716919, -0.04810347035527229, 0.07677056640386581, -0.011874324642121792, -0.09156601876020432, -0.09539745002985, -0.06877711415290833, -0.017726963385939598, 0.0766742005944252, 0.020464323461055756, 0.01362189557403326, 0.1333678662776947, 0.11256422102451324, -0.060441888868808746, 0.02099321037530899, 0.049886349588632584, 0.0817718356847763, 0.13144735991954803, -0.052521251142024994, 0.16445346176624298, -0.08298142999410629, -0.08727779239416122, 0.18021441996097565, -0.09989045560359955, 0.14083240926265717, 0.025037432089447975, -0.04638231545686722, 0.03828182816505432, 0.14425812661647797, 0.08322574943304062, 0.15195298194885254, -0.026306798681616783, -0.009439566172659397, -0.09866547584533691, -0.01213833224028349, -0.01831134594976902, 0.07152687758207321, -0.03631354868412018, -0.17165210843086243, -0.02348908968269825, -0.00045172718819230795, 0.048127684742212296, 0.15848709642887115, 0.07747603207826614, -0.16686701774597168, -0.032763633877038956, -0.03163047879934311, -0.023904399946331978, -0.09261715412139893, 0.0301663875579834, 0.024772590026259422, -0.1210344210267067, 0.12369629740715027, -0.01417612936347723, 0.07567168027162552, -0.01961526833474636, 0.04056777432560921, -0.09087996184825897, -0.05537664517760277, -0.05371522158384323, 0.1080629900097847, -0.21953506767749786, 0.19595827162265778, -0.0189495999366045, -0.04440674930810928, -0.06429938226938248, -0.10034593939781189, 0.049753062427043915, 0.19086384773254395, 0.11197235435247421, 0.04015324264764786, 0.10153821110725403, -0.024021556600928307, -0.06141194328665733, 0.049262095242738724, 0.13801054656505585, -0.059624023735523224, 0.028077172115445137, -0.07158304005861282, 0.02434507943689823, 0.007087967824190855, 0.06870593130588531, -0.06648526340723038, -0.07354125380516052, 0.04924731329083443, -0.01828497089445591, 0.06482936441898346, 0.013428138568997383, -0.03798963874578476, -0.05233382433652878, 0.09251630306243896, -0.010830933228135109, -0.12005047500133514, -0.08846964687108994, -0.03393533453345299, 0.017724158242344856, -0.08529943227767944, 0.049071650952100754, -0.04528793320059776, -0.09979774802923203, -0.01621522195637226, -0.16626609861850739, 0.0775807797908783, -0.04779711365699768, -0.08103583753108978, 0.041266150772571564, 0.08557715266942978, 0.06662097573280334, -0.001473532523959875, 0.04314468428492546, 0.0024835048243403435, -0.11022668331861496, -0.10776946693658829, 0.013947296887636185, -0.034736670553684235, 0.055851049721241, -0.04275117069482803, -0.06061304733157158, 0.05560089647769928, -0.09800810366868973, -0.017529020085930824, 0.1312301903963089, 0.1505429744720459, -0.04594165459275246, 0.11611278355121613, 0.1486346274614334, -0.07767589390277863, -0.25039318203926086, -0.2073422521352768, -0.07086265832185745, -0.039530813694000244, 0.04569463059306145, -0.1320418268442154, 0.06539476662874222, 0.10189425945281982, 0.046192068606615067, 0.008134175091981888, -0.10157859325408936, -0.1369234174489975, 0.12093634158372879, 0.01997406780719757, 0.42753756046295166, -0.1250196397304535, 0.010401822626590729, -0.021539151668548584, -0.0777151882648468, 0.16931328177452087, -0.017437687143683434, 0.0768052339553833, -0.04145905375480652, 0.09864524006843567, -0.012795009650290012, 0.027613719925284386, 0.03128639981150627, -0.07440368086099625, 0.03098875842988491, -0.1704263836145401, -0.02984638139605522, 0.18634465336799622, 0.03603058308362961, 0.045380521565675735, -0.009882797487080097, 0.05361612141132355, -0.14698541164398193, -0.03778575360774994, -0.1030382588505745, 0.051194097846746445, 0.03899192437529564, -0.123642198741436, -0.07042597234249115, 0.07138543576002121, -0.03731396421790123, -0.027689199894666672, 0.015561357140541077, -0.1047254279255867, 0.07744307816028595, -0.037813253700733185, 0.11962711811065674, -0.10509627312421799, 0.09884278476238251, -0.07407151162624359, -0.08567918837070465, 0.026108987629413605, -0.08487500250339508, 0.02228423021733761, 0.06574342399835587, -0.04578550532460213, 0.08611130714416504, 0.024600118398666382, -0.005425869487226009, 0.052450306713581085, 0.12577565014362335, -0.2754335403442383, -0.08214418590068817, -0.07896355539560318, -0.08848758041858673, 0.08154620975255966, 0.06933047622442245, 0.19356544315814972, -0.03022688627243042, -0.047762926667928696, 0.0015826335875317454, -0.0006674600881524384, -0.033003952354192734, 0.03067842684686184, 0.04881814867258072, -0.07676666229963303, -0.027985958382487297, 0.04811609163880348, 0.03386806696653366, -0.07602550834417343, 0.020917044952511787, 0.05977104604244232, -0.14622727036476135, -0.07382962107658386, -0.10326982289552689, -0.03758401796221733, -0.1606399118900299, -0.0003135268634650856, -0.01516014151275158, 0.007424753159284592, 0.02550889551639557, 0.12206148356199265, 0.032727956771850586, 0.06872215121984482, -0.02680238150060177, 0.009404825046658516, 0.0023645777255296707, -0.03689257428050041, 0.06392975151538849, -0.03803348168730736, -0.0750659853219986, 0.19379788637161255, 0.024946196004748344, 0.1601323038339615, -0.1072850227355957, -0.03231823816895485, -0.06478050351142883, -0.04256724938750267, -0.017362480983138084, -0.06154698133468628, -0.09199638664722443, -0.06722292304039001, -0.02527294121682644, -0.05497658997774124, -0.042158424854278564, -0.06664980947971344, -0.07345438748598099, 0.03235650807619095, -0.002595064230263233, 0.020205941051244736, -0.043303728103637695, -0.033875588327646255, 0.09084955602884293, 0.04030309244990349, 0.12303349375724792, 0.09033546596765518, -0.07531844824552536, 0.07168598473072052, -0.04217313602566719, 0.01244452502578497, 0.027783066034317017, 0.0019631723407655954, -0.01059019099920988, 0.08712289482355118, -0.020871082320809364, 0.01596781238913536, 0.029730189591646194, 0.04423009976744652, 0.0571102648973465, -0.08517146855592728, 0.11650225520133972, 0.024141451343894005, -0.08766687661409378, -0.07721635699272156, -0.014792684465646744, -0.09702851623296738, 0.06345497071743011, 0.1514984369277954, -0.08421991020441055, 0.04948687553405762, -0.11633428931236267, 0.008292303420603275, 0.016211412847042084, -0.11161722242832184, 0.10892216116189957, -0.133244127035141, -0.012097116559743881, 0.021664060652256012, 0.15461434423923492, 0.05896759033203125, -0.01718560792505741, 0.014585879631340504, 0.1264851838350296, -0.05390501767396927, -0.06882958859205246, 0.08215885609388351, 0.039161037653684616, -0.023176806047558784, -0.13165508210659027, 0.10484813153743744, -0.05277705192565918, -0.010289396159350872, 0.16089418530464172, -0.028741730377078056, -0.03470791503787041, 0.028977425768971443, -0.054532624781131744, 0.062119513750076294, -0.01550187636166811, -0.15335384011268616, 0.017120426520705223, 0.10095611959695816, 0.006075035780668259, 0.10322210937738419, 0.19636283814907074, -0.006839865352958441, 0.017534101381897926, 0.08201700448989868, -0.03622725233435631, -0.14894673228263855, -0.2344929277896881, -0.08266494423151016, -0.1363135576248169, -0.0037640375085175037, -0.06733135879039764, 0.016174597665667534, -0.010045618750154972, 0.08998008817434311, -0.04792684316635132, 0.03958480805158615, -0.10663482546806335, -0.1734389066696167, 0.1427154541015625, -0.02082776464521885, 0.003464869922026992, -0.06096256151795387, -0.003964845556765795, -0.04536774009466171, 0.07001999020576477, -0.011945576407015324, -0.005068403668701649, -0.0007907156832516193, -0.005154336802661419, -0.11426493525505066, -0.08533066511154175, -0.08666534721851349, 0.09445460140705109, -0.025546958670020103, -0.0775238499045372, 0.004957588855177164, 0.000842711771838367, 0.005330846644937992, 0.19258199632167816, 0.02908729761838913, -0.10828651487827301, -0.05933300033211708, 0.22616825997829437, -0.04966205358505249, 0.024389639496803284, 0.00775837991386652, -0.000744677847251296, 0.034714631736278534, 0.33829259872436523, 0.300274133682251, -0.06084439158439636, -0.004779998678714037, -0.024616533890366554, 0.04390595480799675, 0.15151174366474152, 0.13677723705768585, 0.08577099442481995, 0.15424364805221558, -0.060261309146881104, -0.040187980979681015, -0.11392954736948013, 0.05347117409110069, -0.030619828030467033, 0.027292702347040176, 0.06221918761730194, -0.0333847813308239, 0.024227024987339973, 0.10528843849897385, -0.10421743988990784, -0.05108844116330147, -0.11435656994581223, -0.02134745568037033, -0.003400310641154647, 0.0017637547571212053, -0.03668805584311485, -0.0033874334767460823, 0.09485501796007156, -0.013950132764875889, 0.021579422056674957, 0.10314711928367615, 0.07915391772985458, -0.18157851696014404, -0.008540243841707706, 0.12640786170959473, -0.13843023777008057, -0.03662322461605072, -0.031524114310741425, -0.020140845328569412, 0.039353929460048676, -0.01583857461810112, 0.011886500753462315, 0.10962451994419098, -0.02668215148150921, 0.06610333919525146, 0.009200544096529484, -0.021122856065630913, 0.06962212920188904, -0.15249255299568176, 0.011853729374706745, -0.0913909450173378, 0.07190929353237152, -0.006748401094228029, -0.06881333887577057, -0.0022698568645864725, 0.13859030604362488, -0.10453063249588013, 0.1088864803314209, 0.12417273223400116, -0.034439824521541595, 0.02093339152634144, -0.08423852920532227, -0.06471096724271774, 0.024591730907559395, -0.11046013981103897, -0.0028035365976393223, -0.02370581030845642, -0.10235404223203659, -0.07096131891012192, -0.003728361800312996, -0.17452870309352875, 0.041247520595788956, -0.10491348057985306, -0.025282593443989754, -0.08411908149719238, 0.14922566711902618, -0.00017377943731844425, 0.001837921910919249, 0.020193153992295265, 0.09407888352870941, 0.03925147280097008, 0.05215199664235115, -0.11990641057491302, -0.03715139627456665 ]
null
null
transformers
# beer_vs_wine Autogenerated by HuggingPics🤗🖼️ Create your own image classifier for **anything** by running [the demo on Google Colab](https://colab.research.google.com/github/nateraw/huggingpics/blob/main/HuggingPics.ipynb). Report any issues with the demo at the [github repo](https://github.com/nateraw/huggingpics). ## Example Images #### beer ![beer](images/beer.jpg) #### wine ![wine](images/wine.jpg)
{"tags": ["image-classification", "pytorch", "huggingpics"], "metrics": ["accuracy"]}
image-classification
filipafcastro/beer_vs_wine
[ "transformers", "pytorch", "tensorboard", "vit", "image-classification", "huggingpics", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #vit #image-classification #huggingpics #model-index #autotrain_compatible #endpoints_compatible #region-us
# beer_vs_wine Autogenerated by HuggingPics️ Create your own image classifier for anything by running the demo on Google Colab. Report any issues with the demo at the github repo. ## Example Images #### beer !beer #### wine !wine
[ "# beer_vs_wine\n\n\nAutogenerated by HuggingPics️\n\nCreate your own image classifier for anything by running the demo on Google Colab.\n\nReport any issues with the demo at the github repo.", "## Example Images", "#### beer\n\n!beer", "#### wine\n\n!wine" ]
[ "TAGS\n#transformers #pytorch #tensorboard #vit #image-classification #huggingpics #model-index #autotrain_compatible #endpoints_compatible #region-us \n", "# beer_vs_wine\n\n\nAutogenerated by HuggingPics️\n\nCreate your own image classifier for anything by running the demo on Google Colab.\n\nReport any issues with the demo at the github repo.", "## Example Images", "#### beer\n\n!beer", "#### wine\n\n!wine" ]
[ 49, 45, 4, 6, 6 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #vit #image-classification #huggingpics #model-index #autotrain_compatible #endpoints_compatible #region-us \n# beer_vs_wine\n\n\nAutogenerated by HuggingPics️\n\nCreate your own image classifier for anything by running the demo on Google Colab.\n\nReport any issues with the demo at the github repo.## Example Images#### beer\n\n!beer#### wine\n\n!wine" ]
[ -0.10991454869508743, 0.1619662046432495, -0.0016634310595691204, 0.07083617150783539, 0.09594986587762833, 0.0659630075097084, 0.1335122138261795, 0.05358761176466942, 0.21538904309272766, 0.018834993243217468, 0.13585367798805237, 0.11634305119514465, -0.014162198640406132, 0.22972974181175232, 0.007837938144803047, -0.22485972940921783, -0.014270204119384289, 0.07413078844547272, 0.123846136033535, 0.08562196791172028, 0.07270117849111557, -0.12536880373954773, 0.1024811714887619, -0.031443510204553604, -0.24900273978710175, -0.03327563777565956, 0.0055869026109576225, -0.052458617836236954, 0.08307554572820663, -0.004460838623344898, 0.09300292283296585, 0.05851452052593231, 0.014781879261136055, 0.011759604327380657, 0.06125110387802124, -0.032442521303892136, -0.035019613802433014, 0.057475488632917404, 0.08672704547643661, -0.029086589813232422, 0.14125825464725494, 0.1856766790151596, 0.005441606044769287, 0.08882443606853485, -0.09373166412115097, -0.01857544109225273, -0.06295007467269897, 0.06589950621128082, -0.014338493347167969, 0.02796631120145321, -0.04736446589231491, 0.06541970372200012, -0.14413334429264069, 0.029277397319674492, 0.2077057659626007, -0.09170281887054443, -0.08543086796998978, 0.14129063487052917, 0.03838222846388817, -0.0675811916589737, -0.07011642307043076, 0.06803461164236069, 0.02577279508113861, 0.045469824224710464, -0.07984735816717148, -0.0602748803794384, -0.03735341504216194, -0.05179242789745331, -0.04307118058204651, -0.04295443743467331, 0.09832829236984253, 0.0034828626085072756, -0.062362682074308395, -0.09452690184116364, 0.017364315688610077, 0.04941684380173683, -0.085239477455616, -0.027432365342974663, -0.03944598510861397, -0.04905830696225166, -0.10058299452066422, -0.04993000999093056, -0.13648059964179993, -0.04649421200156212, -0.08195305615663528, 0.23779375851154327, 0.03223187476396561, 0.03195630759000778, -0.05003117397427559, 0.09119979292154312, -0.07302869856357574, -0.05662466585636139, -0.022964026778936386, -0.08871788531541824, -0.0719718337059021, -0.05300658196210861, 0.0042786551639437675, 0.06617036461830139, 0.1133437529206276, 0.20105761289596558, -0.052991658449172974, 0.03351392224431038, 0.06028466671705246, 0.015108512714505196, 0.0430421307682991, 0.27030447125434875, 0.10089265555143356, 0.004813346080482006, 0.00572437047958374, -0.08335558325052261, -0.05092084780335426, 0.04384797438979149, -0.1876281499862671, -0.058709315955638885, -0.04236269369721413, -0.015973201021552086, 0.010167629458010197, 0.047363586723804474, -0.11496242880821228, -0.12028241902589798, 0.18675599992275238, 0.02797636017203331, 0.07773102819919586, 0.021453168243169785, -0.03240645304322243, 0.01682869903743267, 0.004471396561712027, 0.05308755859732628, -0.041002027690410614, 0.07313288748264313, -0.041654255241155624, 0.02595180831849575, -0.08361907303333282, 0.029158886522054672, 0.019631190225481987, -0.12164752185344696, 0.001996220089495182, -0.11727266013622284, -0.01716206595301628, -0.012534638866782188, 0.10212237387895584, -0.0449778251349926, -0.09008660167455673, -0.020192230120301247, 0.10782412439584732, -0.08197112381458282, -0.005386259872466326, -0.1775369942188263, 0.008053719997406006, 0.015482996590435505, -0.015389413572847843, 0.060411497950553894, -0.16379395127296448, 0.070762500166893, -0.1842087358236313, -0.02200966514647007, -0.30397966504096985, 0.07629513740539551, -0.0831921175122261, 0.15584421157836914, -0.11049342900514603, -0.00374565739184618, -0.004095883574336767, 0.016822995617985725, -0.04860979691147804, 0.17432613670825958, -0.11785419285297394, -0.13175801932811737, 0.05087627097964287, -0.09995236247777939, -0.06420189142227173, 0.11634539067745209, 0.011738813482224941, -0.02137506753206253, 0.1469365954399109, 0.1807536780834198, 0.08966902643442154, -0.12498383969068527, 0.006455591414123774, -0.046330466866493225, -0.11329829692840576, 0.08427079766988754, 0.022424442693591118, 0.014240373857319355, -0.04568318650126457, 0.019118737429380417, 0.030180469155311584, 0.035468097776174545, -0.04237321391701698, -0.05729344114661217, -0.00817259680479765, -0.012175587937235832, 0.11873113363981247, 0.0722503513097763, 0.006410015746951103, -0.024604544043540955, -0.03074491396546364, -0.06155982241034508, 0.06526218354701996, 0.016114862635731697, -0.06575237959623337, -0.10681115090847015, 0.20555171370506287, 0.059695061296224594, -0.02545403316617012, -0.021367892622947693, -0.0762350931763649, 0.0859619602560997, -0.037386704236269, 0.19386082887649536, 0.0762644037604332, 0.051390908658504486, 0.03957829251885414, 0.030515097081661224, -0.019812026992440224, 0.04318247735500336, -0.03448478877544403, 0.0007928148843348026, -0.10225947201251984, 0.0753583312034607, -0.01848091185092926, 0.12007055431604385, -0.12634402513504028, -0.05049929767847061, 0.15530018508434296, 0.10337211936712265, 0.05082201212644577, -0.0647943988442421, -0.018914686515927315, -0.058479275554418564, -0.0281666312366724, -0.03231809288263321, 0.10875944048166275, -0.05629374459385872, 0.011885124258697033, 0.17936758697032928, 0.11512568593025208, -0.011342006735503674, 0.170493945479393, -0.068851038813591, -0.0713333860039711, -0.21802976727485657, -0.0586511455476284, 0.06496090441942215, 0.019558852538466454, 0.06269582360982895, 0.08498656749725342, -0.01335227396339178, 0.05921774357557297, -0.022659115493297577, -0.052928630262613297, 0.04152178391814232, -0.009937492199242115, -0.06566949188709259, 0.1171426773071289, 0.08523965626955032, -0.11560802161693573, 0.06360916793346405, 0.12055698037147522, 0.06607646495103836, 0.0815662071108818, 0.07551603764295578, 0.022245366126298904, 0.0028210158925503492, -0.028914421796798706, -0.01033773273229599, 0.23024879395961761, -0.1150931790471077, -0.008090022020041943, 0.04947472736239433, -0.13198226690292358, -0.003927470650523901, -0.12426047027111053, 0.01477067545056343, -0.018561165779829025, -0.01776941679418087, 0.13109904527664185, 0.061633285135030746, 0.009555164724588394, 0.08512686938047409, 0.04830178618431091, -0.030480992048978806, -0.006330879870802164, 0.06692471355199814, -0.04932454973459244, 0.1251663714647293, -0.04020720720291138, -0.26688942313194275, -0.051075320690870285, -0.08434689044952393, -0.04082315415143967, 0.11954410374164581, 0.06718333810567856, -0.09985703229904175, -0.026590658351778984, 0.05169326812028885, 0.15049782395362854, 0.07223936170339584, -0.02045370824635029, -0.15497025847434998, -0.0008813684689812362, -0.011192492209374905, -0.046157315373420715, -0.04541390389204025, -0.03794463351368904, -0.06967538595199585, 0.1777040660381317, -0.10574911534786224, 0.09548414498567581, 0.07908741384744644, -0.11125297844409943, 0.10310419648885727, -0.003633267479017377, 0.21500082314014435, -0.15336966514587402, 0.04760376736521721, 0.08824532479047775, 0.017328312620520592, 0.0077741509303450584, 0.06816821545362473, 0.04950937256217003, -0.08192551136016846, 0.004315792117267847, 0.009104249067604542, -0.09703178703784943, -0.05295883119106293, -0.15010885894298553, -0.03180508315563202, 0.08874848484992981, 0.18765567243099213, 0.08654622733592987, 0.09229057282209396, 0.14645732939243317, -0.059214286506175995, 0.03956454247236252, -0.031889885663986206, 0.08120705932378769, 0.000504925730638206, -0.04682512953877449, 0.0296760443598032, -0.005304497200995684, -0.12198159843683243, 0.17257821559906006, -0.0005241199396550655, 0.19040992856025696, 0.006975805386900902, 0.036238010972738266, 0.07369869202375412, 0.053830794990062714, 0.07486312091350555, -0.08237951993942261, -0.02396884560585022, -0.04144654795527458, -0.021048283204436302, -0.08196735382080078, -0.005095649976283312, 0.05434947460889816, 0.07301250845193863, -0.1038600504398346, 0.005534145049750805, -0.1500236988067627, 0.07748166471719742, 0.09966042637825012, 0.03707915544509888, -0.3002418875694275, -0.04540332406759262, 0.0022704799193888903, -0.04314602166414261, -0.04516226798295975, -0.0132997902110219, -0.009479421190917492, -0.09420835971832275, 0.057175327092409134, -0.07714790850877762, 0.13551287353038788, -0.059300683438777924, 0.011431388556957245, 0.052071377635002136, 0.06071772053837776, 0.022031312808394432, 0.06316222250461578, -0.2591959834098816, 0.08713484555482864, -0.011775918304920197, -0.057221557945013046, -0.1269558072090149, -0.01072701346129179, 0.030120572075247765, 0.14078068733215332, 0.1019793376326561, 0.07507073879241943, 0.05244976654648781, -0.12643709778785706, -0.06900814920663834, 0.01914701610803604, -0.05636053904891014, -0.13148394227027893, -0.030766066163778305, 0.02436528354883194, -0.015514743514358997, -0.04080573469400406, -0.02384079061448574, -0.15060573816299438, -0.07765606045722961, -0.010587096214294434, -0.03135964646935463, 0.027978992089629173, 0.037635937333106995, -0.030453210696578026, -0.03296992555260658, 0.08704882115125656, 0.07498674094676971, -0.01014093216508627, -0.10366255044937134, 0.026014789938926697, -0.0029248534701764584, -0.0813831016421318, 0.030558492988348007, -0.11369361728429794, 0.15698647499084473, -0.1154063269495964, -0.12908031046390533, 0.057644352316856384, -0.09992799907922745, -0.08880272507667542, -0.07888023555278778, 0.04693228751420975, 0.09723905473947525, 0.012781267985701561, 0.12505190074443817, 0.08456115424633026, -0.10481700301170349, -0.10576271265745163, 0.01505113486200571, -0.06318359076976776, 0.05779849365353584, 0.043137077242136, 0.01952858455479145, -0.10138599574565887, -0.022920789197087288, 0.06075236573815346, 0.01455638837069273, 0.0960211530327797, -0.07998082041740417, 0.1399364024400711, -0.024437446147203445, -0.015771880745887756, -0.2734529972076416, -0.01327274739742279, -0.02204311639070511, -0.044697798788547516, -0.016012204810976982, -0.12841103971004486, 0.14838799834251404, 0.02168947085738182, -0.059958651661872864, 0.14939367771148682, -0.029553856700658798, -0.13586574792861938, 0.15212751924991608, 0.0911957398056984, 0.10584753006696701, -0.09903991222381592, -0.08734606951475143, -0.0977054312825203, 0.03647636994719505, 0.24370768666267395, 0.04331822693347931, 0.04571538418531418, -0.05396779999136925, 0.10386893898248672, 0.055737197399139404, 0.007839251309633255, 0.06812763959169388, 0.011755592189729214, -0.043521106243133545, -0.1236628070473671, -0.180536687374115, -0.02946370653808117, 0.008645583875477314, 0.07211467623710632, -0.0024222086649388075, 0.052031341940164566, -0.13387317955493927, 0.010061283595860004, -0.08195389807224274, 0.18411977589130402, -0.016980063170194626, -0.015504013746976852, -0.12433718144893646, 0.09173673391342163, -0.14821875095367432, 0.07475421577692032, 0.10459159314632416, -0.02347961626946926, 0.030177537351846695, 0.012381626293063164, 0.0462736040353775, 0.009209503419697285, -0.04983954504132271, -0.006011765915900469, -0.022735245525836945, 0.09992499649524689, -0.09060196578502655, 0.051141075789928436, 0.09818952530622482, 0.015364640392363071, 0.08705281466245651, -0.015646325424313545, -0.028370708227157593, -0.003109821118414402, 0.13087327778339386, -0.1867392212152481, -0.015493818558752537, -0.1062433123588562, 0.006472592242062092, 0.10328204184770584, 0.04450191557407379, 0.08635757118463516, -0.002467608777806163, -0.09832138568162918, 0.025108356028795242, -0.027003204450011253, -0.022258667275309563, 0.07342810183763504, 0.0713053047657013, -0.008996059186756611, -0.15505608916282654, -0.030080579221248627, 0.07161809504032135, -0.09797149896621704, -0.09523151069879532, 0.1258334219455719, -0.027396729215979576, -0.11479559540748596, 0.036087196320295334, 0.10579098761081696, -0.1552567332983017, 0.02733469381928444, -0.06976031512022018, -0.071495421230793, 0.06300947815179825, -0.06437124311923981, 0.12851904332637787, 0.07564256340265274, 0.08135808259248734, 0.03433220461010933, -0.0250674057751894, 0.056230608373880386, 0.023690253496170044, 0.1166912168264389, -0.15654127299785614, -0.030430780723690987, -0.04296377673745155, 0.08587243407964706, -0.08674342930316925, -0.06309224665164948, -0.1569046676158905, -0.04102066159248352, -0.0862170159816742, 0.069647416472435, -0.07496534287929535, -0.0012894845567643642, -0.039254263043403625, -0.07150354236364365, 0.05045641213655472, 0.007486230228096247, -0.1416323482990265, -0.00510855158790946, -0.03584880381822586, 0.11272832751274109, -0.07971394062042236, 0.02113613300025463, 0.09539011865854263, -0.01078773569315672, 0.16777081787586212, 0.05866100639104843, -0.025261996313929558, -0.0716480016708374, -0.16191169619560242, -0.0593138225376606, 0.08231016993522644, 0.00866275280714035, 0.06859611719846725, 0.0328897200524807, 0.019914688542485237, 0.022448336705565453, 0.058942969888448715, 0.007106638979166746, 0.1327928900718689, -0.07734730839729309, -0.030684135854244232, 0.0459708496928215, -0.23606853187084198, -0.0257852952927351, 0.056284572929143906, 0.0450730063021183, -0.014910600148141384, 0.10272696614265442, -0.06461013108491898, 0.036869440227746964, -0.13686901330947876, 0.005833668168634176, 0.010612722486257553, -0.09996400028467178, -0.2029702067375183, -0.036216944456100464, -0.020786235108971596, 0.017742706462740898, 0.0863480195403099, 0.18102753162384033, 0.07096093893051147, 0.03138027340173721, 0.16975374519824982, 0.044027719646692276, 0.04841513931751251, -0.00809305440634489, -0.05361519753932953, 0.10308006405830383, -0.1318253129720688, 0.06671930104494095, -0.025956299155950546, -0.1945124715566635, -0.012513606809079647, 0.07266495376825333, -0.05362194404006004, -0.04471222311258316, 0.15564467012882233, 0.10234662890434265, -0.16297203302383423, 0.16701537370681763, -0.08216328918933868, 0.07594012469053268, -0.04700048640370369, 0.06163378432393074, 0.018712924793362617, -0.14230620861053467, 0.09115403890609741, -0.016123807057738304, -0.010841102339327335, -0.01979973167181015, -0.1924905627965927, -0.12173517793416977, -0.21790435910224915, 0.04965735226869583, -0.02950875833630562, 0.010167624801397324, -0.07614948600530624, -0.013176430016756058, -0.11162688583135605, 0.16631542146205902, -0.023404965177178383, -0.06215619295835495, 0.10273931175470352, 0.024881700053811073, -0.08057496696710587, 0.024983102455735207, -0.036964450031518936, -0.040820877999067307, 0.1228371188044548, 0.03559169918298721, -0.002141190692782402, 0.021283339709043503, -0.034013211727142334, -0.021110568195581436, -0.022866617888212204, 0.015998676419258118, -0.022622784599661827, -0.019372576847672462, -0.0204460509121418, -0.045504964888095856, 0.028819503262639046, 0.01556889247149229, 0.11509735882282257, -0.006428997498005629, -0.02090308628976345, -0.049753256142139435, 0.20563003420829773, -0.0901736244559288, 0.06320745497941971, -0.05501990020275116, 0.037890806794166565, -0.01647050678730011, 0.18415263295173645, 0.21995431184768677, -0.04067206010222435, -0.01918359287083149, -0.005031421314924955, -0.02187112346291542, 0.062451284378767014, 0.10102546215057373, -0.08732418715953827, 0.18374177813529968, -0.06792690604925156, -0.05744173750281334, 0.030180785804986954, 0.0111605329439044, -0.027430467307567596, -0.00968053750693798, 0.06657177209854126, 0.010992676019668579, -0.11802135407924652, 0.14695580303668976, -0.04784972593188286, -0.05499223619699478, 0.07181447744369507, -0.18452078104019165, -0.07924666255712509, 0.0021297575440257788, 0.0860455334186554, 0.01789393089711666, 0.09003967046737671, -0.04391556233167648, 0.011197114363312721, -0.10599656403064728, -0.04997789487242699, -0.21936006844043732, 0.009433208033442497, 0.10769228637218475, -0.2160867303609848, 0.24326570332050323, -0.0672639012336731, 0.05216490849852562, 0.06832960247993469, -0.021512949839234352, -0.0730060487985611, -0.11359076201915741, -0.07149623334407806, -0.17079582810401917, 0.010848901234567165, 0.10579602420330048, -0.02291032299399376, -0.04871064051985741, 0.051188111305236816, -0.11382580548524857, 0.02532709576189518, 0.04691344499588013, 0.005190500058233738, -0.06247501075267792, 0.2179573029279709, -0.13150638341903687, 0.0779208168387413, 0.048239655792713165, -0.003975937608629465, 0.0029905112460255623, -0.08190721273422241, 0.08128198236227036, 0.02504282258450985, -0.06895899027585983, -0.02593303471803665, -0.04037183150649071, -0.01934860274195671, -0.035914331674575806, -0.0558430477976799, -0.17735277116298676, -0.01834711991250515, -0.13270607590675354, 0.09331052750349045, -0.05197659134864807, 0.1711418330669403, 0.108716681599617, 0.0004323666507843882, 0.044612959027290344, -0.14190936088562012, -0.001750780618749559, 0.04872918501496315, -0.014095822349190712, -0.06671372056007385 ]
null
null
transformers
# Emotion Analysis in English ## bertweet-base-emotion-analysis Repository: [https://github.com/finiteautomata/pysentimiento/](https://github.com/finiteautomata/pysentimiento/) Model trained with EmoEvent corpus for Emotion detection in English. Base model is [BerTweet](https://huggingface.co/vinai/bertweet-base). ## License `pysentimiento` is an open-source library for non-commercial use and scientific research purposes only. Please be aware that models are trained with third-party datasets and are subject to their respective licenses. 1. [TASS Dataset license](http://tass.sepln.org/tass_data/download.php) 2. [SEMEval 2017 Dataset license]() ## Citation If you use `pysentimiento` in your work, please cite [this paper](https://arxiv.org/abs/2106.09462) ``` @misc{perez2021pysentimiento, title={pysentimiento: A Python Toolkit for Sentiment Analysis and SocialNLP tasks}, author={Juan Manuel Pérez and Juan Carlos Giudici and Franco Luque}, year={2021}, eprint={2106.09462}, archivePrefix={arXiv}, primaryClass={cs.CL} } ``` and also the dataset related paper ``` @inproceedings{del2020emoevent, title={EmoEvent: A multilingual emotion corpus based on different events}, author={del Arco, Flor Miriam Plaza and Strapparava, Carlo and Lopez, L Alfonso Urena and Mart{\'\i}n-Valdivia, M Teresa}, booktitle={Proceedings of the 12th Language Resources and Evaluation Conference}, pages={1492--1498}, year={2020} } ``` Enjoy! 🤗
{"language": ["en"], "tags": ["emotion-analysis"]}
text-classification
finiteautomata/bertweet-base-emotion-analysis
[ "transformers", "pytorch", "safetensors", "roberta", "text-classification", "emotion-analysis", "en", "arxiv:2106.09462", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
2022-03-02T23:29:05+00:00
[ "2106.09462" ]
[ "en" ]
TAGS #transformers #pytorch #safetensors #roberta #text-classification #emotion-analysis #en #arxiv-2106.09462 #autotrain_compatible #endpoints_compatible #has_space #region-us
# Emotion Analysis in English ## bertweet-base-emotion-analysis Repository: URL Model trained with EmoEvent corpus for Emotion detection in English. Base model is BerTweet. ## License 'pysentimiento' is an open-source library for non-commercial use and scientific research purposes only. Please be aware that models are trained with third-party datasets and are subject to their respective licenses. 1. TASS Dataset license 2. [SEMEval 2017 Dataset license]() If you use 'pysentimiento' in your work, please cite this paper and also the dataset related paper Enjoy!
[ "# Emotion Analysis in English", "## bertweet-base-emotion-analysis\n\nRepository: URL\n\n\nModel trained with EmoEvent corpus for Emotion detection in English. Base model is BerTweet.", "## License\n\n'pysentimiento' is an open-source library for non-commercial use and scientific research purposes only. Please be aware that models are trained with third-party datasets and are subject to their respective licenses. \n\n1. TASS Dataset license\n2. [SEMEval 2017 Dataset license]()\n\nIf you use 'pysentimiento' in your work, please cite this paper\n\n\n\nand also the dataset related paper\n\n\n\nEnjoy!" ]
[ "TAGS\n#transformers #pytorch #safetensors #roberta #text-classification #emotion-analysis #en #arxiv-2106.09462 #autotrain_compatible #endpoints_compatible #has_space #region-us \n", "# Emotion Analysis in English", "## bertweet-base-emotion-analysis\n\nRepository: URL\n\n\nModel trained with EmoEvent corpus for Emotion detection in English. Base model is BerTweet.", "## License\n\n'pysentimiento' is an open-source library for non-commercial use and scientific research purposes only. Please be aware that models are trained with third-party datasets and are subject to their respective licenses. \n\n1. TASS Dataset license\n2. [SEMEval 2017 Dataset license]()\n\nIf you use 'pysentimiento' in your work, please cite this paper\n\n\n\nand also the dataset related paper\n\n\n\nEnjoy!" ]
[ 62, 7, 39, 95 ]
[ "passage: TAGS\n#transformers #pytorch #safetensors #roberta #text-classification #emotion-analysis #en #arxiv-2106.09462 #autotrain_compatible #endpoints_compatible #has_space #region-us \n# Emotion Analysis in English## bertweet-base-emotion-analysis\n\nRepository: URL\n\n\nModel trained with EmoEvent corpus for Emotion detection in English. Base model is BerTweet.## License\n\n'pysentimiento' is an open-source library for non-commercial use and scientific research purposes only. Please be aware that models are trained with third-party datasets and are subject to their respective licenses. \n\n1. TASS Dataset license\n2. [SEMEval 2017 Dataset license]()\n\nIf you use 'pysentimiento' in your work, please cite this paper\n\n\n\nand also the dataset related paper\n\n\n\nEnjoy!" ]
[ -0.08491697907447815, 0.09979724138975143, -0.0022016740404069424, 0.049972400069236755, 0.1286986619234085, 0.0656442865729332, 0.10621599107980728, 0.03482232987880707, 0.05932803079485893, -0.04376578330993652, 0.03705483302474022, 0.13671697676181793, 0.015596735291182995, 0.06254466623067856, -0.06792331486940384, -0.30033329129219055, -0.01018340140581131, 0.07474832236766815, 0.1988394856452942, 0.11551054567098618, 0.12922929227352142, -0.0572594553232193, 0.12603072822093964, 0.05763412266969681, -0.04766567423939705, -0.02529011107981205, 0.014437887817621231, -0.06409161537885666, 0.14857563376426697, -0.002441061194986105, 0.034090638160705566, 0.07844976335763931, 0.06410954147577286, -0.14756520092487335, 0.04755634814500809, -0.01435660757124424, -0.010811572894454002, 0.08279071003198624, 0.07878274470567703, -0.13027016818523407, 0.2527633607387543, -0.01453046128153801, 0.0835098996758461, 0.030812591314315796, -0.04137662798166275, -0.2113446444272995, -0.040637873113155365, 0.0216075349599123, 0.0793500617146492, 0.091807521879673, -0.035269759595394135, 0.25855064392089844, -0.10533560067415237, 0.09289450943470001, 0.14427447319030762, -0.13824261724948883, -0.03817145153880119, -0.018237542361021042, 0.05142040178179741, -0.08209403604269028, -0.0954783707857132, 0.0061720372177660465, 0.0593796968460083, 0.05140356719493866, 0.07335306704044342, -0.09066400676965714, -0.014554068446159363, -0.033714886754751205, -0.10235218703746796, 0.034226298332214355, 0.22423267364501953, 0.04797101765871048, -0.09426215291023254, -0.10559001564979553, 0.0006781889242120087, 0.11017466336488724, 0.020616337656974792, -0.06995435059070587, 0.041659530252218246, 0.0008104618173092604, -0.045226335525512695, 0.049946900457143784, -0.1448662430047989, 0.030788827687501907, -0.09517788887023926, 0.05857662856578827, -0.0260580163449049, 0.04894399270415306, 0.028672516345977783, 0.04171207174658775, -0.10453324019908905, -0.08492043614387512, -0.03823922947049141, -0.14105261862277985, 0.07931464910507202, -0.02472723089158535, -0.13199235498905182, -0.11355196684598923, -0.020870206877589226, 0.05519348010420799, -0.02760791778564453, -0.035171229392290115, 0.02556219883263111, -0.01967620849609375, 0.19025292992591858, 0.13981561362743378, -0.07137876003980637, 0.032403599470853806, 0.0009105396457016468, -0.04661170765757561, 0.025208594277501106, 0.031751591712236404, -0.023633230477571487, -0.015757061541080475, 0.027817897498607635, -0.02672440931200981, -0.11513392627239227, 0.0851292833685875, -0.13105544447898865, -0.019461506977677345, 0.040406517684459686, -0.009045800194144249, -0.00396792171522975, 0.02615986205637455, 0.001686116331256926, 0.148127481341362, 0.08392872661352158, 0.040925487875938416, 0.026796167716383934, 0.0253299567848444, -0.025135576725006104, -0.02475692890584469, -0.05354638025164604, -0.07109217345714569, 0.06963510066270828, -0.08411438763141632, 0.10571780800819397, -0.2115517258644104, -0.27964845299720764, -0.041737861931324005, 0.09599584341049194, -0.016473140567541122, 0.025996224954724312, -0.03226754441857338, 0.05015794560313225, 0.013257576152682304, -0.04619127884507179, -0.04817967116832733, -0.034503985196352005, -0.0013310558861121535, -0.06015016883611679, 0.12991949915885925, -0.10384071618318558, 0.01210419274866581, -0.21771197021007538, -0.022013269364833832, 0.007716453168541193, 0.07636578381061554, -0.006957010831683874, 0.10927684605121613, -0.012076645158231258, -0.09668301790952682, 0.04923086613416672, 0.01897614262998104, 0.0034738299436867237, 0.16298836469650269, -0.1687961220741272, -0.06918804347515106, 0.08568930625915527, -0.11421168595552444, -0.09230523556470871, 0.1414162963628769, -0.06613739579916, 0.18946239352226257, 0.11340128630399704, 0.17903999984264374, -0.01582970656454563, -0.052224334329366684, -0.041790422052145004, 0.022699689492583275, -0.10136272758245468, -0.002343018539249897, 0.04787648469209671, 0.13076739013195038, -0.04970772936940193, 0.04390130564570427, -0.014342342503368855, 0.040866222232580185, -0.07216386497020721, -0.07261625677347183, -0.004274265840649605, -0.11300725489854813, 0.07515512406826019, 0.07133132219314575, 0.002477701287716627, -0.10480222851037979, -0.028322115540504456, -0.03686510771512985, 0.07731893658638, -0.03885600343346596, 0.004483255557715893, -0.07787685096263885, 0.002122048055753112, 0.04961467906832695, -0.013042773120105267, -0.11959380656480789, 0.06760267168283463, -0.044629741460084915, 0.1427774876356125, 0.013718625530600548, 0.024012554436922073, 0.043209828436374664, 0.0006744275451637805, -0.029903218150138855, -0.021155066788196564, 0.049029700458049774, 0.02039168030023575, -0.003882257267832756, -0.19552086293697357, 0.043604377657175064, -0.07253539562225342, 0.11437930166721344, -0.07125025242567062, 0.03757677599787712, -0.04703887179493904, 0.00780390715226531, -0.0034683351404964924, 0.02486204355955124, 0.005366014316678047, -0.002429969608783722, -0.05637475848197937, 0.020279226824641228, 0.0746721625328064, 0.02145165577530861, -0.05646902695298195, 0.1638488620519638, -0.026788029819726944, 0.09637634456157684, 0.1219337061047554, -0.09337108582258224, -0.06684117019176483, -0.03112236224114895, -0.047994621098041534, 0.06235533207654953, 0.006163396406918764, 0.0314297191798687, 0.18184639513492584, -0.0003196676552761346, 0.03828521817922592, -0.05744834616780281, 0.029459813609719276, 0.016511721536517143, -0.15818825364112854, -0.1107948049902916, 0.08890686184167862, 0.007947968319058418, -0.11529023200273514, 0.056658077985048294, 0.12953971326351166, -0.059600017964839935, 0.15313346683979034, 0.027259159833192825, -0.01697939820587635, -0.034881364554166794, -0.16356228291988373, -0.08136104792356491, 0.06300243735313416, -0.16788828372955322, -0.02300754189491272, 0.09011820703744888, -0.07713833451271057, -0.03163478523492813, -0.10779962688684464, -0.0796300545334816, 0.06154109165072441, 0.058619424700737, -0.06633967906236649, 0.0717887207865715, -0.012279637157917023, 0.08775125443935394, -0.05247114226222038, -0.02414427138864994, -0.019416749477386475, 0.008474599570035934, -0.1726381778717041, 0.161313995718956, -0.09907815605401993, -0.18157830834388733, -0.06659505516290665, -0.04407574608922005, -0.014860270544886589, 0.030763907358050346, 0.09058509767055511, -0.13908641040325165, -0.06844045966863632, -0.058371156454086304, -0.02321006916463375, 0.087312251329422, -0.02735085040330887, 0.0616411492228508, -0.04896039888262749, -0.03745552524924278, -0.09791682660579681, -0.05158696323633194, -0.07848069816827774, -0.05297762528061867, 0.13792717456817627, -0.06276455521583557, 0.1018950566649437, 0.1375320851802826, -0.021223457530140877, -0.009472527541220188, -0.08157698065042496, 0.19927437603473663, -0.004847516771405935, -0.038052354007959366, 0.1914190798997879, -0.03208872675895691, 0.04651705175638199, 0.11430464684963226, 0.021514814347028732, -0.08256819099187851, 0.05831162631511688, 0.009388546459376812, -0.07357663661241531, -0.20373500883579254, -0.09144396334886551, 0.04498394578695297, 0.0818442553281784, -0.0637933760881424, -0.024966364726424217, 0.06939586251974106, 0.1436605304479599, 0.020170973613858223, -0.15316225588321686, -0.07271488010883331, 0.08081521838903427, 0.12705765664577484, -0.05958528444170952, 0.0749988704919815, 0.007189474068582058, -0.018976174294948578, 0.13479579985141754, -0.10165481269359589, 0.10467562079429626, -0.017002148553729057, 0.0004848797107115388, 0.07074917107820511, 0.09117301553487778, -0.02051580883562565, 0.17622904479503632, -0.06651609390974045, -0.005233749281615019, -0.08803553134202957, -0.0024239991325885057, -0.12213099747896194, 0.11001046746969223, -0.06579994410276413, 0.08947072923183441, -0.16682377457618713, -0.02240975759923458, 0.07556095719337463, 0.190763458609581, 0.007175902370363474, -0.33335989713668823, -0.09952013194561005, 0.006914666388183832, -0.02347728982567787, 0.007076943293213844, -0.00397461699321866, -0.0383027121424675, -0.14445196092128754, 0.12063632160425186, 0.0010857583256438375, 0.028080826625227928, -0.03950239345431328, 0.0653885006904602, -0.12003511935472488, -0.06417801231145859, -0.01206553541123867, 0.07429894059896469, -0.19098274409770966, 0.175845667719841, -0.041388098150491714, 0.03551866114139557, -0.07824063301086426, -0.07305094599723816, 0.10065771639347076, 0.12262864410877228, 0.10269051045179367, -0.015135031193494797, 0.1779005378484726, -0.057256683707237244, -0.05672454833984375, 0.08289157599210739, -0.05370620638132095, -0.02134132757782936, 0.05384126678109169, 0.0018241109792143106, -0.0028954800218343735, 0.032422322779893875, 0.15869075059890747, -0.1475115418434143, -0.05371885746717453, -0.023607676848769188, 0.04871053621172905, 0.03733618184924126, 0.024562397971749306, -0.15660937130451202, -0.0817742794752121, 0.07424019277095795, 0.15488359332084656, -0.0723903700709343, -0.09899318218231201, -0.029578067362308502, -0.0070450943894684315, -0.060779958963394165, -0.009059133008122444, 0.022587453946471214, 0.06305215507745743, -0.016243021935224533, -0.11450263857841492, 0.08098277449607849, -0.12955544888973236, -0.0998818427324295, -0.04758960008621216, 0.0031089410185813904, 0.1102951392531395, 0.059610120952129364, 0.09462408721446991, -0.04049697518348694, -0.11199627816677094, -0.059595052152872086, 0.0749579593539238, 0.16252370178699493, 0.029236070811748505, -0.012867704033851624, -0.04510439559817314, -0.16709169745445251, -0.0814991444349289, -0.03640925884246826, 0.14326532185077667, 0.13612596690654755, -0.04104913771152496, 0.08904367685317993, 0.17872613668441772, -0.06776823103427887, -0.18969862163066864, 0.016094764694571495, 0.04779521003365517, 0.020216286182403564, 0.09200379252433777, -0.09725265204906464, 0.11508022993803024, -0.018758967518806458, -0.019807180389761925, -0.14206844568252563, 0.013536309823393822, -0.07566637545824051, 0.230010986328125, 0.11233334988355637, 0.2685476243495941, -0.11831378191709518, 0.05832705274224281, -0.07273437827825546, -0.12259697914123535, 0.21818475425243378, -0.10800342261791229, 0.03674943372607231, -0.012772219255566597, 0.19616754353046417, 0.0226534865796566, -0.00473403837531805, 0.08609946072101593, 0.017203686758875847, 0.06799066066741943, -0.09441041946411133, 0.01162861380726099, 0.02835233137011528, -0.022612834349274635, 0.17000959813594818, 0.01455169077962637, -0.016813311725854874, -0.07543737441301346, -0.08765039592981339, -0.12716200947761536, 0.06847183406352997, 0.03656157851219177, -0.123665951192379, -0.03820175305008888, 0.034512538462877274, 0.06340550631284714, -0.04262223839759827, -0.1615981012582779, -0.03937187045812607, -0.06845910102128983, 0.1226767748594284, 0.29789793491363525, -0.06382621079683304, 0.04660462588071823, -0.03337875381112099, -0.08086605370044708, 0.038989368826150894, -0.09242269396781921, -0.025110328570008278, 0.09718252718448639, -0.025280935689806938, 0.11707615107297897, 0.06414559483528137, -0.08577647805213928, 0.05036840960383415, 0.09097360074520111, -0.11331646889448166, -0.024691957980394363, -0.055701158940792084, -0.0780634731054306, -0.06162211298942566, 0.016075845807790756, 0.10283256322145462, -0.09767504781484604, -0.03538447618484497, -0.06526228040456772, 0.03050430677831173, 0.0055617839097976685, 0.01754693314433098, 0.0141220111399889, -0.06748257577419281, -0.09606936573982239, -0.010996365919709206, -0.08653818070888519, -0.11955489963293076, 0.09554342180490494, -0.03891494870185852, -0.06934688985347748, -0.08432884514331818, -0.03299310430884361, 0.19593645632266998, -0.25485703349113464, -0.0795934870839119, -0.03187580034136772, -0.14996249973773956, 0.013644921593368053, 0.14026163518428802, 0.10492884367704391, -0.014579028822481632, -0.09285124391317368, 0.02213846705853939, -0.04583894833922386, 0.06732488423585892, 0.14886006712913513, -0.018514906987547874, -0.07635737955570221, -0.00584992952644825, -0.04285554960370064, 0.07976723462343216, -0.0738397166132927, -0.028470933437347412, -0.04374629259109497, -0.03960360214114189, -0.21385902166366577, -0.002394634298980236, -0.10095969587564468, 0.022014565765857697, 0.03993891924619675, -0.017726141959428787, 0.015161656774580479, -0.015465503558516502, -0.058599721640348434, 0.04687277227640152, 0.042399726808071136, 0.08543549478054047, -0.10721589624881744, -0.06964235752820969, 0.04130856320261955, -0.0073721506632864475, 0.12138507515192032, 0.06868837773799896, -0.045077670365571976, 0.07042548805475235, -0.290177583694458, 0.010123400017619133, 0.13093487918376923, -0.009228245355188847, 0.0186876580119133, -0.0285926666110754, -0.022007005289196968, 0.06450434029102325, -0.007178622763603926, 0.01629600301384926, 0.1382271647453308, -0.018379949033260345, 0.09125669300556183, 0.1450701355934143, -0.09194212406873703, -0.055571746081113815, -0.0662769302725792, 0.005209858994930983, 0.06737277656793594, 0.20060481131076813, -0.04911087825894356, 0.038277771323919296, -0.1409635990858078, 0.015246044844388962, -0.009468290023505688, -0.023977428674697876, -0.16709427535533905, -0.06868212670087814, 0.013114293105900288, -0.001384560251608491, 0.1840749979019165, 0.14310698211193085, -0.045466501265764236, -0.06482556462287903, 0.12665453553199768, 0.09680629521608353, -0.031180068850517273, 0.13256990909576416, 0.012267816811800003, -0.009080248884856701, -0.06052791699767113, 0.1100773885846138, 0.08309853821992874, -0.08613232523202896, 0.09133962541818619, 0.06176568940281868, 0.11285265535116196, 0.10300477594137192, 0.020145315676927567, 0.09830386936664581, -0.0283278226852417, -0.22724032402038574, 0.007391178049147129, 0.05310250073671341, 0.016433484852313995, 0.2187996208667755, 0.09891785681247711, -0.06953757256269455, 0.0443587563931942, -0.017644625157117844, -0.022534627467393875, -0.13824883103370667, -0.1770983636379242, -0.06204809620976448, -0.11600177735090256, 0.006322178989648819, -0.15830227732658386, -0.06756513565778732, -0.0035152246709913015, 0.03080815263092518, -0.07438623905181885, 0.01630399189889431, -0.09703432023525238, -0.027606744319200516, 0.156091570854187, -0.025150828063488007, -0.08295242488384247, -0.031149884685873985, 0.029161449521780014, -0.04348476231098175, 0.07052510231733322, 0.049992192536592484, 0.004664294421672821, -0.0704784169793129, -0.01774982176721096, -0.05076780915260315, -0.08924311399459839, -0.02926553785800934, 0.029317224398255348, 0.021452009677886963, -0.009028129279613495, 0.0004967884160578251, 0.0025394835975021124, 0.04114818572998047, 0.12498073279857635, -0.00217818352393806, 0.0749320462346077, -0.1339370161294937, 0.17607344686985016, -0.07356419414281845, 0.020710472017526627, 0.03404022008180618, -0.06695779412984848, 0.009407803416252136, 0.207015261054039, 0.2185865044593811, -0.05423450469970703, -0.007359435316175222, -0.09091074019670486, 0.0435430072247982, -0.059292733669281006, 0.10012800246477127, 0.12618935108184814, 0.13733144104480743, -0.11540262401103973, 0.11645068973302841, -0.07603726536035538, 0.005949740763753653, -0.003787872614338994, -0.060511961579322815, 0.06334897875785828, -0.03808623552322388, -0.0397067628800869, 0.09487882256507874, -0.09248718619346619, 0.011009748093783855, 0.010781511664390564, -0.06800702959299088, -0.04147974029183388, -0.003136164043098688, -0.04046420007944107, 0.10249637067317963, 0.10024404525756836, -0.008442141115665436, 0.012124944478273392, 0.2240120768547058, 0.0013913161819800735, -0.18772083520889282, 0.06324940919876099, 0.18011115491390228, -0.10257833451032639, 0.15614967048168182, -0.04783511906862259, 0.05316143110394478, 0.05978480726480484, 0.03882220759987831, -0.027165254577994347, 0.08889428526163101, 0.011517155915498734, -0.03649982810020447, 0.06702109426259995, 0.06571241468191147, -0.004748558159917593, 0.025077486410737038, 0.02117672562599182, -0.2306908220052719, 0.03856693208217621, 0.03407847136259079, -0.04688962176442146, -0.063006192445755, 0.15351568162441254, -0.12702590227127075, 0.0713939294219017, 0.12805971503257751, -0.035308804363012314, -0.024473272264003754, -0.037717320024967194, 0.038507211953401566, 0.017938092350959778, -0.134146049618721, 0.03828287497162819, -0.10817130655050278, -0.018578751012682915, 0.13281363248825073, 0.02860674262046814, -0.28708338737487793, -0.04335387051105499, -0.08677808195352554, -0.027235927060246468, -0.03900556638836861, -0.01886274479329586, 0.024704499170184135, 0.03397964686155319, 0.005715557839721441, -0.0068732211366295815, 0.022212665528059006, 0.13408437371253967, -0.06538213789463043, -0.06727378815412521 ]
null
null
transformers
# Sentiment Analysis in English ## bertweet-sentiment-analysis Repository: [https://github.com/finiteautomata/pysentimiento/](https://github.com/finiteautomata/pysentimiento/) Model trained with SemEval 2017 corpus (around ~40k tweets). Base model is [BERTweet](https://github.com/VinAIResearch/BERTweet), a RoBERTa model trained on English tweets. Uses `POS`, `NEG`, `NEU` labels. ## License `pysentimiento` is an open-source library for non-commercial use and scientific research purposes only. Please be aware that models are trained with third-party datasets and are subject to their respective licenses. 1. [TASS Dataset license](http://tass.sepln.org/tass_data/download.php) 2. [SEMEval 2017 Dataset license]() ## Citation If you use `pysentimiento` in your work, please cite [this paper](https://arxiv.org/abs/2106.09462) ``` @misc{perez2021pysentimiento, title={pysentimiento: A Python Toolkit for Sentiment Analysis and SocialNLP tasks}, author={Juan Manuel Pérez and Juan Carlos Giudici and Franco Luque}, year={2021}, eprint={2106.09462}, archivePrefix={arXiv}, primaryClass={cs.CL} } ``` Enjoy! 🤗
{"language": ["en"], "tags": ["sentiment-analysis"]}
text-classification
finiteautomata/bertweet-base-sentiment-analysis
[ "transformers", "pytorch", "tf", "roberta", "text-classification", "sentiment-analysis", "en", "arxiv:2106.09462", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
2022-03-02T23:29:05+00:00
[ "2106.09462" ]
[ "en" ]
TAGS #transformers #pytorch #tf #roberta #text-classification #sentiment-analysis #en #arxiv-2106.09462 #autotrain_compatible #endpoints_compatible #has_space #region-us
# Sentiment Analysis in English ## bertweet-sentiment-analysis Repository: URL Model trained with SemEval 2017 corpus (around ~40k tweets). Base model is BERTweet, a RoBERTa model trained on English tweets. Uses 'POS', 'NEG', 'NEU' labels. ## License 'pysentimiento' is an open-source library for non-commercial use and scientific research purposes only. Please be aware that models are trained with third-party datasets and are subject to their respective licenses. 1. TASS Dataset license 2. [SEMEval 2017 Dataset license]() If you use 'pysentimiento' in your work, please cite this paper Enjoy!
[ "# Sentiment Analysis in English", "## bertweet-sentiment-analysis\n\nRepository: URL\n\n\nModel trained with SemEval 2017 corpus (around ~40k tweets). Base model is BERTweet, a RoBERTa model trained on English tweets.\n\nUses 'POS', 'NEG', 'NEU' labels.", "## License\n\n'pysentimiento' is an open-source library for non-commercial use and scientific research purposes only. Please be aware that models are trained with third-party datasets and are subject to their respective licenses. \n\n1. TASS Dataset license\n2. [SEMEval 2017 Dataset license]()\n\nIf you use 'pysentimiento' in your work, please cite this paper\n\n\nEnjoy!" ]
[ "TAGS\n#transformers #pytorch #tf #roberta #text-classification #sentiment-analysis #en #arxiv-2106.09462 #autotrain_compatible #endpoints_compatible #has_space #region-us \n", "# Sentiment Analysis in English", "## bertweet-sentiment-analysis\n\nRepository: URL\n\n\nModel trained with SemEval 2017 corpus (around ~40k tweets). Base model is BERTweet, a RoBERTa model trained on English tweets.\n\nUses 'POS', 'NEG', 'NEU' labels.", "## License\n\n'pysentimiento' is an open-source library for non-commercial use and scientific research purposes only. Please be aware that models are trained with third-party datasets and are subject to their respective licenses. \n\n1. TASS Dataset license\n2. [SEMEval 2017 Dataset license]()\n\nIf you use 'pysentimiento' in your work, please cite this paper\n\n\nEnjoy!" ]
[ 60, 7, 70, 88 ]
[ "passage: TAGS\n#transformers #pytorch #tf #roberta #text-classification #sentiment-analysis #en #arxiv-2106.09462 #autotrain_compatible #endpoints_compatible #has_space #region-us \n# Sentiment Analysis in English## bertweet-sentiment-analysis\n\nRepository: URL\n\n\nModel trained with SemEval 2017 corpus (around ~40k tweets). Base model is BERTweet, a RoBERTa model trained on English tweets.\n\nUses 'POS', 'NEG', 'NEU' labels.## License\n\n'pysentimiento' is an open-source library for non-commercial use and scientific research purposes only. Please be aware that models are trained with third-party datasets and are subject to their respective licenses. \n\n1. TASS Dataset license\n2. [SEMEval 2017 Dataset license]()\n\nIf you use 'pysentimiento' in your work, please cite this paper\n\n\nEnjoy!" ]
[ -0.04629984498023987, 0.13754847645759583, -0.005528416950255632, 0.040350183844566345, 0.07794279605150223, 0.022000668570399284, 0.1224530041217804, 0.039848774671554565, -0.009154165163636208, -0.061743494123220444, 0.07931508868932724, 0.1579657942056656, -0.01035155076533556, 0.04122380167245865, -0.04054129496216774, -0.2951887845993042, 0.01235952228307724, 0.052271533757448196, 0.09586969017982483, 0.13059879839420319, 0.1496945172548294, -0.0700087696313858, 0.0973760187625885, 0.03942175954580307, -0.018713053315877914, -0.007316503673791885, 0.018281958997249603, -0.09453245252370834, 0.15334905683994293, 0.011342767626047134, 0.07451409846544266, 0.10412608087062836, 0.015578528866171837, -0.061712153255939484, 0.04808886721730232, 0.005165968090295792, -0.05789482966065407, 0.08882109820842743, 0.07732614874839783, -0.08965412527322769, 0.28207725286483765, -0.0019036754965782166, 0.028680680319666862, 0.04322906211018562, -0.1216927245259285, -0.13947167992591858, -0.07681312412023544, 0.07959693670272827, 0.04707852751016617, 0.06897322088479996, -0.012204967439174652, 0.18828077614307404, -0.10522183775901794, 0.07479684054851532, 0.17046020925045013, -0.1514299362897873, -0.04883814975619316, 0.0012705919798463583, 0.006921096704900265, 0.028121044859290123, -0.014565171673893929, 0.013418804854154587, 0.04437069594860077, -0.009778687730431557, 0.06861385703086853, -0.07945046573877335, 0.0017718407325446606, -0.006642279680818319, -0.13248319923877716, -0.03355448320508003, 0.2332942634820938, 0.02355008013546467, -0.08105970174074173, -0.012891938909888268, -0.031123731285333633, 0.08590587228536606, 0.01827367953956127, -0.09065653383731842, 0.04368079826235771, -0.01573316380381584, -0.024018535390496254, -0.029316602274775505, -0.13069848716259003, 0.008636769838631153, -0.138229101896286, 0.08889520168304443, 0.02248704619705677, 0.05818294361233711, -0.02160736732184887, 0.03906264156103134, -0.12024429440498352, -0.04786933958530426, -0.036670196801424026, -0.13020794093608856, 0.0610324926674366, -0.04166160151362419, -0.06676749885082245, -0.1252521276473999, 0.012679096311330795, 0.1385383903980255, -0.02572513371706009, -0.05912915989756584, 0.07979471981525421, 0.011009439826011658, 0.12811411917209625, -0.0026575468946248293, -0.11167628318071365, 0.041789695620536804, 0.027177689597010612, -0.11205437779426575, -0.012037389911711216, 0.013283289968967438, -0.04199668765068054, -0.04617580026388168, 0.029973456636071205, -0.020094724372029305, -0.017594754695892334, 0.06495845317840576, -0.026136208325624466, -0.033684708178043365, 0.05895908176898956, -0.008981018327176571, -0.035266123712062836, -0.0065537490881979465, -0.039993759244680405, 0.14969445765018463, 0.057376470416784286, 0.05566182732582092, -0.023065784946084023, 0.06344019621610641, -0.07660922408103943, -0.03090216964483261, -0.057579368352890015, -0.08735718578100204, 0.061330802738666534, -0.13247150182724, 0.039048951119184494, -0.20081116259098053, -0.2672148048877716, -0.01657254993915558, 0.07204929739236832, 0.009429704397916794, -0.05051630362868309, -0.010074282996356487, 0.028825977817177773, -0.03796384483575821, -0.03984614834189415, -0.006657585501670837, -0.04553795978426933, 0.07888051867485046, -0.07005436718463898, 0.05862944945693016, -0.16743364930152893, 0.027170900255441666, -0.17117638885974884, -0.016765525564551353, 0.02240375429391861, 0.0563637875020504, -0.027959510684013367, 0.11114838719367981, -0.08186571300029755, -0.11760000884532928, -0.020575575530529022, 0.015040709637105465, 0.010864678770303726, 0.14456813037395477, -0.17044126987457275, -0.0589236319065094, 0.060570623725652695, -0.144718736410141, -0.11127469688653946, 0.1461476981639862, -0.06803864985704422, 0.19941450655460358, 0.14968430995941162, 0.1461746096611023, 0.09825973212718964, -0.07289739698171616, -0.012450188398361206, -0.009226849302649498, -0.09350138157606125, -0.10158282518386841, 0.07281571626663208, 0.10451042652130127, -0.07710429280996323, 0.03174393251538277, -0.0900934487581253, 0.019100822508335114, -0.06243313476443291, -0.07396745681762695, 0.013068933971226215, -0.0639348030090332, 0.09689453989267349, 0.025792447850108147, 0.04283788055181503, -0.06097659468650818, -0.025346627458930016, 0.07590194791555405, 0.05350113287568092, 0.0055007231421768665, 0.007771873380988836, -0.06476790457963943, 0.07429428398609161, 0.0764947235584259, -0.017577411606907845, -0.09755190461874008, 0.0024131317622959614, -0.07658123970031738, 0.10429619997739792, 0.11882216483354568, 0.10618148744106293, 0.00007698714034631848, -0.015331191942095757, -0.021632906049489975, 0.0446329340338707, -0.02779271826148033, 0.01479057502001524, 0.01303019467741251, -0.11482620984315872, 0.054893020540475845, -0.018013890832662582, 0.03285262733697891, -0.07193121314048767, 0.05487527325749397, 0.06120116636157036, 0.03261099383234978, 0.01734018139541149, 0.029938319697976112, 0.005733885802328587, 0.038860782980918884, -0.01741519197821617, 0.059691887348890305, 0.07815664261579514, 0.0008185271290130913, -0.06366845220327377, 0.1321835219860077, 0.021990222856402397, 0.09546894580125809, 0.10980508476495743, -0.14820678532123566, -0.06633178144693375, -0.015793437138199806, -0.0529707595705986, 0.033259402960538864, -0.021299710497260094, 0.017123611643910408, 0.10538925230503082, -0.00039056086097843945, 0.038831520825624466, -0.10378313809633255, -0.013744326308369637, -0.0040635522454977036, -0.1368883103132248, -0.04506593942642212, 0.09934203326702118, 0.10243195295333862, -0.12607428431510925, 0.10809265822172165, 0.09836871176958084, -0.11301025748252869, 0.16070207953453064, -0.006332512013614178, -0.03464431315660477, -0.02350154146552086, -0.12259304523468018, -0.03898441419005394, 0.036572229117155075, -0.15400095283985138, -0.00014308675599750131, 0.07325489819049835, -0.048388831317424774, -0.000722913013305515, -0.09066091477870941, -0.0786297395825386, 0.022896135225892067, 0.017971890047192574, -0.11535187065601349, 0.09382113814353943, -0.03139045834541321, 0.104844830930233, -0.05840186029672623, 0.005476330406963825, 0.01714508607983589, 0.033096905797719955, -0.12689551711082458, 0.13121311366558075, -0.050280194729566574, -0.14642773568630219, -0.08956024795770645, -0.01332220621407032, -0.026845267042517662, 0.006445436272770166, 0.06973768770694733, -0.034756287932395935, -0.02925346978008747, -0.025554001331329346, -0.046961355954408646, 0.02918265573680401, -0.017554279416799545, -0.09011327475309372, 0.0036723490338772535, 0.009066044352948666, -0.08009190112352371, -0.026326468214392662, -0.0625711977481842, -0.07675248384475708, 0.10877878963947296, -0.06594450026750565, 0.1316509246826172, 0.09139767289161682, -0.03386571258306503, -0.010774048045277596, -0.07932230085134506, 0.24979281425476074, -0.03172674402594566, 0.015112991444766521, 0.21118183434009552, 0.008920863270759583, 0.0687306597828865, 0.10025504976511002, 0.036888644099235535, -0.03904525563120842, 0.04245223104953766, 0.016871090978384018, -0.10953507572412491, -0.24598918855190277, -0.04375245049595833, -0.016161417588591576, 0.0604548417031765, -0.02075083926320076, -0.01102744322270155, 0.08587516844272614, 0.15267431735992432, 0.01563630811870098, -0.07229799032211304, -0.03281319886445999, 0.09147725254297256, 0.21409201622009277, -0.017773859202861786, 0.0925116166472435, -0.05072098225355148, -0.01458030380308628, 0.1383211761713028, -0.04644133150577545, 0.1343264877796173, -0.0022882153280079365, 0.09670112282037735, 0.10919082164764404, 0.11049474030733109, 0.021517032757401466, 0.08153274655342102, -0.022455813363194466, 0.029754428192973137, -0.06664460897445679, -0.022506991401314735, -0.10115037858486176, 0.06647619605064392, -0.06232204660773277, -0.022118352353572845, -0.0727650374174118, -0.04512455686926842, 0.08483832329511642, 0.18011480569839478, 0.002120108110830188, -0.252611368894577, -0.11166375875473022, 0.006487367674708366, -0.06786512583494186, 0.04296677187085152, -0.0002552214136812836, 0.0017602371517568827, -0.10426244884729385, 0.1149865910410881, -0.017860092222690582, 0.0724252313375473, -0.02619670145213604, 0.04178202152252197, -0.08655916154384613, -0.033005282282829285, -0.021253211423754692, 0.08993326127529144, -0.2158697098493576, 0.28623849153518677, -0.05981743335723877, -0.004084559623152018, -0.040970828384160995, -0.09877247363328934, 0.033625416457653046, 0.13700918853282928, 0.11685829609632492, 0.011102868244051933, 0.10858266800642014, 0.038954999297857285, -0.05705222114920616, 0.03489353880286217, -0.05818869546055794, -0.07127664983272552, 0.04823635518550873, -0.014475901611149311, 0.034200139343738556, 0.0032901354134082794, 0.15132220089435577, -0.10849449038505554, -0.038809776306152344, 0.02736169844865799, -0.031286828219890594, 0.023649360984563828, 0.0031264708377420902, -0.12645743787288666, -0.10516270250082016, 0.09029482305049896, 0.01653914712369442, -0.10362803190946579, -0.11025194823741913, 0.007746438030153513, -0.024131564423441887, -0.08062150329351425, 0.014243561774492264, 0.005665093194693327, -0.012876749970018864, -0.028726398944854736, -0.09176390618085861, 0.030003687366843224, -0.07540497183799744, -0.09022662043571472, -0.009860318154096603, 0.06760678440332413, 0.09329511225223541, 0.02401111274957657, 0.05611854046583176, 0.012086598202586174, -0.07911476492881775, -0.10202623158693314, 0.015467651188373566, 0.03590957075357437, 0.013006937690079212, -0.03728918358683586, -0.0030734853353351355, -0.14592072367668152, -0.06155572086572647, -0.032046202570199966, 0.15190961956977844, 0.13385069370269775, -0.06653130799531937, 0.13537955284118652, 0.15748286247253418, -0.07708145678043365, -0.20793598890304565, -0.05260589346289635, 0.0650855302810669, -0.04847528040409088, 0.05654938519001007, -0.1608334630727768, 0.06003427132964134, 0.10589022189378738, -0.03245269134640694, -0.20320791006088257, -0.16709551215171814, -0.10083769261837006, 0.11426045000553131, 0.11956588923931122, 0.3052305281162262, -0.12130388617515564, -0.0010123316897079349, -0.026806818321347237, -0.09504424035549164, 0.25814762711524963, -0.09977339953184128, 0.02041097730398178, -0.015432550571858883, 0.20641961693763733, 0.021924536675214767, -0.02197720855474472, 0.10793525725603104, 0.014834707602858543, 0.049140915274620056, -0.09086741507053375, -0.04314322769641876, 0.07467781752347946, -0.014173174276947975, 0.1282859593629837, 0.06370781362056732, 0.03393709659576416, -0.04374502971768379, -0.06424900144338608, -0.10423900187015533, 0.1098795160651207, 0.001120691536925733, -0.11933664232492447, -0.07267957925796509, 0.0533658005297184, 0.02690333127975464, -0.05700630694627762, 0.013245548121631145, -0.0651640072464943, 0.04376654326915741, 0.09365393221378326, 0.2607015073299408, -0.037574414163827896, 0.020781559869647026, -0.03582032397389412, -0.07960517704486847, 0.03930080309510231, -0.10548729449510574, -0.02789120376110077, 0.1091526597738266, 0.02341650426387787, 0.09955085068941116, 0.026252441108226776, -0.09492495656013489, 0.028701625764369965, 0.10759738087654114, -0.1878906786441803, -0.13261617720127106, -0.05966362729668617, -0.05843982845544815, -0.038492243736982346, 0.03029428981244564, 0.14790800213813782, -0.10167767107486725, -0.036116693168878555, -0.002570400945842266, 0.040662094950675964, -0.01582212746143341, 0.008346169255673885, 0.07762617617845535, -0.04776743799448013, -0.07341092079877853, -0.05833166837692261, 0.029350362718105316, -0.04953231289982796, 0.009884770959615707, 0.03359398618340492, -0.0652158260345459, -0.10046160966157913, -0.11220909655094147, 0.011342976242303848, -0.25959381461143494, -0.06744019687175751, 0.004339804872870445, -0.08148711919784546, 0.02581910975277424, 0.21447314321994781, 0.07773469388484955, 0.03751040995121002, -0.032632555812597275, 0.0151717783883214, 0.016470426693558693, 0.038400888442993164, 0.07539186626672745, -0.01265803538262844, -0.07139851152896881, 0.11920370161533356, -0.028207048773765564, 0.059815414249897, -0.06766320765018463, -0.008548730984330177, -0.08654354512691498, -0.016634268686175346, -0.11077971011400223, 0.03004617616534233, -0.13662219047546387, 0.011180436238646507, 0.010940183885395527, -0.04875140264630318, -0.02529093064367771, -0.022085953503847122, -0.08211900293827057, 0.0847216472029686, 0.061114631593227386, 0.10655725747346878, -0.12386862188577652, -0.005042268428951502, 0.08277752995491028, 0.022433124482631683, 0.09416770935058594, 0.016699161380529404, -0.055840738117694855, 0.07013989984989166, -0.2652077376842499, 0.056579530239105225, 0.07114201039075851, 0.03172074258327484, -0.008919257670640945, -0.07318276911973953, 0.00018308940343558788, 0.07123824208974838, 0.007410087622702122, 0.032845646142959595, 0.059184327721595764, -0.052669599652290344, 0.07486037164926529, 0.18897505104541779, -0.09452980011701584, -0.057778049260377884, -0.044748999178409576, 0.014803745783865452, 0.058965787291526794, 0.20194408297538757, -0.04555955156683922, 0.021302679553627968, -0.08876768499612808, 0.026329852640628815, -0.013580028899013996, -0.06055813282728195, -0.14661894738674164, -0.10596572607755661, -0.008048715069890022, -0.0214370209723711, 0.19929079711437225, 0.1405559629201889, -0.08492893725633621, 0.016616759821772575, 0.10815481096506119, 0.03045031428337097, -0.021515415981411934, 0.14092133939266205, 0.008476254530251026, 0.016132088378071785, -0.0631834864616394, 0.07330665737390518, -0.05456004664301872, -0.0980212464928627, 0.17899884283542633, 0.06696604937314987, 0.02257886342704296, -0.009963967837393284, 0.02995983697474003, 0.11289636045694351, 0.023778660222887993, -0.16787579655647278, 0.016236605122685432, 0.01852269470691681, -0.04888208582997322, 0.16673144698143005, 0.1530134379863739, -0.10917060822248459, 0.06830591708421707, 0.03730464354157448, -0.032548148185014725, -0.1534430831670761, -0.24999722838401794, -0.06709140539169312, -0.0829407349228859, -0.0037403651513159275, -0.11954768747091293, -0.04325546696782112, -0.009279201738536358, 0.03707509487867355, -0.06539221107959747, -0.03732755035161972, -0.07634491473436356, -0.06736698746681213, 0.06489760428667068, -0.007918322458863258, -0.04861557111144066, -0.12167652696371078, 0.021701468154788017, -0.06477805227041245, 0.10581719130277634, -0.017504293471574783, -0.01404441799968481, -0.01539597101509571, -0.03341033309698105, -0.11333020776510239, -0.042423658072948456, -0.03733902797102928, 0.046918414533138275, 0.03951326012611389, 0.029612364247441292, 0.024082697927951813, -0.013434015214443207, 0.05426532402634621, 0.20899392664432526, 0.024936610832810402, -0.030741484835743904, -0.1481630802154541, 0.187872514128685, -0.03996345028281212, 0.002176932990550995, 0.045361340045928955, -0.04734048619866371, 0.06460200995206833, 0.2058684229850769, 0.27069324254989624, -0.021218273788690567, 0.012159944511950016, -0.09011519700288773, 0.0444255992770195, 0.06308703124523163, 0.08327741175889969, 0.042966827750205994, 0.2223873734474182, -0.05862260237336159, 0.06893296539783478, -0.0806821882724762, 0.06053061783313751, -0.017174411565065384, 0.0432305671274662, 0.01602117158472538, -0.09060971438884735, -0.05792236328125, 0.15384869277477264, -0.1254916787147522, -0.11895427107810974, -0.03318438306450844, -0.050447143614292145, -0.03762827813625336, -0.0047444673255085945, -0.05686163529753685, 0.061475690454244614, 0.04876004159450531, -0.007163194008171558, -0.023209495469927788, 0.1507159024477005, 0.06581275165081024, -0.1569637805223465, 0.028001857921481133, 0.23698104918003082, 0.00842540804296732, 0.12232568860054016, -0.02290327474474907, 0.06115110591053963, 0.06537915021181107, 0.014025735668838024, -0.034428585320711136, 0.10366661846637726, 0.053466688841581345, -0.029444599524140358, 0.012232544831931591, -0.014521424658596516, 0.023648662492632866, -0.030721021816134453, 0.05108434334397316, -0.1816083788871765, 0.023122508078813553, 0.0582100972533226, -0.046238161623477936, -0.04962444305419922, 0.17123407125473022, -0.1396077275276184, 0.06474429368972778, 0.13565367460250854, -0.041533008217811584, -0.013898107223212719, -0.07842998951673508, 0.018306192010641098, -0.004477123264223337, -0.19665099680423737, 0.009912525303661823, -0.07607952505350113, -0.038631945848464966, 0.021204546093940735, 0.03298371285200119, -0.1732020378112793, 0.009730466641485691, -0.08074881881475449, 0.015609662979841232, -0.06523585319519043, 0.019200216978788376, 0.05120183154940605, -0.02153799682855606, 0.015006019733846188, 0.08355612307786942, -0.014078835025429726, 0.08146790415048599, -0.05773758515715599, -0.044883254915475845 ]
null
null
transformers
# Emotion Analysis in Spanish ## beto-emotion-analysis Repository: [https://github.com/finiteautomata/pysentimiento/](https://github.com/finiteautomata/pysentimiento/) Model trained with TASS 2020 Task 2 corpus for Emotion detection in Spanish. Base model is [BETO](https://github.com/dccuchile/beto), a BERT model trained in Spanish. ## License `pysentimiento` is an open-source library for non-commercial use and scientific research purposes only. Please be aware that models are trained with third-party datasets and are subject to their respective licenses. 1. [TASS Dataset license](http://tass.sepln.org/tass_data/download.php) 2. [SEMEval 2017 Dataset license]() ## Citation If you use `pysentimiento` in your work, please cite [this paper](https://arxiv.org/abs/2106.09462) ``` @misc{perez2021pysentimiento, title={pysentimiento: A Python Toolkit for Sentiment Analysis and SocialNLP tasks}, author={Juan Manuel Pérez and Juan Carlos Giudici and Franco Luque}, year={2021}, eprint={2106.09462}, archivePrefix={arXiv}, primaryClass={cs.CL} } ``` and also the dataset related paper ``` @inproceedings{del2020emoevent, title={EmoEvent: A multilingual emotion corpus based on different events}, author={del Arco, Flor Miriam Plaza and Strapparava, Carlo and Lopez, L Alfonso Urena and Mart{\'\i}n-Valdivia, M Teresa}, booktitle={Proceedings of the 12th Language Resources and Evaluation Conference}, pages={1492--1498}, year={2020} } ``` Enjoy! 🤗
{"language": ["es"], "tags": ["emotion-analysis"]}
text-classification
finiteautomata/beto-emotion-analysis
[ "transformers", "pytorch", "safetensors", "bert", "text-classification", "emotion-analysis", "es", "arxiv:2106.09462", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
2022-03-02T23:29:05+00:00
[ "2106.09462" ]
[ "es" ]
TAGS #transformers #pytorch #safetensors #bert #text-classification #emotion-analysis #es #arxiv-2106.09462 #autotrain_compatible #endpoints_compatible #has_space #region-us
# Emotion Analysis in Spanish ## beto-emotion-analysis Repository: URL Model trained with TASS 2020 Task 2 corpus for Emotion detection in Spanish. Base model is BETO, a BERT model trained in Spanish. ## License 'pysentimiento' is an open-source library for non-commercial use and scientific research purposes only. Please be aware that models are trained with third-party datasets and are subject to their respective licenses. 1. TASS Dataset license 2. [SEMEval 2017 Dataset license]() If you use 'pysentimiento' in your work, please cite this paper and also the dataset related paper Enjoy!
[ "# Emotion Analysis in Spanish", "## beto-emotion-analysis\n\nRepository: URL\n\n\nModel trained with TASS 2020 Task 2 corpus for Emotion detection in Spanish. Base model is BETO, a BERT model trained in Spanish.", "## License\n\n'pysentimiento' is an open-source library for non-commercial use and scientific research purposes only. Please be aware that models are trained with third-party datasets and are subject to their respective licenses. \n\n1. TASS Dataset license\n2. [SEMEval 2017 Dataset license]()\n\nIf you use 'pysentimiento' in your work, please cite this paper\n\n\n\nand also the dataset related paper\n\n\n\nEnjoy!" ]
[ "TAGS\n#transformers #pytorch #safetensors #bert #text-classification #emotion-analysis #es #arxiv-2106.09462 #autotrain_compatible #endpoints_compatible #has_space #region-us \n", "# Emotion Analysis in Spanish", "## beto-emotion-analysis\n\nRepository: URL\n\n\nModel trained with TASS 2020 Task 2 corpus for Emotion detection in Spanish. Base model is BETO, a BERT model trained in Spanish.", "## License\n\n'pysentimiento' is an open-source library for non-commercial use and scientific research purposes only. Please be aware that models are trained with third-party datasets and are subject to their respective licenses. \n\n1. TASS Dataset license\n2. [SEMEval 2017 Dataset license]()\n\nIf you use 'pysentimiento' in your work, please cite this paper\n\n\n\nand also the dataset related paper\n\n\n\nEnjoy!" ]
[ 61, 7, 48, 95 ]
[ "passage: TAGS\n#transformers #pytorch #safetensors #bert #text-classification #emotion-analysis #es #arxiv-2106.09462 #autotrain_compatible #endpoints_compatible #has_space #region-us \n# Emotion Analysis in Spanish## beto-emotion-analysis\n\nRepository: URL\n\n\nModel trained with TASS 2020 Task 2 corpus for Emotion detection in Spanish. Base model is BETO, a BERT model trained in Spanish.## License\n\n'pysentimiento' is an open-source library for non-commercial use and scientific research purposes only. Please be aware that models are trained with third-party datasets and are subject to their respective licenses. \n\n1. TASS Dataset license\n2. [SEMEval 2017 Dataset license]()\n\nIf you use 'pysentimiento' in your work, please cite this paper\n\n\n\nand also the dataset related paper\n\n\n\nEnjoy!" ]
[ -0.1206742376089096, 0.10255607217550278, -0.002829404780641198, 0.06331507116556168, 0.1407719999551773, 0.01742444932460785, 0.07722873240709305, 0.03661289066076279, 0.10082000494003296, -0.0024800929240882397, 0.018952513113617897, 0.13243944942951202, 0.025582103058695793, 0.09126461297273636, -0.1049397885799408, -0.2968568205833435, 0.009207011200487614, 0.08551470935344696, 0.15580707788467407, 0.10263219475746155, 0.11329232156276703, -0.08553504943847656, 0.11394652724266052, 0.04816747456789017, -0.035316262394189835, -0.00979787390679121, 0.003935842774808407, -0.11433091014623642, 0.14778287708759308, 0.011072194203734398, 0.0791492611169815, 0.10657311975955963, 0.04129837825894356, -0.08878591656684875, 0.04144306108355522, -0.019153602421283722, -0.020381463691592216, 0.08662977814674377, 0.13005681335926056, -0.12251420319080353, 0.20204798877239227, 0.00027756180497817695, 0.06226227432489395, 0.0003794108924921602, -0.08285439759492874, -0.20346951484680176, -0.05082007497549057, -0.0047575184144079685, 0.09598071128129959, 0.09348790347576141, -0.025521595031023026, 0.21769195795059204, -0.07787184417247772, 0.06006445363163948, 0.20779936015605927, -0.13865946233272552, -0.06806516647338867, -0.043440062552690506, 0.06197017431259155, -0.050936032086610794, -0.07604280114173889, -0.005225679837167263, 0.07609810680150986, 0.03230622783303261, 0.09403902292251587, -0.10173200815916061, -0.010865496471524239, -0.058590132743120193, -0.11558029055595398, 0.011339791119098663, 0.1757187843322754, 0.028025534003973007, -0.10389241576194763, -0.0786965861916542, -0.032743584364652634, 0.11063694953918457, -0.0007232855423353612, -0.09705835580825806, 0.060361720621585846, -0.02018798515200615, 0.013298425823450089, 0.06448296457529068, -0.1521596759557724, 0.02563527598977089, -0.0848172977566719, 0.10287142544984818, -0.02344169095158577, 0.0215305145829916, 0.0320388525724411, 0.05339318886399269, -0.13299259543418884, -0.07692822068929672, -0.04175593703985214, -0.10930398851633072, 0.0962679535150528, -0.04058681055903435, -0.08068197965621948, -0.15682493150234222, -0.024923430755734444, -0.008833073079586029, -0.0872197076678276, -0.03455999121069908, -0.02468934841454029, -0.01489871833473444, 0.17295922338962555, 0.131700798869133, -0.04882173240184784, 0.014693032950162888, 0.002290950156748295, -0.0563557930290699, 0.007486396469175816, 0.034630581736564636, -0.04905660077929497, -0.04024792090058327, 0.027522966265678406, -0.007727789226919413, -0.0797608271241188, 0.07033273577690125, -0.1139269694685936, -0.019593803212046623, 0.06628050655126572, -0.009527167305350304, 0.005669049918651581, 0.03779848292469978, -0.011350814253091812, 0.11048229038715363, 0.05824580043554306, 0.03665686398744583, -0.0010746910702437162, 0.04743191599845886, -0.039160214364528656, -0.027407357469201088, -0.05738718807697296, -0.08933711051940918, 0.08302149176597595, -0.09258086234331131, 0.09500309824943542, -0.22654473781585693, -0.2502950131893158, -0.04753641411662102, 0.07417972385883331, -0.05400032550096512, 0.04165194556117058, -0.051777433604002, 0.044119928032159805, -0.01263174694031477, -0.04796212539076805, -0.011286851949989796, -0.04301096126437187, 0.01752888411283493, -0.012233692221343517, 0.11701171845197678, -0.10008010268211365, 0.0014127464964985847, -0.20290371775627136, -0.005357733462005854, -0.07729818671941757, 0.06979860365390778, -0.011770426295697689, 0.09927015006542206, -0.058902546763420105, -0.10762986540794373, 0.021514760330319405, 0.026401493698358536, 0.016415420919656754, 0.20141135156154633, -0.11497049033641815, -0.0722619891166687, 0.13240356743335724, -0.10468830913305283, -0.07450807094573975, 0.1160842627286911, -0.054561421275138855, 0.22467191517353058, 0.1359822005033493, 0.17571373283863068, -0.03273976594209671, -0.0920824408531189, -0.027380524203181267, -0.0018297195201739669, -0.06701626628637314, -0.05999860167503357, 0.08684582263231277, 0.09491416811943054, -0.06588814407587051, 0.03685636445879936, -0.07835263013839722, 0.01721002534031868, -0.06670637428760529, -0.051729828119277954, 0.02823372557759285, -0.07308301329612732, 0.0708095133304596, 0.05782149359583855, 0.03762808069586754, -0.07958000898361206, -0.01837366446852684, -0.0095442496240139, 0.033616919070482254, -0.03052438609302044, 0.013892609626054764, -0.08028726279735565, 0.07079793512821198, -0.009003081358969212, -0.017057664692401886, -0.11314039677381516, 0.08278295397758484, -0.0324828177690506, 0.15966396033763885, -0.029333874583244324, 0.008281179703772068, 0.03302684426307678, 0.0027372348122298717, -0.029914993792772293, -0.02837769314646721, 0.051635611802339554, 0.013692731969058514, -0.02970130555331707, -0.1795254498720169, 0.03675984591245651, -0.07480443269014359, 0.06650236248970032, -0.10193382948637009, 0.03662736341357231, -0.017015749588608742, -0.013818980194628239, -0.00026510388124734163, 0.02689173072576523, -0.0040250807069242, 0.019740108400583267, -0.04504141956567764, 0.002411584137007594, 0.09706060588359833, 0.03239437937736511, -0.039389099925756454, 0.13292968273162842, -0.021463895216584206, 0.09227439016103745, 0.10574121028184891, -0.06104188412427902, -0.06011928617954254, -0.08184871077537537, -0.05510512739419937, 0.07507865130901337, -0.022017819806933403, 0.025407815352082253, 0.18589754402637482, -0.0006568831740878522, 0.0735085979104042, -0.11976958066225052, 0.04747910797595978, 0.039684172719717026, -0.15400224924087524, -0.0999126061797142, 0.10140570253133774, -0.000048170233640121296, -0.13714030385017395, 0.0743323415517807, 0.0870848074555397, -0.03707678243517876, 0.14618514478206635, 0.05415715277194977, -0.028738802298903465, -0.026188157498836517, -0.07827089726924896, -0.04424451291561127, 0.0717785656452179, -0.19319361448287964, 0.005121850874274969, 0.0730171948671341, -0.06834462285041809, -0.016222387552261353, -0.11035475879907608, -0.06683902442455292, 0.055316291749477386, 0.0564606674015522, -0.10365965217351913, 0.05823652818799019, -0.024394851177930832, 0.09606990218162537, -0.010861745104193687, -0.0542651042342186, -0.00017575280799064785, 0.01476332452148199, -0.16104143857955933, 0.18940776586532593, -0.07494336366653442, -0.20673488080501556, -0.06694968044757843, -0.05968543142080307, 0.01580650545656681, 0.0672277957201004, 0.09840405732393265, -0.1035536378622055, -0.058878008276224136, -0.03953469544649124, 0.0007587253930978477, 0.08476252108812332, -0.016631728038191795, 0.05897627770900726, -0.029067248106002808, -0.03157738968729973, -0.07561007887125015, -0.06085865572094917, -0.07509676367044449, -0.06196312978863716, 0.11053212732076645, -0.08227353543043137, 0.12377427518367767, 0.11801210790872574, 0.0038439002819359303, -0.019334161654114723, -0.07957155257463455, 0.17745189368724823, -0.02017923817038536, -0.01956065557897091, 0.20268015563488007, -0.02524426206946373, 0.03518233820796013, 0.13263995945453644, 0.010917054489254951, -0.0782669261097908, 0.02601507119834423, -0.004234503023326397, -0.08516529947519302, -0.2394474595785141, -0.07199335098266602, 0.02382425218820572, 0.08945908397436142, -0.032568152993917465, -0.015985636040568352, 0.06921853125095367, 0.149385005235672, 0.017129136249423027, -0.14135698974132538, -0.06896740943193436, 0.10085896402597427, 0.0966954156756401, -0.06042920798063278, 0.05375175550580025, 0.00966961495578289, -0.023941829800605774, 0.11867660284042358, -0.05617174506187439, 0.1430307924747467, -0.0203934945166111, 0.008873943239450455, 0.06568948924541473, 0.09852336347103119, -0.02769436687231064, 0.16768766939640045, -0.06212114542722702, -0.007946080528199673, -0.10423657298088074, -0.015890909358859062, -0.10529422014951706, 0.08568060398101807, -0.10049262642860413, 0.08072324842214584, -0.20980150997638702, -0.07772582769393921, 0.05988430604338646, 0.18377606570720673, -0.033376678824424744, -0.3336355686187744, -0.09954134374856949, 0.018235398456454277, -0.02684037759900093, -0.03617940843105316, -0.02282935380935669, -0.006543205585330725, -0.15920627117156982, 0.10353823751211166, -0.019370783120393753, 0.03852479159832001, -0.007669893093407154, 0.061790190637111664, -0.13049788773059845, -0.07297942787408829, -0.028903061524033546, 0.07857656478881836, -0.17435497045516968, 0.23980848491191864, -0.04408154636621475, 0.0638057217001915, -0.07271714508533478, -0.06069665029644966, 0.03888721019029617, 0.15038013458251953, 0.15375332534313202, -0.016763823106884956, 0.21495553851127625, -0.07653865963220596, -0.0535450242459774, 0.06591218709945679, -0.08456585556268692, -0.02739650569856167, 0.06957200914621353, 0.014011770486831665, -0.006301757413893938, 0.03714161366224289, 0.14791442453861237, -0.08833497762680054, -0.04156672582030296, -0.0034366208128631115, -0.007003788370639086, 0.06608552485704422, -0.002909119240939617, -0.1471594125032425, -0.07885310053825378, 0.06408311426639557, 0.12472175806760788, -0.07937611639499664, -0.11191511899232864, 0.0005349903949536383, -0.021795282140374184, -0.06634407490491867, 0.009123231284320354, 0.020699337124824524, 0.07860255241394043, -0.016362689435482025, -0.06995733827352524, 0.11644621193408966, -0.1512131243944168, -0.09865960478782654, -0.045425351709127426, 0.042196761816740036, 0.10284067690372467, 0.04051646217703819, 0.11478254944086075, -0.05645329877734184, -0.06273758411407471, -0.04587305709719658, 0.03337692841887474, 0.10894033312797546, 0.06344055384397507, -0.05660638585686684, -0.05999637767672539, -0.187827929854393, -0.07630471140146255, -0.0350736528635025, 0.11707664281129837, 0.11310452222824097, -0.02616303041577339, 0.11623257398605347, 0.1875820904970169, -0.0970047265291214, -0.17970022559165955, 0.04019854962825775, 0.09154654294252396, 0.005224036052823067, 0.06340068578720093, -0.11489269882440567, 0.07952192425727844, 0.006158997304737568, -0.02528255805373192, -0.15746824443340302, -0.09833252429962158, -0.05643095448613167, 0.19337216019630432, 0.12444888800382614, 0.3297382593154907, -0.11467506736516953, 0.023506497964262962, -0.06908899545669556, -0.09135925024747849, 0.2038436233997345, -0.11073798686265945, 0.030193520709872246, -0.0017260120948776603, 0.15746377408504486, 0.04733336716890335, -0.013101826421916485, 0.1101750060915947, -0.01459058653563261, 0.0406024232506752, -0.08352290093898773, -0.022538818418979645, 0.020955601707100868, -0.03023337945342064, 0.11441148817539215, 0.08867049962282181, -0.03076999820768833, -0.07100280374288559, -0.1170596033334732, -0.13003504276275635, 0.09708248823881149, 0.034579262137413025, -0.10100959986448288, -0.00719728646799922, 0.03640540689229965, 0.08944517374038696, -0.03055642358958721, -0.10691668093204498, -0.05816005542874336, -0.053493306040763855, 0.1464037001132965, 0.2924632728099823, -0.05617599934339523, 0.030586589127779007, -0.00823255069553852, -0.05573010817170143, 0.05820999667048454, -0.07438381016254425, -0.017452280968427658, 0.09982054680585861, -0.03195200487971306, 0.08778607100248337, 0.0632472038269043, -0.08510804921388626, 0.04350138083100319, 0.10109210014343262, -0.09317955374717712, -0.07100256532430649, -0.053554195910692215, -0.02261713147163391, -0.0657273381948471, 0.024016940966248512, 0.11287959665060043, -0.08343857526779175, -0.03984316438436508, -0.06618504971265793, 0.014338605105876923, 0.005984972231090069, 0.03779809549450874, -0.023116225376725197, -0.07655467092990875, -0.08932454884052277, -0.014205208979547024, -0.04729101434350014, -0.11473299562931061, 0.0768742635846138, -0.041500482708215714, -0.0655292347073555, -0.07109713554382324, 0.006784176453948021, 0.19322596490383148, -0.26012304425239563, -0.09918563067913055, -0.05950678512454033, -0.14363987743854523, 0.020891224965453148, 0.17840538918972015, 0.0809028223156929, -0.049960993230342865, -0.06943727284669876, 0.04553021118044853, -0.04533374309539795, 0.03914690762758255, 0.12208013236522675, -0.003355659544467926, -0.06613503396511078, 0.04464704543352127, -0.056560903787612915, 0.049619778990745544, -0.07476689666509628, -0.016687698662281036, -0.06442024558782578, -0.02491540089249611, -0.1747369021177292, 0.028739288449287415, -0.10083464533090591, -0.011071310378611088, 0.0025840564630925655, -0.024918921291828156, 0.015329134650528431, -0.01183301955461502, -0.07135272026062012, 0.07771392166614532, 0.030135812237858772, 0.10745737701654434, -0.08371268212795258, -0.06370064616203308, 0.023060690611600876, -0.010814129374921322, 0.1020715981721878, 0.06311561912298203, -0.039816152304410934, 0.08533233404159546, -0.3096538484096527, 0.04032163694500923, 0.13790355622768402, -0.007134168408811092, 0.02909083478152752, -0.03431790694594383, -0.007011827081441879, 0.08471539616584778, -0.04056870937347412, -0.00020576758834067732, 0.12836939096450806, -0.05840304121375084, 0.07345449179410934, 0.1668587327003479, -0.10670103132724762, -0.033179327845573425, -0.024980900809168816, 0.03570103272795677, 0.050658926367759705, 0.1709156632423401, -0.05011817440390587, 0.031255532056093216, -0.11778345704078674, 0.009234774857759476, -0.016590876504778862, -0.024199984967708588, -0.16127710044384003, -0.06540500372648239, 0.020572427660226822, 0.009870870970189571, 0.14242644608020782, 0.16307583451271057, -0.011643596924841404, -0.055212151259183884, 0.06396238505840302, 0.11750715225934982, -0.017685098573565483, 0.16159118711948395, 0.022378578782081604, -0.003508706809952855, -0.04066237062215805, 0.1208472028374672, 0.09033162891864777, -0.04479934275150299, 0.11323581635951996, 0.10221333801746368, 0.14197589457035065, 0.1048276424407959, 0.012623230926692486, 0.07767920941114426, -0.0644591897726059, -0.22722302377223969, -0.0009316565701738, 0.02844676375389099, 0.01603410206735134, 0.23512589931488037, 0.08702168613672256, -0.10458798706531525, 0.05002473667263985, -0.0061385720036923885, -0.031133802607655525, -0.13145698606967926, -0.1868695616722107, -0.05688382685184479, -0.11403236538171768, -0.0051499311812222, -0.15996451675891876, -0.03481551632285118, -0.027051622048020363, 0.012245171703398228, -0.07818612456321716, 0.06705094128847122, -0.07953813672065735, -0.07659497857093811, 0.15336491167545319, 0.000847591261845082, -0.027706019580364227, -0.06238880753517151, 0.02476724050939083, -0.058761175721883774, 0.10556264221668243, 0.027503281831741333, 0.017479384317994118, -0.036087505519390106, -0.02650769054889679, -0.02504325471818447, -0.07109642773866653, -0.023205474019050598, 0.03810515254735947, 0.0449281670153141, 0.04941478744149208, -0.016400089487433434, -0.011417921632528305, 0.04402002692222595, 0.19649101793766022, -0.0056541478261351585, 0.1095941886305809, -0.11907187849283218, 0.186361163854599, -0.035341035574674606, 0.04080551490187645, 0.03952552750706673, -0.06996314227581024, 0.01866382360458374, 0.2163849174976349, 0.1761484146118164, -0.027588343247771263, -0.01975092850625515, -0.10030756145715714, 0.04447292163968086, -0.013164295814931393, 0.1112276017665863, 0.09152247756719589, 0.20153649151325226, -0.11323350667953491, 0.12119795382022858, -0.051873140037059784, 0.05218657851219177, -0.043755218386650085, 0.012090420350432396, 0.04593789950013161, -0.03583497926592827, -0.049708038568496704, 0.11040856689214706, -0.07179897278547287, -0.1295700967311859, 0.010761938989162445, -0.06919272243976593, -0.0551353357732296, -0.02511155791580677, -0.03632307052612305, 0.09347659349441528, 0.12456569075584412, 0.003566458821296692, 0.007112855091691017, 0.21691466867923737, 0.028860002756118774, -0.126931831240654, 0.018123049288988113, 0.18915750086307526, -0.09189930558204651, 0.2003263533115387, -0.04337078332901001, 0.0249416995793581, 0.06583482027053833, 0.03245743364095688, -0.053407661616802216, 0.05865827575325966, 0.023048264905810356, -0.049056198447942734, 0.08901527523994446, 0.021057646721601486, -0.019211038947105408, 0.007965675555169582, 0.019413325935602188, -0.22993360459804535, 0.03374331071972847, 0.042898405343294144, -0.04808579012751579, -0.07519927620887756, 0.1544407308101654, -0.15289396047592163, 0.055099643766880035, 0.1367356777191162, -0.040034811943769455, -0.017847761511802673, -0.04609052464365959, 0.07374852895736694, 0.03137781471014023, -0.07282581180334091, 0.043195877224206924, -0.1724976748228073, -0.017413560301065445, 0.11648108810186386, 0.03030470199882984, -0.2866232991218567, -0.012250042520463467, -0.09419877827167511, -0.017986910417675972, -0.05176835507154465, -0.052087441086769104, -0.012695569545030594, 0.008733788505196571, 0.00442729564383626, 0.005728666204959154, -0.009760506451129913, 0.14122921228408813, -0.028269385918974876, -0.04817444458603859 ]
null
null
transformers
# Targeted Sentiment Analysis in News Headlines BERT classifier fine-tuned in a news headlines dataset annotated for target polarity. (details to be published) ## Examples Input is as follows `Headline [SEP] Target` where headline is the news title and target is an entity present in the headline. Try `Alberto Fernández: "El gobierno de Macri fue un desastre" [SEP] Macri` (should be NEG) and `Alberto Fernández: "El gobierno de Macri fue un desastre" [SEP] Alberto Fernández` (POS or NEU)
{}
text-classification
finiteautomata/beto-headlines-sentiment-analysis
[ "transformers", "pytorch", "safetensors", "bert", "text-classification", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #safetensors #bert #text-classification #autotrain_compatible #endpoints_compatible #has_space #region-us
# Targeted Sentiment Analysis in News Headlines BERT classifier fine-tuned in a news headlines dataset annotated for target polarity. (details to be published) ## Examples Input is as follows 'Headline [SEP] Target' where headline is the news title and target is an entity present in the headline. Try 'Alberto Fernández: "El gobierno de Macri fue un desastre" [SEP] Macri' (should be NEG) and 'Alberto Fernández: "El gobierno de Macri fue un desastre" [SEP] Alberto Fernández' (POS or NEU)
[ "# Targeted Sentiment Analysis in News Headlines\n\nBERT classifier fine-tuned in a news headlines dataset annotated for target polarity.\n\n(details to be published)", "## Examples\n\nInput is as follows\n\n'Headline [SEP] Target'\n\nwhere headline is the news title and target is an entity present in the headline.\n\nTry\n\n'Alberto Fernández: \"El gobierno de Macri fue un desastre\" [SEP] Macri' (should be NEG)\n\nand\n\n'Alberto Fernández: \"El gobierno de Macri fue un desastre\" [SEP] Alberto Fernández' (POS or NEU)" ]
[ "TAGS\n#transformers #pytorch #safetensors #bert #text-classification #autotrain_compatible #endpoints_compatible #has_space #region-us \n", "# Targeted Sentiment Analysis in News Headlines\n\nBERT classifier fine-tuned in a news headlines dataset annotated for target polarity.\n\n(details to be published)", "## Examples\n\nInput is as follows\n\n'Headline [SEP] Target'\n\nwhere headline is the news title and target is an entity present in the headline.\n\nTry\n\n'Alberto Fernández: \"El gobierno de Macri fue un desastre\" [SEP] Macri' (should be NEG)\n\nand\n\n'Alberto Fernández: \"El gobierno de Macri fue un desastre\" [SEP] Alberto Fernández' (POS or NEU)" ]
[ 45, 42, 97 ]
[ "passage: TAGS\n#transformers #pytorch #safetensors #bert #text-classification #autotrain_compatible #endpoints_compatible #has_space #region-us \n# Targeted Sentiment Analysis in News Headlines\n\nBERT classifier fine-tuned in a news headlines dataset annotated for target polarity.\n\n(details to be published)## Examples\n\nInput is as follows\n\n'Headline [SEP] Target'\n\nwhere headline is the news title and target is an entity present in the headline.\n\nTry\n\n'Alberto Fernández: \"El gobierno de Macri fue un desastre\" [SEP] Macri' (should be NEG)\n\nand\n\n'Alberto Fernández: \"El gobierno de Macri fue un desastre\" [SEP] Alberto Fernández' (POS or NEU)" ]
[ -0.05583092197775841, -0.09205784648656845, -0.005246345419436693, -0.011270178481936455, 0.10720119625329971, -0.006759732495993376, 0.044351354241371155, -0.03524785861372948, 0.034906014800071716, 0.1058664470911026, 0.08586011826992035, 0.1735573410987854, 0.0032372111454606056, 0.026930201798677444, -0.09993860870599747, -0.22360657155513763, 0.12736551463603973, 0.0005171757657080889, 0.14926642179489136, 0.11514700204133987, 0.07995188236236572, -0.014744078740477562, 0.07639570534229279, 0.05208694189786911, -0.05031810700893402, 0.06302649527788162, 0.04087319225072861, -0.07500943541526794, 0.14673562347888947, 0.03900798410177231, 0.12749868631362915, 0.0700773075222969, -0.06114371865987778, -0.10020483285188675, 0.053991273045539856, 0.026323989033699036, -0.03549792617559433, 0.016625450924038887, 0.11463046073913574, -0.08344671130180359, 0.2053522914648056, -0.21006622910499573, 0.013158505782485008, 0.00047209992771968246, -0.16366660594940186, -0.015846824273467064, -0.03201242536306381, -0.0015184191288426518, 0.07625647634267807, 0.0697181448340416, -0.05449648201465607, 0.13368582725524902, -0.15822593867778778, 0.007306552026420832, 0.10554422438144684, -0.18361978232860565, -0.07344323396682739, -0.032635435461997986, -0.00447468226775527, 0.03913965821266174, -0.020929239690303802, 0.055981267243623734, 0.05356273055076599, -0.05933220684528351, -0.12285927683115005, -0.03409634903073311, -0.11268379539251328, -0.017144545912742615, -0.12689101696014404, -0.06300825625658035, 0.10119625180959702, 0.060187023133039474, -0.02221667394042015, -0.1058574765920639, -0.06790214776992798, 0.151030033826828, 0.0059052156284451485, -0.054027725011110306, -0.03101644106209278, -0.015641381964087486, 0.10209629684686661, 0.07591164112091064, -0.0848446935415268, -0.016564860939979553, -0.21091511845588684, 0.11848769336938858, -0.017754292115569115, 0.01983506977558136, 0.02541530504822731, -0.008463378064334393, -0.026629582047462463, -0.05884500592947006, 0.034732092171907425, -0.07603570818901062, -0.02688664011657238, -0.008738450706005096, -0.11450446397066116, -0.08926978707313538, 0.0014903252013027668, -0.05450403690338135, -0.08925193548202515, -0.04199019819498062, -0.006499829236418009, 0.09190360456705093, 0.06937529891729355, 0.028154481202363968, -0.09371905028820038, -0.02356274239718914, -0.03517201915383339, -0.0944482684135437, 0.10194192826747894, -0.01616373099386692, -0.06758129596710205, -0.024678273126482964, -0.05783422663807869, -0.03728355094790459, 0.034323569387197495, 0.09787464886903763, -0.15545058250427246, -0.030639365315437317, 0.013938583433628082, -0.06062670052051544, -0.01295492798089981, 0.002498408081009984, 0.01487846951931715, 0.12966783344745636, -0.12237377464771271, 0.020355360582470894, -0.006544965319335461, 0.08630257099866867, -0.10500407218933105, -0.027693819254636765, -0.045812949538230896, -0.07126805931329727, 0.08375559747219086, -0.007481044624000788, -0.03799687325954437, -0.15974242985248566, -0.15543432533740997, -0.08451841026544571, -0.024072697386145592, -0.043230243027210236, -0.05593528598546982, -0.05907195061445236, 0.05235200747847557, 0.010105849243700504, -0.03248677775263786, -0.013567183166742325, -0.08344709128141403, 0.08861014246940613, 0.0066427369602024555, 0.1219237819314003, -0.02311684936285019, -0.021441858261823654, -0.15647658705711365, 0.017613409087061882, -0.18647390604019165, 0.11804036796092987, -0.0919288843870163, 0.12255574017763138, -0.0363728292286396, 0.03391934558749199, -0.11595743894577026, 0.06845701485872269, -0.036789245903491974, 0.23606440424919128, -0.18225105106830597, -0.0834278091788292, 0.08210282027721405, -0.13040632009506226, 0.0567014142870903, 0.10169245302677155, -0.01774980127811432, 0.06546424329280853, 0.14241142570972443, 0.27577683329582214, -0.14988838136196136, -0.09334496408700943, -0.021885881200432777, -0.013684631325304508, -0.08639363199472427, 0.04267170652747154, 0.07887265831232071, 0.047378167510032654, -0.16319304704666138, 0.0161855760961771, -0.09797253459692001, 0.03372473269701004, -0.007171902805566788, -0.013038912788033485, 0.07027772068977356, 0.06227146089076996, 0.0549597293138504, 0.029937980696558952, 0.004350792616605759, -0.04418418928980827, -0.06168077886104584, 0.05378088727593422, -0.02138497866690159, 0.06677878648042679, 0.0035156046506017447, -0.08357659727334976, 0.1279628425836563, -0.0770765021443367, 0.014578619040548801, -0.093065544962883, -0.05042048543691635, -0.08859732002019882, 0.03947809338569641, 0.056238505989313126, -0.002483966061845422, -0.030978310853242874, -0.10191872715950012, -0.008207142353057861, 0.04966031014919281, 0.022722328081727028, 0.0190338846296072, 0.05499802529811859, -0.18121683597564697, 0.09422236680984497, -0.03374561294913292, 0.12314280867576599, -0.12609393894672394, 0.010892330668866634, 0.12513461709022522, -0.010678711347281933, -0.009069244377315044, -0.015203500166535378, 0.010441936552524567, 0.09896423667669296, -0.016834517940878868, 0.022939758375287056, 0.11220522224903107, 0.030583715066313744, -0.0583130307495594, 0.18332740664482117, -0.02783997356891632, 0.08899537473917007, 0.13120883703231812, -0.21532589197158813, -0.0666658952832222, 0.009143762290477753, -0.038116395473480225, 0.03723873943090439, -0.06608479470014572, -0.01629956252872944, 0.041074369102716446, -0.01832648552954197, 0.0257161483168602, -0.12110321968793869, -0.04030158370733261, 0.006886495277285576, -0.014840834774076939, -0.12335139513015747, 0.1241622194647789, 0.14437739551067352, -0.09882787615060806, 0.1594986915588379, 0.11582627147436142, -0.008375530131161213, 0.2000516653060913, 0.05081608146429062, -0.03803465887904167, 0.0022593929897993803, -0.00850349199026823, 0.017032377421855927, 0.03353293612599373, -0.18979521095752716, 0.035752709954977036, 0.008688327856361866, -0.06774961203336716, 0.05543875694274902, -0.08423873037099838, -0.10127776116132736, 0.013661307282745838, 0.010554064065217972, -0.15127815306186676, 0.01659572124481201, 0.014636741019785404, 0.1216813325881958, 0.03868028521537781, -0.1087384968996048, 0.010378055274486542, -0.021479060873389244, -0.09334319084882736, 0.09934377670288086, -0.01115234475582838, -0.3175118565559387, -0.09680801630020142, 0.002818706212565303, -0.05795270949602127, 0.0674506425857544, -0.00405512610450387, -0.10066664963960648, 0.01395380962640047, -0.010883762501180172, 0.042865313589572906, 0.11094628274440765, -0.03427287936210632, 0.06031860411167145, -0.013663734309375286, -0.001714328769594431, 0.0014120226260274649, -0.035928286612033844, -0.16363099217414856, -0.07879328727722168, 0.014904587529599667, -0.12424182146787643, 0.20298336446285248, 0.137267604470253, 0.028828127309679985, -0.022095708176493645, -0.04023095965385437, 0.22484616935253143, -0.12433122843503952, -0.04703587293624878, 0.06161941587924957, -0.02168688364326954, 0.036727700382471085, 0.21241351962089539, 0.02121688611805439, -0.08408719301223755, -0.008898071013391018, 0.05520062893629074, -0.009541457518935204, -0.18069952726364136, -0.1490379273891449, -0.08003034442663193, 0.013097324408590794, -0.01329341996461153, -0.0027779422234743834, -0.03850700333714485, 0.08269418776035309, -0.030447645112872124, -0.019636407494544983, 0.04351186007261276, 0.10081116855144501, 0.28952422738075256, -0.02966250292956829, 0.059531763195991516, -0.009691759012639523, -0.14948144555091858, 0.10513091832399368, -0.027123581618070602, 0.00024334336922038347, 0.06775157898664474, 0.09148187935352325, 0.06830671429634094, 0.025512859225273132, 0.06456394493579865, 0.027741510421037674, -0.06644871085882187, -0.07558400183916092, -0.11592216789722443, -0.035756584256887436, -0.1142507866024971, 0.019233230501413345, -0.078942209482193, 0.0015501162270084023, -0.035821523517370224, -0.20434235036373138, 0.1223926767706871, 0.059178028255701065, 0.022386059165000916, -0.20338286459445953, -0.0412350594997406, 0.06755442172288895, -0.03467312082648277, -0.015850065276026726, 0.008659024722874165, 0.07428620010614395, -0.06010115146636963, 0.14342471957206726, 0.07185955345630646, 0.08582732826471329, -0.020227765664458275, 0.08318903297185898, -0.19629351794719696, -0.16312512755393982, -0.03941398486495018, 0.08897987008094788, -0.13048668205738068, 0.2541341781616211, 0.0028646981809288263, -0.022029763087630272, -0.010491825640201569, -0.07924050837755203, -0.02972147986292839, 0.141309455037117, 0.12936818599700928, 0.04391126707196236, -0.03662504628300667, -0.06345828622579575, -0.04654291272163391, 0.0333036333322525, -0.029639776796102524, -0.044585827738046646, 0.03034205362200737, 0.026333266869187355, 0.04408375546336174, 0.007826396264135838, 0.16358241438865662, -0.1030072420835495, -0.18444588780403137, 0.014495594426989555, 0.03736678883433342, 0.06671231985092163, -0.017840173095464706, -0.0965401902794838, -0.05016081780195236, 0.18968810141086578, -0.10049090534448624, -0.0003033349639736116, -0.10692647099494934, 0.02825476974248886, -0.08653285354375839, -0.05425326153635979, -0.07228553295135498, 0.031467411667108536, 0.11765234172344208, -0.05318965017795563, -0.0663139745593071, 0.10718221217393875, -0.07015694677829742, -0.049144648015499115, -0.10217712819576263, 0.059395723044872284, 0.05457989498972893, 0.0505094937980175, 0.07483050972223282, 0.04981439933180809, 0.0006409534835256636, -0.08229628950357437, 0.0039874231442809105, 0.015376758761703968, -0.007198150735348463, 0.07559061795473099, -0.04616174101829529, -0.28055405616760254, -0.04006550833582878, -0.05409710109233856, 0.14736728370189667, 0.17494690418243408, -0.0065093375742435455, 0.0753643736243248, 0.21272853016853333, -0.024405566975474358, -0.1949760466814041, -0.021371550858020782, 0.019215188920497894, -0.040749091655015945, 0.031889114528894424, -0.03649357706308365, 0.07698818296194077, 0.21159978210926056, -0.0336625836789608, -0.038801223039627075, -0.2359839379787445, -0.059503041207790375, 0.07371591776609421, 0.0008083099382929504, 0.43375885486602783, -0.12607663869857788, -0.08784196525812149, -0.09795921295881271, 0.0410456657409668, 0.2651836574077606, 0.03510485216975212, 0.03400556370615959, 0.01607654243707657, 0.11423134058713913, 0.03717811405658722, 0.008005726151168346, 0.18576015532016754, 0.03966345638036728, 0.0014526871964335442, -0.08616147935390472, -0.1187446117401123, 0.07591960579156876, 0.017172327265143394, -0.05999461188912392, 0.09578311443328857, -0.07747482508420944, -0.20721936225891113, -0.10748177021741867, -0.09690117090940475, 0.08733515441417694, 0.031091583892703056, 0.0182723980396986, -0.029538000002503395, 0.05612128600478172, 0.03982119634747505, -0.007127799559384584, 0.11147646605968475, -0.1723370999097824, 0.16477684676647186, -0.06463634222745895, 0.06813288480043411, -0.031052405014634132, 0.035524219274520874, -0.011829610913991928, -0.04094464331865311, 0.09244835376739502, 0.019335070624947548, -0.015412860549986362, 0.07900853455066681, 0.003406838746741414, 0.010920906439423561, 0.08189747482538223, -0.0341632254421711, 0.06088370829820633, 0.12916557490825653, -0.16501063108444214, 0.003298796946182847, -0.010546986013650894, -0.02878524176776409, 0.052756763994693756, -0.03882361948490143, 0.04926028102636337, 0.03762879595160484, -0.037189383059740067, 0.053304463624954224, -0.021986600011587143, 0.04397595301270485, 0.039498113095760345, -0.008162430487573147, -0.016705481335520744, -0.13145427405834198, -0.018023326992988586, 0.10225648432970047, -0.27755722403526306, -0.035659149289131165, 0.03573460876941681, -0.09319781512022018, -0.049121372401714325, -0.09119529277086258, 0.09289086610078812, -0.1127045676112175, -0.07993122190237045, -0.05632922798395157, -0.14364881813526154, 0.09731364250183105, 0.23596420884132385, 0.10730777680873871, 0.012050885707139969, 0.0015105551574379206, -0.021649347618222237, 0.03058629296720028, 0.0027356743812561035, 0.07801680266857147, 0.021839968860149384, -0.03349144756793976, -0.05771142616868019, 0.024876629933714867, 0.030884364619851112, -0.057180531322956085, -0.025703100487589836, -0.17307999730110168, 0.006868316791951656, -0.012591167353093624, 0.08626396209001541, -0.04238294064998627, 0.0003273001639172435, -0.0025226890575140715, -0.04095884785056114, -0.06636718660593033, -0.04172998666763306, -0.06667627394199371, 0.06456644088029861, 0.016446147114038467, 0.08758074790239334, -0.10698113590478897, -0.014366324990987778, 0.11574789881706238, -0.036923233419656754, 0.014395400881767273, 0.04245859012007713, -0.013855001889169216, 0.04422513768076897, -0.3936077654361725, -0.013419527560472488, 0.07874486595392227, -0.006826482713222504, 0.018113667145371437, 0.06686151027679443, 0.07482769340276718, 0.11627086251974106, -0.03005382791161537, 0.04898381978273392, 0.06161174178123474, -0.09958070516586304, 0.15357571840286255, 0.13237304985523224, -0.2551132142543793, 0.007857231423258781, -0.035968467593193054, 0.05627989023923874, -0.014148332178592682, 0.15148088335990906, -0.08430735021829605, -0.021451514214277267, -0.05654248222708702, 0.04529164731502533, 0.01942555047571659, -0.08975143730640411, -0.04523412510752678, -0.03559180721640587, 0.03294559568166733, 0.03554368019104004, 0.26271361112594604, 0.08808310329914093, 0.03356129303574562, 0.021757254377007484, 0.12624739110469818, 0.019318578764796257, -0.012987093068659306, 0.10455728322267532, 0.12502478063106537, 0.03909945487976074, -0.004815340507775545, -0.012009811587631702, 0.0549948550760746, 0.0887068659067154, 0.08186469227075577, 0.10623063892126083, 0.05200663208961487, 0.08799085766077042, 0.020314717665314674, 0.07485257834196091, 0.05337447673082352, -0.06895451992750168, -0.09287133812904358, -0.010952295735478401, 0.015827329829335213, 0.18533803522586823, 0.1494041085243225, -0.06728490442037582, 0.050032079219818115, -0.0018929025391116738, 0.011127002537250519, -0.11778199672698975, -0.2744251787662506, -0.07069189101457596, -0.10919860750436783, 0.02615523524582386, -0.056963000446558, -0.03360572084784508, 0.14865662157535553, 0.02499503456056118, -0.00368178216740489, 0.0824020653963089, 0.014686779119074345, -0.14029791951179504, 0.10208616405725479, -0.035954251885414124, 0.042473774403333664, -0.11874706298112869, -0.016390517354011536, 0.008343013934791088, 0.09608194977045059, 0.03484148159623146, 0.05669133737683296, 0.05664863809943199, -0.06218670681118965, -0.11854265630245209, -0.05712571367621422, -0.02276773378252983, 0.043592024594545364, -0.025616396218538284, 0.0950452983379364, 0.02889023907482624, 0.03164001181721687, 0.029129616916179657, 0.1616438925266266, 0.05965343490242958, -0.011931386776268482, -0.020114650949835777, 0.12719778716564178, -0.05164231359958649, 0.13180890679359436, -0.04921978339552879, -0.07295121252536774, 0.030956652015447617, 0.24819223582744598, 0.15733709931373596, -0.09355364739894867, -0.01422498095780611, -0.04711444303393364, 0.04890310764312744, 0.09391216188669205, 0.03403981775045395, 0.03443940356373787, 0.39517176151275635, -0.039799757301807404, 0.02569972164928913, -0.03575167432427406, 0.06450583785772324, -0.07042111456394196, -0.004627536982297897, 0.07738383114337921, -0.04837770760059357, -0.10620268434286118, 0.20084114372730255, -0.12375979870557785, -0.10315373539924622, 0.055084358900785446, -0.08404321223497391, -0.09227786213159561, -0.03792912885546684, 0.07957518100738525, -0.006662904284894466, 0.0911356583237648, 0.012829119339585304, -0.07978072762489319, -0.12165111303329468, 0.04946017265319824, -0.14934273064136505, -0.13175715506076813, 0.10582446306943893, 0.06544098258018494, 0.2170286774635315, -0.07260722666978836, 0.07830692082643509, 0.02728143334388733, -0.0016245176084339619, -0.027854815125465393, 0.10823197662830353, 0.013384458608925343, -0.05642395094037056, 0.060380350798368454, -0.036420468240976334, 0.021927926689386368, 0.03180255368351936, 0.13020525872707367, -0.16439425945281982, 0.10358378291130066, -0.0160398967564106, -0.024628276005387306, -0.06894020736217499, 0.17018349468708038, -0.118108831346035, 0.02528894692659378, 0.10766800493001938, 0.03540850058197975, 0.04314642772078514, -0.08454608172178268, 0.018118619918823242, 0.028304394334554672, 0.023916279897093773, 0.003979761153459549, -0.12356109917163849, -0.021699082106351852, -0.01333814486861229, 0.03922701254487038, -0.2035195529460907, 0.025777604430913925, -0.11725662648677826, 0.01615195907652378, -0.021773016080260277, -0.0008905192371457815, -0.025788143277168274, -0.03194892033934593, 0.007213921751827002, -0.271918922662735, 0.0829121321439743, 0.09990863502025604, -0.02978852204978466, -0.006264649797230959 ]
null
null
transformers
# Sentiment Analysis in Spanish ## beto-sentiment-analysis **NOTE: this model will be removed soon -- use [pysentimiento/robertuito-sentiment-analysis](https://huggingface.co/pysentimiento/robertuito-sentiment-analysis) instead** Repository: [https://github.com/finiteautomata/pysentimiento/](https://github.com/pysentimiento/pysentimiento/) Model trained with TASS 2020 corpus (around ~5k tweets) of several dialects of Spanish. Base model is [BETO](https://github.com/dccuchile/beto), a BERT model trained in Spanish. Uses `POS`, `NEG`, `NEU` labels. ## License `pysentimiento` is an open-source library for non-commercial use and scientific research purposes only. Please be aware that models are trained with third-party datasets and are subject to their respective licenses. 1. [TASS Dataset license](http://tass.sepln.org/tass_data/download.php) 2. [SEMEval 2017 Dataset license]() ## Citation If you use this model in your work, please cite the following papers: ``` @misc{perez2021pysentimiento, title={pysentimiento: A Python Toolkit for Sentiment Analysis and SocialNLP tasks}, author={Juan Manuel Pérez and Juan Carlos Giudici and Franco Luque}, year={2021}, eprint={2106.09462}, archivePrefix={arXiv}, primaryClass={cs.CL} } @article{canete2020spanish, title={Spanish pre-trained bert model and evaluation data}, author={Ca{\~n}ete, Jos{\'e} and Chaperon, Gabriel and Fuentes, Rodrigo and Ho, Jou-Hui and Kang, Hojin and P{\'e}rez, Jorge}, journal={Pml4dc at iclr}, volume={2020}, number={2020}, pages={1--10}, year={2020} } ``` Enjoy! 🤗
{"language": ["es"], "tags": ["sentiment-analysis"]}
text-classification
finiteautomata/beto-sentiment-analysis
[ "transformers", "pytorch", "jax", "bert", "text-classification", "sentiment-analysis", "es", "arxiv:2106.09462", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
2022-03-02T23:29:05+00:00
[ "2106.09462" ]
[ "es" ]
TAGS #transformers #pytorch #jax #bert #text-classification #sentiment-analysis #es #arxiv-2106.09462 #autotrain_compatible #endpoints_compatible #has_space #region-us
# Sentiment Analysis in Spanish ## beto-sentiment-analysis NOTE: this model will be removed soon -- use pysentimiento/robertuito-sentiment-analysis instead Repository: URL Model trained with TASS 2020 corpus (around ~5k tweets) of several dialects of Spanish. Base model is BETO, a BERT model trained in Spanish. Uses 'POS', 'NEG', 'NEU' labels. ## License 'pysentimiento' is an open-source library for non-commercial use and scientific research purposes only. Please be aware that models are trained with third-party datasets and are subject to their respective licenses. 1. TASS Dataset license 2. [SEMEval 2017 Dataset license]() If you use this model in your work, please cite the following papers: Enjoy!
[ "# Sentiment Analysis in Spanish", "## beto-sentiment-analysis\n\nNOTE: this model will be removed soon -- use pysentimiento/robertuito-sentiment-analysis instead\n\nRepository: URL\n\n\nModel trained with TASS 2020 corpus (around ~5k tweets) of several dialects of Spanish. Base model is BETO, a BERT model trained in Spanish.\n\nUses 'POS', 'NEG', 'NEU' labels.", "## License\n\n'pysentimiento' is an open-source library for non-commercial use and scientific research purposes only. Please be aware that models are trained with third-party datasets and are subject to their respective licenses. \n\n1. TASS Dataset license\n2. [SEMEval 2017 Dataset license]()\n\nIf you use this model in your work, please cite the following papers:\n\n\n\nEnjoy!" ]
[ "TAGS\n#transformers #pytorch #jax #bert #text-classification #sentiment-analysis #es #arxiv-2106.09462 #autotrain_compatible #endpoints_compatible #has_space #region-us \n", "# Sentiment Analysis in Spanish", "## beto-sentiment-analysis\n\nNOTE: this model will be removed soon -- use pysentimiento/robertuito-sentiment-analysis instead\n\nRepository: URL\n\n\nModel trained with TASS 2020 corpus (around ~5k tweets) of several dialects of Spanish. Base model is BETO, a BERT model trained in Spanish.\n\nUses 'POS', 'NEG', 'NEU' labels.", "## License\n\n'pysentimiento' is an open-source library for non-commercial use and scientific research purposes only. Please be aware that models are trained with third-party datasets and are subject to their respective licenses. \n\n1. TASS Dataset license\n2. [SEMEval 2017 Dataset license]()\n\nIf you use this model in your work, please cite the following papers:\n\n\n\nEnjoy!" ]
[ 59, 7, 96, 88 ]
[ "passage: TAGS\n#transformers #pytorch #jax #bert #text-classification #sentiment-analysis #es #arxiv-2106.09462 #autotrain_compatible #endpoints_compatible #has_space #region-us \n# Sentiment Analysis in Spanish## beto-sentiment-analysis\n\nNOTE: this model will be removed soon -- use pysentimiento/robertuito-sentiment-analysis instead\n\nRepository: URL\n\n\nModel trained with TASS 2020 corpus (around ~5k tweets) of several dialects of Spanish. Base model is BETO, a BERT model trained in Spanish.\n\nUses 'POS', 'NEG', 'NEU' labels.## License\n\n'pysentimiento' is an open-source library for non-commercial use and scientific research purposes only. Please be aware that models are trained with third-party datasets and are subject to their respective licenses. \n\n1. TASS Dataset license\n2. [SEMEval 2017 Dataset license]()\n\nIf you use this model in your work, please cite the following papers:\n\n\n\nEnjoy!" ]
[ -0.0800396054983139, 0.14537687599658966, -0.0031896333675831556, 0.04979890584945679, 0.07987964153289795, 0.01183101162314415, 0.15827630460262299, 0.04806627333164215, 0.05785142257809639, -0.0007966099656186998, 0.04691259562969208, 0.04959157109260559, 0.04889379441738129, 0.13477547466754913, -0.07011624425649643, -0.2765890955924988, 0.03473780304193497, 0.0024609267711639404, 0.018851393833756447, 0.09064854681491852, 0.14010848104953766, -0.04323481395840645, 0.10610128939151764, 0.06608785688877106, -0.03957340493798256, -0.008295108564198017, 0.059532929211854935, -0.12777167558670044, 0.11415807157754898, 0.025231139734387398, 0.11888688057661057, 0.0941607803106308, 0.06535263359546661, -0.08947563171386719, 0.023577403277158737, -0.009205901995301247, -0.06738051772117615, 0.10338196158409119, 0.14595738053321838, -0.06520704925060272, 0.24173776805400848, -0.01194817665964365, 0.07575021684169769, 0.05467655882239342, -0.1321267932653427, -0.13151641190052032, -0.1311725676059723, 0.022607414051890373, 0.1313769519329071, 0.060175832360982895, -0.015050368383526802, 0.11247839778661728, -0.09760269522666931, 0.012768597342073917, 0.15706098079681396, -0.17468014359474182, -0.0516926646232605, 0.006279372610151768, -0.0005991020007058978, 0.056546859443187714, -0.007083260454237461, 0.01860368251800537, 0.07451598346233368, 0.0026696850545704365, 0.03935501351952553, -0.05303700268268585, -0.0031188172288239002, -0.010344435460865498, -0.1297224760055542, -0.061207860708236694, 0.2224852740764618, 0.007512120995670557, -0.08360348641872406, -0.006049647927284241, -0.0356808640062809, 0.012331539765000343, 0.0005394035251811147, -0.08246741443872452, 0.04504785314202309, 0.007711159065365791, 0.02670898847281933, -0.002511509694159031, -0.14711514115333557, 0.009240638464689255, -0.13550394773483276, 0.016277844086289406, 0.003942313604056835, 0.05226556211709976, -0.005544679705053568, 0.028991317376494408, -0.15405219793319702, -0.06544174998998642, -0.04312615469098091, -0.108740895986557, 0.006799302063882351, -0.04787152633070946, -0.08409187197685242, -0.06600287556648254, -0.016615087166428566, 0.08525410294532776, -0.10514980554580688, -0.039693091064691544, -0.008233385160565376, 0.004628445953130722, 0.11720412969589233, 0.02113092876970768, -0.02780202217400074, 0.007971839979290962, 0.018294937908649445, -0.09077289700508118, 0.008697779849171638, 0.00946568138897419, -0.06906504184007645, -0.05317242443561554, -0.010539939627051353, 0.005113144405186176, 0.011476574465632439, -0.0058986893855035305, -0.09738560020923615, -0.04870687425136566, 0.08654085546731949, -0.010269424878060818, 0.007201986387372017, 0.018276114016771317, -0.022298326715826988, 0.05141228437423706, 0.0556732714176178, 0.06317495554685593, 0.009804068133234978, 0.009696848690509796, -0.09372574090957642, -0.036969151347875595, -0.06121540442109108, -0.0939495638012886, 0.089415043592453, -0.09831689298152924, 0.016200389713048935, -0.16888493299484253, -0.20682859420776367, -0.014181463979184628, 0.0940103828907013, -0.08722654730081558, -0.04576224461197853, -0.016718676313757896, 0.008924553170800209, 0.009990096092224121, -0.037473488599061966, 0.047117311507463455, -0.031005732715129852, 0.04266311973333359, -0.06465344876050949, 0.08064226061105728, -0.13793231546878815, 0.024012602865695953, -0.12208977341651917, 0.014774888753890991, -0.055278439074754715, 0.055467866361141205, -0.06459707766771317, 0.05133995786309242, -0.1525905877351761, -0.09749606996774673, -0.02255125716328621, 0.014181666076183319, 0.02900974452495575, 0.1643526703119278, -0.2010938674211502, -0.043516259640455246, 0.05664568021893501, -0.1435983031988144, -0.05366922914981842, 0.15049229562282562, -0.05753867328166962, 0.1990535855293274, 0.09628305584192276, 0.18940003216266632, 0.045636579394340515, -0.11019587516784668, 0.009844404645264149, -0.03521667420864105, 0.005094696301966906, -0.1180863082408905, 0.1255815327167511, 0.03885843977332115, -0.04698280245065689, 0.0015273389872163534, -0.13378554582595825, -0.00023518444504588842, -0.04360368102788925, -0.10067315399646759, 0.040404047816991806, -0.06159498542547226, 0.0795673057436943, -0.009753554128110409, 0.0584971085190773, -0.06397378444671631, -0.03419843316078186, 0.051564477384090424, 0.028529908508062363, 0.01541319489479065, 0.025395836681127548, -0.05721238628029823, 0.08086594939231873, -0.02666000835597515, -0.038939595222473145, -0.11059843003749847, -0.014142236672341824, -0.01966933347284794, 0.04899878054857254, 0.06511764228343964, 0.10498451441526413, -0.0025410386733710766, -0.0014970556367188692, -0.03781794756650925, 0.03802536427974701, -0.00022322469158098102, 0.020826764404773712, -0.05554429814219475, -0.17383268475532532, 0.028331413865089417, -0.05013810470700264, 0.07733923941850662, -0.10719269514083862, 0.02392958663403988, 0.039233509451150894, -0.014552981592714787, 0.00458989292383194, 0.008046778850257397, -0.03343798220157623, 0.03638661652803421, -0.04996059834957123, 0.014255077578127384, 0.0606950968503952, 0.015111985616385937, 0.010781272314488888, 0.1234169751405716, -0.0394287034869194, 0.011171749792993069, 0.10250451415777206, 0.01502606924623251, -0.05710798501968384, -0.04100034758448601, -0.051086511462926865, 0.05175289139151573, -0.06297332793474197, 0.03770161420106888, 0.07407333701848984, -0.008648024871945381, 0.04820859432220459, -0.13102319836616516, 0.006542055401951075, 0.03329799696803093, -0.1396208256483078, -0.11195894330739975, 0.05805283412337303, 0.08688974380493164, -0.2133965641260147, 0.13738983869552612, 0.09797288477420807, -0.06631709635257721, 0.13445433974266052, 0.01226819772273302, -0.06068025901913643, -0.05423307046294212, -0.05549658462405205, 0.00815780833363533, 0.105980284512043, -0.06547044217586517, 0.02146979793906212, 0.07210862636566162, -0.006559310480952263, 0.010982065461575985, -0.1229052022099495, -0.05203434079885483, 0.023029616102576256, -0.012245229445397854, -0.15509416162967682, 0.03558695688843727, -0.06256578117609024, 0.11209002137184143, -0.013273621909320354, -0.03735848888754845, 0.01734023727476597, 0.014950078912079334, -0.16035719215869904, 0.13750627636909485, -0.10143986344337463, -0.11695562303066254, -0.12990789115428925, -0.03982096537947655, -0.017635216936469078, 0.06420733779668808, 0.09069803357124329, -0.06739597022533417, -0.06693841516971588, -0.04723784327507019, -0.07477562874555588, 0.009874319657683372, -0.017192959785461426, 0.0045424592681229115, 0.024828413501381874, 0.006528541445732117, -0.07330842316150665, -0.04291694983839989, -0.04977312684059143, -0.03643009066581726, 0.05053739249706268, -0.08448685705661774, 0.10199419409036636, 0.09016255289316177, 0.005400143098086119, -0.02013685740530491, -0.061026979237794876, 0.2191653847694397, -0.013191074132919312, 0.018194783478975296, 0.2031937539577484, 0.023645954206585884, 0.045940838754177094, 0.18363948166370392, 0.009916868060827255, -0.04869041591882706, 0.006838549859821796, -0.000931568443775177, -0.10837550461292267, -0.30558961629867554, -0.07300785183906555, -0.04614721238613129, -0.002208467572927475, 0.028129348531365395, -0.0024115503765642643, 0.10446984320878983, 0.14928722381591797, 0.0011626558844000101, -0.048302896320819855, -0.02410939149558544, 0.1021348237991333, 0.16413529217243195, -0.005404171533882618, 0.08114749193191528, -0.06241032853722572, 0.02346855029463768, 0.16374069452285767, 0.02102416753768921, 0.21833470463752747, 0.033659208565950394, 0.10541529953479767, 0.08872426301240921, 0.14730392396450043, 0.017731962725520134, 0.07919324934482574, 0.007557796314358711, 0.03468277305364609, -0.1056441143155098, -0.015840090811252594, -0.07826065272092819, 0.12941700220108032, -0.03799295425415039, -0.04366694763302803, -0.08662641048431396, -0.048340748995542526, 0.004426433239132166, 0.15866170823574066, 0.039104003459215164, -0.29822835326194763, -0.09893851727247238, 0.06070563569664955, -0.0393308587372303, -0.021892927587032318, -0.019970301538705826, 0.05806274712085724, -0.08504383265972137, 0.11242423951625824, -0.012919462285935879, 0.055709294974803925, 0.07921852171421051, 0.028099507093429565, -0.06178716570138931, -0.06304419785737991, -0.028559546917676926, 0.10207490622997284, -0.2383722960948944, 0.31030142307281494, -0.040809955447912216, 0.029213588684797287, -0.03830798342823982, -0.03469625115394592, -0.007655840367078781, 0.10923565924167633, 0.13347414135932922, 0.01941957324743271, -0.06533076614141464, 0.011674420908093452, -0.020629357546567917, 0.02533339522778988, -0.07899819314479828, -0.05385313183069229, 0.05924086272716522, -0.0121354004368186, 0.025893906131386757, 0.03900374099612236, 0.17218469083309174, -0.09710951149463654, -0.0901106670498848, 0.04068592190742493, -0.07064381241798401, 0.02535894326865673, -0.03651629388332367, -0.11905009299516678, -0.050397615879774094, 0.07886196672916412, 0.016060559079051018, -0.0948638916015625, -0.13845805823802948, 0.003969703335314989, 0.045537009835243225, -0.08877475559711456, 0.015197692438960075, 0.033572059124708176, 0.06435719132423401, -0.033521655946969986, -0.10425901412963867, 0.08296790719032288, -0.133310005068779, -0.11426126956939697, -0.05439860373735428, 0.053654659539461136, 0.0842074453830719, 0.07411068677902222, 0.0821903795003891, 0.017817500978708267, -0.05399744212627411, -0.07332224398851395, 0.012192514725029469, 0.08341805636882782, 0.06306394934654236, -0.08740919083356857, -0.048676490783691406, -0.19026482105255127, -0.06125456094741821, -0.03788625821471214, 0.1051270067691803, 0.1980210244655609, -0.06466980278491974, 0.20385536551475525, 0.15262144804000854, -0.10266800969839096, -0.15964412689208984, -0.03125954791903496, 0.13735058903694153, -0.032812777906656265, 0.09940314292907715, -0.15247413516044617, -0.010795336216688156, 0.07826917618513107, -0.059783369302749634, -0.22858116030693054, -0.16862191259860992, -0.09346316754817963, 0.09432144463062286, 0.09317681938409805, 0.3188059329986572, -0.12739646434783936, -0.02341289632022381, -0.03643970191478729, -0.062206048518419266, 0.3084406852722168, -0.04587689787149429, 0.022283175960183144, 0.04556967690587044, 0.18927763402462006, 0.016746360808610916, -0.011913437396287918, 0.1868811547756195, -0.014614365063607693, 0.016475319862365723, -0.07324985414743423, -0.026480797678232193, 0.12056317925453186, -0.041768256574869156, 0.08115822076797485, 0.11518020182847977, -0.007881797850131989, -0.07207353413105011, -0.06552240252494812, -0.11384259909391403, 0.09182200580835342, -0.020853886380791664, -0.10173363983631134, -0.021702099591493607, 0.05710963159799576, 0.08188194781541824, -0.06588000059127808, 0.02872942015528679, -0.008762400597333908, 0.05194234848022461, 0.15907251834869385, 0.22932374477386475, 0.0588836707174778, 0.049095842987298965, -0.0007654284127056599, -0.07995663583278656, 0.045287735760211945, -0.17145907878875732, -0.021084336563944817, 0.06581254303455353, -0.02151830494403839, 0.08049096167087555, 0.027300216257572174, -0.09531722217798233, 0.048950836062431335, 0.11677447706460953, -0.0694194957613945, -0.14906726777553558, -0.04024169594049454, 0.01910099759697914, -0.10841552913188934, -0.02611210197210312, 0.14298154413700104, -0.07648018002510071, -0.03931594640016556, -0.02730334922671318, 0.06763485074043274, -0.03332006186246872, 0.08657437562942505, 0.02780398167669773, -0.04160192236304283, -0.08742215484380722, -0.016574949026107788, 0.06305557489395142, -0.06493537127971649, 0.06029585376381874, -0.000013657729141414165, -0.06021249294281006, -0.08014975488185883, -0.06505522131919861, 0.04293743520975113, -0.28773024678230286, -0.07822543382644653, -0.028393376618623734, -0.10184087604284286, 0.021511996164917946, 0.16245077550411224, 0.04610585793852806, -0.023027585819363594, -0.0552392415702343, 0.0021890406496822834, -0.00618590647354722, 0.03926893323659897, 0.07104028016328812, 0.037359509617090225, -0.06987933069467545, 0.06956952065229416, -0.06484098732471466, 0.026531251147389412, -0.053936220705509186, 0.014090551994740963, -0.08727812021970749, -0.023813003674149513, -0.15483814477920532, 0.05361286550760269, -0.1339312046766281, 0.0038416306488215923, -0.0002413329784758389, -0.10510450601577759, -0.05709875375032425, 0.010519122704863548, -0.09883935749530792, 0.07660917192697525, -0.0263670701533556, 0.1366853266954422, -0.08750565350055695, -0.0017247250070795417, 0.048986613750457764, -0.005789863411337137, 0.0685935840010643, 0.03547615930438042, -0.023689066991209984, 0.06579950451850891, -0.23083749413490295, 0.05169356241822243, 0.07179505378007889, 0.019267937168478966, 0.027075733989477158, -0.1419452279806137, -0.008498452603816986, 0.09370215237140656, -0.025053298100829124, 0.015795057639479637, 0.07632669061422348, -0.060273926705121994, 0.03532577306032181, 0.11465355008840561, -0.12548469007015228, -0.038162961602211, -0.001226633321493864, 0.08348428457975388, 0.04801972955465317, 0.18284747004508972, -0.018633872270584106, -0.0077234841883182526, -0.11227637529373169, 0.0021667361725121737, -0.028675708919763565, 0.011534481309354305, -0.14882375299930573, -0.09246856719255447, 0.011616528034210205, 0.026058252900838852, 0.139411062002182, 0.12829090654850006, -0.024488506838679314, 0.007859887555241585, 0.10223669558763504, 0.06342773884534836, 0.020208116620779037, 0.20075175166130066, 0.02723490260541439, 0.025556471198797226, -0.042394693940877914, 0.03464318811893463, 0.011421422474086285, -0.023918263614177704, 0.1679229885339737, 0.09812098741531372, 0.04149555414915085, 0.04017120227217674, 0.027810072526335716, -0.005016481503844261, -0.032927997410297394, -0.052373167127370834, -0.021730434149503708, -0.011558614671230316, -0.024219250306487083, 0.11340044438838959, 0.14549188315868378, -0.20446611940860748, 0.04198285937309265, 0.014087524265050888, -0.03486225754022598, -0.15392884612083435, -0.25263354182243347, -0.05853179469704628, -0.10579322278499603, -0.005263029597699642, -0.1363784372806549, 0.03457077592611313, 0.06302236765623093, 0.0091848848387599, -0.048503436148166656, -0.05520714074373245, -0.09800200164318085, -0.10491542518138885, 0.02256612479686737, 0.02773132361471653, 0.019923914223909378, -0.08676537871360779, 0.0021344239357858896, -0.04426136612892151, 0.10508953034877777, 0.014943379908800125, 0.02875995635986328, 0.04278895631432533, -0.003874624613672495, -0.046059079468250275, -0.052321016788482666, -0.040500715374946594, 0.023910511285066605, 0.03948717564344406, 0.11355796456336975, 0.01962074264883995, 0.005354136228561401, 0.08063556998968124, 0.23167254030704498, -0.006536706816405058, -0.011699254624545574, -0.17561575770378113, 0.20965984463691711, -0.02660355158150196, 0.029889121651649475, 0.04960763081908226, -0.07445205748081207, 0.03576560690999031, 0.1569330394268036, 0.1962049901485443, 0.004117471165955067, -0.03261440247297287, -0.08540701866149902, 0.01951017417013645, 0.04367584362626076, 0.11315002292394638, -0.010062871500849724, 0.24700160324573517, -0.09952062368392944, 0.09730701893568039, -0.03530561178922653, 0.060923703014850616, -0.09469236433506012, 0.1068475991487503, -0.020540520548820496, -0.09858650714159012, -0.03298374265432358, 0.15281562507152557, -0.029779206961393356, -0.12366265803575516, -0.003908541519194841, -0.06431341171264648, -0.08221862465143204, 0.009924685582518578, 0.04542350396513939, 0.03712272271513939, 0.08008787035942078, -0.02739736996591091, 0.003748722840100527, 0.17736192047595978, 0.03638317063450813, -0.12329261004924774, 0.010774010792374611, 0.22361643612384796, -0.014351989142596722, 0.15187419950962067, 0.0003120007459074259, 0.029045483097434044, 0.07644251734018326, 0.018282802775502205, -0.11287765949964523, 0.034927837550640106, 0.0648547112941742, -0.023138895630836487, 0.06893356144428253, 0.00885028950870037, -0.03219928592443466, 0.0031402301974594593, 0.06738530099391937, -0.16597416996955872, 0.02802005596458912, 0.024710670113563538, -0.020755479112267494, -0.048767510801553726, 0.1316850334405899, -0.16177614033222198, 0.10599686205387115, 0.07454397529363632, -0.05881363898515701, -0.0015691877342760563, -0.0703735202550888, 0.04017747938632965, 0.03563553839921951, -0.009584572166204453, 0.04917134717106819, -0.16525262594223022, -0.03615546599030495, 0.04747088626027107, 0.053040556609630585, -0.20587198436260223, 0.014239221811294556, -0.07703675329685211, 0.016286250203847885, -0.07772722840309143, 0.028910940513014793, 0.05475882440805435, -0.041455719619989395, -0.00609146011993289, -0.01063811406493187, -0.015468122437596321, 0.0838070884346962, -0.0013285161694511771, -0.017167070880532265 ]
null
null
transformers
# llama_or_what Autogenerated by HuggingPics🤗🖼️ Create your own image classifier for **anything** by running [the demo on Google Colab](https://colab.research.google.com/github/nateraw/huggingpics/blob/main/HuggingPics.ipynb). Report any issues with the demo at the [github repo](https://github.com/nateraw/huggingpics). ## Example Images #### alpaca ![alpaca](images/alpaca.jpg) #### guanaco ![guanaco](images/guanaco.jpg) #### llama ![llama](images/llama.jpg) #### vicuna ![vicuna](images/vicuna.jpg)
{"tags": ["image-classification", "pytorch", "huggingpics"], "metrics": ["accuracy"]}
image-classification
firebolt/llama_or_what
[ "transformers", "pytorch", "tensorboard", "vit", "image-classification", "huggingpics", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #vit #image-classification #huggingpics #model-index #autotrain_compatible #endpoints_compatible #region-us
# llama_or_what Autogenerated by HuggingPics️ Create your own image classifier for anything by running the demo on Google Colab. Report any issues with the demo at the github repo. ## Example Images #### alpaca !alpaca #### guanaco !guanaco #### llama !llama #### vicuna !vicuna
[ "# llama_or_what\n\n\nAutogenerated by HuggingPics️\n\nCreate your own image classifier for anything by running the demo on Google Colab.\n\nReport any issues with the demo at the github repo.", "## Example Images", "#### alpaca\n\n!alpaca", "#### guanaco\n\n!guanaco", "#### llama\n\n!llama", "#### vicuna\n\n!vicuna" ]
[ "TAGS\n#transformers #pytorch #tensorboard #vit #image-classification #huggingpics #model-index #autotrain_compatible #endpoints_compatible #region-us \n", "# llama_or_what\n\n\nAutogenerated by HuggingPics️\n\nCreate your own image classifier for anything by running the demo on Google Colab.\n\nReport any issues with the demo at the github repo.", "## Example Images", "#### alpaca\n\n!alpaca", "#### guanaco\n\n!guanaco", "#### llama\n\n!llama", "#### vicuna\n\n!vicuna" ]
[ 49, 44, 4, 8, 9, 6, 8 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #vit #image-classification #huggingpics #model-index #autotrain_compatible #endpoints_compatible #region-us \n# llama_or_what\n\n\nAutogenerated by HuggingPics️\n\nCreate your own image classifier for anything by running the demo on Google Colab.\n\nReport any issues with the demo at the github repo.## Example Images#### alpaca\n\n!alpaca#### guanaco\n\n!guanaco#### llama\n\n!llama#### vicuna\n\n!vicuna" ]
[ -0.08607829362154007, 0.22989317774772644, -0.0036510638892650604, 0.1193341314792633, 0.21562734246253967, 0.0309975054115057, 0.11858244240283966, 0.1251250058412552, 0.03641373664140701, 0.03825967013835907, 0.12134289741516113, 0.22656948864459991, 0.0362720787525177, 0.08317583799362183, 0.05752447620034218, -0.29540732502937317, -0.013753339648246765, 0.03833711892366409, -0.04965915530920029, 0.08199050277471542, 0.02565723843872547, -0.10480911284685135, 0.14047430455684662, -0.005105537828058004, -0.2003289759159088, -0.017241913825273514, -0.04754731431603432, -0.08036848902702332, 0.08840594440698624, 0.041346460580825806, 0.06779938191175461, 0.0006194390589371324, 0.010713103227317333, -0.07272420823574066, 0.044828347861766815, -0.008610311895608902, -0.0350886806845665, 0.0670265182852745, 0.10125264525413513, 0.0007481859647668898, 0.156455397605896, 0.08555453270673752, -0.038236718624830246, 0.031993038952350616, -0.1036849245429039, -0.09632287174463272, -0.00762735353782773, 0.02316814288496971, 0.09682343900203705, 0.023344330489635468, 0.004489879589527845, 0.10583493858575821, -0.033944033086299896, 0.06995240598917007, 0.19026131927967072, -0.11084578186273575, -0.11056622117757797, 0.05992875248193741, 0.04871615394949913, -0.0039175148122012615, -0.03651345893740654, 0.11302623152732849, 0.05936024710536003, -0.015462842769920826, -0.023342585191130638, -0.08096927404403687, -0.1508478969335556, -0.05316375941038132, -0.09888412803411484, 0.02507297694683075, 0.06362368911504745, -0.002293097088113427, 0.0058409045450389385, -0.015537855215370655, -0.0265281330794096, 0.008381342515349388, -0.05487397685647011, 0.07319622486829758, 0.03627948835492134, -0.026437649503350258, -0.03616844862699509, -0.059755466878414154, -0.10574217140674591, -0.006625224370509386, -0.05974093824625015, 0.0711771696805954, 0.04823245480656624, 0.039386916905641556, -0.09617782384157181, 0.05446117743849754, 0.056807778775691986, -0.0895548164844513, 0.022132229059934616, -0.025082604959607124, 0.015800902619957924, -0.013553057797253132, 0.04789288341999054, -0.039194125682115555, 0.1634233593940735, 0.020237701013684273, 0.05944390594959259, 0.0679238811135292, 0.021490037441253662, 0.05252928286790848, 0.05847081542015076, 0.147389754652977, -0.11416182667016983, -0.009580934420228004, 0.06765224784612656, 0.008618134073913097, 0.014390743337571621, -0.03845745697617531, -0.1582336127758026, -0.052002664655447006, 0.015103182755410671, 0.07086184620857239, 0.1060807928442955, 0.04646393284201622, -0.029468538239598274, -0.06816205382347107, -0.033097755163908005, -0.01635335199534893, 0.023465650156140327, -0.05867171287536621, -0.04304232448339462, 0.05098257213830948, 0.07048581540584564, 0.01096775010228157, -0.0028522927314043045, -0.0014976103557273746, -0.07674026489257812, -0.005405825562775135, -0.049145884811878204, 0.045416347682476044, 0.03845227137207985, -0.1460147649049759, 0.009200477041304111, -0.19530479609966278, 0.013327467255294323, -0.027009326964616776, 0.08704397827386856, -0.04973432421684265, -0.08596517890691757, -0.005347889382392168, 0.07198972254991531, -0.06754809617996216, 0.003956390079110861, -0.0017240806482732296, -0.033991459757089615, 0.07369855791330338, 0.04898764193058014, 0.13374528288841248, -0.04991404339671135, 0.02786223217844963, -0.0755288302898407, 0.051284462213516235, -0.13194386661052704, 0.06883925944566727, -0.05016707256436348, 0.2505413889884949, -0.08664967864751816, 0.012651178054511547, 0.019759275019168854, 0.003240088699385524, 0.0041809589602053165, 0.17184916138648987, -0.0958101823925972, -0.0999121442437172, 0.11855129152536392, -0.07260191440582275, -0.11525145918130875, 0.10279212892055511, 0.020832248032093048, 0.08372899144887924, 0.0978604406118393, 0.13002163171768188, 0.09426135569810867, -0.14468199014663696, 0.08064120262861252, -0.058270394802093506, -0.07398230582475662, -0.029011694714426994, 0.010028252378106117, 0.05727311596274376, -0.11982208490371704, 0.03782451152801514, -0.037507422268390656, 0.1513238102197647, -0.06916312128305435, -0.07741193473339081, 0.008685531094670296, -0.10903249680995941, -0.0345093309879303, 0.09793106466531754, 0.030475787818431854, 0.03364715352654457, -0.043154772371053696, -0.11820316314697266, 0.04399098455905914, -0.016100570559501648, -0.04896954074501991, -0.07949749380350113, 0.2556858956813812, -0.04834165424108505, -0.008810498751699924, -0.05439649522304535, -0.07717123627662659, -0.003402889706194401, -0.018062269315123558, 0.11170052736997604, -0.03611128404736519, 0.0419306755065918, 0.013116275891661644, -0.0030875420197844505, 0.045333683490753174, 0.10569356381893158, -0.03130197152495384, -0.0629204735159874, -0.1067037582397461, 0.09334696829319, -0.021649088710546494, 0.14099788665771484, -0.11121922731399536, -0.024382328614592552, 0.007995729334652424, 0.0769684836268425, 0.02998497523367405, -0.030318360775709152, 0.06761511415243149, -0.040101271122694016, -0.054870348423719406, -0.053699709475040436, 0.1348726451396942, -0.025845764204859734, -0.03615674003958702, 0.09058918803930283, -0.06996813416481018, 0.028033729642629623, 0.14149877429008484, -0.1745731383562088, -0.08422684669494629, -0.15399488806724548, -0.0028649833984673023, 0.05335310846567154, -0.00518807815387845, 0.061686839908361435, 0.04021211713552475, -0.015454833395779133, 0.12175983190536499, -0.04182218760251999, 0.03406374156475067, 0.029597574844956398, -0.08241341263055801, -0.06620758026838303, 0.0962405577301979, 0.17992208898067474, -0.06610333174467087, 0.08382578194141388, 0.10079888999462128, -0.04985059052705765, 0.11600914597511292, 0.06023877486586571, -0.002130703069269657, -0.00010497039329493418, -0.015336696058511734, 0.06294553726911545, 0.09011662006378174, -0.1399816870689392, -0.029216919094324112, 0.045754458755254745, -0.14599676430225372, 0.03632936626672745, -0.1363695114850998, -0.03911403939127922, -0.002830038545653224, 0.010944630019366741, 0.10457546263933182, 0.05896271765232086, -0.061871759593486786, 0.08942538499832153, 0.009544470347464085, -0.013625540770590305, -0.03275945782661438, 0.04864602908492088, -0.0090695321559906, 0.15707740187644958, -0.029865803197026253, -0.3438994884490967, -0.1019362285733223, -0.15170766413211823, -0.0053888531401753426, 0.09347229450941086, 0.04349331557750702, -0.17983384430408478, -0.03850045055150986, 0.04792254790663719, 0.05640218034386635, 0.07131913304328918, 0.0399557426571846, -0.0780758485198021, 0.043635111302137375, -0.007218852173537016, -0.03856772184371948, 0.009426175616681576, -0.019673198461532593, -0.051674384623765945, 0.11965823918581009, -0.08647795766592026, 0.123293437063694, 0.14371784031391144, 0.00184567307587713, 0.03331964462995529, 0.02879101224243641, 0.22377508878707886, -0.13047830760478973, 0.03388053923845291, 0.19429759681224823, 0.0005809638532809913, 0.05812230706214905, 0.12927255034446716, 0.013922512531280518, -0.10358394682407379, 0.003464390290901065, 0.05905114486813545, -0.16573375463485718, -0.09152921289205551, -0.03361804410815239, -0.036402732133865356, 0.05325184389948845, 0.14863221347332, 0.05723268538713455, 0.07364776730537415, 0.24164308607578278, 0.034740813076496124, 0.006711873225867748, -0.05123916640877724, 0.039751145988702774, 0.032164379954338074, -0.030319662764668465, 0.053246259689331055, -0.016380826011300087, -0.12291780859231949, 0.09017123281955719, 0.09393422305583954, 0.14988082647323608, 0.016969438642263412, -0.013585946522653103, 0.034104373306035995, 0.08281616121530533, 0.03470393270254135, -0.030015312135219574, -0.03488851711153984, -0.017457744106650352, -0.03267105668783188, -0.06387723237276077, -0.058339837938547134, -0.0047950721345841885, 0.09600675851106644, -0.11497548967599869, -0.021691031754016876, -0.03463420644402504, 0.017078038305044174, 0.13217397034168243, 0.026133138686418533, -0.3031248450279236, 0.06508985906839371, -0.0018950230441987514, 0.01940912939608097, -0.07298395782709122, -0.011891086585819721, 0.005045966245234013, -0.08905820548534393, 0.10851005464792252, -0.08624115586280823, 0.10173990577459335, -0.12937702238559723, 0.00292117684148252, 0.022541454061865807, 0.0374237559735775, -0.0003546212974470109, 0.058103982359170914, -0.07871103286743164, 0.14796313643455505, -0.013873700983822346, -0.08412813395261765, -0.06233123689889908, -0.009020067751407623, 0.0892828181385994, 0.12919625639915466, 0.12202320247888565, -0.003879339201375842, 0.09854846447706223, -0.11929170042276382, -0.08284024149179459, 0.018989067524671555, -0.029073452576994896, -0.07481813430786133, 0.027133721858263016, -0.000734133820515126, -0.03942141681909561, -0.05228571966290474, 0.005688858684152365, -0.0705842450261116, -0.14311617612838745, 0.03504185751080513, 0.042204465717077255, 0.01874229498207569, 0.020323017612099648, -0.049768224358558655, -0.17578081786632538, 0.07492165267467499, 0.0962047353386879, -0.06396808475255966, -0.08424616605043411, 0.05306222289800644, 0.058095403015613556, -0.0810658410191536, 0.07246691733598709, -0.13782985508441925, 0.10517790168523788, 0.012597215361893177, -0.11339353024959564, 0.07858067005872726, -0.07840641587972641, -0.037332113832235336, -0.07180705666542053, 0.02636248990893364, 0.018977971747517586, -0.028255414217710495, 0.06573919951915741, -0.005458870902657509, -0.07398561388254166, -0.05972256138920784, 0.025737211108207703, 0.02123316377401352, -0.02852794900536537, 0.014589992351830006, -0.07099606096744537, -0.02647307887673378, -0.10530098527669907, -0.013466711156070232, 0.1770966351032257, 0.1237863078713417, -0.05640138313174248, 0.061512529850006104, 0.07340898364782333, -0.04875332862138748, -0.2869563400745392, -0.06508515775203705, 0.059432003647089005, -0.0252714641392231, 0.0583830326795578, -0.16730403900146484, 0.1281404346227646, 0.0880376324057579, -0.04602392390370369, 0.18340060114860535, -0.1990109533071518, -0.08709418773651123, 0.07459785789251328, 0.14335505664348602, 0.09933164715766907, -0.23961932957172394, -0.06261789053678513, -0.0810733512043953, 0.006329640280455351, 0.20328308641910553, -0.0051455432549119, 0.09830600023269653, -0.027604220435023308, 0.10424888879060745, 0.08485838770866394, 0.002163226017728448, 0.15987184643745422, -0.06328319758176804, -0.062272775918245316, -0.14237111806869507, -0.1422891616821289, -0.10354828089475632, -0.05453231558203697, -0.03258414566516876, -0.04920397698879242, -0.0029744417406618595, -0.13745565712451935, -0.019689839333295822, -0.05032994598150253, 0.11057185381650925, 0.02186892181634903, -0.024496469646692276, -0.07827615737915039, 0.045348480343818665, -0.02871219627559185, 0.07167588174343109, 0.13288824260234833, -0.10361040383577347, 0.06462009996175766, 0.12326692044734955, 0.025911126285791397, -0.02498486079275608, -0.04221285879611969, -0.0850277990102768, -0.00880335457623005, 0.08374262601137161, -0.1540704071521759, 0.05310250446200371, 0.07622963190078735, -0.007748044561594725, 0.009704538621008396, 0.0007181223481893539, -0.003154017496854067, 0.07089519500732422, 0.1866828203201294, -0.040833406150341034, -0.016651468351483345, -0.03155875205993652, 0.021480165421962738, 0.014404220506548882, -0.0030328910797834396, 0.09783975780010223, 0.04912100359797478, -0.057673778384923935, 0.03837183117866516, 0.00009570377005729824, 0.0009663602686487138, 0.09442833065986633, 0.1285596787929535, -0.03257840871810913, -0.10431203246116638, 0.011690348386764526, 0.0653921514749527, -0.048009905964136124, -0.053917296230793, 0.09499506652355194, -0.03043331392109394, -0.10832826048135757, 0.04207204654812813, 0.08800465613603592, -0.2452598512172699, 0.00033164830529130995, -0.012455727905035019, -0.05200080946087837, -0.00867954920977354, -0.016825107857584953, 0.059871915727853775, -0.040222279727458954, 0.06027675420045853, 0.01982877030968666, -0.06970266997814178, 0.024763768538832664, 0.047236815094947815, 0.09955296665430069, -0.2402559518814087, -0.0052398149855434895, 0.023857736960053444, 0.12411639839410782, -0.0966419130563736, -0.062724769115448, -0.17892692983150482, 0.001975245540961623, -0.047246094793081284, 0.07970661669969559, -0.12419509887695312, 0.006877650041133165, 0.0037833438254892826, -0.055324699729681015, -0.037906575947999954, -0.05357833579182625, -0.12979230284690857, -0.004663667641580105, -0.006074720993638039, 0.04393287003040314, 0.0033501037396490574, -0.06708721071481705, 0.09161321818828583, -0.020983321592211723, 0.12235891073942184, -0.0417943112552166, -0.006777440197765827, 0.005223051179200411, -0.2878039479255676, -0.008832428604364395, 0.09889867901802063, -0.006777741946280003, 0.0181865431368351, -0.010156982578337193, 0.08556883782148361, -0.05518881604075432, 0.017503531649708748, 0.014101570472121239, 0.1470973789691925, -0.12741051614284515, -0.032814353704452515, -0.017595365643501282, -0.15052524209022522, 0.016799114644527435, 0.06728468090295792, 0.04569157585501671, -0.03462238982319832, 0.08300736546516418, -0.0716954693198204, 0.0668916255235672, -0.09123526513576508, 0.033446427434682846, -0.04269556701183319, -0.0760418027639389, -0.03353060409426689, -0.08606290072202682, 0.008739731274545193, 0.008730879053473473, 0.03996884077787399, 0.135044127702713, 0.06690707802772522, -0.030887259170413017, 0.12665380537509918, 0.12268853932619095, 0.006125189363956451, 0.10570146888494492, 0.03524286299943924, 0.06620580703020096, -0.05237139016389847, 0.08010270446538925, 0.07828864455223083, -0.09922464191913605, -0.03347776457667351, -0.006474402733147144, -0.09688621759414673, 0.04305604472756386, 0.10332651436328888, 0.02789911814033985, -0.013589203357696533, 0.06538575887680054, -0.07557171583175659, 0.11021299660205841, -0.011073275469243526, 0.04784443974494934, 0.11722121387720108, -0.03173871710896492, 0.024619044736027718, 0.012292634695768356, -0.0251595638692379, -0.08690140396356583, -0.15884844958782196, -0.06640944629907608, -0.15028153359889984, 0.048256609588861465, 0.01049214880913496, -0.052137941122055054, 0.007061521522700787, -0.009587152861058712, -0.07561074942350388, 0.1228126585483551, 0.04385479539632797, -0.10142236948013306, 0.0700240507721901, 0.058583252131938934, -0.07340990006923676, 0.005967097822576761, -0.045190583914518356, -0.07908684760332108, 0.12458418309688568, -0.04353941231966019, -0.0013450713595375419, -0.010555888526141644, 0.0589599609375, -0.0710364431142807, -0.046612925827503204, -0.017711203545331955, -0.013378011994063854, 0.028353143483400345, 0.004920995328575373, -0.0721142515540123, -0.011780780740082264, -0.010189289227128029, 0.13538382947444916, -0.0030615907162427902, 0.11907428503036499, -0.08759775012731552, 0.05503760650753975, -0.15939520299434662, 0.03217015042901039, -0.11448778212070465, -0.00001926403638208285, -0.021690456196665764, 0.39396458864212036, 0.15724582970142365, -0.12027449905872345, -0.03384329378604889, -0.03311555087566376, 0.018517468124628067, 0.01275045145303011, 0.13937117159366608, 0.02484198659658432, 0.1435777246952057, -0.04442379251122475, -0.008345991373062134, -0.032705288380384445, 0.017874224111437798, -0.13688893616199493, -0.03921409696340561, 0.0514850877225399, 0.02106895111501217, -0.07793276757001877, 0.14035987854003906, -0.15219788253307343, -0.03720487654209137, 0.1530701369047165, -0.14449456334114075, -0.13573873043060303, -0.04765550419688225, 0.043685074895620346, 0.04992751404643059, 0.07749248296022415, -0.05265412852168083, -0.005815597251057625, -0.02156323753297329, 0.003698913846164942, -0.18143180012702942, -0.10482829064130783, 0.035260118544101715, -0.04939250275492668, 0.27561381459236145, -0.06838494539260864, -0.067241370677948, 0.0829392746090889, -0.03472865745425224, -0.08223102241754532, -0.04860978573560715, 0.008984164334833622, -0.13628630340099335, 0.08490625768899918, 0.010356010869145393, -0.006932308431714773, -0.08010877668857574, 0.04123019427061081, 0.10352973639965057, -0.0010039469925686717, -0.015598473139107227, 0.0995025783777237, -0.05346140265464783, 0.1543680876493454, -0.14010374248027802, 0.09501372277736664, 0.05880855768918991, -0.027152985334396362, -0.05110403150320053, -0.08152042329311371, 0.0494498535990715, 0.03998911753296852, -0.060979798436164856, -0.08878584951162338, -0.09174561500549316, -0.0786530151963234, -0.054835811257362366, -0.03471779450774193, -0.13990208506584167, -0.003143402049317956, -0.13410785794258118, -0.0016076372703537345, -0.04671088233590126, 0.11950536072254181, 0.11307686567306519, -0.002523354021832347, 0.03187544271349907, -0.0427335724234581, -0.005056421738117933, 0.059661708772182465, -0.09132775664329529, -0.06120537593960762 ]
null
null
transformers
# llama_or_what2 Autogenerated by HuggingPics🤗🖼️ Create your own image classifier for **anything** by running [the demo on Google Colab](https://colab.research.google.com/github/nateraw/huggingpics/blob/main/HuggingPics.ipynb). Report any issues with the demo at the [github repo](https://github.com/nateraw/huggingpics). ## Example Images #### alpaca ![alpaca](images/alpaca.jpg) #### guanaco ![guanaco](images/guanaco.jpg) #### llama ![llama](images/llama.jpg) #### vicuna ![vicuna](images/vicuna.jpg)
{"tags": ["image-classification", "pytorch", "huggingpics"], "metrics": ["accuracy"]}
image-classification
firebolt/llama_or_what2
[ "transformers", "pytorch", "tensorboard", "vit", "image-classification", "huggingpics", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #vit #image-classification #huggingpics #model-index #autotrain_compatible #endpoints_compatible #region-us
# llama_or_what2 Autogenerated by HuggingPics️ Create your own image classifier for anything by running the demo on Google Colab. Report any issues with the demo at the github repo. ## Example Images #### alpaca !alpaca #### guanaco !guanaco #### llama !llama #### vicuna !vicuna
[ "# llama_or_what2\n\n\nAutogenerated by HuggingPics️\n\nCreate your own image classifier for anything by running the demo on Google Colab.\n\nReport any issues with the demo at the github repo.", "## Example Images", "#### alpaca\n\n!alpaca", "#### guanaco\n\n!guanaco", "#### llama\n\n!llama", "#### vicuna\n\n!vicuna" ]
[ "TAGS\n#transformers #pytorch #tensorboard #vit #image-classification #huggingpics #model-index #autotrain_compatible #endpoints_compatible #region-us \n", "# llama_or_what2\n\n\nAutogenerated by HuggingPics️\n\nCreate your own image classifier for anything by running the demo on Google Colab.\n\nReport any issues with the demo at the github repo.", "## Example Images", "#### alpaca\n\n!alpaca", "#### guanaco\n\n!guanaco", "#### llama\n\n!llama", "#### vicuna\n\n!vicuna" ]
[ 49, 45, 4, 8, 9, 6, 8 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #vit #image-classification #huggingpics #model-index #autotrain_compatible #endpoints_compatible #region-us \n# llama_or_what2\n\n\nAutogenerated by HuggingPics️\n\nCreate your own image classifier for anything by running the demo on Google Colab.\n\nReport any issues with the demo at the github repo.## Example Images#### alpaca\n\n!alpaca#### guanaco\n\n!guanaco#### llama\n\n!llama#### vicuna\n\n!vicuna" ]
[ -0.08044975250959396, 0.22313964366912842, -0.004392124246805906, 0.11824846267700195, 0.2103700488805771, 0.03592701628804207, 0.11266171932220459, 0.12655696272850037, 0.05994877219200134, 0.037109654396772385, 0.11186423152685165, 0.21641650795936584, 0.035604093223810196, 0.05546464025974274, 0.05892955884337425, -0.30407580733299255, -0.017179135233163834, 0.031975071877241135, -0.06134132295846939, 0.08228619396686554, 0.023282941430807114, -0.10156381130218506, 0.14308743178844452, -0.0034285569563508034, -0.18118490278720856, -0.013137291185557842, -0.051069118082523346, -0.08721674978733063, 0.09383584558963776, 0.047058939933776855, 0.07837475836277008, -0.0028022839687764645, -0.0012288427678868175, -0.08752146363258362, 0.044381387531757355, -0.01067108940333128, -0.04656554386019707, 0.062173131853342056, 0.10499128699302673, -0.02546684630215168, 0.14521674811840057, 0.08920592814683914, -0.04260437935590744, 0.032378438860177994, -0.11585249751806259, -0.10436496883630753, -0.001532172318547964, 0.03520423173904419, 0.08936392515897751, 0.016558904200792313, 0.010192464105784893, 0.10639096051454544, -0.05082761496305466, 0.07017266005277634, 0.1962691992521286, -0.11569203436374664, -0.11538516730070114, 0.06441465765237808, 0.06030222028493881, 0.0021691464353352785, -0.026020597666502, 0.11286312341690063, 0.05518356338143349, -0.015725987032055855, -0.040027737617492676, -0.08509034663438797, -0.13112616539001465, -0.04285039007663727, -0.10195862501859665, 0.01804916001856327, 0.0665646493434906, -0.0045705088414251804, 0.01480037160217762, -0.000060243393818382174, -0.029778091236948967, 0.004171417560428381, -0.05273076146841049, 0.07718835026025772, 0.03680959716439247, -0.014560159295797348, -0.02391567826271057, -0.05690934881567955, -0.11212782561779022, -0.01546280737966299, -0.059219568967819214, 0.08580757677555084, 0.04819740355014801, 0.04039374738931656, -0.10785919427871704, 0.04495582729578018, 0.058875564485788345, -0.08857329189777374, 0.02630266733467579, -0.02913597784936428, 0.011442887596786022, -0.009306310676038265, 0.047662511467933655, -0.04100560024380684, 0.16833457350730896, 0.008975902572274208, 0.04708044230937958, 0.06587807834148407, 0.024319617077708244, 0.06245824322104454, 0.06283003091812134, 0.14254097640514374, -0.10657593607902527, 0.0006042748573236167, 0.04092811793088913, 0.007664746139198542, 0.016168296337127686, -0.03818583860993385, -0.15992504358291626, -0.056739047169685364, 0.011329594068229198, 0.08208534121513367, 0.10339051485061646, 0.0426546186208725, -0.031160147860646248, -0.06993497163057327, -0.03209665045142174, -0.012179202400147915, 0.030079076066613197, -0.05156450346112251, -0.03689444065093994, 0.04761531949043274, 0.06429741531610489, 0.01001528836786747, 0.0014982179272919893, -0.002824730472639203, -0.06950867176055908, -0.0017208732897415757, -0.05594079941511154, 0.03949934244155884, 0.036531053483486176, -0.13409239053726196, 0.0049192761071026325, -0.20732074975967407, 0.018258672207593918, -0.019423557445406914, 0.0889548510313034, -0.04743093252182007, -0.07081805914640427, 0.002891669049859047, 0.06318061798810959, -0.07152755558490753, 0.006993982475250959, -0.005762504413723946, -0.042628686875104904, 0.07310807704925537, 0.049401357769966125, 0.14275063574314117, -0.057561345398426056, 0.025491617619991302, -0.07690802961587906, 0.06200358271598816, -0.13137568533420563, 0.07108370214700699, -0.0575936920940876, 0.2450004369020462, -0.08667222410440445, 0.014702245593070984, 0.016428066417574883, 0.008315534330904484, 0.004738461691886187, 0.1646702140569687, -0.1114848330616951, -0.10073301941156387, 0.13135235011577606, -0.08045246452093124, -0.11623701453208923, 0.09641740471124649, 0.026872878894209862, 0.08386257290840149, 0.0990385040640831, 0.15266206860542297, 0.09752411395311356, -0.1455998569726944, 0.079595647752285, -0.056168247014284134, -0.0783914104104042, -0.024165187031030655, 0.013315466232597828, 0.05330515280365944, -0.13047060370445251, 0.033705469220876694, -0.04043488949537277, 0.14860932528972626, -0.06712625175714493, -0.08086929470300674, 0.014031791128218174, -0.10451453924179077, -0.028780043125152588, 0.09579658508300781, 0.02059469185769558, 0.03419269621372223, -0.046540744602680206, -0.11533986032009125, 0.04127197712659836, -0.01611361838877201, -0.05028758943080902, -0.08379040658473969, 0.2725360095500946, -0.0408385694026947, -0.00866848323494196, -0.0568796768784523, -0.06645658612251282, -0.0018482549348846078, -0.018743950873613358, 0.09858078509569168, -0.030792368575930595, 0.04192810878157616, 0.010144932195544243, -0.0006649653078056872, 0.037267692387104034, 0.0956319123506546, -0.03218754380941391, -0.055815376341342926, -0.1004064604640007, 0.08895571529865265, -0.0173500943928957, 0.13434535264968872, -0.11178730428218842, -0.02981407381594181, 0.027837852016091347, 0.07737458497285843, 0.03176931291818619, -0.020742928609251976, 0.06481263041496277, -0.03820257633924484, -0.04865865036845207, -0.049300361424684525, 0.1373792588710785, -0.02639385312795639, -0.033868156373500824, 0.10354028642177582, -0.0717325285077095, 0.008846849203109741, 0.1386192888021469, -0.17446132004261017, -0.08196798712015152, -0.14962899684906006, -0.004395944532006979, 0.05541316419839859, 0.00691151712089777, 0.06369328498840332, 0.041581060737371445, -0.016471706330776215, 0.11791063100099564, -0.043043337762355804, 0.03936456888914108, 0.027153365314006805, -0.08356320858001709, -0.06561461836099625, 0.10163815319538116, 0.1764182150363922, -0.06630587577819824, 0.07498903572559357, 0.10107738524675369, -0.048811957240104675, 0.12726238369941711, 0.06347492337226868, 0.0025191614404320717, -0.004717062693089247, -0.007223142776638269, 0.06726005673408508, 0.09293688088655472, -0.14905786514282227, -0.028571685776114464, 0.03932027891278267, -0.14728589355945587, 0.03839631751179695, -0.13816893100738525, -0.04149734601378441, -0.0027120616286993027, 0.007935856468975544, 0.08802482485771179, 0.05893987417221069, -0.06303231418132782, 0.08752647787332535, 0.005350156687200069, -0.020527562126517296, -0.03592958301305771, 0.042212024331092834, -0.0005434805061668158, 0.15694347023963928, -0.025793472304940224, -0.34973984956741333, -0.1033451184630394, -0.15121476352214813, 0.006089644972234964, 0.09244570881128311, 0.04898251220583916, -0.17801713943481445, -0.03687449172139168, 0.050666894763708115, 0.06280957907438278, 0.0509055070579052, 0.0278791356831789, -0.08089221268892288, 0.04957203567028046, -0.013614678755402565, -0.03681810572743416, 0.007931621745228767, -0.02288636937737465, -0.04897109791636467, 0.12802357971668243, -0.09680931270122528, 0.12896636128425598, 0.13853693008422852, 0.004979731980711222, 0.03624139726161957, 0.02869189903140068, 0.21805550158023834, -0.13179850578308105, 0.032707810401916504, 0.1803228259086609, -0.0039028446190059185, 0.05763848125934601, 0.13495151698589325, 0.01663355901837349, -0.10100757330656052, 0.0014196282718330622, 0.05984719842672348, -0.16155819594860077, -0.10469170659780502, -0.03145499899983406, -0.033607203513383865, 0.0527258925139904, 0.14763015508651733, 0.058030810207128525, 0.08136630058288574, 0.24350810050964355, 0.03645675629377365, 0.00851260032504797, -0.06118907406926155, 0.0355423241853714, 0.03974360227584839, -0.024225285276770592, 0.044997118413448334, -0.011919202283024788, -0.12318430095911026, 0.0883796215057373, 0.1013820692896843, 0.1475275307893753, 0.019160570576786995, -0.008874503895640373, 0.0407208576798439, 0.07327236235141754, 0.050190068781375885, -0.044494759291410446, -0.02495804987847805, -0.011936505325138569, -0.03030356392264366, -0.06795233488082886, -0.053378619253635406, -0.0042921253480017185, 0.11302295327186584, -0.11166339367628098, -0.016321947798132896, -0.030482498928904533, 0.016776399686932564, 0.15872542560100555, 0.018351277336478233, -0.2980118989944458, 0.06336304545402527, -0.00016787943604867905, 0.0197165347635746, -0.07132577151060104, -0.005122065544128418, 0.013760112226009369, -0.08254863321781158, 0.11361251026391983, -0.07211825251579285, 0.10220798850059509, -0.1293308287858963, 0.0048152972012758255, 0.01733517274260521, 0.021481169387698174, 0.0029534422792494297, 0.05862312391400337, -0.07146705687046051, 0.1472529172897339, -0.009094209410250187, -0.08941767364740372, -0.0529000461101532, -0.007495031226426363, 0.08533893525600433, 0.14097429811954498, 0.121519073843956, 0.0065420251339674, 0.10294760763645172, -0.10296045243740082, -0.07929359376430511, 0.01454161573201418, -0.030419381335377693, -0.08762969821691513, 0.023207401856780052, 0.0009893105598166585, -0.046357039362192154, -0.057875603437423706, 0.0026043029502034187, -0.08218741416931152, -0.1292913854122162, 0.033274292945861816, 0.0519920289516449, 0.020636506378650665, 0.01300935447216034, -0.0469425693154335, -0.17026464641094208, 0.0802379846572876, 0.09932783246040344, -0.05980348587036133, -0.07608732581138611, 0.04817016422748566, 0.05937360227108002, -0.08225809037685394, 0.06324828416109085, -0.136432945728302, 0.0975022166967392, 0.009493077173829079, -0.10914032906293869, 0.08818379044532776, -0.07763266563415527, -0.03713126853108406, -0.07207141071557999, 0.03475373238325119, 0.016755923628807068, -0.02342098578810692, 0.06479954719543457, -0.004600170999765396, -0.07755530625581741, -0.05840504541993141, 0.028873177245259285, 0.027627618983387947, -0.04072234407067299, 0.02272069826722145, -0.06629788875579834, -0.03438403457403183, -0.10218881815671921, -0.006271903403103352, 0.18219026923179626, 0.12786217033863068, -0.05910655856132507, 0.05448194593191147, 0.0793829932808876, -0.05125412344932556, -0.28650546073913574, -0.07094048708677292, 0.06516051292419434, -0.029559031128883362, 0.05856984481215477, -0.1686679720878601, 0.12181494385004044, 0.09180264174938202, -0.04927418380975723, 0.1874408721923828, -0.21730680763721466, -0.07716305553913116, 0.06052762269973755, 0.141061931848526, 0.09943240135908127, -0.24649354815483093, -0.07340661436319351, -0.08279518783092499, -0.011128470301628113, 0.2018115222454071, 0.00018756403005681932, 0.09575799852609634, -0.03777778148651123, 0.09536837786436081, 0.0790666714310646, -0.00015009561320766807, 0.16397200524806976, -0.05841650441288948, -0.06301537156105042, -0.14168930053710938, -0.1532842367887497, -0.08886607736349106, -0.05236589536070824, -0.04649203643202782, -0.05085201561450958, -0.0034836414270102978, -0.13014018535614014, -0.017396559938788414, -0.056720469146966934, 0.11313646286725998, 0.02174249291419983, -0.018139054998755455, -0.07610557228326797, 0.04474074766039848, -0.03402111306786537, 0.08389464765787125, 0.12968778610229492, -0.11613747477531433, 0.06683985143899918, 0.11473428457975388, 0.01722601056098938, -0.026149464771151543, -0.053321100771427155, -0.08249274641275406, -0.009436841122806072, 0.09558367729187012, -0.15021947026252747, 0.05433650314807892, 0.06904496997594833, -0.004410644061863422, 0.011098816059529781, 0.004783090204000473, -0.014753730967640877, 0.07658156007528305, 0.1844143122434616, -0.04488286003470421, -0.030957795679569244, -0.042161211371421814, 0.03155824914574623, 0.024473782628774643, -0.0077907913364470005, 0.09919638931751251, 0.05927528813481331, -0.059100233018398285, 0.03399445116519928, -0.007275515701621771, 0.0029629499185830355, 0.07727602124214172, 0.13429705798625946, -0.034695133566856384, -0.09816762804985046, 0.009842772968113422, 0.07307054847478867, -0.04811771214008331, -0.06131701543927193, 0.10053888708353043, -0.03203801065683365, -0.12121250480413437, 0.027513455599546432, 0.08724360167980194, -0.233650803565979, -0.013281455263495445, -0.0038706548511981964, -0.04693296551704407, -0.01234036311507225, -0.004278805572539568, 0.06446149200201035, -0.04481986537575722, 0.06166640296578407, 0.019701657816767693, -0.05654911696910858, 0.018497729673981667, 0.03157660365104675, 0.10877187550067902, -0.23043259978294373, -0.021318435668945312, 0.02500571683049202, 0.11907113343477249, -0.09093128144741058, -0.07295281440019608, -0.18319061398506165, 0.008530382998287678, -0.053294580429792404, 0.09229203313589096, -0.12690585851669312, 0.0063690971583127975, 0.003988923970609903, -0.054688189178705215, -0.04187610745429993, -0.049717873334884644, -0.12998302280902863, -0.0064499154686927795, -0.006793259643018246, 0.041736356914043427, -0.009448078460991383, -0.06847986578941345, 0.09189985692501068, -0.020930519327521324, 0.12153267860412598, -0.03880568593740463, -0.0037008316721767187, 0.009420689195394516, -0.2897805869579315, -0.013610034249722958, 0.10313942283391953, -0.005057601723819971, 0.024143848568201065, -0.0030895890668034554, 0.08753057569265366, -0.05313015729188919, 0.011092147789895535, 0.013483628630638123, 0.15095141530036926, -0.12586702406406403, -0.03203761577606201, -0.008743172511458397, -0.16176779568195343, 0.019554782658815384, 0.07180920988321304, 0.04317733272910118, -0.03433654084801674, 0.07537928968667984, -0.06764459609985352, 0.06331776082515717, -0.08286213874816895, 0.03365086391568184, -0.04467712342739105, -0.06762160360813141, -0.025770245119929314, -0.08044569194316864, 0.004620599560439587, -0.004070297349244356, 0.04162561148405075, 0.12709681689739227, 0.07584375888109207, -0.039459098130464554, 0.11854499578475952, 0.12088808417320251, 0.008377713151276112, 0.10202695429325104, 0.03610832244157791, 0.06490147858858109, -0.04960709437727928, 0.06911836564540863, 0.08390601724386215, -0.0918952226638794, -0.03434852883219719, -0.0033213209826499224, -0.09171464294195175, 0.03914621099829674, 0.11236854642629623, 0.03791477903723717, -0.014348894357681274, 0.06181223690509796, -0.07981472462415695, 0.10855092853307724, -0.011047963984310627, 0.03240417316555977, 0.11628364771604538, -0.02652025781571865, 0.028805647045373917, 0.0034512104466557503, -0.02324846386909485, -0.08649179339408875, -0.15867121517658234, -0.06747089326381683, -0.14913925528526306, 0.04778233543038368, 0.01493767648935318, -0.05718864127993584, 0.0072492193430662155, -0.01619400829076767, -0.07232002168893814, 0.12512925267219543, 0.06114453077316284, -0.10633186995983124, 0.06729539483785629, 0.05201200768351555, -0.06684373319149017, 0.0046233213506639, -0.03800636902451515, -0.07542101293802261, 0.1206568107008934, -0.05093562230467796, 0.008644131943583488, -0.013511479832231998, 0.054357994347810745, -0.06943058967590332, -0.0440802238881588, -0.016805360093712807, -0.011799999512732029, 0.003910065162926912, -0.012070228345692158, -0.05612834170460701, -0.0021405210718512535, -0.0061248173005878925, 0.13729625940322876, -0.001974119571968913, 0.11329244822263718, -0.08579441159963608, 0.06295548379421234, -0.16392755508422852, 0.03797326236963272, -0.11096245050430298, -0.00876533892005682, -0.02259160950779915, 0.38034382462501526, 0.16144323348999023, -0.11846670508384705, -0.026906756684184074, -0.021463852375745773, 0.01825227588415146, 0.01751558855175972, 0.1284511834383011, 0.024139270186424255, 0.14029370248317719, -0.04568132013082504, -0.006626914255321026, -0.04207875207066536, 0.021911481395363808, -0.13542960584163666, -0.03972311690449715, 0.04852930083870888, 0.012556418776512146, -0.07850178331136703, 0.1481258124113083, -0.15113285183906555, -0.028399677947163582, 0.1587011069059372, -0.1510428786277771, -0.13027715682983398, -0.047250885516405106, 0.05369994789361954, 0.05084940791130066, 0.08484590798616409, -0.061610691249370575, -0.023723343387246132, -0.025898588821291924, 0.010636295191943645, -0.19040827453136444, -0.11342280358076096, 0.03729451820254326, -0.050890564918518066, 0.2715279161930084, -0.06864859908819199, -0.062106117606163025, 0.08147413283586502, -0.025070270523428917, -0.06697487086057663, -0.04609159752726555, 0.019746366888284683, -0.12841716408729553, 0.0729086697101593, 0.005410668905824423, -0.008421155624091625, -0.07188984751701355, 0.04974998161196709, 0.11076881736516953, 0.002822455484420061, 0.0004798147128894925, 0.10988302528858185, -0.05991147831082344, 0.1446991115808487, -0.14442358911037445, 0.08431362360715866, 0.054884664714336395, -0.021728476509451866, -0.050707124173641205, -0.0774928405880928, 0.04696725308895111, 0.03650043532252312, -0.06114514172077179, -0.09707331657409668, -0.07203581184148788, -0.08224158734083176, -0.051147639751434326, -0.012386703863739967, -0.13341024518013, -0.0009594457224011421, -0.1328509896993637, 0.0021622423082590103, -0.042972736060619354, 0.10969655215740204, 0.1148260161280632, 0.0013443415518850088, 0.029878811910748482, -0.03683354705572128, -0.0016487514367327094, 0.05987459048628807, -0.09798038750886917, -0.06466756016016006 ]
null
null
transformers
# Model Trained Using AutoNLP - Problem type: Binary Classification - Model ID: 310939 ## Validation Metrics - Loss: 0.027471264824271202 - Accuracy: 0.9931118314424635 - Precision: 0.946236559139785 - Recall: 0.88 - AUC: 0.9952871621621622 - F1: 0.911917098445596 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/models/fjarrett/autonlp-giveaway_detection_05-310939 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("fjarrett/autonlp-giveaway_detection_05-310939", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("fjarrett/autonlp-giveaway_detection_05-310939", use_auth_token=True) inputs = tokenizer("I love AutoNLP", return_tensors="pt") outputs = model(**inputs) ```
{"language": "en", "tags": ["autonlp"], "datasets": ["fjarrett/autonlp-data-giveaway_detection_05"], "widget": [{"text": "I love AutoNLP \ud83e\udd17"}]}
text-classification
popsmash-admin/autonlp-giveaway_detection_05-310939
[ "transformers", "pytorch", "distilbert", "text-classification", "autonlp", "en", "dataset:fjarrett/autonlp-data-giveaway_detection_05", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #distilbert #text-classification #autonlp #en #dataset-fjarrett/autonlp-data-giveaway_detection_05 #autotrain_compatible #endpoints_compatible #region-us
# Model Trained Using AutoNLP - Problem type: Binary Classification - Model ID: 310939 ## Validation Metrics - Loss: 0.027471264824271202 - Accuracy: 0.9931118314424635 - Precision: 0.946236559139785 - Recall: 0.88 - AUC: 0.9952871621621622 - F1: 0.911917098445596 ## Usage You can use cURL to access this model: Or Python API:
[ "# Model Trained Using AutoNLP\n\n- Problem type: Binary Classification\n- Model ID: 310939", "## Validation Metrics\n\n- Loss: 0.027471264824271202\n- Accuracy: 0.9931118314424635\n- Precision: 0.946236559139785\n- Recall: 0.88\n- AUC: 0.9952871621621622\n- F1: 0.911917098445596", "## Usage\n\nYou can use cURL to access this model:\n\n\n\nOr Python API:" ]
[ "TAGS\n#transformers #pytorch #distilbert #text-classification #autonlp #en #dataset-fjarrett/autonlp-data-giveaway_detection_05 #autotrain_compatible #endpoints_compatible #region-us \n", "# Model Trained Using AutoNLP\n\n- Problem type: Binary Classification\n- Model ID: 310939", "## Validation Metrics\n\n- Loss: 0.027471264824271202\n- Accuracy: 0.9931118314424635\n- Precision: 0.946236559139785\n- Recall: 0.88\n- AUC: 0.9952871621621622\n- F1: 0.911917098445596", "## Usage\n\nYou can use cURL to access this model:\n\n\n\nOr Python API:" ]
[ 65, 24, 74, 17 ]
[ "passage: TAGS\n#transformers #pytorch #distilbert #text-classification #autonlp #en #dataset-fjarrett/autonlp-data-giveaway_detection_05 #autotrain_compatible #endpoints_compatible #region-us \n# Model Trained Using AutoNLP\n\n- Problem type: Binary Classification\n- Model ID: 310939## Validation Metrics\n\n- Loss: 0.027471264824271202\n- Accuracy: 0.9931118314424635\n- Precision: 0.946236559139785\n- Recall: 0.88\n- AUC: 0.9952871621621622\n- F1: 0.911917098445596## Usage\n\nYou can use cURL to access this model:\n\n\n\nOr Python API:" ]
[ -0.1388847976922989, 0.18178927898406982, -0.000622284016571939, 0.10893894731998444, 0.1403890699148178, 0.019678594544529915, 0.026009878143668175, 0.09965254366397858, 0.023998456075787544, 0.06030210480093956, 0.16557928919792175, 0.17861880362033844, 0.03890397772192955, 0.16984885931015015, -0.16938842833042145, -0.14821012318134308, 0.053231578320264816, 0.050351254642009735, 0.12893332540988922, 0.11684218049049377, 0.07760190218687057, -0.07838145643472672, 0.12588605284690857, 0.020510803908109665, -0.14907720685005188, -0.009317158721387386, 0.06480486690998077, -0.12482049316167831, 0.0940590649843216, 0.07432742416858673, 0.11745259910821915, -0.0047470503486692905, 0.08480551838874817, -0.0846962034702301, -0.027209866791963577, -0.011057224124670029, -0.021547608077526093, 0.0692470371723175, 0.026953378692269325, -0.0729808434844017, 0.03687983378767967, 0.010178538970649242, 0.08662049472332001, 0.03880957514047623, -0.11094605922698975, -0.12500721216201782, -0.05515699461102486, 0.08373788744211197, 0.11400561034679413, 0.10806184262037277, -0.01054596621543169, 0.23330210149288177, -0.031123679131269455, 0.0933600515127182, -0.02776186726987362, -0.28086695075035095, -0.022075971588492393, 0.08362807333469391, -0.07397201657295227, -0.0900057703256607, -0.014274189248681068, -0.006261687725782394, 0.08652178198099136, 0.045169513672590256, 0.028000518679618835, -0.03689916059374809, -0.08430095762014389, -0.021674280986189842, -0.12006519734859467, -0.0749807208776474, 0.24251601099967957, 0.01477656327188015, -0.0948542132973671, -0.019466601312160492, -0.062449220567941666, -0.08506230264902115, -0.06663230806589127, -0.015659309923648834, -0.06507790833711624, -0.04030036926269531, -0.029215192422270775, 0.09136145561933517, -0.07001347839832306, -0.06788919121026993, -0.1744959056377411, 0.10249005258083344, 0.005444551818072796, 0.09231817722320557, -0.034511808305978775, 0.07351141422986984, -0.08229387551546097, -0.07319698482751846, -0.018397323787212372, -0.018698114901781082, -0.06112128496170044, -0.09374812245368958, -0.050388168543577194, 0.02710323967039585, -0.0037639697548002005, 0.19663113355636597, 0.044002220034599304, 0.05214095488190651, -0.02104957215487957, -0.014963344670832157, 0.007669159211218357, 0.15009979903697968, -0.11886487156152725, 0.03723277151584625, 0.034799449145793915, -0.03690043091773987, 0.017405131831765175, -0.0418652705848217, -0.08261432498693466, -0.09614215046167374, 0.17449241876602173, 0.020105836912989616, 0.016270151361823082, 0.0794149711728096, -0.06366738677024841, -0.06179459020495415, 0.0590890608727932, -0.07470102608203888, 0.024546369910240173, 0.0363963358104229, -0.11269672960042953, 0.03234838321805, 0.07674036920070648, 0.035839635878801346, -0.08288215100765228, 0.037442341446876526, -0.0943218320608139, 0.020171934738755226, -0.008366182446479797, -0.12123093754053116, 0.03137553855776787, -0.01960156112909317, 0.02575710043311119, -0.19083340466022491, -0.22218218445777893, -0.024283090606331825, 0.006524980068206787, -0.0711078867316246, -0.0343339741230011, -0.05659733712673187, -0.03127768263220787, 0.051649633795022964, -0.0037593699526041746, -0.011659389361739159, -0.04281577095389366, 0.04398983716964722, 0.06108831986784935, 0.0790930762887001, -0.1349959522485733, 0.04470202326774597, -0.09147270768880844, 0.009633507579565048, -0.06978312134742737, 0.08020161092281342, -0.037245359271764755, 0.08540547639131546, -0.14720626175403595, -0.050869207829236984, 0.1049928143620491, -0.036376480013132095, 0.04047292098402977, 0.16422004997730255, -0.08095653355121613, -0.0007476135506294668, 0.07515130192041397, -0.0525863915681839, -0.09307749569416046, 0.10421207547187805, -0.060749735683202744, -0.012610253877937794, 0.08858354389667511, 0.02342177741229534, 0.12448520958423615, -0.047815918922424316, -0.036198899149894714, 0.02249123901128769, -0.06720373779535294, -0.12246545404195786, 0.07036244124174118, 0.0316670797765255, -0.24652284383773804, 0.04138987138867378, 0.019192993640899658, 0.023795265704393387, -0.05665597692131996, -0.10293105244636536, -0.036371584981679916, -0.0750388354063034, 0.05509472265839577, 0.018496667966246605, 0.1041075810790062, -0.011848343536257744, -0.03034437820315361, -0.01609146222472191, 0.12930288910865784, 0.007368183694779873, -0.05434722453355789, -0.16855014860630035, 0.13803111016750336, -0.14046427607536316, -0.032722391188144684, -0.1986168473958969, 0.01589629240334034, -0.014885648153722286, 0.0730457529425621, -0.04021497070789337, -0.09204287827014923, 0.0712311863899231, 0.017880398780107498, 0.03642282634973526, 0.008700148202478886, 0.1699357032775879, -0.0022884169593453407, -0.10956181585788727, -0.027149874716997147, -0.019132765009999275, -0.02524416148662567, 0.24153219163417816, -0.17991654574871063, -0.015360378660261631, 0.00026536660152487457, 0.0805370956659317, -0.013325369916856289, 0.011558158323168755, -0.004589456599205732, 0.04520877078175545, -0.03175940737128258, -0.00946655310690403, 0.04100004956126213, -0.01372985728085041, -0.10350292176008224, 0.0010484566446393728, -0.1663590520620346, 0.16991186141967773, 0.14787447452545166, -0.057827796787023544, -0.09532412886619568, 0.030548032373189926, 0.019735174253582954, 0.013354557566344738, -0.0017125728772953153, 0.02754763886332512, 0.11894816905260086, 0.014690164476633072, 0.15654216706752777, -0.02938172034919262, -0.005674812011420727, 0.05837158113718033, -0.06943602859973907, -0.0661061629652977, 0.1565953642129898, 0.007345663383603096, -0.20439936220645905, 0.09376310557126999, 0.008932393975555897, -0.10369890183210373, 0.012379449792206287, 0.017534999176859856, -0.029398906975984573, -0.025314735248684883, -0.007349981926381588, 0.04647005721926689, 0.034736502915620804, -0.026874667033553123, 0.021363357082009315, 0.08945411443710327, -0.023464476689696312, -0.00874734204262495, -0.09423233568668365, -0.000040577302570454776, 0.025964662432670593, 0.018232915550470352, -0.07216884195804596, -0.012650486081838608, 0.025322994217276573, 0.12952947616577148, 0.051919348537921906, -0.13902418315410614, 0.07396449148654938, 0.022429225966334343, -0.1379786729812622, 0.2440234124660492, -0.09058703482151031, -0.21211951971054077, -0.16165468096733093, -0.16414384543895721, -0.057562243193387985, 0.020798157900571823, -0.013664411380887032, -0.04546324536204338, -0.07793235033750534, -0.05336059629917145, -0.09406376630067825, -0.031363360583782196, -0.002853354439139366, 0.012639518827199936, -0.032949015498161316, 0.09267041087150574, -0.046634916216135025, -0.0482851006090641, -0.04483865574002266, -0.0530351921916008, 0.1381162852048874, -0.07351693511009216, 0.09213444590568542, 0.17201071977615356, -0.034261852502822876, 0.041721899062395096, 0.015809152275323868, 0.2287328988313675, -0.002854175865650177, -0.06865110993385315, 0.14258810877799988, -0.026702888309955597, 0.01897217519581318, 0.14573347568511963, 0.009584752842783928, -0.09208644181489944, 0.012399284169077873, -0.019877981394529343, -0.03770811855792999, -0.12995275855064392, -0.19064438343048096, 0.004652226343750954, 0.03181818872690201, 0.17896893620491028, 0.025349076837301254, 0.10323766618967056, 0.13239368796348572, 0.04630037397146225, 0.11762349307537079, -0.057605527341365814, 0.07472653687000275, 0.19060128927230835, 0.023895788937807083, 0.14962713420391083, -0.044669259339571, -0.08627276122570038, 0.0670812577009201, -0.032715220004320145, 0.09635446220636368, 0.027983851730823517, -0.06007478013634682, -0.0366232730448246, 0.13321352005004883, 0.06058638170361519, 0.12017742544412613, 0.04526948556303978, -0.032083190977573395, 0.02303726226091385, -0.02690044604241848, -0.11393003910779953, 0.023479994386434555, 0.02201463095843792, 0.05284493416547775, -0.13985513150691986, -0.03790343180298805, -0.015354637056589127, 0.08356377482414246, 0.19075387716293335, -0.5062791109085083, -0.1007205918431282, 0.015908818691968918, -0.026437869295477867, -0.13472279906272888, -0.006239691283553839, -0.11088796705007553, -0.1398041695356369, 0.041399918496608734, -0.04158283397555351, 0.10908947139978409, -0.1096590906381607, 0.0059156822971999645, -0.07446663081645966, -0.03345083072781563, -0.02565491758286953, 0.06822095811367035, -0.2449377477169037, 0.22670961916446686, 0.040501195937395096, 0.05588298290967941, -0.092629574239254, -0.014401095919311047, 0.05071742460131645, 0.10002028197050095, 0.14461542665958405, -0.009004287421703339, 0.006698363460600376, -0.3096696734428406, -0.12441196292638779, 0.02998950332403183, -0.06445889174938202, 0.01061679795384407, 0.07877055555582047, -0.0009019547724165022, 0.004189844708889723, -0.009636546485126019, -0.017507493495941162, -0.07498496025800705, -0.047123756259679794, 0.00824756734073162, 0.10644739121198654, -0.003635712433606386, 0.014260717667639256, -0.06100507825613022, -0.013325692154467106, 0.04739174246788025, -0.016075635328888893, -0.0680767223238945, -0.14469611644744873, 0.07117082923650742, 0.08534758538007736, -0.10334864258766174, 0.04952741786837578, -0.046704746782779694, 0.03580065071582794, 0.019987843930721283, -0.1488039642572403, 0.08481809496879578, -0.07417012006044388, -0.025642627850174904, 0.018596835434436798, 0.03129536658525467, 0.037759069353342056, 0.02567930705845356, 0.07529959827661514, 0.0567588284611702, -0.06010757386684418, -0.08555300533771515, 0.03839423879981041, 0.03932543843984604, 0.1025984063744545, 0.11628657579421997, 0.03645583242177963, -0.2007770985364914, -0.08157426863908768, 0.0997743085026741, 0.1906900256872177, 0.15017074346542358, -0.07762759923934937, -0.010884767398238182, 0.0684339851140976, 0.014055524952709675, -0.24670915305614471, -0.024518294259905815, -0.004692325368523598, 0.0529494434595108, -0.09945329278707504, -0.07726819068193436, 0.10606493055820465, 0.059828680008649826, -0.059787094593048096, 0.010223674587905407, -0.19468307495117188, -0.082284115254879, 0.32547634840011597, 0.05297934636473656, 0.21040301024913788, -0.08033113926649094, -0.048749715089797974, -0.1113208681344986, -0.2100934088230133, 0.14684246480464935, 0.019994741305708885, 0.06525162607431412, -0.06647688150405884, 0.1381651908159256, 0.062128424644470215, -0.05178334191441536, 0.1252489984035492, 0.030256113037467003, 0.04538845270872116, -0.07571851462125778, -0.07490033656358719, -0.08427837491035461, -0.0641198605298996, 0.1537846177816391, 0.04395593702793121, 0.08427440375089645, -0.2427312582731247, -0.04573163762688637, -0.03945348411798477, 0.10143675655126572, 0.015192201361060143, -0.02696768008172512, -0.0011248530354350805, -0.002739453222602606, -0.005056194961071014, -0.03788270056247711, -0.016498522832989693, 0.00017049122834578156, 0.06963518261909485, 0.1725769191980362, 0.10251287370920181, -0.01199502032250166, 0.04079406335949898, 0.030548961833119392, -0.06741481274366379, 0.10556434094905853, -0.1415320634841919, 0.09471695125102997, 0.12360823154449463, -0.0018142522312700748, 0.12448757886886597, 0.07307818531990051, -0.02903958596289158, 0.0012817843817174435, 0.05158177763223648, -0.14939862489700317, 0.033915337175130844, -0.01014312356710434, -0.008754190057516098, -0.033679667860269547, 0.03774530813097954, 0.13592952489852905, -0.06742841750383377, -0.03313027322292328, -0.010758965276181698, 0.010104609653353691, -0.0359371080994606, 0.18780969083309174, 0.06316134333610535, 0.04697791114449501, -0.1404116302728653, 0.05043430253863335, 0.06795240938663483, -0.02356232888996601, 0.0732019916176796, -0.041889604181051254, -0.13926227390766144, -0.10146185010671616, -0.049323536455631256, 0.15375137329101562, -0.2135242074728012, -0.06897448003292084, -0.022657601162791252, -0.09757159650325775, 0.08821436017751694, 0.16293485462665558, 0.11138414591550827, 0.047731511294841766, -0.03744984045624733, -0.11242866516113281, -0.1271516978740692, 0.044748712331056595, 0.1095256581902504, 0.0018963583279401064, -0.16205507516860962, 0.12112115323543549, -0.056185368448495865, 0.05863061174750328, -0.04615714028477669, -0.0332036130130291, -0.1677335649728775, 0.019378185272216797, -0.18349534273147583, 0.04065476730465889, -0.08209966123104095, 0.034864816814661026, 0.033967260271310806, -0.003291562432423234, -0.05185236409306526, 0.013556672260165215, -0.08109288662672043, -0.019888071343302727, 0.02819470688700676, 0.024346400052309036, -0.08128157258033752, -0.07085460424423218, 0.048105619847774506, -0.005122918635606766, 0.07301612198352814, 0.15759456157684326, 0.006464530248194933, 0.047517627477645874, -0.05894887074828148, -0.05341299623250961, 0.07981174439191818, 0.030822496861219406, 0.10052558034658432, -0.1228392943739891, 0.05461005121469498, 0.06808623671531677, -0.005984064191579819, 0.08121362328529358, 0.1590067595243454, -0.08430812507867813, -0.0590764619410038, -0.059529468417167664, -0.045631106942892075, -0.10146719217300415, 0.05204518139362335, 0.10744937509298325, 0.06120268628001213, 0.12436079233884811, -0.08372439444065094, 0.03922949731349945, -0.11693034321069717, -0.013223010115325451, -0.06791482120752335, -0.08284811675548553, -0.09872335940599442, -0.018834546208381653, 0.07249915599822998, -0.00461895577609539, 0.07874554395675659, -0.014997655525803566, 0.04538683220744133, -0.0030059916898608208, 0.09283356368541718, 0.037097103893756866, -0.009038131684064865, 0.2134917825460434, 0.10418493300676346, -0.04952121153473854, 0.05906863510608673, 0.09456643462181091, 0.06677725911140442, 0.04291326180100441, -0.029467254877090454, 0.05238410830497742, -0.07569652795791626, 0.08647329360246658, 0.02426033467054367, -0.05670861154794693, -0.012038166634738445, -0.042390260845422745, -0.16281254589557648, 0.06819360703229904, 0.019875477999448776, 0.03046472556889057, 0.08333931863307953, -0.05067339912056923, -0.02163686975836754, -0.08071301132440567, -0.08713621646165848, -0.18062111735343933, -0.12188227474689484, -0.14138449728488922, -0.09092055261135101, 0.0011016250355169177, -0.07163843512535095, -0.06096461042761803, 0.12593728303909302, 0.03573323413729668, -0.026768308132886887, 0.05913596972823143, -0.10498746484518051, 0.004725135862827301, 0.0523347407579422, -0.03008529730141163, -0.04548506438732147, -0.013444495387375355, 0.014507859945297241, 0.021507347002625465, 0.011008142493665218, 0.0681149885058403, -0.02098391391336918, 0.018354138359427452, 0.10735628753900528, -0.027417752891778946, -0.1046605035662651, -0.015395356342196465, 0.04308689385652542, 0.03597159683704376, 0.07279125601053238, 0.04604174941778183, 0.040075261145830154, -0.016424262896180153, 0.2320215404033661, -0.08033934235572815, 0.008803464472293854, -0.18171627819538116, 0.36553335189819336, 0.003383197356015444, 0.05746571347117424, 0.01496636588126421, -0.05165933817625046, 0.021872010082006454, 0.1936279833316803, 0.11808314174413681, -0.05543598532676697, -0.009444264695048332, -0.02215546742081642, -0.01592792570590973, 0.013045433908700943, 0.054387737065553665, 0.061971910297870636, 0.14994969964027405, -0.08097488433122635, -0.003217778168618679, -0.01842927187681198, -0.019320877268910408, -0.02685093693435192, 0.04124192148447037, 0.008700734935700893, -0.0008019452216103673, -0.05459720268845558, 0.11114024370908737, -0.11901038140058517, 0.11753297597169876, 0.028228038921952248, -0.0750596895813942, -0.1266428679227829, -0.00005934475484536961, -0.09820003807544708, 0.03131755441427231, 0.09361887723207474, -0.07906023412942886, 0.003041115589439869, 0.033681124448776245, -0.007882256992161274, -0.15733776986598969, -0.06925080716609955, 0.05269784480333328, 0.15730704367160797, 0.1870989203453064, 0.014545583166182041, 0.1370580941438675, 0.13483691215515137, 0.015643145889043808, -0.11667587608098984, 0.0713382437825203, -0.016169512644410133, -0.010549354366958141, 0.10819321125745773, 0.04747769609093666, 0.010043461807072163, 0.0465095229446888, 0.04780450835824013, -0.18148089945316315, -0.010907748714089394, -0.08445615321397781, 0.044585905969142914, -0.08963204175233841, 0.00705873966217041, -0.05358980968594551, 0.10949382185935974, 0.15692941844463348, -0.06874130666255951, -0.00771793769672513, -0.03942091017961502, 0.04724102467298508, -0.002465910278260708, -0.08322898298501968, -0.02965802326798439, -0.1323944628238678, 0.03992665559053421, -0.08576119691133499, -0.0042330180294811726, -0.25823667645454407, -0.0034731875639408827, -0.05937361344695091, -0.0747063010931015, -0.008390719071030617, 0.09005814045667648, 0.056535881012678146, 0.029140867292881012, -0.06440148502588272, 0.005699203349649906, -0.007395932916551828, 0.11556467413902283, -0.04172822833061218, -0.13552416861057281 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base-bne-finetuned-amazon_reviews_multi This model is a fine-tuned version of [BSC-TeMU/roberta-base-bne](https://huggingface.co/BSC-TeMU/roberta-base-bne) on the amazon_reviews_multi dataset. It achieves the following results on the evaluation set: - Loss: 0.2157 - Accuracy: 0.9173 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.1125 | 1.0 | 13 | 0.2066 | 0.9165 | | 0.0186 | 2.0 | 26 | 0.2157 | 0.9173 | ### Framework versions - Transformers 4.10.2 - Pytorch 1.9.0+cu102 - Datasets 1.12.1 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["amazon_reviews_multi"], "metrics": ["accuracy"], "model-index": [{"name": "roberta-base-bne-finetuned-amazon_reviews_multi", "results": [{"task": {"type": "text-classification", "name": "Text Classification"}, "dataset": {"name": "amazon_reviews_multi", "type": "amazon_reviews_multi", "args": "es"}, "metrics": [{"type": "accuracy", "value": 0.91725, "name": "Accuracy"}]}]}]}
text-classification
fjluque/roberta-base-bne-finetuned-amazon_reviews_multi
[ "transformers", "pytorch", "tensorboard", "roberta", "text-classification", "generated_from_trainer", "dataset:amazon_reviews_multi", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #roberta #text-classification #generated_from_trainer #dataset-amazon_reviews_multi #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us
roberta-base-bne-finetuned-amazon\_reviews\_multi ================================================= This model is a fine-tuned version of BSC-TeMU/roberta-base-bne on the amazon\_reviews\_multi dataset. It achieves the following results on the evaluation set: * Loss: 0.2157 * Accuracy: 0.9173 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 16 * eval\_batch\_size: 16 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 2 ### Training results ### Framework versions * Transformers 4.10.2 * Pytorch 1.9.0+cu102 * Datasets 1.12.1 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 2", "### Training results", "### Framework versions\n\n\n* Transformers 4.10.2\n* Pytorch 1.9.0+cu102\n* Datasets 1.12.1\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #roberta #text-classification #generated_from_trainer #dataset-amazon_reviews_multi #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 2", "### Training results", "### Framework versions\n\n\n* Transformers 4.10.2\n* Pytorch 1.9.0+cu102\n* Datasets 1.12.1\n* Tokenizers 0.10.3" ]
[ 71, 98, 4, 34 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #roberta #text-classification #generated_from_trainer #dataset-amazon_reviews_multi #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 2### Training results### Framework versions\n\n\n* Transformers 4.10.2\n* Pytorch 1.9.0+cu102\n* Datasets 1.12.1\n* Tokenizers 0.10.3" ]
[ -0.08748505264520645, 0.10135051608085632, -0.002402752870693803, 0.12601561844348907, 0.1706485152244568, 0.03687635064125061, 0.1622617095708847, 0.11569225788116455, -0.08599758893251419, -0.005865089595317841, 0.11542874574661255, 0.1548892855644226, 0.02126530557870865, 0.12217552959918976, -0.05617023631930351, -0.24667197465896606, -0.0027746891137212515, 0.031354084610939026, -0.04765567183494568, 0.14976318180561066, 0.10777784883975983, -0.12571990489959717, 0.10260860621929169, 0.006307870149612427, -0.16979162395000458, -0.014389348216354847, 0.024533210322260857, -0.0696016252040863, 0.13328847289085388, 0.02715180069208145, 0.12315018475055695, -0.001376794883981347, 0.07599072903394699, -0.19718699157238007, 0.018568968400359154, 0.04323352873325348, 0.007994817569851875, 0.09346025437116623, 0.02965611405670643, -0.017832037061452866, 0.11385732144117355, -0.05450711026787758, 0.07709876447916031, 0.017052244395017624, -0.12038940191268921, -0.23559437692165375, -0.09075293689966202, 0.04976227506995201, 0.05859314277768135, 0.09819751977920532, -0.005986036732792854, 0.15179461240768433, -0.08127760142087936, 0.08983530849218369, 0.23404285311698914, -0.28485214710235596, -0.0688856989145279, 0.021996930241584778, 0.030939679592847824, 0.08619936555624008, -0.09751075506210327, -0.033980995416641235, 0.04781979322433472, 0.05363927781581879, 0.12734320759773254, -0.0339665561914444, -0.09865715354681015, 0.014300784096121788, -0.14419035613536835, -0.03703422099351883, 0.2110384702682495, 0.05224103480577469, -0.04936090111732483, -0.033593520522117615, -0.033585041761398315, -0.13613587617874146, -0.043771665543317795, 0.00799341220408678, 0.06177709624171257, -0.047818057239055634, -0.08494832366704941, -0.01645578444004059, -0.1082940623164177, -0.04342750832438469, -0.06920549273490906, 0.12287094444036484, 0.039220601320266724, 0.02422584593296051, -0.04213975742459297, 0.0993783175945282, 0.016896851360797882, -0.11286630481481552, 0.016236115247011185, 0.007824072614312172, -0.005469383206218481, -0.04410327225923538, -0.055700261145830154, -0.07245267927646637, 0.01179128885269165, 0.1487048864364624, -0.03140841796994209, 0.029435962438583374, 0.03786361217498779, 0.058199744671583176, -0.08600983023643494, 0.2011789083480835, -0.03808872774243355, -0.019710825756192207, 0.0025984770618379116, 0.06378598511219025, 0.0366097018122673, -0.01270147506147623, -0.1338830590248108, 0.021989855915308, 0.08388182520866394, 0.012604576535522938, -0.05425940081477165, 0.05256333574652672, -0.07947677373886108, -0.051174573600292206, -0.00332809635438025, -0.07323624938726425, 0.01931113190948963, -0.012507437728345394, -0.06862229853868484, -0.023805459961295128, 0.019980812445282936, 0.038462378084659576, -0.004955208860337734, 0.12952286005020142, -0.08990225940942764, 0.027578171342611313, -0.08297199010848999, -0.09065180271863937, 0.030825134366750717, -0.08147244155406952, 0.04217829927802086, -0.10889053344726562, -0.18562471866607666, -0.022130921483039856, 0.06331305205821991, -0.01936176046729088, -0.08627636730670929, -0.031135743483901024, -0.06069953739643097, 0.007166009396314621, -0.012592478655278683, 0.14891761541366577, -0.07661006599664688, 0.10016986727714539, 0.018237467855215073, 0.05291328206658363, -0.04553815349936485, 0.04563181847333908, -0.10529284179210663, -0.0009554275893606246, -0.14402805268764496, 0.03092854842543602, -0.038881681859493256, 0.07289519160985947, -0.08744402229785919, -0.10114515572786331, 0.01812109909951687, 0.0007858672179281712, 0.043990358710289, 0.08458218723535538, -0.16604909300804138, -0.0736570879817009, 0.1392926573753357, -0.05869176238775253, -0.13591888546943665, 0.12868312001228333, -0.07782956212759018, 0.054878707975149155, 0.0784146636724472, 0.16067740321159363, 0.06189722940325737, -0.06682360172271729, 0.03472161293029785, -0.00491720624268055, 0.042379315942525864, -0.06637439131736755, 0.09732348471879959, 0.008913968689739704, -0.017364542931318283, 0.027644045650959015, -0.05057794228196144, 0.04496327042579651, -0.08496037125587463, -0.09797971695661545, -0.03988826647400856, -0.10726158320903778, 0.06420964747667313, 0.06216416135430336, 0.06328140944242477, -0.10556590557098389, -0.07531622052192688, 0.05133743956685066, 0.09141959249973297, -0.03835410252213478, 0.019969282671809196, -0.054281849414110184, 0.07662713527679443, -0.04022379219532013, -0.0186300165951252, -0.17294596135616302, -0.020581988617777824, 0.014201127924025059, -0.021982483565807343, 0.04035462439060211, 0.01553034782409668, 0.052458200603723526, 0.034605711698532104, -0.06715890020132065, -0.0013398109003901482, -0.05249806120991707, -0.004969918634742498, -0.11456017941236496, -0.21327568590641022, -0.022570785135030746, -0.015485681593418121, 0.15145157277584076, -0.20356561243534088, 0.03070143051445484, -0.05047479271888733, 0.07912503182888031, 0.038957469165325165, -0.008191968314349651, -0.023654483258724213, 0.06938077509403229, -0.029641080647706985, -0.041676975786685944, 0.07319847494363785, 0.015923120081424713, -0.11104981601238251, -0.004017536528408527, -0.07411255687475204, 0.18232916295528412, 0.12914419174194336, -0.09189614653587341, -0.07028195261955261, 0.02698177844285965, -0.04606953263282776, -0.033419687300920486, -0.07677464187145233, 0.04015912488102913, 0.1786910742521286, 0.0123989786952734, 0.1393493115901947, -0.09585434198379517, -0.046626247465610504, 0.026534689590334892, -0.04766058921813965, 0.029939081519842148, 0.1388590931892395, 0.11947977542877197, -0.08978938311338425, 0.1408824771642685, 0.1801275759935379, -0.08513115346431732, 0.13522493839263916, -0.04518233612179756, -0.057722315192222595, -0.027640100568532944, -0.046595100313425064, -0.014140930958092213, 0.10802013427019119, -0.12211117148399353, 0.008783064782619476, 0.038905952125787735, 0.01179005578160286, 0.007891636341810226, -0.220276340842247, -0.04456881061196327, 0.03768514469265938, -0.03834724798798561, -0.016397174447774887, -0.0017061536200344563, 0.01423916406929493, 0.1071462482213974, 0.013389743864536285, -0.07625076174736023, 0.04752439633011818, 0.007178463041782379, -0.08612769842147827, 0.21150490641593933, -0.07518668472766876, -0.1776520013809204, -0.13706344366073608, -0.0545949712395668, -0.05295511707663536, -0.003149912226945162, 0.0614364892244339, -0.07413402199745178, -0.03180314600467682, -0.07279524952173233, -0.0024537749122828245, -0.0038665372412651777, 0.008661623112857342, -0.011396964080631733, 0.014962404035031796, 0.05599657818675041, -0.09647130221128464, -0.012222180142998695, -0.04970064014196396, -0.02174299955368042, 0.039092689752578735, 0.040774259716272354, 0.10311493277549744, 0.15333402156829834, -0.014502475969493389, -0.008167930878698826, -0.02158825471997261, 0.23083464801311493, -0.08114238828420639, -0.043072085827589035, 0.14223170280456543, -0.01715271733701229, 0.0431506372988224, 0.13593509793281555, 0.07226701825857162, -0.08730296790599823, 0.015815844759345055, 0.02846592850983143, -0.03927796334028244, -0.268171101808548, -0.033646851778030396, -0.0507233627140522, -0.007956546731293201, 0.0783345103263855, 0.019632715731859207, 0.003466376569122076, 0.06746618449687958, 0.036469560116529465, 0.07697193324565887, -0.024515310302376747, 0.0725059062242508, 0.12220457196235657, 0.047124069184064865, 0.13204236328601837, -0.051729895174503326, -0.05593999847769737, 0.06652961671352386, -0.005725420080125332, 0.2295539677143097, 0.018175311386585236, 0.14277383685112, 0.07377737015485764, 0.1386025846004486, 0.008008481003344059, 0.04504062235355377, 0.017918335273861885, -0.019810272380709648, -0.03349725902080536, -0.024137189611792564, -0.03777434304356575, 0.026318218559026718, -0.04787589609622955, 0.05510532483458519, -0.1216469258069992, -0.011227552779018879, 0.05953656882047653, 0.26264089345932007, 0.02338678576052189, -0.31383731961250305, -0.10186455398797989, 0.016122763976454735, -0.05420726165175438, -0.0018863070290535688, 0.028928078711032867, 0.06222778186202049, -0.13198141753673553, 0.041389141231775284, -0.07491769641637802, 0.10316328704357147, -0.08767863363027573, 0.04334351792931557, 0.0641695037484169, 0.07428254187107086, 0.0013433737913146615, 0.08148038387298584, -0.29981619119644165, 0.27460289001464844, -0.008198552764952183, 0.048941873013973236, -0.06314488500356674, -0.027548687532544136, 0.035845763981342316, 0.054587073624134064, 0.05386405438184738, 0.0038666280452162027, -0.0410676933825016, -0.15771129727363586, -0.040473781526088715, 0.02706184983253479, 0.06241348013281822, -0.02723764255642891, 0.08145689219236374, -0.03775765746831894, 0.004442242439836264, 0.05066261440515518, -0.000723798293620348, -0.05325597897171974, -0.09176760166883469, -0.0010839176829904318, 0.02408144436776638, -0.048524193465709686, -0.06867502629756927, -0.1267763376235962, -0.07732057571411133, 0.11763031780719757, -0.018511952832341194, -0.04903564229607582, -0.09150055795907974, 0.06172432377934456, 0.08089186996221542, -0.08031509816646576, 0.03645249828696251, -0.002867340575903654, 0.09249304234981537, 0.028154658153653145, -0.04747135564684868, 0.09116265922784805, -0.0564410425722599, -0.19131174683570862, -0.06531649827957153, 0.1091921254992485, 0.02420763298869133, 0.06942029297351837, -0.02535104751586914, 0.010509409941732883, -0.06197625771164894, -0.08357580006122589, 0.01257217675447464, 0.00821640994399786, 0.07106112688779831, 0.04573948308825493, -0.036858171224594116, 0.012068760581314564, -0.08304876834154129, -0.06253399699926376, 0.18849623203277588, 0.2214498221874237, -0.08738681674003601, 0.04031470790505409, 0.036602821201086044, -0.07414983212947845, -0.15455880761146545, 0.011297655291855335, 0.05963510647416115, 0.0006671959417872131, 0.06797772645950317, -0.14696437120437622, 0.11902517825365067, 0.09333305060863495, -0.02068314328789711, 0.11209964007139206, -0.3217496871948242, -0.13395251333713531, 0.10134933888912201, 0.1372978538274765, 0.13894343376159668, -0.13172198832035065, -0.02082870528101921, -0.04572247341275215, -0.146324023604393, 0.1378229707479477, -0.10358641296625137, 0.12806963920593262, -0.03092869371175766, 0.1106255054473877, 0.0037294209469109774, -0.047299932688474655, 0.12950772047042847, 0.019552117213606834, 0.09933143854141235, -0.057583749294281006, -0.028160307556390762, 0.03231542930006981, -0.04104400798678398, 0.016753770411014557, -0.09342203289270401, 0.0307865459471941, -0.09329255670309067, -0.030915401875972748, -0.07106336951255798, 0.023760778829455376, -0.040977418422698975, -0.048031218349933624, -0.04165596887469292, 0.03756199777126312, 0.034384556114673615, -0.012077606283128262, 0.1650484949350357, 0.024534137919545174, 0.13603870570659637, 0.07593537122011185, 0.09001367539167404, -0.062306176871061325, -0.09832610934972763, -0.04641509801149368, -0.030273811891674995, 0.048144929111003876, -0.17123320698738098, 0.02887239120900631, 0.13160167634487152, 0.011140162125229836, 0.15611597895622253, 0.06286188215017319, -0.03973785787820816, 0.007328100968152285, 0.060210712254047394, -0.1473669558763504, -0.09190437942743301, -0.007199518382549286, -0.055258866399526596, -0.13529729843139648, 0.03206604719161987, 0.12203475832939148, -0.06728495657444, -0.03177840635180473, -0.006757003255188465, 0.017898136749863625, -0.05075324699282646, 0.17833282053470612, 0.07896671444177628, 0.047494325786828995, -0.10676582902669907, 0.1078370213508606, 0.07093336433172226, -0.0688825398683548, 0.004336613230407238, 0.05840630084276199, -0.09213374555110931, -0.056954748928546906, 0.0604483038187027, 0.1810775101184845, -0.08093660324811935, -0.05632931366562843, -0.14352649450302124, -0.12352213263511658, 0.08281289786100388, 0.1308985948562622, 0.11646679043769836, 0.011451567523181438, -0.03895536810159683, -0.02378356270492077, -0.08104820549488068, 0.10755844414234161, 0.07420925796031952, 0.06614638864994049, -0.1541292667388916, 0.07461540400981903, 0.02957092598080635, 0.05183961242437363, -0.01501353271305561, 0.037376768887043, -0.10405530780553818, 0.014517159201204777, -0.14131805300712585, 0.0029443365056067705, -0.01665409840643406, 0.023352298885583878, -0.0036167106591165066, -0.06881476938724518, -0.07280328869819641, 0.013769056648015976, -0.12243233621120453, -0.023349132388830185, 0.037886541336774826, 0.07895298302173615, -0.09635411202907562, -0.03891822323203087, 0.04241982474923134, -0.04902099817991257, 0.07320401817560196, 0.04164178669452667, 0.014727015048265457, 0.06638604402542114, -0.12203842401504517, 0.031979624181985855, 0.03355097770690918, 0.020873717963695526, 0.047238755971193314, -0.131159245967865, -0.0029366749804466963, 0.0008752434514462948, 0.06524120271205902, 0.023719217628240585, 0.07833414524793625, -0.15566109120845795, -0.011630808934569359, 0.008436531759798527, -0.08374901115894318, -0.04931286349892616, 0.013993371278047562, 0.0644172802567482, 0.03146012872457504, 0.2301100641489029, -0.06705774366855621, 0.03818197548389435, -0.19638380408287048, 0.011850639246404171, -0.02603587694466114, -0.12201353162527084, -0.14749230444431305, -0.07459408044815063, 0.04430370405316353, -0.06755319982767105, 0.16799087822437286, 0.03966196998953819, 0.07443663477897644, 0.029320290312170982, 0.019833926111459732, -0.0012724585831165314, 0.01750226877629757, 0.15605953335762024, 0.017472129315137863, -0.0385797917842865, 0.0553094781935215, 0.029253395274281502, 0.10055885463953018, 0.09190146625041962, 0.1844479888677597, 0.17639435827732086, 0.029132237657904625, 0.08518511056900024, 0.03540175408124924, -0.019055966287851334, -0.1243986189365387, 0.04176418483257294, -0.01574995554983616, 0.11440835893154144, -0.013763918541371822, 0.21950466930866241, 0.07746719568967819, -0.16513484716415405, 0.046616800129413605, -0.06316568702459335, -0.0753798633813858, -0.1084527000784874, -0.0666743814945221, -0.09666218608617783, -0.150067538022995, 0.0005522034480236471, -0.11988969147205353, 0.0009473717072978616, 0.11587756127119064, 0.0018456995021551847, -0.043480828404426575, 0.09077279269695282, 0.009991518221795559, 0.0034860013984143734, 0.08070904016494751, 0.009907604195177555, -0.04668661952018738, -0.08920586854219437, -0.06421113014221191, -0.021299738436937332, -0.012637236155569553, 0.021962594240903854, -0.05690223351120949, -0.05890936031937599, 0.0226567555218935, -0.028140811249613762, -0.10631848871707916, 0.021962102502584457, 0.009738780558109283, 0.07327093183994293, 0.032759103924036026, 0.01137351430952549, 0.026509786024689674, 0.007413798477500677, 0.26563242077827454, -0.06026383861899376, -0.07014074176549911, -0.12706468999385834, 0.22582225501537323, 0.02476755902171135, -0.04121285676956177, 0.03648244962096214, -0.06837393343448639, 0.0009176467428915203, 0.24895620346069336, 0.2247450053691864, -0.09457942843437195, -0.01954338513314724, 0.011463322676718235, -0.007764757145196199, -0.013498657383024693, 0.10854029655456543, 0.10903426259756088, 0.006476501002907753, -0.08121499419212341, -0.014552807435393333, -0.05886773392558098, -0.0011637939605861902, -0.016025392338633537, 0.06969863176345825, 0.03950197994709015, -0.0072053768672049046, -0.04185018688440323, 0.07962869107723236, -0.0905042514204979, -0.11997628957033157, 0.032596368342638016, -0.20977969467639923, -0.18324455618858337, -0.02352200448513031, 0.09226783365011215, 0.017664752900600433, 0.058241747319698334, -0.01702686958014965, -0.012324018403887749, 0.07180946320295334, -0.016307998448610306, -0.10270724445581436, -0.10217396169900894, 0.1081206202507019, -0.09479250013828278, 0.20147524774074554, -0.04637618735432625, 0.05569562315940857, 0.12050214409828186, 0.06346482783555984, -0.07389548420906067, 0.05974552035331726, 0.044635169208049774, -0.024630477651953697, 0.04403224587440491, 0.0851675420999527, -0.025177715346217155, 0.06843596696853638, 0.06200204789638519, -0.10778521746397018, 0.0037345902528613806, -0.06963280588388443, -0.04284678027033806, -0.05494605004787445, -0.01213314663618803, -0.07727371901273727, 0.1269443780183792, 0.22313793003559113, -0.05046144500374794, -0.014237524941563606, -0.06106938049197197, 0.02333267591893673, 0.06654650717973709, 0.01524131279438734, -0.05319321155548096, -0.2105739861726761, 0.00934837106615305, 0.06471182405948639, -0.008181453682482243, -0.26207032799720764, -0.07192134112119675, -0.0029018190689384937, -0.06448803097009659, -0.06932234764099121, 0.08557683229446411, 0.07956942170858383, 0.03840881958603859, -0.06028938665986061, -0.04749587923288345, -0.07239669561386108, 0.15115003287792206, -0.15023668110370636, -0.09064730256795883 ]
null
null
transformers
this is my model card
{}
automatic-speech-recognition
fkHug/modelFromWav2vec
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #wav2vec2 #automatic-speech-recognition #endpoints_compatible #region-us
this is my model card
[]
[ "TAGS\n#transformers #pytorch #wav2vec2 #automatic-speech-recognition #endpoints_compatible #region-us \n" ]
[ 37 ]
[ "passage: TAGS\n#transformers #pytorch #wav2vec2 #automatic-speech-recognition #endpoints_compatible #region-us \n" ]
[ -0.0721188485622406, -0.028641358017921448, -0.008131618611514568, -0.06536999344825745, 0.10369497537612915, -0.029162423685193062, 0.05449262633919716, 0.09215618669986725, 0.09012462943792343, 0.0024160705506801605, 0.09899672865867615, 0.19874386489391327, 0.0032586746383458376, -0.005444767884910107, -0.07112546265125275, -0.21837934851646423, 0.09600707143545151, 0.055372726172208786, 0.09617701917886734, 0.10875947028398514, 0.0784798189997673, -0.07249201834201813, 0.032563697546720505, 0.0496663972735405, -0.13367274403572083, 0.037079449743032455, 0.058643877506256104, -0.1467711329460144, 0.11741682142019272, 0.03624606877565384, 0.09462464600801468, 0.015703529119491577, -0.025202931836247444, -0.2087007611989975, 0.0028133990708738565, -0.010769401676952839, -0.015249740332365036, -0.01163998618721962, 0.05165225267410278, -0.06630266457796097, 0.009819267317652702, 0.04223077744245529, 0.007102530915290117, 0.07885675877332687, -0.07011023163795471, -0.16595390439033508, 0.027373118326067924, 0.04979840666055679, 0.06278723478317261, 0.09646070003509521, -0.015308019705116749, 0.15824733674526215, -0.10311099886894226, 0.11664288491010666, 0.11729957163333893, -0.34086450934410095, 0.025533635169267654, -0.018387693911790848, 0.06145255267620087, -0.005980021320283413, -0.023320090025663376, 0.08407841622829437, -0.009680325165390968, 0.02594558708369732, -0.06523970514535904, -0.053816139698028564, -0.17229726910591125, 0.02152976207435131, -0.10039443522691727, -0.05630653724074364, 0.14903028309345245, -0.02459312416613102, 0.050798237323760986, -0.070815309882164, -0.06357286870479584, -0.017195679247379303, -0.024608483538031578, -0.05171274393796921, -0.05008924379944801, 0.05738884210586548, -0.0357147753238678, -0.03484039008617401, -0.11432810872793198, -0.056904442608356476, -0.20911253988742828, 0.30520865321159363, 0.01152665913105011, 0.09113361686468124, -0.19182562828063965, 0.018077926710247993, -0.016760041937232018, -0.04602903127670288, -0.009070603176951408, -0.03480092063546181, -0.005194336175918579, 0.03196761757135391, -0.09672658145427704, -0.005024821497499943, 0.09619411826133728, 0.05404296889901161, 0.048924271017313004, 0.05579700693488121, -0.05309535190463066, 0.08241341263055801, -0.028520308434963226, 0.12802933156490326, -0.022204747423529625, 0.005049536935985088, 0.019602568820118904, -0.15963000059127808, 0.021364036947488785, -0.046107299625873566, -0.1059512197971344, -0.09832640737295151, 0.05150148272514343, 0.10308951884508133, 0.007624712772667408, 0.02769755758345127, -0.02915896475315094, -0.005024684127420187, -0.0010898011969402432, -0.08071205765008926, -0.0027757075149565935, 0.06134745106101036, 0.054733775556087494, 0.2042790800333023, 0.01401777658611536, 0.027865497395396233, -0.13477809727191925, 0.03430946171283722, 0.029110778123140335, 0.03076641820371151, 0.06137247383594513, -0.027149634435772896, 0.016688477247953415, -0.10584334284067154, 0.02761022001504898, -0.2108437865972519, -0.038738854229450226, 0.019536681473255157, -0.04570518061518669, 0.011210971511900425, -0.005862658843398094, -0.07294338941574097, -0.02412441000342369, 0.026644060388207436, -0.0848965272307396, -0.02483426034450531, -0.04335634037852287, 0.09084957093000412, 0.035603780299425125, 0.1144782155752182, -0.13740399479866028, 0.06781121343374252, -0.041382916271686554, -0.024146918207406998, 0.006467015482485294, 0.0786295235157013, -0.017164042219519615, 0.09126786887645721, -0.07609090209007263, -0.0363796167075634, -0.11339505016803741, 0.061230018734931946, -0.03372715786099434, 0.1294335424900055, -0.10931240767240524, -0.12374426424503326, 0.2250494360923767, -0.0921396017074585, -0.09642865508794785, 0.09675160050392151, 0.047799888998270035, -0.023683663457632065, 0.09046079218387604, 0.26092445850372314, -0.006438442971557379, -0.1344638615846634, 0.06955351680517197, 0.11876583099365234, -0.1670559197664261, -0.10538151115179062, 0.01964217610657215, -0.07074971497058868, -0.09296547621488571, 0.021963927894830704, 0.01981767639517784, 0.060468241572380066, -0.05301972106099129, -0.0665108859539032, -0.03185911104083061, -0.06936094164848328, 0.04747062921524048, -0.03376079350709915, 0.07992979139089584, -0.04860096052289009, 0.00022167984570842236, -0.040190186351537704, 0.026694048196077347, -0.03910767287015915, 0.08643262833356857, -0.152516707777977, 0.10339003056287766, -0.03455405682325363, 0.02255146950483322, -0.18151403963565826, 0.1193070039153099, -0.021366599947214127, 0.08709456026554108, 0.044252097606658936, 0.053591787815093994, 0.10817640274763107, -0.07318807393312454, 0.037599824368953705, -0.03522860258817673, 0.1588101089000702, 0.05225297436118126, -0.018174700438976288, -0.05587159842252731, 0.034731682389974594, -0.06348273903131485, -0.047311894595623016, 0.009232322685420513, -0.02524193562567234, 0.10357552021741867, 0.11902469396591187, -0.002044686349108815, 0.023700617253780365, -0.015857627615332603, 0.033494967967271805, -0.003626496996730566, 0.031247051432728767, 0.08235985040664673, -0.02272169478237629, -0.0769941657781601, 0.25266093015670776, -0.14026528596878052, 0.23503975570201874, 0.24047064781188965, -0.29727834463119507, 0.048978712409734726, 0.07219430804252625, 0.01735152304172516, 0.0021673247683793306, 0.0925217941403389, -0.05285301432013512, 0.20381318032741547, -0.01743427850306034, 0.1389402598142624, -0.03674538433551788, -0.0029116040095686913, 0.03353562951087952, -0.03337210416793823, -0.05041591078042984, 0.04755973070859909, 0.0015957624418660998, -0.08388978242874146, 0.0828937366604805, 0.15193380415439606, -0.0368693470954895, 0.09280958771705627, -0.005733860656619072, -0.016735907644033432, 0.06162073463201523, 0.012068409472703934, -0.032136328518390656, -0.02572881057858467, -0.3251122832298279, -0.08921423554420471, 0.06767655909061432, -0.004273096099495888, 0.1147976741194725, -0.1401272714138031, 0.006002949085086584, 0.006024875678122044, -0.059807486832141876, -0.07236415892839432, 0.07770498842000961, 0.020530637353658676, 0.07419945299625397, -0.02522803470492363, -0.11176551133394241, 0.07386600971221924, -0.03610837087035179, -0.10568254441022873, 0.07786476612091064, -0.11866384744644165, -0.2900512218475342, -0.14687477052211761, -0.14070986211299896, 0.02008247748017311, 0.06637454032897949, 0.119004026055336, -0.11709826439619064, -0.004356969613581896, 0.037115056067705154, 0.03698491305112839, -0.08836003392934799, 0.06865092366933823, 0.029483821243047714, 0.030205586925148964, -0.02406148426234722, -0.09716613590717316, -0.03349224105477333, -0.07106846570968628, -0.01235450804233551, 0.08198442310094833, -0.06806303560733795, 0.07756998389959335, 0.1869477778673172, 0.04971100017428398, 0.08263817429542542, -0.0121439378708601, 0.12353795021772385, -0.05943383276462555, -0.10815918445587158, 0.17252440750598907, -0.07307032495737076, 0.02297825925052166, 0.14187809824943542, 0.000404434947995469, -0.07981004565954208, -0.044941119849681854, -0.09086789190769196, -0.09349201619625092, -0.19090873003005981, -0.12945573031902313, -0.08469346910715103, -0.027750767767429352, 0.003936579450964928, 0.03929224982857704, 0.10053049772977829, -0.015164372511208057, 0.0318857803940773, -0.06527750939130783, 0.037118468433618546, 0.04925777390599251, 0.22011712193489075, -0.035632967948913574, 0.11447834223508835, -0.06257307529449463, -0.11675461381673813, 0.042986106127500534, 0.060705941170454025, 0.10117717832326889, 0.15401828289031982, 0.027867771685123444, 0.005864634178578854, 0.11680784821510315, 0.1787092089653015, 0.12349317967891693, 0.057697635143995285, -0.014458432793617249, 0.04202825948596001, -0.031030582264065742, -0.07545241713523865, 0.06351669877767563, 0.24637570977210999, -0.10907962918281555, -0.04299181327223778, -0.17554126679897308, 0.06269893795251846, 0.17280790209770203, 0.06886234879493713, -0.19033943116664886, 0.009430297650396824, 0.06161557883024216, -0.08718495815992355, -0.039426445960998535, 0.12834890186786652, 0.03255130723118782, -0.08927353471517563, 0.08593298494815826, 0.023056067526340485, 0.06641831994056702, -0.06849268823862076, 0.08725766092538834, -0.10478068888187408, -0.15477952361106873, 0.06414807587862015, 0.04578937590122223, -0.24747368693351746, 0.2281670868396759, -0.015506764873862267, 0.026676084846258163, -0.07251138240098953, -0.014630771242082119, 0.005118122790008783, 0.07661780714988708, 0.14594794809818268, -0.005033341236412525, -0.04946841299533844, -0.12404008209705353, -0.007966546341776848, 0.0572483129799366, 0.17199034988880157, 0.05051308125257492, -0.031220808625221252, -0.007178888190537691, -0.06425842642784119, -0.0023619099520146847, -0.057564083486795425, -0.04774671047925949, -0.10623916983604431, 0.013821293599903584, 0.2107272744178772, 0.11030402034521103, 0.008771294727921486, -0.014119311235845089, -0.14217756688594818, 0.13927903771400452, -0.20314770936965942, -0.012101659551262856, -0.06178198382258415, -0.17580774426460266, 0.09098359942436218, -0.047833316028118134, 0.06665368378162384, -0.0246900487691164, 0.007919765077531338, -0.05927768722176552, -0.15633289515972137, 0.1300991028547287, -0.11683275550603867, -0.019420908764004707, -0.02266664244234562, 0.2542378008365631, -0.02868989109992981, -0.00022344836906995624, 0.06588499993085861, 0.012667160481214523, -0.07948637753725052, -0.045111484825611115, 0.08735814690589905, 0.14315460622310638, -0.08427585661411285, 0.053661324083805084, 0.03975791856646538, -0.17768527567386627, -0.07372710108757019, 0.034207575023174286, 0.2839866280555725, 0.07747307419776917, -0.057250987738370895, 0.18260008096694946, 0.20878978073596954, -0.010367152281105518, -0.28379762172698975, -0.15502293407917023, -0.07944010198116302, 0.0009141949703916907, -0.11721421778202057, -0.09218011796474457, 0.09241478890180588, -0.06837643682956696, -0.05737648904323578, 0.07152894884347916, -0.19546766579151154, -0.0981190875172615, 0.219879612326622, -0.034856200218200684, 0.4114883840084076, -0.06148048862814903, -0.1459461748600006, -0.0555725172162056, -0.18084096908569336, 0.0894971713423729, -0.026558540761470795, 0.0820658728480339, 0.01966485008597374, 0.09183495491743088, 0.05033127963542938, -0.04245033487677574, 0.10872094333171844, 0.0760914608836174, -0.057044703513383865, -0.05393856763839722, -0.05787365511059761, -0.03484024107456207, 0.016244076192378998, 0.03970678150653839, 0.029991568997502327, 0.023477301001548767, -0.08885850012302399, -0.06251884996891022, -0.12129434943199158, 0.0884556919336319, 0.0841657966375351, -0.0031620634254068136, 0.051357369869947433, -0.14773449301719666, -0.021893896162509918, 0.04363230988383293, 0.14964716136455536, -0.09176138788461685, 0.07405997067689896, 0.17426884174346924, 0.14886562526226044, -0.14664708077907562, 0.003058107104152441, -0.05776814743876457, -0.1011233702301979, 0.12968605756759644, 0.024770202115178108, 0.06956075131893158, 0.08249596506357193, 0.019914090633392334, 0.00811604131013155, 0.09039079397916794, -0.020434709265828133, 0.0070288218557834625, 0.09483665227890015, -0.15127912163734436, -0.07125047594308853, -0.015156523324549198, 0.017886854708194733, 0.1545657217502594, 0.14007161557674408, 0.16529449820518494, 0.02486141212284565, -0.012096241116523743, -0.04985383525490761, -0.005592867266386747, -0.14501993358135223, 0.09596604108810425, 0.056048765778541565, 0.03177822381258011, -0.1689673811197281, 0.053186409175395966, -0.04085535928606987, -0.19084806740283966, 0.013390779495239258, 0.017495164647698402, -0.11244485527276993, -0.11561312526464462, -0.10894180089235306, 0.02844228409230709, -0.06521294265985489, -0.13255275785923004, 0.043576110154390335, -0.16649563610553741, 0.08408192545175552, 0.2183782309293747, 0.05991727486252785, 0.10767434537410736, -0.08789479732513428, -0.03133482486009598, 0.005640141665935516, -0.058524247258901596, -0.03673648089170456, -0.011027595959603786, -0.10944608598947525, 0.0506475605070591, 0.013274303637444973, 0.13179078698158264, -0.09587356448173523, -0.10142890363931656, -0.11364098638296127, 0.09812068939208984, -0.14064590632915497, -0.030631106346845627, -0.1098189726471901, -0.03166437894105911, 0.06403834372758865, -0.0851232185959816, -0.03693908452987671, 0.017473148182034492, -0.0980556383728981, 0.05528227239847183, -0.004201426636427641, 0.001913837855681777, -0.10883459448814392, 0.002962311264127493, 0.062244582921266556, -0.040038544684648514, 0.12362077832221985, 0.249018132686615, -0.14891332387924194, 0.1465185135602951, -0.18008393049240112, -0.19724424183368683, 0.1500670164823532, 0.01500400435179472, 0.009510787203907967, 0.02629696950316429, 0.012114698998630047, 0.12700627744197845, 0.040209777653217316, 0.028408609330654144, 0.17248576879501343, -0.06685706973075867, 0.03851442039012909, -0.0759325698018074, -0.10440655797719955, -0.034970253705978394, -0.07160848379135132, 0.1400478631258011, 0.06202966347336769, 0.09748422354459763, -0.03615143150091171, 0.06252597272396088, 0.02196015976369381, 0.035767797380685806, -0.06036775931715965, -0.10780566930770874, -0.04740653187036514, -0.03826800733804703, 0.042743176221847534, -0.031614698469638824, 0.2334204912185669, -0.10858950763940811, 0.038850028067827225, 0.011987561360001564, -0.008462372235953808, -0.09795255213975906, 0.03197858855128288, 0.2952418327331543, 0.1218862533569336, -0.03296373039484024, -0.066999152302742, 0.013009646907448769, 0.01815200038254261, 0.030443403869867325, 0.001572250621393323, 0.14926548302173615, 0.023670630529522896, 0.17915105819702148, 0.10188481956720352, 0.02828742191195488, -0.12838032841682434, -0.1490498036146164, -0.09192974120378494, 0.03111591562628746, -0.03810209035873413, 0.11369074881076813, 0.14607982337474823, 0.016350792720913887, 0.01697431318461895, -0.004843822680413723, -0.022071609273552895, -0.1752617508172989, -0.10440753400325775, -0.08142578601837158, -0.11838482320308685, 0.032670944929122925, -0.014440135098993778, 0.03735579550266266, 0.05140050873160362, 0.05859667435288429, -0.02119131200015545, 0.09585927426815033, 0.009440023452043533, -0.06592240929603577, 0.10088648647069931, -0.04326128214597702, 0.013741651549935341, 0.016331855207681656, -0.03154413402080536, -0.010452311486005783, -0.019497450441122055, -0.005802567582577467, 0.046686772257089615, -0.13079345226287842, 0.010648160241544247, -0.12401501834392548, -0.09085725992918015, -0.041131582111120224, 0.029086057096719742, -0.03246871381998062, 0.11770851910114288, 0.07890281081199646, -0.06317076832056046, 0.028930896893143654, 0.13956138491630554, -0.11462242156267166, -0.15169039368629456, -0.012151491828262806, 0.19187034666538239, 0.049830734729766846, 0.14869624376296997, -0.039655085653066635, -0.011490479111671448, -0.1268738955259323, 0.3134293258190155, 0.21894627809524536, -0.029566623270511627, 0.06968390941619873, 0.012242328375577927, 0.04945865646004677, 0.05147209390997887, 0.037134476006031036, 0.14212264120578766, 0.3142167627811432, -0.005606405436992645, -0.0678129643201828, -0.029410207644104958, -0.040482621639966965, -0.08318427950143814, 0.060821712017059326, -0.06858836114406586, -0.13105294108390808, -0.042223330587148666, 0.09486715495586395, -0.21290788054466248, 0.08625967800617218, -0.014330721460282803, -0.16493283212184906, -0.025777185335755348, 0.025004224851727486, 0.12373810261487961, 0.08473566174507141, 0.059048641473054886, -0.032053492963314056, -0.10001970827579498, 0.0649167001247406, 0.03845933824777603, -0.2532598376274109, 0.04978358373045921, 0.01770191080868244, -0.07009257376194, -0.05270304158329964, -0.0012992133852094412, 0.13695812225341797, 0.01977551355957985, 0.1564396768808365, 0.00699559086933732, 0.1385391801595688, -0.011141940020024776, -0.10966970771551132, 0.0020350429695099592, 0.13195984065532684, -0.00764200184494257, -0.012492666952311993, 0.04399271681904793, -0.17780189216136932, 0.0534556619822979, -0.018362876027822495, -0.0200018472969532, -0.0611613392829895, -0.025413908064365387, -0.040704384446144104, 0.02814488857984543, -0.029701540246605873, -0.01489523146301508, -0.018930602818727493, 0.009367123246192932, -0.0017991254571825266, 0.015221191570162773, -0.11187604814767838, -0.1212301030755043, -0.15346519649028778, -0.07677175104618073, -0.032612718641757965, 0.027920229360461235, -0.09698854386806488, -0.016907071694731712, -0.0763961598277092, 0.026637034490704536, -0.07471530884504318, 0.02430429309606552, 0.08550451695919037, 0.001998303458094597, 0.014178152196109295, -0.058580655604600906, 0.12117161601781845, 0.1384691596031189, -0.1377907544374466, -0.12039846181869507 ]
null
null
flair
## English Chunking in Flair (fast model) This is the fast phrase chunking model for English that ships with [Flair](https://github.com/flairNLP/flair/). F1-Score: **96,22** (CoNLL-2000) Predicts 4 tags: | **tag** | **meaning** | |---------------------------------|-----------| | ADJP | adjectival | | ADVP | adverbial | | CONJP | conjunction | | INTJ | interjection | | LST | list marker | | NP | noun phrase | | PP | prepositional | | PRT | particle | | SBAR | subordinate clause | | VP | verb phrase | Based on [Flair embeddings](https://www.aclweb.org/anthology/C18-1139/) and LSTM-CRF. --- ### Demo: How to use in Flair Requires: **[Flair](https://github.com/flairNLP/flair/)** (`pip install flair`) ```python from flair.data import Sentence from flair.models import SequenceTagger # load tagger tagger = SequenceTagger.load("flair/chunk-english-fast") # make example sentence sentence = Sentence("The happy man has been eating at the diner") # predict NER tags tagger.predict(sentence) # print sentence print(sentence) # print predicted NER spans print('The following NER tags are found:') # iterate over entities and print for entity in sentence.get_spans('np'): print(entity) ``` This yields the following output: ``` Span [1,2,3]: "The happy man" [− Labels: NP (0.9958)] Span [4,5,6]: "has been eating" [− Labels: VP (0.8759)] Span [7]: "at" [− Labels: PP (1.0)] Span [8,9]: "the diner" [− Labels: NP (0.9991)] ``` So, the spans "*The happy man*" and "*the diner*" are labeled as **noun phrases** (NP) and "*has been eating*" is labeled as a **verb phrase** (VP) in the sentence "*The happy man has been eating at the diner*". --- ### Training: Script to train this model The following Flair script was used to train this model: ```python from flair.data import Corpus from flair.datasets import CONLL_2000 from flair.embeddings import WordEmbeddings, StackedEmbeddings, FlairEmbeddings # 1. get the corpus corpus: Corpus = CONLL_2000() # 2. what tag do we want to predict? tag_type = 'np' # 3. make the tag dictionary from the corpus tag_dictionary = corpus.make_tag_dictionary(tag_type=tag_type) # 4. initialize each embedding we use embedding_types = [ # contextual string embeddings, forward FlairEmbeddings('news-forward-fast'), # contextual string embeddings, backward FlairEmbeddings('news-backward-fast'), ] # embedding stack consists of Flair and GloVe embeddings embeddings = StackedEmbeddings(embeddings=embedding_types) # 5. initialize sequence tagger from flair.models import SequenceTagger tagger = SequenceTagger(hidden_size=256, embeddings=embeddings, tag_dictionary=tag_dictionary, tag_type=tag_type) # 6. initialize trainer from flair.trainers import ModelTrainer trainer = ModelTrainer(tagger, corpus) # 7. run training trainer.train('resources/taggers/chunk-english-fast', train_with_dev=True, max_epochs=150) ``` --- ### Cite Please cite the following paper when using this model. ``` @inproceedings{akbik2018coling, title={Contextual String Embeddings for Sequence Labeling}, author={Akbik, Alan and Blythe, Duncan and Vollgraf, Roland}, booktitle = {{COLING} 2018, 27th International Conference on Computational Linguistics}, pages = {1638--1649}, year = {2018} } ``` --- ### Issues? The Flair issue tracker is available [here](https://github.com/flairNLP/flair/issues/).
{"language": "en", "tags": ["flair", "token-classification", "sequence-tagger-model"], "datasets": ["conll2000"], "widget": [{"text": "The happy man has been eating at the diner"}]}
token-classification
flair/chunk-english-fast
[ "flair", "pytorch", "token-classification", "sequence-tagger-model", "en", "dataset:conll2000", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #flair #pytorch #token-classification #sequence-tagger-model #en #dataset-conll2000 #region-us
English Chunking in Flair (fast model) -------------------------------------- This is the fast phrase chunking model for English that ships with Flair. F1-Score: 96,22 (CoNLL-2000) Predicts 4 tags: Based on Flair embeddings and LSTM-CRF. --- ### Demo: How to use in Flair Requires: Flair ('pip install flair') This yields the following output: So, the spans "*The happy man*" and "*the diner*" are labeled as noun phrases (NP) and "*has been eating*" is labeled as a verb phrase (VP) in the sentence "*The happy man has been eating at the diner*". --- ### Training: Script to train this model The following Flair script was used to train this model: --- ### Cite Please cite the following paper when using this model. --- ### Issues? The Flair issue tracker is available here.
[ "### Demo: How to use in Flair\n\n\nRequires: Flair ('pip install flair')\n\n\nThis yields the following output:\n\n\nSo, the spans \"*The happy man*\" and \"*the diner*\" are labeled as noun phrases (NP) and \"*has been eating*\" is labeled as a verb phrase (VP) in the sentence \"*The happy man has been eating at the diner*\".\n\n\n\n\n---", "### Training: Script to train this model\n\n\nThe following Flair script was used to train this model:\n\n\n\n\n---", "### Cite\n\n\nPlease cite the following paper when using this model.\n\n\n\n\n---", "### Issues?\n\n\nThe Flair issue tracker is available here." ]
[ "TAGS\n#flair #pytorch #token-classification #sequence-tagger-model #en #dataset-conll2000 #region-us \n", "### Demo: How to use in Flair\n\n\nRequires: Flair ('pip install flair')\n\n\nThis yields the following output:\n\n\nSo, the spans \"*The happy man*\" and \"*the diner*\" are labeled as noun phrases (NP) and \"*has been eating*\" is labeled as a verb phrase (VP) in the sentence \"*The happy man has been eating at the diner*\".\n\n\n\n\n---", "### Training: Script to train this model\n\n\nThe following Flair script was used to train this model:\n\n\n\n\n---", "### Cite\n\n\nPlease cite the following paper when using this model.\n\n\n\n\n---", "### Issues?\n\n\nThe Flair issue tracker is available here." ]
[ 37, 100, 22, 15, 15 ]
[ "passage: TAGS\n#flair #pytorch #token-classification #sequence-tagger-model #en #dataset-conll2000 #region-us \n### Demo: How to use in Flair\n\n\nRequires: Flair ('pip install flair')\n\n\nThis yields the following output:\n\n\nSo, the spans \"*The happy man*\" and \"*the diner*\" are labeled as noun phrases (NP) and \"*has been eating*\" is labeled as a verb phrase (VP) in the sentence \"*The happy man has been eating at the diner*\".\n\n\n\n\n---### Training: Script to train this model\n\n\nThe following Flair script was used to train this model:\n\n\n\n\n---### Cite\n\n\nPlease cite the following paper when using this model.\n\n\n\n\n---### Issues?\n\n\nThe Flair issue tracker is available here." ]
[ -0.05668017640709877, 0.06476648151874542, 0.0006157592870295048, 0.059531453996896744, 0.08117757737636566, 0.058503005653619766, -0.05634255334734917, 0.1276300996541977, 0.038955967873334885, 0.11561989784240723, 0.13684166967868805, 0.17606821656227112, 0.09489888697862625, 0.08880829066038132, 0.06130628660321236, -0.22107616066932678, 0.03142988309264183, 0.02574889548122883, 0.015712006017565727, 0.22811242938041687, 0.12130684405565262, -0.0002687641535885632, 0.061824291944503784, -0.031639114022254944, -0.10111887753009796, -0.03649694472551346, 0.050087541341781616, -0.024468040093779564, 0.16020382940769196, -0.02349018305540085, 0.1257496327161789, 0.056155044585466385, -0.004596293438225985, -0.20209433138370514, 0.027282055467367172, 0.05636316165328026, 0.044610071927309036, 0.07025883346796036, -0.06321623921394348, 0.07138686627149582, 0.2989605963230133, -0.0645839273929596, 0.011206330731511116, 0.09110283851623535, -0.1625920683145523, -0.22020049393177032, -0.165207639336586, 0.0420253686606884, -0.02524079754948616, 0.09821128845214844, -0.05825298652052879, 0.13078512251377106, -0.18368175625801086, 0.00936988927423954, 0.1410243809223175, -0.21879032254219055, -0.04102535918354988, -0.0044290716759860516, 0.13306628167629242, -0.001995994243770838, -0.09132218360900879, 0.045634958893060684, 0.02948825992643833, 0.055985063314437866, -0.038244493305683136, -0.0030405682045966387, 0.029603062197566032, 0.07549285143613815, -0.10329005867242813, -0.08968445658683777, 0.2784474790096283, 0.0754084661602974, -0.05489986762404442, -0.077884741127491, -0.04873689264059067, -0.07506085187196732, 0.029601601883769035, -0.16296590864658356, -0.019057752564549446, 0.009146575815975666, 0.12912926077842712, -0.08275297284126282, -0.08591334521770477, -0.04152865335345268, 0.10658146440982819, 0.09896735101938248, -0.03458802402019501, 0.006509811617434025, -0.06105492264032364, 0.04459867998957634, 0.02418772503733635, -0.05034228786826134, 0.029435396194458008, -0.05180229991674423, -0.0012936159037053585, 0.03318510577082634, -0.02576836198568344, 0.003943101968616247, 0.030969318002462387, 0.03138843551278114, 0.06672628968954086, -0.02205756865441799, -0.03713911026716232, 0.043021488934755325, -0.0016972838202491403, 0.11400008201599121, -0.0835285410284996, -0.09939125180244446, -0.04028020054101944, 0.07334404438734055, 0.0782356932759285, -0.0568951815366745, -0.067285917699337, 0.042358849197626114, -0.030358824878931046, 0.017337258905172348, -0.0006839215639047325, 0.06302262097597122, -0.044926468282938004, 0.025222640484571457, 0.13928531110286713, -0.01172239612787962, -0.031072773039340973, 0.09078193455934525, -0.050863854587078094, 0.13641305267810822, 0.010015297681093216, 0.019056718796491623, 0.0027276179753243923, 0.005949483253061771, -0.06298565864562988, 0.01723170094192028, -0.09329544752836227, -0.10403873026371002, 0.018418248742818832, -0.041592538356781006, -0.04746468365192413, -0.03537526726722717, -0.1353594809770584, -0.052207596600055695, -0.008901873603463173, 0.001685276161879301, -0.046500708907842636, -0.08882095664739609, 0.018633782863616943, -0.03855454921722412, 0.032988373190164566, 0.07673229277133942, -0.048448819667100906, 0.13171176612377167, 0.025911567732691765, 0.06264998018741608, -0.047013066709041595, 0.031372010707855225, -0.0912238359451294, 0.020156942307949066, -0.0916898250579834, -0.02485555410385132, 0.023645097389817238, -0.05705420672893524, -0.1016509085893631, -0.0976966992020607, -0.02576359733939171, 0.015456944704055786, -0.011318834498524666, 0.2103787213563919, -0.293266624212265, 0.002606804948300123, 0.15888729691505432, -0.10949978977441788, -0.09975872188806534, 0.13209965825080872, -0.027196401730179787, 0.21279937028884888, 0.08865106850862503, 0.03873295336961746, -0.009538468904793262, -0.22821398079395294, -0.0032109012827277184, 0.02164909802377224, -0.10888191312551498, 0.18214328587055206, 0.07053015381097794, -0.07112209498882294, -0.17297802865505219, 0.004903972148895264, -0.10805381089448929, 0.059086333960294724, -0.01693500019609928, -0.07253856211900711, 0.010129458270967007, -0.0017651336966082454, 0.13017328083515167, -0.014178076758980751, -0.04295821487903595, -0.043569229543209076, -0.14132995903491974, -0.27612411975860596, 0.03610258176922798, 0.030440611764788628, 0.050331443548202515, -0.03496576473116875, 0.15701830387115479, 0.0835365355014801, -0.0495290644466877, -0.12150654196739197, 0.02807142771780491, -0.06219227612018585, 0.0584859699010849, -0.030397234484553337, 0.06643449515104294, -0.01595781184732914, 0.012133914977312088, 0.045195113867521286, -0.01092141680419445, -0.07435327768325806, 0.04279867932200432, -0.02317745052278042, -0.028540488332509995, -0.050778359174728394, -0.07433360069990158, 0.22101259231567383, -0.13812118768692017, 0.03249093145132065, 0.00692357262596488, 0.011107472702860832, -0.012609618715941906, -0.019076265394687653, 0.034291885793209076, 0.053029756993055344, -0.0246259942650795, -0.004890916403383017, 0.1381601095199585, 0.02234466001391411, -0.09033982455730438, 0.021843474358320236, -0.06580257415771484, -0.28396958112716675, 0.06864358484745026, -0.09392712265253067, -0.1772526055574417, -0.0695720762014389, -0.06442081183195114, -0.005583062767982483, -0.04357106238603592, -0.07681261003017426, 0.08148984611034393, 0.060759954154491425, 0.046038918197155, 0.01971437782049179, 0.049949534237384796, 0.012965232133865356, -0.03989405930042267, -0.034819819033145905, 0.07555527240037918, 0.10513807833194733, -0.03471197932958603, 0.08139097690582275, 0.1121964082121849, 0.08284907042980194, 0.05577896907925606, 0.05368558317422867, -0.007867288775742054, -0.09639353305101395, 0.0930478423833847, -0.03257722035050392, 0.12967827916145325, -0.20355023443698883, 0.05322418361902237, 0.01473867055028677, -0.02797752618789673, 0.02349521405994892, -0.14399710297584534, -0.08201875537633896, 0.032270029187202454, -0.05090401694178581, -0.07426794618368149, 0.09812739491462708, -0.060310784727334976, 0.09503598511219025, 0.009913953021168709, -0.04771719500422478, 0.07231200486421585, 0.009989634156227112, -0.10136407613754272, 0.10198807716369629, -0.08990195393562317, -0.28252941370010376, -0.0831940546631813, -0.07592492550611496, 0.07222338020801544, 0.0029893878381699324, 0.044001881033182144, -0.08893812447786331, 0.0185752734541893, 0.047302693128585815, 0.07144618779420853, 0.024986106902360916, -0.10081813484430313, -0.12400297820568085, -0.06287536770105362, 0.006994825787842274, -0.08162805438041687, 0.005664683412760496, -0.02484760619699955, 0.060786984860897064, -0.003952206578105688, -0.0761927142739296, 0.13738802075386047, 0.1321752816438675, 0.09756377339363098, 0.00804863404482603, -0.03966658189892769, 0.2599010765552521, -0.06826469302177429, 0.02464035525918007, 0.11614120006561279, 0.03318364918231964, 0.04711725935339928, 0.0848730280995369, 0.03549911454319954, -0.07272583991289139, -0.015414469875395298, -0.021250132471323013, -0.047338902950286865, -0.08888857811689377, -0.06511171907186508, -0.09126510471105576, -0.06555680930614471, -0.04516053572297096, 0.012887227348983288, 0.044631581753492355, 0.01373412273824215, -0.01634453423321247, -0.08090966939926147, -0.09501238167285919, -0.011018941178917885, 0.1171543300151825, -0.1105676144361496, -0.04331391304731369, 0.019147206097841263, -0.044697947800159454, 0.030819756910204887, 0.03589902073144913, -0.016867579892277718, 0.08893182873725891, 0.1616266667842865, 0.1508983075618744, 0.09052980691194534, -0.02500222809612751, 0.04805850610136986, -0.06023462861776352, -0.008988162502646446, -0.07012541592121124, -0.0857991874217987, -0.07210510969161987, 0.038845859467983246, 0.04277869313955307, 0.04898081719875336, -0.012742485851049423, -0.057665593922138214, 0.06352342665195465, 0.045322809368371964, 0.12549331784248352, -0.09953184425830841, 0.025542467832565308, 0.01023099385201931, 0.14579525589942932, -0.062448881566524506, 0.010887705720961094, 0.0023847161792218685, -0.10145575553178787, 0.005433309823274612, -0.06406160444021225, 0.06564631313085556, 0.09687108546495438, 0.057033851742744446, 0.015579795464873314, 0.04296676069498062, 0.009841668419539928, 0.13524016737937927, -0.24298517405986786, 0.26995712518692017, -0.011942231096327305, 0.02974935807287693, -0.034840650856494904, -0.00007908532279543579, 0.024028439074754715, 0.07117526978254318, 0.2708522081375122, 0.03660259395837784, -0.008516131900250912, -0.05629435181617737, -0.09904783964157104, 0.04323387145996094, 0.018105408176779747, -0.03697172552347183, 0.05017341300845146, 0.041140105575323105, 0.03503856435418129, 0.0357559472322464, 0.17429913580417633, -0.15752926468849182, -0.09775198251008987, 0.02003845013678074, -0.018025949597358704, 0.02667335793375969, 0.01165898609906435, -0.04265438765287399, -0.10592951625585556, 0.06625976413488388, -0.07309107482433319, 0.01757298782467842, -0.08713909238576889, 0.17192599177360535, -0.07512212544679642, -0.034320928156375885, -0.12137501686811447, -0.030272336676716805, 0.023711666464805603, -0.06781444698572159, 0.0734771117568016, 0.03301885351538658, 0.04858072102069855, -0.07550303637981415, -0.11018716543912888, 0.1087334081530571, 0.05467798188328743, 0.05501765385270119, -0.03164117410778999, 0.05155060440301895, -0.00886154267936945, -0.12741811573505402, 0.05713535100221634, -0.048192098736763, -0.012004213407635689, 0.04821410030126572, -0.08728489279747009, 0.013556452468037605, -0.16711005568504333, 0.011637909337878227, 0.27434253692626953, 0.2583998143672943, -0.1100812777876854, 0.1435347944498062, 0.05308089032769203, -0.09735394269227982, -0.10161885619163513, -0.0818614512681961, -0.04540402814745903, 0.03344359248876572, -0.020529475063085556, -0.1426728516817093, 0.0424610897898674, 0.03400539979338646, -0.01994084194302559, 0.03456775099039078, -0.3718850910663605, -0.006367322523146868, 0.04963307082653046, 0.09428281337022781, 0.04706771299242973, -0.0003009601787198335, -0.045527949929237366, 0.020557355135679245, -0.1557890772819519, 0.0447796955704689, -0.022825920954346657, 0.05820567533373833, -0.013171553611755371, 0.05489561706781387, -0.010758727788925171, -0.06248844042420387, 0.14795280992984772, -0.017201203852891922, -0.01215592585504055, -0.0029697397258132696, -0.21770042181015015, 0.032386552542448044, 0.019354522228240967, 0.060480352491140366, -0.05670279636979103, -0.0482633039355278, -0.20550277829170227, -0.013361898250877857, -0.16787917912006378, 0.1132020652294159, -0.13809040188789368, -0.06132431700825691, -0.05290711671113968, 0.05572625622153282, 0.05657687410712242, -0.03967352211475372, -0.1612573117017746, -0.10311098396778107, 0.1687256395816803, -0.02622818388044834, -0.054560381919145584, 0.0911613330245018, -0.32500916719436646, -0.003788706613704562, 0.021330516785383224, 0.07608254998922348, -0.011286011897027493, -0.0824902281165123, 0.06110406666994095, 0.049930889159440994, 0.2008952498435974, 0.05639352276921272, -0.07577580213546753, 0.07188033312559128, 0.01632622815668583, -0.16650724411010742, -0.05070860683917999, -0.030623391270637512, -0.08145952969789505, -0.08387352526187897, -0.2265099436044693, 0.060212697833776474, -0.04382411390542984, 0.0026053376495838165, -0.0051263910718262196, 0.05052638798952103, -0.09944641590118408, -0.022237049415707588, 0.1444551795721054, 0.04727005213499069, -0.031042149290442467, -0.1097232922911644, 0.054947737604379654, -0.1593017429113388, -0.03276403620839119, 0.11005964875221252, -0.0803576186299324, -0.04140246659517288, 0.02287168987095356, 0.26972246170043945, 0.016330167651176453, -0.06738750636577606, -0.025521038100123405, -0.06283081322908401, -0.012147866189479828, 0.038618072867393494, 0.07339005172252655, 0.06717536598443985, -0.13603587448596954, -0.027054427191615105, -0.05456018075346947, 0.014381454326212406, -0.04730387404561043, -0.03423643484711647, -0.018980959430336952, 0.13430315256118774, 0.056611567735672, 0.09926542639732361, -0.028712905943393707, -0.08944825828075409, -0.06752952933311462, 0.0054443408735096455, 0.0034028843510895967, 0.046113356947898865, -0.05337964743375778, -0.0009363969438709319, -0.0486137680709362, 0.03467382490634918, -0.009280392900109291, -0.04359431937336922, -0.041734836995601654, 0.012796668335795403, 0.02678428404033184, 0.06948784738779068, -0.1523163616657257, 0.024765970185399055, 0.06716082245111465, -0.061715301126241684, 0.009279651567339897, -0.010624261572957039, -0.051638007164001465, 0.005672645755112171, -0.24507364630699158, 0.017544709146022797, 0.037874650210142136, 0.01405318547040224, 0.04169345647096634, -0.16016985476016998, -0.025109397247433662, -0.0506138913333416, 0.0008167570340447128, 0.026038872078061104, 0.17821277678012848, -0.08333150297403336, 0.06534266471862793, 0.11719267070293427, -0.0468134880065918, -0.010262003168463707, -0.008296391926705837, 0.01983012817800045, 0.021708885207772255, 0.16183722019195557, -0.03872816264629364, 0.1555314064025879, -0.10726770758628845, -0.019078776240348816, -0.02147519960999489, 0.032728131860494614, -0.059817757457494736, 0.018380334600806236, 0.05708026513457298, -0.008927270770072937, 0.09276005625724792, 0.04066716134548187, 0.11161684989929199, 0.02746455743908882, 0.05384554713964462, -0.05787612870335579, -0.029305854812264442, 0.05881490185856819, 0.013959558680653572, 0.01589314267039299, 0.0900646299123764, 0.030734237283468246, -0.0347483828663826, 0.1357869952917099, 0.24106630682945251, 0.08097276091575623, 0.16065365076065063, 0.07483967393636703, -0.04484095424413681, 0.019903896376490593, -0.11955723911523819, -0.02757277712225914, 0.043720792979002, 0.041095878928899765, -0.02292514592409134, 0.06846880912780762, -0.009984582662582397, -0.13356126844882965, 0.018894338980317116, -0.06497824937105179, -0.11013422161340714, -0.07219959795475006, -0.060644637793302536, 0.012825296260416508, -0.02268943563103676, 0.010861150920391083, -0.0274977907538414, 0.009064375422894955, 0.03886577859520912, -0.05900534614920616, -0.023913005366921425, 0.06573987007141113, -0.024448465555906296, -0.03298410773277283, 0.030436933040618896, -0.007678155321627855, 0.021114934235811234, -0.2276824414730072, 0.07432445883750916, 0.0027066601905971766, -0.01072230376303196, 0.07107583433389664, 0.012808158062398434, 0.017282869666814804, -0.029564881697297096, -0.13976268470287323, -0.05532212555408478, -0.013499956578016281, 0.042458876967430115, 0.051601625978946686, 0.13653002679347992, 0.0634240135550499, 0.04496990144252777, -0.02369973063468933, 0.07207433134317398, 0.01440942008048296, -0.1326027661561966, -0.16269227862358093, 0.248417466878891, -0.0903858169913292, -0.02838514931499958, -0.037223588675260544, -0.011769634671509266, 0.04243329167366028, 0.2998742461204529, 0.2312701791524887, -0.06920517235994339, 0.0024759008083492517, -0.050937071442604065, 0.03610583022236824, 0.08076157420873642, 0.0968809500336647, 0.09109971672296524, 0.0944400280714035, -0.12484100461006165, -0.0045005520805716515, -0.18940377235412598, -0.060713693499565125, 0.007153904996812344, 0.03831895440816879, 0.11239109188318253, -0.07984934002161026, -0.07729075103998184, 0.1756945550441742, -0.07764194905757904, -0.14234980940818787, 0.04892714321613312, -0.09392537921667099, -0.04319251701235771, -0.036505185067653656, 0.12844593822956085, 0.026208629831671715, 0.07979225367307663, -0.03802237659692764, -0.09815970063209534, 0.17062696814537048, -0.0323999747633934, -0.13613609969615936, -0.029323071241378784, 0.07410681992769241, -0.23086431622505188, 0.2153642624616623, 0.02096957340836525, 0.07362234592437744, 0.09165871143341064, 0.05206446349620819, -0.039010342210531235, 0.08746485412120819, 0.04835072532296181, 0.12965267896652222, -0.06268932670354843, -0.006441777106374502, 0.0092672910541296, -0.05641661211848259, -0.010515823028981686, -0.186118021607399, 0.12554946541786194, 0.13627614080905914, -0.04113762080669403, -0.09433139860630035, 0.09809216856956482, -0.056756023317575455, 0.1415283977985382, 0.1722344607114792, -0.03135617449879646, 0.01659109629690647, -0.03337908908724785, -0.029108796268701553, 0.011435631662607193, 0.04700940102338791, -0.03965423256158829, -0.08655600994825363, -0.03257846459746361, 0.023795707151293755, -0.10096555203199387, -0.189686581492424, -0.09699226915836334, -0.04714656621217728, -0.032280780375003815, 0.08806698769330978, 0.05967772752046585, -0.0428137332201004, 0.05500294640660286, -0.03139147162437439, 0.056736595928668976, -0.020151743665337563, 0.16129842400550842, -0.07579304277896881, -0.06055609509348869 ]
null
null
flair
## English Chunking in Flair (default model) This is the standard phrase chunking model for English that ships with [Flair](https://github.com/flairNLP/flair/). F1-Score: **96,48** (CoNLL-2000) Predicts 4 tags: | **tag** | **meaning** | |---------------------------------|-----------| | ADJP | adjectival | | ADVP | adverbial | | CONJP | conjunction | | INTJ | interjection | | LST | list marker | | NP | noun phrase | | PP | prepositional | | PRT | particle | | SBAR | subordinate clause | | VP | verb phrase | Based on [Flair embeddings](https://www.aclweb.org/anthology/C18-1139/) and LSTM-CRF. --- ### Demo: How to use in Flair Requires: **[Flair](https://github.com/flairNLP/flair/)** (`pip install flair`) ```python from flair.data import Sentence from flair.models import SequenceTagger # load tagger tagger = SequenceTagger.load("flair/chunk-english") # make example sentence sentence = Sentence("The happy man has been eating at the diner") # predict NER tags tagger.predict(sentence) # print sentence print(sentence) # print predicted NER spans print('The following NER tags are found:') # iterate over entities and print for entity in sentence.get_spans('np'): print(entity) ``` This yields the following output: ``` Span [1,2,3]: "The happy man" [− Labels: NP (0.9958)] Span [4,5,6]: "has been eating" [− Labels: VP (0.8759)] Span [7]: "at" [− Labels: PP (1.0)] Span [8,9]: "the diner" [− Labels: NP (0.9991)] ``` So, the spans "*The happy man*" and "*the diner*" are labeled as **noun phrases** (NP) and "*has been eating*" is labeled as a **verb phrase** (VP) in the sentence "*The happy man has been eating at the diner*". --- ### Training: Script to train this model The following Flair script was used to train this model: ```python from flair.data import Corpus from flair.datasets import CONLL_2000 from flair.embeddings import WordEmbeddings, StackedEmbeddings, FlairEmbeddings # 1. get the corpus corpus: Corpus = CONLL_2000() # 2. what tag do we want to predict? tag_type = 'np' # 3. make the tag dictionary from the corpus tag_dictionary = corpus.make_tag_dictionary(tag_type=tag_type) # 4. initialize each embedding we use embedding_types = [ # contextual string embeddings, forward FlairEmbeddings('news-forward'), # contextual string embeddings, backward FlairEmbeddings('news-backward'), ] # embedding stack consists of Flair and GloVe embeddings embeddings = StackedEmbeddings(embeddings=embedding_types) # 5. initialize sequence tagger from flair.models import SequenceTagger tagger = SequenceTagger(hidden_size=256, embeddings=embeddings, tag_dictionary=tag_dictionary, tag_type=tag_type) # 6. initialize trainer from flair.trainers import ModelTrainer trainer = ModelTrainer(tagger, corpus) # 7. run training trainer.train('resources/taggers/chunk-english', train_with_dev=True, max_epochs=150) ``` --- ### Cite Please cite the following paper when using this model. ``` @inproceedings{akbik2018coling, title={Contextual String Embeddings for Sequence Labeling}, author={Akbik, Alan and Blythe, Duncan and Vollgraf, Roland}, booktitle = {{COLING} 2018, 27th International Conference on Computational Linguistics}, pages = {1638--1649}, year = {2018} } ``` --- ### Issues? The Flair issue tracker is available [here](https://github.com/flairNLP/flair/issues/).
{"language": "en", "tags": ["flair", "token-classification", "sequence-tagger-model"], "datasets": ["conll2000"], "widget": [{"text": "The happy man has been eating at the diner"}]}
token-classification
flair/chunk-english
[ "flair", "pytorch", "token-classification", "sequence-tagger-model", "en", "dataset:conll2000", "has_space", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #flair #pytorch #token-classification #sequence-tagger-model #en #dataset-conll2000 #has_space #region-us
English Chunking in Flair (default model) ----------------------------------------- This is the standard phrase chunking model for English that ships with Flair. F1-Score: 96,48 (CoNLL-2000) Predicts 4 tags: Based on Flair embeddings and LSTM-CRF. --- ### Demo: How to use in Flair Requires: Flair ('pip install flair') This yields the following output: So, the spans "*The happy man*" and "*the diner*" are labeled as noun phrases (NP) and "*has been eating*" is labeled as a verb phrase (VP) in the sentence "*The happy man has been eating at the diner*". --- ### Training: Script to train this model The following Flair script was used to train this model: --- ### Cite Please cite the following paper when using this model. --- ### Issues? The Flair issue tracker is available here.
[ "### Demo: How to use in Flair\n\n\nRequires: Flair ('pip install flair')\n\n\nThis yields the following output:\n\n\nSo, the spans \"*The happy man*\" and \"*the diner*\" are labeled as noun phrases (NP) and \"*has been eating*\" is labeled as a verb phrase (VP) in the sentence \"*The happy man has been eating at the diner*\".\n\n\n\n\n---", "### Training: Script to train this model\n\n\nThe following Flair script was used to train this model:\n\n\n\n\n---", "### Cite\n\n\nPlease cite the following paper when using this model.\n\n\n\n\n---", "### Issues?\n\n\nThe Flair issue tracker is available here." ]
[ "TAGS\n#flair #pytorch #token-classification #sequence-tagger-model #en #dataset-conll2000 #has_space #region-us \n", "### Demo: How to use in Flair\n\n\nRequires: Flair ('pip install flair')\n\n\nThis yields the following output:\n\n\nSo, the spans \"*The happy man*\" and \"*the diner*\" are labeled as noun phrases (NP) and \"*has been eating*\" is labeled as a verb phrase (VP) in the sentence \"*The happy man has been eating at the diner*\".\n\n\n\n\n---", "### Training: Script to train this model\n\n\nThe following Flair script was used to train this model:\n\n\n\n\n---", "### Cite\n\n\nPlease cite the following paper when using this model.\n\n\n\n\n---", "### Issues?\n\n\nThe Flair issue tracker is available here." ]
[ 41, 100, 22, 15, 15 ]
[ "passage: TAGS\n#flair #pytorch #token-classification #sequence-tagger-model #en #dataset-conll2000 #has_space #region-us \n### Demo: How to use in Flair\n\n\nRequires: Flair ('pip install flair')\n\n\nThis yields the following output:\n\n\nSo, the spans \"*The happy man*\" and \"*the diner*\" are labeled as noun phrases (NP) and \"*has been eating*\" is labeled as a verb phrase (VP) in the sentence \"*The happy man has been eating at the diner*\".\n\n\n\n\n---### Training: Script to train this model\n\n\nThe following Flair script was used to train this model:\n\n\n\n\n---### Cite\n\n\nPlease cite the following paper when using this model.\n\n\n\n\n---### Issues?\n\n\nThe Flair issue tracker is available here." ]
[ -0.0473257452249527, 0.0743308737874031, 0.0014010508311912417, 0.04951975494623184, 0.07674144208431244, 0.04207857325673103, -0.06453297287225723, 0.1404692828655243, 0.029467768967151642, 0.1331094652414322, 0.13546864688396454, 0.16073337197303772, 0.0753994956612587, 0.09677869081497192, 0.06962139904499054, -0.21758559346199036, 0.044647157192230225, 0.01850949414074421, 0.006987979635596275, 0.21782489120960236, 0.13423825800418854, -0.01782548800110817, 0.058412786573171616, -0.03199716657400131, -0.10831629484891891, -0.02504653111100197, 0.03508459031581879, -0.016088740900158882, 0.14982008934020996, -0.024158233776688576, 0.12660576403141022, 0.05794721469283104, -0.015587728470563889, -0.18794085085391998, 0.02620437741279602, 0.06473728269338608, 0.041157033294439316, 0.07468190789222717, -0.07464335113763809, 0.06727716326713562, 0.2895132303237915, -0.09141675382852554, 0.0034003350883722305, 0.08091356605291367, -0.16256342828273773, -0.2501840591430664, -0.16094771027565002, 0.04430953785777092, -0.03189872205257416, 0.09377912431955338, -0.07024902105331421, 0.13781993091106415, -0.18857742846012115, 0.010061794891953468, 0.15719124674797058, -0.21690936386585236, -0.03583897650241852, 0.02437002584338188, 0.16135597229003906, 0.017165927216410637, -0.09659963101148605, 0.05215923488140106, 0.029331356287002563, 0.05252401530742645, -0.017288850620388985, 0.0007604331476613879, 0.020392274484038353, 0.09303729236125946, -0.11699704825878143, -0.09011727571487427, 0.28918394446372986, 0.0535331666469574, -0.04111132025718689, -0.09070109575986862, -0.04872278869152069, -0.09624864906072617, 0.03171872720122337, -0.144407257437706, -0.011365951038897038, 0.005850926972925663, 0.1233329102396965, -0.0994696095585823, -0.1076837033033371, -0.025174686685204506, 0.08752749860286713, 0.1062978059053421, -0.04617302864789963, 0.001613517990335822, -0.05393875762820244, 0.05313682556152344, 0.010804317891597748, -0.04452824965119362, 0.034827183932065964, -0.05968524515628815, -0.009911165572702885, 0.03845816105604172, -0.05357365310192108, -0.0061858599074184895, 0.026211801916360855, 0.0331687331199646, 0.03097580559551716, -0.030465692281723022, -0.02345937304198742, 0.05601769685745239, 0.017131894826889038, 0.12183499336242676, -0.10044827312231064, -0.09682894498109818, -0.050193075090646744, 0.07273293286561966, 0.08329487591981888, -0.05800027772784233, -0.07901832461357117, 0.04273999109864235, -0.010001259855926037, 0.008891768753528595, 0.02167857065796852, 0.07080428302288055, -0.027516432106494904, 0.03269612789154053, 0.13581901788711548, -0.015161790885031223, -0.009779173880815506, 0.08245791494846344, -0.03644488751888275, 0.10476993024349213, 0.008487295359373093, 0.015082163736224174, 0.013607575558125973, 0.008116348646581173, -0.08024713397026062, 0.015175536274909973, -0.09870897978544235, -0.12232181429862976, 0.012828962877392769, -0.0391874685883522, -0.05436348170042038, -0.048676639795303345, -0.11344888806343079, -0.05740097537636757, -0.014033997431397438, 0.003641539253294468, -0.04957420378923416, -0.055407773703336716, 0.012837447226047516, -0.0176205113530159, 0.015750471502542496, 0.09116477519273758, -0.046672672033309937, 0.1316901296377182, 0.021710220724344254, 0.07637396454811096, -0.06812456250190735, 0.03642832487821579, -0.09573278576135635, 0.028875619173049927, -0.11155854165554047, -0.02955552563071251, 0.007548970635980368, -0.038610100746154785, -0.09131345897912979, -0.09144463390111923, -0.04652479663491249, 0.031078943982720375, -0.012646637856960297, 0.18381917476654053, -0.2969454228878021, 0.0029588215984404087, 0.14380766451358795, -0.10898679494857788, -0.09107908606529236, 0.12904244661331177, -0.02550741285085678, 0.20591293275356293, 0.07126262784004211, 0.08038684725761414, -0.006776237394660711, -0.2250826507806778, -0.045442428439855576, 0.02335619367659092, -0.10401374101638794, 0.1758813112974167, 0.07401587069034576, -0.06846553832292557, -0.1384643316268921, 0.0016475562006235123, -0.09839357435703278, 0.05926972255110741, -0.006484514102339745, -0.06644707173109055, -0.007547424174845219, -0.0025475185830146074, 0.14726276695728302, -0.005779948551207781, -0.03094206564128399, -0.06168828532099724, -0.15265104174613953, -0.2153901755809784, 0.03704874590039253, 0.04693327844142914, 0.05667205527424812, -0.019065964967012405, 0.17888781428337097, 0.057306136935949326, -0.05559467896819115, -0.13077092170715332, 0.00811659637838602, -0.06833222508430481, 0.05857209116220474, -0.021324481815099716, 0.09506794810295105, -0.009972862899303436, -0.004359120037406683, 0.03672615438699722, -0.0032358402386307716, -0.06258270144462585, 0.05182814225554466, -0.02452753484249115, -0.013724458403885365, -0.05942890793085098, -0.08269309997558594, 0.19896218180656433, -0.12740254402160645, 0.033853210508823395, 0.033395711332559586, 0.03389018028974533, -0.008517795242369175, -0.0219951830804348, 0.0373450368642807, 0.051597487181425095, -0.025812359526753426, -0.010124219581484795, 0.12832467257976532, 0.02400651015341282, -0.07628349959850311, 0.06297535449266434, -0.09915342926979065, -0.2726720869541168, 0.08351682126522064, -0.07662186771631241, -0.16593551635742188, -0.049499284476041794, -0.06659462302923203, 0.0033178357407450676, -0.04180373251438141, -0.11401882022619247, 0.04137074574828148, 0.0374239981174469, 0.042817577719688416, 0.013478548265993595, 0.038969963788986206, 0.004129013977944851, -0.04182649031281471, -0.04871128126978874, 0.07556802779436111, 0.07978510111570358, -0.021486233919858932, 0.1174587532877922, 0.1464904248714447, 0.06107884272933006, 0.08984996378421783, 0.04671679437160492, -0.009121956303715706, -0.10564368218183517, 0.08108921349048615, -0.04224146902561188, 0.1325857937335968, -0.200179785490036, 0.041308771818876266, 0.017582690343260765, -0.012102380394935608, 0.03863222897052765, -0.14213073253631592, -0.07457020878791809, 0.03836767375469208, -0.03843044862151146, -0.04544144868850708, 0.10845855623483658, -0.05082171782851219, 0.09070932120084763, 0.018646609038114548, -0.026044344529509544, 0.05999840423464775, 0.010833989828824997, -0.08749419450759888, 0.08202354609966278, -0.09883932769298553, -0.2880699038505554, -0.08631367236375809, -0.060612257570028305, 0.0712682381272316, 0.0076489499770104885, 0.0575006827712059, -0.09025102853775024, 0.024298395961523056, 0.022674107924103737, 0.07046595215797424, 0.0028945421800017357, -0.09471136331558228, -0.13520729541778564, -0.057656869292259216, 0.011705702170729637, -0.08832503110170364, 0.0021369175519794226, -0.012528619728982449, 0.06767208874225616, 0.012147331610321999, -0.04976695403456688, 0.1374277025461197, 0.1340639889240265, 0.08380088955163956, 0.008756592869758606, -0.03938215225934982, 0.2668544352054596, -0.081475168466568, 0.025512224063277245, 0.11088906228542328, 0.04609887674450874, 0.05598814785480499, 0.10333597660064697, 0.03181559592485428, -0.06444486975669861, -0.00770224817097187, -0.009633015841245651, -0.05527711659669876, -0.06662189960479736, -0.079401895403862, -0.10527008771896362, -0.06996532529592514, -0.04666787385940552, 0.025168897584080696, 0.04406530410051346, -0.003262938931584358, -0.015260111540555954, -0.08194364607334137, -0.11830370128154755, -0.014163468033075333, 0.1214803010225296, -0.12504397332668304, -0.02424941025674343, 0.008552506566047668, -0.05119394510984421, 0.0475170724093914, 0.04405755549669266, -0.002083386993035674, 0.07977482676506042, 0.14590394496917725, 0.1508980393409729, 0.09435345232486725, -0.018268024548888206, 0.03099692054092884, -0.06129140406847, -0.014656873419880867, -0.07441902160644531, -0.08989053964614868, -0.049875255674123764, 0.0554625429213047, 0.08827045559883118, 0.021460695192217827, -0.000059607034927466884, -0.10834269225597382, 0.07399985194206238, 0.044045645743608475, 0.1517515629529953, -0.09691397845745087, 0.01852918416261673, 0.02465127967298031, 0.12978962063789368, -0.055748600512742996, 0.0007171411416493356, 0.04192021116614342, -0.0798882320523262, -0.00757489213719964, -0.05264197662472725, 0.06170278787612915, 0.10625553876161575, 0.059516265988349915, -0.008762228302657604, 0.015619704499840736, 0.00453135697171092, 0.12412034720182419, -0.22437684237957, 0.26749542355537415, -0.00856925267726183, -0.0025909659452736378, -0.032008834183216095, -0.0017505120486021042, 0.03678419440984726, 0.06242175027728081, 0.2509567141532898, 0.04489349201321602, -0.07044301182031631, -0.05054697394371033, -0.08128786832094193, 0.029125995934009552, 0.026919446885585785, -0.046450547873973846, 0.0473884716629982, 0.038946427404880524, 0.04216323420405388, 0.04416702315211296, 0.2311193346977234, -0.15020158886909485, -0.10861522704362869, 0.028926219791173935, 0.009395965375006199, 0.025278199464082718, 0.0016157303471118212, -0.0442265123128891, -0.13455837965011597, 0.07030480355024338, -0.04382868856191635, 0.027191270142793655, -0.0974779799580574, 0.1534871906042099, -0.051577311009168625, -0.023006070405244827, -0.11197483539581299, -0.03382837027311325, 0.030134206637740135, -0.06544364988803864, 0.06899938732385635, 0.03862762078642845, 0.05045200139284134, -0.06415905803442001, -0.11730115115642548, 0.10008642077445984, 0.026641378179192543, 0.05637073516845703, -0.04197218641638756, 0.07201582938432693, -0.0385684110224247, -0.1292727142572403, 0.07487568259239197, -0.05745726078748703, 0.004939576610922813, 0.0543597936630249, -0.0816759541630745, 0.011978459544479847, -0.1371677666902542, -0.000756489229388535, 0.287784606218338, 0.26667726039886475, -0.13237343728542328, 0.1473158895969391, 0.02740369364619255, -0.08200088888406754, -0.14625735580921173, -0.07678737491369247, -0.050009988248348236, 0.044080961495637894, 0.0026476045604795218, -0.11833243817090988, 0.01657848432660103, 0.031228311359882355, -0.03152668848633766, 0.02913145162165165, -0.3516121208667755, -0.02197604812681675, 0.03627707436680794, 0.06120169162750244, 0.03658014535903931, -0.028448449447751045, -0.04934989660978317, 0.026849979534745216, -0.13997052609920502, 0.0759303867816925, -0.054477088153362274, 0.07104263454675674, -0.002445341320708394, 0.06587519496679306, -0.010917508974671364, -0.06491907685995102, 0.1621270775794983, -0.03967801108956337, -0.02320484071969986, -0.013118468225002289, -0.21550393104553223, 0.03790238872170448, -0.004432241432368755, 0.060141436755657196, -0.0657334104180336, -0.043853793293237686, -0.23431290686130524, -0.0008275090367533267, -0.17699939012527466, 0.11641567945480347, -0.13212765753269196, -0.06791715323925018, -0.07991833239793777, 0.06968710571527481, 0.060403887182474136, -0.039653580635786057, -0.1379513442516327, -0.11423208564519882, 0.18471375107765198, 0.018748993054032326, -0.08480416983366013, 0.07553154975175858, -0.32775723934173584, 0.021711356937885284, 0.019235646352171898, 0.07580438256263733, -0.05461888387799263, -0.06544151902198792, 0.05319669470191002, 0.043253496289253235, 0.19298291206359863, 0.050711337476968765, -0.07842203974723816, 0.07522512227296829, 0.04176561161875725, -0.1645011156797409, -0.07397954910993576, -0.029916226863861084, -0.08290942758321762, -0.0764903798699379, -0.2275887131690979, 0.06872185319662094, -0.04530804976820946, 0.00852157175540924, -0.002786807483062148, 0.042964644730091095, -0.1000494435429573, -0.03589106723666191, 0.15162676572799683, 0.050988540053367615, -0.023319300264120102, -0.10985223203897476, 0.07383447885513306, -0.15948274731636047, -0.022753294557332993, 0.11144284904003143, -0.06257800757884979, -0.05859913304448128, 0.004933629650622606, 0.23190906643867493, 0.019184036180377007, -0.06410875916481018, -0.006456300616264343, -0.055343400686979294, -0.013429180718958378, 0.016891799867153168, 0.07868554443120956, 0.07014241069555283, -0.11383558064699173, -0.024356186389923096, -0.039220791310071945, 0.015970243141055107, -0.05369936674833298, -0.01782367192208767, -0.023039842024445534, 0.1418907195329666, 0.04316176101565361, 0.09738253802061081, -0.036541156470775604, -0.07980390638113022, -0.08162585645914078, -0.0063788616098463535, -0.0037413006648421288, 0.022312071174383163, -0.04800868779420853, -0.017155934125185013, -0.033355094492435455, 0.02009984478354454, -0.024883346632122993, -0.045588698238134384, -0.055954575538635254, 0.0050120106898248196, 0.014341904781758785, 0.07886234670877457, -0.1542583405971527, 0.02296103909611702, 0.07686672359704971, -0.04945319890975952, 0.009675275534391403, -0.024117309600114822, -0.04364404454827309, -0.007974064908921719, -0.22588267922401428, -0.001542417798191309, 0.03521902859210968, 0.006791123189032078, 0.047994162887334824, -0.14988751709461212, -0.03144630789756775, -0.047707654535770416, 0.013524140231311321, 0.027959076687693596, 0.16358382999897003, -0.08595238626003265, 0.07348879426717758, 0.10458248853683472, -0.04300151392817497, -0.003515147604048252, -0.008985655382275581, 0.01737578958272934, 0.03228253498673439, 0.15222564339637756, -0.039358481764793396, 0.134845569729805, -0.11039740592241287, -0.012094363570213318, -0.03172341361641884, 0.017625227570533752, -0.03481585532426834, 0.0235892403870821, 0.052560947835445404, 0.002089728368446231, 0.11470942199230194, 0.057649094611406326, 0.08885910362005234, 0.039533235132694244, 0.057462628930807114, -0.06090877950191498, -0.028349686414003372, 0.061154380440711975, 0.009996090084314346, 0.007675149943679571, 0.07361768186092377, 0.03850456327199936, -0.034454040229320526, 0.14875811338424683, 0.2302151322364807, 0.10145828127861023, 0.17000547051429749, 0.08075099438428879, -0.04487341642379761, 0.0067367637529969215, -0.150257408618927, -0.014095441438257694, 0.03255562484264374, 0.04321930184960365, -0.05834325775504112, 0.05970802158117294, 0.011106514371931553, -0.13615339994430542, 0.034305471926927567, -0.077582947909832, -0.08661907911300659, -0.05913937836885452, -0.04771379753947258, 0.00921299122273922, -0.04994368925690651, -0.000926235516089946, -0.020731469616293907, 0.026159310713410378, 0.05412697046995163, -0.057595085352659225, -0.020808875560760498, 0.07095001637935638, -0.031804732978343964, -0.03483148291707039, 0.011787009425461292, -0.011468767188489437, 0.03485618159174919, -0.2183186262845993, 0.07562119513750076, 0.007278288248926401, -0.008050198666751385, 0.07109075784683228, 0.022715989500284195, -0.0058436463586986065, -0.03215774521231651, -0.13716663420200348, -0.05392563343048096, -0.02969408594071865, 0.04075963422656059, 0.04452434554696083, 0.1518251895904541, 0.056644875556230545, 0.04352512210607529, -0.03411182016134262, 0.10329976677894592, -0.006303016096353531, -0.11249856650829315, -0.1612558513879776, 0.22758162021636963, -0.09651333838701248, -0.023813527077436447, -0.05887649953365326, -0.04010462388396263, 0.014059590175747871, 0.28822046518325806, 0.2409929633140564, -0.06822741031646729, 0.017230967059731483, -0.047909338027238846, 0.03792339563369751, 0.06344583630561829, 0.08567105233669281, 0.08886539936065674, 0.10994437336921692, -0.12500116229057312, 0.005947295110672712, -0.18358159065246582, -0.05921454355120659, -0.008821465075016022, 0.03938121721148491, 0.09567549079656601, -0.08274263143539429, -0.07509729266166687, 0.15902836620807648, -0.06770000606775284, -0.1600266844034195, 0.06091011315584183, -0.11710424721240997, -0.045136261731386185, -0.014564245007932186, 0.16406653821468353, 0.0009827043395489454, 0.08382569998502731, -0.03636203333735466, -0.08935510367155075, 0.143207848072052, -0.043243158608675, -0.12032503634691238, -0.025421466678380966, 0.07131022214889526, -0.2032228410243988, 0.214152529835701, 0.009521563537418842, 0.0457536019384861, 0.10507321357727051, 0.04635150730609894, -0.058870382606983185, 0.09797114133834839, 0.04825625568628311, 0.09516647458076477, -0.07081577181816101, 0.012880814261734486, 0.0038472518790513277, -0.04808958247303963, 0.0013068424304947257, -0.1995999962091446, 0.12556247413158417, 0.13720393180847168, -0.019980883225798607, -0.09712301194667816, 0.07472239434719086, -0.0555955208837986, 0.1374599039554596, 0.1642749011516571, -0.020988211035728455, 0.010878097265958786, -0.03274740278720856, -0.037282951176166534, 0.0041172378696501255, 0.05553806945681572, -0.057190340012311935, -0.08750670403242111, -0.017010798677802086, 0.04534505680203438, -0.09379979968070984, -0.1897108405828476, -0.09662328660488129, -0.030613521113991737, -0.01993028074502945, 0.09370076656341553, 0.07144740968942642, -0.015164011158049107, 0.0430399551987648, -0.03385941684246063, 0.03808362036943436, -0.0197310633957386, 0.14905646443367004, -0.0791303813457489, -0.053371965885162354 ]
null
null
flair
## English Verb Disambiguation in Flair (fast model) This is the fast verb disambiguation model for English that ships with [Flair](https://github.com/flairNLP/flair/). F1-Score: **88,27** (Ontonotes) - predicts [Proposition Bank verb frames](http://verbs.colorado.edu/propbank/framesets-english-aliases/). Based on [Flair embeddings](https://www.aclweb.org/anthology/C18-1139/) and LSTM-CRF. --- ### Demo: How to use in Flair Requires: **[Flair](https://github.com/flairNLP/flair/)** (`pip install flair`) ```python from flair.data import Sentence from flair.models import SequenceTagger # load tagger tagger = SequenceTagger.load("flair/frame-english-fast") # make example sentence sentence = Sentence("George returned to Berlin to return his hat.") # predict NER tags tagger.predict(sentence) # print sentence print(sentence) # print predicted NER spans print('The following frame tags are found:') # iterate over entities and print for entity in sentence.get_spans('frame'): print(entity) ``` This yields the following output: ``` Span [2]: "returned" [− Labels: return.01 (0.9867)] Span [6]: "return" [− Labels: return.02 (0.4741)] ``` So, the word "*returned*" is labeled as **return.01** (as in *go back somewhere*) while "*return*" is labeled as **return.02** (as in *give back something*) in the sentence "*George returned to Berlin to return his hat*". --- ### Training: Script to train this model The following Flair script was used to train this model: ```python from flair.data import Corpus from flair.datasets import ColumnCorpus from flair.embeddings import WordEmbeddings, StackedEmbeddings, FlairEmbeddings # 1. load the corpus (Ontonotes does not ship with Flair, you need to download and reformat into a column format yourself) corpus = ColumnCorpus( "resources/tasks/srl", column_format={1: "text", 11: "frame"} ) # 2. what tag do we want to predict? tag_type = 'frame' # 3. make the tag dictionary from the corpus tag_dictionary = corpus.make_tag_dictionary(tag_type=tag_type) # 4. initialize each embedding we use embedding_types = [ BytePairEmbeddings("en"), FlairEmbeddings("news-forward-fast"), FlairEmbeddings("news-backward-fast"), ] # embedding stack consists of Flair and GloVe embeddings embeddings = StackedEmbeddings(embeddings=embedding_types) # 5. initialize sequence tagger from flair.models import SequenceTagger tagger = SequenceTagger(hidden_size=256, embeddings=embeddings, tag_dictionary=tag_dictionary, tag_type=tag_type) # 6. initialize trainer from flair.trainers import ModelTrainer trainer = ModelTrainer(tagger, corpus) # 7. run training trainer.train('resources/taggers/frame-english-fast', train_with_dev=True, max_epochs=150) ``` --- ### Cite Please cite the following paper when using this model. ``` @inproceedings{akbik2019flair, title={FLAIR: An easy-to-use framework for state-of-the-art NLP}, author={Akbik, Alan and Bergmann, Tanja and Blythe, Duncan and Rasul, Kashif and Schweter, Stefan and Vollgraf, Roland}, booktitle={{NAACL} 2019, 2019 Conference of the North American Chapter of the Association for Computational Linguistics (Demonstrations)}, pages={54--59}, year={2019} } ``` --- ### Issues? The Flair issue tracker is available [here](https://github.com/flairNLP/flair/issues/).
{"language": "en", "tags": ["flair", "token-classification", "sequence-tagger-model"], "datasets": ["ontonotes"], "widget": [{"text": "George returned to Berlin to return his hat."}]}
token-classification
flair/frame-english-fast
[ "flair", "pytorch", "token-classification", "sequence-tagger-model", "en", "dataset:ontonotes", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #flair #pytorch #token-classification #sequence-tagger-model #en #dataset-ontonotes #region-us
## English Verb Disambiguation in Flair (fast model) This is the fast verb disambiguation model for English that ships with Flair. F1-Score: 88,27 (Ontonotes) - predicts Proposition Bank verb frames. Based on Flair embeddings and LSTM-CRF. --- ### Demo: How to use in Flair Requires: Flair ('pip install flair') This yields the following output: So, the word "*returned*" is labeled as return.01 (as in *go back somewhere*) while "*return*" is labeled as return.02 (as in *give back something*) in the sentence "*George returned to Berlin to return his hat*". --- ### Training: Script to train this model The following Flair script was used to train this model: --- ### Cite Please cite the following paper when using this model. --- ### Issues? The Flair issue tracker is available here.
[ "## English Verb Disambiguation in Flair (fast model)\n\nThis is the fast verb disambiguation model for English that ships with Flair.\n\nF1-Score: 88,27 (Ontonotes) - predicts Proposition Bank verb frames.\n\nBased on Flair embeddings and LSTM-CRF.\n\n---", "### Demo: How to use in Flair\n\nRequires: Flair ('pip install flair')\n\n\n\nThis yields the following output:\n\n\nSo, the word \"*returned*\" is labeled as return.01 (as in *go back somewhere*) while \"*return*\" is labeled as return.02 (as in *give back something*) in the sentence \"*George returned to Berlin to return his hat*\". \n\n\n---", "### Training: Script to train this model\n\nThe following Flair script was used to train this model: \n\n\n\n\n\n---", "### Cite\n\nPlease cite the following paper when using this model.\n\n\n\n---", "### Issues?\n\nThe Flair issue tracker is available here." ]
[ "TAGS\n#flair #pytorch #token-classification #sequence-tagger-model #en #dataset-ontonotes #region-us \n", "## English Verb Disambiguation in Flair (fast model)\n\nThis is the fast verb disambiguation model for English that ships with Flair.\n\nF1-Score: 88,27 (Ontonotes) - predicts Proposition Bank verb frames.\n\nBased on Flair embeddings and LSTM-CRF.\n\n---", "### Demo: How to use in Flair\n\nRequires: Flair ('pip install flair')\n\n\n\nThis yields the following output:\n\n\nSo, the word \"*returned*\" is labeled as return.01 (as in *go back somewhere*) while \"*return*\" is labeled as return.02 (as in *give back something*) in the sentence \"*George returned to Berlin to return his hat*\". \n\n\n---", "### Training: Script to train this model\n\nThe following Flair script was used to train this model: \n\n\n\n\n\n---", "### Cite\n\nPlease cite the following paper when using this model.\n\n\n\n---", "### Issues?\n\nThe Flair issue tracker is available here." ]
[ 37, 75, 96, 22, 15, 15 ]
[ "passage: TAGS\n#flair #pytorch #token-classification #sequence-tagger-model #en #dataset-ontonotes #region-us \n## English Verb Disambiguation in Flair (fast model)\n\nThis is the fast verb disambiguation model for English that ships with Flair.\n\nF1-Score: 88,27 (Ontonotes) - predicts Proposition Bank verb frames.\n\nBased on Flair embeddings and LSTM-CRF.\n\n---### Demo: How to use in Flair\n\nRequires: Flair ('pip install flair')\n\n\n\nThis yields the following output:\n\n\nSo, the word \"*returned*\" is labeled as return.01 (as in *go back somewhere*) while \"*return*\" is labeled as return.02 (as in *give back something*) in the sentence \"*George returned to Berlin to return his hat*\". \n\n\n---### Training: Script to train this model\n\nThe following Flair script was used to train this model: \n\n\n\n\n\n---### Cite\n\nPlease cite the following paper when using this model.\n\n\n\n---### Issues?\n\nThe Flair issue tracker is available here." ]
[ -0.09385324269533157, -0.02568841353058815, -0.004020667634904385, 0.10809233039617538, 0.1158280298113823, 0.010329817421734333, 0.11594208329916, 0.1255909949541092, 0.054593220353126526, 0.10196743160486221, 0.10772020369768143, 0.061722636222839355, 0.12431774288415909, 0.11711468547582626, 0.06590162962675095, -0.2562481462955475, -0.0015663305530324578, -0.057269137352705, -0.01707419753074646, 0.13609348237514496, 0.13937672972679138, -0.016598397865891457, 0.049767278134822845, 0.0010227991733700037, -0.07043877243995667, -0.017419835552573204, 0.014633546583354473, -0.029973501339554787, 0.13581116497516632, 0.04505351558327675, 0.11827907711267471, -0.0033312588930130005, 0.10324323177337646, -0.1475701481103897, 0.0325641855597496, 0.047908611595630646, -0.014955413527786732, 0.05221021920442581, 0.011215743608772755, -0.03377417102456093, 0.19941619038581848, -0.03456609323620796, -0.000835781916975975, 0.06102123111486435, -0.1891322284936905, -0.17463800311088562, -0.1197403222322464, 0.05379695072770119, 0.0850113183259964, 0.08446383476257324, -0.02925841696560383, 0.027872858569025993, -0.05423371121287346, 0.056635819375514984, 0.158364936709404, -0.1973106563091278, -0.0347905233502388, 0.10402475297451019, 0.0947214812040329, 0.013159047812223434, -0.10755627602338791, 0.018825529143214226, -0.03885611146688461, 0.05654003471136093, -0.006247590761631727, -0.011436275206506252, 0.037094272673130035, 0.047555845230817795, -0.16345791518688202, -0.08938369899988174, 0.2118028700351715, 0.02132784202694893, -0.117616206407547, -0.11229832470417023, -0.06347762793302536, 0.004081189166754484, -0.02374468557536602, -0.08375769108533859, 0.0003853818343486637, 0.03889740630984306, 0.1557399481534958, -0.10345261543989182, -0.08331870287656784, -0.05838815122842789, 0.017798908054828644, 0.08556191623210907, -0.044326912611722946, 0.06335248798131943, -0.11733891069889069, 0.13245832920074463, -0.04893765226006508, -0.10969121754169464, -0.009606901556253433, -0.037643853574991226, 0.005729163531213999, -0.00995863787829876, -0.00502242473885417, -0.08867241442203522, -0.0057615539990365505, 0.14792020618915558, 0.11777327954769135, -0.01222995575517416, -0.022039130330085754, 0.0633532926440239, 0.013931060209870338, 0.1897507607936859, -0.11448562890291214, -0.03228263556957245, 0.06263123452663422, 0.05202896147966385, -0.02179861068725586, -0.05792873352766037, -0.12182549387216568, 0.007807777263224125, 0.0020245537161827087, 0.024430861696600914, 0.019382059574127197, 0.014858104288578033, -0.07345020771026611, -0.015812378376722336, 0.15053899586200714, -0.11209611594676971, 0.007989687845110893, 0.05587070807814598, -0.12284044921398163, 0.09791865199804306, 0.0959930345416069, -0.01432872749865055, -0.01790216937661171, 0.05254768580198288, -0.07289616763591766, 0.03834189847111702, -0.08125078678131104, -0.1263333559036255, 0.00572217395529151, -0.006398748606443405, -0.031442802399396896, -0.05614858493208885, -0.17210158705711365, -0.05347369983792305, 0.03009849041700363, -0.027968134731054306, 0.025580940768122673, -0.09677345305681229, -0.08678427338600159, 0.011425281874835491, 0.03659094497561455, 0.030582081526517868, -0.031214872375130653, 0.0724254846572876, -0.053719762712717056, 0.047944702208042145, 0.006264633499085903, 0.011709794402122498, -0.109951913356781, -0.013300122693181038, -0.21165777742862701, 0.061897557228803635, -0.017257576808333397, -0.025637583807110786, -0.10895666480064392, -0.07334477454423904, -0.03127969056367874, 0.025489872321486473, 0.05226637050509453, 0.23312662541866302, -0.3768836259841919, 0.009988621808588505, 0.2558037042617798, -0.07900182902812958, -0.01609455980360508, 0.13760381937026978, -0.08597934991121292, 0.1876741349697113, 0.03581484034657478, 0.06104137748479843, 0.04470210522413254, -0.23225745558738708, -0.0004901646170765162, -0.007218386512249708, -0.16243194043636322, 0.08590894192457199, 0.09013208001852036, -0.023399535566568375, -0.05700160935521126, 0.012586284428834915, -0.09600085020065308, 0.03134668618440628, -0.03543788194656372, -0.03575466200709343, 0.002004712587222457, 0.07053175568580627, 0.0005246754153631628, -0.038725219666957855, -0.08993837237358093, 0.0120035819709301, -0.15943516790866852, -0.09737586975097656, 0.01769685186445713, 0.01386314444243908, 0.020594600588083267, -0.05354193225502968, 0.13256050646305084, 0.055046770721673965, 0.01789890043437481, -0.1316736936569214, -0.021917294710874557, 0.0011010045418515801, -0.023854494094848633, 0.02619829960167408, 0.06525677442550659, 0.03297238424420357, 0.061355315148830414, 0.019600629806518555, 0.013657307252287865, -0.008198718540370464, -0.033991578966379166, -0.04404887557029724, -0.09488499164581299, -0.05198889225721359, -0.06964205205440521, 0.14217692613601685, -0.17995195090770721, 0.06513458490371704, 0.08614381402730942, 0.03927944600582123, -0.04357661306858063, -0.04180782288312912, 0.01972150430083275, -0.01651167683303356, -0.022042876109480858, -0.07342804223299026, 0.06339973956346512, 0.02453184500336647, -0.06852235645055771, -0.019926847890019417, -0.17815512418746948, -0.24845317006111145, 0.04933594539761543, 0.041017405688762665, -0.13821014761924744, -0.06934879720211029, -0.04745203256607056, 0.0004194916400592774, -0.046402670443058014, -0.03949707746505737, 0.16563181579113007, 0.06684236973524094, 0.08045558631420135, -0.08025524020195007, 0.005274168215692043, 0.025331567972898483, -0.07180163264274597, 0.009264216758310795, 0.07439233362674713, 0.03285592794418335, -0.03784165903925896, 0.03156270086765289, 0.03558895364403725, 0.039797741919755936, 0.10290398448705673, 0.0685592070221901, -0.02324868179857731, -0.1271761655807495, 0.04795030876994133, 0.02086011692881584, 0.1261897087097168, 0.0031962725333869457, 0.032386861741542816, 0.04017386958003044, 0.010893141850829124, -0.011107442900538445, -0.1379508376121521, -0.02218513749539852, 0.025080544874072075, -0.06999385356903076, -0.0379486083984375, 0.0838465690612793, -0.03480676934123039, 0.10386689007282257, -0.013295114040374756, -0.07989552617073059, 0.019084779545664787, -0.023538198322057724, -0.10213477164506912, 0.18243391811847687, -0.06092078611254692, -0.1827743798494339, -0.19128428399562836, -0.0897156298160553, -0.0032232808880507946, 0.01406973134726286, 0.02161015197634697, -0.035975564271211624, -0.005206716246902943, -0.05103597044944763, 0.06637763231992722, 0.02545437030494213, -0.09104353189468384, -0.15502049028873444, -0.031055457890033722, -0.0035535285715013742, -0.12516556680202484, -0.05967925116419792, -0.023513633757829666, -0.02184871770441532, 0.027420058846473694, 0.014259498566389084, 0.05795479193329811, 0.13066492974758148, -0.00904193613678217, 0.009033299051225185, -0.03704357147216797, 0.2566414773464203, -0.06195121258497238, 0.13284951448440552, 0.1478857398033142, -0.023198308423161507, 0.08461237698793411, 0.14896756410598755, 0.06137854978442192, -0.08788768202066422, -0.025685830041766167, -0.03423658758401871, -0.088934026658535, -0.14551275968551636, -0.044846951961517334, -0.05030335858464241, -0.01440283190459013, -0.007652269676327705, 0.038900092244148254, 0.08718167990446091, 0.007730958983302116, -0.00825370755046606, -0.0541946180164814, 0.07303248345851898, 0.06884602457284927, 0.005065689329057932, -0.028975648805499077, 0.058866750448942184, 0.019733209162950516, 0.008669528178870678, 0.0658697634935379, 0.014288478530943394, 0.08242983371019363, 0.05954432114958763, 0.012774964794516563, 0.09571295976638794, 0.054641999304294586, 0.015042576007544994, 0.10865072160959244, -0.004936265759170055, -0.006682616658508778, -0.05537905544042587, -0.0841631144285202, -0.026344189420342445, 0.054731983691453934, 0.004569509532302618, 0.05575340986251831, -0.060054898262023926, 0.009404529817402363, 0.04630914703011513, 0.04332125559449196, 0.07467392832040787, -0.18769966065883636, -0.05182608217000961, 0.015879929065704346, 0.05164666846394539, -0.09473321586847305, 0.007133043836802244, 0.025917332619428635, -0.16789832711219788, -0.02400554157793522, -0.08603561669588089, 0.08811481297016144, 0.03987734392285347, 0.01699405163526535, 0.002139135729521513, 0.12021199613809586, -0.04227658733725548, 0.09910152107477188, -0.20694133639335632, 0.22487206757068634, 0.00799148716032505, 0.06981556117534637, -0.06292635947465897, 0.03932783007621765, 0.03967896103858948, 0.019650427624583244, 0.2767234444618225, 0.007482410408556461, -0.07868459075689316, -0.07894395291805267, -0.11152003705501556, -0.012801640667021275, 0.06537278741598129, -0.1061321422457695, 0.10350614041090012, 0.020703811198472977, 0.009967530146241188, -0.011118011549115181, 0.06905218213796616, -0.039843931794166565, -0.0935836210846901, 0.02804650366306305, -0.06915555894374847, -0.013516778126358986, -0.022702431306242943, -0.02165161445736885, -0.03848479688167572, 0.019727984443306923, -0.15012739598751068, -0.014144282788038254, -0.12239443510770798, 0.13238847255706787, 0.04463038221001625, -0.06313073635101318, -0.04922020062804222, -0.04104751721024513, 0.05530126020312309, -0.05143314227461815, -0.003963596187531948, 0.04894936457276344, -0.05741352215409279, -0.04798787087202072, -0.08501583337783813, 0.1303076148033142, 0.08181290328502655, 0.02549014240503311, -0.024343622848391533, 0.06347604840993881, -0.04216159135103226, -0.1386289745569229, 0.05687252804636955, 0.0048006740398705006, 0.0006259646033868194, 0.01811045967042446, -0.11498071998357773, -0.014521033503115177, -0.14519375562667847, 0.06928938627243042, 0.11901164799928665, 0.260001003742218, -0.09925992786884308, 0.09934879839420319, 0.07188157737255096, -0.132808655500412, -0.228252112865448, -0.05998162925243378, 0.016460103914141655, 0.06786293536424637, 0.046561598777770996, -0.1569828987121582, 0.030604401603341103, 0.03989465534687042, -0.004285633098334074, 0.05433136969804764, -0.2851276695728302, -0.09119361639022827, 0.11368866264820099, -0.022462323307991028, 0.035710450261831284, -0.0589514821767807, -0.03292490169405937, 0.02955061011016369, -0.06620927155017853, 0.0037272979971021414, 0.06168109551072121, 0.06539306044578552, 0.0107288658618927, 0.061727266758680344, 0.0185388270765543, -0.05499570071697235, 0.13719041645526886, 0.043525103479623795, 0.0640479028224945, -0.04546056315302849, -0.16388040781021118, 0.09909062832593918, -0.06626638770103455, 0.1301860213279724, 0.03266679868102074, 0.029184512794017792, -0.20621508359909058, -0.025169208645820618, -0.0939134806394577, 0.12446597218513489, -0.07489810138940811, -0.00758480466902256, -0.042946308851242065, 0.06401078402996063, 0.019290385767817497, -0.023252246901392937, -0.0768510103225708, -0.08842781186103821, 0.02183401584625244, 0.1040034145116806, 0.03801048547029495, 0.07617495954036713, -0.12321627885103226, 0.03188109025359154, 0.03717333450913429, 0.048007555305957794, -0.12432663142681122, -0.027125753462314606, 0.09819899499416351, 0.024527819827198982, 0.15702448785305023, 0.07782090455293655, -0.0906836986541748, -0.010573090985417366, 0.026416882872581482, -0.14772149920463562, -0.13190250098705292, -0.029147455468773842, 0.023606829345226288, -0.09942982345819473, -0.11621938645839691, 0.08810477703809738, -0.05503698065876961, 0.00035277780261822045, 0.007979749701917171, 0.06330087035894394, -0.0752313882112503, 0.021604303270578384, 0.06028958037495613, 0.0689014419913292, -0.03727953881025314, 0.03095296397805214, 0.08131859451532364, -0.06411242485046387, 0.020229779183864594, 0.05229414626955986, -0.0802277997136116, -0.04063941538333893, -0.048984769731760025, 0.2561149001121521, -0.02602475881576538, 0.01636474020779133, -0.03997909650206566, -0.03820062056183815, -0.00694811949506402, 0.14223739504814148, 0.05108019337058067, 0.00007471998105756938, -0.1435001641511917, -0.0005784433451481164, -0.1090431809425354, 0.09224526584148407, 0.09564090520143509, -0.058816246688365936, 0.00838343147188425, 0.1070636659860611, 0.02405361458659172, 0.05176163837313652, -0.0295170359313488, -0.053397782146930695, -0.07780785113573074, 0.005655557382851839, 0.02541702426970005, -0.018967481330037117, -0.0014839645009487867, -0.0014512983616441488, -0.016487514600157738, -0.01776927337050438, 0.01250844169408083, -0.01993165910243988, -0.02844879776239395, -0.0007511776057071984, -0.022237954661250114, 0.08201051503419876, -0.10995794832706451, -0.0648115947842598, 0.05109906569123268, -0.08501525223255157, 0.03029438480734825, 0.13116127252578735, -0.03708634525537491, 0.0024148973170667887, -0.11208003014326096, 0.04216895252466202, -0.020753439515829086, 0.007297297939658165, 0.015572586096823215, -0.154456228017807, 0.04359164461493492, -0.0583723783493042, -0.030193163082003593, -0.024141909554600716, -0.01061486266553402, -0.07128315418958664, 0.08614727109670639, 0.09837057441473007, -0.027343252673745155, -0.06585335731506348, 0.05858086049556732, 0.07764904946088791, 0.08939603716135025, 0.12025708705186844, -0.04303354769945145, 0.14314205944538116, -0.1655639261007309, -0.02393854223191738, -0.008781139738857746, -0.015284442342817783, -0.06900212168693542, -0.05549311265349388, 0.0766112208366394, -0.018682662397623062, 0.06305544823408127, 0.08309878408908844, 0.056886665523052216, 0.01410868763923645, 0.09618566185235977, -0.0026187212206423283, -0.005438885185867548, -0.007277090102434158, 0.0026422985829412937, -0.006238813977688551, 0.036706458777189255, 0.043999310582876205, -0.02211723104119301, 0.024635514244437218, 0.18863731622695923, 0.0775362029671669, 0.057069603353738785, 0.08949098736047745, 0.018997816368937492, -0.017758026719093323, -0.05901457741856575, -0.0013787888456135988, 0.04989270120859146, 0.006861453875899315, -0.07100513577461243, 0.09470619261264801, 0.10824621468782425, -0.11490864306688309, 0.12052266299724579, 0.005193926859647036, -0.11558393388986588, -0.118948794901371, -0.20020924508571625, 0.007438960485160351, 0.0016208201413974166, -0.009824627079069614, -0.06508298218250275, 0.06265448778867722, 0.09584559500217438, -0.011931425891816616, -0.015528183430433273, 0.12580056488513947, -0.09291177988052368, -0.03885479271411896, 0.044767268002033234, -0.018797487020492554, 0.052809420973062515, -0.06011494621634483, 0.05549236014485359, 0.03746791183948517, -0.04434169456362724, 0.056975144892930984, 0.05460574850440025, 0.13845667243003845, -0.00014453484618570656, -0.14973732829093933, -0.09311045706272125, -0.021017540246248245, 0.014139347709715366, -0.0581592433154583, 0.11393527686595917, 0.060964930802583694, -0.0005838591605424881, 0.0032776386942714453, 0.12440552562475204, -0.0022345653269439936, -0.11669252812862396, -0.12977619469165802, 0.25513938069343567, -0.005832596682012081, 0.025476964190602303, -0.0926230251789093, -0.06290047615766525, 0.038133617490530014, 0.1862751543521881, 0.13840077817440033, -0.0457988977432251, -0.044701315462589264, 0.04534114897251129, 0.024029552936553955, 0.09838700294494629, 0.03447095304727554, 0.03774695470929146, 0.17943817377090454, -0.09189240634441376, 0.054487574845552444, -0.10566315054893494, -0.055058807134628296, -0.005288227926939726, 0.11117778718471527, 0.015705375000834465, -0.008530205115675926, -0.06118088588118553, 0.13282042741775513, -0.05725930258631706, -0.1567264199256897, 0.0023877497296780348, -0.051383018493652344, -0.057499051094055176, -0.018344776704907417, 0.0153805585578084, 0.029464973136782646, 0.11218414455652237, -0.037233248353004456, -0.06346001476049423, 0.25903695821762085, -0.01670440100133419, -0.060037318617105484, -0.03269064053893089, 0.006406740751117468, -0.19981762766838074, 0.1805897206068039, -0.002847264287993312, 0.0924624651670456, 0.09714513272047043, 0.03985299915075302, -0.08480078727006912, 0.03303806483745575, 0.01147837657481432, 0.03334128484129906, -0.02797711454331875, 0.04694738611578941, 0.0008046340080909431, -0.07546401023864746, -0.0029646530747413635, -0.1303092986345291, 0.09326409548521042, -0.03481149300932884, -0.07921796292066574, -0.06839260458946228, 0.10177725553512573, -0.027292119339108467, 0.12053027004003525, 0.14579059183597565, -0.020048050209879875, 0.012025200761854649, -0.061195988208055496, -0.010230745188891888, 0.08281263709068298, 0.09269339591264725, -0.0060235559940338135, -0.11254573613405228, 0.0266620721668005, -0.05056128278374672, -0.017942748963832855, -0.20369605720043182, -0.08747562021017075, 0.02997121587395668, -0.02709183655679226, 0.02583225443959236, 0.0886966735124588, -0.00041047559352591634, 0.08196008950471878, -0.0412043035030365, 0.03704022616147995, -0.01065395213663578, 0.17118312418460846, -0.10153798758983612, -0.0759037509560585 ]
null
null
flair
## English Verb Disambiguation in Flair (default model) This is the standard verb disambiguation model for English that ships with [Flair](https://github.com/flairNLP/flair/). F1-Score: **89,34** (Ontonotes) - predicts [Proposition Bank verb frames](http://verbs.colorado.edu/propbank/framesets-english-aliases/). Based on [Flair embeddings](https://www.aclweb.org/anthology/C18-1139/) and LSTM-CRF. --- ### Demo: How to use in Flair Requires: **[Flair](https://github.com/flairNLP/flair/)** (`pip install flair`) ```python from flair.data import Sentence from flair.models import SequenceTagger # load tagger tagger = SequenceTagger.load("flair/frame-english") # make example sentence sentence = Sentence("George returned to Berlin to return his hat.") # predict NER tags tagger.predict(sentence) # print sentence print(sentence) # print predicted NER spans print('The following frame tags are found:') # iterate over entities and print for entity in sentence.get_spans('frame'): print(entity) ``` This yields the following output: ``` Span [2]: "returned" [− Labels: return.01 (0.9951)] Span [6]: "return" [− Labels: return.02 (0.6361)] ``` So, the word "*returned*" is labeled as **return.01** (as in *go back somewhere*) while "*return*" is labeled as **return.02** (as in *give back something*) in the sentence "*George returned to Berlin to return his hat*". --- ### Training: Script to train this model The following Flair script was used to train this model: ```python from flair.data import Corpus from flair.datasets import ColumnCorpus from flair.embeddings import WordEmbeddings, StackedEmbeddings, FlairEmbeddings # 1. load the corpus (Ontonotes does not ship with Flair, you need to download and reformat into a column format yourself) corpus = ColumnCorpus( "resources/tasks/srl", column_format={1: "text", 11: "frame"} ) # 2. what tag do we want to predict? tag_type = 'frame' # 3. make the tag dictionary from the corpus tag_dictionary = corpus.make_tag_dictionary(tag_type=tag_type) # 4. initialize each embedding we use embedding_types = [ BytePairEmbeddings("en"), FlairEmbeddings("news-forward"), FlairEmbeddings("news-backward"), ] # embedding stack consists of Flair and GloVe embeddings embeddings = StackedEmbeddings(embeddings=embedding_types) # 5. initialize sequence tagger from flair.models import SequenceTagger tagger = SequenceTagger(hidden_size=256, embeddings=embeddings, tag_dictionary=tag_dictionary, tag_type=tag_type) # 6. initialize trainer from flair.trainers import ModelTrainer trainer = ModelTrainer(tagger, corpus) # 7. run training trainer.train('resources/taggers/frame-english', train_with_dev=True, max_epochs=150) ``` --- ### Cite Please cite the following paper when using this model. ``` @inproceedings{akbik2019flair, title={FLAIR: An easy-to-use framework for state-of-the-art NLP}, author={Akbik, Alan and Bergmann, Tanja and Blythe, Duncan and Rasul, Kashif and Schweter, Stefan and Vollgraf, Roland}, booktitle={{NAACL} 2019, 2019 Conference of the North American Chapter of the Association for Computational Linguistics (Demonstrations)}, pages={54--59}, year={2019} } ``` --- ### Issues? The Flair issue tracker is available [here](https://github.com/flairNLP/flair/issues/).
{"language": "en", "tags": ["flair", "token-classification", "sequence-tagger-model"], "datasets": ["ontonotes"], "widget": [{"text": "George returned to Berlin to return his hat."}]}
token-classification
flair/frame-english
[ "flair", "pytorch", "token-classification", "sequence-tagger-model", "en", "dataset:ontonotes", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #flair #pytorch #token-classification #sequence-tagger-model #en #dataset-ontonotes #region-us
## English Verb Disambiguation in Flair (default model) This is the standard verb disambiguation model for English that ships with Flair. F1-Score: 89,34 (Ontonotes) - predicts Proposition Bank verb frames. Based on Flair embeddings and LSTM-CRF. --- ### Demo: How to use in Flair Requires: Flair ('pip install flair') This yields the following output: So, the word "*returned*" is labeled as return.01 (as in *go back somewhere*) while "*return*" is labeled as return.02 (as in *give back something*) in the sentence "*George returned to Berlin to return his hat*". --- ### Training: Script to train this model The following Flair script was used to train this model: --- ### Cite Please cite the following paper when using this model. --- ### Issues? The Flair issue tracker is available here.
[ "## English Verb Disambiguation in Flair (default model)\n\nThis is the standard verb disambiguation model for English that ships with Flair.\n\nF1-Score: 89,34 (Ontonotes) - predicts Proposition Bank verb frames.\n\nBased on Flair embeddings and LSTM-CRF.\n\n---", "### Demo: How to use in Flair\n\nRequires: Flair ('pip install flair')\n\n\n\nThis yields the following output:\n\n\nSo, the word \"*returned*\" is labeled as return.01 (as in *go back somewhere*) while \"*return*\" is labeled as return.02 (as in *give back something*) in the sentence \"*George returned to Berlin to return his hat*\". \n\n\n---", "### Training: Script to train this model\n\nThe following Flair script was used to train this model: \n\n\n\n\n\n---", "### Cite\n\nPlease cite the following paper when using this model.\n\n\n\n---", "### Issues?\n\nThe Flair issue tracker is available here." ]
[ "TAGS\n#flair #pytorch #token-classification #sequence-tagger-model #en #dataset-ontonotes #region-us \n", "## English Verb Disambiguation in Flair (default model)\n\nThis is the standard verb disambiguation model for English that ships with Flair.\n\nF1-Score: 89,34 (Ontonotes) - predicts Proposition Bank verb frames.\n\nBased on Flair embeddings and LSTM-CRF.\n\n---", "### Demo: How to use in Flair\n\nRequires: Flair ('pip install flair')\n\n\n\nThis yields the following output:\n\n\nSo, the word \"*returned*\" is labeled as return.01 (as in *go back somewhere*) while \"*return*\" is labeled as return.02 (as in *give back something*) in the sentence \"*George returned to Berlin to return his hat*\". \n\n\n---", "### Training: Script to train this model\n\nThe following Flair script was used to train this model: \n\n\n\n\n\n---", "### Cite\n\nPlease cite the following paper when using this model.\n\n\n\n---", "### Issues?\n\nThe Flair issue tracker is available here." ]
[ 37, 75, 96, 22, 15, 15 ]
[ "passage: TAGS\n#flair #pytorch #token-classification #sequence-tagger-model #en #dataset-ontonotes #region-us \n## English Verb Disambiguation in Flair (default model)\n\nThis is the standard verb disambiguation model for English that ships with Flair.\n\nF1-Score: 89,34 (Ontonotes) - predicts Proposition Bank verb frames.\n\nBased on Flair embeddings and LSTM-CRF.\n\n---### Demo: How to use in Flair\n\nRequires: Flair ('pip install flair')\n\n\n\nThis yields the following output:\n\n\nSo, the word \"*returned*\" is labeled as return.01 (as in *go back somewhere*) while \"*return*\" is labeled as return.02 (as in *give back something*) in the sentence \"*George returned to Berlin to return his hat*\". \n\n\n---### Training: Script to train this model\n\nThe following Flair script was used to train this model: \n\n\n\n\n\n---### Cite\n\nPlease cite the following paper when using this model.\n\n\n\n---### Issues?\n\nThe Flair issue tracker is available here." ]
[ -0.09481070190668106, -0.006538239773362875, -0.004002320114523172, 0.10720296949148178, 0.11911100149154663, 0.012423484586179256, 0.12272780388593674, 0.12201778590679169, 0.06094275787472725, 0.10303807258605957, 0.1122765988111496, 0.05828210338950157, 0.12299235910177231, 0.1151522770524025, 0.060061000287532806, -0.25913599133491516, -0.0033996854908764362, -0.05461311340332031, -0.01845511980354786, 0.1335974782705307, 0.13550248742103577, -0.013423279859125614, 0.04969935864210129, 0.0015294880140572786, -0.08174311369657516, -0.00821553636342287, 0.02156534232199192, -0.02955000475049019, 0.1327802836894989, 0.04267599806189537, 0.12419445067644119, -0.005059915594756603, 0.11326359212398529, -0.15310052037239075, 0.03419141843914986, 0.04702107980847359, -0.022162266075611115, 0.05311690270900726, 0.015230925753712654, -0.048735715448856354, 0.210543692111969, -0.020356250926852226, 0.00531109469011426, 0.0640222504734993, -0.18837419152259827, -0.17316634953022003, -0.1222086176276207, 0.08392222225666046, 0.08217384666204453, 0.07685533910989761, -0.027491288259625435, 0.023859193548560143, -0.03384105861186981, 0.06085624545812607, 0.14341746270656586, -0.1752893477678299, -0.03062494657933712, 0.12223231047391891, 0.08295504748821259, 0.008701597340404987, -0.10628378391265869, 0.015007137320935726, -0.032440464943647385, 0.05762150138616562, -0.01385795883834362, -0.013977942988276482, 0.04294547066092491, 0.041383787989616394, -0.15436320006847382, -0.1033320426940918, 0.23833903670310974, 0.02377450279891491, -0.12182141840457916, -0.10117358714342117, -0.06341461837291718, 0.008775800466537476, -0.009005180560052395, -0.07268354296684265, -0.012664501555263996, 0.04068424552679062, 0.16706697642803192, -0.09951398521661758, -0.08181418478488922, -0.05679548531770706, 0.018537649884819984, 0.08255179971456528, -0.04394121468067169, 0.062050070613622665, -0.12091370671987534, 0.1366664469242096, -0.058520782738924026, -0.11209489405155182, -0.0010387221118435264, -0.03894801065325737, 0.004284009337425232, -0.0025702915154397488, -0.003875491674989462, -0.09739576280117035, -0.01256980374455452, 0.16618481278419495, 0.11726297438144684, -0.009766093455255032, -0.02754802815616131, 0.06553542613983154, 0.02569851279258728, 0.18883202970027924, -0.1126101166009903, -0.024469483643770218, 0.06405845284461975, 0.04934617131948471, -0.02483765408396721, -0.05957280844449997, -0.11999402940273285, 0.008496522903442383, 0.003140165703371167, 0.015371312387287617, 0.026303663849830627, 0.018219485878944397, -0.06456523388624191, -0.01585257798433304, 0.1606212705373764, -0.11964351683855057, 0.007411657366901636, 0.05429920554161072, -0.11036276817321777, 0.0960010290145874, 0.1143985390663147, -0.01805691607296467, -0.014242776669561863, 0.05531115457415581, -0.07467366755008698, 0.03554295003414154, -0.0805426836013794, -0.12268449366092682, 0.006368414964526892, -0.01136834267526865, -0.028314273804426193, -0.05906492471694946, -0.16138049960136414, -0.05332617834210396, 0.032750874757766724, -0.01654387265443802, 0.026201069355010986, -0.0918787494301796, -0.08284611254930496, 0.004409319721162319, 0.03425285592675209, 0.02192848175764084, -0.02355123497545719, 0.0650014653801918, -0.0522819384932518, 0.040861837565898895, -0.007573000155389309, 0.010398303158581257, -0.09917990118265152, -0.0029571724589914083, -0.2103002816438675, 0.051951099187135696, -0.016353633254766464, -0.027198027819395065, -0.1035727709531784, -0.07143305242061615, -0.017285790294408798, 0.020130960270762444, 0.05571464076638222, 0.22449615597724915, -0.37093624472618103, 0.008289456367492676, 0.2610163688659668, -0.08815216273069382, -0.012534881010651588, 0.12388085573911667, -0.08861877024173737, 0.185184046626091, 0.0344221293926239, 0.06972751766443253, 0.040678463876247406, -0.23085488379001617, -0.0032462109811604023, -0.022460730746388435, -0.14987260103225708, 0.08575782924890518, 0.08320355415344238, -0.03139401599764824, -0.06321558356285095, 0.01696951873600483, -0.0990614965558052, 0.02373342402279377, -0.03203216567635536, -0.03499075025320053, -0.007225077599287033, 0.07617871463298798, -0.0036843023262917995, -0.034599050879478455, -0.09612831473350525, 0.008953262120485306, -0.1562204360961914, -0.09383458644151688, 0.013939659111201763, 0.0012875142274424434, 0.024955950677394867, -0.051865916699171066, 0.13158917427062988, 0.05390775948762894, 0.018050678074359894, -0.14006493985652924, -0.0114723090082407, -0.00483638746663928, -0.024402214214205742, 0.035663433372974396, 0.06822893768548965, 0.027104433625936508, 0.06680092960596085, 0.015779836103320122, 0.012271649204194546, -0.013717801310122013, -0.03030645102262497, -0.031169982627034187, -0.09669199585914612, -0.0585833303630352, -0.07640378177165985, 0.12598098814487457, -0.17675264179706573, 0.0708109512925148, 0.07589517533779144, 0.045998815447092056, -0.04620863124728203, -0.049649737775325775, 0.016332974657416344, -0.010418672114610672, -0.026680411770939827, -0.07244081795215607, 0.059950023889541626, 0.024903077632188797, -0.06861797720193863, -0.03771882504224777, -0.18778008222579956, -0.26498281955718994, 0.0497773252427578, 0.03972873091697693, -0.13965106010437012, -0.071828693151474, -0.04908926784992218, 0.0053781731985509396, -0.04100741818547249, -0.04459217190742493, 0.19093802571296692, 0.06609765440225601, 0.07408245652914047, -0.07376941293478012, 0.005061757750809193, 0.027124041691422462, -0.07746719568967819, -0.0003416560939513147, 0.062149062752723694, 0.029508167877793312, -0.03656286746263504, 0.032770123332738876, 0.019915657117962837, 0.03878489509224892, 0.09490571916103363, 0.06613235920667648, -0.012980345636606216, -0.12748806178569794, 0.04305747151374817, 0.020598307251930237, 0.1394282430410385, -0.0064336215145885944, 0.032601289451122284, 0.0393427275121212, 0.01638489030301571, -0.011131592094898224, -0.13600079715251923, -0.020124973729252815, 0.02256765030324459, -0.0675782635807991, -0.06523247808218002, 0.07995124906301498, -0.03948325291275978, 0.1017443835735321, -0.02207356132566929, -0.0649600476026535, 0.014070002362132072, -0.023756179958581924, -0.10734307765960693, 0.17798978090286255, -0.07008089125156403, -0.17489582300186157, -0.19207477569580078, -0.08635453879833221, -0.01742694340646267, 0.020242951810359955, 0.02168693020939827, -0.03570162132382393, -0.010218924842774868, -0.04634920880198479, 0.07143165916204453, 0.02612489089369774, -0.09161502867937088, -0.15260812640190125, -0.03414604067802429, 0.00468903174623847, -0.12765924632549286, -0.05975928530097008, -0.017842842265963554, -0.019959449768066406, 0.029854869470000267, 0.01499760802835226, 0.058957789093256, 0.13706067204475403, -0.015146433375775814, 0.017580315470695496, -0.032767754048109055, 0.253644734621048, -0.05306177958846092, 0.1355142444372177, 0.14737044274806976, -0.03542337194085121, 0.07950066030025482, 0.15875355899333954, 0.05670374631881714, -0.09073349833488464, -0.025489680469036102, -0.03805944323539734, -0.09675606340169907, -0.1505683958530426, -0.04493440315127373, -0.04985865205526352, -0.018825886771082878, 0.005797514691948891, 0.0377013199031353, 0.09602469205856323, 0.01294146291911602, -0.013721847906708717, -0.059094130992889404, 0.07492976635694504, 0.07313717156648636, 0.0036149374209344387, -0.030252112075686455, 0.057483166456222534, 0.02206932008266449, 0.016163034364581108, 0.058947738260030746, 0.029864683747291565, 0.08526743203401566, 0.0647522434592247, -0.0006667072884738445, 0.1049647256731987, 0.050290390849113464, 0.009779896587133408, 0.12127257138490677, -0.007968428544700146, 0.004235658794641495, -0.05092580243945122, -0.07631639391183853, -0.029552560299634933, 0.0470285564661026, 0.003982696682214737, 0.056055184453725815, -0.06501504778862, -0.018743107095360756, 0.039260342717170715, 0.026342982426285744, 0.07114801555871964, -0.1824018806219101, -0.04998182877898216, 0.02014070749282837, 0.055756501853466034, -0.0955868735909462, 0.0025541894137859344, 0.029323671013116837, -0.16819033026695251, -0.007071704138070345, -0.083734430372715, 0.09101691097021103, 0.04000573977828026, 0.009491926990449429, -0.005308755673468113, 0.10900399833917618, -0.04597317799925804, 0.09506982564926147, -0.2004929482936859, 0.23581765592098236, 0.007116701453924179, 0.06649520248174667, -0.05912826582789421, 0.04563464596867561, 0.032374702394008636, 0.034830667078495026, 0.2713085412979126, 0.008783280849456787, -0.09721209108829498, -0.06947607547044754, -0.09933169186115265, -0.010781694203615189, 0.05058610439300537, -0.11703622341156006, 0.10301104933023453, 0.026386819779872894, 0.010813364759087563, -0.01191198080778122, 0.0715857520699501, -0.05652712658047676, -0.09751792252063751, 0.023747257888317108, -0.07127712666988373, -0.011302287690341473, -0.022637730464339256, -0.0211105328053236, -0.03567805886268616, 0.015063567087054253, -0.1519065499305725, -0.01509019173681736, -0.12453289330005646, 0.13410647213459015, 0.04307227581739426, -0.06253334879875183, -0.05305013060569763, -0.04490044713020325, 0.05802324041724205, -0.061893682926893234, -0.009525319561362267, 0.038213495165109634, -0.05456450581550598, -0.0425582118332386, -0.08037643134593964, 0.12877559661865234, 0.08968540281057358, 0.02119857631623745, -0.01982862502336502, 0.066788449883461, -0.03615680709481239, -0.142562136054039, 0.057867877185344696, 0.01184538472443819, 0.027637260034680367, 0.020139649510383606, -0.11627397686243057, -0.0309432465583086, -0.14412935078144073, 0.07685983180999756, 0.10197000950574875, 0.25091734528541565, -0.09911826997995377, 0.09147636592388153, 0.06386279314756393, -0.13943465054035187, -0.21655626595020294, -0.05377625301480293, 0.01143866591155529, 0.06827227771282196, 0.045740753412246704, -0.15467169880867004, 0.016117138788104057, 0.024793829768896103, -0.0013372452231124043, 0.05334991589188576, -0.2678241431713104, -0.09316269308328629, 0.11729525774717331, -0.011178570799529552, 0.024475738406181335, -0.049680445343256, -0.027430733665823936, 0.0272702444344759, -0.06455167382955551, 0.0035644671879708767, 0.07680907100439072, 0.05651983246207237, 0.013270051218569279, 0.07130186259746552, 0.018837515264749527, -0.053092602640390396, 0.14157767593860626, 0.05825382471084595, 0.06235026568174362, -0.04905045032501221, -0.16438034176826477, 0.10553836822509766, -0.06449240446090698, 0.12797364592552185, 0.027291471138596535, 0.029573334380984306, -0.19758272171020508, -0.02688363939523697, -0.09044836461544037, 0.1262870579957962, -0.07634686678647995, -0.010089418850839138, -0.04019094258546829, 0.055707186460494995, 0.01912001706659794, -0.021206030622124672, -0.07144097238779068, -0.09795175492763519, 0.0375676155090332, 0.11870142817497253, 0.036319609731435776, 0.09110426902770996, -0.13166168332099915, 0.036571208387613297, 0.035109587013721466, 0.04585158824920654, -0.13321807980537415, -0.028864996507763863, 0.09409314393997192, 0.02484283410012722, 0.15782609581947327, 0.07824862003326416, -0.09374508261680603, -0.013269541785120964, 0.028291871771216393, -0.15096528828144073, -0.1174246072769165, -0.02064768597483635, 0.021141575649380684, -0.09728790074586868, -0.11290523409843445, 0.08510275185108185, -0.05184752866625786, -0.000982368248514831, 0.005421028006821871, 0.059254445135593414, -0.08146350830793381, 0.016577936708927155, 0.06285125017166138, 0.06544443219900131, -0.03379061818122864, 0.02345864847302437, 0.07757985591888428, -0.06608114391565323, 0.02109374664723873, 0.033991437405347824, -0.07769742608070374, -0.03959747031331062, -0.04992375522851944, 0.26584476232528687, -0.028858480975031853, 0.010667224414646626, -0.03418634831905365, -0.0372655913233757, -0.012945860624313354, 0.1344270259141922, 0.051904283463954926, -0.0042352378368377686, -0.1456395983695984, -0.004880446009337902, -0.1133827492594719, 0.09053324162960052, 0.09914755821228027, -0.05518673360347748, 0.0027245343662798405, 0.09880085289478302, 0.028867637738585472, 0.048908352851867676, -0.02580060251057148, -0.05351024493575096, -0.07412847876548767, 0.004068822134286165, 0.030765684321522713, -0.01712021976709366, -0.005583804566413164, 0.0006945890490897, -0.013242233544588089, -0.026157738640904427, 0.012069598771631718, -0.017745913937687874, -0.02913564443588257, -0.000920241407584399, -0.02189200185239315, 0.08293856680393219, -0.10443763434886932, -0.06116928160190582, 0.05545461177825928, -0.08762048929929733, 0.027523431926965714, 0.13152973353862762, -0.04445072263479233, 0.008212119340896606, -0.10932108014822006, 0.05321180820465088, -0.019904758781194687, 0.011196990497410297, 0.011180538684129715, -0.1585407853126526, 0.04749570041894913, -0.05738174542784691, -0.03094867616891861, -0.024180926382541656, -0.0056052361615002155, -0.07146759331226349, 0.07898188382387161, 0.10662782937288284, -0.03589852899312973, -0.060733407735824585, 0.05465315282344818, 0.08215805888175964, 0.09426943957805634, 0.11248264461755753, -0.041016820818185806, 0.14761275053024292, -0.1729886829853058, -0.025053177028894424, -0.003072163788601756, -0.009489213116466999, -0.060249943286180496, -0.055030107498168945, 0.07192302495241165, -0.01357747707515955, 0.06503073871135712, 0.0803431048989296, 0.05436862260103226, 0.012550074607133865, 0.10380520671606064, 0.011674195528030396, -0.0037889406085014343, 0.006853272207081318, -0.014331720769405365, -0.0063131144270300865, 0.03605860471725464, 0.04596933722496033, -0.032163601368665695, -0.002226844197139144, 0.19240263104438782, 0.06658520549535751, 0.04494696110486984, 0.07335606217384338, 0.016248682513833046, -0.024889083579182625, -0.04568914324045181, -0.01183994673192501, 0.05807669833302498, 0.0015799354296177626, -0.06943889707326889, 0.07890769094228745, 0.11019463837146759, -0.12770481407642365, 0.12933441996574402, 0.01077191811054945, -0.11769573390483856, -0.11533188819885254, -0.21953703463077545, 0.011659127660095692, -0.0042879641987383366, -0.0057821995578706264, -0.06335467845201492, 0.0511808767914772, 0.08740010857582092, -0.020772388204932213, -0.01866946741938591, 0.11767233908176422, -0.08918550610542297, -0.03922007977962494, 0.028773782774806023, -0.011191547848284245, 0.050028443336486816, -0.06331382691860199, 0.06026477366685867, 0.042043138295412064, -0.04306434094905853, 0.05667098984122276, 0.06142804026603699, 0.1461000144481659, -0.003115307306870818, -0.14620481431484222, -0.08334993571043015, -0.021678537130355835, 0.011116601526737213, -0.056368499994277954, 0.13575203716754913, 0.05761963129043579, 0.0031155303586274385, 0.0034012661781162024, 0.11245056986808777, 0.002351070288568735, -0.10690509527921677, -0.1374436467885971, 0.24824006855487823, -0.008077802136540413, 0.02338113635778427, -0.0810338631272316, -0.06056315451860428, 0.03428289294242859, 0.17040927708148956, 0.14140227437019348, -0.021038079634308815, -0.04591246694326401, 0.03375864401459694, 0.023203181102871895, 0.10284680128097534, 0.03489498794078827, 0.029411418363451958, 0.17392267286777496, -0.08332888036966324, 0.05409379303455353, -0.10674998909235, -0.052362799644470215, 0.004989802371710539, 0.1032162457704544, 0.010340378619730473, -0.023723969236016273, -0.056180018931627274, 0.14057238399982452, -0.056466784328222275, -0.15972082316875458, 0.020833555608987808, -0.05429431423544884, -0.0509454570710659, -0.012645222246646881, 0.030295338481664658, 0.024077896028757095, 0.1109570637345314, -0.04245184734463692, -0.06468437612056732, 0.27729716897010803, -0.016084903851151466, -0.05538197234272957, -0.0432211235165596, -0.0015780521789565682, -0.20728103816509247, 0.18600931763648987, -0.005352707579731941, 0.09805930405855179, 0.09442251920700073, 0.04109473526477814, -0.07911024987697601, 0.030011076480150223, 0.009770955890417099, 0.04982079938054085, -0.03209443390369415, 0.05248972028493881, -0.0030743295792490244, -0.08394269645214081, -0.013006387278437614, -0.12991644442081451, 0.09085901081562042, -0.043360572308301926, -0.07538893818855286, -0.06625042855739594, 0.10983426868915558, -0.038484957069158554, 0.12370796501636505, 0.13204814493656158, -0.025981657207012177, 0.01410618145018816, -0.05656428635120392, -0.006401095539331436, 0.08517035841941833, 0.09453325718641281, -0.001187568181194365, -0.11198665201663971, 0.022185994312167168, -0.05297593027353287, -0.022161543369293213, -0.20921888947486877, -0.08531484007835388, 0.03549116477370262, -0.03207015246152878, 0.024468177929520607, 0.08814643323421478, -0.014687343500554562, 0.08202623575925827, -0.04524468630552292, 0.03450670465826988, -0.013846160843968391, 0.17127715051174164, -0.10044123977422714, -0.07604389637708664 ]
null
null
flair
# Danish NER in Flair (default model) This is the standard 4-class NER model for Danish that ships with [Flair](https://github.com/flairNLP/flair/). F1-Score: **81.78** (DaNER) Predicts 4 tags: | **tag** | **meaning** | |---------------------------------|-----------| | PER | person name | | LOC | location name | | ORG | organization name | | MISC | other name | Based on Transformer embeddings and LSTM-CRF. --- # Demo: How to use in Flair Requires: **[Flair](https://github.com/flairNLP/flair/)** (`pip install flair`) ```python from flair.data import Sentence from flair.models import SequenceTagger # load tagger tagger = SequenceTagger.load("flair/ner-danish") # make example sentence sentence = Sentence("Jens Peter Hansen kommer fra Danmark") # predict NER tags tagger.predict(sentence) # print sentence print(sentence) # print predicted NER spans print('The following NER tags are found:') # iterate over entities and print for entity in sentence.get_spans('ner'): print(entity) ``` This yields the following output: ``` Span [1,2,3]: "Jens Peter Hansen" [− Labels: PER (0.9961)] Span [6]: "Danmark" [− Labels: LOC (0.9816)] ``` So, the entities "*Jens Peter Hansen*" (labeled as a **person**) and "*Danmark*" (labeled as a **location**) are found in the sentence "*Jens Peter Hansen kommer fra Danmark*". --- ### Training: Script to train this model The model was trained by the [DaNLP project](https://github.com/alexandrainst/danlp) using the [DaNE corpus](https://github.com/alexandrainst/danlp/blob/master/docs/docs/datasets.md#danish-dependency-treebank-dane-dane). Check their repo for more information. The following Flair script may be used to train such a model: ```python from flair.data import Corpus from flair.datasets import DANE from flair.embeddings import WordEmbeddings, StackedEmbeddings, FlairEmbeddings # 1. get the corpus corpus: Corpus = DANE() # 2. what tag do we want to predict? tag_type = 'ner' # 3. make the tag dictionary from the corpus tag_dictionary = corpus.make_tag_dictionary(tag_type=tag_type) # 4. initialize each embedding we use embedding_types = [ # GloVe embeddings WordEmbeddings('da'), # contextual string embeddings, forward FlairEmbeddings('da-forward'), # contextual string embeddings, backward FlairEmbeddings('da-backward'), ] # embedding stack consists of Flair and GloVe embeddings embeddings = StackedEmbeddings(embeddings=embedding_types) # 5. initialize sequence tagger from flair.models import SequenceTagger tagger = SequenceTagger(hidden_size=256, embeddings=embeddings, tag_dictionary=tag_dictionary, tag_type=tag_type) # 6. initialize trainer from flair.trainers import ModelTrainer trainer = ModelTrainer(tagger, corpus) # 7. run training trainer.train('resources/taggers/ner-danish', train_with_dev=True, max_epochs=150) ``` --- ### Cite Please cite the following papers when using this model. ``` @inproceedings{akbik-etal-2019-flair, title = "{FLAIR}: An Easy-to-Use Framework for State-of-the-Art {NLP}", author = "Akbik, Alan and Bergmann, Tanja and Blythe, Duncan and Rasul, Kashif and Schweter, Stefan and Vollgraf, Roland", booktitle = "Proceedings of the 2019 Conference of the North {A}merican Chapter of the Association for Computational Linguistics (Demonstrations)", year = "2019", url = "https://www.aclweb.org/anthology/N19-4010", pages = "54--59", } ``` And check the [DaNLP project](https://github.com/alexandrainst/danlp) for more information. --- ### Issues? The Flair issue tracker is available [here](https://github.com/flairNLP/flair/issues/).
{"language": "da", "tags": ["flair", "token-classification", "sequence-tagger-model"], "datasets": ["DaNE"], "widget": [{"text": "Jens Peter Hansen kommer fra Danmark"}]}
token-classification
flair/ner-danish
[ "flair", "pytorch", "token-classification", "sequence-tagger-model", "da", "dataset:DaNE", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "da" ]
TAGS #flair #pytorch #token-classification #sequence-tagger-model #da #dataset-DaNE #region-us
Danish NER in Flair (default model) =================================== This is the standard 4-class NER model for Danish that ships with Flair. F1-Score: 81.78 (DaNER) Predicts 4 tags: Based on Transformer embeddings and LSTM-CRF. --- Demo: How to use in Flair ========================= Requires: Flair ('pip install flair') This yields the following output: So, the entities "*Jens Peter Hansen*" (labeled as a person) and "*Danmark*" (labeled as a location) are found in the sentence "*Jens Peter Hansen kommer fra Danmark*". --- ### Training: Script to train this model The model was trained by the DaNLP project using the DaNE corpus. Check their repo for more information. The following Flair script may be used to train such a model: --- ### Cite Please cite the following papers when using this model. And check the DaNLP project for more information. --- ### Issues? The Flair issue tracker is available here.
[ "### Training: Script to train this model\n\n\nThe model was trained by the DaNLP project using the DaNE corpus. Check their repo for more information.\n\n\nThe following Flair script may be used to train such a model:\n\n\n\n\n---", "### Cite\n\n\nPlease cite the following papers when using this model.\n\n\nAnd check the DaNLP project for more information.\n\n\n\n\n---", "### Issues?\n\n\nThe Flair issue tracker is available here." ]
[ "TAGS\n#flair #pytorch #token-classification #sequence-tagger-model #da #dataset-DaNE #region-us \n", "### Training: Script to train this model\n\n\nThe model was trained by the DaNLP project using the DaNE corpus. Check their repo for more information.\n\n\nThe following Flair script may be used to train such a model:\n\n\n\n\n---", "### Cite\n\n\nPlease cite the following papers when using this model.\n\n\nAnd check the DaNLP project for more information.\n\n\n\n\n---", "### Issues?\n\n\nThe Flair issue tracker is available here." ]
[ 36, 48, 27, 15 ]
[ "passage: TAGS\n#flair #pytorch #token-classification #sequence-tagger-model #da #dataset-DaNE #region-us \n### Training: Script to train this model\n\n\nThe model was trained by the DaNLP project using the DaNE corpus. Check their repo for more information.\n\n\nThe following Flair script may be used to train such a model:\n\n\n\n\n---### Cite\n\n\nPlease cite the following papers when using this model.\n\n\nAnd check the DaNLP project for more information.\n\n\n\n\n---### Issues?\n\n\nThe Flair issue tracker is available here." ]
[ -0.09072000533342361, 0.14029118418693542, -0.0039824326522648335, 0.07798761129379272, 0.053663093596696854, 0.04264770448207855, 0.1595097780227661, 0.07726062834262848, -0.012525537051260471, -0.016284186393022537, 0.1566057801246643, 0.11703546345233917, 0.023049192503094673, 0.16111260652542114, 0.07812467962503433, -0.297065794467926, -0.0027458490803837776, 0.010004966519773006, -0.06759779155254364, 0.11675965785980225, 0.09028486162424088, -0.045194488018751144, 0.04971249774098396, 0.004290544893592596, -0.06884029507637024, 0.015732867643237114, -0.05147416889667511, -0.030310766771435738, 0.15368735790252686, -0.05879472196102142, 0.16690737009048462, -0.019957486540079117, 0.0734485536813736, -0.1439029723405838, 0.05424056574702263, 0.015063912607729435, -0.00018005806487053633, 0.09762615710496902, 0.03768689185380936, 0.010860390029847622, 0.20509065687656403, 0.0264787245541811, 0.0377560630440712, -0.014207984320819378, -0.13276629149913788, -0.12184293568134308, -0.10398124903440475, 0.08181797713041306, 0.1305955946445465, 0.10793416947126389, -0.0341874435544014, 0.12332678586244583, -0.10909654200077057, 0.030440952628850937, -0.049505628645420074, -0.10321695357561111, -0.03311920166015625, 0.21483173966407776, -0.0026235529221594334, -0.027368644252419472, -0.042293399572372437, 0.08420176804065704, 0.046969231218099594, 0.06316179782152176, 0.006678012665361166, -0.03743235394358635, 0.016143931075930595, 0.003268798114731908, -0.12307905405759811, -0.06979697197675705, 0.23674747347831726, -0.009645555168390274, -0.06279982626438141, -0.07444087415933609, 0.00973169133067131, 0.07402703911066055, 0.011420739814639091, -0.1393827497959137, -0.02482917532324791, 0.042327333241701126, 0.15950825810432434, -0.08554460853338242, -0.07563120871782303, -0.10066992789506912, 0.007419982925057411, 0.062140002846717834, 0.030497174710035324, 0.008846063166856766, -0.20756304264068604, 0.12278380244970322, 0.014459250494837761, -0.061968281865119934, 0.056425027549266815, -0.050529301166534424, 0.015996010974049568, 0.006763074547052383, -0.029369503259658813, -0.0555901825428009, 0.0709807351231575, 0.16673804819583893, 0.17728127539157867, 0.00788918323814869, -0.037563472986221313, 0.04742693901062012, 0.0032111634500324726, 0.08761797845363617, -0.044418223202228546, 0.00197167182341218, 0.07639860361814499, 0.04649609699845314, 0.057754144072532654, -0.018319496884942055, -0.13463470339775085, -0.021730169653892517, -0.02128538489341736, 0.08124120533466339, -0.011782009154558182, 0.021952839568257332, -0.03944065421819687, -0.026698216795921326, 0.1269591748714447, -0.05715872347354889, -0.013502961955964565, 0.010302400216460228, -0.08163612335920334, 0.0568724162876606, 0.048799701035022736, 0.02034319005906582, -0.017169423401355743, 0.0545567125082016, -0.060664787888526917, -0.03667404130101204, -0.08984974026679993, -0.1050354540348053, 0.037675876170396805, -0.12025836110115051, 0.06088532507419586, -0.07061141729354858, -0.176393061876297, -0.0051056318916380405, 0.07010450959205627, -0.007896101102232933, -0.02707768604159355, -0.0831838995218277, -0.06918301433324814, -0.05879083648324013, 0.030257245525717735, 0.11075035482645035, -0.00020537279488053173, 0.02836119383573532, 0.015487100929021835, 0.05860825628042221, -0.035687144845724106, 0.019323598593473434, -0.04969092458486557, 0.0385671891272068, -0.09559635072946548, 0.0691484659910202, -0.028514113277196884, -0.01362968422472477, -0.07769537717103958, -0.058285340666770935, -0.0836091861128807, 0.031220775097608566, 0.053438592702150345, 0.249281644821167, -0.2833634316921234, 0.011275816708803177, 0.11506548523902893, -0.11767573654651642, -0.07866957783699036, 0.10820099711418152, -0.09118212759494781, 0.11317738890647888, 0.036593541502952576, 0.2007531374692917, 0.1670876443386078, -0.22884154319763184, 0.12778449058532715, 0.07600783556699753, -0.059846244752407074, -0.010106926783919334, 0.08502911031246185, -0.02681821770966053, -0.1140810027718544, 0.0149079579859972, -0.1143481433391571, 0.07190696895122528, -0.00750327855348587, -0.08485129475593567, 0.04286419600248337, -0.032627008855342865, 0.009893485344946384, 0.016119467094540596, 0.03905590623617172, -0.0025115772150456905, -0.042362235486507416, -0.079073965549469, 0.1308470219373703, -0.01110035553574562, -0.02112346887588501, -0.07308809459209442, 0.021222200244665146, -0.032471708953380585, 0.00209564040414989, -0.14925964176654816, -0.03757694736123085, -0.027896296232938766, -0.02089804969727993, 0.015182921662926674, 0.05371588468551636, 0.035156745463609695, 0.054498493671417236, 0.024740178138017654, 0.02524266391992569, -0.023180222138762474, -0.01879303716123104, -0.052664466202259064, -0.06702950596809387, -0.057028841227293015, -0.11559441685676575, 0.21062766015529633, -0.21022635698318481, 0.04324344918131828, -0.0716010183095932, 0.06766411662101746, -0.0032375119626522064, -0.013428747653961182, 0.09742465615272522, 0.03814835101366043, -0.03283340483903885, -0.05215846374630928, 0.0830543115735054, -0.07550918310880661, -0.08126938343048096, -0.13523781299591064, 0.005648133810609579, -0.019650572910904884, 0.09493808448314667, -0.02711588144302368, -0.03603056073188782, -0.04528171569108963, -0.02914690412580967, -0.011591782793402672, -0.03398214280605316, 0.014699460007250309, 0.14389480650424957, 0.045052286237478256, 0.06511996686458588, -0.020331986248493195, 0.028692984953522682, -0.02639784663915634, 0.00855906493961811, -0.06243910640478134, 0.11707443743944168, 0.11786232143640518, 0.06493133306503296, 0.042768556624650955, 0.0013787713833153248, -0.0052154106087982655, 0.026327142491936684, -0.005324894096702337, -0.02476087026298046, -0.03833642601966858, -0.04882308840751648, 0.015890780836343765, 0.15231095254421234, -0.07363653182983398, 0.011012366972863674, 0.039704542607069016, 0.0004825679352506995, 0.077334463596344, -0.19571810960769653, -0.11443530768156052, -0.009442143142223358, -0.053939253091812134, -0.0828329399228096, 0.12570157647132874, -0.09681428223848343, 0.05811469256877899, -0.03821299225091934, -0.1023644506931305, 0.03080763854086399, -0.017583198845386505, -0.08812738955020905, 0.18643531203269958, -0.06245005503296852, -0.243647038936615, -0.1259341835975647, 0.11786730587482452, -0.011524707078933716, 0.008239868097007275, -0.005164256319403648, -0.12784147262573242, 0.014415833167731762, -0.02734982594847679, 0.0303820613771677, -0.09971684217453003, -0.05811392888426781, -0.07750015705823898, -0.03185022994875908, -0.04807431250810623, -0.1331729292869568, -0.004217653069645166, -0.028126878663897514, 0.107723169028759, -0.014689883217215538, -0.07091815024614334, 0.12183564901351929, 0.1806531697511673, 0.027911517769098282, 0.04361478239297867, -0.024896785616874695, 0.22694842517375946, -0.11282049119472504, 0.05513069033622742, 0.17998956143856049, -0.05173863470554352, -0.010327917523682117, 0.04409312829375267, 0.02922842651605606, -0.10912606865167618, -0.002069476991891861, 0.005487632472068071, -0.10261613875627518, -0.1669328510761261, -0.07133466005325317, -0.05705390125513077, -0.013417521491646767, 0.04830549284815788, 0.043003834784030914, 0.023073282092809677, 0.08100177347660065, 0.0682549998164177, -0.02454637549817562, -0.02468239516019821, 0.012258336879312992, 0.08591826260089874, -0.0601654127240181, -0.000025511137209832668, -0.054658956825733185, -0.08436066657304764, 0.011061912402510643, 0.09036462008953094, 0.07522720098495483, 0.07901957631111145, 0.04672315716743469, 0.08940528333187103, 0.1216864138841629, 0.011975321918725967, 0.09559516608715057, -0.026784392073750496, -0.00013897637836635113, -0.03328470140695572, -0.06120467558503151, -0.04583268240094185, 0.03045656345784664, -0.0369659923017025, -0.0056653814390301704, -0.056336693465709686, 0.024791093543171883, 0.019418274983763695, -0.10176367312669754, 0.07378215342760086, -0.23789873719215393, -0.04466859996318817, 0.02734503522515297, 0.10921034961938858, -0.011054238304495811, 0.08590669184923172, 0.0238677728921175, -0.08093472570180893, -0.017023839056491852, -0.09194546192884445, 0.11127214878797531, -0.04897388815879822, -0.002652461640536785, -0.08562387526035309, 0.11583756655454636, -0.004452289082109928, 0.13297589123249054, -0.2944411635398865, 0.2103298157453537, -0.03268040716648102, 0.09883730858564377, -0.07854011654853821, -0.010120346210896969, 0.06236582249403, 0.15980635583400726, 0.163919597864151, 0.005817483179271221, 0.006521329283714294, -0.04590611904859543, -0.170862078666687, 0.05195247381925583, -0.024477049708366394, -0.07262586057186127, 0.01940261945128441, 0.06671951711177826, 0.03946331515908241, 0.005888180807232857, 0.08299422264099121, -0.19350673258304596, -0.06378407031297684, 0.017445888370275497, -0.017169006168842316, 0.00345575250685215, -0.011189348064363003, -0.08835490792989731, 0.00007835403084754944, -0.021266590803861618, -0.054955363273620605, -0.05025079473853111, -0.06710534542798996, 0.05705220252275467, 0.08547322452068329, -0.05044666677713394, -0.05827975645661354, 0.01535043865442276, 0.02304857224225998, -0.0762140303850174, -0.060773640871047974, -0.014264803379774094, -0.09358065575361252, 0.021453555673360825, -0.054694779217243195, 0.10266368836164474, 0.0639331117272377, 0.03127322345972061, 0.05652058497071266, -0.009378338232636452, 0.005519500933587551, -0.1167675107717514, 0.0927533432841301, -0.017382632941007614, 0.031915731728076935, -0.007086864206939936, -0.07128270715475082, 0.09026876091957092, -0.11829877644777298, 0.02335249073803425, 0.16044719517230988, 0.18951933085918427, -0.05942769721150398, 0.0618491992354393, 0.10985154658555984, -0.15219146013259888, -0.155483677983284, 0.0331399068236351, -0.03954038396477699, 0.04046951234340668, 0.008123967796564102, -0.2910405397415161, 0.05856528505682945, 0.03706579655408859, -0.00662774546071887, 0.08264954388141632, -0.4074520468711853, -0.09114490449428558, 0.25988221168518066, 0.0804070234298706, 0.056925803422927856, -0.09987372905015945, -0.01907958649098873, 0.022956252098083496, -0.09711864590644836, 0.11917062103748322, -0.013980196788907051, 0.03350858762860298, -0.02677755057811737, 0.08171200752258301, 0.030073875561356544, -0.06368144601583481, 0.1891152709722519, 0.07176732271909714, 0.11262857913970947, -0.02955174818634987, -0.20596514642238617, 0.0649343952536583, -0.00979970209300518, 0.14450481534004211, 0.06367330998182297, 0.03775539994239807, -0.23951949179172516, -0.03675135597586632, -0.0731644555926323, 0.059053100645542145, -0.05184129253029823, -0.09640835970640182, -0.03937267139554024, 0.06055836006999016, -0.027908822521567345, 0.0017078490927815437, 0.05488539859652519, 0.043795838952064514, 0.04259418696165085, -0.032132118940353394, 0.11204928159713745, 0.1555178463459015, -0.05646786466240883, -0.004267785232514143, -0.027035655453801155, 0.082229845225811, -0.08644656091928482, -0.08735744655132294, 0.12579824030399323, 0.03829463943839073, 0.13194096088409424, 0.055590562522411346, -0.08958610892295837, 0.03521886467933655, 0.05852089449763298, -0.16349034011363983, -0.09744907915592194, -0.03246919438242912, -0.20052564144134521, 0.04336157441139221, -0.01416255347430706, 0.07247447967529297, -0.12329458445310593, -0.008500049822032452, 0.01759905181825161, 0.01823950558900833, -0.09530054777860641, 0.12464911490678787, 0.14133255183696747, 0.04730629548430443, -0.057189714163541794, 0.08196766674518585, 0.03538893163204193, -0.10268007218837738, 0.024335794150829315, 0.03893343731760979, -0.09962096065282822, -0.08253154158592224, -0.06523106247186661, 0.2787803113460541, -0.004497435875236988, -0.07221664488315582, -0.040838491171598434, -0.02417912892997265, 0.00037797557888552547, -0.022752320393919945, 0.09869823604822159, -0.00403258390724659, -0.14553533494472504, 0.00003177090547978878, -0.1415943205356598, 0.04751354455947876, 0.030203109607100487, -0.05199204757809639, -0.12101063877344131, 0.16717618703842163, 0.026224901899695396, 0.051466166973114014, -0.04835472255945206, -0.0843704417347908, -0.11602865904569626, 0.04321043938398361, -0.1534184366464615, 0.015321054495871067, -0.03753414750099182, 0.027405396103858948, -0.002601839369162917, 0.002499526832252741, 0.005714440252631903, -0.00045455514919012785, -0.07408884167671204, 0.02251390926539898, 0.007954521104693413, 0.050220049917697906, -0.07294761389493942, -0.04121775180101395, 0.023698125034570694, -0.00888099242001772, 0.04830782487988472, 0.0684233233332634, -0.014756344258785248, 0.007829749956727028, -0.11957546323537827, 0.05649564787745476, 0.07336277514696121, 0.0189538411796093, -0.0010055905440822244, -0.15906542539596558, -0.016546759754419327, -0.03858599811792374, -0.03490312024950981, 0.02119944803416729, 0.1271723061800003, -0.08356645703315735, -0.05999288335442543, 0.06239625811576843, -0.03243287280201912, -0.06317956000566483, 0.02060306817293167, 0.06958343833684921, 0.0765557512640953, 0.14445006847381592, -0.0025303279981017113, 0.1370425969362259, -0.08536764979362488, -0.04552598297595978, -0.06269191950559616, -0.03292175009846687, -0.038704223930835724, -0.03853427246212959, 0.053525160998106, -0.04534542188048363, 0.16948090493679047, 0.06710019707679749, 0.020045435056090355, -0.035117007791996, 0.03758448362350464, 0.006795878056436777, -0.010434611700475216, 0.1576654613018036, 0.0479549802839756, 0.003920309711247683, 0.013079707510769367, 0.1015315055847168, 0.03136849030852318, 0.1364382803440094, 0.13526055216789246, 0.057478055357933044, 0.03145746886730194, 0.06376250088214874, 0.0358804427087307, 0.010980775579810143, -0.08449466526508331, -0.09416688233613968, 0.11693204194307327, 0.0535828061401844, -0.003499708604067564, -0.0085569703951478, 0.08289295434951782, -0.12814725935459137, 0.0680476650595665, -0.010166140273213387, -0.0827898383140564, -0.09918496757745743, -0.2217724621295929, 0.02319110743701458, 0.023789474740624428, -0.007966503500938416, -0.12231815606355667, -0.10571984201669693, 0.11618323624134064, 0.012337188236415386, -0.06243959069252014, 0.14390908181667328, -0.051423653960227966, -0.035375744104385376, 0.035008128732442856, -0.007288837339729071, -0.017668593674898148, -0.08905309438705444, 0.052985504269599915, -0.011096857488155365, -0.07986395061016083, -0.004910141695290804, -0.036161262542009354, 0.017136935144662857, 0.0005825036205351353, -0.09817883372306824, -0.029943302273750305, -0.03266462683677673, 0.014183077961206436, 0.0837460309267044, 0.12877847254276276, 0.07311391830444336, -0.07599925249814987, 0.02603200078010559, 0.09129374474287033, 0.046491365879774094, -0.08183637261390686, -0.0830116868019104, 0.2778306305408478, -0.08382444828748703, 0.03265178203582764, -0.010836554691195488, -0.008118364959955215, 0.0023732115514576435, 0.3245772123336792, 0.31628847122192383, -0.068686343729496, -0.05312825366854668, 0.03666186332702637, 0.019768157973885536, 0.024894684553146362, 0.13677912950515747, 0.04338635131716728, 0.1623270958662033, -0.07106940448284149, 0.024511702358722687, -0.13934952020645142, -0.0642101839184761, -0.022466089576482773, 0.05684405937790871, 0.10279826819896698, -0.06451021134853363, -0.04855210706591606, 0.17985351383686066, -0.142696350812912, -0.12992271780967712, 0.022574707865715027, -0.07076343148946762, -0.1088024228811264, -0.04810408875346184, -0.038966141641139984, 0.01962948963046074, 0.08126682788133621, -0.09240259230136871, -0.007901694625616074, 0.09026602655649185, -0.00574627285823226, -0.07976428419351578, -0.06752412766218185, 0.11057405173778534, -0.0033086296170949936, 0.10036929696798325, -0.013749460689723492, 0.1286378800868988, 0.07483880966901779, 0.009282451122999191, -0.08350704610347748, 0.011517549864947796, 0.05102650448679924, 0.1337829828262329, -0.01737852767109871, -0.01481407880783081, -0.02530660480260849, -0.09155473113059998, 0.020290441811084747, -0.05966871604323387, 0.03325837105512619, -0.025040246546268463, -0.05404888466000557, -0.07160048186779022, 0.10848303139209747, -0.08118869364261627, 0.1267838031053543, 0.1331886202096939, -0.0212918221950531, -0.008072083815932274, -0.041532862931489944, 0.08986521512269974, 0.046199437230825424, -0.039449289441108704, -0.04659552127122879, -0.025156959891319275, -0.04340264946222305, -0.01111968420445919, -0.11092069000005722, -0.19076938927173615, -0.039914797991514206, -0.07249230891466141, -0.05856060981750488, 0.03532027825713158, 0.009495276026427746, 0.07222577929496765, 0.05737200379371643, -0.044093403965234756, -0.046547919511795044, -0.019374622032046318, 0.06474018096923828, -0.1252041757106781, -0.07313240319490433 ]
null
null
flair
## Dutch NER in Flair (large model) This is the large 4-class NER model for Dutch that ships with [Flair](https://github.com/flairNLP/flair/). F1-Score: **95,25** (CoNLL-03 Dutch) Predicts 4 tags: | **tag** | **meaning** | |---------------------------------|-----------| | PER | person name | | LOC | location name | | ORG | organization name | | MISC | other name | Based on document-level XLM-R embeddings and [FLERT](https://arxiv.org/pdf/2011.06993v1.pdf/). --- ### Demo: How to use in Flair Requires: **[Flair](https://github.com/flairNLP/flair/)** (`pip install flair`) ```python from flair.data import Sentence from flair.models import SequenceTagger # load tagger tagger = SequenceTagger.load("flair/ner-dutch-large") # make example sentence sentence = Sentence("George Washington ging naar Washington") # predict NER tags tagger.predict(sentence) # print sentence print(sentence) # print predicted NER spans print('The following NER tags are found:') # iterate over entities and print for entity in sentence.get_spans('ner'): print(entity) ``` This yields the following output: ``` Span [1,2]: "George Washington" [− Labels: PER (1.0)] Span [5]: "Washington" [− Labels: LOC (1.0)] ``` So, the entities "*George Washington*" (labeled as a **person**) and "*Washington*" (labeled as a **location**) are found in the sentence "*George Washington ging naar Washington*". --- ### Training: Script to train this model The following Flair script was used to train this model: ```python import torch # 1. get the corpus from flair.datasets import CONLL_03_DUTCH corpus = CONLL_03_DUTCH() # 2. what tag do we want to predict? tag_type = 'ner' # 3. make the tag dictionary from the corpus tag_dictionary = corpus.make_tag_dictionary(tag_type=tag_type) # 4. initialize fine-tuneable transformer embeddings WITH document context from flair.embeddings import TransformerWordEmbeddings embeddings = TransformerWordEmbeddings( model='xlm-roberta-large', layers="-1", subtoken_pooling="first", fine_tune=True, use_context=True, ) # 5. initialize bare-bones sequence tagger (no CRF, no RNN, no reprojection) from flair.models import SequenceTagger tagger = SequenceTagger( hidden_size=256, embeddings=embeddings, tag_dictionary=tag_dictionary, tag_type='ner', use_crf=False, use_rnn=False, reproject_embeddings=False, ) # 6. initialize trainer with AdamW optimizer from flair.trainers import ModelTrainer trainer = ModelTrainer(tagger, corpus, optimizer=torch.optim.AdamW) # 7. run training with XLM parameters (20 epochs, small LR) from torch.optim.lr_scheduler import OneCycleLR trainer.train('resources/taggers/ner-dutch-large', learning_rate=5.0e-6, mini_batch_size=4, mini_batch_chunk_size=1, max_epochs=20, scheduler=OneCycleLR, embeddings_storage_mode='none', weight_decay=0., ) ) ``` --- ### Cite Please cite the following paper when using this model. ``` @misc{schweter2020flert, title={FLERT: Document-Level Features for Named Entity Recognition}, author={Stefan Schweter and Alan Akbik}, year={2020}, eprint={2011.06993}, archivePrefix={arXiv}, primaryClass={cs.CL} } ``` --- ### Issues? The Flair issue tracker is available [here](https://github.com/flairNLP/flair/issues/).
{"language": "nl", "tags": ["flair", "token-classification", "sequence-tagger-model"], "datasets": ["conll2003"], "widget": [{"text": "George Washington ging naar Washington"}]}
token-classification
flair/ner-dutch-large
[ "flair", "pytorch", "token-classification", "sequence-tagger-model", "nl", "dataset:conll2003", "arxiv:2011.06993", "has_space", "region:us" ]
2022-03-02T23:29:05+00:00
[ "2011.06993" ]
[ "nl" ]
TAGS #flair #pytorch #token-classification #sequence-tagger-model #nl #dataset-conll2003 #arxiv-2011.06993 #has_space #region-us
Dutch NER in Flair (large model) -------------------------------- This is the large 4-class NER model for Dutch that ships with Flair. F1-Score: 95,25 (CoNLL-03 Dutch) Predicts 4 tags: Based on document-level XLM-R embeddings and FLERT. --- ### Demo: How to use in Flair Requires: Flair ('pip install flair') This yields the following output: So, the entities "*George Washington*" (labeled as a person) and "*Washington*" (labeled as a location) are found in the sentence "*George Washington ging naar Washington*". --- ### Training: Script to train this model The following Flair script was used to train this model: --- ### Cite Please cite the following paper when using this model. --- ### Issues? The Flair issue tracker is available here.
[ "### Demo: How to use in Flair\n\n\nRequires: Flair ('pip install flair')\n\n\nThis yields the following output:\n\n\nSo, the entities \"*George Washington*\" (labeled as a person) and \"*Washington*\" (labeled as a location) are found in the sentence \"*George Washington ging naar Washington*\".\n\n\n\n\n---", "### Training: Script to train this model\n\n\nThe following Flair script was used to train this model:\n\n\n\n\n---", "### Cite\n\n\nPlease cite the following paper when using this model.\n\n\n\n\n---", "### Issues?\n\n\nThe Flair issue tracker is available here." ]
[ "TAGS\n#flair #pytorch #token-classification #sequence-tagger-model #nl #dataset-conll2003 #arxiv-2011.06993 #has_space #region-us \n", "### Demo: How to use in Flair\n\n\nRequires: Flair ('pip install flair')\n\n\nThis yields the following output:\n\n\nSo, the entities \"*George Washington*\" (labeled as a person) and \"*Washington*\" (labeled as a location) are found in the sentence \"*George Washington ging naar Washington*\".\n\n\n\n\n---", "### Training: Script to train this model\n\n\nThe following Flair script was used to train this model:\n\n\n\n\n---", "### Cite\n\n\nPlease cite the following paper when using this model.\n\n\n\n\n---", "### Issues?\n\n\nThe Flair issue tracker is available here." ]
[ 50, 81, 22, 15, 15 ]
[ "passage: TAGS\n#flair #pytorch #token-classification #sequence-tagger-model #nl #dataset-conll2003 #arxiv-2011.06993 #has_space #region-us \n### Demo: How to use in Flair\n\n\nRequires: Flair ('pip install flair')\n\n\nThis yields the following output:\n\n\nSo, the entities \"*George Washington*\" (labeled as a person) and \"*Washington*\" (labeled as a location) are found in the sentence \"*George Washington ging naar Washington*\".\n\n\n\n\n---### Training: Script to train this model\n\n\nThe following Flair script was used to train this model:\n\n\n\n\n---### Cite\n\n\nPlease cite the following paper when using this model.\n\n\n\n\n---### Issues?\n\n\nThe Flair issue tracker is available here." ]
[ -0.10438837856054306, 0.173822283744812, -0.0007876380695961416, 0.07675667107105255, 0.07141805440187454, 0.051035042852163315, 0.11999650299549103, 0.05233011394739151, 0.019593175500631332, 0.046542104333639145, 0.18495997786521912, 0.06109042093157768, 0.10083875805139542, 0.08094385266304016, 0.08018185943365097, -0.25706976652145386, 0.02541494369506836, -0.015112056396901608, -0.07099733501672745, 0.16527630388736725, 0.08179426938295364, -0.010208122432231903, 0.020228520035743713, 0.028512373566627502, -0.10984868556261063, -0.009605166502296925, -0.03649190813302994, -0.0983009859919548, 0.17743974924087524, -0.04422029107809067, 0.20630082488059998, 0.04676204174757004, 0.12080205231904984, -0.1486566960811615, 0.029735179618000984, 0.03966578096151352, 0.014981482177972794, 0.11052369326353073, 0.05194440111517906, 0.0022212862968444824, 0.32368525862693787, -0.02953742817044258, -0.005568918772041798, 0.027647262439131737, -0.18579860031604767, -0.25792744755744934, -0.1059526801109314, 0.07157231122255325, 0.05406097695231438, 0.1148751899600029, -0.027289099991321564, 0.11540587246417999, -0.05595497414469719, 0.030423462390899658, 0.17609836161136627, -0.2218950092792511, -0.03928796201944351, 0.184976726770401, 0.01708800159394741, -0.03212438151240349, -0.047580402344465256, 0.047424476593732834, 0.0035161988344043493, 0.07383407652378082, -0.028805984184145927, -0.013388409279286861, 0.0034200488589704037, 0.11482501775026321, -0.15653716027736664, -0.09804195165634155, 0.3349704146385193, 0.03248550742864609, -0.06017781421542168, 0.014864994212985039, 0.002626199973747134, -0.017003390938043594, 0.047483108937740326, -0.10020923614501953, -0.015451634302735329, -0.004437532741576433, 0.15009354054927826, -0.1150149255990982, -0.10716293007135391, -0.09780693054199219, -0.009056366048753262, 0.043194934725761414, -0.08470630645751953, 0.09162720292806625, -0.1690112054347992, 0.12072417140007019, 0.0553293451666832, -0.06114400923252106, 0.04302244260907173, -0.07710916548967361, -0.03260530158877373, 0.02118215709924698, -0.04151581600308418, 0.12429492175579071, 0.0309140682220459, 0.021540483459830284, 0.170062854886055, -0.034456100314855576, 0.12093932926654816, 0.10462699830532074, -0.00024057568225543946, 0.1720682978630066, -0.12643063068389893, -0.04692329466342926, 0.04166025295853615, -0.006950772367417812, -0.0037457456346601248, -0.05488640442490578, -0.1549147367477417, -0.032708752900362015, -0.060950350016355515, 0.02379673533141613, 0.04165919870138168, -0.021508781239390373, -0.08332628011703491, 0.022548893466591835, 0.09443918615579605, -0.0639413371682167, -0.03200889378786087, -0.031202813610434532, -0.0590745247900486, 0.08309679478406906, 0.10158612579107285, 0.03035479038953781, 0.017750125378370285, 0.10691364854574203, -0.08485042303800583, 0.048777129501104355, -0.04329535737633705, -0.10078024119138718, -0.011872725561261177, -0.07370206713676453, 0.017485199496150017, -0.067792147397995, -0.15742242336273193, -0.022669952362775803, 0.06455063819885254, 0.003767335554584861, -0.06241951137781143, -0.05231590196490288, -0.04124492034316063, -0.036975689232349396, 0.0360797755420208, 0.06970353424549103, -0.055135395377874374, 0.06294387578964233, -0.02295091561973095, 0.10789492726325989, -0.06307824701070786, 0.008298338390886784, -0.09657984226942062, 0.010866488330066204, -0.08622391521930695, -0.001011848566122353, -0.017020389437675476, 0.02944152243435383, -0.12610958516597748, -0.10138358920812607, -0.032290149480104446, 0.004620992112904787, 0.03811328485608101, 0.1958799958229065, -0.28278520703315735, 0.006071863695979118, 0.09479911625385284, -0.09441915899515152, -0.05475388467311859, 0.050672437995672226, -0.03461999073624611, 0.20408138632774353, 0.02745087817311287, 0.1397751420736313, -0.029311513528227806, -0.32921531796455383, 0.09410770982503891, 0.06341038644313812, -0.16980059444904327, 0.0022778778802603483, 0.07554972916841507, -0.03556041419506073, -0.17574693262577057, -0.001602650503627956, -0.12662868201732635, 0.030920809134840965, -0.03771653026342392, -0.05674419552087784, 0.0024857916869223118, -0.06059146299958229, 0.03417271748185158, -0.038445599377155304, -0.02798398770391941, -0.0037451894022524357, -0.14299936592578888, -0.15310285985469818, 0.05007481202483177, 0.09581691026687622, -0.03147866949439049, 0.013865653425455093, 0.041424740105867386, 0.02465405873954296, -0.048002563416957855, -0.10837231576442719, 0.021593526005744934, -0.08912799507379532, 0.11822384595870972, 0.02218107506632805, 0.15941710770130157, -0.018815692514181137, 0.035210851579904556, 0.06830435991287231, 0.030542239546775818, -0.02998964488506317, 0.050751663744449615, -0.007790904957801104, 0.009163527749478817, -0.10872986912727356, -0.09593147039413452, 0.11933053284883499, -0.18108955025672913, 0.0470481812953949, 0.011733392253518105, -0.015337163582444191, -0.03485434874892235, -0.02119128406047821, 0.10986582934856415, 0.02607942372560501, 0.0027987316716462374, -0.06671048700809479, 0.0694718137383461, 0.0017254832200706005, -0.07101976871490479, -0.09392691403627396, -0.06241748481988907, -0.032489895820617676, 0.09067154675722122, -0.007249254733324051, -0.10139187425374985, -0.07026632875204086, -0.04185016080737114, 0.00998456496745348, -0.03130995109677315, -0.02397146262228489, 0.17363305389881134, 0.037908442318439484, 0.009782165288925171, -0.027160830795764923, 0.03252605348825455, -0.03227556124329567, -0.03787580877542496, -0.07096605002880096, 0.05449916422367096, 0.09135504066944122, 0.03199123963713646, 0.020262403413653374, 0.16133010387420654, -0.01848071999847889, 0.008725154213607311, 0.059381287544965744, -0.03994350507855415, -0.09710165858268738, -0.0890340730547905, -0.021234098821878433, 0.17856864631175995, -0.041710346937179565, 0.040950316935777664, 0.045544516295194626, -0.007969554513692856, 0.044462140649557114, -0.20286253094673157, -0.13699676096439362, 0.050306834280490875, -0.026836197823286057, -0.20360267162322998, 0.06736460328102112, -0.06476815044879913, 0.10258263349533081, -0.031392842531204224, -0.08940564095973969, 0.03962254896759987, -0.002799789886921644, -0.06900221109390259, 0.12182252109050751, -0.05421282351016998, -0.24587571620941162, -0.10935753583908081, -0.03525649383664131, 0.10255829989910126, -0.0019291171338409185, 0.023677704855799675, -0.11098510026931763, 0.018817508593201637, -0.025008751079440117, 0.056848447769880295, -0.08685193955898285, -0.09430855512619019, -0.0534387044608593, 0.008827747777104378, -0.007820545695722103, -0.12289505451917648, -0.02242196351289749, -0.04464748129248619, 0.06586513668298721, 0.031051985919475555, 0.02109035663306713, 0.1069163829088211, 0.1231783777475357, 0.017094194889068604, 0.06727257370948792, -0.027769319713115692, 0.355813592672348, -0.0760280042886734, 0.09370274841785431, 0.1312445104122162, 0.03137766197323799, 0.04555756226181984, 0.13810837268829346, 0.0680735856294632, -0.09099292010068893, -0.039552949368953705, -0.08207885921001434, -0.08591170608997345, -0.1220749020576477, -0.06724391877651215, -0.05180371180176735, -0.08148253709077835, 0.015674924477934837, 0.03196714073419571, -0.0840541198849678, 0.05214755982160568, 0.07920318096876144, -0.031639911234378815, -0.06738444417715073, -0.003686504438519478, 0.01330585964024067, -0.017855817452073097, 0.002741991775110364, -0.03604057431221008, -0.0477411188185215, 0.024256952106952667, 0.10113861411809921, 0.10437463968992233, 0.08293246477842331, -0.005687769968062639, 0.06311678141355515, 0.12298662960529327, 0.07602648437023163, 0.17756181955337524, 0.07270602136850357, -0.01741793192923069, -0.025174174457788467, -0.06401286274194717, 0.0036403462290763855, 0.04395177215337753, -0.02109287865459919, -0.06367772817611694, 0.019493399187922478, -0.08016186207532883, -0.05349062383174896, -0.023232338950037956, 0.12224970757961273, -0.21582584083080292, -0.01890048198401928, 0.0028449082747101784, 0.10926230251789093, -0.042069293558597565, 0.05767866224050522, 0.041736770421266556, -0.11323287338018417, 0.013501706533133984, -0.02707730233669281, 0.08940637856721878, 0.03564991429448128, 0.027562523260712624, -0.0924261212348938, 0.054845355451107025, -0.040797844529151917, 0.12925608456134796, -0.17104771733283997, 0.34951165318489075, -0.046743083745241165, 0.024083556607365608, -0.04857882857322693, -0.0009044621256180108, 0.07571191340684891, 0.04821023344993591, 0.2483363300561905, 0.01528252474963665, -0.13127736747264862, -0.1044253334403038, -0.11989500373601913, 0.050927650183439255, -0.03812246769666672, -0.050921350717544556, 0.05184153839945793, 0.06850825995206833, 0.0038946899585425854, -0.0180240198969841, 0.08153429627418518, -0.20115646719932556, -0.11232566088438034, 0.014856526628136635, -0.02062138356268406, 0.03564222902059555, -0.015104776248335838, -0.05172416940331459, -0.09986672550439835, -0.02412259578704834, 0.0312834270298481, -0.023567212745547295, -0.08742602914571762, 0.10488550364971161, 0.08567207306623459, -0.0149886729195714, -0.037037886679172516, 0.00550207681953907, 0.009439561516046524, -0.09099870920181274, 0.014582538977265358, 0.01945745386183262, -0.06746374815702438, 0.031876374036073685, -0.0684133917093277, 0.08206359297037125, 0.0635075569152832, 0.048309870064258575, 0.028821758925914764, 0.06630760431289673, -0.11771097034215927, -0.1272440105676651, 0.17928801476955414, -0.12764181196689606, -0.0164978988468647, 0.02959502302110195, 0.034150153398513794, 0.024511344730854034, -0.12871944904327393, 0.02243318036198616, 0.22640949487686157, 0.2539958357810974, -0.13252763450145721, 0.1259494572877884, -0.010252406820654869, -0.10969900339841843, -0.16495634615421295, -0.02277766913175583, -0.06058483570814133, 0.04932401329278946, 0.11614320427179337, -0.17323951423168182, 0.054915666580200195, 0.11448931694030762, -0.04517487809062004, 0.16431759297847748, -0.2501848042011261, -0.03610925003886223, 0.2055739164352417, 0.04824046045541763, 0.06869112700223923, -0.05067914351820946, -0.015544652938842773, -0.0006037966813892126, -0.1446850746870041, 0.07130677998065948, 0.0955837219953537, 0.03926468268036842, -0.02519506961107254, 0.08359486609697342, 0.00819349568337202, -0.07877545058727264, 0.20958183705806732, 0.006994493771344423, 0.030597923323512077, -0.04732515662908554, -0.2305196225643158, 0.13137857615947723, -0.02356170117855072, 0.11173637956380844, 0.050580184906721115, 0.028227752074599266, -0.16161251068115234, -0.013535666279494762, -0.1253809779882431, 0.09020831435918808, -0.07051140069961548, -0.04779006168246269, -0.05787369981408119, 0.017626972869038582, -0.08368181437253952, -0.03936838358640671, -0.13751284778118134, -0.05745983496308327, 0.07221020013093948, 0.029118960723280907, 0.010381568223237991, 0.06604491174221039, -0.16210684180259705, 0.059475526213645935, -0.007199326995760202, 0.06029362231492996, -0.10875434428453445, -0.11807979643344879, 0.10437135398387909, 0.03796930983662605, 0.07553194463253021, 0.06803234666585922, -0.06660863757133484, 0.013028991408646107, 0.056880902498960495, -0.17335918545722961, -0.06866797804832458, -0.06176965311169624, 0.012445532716810703, -0.011402624659240246, -0.08934461325407028, 0.0296760406345129, -0.05530340597033501, -0.024192657321691513, -0.007340812124311924, 0.0013052875874564052, -0.13507725298404694, 0.02719719521701336, 0.13515491783618927, 0.0991327315568924, -0.052855461835861206, 0.01339820958673954, 0.09421255439519882, -0.05852704122662544, -0.009846736676990986, 0.04800030589103699, -0.0510360486805439, -0.06569907814264297, -0.0605192668735981, 0.16429901123046875, 0.041741106659173965, -0.011789998039603233, -0.00045978763955645263, -0.08481713384389877, -0.0013057456817477942, 0.05003746598958969, 0.08759855479001999, -0.000678167853038758, -0.11757130920886993, -0.0930621549487114, -0.06429121643304825, 0.007882188074290752, 0.030315661802887917, -0.04292784631252289, -0.13175536692142487, 0.09045788645744324, 0.005011130589991808, 0.11317142099142075, -0.039067257195711136, -0.08107495307922363, -0.09531188011169434, 0.052241288125514984, -0.021373769268393517, 0.009987394325435162, -0.02911665104329586, 0.009130218997597694, -0.007266107946634293, -0.03784704953432083, -0.006333496421575546, -0.006641661282628775, -0.1112493947148323, 0.047004830092191696, -0.00911508034914732, 0.04172885790467262, -0.03368998318910599, -0.0348762609064579, 0.0913812592625618, -0.03173571825027466, 0.05707055702805519, 0.06076987832784653, -0.07425489276647568, -0.03918490186333656, -0.23448546230793, 0.021453941240906715, 0.027092289179563522, -0.010406548157334328, 0.01473161019384861, -0.18820764124393463, -0.01194676198065281, -0.05244399607181549, -0.009521091356873512, -0.022417234256863594, 0.05466952547430992, -0.07284921407699585, -0.05408719927072525, 0.10853025317192078, -0.057845477014780045, -0.026576964184641838, -0.07766168564558029, 0.17524246871471405, -0.008459572680294514, 0.10822698473930359, 0.020615097135305405, 0.1572405844926834, -0.13674551248550415, -0.026070065796375275, -0.05672997608780861, -0.03531177341938019, -0.05533716455101967, -0.05871152877807617, 0.09218945354223251, 0.010275745764374733, 0.20265284180641174, -0.001998885767534375, -0.0271876472979784, -0.0258152037858963, 0.17149633169174194, 0.016562240198254585, -0.03809937834739685, 0.10894697904586792, 0.02774077095091343, 0.006767281796783209, 0.0543573722243309, 0.054370589554309845, -0.019074272364377975, 0.16571858525276184, 0.21967776119709015, -0.01241504866629839, 0.12051640450954437, 0.08816318213939667, -0.026286596432328224, 0.015087700448930264, -0.006728417240083218, -0.11321237683296204, 0.12029989063739777, 0.0001840277254814282, -0.04213789105415344, -0.052353158593177795, 0.09943164139986038, -0.07294260710477829, 0.05248429998755455, -0.04776635766029358, -0.09151182323694229, -0.10086652636528015, -0.2145003378391266, 0.0389757975935936, 0.0031727177556604147, -0.014567810110747814, -0.04713980481028557, -0.01257416047155857, 0.170181542634964, -0.048739220947027206, 0.008350789546966553, 0.09395790100097656, 0.023138713091611862, -0.05258287489414215, 0.020042013376951218, -0.028984932228922844, 0.003777221078053117, -0.14139381051063538, 0.07281607389450073, -0.00561657827347517, -0.0805925577878952, 0.03621536120772362, -0.00219589751213789, -0.014934522099792957, -0.027359120547771454, -0.11972994357347488, -0.06700080633163452, -0.04719623923301697, 0.06630716472864151, -0.004591356962919235, 0.09343928843736649, 0.05861721187829971, 0.035031069070100784, -0.001027261489070952, 0.14039357006549835, -0.011265109293162823, -0.13495463132858276, -0.050437528640031815, 0.18758176267147064, -0.1439335197210312, -0.015329072251915932, -0.06710736453533173, -0.018714800477027893, 0.05170656740665436, 0.31528714299201965, 0.30836233496665955, -0.04132890701293945, -0.03785702586174011, -0.041971106082201004, 0.022381722927093506, 0.06840955466032028, 0.05088338628411293, 0.10640621185302734, 0.16934852302074432, -0.19053125381469727, -0.033613380044698715, -0.18068012595176697, -0.0046836258843541145, -0.02599259838461876, 0.01646093651652336, 0.10802748054265976, -0.07320389151573181, -0.033190298825502396, 0.20710855722427368, -0.16805733740329742, -0.05845308676362038, 0.01922418363392353, -0.06197065860033035, -0.11848663538694382, 0.021388595923781395, 0.06415462493896484, 0.005410886835306883, 0.11346019804477692, -0.11619977653026581, -0.08156085014343262, 0.16377127170562744, -0.03171643987298012, -0.13333052396774292, -0.10274846851825714, 0.04906267300248146, -0.1287725865840912, 0.13982447981834412, 0.0079369330778718, 0.1244664192199707, 0.05936890468001366, 0.07694745808839798, -0.12680841982364655, 0.1139453575015068, 0.014233192428946495, 0.08769230544567108, -0.03731098771095276, -0.05191400647163391, 0.0024090693332254887, -0.058341074734926224, -0.0020277684088796377, -0.14953899383544922, 0.06722840666770935, 0.1092722937464714, 0.018588421866297722, -0.0018730005249381065, 0.04917405918240547, -0.05106120556592941, 0.11600670963525772, 0.0943564623594284, -0.07124700397253036, 0.0018552803667262197, -0.009039674885571003, 0.010916011407971382, 0.0645829290151596, -0.05368301272392273, -0.03612503409385681, -0.025540709495544434, 0.00870045181363821, -0.007323314901441336, -0.08060098439455032, -0.0543677844107151, -0.06746874004602432, -0.05707486718893051, -0.06170440837740898, 0.06348185241222382, 0.026612287387251854, 0.03450746461749077, 0.06742050498723984, -0.019866878166794777, 0.14348503947257996, 0.0015027470653876662, 0.1408361941576004, -0.16498202085494995, -0.08244640380144119 ]
null
null
flair
# Dutch NER in Flair (default model) This is the standard 4-class NER model for Dutch that ships with [Flair](https://github.com/flairNLP/flair/). F1-Score: **92,58** (CoNLL-03) Predicts 4 tags: | **tag** | **meaning** | |---------------------------------|-----------| | PER | person name | | LOC | location name | | ORG | organization name | | MISC | other name | Based on Transformer embeddings and LSTM-CRF. --- # Demo: How to use in Flair Requires: **[Flair](https://github.com/flairNLP/flair/)** (`pip install flair`) ```python from flair.data import Sentence from flair.models import SequenceTagger # load tagger tagger = SequenceTagger.load("flair/ner-dutch") # make example sentence sentence = Sentence("George Washington ging naar Washington") # predict NER tags tagger.predict(sentence) # print sentence print(sentence) # print predicted NER spans print('The following NER tags are found:') # iterate over entities and print for entity in sentence.get_spans('ner'): print(entity) ``` This yields the following output: ``` Span [1,2]: "George Washington" [− Labels: PER (0.997)] Span [5]: "Washington" [− Labels: LOC (0.9996)] ``` So, the entities "*George Washington*" (labeled as a **person**) and "*Washington*" (labeled as a **location**) are found in the sentence "*George Washington ging naar Washington*". --- ### Training: Script to train this model The following Flair script was used to train this model: ```python from flair.data import Corpus from flair.datasets import CONLL_03_DUTCH from flair.embeddings import WordEmbeddings, StackedEmbeddings, FlairEmbeddings # 1. get the corpus corpus: Corpus = CONLL_03_DUTCH() # 2. what tag do we want to predict? tag_type = 'ner' # 3. make the tag dictionary from the corpus tag_dictionary = corpus.make_tag_dictionary(tag_type=tag_type) # 4. initialize embeddings embeddings = TransformerWordEmbeddings('wietsedv/bert-base-dutch-cased') # 5. initialize sequence tagger tagger: SequenceTagger = SequenceTagger(hidden_size=256, embeddings=embeddings, tag_dictionary=tag_dictionary, tag_type=tag_type) # 6. initialize trainer trainer: ModelTrainer = ModelTrainer(tagger, corpus) # 7. run training trainer.train('resources/taggers/ner-dutch', train_with_dev=True, max_epochs=150) ``` --- ### Cite Please cite the following paper when using this model. ``` @inproceedings{akbik-etal-2019-flair, title = "{FLAIR}: An Easy-to-Use Framework for State-of-the-Art {NLP}", author = "Akbik, Alan and Bergmann, Tanja and Blythe, Duncan and Rasul, Kashif and Schweter, Stefan and Vollgraf, Roland", booktitle = "Proceedings of the 2019 Conference of the North {A}merican Chapter of the Association for Computational Linguistics (Demonstrations)", year = "2019", url = "https://www.aclweb.org/anthology/N19-4010", pages = "54--59", } ``` --- ### Issues? The Flair issue tracker is available [here](https://github.com/flairNLP/flair/issues/).
{"language": "nl", "tags": ["flair", "token-classification", "sequence-tagger-model"], "datasets": ["conll2003"], "widget": [{"text": "George Washington ging naar Washington."}]}
token-classification
flair/ner-dutch
[ "flair", "pytorch", "token-classification", "sequence-tagger-model", "nl", "dataset:conll2003", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "nl" ]
TAGS #flair #pytorch #token-classification #sequence-tagger-model #nl #dataset-conll2003 #region-us
Dutch NER in Flair (default model) ================================== This is the standard 4-class NER model for Dutch that ships with Flair. F1-Score: 92,58 (CoNLL-03) Predicts 4 tags: Based on Transformer embeddings and LSTM-CRF. --- Demo: How to use in Flair ========================= Requires: Flair ('pip install flair') This yields the following output: So, the entities "*George Washington*" (labeled as a person) and "*Washington*" (labeled as a location) are found in the sentence "*George Washington ging naar Washington*". --- ### Training: Script to train this model The following Flair script was used to train this model: --- ### Cite Please cite the following paper when using this model. --- ### Issues? The Flair issue tracker is available here.
[ "### Training: Script to train this model\n\n\nThe following Flair script was used to train this model:\n\n\n\n\n---", "### Cite\n\n\nPlease cite the following paper when using this model.\n\n\n\n\n---", "### Issues?\n\n\nThe Flair issue tracker is available here." ]
[ "TAGS\n#flair #pytorch #token-classification #sequence-tagger-model #nl #dataset-conll2003 #region-us \n", "### Training: Script to train this model\n\n\nThe following Flair script was used to train this model:\n\n\n\n\n---", "### Cite\n\n\nPlease cite the following paper when using this model.\n\n\n\n\n---", "### Issues?\n\n\nThe Flair issue tracker is available here." ]
[ 37, 22, 15, 15 ]
[ "passage: TAGS\n#flair #pytorch #token-classification #sequence-tagger-model #nl #dataset-conll2003 #region-us \n### Training: Script to train this model\n\n\nThe following Flair script was used to train this model:\n\n\n\n\n---### Cite\n\n\nPlease cite the following paper when using this model.\n\n\n\n\n---### Issues?\n\n\nThe Flair issue tracker is available here." ]
[ -0.11560501903295517, 0.07164620608091354, -0.003440655767917633, 0.10473035275936127, 0.07930689305067062, 0.056879300624132156, 0.10220721364021301, 0.07811843603849411, -0.010296083055436611, 0.031570352613925934, 0.17703916132450104, 0.10692554712295532, 0.06979160755872726, 0.16308999061584473, 0.014874029904603958, -0.24638251960277557, 0.010447783395648003, 0.0003641964867711067, -0.061812255531549454, 0.19166789948940277, 0.08344884216785431, -0.024003874510526657, 0.03921768069267273, 0.01265049073845148, -0.10693318396806717, 0.015176703222095966, -0.0025853586848825216, -0.05152912437915802, 0.1499054878950119, -0.0549779050052166, 0.19694235920906067, 0.02415800280869007, 0.10295239835977554, -0.1586630642414093, 0.06103488802909851, 0.010414600372314453, -0.00881674699485302, 0.09602128714323044, 0.0711805671453476, -0.027695612981915474, 0.3380233943462372, -0.015049870125949383, 0.02838047780096531, 0.03481803461909294, -0.15284904837608337, -0.14144352078437805, -0.11470678448677063, 0.06944501399993896, 0.1607782393693924, 0.09270979464054108, -0.040292683988809586, 0.1305173635482788, -0.13835693895816803, 0.06852662563323975, 0.14250724017620087, -0.2214839607477188, -0.07065214216709137, 0.15913845598697662, 0.03969021141529083, -0.05438721179962158, -0.09101339429616928, 0.06181711331009865, 0.04237690940499306, 0.04901234805583954, 0.011852500028908253, -0.05115567892789841, -0.15331611037254333, 0.04852722957730293, -0.1554715484380722, -0.08520390838384628, 0.22399257123470306, 0.021137429401278496, -0.04470694810152054, -0.013691206462681293, -0.024327917024493217, -0.019198721274733543, 0.03522440791130066, -0.08204773813486099, -0.014563625678420067, 0.013519711792469025, 0.184489905834198, -0.07938196510076523, -0.09785827994346619, -0.11922287195920944, 0.015867002308368683, 0.034479279071092606, -0.006284777075052261, 0.07679582387208939, -0.1763094961643219, 0.13032285869121552, 0.009323257952928543, -0.08319179713726044, 0.06331338733434677, -0.05623188987374306, -0.024294039234519005, 0.006774841342121363, -0.0037820893339812756, 0.008351919241249561, 0.07355395704507828, 0.15077999234199524, 0.1559896320104599, 0.013775213621556759, 0.013915803283452988, 0.049460556358098984, -0.004484054632484913, 0.10044948756694794, -0.07576946914196014, -0.03929270803928375, 0.09132423251867294, 0.09229283779859543, 0.04341738298535347, -0.05380811169743538, -0.11925558000802994, -0.07313069701194763, -0.01645790785551071, 0.10996314138174057, -0.00039031938649713993, -0.0023613220546394587, -0.07429458200931549, -0.015810051932930946, 0.08664169907569885, -0.07777713239192963, -0.010099442675709724, 0.039015721529722214, -0.049962107092142105, 0.047104671597480774, 0.08237148821353912, 0.007982641458511353, -0.01664595492184162, 0.03474113345146179, -0.06278949975967407, 0.02468578703701496, -0.08803509175777435, -0.09059637039899826, -0.000725726829841733, -0.11508369445800781, 0.003442402696236968, -0.02881082147359848, -0.20213682949543, 0.012131912633776665, 0.031224986538290977, -0.009253406897187233, -0.022967834025621414, -0.10512734204530716, -0.09130049496889114, -0.02154165506362915, 0.039690159261226654, 0.15119829773902893, -0.03551545366644859, 0.06916192173957825, 0.0023194930981844664, 0.0690341517329216, -0.05235694348812103, -0.008882969617843628, -0.06772320717573166, 0.04959717020392418, -0.08326402306556702, -0.0026528749149292707, -0.044059015810489655, -0.04840117320418358, -0.10700707882642746, -0.1182340756058693, -0.027176594361662865, -0.004617462400346994, 0.06091673672199249, 0.23920589685440063, -0.2949866056442261, 0.011575366370379925, 0.13236601650714874, -0.12123855203390121, -0.04882281273603439, 0.11054284125566483, -0.08747172355651855, 0.04524647071957588, -0.0035213350784033537, 0.17662103474140167, 0.006626032292842865, -0.18430079519748688, 0.10173080861568451, 0.04991775006055832, -0.13992875814437866, 0.016343720257282257, 0.09547266364097595, -0.021276727318763733, -0.13797825574874878, 0.003894078778102994, -0.11087100952863693, 0.027909576892852783, -0.04420025274157524, -0.09127823263406754, -0.0045870766043663025, -0.01958014816045761, 0.03891146928071976, -0.011969889514148235, -0.029704557731747627, -0.027402589097619057, -0.07295649498701096, -0.16604959964752197, 0.12372884899377823, 0.020005259662866592, -0.014596140943467617, -0.0480341874063015, 0.10491051524877548, -0.0034244079142808914, -0.03727319836616516, -0.1610567718744278, -0.0490843802690506, -0.04660492017865181, 0.049090489745140076, -0.013934850692749023, 0.027485143393278122, 0.024989096447825432, 0.04532353952527046, 0.011194839142262936, 0.006936973426491022, -0.022136004641652107, -0.019122393801808357, -0.0583091676235199, -0.11453968286514282, -0.09680450707674026, -0.09417662024497986, 0.17514456808567047, -0.29693084955215454, 0.03637424483895302, -0.014518902637064457, 0.034859877079725266, -0.059839967638254166, -0.018002241849899292, 0.12048312276601791, 0.01154760830104351, -0.04221777990460396, -0.07139401882886887, 0.09415964037179947, -0.05233648791909218, -0.10368327051401138, -0.1461542695760727, -0.05699790269136429, -0.05808119848370552, 0.07536366581916809, -0.06051800400018692, -0.10120407491922379, -0.09210177510976791, -0.04561525955796242, 0.0010786508210003376, -0.022901052609086037, 0.04600529745221138, 0.130057692527771, 0.041043560951948166, 0.07042138278484344, -0.05694190785288811, 0.02174355648458004, -0.022470280528068542, -0.050239961594343185, 0.0025443057529628277, 0.116327665746212, 0.18277689814567566, -0.02682468667626381, 0.018506372347474098, 0.04567911848425865, -0.02874656580388546, 0.05799156054854393, 0.02796739526093006, -0.018477989360690117, -0.05498515069484711, -0.011226588860154152, 0.012574778869748116, 0.15373796224594116, -0.08835756778717041, 0.040678221732378006, 0.06811851263046265, -0.03879499435424805, 0.051955174654722214, -0.22979851067066193, -0.1175912618637085, 0.005223993211984634, -0.06745008379220963, -0.17795045673847198, 0.11184119433164597, -0.029232488945126534, 0.12158889323472977, -0.0776340439915657, -0.13273614645004272, 0.010812085121870041, -0.029107222333550453, -0.10649461299180984, 0.21551069617271423, -0.0361970029771328, -0.16946208477020264, -0.11216828227043152, 0.060976605862379074, -0.019340001046657562, -0.012888167053461075, 0.013652958907186985, -0.11001553386449814, -0.005547644104808569, -0.02951899915933609, -0.005282232537865639, -0.038362450897693634, -0.038236670196056366, -0.06515878438949585, -0.02388816885650158, -0.03906997665762901, -0.12185023725032806, -0.041841890662908554, -0.04696296155452728, 0.038139376789331436, 0.024680087342858315, -0.04085811600089073, 0.14191286265850067, 0.18324249982833862, 0.025569181889295578, 0.04625481739640236, -0.03228691592812538, 0.2642099857330322, -0.0962032824754715, 0.06860458850860596, 0.19637607038021088, -0.04732959717512131, 0.0359731987118721, 0.07632981985807419, 0.03871963545680046, -0.11481156945228577, -0.04482996463775635, -0.03327937051653862, -0.10704786330461502, -0.21830780804157257, -0.0432724803686142, -0.08430688828229904, -0.037220392376184464, 0.006963915657252073, 0.030283082276582718, -0.012321623973548412, 0.05538182333111763, 0.08119937032461166, -0.10136956721544266, -0.009813925251364708, 0.02062971331179142, 0.02189280465245247, 0.004108181223273277, 0.03539838269352913, -0.05623467266559601, -0.018043888732790947, 0.04749344661831856, 0.037618238478899, 0.18562796711921692, 0.0557534396648407, 0.06637687236070633, 0.12102451920509338, 0.14212271571159363, 0.05637853592634201, 0.14313562214374542, 0.010522956028580666, -0.021663857623934746, -0.021932268515229225, -0.040011148899793625, -0.02501167543232441, -0.016260337084531784, -0.050617415457963943, 0.046687547117471695, -0.08651548624038696, 0.04626310244202614, 0.02185821533203125, 0.0011017357464879751, 0.041525837033987045, -0.2424648553133011, 0.03656987100839615, 0.014283991418778896, 0.08856360614299774, -0.05840984359383583, 0.057033173739910126, 0.037382446229457855, -0.14675092697143555, 0.01321676280349493, -0.07965496182441711, 0.10550481826066971, 0.05197096988558769, 0.008170975372195244, -0.07290607690811157, 0.11305910348892212, -0.03137977793812752, 0.1465345174074173, -0.13494789600372314, 0.3471328318119049, -0.03228631243109703, 0.06069118529558182, -0.03914348781108856, -0.0044699618592858315, 0.09835696220397949, 0.1189168393611908, 0.23801583051681519, 0.011204533278942108, -0.05320115014910698, -0.12660349905490875, -0.12500080466270447, 0.047775257378816605, 0.003777406644076109, -0.029516465961933136, 0.05049730837345123, 0.03278399258852005, 0.020911067724227905, 0.000368156615877524, -0.0020886012353003025, -0.12268628925085068, -0.07809428125619888, -0.0030697761103510857, -0.005254443734884262, -0.06171237677335739, -0.03773278370499611, -0.08860430866479874, 0.01226833462715149, 0.0719849169254303, -0.038086410611867905, -0.04837663844227791, -0.0878017470240593, 0.10515617579221725, 0.10769382119178772, -0.050484299659729004, -0.03533857315778732, -0.020534317940473557, 0.018586741760373116, -0.06790564209222794, -0.006589306518435478, 0.014674621634185314, -0.07127432525157928, -0.04711258411407471, -0.046094536781311035, 0.14477995038032532, 0.018775084987282753, 0.029309963807463646, 0.047367263585329056, 0.0245163943618536, -0.033394183963537216, -0.13732266426086426, 0.09577158093452454, -0.027770308777689934, 0.019595643505454063, 0.039110783487558365, -0.004528931342065334, -0.023610342293977737, -0.11210643500089645, 0.044512245804071426, 0.21712644398212433, 0.3047539293766022, -0.0839526429772377, 0.09676546603441238, 0.03804495930671692, -0.13110283017158508, -0.1404847949743271, -0.016737477853894234, -0.025377416983246803, 0.030852999538183212, 0.049586281180381775, -0.1683414727449417, 0.06511811167001724, 0.0909179225564003, 0.011157975532114506, 0.11008550971746445, -0.3952288031578064, -0.06421098858118057, 0.18783041834831238, 0.07987756282091141, 0.05821293964982033, -0.08328785002231598, -0.01236412301659584, 0.02466079406440258, -0.11407939344644547, 0.032140664756298065, 0.01872123032808304, 0.06431764364242554, -0.05521608889102936, 0.0543353408575058, 0.019680563360452652, -0.09199874103069305, 0.21891404688358307, 0.03816176950931549, 0.10810566693544388, -0.013440622948110104, -0.23544877767562866, 0.11767654865980148, -0.04251224175095558, 0.11271770298480988, -0.0078344801440835, 0.03136083483695984, -0.2550102770328522, -0.03763354569673538, -0.10205049812793732, 0.07988060265779495, -0.04949153587222099, -0.03353326767683029, -0.027295026928186417, -0.00653181504458189, -0.02085260860621929, -0.012179545126855373, -0.08307793736457825, -0.012771831825375557, 0.0640433207154274, -0.002405323786661029, 0.1478416472673416, 0.13179348409175873, -0.1392333060503006, -0.010738699696958065, 0.00005603721001534723, 0.033643729984760284, -0.0832543596625328, -0.09678515791893005, 0.12314688414335251, 0.04800982400774956, 0.11329517513513565, 0.08232682943344116, -0.021149862557649612, 0.04262785241007805, 0.06374295800924301, -0.1860320270061493, -0.03924158960580826, -0.008292124606668949, -0.08317229896783829, -0.055575061589479446, -0.06831490993499756, 0.02037409506738186, -0.04646506533026695, -0.03724171966314316, 0.021801194176077843, 0.03189544752240181, -0.09535211324691772, 0.06929908692836761, 0.14340302348136902, 0.08734756708145142, -0.07841771841049194, 0.03958488628268242, 0.032384127378463745, -0.03153292089700699, 0.004985116887837648, 0.09717103093862534, -0.11430387198925018, -0.05313561111688614, 0.01261918991804123, 0.30359745025634766, -0.015974484384059906, -0.03169650584459305, -0.06174149736762047, -0.055318985134363174, -0.015061777085065842, 0.12740369141101837, 0.11520455777645111, -0.004572710953652859, -0.12318418174982071, -0.03752140328288078, -0.11147838830947876, 0.04342334717512131, 0.07885608077049255, -0.04280627891421318, -0.09588056802749634, 0.12107115238904953, 0.04498206079006195, 0.0706968605518341, -0.04358799755573273, -0.06827875971794128, -0.10848084837198257, 0.04121902585029602, -0.07732050120830536, 0.030196594074368477, -0.02983015961945057, 0.008462569676339626, -0.02528221346437931, -0.010796367190778255, -0.03414443880319595, -0.000017731072148308158, -0.0795886293053627, 0.028234854340553284, 0.006548989564180374, 0.06688987463712692, -0.10094854235649109, -0.043076228350400925, 0.068125419318676, -0.032425496727228165, 0.047180138528347015, 0.09623581916093826, -0.005049142520874739, 0.0049846661277115345, -0.170835942029953, -0.00026750739198178053, 0.05857795849442482, 0.025438861921429634, 0.010992073453962803, -0.16758671402931213, 0.013760469853878021, -0.034703485667705536, -0.03600156307220459, 0.021776696667075157, 0.0500214509665966, -0.09260287880897522, -0.049701087176799774, 0.0723278671503067, -0.08817320317029953, -0.018154384568333626, -0.010587721131742, 0.1405678242444992, 0.0628770962357521, 0.15481482446193695, -0.015060187317430973, 0.14475581049919128, -0.14735040068626404, -0.03160668537020683, -0.0705891102552414, -0.03405425697565079, -0.11573951691389084, -0.04071240499615669, 0.08174832165241241, -0.058531589806079865, 0.1290997564792633, 0.04624629393219948, 0.03178427368402481, -0.030721116811037064, 0.10799160599708557, 0.03814757615327835, -0.010359159670770168, 0.10120730102062225, 0.02537737786769867, -0.008317682892084122, 0.09628859907388687, 0.04607405886054039, 0.01839687116444111, 0.09161737561225891, 0.24713623523712158, 0.052654121071100235, 0.08151847869157791, 0.06819833815097809, -0.012018253095448017, -0.013194168917834759, -0.09330711513757706, -0.0999726727604866, 0.08042815327644348, 0.018280604854226112, -0.009545418433845043, 0.03737694397568703, 0.13028155267238617, -0.11782602965831757, 0.06289014220237732, -0.011722072027623653, -0.11705886572599411, -0.14324404299259186, -0.22439445555210114, 0.003262540092691779, 0.046921830624341965, 0.010420553386211395, -0.11282472312450409, -0.014442695304751396, 0.16206663846969604, 0.013464012183248997, -0.01515235099941492, 0.15827572345733643, -0.0273183174431324, -0.004491888452321291, 0.04735269770026207, -0.009412557817995548, -0.009464780800044537, -0.0843885987997055, 0.0518965870141983, 0.02108614519238472, -0.1259794533252716, 0.023760685697197914, -0.02239925041794777, 0.02903078868985176, -0.024225613102316856, -0.13873617351055145, -0.06650624424219131, -0.024724483489990234, 0.036612194031476974, 0.07826345413923264, 0.10471570491790771, 0.08711951971054077, 0.0037323059514164925, 0.004957154393196106, 0.1363854706287384, 0.03007582016289234, -0.12964355945587158, -0.079130619764328, 0.26676803827285767, -0.10897330194711685, -0.010115577839314938, -0.038657449185848236, 0.0006707745487801731, 0.06668252497911453, 0.30219924449920654, 0.24958908557891846, -0.06350119411945343, -0.03772333264350891, -0.028638673946261406, 0.016294872388243675, 0.055999938398599625, 0.10108734667301178, 0.0822480171918869, 0.08620862662792206, -0.12233629077672958, -0.03253667429089546, -0.1750054955482483, -0.03659859299659729, -0.028020057827234268, 0.0690232515335083, 0.1321425586938858, -0.03648284077644348, -0.05120248720049858, 0.18274396657943726, -0.08473023772239685, -0.03227914124727249, -0.005987225100398064, -0.07652880996465683, -0.13943129777908325, -0.014076070860028267, 0.015293738804757595, 0.030555065721273422, 0.07487810403108597, -0.11306151002645493, -0.0755825936794281, 0.10723499953746796, 0.005895919632166624, -0.11522772163152695, -0.1045781746506691, 0.10492933541536331, -0.14085491001605988, 0.1693977564573288, -0.013603145256638527, 0.13623638451099396, 0.08374672383069992, 0.017190415412187576, -0.09170517325401306, 0.025326427072286606, 0.071790412068367, 0.13962776958942413, -0.01124001294374466, 0.018100691959261894, -0.010499014519155025, -0.1123211607336998, -0.023642392829060555, -0.08313099294900894, 0.0251245629042387, -0.0275130458176136, -0.04345405474305153, -0.04585421830415726, 0.12134166061878204, -0.06015291437506676, 0.10966702550649643, 0.15113075077533722, -0.06379928439855576, 0.0037706331349909306, -0.04533834755420685, 0.04661671072244644, 0.05842535197734833, 0.015087221749126911, -0.024394312873482704, -0.044363122433423996, -0.007684454787522554, -0.01261228509247303, -0.08081196248531342, -0.11489526182413101, -0.08163938671350479, -0.10647088289260864, -0.05188237875699997, -0.007539862301200628, 0.041471388190984726, 0.03843662887811661, 0.07802718877792358, -0.003124506212770939, 0.04844874143600464, -0.005380827467888594, 0.1145225390791893, -0.12861132621765137, -0.07205766439437866 ]
null
null
flair
## English NER in Flair (fast model) This is the fast 4-class NER model for English that ships with [Flair](https://github.com/flairNLP/flair/). F1-Score: **92,92** (corrected CoNLL-03) Predicts 4 tags: | **tag** | **meaning** | |---------------------------------|-----------| | PER | person name | | LOC | location name | | ORG | organization name | | MISC | other name | Based on [Flair embeddings](https://www.aclweb.org/anthology/C18-1139/) and LSTM-CRF. --- ### Demo: How to use in Flair Requires: **[Flair](https://github.com/flairNLP/flair/)** (`pip install flair`) ```python from flair.data import Sentence from flair.models import SequenceTagger # load tagger tagger = SequenceTagger.load("flair/ner-english-fast") # make example sentence sentence = Sentence("George Washington went to Washington") # predict NER tags tagger.predict(sentence) # print sentence print(sentence) # print predicted NER spans print('The following NER tags are found:') # iterate over entities and print for entity in sentence.get_spans('ner'): print(entity) ``` This yields the following output: ``` Span [1,2]: "George Washington" [− Labels: PER (0.9515)] Span [5]: "Washington" [− Labels: LOC (0.992)] ``` So, the entities "*George Washington*" (labeled as a **person**) and "*Washington*" (labeled as a **location**) are found in the sentence "*George Washington went to Washington*". --- ### Training: Script to train this model The following Flair script was used to train this model: ```python from flair.data import Corpus from flair.datasets import CONLL_03 from flair.embeddings import WordEmbeddings, StackedEmbeddings, FlairEmbeddings # 1. get the corpus corpus: Corpus = CONLL_03() # 2. what tag do we want to predict? tag_type = 'ner' # 3. make the tag dictionary from the corpus tag_dictionary = corpus.make_tag_dictionary(tag_type=tag_type) # 4. initialize each embedding we use embedding_types = [ # GloVe embeddings WordEmbeddings('glove'), # contextual string embeddings, forward FlairEmbeddings('news-forward-fast'), # contextual string embeddings, backward FlairEmbeddings('news-backward-fast'), ] # embedding stack consists of Flair and GloVe embeddings embeddings = StackedEmbeddings(embeddings=embedding_types) # 5. initialize sequence tagger from flair.models import SequenceTagger tagger = SequenceTagger(hidden_size=256, embeddings=embeddings, tag_dictionary=tag_dictionary, tag_type=tag_type) # 6. initialize trainer from flair.trainers import ModelTrainer trainer = ModelTrainer(tagger, corpus) # 7. run training trainer.train('resources/taggers/ner-english', train_with_dev=True, max_epochs=150) ``` --- ### Cite Please cite the following paper when using this model. ``` @inproceedings{akbik2018coling, title={Contextual String Embeddings for Sequence Labeling}, author={Akbik, Alan and Blythe, Duncan and Vollgraf, Roland}, booktitle = {{COLING} 2018, 27th International Conference on Computational Linguistics}, pages = {1638--1649}, year = {2018} } ``` --- ### Issues? The Flair issue tracker is available [here](https://github.com/flairNLP/flair/issues/).
{"language": "en", "tags": ["flair", "token-classification", "sequence-tagger-model"], "datasets": ["conll2003"], "widget": [{"text": "George Washington went to Washington"}]}
token-classification
flair/ner-english-fast
[ "flair", "pytorch", "token-classification", "sequence-tagger-model", "en", "dataset:conll2003", "has_space", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #flair #pytorch #token-classification #sequence-tagger-model #en #dataset-conll2003 #has_space #region-us
English NER in Flair (fast model) --------------------------------- This is the fast 4-class NER model for English that ships with Flair. F1-Score: 92,92 (corrected CoNLL-03) Predicts 4 tags: Based on Flair embeddings and LSTM-CRF. --- ### Demo: How to use in Flair Requires: Flair ('pip install flair') This yields the following output: So, the entities "*George Washington*" (labeled as a person) and "*Washington*" (labeled as a location) are found in the sentence "*George Washington went to Washington*". --- ### Training: Script to train this model The following Flair script was used to train this model: --- ### Cite Please cite the following paper when using this model. --- ### Issues? The Flair issue tracker is available here.
[ "### Demo: How to use in Flair\n\n\nRequires: Flair ('pip install flair')\n\n\nThis yields the following output:\n\n\nSo, the entities \"*George Washington*\" (labeled as a person) and \"*Washington*\" (labeled as a location) are found in the sentence \"*George Washington went to Washington*\".\n\n\n\n\n---", "### Training: Script to train this model\n\n\nThe following Flair script was used to train this model:\n\n\n\n\n---", "### Cite\n\n\nPlease cite the following paper when using this model.\n\n\n\n\n---", "### Issues?\n\n\nThe Flair issue tracker is available here." ]
[ "TAGS\n#flair #pytorch #token-classification #sequence-tagger-model #en #dataset-conll2003 #has_space #region-us \n", "### Demo: How to use in Flair\n\n\nRequires: Flair ('pip install flair')\n\n\nThis yields the following output:\n\n\nSo, the entities \"*George Washington*\" (labeled as a person) and \"*Washington*\" (labeled as a location) are found in the sentence \"*George Washington went to Washington*\".\n\n\n\n\n---", "### Training: Script to train this model\n\n\nThe following Flair script was used to train this model:\n\n\n\n\n---", "### Cite\n\n\nPlease cite the following paper when using this model.\n\n\n\n\n---", "### Issues?\n\n\nThe Flair issue tracker is available here." ]
[ 41, 81, 22, 15, 15 ]
[ "passage: TAGS\n#flair #pytorch #token-classification #sequence-tagger-model #en #dataset-conll2003 #has_space #region-us \n### Demo: How to use in Flair\n\n\nRequires: Flair ('pip install flair')\n\n\nThis yields the following output:\n\n\nSo, the entities \"*George Washington*\" (labeled as a person) and \"*Washington*\" (labeled as a location) are found in the sentence \"*George Washington went to Washington*\".\n\n\n\n\n---### Training: Script to train this model\n\n\nThe following Flair script was used to train this model:\n\n\n\n\n---### Cite\n\n\nPlease cite the following paper when using this model.\n\n\n\n\n---### Issues?\n\n\nThe Flair issue tracker is available here." ]
[ -0.07754179835319519, 0.17645306885242462, -0.0014712187694385648, 0.06833362579345703, 0.08177177608013153, 0.05396747589111328, 0.11267365515232086, 0.04825665429234505, 0.010602099820971489, 0.053486838936805725, 0.18720762431621552, 0.07780981063842773, 0.11305837333202362, 0.07320278882980347, 0.08347295224666595, -0.25872859358787537, 0.03124011680483818, -0.031080935150384903, -0.0661880373954773, 0.1710071712732315, 0.07460048794746399, -0.008209152147173882, 0.01566537469625473, 0.03217897564172745, -0.11547128856182098, -0.016097035259008408, -0.02255762740969658, -0.09116753190755844, 0.17304256558418274, -0.03867684677243233, 0.2176574319601059, 0.04909152910113335, 0.09997935593128204, -0.14942097663879395, 0.030922213569283485, 0.04960301145911217, 0.02233264595270157, 0.1008487343788147, 0.047248899936676025, -0.002577294362708926, 0.29770246148109436, -0.023222805932164192, 0.0022778487764298916, 0.03184448182582855, -0.194279283285141, -0.25129130482673645, -0.11246374994516373, 0.06667076051235199, 0.04731357470154762, 0.10669522732496262, -0.029623212292790413, 0.09231632947921753, -0.05365392565727234, 0.026348991319537163, 0.18664439022541046, -0.22959259152412415, -0.029878173023462296, 0.1808956414461136, 0.014837613329291344, -0.017358366400003433, -0.04209684580564499, 0.05225979536771774, -0.0027904964517802, 0.07348155230283737, -0.038277387619018555, -0.012397896498441696, 0.019900692626833916, 0.13006621599197388, -0.16845081746578217, -0.108916737139225, 0.32628217339515686, 0.033990662544965744, -0.06865307688713074, 0.0009936346905305982, 0.0048671928234398365, -0.02796310931444168, 0.06125226244330406, -0.1016443744301796, -0.010525999590754509, 0.002147058956325054, 0.16981127858161926, -0.12401694059371948, -0.09334787726402283, -0.09860476851463318, -0.023727163672447205, 0.04282179847359657, -0.09350593388080597, 0.10587839037179947, -0.171022430062294, 0.12357880920171738, 0.06411927193403244, -0.05157626047730446, 0.04923859238624573, -0.0730988085269928, -0.041779667139053345, 0.0125777842476964, -0.04943787679076195, 0.13106411695480347, 0.03255152329802513, 0.02866257168352604, 0.154957115650177, -0.04096983000636101, 0.10380399227142334, 0.10950533300638199, 0.005464928690344095, 0.1985224187374115, -0.1408398151397705, -0.028763365000486374, 0.025492433458566666, -0.025497229769825935, -0.008396552875638008, -0.05911485478281975, -0.1629110425710678, -0.013697267509996891, -0.07037291675806046, 0.021661145612597466, 0.0364745669066906, -0.017974253743886948, -0.08983248472213745, 0.012833666056394577, 0.06407420337200165, -0.06673172116279602, -0.03855659067630768, -0.024492328986525536, -0.05353779345750809, 0.09334668517112732, 0.08932789415121078, 0.033969949930906296, 0.018869653344154358, 0.13650499284267426, -0.08181274682283401, 0.048749323934316635, -0.040186334401369095, -0.11000388860702515, -0.025855405256152153, -0.07450368255376816, 0.01350113283842802, -0.05998620018362999, -0.15010225772857666, -0.014377806335687637, 0.06219375133514404, 0.011581921949982643, -0.06558139622211456, -0.042902056127786636, -0.028128966689109802, -0.048067715018987656, 0.03784794360399246, 0.06943901628255844, -0.06656049191951752, 0.07558827847242355, -0.041824329644441605, 0.10506926476955414, -0.04709027335047722, 0.014807348139584064, -0.0919363722205162, 0.009970128536224365, -0.11978712677955627, -0.005051698535680771, -0.01654648594558239, 0.032986126840114594, -0.11927206814289093, -0.08522059768438339, -0.02064075879752636, 0.008532451465725899, 0.018110739067196846, 0.18470415472984314, -0.2741975486278534, -0.016154443845152855, 0.11923731118440628, -0.0970100536942482, -0.052793316543102264, 0.05080597475171089, -0.027345797047019005, 0.2000253051519394, 0.03233255073428154, 0.1410668045282364, -0.026518527418375015, -0.3641958236694336, 0.11612235754728317, 0.050427693873643875, -0.1995733678340912, 0.04448068514466286, 0.07041699439287186, -0.05803046002984047, -0.18117335438728333, -0.00035470983129926026, -0.1054917573928833, 0.03541767597198486, -0.03451206907629967, -0.038134872913360596, 0.007946238853037357, -0.053653083741664886, 0.043425098061561584, -0.04420396685600281, -0.03191240131855011, -0.0008029607124626637, -0.14804165065288544, -0.14217549562454224, 0.034968044608831406, 0.11056330800056458, -0.033926062285900116, 0.015836600214242935, 0.04762740433216095, 0.04205077141523361, -0.04267682135105133, -0.11397255957126617, 0.036075618118047714, -0.08373289555311203, 0.13944672048091888, 0.02140967547893524, 0.15893884003162384, -0.0326048880815506, 0.01657475344836712, 0.06893139332532883, 0.032006919384002686, -0.023277686908841133, 0.05343891680240631, -0.00910012423992157, 0.005924176424741745, -0.08223745226860046, -0.09227555245161057, 0.11507019400596619, -0.1732158064842224, 0.06324122101068497, 0.0345144160091877, -0.0030428192112594843, -0.015952076762914658, -0.020765408873558044, 0.11239534616470337, 0.03155575692653656, 0.016160983592271805, -0.07194400578737259, 0.0680181011557579, 0.004522040020674467, -0.05563190579414368, -0.10820070654153824, -0.06696484982967377, -0.032549455761909485, 0.10313135385513306, -0.031925592571496964, -0.11245077103376389, -0.07000447064638138, -0.04484890401363373, 0.006589848082512617, -0.03452951833605766, -0.03343801200389862, 0.15580464899539948, 0.04088863730430603, 0.012611235491931438, -0.029496170580387115, 0.031581662595272064, -0.029225578531622887, -0.03257790207862854, -0.07219153642654419, 0.05417686328291893, 0.11043953150510788, 0.029020637273788452, 0.030439916998147964, 0.1810978651046753, 0.0025009845849126577, 0.020533539354801178, 0.05543633550405502, -0.05167628079652786, -0.1014716774225235, -0.10627426952123642, -0.021119778975844383, 0.17995966970920563, -0.02260744385421276, 0.04118063673377037, 0.04363493621349335, -0.00604051910340786, 0.03781992197036743, -0.2039848268032074, -0.12298339605331421, 0.050411906093358994, -0.026413410902023315, -0.1859441101551056, 0.053826894611120224, -0.05497695505619049, 0.10488542914390564, -0.02126612327992916, -0.07224913686513901, 0.04569634795188904, -0.00010353676043450832, -0.0773436427116394, 0.10456831753253937, -0.06604623794555664, -0.26045143604278564, -0.10620442777872086, -0.0641823336482048, 0.1052456796169281, -0.0048753353767097, 0.025803908705711365, -0.11017563194036484, 0.03340508043766022, -0.012199110351502895, 0.05897105112671852, -0.09708739072084427, -0.08480245620012283, -0.06506515294313431, 0.02019714191555977, -0.01870417408645153, -0.10990332812070847, -0.033304858952760696, -0.05823634937405586, 0.08495926856994629, 0.026999248191714287, 0.018227646127343178, 0.08756991475820541, 0.12908503413200378, 0.02069397270679474, 0.07084877789020538, -0.04858938977122307, 0.36368730664253235, -0.08118712902069092, 0.07762788236141205, 0.13007904589176178, 0.012488547712564468, 0.047220781445503235, 0.15282393991947174, 0.06878884881734848, -0.08269142359495163, -0.0398922935128212, -0.07469593733549118, -0.06922279298305511, -0.11486057937145233, -0.051381684839725494, -0.04355936869978905, -0.061931077390909195, 0.007631842978298664, 0.02898714318871498, -0.0849793329834938, 0.026226654648780823, 0.08144693076610565, -0.04626327380537987, -0.053528644144535065, -0.003856563474982977, 0.017222493886947632, -0.030279308557510376, 0.000022242495106183924, -0.030871206894516945, -0.03829526901245117, 0.031054392457008362, 0.09232834726572037, 0.07493927329778671, 0.11867547035217285, -0.008620659820735455, 0.06487446278333664, 0.10922076553106308, 0.0907936692237854, 0.16689422726631165, 0.08132350444793701, -0.017172282561659813, -0.025210438296198845, -0.0552842877805233, 0.0006747531006112695, 0.03846857324242592, 0.010585397481918335, -0.05610959231853485, 0.011706947349011898, -0.10549738258123398, -0.044250402599573135, -0.00045780421351082623, 0.12490221112966537, -0.17725107073783875, -0.028981702402234077, 0.0025563084054738283, 0.09625837206840515, -0.04107341915369034, 0.05712779611349106, 0.029471779242157936, -0.1322060227394104, 0.01304552797228098, -0.022282704710960388, 0.10046657174825668, 0.032702282071113586, 0.03616068884730339, -0.08741630613803864, 0.036816470324993134, -0.05629411339759827, 0.11230190843343735, -0.19039921462535858, 0.3411136269569397, -0.029189562425017357, 0.01439796481281519, -0.04907659441232681, 0.001495462842285633, 0.07830628752708435, 0.049780555069446564, 0.24089691042900085, 0.0072601838037371635, -0.1557980626821518, -0.10067134350538254, -0.11587468534708023, 0.0371759831905365, -0.02502240054309368, -0.07582314312458038, 0.06340732425451279, 0.06367435306310654, 0.005864436738193035, -0.02741561084985733, 0.07760247588157654, -0.1847614347934723, -0.10596834123134613, 0.022898240014910698, -0.03178315609693527, 0.03927309438586235, -0.009486321359872818, -0.0540086030960083, -0.11264348775148392, -0.008291383273899555, -0.01637926883995533, -0.036599185317754745, -0.08583460003137589, 0.1098761111497879, 0.0486019141972065, -0.00919925607740879, -0.03178917616605759, -0.0005758185870945454, 0.015676327049732208, -0.0880160927772522, 0.019203219562768936, 0.023837018758058548, -0.05182203650474548, 0.03307157754898071, -0.07997714728116989, 0.07993977516889572, 0.04752611368894577, 0.04597796872258186, 0.00774313835427165, 0.06411200016736984, -0.11032064259052277, -0.1149287223815918, 0.2012193351984024, -0.11813875287771225, -0.024615036323666573, 0.0508619025349617, 0.035559091717004776, 0.006837102118879557, -0.14715397357940674, 0.022003261372447014, 0.23580947518348694, 0.25653284788131714, -0.13861101865768433, 0.14306360483169556, -0.02401386760175228, -0.11648180335760117, -0.15072350203990936, -0.012898522429168224, -0.06660594046115875, 0.03741202875971794, 0.11839398741722107, -0.1663983315229416, 0.03581586107611656, 0.11083318293094635, -0.04651443660259247, 0.18614409863948822, -0.20854249596595764, -0.02927589975297451, 0.20170395076274872, 0.040600456297397614, 0.05820350721478462, -0.05468771979212761, -0.03231723606586456, 0.01364588737487793, -0.14487992227077484, 0.06877235323190689, 0.11307153850793839, 0.041834279894828796, -0.0172274187207222, 0.0787387490272522, 0.0021745148114860058, -0.0731922835111618, 0.19910576939582825, -0.025844614952802658, 0.024256490170955658, -0.04272749647498131, -0.23798060417175293, 0.12775874137878418, -0.023064272478222847, 0.08214819431304932, 0.07538721710443497, 0.021028738468885422, -0.16098462045192719, -0.014173814095556736, -0.11875100433826447, 0.07721564173698425, -0.07301245629787445, -0.04844633862376213, -0.0590442456305027, 0.012157578021287918, -0.10161566734313965, -0.04514360800385475, -0.1624065786600113, -0.07942797243595123, 0.0759822428226471, 0.013675469905138016, -0.006444314494729042, 0.06654620170593262, -0.1836836040019989, 0.05705875903367996, -0.012530838139355183, 0.0619388073682785, -0.10079565644264221, -0.12315905094146729, 0.1021762415766716, 0.03662077337503433, 0.08908525109291077, 0.07408330589532852, -0.06525322049856186, 0.008303400129079819, 0.03823942691087723, -0.1902492344379425, -0.061513133347034454, -0.06060648337006569, -0.006479691248387098, -0.01715351827442646, -0.09824580699205399, 0.030182957649230957, -0.02474709041416645, -0.034081727266311646, -0.0009182289941236377, -0.002454205881804228, -0.12701742351055145, -0.0009491539094597101, 0.13562610745429993, 0.1021547019481659, -0.04566896706819534, 0.013759877532720566, 0.09578602015972137, -0.0976477786898613, -0.015482207760214806, 0.03056846559047699, -0.05261091887950897, -0.05242649093270302, -0.07476341724395752, 0.16592884063720703, 0.07799428701400757, -0.003889932995662093, -0.006761424243450165, -0.08308728784322739, 0.004400869831442833, 0.0834001898765564, 0.09166659414768219, 0.0017428932478651404, -0.11055802553892136, -0.08825869113206863, -0.04522313177585602, 0.022255057469010353, 0.0016010550316423178, -0.06240902468562126, -0.13734987378120422, 0.08076385408639908, 0.012935017235577106, 0.12854577600955963, -0.03758738562464714, -0.08589383959770203, -0.1209675520658493, 0.05851154401898384, -0.00013283985026646405, 0.008335558697581291, -0.013108356855809689, 0.006929735653102398, 0.0032697003334760666, -0.04146888107061386, -0.006699878256767988, -0.013709691353142262, -0.10904364287853241, 0.0595129169523716, -0.00026295066345483065, 0.05749618634581566, -0.019727669656276703, -0.035004302859306335, 0.10337471961975098, -0.028249191120266914, 0.05784662067890167, 0.06588263064622879, -0.07716593891382217, -0.052351806312799454, -0.232272669672966, 0.013977361842989922, 0.01359256450086832, -0.01938895508646965, 0.01198615599423647, -0.18718808889389038, -0.002408674219623208, -0.07003804296255112, -0.019620265811681747, -0.021836137399077415, 0.04376371577382088, -0.07073947042226791, -0.04819376766681671, 0.13044919073581696, -0.05197535455226898, -0.02548273093998432, -0.09404639154672623, 0.17698834836483002, -0.016344599425792694, 0.10929640382528305, 0.026925215497612953, 0.1651221066713333, -0.13492320477962494, -0.02287326008081436, -0.05856097489595413, -0.022900674492120743, -0.024268681183457375, -0.05907032638788223, 0.09327629953622818, 0.011733517982065678, 0.22636036574840546, 0.01423418428748846, -0.010065902024507523, -0.009942913427948952, 0.16960115730762482, 0.02611513063311577, -0.02038286253809929, 0.10359500348567963, 0.021963370963931084, 0.006427949294447899, 0.05541658774018288, 0.04529688507318497, -0.030264973640441895, 0.18015775084495544, 0.21477608382701874, 0.0011419461807236075, 0.11504117399454117, 0.08320838212966919, -0.04261947050690651, 0.04139399528503418, -0.003798088990151882, -0.12946467101573944, 0.13413143157958984, -0.0027838568203151226, -0.038717977702617645, -0.04559718444943428, 0.10584032535552979, -0.06193123385310173, 0.05128570646047592, -0.0501648373901844, -0.08126737922430038, -0.10386890918016434, -0.19279465079307556, 0.042028382420539856, 0.0033682496286928654, -0.011750648729503155, -0.045877836644649506, -0.01831798627972603, 0.18256548047065735, -0.056898415088653564, 0.015313430689275265, 0.06555616110563278, 0.03392085060477257, -0.06639061868190765, 0.02865232527256012, -0.031249510124325752, 0.006010999903082848, -0.1702151894569397, 0.07115574181079865, 0.004042482003569603, -0.0891227051615715, 0.038743533194065094, -0.002058038953691721, -0.018427273258566856, -0.0361320823431015, -0.1450413018465042, -0.06967693567276001, -0.03088492341339588, 0.0629301443696022, -0.02216517925262451, 0.08737204223871231, 0.054675593972206116, 0.04052126407623291, 0.00021603464847430587, 0.13613329827785492, -0.017200836911797523, -0.13532908260822296, -0.05924006924033165, 0.19982117414474487, -0.16289867460727692, -0.003894954454153776, -0.08012817054986954, -0.01595214754343033, 0.05655684694647789, 0.34926217794418335, 0.29040855169296265, -0.03533623740077019, -0.04518170282244682, -0.02583770826458931, 0.024215908721089363, 0.09732510894536972, 0.03687691688537598, 0.10173441469669342, 0.16557882726192474, -0.1913149654865265, -0.039266180247068405, -0.1793902963399887, -0.004952968563884497, -0.018650684505701065, 0.007320149336010218, 0.1155557930469513, -0.07043810933828354, -0.04351365938782692, 0.209843248128891, -0.16912789642810822, -0.054514169692993164, 0.027548594400286674, -0.06217918545007706, -0.11541114002466202, 0.02538352645933628, 0.07309430092573166, -0.009485145099461079, 0.09940112382173538, -0.10799267143011093, -0.09204038232564926, 0.14706911146640778, -0.04426358640193939, -0.12115191668272018, -0.11411548405885696, 0.03939910978078842, -0.15244382619857788, 0.13161446154117584, 0.004268568009138107, 0.12123951315879822, 0.05961480736732483, 0.08470243960618973, -0.11262635141611099, 0.1004881039261818, 0.009663550183176994, 0.07560045272111893, -0.05425167456269264, -0.05648530274629593, 0.014422115869820118, -0.05682225525379181, 0.009247985668480396, -0.15363535284996033, 0.07903418689966202, 0.08833206444978714, -0.0023426066618412733, 0.005495043005794287, 0.06143582984805107, -0.04818333312869072, 0.11000506579875946, 0.0969986543059349, -0.06984512507915497, 0.01432940736413002, -0.008052513003349304, -0.012603741139173508, 0.07655569165945053, -0.04939008504152298, -0.04133909195661545, -0.02148480713367462, 0.01191031001508236, 0.006371227093040943, -0.10161851346492767, -0.06261949241161346, -0.07356744259595871, -0.04364680126309395, -0.051751863211393356, 0.05409422144293785, 0.030860010534524918, 0.027121830731630325, 0.0734129548072815, -0.022500816732645035, 0.12983761727809906, 0.0015641379868611693, 0.1542537659406662, -0.17383043467998505, -0.07972919940948486 ]
null
null
flair
## English NER in Flair (large model) This is the large 4-class NER model for English that ships with [Flair](https://github.com/flairNLP/flair/). F1-Score: **94,36** (corrected CoNLL-03) Predicts 4 tags: | **tag** | **meaning** | |---------------------------------|-----------| | PER | person name | | LOC | location name | | ORG | organization name | | MISC | other name | Based on document-level XLM-R embeddings and [FLERT](https://arxiv.org/pdf/2011.06993v1.pdf/). --- ### Demo: How to use in Flair Requires: **[Flair](https://github.com/flairNLP/flair/)** (`pip install flair`) ```python from flair.data import Sentence from flair.models import SequenceTagger # load tagger tagger = SequenceTagger.load("flair/ner-english-large") # make example sentence sentence = Sentence("George Washington went to Washington") # predict NER tags tagger.predict(sentence) # print sentence print(sentence) # print predicted NER spans print('The following NER tags are found:') # iterate over entities and print for entity in sentence.get_spans('ner'): print(entity) ``` This yields the following output: ``` Span [1,2]: "George Washington" [− Labels: PER (1.0)] Span [5]: "Washington" [− Labels: LOC (1.0)] ``` So, the entities "*George Washington*" (labeled as a **person**) and "*Washington*" (labeled as a **location**) are found in the sentence "*George Washington went to Washington*". --- ### Training: Script to train this model The following Flair script was used to train this model: ```python import torch # 1. get the corpus from flair.datasets import CONLL_03 corpus = CONLL_03() # 2. what tag do we want to predict? tag_type = 'ner' # 3. make the tag dictionary from the corpus tag_dictionary = corpus.make_tag_dictionary(tag_type=tag_type) # 4. initialize fine-tuneable transformer embeddings WITH document context from flair.embeddings import TransformerWordEmbeddings embeddings = TransformerWordEmbeddings( model='xlm-roberta-large', layers="-1", subtoken_pooling="first", fine_tune=True, use_context=True, ) # 5. initialize bare-bones sequence tagger (no CRF, no RNN, no reprojection) from flair.models import SequenceTagger tagger = SequenceTagger( hidden_size=256, embeddings=embeddings, tag_dictionary=tag_dictionary, tag_type='ner', use_crf=False, use_rnn=False, reproject_embeddings=False, ) # 6. initialize trainer with AdamW optimizer from flair.trainers import ModelTrainer trainer = ModelTrainer(tagger, corpus, optimizer=torch.optim.AdamW) # 7. run training with XLM parameters (20 epochs, small LR) from torch.optim.lr_scheduler import OneCycleLR trainer.train('resources/taggers/ner-english-large', learning_rate=5.0e-6, mini_batch_size=4, mini_batch_chunk_size=1, max_epochs=20, scheduler=OneCycleLR, embeddings_storage_mode='none', weight_decay=0., ) ) ``` --- ### Cite Please cite the following paper when using this model. ``` @misc{schweter2020flert, title={FLERT: Document-Level Features for Named Entity Recognition}, author={Stefan Schweter and Alan Akbik}, year={2020}, eprint={2011.06993}, archivePrefix={arXiv}, primaryClass={cs.CL} } ``` --- ### Issues? The Flair issue tracker is available [here](https://github.com/flairNLP/flair/issues/).
{"language": "en", "tags": ["flair", "token-classification", "sequence-tagger-model"], "datasets": ["conll2003"], "widget": [{"text": "George Washington went to Washington"}]}
token-classification
flair/ner-english-large
[ "flair", "pytorch", "token-classification", "sequence-tagger-model", "en", "dataset:conll2003", "arxiv:2011.06993", "has_space", "region:us" ]
2022-03-02T23:29:05+00:00
[ "2011.06993" ]
[ "en" ]
TAGS #flair #pytorch #token-classification #sequence-tagger-model #en #dataset-conll2003 #arxiv-2011.06993 #has_space #region-us
English NER in Flair (large model) ---------------------------------- This is the large 4-class NER model for English that ships with Flair. F1-Score: 94,36 (corrected CoNLL-03) Predicts 4 tags: Based on document-level XLM-R embeddings and FLERT. --- ### Demo: How to use in Flair Requires: Flair ('pip install flair') This yields the following output: So, the entities "*George Washington*" (labeled as a person) and "*Washington*" (labeled as a location) are found in the sentence "*George Washington went to Washington*". --- ### Training: Script to train this model The following Flair script was used to train this model: --- ### Cite Please cite the following paper when using this model. --- ### Issues? The Flair issue tracker is available here.
[ "### Demo: How to use in Flair\n\n\nRequires: Flair ('pip install flair')\n\n\nThis yields the following output:\n\n\nSo, the entities \"*George Washington*\" (labeled as a person) and \"*Washington*\" (labeled as a location) are found in the sentence \"*George Washington went to Washington*\".\n\n\n\n\n---", "### Training: Script to train this model\n\n\nThe following Flair script was used to train this model:\n\n\n\n\n---", "### Cite\n\n\nPlease cite the following paper when using this model.\n\n\n\n\n---", "### Issues?\n\n\nThe Flair issue tracker is available here." ]
[ "TAGS\n#flair #pytorch #token-classification #sequence-tagger-model #en #dataset-conll2003 #arxiv-2011.06993 #has_space #region-us \n", "### Demo: How to use in Flair\n\n\nRequires: Flair ('pip install flair')\n\n\nThis yields the following output:\n\n\nSo, the entities \"*George Washington*\" (labeled as a person) and \"*Washington*\" (labeled as a location) are found in the sentence \"*George Washington went to Washington*\".\n\n\n\n\n---", "### Training: Script to train this model\n\n\nThe following Flair script was used to train this model:\n\n\n\n\n---", "### Cite\n\n\nPlease cite the following paper when using this model.\n\n\n\n\n---", "### Issues?\n\n\nThe Flair issue tracker is available here." ]
[ 50, 81, 22, 15, 15 ]
[ "passage: TAGS\n#flair #pytorch #token-classification #sequence-tagger-model #en #dataset-conll2003 #arxiv-2011.06993 #has_space #region-us \n### Demo: How to use in Flair\n\n\nRequires: Flair ('pip install flair')\n\n\nThis yields the following output:\n\n\nSo, the entities \"*George Washington*\" (labeled as a person) and \"*Washington*\" (labeled as a location) are found in the sentence \"*George Washington went to Washington*\".\n\n\n\n\n---### Training: Script to train this model\n\n\nThe following Flair script was used to train this model:\n\n\n\n\n---### Cite\n\n\nPlease cite the following paper when using this model.\n\n\n\n\n---### Issues?\n\n\nThe Flair issue tracker is available here." ]
[ -0.10413747280836105, 0.1745603382587433, -0.0007235235534608364, 0.07044292241334915, 0.07940594851970673, 0.05360045284032822, 0.1230916902422905, 0.05188778042793274, 0.013948854990303516, 0.04899323359131813, 0.18269319832324982, 0.06860296428203583, 0.10721786320209503, 0.07320466637611389, 0.08739868551492691, -0.2556147575378418, 0.029148397967219353, -0.023994499817490578, -0.07281525433063507, 0.1719951331615448, 0.08074238896369934, -0.013677768409252167, 0.01810784451663494, 0.032968856394290924, -0.10419691354036331, -0.010343062691390514, -0.032278481870889664, -0.09707969427108765, 0.18212595582008362, -0.042507633566856384, 0.21331946551799774, 0.04664183035492897, 0.11574269086122513, -0.1422918289899826, 0.030273040756583214, 0.04648423194885254, 0.01945398934185505, 0.11429262161254883, 0.05260846018791199, 0.004164467565715313, 0.2970995008945465, -0.01822115108370781, -0.0009416030952706933, 0.03122580051422119, -0.18747001886367798, -0.26771336793899536, -0.10919104516506195, 0.0748322457075119, 0.05447103828191757, 0.12448906898498535, -0.028623340651392937, 0.10902614891529083, -0.04496137425303459, 0.028482146561145782, 0.17496871948242188, -0.22136221826076508, -0.03359467163681984, 0.1755208820104599, 0.012599372304975986, -0.019702909514307976, -0.03879614919424057, 0.03802747651934624, -0.0030178900342434645, 0.07511582225561142, -0.03160247579216957, -0.009584644809365273, 0.008488030172884464, 0.11585413664579391, -0.15541167557239532, -0.10499328374862671, 0.3376561999320984, 0.0251146350055933, -0.06448891013860703, 0.010637423023581505, -0.00808244664222002, -0.022252433001995087, 0.055526044219732285, -0.10165529698133469, -0.012050486169755459, 0.002728717401623726, 0.15615493059158325, -0.1189204677939415, -0.11105193942785263, -0.1038723960518837, -0.01494250912219286, 0.03423234820365906, -0.08826567977666855, 0.10105821490287781, -0.17449626326560974, 0.12477357685565948, 0.07218313217163086, -0.05886745825409889, 0.04773133620619774, -0.07920199632644653, -0.03376701474189758, 0.022550582885742188, -0.05291961133480072, 0.12700548768043518, 0.024404918774962425, 0.022376352921128273, 0.1767829954624176, -0.03808126598596573, 0.122339628636837, 0.10942135006189346, 0.004787926562130451, 0.179592564702034, -0.13720908761024475, -0.027903351932764053, 0.03225294500589371, -0.009157605469226837, -0.005647796671837568, -0.056848932057619095, -0.15193186700344086, -0.025217875838279724, -0.06449434906244278, 0.02498198114335537, 0.04621993005275726, -0.025580229237675667, -0.08342216163873672, 0.020580681040883064, 0.09697916358709335, -0.06324853748083115, -0.04119144380092621, -0.029042143374681473, -0.06303517520427704, 0.0897643119096756, 0.10029187053442001, 0.03393911197781563, 0.015410765074193478, 0.12463592737913132, -0.08540493249893188, 0.05229484662413597, -0.038914769887924194, -0.10234072059392929, -0.01819681003689766, -0.07769586890935898, 0.015652447938919067, -0.06587062776088715, -0.15398108959197998, -0.023977188393473625, 0.06689199060201645, 0.01091114990413189, -0.061319585889577866, -0.040633536875247955, -0.0336758978664875, -0.03757968172430992, 0.033008333295583725, 0.07044566422700882, -0.057863831520080566, 0.06917218863964081, -0.03869625926017761, 0.09952875971794128, -0.06277798861265182, 0.009295662865042686, -0.0989612489938736, 0.005422963295131922, -0.09640520811080933, -0.007535990327596664, -0.009429404512047768, 0.03149675950407982, -0.13178567588329315, -0.09776253998279572, -0.030857736244797707, 0.005622429773211479, 0.031941067427396774, 0.18842780590057373, -0.28495219349861145, 0.004321976099163294, 0.09975382685661316, -0.09735709428787231, -0.05498339980840683, 0.04753349721431732, -0.03286188095808029, 0.20745928585529327, 0.026189373806118965, 0.1280229240655899, -0.03812757134437561, -0.33747413754463196, 0.09555374830961227, 0.05828980728983879, -0.18305152654647827, 0.014070470817387104, 0.08009696751832962, -0.052700161933898926, -0.17139126360416412, -0.0070702629163861275, -0.12135370075702667, 0.026614859700202942, -0.0323312021791935, -0.049769021570682526, 0.002313595963642001, -0.05500337854027748, 0.028231507167220116, -0.044706687331199646, -0.02734297327697277, 0.0011060053948312998, -0.14644266664981842, -0.1567814201116562, 0.04191409423947334, 0.10623348504304886, -0.030443906784057617, 0.023819247260689735, 0.04617192968726158, 0.025940842926502228, -0.05050937086343765, -0.11635033041238785, 0.03092259354889393, -0.0905805230140686, 0.1267412304878235, 0.01783602125942707, 0.15887963771820068, -0.02598102018237114, 0.029129741713404655, 0.07437777519226074, 0.027170367538928986, -0.022915376350283623, 0.05076853185892105, -0.006492906250059605, 0.014031668193638325, -0.10627378523349762, -0.09611836820840836, 0.12177008390426636, -0.16488812863826752, 0.056080449372529984, 0.008370211347937584, -0.020029796287417412, -0.03775158151984215, -0.02202785015106201, 0.10541084408760071, 0.02023238129913807, 0.007953250780701637, -0.06834899634122849, 0.07223017513751984, 0.00815446488559246, -0.06362535804510117, -0.09286816418170929, -0.07210352271795273, -0.030725451186299324, 0.09754239767789841, -0.013993097469210625, -0.1054283156991005, -0.06913081556558609, -0.043489497154951096, 0.009738724678754807, -0.03253960236907005, -0.02942514605820179, 0.1820640116930008, 0.043507229536771774, 0.011401711963117123, -0.026568474248051643, 0.03570229932665825, -0.028069693595170975, -0.038070615381002426, -0.06557094305753708, 0.04323935881257057, 0.08641088753938675, 0.027142131701111794, 0.024127846583724022, 0.17075707018375397, -0.004897078033536673, 0.0072086285799741745, 0.05919843539595604, -0.04639032483100891, -0.09817995876073837, -0.09467656910419464, -0.0255714263767004, 0.18345926702022552, -0.035442326217889786, 0.0386027991771698, 0.046361882239580154, -0.0030078052077442408, 0.03993832692503929, -0.20768314599990845, -0.12903699278831482, 0.052315618842840195, -0.021443486213684082, -0.21175028383731842, 0.05986568331718445, -0.062109995633363724, 0.10338672250509262, -0.028261814266443253, -0.07672121375799179, 0.04304242134094238, -0.00433255173265934, -0.07367459684610367, 0.11897674947977066, -0.058908265084028244, -0.24109208583831787, -0.1172858253121376, -0.04383530840277672, 0.11573293060064316, -0.00284052942879498, 0.027967212721705437, -0.11188038438558578, 0.023280488327145576, -0.020734945312142372, 0.0638636127114296, -0.09537889808416367, -0.10009167343378067, -0.05835713446140289, 0.008071422576904297, -0.00246383692137897, -0.11837929487228394, -0.021872665733098984, -0.04837065562605858, 0.0658302754163742, 0.027176110073924065, 0.030656518414616585, 0.09338260442018509, 0.12033692747354507, 0.021419670432806015, 0.06548851728439331, -0.03372717276215553, 0.351470410823822, -0.07389053702354431, 0.08804209530353546, 0.14135831594467163, 0.026987837627530098, 0.04971672594547272, 0.14914754033088684, 0.06870124489068985, -0.0825042650103569, -0.0400395542383194, -0.08304603397846222, -0.07867259532213211, -0.12148970365524292, -0.06054767221212387, -0.04294848069548607, -0.07979938387870789, 0.018622051924467087, 0.031561076641082764, -0.09092458337545395, 0.054324906319379807, 0.07667122036218643, -0.04431508854031563, -0.0649292916059494, -0.001256817253306508, 0.004011294338852167, -0.025360003113746643, 0.006286131218075752, -0.03263786435127258, -0.03907487168908119, 0.028571369126439095, 0.10076715797185898, 0.09582676738500595, 0.08759325742721558, -0.006652598734945059, 0.06416146457195282, 0.12256703525781631, 0.07810989767313004, 0.18106243014335632, 0.081021249294281, -0.012186994776129723, -0.027672171592712402, -0.05870048329234123, 0.002073507057502866, 0.041579023003578186, -0.012258407659828663, -0.060354236513376236, 0.014918271452188492, -0.0854945257306099, -0.05435453727841377, -0.0026896640192717314, 0.11900278925895691, -0.21203871071338654, -0.02841346152126789, -0.004084341693669558, 0.1035543903708458, -0.049717627465724945, 0.057292595505714417, 0.032624609768390656, -0.11850908398628235, 0.004331717733293772, -0.03401786834001541, 0.08898448944091797, 0.03995789960026741, 0.028101587668061256, -0.0882137343287468, 0.042665161192417145, -0.04295124113559723, 0.1251257061958313, -0.1723152995109558, 0.343191921710968, -0.044036880135536194, 0.017736293375492096, -0.05523398146033287, 0.003133729798719287, 0.0805269181728363, 0.03518606349825859, 0.24908949434757233, 0.01165855210274458, -0.130452960729599, -0.10685836523771286, -0.12578681111335754, 0.051510535180568695, -0.03451940417289734, -0.06487374007701874, 0.05350267514586449, 0.06542385369539261, 0.00692238612100482, -0.02202014997601509, 0.08926244080066681, -0.19167397916316986, -0.11326827853918076, 0.01752762496471405, -0.029992196708917618, 0.04042504355311394, -0.0164166446775198, -0.05170350521802902, -0.10470587015151978, -0.03478340804576874, 0.023354068398475647, -0.02677612006664276, -0.08844722807407379, 0.10559263080358505, 0.08143571019172668, -0.012266969308257103, -0.029343094676733017, -0.001864883117377758, 0.006845149211585522, -0.08881645649671555, 0.014898902736604214, 0.025455009192228317, -0.06880633533000946, 0.025760112330317497, -0.07824089378118515, 0.08321639895439148, 0.057056594640016556, 0.04517417773604393, 0.01614972949028015, 0.07101099193096161, -0.1289823055267334, -0.12097126245498657, 0.18290245532989502, -0.127309650182724, -0.0004778954607900232, 0.038615886121988297, 0.037916120141744614, 0.013108880259096622, -0.13974787294864655, 0.022266853600740433, 0.23304927349090576, 0.2448730319738388, -0.13391132652759552, 0.12923133373260498, -0.00772591307759285, -0.10986914485692978, -0.1545405089855194, -0.02961365319788456, -0.061984751373529434, 0.04623488336801529, 0.1161433681845665, -0.1751306802034378, 0.05013885349035263, 0.11769895255565643, -0.04956669360399246, 0.1639191210269928, -0.23864451050758362, -0.03401357680559158, 0.20474432408809662, 0.04858136549592018, 0.06185711547732353, -0.055178046226501465, -0.017955414950847626, 0.004452402237802744, -0.14670200645923615, 0.06747513264417648, 0.09369530528783798, 0.03806440159678459, -0.020220603793859482, 0.0789608508348465, 0.0029774359427392483, -0.082966148853302, 0.205145463347435, -0.0033320968504995108, 0.021838845685124397, -0.04408876970410347, -0.23550768196582794, 0.1357194185256958, -0.02087373100221157, 0.1024583950638771, 0.0657232403755188, 0.03249502182006836, -0.15583936870098114, -0.011014873161911964, -0.12735767662525177, 0.07631754875183105, -0.07261411845684052, -0.045049998909235, -0.05711856111884117, 0.015624397434294224, -0.08463478088378906, -0.044354818761348724, -0.150963693857193, -0.06385059654712677, 0.07391506433486938, 0.03281313180923462, -0.000155571848154068, 0.06712266802787781, -0.18108828365802765, 0.05479910224676132, -0.01031267549842596, 0.06223197653889656, -0.1068204790353775, -0.1194954514503479, 0.10545308887958527, 0.032345809042453766, 0.07740925997495651, 0.07263565063476562, -0.06586456298828125, 0.016829270869493484, 0.04552480950951576, -0.17818690836429596, -0.06290280073881149, -0.057037726044654846, 0.02393738552927971, -0.019383123144507408, -0.09304725378751755, 0.02872280217707157, -0.04447859153151512, -0.028487611562013626, -0.007891579531133175, -0.003016428789123893, -0.13263113796710968, 0.022852659225463867, 0.12443728744983673, 0.10052590072154999, -0.05148625001311302, 0.022052044048905373, 0.09386714547872543, -0.06639569997787476, -0.011574969626963139, 0.029072808101773262, -0.051342036575078964, -0.06316275894641876, -0.07109949737787247, 0.15275828540325165, 0.0507914200425148, -0.014527040533721447, -0.004788383841514587, -0.08603829145431519, 0.0002379120996920392, 0.053470175713300705, 0.08636203408241272, -0.0006280643283389509, -0.12493663281202316, -0.09518413990736008, -0.05669853463768959, 0.004514380358159542, 0.022928912192583084, -0.05005928874015808, -0.13553184270858765, 0.09168343245983124, 0.010083216242492199, 0.1122828796505928, -0.036727797240018845, -0.08384969085454941, -0.09059667587280273, 0.05270625650882721, -0.008446695283055305, 0.01489247940480709, -0.02581462822854519, 0.00561625137925148, -0.004114258103072643, -0.031018244102597237, -0.0005766812828369439, -0.010590258985757828, -0.11139016598463058, 0.0482783317565918, -0.008785544894635677, 0.043268416076898575, -0.030911287292838097, -0.030005255714058876, 0.09081272780895233, -0.02911756932735443, 0.060592323541641235, 0.07107724994421005, -0.07881679385900497, -0.04861150681972504, -0.22144874930381775, 0.019128968939185143, 0.023262811824679375, -0.014612271450459957, 0.009941908530890942, -0.18945546448230743, -0.011268035508692265, -0.057085633277893066, -0.02182818204164505, -0.025398055091500282, 0.05816078558564186, -0.07015799731016159, -0.0563761405646801, 0.12105109542608261, -0.048639047890901566, -0.029899438843131065, -0.09334506839513779, 0.17547352612018585, -0.008197947405278683, 0.11110250651836395, 0.023677337914705276, 0.16366101801395416, -0.1428760588169098, -0.022710323333740234, -0.05679627135396004, -0.033260930329561234, -0.05071788653731346, -0.062155790627002716, 0.08933739364147186, 0.01168186217546463, 0.21314606070518494, -0.009900502860546112, -0.013915663585066795, -0.023213017731904984, 0.18315912783145905, 0.02170882374048233, -0.037539564073085785, 0.10584010928869247, 0.02190769463777542, 0.007549599278718233, 0.05699198320508003, 0.053206346929073334, -0.025651579722762108, 0.16816169023513794, 0.21297581493854523, -0.011467091739177704, 0.13564717769622803, 0.09104938805103302, -0.03541725128889084, 0.016702989116311073, 0.0038595092482864857, -0.1281934380531311, 0.12361197173595428, -0.006411577109247446, -0.03739672154188156, -0.051969029009342194, 0.1015903428196907, -0.06798411160707474, 0.051404036581516266, -0.05334608629345894, -0.08322499692440033, -0.09917397797107697, -0.20222529768943787, 0.04807303845882416, 0.007983355782926083, -0.018412236124277115, -0.0414278581738472, -0.011442011222243309, 0.1865079700946808, -0.05394323542714119, 0.012138945050537586, 0.09109349548816681, 0.02527019940316677, -0.06277301162481308, 0.015656106173992157, -0.026853857561945915, 0.010311245918273926, -0.1509847790002823, 0.0715596154332161, 0.0018602749332785606, -0.08668823540210724, 0.04169469326734543, -0.004021177999675274, -0.013445273973047733, -0.027370603755116463, -0.12465748935937881, -0.06715283542871475, -0.04240516945719719, 0.0672704428434372, -0.016810733824968338, 0.10131482779979706, 0.057378146797418594, 0.04693185165524483, -0.0013714209198951721, 0.14066772162914276, -0.01795312575995922, -0.12690123915672302, -0.054675858467817307, 0.19244813919067383, -0.15097494423389435, -0.018152112141251564, -0.06804873794317245, -0.02096310630440712, 0.04838539659976959, 0.3149496614933014, 0.3045540750026703, -0.0442916639149189, -0.04041578993201256, -0.028562651947140694, 0.020887399092316628, 0.07281971722841263, 0.047788381576538086, 0.11202077567577362, 0.16718216240406036, -0.1976374089717865, -0.027938993647694588, -0.18008975684642792, -0.0007874522125348449, -0.02093621902167797, 0.017215849831700325, 0.1064966544508934, -0.07155615836381912, -0.0278637558221817, 0.20659297704696655, -0.1633480042219162, -0.06401367485523224, 0.02311486192047596, -0.057745058089494705, -0.11665032058954239, 0.023024048656225204, 0.07567422091960907, 0.005177158396691084, 0.11433346569538116, -0.11165832728147507, -0.08292477577924728, 0.1751791536808014, -0.03530863672494888, -0.12906695902347565, -0.10525976866483688, 0.04307042062282562, -0.14995238184928894, 0.13894318044185638, 0.007361991796642542, 0.12171207368373871, 0.05953886732459068, 0.08443769812583923, -0.12478803843259811, 0.11646264791488647, 0.008233350701630116, 0.08150408416986465, -0.04401925206184387, -0.05896533653140068, 0.009104957804083824, -0.06171158701181412, -0.0017098152311518788, -0.1577097475528717, 0.07883419841527939, 0.10297931730747223, 0.0123033681884408, 0.0007029986591078341, 0.04898691177368164, -0.05169475078582764, 0.11442722380161285, 0.09090828895568848, -0.07160082459449768, 0.006263777147978544, -0.006594162434339523, 0.0008274931460618973, 0.07259426265954971, -0.05470627173781395, -0.03692709282040596, -0.027300406247377396, 0.01227757427841425, -0.009806429967284203, -0.0849025696516037, -0.0515606626868248, -0.06596304476261139, -0.04417622089385986, -0.06417384743690491, 0.06320751458406448, 0.02043437771499157, 0.021025724709033966, 0.07398165762424469, -0.0200913455337286, 0.15463760495185852, 0.0009459225693717599, 0.1524367779493332, -0.17341545224189758, -0.0813620314002037 ]
null
null
flair
## English NER in Flair (Ontonotes fast model) This is the fast version of the 18-class NER model for English that ships with [Flair](https://github.com/flairNLP/flair/). F1-Score: **89.3** (Ontonotes) Predicts 18 tags: | **tag** | **meaning** | |---------------------------------|-----------| | CARDINAL | cardinal value | | DATE | date value | | EVENT | event name | | FAC | building name | | GPE | geo-political entity | | LANGUAGE | language name | | LAW | law name | | LOC | location name | | MONEY | money name | | NORP | affiliation | | ORDINAL | ordinal value | | ORG | organization name | | PERCENT | percent value | | PERSON | person name | | PRODUCT | product name | | QUANTITY | quantity value | | TIME | time value | | WORK_OF_ART | name of work of art | Based on [Flair embeddings](https://www.aclweb.org/anthology/C18-1139/) and LSTM-CRF. --- ### Demo: How to use in Flair Requires: **[Flair](https://github.com/flairNLP/flair/)** (`pip install flair`) ```python from flair.data import Sentence from flair.models import SequenceTagger # load tagger tagger = SequenceTagger.load("flair/ner-english-ontonotes-fast") # make example sentence sentence = Sentence("On September 1st George Washington won 1 dollar.") # predict NER tags tagger.predict(sentence) # print sentence print(sentence) # print predicted NER spans print('The following NER tags are found:') # iterate over entities and print for entity in sentence.get_spans('ner'): print(entity) ``` This yields the following output: ``` Span [2,3]: "September 1st" [− Labels: DATE (0.9655)] Span [4,5]: "George Washington" [− Labels: PERSON (0.8243)] Span [7,8]: "1 dollar" [− Labels: MONEY (0.8022)] ``` So, the entities "*September 1st*" (labeled as a **date**), "*George Washington*" (labeled as a **person**) and "*1 dollar*" (labeled as a **money**) are found in the sentence "*On September 1st George Washington won 1 dollar*". --- ### Training: Script to train this model The following Flair script was used to train this model: ```python from flair.data import Corpus from flair.datasets import ColumnCorpus from flair.embeddings import WordEmbeddings, StackedEmbeddings, FlairEmbeddings # 1. load the corpus (Ontonotes does not ship with Flair, you need to download and reformat into a column format yourself) corpus: Corpus = ColumnCorpus( "resources/tasks/onto-ner", column_format={0: "text", 1: "pos", 2: "upos", 3: "ner"}, tag_to_bioes="ner", ) # 2. what tag do we want to predict? tag_type = 'ner' # 3. make the tag dictionary from the corpus tag_dictionary = corpus.make_tag_dictionary(tag_type=tag_type) # 4. initialize each embedding we use embedding_types = [ # GloVe embeddings WordEmbeddings('en-crawl'), # contextual string embeddings, forward FlairEmbeddings('news-forward-fast'), # contextual string embeddings, backward FlairEmbeddings('news-backward-fast'), ] # embedding stack consists of Flair and GloVe embeddings embeddings = StackedEmbeddings(embeddings=embedding_types) # 5. initialize sequence tagger from flair.models import SequenceTagger tagger = SequenceTagger(hidden_size=256, embeddings=embeddings, tag_dictionary=tag_dictionary, tag_type=tag_type) # 6. initialize trainer from flair.trainers import ModelTrainer trainer = ModelTrainer(tagger, corpus) # 7. run training trainer.train('resources/taggers/ner-english-ontonotes-fast', train_with_dev=True, max_epochs=150) ``` --- ### Cite Please cite the following paper when using this model. ``` @inproceedings{akbik2018coling, title={Contextual String Embeddings for Sequence Labeling}, author={Akbik, Alan and Blythe, Duncan and Vollgraf, Roland}, booktitle = {{COLING} 2018, 27th International Conference on Computational Linguistics}, pages = {1638--1649}, year = {2018} } ``` --- ### Issues? The Flair issue tracker is available [here](https://github.com/flairNLP/flair/issues/).
{"language": "en", "tags": ["flair", "token-classification", "sequence-tagger-model"], "datasets": ["ontonotes"], "widget": [{"text": "On September 1st George Washington won 1 dollar."}]}
token-classification
flair/ner-english-ontonotes-fast
[ "flair", "pytorch", "token-classification", "sequence-tagger-model", "en", "dataset:ontonotes", "has_space", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #flair #pytorch #token-classification #sequence-tagger-model #en #dataset-ontonotes #has_space #region-us
English NER in Flair (Ontonotes fast model) ------------------------------------------- This is the fast version of the 18-class NER model for English that ships with Flair. F1-Score: 89.3 (Ontonotes) Predicts 18 tags: Based on Flair embeddings and LSTM-CRF. --- ### Demo: How to use in Flair Requires: Flair ('pip install flair') This yields the following output: So, the entities "*September 1st*" (labeled as a date), "*George Washington*" (labeled as a person) and "*1 dollar*" (labeled as a money) are found in the sentence "*On September 1st George Washington won 1 dollar*". --- ### Training: Script to train this model The following Flair script was used to train this model: --- ### Cite Please cite the following paper when using this model. --- ### Issues? The Flair issue tracker is available here.
[ "### Demo: How to use in Flair\n\n\nRequires: Flair ('pip install flair')\n\n\nThis yields the following output:\n\n\nSo, the entities \"*September 1st*\" (labeled as a date), \"*George Washington*\" (labeled as a person) and \"*1 dollar*\" (labeled as a money) are found in the sentence \"*On September 1st George Washington won 1 dollar*\".\n\n\n\n\n---", "### Training: Script to train this model\n\n\nThe following Flair script was used to train this model:\n\n\n\n\n---", "### Cite\n\n\nPlease cite the following paper when using this model.\n\n\n\n\n---", "### Issues?\n\n\nThe Flair issue tracker is available here." ]
[ "TAGS\n#flair #pytorch #token-classification #sequence-tagger-model #en #dataset-ontonotes #has_space #region-us \n", "### Demo: How to use in Flair\n\n\nRequires: Flair ('pip install flair')\n\n\nThis yields the following output:\n\n\nSo, the entities \"*September 1st*\" (labeled as a date), \"*George Washington*\" (labeled as a person) and \"*1 dollar*\" (labeled as a money) are found in the sentence \"*On September 1st George Washington won 1 dollar*\".\n\n\n\n\n---", "### Training: Script to train this model\n\n\nThe following Flair script was used to train this model:\n\n\n\n\n---", "### Cite\n\n\nPlease cite the following paper when using this model.\n\n\n\n\n---", "### Issues?\n\n\nThe Flair issue tracker is available here." ]
[ 41, 100, 22, 15, 15 ]
[ "passage: TAGS\n#flair #pytorch #token-classification #sequence-tagger-model #en #dataset-ontonotes #has_space #region-us \n### Demo: How to use in Flair\n\n\nRequires: Flair ('pip install flair')\n\n\nThis yields the following output:\n\n\nSo, the entities \"*September 1st*\" (labeled as a date), \"*George Washington*\" (labeled as a person) and \"*1 dollar*\" (labeled as a money) are found in the sentence \"*On September 1st George Washington won 1 dollar*\".\n\n\n\n\n---### Training: Script to train this model\n\n\nThe following Flair script was used to train this model:\n\n\n\n\n---### Cite\n\n\nPlease cite the following paper when using this model.\n\n\n\n\n---### Issues?\n\n\nThe Flair issue tracker is available here." ]
[ -0.08316225558519363, 0.10079556703567505, -0.0019114876631647348, 0.09859561175107956, 0.08915527909994125, 0.03749171644449234, 0.07468868792057037, 0.07941008359193802, 0.011256714351475239, 0.11021765321493149, 0.20103533565998077, 0.06640208512544632, 0.1350521296262741, 0.14261142909526825, 0.03518760949373245, -0.24320901930332184, 0.011797333136200905, -0.021585136651992798, 0.08412260562181473, 0.1831733137369156, 0.0932883620262146, -0.0326807014644146, 0.008811341598629951, -0.002581997076049447, -0.11500131338834763, -0.0231632087379694, 0.005780375562608242, -0.13265946507453918, 0.13677173852920532, -0.041492581367492676, 0.17305608093738556, 0.026077525690197945, 0.09537431597709656, -0.10033538937568665, 0.015361697413027287, 0.003886376041918993, 0.00277880416251719, 0.09290867298841476, -0.033097341656684875, 0.024312442168593407, 0.20159408450126648, -0.08779844641685486, 0.023625079542398453, 0.030366642400622368, -0.22525843977928162, -0.3146677017211914, -0.12263697385787964, 0.1526939421892166, 0.07927598059177399, 0.05694747343659401, -0.04209715500473976, 0.08587772399187088, -0.02513301558792591, -0.0063313087448477745, 0.18325577676296234, -0.22652064263820648, -0.04710628464818001, 0.1437804400920868, -0.0021925801411271095, -0.0013136304914951324, -0.019787974655628204, 0.023788481950759888, 0.025112366303801537, 0.06092986837029457, 0.00444755656644702, 0.001000404474325478, 0.09044552594423294, 0.11029836535453796, -0.20154337584972382, -0.11872992664575577, 0.3508409857749939, 0.05516213923692703, -0.05819416046142578, -0.030878249555826187, 0.027527514845132828, -0.09971772879362106, 0.018031194806098938, -0.06237305700778961, 0.0038226584438234568, -0.009890339337289333, 0.18166179955005646, -0.05168592929840088, -0.13230836391448975, -0.015039702877402306, -0.040640417486429214, 0.08471836149692535, -0.09175974875688553, 0.11599372327327728, -0.14444471895694733, 0.08390321582555771, -0.04794900119304657, -0.051572464406490326, 0.020039711147546768, -0.03932471573352814, 0.005759348161518574, -0.001199529622681439, -0.07293178141117096, 0.05927314981818199, 0.010882801376283169, -0.023941421881318092, 0.08591482788324356, -0.04249372333288193, 0.06909577548503876, 0.12175861746072769, 0.04099413380026817, 0.21659453213214874, -0.12960435450077057, -0.05653658136725426, 0.030919168144464493, 0.04142000898718834, 0.021090935915708542, -0.0478137843310833, -0.14737407863140106, 0.03299034759402275, 0.011910378001630306, 0.008868847973644733, 0.027130234986543655, -0.02941679023206234, -0.09416521340608597, 0.029778867959976196, 0.11051274091005325, -0.08957868069410324, -0.01841304823756218, 0.009083504788577557, -0.10464147478342056, 0.06453833729028702, 0.04933268576860428, -0.013609249144792557, 0.02278347872197628, 0.11423695832490921, -0.08564337342977524, 0.0701347216963768, -0.0339888334274292, -0.12617909908294678, 0.019716400653123856, -0.06384170800447464, -0.04641619324684143, -0.04097360372543335, -0.1281115710735321, -0.03112366981804371, 0.052475836127996445, 0.020123222842812538, -0.07772515714168549, -0.02620084583759308, -0.02564680390059948, -0.029013635590672493, 0.02010919339954853, 0.1351497769355774, -0.04438595473766327, 0.08293133974075317, -0.008363998495042324, 0.10806945711374283, -0.04011392220854759, 0.02269965410232544, -0.08755407482385635, -0.009981929324567318, -0.15227730572223663, 0.03642553463578224, 0.0022682726848870516, -0.00025578588247299194, -0.08218304812908173, -0.10665016621351242, -0.06320474296808243, -0.013682848773896694, 0.019764302298426628, 0.18114353716373444, -0.2826175391674042, -0.028415318578481674, 0.11528035998344421, -0.08964129537343979, -0.013974024914205074, 0.05248088017106056, -0.059911441057920456, 0.1942710429430008, 0.056353695690631866, 0.12665194272994995, -0.0651867464184761, -0.353809118270874, 0.03344239294528961, 0.035721395164728165, -0.17346838116645813, -0.0064885360188782215, 0.09488668292760849, -0.06494319438934326, -0.15553857386112213, 0.007789242547005415, -0.15204069018363953, -0.014597169123589993, -0.0660160481929779, -0.0539834126830101, -0.009629840962588787, -0.06818968057632446, 0.10477399080991745, -0.013248249888420105, -0.015300046652555466, -0.045573946088552475, -0.12798821926116943, -0.08033065497875214, 0.0020515122450888157, 0.11398109048604965, -0.018808651715517044, -0.03379513695836067, 0.08761016279459, 0.03229283168911934, -0.010957229882478714, -0.13187718391418457, 0.06382586061954498, -0.029951488599181175, 0.08723235130310059, 0.04758650064468384, 0.12134704738855362, -0.028679311275482178, -0.002308105817064643, 0.062299493700265884, 0.04227179288864136, -0.011708532460033894, 0.02017076686024666, -0.020039977505803108, 0.022837918251752853, -0.09529529511928558, -0.0938146561384201, 0.1225634515285492, -0.08705366402864456, 0.06786785274744034, 0.058481182903051376, -0.07941483706235886, -0.03214603662490845, -0.03228491172194481, 0.08769896626472473, 0.02011513151228428, 0.07927748560905457, -0.03457462415099144, 0.05588062107563019, 0.02763107232749462, -0.087100550532341, -0.0931970626115799, -0.07611129432916641, -0.09633801877498627, 0.09670329093933105, -0.031113024801015854, -0.1261390596628189, -0.02073996514081955, -0.041224703192710876, -0.016499238088726997, -0.06692378968000412, -0.06954111903905869, 0.14301645755767822, 0.04259590432047844, -0.007100790273398161, -0.029321076348423958, -0.010559219866991043, 0.018704786896705627, -0.03837491571903229, -0.07560523599386215, 0.030957719311118126, -0.028757356107234955, -0.01828567311167717, 0.012612530030310154, 0.11716977506875992, 0.03756899759173393, 0.018206823617219925, 0.03191603347659111, -0.03795967996120453, -0.13787324726581573, -0.06254521757364273, -0.008013740181922913, 0.12359112501144409, -0.08363622426986694, -0.039074208587408066, 0.04457593709230423, 0.012640533968806267, -0.004628119524568319, -0.20331881940364838, -0.08295389264822006, 0.013412844389677048, -0.029603274539113045, -0.20735494792461395, 0.04761917516589165, -0.029571371152997017, 0.10246456414461136, 0.011687517166137695, -0.013061012141406536, 0.06657972931861877, 0.0034081265330314636, -0.08167224377393723, 0.08499904721975327, -0.022077174857258797, -0.2647908329963684, -0.12704038619995117, -0.12241344898939133, 0.12564599514007568, -0.020651139318943024, 0.04669295623898506, -0.05414632335305214, 0.05718066543340683, -0.008926781825721264, 0.041542842984199524, -0.044855453073978424, -0.09589061886072159, 0.010221130214631557, -0.0365857370197773, -0.014854996465146542, -0.09945108741521835, -0.04697848856449127, -0.06033822149038315, 0.11895134299993515, 0.0710437074303627, 0.039821822196245193, 0.0479179248213768, 0.1796146035194397, -0.007780170999467373, 0.0852576419711113, -0.06120719015598297, 0.36258190870285034, -0.060618989169597626, 0.0517374649643898, 0.12525896728038788, 0.06722302734851837, 0.05423782765865326, 0.12066176533699036, 0.09368046373128891, -0.08391118049621582, -0.03200184926390648, -0.050866901874542236, -0.10713272541761398, -0.1153402328491211, -0.04367075115442276, -0.042184311896562576, -0.06424086540937424, 0.010644707828760147, 0.014157265424728394, -0.056015949696302414, -0.010601567104458809, 0.09062407165765762, -0.009244890883564949, 0.015547828748822212, -0.005822288803756237, 0.07172572612762451, -0.03385578840970993, 0.037167031317949295, -0.013113767839968204, -0.012645306065678596, 0.037851594388484955, -0.009437796659767628, 0.10826565325260162, 0.1272636353969574, -0.02101839892566204, 0.0696486160159111, 0.057822395116090775, 0.045583415776491165, 0.133970707654953, 0.08899372071027756, -0.015291751362383366, -0.02427856996655464, -0.059323277324438095, 0.017806554213166237, 0.015962306410074234, 0.026493234559893608, -0.041764818131923676, -0.0458252988755703, -0.0815376415848732, -0.03878547623753548, 0.12156729400157928, 0.10712110251188278, -0.12181247770786285, -0.026942258700728416, 0.012435121461749077, 0.05621720850467682, -0.0054377540946006775, 0.039153072983026505, -0.07543099671602249, -0.12186727672815323, 0.033441681414842606, -0.03394192457199097, 0.0937117412686348, 0.055267076939344406, 0.0234877597540617, -0.09557481855154037, 0.025298619642853737, -0.026459068059921265, 0.08539479970932007, -0.2059215009212494, 0.32412734627723694, -0.02595926634967327, 0.05853673443198204, -0.05634666606783867, -0.017341844737529755, 0.04846195504069328, 0.06317831575870514, 0.22191442549228668, 0.010104524902999401, -0.16189062595367432, -0.016694290563464165, -0.1079927310347557, 0.007729105185717344, -0.03536679968237877, -0.06865596771240234, 0.06084318831562996, 0.062222160398960114, 0.010408047586679459, -0.029809197410941124, 0.15971806645393372, -0.137426495552063, -0.0521165169775486, 0.048275288194417953, -0.054195526987314224, 0.02041393332183361, -0.02826695330440998, -0.06938768923282623, -0.13114707171916962, -0.07999900728464127, -0.042031560093164444, -0.05124383792281151, -0.0557195283472538, 0.13639786839485168, 0.0411360003054142, -0.026161614805459976, -0.07245657593011856, 0.006110088899731636, 0.03044201247394085, -0.07275664061307907, 0.025847088545560837, 0.01582110859453678, -0.02635061927139759, 0.025343112647533417, -0.043443772941827774, 0.03866126760840416, 0.06638714671134949, 0.07115055620670319, -0.01940624974668026, 0.07056249678134918, -0.08739098161458969, -0.0866570994257927, 0.21407416462898254, -0.20032280683517456, -0.01923687383532524, -0.002640657126903534, 0.05162426456809044, -0.06919605284929276, -0.16538786888122559, 0.026435483247041702, 0.17054599523544312, 0.266766756772995, -0.13500486314296722, 0.07983740419149399, 0.09576565772294998, -0.07621452957391739, -0.16308340430259705, -0.020106356590986252, -0.0635991171002388, 0.023189468309283257, 0.01657947525382042, -0.13839827477931976, -0.015609883703291416, 0.12403000146150589, -0.06423883140087128, 0.15408584475517273, -0.28378570079803467, -0.044748641550540924, 0.16627871990203857, -0.018585961312055588, 0.1360778659582138, -0.07564985752105713, -0.048366885632276535, 0.07205940783023834, -0.1707780510187149, 0.044128019362688065, 0.06109130382537842, 0.053920019418001175, -0.002702602418139577, 0.0937717854976654, -0.028296133503317833, -0.07321329414844513, 0.15027546882629395, -0.013799860142171383, 0.01837196759879589, -0.026594385504722595, -0.2895151376724243, 0.1656656712293625, -0.050250500440597534, 0.10121581703424454, 0.09210864454507828, -0.009860238991677761, -0.11899009346961975, -0.01483819168061018, -0.1325434446334839, 0.08483332395553589, -0.07278843224048615, -0.034442394971847534, -0.040398385375738144, 0.0016063580987975001, -0.07340258359909058, -0.03749079629778862, -0.09721805900335312, -0.08236560225486755, 0.11316623538732529, 0.12060718983411789, -0.050759393721818924, -0.001700485940091312, -0.14887277781963348, -0.0030883937142789364, -0.028883403167128563, 0.09161382168531418, -0.1079411655664444, -0.1150653064250946, 0.07171206921339035, 0.06907011568546295, 0.14965906739234924, 0.07548091560602188, -0.06863062083721161, 0.04715072363615036, 0.0397992879152298, -0.13631640374660492, -0.14721167087554932, 0.000585209287237376, -0.05069452151656151, -0.08934103697538376, -0.13809996843338013, -0.005830137990415096, -0.03118237294256687, -0.03204825147986412, -0.0048744212836027145, 0.011298908852040768, -0.15606068074703217, 0.0496654249727726, 0.11160728335380554, 0.10159850120544434, -0.07390783727169037, 0.008936894126236439, 0.10637996345758438, -0.07187143713235855, -0.02341214194893837, 0.06251567602157593, -0.014234590344130993, -0.05943538248538971, -0.10952029377222061, 0.18767832219600677, -0.0004133781767450273, -0.019063051789999008, -0.011849610134959221, -0.09027707576751709, 0.056314319372177124, 0.1158367395401001, 0.073533795773983, 0.008413109928369522, -0.07038146257400513, -0.02889409102499485, -0.03611161187291145, 0.01264409814029932, 0.07192353159189224, -0.04814516752958298, -0.060174159705638885, 0.1301407516002655, 0.009382949210703373, 0.1311078667640686, -0.04204103723168373, -0.0830889344215393, -0.07619486004114151, 0.048974331468343735, 0.03074405901134014, 0.058384232223033905, 0.017825579270720482, 0.005617854651063681, 0.021150827407836914, -0.01552216149866581, -0.03451508656144142, -0.012735594995319843, -0.09298450499773026, 0.05443870276212692, 0.00426756776869297, 0.07032009959220886, -0.0575384758412838, -0.043425023555755615, 0.053586918860673904, -0.020288709551095963, 0.05693965032696724, 0.07346418499946594, -0.06348668783903122, -0.028101088479161263, -0.13993141055107117, 0.062157370150089264, 0.02667490765452385, -0.0366659015417099, 0.04839249327778816, -0.1720142811536789, 0.020011059939861298, -0.04362643137574196, -0.036924924701452255, 0.013832216151058674, 0.01854562573134899, -0.07283751666545868, -0.01718832738697529, 0.09418956190347672, -0.06617586314678192, -0.02154155634343624, -0.06947571039199829, 0.14479607343673706, 0.028119971975684166, 0.1130267009139061, 0.0009768647141754627, 0.14077095687389374, -0.13314436376094818, -0.011600887402892113, -0.026015974581241608, -0.016197333112359047, -0.02632899582386017, -0.030397510156035423, 0.10211565345525742, 0.03275115042924881, 0.20164145529270172, 0.040033094584941864, -0.03724747523665428, 0.01351950690150261, 0.1729055941104889, -0.026667499914765358, -0.014567170292139053, 0.05912957340478897, -0.0182978305965662, -0.0352620929479599, 0.050952401012182236, 0.05260661616921425, -0.06883735209703445, 0.08818161487579346, 0.25217151641845703, 0.020126529037952423, 0.1264684647321701, 0.07863844931125641, -0.054739903658628464, 0.058116354048252106, -0.0344511903822422, -0.010747232474386692, 0.12585724890232086, 0.003942588344216347, -0.037332650274038315, 0.036608461290597916, 0.11150532960891724, -0.09514997154474258, 0.09439513832330704, -0.06860962510108948, -0.07096312940120697, -0.1022535189986229, -0.14431947469711304, 0.0270286463201046, 0.0031465436331927776, 0.00965784676373005, -0.023155495524406433, 0.05854795500636101, 0.08754171431064606, -0.05936836451292038, 0.018681352958083153, 0.026237977668642998, -0.020815759897232056, -0.0031101638451218605, 0.06595505028963089, -0.06719367206096649, -0.006735472474247217, -0.19593258202075958, 0.05238795652985573, 0.02520109713077545, -0.13197574019432068, 0.0631556585431099, 0.011321702972054482, -0.02019832469522953, -0.04960952326655388, -0.11513327807188034, -0.08021838217973709, -0.007291910704225302, 0.03693321347236633, -0.00966638047248125, 0.17584793269634247, 0.05030819773674011, 0.03308050334453583, 0.010423741303384304, 0.08664146810770035, -0.02479824796319008, -0.1576293557882309, -0.11853888630867004, 0.12645812332630157, -0.1304926872253418, 0.0164695605635643, -0.06743859499692917, -0.03412514552474022, 0.04462841898202896, 0.2927039861679077, 0.19532614946365356, 0.05250449851155281, -0.028494568541646004, -0.0031045253854244947, 0.021883534267544746, 0.08225972950458527, 0.026925938203930855, 0.06141097843647003, 0.1493918001651764, -0.17392311990261078, 0.040210362523794174, -0.19936394691467285, 0.0068571302108466625, -0.06800004839897156, 0.0025719378609210253, 0.09980139136314392, -0.047451961785554886, -0.04472251608967781, 0.17058604955673218, -0.13490992784500122, -0.08826036751270294, 0.0732383206486702, -0.06328651309013367, -0.07514587789773941, 0.005678205750882626, 0.04972938820719719, 0.000087964472186286, 0.14703918993473053, -0.06109211966395378, -0.07351183891296387, 0.13064032793045044, -0.04763093963265419, -0.0942399725317955, -0.1562129706144333, 0.013413499109447002, -0.10483404248952866, 0.16316913068294525, -0.006336118094623089, 0.14121121168136597, 0.055757198482751846, 0.07490039616823196, -0.07732239365577698, 0.12608802318572998, -0.009225057438015938, 0.12937165796756744, -0.06329485774040222, -0.023733830079436302, -0.005357259418815374, -0.035355158150196075, -0.01089900266379118, -0.13785628974437714, 0.04332674294710159, 0.059503525495529175, 0.03366152197122574, -0.03849697485566139, 0.03476104885339737, -0.024006802588701248, 0.09345661103725433, 0.10824573040008545, -0.026849236339330673, 0.012220025062561035, -0.03381827846169472, -0.009564652107656002, 0.1176799088716507, 0.01601770520210266, -0.06219296157360077, -0.05967642739415169, 0.020449776202440262, 0.09098237007856369, -0.07093772292137146, -0.12582655251026154, -0.08428056538105011, -0.04138968139886856, -0.061407554894685745, 0.06386832892894745, 0.025512417778372765, 0.04928259924054146, 0.09213174879550934, -0.025831129401922226, 0.041753169149160385, 0.001855668961070478, 0.17563049495220184, -0.17203353345394135, -0.05501732975244522 ]
null
null
flair
## English NER in Flair (Ontonotes large model) This is the large 18-class NER model for English that ships with [Flair](https://github.com/flairNLP/flair/). F1-Score: **90.93** (Ontonotes) Predicts 18 tags: | **tag** | **meaning** | |---------------------------------|-----------| | CARDINAL | cardinal value | | DATE | date value | | EVENT | event name | | FAC | building name | | GPE | geo-political entity | | LANGUAGE | language name | | LAW | law name | | LOC | location name | | MONEY | money name | | NORP | affiliation | | ORDINAL | ordinal value | | ORG | organization name | | PERCENT | percent value | | PERSON | person name | | PRODUCT | product name | | QUANTITY | quantity value | | TIME | time value | | WORK_OF_ART | name of work of art | Based on document-level XLM-R embeddings and [FLERT](https://arxiv.org/pdf/2011.06993v1.pdf/). --- ### Demo: How to use in Flair Requires: **[Flair](https://github.com/flairNLP/flair/)** (`pip install flair`) ```python from flair.data import Sentence from flair.models import SequenceTagger # load tagger tagger = SequenceTagger.load("flair/ner-english-ontonotes-large") # make example sentence sentence = Sentence("On September 1st George won 1 dollar while watching Game of Thrones.") # predict NER tags tagger.predict(sentence) # print sentence print(sentence) # print predicted NER spans print('The following NER tags are found:') # iterate over entities and print for entity in sentence.get_spans('ner'): print(entity) ``` This yields the following output: ``` Span [2,3]: "September 1st" [− Labels: DATE (1.0)] Span [4]: "George" [− Labels: PERSON (1.0)] Span [6,7]: "1 dollar" [− Labels: MONEY (1.0)] Span [10,11,12]: "Game of Thrones" [− Labels: WORK_OF_ART (1.0)] ``` So, the entities "*September 1st*" (labeled as a **date**), "*George*" (labeled as a **person**), "*1 dollar*" (labeled as a **money**) and "Game of Thrones" (labeled as a **work of art**) are found in the sentence "*On September 1st George Washington won 1 dollar while watching Game of Thrones*". --- ### Training: Script to train this model The following Flair script was used to train this model: ```python from flair.data import Corpus from flair.datasets import ColumnCorpus from flair.embeddings import WordEmbeddings, StackedEmbeddings, FlairEmbeddings # 1. load the corpus (Ontonotes does not ship with Flair, you need to download and reformat into a column format yourself) corpus: Corpus = ColumnCorpus( "resources/tasks/onto-ner", column_format={0: "text", 1: "pos", 2: "upos", 3: "ner"}, tag_to_bioes="ner", ) # 2. what tag do we want to predict? tag_type = 'ner' # 3. make the tag dictionary from the corpus tag_dictionary = corpus.make_tag_dictionary(tag_type=tag_type) # 4. initialize fine-tuneable transformer embeddings WITH document context from flair.embeddings import TransformerWordEmbeddings embeddings = TransformerWordEmbeddings( model='xlm-roberta-large', layers="-1", subtoken_pooling="first", fine_tune=True, use_context=True, ) # 5. initialize bare-bones sequence tagger (no CRF, no RNN, no reprojection) from flair.models import SequenceTagger tagger = SequenceTagger( hidden_size=256, embeddings=embeddings, tag_dictionary=tag_dictionary, tag_type='ner', use_crf=False, use_rnn=False, reproject_embeddings=False, ) # 6. initialize trainer with AdamW optimizer from flair.trainers import ModelTrainer trainer = ModelTrainer(tagger, corpus, optimizer=torch.optim.AdamW) # 7. run training with XLM parameters (20 epochs, small LR) from torch.optim.lr_scheduler import OneCycleLR trainer.train('resources/taggers/ner-english-ontonotes-large', learning_rate=5.0e-6, mini_batch_size=4, mini_batch_chunk_size=1, max_epochs=20, scheduler=OneCycleLR, embeddings_storage_mode='none', weight_decay=0., ) ``` --- ### Cite Please cite the following paper when using this model. ``` @misc{schweter2020flert, title={FLERT: Document-Level Features for Named Entity Recognition}, author={Stefan Schweter and Alan Akbik}, year={2020}, eprint={2011.06993}, archivePrefix={arXiv}, primaryClass={cs.CL} } ``` --- ### Issues? The Flair issue tracker is available [here](https://github.com/flairNLP/flair/issues/).
{"language": "en", "tags": ["flair", "token-classification", "sequence-tagger-model"], "datasets": ["ontonotes"], "widget": [{"text": "On September 1st George won 1 dollar while watching Game of Thrones."}]}
token-classification
flair/ner-english-ontonotes-large
[ "flair", "pytorch", "token-classification", "sequence-tagger-model", "en", "dataset:ontonotes", "arxiv:2011.06993", "has_space", "region:us" ]
2022-03-02T23:29:05+00:00
[ "2011.06993" ]
[ "en" ]
TAGS #flair #pytorch #token-classification #sequence-tagger-model #en #dataset-ontonotes #arxiv-2011.06993 #has_space #region-us
English NER in Flair (Ontonotes large model) -------------------------------------------- This is the large 18-class NER model for English that ships with Flair. F1-Score: 90.93 (Ontonotes) Predicts 18 tags: Based on document-level XLM-R embeddings and FLERT. --- ### Demo: How to use in Flair Requires: Flair ('pip install flair') This yields the following output: So, the entities "*September 1st*" (labeled as a date), "*George*" (labeled as a person), "*1 dollar*" (labeled as a money) and "Game of Thrones" (labeled as a work of art) are found in the sentence "*On September 1st George Washington won 1 dollar while watching Game of Thrones*". --- ### Training: Script to train this model The following Flair script was used to train this model: --- ### Cite Please cite the following paper when using this model. --- ### Issues? The Flair issue tracker is available here.
[ "### Demo: How to use in Flair\n\n\nRequires: Flair ('pip install flair')\n\n\nThis yields the following output:\n\n\nSo, the entities \"*September 1st*\" (labeled as a date), \"*George*\" (labeled as a person), \"*1 dollar*\" (labeled as a money) and \"Game of Thrones\" (labeled as a work of art) are found in the sentence \"*On September 1st George Washington won 1 dollar while watching Game of Thrones*\".\n\n\n\n\n---", "### Training: Script to train this model\n\n\nThe following Flair script was used to train this model:\n\n\n\n\n---", "### Cite\n\n\nPlease cite the following paper when using this model.\n\n\n\n\n---", "### Issues?\n\n\nThe Flair issue tracker is available here." ]
[ "TAGS\n#flair #pytorch #token-classification #sequence-tagger-model #en #dataset-ontonotes #arxiv-2011.06993 #has_space #region-us \n", "### Demo: How to use in Flair\n\n\nRequires: Flair ('pip install flair')\n\n\nThis yields the following output:\n\n\nSo, the entities \"*September 1st*\" (labeled as a date), \"*George*\" (labeled as a person), \"*1 dollar*\" (labeled as a money) and \"Game of Thrones\" (labeled as a work of art) are found in the sentence \"*On September 1st George Washington won 1 dollar while watching Game of Thrones*\".\n\n\n\n\n---", "### Training: Script to train this model\n\n\nThe following Flair script was used to train this model:\n\n\n\n\n---", "### Cite\n\n\nPlease cite the following paper when using this model.\n\n\n\n\n---", "### Issues?\n\n\nThe Flair issue tracker is available here." ]
[ 50, 118, 22, 15, 15 ]
[ "passage: TAGS\n#flair #pytorch #token-classification #sequence-tagger-model #en #dataset-ontonotes #arxiv-2011.06993 #has_space #region-us \n### Demo: How to use in Flair\n\n\nRequires: Flair ('pip install flair')\n\n\nThis yields the following output:\n\n\nSo, the entities \"*September 1st*\" (labeled as a date), \"*George*\" (labeled as a person), \"*1 dollar*\" (labeled as a money) and \"Game of Thrones\" (labeled as a work of art) are found in the sentence \"*On September 1st George Washington won 1 dollar while watching Game of Thrones*\".\n\n\n\n\n---### Training: Script to train this model\n\n\nThe following Flair script was used to train this model:\n\n\n\n\n---### Cite\n\n\nPlease cite the following paper when using this model.\n\n\n\n\n---### Issues?\n\n\nThe Flair issue tracker is available here." ]
[ -0.04395230486989021, 0.06378185749053955, -0.002694283379241824, 0.1638161689043045, 0.06263026595115662, 0.05287015065550804, 0.03480091691017151, 0.09863538295030594, 0.036095377057790756, 0.07971187680959702, 0.1671987622976303, 0.1012447401881218, 0.09167638421058655, 0.07721450924873352, 0.08367174863815308, -0.2578028738498688, -0.02188917249441147, -0.014272129163146019, 0.09052587300539017, 0.16268093883991241, 0.07287821918725967, -0.04031844437122345, 0.04040897265076637, 0.00920247845351696, -0.06373682618141174, -0.06314750760793686, -0.015444730408489704, -0.08536649495363235, 0.16790322959423065, -0.034350842237472534, 0.10578373819589615, -0.018338032066822052, 0.04611955210566521, -0.11690971255302429, 0.038501493632793427, 0.010228892788290977, -0.014350758865475655, 0.060708772391080856, -0.010389236733317375, 0.005401280242949724, 0.23533236980438232, -0.028997406363487244, 0.03576197475194931, 0.05511584132909775, -0.21218304336071014, -0.3387517035007477, -0.07693085074424744, 0.1130533367395401, 0.09007153660058975, 0.07264697551727295, -0.037795402109622955, 0.07312894612550735, -0.011654376983642578, 0.010410374961793423, 0.24303796887397766, -0.2980148196220398, -0.05787166580557823, 0.13106517493724823, 0.0823131874203682, 0.10737042874097824, -0.042146485298871994, 0.051491878926754, -0.03794558718800545, 0.07955233007669449, 0.01247757114470005, -0.040385033935308456, 0.04920483008027077, 0.10590925067663193, -0.18791289627552032, -0.05408529192209244, 0.29101526737213135, 0.036240167915821075, -0.06625065952539444, -0.04559837654232979, 0.04551977664232254, -0.08974502235651016, -0.01534473430365324, -0.07380884140729904, 0.013467694632709026, -0.005212688352912664, 0.1680169254541397, -0.08432625979185104, -0.11238425970077515, -0.034279949963092804, -0.0013866570079699159, 0.026000551879405975, -0.08707886934280396, 0.08028996735811234, -0.12670905888080597, 0.09601844847202301, -0.1341688483953476, -0.028815733268857002, -0.033370453864336014, -0.04820363596081734, -0.02476511336863041, -0.01079639233648777, -0.054799262434244156, 0.041887469589710236, 0.015270634554326534, 0.029682952910661697, 0.10895895957946777, 0.013322991319000721, 0.03290502354502678, 0.12079140543937683, 0.04241786152124405, 0.11943592131137848, -0.08245474845170975, -0.08494361490011215, 0.015020226128399372, 0.04398806765675545, 0.08586479723453522, -0.06047625094652176, -0.1491808444261551, 0.0362032912671566, -0.05216951668262482, -0.014129120856523514, 0.07846751064062119, -0.051140666007995605, -0.11801054328680038, 0.0599813386797905, 0.17252883315086365, -0.03561447933316231, -0.020523257553577423, 0.041628990322351456, -0.06818835437297821, -0.01226920634508133, 0.03842768445611, 0.03728403151035309, 0.06255583465099335, 0.11006983369588852, -0.10238967090845108, 0.03170154243707657, 0.043630488216876984, -0.09112132340669632, 0.06272964924573898, -0.1248532086610794, -0.03730573132634163, -0.045531753450632095, -0.0772705227136612, -0.00291267572902143, 0.05179319903254509, 0.004313623998314142, -0.04610995203256607, -0.012076041661202908, -0.05114366486668587, -0.03194626048207283, 0.052849989384412766, 0.08269611746072769, -0.062443360686302185, 0.11511147022247314, -0.02772422507405281, 0.12207911908626556, -0.08801678568124771, 0.003065119031816721, -0.11612025648355484, -0.015131819061934948, -0.18256613612174988, 0.025705035775899887, -0.0090791592374444, -0.0011527055175974965, -0.05248134955763817, -0.07716983556747437, 0.011936016380786896, -0.00022879526659380645, -0.014499511569738388, 0.13047105073928833, -0.2984906733036041, -0.03737373650074005, 0.12715871632099152, -0.10750330984592438, -0.1254640370607376, 0.09786561131477356, -0.032974593341350555, 0.1367771029472351, 0.08402755111455917, 0.16801606118679047, -0.039989616721868515, -0.30135655403137207, -0.009558900259435177, 0.0279154721647501, -0.15619909763336182, 0.03010271117091179, 0.13462457060813904, -0.04275594279170036, 0.01923969015479088, -0.0014088487951084971, -0.18737779557704926, -0.05472765490412712, -0.022402510046958923, -0.056465648114681244, 0.0033265829551965, -0.05060802772641182, 0.09962461143732071, 0.0419669933617115, -0.055438458919525146, -0.06504879891872406, -0.12189856171607971, -0.13339881598949432, -0.00037004248588345945, 0.110529325902462, 0.04476139694452286, -0.02160913124680519, 0.15716105699539185, 0.0964852124452591, -0.008461507968604565, -0.13765250146389008, 0.049845825880765915, -0.04576234146952629, 0.08423361927270889, 0.05217067524790764, 0.08438694477081299, 0.007001231890171766, 0.06621203571557999, 0.028131548315286636, 0.05480050668120384, -0.09701243788003922, 0.025376595556735992, -0.0539429634809494, -0.07582655549049377, -0.1153939962387085, -0.10819082707166672, 0.11719250679016113, -0.13627944886684418, 0.04102649167180061, 0.10070903599262238, -0.05465289205312729, -0.026580505073070526, -0.08375348895788193, 0.04490789398550987, 0.03624722734093666, 0.014340115711092949, -0.03166286647319794, 0.08461607247591019, 0.016555413603782654, -0.10160964727401733, -0.10033050924539566, -0.06939562410116196, -0.11170010268688202, 0.11731156706809998, -0.08875861018896103, -0.11745903640985489, -0.06140011548995972, -0.045149341225624084, 0.001840833923779428, -0.07024559378623962, -0.06216771900653839, 0.19358685612678528, 0.09681646525859833, 0.011117185465991497, -0.04251297935843468, 0.0006506023346446455, 0.015830518677830696, -0.04392364248633385, -0.05594620481133461, 0.058577679097652435, -0.052492789924144745, -0.012460901401937008, 0.0023832391016185284, 0.14307741820812225, 0.04522623494267464, 0.04203654080629349, 0.07649068534374237, -0.0025293638464063406, -0.08707859367132187, -0.04815387725830078, 0.013464562594890594, 0.11839167028665543, -0.1510784775018692, -0.01149765308946371, 0.03731323778629303, -0.016477301716804504, -0.059715718030929565, -0.1822410672903061, -0.12404843419790268, 0.03303499147295952, -0.03718578442931175, -0.2163044661283493, 0.07870548963546753, -0.07380920648574829, 0.11223780363798141, 0.054834019392728806, -0.005803170148283243, 0.06107319891452789, -0.009068467654287815, -0.06482995301485062, 0.08126609772443771, -0.07157953083515167, -0.21904680132865906, -0.07540653645992279, -0.15665127336978912, 0.0798351913690567, 0.021795060485601425, 0.07541663944721222, -0.08857376873493195, 0.054357755929231644, -0.0048123798333108425, 0.00465310038998723, -0.09885372221469879, -0.12369704246520996, -0.02609567530453205, -0.007831063121557236, -0.09063351154327393, -0.06499481946229935, -0.027926161885261536, -0.07454372197389603, 0.01485470961779356, 0.049499284476041794, 0.007358141243457794, 0.10757575929164886, 0.1398111879825592, 0.007242465857416391, 0.059465330094099045, -0.0691179409623146, 0.29564446210861206, -0.046828631311655045, 0.07209953665733337, 0.1169450581073761, 0.034285277128219604, 0.08526793122291565, 0.08072756230831146, 0.11403010785579681, -0.030469486489892006, -0.055197495967149734, -0.043545130640268326, -0.10536035150289536, -0.11157313734292984, -0.020359743386507034, -0.055864084511995316, 0.02229306660592556, 0.029438002035021782, 0.042293448001146317, -0.0017433149041607976, -0.0009382538846693933, 0.07388638705015182, -0.04841616377234459, 0.08933547884225845, 0.040306996554136276, 0.0902949646115303, -0.0556214302778244, 0.001716181985102594, 0.005315334070473909, 0.0521477647125721, 0.07445525377988815, 0.055447403341531754, 0.03836353123188019, 0.09765342622995377, 0.04994963854551315, 0.10434882342815399, 0.06597566604614258, 0.007675801403820515, 0.025207500904798508, 0.057029642164707184, -0.020534537732601166, -0.05452907085418701, -0.08685330301523209, 0.06502240151166916, 0.04945029318332672, 0.01148180477321148, -0.05233735218644142, -0.04156758263707161, -0.01077843178063631, -0.017892936244606972, 0.0358445905148983, 0.08609601110219955, -0.11600912362337112, 0.005585105624049902, 0.0424957238137722, 0.10278087854385376, -0.05898535996675491, 0.06106110289692879, -0.03581060469150543, -0.1270631104707718, 0.08498407900333405, -0.027390211820602417, 0.0812823623418808, 0.038613975048065186, 0.014098312705755234, -0.027584703639149666, -0.04207150265574455, -0.034578293561935425, 0.06812309473752975, -0.20830461382865906, 0.24865548312664032, 0.004919709637761116, 0.030520789325237274, -0.024937860667705536, -0.04815726354718208, 0.05174754559993744, 0.10022988170385361, 0.24834224581718445, -0.0028698884416371584, 0.0013167464639991522, -0.058099109679460526, -0.02800660952925682, 0.0034290780313313007, -0.036838971078395844, -0.10300959646701813, 0.02186655066907406, 0.05647677555680275, 0.0005230562528595328, -0.043536875396966934, 0.15046384930610657, -0.04432857781648636, -0.07488866150379181, 0.019379550591111183, 0.029958628118038177, 0.020853908732533455, -0.0036373331677168608, -0.07022161781787872, -0.14170214533805847, -0.03450429439544678, -0.03996890410780907, -0.07054480910301208, -0.047373656183481216, 0.0890854001045227, -0.01091825868934393, -0.020256169140338898, -0.052814312279224396, -0.034941960126161575, 0.05378376692533493, -0.14986516535282135, 0.05177576467394829, 0.018986664712429047, -0.02500542812049389, -0.06494252383708954, -0.08197576552629471, 0.04929029196500778, 0.10877130180597305, 0.08486717194318771, -0.030988719314336777, 0.07952870428562164, -0.0761234387755394, -0.07879234105348587, 0.1974516361951828, -0.1826547086238861, -0.01073885802179575, -0.03526933118700981, 0.07245161384344101, 0.02688329853117466, -0.15590418875217438, 0.028247421607375145, 0.15593655407428741, 0.27570170164108276, -0.12742897868156433, 0.12182892858982086, 0.08959443122148514, -0.05924315005540848, -0.15002478659152985, -0.0518295094370842, -0.06018305569887161, -0.060027241706848145, 0.07607641816139221, -0.15337340533733368, 0.016243208199739456, 0.08651816099882126, -0.05313697084784508, 0.20633423328399658, -0.2884331941604614, -0.017640801146626472, 0.06871499121189117, 0.07116395235061646, 0.06644795835018158, -0.10270233452320099, -0.022559992969036102, 0.08210104703903198, -0.20212315022945404, -0.0063607413321733475, 0.004048505797982216, 0.05391513928771019, -0.03878836706280708, -0.0014242156175896525, -0.03846257925033569, -0.05341935157775879, 0.1534021645784378, 0.0410025455057621, -0.009452501311898232, -0.03321719169616699, -0.2344435155391693, 0.18194282054901123, -0.04934518784284592, -0.017133230343461037, 0.061047472059726715, -0.042792584747076035, -0.14726026356220245, 0.02861667610704899, -0.1343771517276764, 0.0734047144651413, -0.07967595010995865, -0.01054653711616993, -0.0784173458814621, 0.03432444855570793, -0.08787142485380173, -0.006342667620629072, 0.0003118595923297107, -0.08191070705652237, 0.13148418068885803, 0.08593401312828064, -0.05552605167031288, 0.001447988091968, -0.22661052644252777, -0.034166958183050156, -0.03570650890469551, 0.04210952669382095, -0.06919439136981964, -0.1274958699941635, 0.08196935057640076, 0.08607316017150879, 0.08381413668394089, 0.09195175766944885, -0.0849749892950058, 0.11378137767314911, 0.0458601638674736, -0.11547552049160004, -0.08472791314125061, 0.006260599475353956, -0.09936622530221939, -0.041787032037973404, -0.14309558272361755, -0.006515727378427982, -0.022793838754296303, -0.045939695090055466, 0.014872709289193153, 0.02157226763665676, -0.12322713434696198, -0.03017060086131096, 0.07975513488054276, 0.06641986966133118, -0.08488328009843826, 0.06279430538415909, 0.08030843734741211, -0.06125277653336525, -0.020736394450068474, 0.1215362697839737, -0.07436879724264145, -0.04146689549088478, -0.1068200170993805, 0.07862651348114014, -0.04025024175643921, -0.04540678858757019, 0.02370394766330719, -0.07536543160676956, 0.043446630239486694, 0.11923599243164062, 0.06652000546455383, -0.018562261015176773, -0.09378150850534439, -0.03318707272410393, -0.03969964012503624, 0.0781899243593216, 0.005319678224623203, -0.026303783059120178, -0.0829591453075409, 0.08613350242376328, 0.03237275034189224, 0.12670908868312836, -0.010362612083554268, -0.1206163763999939, -0.03873860836029053, 0.06655380874872208, 0.06340952962636948, 0.04234369099140167, -0.03186330571770668, -0.009167227894067764, -0.0265558622777462, -0.014352026395499706, -0.02058059722185135, -0.042404502630233765, -0.06338963657617569, 0.03986280784010887, 0.058772966265678406, 0.05825124308466911, -0.14780069887638092, -0.06085456535220146, 0.07039083540439606, -0.013506554067134857, 0.055851392447948456, 0.04402238503098488, -0.07578978687524796, -0.008169662207365036, -0.14318101108074188, 0.05565779656171799, 0.011135626584291458, -0.001978611806407571, 0.028169574216008186, -0.07211454957723618, -0.025958560407161713, -0.09484875947237015, -0.07335926592350006, 0.03182234615087509, 0.07202635705471039, -0.06477537006139755, 0.026250075548887253, 0.09199949353933334, -0.07075055688619614, -0.028398849070072174, -0.02853425033390522, 0.16883732378482819, 0.005158145911991596, 0.07666844129562378, 0.007193305529654026, 0.11616770923137665, -0.13997313380241394, 0.003752254182472825, -0.025146782398223877, -0.03853268548846245, -0.07654687017202377, -0.010724400170147419, 0.04636545479297638, -0.015482873655855656, 0.11872432380914688, 0.002198917558416724, 0.007224234752357006, 0.016812652349472046, 0.15830765664577484, -0.07123948633670807, -0.02392437681555748, 0.08117328584194183, 0.005997664760798216, -0.0640721321105957, 0.07814795523881912, 0.09289875626564026, -0.011104685254395008, 0.07549209147691727, 0.23237425088882446, -0.009133757092058659, 0.1234130933880806, 0.03755916655063629, -0.04958946630358696, 0.06556949764490128, -0.13549163937568665, -0.015274576842784882, 0.15389558672904968, -0.008339441381394863, -0.05094236880540848, 0.03497505560517311, 0.14042691886425018, -0.08191769570112228, 0.045733075588941574, -0.004750419873744249, -0.05861964449286461, -0.09094389528036118, -0.09128740429878235, 0.04009291157126427, 0.009849260561168194, -0.013969780877232552, -0.04054411128163338, 0.096989706158638, 0.04800160974264145, -0.026072120293974876, 0.018271196633577347, 0.02735087461769581, -0.050218891352415085, 0.0051234266720712185, 0.07085229456424713, -0.0561603382229805, 0.022274697199463844, -0.08201580494642258, 0.0679372176527977, 0.03608478233218193, -0.14607392251491547, 0.04550960659980774, 0.04050638899207115, -0.019615432247519493, -0.007833708077669144, -0.1332322508096695, -0.10662560164928436, -0.021704111248254776, 0.08166350424289703, -0.024180402979254723, 0.13515911996364594, 0.06040540337562561, 0.007296423427760601, 0.013615628704428673, 0.09840698540210724, 0.001300341566093266, -0.03886331245303154, -0.029250971972942352, 0.15839211642742157, -0.10389801114797592, -0.06450657546520233, -0.03890183940529823, -0.018483301624655724, 0.04336060956120491, 0.2888377904891968, 0.15938451886177063, 0.014403015375137329, -0.03383495658636093, 0.010544545017182827, 0.02743641659617424, 0.0968872457742691, 0.023340271785855293, 0.033295951783657074, 0.198342964053154, -0.17865337431430817, 0.016713812947273254, -0.20836684107780457, 0.01005055382847786, -0.048644740134477615, -0.038372620940208435, 0.13280706107616425, -0.04842201620340347, -0.06138845905661583, 0.147225484251976, -0.13907109200954437, -0.06580574810504913, 0.09965134412050247, -0.08085693418979645, -0.024372737854719162, 0.002659347839653492, 0.034898512065410614, 0.007536181714385748, 0.12387019395828247, -0.005385016091167927, -0.0944950059056282, 0.12953580915927887, -0.036889687180519104, -0.12402451783418655, -0.1078478991985321, 0.04971214383840561, -0.11944419890642166, 0.22202864289283752, -0.054229848086833954, 0.10460870712995529, 0.08029856532812119, 0.07351803779602051, -0.06341737508773804, 0.05096008628606796, 0.021921908482909203, 0.1772557944059372, -0.09504149854183197, -0.022972239181399345, 0.03173937648534775, -0.04091427102684975, 0.03754652291536331, -0.05675802752375603, 0.05932131037116051, 0.03239717707037926, -0.005396685563027859, -0.05723376199603081, 0.08406733721494675, -0.03639886528253555, 0.1073637381196022, 0.09261234104633331, -0.01721072383224964, -0.025118183344602585, -0.03564617782831192, -0.06006953865289688, 0.12625539302825928, 0.05330943316221237, -0.008891476318240166, -0.014377114363014698, 0.020859772339463234, 0.06749767810106277, -0.078809455037117, -0.17932920157909393, -0.07449478656053543, -0.03783709928393364, -0.05978017300367355, 0.053780827671289444, -0.013381554745137691, 0.05411753058433533, 0.04437387362122536, -0.03200311213731766, 0.11267776787281036, 0.013013922609388828, 0.18428584933280945, -0.1349961757659912, -0.03697605058550835 ]
null
null
flair
## English NER in Flair (Ontonotes default model) This is the 18-class NER model for English that ships with [Flair](https://github.com/flairNLP/flair/). F1-Score: **89.27** (Ontonotes) Predicts 18 tags: | **tag** | **meaning** | |---------------------------------|-----------| | CARDINAL | cardinal value | | DATE | date value | | EVENT | event name | | FAC | building name | | GPE | geo-political entity | | LANGUAGE | language name | | LAW | law name | | LOC | location name | | MONEY | money name | | NORP | affiliation | | ORDINAL | ordinal value | | ORG | organization name | | PERCENT | percent value | | PERSON | person name | | PRODUCT | product name | | QUANTITY | quantity value | | TIME | time value | | WORK_OF_ART | name of work of art | Based on [Flair embeddings](https://www.aclweb.org/anthology/C18-1139/) and LSTM-CRF. --- ### Demo: How to use in Flair Requires: **[Flair](https://github.com/flairNLP/flair/)** (`pip install flair`) ```python from flair.data import Sentence from flair.models import SequenceTagger # load tagger tagger = SequenceTagger.load("flair/ner-english-ontonotes") # make example sentence sentence = Sentence("On September 1st George Washington won 1 dollar.") # predict NER tags tagger.predict(sentence) # print sentence print(sentence) # print predicted NER spans print('The following NER tags are found:') # iterate over entities and print for entity in sentence.get_spans('ner'): print(entity) ``` This yields the following output: ``` Span [2,3]: "September 1st" [− Labels: DATE (0.8824)] Span [4,5]: "George Washington" [− Labels: PERSON (0.9604)] Span [7,8]: "1 dollar" [− Labels: MONEY (0.9837)] ``` So, the entities "*September 1st*" (labeled as a **date**), "*George Washington*" (labeled as a **person**) and "*1 dollar*" (labeled as a **money**) are found in the sentence "*On September 1st George Washington won 1 dollar*". --- ### Training: Script to train this model The following Flair script was used to train this model: ```python from flair.data import Corpus from flair.datasets import ColumnCorpus from flair.embeddings import WordEmbeddings, StackedEmbeddings, FlairEmbeddings # 1. load the corpus (Ontonotes does not ship with Flair, you need to download and reformat into a column format yourself) corpus: Corpus = ColumnCorpus( "resources/tasks/onto-ner", column_format={0: "text", 1: "pos", 2: "upos", 3: "ner"}, tag_to_bioes="ner", ) # 2. what tag do we want to predict? tag_type = 'ner' # 3. make the tag dictionary from the corpus tag_dictionary = corpus.make_tag_dictionary(tag_type=tag_type) # 4. initialize each embedding we use embedding_types = [ # GloVe embeddings WordEmbeddings('en-crawl'), # contextual string embeddings, forward FlairEmbeddings('news-forward'), # contextual string embeddings, backward FlairEmbeddings('news-backward'), ] # embedding stack consists of Flair and GloVe embeddings embeddings = StackedEmbeddings(embeddings=embedding_types) # 5. initialize sequence tagger from flair.models import SequenceTagger tagger = SequenceTagger(hidden_size=256, embeddings=embeddings, tag_dictionary=tag_dictionary, tag_type=tag_type) # 6. initialize trainer from flair.trainers import ModelTrainer trainer = ModelTrainer(tagger, corpus) # 7. run training trainer.train('resources/taggers/ner-english-ontonotes', train_with_dev=True, max_epochs=150) ``` --- ### Cite Please cite the following paper when using this model. ``` @inproceedings{akbik2018coling, title={Contextual String Embeddings for Sequence Labeling}, author={Akbik, Alan and Blythe, Duncan and Vollgraf, Roland}, booktitle = {{COLING} 2018, 27th International Conference on Computational Linguistics}, pages = {1638--1649}, year = {2018} } ``` --- ### Issues? The Flair issue tracker is available [here](https://github.com/flairNLP/flair/issues/).
{"language": "en", "tags": ["flair", "token-classification", "sequence-tagger-model"], "datasets": ["ontonotes"], "widget": [{"text": "On September 1st George Washington won 1 dollar."}]}
token-classification
flair/ner-english-ontonotes
[ "flair", "pytorch", "token-classification", "sequence-tagger-model", "en", "dataset:ontonotes", "has_space", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #flair #pytorch #token-classification #sequence-tagger-model #en #dataset-ontonotes #has_space #region-us
English NER in Flair (Ontonotes default model) ---------------------------------------------- This is the 18-class NER model for English that ships with Flair. F1-Score: 89.27 (Ontonotes) Predicts 18 tags: Based on Flair embeddings and LSTM-CRF. --- ### Demo: How to use in Flair Requires: Flair ('pip install flair') This yields the following output: So, the entities "*September 1st*" (labeled as a date), "*George Washington*" (labeled as a person) and "*1 dollar*" (labeled as a money) are found in the sentence "*On September 1st George Washington won 1 dollar*". --- ### Training: Script to train this model The following Flair script was used to train this model: --- ### Cite Please cite the following paper when using this model. --- ### Issues? The Flair issue tracker is available here.
[ "### Demo: How to use in Flair\n\n\nRequires: Flair ('pip install flair')\n\n\nThis yields the following output:\n\n\nSo, the entities \"*September 1st*\" (labeled as a date), \"*George Washington*\" (labeled as a person) and \"*1 dollar*\" (labeled as a money) are found in the sentence \"*On September 1st George Washington won 1 dollar*\".\n\n\n\n\n---", "### Training: Script to train this model\n\n\nThe following Flair script was used to train this model:\n\n\n\n\n---", "### Cite\n\n\nPlease cite the following paper when using this model.\n\n\n\n\n---", "### Issues?\n\n\nThe Flair issue tracker is available here." ]
[ "TAGS\n#flair #pytorch #token-classification #sequence-tagger-model #en #dataset-ontonotes #has_space #region-us \n", "### Demo: How to use in Flair\n\n\nRequires: Flair ('pip install flair')\n\n\nThis yields the following output:\n\n\nSo, the entities \"*September 1st*\" (labeled as a date), \"*George Washington*\" (labeled as a person) and \"*1 dollar*\" (labeled as a money) are found in the sentence \"*On September 1st George Washington won 1 dollar*\".\n\n\n\n\n---", "### Training: Script to train this model\n\n\nThe following Flair script was used to train this model:\n\n\n\n\n---", "### Cite\n\n\nPlease cite the following paper when using this model.\n\n\n\n\n---", "### Issues?\n\n\nThe Flair issue tracker is available here." ]
[ 41, 100, 22, 15, 15 ]
[ "passage: TAGS\n#flair #pytorch #token-classification #sequence-tagger-model #en #dataset-ontonotes #has_space #region-us \n### Demo: How to use in Flair\n\n\nRequires: Flair ('pip install flair')\n\n\nThis yields the following output:\n\n\nSo, the entities \"*September 1st*\" (labeled as a date), \"*George Washington*\" (labeled as a person) and \"*1 dollar*\" (labeled as a money) are found in the sentence \"*On September 1st George Washington won 1 dollar*\".\n\n\n\n\n---### Training: Script to train this model\n\n\nThe following Flair script was used to train this model:\n\n\n\n\n---### Cite\n\n\nPlease cite the following paper when using this model.\n\n\n\n\n---### Issues?\n\n\nThe Flair issue tracker is available here." ]
[ -0.08316225558519363, 0.10079556703567505, -0.0019114876631647348, 0.09859561175107956, 0.08915527909994125, 0.03749171644449234, 0.07468868792057037, 0.07941008359193802, 0.011256714351475239, 0.11021765321493149, 0.20103533565998077, 0.06640208512544632, 0.1350521296262741, 0.14261142909526825, 0.03518760949373245, -0.24320901930332184, 0.011797333136200905, -0.021585136651992798, 0.08412260562181473, 0.1831733137369156, 0.0932883620262146, -0.0326807014644146, 0.008811341598629951, -0.002581997076049447, -0.11500131338834763, -0.0231632087379694, 0.005780375562608242, -0.13265946507453918, 0.13677173852920532, -0.041492581367492676, 0.17305608093738556, 0.026077525690197945, 0.09537431597709656, -0.10033538937568665, 0.015361697413027287, 0.003886376041918993, 0.00277880416251719, 0.09290867298841476, -0.033097341656684875, 0.024312442168593407, 0.20159408450126648, -0.08779844641685486, 0.023625079542398453, 0.030366642400622368, -0.22525843977928162, -0.3146677017211914, -0.12263697385787964, 0.1526939421892166, 0.07927598059177399, 0.05694747343659401, -0.04209715500473976, 0.08587772399187088, -0.02513301558792591, -0.0063313087448477745, 0.18325577676296234, -0.22652064263820648, -0.04710628464818001, 0.1437804400920868, -0.0021925801411271095, -0.0013136304914951324, -0.019787974655628204, 0.023788481950759888, 0.025112366303801537, 0.06092986837029457, 0.00444755656644702, 0.001000404474325478, 0.09044552594423294, 0.11029836535453796, -0.20154337584972382, -0.11872992664575577, 0.3508409857749939, 0.05516213923692703, -0.05819416046142578, -0.030878249555826187, 0.027527514845132828, -0.09971772879362106, 0.018031194806098938, -0.06237305700778961, 0.0038226584438234568, -0.009890339337289333, 0.18166179955005646, -0.05168592929840088, -0.13230836391448975, -0.015039702877402306, -0.040640417486429214, 0.08471836149692535, -0.09175974875688553, 0.11599372327327728, -0.14444471895694733, 0.08390321582555771, -0.04794900119304657, -0.051572464406490326, 0.020039711147546768, -0.03932471573352814, 0.005759348161518574, -0.001199529622681439, -0.07293178141117096, 0.05927314981818199, 0.010882801376283169, -0.023941421881318092, 0.08591482788324356, -0.04249372333288193, 0.06909577548503876, 0.12175861746072769, 0.04099413380026817, 0.21659453213214874, -0.12960435450077057, -0.05653658136725426, 0.030919168144464493, 0.04142000898718834, 0.021090935915708542, -0.0478137843310833, -0.14737407863140106, 0.03299034759402275, 0.011910378001630306, 0.008868847973644733, 0.027130234986543655, -0.02941679023206234, -0.09416521340608597, 0.029778867959976196, 0.11051274091005325, -0.08957868069410324, -0.01841304823756218, 0.009083504788577557, -0.10464147478342056, 0.06453833729028702, 0.04933268576860428, -0.013609249144792557, 0.02278347872197628, 0.11423695832490921, -0.08564337342977524, 0.0701347216963768, -0.0339888334274292, -0.12617909908294678, 0.019716400653123856, -0.06384170800447464, -0.04641619324684143, -0.04097360372543335, -0.1281115710735321, -0.03112366981804371, 0.052475836127996445, 0.020123222842812538, -0.07772515714168549, -0.02620084583759308, -0.02564680390059948, -0.029013635590672493, 0.02010919339954853, 0.1351497769355774, -0.04438595473766327, 0.08293133974075317, -0.008363998495042324, 0.10806945711374283, -0.04011392220854759, 0.02269965410232544, -0.08755407482385635, -0.009981929324567318, -0.15227730572223663, 0.03642553463578224, 0.0022682726848870516, -0.00025578588247299194, -0.08218304812908173, -0.10665016621351242, -0.06320474296808243, -0.013682848773896694, 0.019764302298426628, 0.18114353716373444, -0.2826175391674042, -0.028415318578481674, 0.11528035998344421, -0.08964129537343979, -0.013974024914205074, 0.05248088017106056, -0.059911441057920456, 0.1942710429430008, 0.056353695690631866, 0.12665194272994995, -0.0651867464184761, -0.353809118270874, 0.03344239294528961, 0.035721395164728165, -0.17346838116645813, -0.0064885360188782215, 0.09488668292760849, -0.06494319438934326, -0.15553857386112213, 0.007789242547005415, -0.15204069018363953, -0.014597169123589993, -0.0660160481929779, -0.0539834126830101, -0.009629840962588787, -0.06818968057632446, 0.10477399080991745, -0.013248249888420105, -0.015300046652555466, -0.045573946088552475, -0.12798821926116943, -0.08033065497875214, 0.0020515122450888157, 0.11398109048604965, -0.018808651715517044, -0.03379513695836067, 0.08761016279459, 0.03229283168911934, -0.010957229882478714, -0.13187718391418457, 0.06382586061954498, -0.029951488599181175, 0.08723235130310059, 0.04758650064468384, 0.12134704738855362, -0.028679311275482178, -0.002308105817064643, 0.062299493700265884, 0.04227179288864136, -0.011708532460033894, 0.02017076686024666, -0.020039977505803108, 0.022837918251752853, -0.09529529511928558, -0.0938146561384201, 0.1225634515285492, -0.08705366402864456, 0.06786785274744034, 0.058481182903051376, -0.07941483706235886, -0.03214603662490845, -0.03228491172194481, 0.08769896626472473, 0.02011513151228428, 0.07927748560905457, -0.03457462415099144, 0.05588062107563019, 0.02763107232749462, -0.087100550532341, -0.0931970626115799, -0.07611129432916641, -0.09633801877498627, 0.09670329093933105, -0.031113024801015854, -0.1261390596628189, -0.02073996514081955, -0.041224703192710876, -0.016499238088726997, -0.06692378968000412, -0.06954111903905869, 0.14301645755767822, 0.04259590432047844, -0.007100790273398161, -0.029321076348423958, -0.010559219866991043, 0.018704786896705627, -0.03837491571903229, -0.07560523599386215, 0.030957719311118126, -0.028757356107234955, -0.01828567311167717, 0.012612530030310154, 0.11716977506875992, 0.03756899759173393, 0.018206823617219925, 0.03191603347659111, -0.03795967996120453, -0.13787324726581573, -0.06254521757364273, -0.008013740181922913, 0.12359112501144409, -0.08363622426986694, -0.039074208587408066, 0.04457593709230423, 0.012640533968806267, -0.004628119524568319, -0.20331881940364838, -0.08295389264822006, 0.013412844389677048, -0.029603274539113045, -0.20735494792461395, 0.04761917516589165, -0.029571371152997017, 0.10246456414461136, 0.011687517166137695, -0.013061012141406536, 0.06657972931861877, 0.0034081265330314636, -0.08167224377393723, 0.08499904721975327, -0.022077174857258797, -0.2647908329963684, -0.12704038619995117, -0.12241344898939133, 0.12564599514007568, -0.020651139318943024, 0.04669295623898506, -0.05414632335305214, 0.05718066543340683, -0.008926781825721264, 0.041542842984199524, -0.044855453073978424, -0.09589061886072159, 0.010221130214631557, -0.0365857370197773, -0.014854996465146542, -0.09945108741521835, -0.04697848856449127, -0.06033822149038315, 0.11895134299993515, 0.0710437074303627, 0.039821822196245193, 0.0479179248213768, 0.1796146035194397, -0.007780170999467373, 0.0852576419711113, -0.06120719015598297, 0.36258190870285034, -0.060618989169597626, 0.0517374649643898, 0.12525896728038788, 0.06722302734851837, 0.05423782765865326, 0.12066176533699036, 0.09368046373128891, -0.08391118049621582, -0.03200184926390648, -0.050866901874542236, -0.10713272541761398, -0.1153402328491211, -0.04367075115442276, -0.042184311896562576, -0.06424086540937424, 0.010644707828760147, 0.014157265424728394, -0.056015949696302414, -0.010601567104458809, 0.09062407165765762, -0.009244890883564949, 0.015547828748822212, -0.005822288803756237, 0.07172572612762451, -0.03385578840970993, 0.037167031317949295, -0.013113767839968204, -0.012645306065678596, 0.037851594388484955, -0.009437796659767628, 0.10826565325260162, 0.1272636353969574, -0.02101839892566204, 0.0696486160159111, 0.057822395116090775, 0.045583415776491165, 0.133970707654953, 0.08899372071027756, -0.015291751362383366, -0.02427856996655464, -0.059323277324438095, 0.017806554213166237, 0.015962306410074234, 0.026493234559893608, -0.041764818131923676, -0.0458252988755703, -0.0815376415848732, -0.03878547623753548, 0.12156729400157928, 0.10712110251188278, -0.12181247770786285, -0.026942258700728416, 0.012435121461749077, 0.05621720850467682, -0.0054377540946006775, 0.039153072983026505, -0.07543099671602249, -0.12186727672815323, 0.033441681414842606, -0.03394192457199097, 0.0937117412686348, 0.055267076939344406, 0.0234877597540617, -0.09557481855154037, 0.025298619642853737, -0.026459068059921265, 0.08539479970932007, -0.2059215009212494, 0.32412734627723694, -0.02595926634967327, 0.05853673443198204, -0.05634666606783867, -0.017341844737529755, 0.04846195504069328, 0.06317831575870514, 0.22191442549228668, 0.010104524902999401, -0.16189062595367432, -0.016694290563464165, -0.1079927310347557, 0.007729105185717344, -0.03536679968237877, -0.06865596771240234, 0.06084318831562996, 0.062222160398960114, 0.010408047586679459, -0.029809197410941124, 0.15971806645393372, -0.137426495552063, -0.0521165169775486, 0.048275288194417953, -0.054195526987314224, 0.02041393332183361, -0.02826695330440998, -0.06938768923282623, -0.13114707171916962, -0.07999900728464127, -0.042031560093164444, -0.05124383792281151, -0.0557195283472538, 0.13639786839485168, 0.0411360003054142, -0.026161614805459976, -0.07245657593011856, 0.006110088899731636, 0.03044201247394085, -0.07275664061307907, 0.025847088545560837, 0.01582110859453678, -0.02635061927139759, 0.025343112647533417, -0.043443772941827774, 0.03866126760840416, 0.06638714671134949, 0.07115055620670319, -0.01940624974668026, 0.07056249678134918, -0.08739098161458969, -0.0866570994257927, 0.21407416462898254, -0.20032280683517456, -0.01923687383532524, -0.002640657126903534, 0.05162426456809044, -0.06919605284929276, -0.16538786888122559, 0.026435483247041702, 0.17054599523544312, 0.266766756772995, -0.13500486314296722, 0.07983740419149399, 0.09576565772294998, -0.07621452957391739, -0.16308340430259705, -0.020106356590986252, -0.0635991171002388, 0.023189468309283257, 0.01657947525382042, -0.13839827477931976, -0.015609883703291416, 0.12403000146150589, -0.06423883140087128, 0.15408584475517273, -0.28378570079803467, -0.044748641550540924, 0.16627871990203857, -0.018585961312055588, 0.1360778659582138, -0.07564985752105713, -0.048366885632276535, 0.07205940783023834, -0.1707780510187149, 0.044128019362688065, 0.06109130382537842, 0.053920019418001175, -0.002702602418139577, 0.0937717854976654, -0.028296133503317833, -0.07321329414844513, 0.15027546882629395, -0.013799860142171383, 0.01837196759879589, -0.026594385504722595, -0.2895151376724243, 0.1656656712293625, -0.050250500440597534, 0.10121581703424454, 0.09210864454507828, -0.009860238991677761, -0.11899009346961975, -0.01483819168061018, -0.1325434446334839, 0.08483332395553589, -0.07278843224048615, -0.034442394971847534, -0.040398385375738144, 0.0016063580987975001, -0.07340258359909058, -0.03749079629778862, -0.09721805900335312, -0.08236560225486755, 0.11316623538732529, 0.12060718983411789, -0.050759393721818924, -0.001700485940091312, -0.14887277781963348, -0.0030883937142789364, -0.028883403167128563, 0.09161382168531418, -0.1079411655664444, -0.1150653064250946, 0.07171206921339035, 0.06907011568546295, 0.14965906739234924, 0.07548091560602188, -0.06863062083721161, 0.04715072363615036, 0.0397992879152298, -0.13631640374660492, -0.14721167087554932, 0.000585209287237376, -0.05069452151656151, -0.08934103697538376, -0.13809996843338013, -0.005830137990415096, -0.03118237294256687, -0.03204825147986412, -0.0048744212836027145, 0.011298908852040768, -0.15606068074703217, 0.0496654249727726, 0.11160728335380554, 0.10159850120544434, -0.07390783727169037, 0.008936894126236439, 0.10637996345758438, -0.07187143713235855, -0.02341214194893837, 0.06251567602157593, -0.014234590344130993, -0.05943538248538971, -0.10952029377222061, 0.18767832219600677, -0.0004133781767450273, -0.019063051789999008, -0.011849610134959221, -0.09027707576751709, 0.056314319372177124, 0.1158367395401001, 0.073533795773983, 0.008413109928369522, -0.07038146257400513, -0.02889409102499485, -0.03611161187291145, 0.01264409814029932, 0.07192353159189224, -0.04814516752958298, -0.060174159705638885, 0.1301407516002655, 0.009382949210703373, 0.1311078667640686, -0.04204103723168373, -0.0830889344215393, -0.07619486004114151, 0.048974331468343735, 0.03074405901134014, 0.058384232223033905, 0.017825579270720482, 0.005617854651063681, 0.021150827407836914, -0.01552216149866581, -0.03451508656144142, -0.012735594995319843, -0.09298450499773026, 0.05443870276212692, 0.00426756776869297, 0.07032009959220886, -0.0575384758412838, -0.043425023555755615, 0.053586918860673904, -0.020288709551095963, 0.05693965032696724, 0.07346418499946594, -0.06348668783903122, -0.028101088479161263, -0.13993141055107117, 0.062157370150089264, 0.02667490765452385, -0.0366659015417099, 0.04839249327778816, -0.1720142811536789, 0.020011059939861298, -0.04362643137574196, -0.036924924701452255, 0.013832216151058674, 0.01854562573134899, -0.07283751666545868, -0.01718832738697529, 0.09418956190347672, -0.06617586314678192, -0.02154155634343624, -0.06947571039199829, 0.14479607343673706, 0.028119971975684166, 0.1130267009139061, 0.0009768647141754627, 0.14077095687389374, -0.13314436376094818, -0.011600887402892113, -0.026015974581241608, -0.016197333112359047, -0.02632899582386017, -0.030397510156035423, 0.10211565345525742, 0.03275115042924881, 0.20164145529270172, 0.040033094584941864, -0.03724747523665428, 0.01351950690150261, 0.1729055941104889, -0.026667499914765358, -0.014567170292139053, 0.05912957340478897, -0.0182978305965662, -0.0352620929479599, 0.050952401012182236, 0.05260661616921425, -0.06883735209703445, 0.08818161487579346, 0.25217151641845703, 0.020126529037952423, 0.1264684647321701, 0.07863844931125641, -0.054739903658628464, 0.058116354048252106, -0.0344511903822422, -0.010747232474386692, 0.12585724890232086, 0.003942588344216347, -0.037332650274038315, 0.036608461290597916, 0.11150532960891724, -0.09514997154474258, 0.09439513832330704, -0.06860962510108948, -0.07096312940120697, -0.1022535189986229, -0.14431947469711304, 0.0270286463201046, 0.0031465436331927776, 0.00965784676373005, -0.023155495524406433, 0.05854795500636101, 0.08754171431064606, -0.05936836451292038, 0.018681352958083153, 0.026237977668642998, -0.020815759897232056, -0.0031101638451218605, 0.06595505028963089, -0.06719367206096649, -0.006735472474247217, -0.19593258202075958, 0.05238795652985573, 0.02520109713077545, -0.13197574019432068, 0.0631556585431099, 0.011321702972054482, -0.02019832469522953, -0.04960952326655388, -0.11513327807188034, -0.08021838217973709, -0.007291910704225302, 0.03693321347236633, -0.00966638047248125, 0.17584793269634247, 0.05030819773674011, 0.03308050334453583, 0.010423741303384304, 0.08664146810770035, -0.02479824796319008, -0.1576293557882309, -0.11853888630867004, 0.12645812332630157, -0.1304926872253418, 0.0164695605635643, -0.06743859499692917, -0.03412514552474022, 0.04462841898202896, 0.2927039861679077, 0.19532614946365356, 0.05250449851155281, -0.028494568541646004, -0.0031045253854244947, 0.021883534267544746, 0.08225972950458527, 0.026925938203930855, 0.06141097843647003, 0.1493918001651764, -0.17392311990261078, 0.040210362523794174, -0.19936394691467285, 0.0068571302108466625, -0.06800004839897156, 0.0025719378609210253, 0.09980139136314392, -0.047451961785554886, -0.04472251608967781, 0.17058604955673218, -0.13490992784500122, -0.08826036751270294, 0.0732383206486702, -0.06328651309013367, -0.07514587789773941, 0.005678205750882626, 0.04972938820719719, 0.000087964472186286, 0.14703918993473053, -0.06109211966395378, -0.07351183891296387, 0.13064032793045044, -0.04763093963265419, -0.0942399725317955, -0.1562129706144333, 0.013413499109447002, -0.10483404248952866, 0.16316913068294525, -0.006336118094623089, 0.14121121168136597, 0.055757198482751846, 0.07490039616823196, -0.07732239365577698, 0.12608802318572998, -0.009225057438015938, 0.12937165796756744, -0.06329485774040222, -0.023733830079436302, -0.005357259418815374, -0.035355158150196075, -0.01089900266379118, -0.13785628974437714, 0.04332674294710159, 0.059503525495529175, 0.03366152197122574, -0.03849697485566139, 0.03476104885339737, -0.024006802588701248, 0.09345661103725433, 0.10824573040008545, -0.026849236339330673, 0.012220025062561035, -0.03381827846169472, -0.009564652107656002, 0.1176799088716507, 0.01601770520210266, -0.06219296157360077, -0.05967642739415169, 0.020449776202440262, 0.09098237007856369, -0.07093772292137146, -0.12582655251026154, -0.08428056538105011, -0.04138968139886856, -0.061407554894685745, 0.06386832892894745, 0.025512417778372765, 0.04928259924054146, 0.09213174879550934, -0.025831129401922226, 0.041753169149160385, 0.001855668961070478, 0.17563049495220184, -0.17203353345394135, -0.05501732975244522 ]
null
null
flair
## English NER in Flair (default model) This is the standard 4-class NER model for English that ships with [Flair](https://github.com/flairNLP/flair/). F1-Score: **93,06** (corrected CoNLL-03) Predicts 4 tags: | **tag** | **meaning** | |---------------------------------|-----------| | PER | person name | | LOC | location name | | ORG | organization name | | MISC | other name | Based on [Flair embeddings](https://www.aclweb.org/anthology/C18-1139/) and LSTM-CRF. --- ### Demo: How to use in Flair Requires: **[Flair](https://github.com/flairNLP/flair/)** (`pip install flair`) ```python from flair.data import Sentence from flair.models import SequenceTagger # load tagger tagger = SequenceTagger.load("flair/ner-english") # make example sentence sentence = Sentence("George Washington went to Washington") # predict NER tags tagger.predict(sentence) # print sentence print(sentence) # print predicted NER spans print('The following NER tags are found:') # iterate over entities and print for entity in sentence.get_spans('ner'): print(entity) ``` This yields the following output: ``` Span [1,2]: "George Washington" [− Labels: PER (0.9968)] Span [5]: "Washington" [− Labels: LOC (0.9994)] ``` So, the entities "*George Washington*" (labeled as a **person**) and "*Washington*" (labeled as a **location**) are found in the sentence "*George Washington went to Washington*". --- ### Training: Script to train this model The following Flair script was used to train this model: ```python from flair.data import Corpus from flair.datasets import CONLL_03 from flair.embeddings import WordEmbeddings, StackedEmbeddings, FlairEmbeddings # 1. get the corpus corpus: Corpus = CONLL_03() # 2. what tag do we want to predict? tag_type = 'ner' # 3. make the tag dictionary from the corpus tag_dictionary = corpus.make_tag_dictionary(tag_type=tag_type) # 4. initialize each embedding we use embedding_types = [ # GloVe embeddings WordEmbeddings('glove'), # contextual string embeddings, forward FlairEmbeddings('news-forward'), # contextual string embeddings, backward FlairEmbeddings('news-backward'), ] # embedding stack consists of Flair and GloVe embeddings embeddings = StackedEmbeddings(embeddings=embedding_types) # 5. initialize sequence tagger from flair.models import SequenceTagger tagger = SequenceTagger(hidden_size=256, embeddings=embeddings, tag_dictionary=tag_dictionary, tag_type=tag_type) # 6. initialize trainer from flair.trainers import ModelTrainer trainer = ModelTrainer(tagger, corpus) # 7. run training trainer.train('resources/taggers/ner-english', train_with_dev=True, max_epochs=150) ``` --- ### Cite Please cite the following paper when using this model. ``` @inproceedings{akbik2018coling, title={Contextual String Embeddings for Sequence Labeling}, author={Akbik, Alan and Blythe, Duncan and Vollgraf, Roland}, booktitle = {{COLING} 2018, 27th International Conference on Computational Linguistics}, pages = {1638--1649}, year = {2018} } ``` --- ### Issues? The Flair issue tracker is available [here](https://github.com/flairNLP/flair/issues/).
{"language": "en", "tags": ["flair", "token-classification", "sequence-tagger-model"], "datasets": ["conll2003"], "widget": [{"text": "George Washington went to Washington"}]}
token-classification
flair/ner-english
[ "flair", "pytorch", "token-classification", "sequence-tagger-model", "en", "dataset:conll2003", "has_space", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #flair #pytorch #token-classification #sequence-tagger-model #en #dataset-conll2003 #has_space #region-us
English NER in Flair (default model) ------------------------------------ This is the standard 4-class NER model for English that ships with Flair. F1-Score: 93,06 (corrected CoNLL-03) Predicts 4 tags: Based on Flair embeddings and LSTM-CRF. --- ### Demo: How to use in Flair Requires: Flair ('pip install flair') This yields the following output: So, the entities "*George Washington*" (labeled as a person) and "*Washington*" (labeled as a location) are found in the sentence "*George Washington went to Washington*". --- ### Training: Script to train this model The following Flair script was used to train this model: --- ### Cite Please cite the following paper when using this model. --- ### Issues? The Flair issue tracker is available here.
[ "### Demo: How to use in Flair\n\n\nRequires: Flair ('pip install flair')\n\n\nThis yields the following output:\n\n\nSo, the entities \"*George Washington*\" (labeled as a person) and \"*Washington*\" (labeled as a location) are found in the sentence \"*George Washington went to Washington*\".\n\n\n\n\n---", "### Training: Script to train this model\n\n\nThe following Flair script was used to train this model:\n\n\n\n\n---", "### Cite\n\n\nPlease cite the following paper when using this model.\n\n\n\n\n---", "### Issues?\n\n\nThe Flair issue tracker is available here." ]
[ "TAGS\n#flair #pytorch #token-classification #sequence-tagger-model #en #dataset-conll2003 #has_space #region-us \n", "### Demo: How to use in Flair\n\n\nRequires: Flair ('pip install flair')\n\n\nThis yields the following output:\n\n\nSo, the entities \"*George Washington*\" (labeled as a person) and \"*Washington*\" (labeled as a location) are found in the sentence \"*George Washington went to Washington*\".\n\n\n\n\n---", "### Training: Script to train this model\n\n\nThe following Flair script was used to train this model:\n\n\n\n\n---", "### Cite\n\n\nPlease cite the following paper when using this model.\n\n\n\n\n---", "### Issues?\n\n\nThe Flair issue tracker is available here." ]
[ 41, 81, 22, 15, 15 ]
[ "passage: TAGS\n#flair #pytorch #token-classification #sequence-tagger-model #en #dataset-conll2003 #has_space #region-us \n### Demo: How to use in Flair\n\n\nRequires: Flair ('pip install flair')\n\n\nThis yields the following output:\n\n\nSo, the entities \"*George Washington*\" (labeled as a person) and \"*Washington*\" (labeled as a location) are found in the sentence \"*George Washington went to Washington*\".\n\n\n\n\n---### Training: Script to train this model\n\n\nThe following Flair script was used to train this model:\n\n\n\n\n---### Cite\n\n\nPlease cite the following paper when using this model.\n\n\n\n\n---### Issues?\n\n\nThe Flair issue tracker is available here." ]
[ -0.07754179835319519, 0.17645306885242462, -0.0014712187694385648, 0.06833362579345703, 0.08177177608013153, 0.05396747589111328, 0.11267365515232086, 0.04825665429234505, 0.010602099820971489, 0.053486838936805725, 0.18720762431621552, 0.07780981063842773, 0.11305837333202362, 0.07320278882980347, 0.08347295224666595, -0.25872859358787537, 0.03124011680483818, -0.031080935150384903, -0.0661880373954773, 0.1710071712732315, 0.07460048794746399, -0.008209152147173882, 0.01566537469625473, 0.03217897564172745, -0.11547128856182098, -0.016097035259008408, -0.02255762740969658, -0.09116753190755844, 0.17304256558418274, -0.03867684677243233, 0.2176574319601059, 0.04909152910113335, 0.09997935593128204, -0.14942097663879395, 0.030922213569283485, 0.04960301145911217, 0.02233264595270157, 0.1008487343788147, 0.047248899936676025, -0.002577294362708926, 0.29770246148109436, -0.023222805932164192, 0.0022778487764298916, 0.03184448182582855, -0.194279283285141, -0.25129130482673645, -0.11246374994516373, 0.06667076051235199, 0.04731357470154762, 0.10669522732496262, -0.029623212292790413, 0.09231632947921753, -0.05365392565727234, 0.026348991319537163, 0.18664439022541046, -0.22959259152412415, -0.029878173023462296, 0.1808956414461136, 0.014837613329291344, -0.017358366400003433, -0.04209684580564499, 0.05225979536771774, -0.0027904964517802, 0.07348155230283737, -0.038277387619018555, -0.012397896498441696, 0.019900692626833916, 0.13006621599197388, -0.16845081746578217, -0.108916737139225, 0.32628217339515686, 0.033990662544965744, -0.06865307688713074, 0.0009936346905305982, 0.0048671928234398365, -0.02796310931444168, 0.06125226244330406, -0.1016443744301796, -0.010525999590754509, 0.002147058956325054, 0.16981127858161926, -0.12401694059371948, -0.09334787726402283, -0.09860476851463318, -0.023727163672447205, 0.04282179847359657, -0.09350593388080597, 0.10587839037179947, -0.171022430062294, 0.12357880920171738, 0.06411927193403244, -0.05157626047730446, 0.04923859238624573, -0.0730988085269928, -0.041779667139053345, 0.0125777842476964, -0.04943787679076195, 0.13106411695480347, 0.03255152329802513, 0.02866257168352604, 0.154957115650177, -0.04096983000636101, 0.10380399227142334, 0.10950533300638199, 0.005464928690344095, 0.1985224187374115, -0.1408398151397705, -0.028763365000486374, 0.025492433458566666, -0.025497229769825935, -0.008396552875638008, -0.05911485478281975, -0.1629110425710678, -0.013697267509996891, -0.07037291675806046, 0.021661145612597466, 0.0364745669066906, -0.017974253743886948, -0.08983248472213745, 0.012833666056394577, 0.06407420337200165, -0.06673172116279602, -0.03855659067630768, -0.024492328986525536, -0.05353779345750809, 0.09334668517112732, 0.08932789415121078, 0.033969949930906296, 0.018869653344154358, 0.13650499284267426, -0.08181274682283401, 0.048749323934316635, -0.040186334401369095, -0.11000388860702515, -0.025855405256152153, -0.07450368255376816, 0.01350113283842802, -0.05998620018362999, -0.15010225772857666, -0.014377806335687637, 0.06219375133514404, 0.011581921949982643, -0.06558139622211456, -0.042902056127786636, -0.028128966689109802, -0.048067715018987656, 0.03784794360399246, 0.06943901628255844, -0.06656049191951752, 0.07558827847242355, -0.041824329644441605, 0.10506926476955414, -0.04709027335047722, 0.014807348139584064, -0.0919363722205162, 0.009970128536224365, -0.11978712677955627, -0.005051698535680771, -0.01654648594558239, 0.032986126840114594, -0.11927206814289093, -0.08522059768438339, -0.02064075879752636, 0.008532451465725899, 0.018110739067196846, 0.18470415472984314, -0.2741975486278534, -0.016154443845152855, 0.11923731118440628, -0.0970100536942482, -0.052793316543102264, 0.05080597475171089, -0.027345797047019005, 0.2000253051519394, 0.03233255073428154, 0.1410668045282364, -0.026518527418375015, -0.3641958236694336, 0.11612235754728317, 0.050427693873643875, -0.1995733678340912, 0.04448068514466286, 0.07041699439287186, -0.05803046002984047, -0.18117335438728333, -0.00035470983129926026, -0.1054917573928833, 0.03541767597198486, -0.03451206907629967, -0.038134872913360596, 0.007946238853037357, -0.053653083741664886, 0.043425098061561584, -0.04420396685600281, -0.03191240131855011, -0.0008029607124626637, -0.14804165065288544, -0.14217549562454224, 0.034968044608831406, 0.11056330800056458, -0.033926062285900116, 0.015836600214242935, 0.04762740433216095, 0.04205077141523361, -0.04267682135105133, -0.11397255957126617, 0.036075618118047714, -0.08373289555311203, 0.13944672048091888, 0.02140967547893524, 0.15893884003162384, -0.0326048880815506, 0.01657475344836712, 0.06893139332532883, 0.032006919384002686, -0.023277686908841133, 0.05343891680240631, -0.00910012423992157, 0.005924176424741745, -0.08223745226860046, -0.09227555245161057, 0.11507019400596619, -0.1732158064842224, 0.06324122101068497, 0.0345144160091877, -0.0030428192112594843, -0.015952076762914658, -0.020765408873558044, 0.11239534616470337, 0.03155575692653656, 0.016160983592271805, -0.07194400578737259, 0.0680181011557579, 0.004522040020674467, -0.05563190579414368, -0.10820070654153824, -0.06696484982967377, -0.032549455761909485, 0.10313135385513306, -0.031925592571496964, -0.11245077103376389, -0.07000447064638138, -0.04484890401363373, 0.006589848082512617, -0.03452951833605766, -0.03343801200389862, 0.15580464899539948, 0.04088863730430603, 0.012611235491931438, -0.029496170580387115, 0.031581662595272064, -0.029225578531622887, -0.03257790207862854, -0.07219153642654419, 0.05417686328291893, 0.11043953150510788, 0.029020637273788452, 0.030439916998147964, 0.1810978651046753, 0.0025009845849126577, 0.020533539354801178, 0.05543633550405502, -0.05167628079652786, -0.1014716774225235, -0.10627426952123642, -0.021119778975844383, 0.17995966970920563, -0.02260744385421276, 0.04118063673377037, 0.04363493621349335, -0.00604051910340786, 0.03781992197036743, -0.2039848268032074, -0.12298339605331421, 0.050411906093358994, -0.026413410902023315, -0.1859441101551056, 0.053826894611120224, -0.05497695505619049, 0.10488542914390564, -0.02126612327992916, -0.07224913686513901, 0.04569634795188904, -0.00010353676043450832, -0.0773436427116394, 0.10456831753253937, -0.06604623794555664, -0.26045143604278564, -0.10620442777872086, -0.0641823336482048, 0.1052456796169281, -0.0048753353767097, 0.025803908705711365, -0.11017563194036484, 0.03340508043766022, -0.012199110351502895, 0.05897105112671852, -0.09708739072084427, -0.08480245620012283, -0.06506515294313431, 0.02019714191555977, -0.01870417408645153, -0.10990332812070847, -0.033304858952760696, -0.05823634937405586, 0.08495926856994629, 0.026999248191714287, 0.018227646127343178, 0.08756991475820541, 0.12908503413200378, 0.02069397270679474, 0.07084877789020538, -0.04858938977122307, 0.36368730664253235, -0.08118712902069092, 0.07762788236141205, 0.13007904589176178, 0.012488547712564468, 0.047220781445503235, 0.15282393991947174, 0.06878884881734848, -0.08269142359495163, -0.0398922935128212, -0.07469593733549118, -0.06922279298305511, -0.11486057937145233, -0.051381684839725494, -0.04355936869978905, -0.061931077390909195, 0.007631842978298664, 0.02898714318871498, -0.0849793329834938, 0.026226654648780823, 0.08144693076610565, -0.04626327380537987, -0.053528644144535065, -0.003856563474982977, 0.017222493886947632, -0.030279308557510376, 0.000022242495106183924, -0.030871206894516945, -0.03829526901245117, 0.031054392457008362, 0.09232834726572037, 0.07493927329778671, 0.11867547035217285, -0.008620659820735455, 0.06487446278333664, 0.10922076553106308, 0.0907936692237854, 0.16689422726631165, 0.08132350444793701, -0.017172282561659813, -0.025210438296198845, -0.0552842877805233, 0.0006747531006112695, 0.03846857324242592, 0.010585397481918335, -0.05610959231853485, 0.011706947349011898, -0.10549738258123398, -0.044250402599573135, -0.00045780421351082623, 0.12490221112966537, -0.17725107073783875, -0.028981702402234077, 0.0025563084054738283, 0.09625837206840515, -0.04107341915369034, 0.05712779611349106, 0.029471779242157936, -0.1322060227394104, 0.01304552797228098, -0.022282704710960388, 0.10046657174825668, 0.032702282071113586, 0.03616068884730339, -0.08741630613803864, 0.036816470324993134, -0.05629411339759827, 0.11230190843343735, -0.19039921462535858, 0.3411136269569397, -0.029189562425017357, 0.01439796481281519, -0.04907659441232681, 0.001495462842285633, 0.07830628752708435, 0.049780555069446564, 0.24089691042900085, 0.0072601838037371635, -0.1557980626821518, -0.10067134350538254, -0.11587468534708023, 0.0371759831905365, -0.02502240054309368, -0.07582314312458038, 0.06340732425451279, 0.06367435306310654, 0.005864436738193035, -0.02741561084985733, 0.07760247588157654, -0.1847614347934723, -0.10596834123134613, 0.022898240014910698, -0.03178315609693527, 0.03927309438586235, -0.009486321359872818, -0.0540086030960083, -0.11264348775148392, -0.008291383273899555, -0.01637926883995533, -0.036599185317754745, -0.08583460003137589, 0.1098761111497879, 0.0486019141972065, -0.00919925607740879, -0.03178917616605759, -0.0005758185870945454, 0.015676327049732208, -0.0880160927772522, 0.019203219562768936, 0.023837018758058548, -0.05182203650474548, 0.03307157754898071, -0.07997714728116989, 0.07993977516889572, 0.04752611368894577, 0.04597796872258186, 0.00774313835427165, 0.06411200016736984, -0.11032064259052277, -0.1149287223815918, 0.2012193351984024, -0.11813875287771225, -0.024615036323666573, 0.0508619025349617, 0.035559091717004776, 0.006837102118879557, -0.14715397357940674, 0.022003261372447014, 0.23580947518348694, 0.25653284788131714, -0.13861101865768433, 0.14306360483169556, -0.02401386760175228, -0.11648180335760117, -0.15072350203990936, -0.012898522429168224, -0.06660594046115875, 0.03741202875971794, 0.11839398741722107, -0.1663983315229416, 0.03581586107611656, 0.11083318293094635, -0.04651443660259247, 0.18614409863948822, -0.20854249596595764, -0.02927589975297451, 0.20170395076274872, 0.040600456297397614, 0.05820350721478462, -0.05468771979212761, -0.03231723606586456, 0.01364588737487793, -0.14487992227077484, 0.06877235323190689, 0.11307153850793839, 0.041834279894828796, -0.0172274187207222, 0.0787387490272522, 0.0021745148114860058, -0.0731922835111618, 0.19910576939582825, -0.025844614952802658, 0.024256490170955658, -0.04272749647498131, -0.23798060417175293, 0.12775874137878418, -0.023064272478222847, 0.08214819431304932, 0.07538721710443497, 0.021028738468885422, -0.16098462045192719, -0.014173814095556736, -0.11875100433826447, 0.07721564173698425, -0.07301245629787445, -0.04844633862376213, -0.0590442456305027, 0.012157578021287918, -0.10161566734313965, -0.04514360800385475, -0.1624065786600113, -0.07942797243595123, 0.0759822428226471, 0.013675469905138016, -0.006444314494729042, 0.06654620170593262, -0.1836836040019989, 0.05705875903367996, -0.012530838139355183, 0.0619388073682785, -0.10079565644264221, -0.12315905094146729, 0.1021762415766716, 0.03662077337503433, 0.08908525109291077, 0.07408330589532852, -0.06525322049856186, 0.008303400129079819, 0.03823942691087723, -0.1902492344379425, -0.061513133347034454, -0.06060648337006569, -0.006479691248387098, -0.01715351827442646, -0.09824580699205399, 0.030182957649230957, -0.02474709041416645, -0.034081727266311646, -0.0009182289941236377, -0.002454205881804228, -0.12701742351055145, -0.0009491539094597101, 0.13562610745429993, 0.1021547019481659, -0.04566896706819534, 0.013759877532720566, 0.09578602015972137, -0.0976477786898613, -0.015482207760214806, 0.03056846559047699, -0.05261091887950897, -0.05242649093270302, -0.07476341724395752, 0.16592884063720703, 0.07799428701400757, -0.003889932995662093, -0.006761424243450165, -0.08308728784322739, 0.004400869831442833, 0.0834001898765564, 0.09166659414768219, 0.0017428932478651404, -0.11055802553892136, -0.08825869113206863, -0.04522313177585602, 0.022255057469010353, 0.0016010550316423178, -0.06240902468562126, -0.13734987378120422, 0.08076385408639908, 0.012935017235577106, 0.12854577600955963, -0.03758738562464714, -0.08589383959770203, -0.1209675520658493, 0.05851154401898384, -0.00013283985026646405, 0.008335558697581291, -0.013108356855809689, 0.006929735653102398, 0.0032697003334760666, -0.04146888107061386, -0.006699878256767988, -0.013709691353142262, -0.10904364287853241, 0.0595129169523716, -0.00026295066345483065, 0.05749618634581566, -0.019727669656276703, -0.035004302859306335, 0.10337471961975098, -0.028249191120266914, 0.05784662067890167, 0.06588263064622879, -0.07716593891382217, -0.052351806312799454, -0.232272669672966, 0.013977361842989922, 0.01359256450086832, -0.01938895508646965, 0.01198615599423647, -0.18718808889389038, -0.002408674219623208, -0.07003804296255112, -0.019620265811681747, -0.021836137399077415, 0.04376371577382088, -0.07073947042226791, -0.04819376766681671, 0.13044919073581696, -0.05197535455226898, -0.02548273093998432, -0.09404639154672623, 0.17698834836483002, -0.016344599425792694, 0.10929640382528305, 0.026925215497612953, 0.1651221066713333, -0.13492320477962494, -0.02287326008081436, -0.05856097489595413, -0.022900674492120743, -0.024268681183457375, -0.05907032638788223, 0.09327629953622818, 0.011733517982065678, 0.22636036574840546, 0.01423418428748846, -0.010065902024507523, -0.009942913427948952, 0.16960115730762482, 0.02611513063311577, -0.02038286253809929, 0.10359500348567963, 0.021963370963931084, 0.006427949294447899, 0.05541658774018288, 0.04529688507318497, -0.030264973640441895, 0.18015775084495544, 0.21477608382701874, 0.0011419461807236075, 0.11504117399454117, 0.08320838212966919, -0.04261947050690651, 0.04139399528503418, -0.003798088990151882, -0.12946467101573944, 0.13413143157958984, -0.0027838568203151226, -0.038717977702617645, -0.04559718444943428, 0.10584032535552979, -0.06193123385310173, 0.05128570646047592, -0.0501648373901844, -0.08126737922430038, -0.10386890918016434, -0.19279465079307556, 0.042028382420539856, 0.0033682496286928654, -0.011750648729503155, -0.045877836644649506, -0.01831798627972603, 0.18256548047065735, -0.056898415088653564, 0.015313430689275265, 0.06555616110563278, 0.03392085060477257, -0.06639061868190765, 0.02865232527256012, -0.031249510124325752, 0.006010999903082848, -0.1702151894569397, 0.07115574181079865, 0.004042482003569603, -0.0891227051615715, 0.038743533194065094, -0.002058038953691721, -0.018427273258566856, -0.0361320823431015, -0.1450413018465042, -0.06967693567276001, -0.03088492341339588, 0.0629301443696022, -0.02216517925262451, 0.08737204223871231, 0.054675593972206116, 0.04052126407623291, 0.00021603464847430587, 0.13613329827785492, -0.017200836911797523, -0.13532908260822296, -0.05924006924033165, 0.19982117414474487, -0.16289867460727692, -0.003894954454153776, -0.08012817054986954, -0.01595214754343033, 0.05655684694647789, 0.34926217794418335, 0.29040855169296265, -0.03533623740077019, -0.04518170282244682, -0.02583770826458931, 0.024215908721089363, 0.09732510894536972, 0.03687691688537598, 0.10173441469669342, 0.16557882726192474, -0.1913149654865265, -0.039266180247068405, -0.1793902963399887, -0.004952968563884497, -0.018650684505701065, 0.007320149336010218, 0.1155557930469513, -0.07043810933828354, -0.04351365938782692, 0.209843248128891, -0.16912789642810822, -0.054514169692993164, 0.027548594400286674, -0.06217918545007706, -0.11541114002466202, 0.02538352645933628, 0.07309430092573166, -0.009485145099461079, 0.09940112382173538, -0.10799267143011093, -0.09204038232564926, 0.14706911146640778, -0.04426358640193939, -0.12115191668272018, -0.11411548405885696, 0.03939910978078842, -0.15244382619857788, 0.13161446154117584, 0.004268568009138107, 0.12123951315879822, 0.05961480736732483, 0.08470243960618973, -0.11262635141611099, 0.1004881039261818, 0.009663550183176994, 0.07560045272111893, -0.05425167456269264, -0.05648530274629593, 0.014422115869820118, -0.05682225525379181, 0.009247985668480396, -0.15363535284996033, 0.07903418689966202, 0.08833206444978714, -0.0023426066618412733, 0.005495043005794287, 0.06143582984805107, -0.04818333312869072, 0.11000506579875946, 0.0969986543059349, -0.06984512507915497, 0.01432940736413002, -0.008052513003349304, -0.012603741139173508, 0.07655569165945053, -0.04939008504152298, -0.04133909195661545, -0.02148480713367462, 0.01191031001508236, 0.006371227093040943, -0.10161851346492767, -0.06261949241161346, -0.07356744259595871, -0.04364680126309395, -0.051751863211393356, 0.05409422144293785, 0.030860010534524918, 0.027121830731630325, 0.0734129548072815, -0.022500816732645035, 0.12983761727809906, 0.0015641379868611693, 0.1542537659406662, -0.17383043467998505, -0.07972919940948486 ]
null
null
flair
## French NER in Flair (default model) This is the standard 4-class NER model for French that ships with [Flair](https://github.com/flairNLP/flair/). F1-Score: **90,61** (WikiNER) Predicts 4 tags: | **tag** | **meaning** | |---------------------------------|-----------| | PER | person name | | LOC | location name | | ORG | organization name | | MISC | other name | Based on [Flair embeddings](https://www.aclweb.org/anthology/C18-1139/) and LSTM-CRF. --- ### Demo: How to use in Flair Requires: **[Flair](https://github.com/flairNLP/flair/)** (`pip install flair`) ```python from flair.data import Sentence from flair.models import SequenceTagger # load tagger tagger = SequenceTagger.load("flair/ner-french") # make example sentence sentence = Sentence("George Washington est allé à Washington") # predict NER tags tagger.predict(sentence) # print sentence print(sentence) # print predicted NER spans print('The following NER tags are found:') # iterate over entities and print for entity in sentence.get_spans('ner'): print(entity) ``` This yields the following output: ``` Span [1,2]: "George Washington" [− Labels: PER (0.7394)] Span [6]: "Washington" [− Labels: LOC (0.9161)] ``` So, the entities "*George Washington*" (labeled as a **person**) and "*Washington*" (labeled as a **location**) are found in the sentence "*George Washington est allé à Washington*". --- ### Training: Script to train this model The following Flair script was used to train this model: ```python from flair.data import Corpus from flair.datasets import WIKINER_FRENCH from flair.embeddings import WordEmbeddings, StackedEmbeddings, FlairEmbeddings # 1. get the corpus corpus: Corpus = WIKINER_FRENCH() # 2. what tag do we want to predict? tag_type = 'ner' # 3. make the tag dictionary from the corpus tag_dictionary = corpus.make_tag_dictionary(tag_type=tag_type) # 4. initialize each embedding we use embedding_types = [ # GloVe embeddings WordEmbeddings('fr'), # contextual string embeddings, forward FlairEmbeddings('fr-forward'), # contextual string embeddings, backward FlairEmbeddings('fr-backward'), ] # embedding stack consists of Flair and GloVe embeddings embeddings = StackedEmbeddings(embeddings=embedding_types) # 5. initialize sequence tagger from flair.models import SequenceTagger tagger = SequenceTagger(hidden_size=256, embeddings=embeddings, tag_dictionary=tag_dictionary, tag_type=tag_type) # 6. initialize trainer from flair.trainers import ModelTrainer trainer = ModelTrainer(tagger, corpus) # 7. run training trainer.train('resources/taggers/ner-french', train_with_dev=True, max_epochs=150) ``` --- ### Cite Please cite the following paper when using this model. ``` @inproceedings{akbik2018coling, title={Contextual String Embeddings for Sequence Labeling}, author={Akbik, Alan and Blythe, Duncan and Vollgraf, Roland}, booktitle = {{COLING} 2018, 27th International Conference on Computational Linguistics}, pages = {1638--1649}, year = {2018} } ``` --- ### Issues? The Flair issue tracker is available [here](https://github.com/flairNLP/flair/issues/).
{"language": "fr", "tags": ["flair", "token-classification", "sequence-tagger-model"], "datasets": ["conll2003"], "widget": [{"text": "George Washington est all\u00e9 \u00e0 Washington"}]}
token-classification
flair/ner-french
[ "flair", "pytorch", "token-classification", "sequence-tagger-model", "fr", "dataset:conll2003", "has_space", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "fr" ]
TAGS #flair #pytorch #token-classification #sequence-tagger-model #fr #dataset-conll2003 #has_space #region-us
French NER in Flair (default model) ----------------------------------- This is the standard 4-class NER model for French that ships with Flair. F1-Score: 90,61 (WikiNER) Predicts 4 tags: Based on Flair embeddings and LSTM-CRF. --- ### Demo: How to use in Flair Requires: Flair ('pip install flair') This yields the following output: So, the entities "*George Washington*" (labeled as a person) and "*Washington*" (labeled as a location) are found in the sentence "*George Washington est allé à Washington*". --- ### Training: Script to train this model The following Flair script was used to train this model: --- ### Cite Please cite the following paper when using this model. --- ### Issues? The Flair issue tracker is available here.
[ "### Demo: How to use in Flair\n\n\nRequires: Flair ('pip install flair')\n\n\nThis yields the following output:\n\n\nSo, the entities \"*George Washington*\" (labeled as a person) and \"*Washington*\" (labeled as a location) are found in the sentence \"*George Washington est allé à Washington*\".\n\n\n\n\n---", "### Training: Script to train this model\n\n\nThe following Flair script was used to train this model:\n\n\n\n\n---", "### Cite\n\n\nPlease cite the following paper when using this model.\n\n\n\n\n---", "### Issues?\n\n\nThe Flair issue tracker is available here." ]
[ "TAGS\n#flair #pytorch #token-classification #sequence-tagger-model #fr #dataset-conll2003 #has_space #region-us \n", "### Demo: How to use in Flair\n\n\nRequires: Flair ('pip install flair')\n\n\nThis yields the following output:\n\n\nSo, the entities \"*George Washington*\" (labeled as a person) and \"*Washington*\" (labeled as a location) are found in the sentence \"*George Washington est allé à Washington*\".\n\n\n\n\n---", "### Training: Script to train this model\n\n\nThe following Flair script was used to train this model:\n\n\n\n\n---", "### Cite\n\n\nPlease cite the following paper when using this model.\n\n\n\n\n---", "### Issues?\n\n\nThe Flair issue tracker is available here." ]
[ 41, 82, 22, 15, 15 ]
[ "passage: TAGS\n#flair #pytorch #token-classification #sequence-tagger-model #fr #dataset-conll2003 #has_space #region-us \n### Demo: How to use in Flair\n\n\nRequires: Flair ('pip install flair')\n\n\nThis yields the following output:\n\n\nSo, the entities \"*George Washington*\" (labeled as a person) and \"*Washington*\" (labeled as a location) are found in the sentence \"*George Washington est allé à Washington*\".\n\n\n\n\n---### Training: Script to train this model\n\n\nThe following Flair script was used to train this model:\n\n\n\n\n---### Cite\n\n\nPlease cite the following paper when using this model.\n\n\n\n\n---### Issues?\n\n\nThe Flair issue tracker is available here." ]
[ -0.08365882933139801, 0.15097683668136597, -0.0015571448020637035, 0.08468350768089294, 0.08389682322740555, 0.05138925462961197, 0.11425533145666122, 0.03942098468542099, 0.01564592309296131, 0.04754920303821564, 0.1935599446296692, 0.06445895880460739, 0.11225450783967972, 0.08996524661779404, 0.0660267174243927, -0.2605012357234955, 0.020195120945572853, -0.014275937341153622, -0.057200945913791656, 0.16208775341510773, 0.07861386984586716, 0.0024298301432281733, 0.022882860153913498, 0.03356640413403511, -0.13402916491031647, -0.014239925891160965, -0.02297198586165905, -0.09361322224140167, 0.1720016449689865, -0.028234921395778656, 0.21859487891197205, 0.046971190720796585, 0.1029105931520462, -0.14252176880836487, 0.030575426295399666, 0.041905924677848816, 0.014005550183355808, 0.09983565658330917, 0.04616498947143555, 0.0013570269802585244, 0.31630322337150574, -0.03334290534257889, 0.0037380645517259836, 0.025874348357319832, -0.1936904489994049, -0.24951983988285065, -0.0994843915104866, 0.07151798158884048, 0.045901108533144, 0.10013974457979202, -0.030316896736621857, 0.09613993763923645, -0.06407597661018372, 0.029538344591856003, 0.17376667261123657, -0.22766803205013275, -0.04215679317712784, 0.17372263967990875, 0.01774631440639496, -0.025732379406690598, -0.04842977225780487, 0.04378073289990425, 0.0031577623449265957, 0.0760035589337349, -0.03233363851904869, -0.018168048933148384, 0.025256438180804253, 0.11548715084791183, -0.1629744917154312, -0.08923295885324478, 0.33049651980400085, 0.0441344790160656, -0.06839350610971451, 0.018539849668741226, 0.016589701175689697, -0.005293074529618025, 0.05077318847179413, -0.10747019946575165, -0.010647827759385109, -0.009917034767568111, 0.17993998527526855, -0.11943168193101883, -0.0959928035736084, -0.09241721779108047, -0.022874318063259125, 0.044309377670288086, -0.08891106396913528, 0.0972323939204216, -0.1670491099357605, 0.11556731909513474, 0.028931254521012306, -0.047920286655426025, 0.04320970177650452, -0.07845903187990189, -0.047247644513845444, 0.012430001050233841, -0.03956634923815727, 0.12119882553815842, 0.02996235340833664, 0.029708784073591232, 0.1254854053258896, -0.030890585854649544, 0.10992567986249924, 0.10643109679222107, 0.0013602334074676037, 0.19019660353660583, -0.11888470500707626, -0.05056878179311752, 0.026146484538912773, -0.01687304861843586, -0.019524771720170975, -0.05757167562842369, -0.17246907949447632, -0.02483411319553852, -0.07409430295228958, 0.005284099839627743, 0.02535097487270832, -0.020335109904408455, -0.0912184938788414, 0.01477343961596489, 0.0823163092136383, -0.0650450736284256, -0.026950202882289886, -0.02337855100631714, -0.04591085761785507, 0.10148175060749054, 0.08841309696435928, 0.03367960825562477, 0.020155644044280052, 0.1193428710103035, -0.07483461499214172, 0.04445250704884529, -0.0432555228471756, -0.10908731818199158, -0.032922204583883286, -0.07914517819881439, 0.020441962406039238, -0.06433181464672089, -0.1456228345632553, -0.0194307379424572, 0.0737089216709137, -0.001457232516258955, -0.07584337145090103, -0.04989062249660492, -0.03973044455051422, -0.04472669959068298, 0.04973302781581879, 0.06853413581848145, -0.059171974658966064, 0.06396470218896866, -0.02897803857922554, 0.11566943675279617, -0.07758515328168869, 0.018056346103549004, -0.07572849839925766, 0.010427390225231647, -0.11481640487909317, -0.0034486392978578806, -0.013405382633209229, 0.02134828455746174, -0.10609854012727737, -0.09359567612409592, -0.02185533009469509, 0.013757151551544666, 0.023827772587537766, 0.18027363717556, -0.259060263633728, -0.009249239228665829, 0.108338363468647, -0.09947381168603897, -0.05381060019135475, 0.06357710063457489, -0.023510105907917023, 0.1971474587917328, 0.030439626425504684, 0.1435176283121109, -0.035786326974630356, -0.3513360917568207, 0.12292660027742386, 0.0690632164478302, -0.1920531690120697, 0.017548933625221252, 0.07184725254774094, -0.03944897651672363, -0.1866174191236496, -0.0010744667379185557, -0.11382488906383514, 0.03305724635720253, -0.040367867797613144, -0.047354698181152344, 0.010120359249413013, -0.05733199045062065, 0.03672537952661514, -0.038803890347480774, -0.03177310898900032, -0.0012997094308957458, -0.1385093331336975, -0.14810818433761597, 0.03584201633930206, 0.10430362075567245, -0.037011876702308655, 0.009448482654988766, 0.04258517175912857, 0.049433790147304535, -0.045253898948431015, -0.11362433433532715, 0.03974944353103638, -0.08822375535964966, 0.13811340928077698, 0.025004571303725243, 0.17228390276432037, -0.026734912768006325, 0.02670106291770935, 0.0662795677781105, 0.036310482770204544, -0.03728077933192253, 0.05062628909945488, -0.012345432303845882, 0.0021722549572587013, -0.07833857089281082, -0.09408120810985565, 0.11827170848846436, -0.2012646645307541, 0.053747400641441345, 0.03342002257704735, -0.016329580917954445, -0.00762199005112052, -0.013718033209443092, 0.09605251997709274, 0.036585185676813126, 0.007828408852219582, -0.06108877435326576, 0.06618473678827286, 0.0027020385023206472, -0.05483214557170868, -0.1148827001452446, -0.04251103103160858, -0.010046624578535557, 0.09389109164476395, -0.030097592622041702, -0.12170274555683136, -0.0774843692779541, -0.04129191115498543, 0.007054339628666639, -0.02950117737054825, -0.03436562418937683, 0.16277585923671722, 0.0366501547396183, 0.01709478162229061, -0.02764272131025791, 0.03170222043991089, -0.02902253344655037, -0.03418796882033348, -0.07525070011615753, 0.05542757734656334, 0.11596734076738358, 0.04170884191989899, 0.024450676515698433, 0.17914065718650818, -0.017237458378076553, 0.014492672868072987, 0.05407709255814552, -0.04228195175528526, -0.09383039176464081, -0.09874927997589111, -0.015848957002162933, 0.17662067711353302, -0.04145975038409233, 0.03560453653335571, 0.04142903909087181, -0.01646234281361103, 0.03578175604343414, -0.19966286420822144, -0.1268831342458725, 0.05330333858728409, -0.02733681909739971, -0.1917114406824112, 0.05255705118179321, -0.05822000280022621, 0.10281805694103241, -0.020678138360381126, -0.10441753268241882, 0.043537482619285583, 0.004146823659539223, -0.07438099384307861, 0.10992658883333206, -0.05104546248912811, -0.26637208461761475, -0.09623659402132034, -0.049822088330984116, 0.09918246418237686, 0.000036596149584511295, 0.021768124774098396, -0.09956352412700653, 0.033275309950113297, -0.01402384601533413, 0.05135359987616539, -0.08269640058279037, -0.07531602680683136, -0.05438985675573349, 0.016866600140929222, -0.01692316122353077, -0.10869279503822327, -0.03391779214143753, -0.0564759261906147, 0.08369258046150208, 0.036024924367666245, -0.0011935657821595669, 0.10385322570800781, 0.1278783231973648, 0.00951910950243473, 0.06923121958971024, -0.04230209439992905, 0.3817793130874634, -0.08522947132587433, 0.0926930159330368, 0.11235885322093964, 0.016765352338552475, 0.047883931547403336, 0.14648999273777008, 0.06527220457792282, -0.08834616839885712, -0.03645818680524826, -0.07425118237733841, -0.07775917649269104, -0.1122363731265068, -0.0506899319589138, -0.048846278339624405, -0.07685660570859909, 0.0050447057001292706, 0.024148421362042427, -0.08002424985170364, 0.036807142198085785, 0.09176260977983475, -0.018295567482709885, -0.057938896119594574, -0.018564341589808464, 0.009521791711449623, -0.02005101926624775, 0.0046115173026919365, -0.029442233964800835, -0.05096692964434624, 0.027103018015623093, 0.100104421377182, 0.09459054470062256, 0.1149129569530487, -0.02631525881588459, 0.06533288955688477, 0.1015920341014862, 0.08747028559446335, 0.17632745206356049, 0.0690055564045906, -0.024375420063734055, -0.029622413218021393, -0.053661223500967026, 0.007376234512776136, 0.04503817856311798, -0.0034272661432623863, -0.05898350104689598, 0.007230695802718401, -0.09226536005735397, -0.047692473977804184, -0.016333848237991333, 0.11693327128887177, -0.18567965924739838, -0.016113493591547012, -0.001076429383829236, 0.1036805659532547, -0.04274981468915939, 0.0576997734606266, 0.04020650312304497, -0.1304830014705658, 0.011642921715974808, -0.018140994012355804, 0.10038185864686966, 0.03508244454860687, 0.03727364167571068, -0.07310963422060013, 0.0446162223815918, -0.050083111971616745, 0.11084029823541641, -0.1956794112920761, 0.35604479908943176, -0.03696226701140404, 0.02603721432387829, -0.03293480724096298, 0.004094993229955435, 0.07638903707265854, 0.08549031615257263, 0.2393881231546402, 0.007331946864724159, -0.14462162554264069, -0.1011410728096962, -0.09526104480028152, 0.04089062288403511, -0.035197820514440536, -0.0519365519285202, 0.05403520166873932, 0.06991053372621536, 0.011238094419240952, -0.020361287519335747, 0.07346885651350021, -0.20300336182117462, -0.1170273944735527, 0.008901556022465229, -0.024277450516819954, 0.023020757362246513, -0.006062022875994444, -0.054684873670339584, -0.11006984114646912, -0.026549987494945526, -0.011642158031463623, -0.03457246720790863, -0.08275184035301208, 0.09467358887195587, 0.03378317505121231, -0.01451652031391859, -0.03522256389260292, 0.0025423336774110794, 0.01726466603577137, -0.09315235912799835, 0.02696281112730503, 0.021215559914708138, -0.060950104147195816, 0.04814973846077919, -0.06865067780017853, 0.05618209019303322, 0.06305304914712906, 0.04854234308004379, 0.025644052773714066, 0.05495274439454079, -0.10840737074613571, -0.1206473633646965, 0.19496697187423706, -0.1341806799173355, -0.03667373210191727, 0.04089193046092987, 0.029825497418642044, -0.007257198914885521, -0.13072550296783447, 0.02679925039410591, 0.22563901543617249, 0.2525259256362915, -0.13355189561843872, 0.1302540898323059, -0.01659221202135086, -0.11094274371862411, -0.16421689093112946, 0.0017506727017462254, -0.05000662803649902, 0.04689955338835716, 0.11835838109254837, -0.17797845602035522, 0.04312514886260033, 0.11314141750335693, -0.03482305631041527, 0.17507027089595795, -0.20606733858585358, -0.02383098192512989, 0.2104025036096573, 0.04335130751132965, 0.06995625793933868, -0.0445968322455883, -0.02056237682700157, 0.0035418651532381773, -0.13927710056304932, 0.06513597071170807, 0.10252072662115097, 0.03923502936959267, -0.026242028921842575, 0.06343480199575424, 0.0009986236691474915, -0.0621727854013443, 0.20334219932556152, 0.00041544673149473965, 0.03627762943506241, -0.04373571649193764, -0.24148224294185638, 0.11756440997123718, -0.02046455256640911, 0.09309878200292587, 0.05828271061182022, 0.012322228401899338, -0.16380156576633453, -0.018017880618572235, -0.11408551037311554, 0.09265175461769104, -0.07192641496658325, -0.049518439918756485, -0.0620773583650589, 0.008512386120855808, -0.10012948513031006, -0.03731865808367729, -0.1577790528535843, -0.0682106614112854, 0.06497670710086823, 0.020136592909693718, -0.0017142602009698749, 0.05204145610332489, -0.173226997256279, 0.05860891193151474, -0.008214467205107212, 0.06422383338212967, -0.09668601304292679, -0.12101250141859055, 0.09972217679023743, 0.02896629087626934, 0.09241335839033127, 0.0751018151640892, -0.06603571772575378, 0.008743515238165855, 0.051458802074193954, -0.16862927377223969, -0.06581655144691467, -0.06866574287414551, -0.027197279036045074, -0.008049949072301388, -0.09752693772315979, 0.024085557088255882, -0.03368252515792847, -0.028227360919117928, -0.008148517459630966, -0.0029852462466806173, -0.13468961417675018, 0.0027751298621296883, 0.14730919897556305, 0.09658975899219513, -0.04551612213253975, -0.008305642753839493, 0.09512710571289062, -0.09099029749631882, -0.013210684061050415, 0.03977707400918007, -0.04898875951766968, -0.05688050761818886, -0.05232052877545357, 0.18459536135196686, 0.053997837007045746, -0.015753991901874542, -0.0027451347559690475, -0.09785652160644531, 0.008335019461810589, 0.06907297670841217, 0.09661819785833359, -0.007812453433871269, -0.09666900336742401, -0.08725998550653458, -0.05414111539721489, 0.021382462233304977, 0.00734288664534688, -0.04986971616744995, -0.13468106091022491, 0.0660352110862732, 0.00878587644547224, 0.12791544198989868, -0.038509611040353775, -0.08034072071313858, -0.12676586210727692, 0.05232858657836914, -0.01147262193262577, 0.013684588484466076, -0.005689026787877083, 0.010010884143412113, 0.005566876847296953, -0.044035639613866806, -0.002663880353793502, -0.003040237119421363, -0.10579398274421692, 0.06274498254060745, 0.008489473722875118, 0.053961608558893204, -0.01968444138765335, -0.03434410318732262, 0.09716176986694336, -0.027792034670710564, 0.05342274531722069, 0.051195669919252396, -0.07507835328578949, -0.05325720086693764, -0.2617686092853546, 0.023017821833491325, 0.011794730089604855, -0.00946225505322218, 0.02330225147306919, -0.18312829732894897, -0.00024018458498176187, -0.0617830753326416, -0.0021564168855547905, -0.014558196067810059, 0.04881320148706436, -0.07351892441511154, -0.03378046303987503, 0.11000140011310577, -0.06744357943534851, -0.023247962817549706, -0.07225949317216873, 0.17549417912960052, -0.01527130976319313, 0.11574000865221024, 0.025032563135027885, 0.15177275240421295, -0.11968660354614258, -0.02232557162642479, -0.051036275923252106, -0.01780899055302143, -0.031102923676371574, -0.06591098755598068, 0.08786052465438843, 0.015066423453390598, 0.20962315797805786, 0.03528023138642311, -0.02939523011445999, -0.01446167565882206, 0.14778390526771545, 0.01674346998333931, -0.023077858611941338, 0.0966925323009491, 0.02354787103831768, 0.003838712815195322, 0.05080561339855194, 0.04734215885400772, -0.01833832450211048, 0.19357825815677643, 0.22837619483470917, 0.0006502437754534185, 0.08565659075975418, 0.0836503803730011, -0.026133911684155464, 0.05148313194513321, -0.00457674078643322, -0.1167910024523735, 0.13189347088336945, -0.0036658644676208496, -0.040878478437662125, -0.05842168629169464, 0.09791133552789688, -0.06808213889598846, 0.05567452684044838, -0.0509069599211216, -0.09752397984266281, -0.10375151038169861, -0.1894219070672989, 0.03264635056257248, 0.009300412610173225, -0.017007838934659958, -0.045580532401800156, -0.026812493801116943, 0.17738188803195953, -0.05187036842107773, 0.015727324411273003, 0.08048748970031738, 0.014861158095300198, -0.042259957641363144, 0.04309673234820366, -0.03648078814148903, 0.001099026994779706, -0.1651734709739685, 0.07576894760131836, -0.003977196291089058, -0.08285265415906906, 0.03231769800186157, -0.005028645973652601, -0.02490406483411789, -0.04144374653697014, -0.13657937943935394, -0.06444922089576721, -0.035157959908246994, 0.06301981955766678, -0.01687377318739891, 0.07788848131895065, 0.052889272570610046, 0.02866613119840622, 0.0031503746286034584, 0.13252763450145721, -0.009585139341652393, -0.14411593973636627, -0.06643089652061462, 0.18842872977256775, -0.14898909628391266, 0.0007999194203875959, -0.07648103684186935, -0.017002150416374207, 0.06496093422174454, 0.34397074580192566, 0.29764413833618164, -0.03623931109905243, -0.04033944383263588, -0.03474230319261551, 0.02825099788606167, 0.09211103618144989, 0.04801503196358681, 0.10507841408252716, 0.16320215165615082, -0.18021956086158752, -0.040582820773124695, -0.1832226663827896, 0.0003581531345844269, -0.022142551839351654, 0.0021497742272913456, 0.12649604678153992, -0.06848347932100296, -0.04118629917502403, 0.2144036889076233, -0.16216519474983215, -0.05590847507119179, 0.030182557180523872, -0.05780896171927452, -0.12047655135393143, 0.024671589955687523, 0.04996789991855621, 0.0000878656210261397, 0.10641379654407501, -0.11291153728961945, -0.09500625729560852, 0.15117280185222626, -0.0436224602162838, -0.11927758902311325, -0.09999653697013855, 0.04189909249544144, -0.1561603844165802, 0.14264963567256927, 0.010512829758226871, 0.1278936117887497, 0.053916361182928085, 0.07807007431983948, -0.1022152453660965, 0.09899228066205978, 0.010059014894068241, 0.10906879603862762, -0.039859022945165634, -0.05507751926779747, 0.011707243509590626, -0.06348291784524918, 0.0008683200576342642, -0.15679757297039032, 0.07035853713750839, 0.10293351858854294, -0.003319165203720331, 0.00031425702036358416, 0.0660402849316597, -0.056765373796224594, 0.10801186412572861, 0.10008209198713303, -0.06070317327976227, 0.010738925077021122, -0.006203854456543922, -0.004120723810046911, 0.07029532641172409, -0.0480964295566082, -0.04360814020037651, -0.014992838725447655, 0.012044031172990799, -0.007076658308506012, -0.09139351546764374, -0.06727619469165802, -0.07023782283067703, -0.06388484686613083, -0.04754164442420006, 0.05498012527823448, 0.02399083785712719, 0.038605161011219025, 0.07164324820041656, -0.02432352863252163, 0.13405519723892212, -0.005403961520642042, 0.14696232974529266, -0.14751093089580536, -0.08033975958824158 ]
null
null
flair
## German NER in Flair (large model) This is the large 4-class NER model for German that ships with [Flair](https://github.com/flairNLP/flair/). F1-Score: **92,31** (CoNLL-03 German revised) Predicts 4 tags: | **tag** | **meaning** | |---------------------------------|-----------| | PER | person name | | LOC | location name | | ORG | organization name | | MISC | other name | Based on document-level XLM-R embeddings and [FLERT](https://arxiv.org/pdf/2011.06993v1.pdf). --- ### Demo: How to use in Flair Requires: **[Flair](https://github.com/flairNLP/flair/)** (`pip install flair`) ```python from flair.data import Sentence from flair.models import SequenceTagger # load tagger tagger = SequenceTagger.load("flair/ner-german-large") # make example sentence sentence = Sentence("George Washington ging nach Washington") # predict NER tags tagger.predict(sentence) # print sentence print(sentence) # print predicted NER spans print('The following NER tags are found:') # iterate over entities and print for entity in sentence.get_spans('ner'): print(entity) ``` This yields the following output: ``` Span [1,2]: "George Washington" [− Labels: PER (1.0)] Span [5]: "Washington" [− Labels: LOC (1.0)] ``` So, the entities "*George Washington*" (labeled as a **person**) and "*Washington*" (labeled as a **location**) are found in the sentence "*George Washington ging nach Washington*". --- ### Training: Script to train this model The following Flair script was used to train this model: ```python import torch # 1. get the corpus from flair.datasets import CONLL_03_GERMAN corpus = CONLL_03_GERMAN() # 2. what tag do we want to predict? tag_type = 'ner' # 3. make the tag dictionary from the corpus tag_dictionary = corpus.make_tag_dictionary(tag_type=tag_type) # 4. initialize fine-tuneable transformer embeddings WITH document context from flair.embeddings import TransformerWordEmbeddings embeddings = TransformerWordEmbeddings( model='xlm-roberta-large', layers="-1", subtoken_pooling="first", fine_tune=True, use_context=True, ) # 5. initialize bare-bones sequence tagger (no CRF, no RNN, no reprojection) from flair.models import SequenceTagger tagger = SequenceTagger( hidden_size=256, embeddings=embeddings, tag_dictionary=tag_dictionary, tag_type='ner', use_crf=False, use_rnn=False, reproject_embeddings=False, ) # 6. initialize trainer with AdamW optimizer from flair.trainers import ModelTrainer trainer = ModelTrainer(tagger, corpus, optimizer=torch.optim.AdamW) # 7. run training with XLM parameters (20 epochs, small LR) from torch.optim.lr_scheduler import OneCycleLR trainer.train('resources/taggers/ner-german-large', learning_rate=5.0e-6, mini_batch_size=4, mini_batch_chunk_size=1, max_epochs=20, scheduler=OneCycleLR, embeddings_storage_mode='none', weight_decay=0., ) ) ``` --- ### Cite Please cite the following paper when using this model. ``` @misc{schweter2020flert, title={FLERT: Document-Level Features for Named Entity Recognition}, author={Stefan Schweter and Alan Akbik}, year={2020}, eprint={2011.06993}, archivePrefix={arXiv}, primaryClass={cs.CL} } ``` --- ### Issues? The Flair issue tracker is available [here](https://github.com/flairNLP/flair/issues/).
{"language": "de", "tags": ["flair", "token-classification", "sequence-tagger-model"], "datasets": ["conll2003"], "widget": [{"text": "George Washington ging nach Washington"}]}
token-classification
flair/ner-german-large
[ "flair", "pytorch", "token-classification", "sequence-tagger-model", "de", "dataset:conll2003", "arxiv:2011.06993", "has_space", "region:us" ]
2022-03-02T23:29:05+00:00
[ "2011.06993" ]
[ "de" ]
TAGS #flair #pytorch #token-classification #sequence-tagger-model #de #dataset-conll2003 #arxiv-2011.06993 #has_space #region-us
German NER in Flair (large model) --------------------------------- This is the large 4-class NER model for German that ships with Flair. F1-Score: 92,31 (CoNLL-03 German revised) Predicts 4 tags: Based on document-level XLM-R embeddings and FLERT. --- ### Demo: How to use in Flair Requires: Flair ('pip install flair') This yields the following output: So, the entities "*George Washington*" (labeled as a person) and "*Washington*" (labeled as a location) are found in the sentence "*George Washington ging nach Washington*". --- ### Training: Script to train this model The following Flair script was used to train this model: --- ### Cite Please cite the following paper when using this model. --- ### Issues? The Flair issue tracker is available here.
[ "### Demo: How to use in Flair\n\n\nRequires: Flair ('pip install flair')\n\n\nThis yields the following output:\n\n\nSo, the entities \"*George Washington*\" (labeled as a person) and \"*Washington*\" (labeled as a location) are found in the sentence \"*George Washington ging nach Washington*\".\n\n\n\n\n---", "### Training: Script to train this model\n\n\nThe following Flair script was used to train this model:\n\n\n\n\n---", "### Cite\n\n\nPlease cite the following paper when using this model.\n\n\n\n\n---", "### Issues?\n\n\nThe Flair issue tracker is available here." ]
[ "TAGS\n#flair #pytorch #token-classification #sequence-tagger-model #de #dataset-conll2003 #arxiv-2011.06993 #has_space #region-us \n", "### Demo: How to use in Flair\n\n\nRequires: Flair ('pip install flair')\n\n\nThis yields the following output:\n\n\nSo, the entities \"*George Washington*\" (labeled as a person) and \"*Washington*\" (labeled as a location) are found in the sentence \"*George Washington ging nach Washington*\".\n\n\n\n\n---", "### Training: Script to train this model\n\n\nThe following Flair script was used to train this model:\n\n\n\n\n---", "### Cite\n\n\nPlease cite the following paper when using this model.\n\n\n\n\n---", "### Issues?\n\n\nThe Flair issue tracker is available here." ]
[ 50, 81, 22, 15, 15 ]
[ "passage: TAGS\n#flair #pytorch #token-classification #sequence-tagger-model #de #dataset-conll2003 #arxiv-2011.06993 #has_space #region-us \n### Demo: How to use in Flair\n\n\nRequires: Flair ('pip install flair')\n\n\nThis yields the following output:\n\n\nSo, the entities \"*George Washington*\" (labeled as a person) and \"*Washington*\" (labeled as a location) are found in the sentence \"*George Washington ging nach Washington*\".\n\n\n\n\n---### Training: Script to train this model\n\n\nThe following Flair script was used to train this model:\n\n\n\n\n---### Cite\n\n\nPlease cite the following paper when using this model.\n\n\n\n\n---### Issues?\n\n\nThe Flair issue tracker is available here." ]
[ -0.11078167706727982, 0.1729535609483719, -0.0006081386818550527, 0.07418359071016312, 0.07372473925352097, 0.05407562106847763, 0.12066252529621124, 0.05047163739800453, 0.014446025714278221, 0.04779127240180969, 0.18543291091918945, 0.0643002986907959, 0.1057700365781784, 0.09478871524333954, 0.0761103630065918, -0.2595694661140442, 0.025450384244322777, -0.013675931841135025, -0.06434838473796844, 0.16318033635616302, 0.08622192591428757, -0.01223866455256939, 0.019385771825909615, 0.02510707825422287, -0.11199945956468582, -0.009973539039492607, -0.035290636122226715, -0.09869996458292007, 0.17866408824920654, -0.04827551916241646, 0.20904085040092468, 0.05055471137166023, 0.11953853815793991, -0.13892652094364166, 0.02971350960433483, 0.04217119142413139, 0.014464914798736572, 0.10964648425579071, 0.05345357954502106, 0.004590907599776983, 0.3154265284538269, -0.031206239014863968, -0.004984348546713591, 0.0299741979688406, -0.18884870409965515, -0.26515740156173706, -0.10632189363241196, 0.06890403479337692, 0.057248685508966446, 0.11704837530851364, -0.030529135838150978, 0.10934370756149292, -0.05448909476399422, 0.0234995037317276, 0.16570697724819183, -0.21631230413913727, -0.03921036049723625, 0.1854885369539261, 0.019742464646697044, -0.025723731145262718, -0.05049311742186546, 0.04233691096305847, 0.005360891576856375, 0.07647953927516937, -0.027041122317314148, -0.01118680089712143, 0.014675252139568329, 0.11031673103570938, -0.15282560884952545, -0.09713146090507507, 0.3371601104736328, 0.03136691078543663, -0.0636197030544281, 0.012712986208498478, -0.000003113856791969738, -0.018340328708291054, 0.04894265532493591, -0.10807696729898453, -0.014262471348047256, -0.0030428858008235693, 0.15224683284759521, -0.1069507896900177, -0.1112285703420639, -0.10072848200798035, -0.008969714865088463, 0.03524978086352348, -0.08544265478849411, 0.09145072102546692, -0.17078028619289398, 0.12239350378513336, 0.0550362654030323, -0.0655936747789383, 0.04293877258896828, -0.08186198025941849, -0.032213255763053894, 0.02283928357064724, -0.04467960074543953, 0.12283746153116226, 0.02950459159910679, 0.03043496422469616, 0.16377414762973785, -0.03182554244995117, 0.12483439594507217, 0.10254573076963425, 0.004394461400806904, 0.17183254659175873, -0.12294739484786987, -0.053335756063461304, 0.03885412588715553, -0.002921546343713999, -0.004924640525132418, -0.0568082369863987, -0.1549115628004074, -0.03739824891090393, -0.05567740276455879, 0.022650843486189842, 0.040106743574142456, -0.025843508541584015, -0.08571465313434601, 0.019061949104070663, 0.10943479090929031, -0.05975198745727539, -0.035524096339941025, -0.027529632672667503, -0.058361176401376724, 0.0909537747502327, 0.09262949228286743, 0.031626079231500626, 0.01847946271300316, 0.11015753448009491, -0.08570944517850876, 0.0430774949491024, -0.046116963028907776, -0.09902238845825195, -0.015946757048368454, -0.08693084865808487, 0.01859894022345543, -0.07029769569635391, -0.15635493397712708, -0.026454241946339607, 0.06391715258359909, 0.0020312131382524967, -0.06258182227611542, -0.04910427704453468, -0.03979517146945, -0.03450338542461395, 0.03346693143248558, 0.07158056646585464, -0.05550341680645943, 0.06366388499736786, -0.023947207257151604, 0.105413056910038, -0.06931980699300766, 0.011818070895969868, -0.09300783276557922, 0.010096567682921886, -0.09546510875225067, -0.0010184386046603322, -0.014581415802240372, 0.03044750913977623, -0.1271820366382599, -0.09756981581449509, -0.03202783688902855, 0.0038566479925066233, 0.03800318390130997, 0.1949528157711029, -0.29317668080329895, 0.008953823707997799, 0.0893053486943245, -0.09621964395046234, -0.05482468008995056, 0.05280733481049538, -0.03655467927455902, 0.20727916061878204, 0.029560724273324013, 0.14174674451351166, -0.03602217137813568, -0.32466205954551697, 0.09576999396085739, 0.06029210239648819, -0.169237419962883, 0.007386712823063135, 0.07846605032682419, -0.04566946253180504, -0.16640569269657135, -0.003474486293271184, -0.1312287598848343, 0.026261067017912865, -0.034110911190509796, -0.05523346737027168, 0.007140197325497866, -0.06128950044512749, 0.03589845448732376, -0.03962947055697441, -0.027264323085546494, -0.004085345659404993, -0.14041876792907715, -0.16290131211280823, 0.047285228967666626, 0.09719270467758179, -0.03576216846704483, 0.017252685502171516, 0.037501364946365356, 0.027032649144530296, -0.047345053404569626, -0.10889638215303421, 0.023956570774316788, -0.08596917241811752, 0.11219749599695206, 0.015041711740195751, 0.15981130301952362, -0.019754862412810326, 0.032519303262233734, 0.07034040242433548, 0.02791762351989746, -0.03221100941300392, 0.053242843598127365, -0.008059431798756123, 0.00829231832176447, -0.10709699243307114, -0.0962686762213707, 0.12363778054714203, -0.17824651300907135, 0.04808832332491875, 0.008983386680483818, -0.01731918565928936, -0.0360201932489872, -0.021536922082304955, 0.10354235768318176, 0.021006399765610695, 0.003732206765562296, -0.06757040321826935, 0.06889484077692032, 0.0035259269643574953, -0.06457813084125519, -0.09823059290647507, -0.06378667056560516, -0.02961750142276287, 0.09214253723621368, -0.009919669479131699, -0.1062706932425499, -0.0694078877568245, -0.03976694494485855, 0.0074994973838329315, -0.02767248824238777, -0.029983071610331535, 0.17985080182552338, 0.03602301701903343, 0.00703743752092123, -0.02624819613993168, 0.035671550780534744, -0.03260797634720802, -0.03236563131213188, -0.06870071589946747, 0.04488165304064751, 0.09086203575134277, 0.02892307937145233, 0.025359710678458214, 0.170136496424675, -0.01514704804867506, 0.007505292538553476, 0.058141350746154785, -0.04505079239606857, -0.0958101823925972, -0.094307079911232, -0.02344561368227005, 0.18647098541259766, -0.047022584825754166, 0.03596596047282219, 0.044416189193725586, -0.006840050686150789, 0.04608551412820816, -0.19934023916721344, -0.13397371768951416, 0.048636529594659805, -0.02229832112789154, -0.2068440169095993, 0.06745128333568573, -0.06746400147676468, 0.10143663734197617, -0.026048699393868446, -0.09256037324666977, 0.042472440749406815, -0.0023643739987164736, -0.07261388003826141, 0.12412174046039581, -0.053669799119234085, -0.24065515398979187, -0.10313644260168076, -0.02824331447482109, 0.10782227665185928, 0.00386088527739048, 0.02585536800324917, -0.10747295618057251, 0.01865031197667122, -0.017984915524721146, 0.05936703085899353, -0.09063771367073059, -0.09520575404167175, -0.05230560526251793, 0.005172831006348133, -0.006842218805104494, -0.12159129977226257, -0.02233111672103405, -0.04213908314704895, 0.06848238408565521, 0.03089264966547489, 0.018794791772961617, 0.10890112072229385, 0.12291614711284637, 0.01913580112159252, 0.0649479478597641, -0.029179846867918968, 0.35449597239494324, -0.081545390188694, 0.09539048373699188, 0.13271038234233856, 0.028587581589818, 0.045262616127729416, 0.1392887830734253, 0.0654241219162941, -0.0905192643404007, -0.04038308933377266, -0.08539015799760818, -0.08356507867574692, -0.12187865376472473, -0.062463875859975815, -0.05025407671928406, -0.08506599068641663, 0.016220038756728172, 0.028457248583436012, -0.07030262798070908, 0.05736895650625229, 0.0762326791882515, -0.03211916610598564, -0.06607455015182495, -0.004294241778552532, 0.005617010407149792, -0.01831461489200592, 0.005353646352887154, -0.03473186120390892, -0.045654840767383575, 0.02424073964357376, 0.10104314237833023, 0.10574635118246078, 0.09052418917417526, -0.0010492503643035889, 0.06457161158323288, 0.1183939054608345, 0.07587765157222748, 0.17936986684799194, 0.07738017290830612, -0.01687653362751007, -0.03015066310763359, -0.06322212517261505, 0.002567761577665806, 0.047564033418893814, -0.02103104069828987, -0.06731738895177841, 0.015895353630185127, -0.08811315149068832, -0.05125536024570465, -0.017591023817658424, 0.12424279004335403, -0.22202670574188232, -0.021208370104432106, 0.002797913271933794, 0.11418380588293076, -0.044401615858078, 0.05464161932468414, 0.03014804981648922, -0.1143539547920227, 0.012471072375774384, -0.026866301894187927, 0.08915835618972778, 0.037010062485933304, 0.031449094414711, -0.08889519423246384, 0.05351865664124489, -0.040121566504240036, 0.12731583416461945, -0.18196506798267365, 0.3427995443344116, -0.04837478697299957, 0.027632903307676315, -0.05089308321475983, 0.0028484745416790247, 0.07809733599424362, 0.048162031918764114, 0.2457561045885086, 0.011763839982450008, -0.12896029651165009, -0.09587137401103973, -0.11694546043872833, 0.05217762663960457, -0.038883741945028305, -0.059592533856630325, 0.049124933779239655, 0.070253387093544, 0.008664855733513832, -0.017469901591539383, 0.08640876412391663, -0.2086653709411621, -0.1120503693819046, 0.01568002626299858, -0.03067464753985405, 0.04030618071556091, -0.013308368623256683, -0.04980805143713951, -0.0997985377907753, -0.034854572266340256, 0.01985359564423561, -0.026518741622567177, -0.0869336724281311, 0.09916847944259644, 0.08022405952215195, -0.013447817414999008, -0.03324122726917267, 0.006935945712029934, 0.012088784947991371, -0.09041953831911087, 0.011662199161946774, 0.02296588011085987, -0.07067316770553589, 0.029927929863333702, -0.07283160090446472, 0.07561691850423813, 0.0685301274061203, 0.045596979558467865, 0.028948914259672165, 0.06718103587627411, -0.12107362598180771, -0.12462838739156723, 0.18370935320854187, -0.12762291729450226, -0.004102869424968958, 0.024010909721255302, 0.03708074614405632, 0.007624260149896145, -0.1316065788269043, 0.02399996481835842, 0.21857967972755432, 0.24649354815483093, -0.1335221230983734, 0.1225484237074852, -0.00024670103448443115, -0.1050037294626236, -0.16449937224388123, -0.01945723406970501, -0.05855727195739746, 0.04899326711893082, 0.11015278100967407, -0.17803578078746796, 0.04968544840812683, 0.1191326305270195, -0.04495275020599365, 0.17241303622722626, -0.24684955179691315, -0.03411996737122536, 0.2100714147090912, 0.04569889232516289, 0.06569342315196991, -0.05574772134423256, -0.015039459802210331, -0.00528736412525177, -0.14097414910793304, 0.06288903206586838, 0.09348098933696747, 0.036021482199430466, -0.024131251499056816, 0.07943118363618851, 0.0044325897470116615, -0.08022259920835495, 0.21442513167858124, 0.012962738052010536, 0.03046649880707264, -0.047997474670410156, -0.23536209762096405, 0.13805344700813293, -0.025112813338637352, 0.11033132672309875, 0.05390465259552002, 0.02994718961417675, -0.15773136913776398, -0.013986163772642612, -0.12404321879148483, 0.08766418695449829, -0.07251182943582535, -0.05158756673336029, -0.05854862555861473, 0.015991194173693657, -0.08727336674928665, -0.04245669022202492, -0.14428097009658813, -0.055563077330589294, 0.0703742727637291, 0.022751430049538612, 0.009583641774952412, 0.06400688737630844, -0.169049933552742, 0.05598882585763931, -0.01149170845746994, 0.06434738636016846, -0.10651591420173645, -0.12004084885120392, 0.10367484390735626, 0.032518479973077774, 0.07668012380599976, 0.0708896815776825, -0.07021142542362213, 0.0162661150097847, 0.05385328829288483, -0.17175792157649994, -0.06327351182699203, -0.05683770403265953, 0.012919018976390362, -0.010866916738450527, -0.08071823418140411, 0.025430886074900627, -0.05129344388842583, -0.02617599628865719, -0.010316947475075722, 0.0006186262471601367, -0.13381779193878174, 0.030088165774941444, 0.13181829452514648, 0.0980042964220047, -0.05393359437584877, 0.016877278685569763, 0.09504169970750809, -0.06179828196763992, -0.010033953003585339, 0.03999825567007065, -0.05480214208364487, -0.06541170924901962, -0.061956051737070084, 0.16657671332359314, 0.03896809741854668, -0.014393637888133526, -0.0005867790314368904, -0.08712455630302429, -0.00031383821624331176, 0.04782608896493912, 0.08786796778440475, 0.0003506964130792767, -0.11672773212194443, -0.09084511548280716, -0.06097876653075218, 0.003501643193885684, 0.02645174227654934, -0.03922626003623009, -0.13142673671245575, 0.09046798199415207, 0.007159093860536814, 0.10693839192390442, -0.03861484304070473, -0.07697290182113647, -0.09244167059659958, 0.04886141046881676, -0.0269522313028574, 0.01129046082496643, -0.028360219672322273, 0.0054560499265789986, -0.008353113196790218, -0.033303093165159225, -0.002425789600238204, -0.0063718222081661224, -0.10831985622644424, 0.047020621597766876, -0.006284073460847139, 0.041693560779094696, -0.032689180225133896, -0.03228956088423729, 0.08438573777675629, -0.03412673994898796, 0.06086663529276848, 0.0665818452835083, -0.06871401518583298, -0.044982317835092545, -0.22733375430107117, 0.021654587239027023, 0.024860594421625137, -0.01212060172110796, 0.013229108415544033, -0.18718454241752625, -0.013087733648717403, -0.052979644387960434, -0.01410323940217495, -0.022924695163965225, 0.05765881761908531, -0.07158409804105759, -0.046782828867435455, 0.1118445172905922, -0.0564417839050293, -0.028098465874791145, -0.08062928915023804, 0.17905747890472412, -0.007197213359177113, 0.11030151695013046, 0.022037047892808914, 0.15901106595993042, -0.13530169427394867, -0.026483800262212753, -0.057975467294454575, -0.03342226892709732, -0.055159103125333786, -0.059083860367536545, 0.09343298524618149, 0.008314655162394047, 0.20565354824066162, -0.0038630173075944185, -0.022759204730391502, -0.025063827633857727, 0.16970916092395782, 0.022308113053441048, -0.031538549810647964, 0.11258768290281296, 0.02720748260617256, 0.004732121713459492, 0.04620293527841568, 0.060099996626377106, -0.020551929250359535, 0.164747416973114, 0.219853013753891, -0.005328914616256952, 0.1125851422548294, 0.08858208358287811, -0.027431707829236984, 0.0066237132996320724, -0.009655706584453583, -0.11372916400432587, 0.12196702510118484, -0.006451229564845562, -0.03767151013016701, -0.05524977296590805, 0.10306931287050247, -0.07520896196365356, 0.05083534121513367, -0.0540275014936924, -0.08930258452892303, -0.09524649381637573, -0.20489518344402313, 0.03972652181982994, 0.007851764559745789, -0.019344184547662735, -0.04243422672152519, -0.016858849674463272, 0.17942647635936737, -0.052847836166620255, 0.003525838255882263, 0.0990867167711258, 0.026497529819607735, -0.055005453526973724, 0.022575857117772102, -0.025056635960936546, 0.0035884256940335035, -0.1395774483680725, 0.0690794587135315, -0.0031497941818088293, -0.07956340909004211, 0.03878507763147354, -0.011148602701723576, -0.017163444310426712, -0.030657337978482246, -0.11476265639066696, -0.064881831407547, -0.04335713014006615, 0.06691928207874298, -0.011913929134607315, 0.09849588572978973, 0.05757857486605644, 0.03684232011437416, 0.0037527582608163357, 0.1292974203824997, -0.009419238194823265, -0.13162972033023834, -0.053166307508945465, 0.18901796638965607, -0.14018180966377258, -0.011939244344830513, -0.0624690018594265, -0.022841567173600197, 0.055512480437755585, 0.3043859601020813, 0.3142399191856384, -0.04530547559261322, -0.039240721613168716, -0.04068749025464058, 0.022405195981264114, 0.06643234193325043, 0.05524616688489914, 0.1051882654428482, 0.17213332653045654, -0.18840456008911133, -0.028064092621207237, -0.17832209169864655, -0.0024505911860615015, -0.025621071457862854, 0.021143199875950813, 0.10944507271051407, -0.07239370793104172, -0.031437426805496216, 0.20968076586723328, -0.15773887932300568, -0.06127235293388367, 0.020960276946425438, -0.06201305612921715, -0.1194273978471756, 0.02337118797004223, 0.06101902574300766, 0.0023309173993766308, 0.11557881534099579, -0.11471462994813919, -0.07981414347887039, 0.1682577282190323, -0.0321953184902668, -0.12659071385860443, -0.10023559629917145, 0.049350980669260025, -0.1321873515844345, 0.14273372292518616, 0.005093518644571304, 0.1271931380033493, 0.0606926828622818, 0.08208594471216202, -0.12412270158529282, 0.1154453456401825, 0.013909713365137577, 0.09524955600500107, -0.0336361899971962, -0.05553201958537102, 0.0004995805211365223, -0.0635792687535286, 0.0006204497185535729, -0.15752793848514557, 0.07029400020837784, 0.1159246489405632, 0.013946960680186749, -0.004718446638435125, 0.05561415106058121, -0.05386538431048393, 0.1153939738869667, 0.08661811053752899, -0.0687795951962471, 0.001525399973616004, -0.006427733227610588, 0.010716335847973824, 0.07425536960363388, -0.05081215128302574, -0.03982756286859512, -0.027454297989606857, 0.011482537724077702, -0.01342987734824419, -0.07936602830886841, -0.05345652997493744, -0.06332408636808395, -0.056671712547540665, -0.060752276331186295, 0.06481326371431351, 0.02131848968565464, 0.02299259975552559, 0.06840471923351288, -0.02243855781853199, 0.15208150446414948, -0.004574290011078119, 0.14298005402088165, -0.16464337706565857, -0.08555936813354492 ]
null
null
flair
## NER for German Legal Text in Flair (default model) This is the legal NER model for German that ships with [Flair](https://github.com/flairNLP/flair/). F1-Score: **96,35** (LER German dataset) Predicts 19 tags: | **tag** | **meaning** | |---------------------------------|-----------| | AN | Anwalt | | EUN | Europäische Norm | | GS | Gesetz | | GRT | Gericht | | INN | Institution | | LD | Land | | LDS | Landschaft | | LIT | Literatur | | MRK | Marke | | ORG | Organisation | | PER | Person | | RR | Richter | | RS | Rechtssprechung | | ST | Stadt | | STR | Straße | | UN | Unternehmen | | VO | Verordnung | | VS | Vorschrift | | VT | Vertrag | Based on [Flair embeddings](https://www.aclweb.org/anthology/C18-1139/) and LSTM-CRF. More details on the Legal NER dataset [here](https://github.com/elenanereiss/Legal-Entity-Recognition) --- ### Demo: How to use in Flair Requires: **[Flair](https://github.com/flairNLP/flair/)** (`pip install flair`) ```python from flair.data import Sentence from flair.models import SequenceTagger # load tagger tagger = SequenceTagger.load("flair/ner-german-legal") # make example sentence (don't use tokenizer since Rechtstexte are badly handled) sentence = Sentence("Herr W. verstieß gegen § 36 Abs. 7 IfSG.", use_tokenizer=False) # predict NER tags tagger.predict(sentence) # print sentence print(sentence) # print predicted NER spans print('The following NER tags are found:') # iterate over entities and print for entity in sentence.get_spans('ner'): print(entity) ``` This yields the following output: ``` Span [2]: "W." [− Labels: PER (0.9911)] Span [5,6,7,8,9]: "§ 36 Abs. 7 IfSG." [− Labels: GS (0.5353)] ``` So, the entities "*W.*" (labeled as a **person**) and "*§ 36 Abs. 7 IfSG*" (labeled as a **Gesetz**) are found in the sentence "*Herr W. verstieß gegen § 36 Abs. 7 IfSG.*". --- ### Training: Script to train this model The following Flair script was used to train this model: ```python from flair.data import Corpus from flair.datasets import LER_GERMAN from flair.embeddings import WordEmbeddings, StackedEmbeddings, FlairEmbeddings # 1. get the corpus corpus: Corpus = LER_GERMAN() # 2. what tag do we want to predict? tag_type = 'ner' # 3. make the tag dictionary from the corpus tag_dictionary = corpus.make_tag_dictionary(tag_type=tag_type) # 4. initialize each embedding we use embedding_types = [ # GloVe embeddings WordEmbeddings('de'), # contextual string embeddings, forward FlairEmbeddings('de-forward'), # contextual string embeddings, backward FlairEmbeddings('de-backward'), ] # embedding stack consists of Flair and GloVe embeddings embeddings = StackedEmbeddings(embeddings=embedding_types) # 5. initialize sequence tagger from flair.models import SequenceTagger tagger = SequenceTagger(hidden_size=256, embeddings=embeddings, tag_dictionary=tag_dictionary, tag_type=tag_type) # 6. initialize trainer from flair.trainers import ModelTrainer trainer = ModelTrainer(tagger, corpus) # 7. run training trainer.train('resources/taggers/ner-german-legal', train_with_dev=True, max_epochs=150) ``` --- ### Cite Please cite the following papers when using this model. ``` @inproceedings{leitner2019fine, author = {Elena Leitner and Georg Rehm and Julian Moreno-Schneider}, title = {{Fine-grained Named Entity Recognition in Legal Documents}}, booktitle = {Semantic Systems. The Power of AI and Knowledge Graphs. Proceedings of the 15th International Conference (SEMANTiCS 2019)}, year = 2019, pages = {272--287}, pdf = {https://link.springer.com/content/pdf/10.1007%2F978-3-030-33220-4_20.pdf}} ``` ``` @inproceedings{akbik2018coling, title={Contextual String Embeddings for Sequence Labeling}, author={Akbik, Alan and Blythe, Duncan and Vollgraf, Roland}, booktitle = {{COLING} 2018, 27th International Conference on Computational Linguistics}, pages = {1638--1649}, year = {2018} } ``` --- ### Issues? The Flair issue tracker is available [here](https://github.com/flairNLP/flair/issues/).
{"language": "de", "tags": ["flair", "token-classification", "sequence-tagger-model"], "datasets": ["legal"], "widget": [{"text": "Herr W. verstie\u00df gegen \u00a7 36 Abs. 7 IfSG."}]}
token-classification
flair/ner-german-legal
[ "flair", "pytorch", "token-classification", "sequence-tagger-model", "de", "dataset:legal", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "de" ]
TAGS #flair #pytorch #token-classification #sequence-tagger-model #de #dataset-legal #region-us
NER for German Legal Text in Flair (default model) -------------------------------------------------- This is the legal NER model for German that ships with Flair. F1-Score: 96,35 (LER German dataset) Predicts 19 tags: Based on Flair embeddings and LSTM-CRF. More details on the Legal NER dataset here --- ### Demo: How to use in Flair Requires: Flair ('pip install flair') This yields the following output: So, the entities "*W.*" (labeled as a person) and "*§ 36 Abs. 7 IfSG*" (labeled as a Gesetz) are found in the sentence "*Herr W. verstieß gegen § 36 Abs. 7 IfSG.*". --- ### Training: Script to train this model The following Flair script was used to train this model: --- ### Cite Please cite the following papers when using this model. --- ### Issues? The Flair issue tracker is available here.
[ "### Demo: How to use in Flair\n\n\nRequires: Flair ('pip install flair')\n\n\nThis yields the following output:\n\n\nSo, the entities \"*W.*\" (labeled as a person) and \"*§ 36 Abs. 7 IfSG*\" (labeled as a Gesetz) are found in the sentence \"*Herr W. verstieß gegen § 36 Abs. 7 IfSG.*\".\n\n\n\n\n---", "### Training: Script to train this model\n\n\nThe following Flair script was used to train this model:\n\n\n\n\n---", "### Cite\n\n\nPlease cite the following papers when using this model.\n\n\n\n\n---", "### Issues?\n\n\nThe Flair issue tracker is available here." ]
[ "TAGS\n#flair #pytorch #token-classification #sequence-tagger-model #de #dataset-legal #region-us \n", "### Demo: How to use in Flair\n\n\nRequires: Flair ('pip install flair')\n\n\nThis yields the following output:\n\n\nSo, the entities \"*W.*\" (labeled as a person) and \"*§ 36 Abs. 7 IfSG*\" (labeled as a Gesetz) are found in the sentence \"*Herr W. verstieß gegen § 36 Abs. 7 IfSG.*\".\n\n\n\n\n---", "### Training: Script to train this model\n\n\nThe following Flair script was used to train this model:\n\n\n\n\n---", "### Cite\n\n\nPlease cite the following papers when using this model.\n\n\n\n\n---", "### Issues?\n\n\nThe Flair issue tracker is available here." ]
[ 35, 96, 22, 16, 15 ]
[ "passage: TAGS\n#flair #pytorch #token-classification #sequence-tagger-model #de #dataset-legal #region-us \n### Demo: How to use in Flair\n\n\nRequires: Flair ('pip install flair')\n\n\nThis yields the following output:\n\n\nSo, the entities \"*W.*\" (labeled as a person) and \"*§ 36 Abs. 7 IfSG*\" (labeled as a Gesetz) are found in the sentence \"*Herr W. verstieß gegen § 36 Abs. 7 IfSG.*\".\n\n\n\n\n---### Training: Script to train this model\n\n\nThe following Flair script was used to train this model:\n\n\n\n\n---### Cite\n\n\nPlease cite the following papers when using this model.\n\n\n\n\n---### Issues?\n\n\nThe Flair issue tracker is available here." ]
[ -0.1392635703086853, 0.011637435294687748, -0.002655262127518654, 0.11012160032987595, 0.07922672480344772, 0.03900466486811638, 0.12187520414590836, 0.07661261409521103, 0.13722257316112518, 0.048563141375780106, 0.14665107429027557, -0.012679665349423885, 0.05817720666527748, 0.15676115453243256, 0.04525208845734596, -0.24912019073963165, 0.017436858266592026, 0.0015811373014003038, -0.04396623745560646, 0.18413881957530975, 0.12823154032230377, 0.018271833658218384, 0.020867399871349335, 0.02768862433731556, -0.10894086956977844, -0.01260780356824398, -0.01640928164124489, -0.03975933417677879, 0.13047119975090027, -0.025902265682816505, 0.12747174501419067, 0.026846883818507195, 0.13246680796146393, -0.1524168848991394, 0.029156288132071495, 0.0059769065119326115, -0.014890147373080254, 0.05570666864514351, 0.028027724474668503, -0.033618681132793427, 0.2718132436275482, -0.06662608683109283, -0.055104199796915054, 0.034415699541568756, -0.18005618453025818, -0.1888437271118164, -0.10324663668870926, 0.04038447514176369, 0.051875196397304535, 0.11822721362113953, -0.06313535571098328, 0.09986845403909683, -0.14134882390499115, 0.04308219999074936, 0.1807510405778885, -0.23409751057624817, -0.06335435807704926, 0.12641915678977966, 0.061945099383592606, -0.03152836859226227, -0.10575638711452484, 0.05787380412220955, 0.0393221452832222, 0.07383827120065689, -0.014031380414962769, -0.04439469426870346, 0.021456001326441765, 0.062104981392621994, -0.17449738085269928, -0.07684392482042313, 0.30312585830688477, 0.04107730835676193, -0.11306942254304886, 0.012633667327463627, -0.005384292919188738, -0.05009395629167557, 0.06486120820045471, -0.08983717113733292, 0.003188763977959752, -0.01556343398988247, 0.19769717752933502, -0.016758901998400688, -0.08889502286911011, -0.13909943401813507, 0.01711663044989109, 0.11405468732118607, -0.04957905784249306, 0.06373211741447449, -0.13441744446754456, 0.0944378450512886, -0.03083544597029686, -0.12261898070573807, -0.010421323589980602, -0.05597827583551407, -0.045348770916461945, 0.035036250948905945, -0.030390750616788864, 0.024839045479893684, 0.04582586511969566, 0.12149222195148468, 0.04967019334435463, -0.0013932966394349933, 0.1103329136967659, 0.0815458744764328, 0.015458292327821255, 0.12396785616874695, -0.04886624962091446, -0.05015697330236435, 0.03293079882860184, 0.048350412398576736, 0.023174360394477844, -0.06076036021113396, -0.10128093510866165, -0.11785656958818436, -0.03370009735226631, 0.02816009521484375, -0.04298172518610954, 0.018901892006397247, -0.06751187145709991, 0.0046912734396755695, 0.052779749035835266, -0.08247612416744232, -0.014147029258310795, 0.019788378849625587, -0.05496617406606674, 0.008203374221920967, 0.10258578509092331, 0.007226007059216499, -0.0061473543755710125, 0.05982547998428345, -0.042497195303440094, 0.04173404723405838, -0.0901082456111908, -0.10004604607820511, -0.016554420813918114, -0.07604489475488663, -0.019583385437726974, -0.06607521325349808, -0.1791035681962967, -0.03196609765291214, 0.04613335058093071, -0.020346583798527718, -0.008495750837028027, -0.07294123619794846, -0.03387041762471199, -0.03811720013618469, 0.037368159741163254, 0.07689355313777924, -0.04837697371840477, 0.0387248769402504, 0.0820147842168808, 0.08423246443271637, -0.10543759167194366, -0.017059311270713806, -0.12004652619361877, 0.03395824879407883, -0.12884804606437683, 0.003987561911344528, -0.1038379892706871, -0.11904542148113251, -0.09973016381263733, -0.12092693150043488, 0.000007165605893533211, 0.007574801798909903, 0.08378075063228607, 0.2010219693183899, -0.22636547684669495, 0.017098331823945045, 0.14739921689033508, -0.14165541529655457, -0.04151896759867668, 0.14958734810352325, -0.06503119319677353, 0.13210228085517883, -0.043291497975587845, 0.17691323161125183, 0.10190023481845856, -0.23040466010570526, 0.09981000423431396, 0.049085117876529694, -0.08574489504098892, 0.08814593404531479, 0.11127112805843353, -0.02972348779439926, -0.17570216953754425, 0.028112567961215973, -0.248537078499794, 0.037050761282444, -0.030879508703947067, -0.07303963601589203, 0.01503763347864151, -0.008389245718717575, 0.13119447231292725, -0.008519747294485569, -0.028739823028445244, -0.016102466732263565, -0.11414062231779099, -0.20925994217395782, 0.05285882577300072, 0.00041717628482729197, -0.024398507550358772, -0.07012300193309784, 0.11128769814968109, 0.046040937304496765, -0.03193070739507675, -0.13592024147510529, 0.03271103277802467, -0.03683796152472496, 0.03214140236377716, 0.014320770278573036, 0.12191224843263626, 0.027345797047019005, 0.07020178437232971, 0.03429035842418671, 0.011321226134896278, -0.11804725974798203, -0.004543814342468977, -0.004347179085016251, -0.05813449248671532, -0.1201959028840065, -0.08048813045024872, 0.1884879469871521, -0.22739706933498383, 0.04604051262140274, -0.0481763631105423, -0.03891744092106819, -0.07979720085859299, -0.015407223254442215, 0.03957429155707359, 0.02346028760075569, -0.02452072501182556, -0.024491263553500175, 0.09289918839931488, 0.0013051837449893355, -0.07430637627840042, -0.10008084028959274, -0.012380682863295078, -0.1384570598602295, 0.0430222786962986, 0.03303230553865433, -0.11278343200683594, -0.14355139434337616, -0.04802805930376053, -0.00019192599575035274, -0.07974667102098465, -0.010645163245499134, 0.2072925716638565, 0.03555021435022354, 0.005544866900891066, -0.040489643812179565, 0.03467237576842308, 0.007071070373058319, -0.10940296947956085, 0.04370556026697159, 0.07037903368473053, 0.12693436443805695, 0.04068625718355179, 0.007768819108605385, 0.051286231726408005, -0.07419633865356445, 0.07647314667701721, 0.0295309666544199, 0.005260644014924765, -0.0856134369969368, 0.021467315033078194, 0.005015792325139046, 0.22683781385421753, -0.19129520654678345, 0.0016162249958142638, 0.05907740071415901, -0.016671661287546158, -0.0007916101021692157, -0.18007172644138336, -0.08846134692430496, 0.027643505483865738, -0.08315969258546829, -0.20744459331035614, 0.0942230224609375, -0.11805916577577591, 0.08473484218120575, -0.09295348823070526, -0.1272219717502594, 0.03405735269188881, -0.01809270679950714, -0.12565146386623383, 0.17715312540531158, 0.022363409399986267, -0.18756850063800812, -0.11727825552225113, 0.021879034116864204, -0.023771461099386215, 0.007454368285834789, 0.02690434642136097, -0.06584435701370239, -0.012798759154975414, 0.016104914247989655, 0.09719966351985931, -0.05474358797073364, -0.08651910722255707, -0.046621173620224, -0.03956885635852814, 0.00271294335834682, -0.12174917757511139, -0.041606396436691284, -0.012620082125067711, 0.07926817983388901, 0.06865902990102768, -0.026262585073709488, 0.184556245803833, 0.08247224241495132, -0.015715522691607475, 0.033096350729465485, -0.04352402687072754, 0.31356093287467957, -0.06767424196004868, 0.0940273106098175, 0.1952620893716812, -0.026668621227145195, 0.05260074883699417, 0.10162050276994705, 0.04396878182888031, -0.08268262445926666, -0.019594287499785423, -0.05120145529508591, -0.07847803086042404, -0.14008043706417084, -0.08170535415410995, -0.08849547058343887, -0.04937129095196724, -0.007380734197795391, 0.004439074080437422, -0.04185550659894943, 0.08548910915851593, 0.07310273498296738, -0.024450993165373802, -0.04083070158958435, 0.006499570328742266, 0.04787353426218033, 0.036477454006671906, 0.053397152572870255, -0.023335600271821022, -0.026221703737974167, 0.006429429166018963, 0.008471938781440258, 0.14329129457473755, 0.03870708495378494, 0.03319786116480827, 0.1355750560760498, 0.13065838813781738, 0.07684873044490814, 0.17760445177555084, 0.019639912992715836, -0.0074575673788785934, -0.038974400609731674, -0.08428355306386948, -0.05340175703167915, -0.013026547618210316, -0.10276391357183456, 0.016943518072366714, -0.0760953277349472, 0.06052922084927559, 0.025329111143946648, 0.04392733797430992, 0.039076682180166245, -0.19789187610149384, -0.024153724312782288, -0.01255672425031662, 0.13344992697238922, -0.05321697145700455, -0.006889252457767725, 0.07734943181276321, -0.13581524789333344, 0.055600352585315704, -0.06860873103141785, 0.07709409296512604, 0.11271358281373978, 0.03606383875012398, 0.01099986769258976, 0.08802413195371628, -0.01872555911540985, 0.18511395156383514, -0.30547699332237244, 0.30622828006744385, -0.06039126217365265, 0.06094512343406677, -0.09105274826288223, 0.02681872434914112, 0.03325635939836502, 0.09377241134643555, 0.2971353828907013, 0.054085493087768555, -0.0893719270825386, -0.04654955863952637, -0.02462492510676384, 0.0685679242014885, 0.005348426289856434, -0.022024331614375114, 0.09646335989236832, 0.050735119730234146, 0.03640684857964516, -0.01775800809264183, 0.16489556431770325, -0.1756397783756256, -0.05571112409234047, 0.01118545699864626, -0.05826149508357048, 0.006151163950562477, -0.02823788858950138, -0.05948950722813606, -0.10934820771217346, 0.027535544708371162, -0.05096054449677467, -0.032298628240823746, -0.06646374613046646, 0.1409107893705368, 0.025088487192988396, -0.04226350039243698, -0.0770144909620285, 0.008866498246788979, 0.04224533215165138, -0.11357108503580093, 0.031388040632009506, 0.02578614465892315, -0.06833920627832413, -0.08039688318967819, -0.0636177510023117, 0.058114536106586456, 0.06283135712146759, 0.04691452905535698, 0.04001964256167412, 0.008627507835626602, -0.03331228345632553, -0.17411518096923828, 0.13000640273094177, -0.08718034625053406, -0.07570326328277588, -0.015598075464367867, -0.0336189791560173, -0.011712339706718922, -0.11156821250915527, 0.04561181366443634, 0.15177208185195923, 0.2789185047149658, -0.09298598021268845, 0.0813220664858818, 0.07849961519241333, -0.12468793988227844, -0.18940052390098572, -0.0006203429074957967, 0.042401887476444244, 0.09607233852148056, 0.03640048950910568, -0.15822938084602356, 0.10255902260541916, 0.1110701858997345, -0.00688889529556036, 0.1055741012096405, -0.2578275799751282, -0.041560158133506775, 0.12253424525260925, 0.03140623867511749, 0.03739810734987259, -0.05672500655055046, 0.004556864500045776, -0.011411494575440884, -0.1524745374917984, 0.002272173296660185, 0.0318433977663517, 0.05227614566683769, -0.0364849828183651, 0.08516504615545273, 0.0042945281602442265, -0.07653491944074631, 0.21033291518688202, 0.0609956830739975, 0.07101824879646301, -0.023592276498675346, -0.14683668315410614, 0.1912405639886856, -0.039717886596918106, 0.17406117916107178, -0.07329200953245163, -0.004566543269902468, -0.18776273727416992, -0.024363825097680092, -0.12521544098854065, 0.15857547521591187, -0.08063355833292007, -0.08032058924436569, -0.009319346398115158, 0.022161519154906273, -0.04439273476600647, -0.015854980796575546, -0.1526808887720108, -0.0675521120429039, 0.04358154907822609, -0.0017417522612959146, 0.0757378488779068, 0.07851982861757278, -0.21323652565479279, 0.023789245635271072, 0.03113926760852337, 0.06090877577662468, -0.05159863084554672, -0.09542643278837204, 0.106629878282547, 0.08596533536911011, 0.10303610563278198, 0.08456826955080032, -0.08209487050771713, 0.04025983437895775, 0.04128524661064148, -0.15996912121772766, -0.029078586027026176, -0.010753961279988289, -0.011967156082391739, -0.09007422626018524, -0.06781206279993057, 0.03214196488261223, -0.06560761481523514, -0.007146371528506279, -0.021907323971390724, 0.016284365206956863, -0.13475054502487183, 0.05992427468299866, 0.11213047802448273, 0.1185285747051239, -0.07517295330762863, 0.017758140340447426, 0.04379004240036011, -0.047777287662029266, 0.0012116930447518826, 0.028614835813641548, -0.11639778316020966, -0.05412450060248375, -0.02830820344388485, 0.2578060030937195, 0.03529563173651695, -0.04815046861767769, -0.04569793865084648, -0.10044249147176743, -0.039482247084379196, 0.03991150110960007, 0.1071729063987732, -0.04252075031399727, -0.09020918607711792, -0.04777256399393082, -0.09834616631269455, 0.036440152674913406, 0.07977867871522903, 0.012519234791398048, -0.09665191918611526, 0.07342435419559479, 0.00036574125988408923, 0.07426799833774567, -0.046480514109134674, -0.0526743084192276, -0.11126451939344406, 0.05480396747589111, -0.017127033323049545, 0.05128498747944832, -0.0366327278316021, 0.009466198273003101, -0.02342170849442482, -0.013792715966701508, 0.012590217404067516, 0.04609125107526779, -0.05218275263905525, 0.025873756036162376, 0.035687580704689026, 0.01504978071898222, -0.06718479841947556, -0.04274393618106842, 0.0619250126183033, -0.06775125861167908, 0.04918928071856499, 0.07080351561307907, -0.06368819624185562, -0.020505035296082497, -0.2267778366804123, 0.04186571016907692, 0.04562541842460632, -0.0006306184222921729, 0.01789429597556591, -0.18590423464775085, 0.03626667708158493, -0.036646317690610886, -0.0038837401662021875, 0.013675475493073463, 0.11819887906312943, -0.09259840846061707, 0.03612799569964409, 0.10070125758647919, -0.049665164202451706, -0.050949662923812866, 0.019594036042690277, 0.08015646785497665, 0.07706877589225769, 0.15413831174373627, -0.037769630551338196, 0.1455432027578354, -0.14101557433605194, -0.016920121386647224, -0.02254607528448105, 0.007164834067225456, -0.1465110331773758, -0.04479365050792694, 0.09308532625436783, -0.04735901206731796, 0.13413037359714508, 0.09962520748376846, 0.10933828353881836, -0.056534502655267715, 0.05140027776360512, 0.032038263976573944, -0.050881873816251755, 0.07712970674037933, -0.034140005707740784, -0.0007285433821380138, 0.04247809574007988, 0.06379209458827972, -0.020755738019943237, 0.12286685407161713, 0.22193995118141174, 0.05731961876153946, 0.02613251842558384, 0.06962867081165314, 0.008866802789270878, -0.06229781731963158, -0.11866797506809235, -0.07577645778656006, 0.14097341895103455, 0.03757767751812935, -0.0594056099653244, -0.010067436844110489, 0.043062783777713776, -0.11564235389232635, 0.08200521022081375, -0.031568173319101334, -0.13041658699512482, -0.10164287686347961, -0.22808361053466797, 0.04470372945070267, -0.007034115493297577, 0.019067782908678055, -0.06892839074134827, -0.0298173725605011, 0.11556840687990189, -0.032398246228694916, -0.028557443991303444, 0.14043457806110382, -0.061922330409288406, -0.051785532385110855, 0.04848320782184601, -0.043146271258592606, 0.027931759133934975, -0.05447191745042801, 0.09344683587551117, 0.08122435212135315, -0.06908354163169861, 0.054441168904304504, -0.0024304573889821768, 0.04424724727869034, -0.04033510759472847, -0.071573406457901, -0.062674880027771, -0.03858773782849312, 0.04465178772807121, -0.0129877720028162, 0.14720109105110168, 0.07967104762792587, 0.02285071648657322, -0.020284906029701233, 0.06711259484291077, 0.007246114779263735, -0.1888076514005661, -0.10583605617284775, 0.27869006991386414, -0.11294462531805038, 0.025785500183701515, -0.08217721432447433, -0.050651200115680695, 0.09258609265089035, 0.21187441051006317, 0.21390481293201447, -0.028975768014788628, -0.01702667772769928, -0.011816579848527908, 0.008926774375140667, 0.04711100459098816, 0.07210225611925125, 0.07090640068054199, 0.165397509932518, -0.13347961008548737, 0.03131769970059395, -0.1741059571504593, -0.04564356058835983, -0.03375258669257164, 0.09208157658576965, 0.09965118020772934, -0.03795621544122696, -0.0682927593588829, 0.15318608283996582, -0.09588255733251572, -0.06935293227434158, 0.015624661929905415, -0.01355522871017456, -0.08007204532623291, -0.0014656295534223318, 0.005166425369679928, 0.048417601734399796, 0.13041886687278748, -0.1003013402223587, -0.04623488336801529, 0.1246708407998085, 0.010364428162574768, -0.05669811740517616, -0.0313122421503067, 0.06981781125068665, -0.10929324477910995, 0.15546566247940063, -0.021934598684310913, 0.18778708577156067, 0.06777933239936829, 0.07304513454437256, -0.10389437526464462, 0.09661545604467392, 0.026820894330739975, 0.12956136465072632, -0.013340053148567677, -0.004772083833813667, 0.007692469283938408, -0.05576173588633537, -0.008157875388860703, -0.09952987730503082, 0.053799908608198166, 0.08878619223833084, -0.01248213555663824, -0.08891148865222931, 0.1074552983045578, -0.03348863869905472, 0.11164576560258865, 0.13732948899269104, -0.03740236908197403, -0.020373530685901642, -0.09398946166038513, 0.06045578792691231, 0.06501805782318115, 0.01084168627858162, -0.013605812564492226, -0.06812476366758347, 0.016033120453357697, 0.08165021240711212, -0.048123642802238464, -0.13053272664546967, -0.053366437554359436, -0.04895105957984924, -0.03969026356935501, 0.10753773152828217, 0.00560148386284709, 0.04787999764084816, 0.1012449637055397, -0.02348104491829872, 0.016727114096283913, -0.013138780370354652, 0.14813090860843658, -0.12426964193582535, -0.07834672927856445 ]
null
null
flair
## German NER in Flair (default model) This is the standard 4-class NER model for German that ships with [Flair](https://github.com/flairNLP/flair/). F1-Score: **87,94** (CoNLL-03 German revised) Predicts 4 tags: | **tag** | **meaning** | |---------------------------------|-----------| | PER | person name | | LOC | location name | | ORG | organization name | | MISC | other name | Based on [Flair embeddings](https://www.aclweb.org/anthology/C18-1139/) and LSTM-CRF. --- ### Demo: How to use in Flair Requires: **[Flair](https://github.com/flairNLP/flair/)** (`pip install flair`) ```python from flair.data import Sentence from flair.models import SequenceTagger # load tagger tagger = SequenceTagger.load("flair/ner-german") # make example sentence sentence = Sentence("George Washington ging nach Washington") # predict NER tags tagger.predict(sentence) # print sentence print(sentence) # print predicted NER spans print('The following NER tags are found:') # iterate over entities and print for entity in sentence.get_spans('ner'): print(entity) ``` This yields the following output: ``` Span [1,2]: "George Washington" [− Labels: PER (0.9977)] Span [5]: "Washington" [− Labels: LOC (0.9895)] ``` So, the entities "*George Washington*" (labeled as a **person**) and "*Washington*" (labeled as a **location**) are found in the sentence "*George Washington ging nach Washington*". --- ### Training: Script to train this model The following Flair script was used to train this model: ```python from flair.data import Corpus from flair.datasets import CONLL_03_GERMAN from flair.embeddings import WordEmbeddings, StackedEmbeddings, FlairEmbeddings # 1. get the corpus corpus: Corpus = CONLL_03_GERMAN() # 2. what tag do we want to predict? tag_type = 'ner' # 3. make the tag dictionary from the corpus tag_dictionary = corpus.make_tag_dictionary(tag_type=tag_type) # 4. initialize each embedding we use embedding_types = [ # GloVe embeddings WordEmbeddings('de'), # contextual string embeddings, forward FlairEmbeddings('de-forward'), # contextual string embeddings, backward FlairEmbeddings('de-backward'), ] # embedding stack consists of Flair and GloVe embeddings embeddings = StackedEmbeddings(embeddings=embedding_types) # 5. initialize sequence tagger from flair.models import SequenceTagger tagger = SequenceTagger(hidden_size=256, embeddings=embeddings, tag_dictionary=tag_dictionary, tag_type=tag_type) # 6. initialize trainer from flair.trainers import ModelTrainer trainer = ModelTrainer(tagger, corpus) # 7. run training trainer.train('resources/taggers/ner-german', train_with_dev=True, max_epochs=150) ``` --- ### Cite Please cite the following paper when using this model. ``` @inproceedings{akbik2018coling, title={Contextual String Embeddings for Sequence Labeling}, author={Akbik, Alan and Blythe, Duncan and Vollgraf, Roland}, booktitle = {{COLING} 2018, 27th International Conference on Computational Linguistics}, pages = {1638--1649}, year = {2018} } ``` --- ### Issues? The Flair issue tracker is available [here](https://github.com/flairNLP/flair/issues/).
{"language": "de", "tags": ["flair", "token-classification", "sequence-tagger-model"], "datasets": ["conll2003"], "widget": [{"text": "George Washington ging nach Washington"}]}
token-classification
flair/ner-german
[ "flair", "pytorch", "token-classification", "sequence-tagger-model", "de", "dataset:conll2003", "has_space", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "de" ]
TAGS #flair #pytorch #token-classification #sequence-tagger-model #de #dataset-conll2003 #has_space #region-us
German NER in Flair (default model) ----------------------------------- This is the standard 4-class NER model for German that ships with Flair. F1-Score: 87,94 (CoNLL-03 German revised) Predicts 4 tags: Based on Flair embeddings and LSTM-CRF. --- ### Demo: How to use in Flair Requires: Flair ('pip install flair') This yields the following output: So, the entities "*George Washington*" (labeled as a person) and "*Washington*" (labeled as a location) are found in the sentence "*George Washington ging nach Washington*". --- ### Training: Script to train this model The following Flair script was used to train this model: --- ### Cite Please cite the following paper when using this model. --- ### Issues? The Flair issue tracker is available here.
[ "### Demo: How to use in Flair\n\n\nRequires: Flair ('pip install flair')\n\n\nThis yields the following output:\n\n\nSo, the entities \"*George Washington*\" (labeled as a person) and \"*Washington*\" (labeled as a location) are found in the sentence \"*George Washington ging nach Washington*\".\n\n\n\n\n---", "### Training: Script to train this model\n\n\nThe following Flair script was used to train this model:\n\n\n\n\n---", "### Cite\n\n\nPlease cite the following paper when using this model.\n\n\n\n\n---", "### Issues?\n\n\nThe Flair issue tracker is available here." ]
[ "TAGS\n#flair #pytorch #token-classification #sequence-tagger-model #de #dataset-conll2003 #has_space #region-us \n", "### Demo: How to use in Flair\n\n\nRequires: Flair ('pip install flair')\n\n\nThis yields the following output:\n\n\nSo, the entities \"*George Washington*\" (labeled as a person) and \"*Washington*\" (labeled as a location) are found in the sentence \"*George Washington ging nach Washington*\".\n\n\n\n\n---", "### Training: Script to train this model\n\n\nThe following Flair script was used to train this model:\n\n\n\n\n---", "### Cite\n\n\nPlease cite the following paper when using this model.\n\n\n\n\n---", "### Issues?\n\n\nThe Flair issue tracker is available here." ]
[ 41, 81, 22, 15, 15 ]
[ "passage: TAGS\n#flair #pytorch #token-classification #sequence-tagger-model #de #dataset-conll2003 #has_space #region-us \n### Demo: How to use in Flair\n\n\nRequires: Flair ('pip install flair')\n\n\nThis yields the following output:\n\n\nSo, the entities \"*George Washington*\" (labeled as a person) and \"*Washington*\" (labeled as a location) are found in the sentence \"*George Washington ging nach Washington*\".\n\n\n\n\n---### Training: Script to train this model\n\n\nThe following Flair script was used to train this model:\n\n\n\n\n---### Cite\n\n\nPlease cite the following paper when using this model.\n\n\n\n\n---### Issues?\n\n\nThe Flair issue tracker is available here." ]
[ -0.0864473283290863, 0.165631964802742, -0.001327722566202283, 0.07345331460237503, 0.07478407025337219, 0.05472071096301079, 0.10950032621622086, 0.048354219645261765, 0.016054406762123108, 0.054282985627651215, 0.18960101902484894, 0.07065895199775696, 0.11090267449617386, 0.0997697114944458, 0.07220839709043503, -0.2636707127094269, 0.028059523552656174, -0.018817676231265068, -0.058018509298563004, 0.16060185432434082, 0.08286600559949875, -0.004159227944910526, 0.018055932596325874, 0.027475278824567795, -0.12582845985889435, -0.011434728279709816, -0.025223078206181526, -0.0938408225774765, 0.16939519345760345, -0.04020872712135315, 0.21536578238010406, 0.052473124116659164, 0.10029531270265579, -0.14396725594997406, 0.031531743705272675, 0.042537622153759, 0.016841992735862732, 0.09778443723917007, 0.048217058181762695, -0.0003678301000036299, 0.3162868022918701, -0.03843638673424721, -0.0010800942545756698, 0.029733775183558464, -0.1956697553396225, -0.2513427138328552, -0.1066872626543045, 0.059406913816928864, 0.04893193766474724, 0.09930085390806198, -0.03319986164569855, 0.09409483522176743, -0.06645538657903671, 0.023234155029058456, 0.1815926432609558, -0.22865794599056244, -0.03589159995317459, 0.19373685121536255, 0.025462063029408455, -0.0242240559309721, -0.055456265807151794, 0.053792551159858704, 0.005558941513299942, 0.0737217366695404, -0.03260303661227226, -0.012466262094676495, 0.02781209722161293, 0.11993203312158585, -0.1655099093914032, -0.10078230500221252, 0.3224119246006012, 0.03709806874394417, -0.06789164990186691, 0.00366398598998785, 0.012401587329804897, -0.02157040312886238, 0.05125044286251068, -0.1053982675075531, -0.013839476741850376, -0.0040856883861124516, 0.1622350811958313, -0.10911044478416443, -0.09361134469509125, -0.0973391905426979, -0.010357639752328396, 0.04104127734899521, -0.08842572569847107, 0.09488877654075623, -0.16703392565250397, 0.12193126231431961, 0.04572547227144241, -0.058760739862918854, 0.04200955480337143, -0.07739697396755219, -0.0419280119240284, 0.013555111363530159, -0.040474239736795425, 0.12958812713623047, 0.038553111255168915, 0.04247665032744408, 0.14235293865203857, -0.03275952488183975, 0.10967521369457245, 0.10460911691188812, 0.002643601968884468, 0.18594154715538025, -0.12506088614463806, -0.05300676450133324, 0.03155682608485222, -0.017675818875432014, -0.0070897797122597694, -0.06170859560370445, -0.16454754769802094, -0.026712946593761444, -0.06201329454779625, 0.019380653277039528, 0.028993993997573853, -0.01696988008916378, -0.08986230939626694, 0.01104006264358759, 0.07964864373207092, -0.06474729627370834, -0.028570832684636116, -0.023348962888121605, -0.04406445473432541, 0.09304238110780716, 0.08403739333152771, 0.03045511059463024, 0.02033698558807373, 0.11995518207550049, -0.08290446549654007, 0.04097398370504379, -0.047462284564971924, -0.10733480006456375, -0.021982286125421524, -0.08575581759214401, 0.015077874064445496, -0.06474585086107254, -0.1484186351299286, -0.014555816538631916, 0.05946502834558487, 0.003173608100041747, -0.06793341785669327, -0.04790271073579788, -0.03672143444418907, -0.040912363678216934, 0.04146680235862732, 0.07285463064908981, -0.06558670848608017, 0.0682310238480568, -0.023712558671832085, 0.1107793003320694, -0.0610378198325634, 0.016283929347991943, -0.08536966145038605, 0.01478628534823656, -0.12152118235826492, -0.0011148180346935987, -0.02572285756468773, 0.030263181775808334, -0.11344484239816666, -0.08642810583114624, -0.02287234179675579, 0.009732179343700409, 0.026033679023385048, 0.18516361713409424, -0.2818530797958374, -0.011141140945255756, 0.1142200380563736, -0.10080614686012268, -0.052956417202949524, 0.06140947714447975, -0.030983872711658478, 0.19698891043663025, 0.03374265879392624, 0.15631507337093353, -0.021675128489732742, -0.35448896884918213, 0.1137622743844986, 0.055543430149555206, -0.1835213601589203, 0.03317296877503395, 0.06967269629240036, -0.05002962425351143, -0.1791507750749588, 0.004829187877476215, -0.11804922670125961, 0.032153673470020294, -0.035873185843229294, -0.045560602098703384, 0.00817255862057209, -0.05814484879374504, 0.04656994342803955, -0.03828296810388565, -0.03160844370722771, -0.007721066474914551, -0.14335419237613678, -0.14933548867702484, 0.03987814113497734, 0.09975267946720123, -0.036222461611032486, 0.005931753199547529, 0.04588444158434868, 0.04450562596321106, -0.039212558418512344, -0.10635397583246231, 0.03014177270233631, -0.07798215001821518, 0.11492139846086502, 0.018793568015098572, 0.15770606696605682, -0.026852790266275406, 0.023637626320123672, 0.06368076801300049, 0.03436091169714928, -0.036160968244075775, 0.05247342213988304, -0.011742044240236282, -0.000697659095749259, -0.0872667208313942, -0.09156420081853867, 0.11849888414144516, -0.19214729964733124, 0.053954146802425385, 0.03375527635216713, -0.0015280147781595588, -0.017745964229106903, -0.019375063478946686, 0.10709167271852493, 0.03266728296875954, 0.009958179667592049, -0.06865384429693222, 0.0660010278224945, 0.0009563884814269841, -0.05689152330160141, -0.11353407800197601, -0.05922946333885193, -0.0291852168738842, 0.09529507160186768, -0.02465318888425827, -0.11330613493919373, -0.07138239592313766, -0.04232635721564293, 0.004253525752574205, -0.03230695426464081, -0.037347614765167236, 0.14899319410324097, 0.029223237186670303, 0.007473848760128021, -0.031084509566426277, 0.03303062543272972, -0.033287156373262405, -0.029053233563899994, -0.07304005324840546, 0.05387464910745621, 0.11469457298517227, 0.035587746649980545, 0.03110455721616745, 0.17667165398597717, -0.01415874995291233, 0.026432745158672333, 0.05235178396105766, -0.050863269716501236, -0.09811799973249435, -0.10384225100278854, -0.017152845859527588, 0.1829826533794403, -0.035727884620428085, 0.03711230307817459, 0.042939912527799606, -0.009428570047020912, 0.04462910816073418, -0.1949303299188614, -0.12865109741687775, 0.045492518693208694, -0.02761233225464821, -0.1861216127872467, 0.0631999596953392, -0.05838332697749138, 0.10205132514238358, -0.0201309435069561, -0.09005744755268097, 0.04470313712954521, 0.00105274620000273, -0.07441221177577972, 0.11042910069227219, -0.057471614331007004, -0.26088953018188477, -0.09714845567941666, -0.04771433770656586, 0.09854857623577118, 0.0009219518979080021, 0.02573290653526783, -0.10376486927270889, 0.02775651030242443, -0.013020901009440422, 0.05583551526069641, -0.09111050516366959, -0.0780121460556984, -0.0602806955575943, 0.017119577154517174, -0.019475551322102547, -0.11501031368970871, -0.034150708466768265, -0.05261494591832161, 0.08659441024065018, 0.030640168115496635, 0.005522923544049263, 0.10740765929222107, 0.13401494920253754, 0.019032472744584084, 0.06948638707399368, -0.04448847472667694, 0.36960357427597046, -0.08753228187561035, 0.08551451563835144, 0.11685582995414734, 0.011166119948029518, 0.043923430144786835, 0.1436159461736679, 0.06555095314979553, -0.09239834547042847, -0.03955741226673126, -0.07540473341941833, -0.07920543104410172, -0.1152944266796112, -0.05192364752292633, -0.0532841831445694, -0.06591450423002243, 0.006264917552471161, 0.027490487322211266, -0.061540793627500534, 0.027504177764058113, 0.08251167088747025, -0.034746237099170685, -0.05346184968948364, -0.006078402511775494, 0.01638278178870678, -0.017613442614674568, 0.002826416864991188, -0.035489603877067566, -0.0451677106320858, 0.023963933810591698, 0.09274423122406006, 0.09270823001861572, 0.1213291734457016, 0.0015717993956059217, 0.069449782371521, 0.10890103131532669, 0.0939125195145607, 0.16488690674304962, 0.07843657582998276, -0.02221536450088024, -0.027176203206181526, -0.062025271356105804, 0.002947406843304634, 0.04411982744932175, -0.0001968063588719815, -0.06410346180200577, 0.012689587660133839, -0.10756363719701767, -0.04196301847696304, -0.013155263848602772, 0.13091835379600525, -0.18838945031166077, -0.022766821086406708, 0.007353803142905235, 0.1052415668964386, -0.03460897132754326, 0.05330328643321991, 0.025772271677851677, -0.12468239665031433, 0.019415006041526794, -0.01696205884218216, 0.10096614062786102, 0.03287247568368912, 0.03940849378705025, -0.08429589867591858, 0.04668228328227997, -0.052348792552948, 0.11422432214021683, -0.1994786262512207, 0.3445565402507782, -0.03510146960616112, 0.02865622565150261, -0.041513241827487946, 0.003609639825299382, 0.07589647173881531, 0.06268473714590073, 0.23199449479579926, 0.0087816771119833, -0.15442651510238647, -0.09514708071947098, -0.10590840876102448, 0.03848477080464363, -0.028348742052912712, -0.06737754493951797, 0.057898227125406265, 0.06891564279794693, 0.009974634274840355, -0.021343020722270012, 0.08182225376367569, -0.2051374316215515, -0.1096683144569397, 0.02268552966415882, -0.03269341215491295, 0.0375928059220314, -0.007878106087446213, -0.05341567471623421, -0.10787525773048401, -0.008890221826732159, -0.02182525023818016, -0.03559994697570801, -0.08392633497714996, 0.1031191274523735, 0.048503514379262924, -0.010173255577683449, -0.03528731316328049, 0.006679277401417494, 0.02496732957661152, -0.08976899832487106, 0.016928046941757202, 0.02088337391614914, -0.054208241403102875, 0.03472917899489403, -0.07363111525774002, 0.07524212449789047, 0.05802147462964058, 0.045040156692266464, 0.02266530506312847, 0.06310300529003143, -0.10008230060338974, -0.12140662223100662, 0.19976577162742615, -0.1212092936038971, -0.03158097341656685, 0.03307611867785454, 0.03447874262928963, 0.004514877684414387, -0.1372167319059372, 0.026766883209347725, 0.2195744812488556, 0.26094332337379456, -0.13677673041820526, 0.13413754105567932, -0.014414628967642784, -0.11341394484043121, -0.1630844622850418, -0.006620117463171482, -0.06142439693212509, 0.04060008004307747, 0.11229230463504791, -0.17134340107440948, 0.04120902344584465, 0.11370030790567398, -0.041859205812215805, 0.19285668432712555, -0.21722355484962463, -0.0318429209291935, 0.20453007519245148, 0.03725430741906166, 0.062001828104257584, -0.0561172254383564, -0.028545379638671875, 0.0042596012353897095, -0.1415700763463974, 0.0637945905327797, 0.11228307336568832, 0.04219292104244232, -0.02311144769191742, 0.07328730821609497, 0.0014436189085245132, -0.07089413702487946, 0.20889365673065186, -0.0035610096529126167, 0.03404783830046654, -0.046369921416044235, -0.2335587590932846, 0.1309761106967926, -0.029300982132554054, 0.09118098020553589, 0.05692112445831299, 0.017436832189559937, -0.16355986893177032, -0.017354298382997513, -0.115167036652565, 0.09485811740159988, -0.07450571656227112, -0.054317407310009, -0.06206698343157768, 0.011164982803165913, -0.10382812470197678, -0.04038059338927269, -0.14903505146503448, -0.06900060176849365, 0.07591356337070465, 0.005151227582246065, 0.0004070939321536571, 0.059561096131801605, -0.17439031600952148, 0.06060978025197983, -0.01406576856970787, 0.06636287271976471, -0.09637577831745148, -0.1220996081829071, 0.09821461141109467, 0.036718931049108505, 0.08672408014535904, 0.07372236251831055, -0.07084392756223679, 0.0068072848953306675, 0.049038272351026535, -0.18077352643013, -0.059485774487257004, -0.05674349144101143, -0.017128536477684975, -0.00869669672101736, -0.08876767009496689, 0.027589084580540657, -0.032512009143829346, -0.031123178079724312, -0.00395136559382081, 0.002544267103075981, -0.12855422496795654, 0.0077727800235152245, 0.1434042900800705, 0.100351482629776, -0.050259508192539215, 0.006985838059335947, 0.09680359065532684, -0.09277975559234619, -0.012466437183320522, 0.04061039909720421, -0.05699826776981354, -0.05592719465494156, -0.06887912005186081, 0.1817152351140976, 0.06860245764255524, -0.007435525301843882, -0.0016846905928105116, -0.08428789675235748, 0.00470705283805728, 0.07596909254789352, 0.09385421872138977, 0.004326063673943281, -0.1018138974905014, -0.08099143207073212, -0.05098705738782883, 0.020646709948778152, 0.006964482367038727, -0.04651714488863945, -0.13185597956180573, 0.0792316198348999, 0.013159428723156452, 0.11966945230960846, -0.038983024656772614, -0.07783667743206024, -0.12429419159889221, 0.0508543998003006, -0.01831742376089096, 0.007296751718968153, -0.014379593543708324, 0.0049707829020917416, -0.002841574838384986, -0.0420323982834816, -0.009533002972602844, -0.00860342476516962, -0.10585170984268188, 0.05565613880753517, 0.002496795728802681, 0.056751228868961334, -0.022879045456647873, -0.03515184670686722, 0.09755437821149826, -0.033932656049728394, 0.05729324743151665, 0.061141014099121094, -0.06737925857305527, -0.04679423198103905, -0.23875704407691956, 0.020662138238549232, 0.015233000740408897, -0.017435016110539436, 0.014123819768428802, -0.18616880476474762, -0.004509044345468283, -0.06419779360294342, -0.007597156800329685, -0.01813642308115959, 0.043570928275585175, -0.07440048456192017, -0.03556923568248749, 0.12008803337812424, -0.06297570466995239, -0.02106386236846447, -0.08126669377088547, 0.18184144794940948, -0.014204503037035465, 0.11052581667900085, 0.021280931308865547, 0.15617656707763672, -0.12678757309913635, -0.026775673031806946, -0.05890317261219025, -0.022410929203033447, -0.033974044024944305, -0.058205679059028625, 0.09458430856466293, 0.007008551154285669, 0.2217494398355484, 0.022126605734229088, -0.023525230586528778, -0.011709422804415226, 0.15345489978790283, 0.0253580454736948, -0.01563906855881214, 0.11165159195661545, 0.02761845663189888, 0.0042380765080451965, 0.049214448779821396, 0.04929395765066147, -0.02316788211464882, 0.1784166544675827, 0.22365108132362366, 0.01167635340243578, 0.09273460507392883, 0.07980117946863174, -0.03206894174218178, 0.030458485707640648, -0.020209072157740593, -0.1151980385184288, 0.13084785640239716, 0.0000783056893851608, -0.03904300183057785, -0.04644649475812912, 0.10575652867555618, -0.06810948997735977, 0.05200977995991707, -0.05104733631014824, -0.09066151827573776, -0.10147473961114883, -0.19474177062511444, 0.033571816980838776, 0.0019183787517249584, -0.014907143078744411, -0.047281473875045776, -0.023065235465765, 0.17887546122074127, -0.05477912724018097, 0.006576859392225742, 0.0789022371172905, 0.033554963767528534, -0.05367119982838631, 0.035842664539813995, -0.031670499593019485, -0.003049196908250451, -0.15667515993118286, 0.06915123015642166, -0.00014891692262608558, -0.077821284532547, 0.03403867781162262, -0.008372415788471699, -0.02003924734890461, -0.03982161730527878, -0.13529060781002045, -0.0667538121342659, -0.03171030431985855, 0.06365437805652618, -0.016905225813388824, 0.0834413543343544, 0.05554730072617531, 0.028205694630742073, 0.005054074339568615, 0.1258920580148697, -0.007829622365534306, -0.14090079069137573, -0.0588567778468132, 0.19696441292762756, -0.151302769780159, 0.002884229179471731, -0.07828786224126816, -0.018619051203131676, 0.06211160868406296, 0.3344199061393738, 0.2989075183868408, -0.030830416828393936, -0.042798444628715515, -0.03885810077190399, 0.025625670328736305, 0.09038126468658447, 0.047791142016649246, 0.09473346173763275, 0.17198488116264343, -0.1778194010257721, -0.040432967245578766, -0.1785961240530014, -0.008423839695751667, -0.02838488668203354, 0.011688129976391792, 0.11794304847717285, -0.07176320999860764, -0.04587026312947273, 0.21095186471939087, -0.16698728501796722, -0.05421515181660652, 0.023736463859677315, -0.06387390941381454, -0.11779472231864929, 0.028003033250570297, 0.05594930797815323, -0.014699556864798069, 0.10198129713535309, -0.11232948303222656, -0.08719455450773239, 0.1396418809890747, -0.03991944342851639, -0.11626507341861725, -0.1075366958975792, 0.04647337272763252, -0.1374921053647995, 0.1337154507637024, 0.0018527703359723091, 0.12701416015625, 0.06199934706091881, 0.08375795185565948, -0.1119784563779831, 0.1001194417476654, 0.014989013783633709, 0.09245875477790833, -0.04222904145717621, -0.05003930255770683, 0.006178693845868111, -0.06250763684511185, 0.011585786938667297, -0.15607386827468872, 0.0671437531709671, 0.10250096023082733, 0.002249914687126875, -0.0017030569724738598, 0.06470907479524612, -0.052254028618335724, 0.11132411658763885, 0.09589345753192902, -0.06735197454690933, 0.008085503242909908, -0.008374614641070366, 0.0006493401597253978, 0.0775614008307457, -0.04947430640459061, -0.04581080377101898, -0.030340788885951042, 0.0125211700797081, 0.0020406688563525677, -0.09657732397317886, -0.06456887722015381, -0.07107251137495041, -0.057300906628370285, -0.04658262059092522, 0.05448892340064049, 0.03365844860672951, 0.03134593740105629, 0.06699182838201523, -0.023244129493832588, 0.125849649310112, -0.0038847702089697123, 0.1449090838432312, -0.1631743609905243, -0.08303119987249374 ]
null
null
flair
## 4-Language NER in Flair (English, German, Dutch and Spanish) This is the fast 4-class NER model for 4 CoNLL-03 languages that ships with [Flair](https://github.com/flairNLP/flair/). Also kind of works for related languages like French. F1-Score: **91,51** (CoNLL-03 English), **85,72** (CoNLL-03 German revised), **86,22** (CoNLL-03 Dutch), **85,78** (CoNLL-03 Spanish) Predicts 4 tags: | **tag** | **meaning** | |---------------------------------|-----------| | PER | person name | | LOC | location name | | ORG | organization name | | MISC | other name | Based on [Flair embeddings](https://www.aclweb.org/anthology/C18-1139/) and LSTM-CRF. --- ### Demo: How to use in Flair Requires: **[Flair](https://github.com/flairNLP/flair/)** (`pip install flair`) ```python from flair.data import Sentence from flair.models import SequenceTagger # load tagger tagger = SequenceTagger.load("flair/ner-multi-fast") # make example sentence in any of the four languages sentence = Sentence("George Washington ging nach Washington") # predict NER tags tagger.predict(sentence) # print sentence print(sentence) # print predicted NER spans print('The following NER tags are found:') # iterate over entities and print for entity in sentence.get_spans('ner'): print(entity) ``` This yields the following output: ``` Span [1,2]: "George Washington" [− Labels: PER (0.9977)] Span [5]: "Washington" [− Labels: LOC (0.9895)] ``` So, the entities "*George Washington*" (labeled as a **person**) and "*Washington*" (labeled as a **location**) are found in the sentence "*George Washington ging nach Washington*". --- ### Training: Script to train this model The following Flair script was used to train this model: ```python from flair.data import Corpus from flair.datasets import CONLL_03, CONLL_03_GERMAN, CONLL_03_DUTCH, CONLL_03_SPANISH from flair.embeddings import WordEmbeddings, StackedEmbeddings, FlairEmbeddings # 1. get the multi-language corpus corpus: Corpus = MultiCorpus([ CONLL_03(), # English corpus CONLL_03_GERMAN(), # German corpus CONLL_03_DUTCH(), # Dutch corpus CONLL_03_SPANISH(), # Spanish corpus ]) # 2. what tag do we want to predict? tag_type = 'ner' # 3. make the tag dictionary from the corpus tag_dictionary = corpus.make_tag_dictionary(tag_type=tag_type) # 4. initialize each embedding we use embedding_types = [ # GloVe embeddings WordEmbeddings('glove'), # FastText embeddings WordEmbeddings('de'), # contextual string embeddings, forward FlairEmbeddings('multi-forward-fast'), # contextual string embeddings, backward FlairEmbeddings('multi-backward-fast'), ] # embedding stack consists of Flair and GloVe embeddings embeddings = StackedEmbeddings(embeddings=embedding_types) # 5. initialize sequence tagger from flair.models import SequenceTagger tagger = SequenceTagger(hidden_size=256, embeddings=embeddings, tag_dictionary=tag_dictionary, tag_type=tag_type) # 6. initialize trainer from flair.trainers import ModelTrainer trainer = ModelTrainer(tagger, corpus) # 7. run training trainer.train('resources/taggers/ner-multi-fast', train_with_dev=True, max_epochs=150) ``` --- ### Cite Please cite the following papers when using this model. ``` @misc{akbik2019multilingual, title={Multilingual sequence labeling with one model}, author={Akbik, Alan and Bergmann, Tanja and Vollgraf, Roland} booktitle = {{NLDL} 2019, Northern Lights Deep Learning Workshop}, year = {2019} } ``` ``` @inproceedings{akbik2018coling, title={Contextual String Embeddings for Sequence Labeling}, author={Akbik, Alan and Blythe, Duncan and Vollgraf, Roland}, booktitle = {{COLING} 2018, 27th International Conference on Computational Linguistics}, pages = {1638--1649}, year = {2018} } ```
{"language": ["en", "de", "nl", "es"], "tags": ["flair", "token-classification", "sequence-tagger-model"], "datasets": ["conll2003"], "widget": [{"text": "George Washington ging nach Washington"}]}
token-classification
flair/ner-multi-fast
[ "flair", "pytorch", "token-classification", "sequence-tagger-model", "en", "de", "nl", "es", "dataset:conll2003", "has_space", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en", "de", "nl", "es" ]
TAGS #flair #pytorch #token-classification #sequence-tagger-model #en #de #nl #es #dataset-conll2003 #has_space #region-us
4-Language NER in Flair (English, German, Dutch and Spanish) ------------------------------------------------------------ This is the fast 4-class NER model for 4 CoNLL-03 languages that ships with Flair. Also kind of works for related languages like French. F1-Score: 91,51 (CoNLL-03 English), 85,72 (CoNLL-03 German revised), 86,22 (CoNLL-03 Dutch), 85,78 (CoNLL-03 Spanish) Predicts 4 tags: Based on Flair embeddings and LSTM-CRF. --- ### Demo: How to use in Flair Requires: Flair ('pip install flair') This yields the following output: So, the entities "*George Washington*" (labeled as a person) and "*Washington*" (labeled as a location) are found in the sentence "*George Washington ging nach Washington*". --- ### Training: Script to train this model The following Flair script was used to train this model: --- ### Cite Please cite the following papers when using this model.
[ "### Demo: How to use in Flair\n\n\nRequires: Flair ('pip install flair')\n\n\nThis yields the following output:\n\n\nSo, the entities \"*George Washington*\" (labeled as a person) and \"*Washington*\" (labeled as a location) are found in the sentence \"*George Washington ging nach Washington*\".\n\n\n\n\n---", "### Training: Script to train this model\n\n\nThe following Flair script was used to train this model:\n\n\n\n\n---", "### Cite\n\n\nPlease cite the following papers when using this model." ]
[ "TAGS\n#flair #pytorch #token-classification #sequence-tagger-model #en #de #nl #es #dataset-conll2003 #has_space #region-us \n", "### Demo: How to use in Flair\n\n\nRequires: Flair ('pip install flair')\n\n\nThis yields the following output:\n\n\nSo, the entities \"*George Washington*\" (labeled as a person) and \"*Washington*\" (labeled as a location) are found in the sentence \"*George Washington ging nach Washington*\".\n\n\n\n\n---", "### Training: Script to train this model\n\n\nThe following Flair script was used to train this model:\n\n\n\n\n---", "### Cite\n\n\nPlease cite the following papers when using this model." ]
[ 47, 81, 22, 15 ]
[ "passage: TAGS\n#flair #pytorch #token-classification #sequence-tagger-model #en #de #nl #es #dataset-conll2003 #has_space #region-us \n### Demo: How to use in Flair\n\n\nRequires: Flair ('pip install flair')\n\n\nThis yields the following output:\n\n\nSo, the entities \"*George Washington*\" (labeled as a person) and \"*Washington*\" (labeled as a location) are found in the sentence \"*George Washington ging nach Washington*\".\n\n\n\n\n---### Training: Script to train this model\n\n\nThe following Flair script was used to train this model:\n\n\n\n\n---### Cite\n\n\nPlease cite the following papers when using this model." ]
[ -0.07798746228218079, 0.13751034438610077, -0.0016217634547501802, 0.05840683728456497, 0.06904684752225876, 0.05137156695127487, 0.11104044318199158, 0.03018762730062008, 0.04033200070261955, 0.027104903012514114, 0.1829613596200943, 0.061503540724515915, 0.10693472623825073, 0.05472923815250397, 0.10640428960323334, -0.2887724041938782, 0.023204226046800613, -0.006411223206669092, -0.09386599063873291, 0.15231400728225708, 0.06529606133699417, 0.0023837920743972063, 0.015670597553253174, 0.033570822328329086, -0.09152854979038239, -0.016167616471648216, -0.027963358908891678, -0.08922359347343445, 0.1789291650056839, -0.04391629993915558, 0.2048395872116089, 0.044952407479286194, 0.11458812654018402, -0.1567380726337433, 0.019967414438724518, 0.040198393166065216, 0.011026979424059391, 0.09299708157777786, 0.03218025341629982, -0.006587785203009844, 0.3473920524120331, -0.015135226771235466, -0.006863153073936701, 0.013914473354816437, -0.20398719608783722, -0.25578421354293823, -0.054320141673088074, 0.05314680188894272, 0.016155024990439415, 0.1127796545624733, -0.02492554858326912, 0.07856868207454681, -0.09147044271230698, 0.021298350766301155, 0.1472444087266922, -0.20248742401599884, -0.028191519901156425, 0.2125968039035797, 0.015208151191473007, -0.035254377871751785, -0.03704756125807762, 0.03436113893985748, 0.0032503651455044746, 0.07338503003120422, -0.05981512740254402, -0.0011611242080107331, 0.05009085685014725, 0.12665416300296783, -0.14921776950359344, -0.10113555938005447, 0.3210931122303009, 0.02426031604409218, -0.05428730696439743, 0.020833034068346024, 0.015416666865348816, -0.004385168198496103, 0.042929694056510925, -0.09651874005794525, -0.017899004742503166, 0.009343206882476807, 0.14354747533798218, -0.09419132769107819, -0.09261848777532578, -0.08475282043218613, 0.005307924468070269, 0.03161286562681198, -0.085856132209301, 0.09093345701694489, -0.1813141256570816, 0.12581245601177216, 0.0528629794716835, -0.06293564289808273, 0.049359653145074844, -0.07688560336828232, -0.019389137625694275, 0.02573511004447937, -0.042346153408288956, 0.17368857562541962, 0.021591683849692345, 0.024142133072018623, 0.17371338605880737, -0.02673693373799324, 0.1317591667175293, 0.11445578932762146, -0.009411649778485298, 0.1618015468120575, -0.10970708727836609, -0.03850311413407326, 0.0012859179405495524, -0.03155377879738808, -0.02403968572616577, -0.05601758509874344, -0.16703401505947113, -0.02155268006026745, -0.0864824503660202, -0.0056332373060286045, 0.011028661392629147, 0.002763621509075165, -0.09043844044208527, 0.025394674390554428, 0.07589510083198547, -0.04509774222970009, -0.04308394342660904, -0.031858671456575394, -0.061533477157354355, 0.10208605229854584, 0.08943542093038559, 0.03978237137198448, 0.02069966122508049, 0.1183137372136116, -0.08511126786470413, 0.060414496809244156, -0.05104946717619896, -0.07948312163352966, -0.01966228522360325, -0.05305800586938858, 0.03191991150379181, -0.06460637599229813, -0.15468229353427887, -0.02288052812218666, 0.08532033115625381, 0.0031819194555282593, -0.06544796377420425, -0.07351728528738022, -0.025491204112768173, -0.04587271809577942, 0.032748520374298096, 0.06055450439453125, -0.0653572678565979, 0.06400094926357269, -0.04091953858733177, 0.1078178733587265, -0.054197512567043304, 0.013247378170490265, -0.09723737835884094, 0.008090049028396606, -0.11136485636234283, -0.004448849242180586, -0.0028181455563753843, 0.035773877054452896, -0.10823208838701248, -0.09492649883031845, -0.04254978895187378, 0.02200414426624775, 0.016909778118133545, 0.1899646669626236, -0.2643081843852997, -0.005300403572618961, 0.1350688487291336, -0.08793147653341293, -0.03937901556491852, 0.043602921068668365, -0.039299361407756805, 0.26257333159446716, 0.04848093166947365, 0.14488357305526733, -0.03564587980508804, -0.3438657522201538, 0.14250627160072327, 0.09021662175655365, -0.16199396550655365, 0.009390468709170818, 0.05654346942901611, -0.03470339626073837, -0.19768524169921875, 0.008483916521072388, -0.12185975164175034, 0.05126147344708443, -0.03797953575849533, -0.04672553017735481, 0.032767102122306824, -0.0679682269692421, 0.05360803380608559, -0.042904824018478394, -0.025287965312600136, 0.0012983942870050669, -0.13916829228401184, -0.14493288099765778, 0.04741835594177246, 0.09405609220266342, -0.0331103689968586, 0.018067002296447754, -0.023529281839728355, 0.08588724583387375, -0.038516487926244736, -0.08912664651870728, 0.04805239289999008, -0.1010471060872078, 0.13370634615421295, 0.01797071471810341, 0.20957154035568237, -0.022025322541594505, 0.026284534484148026, 0.07443595677614212, 0.04067128524184227, -0.03772294893860817, 0.055768754333257675, 0.014915230683982372, 0.011667327955365181, -0.0869087427854538, -0.09126821160316467, 0.10631711781024933, -0.16427968442440033, 0.057481132447719574, -0.0009369032923132181, -0.018858911469578743, -0.02383284829556942, -0.016126062721014023, 0.0832764208316803, 0.04270484670996666, 0.020163724198937416, -0.04801883175969124, 0.0784786120057106, 0.012213245965540409, -0.06286879628896713, -0.08874206990003586, -0.06066959723830223, 0.0037339210975915194, 0.08097571134567261, -0.05788968876004219, -0.0998014435172081, -0.06667830795049667, -0.03723650053143501, -0.002199113368988037, -0.012897440232336521, -0.049787361174821854, 0.1961609125137329, 0.019533807411789894, 0.004868572577834129, -0.03296816721558571, 0.025737082585692406, -0.03811898082494736, -0.030980607494711876, -0.069101482629776, 0.048074666410684586, 0.11496119201183319, 0.03952313959598541, 0.028994297608733177, 0.1807912439107895, -0.011265013366937637, 0.02210865542292595, 0.04918241128325462, -0.032440751791000366, -0.1062261164188385, -0.08495520800352097, -0.03493323177099228, 0.18170392513275146, -0.08772038668394089, 0.03118942119181156, 0.026393214240670204, -0.012514553032815456, 0.05488142743706703, -0.19492845237255096, -0.14413030445575714, 0.050802819430828094, -0.021297750994563103, -0.1868038922548294, 0.05217132344841957, -0.08621908724308014, 0.09482428431510925, -0.03626537695527077, -0.13212750852108002, 0.059037014842033386, 0.0027347691357135773, -0.0762583538889885, 0.108114093542099, -0.05139721930027008, -0.25781989097595215, -0.08960629999637604, -0.08303501456975937, 0.12844833731651306, -0.0003927077050320804, 0.010347140952944756, -0.10004536807537079, 0.03265903517603874, 0.0017519796965643764, 0.07477860897779465, -0.09359131753444672, -0.09739506989717484, -0.06763740628957748, 0.016335515305399895, -0.008231342770159245, -0.11379928141832352, -0.027938617393374443, -0.06323839724063873, 0.07842257618904114, 0.018496589735150337, -0.0003237799392081797, 0.07393242418766022, 0.1240958571434021, 0.035310856997966766, 0.06722038239240646, -0.030593667179346085, 0.3835040330886841, -0.06814681738615036, 0.07562986761331558, 0.11544091999530792, 0.014548050239682198, 0.03679530322551727, 0.14753808081150055, 0.07688651233911514, -0.08744849264621735, -0.04887997359037399, -0.08941061049699783, -0.08380096405744553, -0.08780910819768906, -0.06793884932994843, -0.04887174814939499, -0.0642886832356453, 0.026135193184018135, 0.02373216673731804, -0.06278598308563232, 0.04327160492539406, 0.08484113216400146, -0.024263452738523483, -0.05303793027997017, -0.032293617725372314, -0.007004409562796354, -0.029983948916196823, -0.005343705415725708, -0.016498709097504616, -0.08336370438337326, -0.00818634033203125, 0.10651911795139313, 0.05628727003931999, 0.12686771154403687, -0.029579445719718933, 0.04708058387041092, 0.09339956194162369, 0.0830978974699974, 0.1894007921218872, 0.07263857126235962, -0.02652924135327339, -0.026264972984790802, -0.05754891037940979, -0.014608517289161682, 0.05106896162033081, -0.006604139693081379, -0.08937511593103409, 0.022837016731500626, -0.11815720796585083, -0.0547119602560997, -0.06971673667430878, 0.12421764433383942, -0.1952967792749405, -0.020272063091397285, -0.004694131202995777, 0.11174124479293823, -0.030502336099743843, 0.07507484406232834, 0.04258469492197037, -0.12050046026706696, 0.018408235162496567, -0.01228402927517891, 0.08295241743326187, 0.029300834983587265, 0.05446162074804306, -0.09129288792610168, 0.03524639084935188, -0.026522016152739525, 0.1325576901435852, -0.21213506162166595, 0.3320060074329376, -0.05684014782309532, 0.029606396332383156, -0.053254276514053345, -0.013412347063422203, 0.05586254596710205, 0.03306286409497261, 0.2475258857011795, 0.01873643510043621, -0.16956648230552673, -0.10247743129730225, -0.12514343857765198, 0.049267061054706573, -0.03522248938679695, -0.0650329440832138, 0.05233945697546005, 0.0797901526093483, 0.008231449872255325, -0.004157283343374729, 0.0687689259648323, -0.20144470036029816, -0.12153960019350052, -0.00202388153411448, -0.0325281135737896, 0.03590669855475426, -0.008141305297613144, -0.03819514065980911, -0.11265762895345688, -0.0379638671875, 0.016329865902662277, -0.02918372116982937, -0.06057102978229523, 0.0990973636507988, 0.04022037982940674, -0.012965885922312737, -0.027918463572859764, 0.018369514495134354, -0.014117655344307423, -0.10208776593208313, 0.0031446374487131834, 0.018500586971640587, -0.06767652928829193, 0.05757913365960121, -0.06339037418365479, 0.08164092153310776, 0.091236911714077, 0.05621866509318352, 0.031442366540431976, 0.04203177988529205, -0.10567217320203781, -0.11857825517654419, 0.18168050050735474, -0.13834813237190247, -0.044549427926540375, 0.02037140540778637, 0.021384362131357193, 0.04935254156589508, -0.1229175329208374, 0.03821694105863571, 0.22621707618236542, 0.21729779243469238, -0.12175178527832031, 0.1396138072013855, 0.012627588585019112, -0.1091330498456955, -0.1780693680047989, -0.02555992268025875, -0.06791135668754578, 0.045250482857227325, 0.11126848310232162, -0.21327701210975647, 0.051767464727163315, 0.09605582803487778, -0.03809741511940956, 0.15899860858917236, -0.2386111468076706, -0.02794799767434597, 0.23033283650875092, 0.03911460563540459, 0.12904977798461914, -0.0015332234324887395, -0.015069393441081047, -0.0003043626493308693, -0.09300790727138519, 0.08832892030477524, 0.11422345787286758, 0.03690742328763008, -0.015289973467588425, 0.08430556207895279, 0.013146737590432167, -0.06976291537284851, 0.20034508407115936, 0.020212935283780098, 0.031187765300273895, -0.05899563431739807, -0.22401851415634155, 0.1274295300245285, 0.000642277009319514, 0.08870790898799896, 0.04355591535568237, 0.00261552631855011, -0.13101573288440704, -0.015539026819169521, -0.13417984545230865, 0.08337809145450592, -0.07108628749847412, -0.05721888318657875, -0.056567784398794174, 0.021252930164337158, -0.08734115213155746, -0.027745738625526428, -0.1547132134437561, -0.06108466908335686, 0.07004643976688385, 0.009921349585056305, -0.004407051019370556, 0.0748256966471672, -0.17099925875663757, 0.05752081423997879, -0.008681043051183224, 0.07360393553972244, -0.08034317195415497, -0.13538649678230286, 0.10458847880363464, 0.025620680302381516, 0.08084440976381302, 0.08080793917179108, -0.08023194968700409, -0.017432013526558876, 0.07100933790206909, -0.17991259694099426, -0.08899319171905518, -0.08816515654325485, -0.011504939757287502, 0.0192946158349514, -0.0909242108464241, 0.020016631111502647, -0.046305667608976364, -0.011947168968617916, -0.009103422984480858, -0.008671226911246777, -0.14746427536010742, 0.010561435483396053, 0.12436734139919281, 0.10074812918901443, -0.05755438655614853, -0.008031889796257019, 0.08008521050214767, -0.07990159839391708, -0.016480179503560066, 0.02578418329358101, -0.05113181471824646, -0.061499252915382385, -0.09365867078304291, 0.17876318097114563, 0.06041192635893822, -0.024186285212635994, 0.009262138046324253, -0.10280763357877731, 0.008500993251800537, 0.038099948316812515, 0.10196702927350998, 0.006339358631521463, -0.10676360130310059, -0.08172924071550369, -0.026000145822763443, 0.003129541175439954, 0.00845851469784975, -0.06306815892457962, -0.11814355105161667, 0.10274939984083176, 0.01866181381046772, 0.13215354084968567, -0.03850442171096802, -0.08353504538536072, -0.11364249140024185, 0.07044614851474762, 0.006768116727471352, 0.0039514098316431046, -0.02322903275489807, 0.008096219971776009, 0.004506603814661503, -0.018688170239329338, 0.0018472112715244293, -0.01553858071565628, -0.11894307285547256, 0.06459371000528336, 0.0023509557358920574, 0.04438295587897301, 0.0020900890231132507, -0.025377444922924042, 0.09371894598007202, -0.04274316877126694, 0.048286546021699905, 0.05956275761127472, -0.08639135211706161, -0.018552202731370926, -0.2477317899465561, 0.029834849759936333, 0.026607559993863106, -0.012189331464469433, -0.00046917484723962843, -0.1584911197423935, -0.010449511930346489, -0.06283193826675415, -0.004471845459192991, -0.03338494151830673, 0.02249179407954216, -0.07515899091959, -0.01674518547952175, 0.13955211639404297, -0.06160209700465202, -0.02365236170589924, -0.09501203894615173, 0.14415358006954193, -0.015871431678533554, 0.0941455066204071, 0.02975252829492092, 0.15471157431602478, -0.12002535909414291, -0.020019620656967163, -0.04141292721033096, -0.03269098699092865, -0.01969834230840206, -0.07274855673313141, 0.08421705663204193, 0.007855422794818878, 0.22161270678043365, 0.00916008185595274, -0.06568975746631622, -0.03960449993610382, 0.15314450860023499, 0.033845461905002594, -0.015271427109837532, 0.12557418644428253, 0.03401431068778038, 0.010973067954182625, 0.024544833227992058, 0.04955372214317322, -0.02124890871345997, 0.21891753375530243, 0.2216762900352478, -0.011654598638415337, 0.11377114057540894, 0.08687995374202728, -0.03042038530111313, 0.03715468943119049, 0.010378154926002026, -0.12228000909090042, 0.1313769668340683, -0.0018851010827347636, -0.0360560305416584, -0.05861285701394081, 0.08453504741191864, -0.05226447805762291, 0.04940040409564972, -0.042572926729917526, -0.09019223600625992, -0.09880618751049042, -0.2527622580528259, 0.05306633189320564, 0.011137334629893303, -0.024769214913249016, -0.028293389827013016, -0.04983154311776161, 0.18058277666568756, -0.05505409464240074, -0.00044862666982226074, 0.07683518528938293, 0.02751697413623333, -0.0632767453789711, 0.03722291812300682, -0.03221476823091507, 0.004867770243436098, -0.1593879610300064, 0.05143263190984726, -0.02507401444017887, -0.0659337267279625, 0.030040087178349495, -0.0067985886707901955, -0.02339046075940132, -0.03178992494940758, -0.11368736624717712, -0.05634797737002373, -0.03969566151499748, 0.049222636967897415, -0.0180263239890337, 0.06978950649499893, 0.050521742552518845, 0.031143000349402428, 0.004394059535115957, 0.09966213256120682, 0.003576352959498763, -0.15525367856025696, -0.0500505194067955, 0.20068778097629547, -0.13414441049098969, 0.0026785738300532103, -0.06271252036094666, 0.005832779221236706, 0.044671591371297836, 0.33931639790534973, 0.33710241317749023, -0.04917256534099579, -0.030306093394756317, -0.04920850321650505, 0.028643447905778885, 0.10021320730447769, 0.08019809424877167, 0.09048347920179367, 0.20875057578086853, -0.19236336648464203, -0.0461285263299942, -0.17289422452449799, -0.011792926117777824, -0.02067435160279274, 0.008081091567873955, 0.1314287930727005, -0.08412124216556549, -0.05237257853150368, 0.20711861550807953, -0.21424823999404907, -0.008341985754668713, 0.006726271938532591, -0.061382636427879333, -0.10580363124608994, 0.019012020900845528, 0.056117840111255646, 0.015975724905729294, 0.11765660345554352, -0.12584711611270905, -0.10001424700021744, 0.1355840265750885, -0.03548480197787285, -0.14732706546783447, -0.09191282093524933, 0.04245176538825035, -0.07981416583061218, 0.113393135368824, 0.007554339244961739, 0.13367417454719543, 0.042500413954257965, 0.08919413387775421, -0.0856151208281517, 0.10851647704839706, 0.009207835420966148, 0.10035163164138794, -0.05728272721171379, -0.09010530263185501, 0.011178798042237759, -0.07409455627202988, -0.002607760252431035, -0.17943379282951355, 0.07886137813329697, 0.1466357260942459, -0.0016698372783139348, 0.008604628965258598, 0.04819885268807411, -0.04262913763523102, 0.10245832800865173, 0.08723599463701248, -0.05486151948571205, -0.004145643208175898, 0.004307651426643133, -0.004031631629914045, 0.054171230643987656, -0.08388853073120117, -0.050846733152866364, -0.022413220256567, -0.009560815058648586, -0.011405082419514656, -0.08078517764806747, -0.010909287258982658, -0.06263640522956848, -0.04152553528547287, -0.0475827232003212, 0.06003334000706673, 0.022789878770709038, 0.020471369847655296, 0.06777368485927582, -0.019975122064352036, 0.1608298420906067, 0.0023591851349920034, 0.1313333511352539, -0.14818882942199707, -0.1017763614654541 ]
null
null
flair
## 4-Language NER in Flair (English, German, Dutch and Spanish) This is the standard 4-class NER model for 4 CoNLL-03 languages that ships with [Flair](https://github.com/flairNLP/flair/). Also kind of works for related languages like French. F1-Score: **92,16** (CoNLL-03 English), **87,33** (CoNLL-03 German revised), **88,96** (CoNLL-03 Dutch), **86,65** (CoNLL-03 Spanish) Predicts 4 tags: | **tag** | **meaning** | |---------------------------------|-----------| | PER | person name | | LOC | location name | | ORG | organization name | | MISC | other name | Based on [Flair embeddings](https://www.aclweb.org/anthology/C18-1139/) and LSTM-CRF. --- ### Demo: How to use in Flair Requires: **[Flair](https://github.com/flairNLP/flair/)** (`pip install flair`) ```python from flair.data import Sentence from flair.models import SequenceTagger # load tagger tagger = SequenceTagger.load("flair/ner-multi") # make example sentence in any of the four languages sentence = Sentence("George Washington ging nach Washington") # predict NER tags tagger.predict(sentence) # print sentence print(sentence) # print predicted NER spans print('The following NER tags are found:') # iterate over entities and print for entity in sentence.get_spans('ner'): print(entity) ``` This yields the following output: ``` Span [1,2]: "George Washington" [− Labels: PER (0.9977)] Span [5]: "Washington" [− Labels: LOC (0.9895)] ``` So, the entities "*George Washington*" (labeled as a **person**) and "*Washington*" (labeled as a **location**) are found in the sentence "*George Washington ging nach Washington*". --- ### Training: Script to train this model The following Flair script was used to train this model: ```python from flair.data import Corpus from flair.datasets import CONLL_03, CONLL_03_GERMAN, CONLL_03_DUTCH, CONLL_03_SPANISH from flair.embeddings import WordEmbeddings, StackedEmbeddings, FlairEmbeddings # 1. get the multi-language corpus corpus: Corpus = MultiCorpus([ CONLL_03(), # English corpus CONLL_03_GERMAN(), # German corpus CONLL_03_DUTCH(), # Dutch corpus CONLL_03_SPANISH(), # Spanish corpus ]) # 2. what tag do we want to predict? tag_type = 'ner' # 3. make the tag dictionary from the corpus tag_dictionary = corpus.make_tag_dictionary(tag_type=tag_type) # 4. initialize each embedding we use embedding_types = [ # GloVe embeddings WordEmbeddings('glove'), # FastText embeddings WordEmbeddings('de'), # contextual string embeddings, forward FlairEmbeddings('multi-forward'), # contextual string embeddings, backward FlairEmbeddings('multi-backward'), ] # embedding stack consists of Flair and GloVe embeddings embeddings = StackedEmbeddings(embeddings=embedding_types) # 5. initialize sequence tagger from flair.models import SequenceTagger tagger = SequenceTagger(hidden_size=256, embeddings=embeddings, tag_dictionary=tag_dictionary, tag_type=tag_type) # 6. initialize trainer from flair.trainers import ModelTrainer trainer = ModelTrainer(tagger, corpus) # 7. run training trainer.train('resources/taggers/ner-multi', train_with_dev=True, max_epochs=150) ``` --- ### Cite Please cite the following paper when using this model. ``` @misc{akbik2019multilingual, title={Multilingual sequence labeling with one model}, author={Akbik, Alan and Bergmann, Tanja and Vollgraf, Roland} booktitle = {{NLDL} 2019, Northern Lights Deep Learning Workshop}, year = {2019} } ``` ``` @inproceedings{akbik2018coling, title={Contextual String Embeddings for Sequence Labeling}, author={Akbik, Alan and Blythe, Duncan and Vollgraf, Roland}, booktitle = {{COLING} 2018, 27th International Conference on Computational Linguistics}, pages = {1638--1649}, year = {2018} } ```
{"language": ["en", "de", "nl", "es", "multilingual"], "tags": ["flair", "token-classification", "sequence-tagger-model"], "datasets": ["conll2003"], "widget": [{"text": "George Washington ging nach Washington"}]}
token-classification
flair/ner-multi
[ "flair", "pytorch", "token-classification", "sequence-tagger-model", "en", "de", "nl", "es", "multilingual", "dataset:conll2003", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en", "de", "nl", "es", "multilingual" ]
TAGS #flair #pytorch #token-classification #sequence-tagger-model #en #de #nl #es #multilingual #dataset-conll2003 #region-us
4-Language NER in Flair (English, German, Dutch and Spanish) ------------------------------------------------------------ This is the standard 4-class NER model for 4 CoNLL-03 languages that ships with Flair. Also kind of works for related languages like French. F1-Score: 92,16 (CoNLL-03 English), 87,33 (CoNLL-03 German revised), 88,96 (CoNLL-03 Dutch), 86,65 (CoNLL-03 Spanish) Predicts 4 tags: Based on Flair embeddings and LSTM-CRF. --- ### Demo: How to use in Flair Requires: Flair ('pip install flair') This yields the following output: So, the entities "*George Washington*" (labeled as a person) and "*Washington*" (labeled as a location) are found in the sentence "*George Washington ging nach Washington*". --- ### Training: Script to train this model The following Flair script was used to train this model: --- ### Cite Please cite the following paper when using this model.
[ "### Demo: How to use in Flair\n\n\nRequires: Flair ('pip install flair')\n\n\nThis yields the following output:\n\n\nSo, the entities \"*George Washington*\" (labeled as a person) and \"*Washington*\" (labeled as a location) are found in the sentence \"*George Washington ging nach Washington*\".\n\n\n\n\n---", "### Training: Script to train this model\n\n\nThe following Flair script was used to train this model:\n\n\n\n\n---", "### Cite\n\n\nPlease cite the following paper when using this model." ]
[ "TAGS\n#flair #pytorch #token-classification #sequence-tagger-model #en #de #nl #es #multilingual #dataset-conll2003 #region-us \n", "### Demo: How to use in Flair\n\n\nRequires: Flair ('pip install flair')\n\n\nThis yields the following output:\n\n\nSo, the entities \"*George Washington*\" (labeled as a person) and \"*Washington*\" (labeled as a location) are found in the sentence \"*George Washington ging nach Washington*\".\n\n\n\n\n---", "### Training: Script to train this model\n\n\nThe following Flair script was used to train this model:\n\n\n\n\n---", "### Cite\n\n\nPlease cite the following paper when using this model." ]
[ 47, 81, 22, 14 ]
[ "passage: TAGS\n#flair #pytorch #token-classification #sequence-tagger-model #en #de #nl #es #multilingual #dataset-conll2003 #region-us \n### Demo: How to use in Flair\n\n\nRequires: Flair ('pip install flair')\n\n\nThis yields the following output:\n\n\nSo, the entities \"*George Washington*\" (labeled as a person) and \"*Washington*\" (labeled as a location) are found in the sentence \"*George Washington ging nach Washington*\".\n\n\n\n\n---### Training: Script to train this model\n\n\nThe following Flair script was used to train this model:\n\n\n\n\n---### Cite\n\n\nPlease cite the following paper when using this model." ]
[ -0.0833059698343277, 0.11088046431541443, -0.002851977478712797, 0.0648057758808136, 0.09773474931716919, 0.06724124401807785, 0.1374470591545105, 0.01561618410050869, 0.04028002917766571, 0.004797354340553284, 0.16926580667495728, 0.07804197072982788, 0.12113681435585022, 0.02815619669854641, 0.10788269340991974, -0.30111557245254517, 0.008531792089343071, -0.00851465854793787, -0.06275956332683563, 0.15114521980285645, 0.05794324725866318, 0.03186040371656418, 0.012942931614816189, 0.029085354879498482, -0.09321630746126175, -0.021728962659835815, -0.016438059508800507, -0.08343399316072464, 0.17854487895965576, -0.020209191367030144, 0.19196072220802307, 0.03375902771949768, 0.10877156257629395, -0.17925794422626495, 0.017381062731146812, 0.036649029701948166, 0.020162271335721016, 0.070530466735363, 0.04841139167547226, -0.02195408195257187, 0.3340262770652771, 0.008162284269928932, -0.0026346698869019747, 0.025616735219955444, -0.19213107228279114, -0.22718119621276855, -0.050444941967725754, 0.06452241539955139, 0.011951909400522709, 0.10344351083040237, -0.009544367901980877, 0.06902073323726654, -0.07836522907018661, 0.030711159110069275, 0.10383930802345276, -0.21201515197753906, -0.03483544662594795, 0.200745090842247, 0.0012143065687268972, -0.041184939444065094, -0.033168692141771317, 0.035347193479537964, -0.007671920582652092, 0.08996325731277466, -0.1202039048075676, -0.012243242003023624, 0.06414654850959778, 0.11353350430727005, -0.1340557336807251, -0.07226977497339249, 0.31053587794303894, 0.035162217915058136, -0.07614358514547348, 0.03324909508228302, 0.03703879565000534, 0.03242599219083786, 0.032197631895542145, -0.09178747236728668, -0.02833588793873787, 0.020015036687254906, 0.1409536600112915, -0.10176847875118256, -0.07152267545461655, -0.08992448449134827, -0.01206114236265421, 0.054820578545331955, -0.06552337110042572, 0.09513316303491592, -0.18722456693649292, 0.11196227371692657, 0.029300721362233162, -0.03795117512345314, 0.04056234285235405, -0.079921193420887, -0.0243961401283741, 0.03161343187093735, -0.02319967746734619, 0.15340477228164673, 0.039315689355134964, 0.010089111514389515, 0.1858261674642563, -0.011309013701975346, 0.08697079867124557, 0.10939178615808487, -0.0101071922108531, 0.15734505653381348, -0.09072604030370712, -0.03662751242518425, 0.009881006553769112, -0.0562736801803112, -0.02038879692554474, -0.04992026463150978, -0.16765043139457703, -0.005181773565709591, -0.09252548217773438, 0.018017835915088654, -0.00578268663957715, 0.009159069508314133, -0.09987485408782959, 0.006689716596156359, 0.05159619450569153, -0.057091183960437775, -0.047792915254831314, -0.03298048675060272, -0.05076600983738899, 0.16477249562740326, 0.06849761307239532, 0.036534037441015244, -0.012395056895911694, 0.1214531734585762, -0.06340999901294708, 0.07349832355976105, -0.0504894033074379, -0.07307168841362, -0.01465902104973793, -0.03407343477010727, 0.02362256497144699, -0.05051378533244133, -0.17866533994674683, -0.01773972623050213, 0.07788734883069992, -0.0009826811728999019, -0.05552765727043152, -0.09680137038230896, -0.0037724182475358248, -0.06306734681129456, 0.04507135972380638, 0.0369238555431366, -0.06015773117542267, 0.06675749272108078, -0.03801203519105911, 0.08419524878263474, -0.06218875199556351, 0.014078286476433277, -0.08157137036323547, 0.0049930899403989315, -0.10098295658826828, 0.027818599715828896, 0.008711131289601326, 0.030000394210219383, -0.10532217472791672, -0.0930958166718483, -0.031384341418743134, 0.02234467677772045, 0.0035662679001688957, 0.19508574903011322, -0.247097909450531, -0.019808832556009293, 0.18534928560256958, -0.09655244648456573, -0.02869660221040249, 0.06485293060541153, -0.03300413861870766, 0.247140035033226, 0.08621740341186523, 0.11684557795524597, -0.02217702753841877, -0.3525518476963043, 0.17964006960391998, 0.09696628153324127, -0.18257461488246918, 0.019788796082139015, 0.0502593070268631, -0.05535097047686577, -0.22612452507019043, 0.023494193330407143, -0.10559936612844467, 0.06754688173532486, -0.047186434268951416, -0.037038110196590424, 0.04447763040661812, -0.06378971040248871, 0.03209979459643364, -0.04772989824414253, -0.03339477255940437, -0.003897559829056263, -0.12015293538570404, -0.1478756219148636, 0.05159839242696762, 0.07205390930175781, -0.02465810626745224, -0.009995343163609505, -0.05521845445036888, 0.11077906936407089, -0.02194351516664028, -0.09164826571941376, 0.046460289508104324, -0.09123800694942474, 0.1442507952451706, 0.028792228549718857, 0.16868267953395844, -0.0281546488404274, 0.04534794017672539, 0.06441162526607513, 0.04130346700549126, -0.02963322587311268, 0.039621297270059586, 0.022778954356908798, -0.0038743040058761835, -0.05684572830796242, -0.0839560404419899, 0.11184141039848328, -0.14186139404773712, 0.05493656545877457, -0.01770714670419693, -0.028047064319252968, -0.022739743813872337, -0.009149101562798023, 0.07120025157928467, 0.06226124241948128, 0.026321273297071457, -0.04626724123954773, 0.1042059138417244, 0.015017061494290829, -0.0827532634139061, -0.0944865494966507, -0.03778960555791855, -0.01805531606078148, 0.06990868598222733, -0.0671592503786087, -0.09617269039154053, -0.08550436794757843, -0.027782948687672615, -0.018375391140580177, -0.0126648535951972, -0.03952706605195999, 0.23773476481437683, 0.04629111289978027, 0.011581135913729668, -0.025357596576213837, 0.037498973309993744, -0.03667861968278885, -0.02936411462724209, -0.060500916093587875, 0.04781348630785942, 0.12120049446821213, 0.008421852253377438, 0.008211880922317505, 0.1338677853345871, 0.0140346335247159, 0.030679693445563316, 0.038378048688173294, -0.026003334671258926, -0.10477805882692337, -0.058056894689798355, -0.019681889563798904, 0.14761120080947876, -0.09113907068967819, 0.04032658040523529, 0.01543845608830452, -0.004520037677139044, 0.04325395077466965, -0.19236122071743011, -0.13762642443180084, 0.024212194606661797, -0.036555271595716476, -0.1821918785572052, 0.03747433423995972, -0.0828503966331482, 0.09219730645418167, -0.04465140029788017, -0.1247897520661354, 0.08274218440055847, 0.003274722956120968, -0.09616031497716904, 0.1229841411113739, -0.06773391366004944, -0.28940045833587646, -0.10488574206829071, -0.13813526928424835, 0.10486998409032822, -0.014602918177843094, 0.0013100029900670052, -0.095120869576931, 0.03060106560587883, 0.02852161042392254, 0.10511309653520584, -0.09080716222524643, -0.11265154927968979, -0.05811310559511185, 0.029598163440823555, -0.014894986525177956, -0.102593332529068, -0.026292001828551292, -0.049273863434791565, 0.0710836872458458, 0.017427997663617134, -0.029270118102431297, 0.05349501222372055, 0.12765859067440033, 0.053924668580293655, 0.06592918932437897, -0.03155851736664772, 0.3552684485912323, -0.055350057780742645, 0.06266806274652481, 0.1042211502790451, -0.0011733219726011157, 0.03799126669764519, 0.1278563141822815, 0.08613818883895874, -0.08961092680692673, -0.04554446041584015, -0.08044786751270294, -0.07231169939041138, -0.11919029802083969, -0.06541714817285538, -0.04527471587061882, -0.035274967551231384, 0.0049849748611450195, 0.02236831560730934, -0.08077318221330643, 0.028630008921027184, 0.08342183381319046, -0.015120983123779297, -0.0245564766228199, -0.03038317896425724, 0.017705636098980904, -0.03451944515109062, -0.01953415386378765, -0.0167026836425066, -0.07882919162511826, -0.002001563087105751, 0.11137780547142029, 0.05102100223302841, 0.1408413201570511, -0.026298517361283302, 0.050738103687763214, 0.06324351578950882, 0.0881194919347763, 0.19454260170459747, 0.07240168750286102, -0.02447289414703846, -0.016966234892606735, -0.043957263231277466, -0.01786607690155506, 0.017843538895249367, -0.0057807015255093575, -0.08378720283508301, 0.024969957768917084, -0.08505039662122726, -0.04922494664788246, -0.059463828802108765, 0.10140060633420944, -0.1607988178730011, -0.02158823423087597, -0.00577735248953104, 0.10935152322053909, -0.051848918199539185, 0.08577438443899155, 0.010646569542586803, -0.15973268449306488, 0.05563418194651604, -0.022368162870407104, 0.09269518405199051, -0.007885429076850414, 0.04500555247068405, -0.09293381869792938, 0.06158255785703659, -0.018371837213635445, 0.14904940128326416, -0.23807817697525024, 0.31701532006263733, -0.04533009976148605, 0.05251344293355942, -0.04485331103205681, -0.00934470072388649, 0.04521401226520538, 0.06284112483263016, 0.24571770429611206, 0.02326946146786213, -0.12202909588813782, -0.09931515157222748, -0.1378011852502823, 0.05215322971343994, -0.0161745548248291, -0.03213011100888252, 0.04613050818443298, 0.0734766498208046, 0.005297286435961723, -0.02858949638903141, -0.0075097098015248775, -0.21678690612316132, -0.13306023180484772, -0.0008551508653908968, -0.05310749635100365, 0.04390529915690422, -0.0031693778000772, -0.04276305064558983, -0.08092506229877472, -0.007697660010308027, -0.018202250823378563, -0.04547450318932533, -0.0562865287065506, 0.10688288509845734, 0.017432134598493576, -0.026406029239296913, -0.04126899316906929, 0.006076621823012829, -0.024400265887379646, -0.10900929570198059, -0.0003412782389204949, 0.008620450273156166, -0.06564224511384964, 0.06537318229675293, -0.05377945303916931, 0.11129345744848251, 0.10595105588436127, 0.05224348604679108, 0.03223690018057823, 0.005150584038347006, -0.060633234679698944, -0.13019327819347382, 0.16908256709575653, -0.12038290500640869, -0.06963822990655899, 0.045462604612112045, -0.008661421947181225, 0.033768147230148315, -0.1432010531425476, 0.02451683208346367, 0.23727302253246307, 0.20878587663173676, -0.0841832309961319, 0.14517956972122192, 0.04386782646179199, -0.126686230301857, -0.1623932421207428, -0.05326109007000923, -0.06279514729976654, 0.04226711392402649, 0.07721827924251556, -0.23308375477790833, 0.061790935695171356, 0.10014118999242783, -0.01301256287842989, 0.17384997010231018, -0.24837493896484375, -0.028977228328585625, 0.22833256423473358, 0.0503418892621994, 0.12658603489398956, -0.0000526202202308923, -0.03936367481946945, -0.021927474066615105, -0.10390686243772507, 0.07147213071584702, 0.13244733214378357, 0.04278722405433655, -0.015475672669708729, 0.080649733543396, 0.007280121557414532, -0.06278468668460846, 0.1867770552635193, 0.03299414739012718, 0.023447073996067047, -0.05703350529074669, -0.20592786371707916, 0.12856793403625488, 0.0319068506360054, 0.0903274267911911, 0.04820888116955757, -0.008750314824283123, -0.0886501744389534, -0.03606749698519707, -0.13185352087020874, 0.06801231950521469, -0.06740739196538925, -0.04944450780749321, -0.03786708787083626, 0.014959986321628094, -0.1132497563958168, -0.029749758541584015, -0.1723894476890564, -0.057632315903902054, 0.04109203815460205, -0.024829726666212082, 0.03015495277941227, 0.07385385036468506, -0.18092043697834015, 0.011902359314262867, -0.014547646977007389, 0.05590079352259636, -0.024121200665831566, -0.13595692813396454, 0.10443467646837234, 0.01899387687444687, 0.10369621217250824, 0.07482481002807617, -0.08976325392723083, -0.017602723091840744, 0.0651639997959137, -0.17201200127601624, -0.09626854956150055, -0.09147708863019943, -0.015202884562313557, 0.0270064789801836, -0.07326100021600723, 0.03310159593820572, -0.020352240651845932, -0.017781099304556847, -0.001777817727997899, 0.00931644905358553, -0.15012896060943604, 0.01316736824810505, 0.111461341381073, 0.08809248358011246, -0.06296879053115845, -0.0020957125816494226, 0.0627501979470253, -0.09170260280370712, -0.029633840546011925, 0.047704681754112244, -0.06485770642757416, -0.04734547436237335, -0.0790027603507042, 0.21745114028453827, 0.049150459468364716, -0.04858732968568802, 0.002167105209082365, -0.11521563678979874, 0.01785903610289097, 0.03833884373307228, 0.08789266645908356, 0.01910719834268093, -0.12107297778129578, -0.09280207753181458, -0.02585209161043167, -0.0014230810338631272, 0.009244351647794247, -0.08469658344984055, -0.11623673141002655, 0.09183093905448914, 0.044871918857097626, 0.15244553983211517, -0.02938794158399105, -0.10762572288513184, -0.11129573732614517, 0.08069920539855957, -0.0046752216294407845, 0.020955916494131088, -0.028482744470238686, 0.030816752463579178, 0.008511710911989212, -0.013145309872925282, 0.012413710355758667, -0.01515002828091383, -0.10308736562728882, 0.060104720294475555, 0.01109117642045021, 0.04359829053282738, 0.01743701472878456, -0.028326554223895073, 0.089392751455307, -0.04670623689889908, 0.054585233330726624, 0.07802736014127731, -0.09330590814352036, 0.0069188689813017845, -0.27191492915153503, 0.04012596234679222, 0.02692759409546852, -0.010117792524397373, -0.007998323999345303, -0.1647154986858368, -0.004071313422173262, -0.0436357781291008, -0.0035379938781261444, -0.021280277520418167, 0.03220195323228836, -0.07793043553829193, -0.02083543688058853, 0.13391424715518951, -0.07846536487340927, -0.036227453500032425, -0.09240303188562393, 0.12762820720672607, -0.011918621137738228, 0.09324699640274048, 0.009490367025136948, 0.1721123903989792, -0.09886494278907776, -0.022016871720552444, -0.03323565796017647, -0.0215300340205431, -0.006365580949932337, -0.08010270446538925, 0.07557246088981628, 0.010841129347682, 0.21999295055866241, -0.015168936923146248, -0.037896525114774704, -0.04587554931640625, 0.1405876874923706, 0.013288440182805061, -0.01401849091053009, 0.12111188471317291, 0.022180400788784027, 0.02201877534389496, 0.018953373655676842, 0.03500983119010925, -0.034568581730127335, 0.2310781627893448, 0.23549965023994446, -0.03269749507308006, 0.10187365859746933, 0.07795307785272598, -0.02674081176519394, 0.06463251262903214, 0.03207813575863838, -0.12559431791305542, 0.1455310732126236, -0.013994934968650341, -0.015118665061891079, -0.02547604776918888, 0.06667080521583557, -0.04767041653394699, 0.048907577991485596, -0.02433554269373417, -0.11707087606191635, -0.11214485764503479, -0.2674994170665741, 0.04963761195540428, 0.019196394830942154, -0.01183052733540535, -0.035958144813776016, -0.045621879398822784, 0.15134282410144806, -0.036092374473810196, -0.012828887440264225, 0.059705376625061035, 0.016035186126828194, -0.07580599188804626, 0.05274439975619316, -0.0373077355325222, 0.011083636432886124, -0.13842695951461792, 0.051391758024692535, -0.04062435030937195, -0.06374887377023697, 0.03843744099140167, -0.0013859787723049521, -0.002595340134575963, -0.02353181689977646, -0.13725996017456055, -0.053886521607637405, -0.022580675780773163, 0.04759443551301956, -0.0005016533541493118, 0.07408146560192108, 0.06121295318007469, 0.016758007928729057, 0.014173205941915512, 0.07894545793533325, 0.02832789532840252, -0.1934763491153717, -0.05706005170941353, 0.20786172151565552, -0.13464993238449097, 0.0004764071782119572, -0.05243441462516785, 0.023982662707567215, 0.05484072491526604, 0.36811718344688416, 0.32511869072914124, -0.04360254108905792, -0.051547929644584656, -0.05478915199637413, 0.030239734798669815, 0.1373482346534729, 0.09784412384033203, 0.07654841244220734, 0.21854956448078156, -0.1795405149459839, -0.05390741303563118, -0.18007740378379822, -0.014696336351335049, -0.03276875242590904, 0.012262032367289066, 0.1248619481921196, -0.08178763836622238, -0.04373408481478691, 0.2402680665254593, -0.22296638786792755, 0.010258994065225124, -0.009283228777348995, -0.027255360037088394, -0.10680019110441208, 0.0013831109972670674, 0.04381285980343819, 0.03336824104189873, 0.10954511165618896, -0.12084788829088211, -0.09629718214273453, 0.15480922162532806, -0.030796648934483528, -0.1723768711090088, -0.09990810602903366, 0.031200317665934563, -0.07795239984989166, 0.07796063274145126, 0.024832677096128464, 0.15890531241893768, 0.03405485302209854, 0.09082047641277313, -0.05988655984401703, 0.11845429986715317, -0.00522605562582612, 0.1325109601020813, -0.033617325127124786, -0.08243676275014877, 0.008244184777140617, -0.071627177298069, -0.010629243217408657, -0.1445927619934082, 0.07546281069517136, 0.15686173737049103, -0.022472402080893517, -0.001802422571927309, 0.07604435086250305, -0.06615708768367767, 0.09539700299501419, 0.10498451441526413, -0.048358067870140076, -0.009181511588394642, -0.0054788230918347836, -0.001242970465682447, 0.04654490202665329, -0.08640067279338837, -0.04175417497754097, -0.03403359279036522, -0.020571405068039894, -0.0335383340716362, -0.07567055523395538, -0.031175464391708374, -0.05727706477046013, -0.04904051125049591, -0.03789246454834938, 0.025768917053937912, 0.035710763186216354, 0.0051240455359220505, 0.07445728778839111, -0.016007740050554276, 0.1406855434179306, 0.0006990987458266318, 0.12357216328382492, -0.13881957530975342, -0.10732855647802353 ]
null
null
flair
## Spanish NER in Flair (large model) This is the large 4-class NER model for Spanish that ships with [Flair](https://github.com/flairNLP/flair/). F1-Score: **90,54** (CoNLL-03 Spanish) Predicts 4 tags: | **tag** | **meaning** | |---------------------------------|-----------| | PER | person name | | LOC | location name | | ORG | organization name | | MISC | other name | Based on document-level XLM-R embeddings and [FLERT](https://arxiv.org/pdf/2011.06993v1.pdf/). --- ### Demo: How to use in Flair Requires: **[Flair](https://github.com/flairNLP/flair/)** (`pip install flair`) ```python from flair.data import Sentence from flair.models import SequenceTagger # load tagger tagger = SequenceTagger.load("flair/ner-spanish-large") # make example sentence sentence = Sentence("George Washington fue a Washington") # predict NER tags tagger.predict(sentence) # print sentence print(sentence) # print predicted NER spans print('The following NER tags are found:') # iterate over entities and print for entity in sentence.get_spans('ner'): print(entity) ``` This yields the following output: ``` Span [1,2]: "George Washington" [− Labels: PER (1.0)] Span [5]: "Washington" [− Labels: LOC (1.0)] ``` So, the entities "*George Washington*" (labeled as a **person**) and "*Washington*" (labeled as a **location**) are found in the sentence "*George Washington fue a Washington*". --- ### Training: Script to train this model The following Flair script was used to train this model: ```python import torch # 1. get the corpus from flair.datasets import CONLL_03_SPANISH corpus = CONLL_03_SPANISH() # 2. what tag do we want to predict? tag_type = 'ner' # 3. make the tag dictionary from the corpus tag_dictionary = corpus.make_tag_dictionary(tag_type=tag_type) # 4. initialize fine-tuneable transformer embeddings WITH document context from flair.embeddings import TransformerWordEmbeddings embeddings = TransformerWordEmbeddings( model='xlm-roberta-large', layers="-1", subtoken_pooling="first", fine_tune=True, use_context=True, ) # 5. initialize bare-bones sequence tagger (no CRF, no RNN, no reprojection) from flair.models import SequenceTagger tagger = SequenceTagger( hidden_size=256, embeddings=embeddings, tag_dictionary=tag_dictionary, tag_type='ner', use_crf=False, use_rnn=False, reproject_embeddings=False, ) # 6. initialize trainer with AdamW optimizer from flair.trainers import ModelTrainer trainer = ModelTrainer(tagger, corpus, optimizer=torch.optim.AdamW) # 7. run training with XLM parameters (20 epochs, small LR) from torch.optim.lr_scheduler import OneCycleLR trainer.train('resources/taggers/ner-spanish-large', learning_rate=5.0e-6, mini_batch_size=4, mini_batch_chunk_size=1, max_epochs=20, scheduler=OneCycleLR, embeddings_storage_mode='none', weight_decay=0., ) ) ``` --- ### Cite Please cite the following paper when using this model. ``` @misc{schweter2020flert, title={FLERT: Document-Level Features for Named Entity Recognition}, author={Stefan Schweter and Alan Akbik}, year={2020}, eprint={2011.06993}, archivePrefix={arXiv}, primaryClass={cs.CL} } ``` --- ### Issues? The Flair issue tracker is available [here](https://github.com/flairNLP/flair/issues/).
{"language": "es", "tags": ["flair", "token-classification", "sequence-tagger-model"], "datasets": ["conll2003"], "widget": [{"text": "George Washington fue a Washington"}]}
token-classification
flair/ner-spanish-large
[ "flair", "pytorch", "token-classification", "sequence-tagger-model", "es", "dataset:conll2003", "arxiv:2011.06993", "has_space", "region:us" ]
2022-03-02T23:29:05+00:00
[ "2011.06993" ]
[ "es" ]
TAGS #flair #pytorch #token-classification #sequence-tagger-model #es #dataset-conll2003 #arxiv-2011.06993 #has_space #region-us
Spanish NER in Flair (large model) ---------------------------------- This is the large 4-class NER model for Spanish that ships with Flair. F1-Score: 90,54 (CoNLL-03 Spanish) Predicts 4 tags: Based on document-level XLM-R embeddings and FLERT. --- ### Demo: How to use in Flair Requires: Flair ('pip install flair') This yields the following output: So, the entities "*George Washington*" (labeled as a person) and "*Washington*" (labeled as a location) are found in the sentence "*George Washington fue a Washington*". --- ### Training: Script to train this model The following Flair script was used to train this model: --- ### Cite Please cite the following paper when using this model. --- ### Issues? The Flair issue tracker is available here.
[ "### Demo: How to use in Flair\n\n\nRequires: Flair ('pip install flair')\n\n\nThis yields the following output:\n\n\nSo, the entities \"*George Washington*\" (labeled as a person) and \"*Washington*\" (labeled as a location) are found in the sentence \"*George Washington fue a Washington*\".\n\n\n\n\n---", "### Training: Script to train this model\n\n\nThe following Flair script was used to train this model:\n\n\n\n\n---", "### Cite\n\n\nPlease cite the following paper when using this model.\n\n\n\n\n---", "### Issues?\n\n\nThe Flair issue tracker is available here." ]
[ "TAGS\n#flair #pytorch #token-classification #sequence-tagger-model #es #dataset-conll2003 #arxiv-2011.06993 #has_space #region-us \n", "### Demo: How to use in Flair\n\n\nRequires: Flair ('pip install flair')\n\n\nThis yields the following output:\n\n\nSo, the entities \"*George Washington*\" (labeled as a person) and \"*Washington*\" (labeled as a location) are found in the sentence \"*George Washington fue a Washington*\".\n\n\n\n\n---", "### Training: Script to train this model\n\n\nThe following Flair script was used to train this model:\n\n\n\n\n---", "### Cite\n\n\nPlease cite the following paper when using this model.\n\n\n\n\n---", "### Issues?\n\n\nThe Flair issue tracker is available here." ]
[ 50, 81, 22, 15, 15 ]
[ "passage: TAGS\n#flair #pytorch #token-classification #sequence-tagger-model #es #dataset-conll2003 #arxiv-2011.06993 #has_space #region-us \n### Demo: How to use in Flair\n\n\nRequires: Flair ('pip install flair')\n\n\nThis yields the following output:\n\n\nSo, the entities \"*George Washington*\" (labeled as a person) and \"*Washington*\" (labeled as a location) are found in the sentence \"*George Washington fue a Washington*\".\n\n\n\n\n---### Training: Script to train this model\n\n\nThe following Flair script was used to train this model:\n\n\n\n\n---### Cite\n\n\nPlease cite the following paper when using this model.\n\n\n\n\n---### Issues?\n\n\nThe Flair issue tracker is available here." ]
[ -0.11084988713264465, 0.17583386600017548, -0.000726116995792836, 0.07776138931512833, 0.07994335889816284, 0.05660754069685936, 0.12025811523199081, 0.050116248428821564, 0.017603948712348938, 0.049200206995010376, 0.1878618597984314, 0.05754449963569641, 0.10591325908899307, 0.09344106912612915, 0.06911864131689072, -0.25175362825393677, 0.02783483825623989, -0.018288718536496162, -0.059464242309331894, 0.16570156812667847, 0.08378658443689346, -0.012677089311182499, 0.020183157175779343, 0.02303340844810009, -0.11886686831712723, -0.010412121191620827, -0.02908715046942234, -0.10018446296453476, 0.17157390713691711, -0.04017454758286476, 0.21164773404598236, 0.04831181839108467, 0.11574949324131012, -0.14117901027202606, 0.029272358864545822, 0.04082159325480461, 0.015971509739756584, 0.1145244762301445, 0.05470530316233635, 0.0018587902886793017, 0.29905444383621216, -0.031337179243564606, -0.002448560204356909, 0.031124606728553772, -0.1903248280286789, -0.2561837136745453, -0.11081517487764359, 0.07556901127099991, 0.05346132814884186, 0.11972927302122116, -0.02964414283633232, 0.10912159085273743, -0.05172378197312355, 0.026089323684573174, 0.16902421414852142, -0.21929724514484406, -0.04046130180358887, 0.17273452877998352, 0.011957105249166489, -0.025836002081632614, -0.04422999545931816, 0.03754868358373642, 0.0014342801878228784, 0.07646334916353226, -0.030170409008860588, -0.013097095303237438, 0.006812028121203184, 0.104322150349617, -0.1524730622768402, -0.09574906527996063, 0.3449510633945465, 0.03161085024476051, -0.06613577902317047, 0.018137022852897644, 0.0011870510643348098, -0.012855918146669865, 0.04863123223185539, -0.09864099323749542, -0.015506983734667301, -0.004966751206666231, 0.15847018361091614, -0.1100381463766098, -0.10922034084796906, -0.09917625039815903, -0.01873866282403469, 0.04184867814183235, -0.08459169417619705, 0.09579271823167801, -0.16954293847084045, 0.11436650156974792, 0.06245226040482521, -0.06088370457291603, 0.04414660856127739, -0.0799683928489685, -0.04373001679778099, 0.020970338955521584, -0.04889292269945145, 0.12127052247524261, 0.029570087790489197, 0.023116694763302803, 0.15418492257595062, -0.03650526702404022, 0.12862929701805115, 0.10581930726766586, 0.010912789031863213, 0.17756621539592743, -0.12270529568195343, -0.04470430314540863, 0.03776922821998596, -0.006448891945183277, -0.007029397413134575, -0.05685611441731453, -0.15249137580394745, -0.030249854549765587, -0.0631389170885086, 0.021836210042238235, 0.04240252822637558, -0.025337934494018555, -0.08716116100549698, 0.025899449363350868, 0.09654979407787323, -0.0663657858967781, -0.03377487510442734, -0.028359441086649895, -0.05823855847120285, 0.09770791232585907, 0.0980658009648323, 0.030184825882315636, 0.017749283462762833, 0.10992245376110077, -0.08551329374313354, 0.04367700219154358, -0.04112797603011131, -0.10622638463973999, -0.01676914282143116, -0.09115298092365265, 0.016461137682199478, -0.06794708967208862, -0.15603482723236084, -0.027253156527876854, 0.06509704142808914, 0.003741967724636197, -0.06704743206501007, -0.04385390505194664, -0.03993696719408035, -0.03745551407337189, 0.037099387496709824, 0.06963054835796356, -0.05325356125831604, 0.06283789873123169, -0.023288361728191376, 0.10584250837564468, -0.07738485187292099, 0.010150712914764881, -0.0929141640663147, 0.007982790470123291, -0.09407040476799011, 0.002409576438367367, -0.016214579343795776, 0.030813436955213547, -0.12417618185281754, -0.09509997814893723, -0.026992129161953926, 0.005977326072752476, 0.03236271068453789, 0.19439367949962616, -0.28492724895477295, 0.007977757602930069, 0.09579075872898102, -0.10072197765111923, -0.055292271077632904, 0.05280559882521629, -0.030934665352106094, 0.199079230427742, 0.03181154280900955, 0.13052837550640106, -0.04031737893819809, -0.322478324174881, 0.08744630962610245, 0.06757938116788864, -0.16711640357971191, 0.007528796326369047, 0.0824747085571289, -0.045146290212869644, -0.16362740099430084, -0.0048073953948915005, -0.12814189493656158, 0.024718230590224266, -0.03898634761571884, -0.05328366532921791, 0.0017353941220790148, -0.06604361534118652, 0.030750645324587822, -0.04064194858074188, -0.027362551540136337, -0.0008985743625089526, -0.1425420343875885, -0.1607925146818161, 0.04236195236444473, 0.10097284615039825, -0.03364100679755211, 0.014632823877036572, 0.048769477754831314, 0.02689201943576336, -0.04914042353630066, -0.1167689710855484, 0.016783103346824646, -0.08832112699747086, 0.13047274947166443, 0.015822749584913254, 0.14993467926979065, -0.02384200133383274, 0.034767888486385345, 0.0734545961022377, 0.03032204695045948, -0.023972854018211365, 0.05034465342760086, -0.011046173982322216, 0.00934167206287384, -0.1104341670870781, -0.09884743392467499, 0.12944039702415466, -0.17719587683677673, 0.0476292259991169, 0.008354270830750465, -0.021426239982247353, -0.031313396990299225, -0.02315293438732624, 0.10482334345579147, 0.02391502633690834, 0.005157717037945986, -0.06578133255243301, 0.07007741928100586, 0.005457780789583921, -0.061722662299871445, -0.09892719984054565, -0.05382642149925232, -0.01989547349512577, 0.09439646452665329, -0.0005199384177103639, -0.11077900230884552, -0.06632670760154724, -0.041706424206495285, 0.013419529423117638, -0.03431832790374756, -0.030926669016480446, 0.18621359765529633, 0.04354691505432129, 0.010714470408856869, -0.02286345884203911, 0.035955775529146194, -0.028727201744914055, -0.036796148866415024, -0.0696229413151741, 0.046561677008867264, 0.09183820337057114, 0.02760394848883152, 0.02584514580667019, 0.16064193844795227, -0.01451098546385765, 0.0015665105311200023, 0.05427654832601547, -0.045333199203014374, -0.09225307404994965, -0.09117287397384644, -0.022287018597126007, 0.18281115591526031, -0.04628793150186539, 0.0372052900493145, 0.044755514711141586, -0.012141902931034565, 0.04165532439947128, -0.20082369446754456, -0.13150766491889954, 0.05132385343313217, -0.02176167443394661, -0.2155539095401764, 0.06140822917222977, -0.060282159596681595, 0.10362503677606583, -0.027494845911860466, -0.0853668749332428, 0.04299201816320419, -0.003007757244631648, -0.07360956817865372, 0.12252376228570938, -0.05572331324219704, -0.23920094966888428, -0.10372833907604218, -0.03506474569439888, 0.11544255912303925, 0.0027198409661650658, 0.023037459701299667, -0.10841889679431915, 0.020678561180830002, -0.02238556556403637, 0.057190194725990295, -0.08789833635091782, -0.09180086851119995, -0.043502580374479294, 0.0064202710054814816, -0.006098187528550625, -0.11674799770116806, -0.02421184815466404, -0.04353535175323486, 0.06352698057889938, 0.02919985167682171, 0.022953201085329056, 0.10579816997051239, 0.11988439410924911, 0.01721142791211605, 0.06723511219024658, -0.03166479989886284, 0.36155617237091064, -0.07447801530361176, 0.08995317667722702, 0.12885063886642456, 0.02440936677157879, 0.04536261782050133, 0.14213435351848602, 0.06433317810297012, -0.08786029368638992, -0.039694894105196, -0.0832010880112648, -0.08044439554214478, -0.12220840901136398, -0.06413550674915314, -0.049078673124313354, -0.08259135484695435, 0.012164398096501827, 0.02834143303334713, -0.09620272368192673, 0.05830584838986397, 0.0800272673368454, -0.031314440071582794, -0.07175901532173157, -0.010938204824924469, 0.0021956381388008595, -0.020519182085990906, 0.004246471915394068, -0.035831157118082047, -0.040025416761636734, 0.02671528048813343, 0.097275011241436, 0.10586725175380707, 0.08453794568777084, -0.010063892230391502, 0.06322193145751953, 0.11965856701135635, 0.07250562310218811, 0.17850646376609802, 0.07497037202119827, -0.01758674718439579, -0.02629384957253933, -0.0619424469769001, 0.0028062264900654554, 0.04057275131344795, -0.016338543966412544, -0.06007632985711098, 0.010438145138323307, -0.07872741669416428, -0.05142349749803543, -0.0171903558075428, 0.12313691526651382, -0.21705761551856995, -0.024631168693304062, 0.0018230878049507737, 0.10714608430862427, -0.04574037715792656, 0.05505867674946785, 0.04043508693575859, -0.11680828034877777, 0.008579960092902184, -0.024663357064127922, 0.0881161242723465, 0.03604120388627052, 0.02574024721980095, -0.08813673257827759, 0.04979274049401283, -0.038889285176992416, 0.12143026292324066, -0.1736958920955658, 0.3481077551841736, -0.046825066208839417, 0.026932884007692337, -0.04690876603126526, 0.004950621165335178, 0.07695378363132477, 0.0492960587143898, 0.24824567139148712, 0.01164959091693163, -0.12057757377624512, -0.10613258183002472, -0.11921999603509903, 0.05322892591357231, -0.038180332630872726, -0.054455000907182693, 0.05431707575917244, 0.06727996468544006, 0.008386670611798763, -0.01857978105545044, 0.09518375247716904, -0.20919322967529297, -0.1182820051908493, 0.012425289489328861, -0.027623072266578674, 0.03467121720314026, -0.013200432993471622, -0.051896099001169205, -0.10609814524650574, -0.0328732430934906, 0.026153424754738808, -0.029117463156580925, -0.0903770700097084, 0.10518110543489456, 0.08115998655557632, -0.014741683378815651, -0.03386485576629639, 0.0018307281425222754, 0.015488320030272007, -0.09035886079072952, 0.01268415991216898, 0.020134149119257927, -0.07264874875545502, 0.03153754770755768, -0.07603469491004944, 0.07471620291471481, 0.06446611136198044, 0.04833395034074783, 0.0287251528352499, 0.07062331587076187, -0.11578827351331711, -0.1231566071510315, 0.18432769179344177, -0.1275404691696167, -0.0031805424951016903, 0.04122773930430412, 0.03497263789176941, 0.0003578497562557459, -0.13150537014007568, 0.0182771198451519, 0.23460166156291962, 0.24430835247039795, -0.13328254222869873, 0.12212321907281876, -0.011462921276688576, -0.10512728989124298, -0.16281209886074066, -0.020879272371530533, -0.049090053886175156, 0.050191473215818405, 0.11067666858434677, -0.17951177060604095, 0.05445544049143791, 0.1178014725446701, -0.0446840301156044, 0.16015943884849548, -0.25343436002731323, -0.030480969697237015, 0.20679216086864471, 0.050558894872665405, 0.061854228377342224, -0.062487684190273285, -0.018172666430473328, -0.0036614362616091967, -0.14449717104434967, 0.07767172157764435, 0.08835826814174652, 0.03792394697666168, -0.019470183178782463, 0.07166563719511032, 0.003841626923531294, -0.07685922086238861, 0.20860572159290314, 0.009991684928536415, 0.022865254431962967, -0.04526066407561302, -0.24333980679512024, 0.13467305898666382, -0.019891055300831795, 0.1090494841337204, 0.059949588030576706, 0.02962493896484375, -0.16135235130786896, -0.010183380916714668, -0.12618878483772278, 0.08179070055484772, -0.07239635288715363, -0.04414282739162445, -0.05712189897894859, 0.014174971729516983, -0.0828532725572586, -0.042089708149433136, -0.14711984992027283, -0.05602264776825905, 0.07665193825960159, 0.03215184062719345, 0.003904573852196336, 0.05996512249112129, -0.17785044014453888, 0.05568869039416313, -0.012259960174560547, 0.0590427964925766, -0.1016155555844307, -0.12151331454515457, 0.10215862840414047, 0.03520426154136658, 0.0803036317229271, 0.07113127410411835, -0.06564917415380478, 0.01849963143467903, 0.0544358491897583, -0.1732739508152008, -0.06661935895681381, -0.05481909215450287, 0.012468484230339527, -0.02024419605731964, -0.09430046379566193, 0.02470194548368454, -0.04975554719567299, -0.024534158408641815, -0.01359904371201992, -0.0002086710010189563, -0.1353820413351059, 0.03164426609873772, 0.13523386418819427, 0.09603238105773926, -0.05444977059960365, 0.015370151028037071, 0.09205184131860733, -0.06296884268522263, -0.009848917834460735, 0.04449566453695297, -0.05236179381608963, -0.0658966600894928, -0.06097257137298584, 0.16095159947872162, 0.04130730777978897, -0.01357994880527258, -0.0012178333709016442, -0.09948597103357315, 0.005269384477287531, 0.0619351826608181, 0.08801635354757309, -0.0007733728853054345, -0.11643289774656296, -0.09494519233703613, -0.06168261915445328, 0.0016189301386475563, 0.029454847797751427, -0.04571012407541275, -0.13895277678966522, 0.09658399969339371, 0.006578268017619848, 0.10713261365890503, -0.03725447505712509, -0.0775202065706253, -0.09634817391633987, 0.050942789763212204, -0.016577113419771194, 0.02091428078711033, -0.025099100545048714, 0.006544430740177631, -0.006045914720743895, -0.034559350460767746, -0.0020438465289771557, -0.01070162933319807, -0.10863818973302841, 0.04462503269314766, -0.004760181996971369, 0.040480729192495346, -0.03406926989555359, -0.03147332742810249, 0.08625280112028122, -0.032240454107522964, 0.062011439353227615, 0.06665924191474915, -0.07539402693510056, -0.04867929592728615, -0.2424738109111786, 0.016769926995038986, 0.029934272170066833, -0.012190332636237144, 0.01837105117738247, -0.1893644779920578, -0.01078330259770155, -0.04995813965797424, -0.01600673981010914, -0.01672806777060032, 0.0700545534491539, -0.07035788893699646, -0.051055122166872025, 0.10903188586235046, -0.049533627927303314, -0.029421547427773476, -0.08107203990221024, 0.1887093037366867, -0.010190869681537151, 0.11170434951782227, 0.019040096551179886, 0.15934911370277405, -0.139051616191864, -0.02276548556983471, -0.05867098644375801, -0.03357105329632759, -0.06180531531572342, -0.056543562561273575, 0.09323708713054657, 0.013076338917016983, 0.21065670251846313, -0.005984197370707989, -0.018061986193060875, -0.023458627983927727, 0.17441198229789734, 0.021211082115769386, -0.03323969617486, 0.10589054226875305, 0.028183240443468094, 0.004008172079920769, 0.05202683061361313, 0.05676786229014397, -0.020436301827430725, 0.1597089022397995, 0.22638177871704102, -0.020982351154088974, 0.11977017670869827, 0.09319204092025757, -0.024582650512456894, 0.009821184910833836, 0.014225058257579803, -0.11697119474411011, 0.11543674767017365, -0.005251176189631224, -0.037562478333711624, -0.05142822489142418, 0.09832848608493805, -0.07253295183181763, 0.051772359758615494, -0.05523747578263283, -0.09207748621702194, -0.09552846103906631, -0.19465938210487366, 0.04328116402029991, 0.012707225978374481, -0.01857396773993969, -0.04804433509707451, -0.012292228639125824, 0.17770493030548096, -0.053927820175886154, 0.010777858085930347, 0.09495377540588379, 0.022348888218402863, -0.051298342645168304, 0.024496005848050117, -0.026963969692587852, 0.005657749250531197, -0.14382900297641754, 0.07141892611980438, 0.0003238321514800191, -0.07924918085336685, 0.039057888090610504, -0.001770573086105287, -0.019289527088403702, -0.027692141011357307, -0.12023062258958817, -0.06624429672956467, -0.044373735785484314, 0.06822681427001953, -0.00917756836861372, 0.10030611604452133, 0.056685920804739, 0.04097874090075493, -0.00013149947335477918, 0.13740898668766022, -0.015993904322385788, -0.12904700636863708, -0.06018225476145744, 0.18409624695777893, -0.14221252501010895, -0.013467665761709213, -0.06351994723081589, -0.02512737177312374, 0.0486755333840847, 0.3140629827976227, 0.31220778822898865, -0.048326145857572556, -0.03929755091667175, -0.040466535836458206, 0.022786542773246765, 0.06673085689544678, 0.05332934856414795, 0.10819540172815323, 0.17565950751304626, -0.19037571549415588, -0.02548929490149021, -0.179010808467865, 0.0011121616698801517, -0.028810760006308556, 0.017782064154744148, 0.11365700513124466, -0.06691458076238632, -0.027980852872133255, 0.2104995995759964, -0.16526609659194946, -0.06997494399547577, 0.018015265464782715, -0.07018603384494781, -0.11965973675251007, 0.0187628585845232, 0.06104458495974541, 0.010017763823270798, 0.11936009675264359, -0.11207315325737, -0.07823657244443893, 0.16999968886375427, -0.0342375747859478, -0.13065707683563232, -0.09866613149642944, 0.04356291890144348, -0.1518034040927887, 0.14388003945350647, 0.01016036607325077, 0.13071036338806152, 0.058473795652389526, 0.08134454488754272, -0.12539127469062805, 0.11444221436977386, 0.009180882945656776, 0.09565433114767075, -0.03471670299768448, -0.053417958319187164, 0.00021896949328947812, -0.05752360448241234, -0.0018941806629300117, -0.14884671568870544, 0.07459786534309387, 0.10422100871801376, 0.015305965207517147, -0.0006863657617941499, 0.04989583417773247, -0.05785456299781799, 0.1138872504234314, 0.0958959311246872, -0.06998573243618011, 0.004951742943376303, -0.005069128703325987, 0.008871621452271938, 0.07009460777044296, -0.050394073128700256, -0.04097267985343933, -0.030179103836417198, 0.011660672724246979, -0.01333276741206646, -0.07994460314512253, -0.05237177759408951, -0.06058912351727486, -0.058181289583444595, -0.060209885239601135, 0.06090407446026802, 0.019340036436915398, 0.03164708614349365, 0.07070208340883255, -0.022442810237407684, 0.14947722852230072, 0.0004895447054877877, 0.1457696408033371, -0.16368915140628815, -0.07936849445104599 ]